Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73 #include "common/function-view.h"
74 #include "common/gdb_optional.h"
75 #include "common/underlying.h"
76 #include "common/byte-vector.h"
77 #include "common/hash_enum.h"
78 #include "filename-seen-cache.h"
79 #include "producer.h"
80 #include <fcntl.h>
81 #include <sys/types.h>
82 #include <algorithm>
83 #include <unordered_set>
84 #include <unordered_map>
85 #include "selftest.h"
86 #include <cmath>
87 #include <set>
88 #include <forward_list>
89
90 /* When == 1, print basic high level tracing messages.
91 When > 1, be more verbose.
92 This is in contrast to the low level DIE reading of dwarf_die_debug. */
93 static unsigned int dwarf_read_debug = 0;
94
95 /* When non-zero, dump DIEs after they are read in. */
96 static unsigned int dwarf_die_debug = 0;
97
98 /* When non-zero, dump line number entries as they are read in. */
99 static unsigned int dwarf_line_debug = 0;
100
101 /* When non-zero, cross-check physname against demangler. */
102 static int check_physname = 0;
103
104 /* When non-zero, do not reject deprecated .gdb_index sections. */
105 static int use_deprecated_index_sections = 0;
106
107 static const struct objfile_data *dwarf2_objfile_data_key;
108
109 /* The "aclass" indices for various kinds of computed DWARF symbols. */
110
111 static int dwarf2_locexpr_index;
112 static int dwarf2_loclist_index;
113 static int dwarf2_locexpr_block_index;
114 static int dwarf2_loclist_block_index;
115
116 /* A descriptor for dwarf sections.
117
118 S.ASECTION, SIZE are typically initialized when the objfile is first
119 scanned. BUFFER, READIN are filled in later when the section is read.
120 If the section contained compressed data then SIZE is updated to record
121 the uncompressed size of the section.
122
123 DWP file format V2 introduces a wrinkle that is easiest to handle by
124 creating the concept of virtual sections contained within a real section.
125 In DWP V2 the sections of the input DWO files are concatenated together
126 into one section, but section offsets are kept relative to the original
127 input section.
128 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
129 the real section this "virtual" section is contained in, and BUFFER,SIZE
130 describe the virtual section. */
131
132 struct dwarf2_section_info
133 {
134 union
135 {
136 /* If this is a real section, the bfd section. */
137 asection *section;
138 /* If this is a virtual section, pointer to the containing ("real")
139 section. */
140 struct dwarf2_section_info *containing_section;
141 } s;
142 /* Pointer to section data, only valid if readin. */
143 const gdb_byte *buffer;
144 /* The size of the section, real or virtual. */
145 bfd_size_type size;
146 /* If this is a virtual section, the offset in the real section.
147 Only valid if is_virtual. */
148 bfd_size_type virtual_offset;
149 /* True if we have tried to read this section. */
150 char readin;
151 /* True if this is a virtual section, False otherwise.
152 This specifies which of s.section and s.containing_section to use. */
153 char is_virtual;
154 };
155
156 typedef struct dwarf2_section_info dwarf2_section_info_def;
157 DEF_VEC_O (dwarf2_section_info_def);
158
159 /* All offsets in the index are of this type. It must be
160 architecture-independent. */
161 typedef uint32_t offset_type;
162
163 DEF_VEC_I (offset_type);
164
165 /* Ensure only legit values are used. */
166 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
167 do { \
168 gdb_assert ((unsigned int) (value) <= 1); \
169 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
170 } while (0)
171
172 /* Ensure only legit values are used. */
173 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
174 do { \
175 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
176 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
177 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
178 } while (0)
179
180 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
181 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
182 do { \
183 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
184 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
185 } while (0)
186
187 #if WORDS_BIGENDIAN
188
189 /* Convert VALUE between big- and little-endian. */
190
191 static offset_type
192 byte_swap (offset_type value)
193 {
194 offset_type result;
195
196 result = (value & 0xff) << 24;
197 result |= (value & 0xff00) << 8;
198 result |= (value & 0xff0000) >> 8;
199 result |= (value & 0xff000000) >> 24;
200 return result;
201 }
202
203 #define MAYBE_SWAP(V) byte_swap (V)
204
205 #else
206 #define MAYBE_SWAP(V) static_cast<offset_type> (V)
207 #endif /* WORDS_BIGENDIAN */
208
209 /* An index into a (C++) symbol name component in a symbol name as
210 recorded in the mapped_index's symbol table. For each C++ symbol
211 in the symbol table, we record one entry for the start of each
212 component in the symbol in a table of name components, and then
213 sort the table, in order to be able to binary search symbol names,
214 ignoring leading namespaces, both completion and regular look up.
215 For example, for symbol "A::B::C", we'll have an entry that points
216 to "A::B::C", another that points to "B::C", and another for "C".
217 Note that function symbols in GDB index have no parameter
218 information, just the function/method names. You can convert a
219 name_component to a "const char *" using the
220 'mapped_index::symbol_name_at(offset_type)' method. */
221
222 struct name_component
223 {
224 /* Offset in the symbol name where the component starts. Stored as
225 a (32-bit) offset instead of a pointer to save memory and improve
226 locality on 64-bit architectures. */
227 offset_type name_offset;
228
229 /* The symbol's index in the symbol and constant pool tables of a
230 mapped_index. */
231 offset_type idx;
232 };
233
234 /* Base class containing bits shared by both .gdb_index and
235 .debug_name indexes. */
236
237 struct mapped_index_base
238 {
239 /* The name_component table (a sorted vector). See name_component's
240 description above. */
241 std::vector<name_component> name_components;
242
243 /* How NAME_COMPONENTS is sorted. */
244 enum case_sensitivity name_components_casing;
245
246 /* Return the number of names in the symbol table. */
247 virtual size_t symbol_name_count () const = 0;
248
249 /* Get the name of the symbol at IDX in the symbol table. */
250 virtual const char *symbol_name_at (offset_type idx) const = 0;
251
252 /* Return whether the name at IDX in the symbol table should be
253 ignored. */
254 virtual bool symbol_name_slot_invalid (offset_type idx) const
255 {
256 return false;
257 }
258
259 /* Build the symbol name component sorted vector, if we haven't
260 yet. */
261 void build_name_components ();
262
263 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
264 possible matches for LN_NO_PARAMS in the name component
265 vector. */
266 std::pair<std::vector<name_component>::const_iterator,
267 std::vector<name_component>::const_iterator>
268 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
269
270 /* Prevent deleting/destroying via a base class pointer. */
271 protected:
272 ~mapped_index_base() = default;
273 };
274
275 /* A description of the mapped index. The file format is described in
276 a comment by the code that writes the index. */
277 struct mapped_index final : public mapped_index_base
278 {
279 /* A slot/bucket in the symbol table hash. */
280 struct symbol_table_slot
281 {
282 const offset_type name;
283 const offset_type vec;
284 };
285
286 /* Index data format version. */
287 int version;
288
289 /* The total length of the buffer. */
290 off_t total_size;
291
292 /* The address table data. */
293 gdb::array_view<const gdb_byte> address_table;
294
295 /* The symbol table, implemented as a hash table. */
296 gdb::array_view<symbol_table_slot> symbol_table;
297
298 /* A pointer to the constant pool. */
299 const char *constant_pool;
300
301 bool symbol_name_slot_invalid (offset_type idx) const override
302 {
303 const auto &bucket = this->symbol_table[idx];
304 return bucket.name == 0 && bucket.vec;
305 }
306
307 /* Convenience method to get at the name of the symbol at IDX in the
308 symbol table. */
309 const char *symbol_name_at (offset_type idx) const override
310 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
311
312 size_t symbol_name_count () const override
313 { return this->symbol_table.size (); }
314 };
315
316 /* A description of the mapped .debug_names.
317 Uninitialized map has CU_COUNT 0. */
318 struct mapped_debug_names final : public mapped_index_base
319 {
320 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
321 : dwarf2_per_objfile (dwarf2_per_objfile_)
322 {}
323
324 struct dwarf2_per_objfile *dwarf2_per_objfile;
325 bfd_endian dwarf5_byte_order;
326 bool dwarf5_is_dwarf64;
327 bool augmentation_is_gdb;
328 uint8_t offset_size;
329 uint32_t cu_count = 0;
330 uint32_t tu_count, bucket_count, name_count;
331 const gdb_byte *cu_table_reordered, *tu_table_reordered;
332 const uint32_t *bucket_table_reordered, *hash_table_reordered;
333 const gdb_byte *name_table_string_offs_reordered;
334 const gdb_byte *name_table_entry_offs_reordered;
335 const gdb_byte *entry_pool;
336
337 struct index_val
338 {
339 ULONGEST dwarf_tag;
340 struct attr
341 {
342 /* Attribute name DW_IDX_*. */
343 ULONGEST dw_idx;
344
345 /* Attribute form DW_FORM_*. */
346 ULONGEST form;
347
348 /* Value if FORM is DW_FORM_implicit_const. */
349 LONGEST implicit_const;
350 };
351 std::vector<attr> attr_vec;
352 };
353
354 std::unordered_map<ULONGEST, index_val> abbrev_map;
355
356 const char *namei_to_name (uint32_t namei) const;
357
358 /* Implementation of the mapped_index_base virtual interface, for
359 the name_components cache. */
360
361 const char *symbol_name_at (offset_type idx) const override
362 { return namei_to_name (idx); }
363
364 size_t symbol_name_count () const override
365 { return this->name_count; }
366 };
367
368 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
369 DEF_VEC_P (dwarf2_per_cu_ptr);
370
371 struct tu_stats
372 {
373 int nr_uniq_abbrev_tables;
374 int nr_symtabs;
375 int nr_symtab_sharers;
376 int nr_stmt_less_type_units;
377 int nr_all_type_units_reallocs;
378 };
379
380 /* Collection of data recorded per objfile.
381 This hangs off of dwarf2_objfile_data_key. */
382
383 struct dwarf2_per_objfile
384 {
385 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
386 dwarf2 section names, or is NULL if the standard ELF names are
387 used. */
388 dwarf2_per_objfile (struct objfile *objfile,
389 const dwarf2_debug_sections *names);
390
391 ~dwarf2_per_objfile ();
392
393 DISABLE_COPY_AND_ASSIGN (dwarf2_per_objfile);
394
395 /* Free all cached compilation units. */
396 void free_cached_comp_units ();
397 private:
398 /* This function is mapped across the sections and remembers the
399 offset and size of each of the debugging sections we are
400 interested in. */
401 void locate_sections (bfd *abfd, asection *sectp,
402 const dwarf2_debug_sections &names);
403
404 public:
405 dwarf2_section_info info {};
406 dwarf2_section_info abbrev {};
407 dwarf2_section_info line {};
408 dwarf2_section_info loc {};
409 dwarf2_section_info loclists {};
410 dwarf2_section_info macinfo {};
411 dwarf2_section_info macro {};
412 dwarf2_section_info str {};
413 dwarf2_section_info line_str {};
414 dwarf2_section_info ranges {};
415 dwarf2_section_info rnglists {};
416 dwarf2_section_info addr {};
417 dwarf2_section_info frame {};
418 dwarf2_section_info eh_frame {};
419 dwarf2_section_info gdb_index {};
420 dwarf2_section_info debug_names {};
421 dwarf2_section_info debug_aranges {};
422
423 VEC (dwarf2_section_info_def) *types = NULL;
424
425 /* Back link. */
426 struct objfile *objfile = NULL;
427
428 /* Table of all the compilation units. This is used to locate
429 the target compilation unit of a particular reference. */
430 struct dwarf2_per_cu_data **all_comp_units = NULL;
431
432 /* The number of compilation units in ALL_COMP_UNITS. */
433 int n_comp_units = 0;
434
435 /* The number of .debug_types-related CUs. */
436 int n_type_units = 0;
437
438 /* The number of elements allocated in all_type_units.
439 If there are skeleton-less TUs, we add them to all_type_units lazily. */
440 int n_allocated_type_units = 0;
441
442 /* The .debug_types-related CUs (TUs).
443 This is stored in malloc space because we may realloc it. */
444 struct signatured_type **all_type_units = NULL;
445
446 /* Table of struct type_unit_group objects.
447 The hash key is the DW_AT_stmt_list value. */
448 htab_t type_unit_groups {};
449
450 /* A table mapping .debug_types signatures to its signatured_type entry.
451 This is NULL if the .debug_types section hasn't been read in yet. */
452 htab_t signatured_types {};
453
454 /* Type unit statistics, to see how well the scaling improvements
455 are doing. */
456 struct tu_stats tu_stats {};
457
458 /* A chain of compilation units that are currently read in, so that
459 they can be freed later. */
460 dwarf2_per_cu_data *read_in_chain = NULL;
461
462 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
463 This is NULL if the table hasn't been allocated yet. */
464 htab_t dwo_files {};
465
466 /* True if we've checked for whether there is a DWP file. */
467 bool dwp_checked = false;
468
469 /* The DWP file if there is one, or NULL. */
470 struct dwp_file *dwp_file = NULL;
471
472 /* The shared '.dwz' file, if one exists. This is used when the
473 original data was compressed using 'dwz -m'. */
474 struct dwz_file *dwz_file = NULL;
475
476 /* A flag indicating whether this objfile has a section loaded at a
477 VMA of 0. */
478 bool has_section_at_zero = false;
479
480 /* True if we are using the mapped index,
481 or we are faking it for OBJF_READNOW's sake. */
482 bool using_index = false;
483
484 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
485 mapped_index *index_table = NULL;
486
487 /* The mapped index, or NULL if .debug_names is missing or not being used. */
488 std::unique_ptr<mapped_debug_names> debug_names_table;
489
490 /* When using index_table, this keeps track of all quick_file_names entries.
491 TUs typically share line table entries with a CU, so we maintain a
492 separate table of all line table entries to support the sharing.
493 Note that while there can be way more TUs than CUs, we've already
494 sorted all the TUs into "type unit groups", grouped by their
495 DW_AT_stmt_list value. Therefore the only sharing done here is with a
496 CU and its associated TU group if there is one. */
497 htab_t quick_file_names_table {};
498
499 /* Set during partial symbol reading, to prevent queueing of full
500 symbols. */
501 bool reading_partial_symbols = false;
502
503 /* Table mapping type DIEs to their struct type *.
504 This is NULL if not allocated yet.
505 The mapping is done via (CU/TU + DIE offset) -> type. */
506 htab_t die_type_hash {};
507
508 /* The CUs we recently read. */
509 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
510
511 /* Table containing line_header indexed by offset and offset_in_dwz. */
512 htab_t line_header_hash {};
513
514 /* Table containing all filenames. This is an optional because the
515 table is lazily constructed on first access. */
516 gdb::optional<filename_seen_cache> filenames_cache;
517 };
518
519 /* Get the dwarf2_per_objfile associated to OBJFILE. */
520
521 struct dwarf2_per_objfile *
522 get_dwarf2_per_objfile (struct objfile *objfile)
523 {
524 return ((struct dwarf2_per_objfile *)
525 objfile_data (objfile, dwarf2_objfile_data_key));
526 }
527
528 /* Set the dwarf2_per_objfile associated to OBJFILE. */
529
530 void
531 set_dwarf2_per_objfile (struct objfile *objfile,
532 struct dwarf2_per_objfile *dwarf2_per_objfile)
533 {
534 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
535 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
536 }
537
538 /* Default names of the debugging sections. */
539
540 /* Note that if the debugging section has been compressed, it might
541 have a name like .zdebug_info. */
542
543 static const struct dwarf2_debug_sections dwarf2_elf_names =
544 {
545 { ".debug_info", ".zdebug_info" },
546 { ".debug_abbrev", ".zdebug_abbrev" },
547 { ".debug_line", ".zdebug_line" },
548 { ".debug_loc", ".zdebug_loc" },
549 { ".debug_loclists", ".zdebug_loclists" },
550 { ".debug_macinfo", ".zdebug_macinfo" },
551 { ".debug_macro", ".zdebug_macro" },
552 { ".debug_str", ".zdebug_str" },
553 { ".debug_line_str", ".zdebug_line_str" },
554 { ".debug_ranges", ".zdebug_ranges" },
555 { ".debug_rnglists", ".zdebug_rnglists" },
556 { ".debug_types", ".zdebug_types" },
557 { ".debug_addr", ".zdebug_addr" },
558 { ".debug_frame", ".zdebug_frame" },
559 { ".eh_frame", NULL },
560 { ".gdb_index", ".zgdb_index" },
561 { ".debug_names", ".zdebug_names" },
562 { ".debug_aranges", ".zdebug_aranges" },
563 23
564 };
565
566 /* List of DWO/DWP sections. */
567
568 static const struct dwop_section_names
569 {
570 struct dwarf2_section_names abbrev_dwo;
571 struct dwarf2_section_names info_dwo;
572 struct dwarf2_section_names line_dwo;
573 struct dwarf2_section_names loc_dwo;
574 struct dwarf2_section_names loclists_dwo;
575 struct dwarf2_section_names macinfo_dwo;
576 struct dwarf2_section_names macro_dwo;
577 struct dwarf2_section_names str_dwo;
578 struct dwarf2_section_names str_offsets_dwo;
579 struct dwarf2_section_names types_dwo;
580 struct dwarf2_section_names cu_index;
581 struct dwarf2_section_names tu_index;
582 }
583 dwop_section_names =
584 {
585 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
586 { ".debug_info.dwo", ".zdebug_info.dwo" },
587 { ".debug_line.dwo", ".zdebug_line.dwo" },
588 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
589 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
590 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
591 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
592 { ".debug_str.dwo", ".zdebug_str.dwo" },
593 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
594 { ".debug_types.dwo", ".zdebug_types.dwo" },
595 { ".debug_cu_index", ".zdebug_cu_index" },
596 { ".debug_tu_index", ".zdebug_tu_index" },
597 };
598
599 /* local data types */
600
601 /* The data in a compilation unit header, after target2host
602 translation, looks like this. */
603 struct comp_unit_head
604 {
605 unsigned int length;
606 short version;
607 unsigned char addr_size;
608 unsigned char signed_addr_p;
609 sect_offset abbrev_sect_off;
610
611 /* Size of file offsets; either 4 or 8. */
612 unsigned int offset_size;
613
614 /* Size of the length field; either 4 or 12. */
615 unsigned int initial_length_size;
616
617 enum dwarf_unit_type unit_type;
618
619 /* Offset to the first byte of this compilation unit header in the
620 .debug_info section, for resolving relative reference dies. */
621 sect_offset sect_off;
622
623 /* Offset to first die in this cu from the start of the cu.
624 This will be the first byte following the compilation unit header. */
625 cu_offset first_die_cu_offset;
626
627 /* 64-bit signature of this type unit - it is valid only for
628 UNIT_TYPE DW_UT_type. */
629 ULONGEST signature;
630
631 /* For types, offset in the type's DIE of the type defined by this TU. */
632 cu_offset type_cu_offset_in_tu;
633 };
634
635 /* Type used for delaying computation of method physnames.
636 See comments for compute_delayed_physnames. */
637 struct delayed_method_info
638 {
639 /* The type to which the method is attached, i.e., its parent class. */
640 struct type *type;
641
642 /* The index of the method in the type's function fieldlists. */
643 int fnfield_index;
644
645 /* The index of the method in the fieldlist. */
646 int index;
647
648 /* The name of the DIE. */
649 const char *name;
650
651 /* The DIE associated with this method. */
652 struct die_info *die;
653 };
654
655 /* Internal state when decoding a particular compilation unit. */
656 struct dwarf2_cu
657 {
658 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
659 ~dwarf2_cu ();
660
661 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
662
663 /* The header of the compilation unit. */
664 struct comp_unit_head header {};
665
666 /* Base address of this compilation unit. */
667 CORE_ADDR base_address = 0;
668
669 /* Non-zero if base_address has been set. */
670 int base_known = 0;
671
672 /* The language we are debugging. */
673 enum language language = language_unknown;
674 const struct language_defn *language_defn = nullptr;
675
676 const char *producer = nullptr;
677
678 /* The generic symbol table building routines have separate lists for
679 file scope symbols and all all other scopes (local scopes). So
680 we need to select the right one to pass to add_symbol_to_list().
681 We do it by keeping a pointer to the correct list in list_in_scope.
682
683 FIXME: The original dwarf code just treated the file scope as the
684 first local scope, and all other local scopes as nested local
685 scopes, and worked fine. Check to see if we really need to
686 distinguish these in buildsym.c. */
687 struct pending **list_in_scope = nullptr;
688
689 /* Hash table holding all the loaded partial DIEs
690 with partial_die->offset.SECT_OFF as hash. */
691 htab_t partial_dies = nullptr;
692
693 /* Storage for things with the same lifetime as this read-in compilation
694 unit, including partial DIEs. */
695 auto_obstack comp_unit_obstack;
696
697 /* When multiple dwarf2_cu structures are living in memory, this field
698 chains them all together, so that they can be released efficiently.
699 We will probably also want a generation counter so that most-recently-used
700 compilation units are cached... */
701 struct dwarf2_per_cu_data *read_in_chain = nullptr;
702
703 /* Backlink to our per_cu entry. */
704 struct dwarf2_per_cu_data *per_cu;
705
706 /* How many compilation units ago was this CU last referenced? */
707 int last_used = 0;
708
709 /* A hash table of DIE cu_offset for following references with
710 die_info->offset.sect_off as hash. */
711 htab_t die_hash = nullptr;
712
713 /* Full DIEs if read in. */
714 struct die_info *dies = nullptr;
715
716 /* A set of pointers to dwarf2_per_cu_data objects for compilation
717 units referenced by this one. Only set during full symbol processing;
718 partial symbol tables do not have dependencies. */
719 htab_t dependencies = nullptr;
720
721 /* Header data from the line table, during full symbol processing. */
722 struct line_header *line_header = nullptr;
723 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
724 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
725 this is the DW_TAG_compile_unit die for this CU. We'll hold on
726 to the line header as long as this DIE is being processed. See
727 process_die_scope. */
728 die_info *line_header_die_owner = nullptr;
729
730 /* A list of methods which need to have physnames computed
731 after all type information has been read. */
732 std::vector<delayed_method_info> method_list;
733
734 /* To be copied to symtab->call_site_htab. */
735 htab_t call_site_htab = nullptr;
736
737 /* Non-NULL if this CU came from a DWO file.
738 There is an invariant here that is important to remember:
739 Except for attributes copied from the top level DIE in the "main"
740 (or "stub") file in preparation for reading the DWO file
741 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
742 Either there isn't a DWO file (in which case this is NULL and the point
743 is moot), or there is and either we're not going to read it (in which
744 case this is NULL) or there is and we are reading it (in which case this
745 is non-NULL). */
746 struct dwo_unit *dwo_unit = nullptr;
747
748 /* The DW_AT_addr_base attribute if present, zero otherwise
749 (zero is a valid value though).
750 Note this value comes from the Fission stub CU/TU's DIE. */
751 ULONGEST addr_base = 0;
752
753 /* The DW_AT_ranges_base attribute if present, zero otherwise
754 (zero is a valid value though).
755 Note this value comes from the Fission stub CU/TU's DIE.
756 Also note that the value is zero in the non-DWO case so this value can
757 be used without needing to know whether DWO files are in use or not.
758 N.B. This does not apply to DW_AT_ranges appearing in
759 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
760 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
761 DW_AT_ranges_base *would* have to be applied, and we'd have to care
762 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
763 ULONGEST ranges_base = 0;
764
765 /* Mark used when releasing cached dies. */
766 unsigned int mark : 1;
767
768 /* This CU references .debug_loc. See the symtab->locations_valid field.
769 This test is imperfect as there may exist optimized debug code not using
770 any location list and still facing inlining issues if handled as
771 unoptimized code. For a future better test see GCC PR other/32998. */
772 unsigned int has_loclist : 1;
773
774 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
775 if all the producer_is_* fields are valid. This information is cached
776 because profiling CU expansion showed excessive time spent in
777 producer_is_gxx_lt_4_6. */
778 unsigned int checked_producer : 1;
779 unsigned int producer_is_gxx_lt_4_6 : 1;
780 unsigned int producer_is_gcc_lt_4_3 : 1;
781 unsigned int producer_is_icc_lt_14 : 1;
782
783 /* When set, the file that we're processing is known to have
784 debugging info for C++ namespaces. GCC 3.3.x did not produce
785 this information, but later versions do. */
786
787 unsigned int processing_has_namespace_info : 1;
788 };
789
790 /* Persistent data held for a compilation unit, even when not
791 processing it. We put a pointer to this structure in the
792 read_symtab_private field of the psymtab. */
793
794 struct dwarf2_per_cu_data
795 {
796 /* The start offset and length of this compilation unit.
797 NOTE: Unlike comp_unit_head.length, this length includes
798 initial_length_size.
799 If the DIE refers to a DWO file, this is always of the original die,
800 not the DWO file. */
801 sect_offset sect_off;
802 unsigned int length;
803
804 /* DWARF standard version this data has been read from (such as 4 or 5). */
805 short dwarf_version;
806
807 /* Flag indicating this compilation unit will be read in before
808 any of the current compilation units are processed. */
809 unsigned int queued : 1;
810
811 /* This flag will be set when reading partial DIEs if we need to load
812 absolutely all DIEs for this compilation unit, instead of just the ones
813 we think are interesting. It gets set if we look for a DIE in the
814 hash table and don't find it. */
815 unsigned int load_all_dies : 1;
816
817 /* Non-zero if this CU is from .debug_types.
818 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
819 this is non-zero. */
820 unsigned int is_debug_types : 1;
821
822 /* Non-zero if this CU is from the .dwz file. */
823 unsigned int is_dwz : 1;
824
825 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
826 This flag is only valid if is_debug_types is true.
827 We can't read a CU directly from a DWO file: There are required
828 attributes in the stub. */
829 unsigned int reading_dwo_directly : 1;
830
831 /* Non-zero if the TU has been read.
832 This is used to assist the "Stay in DWO Optimization" for Fission:
833 When reading a DWO, it's faster to read TUs from the DWO instead of
834 fetching them from random other DWOs (due to comdat folding).
835 If the TU has already been read, the optimization is unnecessary
836 (and unwise - we don't want to change where gdb thinks the TU lives
837 "midflight").
838 This flag is only valid if is_debug_types is true. */
839 unsigned int tu_read : 1;
840
841 /* The section this CU/TU lives in.
842 If the DIE refers to a DWO file, this is always the original die,
843 not the DWO file. */
844 struct dwarf2_section_info *section;
845
846 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
847 of the CU cache it gets reset to NULL again. This is left as NULL for
848 dummy CUs (a CU header, but nothing else). */
849 struct dwarf2_cu *cu;
850
851 /* The corresponding dwarf2_per_objfile. */
852 struct dwarf2_per_objfile *dwarf2_per_objfile;
853
854 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
855 is active. Otherwise, the 'psymtab' field is active. */
856 union
857 {
858 /* The partial symbol table associated with this compilation unit,
859 or NULL for unread partial units. */
860 struct partial_symtab *psymtab;
861
862 /* Data needed by the "quick" functions. */
863 struct dwarf2_per_cu_quick_data *quick;
864 } v;
865
866 /* The CUs we import using DW_TAG_imported_unit. This is filled in
867 while reading psymtabs, used to compute the psymtab dependencies,
868 and then cleared. Then it is filled in again while reading full
869 symbols, and only deleted when the objfile is destroyed.
870
871 This is also used to work around a difference between the way gold
872 generates .gdb_index version <=7 and the way gdb does. Arguably this
873 is a gold bug. For symbols coming from TUs, gold records in the index
874 the CU that includes the TU instead of the TU itself. This breaks
875 dw2_lookup_symbol: It assumes that if the index says symbol X lives
876 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
877 will find X. Alas TUs live in their own symtab, so after expanding CU Y
878 we need to look in TU Z to find X. Fortunately, this is akin to
879 DW_TAG_imported_unit, so we just use the same mechanism: For
880 .gdb_index version <=7 this also records the TUs that the CU referred
881 to. Concurrently with this change gdb was modified to emit version 8
882 indices so we only pay a price for gold generated indices.
883 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
884 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
885 };
886
887 /* Entry in the signatured_types hash table. */
888
889 struct signatured_type
890 {
891 /* The "per_cu" object of this type.
892 This struct is used iff per_cu.is_debug_types.
893 N.B.: This is the first member so that it's easy to convert pointers
894 between them. */
895 struct dwarf2_per_cu_data per_cu;
896
897 /* The type's signature. */
898 ULONGEST signature;
899
900 /* Offset in the TU of the type's DIE, as read from the TU header.
901 If this TU is a DWO stub and the definition lives in a DWO file
902 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
903 cu_offset type_offset_in_tu;
904
905 /* Offset in the section of the type's DIE.
906 If the definition lives in a DWO file, this is the offset in the
907 .debug_types.dwo section.
908 The value is zero until the actual value is known.
909 Zero is otherwise not a valid section offset. */
910 sect_offset type_offset_in_section;
911
912 /* Type units are grouped by their DW_AT_stmt_list entry so that they
913 can share them. This points to the containing symtab. */
914 struct type_unit_group *type_unit_group;
915
916 /* The type.
917 The first time we encounter this type we fully read it in and install it
918 in the symbol tables. Subsequent times we only need the type. */
919 struct type *type;
920
921 /* Containing DWO unit.
922 This field is valid iff per_cu.reading_dwo_directly. */
923 struct dwo_unit *dwo_unit;
924 };
925
926 typedef struct signatured_type *sig_type_ptr;
927 DEF_VEC_P (sig_type_ptr);
928
929 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
930 This includes type_unit_group and quick_file_names. */
931
932 struct stmt_list_hash
933 {
934 /* The DWO unit this table is from or NULL if there is none. */
935 struct dwo_unit *dwo_unit;
936
937 /* Offset in .debug_line or .debug_line.dwo. */
938 sect_offset line_sect_off;
939 };
940
941 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
942 an object of this type. */
943
944 struct type_unit_group
945 {
946 /* dwarf2read.c's main "handle" on a TU symtab.
947 To simplify things we create an artificial CU that "includes" all the
948 type units using this stmt_list so that the rest of the code still has
949 a "per_cu" handle on the symtab.
950 This PER_CU is recognized by having no section. */
951 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
952 struct dwarf2_per_cu_data per_cu;
953
954 /* The TUs that share this DW_AT_stmt_list entry.
955 This is added to while parsing type units to build partial symtabs,
956 and is deleted afterwards and not used again. */
957 VEC (sig_type_ptr) *tus;
958
959 /* The compunit symtab.
960 Type units in a group needn't all be defined in the same source file,
961 so we create an essentially anonymous symtab as the compunit symtab. */
962 struct compunit_symtab *compunit_symtab;
963
964 /* The data used to construct the hash key. */
965 struct stmt_list_hash hash;
966
967 /* The number of symtabs from the line header.
968 The value here must match line_header.num_file_names. */
969 unsigned int num_symtabs;
970
971 /* The symbol tables for this TU (obtained from the files listed in
972 DW_AT_stmt_list).
973 WARNING: The order of entries here must match the order of entries
974 in the line header. After the first TU using this type_unit_group, the
975 line header for the subsequent TUs is recreated from this. This is done
976 because we need to use the same symtabs for each TU using the same
977 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
978 there's no guarantee the line header doesn't have duplicate entries. */
979 struct symtab **symtabs;
980 };
981
982 /* These sections are what may appear in a (real or virtual) DWO file. */
983
984 struct dwo_sections
985 {
986 struct dwarf2_section_info abbrev;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info loc;
989 struct dwarf2_section_info loclists;
990 struct dwarf2_section_info macinfo;
991 struct dwarf2_section_info macro;
992 struct dwarf2_section_info str;
993 struct dwarf2_section_info str_offsets;
994 /* In the case of a virtual DWO file, these two are unused. */
995 struct dwarf2_section_info info;
996 VEC (dwarf2_section_info_def) *types;
997 };
998
999 /* CUs/TUs in DWP/DWO files. */
1000
1001 struct dwo_unit
1002 {
1003 /* Backlink to the containing struct dwo_file. */
1004 struct dwo_file *dwo_file;
1005
1006 /* The "id" that distinguishes this CU/TU.
1007 .debug_info calls this "dwo_id", .debug_types calls this "signature".
1008 Since signatures came first, we stick with it for consistency. */
1009 ULONGEST signature;
1010
1011 /* The section this CU/TU lives in, in the DWO file. */
1012 struct dwarf2_section_info *section;
1013
1014 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
1015 sect_offset sect_off;
1016 unsigned int length;
1017
1018 /* For types, offset in the type's DIE of the type defined by this TU. */
1019 cu_offset type_offset_in_tu;
1020 };
1021
1022 /* include/dwarf2.h defines the DWP section codes.
1023 It defines a max value but it doesn't define a min value, which we
1024 use for error checking, so provide one. */
1025
1026 enum dwp_v2_section_ids
1027 {
1028 DW_SECT_MIN = 1
1029 };
1030
1031 /* Data for one DWO file.
1032
1033 This includes virtual DWO files (a virtual DWO file is a DWO file as it
1034 appears in a DWP file). DWP files don't really have DWO files per se -
1035 comdat folding of types "loses" the DWO file they came from, and from
1036 a high level view DWP files appear to contain a mass of random types.
1037 However, to maintain consistency with the non-DWP case we pretend DWP
1038 files contain virtual DWO files, and we assign each TU with one virtual
1039 DWO file (generally based on the line and abbrev section offsets -
1040 a heuristic that seems to work in practice). */
1041
1042 struct dwo_file
1043 {
1044 /* The DW_AT_GNU_dwo_name attribute.
1045 For virtual DWO files the name is constructed from the section offsets
1046 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
1047 from related CU+TUs. */
1048 const char *dwo_name;
1049
1050 /* The DW_AT_comp_dir attribute. */
1051 const char *comp_dir;
1052
1053 /* The bfd, when the file is open. Otherwise this is NULL.
1054 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
1055 bfd *dbfd;
1056
1057 /* The sections that make up this DWO file.
1058 Remember that for virtual DWO files in DWP V2, these are virtual
1059 sections (for lack of a better name). */
1060 struct dwo_sections sections;
1061
1062 /* The CUs in the file.
1063 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
1064 an extension to handle LLVM's Link Time Optimization output (where
1065 multiple source files may be compiled into a single object/dwo pair). */
1066 htab_t cus;
1067
1068 /* Table of TUs in the file.
1069 Each element is a struct dwo_unit. */
1070 htab_t tus;
1071 };
1072
1073 /* These sections are what may appear in a DWP file. */
1074
1075 struct dwp_sections
1076 {
1077 /* These are used by both DWP version 1 and 2. */
1078 struct dwarf2_section_info str;
1079 struct dwarf2_section_info cu_index;
1080 struct dwarf2_section_info tu_index;
1081
1082 /* These are only used by DWP version 2 files.
1083 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
1084 sections are referenced by section number, and are not recorded here.
1085 In DWP version 2 there is at most one copy of all these sections, each
1086 section being (effectively) comprised of the concatenation of all of the
1087 individual sections that exist in the version 1 format.
1088 To keep the code simple we treat each of these concatenated pieces as a
1089 section itself (a virtual section?). */
1090 struct dwarf2_section_info abbrev;
1091 struct dwarf2_section_info info;
1092 struct dwarf2_section_info line;
1093 struct dwarf2_section_info loc;
1094 struct dwarf2_section_info macinfo;
1095 struct dwarf2_section_info macro;
1096 struct dwarf2_section_info str_offsets;
1097 struct dwarf2_section_info types;
1098 };
1099
1100 /* These sections are what may appear in a virtual DWO file in DWP version 1.
1101 A virtual DWO file is a DWO file as it appears in a DWP file. */
1102
1103 struct virtual_v1_dwo_sections
1104 {
1105 struct dwarf2_section_info abbrev;
1106 struct dwarf2_section_info line;
1107 struct dwarf2_section_info loc;
1108 struct dwarf2_section_info macinfo;
1109 struct dwarf2_section_info macro;
1110 struct dwarf2_section_info str_offsets;
1111 /* Each DWP hash table entry records one CU or one TU.
1112 That is recorded here, and copied to dwo_unit.section. */
1113 struct dwarf2_section_info info_or_types;
1114 };
1115
1116 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
1117 In version 2, the sections of the DWO files are concatenated together
1118 and stored in one section of that name. Thus each ELF section contains
1119 several "virtual" sections. */
1120
1121 struct virtual_v2_dwo_sections
1122 {
1123 bfd_size_type abbrev_offset;
1124 bfd_size_type abbrev_size;
1125
1126 bfd_size_type line_offset;
1127 bfd_size_type line_size;
1128
1129 bfd_size_type loc_offset;
1130 bfd_size_type loc_size;
1131
1132 bfd_size_type macinfo_offset;
1133 bfd_size_type macinfo_size;
1134
1135 bfd_size_type macro_offset;
1136 bfd_size_type macro_size;
1137
1138 bfd_size_type str_offsets_offset;
1139 bfd_size_type str_offsets_size;
1140
1141 /* Each DWP hash table entry records one CU or one TU.
1142 That is recorded here, and copied to dwo_unit.section. */
1143 bfd_size_type info_or_types_offset;
1144 bfd_size_type info_or_types_size;
1145 };
1146
1147 /* Contents of DWP hash tables. */
1148
1149 struct dwp_hash_table
1150 {
1151 uint32_t version, nr_columns;
1152 uint32_t nr_units, nr_slots;
1153 const gdb_byte *hash_table, *unit_table;
1154 union
1155 {
1156 struct
1157 {
1158 const gdb_byte *indices;
1159 } v1;
1160 struct
1161 {
1162 /* This is indexed by column number and gives the id of the section
1163 in that column. */
1164 #define MAX_NR_V2_DWO_SECTIONS \
1165 (1 /* .debug_info or .debug_types */ \
1166 + 1 /* .debug_abbrev */ \
1167 + 1 /* .debug_line */ \
1168 + 1 /* .debug_loc */ \
1169 + 1 /* .debug_str_offsets */ \
1170 + 1 /* .debug_macro or .debug_macinfo */)
1171 int section_ids[MAX_NR_V2_DWO_SECTIONS];
1172 const gdb_byte *offsets;
1173 const gdb_byte *sizes;
1174 } v2;
1175 } section_pool;
1176 };
1177
1178 /* Data for one DWP file. */
1179
1180 struct dwp_file
1181 {
1182 /* Name of the file. */
1183 const char *name;
1184
1185 /* File format version. */
1186 int version;
1187
1188 /* The bfd. */
1189 bfd *dbfd;
1190
1191 /* Section info for this file. */
1192 struct dwp_sections sections;
1193
1194 /* Table of CUs in the file. */
1195 const struct dwp_hash_table *cus;
1196
1197 /* Table of TUs in the file. */
1198 const struct dwp_hash_table *tus;
1199
1200 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1201 htab_t loaded_cus;
1202 htab_t loaded_tus;
1203
1204 /* Table to map ELF section numbers to their sections.
1205 This is only needed for the DWP V1 file format. */
1206 unsigned int num_sections;
1207 asection **elf_sections;
1208 };
1209
1210 /* This represents a '.dwz' file. */
1211
1212 struct dwz_file
1213 {
1214 /* A dwz file can only contain a few sections. */
1215 struct dwarf2_section_info abbrev;
1216 struct dwarf2_section_info info;
1217 struct dwarf2_section_info str;
1218 struct dwarf2_section_info line;
1219 struct dwarf2_section_info macro;
1220 struct dwarf2_section_info gdb_index;
1221 struct dwarf2_section_info debug_names;
1222
1223 /* The dwz's BFD. */
1224 bfd *dwz_bfd;
1225 };
1226
1227 /* Struct used to pass misc. parameters to read_die_and_children, et
1228 al. which are used for both .debug_info and .debug_types dies.
1229 All parameters here are unchanging for the life of the call. This
1230 struct exists to abstract away the constant parameters of die reading. */
1231
1232 struct die_reader_specs
1233 {
1234 /* The bfd of die_section. */
1235 bfd* abfd;
1236
1237 /* The CU of the DIE we are parsing. */
1238 struct dwarf2_cu *cu;
1239
1240 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1241 struct dwo_file *dwo_file;
1242
1243 /* The section the die comes from.
1244 This is either .debug_info or .debug_types, or the .dwo variants. */
1245 struct dwarf2_section_info *die_section;
1246
1247 /* die_section->buffer. */
1248 const gdb_byte *buffer;
1249
1250 /* The end of the buffer. */
1251 const gdb_byte *buffer_end;
1252
1253 /* The value of the DW_AT_comp_dir attribute. */
1254 const char *comp_dir;
1255
1256 /* The abbreviation table to use when reading the DIEs. */
1257 struct abbrev_table *abbrev_table;
1258 };
1259
1260 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1261 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1262 const gdb_byte *info_ptr,
1263 struct die_info *comp_unit_die,
1264 int has_children,
1265 void *data);
1266
1267 /* A 1-based directory index. This is a strong typedef to prevent
1268 accidentally using a directory index as a 0-based index into an
1269 array/vector. */
1270 enum class dir_index : unsigned int {};
1271
1272 /* Likewise, a 1-based file name index. */
1273 enum class file_name_index : unsigned int {};
1274
1275 struct file_entry
1276 {
1277 file_entry () = default;
1278
1279 file_entry (const char *name_, dir_index d_index_,
1280 unsigned int mod_time_, unsigned int length_)
1281 : name (name_),
1282 d_index (d_index_),
1283 mod_time (mod_time_),
1284 length (length_)
1285 {}
1286
1287 /* Return the include directory at D_INDEX stored in LH. Returns
1288 NULL if D_INDEX is out of bounds. */
1289 const char *include_dir (const line_header *lh) const;
1290
1291 /* The file name. Note this is an observing pointer. The memory is
1292 owned by debug_line_buffer. */
1293 const char *name {};
1294
1295 /* The directory index (1-based). */
1296 dir_index d_index {};
1297
1298 unsigned int mod_time {};
1299
1300 unsigned int length {};
1301
1302 /* True if referenced by the Line Number Program. */
1303 bool included_p {};
1304
1305 /* The associated symbol table, if any. */
1306 struct symtab *symtab {};
1307 };
1308
1309 /* The line number information for a compilation unit (found in the
1310 .debug_line section) begins with a "statement program header",
1311 which contains the following information. */
1312 struct line_header
1313 {
1314 line_header ()
1315 : offset_in_dwz {}
1316 {}
1317
1318 /* Add an entry to the include directory table. */
1319 void add_include_dir (const char *include_dir);
1320
1321 /* Add an entry to the file name table. */
1322 void add_file_name (const char *name, dir_index d_index,
1323 unsigned int mod_time, unsigned int length);
1324
1325 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1326 is out of bounds. */
1327 const char *include_dir_at (dir_index index) const
1328 {
1329 /* Convert directory index number (1-based) to vector index
1330 (0-based). */
1331 size_t vec_index = to_underlying (index) - 1;
1332
1333 if (vec_index >= include_dirs.size ())
1334 return NULL;
1335 return include_dirs[vec_index];
1336 }
1337
1338 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1339 is out of bounds. */
1340 file_entry *file_name_at (file_name_index index)
1341 {
1342 /* Convert file name index number (1-based) to vector index
1343 (0-based). */
1344 size_t vec_index = to_underlying (index) - 1;
1345
1346 if (vec_index >= file_names.size ())
1347 return NULL;
1348 return &file_names[vec_index];
1349 }
1350
1351 /* Const version of the above. */
1352 const file_entry *file_name_at (unsigned int index) const
1353 {
1354 if (index >= file_names.size ())
1355 return NULL;
1356 return &file_names[index];
1357 }
1358
1359 /* Offset of line number information in .debug_line section. */
1360 sect_offset sect_off {};
1361
1362 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1363 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1364
1365 unsigned int total_length {};
1366 unsigned short version {};
1367 unsigned int header_length {};
1368 unsigned char minimum_instruction_length {};
1369 unsigned char maximum_ops_per_instruction {};
1370 unsigned char default_is_stmt {};
1371 int line_base {};
1372 unsigned char line_range {};
1373 unsigned char opcode_base {};
1374
1375 /* standard_opcode_lengths[i] is the number of operands for the
1376 standard opcode whose value is i. This means that
1377 standard_opcode_lengths[0] is unused, and the last meaningful
1378 element is standard_opcode_lengths[opcode_base - 1]. */
1379 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1380
1381 /* The include_directories table. Note these are observing
1382 pointers. The memory is owned by debug_line_buffer. */
1383 std::vector<const char *> include_dirs;
1384
1385 /* The file_names table. */
1386 std::vector<file_entry> file_names;
1387
1388 /* The start and end of the statement program following this
1389 header. These point into dwarf2_per_objfile->line_buffer. */
1390 const gdb_byte *statement_program_start {}, *statement_program_end {};
1391 };
1392
1393 typedef std::unique_ptr<line_header> line_header_up;
1394
1395 const char *
1396 file_entry::include_dir (const line_header *lh) const
1397 {
1398 return lh->include_dir_at (d_index);
1399 }
1400
1401 /* When we construct a partial symbol table entry we only
1402 need this much information. */
1403 struct partial_die_info
1404 {
1405 /* Offset of this DIE. */
1406 sect_offset sect_off;
1407
1408 /* DWARF-2 tag for this DIE. */
1409 ENUM_BITFIELD(dwarf_tag) tag : 16;
1410
1411 /* Assorted flags describing the data found in this DIE. */
1412 unsigned int has_children : 1;
1413 unsigned int is_external : 1;
1414 unsigned int is_declaration : 1;
1415 unsigned int has_type : 1;
1416 unsigned int has_specification : 1;
1417 unsigned int has_pc_info : 1;
1418 unsigned int may_be_inlined : 1;
1419
1420 /* This DIE has been marked DW_AT_main_subprogram. */
1421 unsigned int main_subprogram : 1;
1422
1423 /* Flag set if the SCOPE field of this structure has been
1424 computed. */
1425 unsigned int scope_set : 1;
1426
1427 /* Flag set if the DIE has a byte_size attribute. */
1428 unsigned int has_byte_size : 1;
1429
1430 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1431 unsigned int has_const_value : 1;
1432
1433 /* Flag set if any of the DIE's children are template arguments. */
1434 unsigned int has_template_arguments : 1;
1435
1436 /* Flag set if fixup_partial_die has been called on this die. */
1437 unsigned int fixup_called : 1;
1438
1439 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1440 unsigned int is_dwz : 1;
1441
1442 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1443 unsigned int spec_is_dwz : 1;
1444
1445 /* The name of this DIE. Normally the value of DW_AT_name, but
1446 sometimes a default name for unnamed DIEs. */
1447 const char *name;
1448
1449 /* The linkage name, if present. */
1450 const char *linkage_name;
1451
1452 /* The scope to prepend to our children. This is generally
1453 allocated on the comp_unit_obstack, so will disappear
1454 when this compilation unit leaves the cache. */
1455 const char *scope;
1456
1457 /* Some data associated with the partial DIE. The tag determines
1458 which field is live. */
1459 union
1460 {
1461 /* The location description associated with this DIE, if any. */
1462 struct dwarf_block *locdesc;
1463 /* The offset of an import, for DW_TAG_imported_unit. */
1464 sect_offset sect_off;
1465 } d;
1466
1467 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1468 CORE_ADDR lowpc;
1469 CORE_ADDR highpc;
1470
1471 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1472 DW_AT_sibling, if any. */
1473 /* NOTE: This member isn't strictly necessary, read_partial_die could
1474 return DW_AT_sibling values to its caller load_partial_dies. */
1475 const gdb_byte *sibling;
1476
1477 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1478 DW_AT_specification (or DW_AT_abstract_origin or
1479 DW_AT_extension). */
1480 sect_offset spec_offset;
1481
1482 /* Pointers to this DIE's parent, first child, and next sibling,
1483 if any. */
1484 struct partial_die_info *die_parent, *die_child, *die_sibling;
1485 };
1486
1487 /* This data structure holds the information of an abbrev. */
1488 struct abbrev_info
1489 {
1490 unsigned int number; /* number identifying abbrev */
1491 enum dwarf_tag tag; /* dwarf tag */
1492 unsigned short has_children; /* boolean */
1493 unsigned short num_attrs; /* number of attributes */
1494 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1495 struct abbrev_info *next; /* next in chain */
1496 };
1497
1498 struct attr_abbrev
1499 {
1500 ENUM_BITFIELD(dwarf_attribute) name : 16;
1501 ENUM_BITFIELD(dwarf_form) form : 16;
1502
1503 /* It is valid only if FORM is DW_FORM_implicit_const. */
1504 LONGEST implicit_const;
1505 };
1506
1507 /* Size of abbrev_table.abbrev_hash_table. */
1508 #define ABBREV_HASH_SIZE 121
1509
1510 /* Top level data structure to contain an abbreviation table. */
1511
1512 struct abbrev_table
1513 {
1514 explicit abbrev_table (sect_offset off)
1515 : sect_off (off)
1516 {
1517 m_abbrevs =
1518 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1519 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1520 }
1521
1522 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1523
1524 /* Allocate space for a struct abbrev_info object in
1525 ABBREV_TABLE. */
1526 struct abbrev_info *alloc_abbrev ();
1527
1528 /* Add an abbreviation to the table. */
1529 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1530
1531 /* Look up an abbrev in the table.
1532 Returns NULL if the abbrev is not found. */
1533
1534 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1535
1536
1537 /* Where the abbrev table came from.
1538 This is used as a sanity check when the table is used. */
1539 const sect_offset sect_off;
1540
1541 /* Storage for the abbrev table. */
1542 auto_obstack abbrev_obstack;
1543
1544 private:
1545
1546 /* Hash table of abbrevs.
1547 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1548 It could be statically allocated, but the previous code didn't so we
1549 don't either. */
1550 struct abbrev_info **m_abbrevs;
1551 };
1552
1553 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1554
1555 /* Attributes have a name and a value. */
1556 struct attribute
1557 {
1558 ENUM_BITFIELD(dwarf_attribute) name : 16;
1559 ENUM_BITFIELD(dwarf_form) form : 15;
1560
1561 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1562 field should be in u.str (existing only for DW_STRING) but it is kept
1563 here for better struct attribute alignment. */
1564 unsigned int string_is_canonical : 1;
1565
1566 union
1567 {
1568 const char *str;
1569 struct dwarf_block *blk;
1570 ULONGEST unsnd;
1571 LONGEST snd;
1572 CORE_ADDR addr;
1573 ULONGEST signature;
1574 }
1575 u;
1576 };
1577
1578 /* This data structure holds a complete die structure. */
1579 struct die_info
1580 {
1581 /* DWARF-2 tag for this DIE. */
1582 ENUM_BITFIELD(dwarf_tag) tag : 16;
1583
1584 /* Number of attributes */
1585 unsigned char num_attrs;
1586
1587 /* True if we're presently building the full type name for the
1588 type derived from this DIE. */
1589 unsigned char building_fullname : 1;
1590
1591 /* True if this die is in process. PR 16581. */
1592 unsigned char in_process : 1;
1593
1594 /* Abbrev number */
1595 unsigned int abbrev;
1596
1597 /* Offset in .debug_info or .debug_types section. */
1598 sect_offset sect_off;
1599
1600 /* The dies in a compilation unit form an n-ary tree. PARENT
1601 points to this die's parent; CHILD points to the first child of
1602 this node; and all the children of a given node are chained
1603 together via their SIBLING fields. */
1604 struct die_info *child; /* Its first child, if any. */
1605 struct die_info *sibling; /* Its next sibling, if any. */
1606 struct die_info *parent; /* Its parent, if any. */
1607
1608 /* An array of attributes, with NUM_ATTRS elements. There may be
1609 zero, but it's not common and zero-sized arrays are not
1610 sufficiently portable C. */
1611 struct attribute attrs[1];
1612 };
1613
1614 /* Get at parts of an attribute structure. */
1615
1616 #define DW_STRING(attr) ((attr)->u.str)
1617 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1618 #define DW_UNSND(attr) ((attr)->u.unsnd)
1619 #define DW_BLOCK(attr) ((attr)->u.blk)
1620 #define DW_SND(attr) ((attr)->u.snd)
1621 #define DW_ADDR(attr) ((attr)->u.addr)
1622 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1623
1624 /* Blocks are a bunch of untyped bytes. */
1625 struct dwarf_block
1626 {
1627 size_t size;
1628
1629 /* Valid only if SIZE is not zero. */
1630 const gdb_byte *data;
1631 };
1632
1633 #ifndef ATTR_ALLOC_CHUNK
1634 #define ATTR_ALLOC_CHUNK 4
1635 #endif
1636
1637 /* Allocate fields for structs, unions and enums in this size. */
1638 #ifndef DW_FIELD_ALLOC_CHUNK
1639 #define DW_FIELD_ALLOC_CHUNK 4
1640 #endif
1641
1642 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1643 but this would require a corresponding change in unpack_field_as_long
1644 and friends. */
1645 static int bits_per_byte = 8;
1646
1647 struct nextfield
1648 {
1649 struct nextfield *next;
1650 int accessibility;
1651 int virtuality;
1652 struct field field;
1653 };
1654
1655 struct nextfnfield
1656 {
1657 struct nextfnfield *next;
1658 struct fn_field fnfield;
1659 };
1660
1661 struct fnfieldlist
1662 {
1663 const char *name;
1664 int length;
1665 struct nextfnfield *head;
1666 };
1667
1668 struct decl_field_list
1669 {
1670 struct decl_field field;
1671 struct decl_field_list *next;
1672 };
1673
1674 /* The routines that read and process dies for a C struct or C++ class
1675 pass lists of data member fields and lists of member function fields
1676 in an instance of a field_info structure, as defined below. */
1677 struct field_info
1678 {
1679 /* List of data member and baseclasses fields. */
1680 struct nextfield *fields, *baseclasses;
1681
1682 /* Number of fields (including baseclasses). */
1683 int nfields;
1684
1685 /* Number of baseclasses. */
1686 int nbaseclasses;
1687
1688 /* Set if the accesibility of one of the fields is not public. */
1689 int non_public_fields;
1690
1691 /* Member function fieldlist array, contains name of possibly overloaded
1692 member function, number of overloaded member functions and a pointer
1693 to the head of the member function field chain. */
1694 struct fnfieldlist *fnfieldlists;
1695
1696 /* Number of entries in the fnfieldlists array. */
1697 int nfnfields;
1698
1699 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1700 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1701 struct decl_field_list *typedef_field_list;
1702 unsigned typedef_field_list_count;
1703
1704 /* Nested types defined by this class and the number of elements in this
1705 list. */
1706 struct decl_field_list *nested_types_list;
1707 unsigned nested_types_list_count;
1708 };
1709
1710 /* One item on the queue of compilation units to read in full symbols
1711 for. */
1712 struct dwarf2_queue_item
1713 {
1714 struct dwarf2_per_cu_data *per_cu;
1715 enum language pretend_language;
1716 struct dwarf2_queue_item *next;
1717 };
1718
1719 /* The current queue. */
1720 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1721
1722 /* Loaded secondary compilation units are kept in memory until they
1723 have not been referenced for the processing of this many
1724 compilation units. Set this to zero to disable caching. Cache
1725 sizes of up to at least twenty will improve startup time for
1726 typical inter-CU-reference binaries, at an obvious memory cost. */
1727 static int dwarf_max_cache_age = 5;
1728 static void
1729 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1730 struct cmd_list_element *c, const char *value)
1731 {
1732 fprintf_filtered (file, _("The upper bound on the age of cached "
1733 "DWARF compilation units is %s.\n"),
1734 value);
1735 }
1736 \f
1737 /* local function prototypes */
1738
1739 static const char *get_section_name (const struct dwarf2_section_info *);
1740
1741 static const char *get_section_file_name (const struct dwarf2_section_info *);
1742
1743 static void dwarf2_find_base_address (struct die_info *die,
1744 struct dwarf2_cu *cu);
1745
1746 static struct partial_symtab *create_partial_symtab
1747 (struct dwarf2_per_cu_data *per_cu, const char *name);
1748
1749 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1750 const gdb_byte *info_ptr,
1751 struct die_info *type_unit_die,
1752 int has_children, void *data);
1753
1754 static void dwarf2_build_psymtabs_hard
1755 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1756
1757 static void scan_partial_symbols (struct partial_die_info *,
1758 CORE_ADDR *, CORE_ADDR *,
1759 int, struct dwarf2_cu *);
1760
1761 static void add_partial_symbol (struct partial_die_info *,
1762 struct dwarf2_cu *);
1763
1764 static void add_partial_namespace (struct partial_die_info *pdi,
1765 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1766 int set_addrmap, struct dwarf2_cu *cu);
1767
1768 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1769 CORE_ADDR *highpc, int set_addrmap,
1770 struct dwarf2_cu *cu);
1771
1772 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1773 struct dwarf2_cu *cu);
1774
1775 static void add_partial_subprogram (struct partial_die_info *pdi,
1776 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1777 int need_pc, struct dwarf2_cu *cu);
1778
1779 static void dwarf2_read_symtab (struct partial_symtab *,
1780 struct objfile *);
1781
1782 static void psymtab_to_symtab_1 (struct partial_symtab *);
1783
1784 static abbrev_table_up abbrev_table_read_table
1785 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1786 sect_offset);
1787
1788 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1789
1790 static struct partial_die_info *load_partial_dies
1791 (const struct die_reader_specs *, const gdb_byte *, int);
1792
1793 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1794 struct partial_die_info *,
1795 struct abbrev_info *,
1796 unsigned int,
1797 const gdb_byte *);
1798
1799 static struct partial_die_info *find_partial_die (sect_offset, int,
1800 struct dwarf2_cu *);
1801
1802 static void fixup_partial_die (struct partial_die_info *,
1803 struct dwarf2_cu *);
1804
1805 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1806 struct attribute *, struct attr_abbrev *,
1807 const gdb_byte *);
1808
1809 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1810
1811 static int read_1_signed_byte (bfd *, const gdb_byte *);
1812
1813 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1814
1815 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1816
1817 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1818
1819 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1820 unsigned int *);
1821
1822 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1823
1824 static LONGEST read_checked_initial_length_and_offset
1825 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1826 unsigned int *, unsigned int *);
1827
1828 static LONGEST read_offset (bfd *, const gdb_byte *,
1829 const struct comp_unit_head *,
1830 unsigned int *);
1831
1832 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1833
1834 static sect_offset read_abbrev_offset
1835 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1836 struct dwarf2_section_info *, sect_offset);
1837
1838 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1839
1840 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1841
1842 static const char *read_indirect_string
1843 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1844 const struct comp_unit_head *, unsigned int *);
1845
1846 static const char *read_indirect_line_string
1847 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1848 const struct comp_unit_head *, unsigned int *);
1849
1850 static const char *read_indirect_string_at_offset
1851 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1852 LONGEST str_offset);
1853
1854 static const char *read_indirect_string_from_dwz
1855 (struct objfile *objfile, struct dwz_file *, LONGEST);
1856
1857 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1858
1859 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1860 const gdb_byte *,
1861 unsigned int *);
1862
1863 static const char *read_str_index (const struct die_reader_specs *reader,
1864 ULONGEST str_index);
1865
1866 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1867
1868 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1869 struct dwarf2_cu *);
1870
1871 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1872 unsigned int);
1873
1874 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1875 struct dwarf2_cu *cu);
1876
1877 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1878 struct dwarf2_cu *cu);
1879
1880 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1881
1882 static struct die_info *die_specification (struct die_info *die,
1883 struct dwarf2_cu **);
1884
1885 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1886 struct dwarf2_cu *cu);
1887
1888 static void dwarf_decode_lines (struct line_header *, const char *,
1889 struct dwarf2_cu *, struct partial_symtab *,
1890 CORE_ADDR, int decode_mapping);
1891
1892 static void dwarf2_start_subfile (const char *, const char *);
1893
1894 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1895 const char *, const char *,
1896 CORE_ADDR);
1897
1898 static struct symbol *new_symbol (struct die_info *, struct type *,
1899 struct dwarf2_cu *, struct symbol * = NULL);
1900
1901 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1902 struct dwarf2_cu *);
1903
1904 static void dwarf2_const_value_attr (const struct attribute *attr,
1905 struct type *type,
1906 const char *name,
1907 struct obstack *obstack,
1908 struct dwarf2_cu *cu, LONGEST *value,
1909 const gdb_byte **bytes,
1910 struct dwarf2_locexpr_baton **baton);
1911
1912 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1913
1914 static int need_gnat_info (struct dwarf2_cu *);
1915
1916 static struct type *die_descriptive_type (struct die_info *,
1917 struct dwarf2_cu *);
1918
1919 static void set_descriptive_type (struct type *, struct die_info *,
1920 struct dwarf2_cu *);
1921
1922 static struct type *die_containing_type (struct die_info *,
1923 struct dwarf2_cu *);
1924
1925 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1926 struct dwarf2_cu *);
1927
1928 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1929
1930 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1931
1932 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1933
1934 static char *typename_concat (struct obstack *obs, const char *prefix,
1935 const char *suffix, int physname,
1936 struct dwarf2_cu *cu);
1937
1938 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1939
1940 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1941
1942 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1943
1944 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1945
1946 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1947
1948 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1949
1950 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1951 struct dwarf2_cu *, struct partial_symtab *);
1952
1953 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1954 values. Keep the items ordered with increasing constraints compliance. */
1955 enum pc_bounds_kind
1956 {
1957 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1958 PC_BOUNDS_NOT_PRESENT,
1959
1960 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1961 were present but they do not form a valid range of PC addresses. */
1962 PC_BOUNDS_INVALID,
1963
1964 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1965 PC_BOUNDS_RANGES,
1966
1967 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1968 PC_BOUNDS_HIGH_LOW,
1969 };
1970
1971 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1972 CORE_ADDR *, CORE_ADDR *,
1973 struct dwarf2_cu *,
1974 struct partial_symtab *);
1975
1976 static void get_scope_pc_bounds (struct die_info *,
1977 CORE_ADDR *, CORE_ADDR *,
1978 struct dwarf2_cu *);
1979
1980 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1981 CORE_ADDR, struct dwarf2_cu *);
1982
1983 static void dwarf2_add_field (struct field_info *, struct die_info *,
1984 struct dwarf2_cu *);
1985
1986 static void dwarf2_attach_fields_to_type (struct field_info *,
1987 struct type *, struct dwarf2_cu *);
1988
1989 static void dwarf2_add_member_fn (struct field_info *,
1990 struct die_info *, struct type *,
1991 struct dwarf2_cu *);
1992
1993 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1994 struct type *,
1995 struct dwarf2_cu *);
1996
1997 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1998
1999 static void read_common_block (struct die_info *, struct dwarf2_cu *);
2000
2001 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
2002
2003 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
2004
2005 static struct using_direct **using_directives (enum language);
2006
2007 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
2008
2009 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
2010
2011 static struct type *read_module_type (struct die_info *die,
2012 struct dwarf2_cu *cu);
2013
2014 static const char *namespace_name (struct die_info *die,
2015 int *is_anonymous, struct dwarf2_cu *);
2016
2017 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
2018
2019 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
2020
2021 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
2022 struct dwarf2_cu *);
2023
2024 static struct die_info *read_die_and_siblings_1
2025 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
2026 struct die_info *);
2027
2028 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
2029 const gdb_byte *info_ptr,
2030 const gdb_byte **new_info_ptr,
2031 struct die_info *parent);
2032
2033 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
2034 struct die_info **, const gdb_byte *,
2035 int *, int);
2036
2037 static const gdb_byte *read_full_die (const struct die_reader_specs *,
2038 struct die_info **, const gdb_byte *,
2039 int *);
2040
2041 static void process_die (struct die_info *, struct dwarf2_cu *);
2042
2043 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
2044 struct obstack *);
2045
2046 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
2047
2048 static const char *dwarf2_full_name (const char *name,
2049 struct die_info *die,
2050 struct dwarf2_cu *cu);
2051
2052 static const char *dwarf2_physname (const char *name, struct die_info *die,
2053 struct dwarf2_cu *cu);
2054
2055 static struct die_info *dwarf2_extension (struct die_info *die,
2056 struct dwarf2_cu **);
2057
2058 static const char *dwarf_tag_name (unsigned int);
2059
2060 static const char *dwarf_attr_name (unsigned int);
2061
2062 static const char *dwarf_form_name (unsigned int);
2063
2064 static const char *dwarf_bool_name (unsigned int);
2065
2066 static const char *dwarf_type_encoding_name (unsigned int);
2067
2068 static struct die_info *sibling_die (struct die_info *);
2069
2070 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
2071
2072 static void dump_die_for_error (struct die_info *);
2073
2074 static void dump_die_1 (struct ui_file *, int level, int max_level,
2075 struct die_info *);
2076
2077 /*static*/ void dump_die (struct die_info *, int max_level);
2078
2079 static void store_in_ref_table (struct die_info *,
2080 struct dwarf2_cu *);
2081
2082 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
2083
2084 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
2085
2086 static struct die_info *follow_die_ref_or_sig (struct die_info *,
2087 const struct attribute *,
2088 struct dwarf2_cu **);
2089
2090 static struct die_info *follow_die_ref (struct die_info *,
2091 const struct attribute *,
2092 struct dwarf2_cu **);
2093
2094 static struct die_info *follow_die_sig (struct die_info *,
2095 const struct attribute *,
2096 struct dwarf2_cu **);
2097
2098 static struct type *get_signatured_type (struct die_info *, ULONGEST,
2099 struct dwarf2_cu *);
2100
2101 static struct type *get_DW_AT_signature_type (struct die_info *,
2102 const struct attribute *,
2103 struct dwarf2_cu *);
2104
2105 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
2106
2107 static void read_signatured_type (struct signatured_type *);
2108
2109 static int attr_to_dynamic_prop (const struct attribute *attr,
2110 struct die_info *die, struct dwarf2_cu *cu,
2111 struct dynamic_prop *prop);
2112
2113 /* memory allocation interface */
2114
2115 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
2116
2117 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
2118
2119 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2120
2121 static int attr_form_is_block (const struct attribute *);
2122
2123 static int attr_form_is_section_offset (const struct attribute *);
2124
2125 static int attr_form_is_constant (const struct attribute *);
2126
2127 static int attr_form_is_ref (const struct attribute *);
2128
2129 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
2130 struct dwarf2_loclist_baton *baton,
2131 const struct attribute *attr);
2132
2133 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
2134 struct symbol *sym,
2135 struct dwarf2_cu *cu,
2136 int is_block);
2137
2138 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
2139 const gdb_byte *info_ptr,
2140 struct abbrev_info *abbrev);
2141
2142 static hashval_t partial_die_hash (const void *item);
2143
2144 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
2145
2146 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
2147 (sect_offset sect_off, unsigned int offset_in_dwz,
2148 struct dwarf2_per_objfile *dwarf2_per_objfile);
2149
2150 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
2151 struct die_info *comp_unit_die,
2152 enum language pretend_language);
2153
2154 static void free_cached_comp_units (void *);
2155
2156 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
2157
2158 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
2159
2160 static struct type *set_die_type (struct die_info *, struct type *,
2161 struct dwarf2_cu *);
2162
2163 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
2164
2165 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
2166
2167 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
2168 enum language);
2169
2170 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
2171 enum language);
2172
2173 static void process_full_type_unit (struct dwarf2_per_cu_data *,
2174 enum language);
2175
2176 static void dwarf2_add_dependence (struct dwarf2_cu *,
2177 struct dwarf2_per_cu_data *);
2178
2179 static void dwarf2_mark (struct dwarf2_cu *);
2180
2181 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
2182
2183 static struct type *get_die_type_at_offset (sect_offset,
2184 struct dwarf2_per_cu_data *);
2185
2186 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
2187
2188 static void dwarf2_release_queue (void *dummy);
2189
2190 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
2191 enum language pretend_language);
2192
2193 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
2194
2195 /* The return type of find_file_and_directory. Note, the enclosed
2196 string pointers are only valid while this object is valid. */
2197
2198 struct file_and_directory
2199 {
2200 /* The filename. This is never NULL. */
2201 const char *name;
2202
2203 /* The compilation directory. NULL if not known. If we needed to
2204 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2205 points directly to the DW_AT_comp_dir string attribute owned by
2206 the obstack that owns the DIE. */
2207 const char *comp_dir;
2208
2209 /* If we needed to build a new string for comp_dir, this is what
2210 owns the storage. */
2211 std::string comp_dir_storage;
2212 };
2213
2214 static file_and_directory find_file_and_directory (struct die_info *die,
2215 struct dwarf2_cu *cu);
2216
2217 static char *file_full_name (int file, struct line_header *lh,
2218 const char *comp_dir);
2219
2220 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
2221 enum class rcuh_kind { COMPILE, TYPE };
2222
2223 static const gdb_byte *read_and_check_comp_unit_head
2224 (struct dwarf2_per_objfile* dwarf2_per_objfile,
2225 struct comp_unit_head *header,
2226 struct dwarf2_section_info *section,
2227 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
2228 rcuh_kind section_kind);
2229
2230 static void init_cutu_and_read_dies
2231 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2232 int use_existing_cu, int keep,
2233 die_reader_func_ftype *die_reader_func, void *data);
2234
2235 static void init_cutu_and_read_dies_simple
2236 (struct dwarf2_per_cu_data *this_cu,
2237 die_reader_func_ftype *die_reader_func, void *data);
2238
2239 static htab_t allocate_signatured_type_table (struct objfile *objfile);
2240
2241 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2242
2243 static struct dwo_unit *lookup_dwo_unit_in_dwp
2244 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2245 struct dwp_file *dwp_file, const char *comp_dir,
2246 ULONGEST signature, int is_debug_types);
2247
2248 static struct dwp_file *get_dwp_file
2249 (struct dwarf2_per_objfile *dwarf2_per_objfile);
2250
2251 static struct dwo_unit *lookup_dwo_comp_unit
2252 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2253
2254 static struct dwo_unit *lookup_dwo_type_unit
2255 (struct signatured_type *, const char *, const char *);
2256
2257 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2258
2259 static void free_dwo_file_cleanup (void *);
2260
2261 struct free_dwo_file_cleanup_data
2262 {
2263 struct dwo_file *dwo_file;
2264 struct dwarf2_per_objfile *dwarf2_per_objfile;
2265 };
2266
2267 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2268
2269 static void check_producer (struct dwarf2_cu *cu);
2270
2271 static void free_line_header_voidp (void *arg);
2272 \f
2273 /* Various complaints about symbol reading that don't abort the process. */
2274
2275 static void
2276 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2277 {
2278 complaint (&symfile_complaints,
2279 _("statement list doesn't fit in .debug_line section"));
2280 }
2281
2282 static void
2283 dwarf2_debug_line_missing_file_complaint (void)
2284 {
2285 complaint (&symfile_complaints,
2286 _(".debug_line section has line data without a file"));
2287 }
2288
2289 static void
2290 dwarf2_debug_line_missing_end_sequence_complaint (void)
2291 {
2292 complaint (&symfile_complaints,
2293 _(".debug_line section has line "
2294 "program sequence without an end"));
2295 }
2296
2297 static void
2298 dwarf2_complex_location_expr_complaint (void)
2299 {
2300 complaint (&symfile_complaints, _("location expression too complex"));
2301 }
2302
2303 static void
2304 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2305 int arg3)
2306 {
2307 complaint (&symfile_complaints,
2308 _("const value length mismatch for '%s', got %d, expected %d"),
2309 arg1, arg2, arg3);
2310 }
2311
2312 static void
2313 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2314 {
2315 complaint (&symfile_complaints,
2316 _("debug info runs off end of %s section"
2317 " [in module %s]"),
2318 get_section_name (section),
2319 get_section_file_name (section));
2320 }
2321
2322 static void
2323 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2324 {
2325 complaint (&symfile_complaints,
2326 _("macro debug info contains a "
2327 "malformed macro definition:\n`%s'"),
2328 arg1);
2329 }
2330
2331 static void
2332 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2333 {
2334 complaint (&symfile_complaints,
2335 _("invalid attribute class or form for '%s' in '%s'"),
2336 arg1, arg2);
2337 }
2338
2339 /* Hash function for line_header_hash. */
2340
2341 static hashval_t
2342 line_header_hash (const struct line_header *ofs)
2343 {
2344 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2345 }
2346
2347 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2348
2349 static hashval_t
2350 line_header_hash_voidp (const void *item)
2351 {
2352 const struct line_header *ofs = (const struct line_header *) item;
2353
2354 return line_header_hash (ofs);
2355 }
2356
2357 /* Equality function for line_header_hash. */
2358
2359 static int
2360 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2361 {
2362 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2363 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2364
2365 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2366 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2367 }
2368
2369 \f
2370
2371 /* Read the given attribute value as an address, taking the attribute's
2372 form into account. */
2373
2374 static CORE_ADDR
2375 attr_value_as_address (struct attribute *attr)
2376 {
2377 CORE_ADDR addr;
2378
2379 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2380 {
2381 /* Aside from a few clearly defined exceptions, attributes that
2382 contain an address must always be in DW_FORM_addr form.
2383 Unfortunately, some compilers happen to be violating this
2384 requirement by encoding addresses using other forms, such
2385 as DW_FORM_data4 for example. For those broken compilers,
2386 we try to do our best, without any guarantee of success,
2387 to interpret the address correctly. It would also be nice
2388 to generate a complaint, but that would require us to maintain
2389 a list of legitimate cases where a non-address form is allowed,
2390 as well as update callers to pass in at least the CU's DWARF
2391 version. This is more overhead than what we're willing to
2392 expand for a pretty rare case. */
2393 addr = DW_UNSND (attr);
2394 }
2395 else
2396 addr = DW_ADDR (attr);
2397
2398 return addr;
2399 }
2400
2401 /* The suffix for an index file. */
2402 #define INDEX4_SUFFIX ".gdb-index"
2403 #define INDEX5_SUFFIX ".debug_names"
2404 #define DEBUG_STR_SUFFIX ".debug_str"
2405
2406 /* See declaration. */
2407
2408 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2409 const dwarf2_debug_sections *names)
2410 : objfile (objfile_)
2411 {
2412 if (names == NULL)
2413 names = &dwarf2_elf_names;
2414
2415 bfd *obfd = objfile->obfd;
2416
2417 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2418 locate_sections (obfd, sec, *names);
2419 }
2420
2421 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2422
2423 dwarf2_per_objfile::~dwarf2_per_objfile ()
2424 {
2425 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2426 free_cached_comp_units ();
2427
2428 if (quick_file_names_table)
2429 htab_delete (quick_file_names_table);
2430
2431 if (line_header_hash)
2432 htab_delete (line_header_hash);
2433
2434 for (int ix = 0; ix < n_comp_units; ++ix)
2435 VEC_free (dwarf2_per_cu_ptr, all_comp_units[ix]->imported_symtabs);
2436
2437 for (int ix = 0; ix < n_type_units; ++ix)
2438 VEC_free (dwarf2_per_cu_ptr,
2439 all_type_units[ix]->per_cu.imported_symtabs);
2440 xfree (all_type_units);
2441
2442 VEC_free (dwarf2_section_info_def, types);
2443
2444 if (dwo_files != NULL)
2445 free_dwo_files (dwo_files, objfile);
2446 if (dwp_file != NULL)
2447 gdb_bfd_unref (dwp_file->dbfd);
2448
2449 if (dwz_file != NULL && dwz_file->dwz_bfd)
2450 gdb_bfd_unref (dwz_file->dwz_bfd);
2451
2452 if (index_table != NULL)
2453 index_table->~mapped_index ();
2454
2455 /* Everything else should be on the objfile obstack. */
2456 }
2457
2458 /* See declaration. */
2459
2460 void
2461 dwarf2_per_objfile::free_cached_comp_units ()
2462 {
2463 dwarf2_per_cu_data *per_cu = read_in_chain;
2464 dwarf2_per_cu_data **last_chain = &read_in_chain;
2465 while (per_cu != NULL)
2466 {
2467 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2468
2469 delete per_cu->cu;
2470 *last_chain = next_cu;
2471 per_cu = next_cu;
2472 }
2473 }
2474
2475 /* Try to locate the sections we need for DWARF 2 debugging
2476 information and return true if we have enough to do something.
2477 NAMES points to the dwarf2 section names, or is NULL if the standard
2478 ELF names are used. */
2479
2480 int
2481 dwarf2_has_info (struct objfile *objfile,
2482 const struct dwarf2_debug_sections *names)
2483 {
2484 if (objfile->flags & OBJF_READNEVER)
2485 return 0;
2486
2487 struct dwarf2_per_objfile *dwarf2_per_objfile
2488 = get_dwarf2_per_objfile (objfile);
2489
2490 if (dwarf2_per_objfile == NULL)
2491 {
2492 /* Initialize per-objfile state. */
2493 struct dwarf2_per_objfile *data
2494 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2495
2496 dwarf2_per_objfile = new (data) struct dwarf2_per_objfile (objfile, names);
2497 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2498 }
2499 return (!dwarf2_per_objfile->info.is_virtual
2500 && dwarf2_per_objfile->info.s.section != NULL
2501 && !dwarf2_per_objfile->abbrev.is_virtual
2502 && dwarf2_per_objfile->abbrev.s.section != NULL);
2503 }
2504
2505 /* Return the containing section of virtual section SECTION. */
2506
2507 static struct dwarf2_section_info *
2508 get_containing_section (const struct dwarf2_section_info *section)
2509 {
2510 gdb_assert (section->is_virtual);
2511 return section->s.containing_section;
2512 }
2513
2514 /* Return the bfd owner of SECTION. */
2515
2516 static struct bfd *
2517 get_section_bfd_owner (const struct dwarf2_section_info *section)
2518 {
2519 if (section->is_virtual)
2520 {
2521 section = get_containing_section (section);
2522 gdb_assert (!section->is_virtual);
2523 }
2524 return section->s.section->owner;
2525 }
2526
2527 /* Return the bfd section of SECTION.
2528 Returns NULL if the section is not present. */
2529
2530 static asection *
2531 get_section_bfd_section (const struct dwarf2_section_info *section)
2532 {
2533 if (section->is_virtual)
2534 {
2535 section = get_containing_section (section);
2536 gdb_assert (!section->is_virtual);
2537 }
2538 return section->s.section;
2539 }
2540
2541 /* Return the name of SECTION. */
2542
2543 static const char *
2544 get_section_name (const struct dwarf2_section_info *section)
2545 {
2546 asection *sectp = get_section_bfd_section (section);
2547
2548 gdb_assert (sectp != NULL);
2549 return bfd_section_name (get_section_bfd_owner (section), sectp);
2550 }
2551
2552 /* Return the name of the file SECTION is in. */
2553
2554 static const char *
2555 get_section_file_name (const struct dwarf2_section_info *section)
2556 {
2557 bfd *abfd = get_section_bfd_owner (section);
2558
2559 return bfd_get_filename (abfd);
2560 }
2561
2562 /* Return the id of SECTION.
2563 Returns 0 if SECTION doesn't exist. */
2564
2565 static int
2566 get_section_id (const struct dwarf2_section_info *section)
2567 {
2568 asection *sectp = get_section_bfd_section (section);
2569
2570 if (sectp == NULL)
2571 return 0;
2572 return sectp->id;
2573 }
2574
2575 /* Return the flags of SECTION.
2576 SECTION (or containing section if this is a virtual section) must exist. */
2577
2578 static int
2579 get_section_flags (const struct dwarf2_section_info *section)
2580 {
2581 asection *sectp = get_section_bfd_section (section);
2582
2583 gdb_assert (sectp != NULL);
2584 return bfd_get_section_flags (sectp->owner, sectp);
2585 }
2586
2587 /* When loading sections, we look either for uncompressed section or for
2588 compressed section names. */
2589
2590 static int
2591 section_is_p (const char *section_name,
2592 const struct dwarf2_section_names *names)
2593 {
2594 if (names->normal != NULL
2595 && strcmp (section_name, names->normal) == 0)
2596 return 1;
2597 if (names->compressed != NULL
2598 && strcmp (section_name, names->compressed) == 0)
2599 return 1;
2600 return 0;
2601 }
2602
2603 /* See declaration. */
2604
2605 void
2606 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2607 const dwarf2_debug_sections &names)
2608 {
2609 flagword aflag = bfd_get_section_flags (abfd, sectp);
2610
2611 if ((aflag & SEC_HAS_CONTENTS) == 0)
2612 {
2613 }
2614 else if (section_is_p (sectp->name, &names.info))
2615 {
2616 this->info.s.section = sectp;
2617 this->info.size = bfd_get_section_size (sectp);
2618 }
2619 else if (section_is_p (sectp->name, &names.abbrev))
2620 {
2621 this->abbrev.s.section = sectp;
2622 this->abbrev.size = bfd_get_section_size (sectp);
2623 }
2624 else if (section_is_p (sectp->name, &names.line))
2625 {
2626 this->line.s.section = sectp;
2627 this->line.size = bfd_get_section_size (sectp);
2628 }
2629 else if (section_is_p (sectp->name, &names.loc))
2630 {
2631 this->loc.s.section = sectp;
2632 this->loc.size = bfd_get_section_size (sectp);
2633 }
2634 else if (section_is_p (sectp->name, &names.loclists))
2635 {
2636 this->loclists.s.section = sectp;
2637 this->loclists.size = bfd_get_section_size (sectp);
2638 }
2639 else if (section_is_p (sectp->name, &names.macinfo))
2640 {
2641 this->macinfo.s.section = sectp;
2642 this->macinfo.size = bfd_get_section_size (sectp);
2643 }
2644 else if (section_is_p (sectp->name, &names.macro))
2645 {
2646 this->macro.s.section = sectp;
2647 this->macro.size = bfd_get_section_size (sectp);
2648 }
2649 else if (section_is_p (sectp->name, &names.str))
2650 {
2651 this->str.s.section = sectp;
2652 this->str.size = bfd_get_section_size (sectp);
2653 }
2654 else if (section_is_p (sectp->name, &names.line_str))
2655 {
2656 this->line_str.s.section = sectp;
2657 this->line_str.size = bfd_get_section_size (sectp);
2658 }
2659 else if (section_is_p (sectp->name, &names.addr))
2660 {
2661 this->addr.s.section = sectp;
2662 this->addr.size = bfd_get_section_size (sectp);
2663 }
2664 else if (section_is_p (sectp->name, &names.frame))
2665 {
2666 this->frame.s.section = sectp;
2667 this->frame.size = bfd_get_section_size (sectp);
2668 }
2669 else if (section_is_p (sectp->name, &names.eh_frame))
2670 {
2671 this->eh_frame.s.section = sectp;
2672 this->eh_frame.size = bfd_get_section_size (sectp);
2673 }
2674 else if (section_is_p (sectp->name, &names.ranges))
2675 {
2676 this->ranges.s.section = sectp;
2677 this->ranges.size = bfd_get_section_size (sectp);
2678 }
2679 else if (section_is_p (sectp->name, &names.rnglists))
2680 {
2681 this->rnglists.s.section = sectp;
2682 this->rnglists.size = bfd_get_section_size (sectp);
2683 }
2684 else if (section_is_p (sectp->name, &names.types))
2685 {
2686 struct dwarf2_section_info type_section;
2687
2688 memset (&type_section, 0, sizeof (type_section));
2689 type_section.s.section = sectp;
2690 type_section.size = bfd_get_section_size (sectp);
2691
2692 VEC_safe_push (dwarf2_section_info_def, this->types,
2693 &type_section);
2694 }
2695 else if (section_is_p (sectp->name, &names.gdb_index))
2696 {
2697 this->gdb_index.s.section = sectp;
2698 this->gdb_index.size = bfd_get_section_size (sectp);
2699 }
2700 else if (section_is_p (sectp->name, &names.debug_names))
2701 {
2702 this->debug_names.s.section = sectp;
2703 this->debug_names.size = bfd_get_section_size (sectp);
2704 }
2705 else if (section_is_p (sectp->name, &names.debug_aranges))
2706 {
2707 this->debug_aranges.s.section = sectp;
2708 this->debug_aranges.size = bfd_get_section_size (sectp);
2709 }
2710
2711 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2712 && bfd_section_vma (abfd, sectp) == 0)
2713 this->has_section_at_zero = true;
2714 }
2715
2716 /* A helper function that decides whether a section is empty,
2717 or not present. */
2718
2719 static int
2720 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2721 {
2722 if (section->is_virtual)
2723 return section->size == 0;
2724 return section->s.section == NULL || section->size == 0;
2725 }
2726
2727 /* Read the contents of the section INFO.
2728 OBJFILE is the main object file, but not necessarily the file where
2729 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2730 of the DWO file.
2731 If the section is compressed, uncompress it before returning. */
2732
2733 static void
2734 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2735 {
2736 asection *sectp;
2737 bfd *abfd;
2738 gdb_byte *buf, *retbuf;
2739
2740 if (info->readin)
2741 return;
2742 info->buffer = NULL;
2743 info->readin = 1;
2744
2745 if (dwarf2_section_empty_p (info))
2746 return;
2747
2748 sectp = get_section_bfd_section (info);
2749
2750 /* If this is a virtual section we need to read in the real one first. */
2751 if (info->is_virtual)
2752 {
2753 struct dwarf2_section_info *containing_section =
2754 get_containing_section (info);
2755
2756 gdb_assert (sectp != NULL);
2757 if ((sectp->flags & SEC_RELOC) != 0)
2758 {
2759 error (_("Dwarf Error: DWP format V2 with relocations is not"
2760 " supported in section %s [in module %s]"),
2761 get_section_name (info), get_section_file_name (info));
2762 }
2763 dwarf2_read_section (objfile, containing_section);
2764 /* Other code should have already caught virtual sections that don't
2765 fit. */
2766 gdb_assert (info->virtual_offset + info->size
2767 <= containing_section->size);
2768 /* If the real section is empty or there was a problem reading the
2769 section we shouldn't get here. */
2770 gdb_assert (containing_section->buffer != NULL);
2771 info->buffer = containing_section->buffer + info->virtual_offset;
2772 return;
2773 }
2774
2775 /* If the section has relocations, we must read it ourselves.
2776 Otherwise we attach it to the BFD. */
2777 if ((sectp->flags & SEC_RELOC) == 0)
2778 {
2779 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2780 return;
2781 }
2782
2783 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2784 info->buffer = buf;
2785
2786 /* When debugging .o files, we may need to apply relocations; see
2787 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2788 We never compress sections in .o files, so we only need to
2789 try this when the section is not compressed. */
2790 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2791 if (retbuf != NULL)
2792 {
2793 info->buffer = retbuf;
2794 return;
2795 }
2796
2797 abfd = get_section_bfd_owner (info);
2798 gdb_assert (abfd != NULL);
2799
2800 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2801 || bfd_bread (buf, info->size, abfd) != info->size)
2802 {
2803 error (_("Dwarf Error: Can't read DWARF data"
2804 " in section %s [in module %s]"),
2805 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2806 }
2807 }
2808
2809 /* A helper function that returns the size of a section in a safe way.
2810 If you are positive that the section has been read before using the
2811 size, then it is safe to refer to the dwarf2_section_info object's
2812 "size" field directly. In other cases, you must call this
2813 function, because for compressed sections the size field is not set
2814 correctly until the section has been read. */
2815
2816 static bfd_size_type
2817 dwarf2_section_size (struct objfile *objfile,
2818 struct dwarf2_section_info *info)
2819 {
2820 if (!info->readin)
2821 dwarf2_read_section (objfile, info);
2822 return info->size;
2823 }
2824
2825 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2826 SECTION_NAME. */
2827
2828 void
2829 dwarf2_get_section_info (struct objfile *objfile,
2830 enum dwarf2_section_enum sect,
2831 asection **sectp, const gdb_byte **bufp,
2832 bfd_size_type *sizep)
2833 {
2834 struct dwarf2_per_objfile *data
2835 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2836 dwarf2_objfile_data_key);
2837 struct dwarf2_section_info *info;
2838
2839 /* We may see an objfile without any DWARF, in which case we just
2840 return nothing. */
2841 if (data == NULL)
2842 {
2843 *sectp = NULL;
2844 *bufp = NULL;
2845 *sizep = 0;
2846 return;
2847 }
2848 switch (sect)
2849 {
2850 case DWARF2_DEBUG_FRAME:
2851 info = &data->frame;
2852 break;
2853 case DWARF2_EH_FRAME:
2854 info = &data->eh_frame;
2855 break;
2856 default:
2857 gdb_assert_not_reached ("unexpected section");
2858 }
2859
2860 dwarf2_read_section (objfile, info);
2861
2862 *sectp = get_section_bfd_section (info);
2863 *bufp = info->buffer;
2864 *sizep = info->size;
2865 }
2866
2867 /* A helper function to find the sections for a .dwz file. */
2868
2869 static void
2870 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2871 {
2872 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2873
2874 /* Note that we only support the standard ELF names, because .dwz
2875 is ELF-only (at the time of writing). */
2876 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2877 {
2878 dwz_file->abbrev.s.section = sectp;
2879 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2880 }
2881 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2882 {
2883 dwz_file->info.s.section = sectp;
2884 dwz_file->info.size = bfd_get_section_size (sectp);
2885 }
2886 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2887 {
2888 dwz_file->str.s.section = sectp;
2889 dwz_file->str.size = bfd_get_section_size (sectp);
2890 }
2891 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2892 {
2893 dwz_file->line.s.section = sectp;
2894 dwz_file->line.size = bfd_get_section_size (sectp);
2895 }
2896 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2897 {
2898 dwz_file->macro.s.section = sectp;
2899 dwz_file->macro.size = bfd_get_section_size (sectp);
2900 }
2901 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2902 {
2903 dwz_file->gdb_index.s.section = sectp;
2904 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2905 }
2906 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2907 {
2908 dwz_file->debug_names.s.section = sectp;
2909 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2910 }
2911 }
2912
2913 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2914 there is no .gnu_debugaltlink section in the file. Error if there
2915 is such a section but the file cannot be found. */
2916
2917 static struct dwz_file *
2918 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2919 {
2920 const char *filename;
2921 struct dwz_file *result;
2922 bfd_size_type buildid_len_arg;
2923 size_t buildid_len;
2924 bfd_byte *buildid;
2925
2926 if (dwarf2_per_objfile->dwz_file != NULL)
2927 return dwarf2_per_objfile->dwz_file;
2928
2929 bfd_set_error (bfd_error_no_error);
2930 gdb::unique_xmalloc_ptr<char> data
2931 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2932 &buildid_len_arg, &buildid));
2933 if (data == NULL)
2934 {
2935 if (bfd_get_error () == bfd_error_no_error)
2936 return NULL;
2937 error (_("could not read '.gnu_debugaltlink' section: %s"),
2938 bfd_errmsg (bfd_get_error ()));
2939 }
2940
2941 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2942
2943 buildid_len = (size_t) buildid_len_arg;
2944
2945 filename = data.get ();
2946
2947 std::string abs_storage;
2948 if (!IS_ABSOLUTE_PATH (filename))
2949 {
2950 gdb::unique_xmalloc_ptr<char> abs
2951 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2952
2953 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2954 filename = abs_storage.c_str ();
2955 }
2956
2957 /* First try the file name given in the section. If that doesn't
2958 work, try to use the build-id instead. */
2959 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2960 if (dwz_bfd != NULL)
2961 {
2962 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2963 dwz_bfd.release ();
2964 }
2965
2966 if (dwz_bfd == NULL)
2967 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2968
2969 if (dwz_bfd == NULL)
2970 error (_("could not find '.gnu_debugaltlink' file for %s"),
2971 objfile_name (dwarf2_per_objfile->objfile));
2972
2973 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2974 struct dwz_file);
2975 result->dwz_bfd = dwz_bfd.release ();
2976
2977 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2978
2979 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2980 dwarf2_per_objfile->dwz_file = result;
2981 return result;
2982 }
2983 \f
2984 /* DWARF quick_symbols_functions support. */
2985
2986 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2987 unique line tables, so we maintain a separate table of all .debug_line
2988 derived entries to support the sharing.
2989 All the quick functions need is the list of file names. We discard the
2990 line_header when we're done and don't need to record it here. */
2991 struct quick_file_names
2992 {
2993 /* The data used to construct the hash key. */
2994 struct stmt_list_hash hash;
2995
2996 /* The number of entries in file_names, real_names. */
2997 unsigned int num_file_names;
2998
2999 /* The file names from the line table, after being run through
3000 file_full_name. */
3001 const char **file_names;
3002
3003 /* The file names from the line table after being run through
3004 gdb_realpath. These are computed lazily. */
3005 const char **real_names;
3006 };
3007
3008 /* When using the index (and thus not using psymtabs), each CU has an
3009 object of this type. This is used to hold information needed by
3010 the various "quick" methods. */
3011 struct dwarf2_per_cu_quick_data
3012 {
3013 /* The file table. This can be NULL if there was no file table
3014 or it's currently not read in.
3015 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
3016 struct quick_file_names *file_names;
3017
3018 /* The corresponding symbol table. This is NULL if symbols for this
3019 CU have not yet been read. */
3020 struct compunit_symtab *compunit_symtab;
3021
3022 /* A temporary mark bit used when iterating over all CUs in
3023 expand_symtabs_matching. */
3024 unsigned int mark : 1;
3025
3026 /* True if we've tried to read the file table and found there isn't one.
3027 There will be no point in trying to read it again next time. */
3028 unsigned int no_file_data : 1;
3029 };
3030
3031 /* Utility hash function for a stmt_list_hash. */
3032
3033 static hashval_t
3034 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
3035 {
3036 hashval_t v = 0;
3037
3038 if (stmt_list_hash->dwo_unit != NULL)
3039 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
3040 v += to_underlying (stmt_list_hash->line_sect_off);
3041 return v;
3042 }
3043
3044 /* Utility equality function for a stmt_list_hash. */
3045
3046 static int
3047 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
3048 const struct stmt_list_hash *rhs)
3049 {
3050 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
3051 return 0;
3052 if (lhs->dwo_unit != NULL
3053 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
3054 return 0;
3055
3056 return lhs->line_sect_off == rhs->line_sect_off;
3057 }
3058
3059 /* Hash function for a quick_file_names. */
3060
3061 static hashval_t
3062 hash_file_name_entry (const void *e)
3063 {
3064 const struct quick_file_names *file_data
3065 = (const struct quick_file_names *) e;
3066
3067 return hash_stmt_list_entry (&file_data->hash);
3068 }
3069
3070 /* Equality function for a quick_file_names. */
3071
3072 static int
3073 eq_file_name_entry (const void *a, const void *b)
3074 {
3075 const struct quick_file_names *ea = (const struct quick_file_names *) a;
3076 const struct quick_file_names *eb = (const struct quick_file_names *) b;
3077
3078 return eq_stmt_list_entry (&ea->hash, &eb->hash);
3079 }
3080
3081 /* Delete function for a quick_file_names. */
3082
3083 static void
3084 delete_file_name_entry (void *e)
3085 {
3086 struct quick_file_names *file_data = (struct quick_file_names *) e;
3087 int i;
3088
3089 for (i = 0; i < file_data->num_file_names; ++i)
3090 {
3091 xfree ((void*) file_data->file_names[i]);
3092 if (file_data->real_names)
3093 xfree ((void*) file_data->real_names[i]);
3094 }
3095
3096 /* The space for the struct itself lives on objfile_obstack,
3097 so we don't free it here. */
3098 }
3099
3100 /* Create a quick_file_names hash table. */
3101
3102 static htab_t
3103 create_quick_file_names_table (unsigned int nr_initial_entries)
3104 {
3105 return htab_create_alloc (nr_initial_entries,
3106 hash_file_name_entry, eq_file_name_entry,
3107 delete_file_name_entry, xcalloc, xfree);
3108 }
3109
3110 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
3111 have to be created afterwards. You should call age_cached_comp_units after
3112 processing PER_CU->CU. dw2_setup must have been already called. */
3113
3114 static void
3115 load_cu (struct dwarf2_per_cu_data *per_cu)
3116 {
3117 if (per_cu->is_debug_types)
3118 load_full_type_unit (per_cu);
3119 else
3120 load_full_comp_unit (per_cu, language_minimal);
3121
3122 if (per_cu->cu == NULL)
3123 return; /* Dummy CU. */
3124
3125 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
3126 }
3127
3128 /* Read in the symbols for PER_CU. */
3129
3130 static void
3131 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
3132 {
3133 struct cleanup *back_to;
3134 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
3135
3136 /* Skip type_unit_groups, reading the type units they contain
3137 is handled elsewhere. */
3138 if (IS_TYPE_UNIT_GROUP (per_cu))
3139 return;
3140
3141 back_to = make_cleanup (dwarf2_release_queue, NULL);
3142
3143 if (dwarf2_per_objfile->using_index
3144 ? per_cu->v.quick->compunit_symtab == NULL
3145 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
3146 {
3147 queue_comp_unit (per_cu, language_minimal);
3148 load_cu (per_cu);
3149
3150 /* If we just loaded a CU from a DWO, and we're working with an index
3151 that may badly handle TUs, load all the TUs in that DWO as well.
3152 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
3153 if (!per_cu->is_debug_types
3154 && per_cu->cu != NULL
3155 && per_cu->cu->dwo_unit != NULL
3156 && dwarf2_per_objfile->index_table != NULL
3157 && dwarf2_per_objfile->index_table->version <= 7
3158 /* DWP files aren't supported yet. */
3159 && get_dwp_file (dwarf2_per_objfile) == NULL)
3160 queue_and_load_all_dwo_tus (per_cu);
3161 }
3162
3163 process_queue (dwarf2_per_objfile);
3164
3165 /* Age the cache, releasing compilation units that have not
3166 been used recently. */
3167 age_cached_comp_units (dwarf2_per_objfile);
3168
3169 do_cleanups (back_to);
3170 }
3171
3172 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
3173 the objfile from which this CU came. Returns the resulting symbol
3174 table. */
3175
3176 static struct compunit_symtab *
3177 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
3178 {
3179 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
3180
3181 gdb_assert (dwarf2_per_objfile->using_index);
3182 if (!per_cu->v.quick->compunit_symtab)
3183 {
3184 struct cleanup *back_to = make_cleanup (free_cached_comp_units,
3185 dwarf2_per_objfile);
3186 scoped_restore decrementer = increment_reading_symtab ();
3187 dw2_do_instantiate_symtab (per_cu);
3188 process_cu_includes (dwarf2_per_objfile);
3189 do_cleanups (back_to);
3190 }
3191
3192 return per_cu->v.quick->compunit_symtab;
3193 }
3194
3195 /* Return the CU/TU given its index.
3196
3197 This is intended for loops like:
3198
3199 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3200 + dwarf2_per_objfile->n_type_units); ++i)
3201 {
3202 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3203
3204 ...;
3205 }
3206 */
3207
3208 static struct dwarf2_per_cu_data *
3209 dw2_get_cutu (struct dwarf2_per_objfile *dwarf2_per_objfile,
3210 int index)
3211 {
3212 if (index >= dwarf2_per_objfile->n_comp_units)
3213 {
3214 index -= dwarf2_per_objfile->n_comp_units;
3215 gdb_assert (index < dwarf2_per_objfile->n_type_units);
3216 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
3217 }
3218
3219 return dwarf2_per_objfile->all_comp_units[index];
3220 }
3221
3222 /* Return the CU given its index.
3223 This differs from dw2_get_cutu in that it's for when you know INDEX
3224 refers to a CU. */
3225
3226 static struct dwarf2_per_cu_data *
3227 dw2_get_cu (struct dwarf2_per_objfile *dwarf2_per_objfile, int index)
3228 {
3229 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
3230
3231 return dwarf2_per_objfile->all_comp_units[index];
3232 }
3233
3234 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
3235 objfile_obstack, and constructed with the specified field
3236 values. */
3237
3238 static dwarf2_per_cu_data *
3239 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
3240 struct dwarf2_section_info *section,
3241 int is_dwz,
3242 sect_offset sect_off, ULONGEST length)
3243 {
3244 struct objfile *objfile = dwarf2_per_objfile->objfile;
3245 dwarf2_per_cu_data *the_cu
3246 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3247 struct dwarf2_per_cu_data);
3248 the_cu->sect_off = sect_off;
3249 the_cu->length = length;
3250 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
3251 the_cu->section = section;
3252 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3253 struct dwarf2_per_cu_quick_data);
3254 the_cu->is_dwz = is_dwz;
3255 return the_cu;
3256 }
3257
3258 /* A helper for create_cus_from_index that handles a given list of
3259 CUs. */
3260
3261 static void
3262 create_cus_from_index_list (struct objfile *objfile,
3263 const gdb_byte *cu_list, offset_type n_elements,
3264 struct dwarf2_section_info *section,
3265 int is_dwz,
3266 int base_offset)
3267 {
3268 offset_type i;
3269 struct dwarf2_per_objfile *dwarf2_per_objfile
3270 = get_dwarf2_per_objfile (objfile);
3271
3272 for (i = 0; i < n_elements; i += 2)
3273 {
3274 gdb_static_assert (sizeof (ULONGEST) >= 8);
3275
3276 sect_offset sect_off
3277 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3278 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3279 cu_list += 2 * 8;
3280
3281 dwarf2_per_objfile->all_comp_units[base_offset + i / 2]
3282 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3283 sect_off, length);
3284 }
3285 }
3286
3287 /* Read the CU list from the mapped index, and use it to create all
3288 the CU objects for this objfile. */
3289
3290 static void
3291 create_cus_from_index (struct objfile *objfile,
3292 const gdb_byte *cu_list, offset_type cu_list_elements,
3293 const gdb_byte *dwz_list, offset_type dwz_elements)
3294 {
3295 struct dwz_file *dwz;
3296 struct dwarf2_per_objfile *dwarf2_per_objfile
3297 = get_dwarf2_per_objfile (objfile);
3298
3299 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
3300 dwarf2_per_objfile->all_comp_units =
3301 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3302 dwarf2_per_objfile->n_comp_units);
3303
3304 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3305 &dwarf2_per_objfile->info, 0, 0);
3306
3307 if (dwz_elements == 0)
3308 return;
3309
3310 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3311 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3312 cu_list_elements / 2);
3313 }
3314
3315 /* Create the signatured type hash table from the index. */
3316
3317 static void
3318 create_signatured_type_table_from_index (struct objfile *objfile,
3319 struct dwarf2_section_info *section,
3320 const gdb_byte *bytes,
3321 offset_type elements)
3322 {
3323 offset_type i;
3324 htab_t sig_types_hash;
3325 struct dwarf2_per_objfile *dwarf2_per_objfile
3326 = get_dwarf2_per_objfile (objfile);
3327
3328 dwarf2_per_objfile->n_type_units
3329 = dwarf2_per_objfile->n_allocated_type_units
3330 = elements / 3;
3331 dwarf2_per_objfile->all_type_units =
3332 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3333
3334 sig_types_hash = allocate_signatured_type_table (objfile);
3335
3336 for (i = 0; i < elements; i += 3)
3337 {
3338 struct signatured_type *sig_type;
3339 ULONGEST signature;
3340 void **slot;
3341 cu_offset type_offset_in_tu;
3342
3343 gdb_static_assert (sizeof (ULONGEST) >= 8);
3344 sect_offset sect_off
3345 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3346 type_offset_in_tu
3347 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3348 BFD_ENDIAN_LITTLE);
3349 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3350 bytes += 3 * 8;
3351
3352 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3353 struct signatured_type);
3354 sig_type->signature = signature;
3355 sig_type->type_offset_in_tu = type_offset_in_tu;
3356 sig_type->per_cu.is_debug_types = 1;
3357 sig_type->per_cu.section = section;
3358 sig_type->per_cu.sect_off = sect_off;
3359 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3360 sig_type->per_cu.v.quick
3361 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3362 struct dwarf2_per_cu_quick_data);
3363
3364 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3365 *slot = sig_type;
3366
3367 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3368 }
3369
3370 dwarf2_per_objfile->signatured_types = sig_types_hash;
3371 }
3372
3373 /* Create the signatured type hash table from .debug_names. */
3374
3375 static void
3376 create_signatured_type_table_from_debug_names
3377 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3378 const mapped_debug_names &map,
3379 struct dwarf2_section_info *section,
3380 struct dwarf2_section_info *abbrev_section)
3381 {
3382 struct objfile *objfile = dwarf2_per_objfile->objfile;
3383
3384 dwarf2_read_section (objfile, section);
3385 dwarf2_read_section (objfile, abbrev_section);
3386
3387 dwarf2_per_objfile->n_type_units
3388 = dwarf2_per_objfile->n_allocated_type_units
3389 = map.tu_count;
3390 dwarf2_per_objfile->all_type_units
3391 = XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3392
3393 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3394
3395 for (uint32_t i = 0; i < map.tu_count; ++i)
3396 {
3397 struct signatured_type *sig_type;
3398 ULONGEST signature;
3399 void **slot;
3400 cu_offset type_offset_in_tu;
3401
3402 sect_offset sect_off
3403 = (sect_offset) (extract_unsigned_integer
3404 (map.tu_table_reordered + i * map.offset_size,
3405 map.offset_size,
3406 map.dwarf5_byte_order));
3407
3408 comp_unit_head cu_header;
3409 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3410 abbrev_section,
3411 section->buffer + to_underlying (sect_off),
3412 rcuh_kind::TYPE);
3413
3414 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3415 struct signatured_type);
3416 sig_type->signature = cu_header.signature;
3417 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3418 sig_type->per_cu.is_debug_types = 1;
3419 sig_type->per_cu.section = section;
3420 sig_type->per_cu.sect_off = sect_off;
3421 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3422 sig_type->per_cu.v.quick
3423 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3424 struct dwarf2_per_cu_quick_data);
3425
3426 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3427 *slot = sig_type;
3428
3429 dwarf2_per_objfile->all_type_units[i] = sig_type;
3430 }
3431
3432 dwarf2_per_objfile->signatured_types = sig_types_hash;
3433 }
3434
3435 /* Read the address map data from the mapped index, and use it to
3436 populate the objfile's psymtabs_addrmap. */
3437
3438 static void
3439 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3440 struct mapped_index *index)
3441 {
3442 struct objfile *objfile = dwarf2_per_objfile->objfile;
3443 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3444 const gdb_byte *iter, *end;
3445 struct addrmap *mutable_map;
3446 CORE_ADDR baseaddr;
3447
3448 auto_obstack temp_obstack;
3449
3450 mutable_map = addrmap_create_mutable (&temp_obstack);
3451
3452 iter = index->address_table.data ();
3453 end = iter + index->address_table.size ();
3454
3455 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3456
3457 while (iter < end)
3458 {
3459 ULONGEST hi, lo, cu_index;
3460 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3461 iter += 8;
3462 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3463 iter += 8;
3464 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3465 iter += 4;
3466
3467 if (lo > hi)
3468 {
3469 complaint (&symfile_complaints,
3470 _(".gdb_index address table has invalid range (%s - %s)"),
3471 hex_string (lo), hex_string (hi));
3472 continue;
3473 }
3474
3475 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3476 {
3477 complaint (&symfile_complaints,
3478 _(".gdb_index address table has invalid CU number %u"),
3479 (unsigned) cu_index);
3480 continue;
3481 }
3482
3483 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3484 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3485 addrmap_set_empty (mutable_map, lo, hi - 1,
3486 dw2_get_cutu (dwarf2_per_objfile, cu_index));
3487 }
3488
3489 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3490 &objfile->objfile_obstack);
3491 }
3492
3493 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3494 populate the objfile's psymtabs_addrmap. */
3495
3496 static void
3497 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3498 struct dwarf2_section_info *section)
3499 {
3500 struct objfile *objfile = dwarf2_per_objfile->objfile;
3501 bfd *abfd = objfile->obfd;
3502 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3503 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3504 SECT_OFF_TEXT (objfile));
3505
3506 auto_obstack temp_obstack;
3507 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3508
3509 std::unordered_map<sect_offset,
3510 dwarf2_per_cu_data *,
3511 gdb::hash_enum<sect_offset>>
3512 debug_info_offset_to_per_cu;
3513 for (int cui = 0; cui < dwarf2_per_objfile->n_comp_units; ++cui)
3514 {
3515 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, cui);
3516 const auto insertpair
3517 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3518 if (!insertpair.second)
3519 {
3520 warning (_("Section .debug_aranges in %s has duplicate "
3521 "debug_info_offset %u, ignoring .debug_aranges."),
3522 objfile_name (objfile), to_underlying (per_cu->sect_off));
3523 return;
3524 }
3525 }
3526
3527 dwarf2_read_section (objfile, section);
3528
3529 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3530
3531 const gdb_byte *addr = section->buffer;
3532
3533 while (addr < section->buffer + section->size)
3534 {
3535 const gdb_byte *const entry_addr = addr;
3536 unsigned int bytes_read;
3537
3538 const LONGEST entry_length = read_initial_length (abfd, addr,
3539 &bytes_read);
3540 addr += bytes_read;
3541
3542 const gdb_byte *const entry_end = addr + entry_length;
3543 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3544 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3545 if (addr + entry_length > section->buffer + section->size)
3546 {
3547 warning (_("Section .debug_aranges in %s entry at offset %zu "
3548 "length %s exceeds section length %s, "
3549 "ignoring .debug_aranges."),
3550 objfile_name (objfile), entry_addr - section->buffer,
3551 plongest (bytes_read + entry_length),
3552 pulongest (section->size));
3553 return;
3554 }
3555
3556 /* The version number. */
3557 const uint16_t version = read_2_bytes (abfd, addr);
3558 addr += 2;
3559 if (version != 2)
3560 {
3561 warning (_("Section .debug_aranges in %s entry at offset %zu "
3562 "has unsupported version %d, ignoring .debug_aranges."),
3563 objfile_name (objfile), entry_addr - section->buffer,
3564 version);
3565 return;
3566 }
3567
3568 const uint64_t debug_info_offset
3569 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3570 addr += offset_size;
3571 const auto per_cu_it
3572 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3573 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3574 {
3575 warning (_("Section .debug_aranges in %s entry at offset %zu "
3576 "debug_info_offset %s does not exists, "
3577 "ignoring .debug_aranges."),
3578 objfile_name (objfile), entry_addr - section->buffer,
3579 pulongest (debug_info_offset));
3580 return;
3581 }
3582 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3583
3584 const uint8_t address_size = *addr++;
3585 if (address_size < 1 || address_size > 8)
3586 {
3587 warning (_("Section .debug_aranges in %s entry at offset %zu "
3588 "address_size %u is invalid, ignoring .debug_aranges."),
3589 objfile_name (objfile), entry_addr - section->buffer,
3590 address_size);
3591 return;
3592 }
3593
3594 const uint8_t segment_selector_size = *addr++;
3595 if (segment_selector_size != 0)
3596 {
3597 warning (_("Section .debug_aranges in %s entry at offset %zu "
3598 "segment_selector_size %u is not supported, "
3599 "ignoring .debug_aranges."),
3600 objfile_name (objfile), entry_addr - section->buffer,
3601 segment_selector_size);
3602 return;
3603 }
3604
3605 /* Must pad to an alignment boundary that is twice the address
3606 size. It is undocumented by the DWARF standard but GCC does
3607 use it. */
3608 for (size_t padding = ((-(addr - section->buffer))
3609 & (2 * address_size - 1));
3610 padding > 0; padding--)
3611 if (*addr++ != 0)
3612 {
3613 warning (_("Section .debug_aranges in %s entry at offset %zu "
3614 "padding is not zero, ignoring .debug_aranges."),
3615 objfile_name (objfile), entry_addr - section->buffer);
3616 return;
3617 }
3618
3619 for (;;)
3620 {
3621 if (addr + 2 * address_size > entry_end)
3622 {
3623 warning (_("Section .debug_aranges in %s entry at offset %zu "
3624 "address list is not properly terminated, "
3625 "ignoring .debug_aranges."),
3626 objfile_name (objfile), entry_addr - section->buffer);
3627 return;
3628 }
3629 ULONGEST start = extract_unsigned_integer (addr, address_size,
3630 dwarf5_byte_order);
3631 addr += address_size;
3632 ULONGEST length = extract_unsigned_integer (addr, address_size,
3633 dwarf5_byte_order);
3634 addr += address_size;
3635 if (start == 0 && length == 0)
3636 break;
3637 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3638 {
3639 /* Symbol was eliminated due to a COMDAT group. */
3640 continue;
3641 }
3642 ULONGEST end = start + length;
3643 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3644 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3645 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3646 }
3647 }
3648
3649 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3650 &objfile->objfile_obstack);
3651 }
3652
3653 /* The hash function for strings in the mapped index. This is the same as
3654 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3655 implementation. This is necessary because the hash function is tied to the
3656 format of the mapped index file. The hash values do not have to match with
3657 SYMBOL_HASH_NEXT.
3658
3659 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3660
3661 static hashval_t
3662 mapped_index_string_hash (int index_version, const void *p)
3663 {
3664 const unsigned char *str = (const unsigned char *) p;
3665 hashval_t r = 0;
3666 unsigned char c;
3667
3668 while ((c = *str++) != 0)
3669 {
3670 if (index_version >= 5)
3671 c = tolower (c);
3672 r = r * 67 + c - 113;
3673 }
3674
3675 return r;
3676 }
3677
3678 /* Find a slot in the mapped index INDEX for the object named NAME.
3679 If NAME is found, set *VEC_OUT to point to the CU vector in the
3680 constant pool and return true. If NAME cannot be found, return
3681 false. */
3682
3683 static bool
3684 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3685 offset_type **vec_out)
3686 {
3687 offset_type hash;
3688 offset_type slot, step;
3689 int (*cmp) (const char *, const char *);
3690
3691 gdb::unique_xmalloc_ptr<char> without_params;
3692 if (current_language->la_language == language_cplus
3693 || current_language->la_language == language_fortran
3694 || current_language->la_language == language_d)
3695 {
3696 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3697 not contain any. */
3698
3699 if (strchr (name, '(') != NULL)
3700 {
3701 without_params = cp_remove_params (name);
3702
3703 if (without_params != NULL)
3704 name = without_params.get ();
3705 }
3706 }
3707
3708 /* Index version 4 did not support case insensitive searches. But the
3709 indices for case insensitive languages are built in lowercase, therefore
3710 simulate our NAME being searched is also lowercased. */
3711 hash = mapped_index_string_hash ((index->version == 4
3712 && case_sensitivity == case_sensitive_off
3713 ? 5 : index->version),
3714 name);
3715
3716 slot = hash & (index->symbol_table.size () - 1);
3717 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3718 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3719
3720 for (;;)
3721 {
3722 const char *str;
3723
3724 const auto &bucket = index->symbol_table[slot];
3725 if (bucket.name == 0 && bucket.vec == 0)
3726 return false;
3727
3728 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3729 if (!cmp (name, str))
3730 {
3731 *vec_out = (offset_type *) (index->constant_pool
3732 + MAYBE_SWAP (bucket.vec));
3733 return true;
3734 }
3735
3736 slot = (slot + step) & (index->symbol_table.size () - 1);
3737 }
3738 }
3739
3740 /* A helper function that reads the .gdb_index from SECTION and fills
3741 in MAP. FILENAME is the name of the file containing the section;
3742 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3743 ok to use deprecated sections.
3744
3745 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3746 out parameters that are filled in with information about the CU and
3747 TU lists in the section.
3748
3749 Returns 1 if all went well, 0 otherwise. */
3750
3751 static int
3752 read_index_from_section (struct objfile *objfile,
3753 const char *filename,
3754 int deprecated_ok,
3755 struct dwarf2_section_info *section,
3756 struct mapped_index *map,
3757 const gdb_byte **cu_list,
3758 offset_type *cu_list_elements,
3759 const gdb_byte **types_list,
3760 offset_type *types_list_elements)
3761 {
3762 const gdb_byte *addr;
3763 offset_type version;
3764 offset_type *metadata;
3765 int i;
3766
3767 if (dwarf2_section_empty_p (section))
3768 return 0;
3769
3770 /* Older elfutils strip versions could keep the section in the main
3771 executable while splitting it for the separate debug info file. */
3772 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3773 return 0;
3774
3775 dwarf2_read_section (objfile, section);
3776
3777 addr = section->buffer;
3778 /* Version check. */
3779 version = MAYBE_SWAP (*(offset_type *) addr);
3780 /* Versions earlier than 3 emitted every copy of a psymbol. This
3781 causes the index to behave very poorly for certain requests. Version 3
3782 contained incomplete addrmap. So, it seems better to just ignore such
3783 indices. */
3784 if (version < 4)
3785 {
3786 static int warning_printed = 0;
3787 if (!warning_printed)
3788 {
3789 warning (_("Skipping obsolete .gdb_index section in %s."),
3790 filename);
3791 warning_printed = 1;
3792 }
3793 return 0;
3794 }
3795 /* Index version 4 uses a different hash function than index version
3796 5 and later.
3797
3798 Versions earlier than 6 did not emit psymbols for inlined
3799 functions. Using these files will cause GDB not to be able to
3800 set breakpoints on inlined functions by name, so we ignore these
3801 indices unless the user has done
3802 "set use-deprecated-index-sections on". */
3803 if (version < 6 && !deprecated_ok)
3804 {
3805 static int warning_printed = 0;
3806 if (!warning_printed)
3807 {
3808 warning (_("\
3809 Skipping deprecated .gdb_index section in %s.\n\
3810 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3811 to use the section anyway."),
3812 filename);
3813 warning_printed = 1;
3814 }
3815 return 0;
3816 }
3817 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3818 of the TU (for symbols coming from TUs),
3819 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3820 Plus gold-generated indices can have duplicate entries for global symbols,
3821 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3822 These are just performance bugs, and we can't distinguish gdb-generated
3823 indices from gold-generated ones, so issue no warning here. */
3824
3825 /* Indexes with higher version than the one supported by GDB may be no
3826 longer backward compatible. */
3827 if (version > 8)
3828 return 0;
3829
3830 map->version = version;
3831 map->total_size = section->size;
3832
3833 metadata = (offset_type *) (addr + sizeof (offset_type));
3834
3835 i = 0;
3836 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3837 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3838 / 8);
3839 ++i;
3840
3841 *types_list = addr + MAYBE_SWAP (metadata[i]);
3842 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3843 - MAYBE_SWAP (metadata[i]))
3844 / 8);
3845 ++i;
3846
3847 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3848 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3849 map->address_table
3850 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3851 ++i;
3852
3853 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3854 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3855 map->symbol_table
3856 = gdb::array_view<mapped_index::symbol_table_slot>
3857 ((mapped_index::symbol_table_slot *) symbol_table,
3858 (mapped_index::symbol_table_slot *) symbol_table_end);
3859
3860 ++i;
3861 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3862
3863 return 1;
3864 }
3865
3866 /* Read .gdb_index. If everything went ok, initialize the "quick"
3867 elements of all the CUs and return 1. Otherwise, return 0. */
3868
3869 static int
3870 dwarf2_read_index (struct objfile *objfile)
3871 {
3872 struct mapped_index local_map, *map;
3873 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3874 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3875 struct dwz_file *dwz;
3876 struct dwarf2_per_objfile *dwarf2_per_objfile
3877 = get_dwarf2_per_objfile (objfile);
3878
3879 if (!read_index_from_section (objfile, objfile_name (objfile),
3880 use_deprecated_index_sections,
3881 &dwarf2_per_objfile->gdb_index, &local_map,
3882 &cu_list, &cu_list_elements,
3883 &types_list, &types_list_elements))
3884 return 0;
3885
3886 /* Don't use the index if it's empty. */
3887 if (local_map.symbol_table.empty ())
3888 return 0;
3889
3890 /* If there is a .dwz file, read it so we can get its CU list as
3891 well. */
3892 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3893 if (dwz != NULL)
3894 {
3895 struct mapped_index dwz_map;
3896 const gdb_byte *dwz_types_ignore;
3897 offset_type dwz_types_elements_ignore;
3898
3899 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3900 1,
3901 &dwz->gdb_index, &dwz_map,
3902 &dwz_list, &dwz_list_elements,
3903 &dwz_types_ignore,
3904 &dwz_types_elements_ignore))
3905 {
3906 warning (_("could not read '.gdb_index' section from %s; skipping"),
3907 bfd_get_filename (dwz->dwz_bfd));
3908 return 0;
3909 }
3910 }
3911
3912 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3913 dwz_list_elements);
3914
3915 if (types_list_elements)
3916 {
3917 struct dwarf2_section_info *section;
3918
3919 /* We can only handle a single .debug_types when we have an
3920 index. */
3921 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3922 return 0;
3923
3924 section = VEC_index (dwarf2_section_info_def,
3925 dwarf2_per_objfile->types, 0);
3926
3927 create_signatured_type_table_from_index (objfile, section, types_list,
3928 types_list_elements);
3929 }
3930
3931 create_addrmap_from_index (dwarf2_per_objfile, &local_map);
3932
3933 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3934 map = new (map) mapped_index ();
3935 *map = local_map;
3936
3937 dwarf2_per_objfile->index_table = map;
3938 dwarf2_per_objfile->using_index = 1;
3939 dwarf2_per_objfile->quick_file_names_table =
3940 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3941
3942 return 1;
3943 }
3944
3945 /* die_reader_func for dw2_get_file_names. */
3946
3947 static void
3948 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3949 const gdb_byte *info_ptr,
3950 struct die_info *comp_unit_die,
3951 int has_children,
3952 void *data)
3953 {
3954 struct dwarf2_cu *cu = reader->cu;
3955 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3956 struct dwarf2_per_objfile *dwarf2_per_objfile
3957 = cu->per_cu->dwarf2_per_objfile;
3958 struct objfile *objfile = dwarf2_per_objfile->objfile;
3959 struct dwarf2_per_cu_data *lh_cu;
3960 struct attribute *attr;
3961 int i;
3962 void **slot;
3963 struct quick_file_names *qfn;
3964
3965 gdb_assert (! this_cu->is_debug_types);
3966
3967 /* Our callers never want to match partial units -- instead they
3968 will match the enclosing full CU. */
3969 if (comp_unit_die->tag == DW_TAG_partial_unit)
3970 {
3971 this_cu->v.quick->no_file_data = 1;
3972 return;
3973 }
3974
3975 lh_cu = this_cu;
3976 slot = NULL;
3977
3978 line_header_up lh;
3979 sect_offset line_offset {};
3980
3981 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3982 if (attr)
3983 {
3984 struct quick_file_names find_entry;
3985
3986 line_offset = (sect_offset) DW_UNSND (attr);
3987
3988 /* We may have already read in this line header (TU line header sharing).
3989 If we have we're done. */
3990 find_entry.hash.dwo_unit = cu->dwo_unit;
3991 find_entry.hash.line_sect_off = line_offset;
3992 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3993 &find_entry, INSERT);
3994 if (*slot != NULL)
3995 {
3996 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3997 return;
3998 }
3999
4000 lh = dwarf_decode_line_header (line_offset, cu);
4001 }
4002 if (lh == NULL)
4003 {
4004 lh_cu->v.quick->no_file_data = 1;
4005 return;
4006 }
4007
4008 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
4009 qfn->hash.dwo_unit = cu->dwo_unit;
4010 qfn->hash.line_sect_off = line_offset;
4011 gdb_assert (slot != NULL);
4012 *slot = qfn;
4013
4014 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
4015
4016 qfn->num_file_names = lh->file_names.size ();
4017 qfn->file_names =
4018 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
4019 for (i = 0; i < lh->file_names.size (); ++i)
4020 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
4021 qfn->real_names = NULL;
4022
4023 lh_cu->v.quick->file_names = qfn;
4024 }
4025
4026 /* A helper for the "quick" functions which attempts to read the line
4027 table for THIS_CU. */
4028
4029 static struct quick_file_names *
4030 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
4031 {
4032 /* This should never be called for TUs. */
4033 gdb_assert (! this_cu->is_debug_types);
4034 /* Nor type unit groups. */
4035 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
4036
4037 if (this_cu->v.quick->file_names != NULL)
4038 return this_cu->v.quick->file_names;
4039 /* If we know there is no line data, no point in looking again. */
4040 if (this_cu->v.quick->no_file_data)
4041 return NULL;
4042
4043 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
4044
4045 if (this_cu->v.quick->no_file_data)
4046 return NULL;
4047 return this_cu->v.quick->file_names;
4048 }
4049
4050 /* A helper for the "quick" functions which computes and caches the
4051 real path for a given file name from the line table. */
4052
4053 static const char *
4054 dw2_get_real_path (struct objfile *objfile,
4055 struct quick_file_names *qfn, int index)
4056 {
4057 if (qfn->real_names == NULL)
4058 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
4059 qfn->num_file_names, const char *);
4060
4061 if (qfn->real_names[index] == NULL)
4062 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
4063
4064 return qfn->real_names[index];
4065 }
4066
4067 static struct symtab *
4068 dw2_find_last_source_symtab (struct objfile *objfile)
4069 {
4070 struct dwarf2_per_objfile *dwarf2_per_objfile
4071 = get_dwarf2_per_objfile (objfile);
4072 int index = dwarf2_per_objfile->n_comp_units - 1;
4073 dwarf2_per_cu_data *dwarf_cu = dw2_get_cutu (dwarf2_per_objfile, index);
4074 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu);
4075
4076 if (cust == NULL)
4077 return NULL;
4078
4079 return compunit_primary_filetab (cust);
4080 }
4081
4082 /* Traversal function for dw2_forget_cached_source_info. */
4083
4084 static int
4085 dw2_free_cached_file_names (void **slot, void *info)
4086 {
4087 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
4088
4089 if (file_data->real_names)
4090 {
4091 int i;
4092
4093 for (i = 0; i < file_data->num_file_names; ++i)
4094 {
4095 xfree ((void*) file_data->real_names[i]);
4096 file_data->real_names[i] = NULL;
4097 }
4098 }
4099
4100 return 1;
4101 }
4102
4103 static void
4104 dw2_forget_cached_source_info (struct objfile *objfile)
4105 {
4106 struct dwarf2_per_objfile *dwarf2_per_objfile
4107 = get_dwarf2_per_objfile (objfile);
4108
4109 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
4110 dw2_free_cached_file_names, NULL);
4111 }
4112
4113 /* Helper function for dw2_map_symtabs_matching_filename that expands
4114 the symtabs and calls the iterator. */
4115
4116 static int
4117 dw2_map_expand_apply (struct objfile *objfile,
4118 struct dwarf2_per_cu_data *per_cu,
4119 const char *name, const char *real_path,
4120 gdb::function_view<bool (symtab *)> callback)
4121 {
4122 struct compunit_symtab *last_made = objfile->compunit_symtabs;
4123
4124 /* Don't visit already-expanded CUs. */
4125 if (per_cu->v.quick->compunit_symtab)
4126 return 0;
4127
4128 /* This may expand more than one symtab, and we want to iterate over
4129 all of them. */
4130 dw2_instantiate_symtab (per_cu);
4131
4132 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
4133 last_made, callback);
4134 }
4135
4136 /* Implementation of the map_symtabs_matching_filename method. */
4137
4138 static bool
4139 dw2_map_symtabs_matching_filename
4140 (struct objfile *objfile, const char *name, const char *real_path,
4141 gdb::function_view<bool (symtab *)> callback)
4142 {
4143 int i;
4144 const char *name_basename = lbasename (name);
4145 struct dwarf2_per_objfile *dwarf2_per_objfile
4146 = get_dwarf2_per_objfile (objfile);
4147
4148 /* The rule is CUs specify all the files, including those used by
4149 any TU, so there's no need to scan TUs here. */
4150
4151 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4152 {
4153 int j;
4154 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
4155 struct quick_file_names *file_data;
4156
4157 /* We only need to look at symtabs not already expanded. */
4158 if (per_cu->v.quick->compunit_symtab)
4159 continue;
4160
4161 file_data = dw2_get_file_names (per_cu);
4162 if (file_data == NULL)
4163 continue;
4164
4165 for (j = 0; j < file_data->num_file_names; ++j)
4166 {
4167 const char *this_name = file_data->file_names[j];
4168 const char *this_real_name;
4169
4170 if (compare_filenames_for_search (this_name, name))
4171 {
4172 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
4173 callback))
4174 return true;
4175 continue;
4176 }
4177
4178 /* Before we invoke realpath, which can get expensive when many
4179 files are involved, do a quick comparison of the basenames. */
4180 if (! basenames_may_differ
4181 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
4182 continue;
4183
4184 this_real_name = dw2_get_real_path (objfile, file_data, j);
4185 if (compare_filenames_for_search (this_real_name, name))
4186 {
4187 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
4188 callback))
4189 return true;
4190 continue;
4191 }
4192
4193 if (real_path != NULL)
4194 {
4195 gdb_assert (IS_ABSOLUTE_PATH (real_path));
4196 gdb_assert (IS_ABSOLUTE_PATH (name));
4197 if (this_real_name != NULL
4198 && FILENAME_CMP (real_path, this_real_name) == 0)
4199 {
4200 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
4201 callback))
4202 return true;
4203 continue;
4204 }
4205 }
4206 }
4207 }
4208
4209 return false;
4210 }
4211
4212 /* Struct used to manage iterating over all CUs looking for a symbol. */
4213
4214 struct dw2_symtab_iterator
4215 {
4216 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
4217 struct dwarf2_per_objfile *dwarf2_per_objfile;
4218 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
4219 int want_specific_block;
4220 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
4221 Unused if !WANT_SPECIFIC_BLOCK. */
4222 int block_index;
4223 /* The kind of symbol we're looking for. */
4224 domain_enum domain;
4225 /* The list of CUs from the index entry of the symbol,
4226 or NULL if not found. */
4227 offset_type *vec;
4228 /* The next element in VEC to look at. */
4229 int next;
4230 /* The number of elements in VEC, or zero if there is no match. */
4231 int length;
4232 /* Have we seen a global version of the symbol?
4233 If so we can ignore all further global instances.
4234 This is to work around gold/15646, inefficient gold-generated
4235 indices. */
4236 int global_seen;
4237 };
4238
4239 /* Initialize the index symtab iterator ITER.
4240 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
4241 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
4242
4243 static void
4244 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
4245 struct dwarf2_per_objfile *dwarf2_per_objfile,
4246 int want_specific_block,
4247 int block_index,
4248 domain_enum domain,
4249 const char *name)
4250 {
4251 iter->dwarf2_per_objfile = dwarf2_per_objfile;
4252 iter->want_specific_block = want_specific_block;
4253 iter->block_index = block_index;
4254 iter->domain = domain;
4255 iter->next = 0;
4256 iter->global_seen = 0;
4257
4258 mapped_index *index = dwarf2_per_objfile->index_table;
4259
4260 /* index is NULL if OBJF_READNOW. */
4261 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
4262 iter->length = MAYBE_SWAP (*iter->vec);
4263 else
4264 {
4265 iter->vec = NULL;
4266 iter->length = 0;
4267 }
4268 }
4269
4270 /* Return the next matching CU or NULL if there are no more. */
4271
4272 static struct dwarf2_per_cu_data *
4273 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
4274 {
4275 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
4276
4277 for ( ; iter->next < iter->length; ++iter->next)
4278 {
4279 offset_type cu_index_and_attrs =
4280 MAYBE_SWAP (iter->vec[iter->next + 1]);
4281 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4282 struct dwarf2_per_cu_data *per_cu;
4283 int want_static = iter->block_index != GLOBAL_BLOCK;
4284 /* This value is only valid for index versions >= 7. */
4285 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4286 gdb_index_symbol_kind symbol_kind =
4287 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4288 /* Only check the symbol attributes if they're present.
4289 Indices prior to version 7 don't record them,
4290 and indices >= 7 may elide them for certain symbols
4291 (gold does this). */
4292 int attrs_valid =
4293 (dwarf2_per_objfile->index_table->version >= 7
4294 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4295
4296 /* Don't crash on bad data. */
4297 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4298 + dwarf2_per_objfile->n_type_units))
4299 {
4300 complaint (&symfile_complaints,
4301 _(".gdb_index entry has bad CU index"
4302 " [in module %s]"),
4303 objfile_name (dwarf2_per_objfile->objfile));
4304 continue;
4305 }
4306
4307 per_cu = dw2_get_cutu (dwarf2_per_objfile, cu_index);
4308
4309 /* Skip if already read in. */
4310 if (per_cu->v.quick->compunit_symtab)
4311 continue;
4312
4313 /* Check static vs global. */
4314 if (attrs_valid)
4315 {
4316 if (iter->want_specific_block
4317 && want_static != is_static)
4318 continue;
4319 /* Work around gold/15646. */
4320 if (!is_static && iter->global_seen)
4321 continue;
4322 if (!is_static)
4323 iter->global_seen = 1;
4324 }
4325
4326 /* Only check the symbol's kind if it has one. */
4327 if (attrs_valid)
4328 {
4329 switch (iter->domain)
4330 {
4331 case VAR_DOMAIN:
4332 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4333 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4334 /* Some types are also in VAR_DOMAIN. */
4335 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4336 continue;
4337 break;
4338 case STRUCT_DOMAIN:
4339 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4340 continue;
4341 break;
4342 case LABEL_DOMAIN:
4343 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4344 continue;
4345 break;
4346 default:
4347 break;
4348 }
4349 }
4350
4351 ++iter->next;
4352 return per_cu;
4353 }
4354
4355 return NULL;
4356 }
4357
4358 static struct compunit_symtab *
4359 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4360 const char *name, domain_enum domain)
4361 {
4362 struct compunit_symtab *stab_best = NULL;
4363 struct dwarf2_per_objfile *dwarf2_per_objfile
4364 = get_dwarf2_per_objfile (objfile);
4365
4366 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4367
4368 struct dw2_symtab_iterator iter;
4369 struct dwarf2_per_cu_data *per_cu;
4370
4371 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4372
4373 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4374 {
4375 struct symbol *sym, *with_opaque = NULL;
4376 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
4377 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4378 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4379
4380 sym = block_find_symbol (block, name, domain,
4381 block_find_non_opaque_type_preferred,
4382 &with_opaque);
4383
4384 /* Some caution must be observed with overloaded functions
4385 and methods, since the index will not contain any overload
4386 information (but NAME might contain it). */
4387
4388 if (sym != NULL
4389 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4390 return stab;
4391 if (with_opaque != NULL
4392 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4393 stab_best = stab;
4394
4395 /* Keep looking through other CUs. */
4396 }
4397
4398 return stab_best;
4399 }
4400
4401 static void
4402 dw2_print_stats (struct objfile *objfile)
4403 {
4404 struct dwarf2_per_objfile *dwarf2_per_objfile
4405 = get_dwarf2_per_objfile (objfile);
4406 int total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
4407 int count = 0;
4408
4409 for (int i = 0; i < total; ++i)
4410 {
4411 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
4412
4413 if (!per_cu->v.quick->compunit_symtab)
4414 ++count;
4415 }
4416 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4417 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4418 }
4419
4420 /* This dumps minimal information about the index.
4421 It is called via "mt print objfiles".
4422 One use is to verify .gdb_index has been loaded by the
4423 gdb.dwarf2/gdb-index.exp testcase. */
4424
4425 static void
4426 dw2_dump (struct objfile *objfile)
4427 {
4428 struct dwarf2_per_objfile *dwarf2_per_objfile
4429 = get_dwarf2_per_objfile (objfile);
4430
4431 gdb_assert (dwarf2_per_objfile->using_index);
4432 printf_filtered (".gdb_index:");
4433 if (dwarf2_per_objfile->index_table != NULL)
4434 {
4435 printf_filtered (" version %d\n",
4436 dwarf2_per_objfile->index_table->version);
4437 }
4438 else
4439 printf_filtered (" faked for \"readnow\"\n");
4440 printf_filtered ("\n");
4441 }
4442
4443 static void
4444 dw2_relocate (struct objfile *objfile,
4445 const struct section_offsets *new_offsets,
4446 const struct section_offsets *delta)
4447 {
4448 /* There's nothing to relocate here. */
4449 }
4450
4451 static void
4452 dw2_expand_symtabs_for_function (struct objfile *objfile,
4453 const char *func_name)
4454 {
4455 struct dwarf2_per_objfile *dwarf2_per_objfile
4456 = get_dwarf2_per_objfile (objfile);
4457
4458 struct dw2_symtab_iterator iter;
4459 struct dwarf2_per_cu_data *per_cu;
4460
4461 /* Note: It doesn't matter what we pass for block_index here. */
4462 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4463 func_name);
4464
4465 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4466 dw2_instantiate_symtab (per_cu);
4467
4468 }
4469
4470 static void
4471 dw2_expand_all_symtabs (struct objfile *objfile)
4472 {
4473 struct dwarf2_per_objfile *dwarf2_per_objfile
4474 = get_dwarf2_per_objfile (objfile);
4475 int total_units = (dwarf2_per_objfile->n_comp_units
4476 + dwarf2_per_objfile->n_type_units);
4477
4478 for (int i = 0; i < total_units; ++i)
4479 {
4480 struct dwarf2_per_cu_data *per_cu
4481 = dw2_get_cutu (dwarf2_per_objfile, i);
4482
4483 dw2_instantiate_symtab (per_cu);
4484 }
4485 }
4486
4487 static void
4488 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4489 const char *fullname)
4490 {
4491 struct dwarf2_per_objfile *dwarf2_per_objfile
4492 = get_dwarf2_per_objfile (objfile);
4493
4494 /* We don't need to consider type units here.
4495 This is only called for examining code, e.g. expand_line_sal.
4496 There can be an order of magnitude (or more) more type units
4497 than comp units, and we avoid them if we can. */
4498
4499 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4500 {
4501 int j;
4502 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
4503 struct quick_file_names *file_data;
4504
4505 /* We only need to look at symtabs not already expanded. */
4506 if (per_cu->v.quick->compunit_symtab)
4507 continue;
4508
4509 file_data = dw2_get_file_names (per_cu);
4510 if (file_data == NULL)
4511 continue;
4512
4513 for (j = 0; j < file_data->num_file_names; ++j)
4514 {
4515 const char *this_fullname = file_data->file_names[j];
4516
4517 if (filename_cmp (this_fullname, fullname) == 0)
4518 {
4519 dw2_instantiate_symtab (per_cu);
4520 break;
4521 }
4522 }
4523 }
4524 }
4525
4526 static void
4527 dw2_map_matching_symbols (struct objfile *objfile,
4528 const char * name, domain_enum domain,
4529 int global,
4530 int (*callback) (struct block *,
4531 struct symbol *, void *),
4532 void *data, symbol_name_match_type match,
4533 symbol_compare_ftype *ordered_compare)
4534 {
4535 /* Currently unimplemented; used for Ada. The function can be called if the
4536 current language is Ada for a non-Ada objfile using GNU index. As Ada
4537 does not look for non-Ada symbols this function should just return. */
4538 }
4539
4540 /* Symbol name matcher for .gdb_index names.
4541
4542 Symbol names in .gdb_index have a few particularities:
4543
4544 - There's no indication of which is the language of each symbol.
4545
4546 Since each language has its own symbol name matching algorithm,
4547 and we don't know which language is the right one, we must match
4548 each symbol against all languages. This would be a potential
4549 performance problem if it were not mitigated by the
4550 mapped_index::name_components lookup table, which significantly
4551 reduces the number of times we need to call into this matcher,
4552 making it a non-issue.
4553
4554 - Symbol names in the index have no overload (parameter)
4555 information. I.e., in C++, "foo(int)" and "foo(long)" both
4556 appear as "foo" in the index, for example.
4557
4558 This means that the lookup names passed to the symbol name
4559 matcher functions must have no parameter information either
4560 because (e.g.) symbol search name "foo" does not match
4561 lookup-name "foo(int)" [while swapping search name for lookup
4562 name would match].
4563 */
4564 class gdb_index_symbol_name_matcher
4565 {
4566 public:
4567 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4568 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4569
4570 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4571 Returns true if any matcher matches. */
4572 bool matches (const char *symbol_name);
4573
4574 private:
4575 /* A reference to the lookup name we're matching against. */
4576 const lookup_name_info &m_lookup_name;
4577
4578 /* A vector holding all the different symbol name matchers, for all
4579 languages. */
4580 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4581 };
4582
4583 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4584 (const lookup_name_info &lookup_name)
4585 : m_lookup_name (lookup_name)
4586 {
4587 /* Prepare the vector of comparison functions upfront, to avoid
4588 doing the same work for each symbol. Care is taken to avoid
4589 matching with the same matcher more than once if/when multiple
4590 languages use the same matcher function. */
4591 auto &matchers = m_symbol_name_matcher_funcs;
4592 matchers.reserve (nr_languages);
4593
4594 matchers.push_back (default_symbol_name_matcher);
4595
4596 for (int i = 0; i < nr_languages; i++)
4597 {
4598 const language_defn *lang = language_def ((enum language) i);
4599 symbol_name_matcher_ftype *name_matcher
4600 = get_symbol_name_matcher (lang, m_lookup_name);
4601
4602 /* Don't insert the same comparison routine more than once.
4603 Note that we do this linear walk instead of a seemingly
4604 cheaper sorted insert, or use a std::set or something like
4605 that, because relative order of function addresses is not
4606 stable. This is not a problem in practice because the number
4607 of supported languages is low, and the cost here is tiny
4608 compared to the number of searches we'll do afterwards using
4609 this object. */
4610 if (name_matcher != default_symbol_name_matcher
4611 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4612 == matchers.end ()))
4613 matchers.push_back (name_matcher);
4614 }
4615 }
4616
4617 bool
4618 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4619 {
4620 for (auto matches_name : m_symbol_name_matcher_funcs)
4621 if (matches_name (symbol_name, m_lookup_name, NULL))
4622 return true;
4623
4624 return false;
4625 }
4626
4627 /* Starting from a search name, return the string that finds the upper
4628 bound of all strings that start with SEARCH_NAME in a sorted name
4629 list. Returns the empty string to indicate that the upper bound is
4630 the end of the list. */
4631
4632 static std::string
4633 make_sort_after_prefix_name (const char *search_name)
4634 {
4635 /* When looking to complete "func", we find the upper bound of all
4636 symbols that start with "func" by looking for where we'd insert
4637 the closest string that would follow "func" in lexicographical
4638 order. Usually, that's "func"-with-last-character-incremented,
4639 i.e. "fund". Mind non-ASCII characters, though. Usually those
4640 will be UTF-8 multi-byte sequences, but we can't be certain.
4641 Especially mind the 0xff character, which is a valid character in
4642 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4643 rule out compilers allowing it in identifiers. Note that
4644 conveniently, strcmp/strcasecmp are specified to compare
4645 characters interpreted as unsigned char. So what we do is treat
4646 the whole string as a base 256 number composed of a sequence of
4647 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4648 to 0, and carries 1 to the following more-significant position.
4649 If the very first character in SEARCH_NAME ends up incremented
4650 and carries/overflows, then the upper bound is the end of the
4651 list. The string after the empty string is also the empty
4652 string.
4653
4654 Some examples of this operation:
4655
4656 SEARCH_NAME => "+1" RESULT
4657
4658 "abc" => "abd"
4659 "ab\xff" => "ac"
4660 "\xff" "a" "\xff" => "\xff" "b"
4661 "\xff" => ""
4662 "\xff\xff" => ""
4663 "" => ""
4664
4665 Then, with these symbols for example:
4666
4667 func
4668 func1
4669 fund
4670
4671 completing "func" looks for symbols between "func" and
4672 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4673 which finds "func" and "func1", but not "fund".
4674
4675 And with:
4676
4677 funcÿ (Latin1 'ÿ' [0xff])
4678 funcÿ1
4679 fund
4680
4681 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4682 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4683
4684 And with:
4685
4686 ÿÿ (Latin1 'ÿ' [0xff])
4687 ÿÿ1
4688
4689 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4690 the end of the list.
4691 */
4692 std::string after = search_name;
4693 while (!after.empty () && (unsigned char) after.back () == 0xff)
4694 after.pop_back ();
4695 if (!after.empty ())
4696 after.back () = (unsigned char) after.back () + 1;
4697 return after;
4698 }
4699
4700 /* See declaration. */
4701
4702 std::pair<std::vector<name_component>::const_iterator,
4703 std::vector<name_component>::const_iterator>
4704 mapped_index_base::find_name_components_bounds
4705 (const lookup_name_info &lookup_name_without_params) const
4706 {
4707 auto *name_cmp
4708 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4709
4710 const char *cplus
4711 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4712
4713 /* Comparison function object for lower_bound that matches against a
4714 given symbol name. */
4715 auto lookup_compare_lower = [&] (const name_component &elem,
4716 const char *name)
4717 {
4718 const char *elem_qualified = this->symbol_name_at (elem.idx);
4719 const char *elem_name = elem_qualified + elem.name_offset;
4720 return name_cmp (elem_name, name) < 0;
4721 };
4722
4723 /* Comparison function object for upper_bound that matches against a
4724 given symbol name. */
4725 auto lookup_compare_upper = [&] (const char *name,
4726 const name_component &elem)
4727 {
4728 const char *elem_qualified = this->symbol_name_at (elem.idx);
4729 const char *elem_name = elem_qualified + elem.name_offset;
4730 return name_cmp (name, elem_name) < 0;
4731 };
4732
4733 auto begin = this->name_components.begin ();
4734 auto end = this->name_components.end ();
4735
4736 /* Find the lower bound. */
4737 auto lower = [&] ()
4738 {
4739 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4740 return begin;
4741 else
4742 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4743 } ();
4744
4745 /* Find the upper bound. */
4746 auto upper = [&] ()
4747 {
4748 if (lookup_name_without_params.completion_mode ())
4749 {
4750 /* In completion mode, we want UPPER to point past all
4751 symbols names that have the same prefix. I.e., with
4752 these symbols, and completing "func":
4753
4754 function << lower bound
4755 function1
4756 other_function << upper bound
4757
4758 We find the upper bound by looking for the insertion
4759 point of "func"-with-last-character-incremented,
4760 i.e. "fund". */
4761 std::string after = make_sort_after_prefix_name (cplus);
4762 if (after.empty ())
4763 return end;
4764 return std::lower_bound (lower, end, after.c_str (),
4765 lookup_compare_lower);
4766 }
4767 else
4768 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4769 } ();
4770
4771 return {lower, upper};
4772 }
4773
4774 /* See declaration. */
4775
4776 void
4777 mapped_index_base::build_name_components ()
4778 {
4779 if (!this->name_components.empty ())
4780 return;
4781
4782 this->name_components_casing = case_sensitivity;
4783 auto *name_cmp
4784 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4785
4786 /* The code below only knows how to break apart components of C++
4787 symbol names (and other languages that use '::' as
4788 namespace/module separator). If we add support for wild matching
4789 to some language that uses some other operator (E.g., Ada, Go and
4790 D use '.'), then we'll need to try splitting the symbol name
4791 according to that language too. Note that Ada does support wild
4792 matching, but doesn't currently support .gdb_index. */
4793 auto count = this->symbol_name_count ();
4794 for (offset_type idx = 0; idx < count; idx++)
4795 {
4796 if (this->symbol_name_slot_invalid (idx))
4797 continue;
4798
4799 const char *name = this->symbol_name_at (idx);
4800
4801 /* Add each name component to the name component table. */
4802 unsigned int previous_len = 0;
4803 for (unsigned int current_len = cp_find_first_component (name);
4804 name[current_len] != '\0';
4805 current_len += cp_find_first_component (name + current_len))
4806 {
4807 gdb_assert (name[current_len] == ':');
4808 this->name_components.push_back ({previous_len, idx});
4809 /* Skip the '::'. */
4810 current_len += 2;
4811 previous_len = current_len;
4812 }
4813 this->name_components.push_back ({previous_len, idx});
4814 }
4815
4816 /* Sort name_components elements by name. */
4817 auto name_comp_compare = [&] (const name_component &left,
4818 const name_component &right)
4819 {
4820 const char *left_qualified = this->symbol_name_at (left.idx);
4821 const char *right_qualified = this->symbol_name_at (right.idx);
4822
4823 const char *left_name = left_qualified + left.name_offset;
4824 const char *right_name = right_qualified + right.name_offset;
4825
4826 return name_cmp (left_name, right_name) < 0;
4827 };
4828
4829 std::sort (this->name_components.begin (),
4830 this->name_components.end (),
4831 name_comp_compare);
4832 }
4833
4834 /* Helper for dw2_expand_symtabs_matching that works with a
4835 mapped_index_base instead of the containing objfile. This is split
4836 to a separate function in order to be able to unit test the
4837 name_components matching using a mock mapped_index_base. For each
4838 symbol name that matches, calls MATCH_CALLBACK, passing it the
4839 symbol's index in the mapped_index_base symbol table. */
4840
4841 static void
4842 dw2_expand_symtabs_matching_symbol
4843 (mapped_index_base &index,
4844 const lookup_name_info &lookup_name_in,
4845 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4846 enum search_domain kind,
4847 gdb::function_view<void (offset_type)> match_callback)
4848 {
4849 lookup_name_info lookup_name_without_params
4850 = lookup_name_in.make_ignore_params ();
4851 gdb_index_symbol_name_matcher lookup_name_matcher
4852 (lookup_name_without_params);
4853
4854 /* Build the symbol name component sorted vector, if we haven't
4855 yet. */
4856 index.build_name_components ();
4857
4858 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4859
4860 /* Now for each symbol name in range, check to see if we have a name
4861 match, and if so, call the MATCH_CALLBACK callback. */
4862
4863 /* The same symbol may appear more than once in the range though.
4864 E.g., if we're looking for symbols that complete "w", and we have
4865 a symbol named "w1::w2", we'll find the two name components for
4866 that same symbol in the range. To be sure we only call the
4867 callback once per symbol, we first collect the symbol name
4868 indexes that matched in a temporary vector and ignore
4869 duplicates. */
4870 std::vector<offset_type> matches;
4871 matches.reserve (std::distance (bounds.first, bounds.second));
4872
4873 for (; bounds.first != bounds.second; ++bounds.first)
4874 {
4875 const char *qualified = index.symbol_name_at (bounds.first->idx);
4876
4877 if (!lookup_name_matcher.matches (qualified)
4878 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4879 continue;
4880
4881 matches.push_back (bounds.first->idx);
4882 }
4883
4884 std::sort (matches.begin (), matches.end ());
4885
4886 /* Finally call the callback, once per match. */
4887 ULONGEST prev = -1;
4888 for (offset_type idx : matches)
4889 {
4890 if (prev != idx)
4891 {
4892 match_callback (idx);
4893 prev = idx;
4894 }
4895 }
4896
4897 /* Above we use a type wider than idx's for 'prev', since 0 and
4898 (offset_type)-1 are both possible values. */
4899 static_assert (sizeof (prev) > sizeof (offset_type), "");
4900 }
4901
4902 #if GDB_SELF_TEST
4903
4904 namespace selftests { namespace dw2_expand_symtabs_matching {
4905
4906 /* A mock .gdb_index/.debug_names-like name index table, enough to
4907 exercise dw2_expand_symtabs_matching_symbol, which works with the
4908 mapped_index_base interface. Builds an index from the symbol list
4909 passed as parameter to the constructor. */
4910 class mock_mapped_index : public mapped_index_base
4911 {
4912 public:
4913 mock_mapped_index (gdb::array_view<const char *> symbols)
4914 : m_symbol_table (symbols)
4915 {}
4916
4917 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4918
4919 /* Return the number of names in the symbol table. */
4920 virtual size_t symbol_name_count () const
4921 {
4922 return m_symbol_table.size ();
4923 }
4924
4925 /* Get the name of the symbol at IDX in the symbol table. */
4926 virtual const char *symbol_name_at (offset_type idx) const
4927 {
4928 return m_symbol_table[idx];
4929 }
4930
4931 private:
4932 gdb::array_view<const char *> m_symbol_table;
4933 };
4934
4935 /* Convenience function that converts a NULL pointer to a "<null>"
4936 string, to pass to print routines. */
4937
4938 static const char *
4939 string_or_null (const char *str)
4940 {
4941 return str != NULL ? str : "<null>";
4942 }
4943
4944 /* Check if a lookup_name_info built from
4945 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4946 index. EXPECTED_LIST is the list of expected matches, in expected
4947 matching order. If no match expected, then an empty list is
4948 specified. Returns true on success. On failure prints a warning
4949 indicating the file:line that failed, and returns false. */
4950
4951 static bool
4952 check_match (const char *file, int line,
4953 mock_mapped_index &mock_index,
4954 const char *name, symbol_name_match_type match_type,
4955 bool completion_mode,
4956 std::initializer_list<const char *> expected_list)
4957 {
4958 lookup_name_info lookup_name (name, match_type, completion_mode);
4959
4960 bool matched = true;
4961
4962 auto mismatch = [&] (const char *expected_str,
4963 const char *got)
4964 {
4965 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4966 "expected=\"%s\", got=\"%s\"\n"),
4967 file, line,
4968 (match_type == symbol_name_match_type::FULL
4969 ? "FULL" : "WILD"),
4970 name, string_or_null (expected_str), string_or_null (got));
4971 matched = false;
4972 };
4973
4974 auto expected_it = expected_list.begin ();
4975 auto expected_end = expected_list.end ();
4976
4977 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4978 NULL, ALL_DOMAIN,
4979 [&] (offset_type idx)
4980 {
4981 const char *matched_name = mock_index.symbol_name_at (idx);
4982 const char *expected_str
4983 = expected_it == expected_end ? NULL : *expected_it++;
4984
4985 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4986 mismatch (expected_str, matched_name);
4987 });
4988
4989 const char *expected_str
4990 = expected_it == expected_end ? NULL : *expected_it++;
4991 if (expected_str != NULL)
4992 mismatch (expected_str, NULL);
4993
4994 return matched;
4995 }
4996
4997 /* The symbols added to the mock mapped_index for testing (in
4998 canonical form). */
4999 static const char *test_symbols[] = {
5000 "function",
5001 "std::bar",
5002 "std::zfunction",
5003 "std::zfunction2",
5004 "w1::w2",
5005 "ns::foo<char*>",
5006 "ns::foo<int>",
5007 "ns::foo<long>",
5008 "ns2::tmpl<int>::foo2",
5009 "(anonymous namespace)::A::B::C",
5010
5011 /* These are used to check that the increment-last-char in the
5012 matching algorithm for completion doesn't match "t1_fund" when
5013 completing "t1_func". */
5014 "t1_func",
5015 "t1_func1",
5016 "t1_fund",
5017 "t1_fund1",
5018
5019 /* A UTF-8 name with multi-byte sequences to make sure that
5020 cp-name-parser understands this as a single identifier ("função"
5021 is "function" in PT). */
5022 u8"u8função",
5023
5024 /* \377 (0xff) is Latin1 'ÿ'. */
5025 "yfunc\377",
5026
5027 /* \377 (0xff) is Latin1 'ÿ'. */
5028 "\377",
5029 "\377\377123",
5030
5031 /* A name with all sorts of complications. Starts with "z" to make
5032 it easier for the completion tests below. */
5033 #define Z_SYM_NAME \
5034 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
5035 "::tuple<(anonymous namespace)::ui*, " \
5036 "std::default_delete<(anonymous namespace)::ui>, void>"
5037
5038 Z_SYM_NAME
5039 };
5040
5041 /* Returns true if the mapped_index_base::find_name_component_bounds
5042 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
5043 in completion mode. */
5044
5045 static bool
5046 check_find_bounds_finds (mapped_index_base &index,
5047 const char *search_name,
5048 gdb::array_view<const char *> expected_syms)
5049 {
5050 lookup_name_info lookup_name (search_name,
5051 symbol_name_match_type::FULL, true);
5052
5053 auto bounds = index.find_name_components_bounds (lookup_name);
5054
5055 size_t distance = std::distance (bounds.first, bounds.second);
5056 if (distance != expected_syms.size ())
5057 return false;
5058
5059 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
5060 {
5061 auto nc_elem = bounds.first + exp_elem;
5062 const char *qualified = index.symbol_name_at (nc_elem->idx);
5063 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
5064 return false;
5065 }
5066
5067 return true;
5068 }
5069
5070 /* Test the lower-level mapped_index::find_name_component_bounds
5071 method. */
5072
5073 static void
5074 test_mapped_index_find_name_component_bounds ()
5075 {
5076 mock_mapped_index mock_index (test_symbols);
5077
5078 mock_index.build_name_components ();
5079
5080 /* Test the lower-level mapped_index::find_name_component_bounds
5081 method in completion mode. */
5082 {
5083 static const char *expected_syms[] = {
5084 "t1_func",
5085 "t1_func1",
5086 };
5087
5088 SELF_CHECK (check_find_bounds_finds (mock_index,
5089 "t1_func", expected_syms));
5090 }
5091
5092 /* Check that the increment-last-char in the name matching algorithm
5093 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
5094 {
5095 static const char *expected_syms1[] = {
5096 "\377",
5097 "\377\377123",
5098 };
5099 SELF_CHECK (check_find_bounds_finds (mock_index,
5100 "\377", expected_syms1));
5101
5102 static const char *expected_syms2[] = {
5103 "\377\377123",
5104 };
5105 SELF_CHECK (check_find_bounds_finds (mock_index,
5106 "\377\377", expected_syms2));
5107 }
5108 }
5109
5110 /* Test dw2_expand_symtabs_matching_symbol. */
5111
5112 static void
5113 test_dw2_expand_symtabs_matching_symbol ()
5114 {
5115 mock_mapped_index mock_index (test_symbols);
5116
5117 /* We let all tests run until the end even if some fails, for debug
5118 convenience. */
5119 bool any_mismatch = false;
5120
5121 /* Create the expected symbols list (an initializer_list). Needed
5122 because lists have commas, and we need to pass them to CHECK,
5123 which is a macro. */
5124 #define EXPECT(...) { __VA_ARGS__ }
5125
5126 /* Wrapper for check_match that passes down the current
5127 __FILE__/__LINE__. */
5128 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
5129 any_mismatch |= !check_match (__FILE__, __LINE__, \
5130 mock_index, \
5131 NAME, MATCH_TYPE, COMPLETION_MODE, \
5132 EXPECTED_LIST)
5133
5134 /* Identity checks. */
5135 for (const char *sym : test_symbols)
5136 {
5137 /* Should be able to match all existing symbols. */
5138 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
5139 EXPECT (sym));
5140
5141 /* Should be able to match all existing symbols with
5142 parameters. */
5143 std::string with_params = std::string (sym) + "(int)";
5144 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
5145 EXPECT (sym));
5146
5147 /* Should be able to match all existing symbols with
5148 parameters and qualifiers. */
5149 with_params = std::string (sym) + " ( int ) const";
5150 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
5151 EXPECT (sym));
5152
5153 /* This should really find sym, but cp-name-parser.y doesn't
5154 know about lvalue/rvalue qualifiers yet. */
5155 with_params = std::string (sym) + " ( int ) &&";
5156 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
5157 {});
5158 }
5159
5160 /* Check that the name matching algorithm for completion doesn't get
5161 confused with Latin1 'ÿ' / 0xff. */
5162 {
5163 static const char str[] = "\377";
5164 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
5165 EXPECT ("\377", "\377\377123"));
5166 }
5167
5168 /* Check that the increment-last-char in the matching algorithm for
5169 completion doesn't match "t1_fund" when completing "t1_func". */
5170 {
5171 static const char str[] = "t1_func";
5172 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
5173 EXPECT ("t1_func", "t1_func1"));
5174 }
5175
5176 /* Check that completion mode works at each prefix of the expected
5177 symbol name. */
5178 {
5179 static const char str[] = "function(int)";
5180 size_t len = strlen (str);
5181 std::string lookup;
5182
5183 for (size_t i = 1; i < len; i++)
5184 {
5185 lookup.assign (str, i);
5186 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
5187 EXPECT ("function"));
5188 }
5189 }
5190
5191 /* While "w" is a prefix of both components, the match function
5192 should still only be called once. */
5193 {
5194 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
5195 EXPECT ("w1::w2"));
5196 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
5197 EXPECT ("w1::w2"));
5198 }
5199
5200 /* Same, with a "complicated" symbol. */
5201 {
5202 static const char str[] = Z_SYM_NAME;
5203 size_t len = strlen (str);
5204 std::string lookup;
5205
5206 for (size_t i = 1; i < len; i++)
5207 {
5208 lookup.assign (str, i);
5209 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
5210 EXPECT (Z_SYM_NAME));
5211 }
5212 }
5213
5214 /* In FULL mode, an incomplete symbol doesn't match. */
5215 {
5216 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
5217 {});
5218 }
5219
5220 /* A complete symbol with parameters matches any overload, since the
5221 index has no overload info. */
5222 {
5223 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
5224 EXPECT ("std::zfunction", "std::zfunction2"));
5225 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
5226 EXPECT ("std::zfunction", "std::zfunction2"));
5227 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
5228 EXPECT ("std::zfunction", "std::zfunction2"));
5229 }
5230
5231 /* Check that whitespace is ignored appropriately. A symbol with a
5232 template argument list. */
5233 {
5234 static const char expected[] = "ns::foo<int>";
5235 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
5236 EXPECT (expected));
5237 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
5238 EXPECT (expected));
5239 }
5240
5241 /* Check that whitespace is ignored appropriately. A symbol with a
5242 template argument list that includes a pointer. */
5243 {
5244 static const char expected[] = "ns::foo<char*>";
5245 /* Try both completion and non-completion modes. */
5246 static const bool completion_mode[2] = {false, true};
5247 for (size_t i = 0; i < 2; i++)
5248 {
5249 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
5250 completion_mode[i], EXPECT (expected));
5251 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
5252 completion_mode[i], EXPECT (expected));
5253
5254 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
5255 completion_mode[i], EXPECT (expected));
5256 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
5257 completion_mode[i], EXPECT (expected));
5258 }
5259 }
5260
5261 {
5262 /* Check method qualifiers are ignored. */
5263 static const char expected[] = "ns::foo<char*>";
5264 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
5265 symbol_name_match_type::FULL, true, EXPECT (expected));
5266 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
5267 symbol_name_match_type::FULL, true, EXPECT (expected));
5268 CHECK_MATCH ("foo < char * > ( int ) const",
5269 symbol_name_match_type::WILD, true, EXPECT (expected));
5270 CHECK_MATCH ("foo < char * > ( int ) &&",
5271 symbol_name_match_type::WILD, true, EXPECT (expected));
5272 }
5273
5274 /* Test lookup names that don't match anything. */
5275 {
5276 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
5277 {});
5278
5279 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
5280 {});
5281 }
5282
5283 /* Some wild matching tests, exercising "(anonymous namespace)",
5284 which should not be confused with a parameter list. */
5285 {
5286 static const char *syms[] = {
5287 "A::B::C",
5288 "B::C",
5289 "C",
5290 "A :: B :: C ( int )",
5291 "B :: C ( int )",
5292 "C ( int )",
5293 };
5294
5295 for (const char *s : syms)
5296 {
5297 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
5298 EXPECT ("(anonymous namespace)::A::B::C"));
5299 }
5300 }
5301
5302 {
5303 static const char expected[] = "ns2::tmpl<int>::foo2";
5304 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
5305 EXPECT (expected));
5306 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
5307 EXPECT (expected));
5308 }
5309
5310 SELF_CHECK (!any_mismatch);
5311
5312 #undef EXPECT
5313 #undef CHECK_MATCH
5314 }
5315
5316 static void
5317 run_test ()
5318 {
5319 test_mapped_index_find_name_component_bounds ();
5320 test_dw2_expand_symtabs_matching_symbol ();
5321 }
5322
5323 }} // namespace selftests::dw2_expand_symtabs_matching
5324
5325 #endif /* GDB_SELF_TEST */
5326
5327 /* If FILE_MATCHER is NULL or if PER_CU has
5328 dwarf2_per_cu_quick_data::MARK set (see
5329 dw_expand_symtabs_matching_file_matcher), expand the CU and call
5330 EXPANSION_NOTIFY on it. */
5331
5332 static void
5333 dw2_expand_symtabs_matching_one
5334 (struct dwarf2_per_cu_data *per_cu,
5335 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5336 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5337 {
5338 if (file_matcher == NULL || per_cu->v.quick->mark)
5339 {
5340 bool symtab_was_null
5341 = (per_cu->v.quick->compunit_symtab == NULL);
5342
5343 dw2_instantiate_symtab (per_cu);
5344
5345 if (expansion_notify != NULL
5346 && symtab_was_null
5347 && per_cu->v.quick->compunit_symtab != NULL)
5348 expansion_notify (per_cu->v.quick->compunit_symtab);
5349 }
5350 }
5351
5352 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5353 matched, to expand corresponding CUs that were marked. IDX is the
5354 index of the symbol name that matched. */
5355
5356 static void
5357 dw2_expand_marked_cus
5358 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5359 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5360 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5361 search_domain kind)
5362 {
5363 offset_type *vec, vec_len, vec_idx;
5364 bool global_seen = false;
5365 mapped_index &index = *dwarf2_per_objfile->index_table;
5366
5367 vec = (offset_type *) (index.constant_pool
5368 + MAYBE_SWAP (index.symbol_table[idx].vec));
5369 vec_len = MAYBE_SWAP (vec[0]);
5370 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5371 {
5372 struct dwarf2_per_cu_data *per_cu;
5373 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5374 /* This value is only valid for index versions >= 7. */
5375 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5376 gdb_index_symbol_kind symbol_kind =
5377 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5378 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5379 /* Only check the symbol attributes if they're present.
5380 Indices prior to version 7 don't record them,
5381 and indices >= 7 may elide them for certain symbols
5382 (gold does this). */
5383 int attrs_valid =
5384 (index.version >= 7
5385 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5386
5387 /* Work around gold/15646. */
5388 if (attrs_valid)
5389 {
5390 if (!is_static && global_seen)
5391 continue;
5392 if (!is_static)
5393 global_seen = true;
5394 }
5395
5396 /* Only check the symbol's kind if it has one. */
5397 if (attrs_valid)
5398 {
5399 switch (kind)
5400 {
5401 case VARIABLES_DOMAIN:
5402 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5403 continue;
5404 break;
5405 case FUNCTIONS_DOMAIN:
5406 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5407 continue;
5408 break;
5409 case TYPES_DOMAIN:
5410 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5411 continue;
5412 break;
5413 default:
5414 break;
5415 }
5416 }
5417
5418 /* Don't crash on bad data. */
5419 if (cu_index >= (dwarf2_per_objfile->n_comp_units
5420 + dwarf2_per_objfile->n_type_units))
5421 {
5422 complaint (&symfile_complaints,
5423 _(".gdb_index entry has bad CU index"
5424 " [in module %s]"),
5425 objfile_name (dwarf2_per_objfile->objfile));
5426 continue;
5427 }
5428
5429 per_cu = dw2_get_cutu (dwarf2_per_objfile, cu_index);
5430 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5431 expansion_notify);
5432 }
5433 }
5434
5435 /* If FILE_MATCHER is non-NULL, set all the
5436 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5437 that match FILE_MATCHER. */
5438
5439 static void
5440 dw_expand_symtabs_matching_file_matcher
5441 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5442 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5443 {
5444 if (file_matcher == NULL)
5445 return;
5446
5447 objfile *const objfile = dwarf2_per_objfile->objfile;
5448
5449 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5450 htab_eq_pointer,
5451 NULL, xcalloc, xfree));
5452 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5453 htab_eq_pointer,
5454 NULL, xcalloc, xfree));
5455
5456 /* The rule is CUs specify all the files, including those used by
5457 any TU, so there's no need to scan TUs here. */
5458
5459 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5460 {
5461 int j;
5462 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
5463 struct quick_file_names *file_data;
5464 void **slot;
5465
5466 QUIT;
5467
5468 per_cu->v.quick->mark = 0;
5469
5470 /* We only need to look at symtabs not already expanded. */
5471 if (per_cu->v.quick->compunit_symtab)
5472 continue;
5473
5474 file_data = dw2_get_file_names (per_cu);
5475 if (file_data == NULL)
5476 continue;
5477
5478 if (htab_find (visited_not_found.get (), file_data) != NULL)
5479 continue;
5480 else if (htab_find (visited_found.get (), file_data) != NULL)
5481 {
5482 per_cu->v.quick->mark = 1;
5483 continue;
5484 }
5485
5486 for (j = 0; j < file_data->num_file_names; ++j)
5487 {
5488 const char *this_real_name;
5489
5490 if (file_matcher (file_data->file_names[j], false))
5491 {
5492 per_cu->v.quick->mark = 1;
5493 break;
5494 }
5495
5496 /* Before we invoke realpath, which can get expensive when many
5497 files are involved, do a quick comparison of the basenames. */
5498 if (!basenames_may_differ
5499 && !file_matcher (lbasename (file_data->file_names[j]),
5500 true))
5501 continue;
5502
5503 this_real_name = dw2_get_real_path (objfile, file_data, j);
5504 if (file_matcher (this_real_name, false))
5505 {
5506 per_cu->v.quick->mark = 1;
5507 break;
5508 }
5509 }
5510
5511 slot = htab_find_slot (per_cu->v.quick->mark
5512 ? visited_found.get ()
5513 : visited_not_found.get (),
5514 file_data, INSERT);
5515 *slot = file_data;
5516 }
5517 }
5518
5519 static void
5520 dw2_expand_symtabs_matching
5521 (struct objfile *objfile,
5522 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5523 const lookup_name_info &lookup_name,
5524 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5525 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5526 enum search_domain kind)
5527 {
5528 struct dwarf2_per_objfile *dwarf2_per_objfile
5529 = get_dwarf2_per_objfile (objfile);
5530
5531 /* index_table is NULL if OBJF_READNOW. */
5532 if (!dwarf2_per_objfile->index_table)
5533 return;
5534
5535 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5536
5537 mapped_index &index = *dwarf2_per_objfile->index_table;
5538
5539 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5540 symbol_matcher,
5541 kind, [&] (offset_type idx)
5542 {
5543 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5544 expansion_notify, kind);
5545 });
5546 }
5547
5548 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5549 symtab. */
5550
5551 static struct compunit_symtab *
5552 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5553 CORE_ADDR pc)
5554 {
5555 int i;
5556
5557 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5558 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5559 return cust;
5560
5561 if (cust->includes == NULL)
5562 return NULL;
5563
5564 for (i = 0; cust->includes[i]; ++i)
5565 {
5566 struct compunit_symtab *s = cust->includes[i];
5567
5568 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5569 if (s != NULL)
5570 return s;
5571 }
5572
5573 return NULL;
5574 }
5575
5576 static struct compunit_symtab *
5577 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5578 struct bound_minimal_symbol msymbol,
5579 CORE_ADDR pc,
5580 struct obj_section *section,
5581 int warn_if_readin)
5582 {
5583 struct dwarf2_per_cu_data *data;
5584 struct compunit_symtab *result;
5585
5586 if (!objfile->psymtabs_addrmap)
5587 return NULL;
5588
5589 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5590 pc);
5591 if (!data)
5592 return NULL;
5593
5594 if (warn_if_readin && data->v.quick->compunit_symtab)
5595 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5596 paddress (get_objfile_arch (objfile), pc));
5597
5598 result
5599 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
5600 pc);
5601 gdb_assert (result != NULL);
5602 return result;
5603 }
5604
5605 static void
5606 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5607 void *data, int need_fullname)
5608 {
5609 struct dwarf2_per_objfile *dwarf2_per_objfile
5610 = get_dwarf2_per_objfile (objfile);
5611
5612 if (!dwarf2_per_objfile->filenames_cache)
5613 {
5614 dwarf2_per_objfile->filenames_cache.emplace ();
5615
5616 htab_up visited (htab_create_alloc (10,
5617 htab_hash_pointer, htab_eq_pointer,
5618 NULL, xcalloc, xfree));
5619
5620 /* The rule is CUs specify all the files, including those used
5621 by any TU, so there's no need to scan TUs here. We can
5622 ignore file names coming from already-expanded CUs. */
5623
5624 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5625 {
5626 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
5627
5628 if (per_cu->v.quick->compunit_symtab)
5629 {
5630 void **slot = htab_find_slot (visited.get (),
5631 per_cu->v.quick->file_names,
5632 INSERT);
5633
5634 *slot = per_cu->v.quick->file_names;
5635 }
5636 }
5637
5638 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5639 {
5640 dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
5641 struct quick_file_names *file_data;
5642 void **slot;
5643
5644 /* We only need to look at symtabs not already expanded. */
5645 if (per_cu->v.quick->compunit_symtab)
5646 continue;
5647
5648 file_data = dw2_get_file_names (per_cu);
5649 if (file_data == NULL)
5650 continue;
5651
5652 slot = htab_find_slot (visited.get (), file_data, INSERT);
5653 if (*slot)
5654 {
5655 /* Already visited. */
5656 continue;
5657 }
5658 *slot = file_data;
5659
5660 for (int j = 0; j < file_data->num_file_names; ++j)
5661 {
5662 const char *filename = file_data->file_names[j];
5663 dwarf2_per_objfile->filenames_cache->seen (filename);
5664 }
5665 }
5666 }
5667
5668 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5669 {
5670 gdb::unique_xmalloc_ptr<char> this_real_name;
5671
5672 if (need_fullname)
5673 this_real_name = gdb_realpath (filename);
5674 (*fun) (filename, this_real_name.get (), data);
5675 });
5676 }
5677
5678 static int
5679 dw2_has_symbols (struct objfile *objfile)
5680 {
5681 return 1;
5682 }
5683
5684 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5685 {
5686 dw2_has_symbols,
5687 dw2_find_last_source_symtab,
5688 dw2_forget_cached_source_info,
5689 dw2_map_symtabs_matching_filename,
5690 dw2_lookup_symbol,
5691 dw2_print_stats,
5692 dw2_dump,
5693 dw2_relocate,
5694 dw2_expand_symtabs_for_function,
5695 dw2_expand_all_symtabs,
5696 dw2_expand_symtabs_with_fullname,
5697 dw2_map_matching_symbols,
5698 dw2_expand_symtabs_matching,
5699 dw2_find_pc_sect_compunit_symtab,
5700 NULL,
5701 dw2_map_symbol_filenames
5702 };
5703
5704 /* DWARF-5 debug_names reader. */
5705
5706 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5707 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5708
5709 /* A helper function that reads the .debug_names section in SECTION
5710 and fills in MAP. FILENAME is the name of the file containing the
5711 section; it is used for error reporting.
5712
5713 Returns true if all went well, false otherwise. */
5714
5715 static bool
5716 read_debug_names_from_section (struct objfile *objfile,
5717 const char *filename,
5718 struct dwarf2_section_info *section,
5719 mapped_debug_names &map)
5720 {
5721 if (dwarf2_section_empty_p (section))
5722 return false;
5723
5724 /* Older elfutils strip versions could keep the section in the main
5725 executable while splitting it for the separate debug info file. */
5726 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5727 return false;
5728
5729 dwarf2_read_section (objfile, section);
5730
5731 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5732
5733 const gdb_byte *addr = section->buffer;
5734
5735 bfd *const abfd = get_section_bfd_owner (section);
5736
5737 unsigned int bytes_read;
5738 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5739 addr += bytes_read;
5740
5741 map.dwarf5_is_dwarf64 = bytes_read != 4;
5742 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5743 if (bytes_read + length != section->size)
5744 {
5745 /* There may be multiple per-CU indices. */
5746 warning (_("Section .debug_names in %s length %s does not match "
5747 "section length %s, ignoring .debug_names."),
5748 filename, plongest (bytes_read + length),
5749 pulongest (section->size));
5750 return false;
5751 }
5752
5753 /* The version number. */
5754 uint16_t version = read_2_bytes (abfd, addr);
5755 addr += 2;
5756 if (version != 5)
5757 {
5758 warning (_("Section .debug_names in %s has unsupported version %d, "
5759 "ignoring .debug_names."),
5760 filename, version);
5761 return false;
5762 }
5763
5764 /* Padding. */
5765 uint16_t padding = read_2_bytes (abfd, addr);
5766 addr += 2;
5767 if (padding != 0)
5768 {
5769 warning (_("Section .debug_names in %s has unsupported padding %d, "
5770 "ignoring .debug_names."),
5771 filename, padding);
5772 return false;
5773 }
5774
5775 /* comp_unit_count - The number of CUs in the CU list. */
5776 map.cu_count = read_4_bytes (abfd, addr);
5777 addr += 4;
5778
5779 /* local_type_unit_count - The number of TUs in the local TU
5780 list. */
5781 map.tu_count = read_4_bytes (abfd, addr);
5782 addr += 4;
5783
5784 /* foreign_type_unit_count - The number of TUs in the foreign TU
5785 list. */
5786 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5787 addr += 4;
5788 if (foreign_tu_count != 0)
5789 {
5790 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5791 "ignoring .debug_names."),
5792 filename, static_cast<unsigned long> (foreign_tu_count));
5793 return false;
5794 }
5795
5796 /* bucket_count - The number of hash buckets in the hash lookup
5797 table. */
5798 map.bucket_count = read_4_bytes (abfd, addr);
5799 addr += 4;
5800
5801 /* name_count - The number of unique names in the index. */
5802 map.name_count = read_4_bytes (abfd, addr);
5803 addr += 4;
5804
5805 /* abbrev_table_size - The size in bytes of the abbreviations
5806 table. */
5807 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5808 addr += 4;
5809
5810 /* augmentation_string_size - The size in bytes of the augmentation
5811 string. This value is rounded up to a multiple of 4. */
5812 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5813 addr += 4;
5814 map.augmentation_is_gdb = ((augmentation_string_size
5815 == sizeof (dwarf5_augmentation))
5816 && memcmp (addr, dwarf5_augmentation,
5817 sizeof (dwarf5_augmentation)) == 0);
5818 augmentation_string_size += (-augmentation_string_size) & 3;
5819 addr += augmentation_string_size;
5820
5821 /* List of CUs */
5822 map.cu_table_reordered = addr;
5823 addr += map.cu_count * map.offset_size;
5824
5825 /* List of Local TUs */
5826 map.tu_table_reordered = addr;
5827 addr += map.tu_count * map.offset_size;
5828
5829 /* Hash Lookup Table */
5830 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5831 addr += map.bucket_count * 4;
5832 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5833 addr += map.name_count * 4;
5834
5835 /* Name Table */
5836 map.name_table_string_offs_reordered = addr;
5837 addr += map.name_count * map.offset_size;
5838 map.name_table_entry_offs_reordered = addr;
5839 addr += map.name_count * map.offset_size;
5840
5841 const gdb_byte *abbrev_table_start = addr;
5842 for (;;)
5843 {
5844 unsigned int bytes_read;
5845 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5846 addr += bytes_read;
5847 if (index_num == 0)
5848 break;
5849
5850 const auto insertpair
5851 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5852 if (!insertpair.second)
5853 {
5854 warning (_("Section .debug_names in %s has duplicate index %s, "
5855 "ignoring .debug_names."),
5856 filename, pulongest (index_num));
5857 return false;
5858 }
5859 mapped_debug_names::index_val &indexval = insertpair.first->second;
5860 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5861 addr += bytes_read;
5862
5863 for (;;)
5864 {
5865 mapped_debug_names::index_val::attr attr;
5866 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5867 addr += bytes_read;
5868 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5869 addr += bytes_read;
5870 if (attr.form == DW_FORM_implicit_const)
5871 {
5872 attr.implicit_const = read_signed_leb128 (abfd, addr,
5873 &bytes_read);
5874 addr += bytes_read;
5875 }
5876 if (attr.dw_idx == 0 && attr.form == 0)
5877 break;
5878 indexval.attr_vec.push_back (std::move (attr));
5879 }
5880 }
5881 if (addr != abbrev_table_start + abbrev_table_size)
5882 {
5883 warning (_("Section .debug_names in %s has abbreviation_table "
5884 "of size %zu vs. written as %u, ignoring .debug_names."),
5885 filename, addr - abbrev_table_start, abbrev_table_size);
5886 return false;
5887 }
5888 map.entry_pool = addr;
5889
5890 return true;
5891 }
5892
5893 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5894 list. */
5895
5896 static void
5897 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5898 const mapped_debug_names &map,
5899 dwarf2_section_info &section,
5900 bool is_dwz, int base_offset)
5901 {
5902 sect_offset sect_off_prev;
5903 for (uint32_t i = 0; i <= map.cu_count; ++i)
5904 {
5905 sect_offset sect_off_next;
5906 if (i < map.cu_count)
5907 {
5908 sect_off_next
5909 = (sect_offset) (extract_unsigned_integer
5910 (map.cu_table_reordered + i * map.offset_size,
5911 map.offset_size,
5912 map.dwarf5_byte_order));
5913 }
5914 else
5915 sect_off_next = (sect_offset) section.size;
5916 if (i >= 1)
5917 {
5918 const ULONGEST length = sect_off_next - sect_off_prev;
5919 dwarf2_per_objfile->all_comp_units[base_offset + (i - 1)]
5920 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5921 sect_off_prev, length);
5922 }
5923 sect_off_prev = sect_off_next;
5924 }
5925 }
5926
5927 /* Read the CU list from the mapped index, and use it to create all
5928 the CU objects for this dwarf2_per_objfile. */
5929
5930 static void
5931 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5932 const mapped_debug_names &map,
5933 const mapped_debug_names &dwz_map)
5934 {
5935 struct objfile *objfile = dwarf2_per_objfile->objfile;
5936
5937 dwarf2_per_objfile->n_comp_units = map.cu_count + dwz_map.cu_count;
5938 dwarf2_per_objfile->all_comp_units
5939 = XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
5940 dwarf2_per_objfile->n_comp_units);
5941
5942 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5943 dwarf2_per_objfile->info,
5944 false /* is_dwz */,
5945 0 /* base_offset */);
5946
5947 if (dwz_map.cu_count == 0)
5948 return;
5949
5950 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5951 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5952 true /* is_dwz */,
5953 map.cu_count /* base_offset */);
5954 }
5955
5956 /* Read .debug_names. If everything went ok, initialize the "quick"
5957 elements of all the CUs and return true. Otherwise, return false. */
5958
5959 static bool
5960 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5961 {
5962 mapped_debug_names local_map (dwarf2_per_objfile);
5963 mapped_debug_names dwz_map (dwarf2_per_objfile);
5964 struct objfile *objfile = dwarf2_per_objfile->objfile;
5965
5966 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5967 &dwarf2_per_objfile->debug_names,
5968 local_map))
5969 return false;
5970
5971 /* Don't use the index if it's empty. */
5972 if (local_map.name_count == 0)
5973 return false;
5974
5975 /* If there is a .dwz file, read it so we can get its CU list as
5976 well. */
5977 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5978 if (dwz != NULL)
5979 {
5980 if (!read_debug_names_from_section (objfile,
5981 bfd_get_filename (dwz->dwz_bfd),
5982 &dwz->debug_names, dwz_map))
5983 {
5984 warning (_("could not read '.debug_names' section from %s; skipping"),
5985 bfd_get_filename (dwz->dwz_bfd));
5986 return false;
5987 }
5988 }
5989
5990 create_cus_from_debug_names (dwarf2_per_objfile, local_map, dwz_map);
5991
5992 if (local_map.tu_count != 0)
5993 {
5994 /* We can only handle a single .debug_types when we have an
5995 index. */
5996 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5997 return false;
5998
5999 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
6000 dwarf2_per_objfile->types, 0);
6001
6002 create_signatured_type_table_from_debug_names
6003 (dwarf2_per_objfile, local_map, section, &dwarf2_per_objfile->abbrev);
6004 }
6005
6006 create_addrmap_from_aranges (dwarf2_per_objfile,
6007 &dwarf2_per_objfile->debug_aranges);
6008
6009 dwarf2_per_objfile->debug_names_table.reset
6010 (new mapped_debug_names (dwarf2_per_objfile));
6011 *dwarf2_per_objfile->debug_names_table = std::move (local_map);
6012 dwarf2_per_objfile->using_index = 1;
6013 dwarf2_per_objfile->quick_file_names_table =
6014 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
6015
6016 return true;
6017 }
6018
6019 /* Symbol name hashing function as specified by DWARF-5. */
6020
6021 static uint32_t
6022 dwarf5_djb_hash (const char *str_)
6023 {
6024 const unsigned char *str = (const unsigned char *) str_;
6025
6026 /* Note: tolower here ignores UTF-8, which isn't fully compliant.
6027 See http://dwarfstd.org/ShowIssue.php?issue=161027.1. */
6028
6029 uint32_t hash = 5381;
6030 while (int c = *str++)
6031 hash = hash * 33 + tolower (c);
6032 return hash;
6033 }
6034
6035 /* Type used to manage iterating over all CUs looking for a symbol for
6036 .debug_names. */
6037
6038 class dw2_debug_names_iterator
6039 {
6040 public:
6041 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
6042 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
6043 dw2_debug_names_iterator (const mapped_debug_names &map,
6044 bool want_specific_block,
6045 block_enum block_index, domain_enum domain,
6046 const char *name)
6047 : m_map (map), m_want_specific_block (want_specific_block),
6048 m_block_index (block_index), m_domain (domain),
6049 m_addr (find_vec_in_debug_names (map, name))
6050 {}
6051
6052 dw2_debug_names_iterator (const mapped_debug_names &map,
6053 search_domain search, uint32_t namei)
6054 : m_map (map),
6055 m_search (search),
6056 m_addr (find_vec_in_debug_names (map, namei))
6057 {}
6058
6059 /* Return the next matching CU or NULL if there are no more. */
6060 dwarf2_per_cu_data *next ();
6061
6062 private:
6063 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
6064 const char *name);
6065 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
6066 uint32_t namei);
6067
6068 /* The internalized form of .debug_names. */
6069 const mapped_debug_names &m_map;
6070
6071 /* If true, only look for symbols that match BLOCK_INDEX. */
6072 const bool m_want_specific_block = false;
6073
6074 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
6075 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
6076 value. */
6077 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
6078
6079 /* The kind of symbol we're looking for. */
6080 const domain_enum m_domain = UNDEF_DOMAIN;
6081 const search_domain m_search = ALL_DOMAIN;
6082
6083 /* The list of CUs from the index entry of the symbol, or NULL if
6084 not found. */
6085 const gdb_byte *m_addr;
6086 };
6087
6088 const char *
6089 mapped_debug_names::namei_to_name (uint32_t namei) const
6090 {
6091 const ULONGEST namei_string_offs
6092 = extract_unsigned_integer ((name_table_string_offs_reordered
6093 + namei * offset_size),
6094 offset_size,
6095 dwarf5_byte_order);
6096 return read_indirect_string_at_offset
6097 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
6098 }
6099
6100 /* Find a slot in .debug_names for the object named NAME. If NAME is
6101 found, return pointer to its pool data. If NAME cannot be found,
6102 return NULL. */
6103
6104 const gdb_byte *
6105 dw2_debug_names_iterator::find_vec_in_debug_names
6106 (const mapped_debug_names &map, const char *name)
6107 {
6108 int (*cmp) (const char *, const char *);
6109
6110 if (current_language->la_language == language_cplus
6111 || current_language->la_language == language_fortran
6112 || current_language->la_language == language_d)
6113 {
6114 /* NAME is already canonical. Drop any qualifiers as
6115 .debug_names does not contain any. */
6116
6117 if (strchr (name, '(') != NULL)
6118 {
6119 gdb::unique_xmalloc_ptr<char> without_params
6120 = cp_remove_params (name);
6121
6122 if (without_params != NULL)
6123 {
6124 name = without_params.get();
6125 }
6126 }
6127 }
6128
6129 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
6130
6131 const uint32_t full_hash = dwarf5_djb_hash (name);
6132 uint32_t namei
6133 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
6134 (map.bucket_table_reordered
6135 + (full_hash % map.bucket_count)), 4,
6136 map.dwarf5_byte_order);
6137 if (namei == 0)
6138 return NULL;
6139 --namei;
6140 if (namei >= map.name_count)
6141 {
6142 complaint (&symfile_complaints,
6143 _("Wrong .debug_names with name index %u but name_count=%u "
6144 "[in module %s]"),
6145 namei, map.name_count,
6146 objfile_name (map.dwarf2_per_objfile->objfile));
6147 return NULL;
6148 }
6149
6150 for (;;)
6151 {
6152 const uint32_t namei_full_hash
6153 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
6154 (map.hash_table_reordered + namei), 4,
6155 map.dwarf5_byte_order);
6156 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
6157 return NULL;
6158
6159 if (full_hash == namei_full_hash)
6160 {
6161 const char *const namei_string = map.namei_to_name (namei);
6162
6163 #if 0 /* An expensive sanity check. */
6164 if (namei_full_hash != dwarf5_djb_hash (namei_string))
6165 {
6166 complaint (&symfile_complaints,
6167 _("Wrong .debug_names hash for string at index %u "
6168 "[in module %s]"),
6169 namei, objfile_name (dwarf2_per_objfile->objfile));
6170 return NULL;
6171 }
6172 #endif
6173
6174 if (cmp (namei_string, name) == 0)
6175 {
6176 const ULONGEST namei_entry_offs
6177 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
6178 + namei * map.offset_size),
6179 map.offset_size, map.dwarf5_byte_order);
6180 return map.entry_pool + namei_entry_offs;
6181 }
6182 }
6183
6184 ++namei;
6185 if (namei >= map.name_count)
6186 return NULL;
6187 }
6188 }
6189
6190 const gdb_byte *
6191 dw2_debug_names_iterator::find_vec_in_debug_names
6192 (const mapped_debug_names &map, uint32_t namei)
6193 {
6194 if (namei >= map.name_count)
6195 {
6196 complaint (&symfile_complaints,
6197 _("Wrong .debug_names with name index %u but name_count=%u "
6198 "[in module %s]"),
6199 namei, map.name_count,
6200 objfile_name (map.dwarf2_per_objfile->objfile));
6201 return NULL;
6202 }
6203
6204 const ULONGEST namei_entry_offs
6205 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
6206 + namei * map.offset_size),
6207 map.offset_size, map.dwarf5_byte_order);
6208 return map.entry_pool + namei_entry_offs;
6209 }
6210
6211 /* See dw2_debug_names_iterator. */
6212
6213 dwarf2_per_cu_data *
6214 dw2_debug_names_iterator::next ()
6215 {
6216 if (m_addr == NULL)
6217 return NULL;
6218
6219 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
6220 struct objfile *objfile = dwarf2_per_objfile->objfile;
6221 bfd *const abfd = objfile->obfd;
6222
6223 again:
6224
6225 unsigned int bytes_read;
6226 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
6227 m_addr += bytes_read;
6228 if (abbrev == 0)
6229 return NULL;
6230
6231 const auto indexval_it = m_map.abbrev_map.find (abbrev);
6232 if (indexval_it == m_map.abbrev_map.cend ())
6233 {
6234 complaint (&symfile_complaints,
6235 _("Wrong .debug_names undefined abbrev code %s "
6236 "[in module %s]"),
6237 pulongest (abbrev), objfile_name (objfile));
6238 return NULL;
6239 }
6240 const mapped_debug_names::index_val &indexval = indexval_it->second;
6241 bool have_is_static = false;
6242 bool is_static;
6243 dwarf2_per_cu_data *per_cu = NULL;
6244 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
6245 {
6246 ULONGEST ull;
6247 switch (attr.form)
6248 {
6249 case DW_FORM_implicit_const:
6250 ull = attr.implicit_const;
6251 break;
6252 case DW_FORM_flag_present:
6253 ull = 1;
6254 break;
6255 case DW_FORM_udata:
6256 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
6257 m_addr += bytes_read;
6258 break;
6259 default:
6260 complaint (&symfile_complaints,
6261 _("Unsupported .debug_names form %s [in module %s]"),
6262 dwarf_form_name (attr.form),
6263 objfile_name (objfile));
6264 return NULL;
6265 }
6266 switch (attr.dw_idx)
6267 {
6268 case DW_IDX_compile_unit:
6269 /* Don't crash on bad data. */
6270 if (ull >= dwarf2_per_objfile->n_comp_units)
6271 {
6272 complaint (&symfile_complaints,
6273 _(".debug_names entry has bad CU index %s"
6274 " [in module %s]"),
6275 pulongest (ull),
6276 objfile_name (dwarf2_per_objfile->objfile));
6277 continue;
6278 }
6279 per_cu = dw2_get_cutu (dwarf2_per_objfile, ull);
6280 break;
6281 case DW_IDX_type_unit:
6282 /* Don't crash on bad data. */
6283 if (ull >= dwarf2_per_objfile->n_type_units)
6284 {
6285 complaint (&symfile_complaints,
6286 _(".debug_names entry has bad TU index %s"
6287 " [in module %s]"),
6288 pulongest (ull),
6289 objfile_name (dwarf2_per_objfile->objfile));
6290 continue;
6291 }
6292 per_cu = dw2_get_cutu (dwarf2_per_objfile,
6293 dwarf2_per_objfile->n_comp_units + ull);
6294 break;
6295 case DW_IDX_GNU_internal:
6296 if (!m_map.augmentation_is_gdb)
6297 break;
6298 have_is_static = true;
6299 is_static = true;
6300 break;
6301 case DW_IDX_GNU_external:
6302 if (!m_map.augmentation_is_gdb)
6303 break;
6304 have_is_static = true;
6305 is_static = false;
6306 break;
6307 }
6308 }
6309
6310 /* Skip if already read in. */
6311 if (per_cu->v.quick->compunit_symtab)
6312 goto again;
6313
6314 /* Check static vs global. */
6315 if (have_is_static)
6316 {
6317 const bool want_static = m_block_index != GLOBAL_BLOCK;
6318 if (m_want_specific_block && want_static != is_static)
6319 goto again;
6320 }
6321
6322 /* Match dw2_symtab_iter_next, symbol_kind
6323 and debug_names::psymbol_tag. */
6324 switch (m_domain)
6325 {
6326 case VAR_DOMAIN:
6327 switch (indexval.dwarf_tag)
6328 {
6329 case DW_TAG_variable:
6330 case DW_TAG_subprogram:
6331 /* Some types are also in VAR_DOMAIN. */
6332 case DW_TAG_typedef:
6333 case DW_TAG_structure_type:
6334 break;
6335 default:
6336 goto again;
6337 }
6338 break;
6339 case STRUCT_DOMAIN:
6340 switch (indexval.dwarf_tag)
6341 {
6342 case DW_TAG_typedef:
6343 case DW_TAG_structure_type:
6344 break;
6345 default:
6346 goto again;
6347 }
6348 break;
6349 case LABEL_DOMAIN:
6350 switch (indexval.dwarf_tag)
6351 {
6352 case 0:
6353 case DW_TAG_variable:
6354 break;
6355 default:
6356 goto again;
6357 }
6358 break;
6359 default:
6360 break;
6361 }
6362
6363 /* Match dw2_expand_symtabs_matching, symbol_kind and
6364 debug_names::psymbol_tag. */
6365 switch (m_search)
6366 {
6367 case VARIABLES_DOMAIN:
6368 switch (indexval.dwarf_tag)
6369 {
6370 case DW_TAG_variable:
6371 break;
6372 default:
6373 goto again;
6374 }
6375 break;
6376 case FUNCTIONS_DOMAIN:
6377 switch (indexval.dwarf_tag)
6378 {
6379 case DW_TAG_subprogram:
6380 break;
6381 default:
6382 goto again;
6383 }
6384 break;
6385 case TYPES_DOMAIN:
6386 switch (indexval.dwarf_tag)
6387 {
6388 case DW_TAG_typedef:
6389 case DW_TAG_structure_type:
6390 break;
6391 default:
6392 goto again;
6393 }
6394 break;
6395 default:
6396 break;
6397 }
6398
6399 return per_cu;
6400 }
6401
6402 static struct compunit_symtab *
6403 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6404 const char *name, domain_enum domain)
6405 {
6406 const block_enum block_index = static_cast<block_enum> (block_index_int);
6407 struct dwarf2_per_objfile *dwarf2_per_objfile
6408 = get_dwarf2_per_objfile (objfile);
6409
6410 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6411 if (!mapp)
6412 {
6413 /* index is NULL if OBJF_READNOW. */
6414 return NULL;
6415 }
6416 const auto &map = *mapp;
6417
6418 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6419 block_index, domain, name);
6420
6421 struct compunit_symtab *stab_best = NULL;
6422 struct dwarf2_per_cu_data *per_cu;
6423 while ((per_cu = iter.next ()) != NULL)
6424 {
6425 struct symbol *sym, *with_opaque = NULL;
6426 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
6427 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6428 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6429
6430 sym = block_find_symbol (block, name, domain,
6431 block_find_non_opaque_type_preferred,
6432 &with_opaque);
6433
6434 /* Some caution must be observed with overloaded functions and
6435 methods, since the index will not contain any overload
6436 information (but NAME might contain it). */
6437
6438 if (sym != NULL
6439 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6440 return stab;
6441 if (with_opaque != NULL
6442 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6443 stab_best = stab;
6444
6445 /* Keep looking through other CUs. */
6446 }
6447
6448 return stab_best;
6449 }
6450
6451 /* This dumps minimal information about .debug_names. It is called
6452 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6453 uses this to verify that .debug_names has been loaded. */
6454
6455 static void
6456 dw2_debug_names_dump (struct objfile *objfile)
6457 {
6458 struct dwarf2_per_objfile *dwarf2_per_objfile
6459 = get_dwarf2_per_objfile (objfile);
6460
6461 gdb_assert (dwarf2_per_objfile->using_index);
6462 printf_filtered (".debug_names:");
6463 if (dwarf2_per_objfile->debug_names_table)
6464 printf_filtered (" exists\n");
6465 else
6466 printf_filtered (" faked for \"readnow\"\n");
6467 printf_filtered ("\n");
6468 }
6469
6470 static void
6471 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6472 const char *func_name)
6473 {
6474 struct dwarf2_per_objfile *dwarf2_per_objfile
6475 = get_dwarf2_per_objfile (objfile);
6476
6477 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6478 if (dwarf2_per_objfile->debug_names_table)
6479 {
6480 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6481
6482 /* Note: It doesn't matter what we pass for block_index here. */
6483 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6484 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6485
6486 struct dwarf2_per_cu_data *per_cu;
6487 while ((per_cu = iter.next ()) != NULL)
6488 dw2_instantiate_symtab (per_cu);
6489 }
6490 }
6491
6492 static void
6493 dw2_debug_names_expand_symtabs_matching
6494 (struct objfile *objfile,
6495 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6496 const lookup_name_info &lookup_name,
6497 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6498 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6499 enum search_domain kind)
6500 {
6501 struct dwarf2_per_objfile *dwarf2_per_objfile
6502 = get_dwarf2_per_objfile (objfile);
6503
6504 /* debug_names_table is NULL if OBJF_READNOW. */
6505 if (!dwarf2_per_objfile->debug_names_table)
6506 return;
6507
6508 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6509
6510 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6511
6512 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6513 symbol_matcher,
6514 kind, [&] (offset_type namei)
6515 {
6516 /* The name was matched, now expand corresponding CUs that were
6517 marked. */
6518 dw2_debug_names_iterator iter (map, kind, namei);
6519
6520 struct dwarf2_per_cu_data *per_cu;
6521 while ((per_cu = iter.next ()) != NULL)
6522 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6523 expansion_notify);
6524 });
6525 }
6526
6527 const struct quick_symbol_functions dwarf2_debug_names_functions =
6528 {
6529 dw2_has_symbols,
6530 dw2_find_last_source_symtab,
6531 dw2_forget_cached_source_info,
6532 dw2_map_symtabs_matching_filename,
6533 dw2_debug_names_lookup_symbol,
6534 dw2_print_stats,
6535 dw2_debug_names_dump,
6536 dw2_relocate,
6537 dw2_debug_names_expand_symtabs_for_function,
6538 dw2_expand_all_symtabs,
6539 dw2_expand_symtabs_with_fullname,
6540 dw2_map_matching_symbols,
6541 dw2_debug_names_expand_symtabs_matching,
6542 dw2_find_pc_sect_compunit_symtab,
6543 NULL,
6544 dw2_map_symbol_filenames
6545 };
6546
6547 /* See symfile.h. */
6548
6549 bool
6550 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6551 {
6552 struct dwarf2_per_objfile *dwarf2_per_objfile
6553 = get_dwarf2_per_objfile (objfile);
6554
6555 /* If we're about to read full symbols, don't bother with the
6556 indices. In this case we also don't care if some other debug
6557 format is making psymtabs, because they are all about to be
6558 expanded anyway. */
6559 if ((objfile->flags & OBJF_READNOW))
6560 {
6561 int i;
6562
6563 dwarf2_per_objfile->using_index = 1;
6564 create_all_comp_units (dwarf2_per_objfile);
6565 create_all_type_units (dwarf2_per_objfile);
6566 dwarf2_per_objfile->quick_file_names_table =
6567 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
6568
6569 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
6570 + dwarf2_per_objfile->n_type_units); ++i)
6571 {
6572 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
6573
6574 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6575 struct dwarf2_per_cu_quick_data);
6576 }
6577
6578 /* Return 1 so that gdb sees the "quick" functions. However,
6579 these functions will be no-ops because we will have expanded
6580 all symtabs. */
6581 *index_kind = dw_index_kind::GDB_INDEX;
6582 return true;
6583 }
6584
6585 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6586 {
6587 *index_kind = dw_index_kind::DEBUG_NAMES;
6588 return true;
6589 }
6590
6591 if (dwarf2_read_index (objfile))
6592 {
6593 *index_kind = dw_index_kind::GDB_INDEX;
6594 return true;
6595 }
6596
6597 return false;
6598 }
6599
6600 \f
6601
6602 /* Build a partial symbol table. */
6603
6604 void
6605 dwarf2_build_psymtabs (struct objfile *objfile)
6606 {
6607 struct dwarf2_per_objfile *dwarf2_per_objfile
6608 = get_dwarf2_per_objfile (objfile);
6609
6610 if (objfile->global_psymbols.capacity () == 0
6611 && objfile->static_psymbols.capacity () == 0)
6612 init_psymbol_list (objfile, 1024);
6613
6614 TRY
6615 {
6616 /* This isn't really ideal: all the data we allocate on the
6617 objfile's obstack is still uselessly kept around. However,
6618 freeing it seems unsafe. */
6619 psymtab_discarder psymtabs (objfile);
6620 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6621 psymtabs.keep ();
6622 }
6623 CATCH (except, RETURN_MASK_ERROR)
6624 {
6625 exception_print (gdb_stderr, except);
6626 }
6627 END_CATCH
6628 }
6629
6630 /* Return the total length of the CU described by HEADER. */
6631
6632 static unsigned int
6633 get_cu_length (const struct comp_unit_head *header)
6634 {
6635 return header->initial_length_size + header->length;
6636 }
6637
6638 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6639
6640 static inline bool
6641 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6642 {
6643 sect_offset bottom = cu_header->sect_off;
6644 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6645
6646 return sect_off >= bottom && sect_off < top;
6647 }
6648
6649 /* Find the base address of the compilation unit for range lists and
6650 location lists. It will normally be specified by DW_AT_low_pc.
6651 In DWARF-3 draft 4, the base address could be overridden by
6652 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6653 compilation units with discontinuous ranges. */
6654
6655 static void
6656 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6657 {
6658 struct attribute *attr;
6659
6660 cu->base_known = 0;
6661 cu->base_address = 0;
6662
6663 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6664 if (attr)
6665 {
6666 cu->base_address = attr_value_as_address (attr);
6667 cu->base_known = 1;
6668 }
6669 else
6670 {
6671 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6672 if (attr)
6673 {
6674 cu->base_address = attr_value_as_address (attr);
6675 cu->base_known = 1;
6676 }
6677 }
6678 }
6679
6680 /* Read in the comp unit header information from the debug_info at info_ptr.
6681 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6682 NOTE: This leaves members offset, first_die_offset to be filled in
6683 by the caller. */
6684
6685 static const gdb_byte *
6686 read_comp_unit_head (struct comp_unit_head *cu_header,
6687 const gdb_byte *info_ptr,
6688 struct dwarf2_section_info *section,
6689 rcuh_kind section_kind)
6690 {
6691 int signed_addr;
6692 unsigned int bytes_read;
6693 const char *filename = get_section_file_name (section);
6694 bfd *abfd = get_section_bfd_owner (section);
6695
6696 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6697 cu_header->initial_length_size = bytes_read;
6698 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6699 info_ptr += bytes_read;
6700 cu_header->version = read_2_bytes (abfd, info_ptr);
6701 info_ptr += 2;
6702 if (cu_header->version < 5)
6703 switch (section_kind)
6704 {
6705 case rcuh_kind::COMPILE:
6706 cu_header->unit_type = DW_UT_compile;
6707 break;
6708 case rcuh_kind::TYPE:
6709 cu_header->unit_type = DW_UT_type;
6710 break;
6711 default:
6712 internal_error (__FILE__, __LINE__,
6713 _("read_comp_unit_head: invalid section_kind"));
6714 }
6715 else
6716 {
6717 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6718 (read_1_byte (abfd, info_ptr));
6719 info_ptr += 1;
6720 switch (cu_header->unit_type)
6721 {
6722 case DW_UT_compile:
6723 if (section_kind != rcuh_kind::COMPILE)
6724 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6725 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6726 filename);
6727 break;
6728 case DW_UT_type:
6729 section_kind = rcuh_kind::TYPE;
6730 break;
6731 default:
6732 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6733 "(is %d, should be %d or %d) [in module %s]"),
6734 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6735 }
6736
6737 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6738 info_ptr += 1;
6739 }
6740 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6741 cu_header,
6742 &bytes_read);
6743 info_ptr += bytes_read;
6744 if (cu_header->version < 5)
6745 {
6746 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6747 info_ptr += 1;
6748 }
6749 signed_addr = bfd_get_sign_extend_vma (abfd);
6750 if (signed_addr < 0)
6751 internal_error (__FILE__, __LINE__,
6752 _("read_comp_unit_head: dwarf from non elf file"));
6753 cu_header->signed_addr_p = signed_addr;
6754
6755 if (section_kind == rcuh_kind::TYPE)
6756 {
6757 LONGEST type_offset;
6758
6759 cu_header->signature = read_8_bytes (abfd, info_ptr);
6760 info_ptr += 8;
6761
6762 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6763 info_ptr += bytes_read;
6764 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6765 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6766 error (_("Dwarf Error: Too big type_offset in compilation unit "
6767 "header (is %s) [in module %s]"), plongest (type_offset),
6768 filename);
6769 }
6770
6771 return info_ptr;
6772 }
6773
6774 /* Helper function that returns the proper abbrev section for
6775 THIS_CU. */
6776
6777 static struct dwarf2_section_info *
6778 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6779 {
6780 struct dwarf2_section_info *abbrev;
6781 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6782
6783 if (this_cu->is_dwz)
6784 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6785 else
6786 abbrev = &dwarf2_per_objfile->abbrev;
6787
6788 return abbrev;
6789 }
6790
6791 /* Subroutine of read_and_check_comp_unit_head and
6792 read_and_check_type_unit_head to simplify them.
6793 Perform various error checking on the header. */
6794
6795 static void
6796 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6797 struct comp_unit_head *header,
6798 struct dwarf2_section_info *section,
6799 struct dwarf2_section_info *abbrev_section)
6800 {
6801 const char *filename = get_section_file_name (section);
6802
6803 if (header->version < 2 || header->version > 5)
6804 error (_("Dwarf Error: wrong version in compilation unit header "
6805 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
6806 filename);
6807
6808 if (to_underlying (header->abbrev_sect_off)
6809 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6810 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
6811 "(offset 0x%x + 6) [in module %s]"),
6812 to_underlying (header->abbrev_sect_off),
6813 to_underlying (header->sect_off),
6814 filename);
6815
6816 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6817 avoid potential 32-bit overflow. */
6818 if (((ULONGEST) header->sect_off + get_cu_length (header))
6819 > section->size)
6820 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6821 "(offset 0x%x + 0) [in module %s]"),
6822 header->length, to_underlying (header->sect_off),
6823 filename);
6824 }
6825
6826 /* Read in a CU/TU header and perform some basic error checking.
6827 The contents of the header are stored in HEADER.
6828 The result is a pointer to the start of the first DIE. */
6829
6830 static const gdb_byte *
6831 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6832 struct comp_unit_head *header,
6833 struct dwarf2_section_info *section,
6834 struct dwarf2_section_info *abbrev_section,
6835 const gdb_byte *info_ptr,
6836 rcuh_kind section_kind)
6837 {
6838 const gdb_byte *beg_of_comp_unit = info_ptr;
6839
6840 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6841
6842 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6843
6844 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6845
6846 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6847 abbrev_section);
6848
6849 return info_ptr;
6850 }
6851
6852 /* Fetch the abbreviation table offset from a comp or type unit header. */
6853
6854 static sect_offset
6855 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6856 struct dwarf2_section_info *section,
6857 sect_offset sect_off)
6858 {
6859 bfd *abfd = get_section_bfd_owner (section);
6860 const gdb_byte *info_ptr;
6861 unsigned int initial_length_size, offset_size;
6862 uint16_t version;
6863
6864 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6865 info_ptr = section->buffer + to_underlying (sect_off);
6866 read_initial_length (abfd, info_ptr, &initial_length_size);
6867 offset_size = initial_length_size == 4 ? 4 : 8;
6868 info_ptr += initial_length_size;
6869
6870 version = read_2_bytes (abfd, info_ptr);
6871 info_ptr += 2;
6872 if (version >= 5)
6873 {
6874 /* Skip unit type and address size. */
6875 info_ptr += 2;
6876 }
6877
6878 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6879 }
6880
6881 /* Allocate a new partial symtab for file named NAME and mark this new
6882 partial symtab as being an include of PST. */
6883
6884 static void
6885 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6886 struct objfile *objfile)
6887 {
6888 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6889
6890 if (!IS_ABSOLUTE_PATH (subpst->filename))
6891 {
6892 /* It shares objfile->objfile_obstack. */
6893 subpst->dirname = pst->dirname;
6894 }
6895
6896 subpst->textlow = 0;
6897 subpst->texthigh = 0;
6898
6899 subpst->dependencies
6900 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6901 subpst->dependencies[0] = pst;
6902 subpst->number_of_dependencies = 1;
6903
6904 subpst->globals_offset = 0;
6905 subpst->n_global_syms = 0;
6906 subpst->statics_offset = 0;
6907 subpst->n_static_syms = 0;
6908 subpst->compunit_symtab = NULL;
6909 subpst->read_symtab = pst->read_symtab;
6910 subpst->readin = 0;
6911
6912 /* No private part is necessary for include psymtabs. This property
6913 can be used to differentiate between such include psymtabs and
6914 the regular ones. */
6915 subpst->read_symtab_private = NULL;
6916 }
6917
6918 /* Read the Line Number Program data and extract the list of files
6919 included by the source file represented by PST. Build an include
6920 partial symtab for each of these included files. */
6921
6922 static void
6923 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6924 struct die_info *die,
6925 struct partial_symtab *pst)
6926 {
6927 line_header_up lh;
6928 struct attribute *attr;
6929
6930 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6931 if (attr)
6932 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6933 if (lh == NULL)
6934 return; /* No linetable, so no includes. */
6935
6936 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
6937 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
6938 }
6939
6940 static hashval_t
6941 hash_signatured_type (const void *item)
6942 {
6943 const struct signatured_type *sig_type
6944 = (const struct signatured_type *) item;
6945
6946 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6947 return sig_type->signature;
6948 }
6949
6950 static int
6951 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6952 {
6953 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6954 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6955
6956 return lhs->signature == rhs->signature;
6957 }
6958
6959 /* Allocate a hash table for signatured types. */
6960
6961 static htab_t
6962 allocate_signatured_type_table (struct objfile *objfile)
6963 {
6964 return htab_create_alloc_ex (41,
6965 hash_signatured_type,
6966 eq_signatured_type,
6967 NULL,
6968 &objfile->objfile_obstack,
6969 hashtab_obstack_allocate,
6970 dummy_obstack_deallocate);
6971 }
6972
6973 /* A helper function to add a signatured type CU to a table. */
6974
6975 static int
6976 add_signatured_type_cu_to_table (void **slot, void *datum)
6977 {
6978 struct signatured_type *sigt = (struct signatured_type *) *slot;
6979 struct signatured_type ***datap = (struct signatured_type ***) datum;
6980
6981 **datap = sigt;
6982 ++*datap;
6983
6984 return 1;
6985 }
6986
6987 /* A helper for create_debug_types_hash_table. Read types from SECTION
6988 and fill them into TYPES_HTAB. It will process only type units,
6989 therefore DW_UT_type. */
6990
6991 static void
6992 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6993 struct dwo_file *dwo_file,
6994 dwarf2_section_info *section, htab_t &types_htab,
6995 rcuh_kind section_kind)
6996 {
6997 struct objfile *objfile = dwarf2_per_objfile->objfile;
6998 struct dwarf2_section_info *abbrev_section;
6999 bfd *abfd;
7000 const gdb_byte *info_ptr, *end_ptr;
7001
7002 abbrev_section = (dwo_file != NULL
7003 ? &dwo_file->sections.abbrev
7004 : &dwarf2_per_objfile->abbrev);
7005
7006 if (dwarf_read_debug)
7007 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
7008 get_section_name (section),
7009 get_section_file_name (abbrev_section));
7010
7011 dwarf2_read_section (objfile, section);
7012 info_ptr = section->buffer;
7013
7014 if (info_ptr == NULL)
7015 return;
7016
7017 /* We can't set abfd until now because the section may be empty or
7018 not present, in which case the bfd is unknown. */
7019 abfd = get_section_bfd_owner (section);
7020
7021 /* We don't use init_cutu_and_read_dies_simple, or some such, here
7022 because we don't need to read any dies: the signature is in the
7023 header. */
7024
7025 end_ptr = info_ptr + section->size;
7026 while (info_ptr < end_ptr)
7027 {
7028 struct signatured_type *sig_type;
7029 struct dwo_unit *dwo_tu;
7030 void **slot;
7031 const gdb_byte *ptr = info_ptr;
7032 struct comp_unit_head header;
7033 unsigned int length;
7034
7035 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
7036
7037 /* Initialize it due to a false compiler warning. */
7038 header.signature = -1;
7039 header.type_cu_offset_in_tu = (cu_offset) -1;
7040
7041 /* We need to read the type's signature in order to build the hash
7042 table, but we don't need anything else just yet. */
7043
7044 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
7045 abbrev_section, ptr, section_kind);
7046
7047 length = get_cu_length (&header);
7048
7049 /* Skip dummy type units. */
7050 if (ptr >= info_ptr + length
7051 || peek_abbrev_code (abfd, ptr) == 0
7052 || header.unit_type != DW_UT_type)
7053 {
7054 info_ptr += length;
7055 continue;
7056 }
7057
7058 if (types_htab == NULL)
7059 {
7060 if (dwo_file)
7061 types_htab = allocate_dwo_unit_table (objfile);
7062 else
7063 types_htab = allocate_signatured_type_table (objfile);
7064 }
7065
7066 if (dwo_file)
7067 {
7068 sig_type = NULL;
7069 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7070 struct dwo_unit);
7071 dwo_tu->dwo_file = dwo_file;
7072 dwo_tu->signature = header.signature;
7073 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
7074 dwo_tu->section = section;
7075 dwo_tu->sect_off = sect_off;
7076 dwo_tu->length = length;
7077 }
7078 else
7079 {
7080 /* N.B.: type_offset is not usable if this type uses a DWO file.
7081 The real type_offset is in the DWO file. */
7082 dwo_tu = NULL;
7083 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7084 struct signatured_type);
7085 sig_type->signature = header.signature;
7086 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
7087 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
7088 sig_type->per_cu.is_debug_types = 1;
7089 sig_type->per_cu.section = section;
7090 sig_type->per_cu.sect_off = sect_off;
7091 sig_type->per_cu.length = length;
7092 }
7093
7094 slot = htab_find_slot (types_htab,
7095 dwo_file ? (void*) dwo_tu : (void *) sig_type,
7096 INSERT);
7097 gdb_assert (slot != NULL);
7098 if (*slot != NULL)
7099 {
7100 sect_offset dup_sect_off;
7101
7102 if (dwo_file)
7103 {
7104 const struct dwo_unit *dup_tu
7105 = (const struct dwo_unit *) *slot;
7106
7107 dup_sect_off = dup_tu->sect_off;
7108 }
7109 else
7110 {
7111 const struct signatured_type *dup_tu
7112 = (const struct signatured_type *) *slot;
7113
7114 dup_sect_off = dup_tu->per_cu.sect_off;
7115 }
7116
7117 complaint (&symfile_complaints,
7118 _("debug type entry at offset 0x%x is duplicate to"
7119 " the entry at offset 0x%x, signature %s"),
7120 to_underlying (sect_off), to_underlying (dup_sect_off),
7121 hex_string (header.signature));
7122 }
7123 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
7124
7125 if (dwarf_read_debug > 1)
7126 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
7127 to_underlying (sect_off),
7128 hex_string (header.signature));
7129
7130 info_ptr += length;
7131 }
7132 }
7133
7134 /* Create the hash table of all entries in the .debug_types
7135 (or .debug_types.dwo) section(s).
7136 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
7137 otherwise it is NULL.
7138
7139 The result is a pointer to the hash table or NULL if there are no types.
7140
7141 Note: This function processes DWO files only, not DWP files. */
7142
7143 static void
7144 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
7145 struct dwo_file *dwo_file,
7146 VEC (dwarf2_section_info_def) *types,
7147 htab_t &types_htab)
7148 {
7149 int ix;
7150 struct dwarf2_section_info *section;
7151
7152 if (VEC_empty (dwarf2_section_info_def, types))
7153 return;
7154
7155 for (ix = 0;
7156 VEC_iterate (dwarf2_section_info_def, types, ix, section);
7157 ++ix)
7158 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
7159 types_htab, rcuh_kind::TYPE);
7160 }
7161
7162 /* Create the hash table of all entries in the .debug_types section,
7163 and initialize all_type_units.
7164 The result is zero if there is an error (e.g. missing .debug_types section),
7165 otherwise non-zero. */
7166
7167 static int
7168 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7169 {
7170 htab_t types_htab = NULL;
7171 struct signatured_type **iter;
7172
7173 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
7174 &dwarf2_per_objfile->info, types_htab,
7175 rcuh_kind::COMPILE);
7176 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
7177 dwarf2_per_objfile->types, types_htab);
7178 if (types_htab == NULL)
7179 {
7180 dwarf2_per_objfile->signatured_types = NULL;
7181 return 0;
7182 }
7183
7184 dwarf2_per_objfile->signatured_types = types_htab;
7185
7186 dwarf2_per_objfile->n_type_units
7187 = dwarf2_per_objfile->n_allocated_type_units
7188 = htab_elements (types_htab);
7189 dwarf2_per_objfile->all_type_units =
7190 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
7191 iter = &dwarf2_per_objfile->all_type_units[0];
7192 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
7193 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
7194 == dwarf2_per_objfile->n_type_units);
7195
7196 return 1;
7197 }
7198
7199 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
7200 If SLOT is non-NULL, it is the entry to use in the hash table.
7201 Otherwise we find one. */
7202
7203 static struct signatured_type *
7204 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
7205 void **slot)
7206 {
7207 struct objfile *objfile = dwarf2_per_objfile->objfile;
7208 int n_type_units = dwarf2_per_objfile->n_type_units;
7209 struct signatured_type *sig_type;
7210
7211 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
7212 ++n_type_units;
7213 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
7214 {
7215 if (dwarf2_per_objfile->n_allocated_type_units == 0)
7216 dwarf2_per_objfile->n_allocated_type_units = 1;
7217 dwarf2_per_objfile->n_allocated_type_units *= 2;
7218 dwarf2_per_objfile->all_type_units
7219 = XRESIZEVEC (struct signatured_type *,
7220 dwarf2_per_objfile->all_type_units,
7221 dwarf2_per_objfile->n_allocated_type_units);
7222 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
7223 }
7224 dwarf2_per_objfile->n_type_units = n_type_units;
7225
7226 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7227 struct signatured_type);
7228 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
7229 sig_type->signature = sig;
7230 sig_type->per_cu.is_debug_types = 1;
7231 if (dwarf2_per_objfile->using_index)
7232 {
7233 sig_type->per_cu.v.quick =
7234 OBSTACK_ZALLOC (&objfile->objfile_obstack,
7235 struct dwarf2_per_cu_quick_data);
7236 }
7237
7238 if (slot == NULL)
7239 {
7240 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7241 sig_type, INSERT);
7242 }
7243 gdb_assert (*slot == NULL);
7244 *slot = sig_type;
7245 /* The rest of sig_type must be filled in by the caller. */
7246 return sig_type;
7247 }
7248
7249 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
7250 Fill in SIG_ENTRY with DWO_ENTRY. */
7251
7252 static void
7253 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
7254 struct signatured_type *sig_entry,
7255 struct dwo_unit *dwo_entry)
7256 {
7257 /* Make sure we're not clobbering something we don't expect to. */
7258 gdb_assert (! sig_entry->per_cu.queued);
7259 gdb_assert (sig_entry->per_cu.cu == NULL);
7260 if (dwarf2_per_objfile->using_index)
7261 {
7262 gdb_assert (sig_entry->per_cu.v.quick != NULL);
7263 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
7264 }
7265 else
7266 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
7267 gdb_assert (sig_entry->signature == dwo_entry->signature);
7268 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
7269 gdb_assert (sig_entry->type_unit_group == NULL);
7270 gdb_assert (sig_entry->dwo_unit == NULL);
7271
7272 sig_entry->per_cu.section = dwo_entry->section;
7273 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
7274 sig_entry->per_cu.length = dwo_entry->length;
7275 sig_entry->per_cu.reading_dwo_directly = 1;
7276 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
7277 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
7278 sig_entry->dwo_unit = dwo_entry;
7279 }
7280
7281 /* Subroutine of lookup_signatured_type.
7282 If we haven't read the TU yet, create the signatured_type data structure
7283 for a TU to be read in directly from a DWO file, bypassing the stub.
7284 This is the "Stay in DWO Optimization": When there is no DWP file and we're
7285 using .gdb_index, then when reading a CU we want to stay in the DWO file
7286 containing that CU. Otherwise we could end up reading several other DWO
7287 files (due to comdat folding) to process the transitive closure of all the
7288 mentioned TUs, and that can be slow. The current DWO file will have every
7289 type signature that it needs.
7290 We only do this for .gdb_index because in the psymtab case we already have
7291 to read all the DWOs to build the type unit groups. */
7292
7293 static struct signatured_type *
7294 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7295 {
7296 struct dwarf2_per_objfile *dwarf2_per_objfile
7297 = cu->per_cu->dwarf2_per_objfile;
7298 struct objfile *objfile = dwarf2_per_objfile->objfile;
7299 struct dwo_file *dwo_file;
7300 struct dwo_unit find_dwo_entry, *dwo_entry;
7301 struct signatured_type find_sig_entry, *sig_entry;
7302 void **slot;
7303
7304 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7305
7306 /* If TU skeletons have been removed then we may not have read in any
7307 TUs yet. */
7308 if (dwarf2_per_objfile->signatured_types == NULL)
7309 {
7310 dwarf2_per_objfile->signatured_types
7311 = allocate_signatured_type_table (objfile);
7312 }
7313
7314 /* We only ever need to read in one copy of a signatured type.
7315 Use the global signatured_types array to do our own comdat-folding
7316 of types. If this is the first time we're reading this TU, and
7317 the TU has an entry in .gdb_index, replace the recorded data from
7318 .gdb_index with this TU. */
7319
7320 find_sig_entry.signature = sig;
7321 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7322 &find_sig_entry, INSERT);
7323 sig_entry = (struct signatured_type *) *slot;
7324
7325 /* We can get here with the TU already read, *or* in the process of being
7326 read. Don't reassign the global entry to point to this DWO if that's
7327 the case. Also note that if the TU is already being read, it may not
7328 have come from a DWO, the program may be a mix of Fission-compiled
7329 code and non-Fission-compiled code. */
7330
7331 /* Have we already tried to read this TU?
7332 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7333 needn't exist in the global table yet). */
7334 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7335 return sig_entry;
7336
7337 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7338 dwo_unit of the TU itself. */
7339 dwo_file = cu->dwo_unit->dwo_file;
7340
7341 /* Ok, this is the first time we're reading this TU. */
7342 if (dwo_file->tus == NULL)
7343 return NULL;
7344 find_dwo_entry.signature = sig;
7345 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7346 if (dwo_entry == NULL)
7347 return NULL;
7348
7349 /* If the global table doesn't have an entry for this TU, add one. */
7350 if (sig_entry == NULL)
7351 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7352
7353 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7354 sig_entry->per_cu.tu_read = 1;
7355 return sig_entry;
7356 }
7357
7358 /* Subroutine of lookup_signatured_type.
7359 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7360 then try the DWP file. If the TU stub (skeleton) has been removed then
7361 it won't be in .gdb_index. */
7362
7363 static struct signatured_type *
7364 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7365 {
7366 struct dwarf2_per_objfile *dwarf2_per_objfile
7367 = cu->per_cu->dwarf2_per_objfile;
7368 struct objfile *objfile = dwarf2_per_objfile->objfile;
7369 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7370 struct dwo_unit *dwo_entry;
7371 struct signatured_type find_sig_entry, *sig_entry;
7372 void **slot;
7373
7374 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7375 gdb_assert (dwp_file != NULL);
7376
7377 /* If TU skeletons have been removed then we may not have read in any
7378 TUs yet. */
7379 if (dwarf2_per_objfile->signatured_types == NULL)
7380 {
7381 dwarf2_per_objfile->signatured_types
7382 = allocate_signatured_type_table (objfile);
7383 }
7384
7385 find_sig_entry.signature = sig;
7386 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7387 &find_sig_entry, INSERT);
7388 sig_entry = (struct signatured_type *) *slot;
7389
7390 /* Have we already tried to read this TU?
7391 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7392 needn't exist in the global table yet). */
7393 if (sig_entry != NULL)
7394 return sig_entry;
7395
7396 if (dwp_file->tus == NULL)
7397 return NULL;
7398 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7399 sig, 1 /* is_debug_types */);
7400 if (dwo_entry == NULL)
7401 return NULL;
7402
7403 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7404 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7405
7406 return sig_entry;
7407 }
7408
7409 /* Lookup a signature based type for DW_FORM_ref_sig8.
7410 Returns NULL if signature SIG is not present in the table.
7411 It is up to the caller to complain about this. */
7412
7413 static struct signatured_type *
7414 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7415 {
7416 struct dwarf2_per_objfile *dwarf2_per_objfile
7417 = cu->per_cu->dwarf2_per_objfile;
7418
7419 if (cu->dwo_unit
7420 && dwarf2_per_objfile->using_index)
7421 {
7422 /* We're in a DWO/DWP file, and we're using .gdb_index.
7423 These cases require special processing. */
7424 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7425 return lookup_dwo_signatured_type (cu, sig);
7426 else
7427 return lookup_dwp_signatured_type (cu, sig);
7428 }
7429 else
7430 {
7431 struct signatured_type find_entry, *entry;
7432
7433 if (dwarf2_per_objfile->signatured_types == NULL)
7434 return NULL;
7435 find_entry.signature = sig;
7436 entry = ((struct signatured_type *)
7437 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7438 return entry;
7439 }
7440 }
7441 \f
7442 /* Low level DIE reading support. */
7443
7444 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7445
7446 static void
7447 init_cu_die_reader (struct die_reader_specs *reader,
7448 struct dwarf2_cu *cu,
7449 struct dwarf2_section_info *section,
7450 struct dwo_file *dwo_file,
7451 struct abbrev_table *abbrev_table)
7452 {
7453 gdb_assert (section->readin && section->buffer != NULL);
7454 reader->abfd = get_section_bfd_owner (section);
7455 reader->cu = cu;
7456 reader->dwo_file = dwo_file;
7457 reader->die_section = section;
7458 reader->buffer = section->buffer;
7459 reader->buffer_end = section->buffer + section->size;
7460 reader->comp_dir = NULL;
7461 reader->abbrev_table = abbrev_table;
7462 }
7463
7464 /* Subroutine of init_cutu_and_read_dies to simplify it.
7465 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7466 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7467 already.
7468
7469 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7470 from it to the DIE in the DWO. If NULL we are skipping the stub.
7471 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7472 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7473 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7474 STUB_COMP_DIR may be non-NULL.
7475 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7476 are filled in with the info of the DIE from the DWO file.
7477 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7478 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7479 kept around for at least as long as *RESULT_READER.
7480
7481 The result is non-zero if a valid (non-dummy) DIE was found. */
7482
7483 static int
7484 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7485 struct dwo_unit *dwo_unit,
7486 struct die_info *stub_comp_unit_die,
7487 const char *stub_comp_dir,
7488 struct die_reader_specs *result_reader,
7489 const gdb_byte **result_info_ptr,
7490 struct die_info **result_comp_unit_die,
7491 int *result_has_children,
7492 abbrev_table_up *result_dwo_abbrev_table)
7493 {
7494 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7495 struct objfile *objfile = dwarf2_per_objfile->objfile;
7496 struct dwarf2_cu *cu = this_cu->cu;
7497 bfd *abfd;
7498 const gdb_byte *begin_info_ptr, *info_ptr;
7499 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7500 int i,num_extra_attrs;
7501 struct dwarf2_section_info *dwo_abbrev_section;
7502 struct attribute *attr;
7503 struct die_info *comp_unit_die;
7504
7505 /* At most one of these may be provided. */
7506 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7507
7508 /* These attributes aren't processed until later:
7509 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7510 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7511 referenced later. However, these attributes are found in the stub
7512 which we won't have later. In order to not impose this complication
7513 on the rest of the code, we read them here and copy them to the
7514 DWO CU/TU die. */
7515
7516 stmt_list = NULL;
7517 low_pc = NULL;
7518 high_pc = NULL;
7519 ranges = NULL;
7520 comp_dir = NULL;
7521
7522 if (stub_comp_unit_die != NULL)
7523 {
7524 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7525 DWO file. */
7526 if (! this_cu->is_debug_types)
7527 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7528 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7529 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7530 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7531 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7532
7533 /* There should be a DW_AT_addr_base attribute here (if needed).
7534 We need the value before we can process DW_FORM_GNU_addr_index. */
7535 cu->addr_base = 0;
7536 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7537 if (attr)
7538 cu->addr_base = DW_UNSND (attr);
7539
7540 /* There should be a DW_AT_ranges_base attribute here (if needed).
7541 We need the value before we can process DW_AT_ranges. */
7542 cu->ranges_base = 0;
7543 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7544 if (attr)
7545 cu->ranges_base = DW_UNSND (attr);
7546 }
7547 else if (stub_comp_dir != NULL)
7548 {
7549 /* Reconstruct the comp_dir attribute to simplify the code below. */
7550 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7551 comp_dir->name = DW_AT_comp_dir;
7552 comp_dir->form = DW_FORM_string;
7553 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7554 DW_STRING (comp_dir) = stub_comp_dir;
7555 }
7556
7557 /* Set up for reading the DWO CU/TU. */
7558 cu->dwo_unit = dwo_unit;
7559 dwarf2_section_info *section = dwo_unit->section;
7560 dwarf2_read_section (objfile, section);
7561 abfd = get_section_bfd_owner (section);
7562 begin_info_ptr = info_ptr = (section->buffer
7563 + to_underlying (dwo_unit->sect_off));
7564 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7565
7566 if (this_cu->is_debug_types)
7567 {
7568 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7569
7570 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7571 &cu->header, section,
7572 dwo_abbrev_section,
7573 info_ptr, rcuh_kind::TYPE);
7574 /* This is not an assert because it can be caused by bad debug info. */
7575 if (sig_type->signature != cu->header.signature)
7576 {
7577 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7578 " TU at offset 0x%x [in module %s]"),
7579 hex_string (sig_type->signature),
7580 hex_string (cu->header.signature),
7581 to_underlying (dwo_unit->sect_off),
7582 bfd_get_filename (abfd));
7583 }
7584 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7585 /* For DWOs coming from DWP files, we don't know the CU length
7586 nor the type's offset in the TU until now. */
7587 dwo_unit->length = get_cu_length (&cu->header);
7588 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7589
7590 /* Establish the type offset that can be used to lookup the type.
7591 For DWO files, we don't know it until now. */
7592 sig_type->type_offset_in_section
7593 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7594 }
7595 else
7596 {
7597 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7598 &cu->header, section,
7599 dwo_abbrev_section,
7600 info_ptr, rcuh_kind::COMPILE);
7601 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7602 /* For DWOs coming from DWP files, we don't know the CU length
7603 until now. */
7604 dwo_unit->length = get_cu_length (&cu->header);
7605 }
7606
7607 *result_dwo_abbrev_table
7608 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7609 cu->header.abbrev_sect_off);
7610 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7611 result_dwo_abbrev_table->get ());
7612
7613 /* Read in the die, but leave space to copy over the attributes
7614 from the stub. This has the benefit of simplifying the rest of
7615 the code - all the work to maintain the illusion of a single
7616 DW_TAG_{compile,type}_unit DIE is done here. */
7617 num_extra_attrs = ((stmt_list != NULL)
7618 + (low_pc != NULL)
7619 + (high_pc != NULL)
7620 + (ranges != NULL)
7621 + (comp_dir != NULL));
7622 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7623 result_has_children, num_extra_attrs);
7624
7625 /* Copy over the attributes from the stub to the DIE we just read in. */
7626 comp_unit_die = *result_comp_unit_die;
7627 i = comp_unit_die->num_attrs;
7628 if (stmt_list != NULL)
7629 comp_unit_die->attrs[i++] = *stmt_list;
7630 if (low_pc != NULL)
7631 comp_unit_die->attrs[i++] = *low_pc;
7632 if (high_pc != NULL)
7633 comp_unit_die->attrs[i++] = *high_pc;
7634 if (ranges != NULL)
7635 comp_unit_die->attrs[i++] = *ranges;
7636 if (comp_dir != NULL)
7637 comp_unit_die->attrs[i++] = *comp_dir;
7638 comp_unit_die->num_attrs += num_extra_attrs;
7639
7640 if (dwarf_die_debug)
7641 {
7642 fprintf_unfiltered (gdb_stdlog,
7643 "Read die from %s@0x%x of %s:\n",
7644 get_section_name (section),
7645 (unsigned) (begin_info_ptr - section->buffer),
7646 bfd_get_filename (abfd));
7647 dump_die (comp_unit_die, dwarf_die_debug);
7648 }
7649
7650 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7651 TUs by skipping the stub and going directly to the entry in the DWO file.
7652 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7653 to get it via circuitous means. Blech. */
7654 if (comp_dir != NULL)
7655 result_reader->comp_dir = DW_STRING (comp_dir);
7656
7657 /* Skip dummy compilation units. */
7658 if (info_ptr >= begin_info_ptr + dwo_unit->length
7659 || peek_abbrev_code (abfd, info_ptr) == 0)
7660 return 0;
7661
7662 *result_info_ptr = info_ptr;
7663 return 1;
7664 }
7665
7666 /* Subroutine of init_cutu_and_read_dies to simplify it.
7667 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7668 Returns NULL if the specified DWO unit cannot be found. */
7669
7670 static struct dwo_unit *
7671 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7672 struct die_info *comp_unit_die)
7673 {
7674 struct dwarf2_cu *cu = this_cu->cu;
7675 ULONGEST signature;
7676 struct dwo_unit *dwo_unit;
7677 const char *comp_dir, *dwo_name;
7678
7679 gdb_assert (cu != NULL);
7680
7681 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7682 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7683 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7684
7685 if (this_cu->is_debug_types)
7686 {
7687 struct signatured_type *sig_type;
7688
7689 /* Since this_cu is the first member of struct signatured_type,
7690 we can go from a pointer to one to a pointer to the other. */
7691 sig_type = (struct signatured_type *) this_cu;
7692 signature = sig_type->signature;
7693 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7694 }
7695 else
7696 {
7697 struct attribute *attr;
7698
7699 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7700 if (! attr)
7701 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7702 " [in module %s]"),
7703 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7704 signature = DW_UNSND (attr);
7705 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7706 signature);
7707 }
7708
7709 return dwo_unit;
7710 }
7711
7712 /* Subroutine of init_cutu_and_read_dies to simplify it.
7713 See it for a description of the parameters.
7714 Read a TU directly from a DWO file, bypassing the stub. */
7715
7716 static void
7717 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7718 int use_existing_cu, int keep,
7719 die_reader_func_ftype *die_reader_func,
7720 void *data)
7721 {
7722 std::unique_ptr<dwarf2_cu> new_cu;
7723 struct signatured_type *sig_type;
7724 struct die_reader_specs reader;
7725 const gdb_byte *info_ptr;
7726 struct die_info *comp_unit_die;
7727 int has_children;
7728 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7729
7730 /* Verify we can do the following downcast, and that we have the
7731 data we need. */
7732 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7733 sig_type = (struct signatured_type *) this_cu;
7734 gdb_assert (sig_type->dwo_unit != NULL);
7735
7736 if (use_existing_cu && this_cu->cu != NULL)
7737 {
7738 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7739 /* There's no need to do the rereading_dwo_cu handling that
7740 init_cutu_and_read_dies does since we don't read the stub. */
7741 }
7742 else
7743 {
7744 /* If !use_existing_cu, this_cu->cu must be NULL. */
7745 gdb_assert (this_cu->cu == NULL);
7746 new_cu.reset (new dwarf2_cu (this_cu));
7747 }
7748
7749 /* A future optimization, if needed, would be to use an existing
7750 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7751 could share abbrev tables. */
7752
7753 /* The abbreviation table used by READER, this must live at least as long as
7754 READER. */
7755 abbrev_table_up dwo_abbrev_table;
7756
7757 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7758 NULL /* stub_comp_unit_die */,
7759 sig_type->dwo_unit->dwo_file->comp_dir,
7760 &reader, &info_ptr,
7761 &comp_unit_die, &has_children,
7762 &dwo_abbrev_table) == 0)
7763 {
7764 /* Dummy die. */
7765 return;
7766 }
7767
7768 /* All the "real" work is done here. */
7769 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7770
7771 /* This duplicates the code in init_cutu_and_read_dies,
7772 but the alternative is making the latter more complex.
7773 This function is only for the special case of using DWO files directly:
7774 no point in overly complicating the general case just to handle this. */
7775 if (new_cu != NULL && keep)
7776 {
7777 /* Link this CU into read_in_chain. */
7778 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7779 dwarf2_per_objfile->read_in_chain = this_cu;
7780 /* The chain owns it now. */
7781 new_cu.release ();
7782 }
7783 }
7784
7785 /* Initialize a CU (or TU) and read its DIEs.
7786 If the CU defers to a DWO file, read the DWO file as well.
7787
7788 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7789 Otherwise the table specified in the comp unit header is read in and used.
7790 This is an optimization for when we already have the abbrev table.
7791
7792 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7793 Otherwise, a new CU is allocated with xmalloc.
7794
7795 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7796 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7797
7798 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7799 linker) then DIE_READER_FUNC will not get called. */
7800
7801 static void
7802 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7803 struct abbrev_table *abbrev_table,
7804 int use_existing_cu, int keep,
7805 die_reader_func_ftype *die_reader_func,
7806 void *data)
7807 {
7808 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7809 struct objfile *objfile = dwarf2_per_objfile->objfile;
7810 struct dwarf2_section_info *section = this_cu->section;
7811 bfd *abfd = get_section_bfd_owner (section);
7812 struct dwarf2_cu *cu;
7813 const gdb_byte *begin_info_ptr, *info_ptr;
7814 struct die_reader_specs reader;
7815 struct die_info *comp_unit_die;
7816 int has_children;
7817 struct attribute *attr;
7818 struct signatured_type *sig_type = NULL;
7819 struct dwarf2_section_info *abbrev_section;
7820 /* Non-zero if CU currently points to a DWO file and we need to
7821 reread it. When this happens we need to reread the skeleton die
7822 before we can reread the DWO file (this only applies to CUs, not TUs). */
7823 int rereading_dwo_cu = 0;
7824
7825 if (dwarf_die_debug)
7826 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
7827 this_cu->is_debug_types ? "type" : "comp",
7828 to_underlying (this_cu->sect_off));
7829
7830 if (use_existing_cu)
7831 gdb_assert (keep);
7832
7833 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7834 file (instead of going through the stub), short-circuit all of this. */
7835 if (this_cu->reading_dwo_directly)
7836 {
7837 /* Narrow down the scope of possibilities to have to understand. */
7838 gdb_assert (this_cu->is_debug_types);
7839 gdb_assert (abbrev_table == NULL);
7840 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7841 die_reader_func, data);
7842 return;
7843 }
7844
7845 /* This is cheap if the section is already read in. */
7846 dwarf2_read_section (objfile, section);
7847
7848 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7849
7850 abbrev_section = get_abbrev_section_for_cu (this_cu);
7851
7852 std::unique_ptr<dwarf2_cu> new_cu;
7853 if (use_existing_cu && this_cu->cu != NULL)
7854 {
7855 cu = this_cu->cu;
7856 /* If this CU is from a DWO file we need to start over, we need to
7857 refetch the attributes from the skeleton CU.
7858 This could be optimized by retrieving those attributes from when we
7859 were here the first time: the previous comp_unit_die was stored in
7860 comp_unit_obstack. But there's no data yet that we need this
7861 optimization. */
7862 if (cu->dwo_unit != NULL)
7863 rereading_dwo_cu = 1;
7864 }
7865 else
7866 {
7867 /* If !use_existing_cu, this_cu->cu must be NULL. */
7868 gdb_assert (this_cu->cu == NULL);
7869 new_cu.reset (new dwarf2_cu (this_cu));
7870 cu = new_cu.get ();
7871 }
7872
7873 /* Get the header. */
7874 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7875 {
7876 /* We already have the header, there's no need to read it in again. */
7877 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7878 }
7879 else
7880 {
7881 if (this_cu->is_debug_types)
7882 {
7883 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7884 &cu->header, section,
7885 abbrev_section, info_ptr,
7886 rcuh_kind::TYPE);
7887
7888 /* Since per_cu is the first member of struct signatured_type,
7889 we can go from a pointer to one to a pointer to the other. */
7890 sig_type = (struct signatured_type *) this_cu;
7891 gdb_assert (sig_type->signature == cu->header.signature);
7892 gdb_assert (sig_type->type_offset_in_tu
7893 == cu->header.type_cu_offset_in_tu);
7894 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7895
7896 /* LENGTH has not been set yet for type units if we're
7897 using .gdb_index. */
7898 this_cu->length = get_cu_length (&cu->header);
7899
7900 /* Establish the type offset that can be used to lookup the type. */
7901 sig_type->type_offset_in_section =
7902 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7903
7904 this_cu->dwarf_version = cu->header.version;
7905 }
7906 else
7907 {
7908 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7909 &cu->header, section,
7910 abbrev_section,
7911 info_ptr,
7912 rcuh_kind::COMPILE);
7913
7914 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7915 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7916 this_cu->dwarf_version = cu->header.version;
7917 }
7918 }
7919
7920 /* Skip dummy compilation units. */
7921 if (info_ptr >= begin_info_ptr + this_cu->length
7922 || peek_abbrev_code (abfd, info_ptr) == 0)
7923 return;
7924
7925 /* If we don't have them yet, read the abbrevs for this compilation unit.
7926 And if we need to read them now, make sure they're freed when we're
7927 done (own the table through ABBREV_TABLE_HOLDER). */
7928 abbrev_table_up abbrev_table_holder;
7929 if (abbrev_table != NULL)
7930 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7931 else
7932 {
7933 abbrev_table_holder
7934 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7935 cu->header.abbrev_sect_off);
7936 abbrev_table = abbrev_table_holder.get ();
7937 }
7938
7939 /* Read the top level CU/TU die. */
7940 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7941 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7942
7943 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7944 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7945 table from the DWO file and pass the ownership over to us. It will be
7946 referenced from READER, so we must make sure to free it after we're done
7947 with READER.
7948
7949 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7950 DWO CU, that this test will fail (the attribute will not be present). */
7951 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7952 abbrev_table_up dwo_abbrev_table;
7953 if (attr)
7954 {
7955 struct dwo_unit *dwo_unit;
7956 struct die_info *dwo_comp_unit_die;
7957
7958 if (has_children)
7959 {
7960 complaint (&symfile_complaints,
7961 _("compilation unit with DW_AT_GNU_dwo_name"
7962 " has children (offset 0x%x) [in module %s]"),
7963 to_underlying (this_cu->sect_off), bfd_get_filename (abfd));
7964 }
7965 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7966 if (dwo_unit != NULL)
7967 {
7968 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7969 comp_unit_die, NULL,
7970 &reader, &info_ptr,
7971 &dwo_comp_unit_die, &has_children,
7972 &dwo_abbrev_table) == 0)
7973 {
7974 /* Dummy die. */
7975 return;
7976 }
7977 comp_unit_die = dwo_comp_unit_die;
7978 }
7979 else
7980 {
7981 /* Yikes, we couldn't find the rest of the DIE, we only have
7982 the stub. A complaint has already been logged. There's
7983 not much more we can do except pass on the stub DIE to
7984 die_reader_func. We don't want to throw an error on bad
7985 debug info. */
7986 }
7987 }
7988
7989 /* All of the above is setup for this call. Yikes. */
7990 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7991
7992 /* Done, clean up. */
7993 if (new_cu != NULL && keep)
7994 {
7995 /* Link this CU into read_in_chain. */
7996 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7997 dwarf2_per_objfile->read_in_chain = this_cu;
7998 /* The chain owns it now. */
7999 new_cu.release ();
8000 }
8001 }
8002
8003 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
8004 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
8005 to have already done the lookup to find the DWO file).
8006
8007 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
8008 THIS_CU->is_debug_types, but nothing else.
8009
8010 We fill in THIS_CU->length.
8011
8012 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
8013 linker) then DIE_READER_FUNC will not get called.
8014
8015 THIS_CU->cu is always freed when done.
8016 This is done in order to not leave THIS_CU->cu in a state where we have
8017 to care whether it refers to the "main" CU or the DWO CU. */
8018
8019 static void
8020 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
8021 struct dwo_file *dwo_file,
8022 die_reader_func_ftype *die_reader_func,
8023 void *data)
8024 {
8025 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
8026 struct objfile *objfile = dwarf2_per_objfile->objfile;
8027 struct dwarf2_section_info *section = this_cu->section;
8028 bfd *abfd = get_section_bfd_owner (section);
8029 struct dwarf2_section_info *abbrev_section;
8030 const gdb_byte *begin_info_ptr, *info_ptr;
8031 struct die_reader_specs reader;
8032 struct die_info *comp_unit_die;
8033 int has_children;
8034
8035 if (dwarf_die_debug)
8036 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
8037 this_cu->is_debug_types ? "type" : "comp",
8038 to_underlying (this_cu->sect_off));
8039
8040 gdb_assert (this_cu->cu == NULL);
8041
8042 abbrev_section = (dwo_file != NULL
8043 ? &dwo_file->sections.abbrev
8044 : get_abbrev_section_for_cu (this_cu));
8045
8046 /* This is cheap if the section is already read in. */
8047 dwarf2_read_section (objfile, section);
8048
8049 struct dwarf2_cu cu (this_cu);
8050
8051 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
8052 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
8053 &cu.header, section,
8054 abbrev_section, info_ptr,
8055 (this_cu->is_debug_types
8056 ? rcuh_kind::TYPE
8057 : rcuh_kind::COMPILE));
8058
8059 this_cu->length = get_cu_length (&cu.header);
8060
8061 /* Skip dummy compilation units. */
8062 if (info_ptr >= begin_info_ptr + this_cu->length
8063 || peek_abbrev_code (abfd, info_ptr) == 0)
8064 return;
8065
8066 abbrev_table_up abbrev_table
8067 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
8068 cu.header.abbrev_sect_off);
8069
8070 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
8071 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
8072
8073 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
8074 }
8075
8076 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
8077 does not lookup the specified DWO file.
8078 This cannot be used to read DWO files.
8079
8080 THIS_CU->cu is always freed when done.
8081 This is done in order to not leave THIS_CU->cu in a state where we have
8082 to care whether it refers to the "main" CU or the DWO CU.
8083 We can revisit this if the data shows there's a performance issue. */
8084
8085 static void
8086 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
8087 die_reader_func_ftype *die_reader_func,
8088 void *data)
8089 {
8090 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
8091 }
8092 \f
8093 /* Type Unit Groups.
8094
8095 Type Unit Groups are a way to collapse the set of all TUs (type units) into
8096 a more manageable set. The grouping is done by DW_AT_stmt_list entry
8097 so that all types coming from the same compilation (.o file) are grouped
8098 together. A future step could be to put the types in the same symtab as
8099 the CU the types ultimately came from. */
8100
8101 static hashval_t
8102 hash_type_unit_group (const void *item)
8103 {
8104 const struct type_unit_group *tu_group
8105 = (const struct type_unit_group *) item;
8106
8107 return hash_stmt_list_entry (&tu_group->hash);
8108 }
8109
8110 static int
8111 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
8112 {
8113 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
8114 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
8115
8116 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
8117 }
8118
8119 /* Allocate a hash table for type unit groups. */
8120
8121 static htab_t
8122 allocate_type_unit_groups_table (struct objfile *objfile)
8123 {
8124 return htab_create_alloc_ex (3,
8125 hash_type_unit_group,
8126 eq_type_unit_group,
8127 NULL,
8128 &objfile->objfile_obstack,
8129 hashtab_obstack_allocate,
8130 dummy_obstack_deallocate);
8131 }
8132
8133 /* Type units that don't have DW_AT_stmt_list are grouped into their own
8134 partial symtabs. We combine several TUs per psymtab to not let the size
8135 of any one psymtab grow too big. */
8136 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
8137 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
8138
8139 /* Helper routine for get_type_unit_group.
8140 Create the type_unit_group object used to hold one or more TUs. */
8141
8142 static struct type_unit_group *
8143 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
8144 {
8145 struct dwarf2_per_objfile *dwarf2_per_objfile
8146 = cu->per_cu->dwarf2_per_objfile;
8147 struct objfile *objfile = dwarf2_per_objfile->objfile;
8148 struct dwarf2_per_cu_data *per_cu;
8149 struct type_unit_group *tu_group;
8150
8151 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8152 struct type_unit_group);
8153 per_cu = &tu_group->per_cu;
8154 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8155
8156 if (dwarf2_per_objfile->using_index)
8157 {
8158 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8159 struct dwarf2_per_cu_quick_data);
8160 }
8161 else
8162 {
8163 unsigned int line_offset = to_underlying (line_offset_struct);
8164 struct partial_symtab *pst;
8165 char *name;
8166
8167 /* Give the symtab a useful name for debug purposes. */
8168 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
8169 name = xstrprintf ("<type_units_%d>",
8170 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
8171 else
8172 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
8173
8174 pst = create_partial_symtab (per_cu, name);
8175 pst->anonymous = 1;
8176
8177 xfree (name);
8178 }
8179
8180 tu_group->hash.dwo_unit = cu->dwo_unit;
8181 tu_group->hash.line_sect_off = line_offset_struct;
8182
8183 return tu_group;
8184 }
8185
8186 /* Look up the type_unit_group for type unit CU, and create it if necessary.
8187 STMT_LIST is a DW_AT_stmt_list attribute. */
8188
8189 static struct type_unit_group *
8190 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
8191 {
8192 struct dwarf2_per_objfile *dwarf2_per_objfile
8193 = cu->per_cu->dwarf2_per_objfile;
8194 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8195 struct type_unit_group *tu_group;
8196 void **slot;
8197 unsigned int line_offset;
8198 struct type_unit_group type_unit_group_for_lookup;
8199
8200 if (dwarf2_per_objfile->type_unit_groups == NULL)
8201 {
8202 dwarf2_per_objfile->type_unit_groups =
8203 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
8204 }
8205
8206 /* Do we need to create a new group, or can we use an existing one? */
8207
8208 if (stmt_list)
8209 {
8210 line_offset = DW_UNSND (stmt_list);
8211 ++tu_stats->nr_symtab_sharers;
8212 }
8213 else
8214 {
8215 /* Ugh, no stmt_list. Rare, but we have to handle it.
8216 We can do various things here like create one group per TU or
8217 spread them over multiple groups to split up the expansion work.
8218 To avoid worst case scenarios (too many groups or too large groups)
8219 we, umm, group them in bunches. */
8220 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
8221 | (tu_stats->nr_stmt_less_type_units
8222 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
8223 ++tu_stats->nr_stmt_less_type_units;
8224 }
8225
8226 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
8227 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
8228 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
8229 &type_unit_group_for_lookup, INSERT);
8230 if (*slot != NULL)
8231 {
8232 tu_group = (struct type_unit_group *) *slot;
8233 gdb_assert (tu_group != NULL);
8234 }
8235 else
8236 {
8237 sect_offset line_offset_struct = (sect_offset) line_offset;
8238 tu_group = create_type_unit_group (cu, line_offset_struct);
8239 *slot = tu_group;
8240 ++tu_stats->nr_symtabs;
8241 }
8242
8243 return tu_group;
8244 }
8245 \f
8246 /* Partial symbol tables. */
8247
8248 /* Create a psymtab named NAME and assign it to PER_CU.
8249
8250 The caller must fill in the following details:
8251 dirname, textlow, texthigh. */
8252
8253 static struct partial_symtab *
8254 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
8255 {
8256 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
8257 struct partial_symtab *pst;
8258
8259 pst = start_psymtab_common (objfile, name, 0,
8260 objfile->global_psymbols,
8261 objfile->static_psymbols);
8262
8263 pst->psymtabs_addrmap_supported = 1;
8264
8265 /* This is the glue that links PST into GDB's symbol API. */
8266 pst->read_symtab_private = per_cu;
8267 pst->read_symtab = dwarf2_read_symtab;
8268 per_cu->v.psymtab = pst;
8269
8270 return pst;
8271 }
8272
8273 /* The DATA object passed to process_psymtab_comp_unit_reader has this
8274 type. */
8275
8276 struct process_psymtab_comp_unit_data
8277 {
8278 /* True if we are reading a DW_TAG_partial_unit. */
8279
8280 int want_partial_unit;
8281
8282 /* The "pretend" language that is used if the CU doesn't declare a
8283 language. */
8284
8285 enum language pretend_language;
8286 };
8287
8288 /* die_reader_func for process_psymtab_comp_unit. */
8289
8290 static void
8291 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
8292 const gdb_byte *info_ptr,
8293 struct die_info *comp_unit_die,
8294 int has_children,
8295 void *data)
8296 {
8297 struct dwarf2_cu *cu = reader->cu;
8298 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8299 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8300 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8301 CORE_ADDR baseaddr;
8302 CORE_ADDR best_lowpc = 0, best_highpc = 0;
8303 struct partial_symtab *pst;
8304 enum pc_bounds_kind cu_bounds_kind;
8305 const char *filename;
8306 struct process_psymtab_comp_unit_data *info
8307 = (struct process_psymtab_comp_unit_data *) data;
8308
8309 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8310 return;
8311
8312 gdb_assert (! per_cu->is_debug_types);
8313
8314 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8315
8316 cu->list_in_scope = &file_symbols;
8317
8318 /* Allocate a new partial symbol table structure. */
8319 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8320 if (filename == NULL)
8321 filename = "";
8322
8323 pst = create_partial_symtab (per_cu, filename);
8324
8325 /* This must be done before calling dwarf2_build_include_psymtabs. */
8326 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8327
8328 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8329
8330 dwarf2_find_base_address (comp_unit_die, cu);
8331
8332 /* Possibly set the default values of LOWPC and HIGHPC from
8333 `DW_AT_ranges'. */
8334 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8335 &best_highpc, cu, pst);
8336 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8337 /* Store the contiguous range if it is not empty; it can be empty for
8338 CUs with no code. */
8339 addrmap_set_empty (objfile->psymtabs_addrmap,
8340 gdbarch_adjust_dwarf2_addr (gdbarch,
8341 best_lowpc + baseaddr),
8342 gdbarch_adjust_dwarf2_addr (gdbarch,
8343 best_highpc + baseaddr) - 1,
8344 pst);
8345
8346 /* Check if comp unit has_children.
8347 If so, read the rest of the partial symbols from this comp unit.
8348 If not, there's no more debug_info for this comp unit. */
8349 if (has_children)
8350 {
8351 struct partial_die_info *first_die;
8352 CORE_ADDR lowpc, highpc;
8353
8354 lowpc = ((CORE_ADDR) -1);
8355 highpc = ((CORE_ADDR) 0);
8356
8357 first_die = load_partial_dies (reader, info_ptr, 1);
8358
8359 scan_partial_symbols (first_die, &lowpc, &highpc,
8360 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8361
8362 /* If we didn't find a lowpc, set it to highpc to avoid
8363 complaints from `maint check'. */
8364 if (lowpc == ((CORE_ADDR) -1))
8365 lowpc = highpc;
8366
8367 /* If the compilation unit didn't have an explicit address range,
8368 then use the information extracted from its child dies. */
8369 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8370 {
8371 best_lowpc = lowpc;
8372 best_highpc = highpc;
8373 }
8374 }
8375 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
8376 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
8377
8378 end_psymtab_common (objfile, pst);
8379
8380 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8381 {
8382 int i;
8383 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8384 struct dwarf2_per_cu_data *iter;
8385
8386 /* Fill in 'dependencies' here; we fill in 'users' in a
8387 post-pass. */
8388 pst->number_of_dependencies = len;
8389 pst->dependencies =
8390 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8391 for (i = 0;
8392 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8393 i, iter);
8394 ++i)
8395 pst->dependencies[i] = iter->v.psymtab;
8396
8397 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8398 }
8399
8400 /* Get the list of files included in the current compilation unit,
8401 and build a psymtab for each of them. */
8402 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8403
8404 if (dwarf_read_debug)
8405 {
8406 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8407
8408 fprintf_unfiltered (gdb_stdlog,
8409 "Psymtab for %s unit @0x%x: %s - %s"
8410 ", %d global, %d static syms\n",
8411 per_cu->is_debug_types ? "type" : "comp",
8412 to_underlying (per_cu->sect_off),
8413 paddress (gdbarch, pst->textlow),
8414 paddress (gdbarch, pst->texthigh),
8415 pst->n_global_syms, pst->n_static_syms);
8416 }
8417 }
8418
8419 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8420 Process compilation unit THIS_CU for a psymtab. */
8421
8422 static void
8423 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8424 int want_partial_unit,
8425 enum language pretend_language)
8426 {
8427 /* If this compilation unit was already read in, free the
8428 cached copy in order to read it in again. This is
8429 necessary because we skipped some symbols when we first
8430 read in the compilation unit (see load_partial_dies).
8431 This problem could be avoided, but the benefit is unclear. */
8432 if (this_cu->cu != NULL)
8433 free_one_cached_comp_unit (this_cu);
8434
8435 if (this_cu->is_debug_types)
8436 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
8437 NULL);
8438 else
8439 {
8440 process_psymtab_comp_unit_data info;
8441 info.want_partial_unit = want_partial_unit;
8442 info.pretend_language = pretend_language;
8443 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
8444 process_psymtab_comp_unit_reader, &info);
8445 }
8446
8447 /* Age out any secondary CUs. */
8448 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8449 }
8450
8451 /* Reader function for build_type_psymtabs. */
8452
8453 static void
8454 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8455 const gdb_byte *info_ptr,
8456 struct die_info *type_unit_die,
8457 int has_children,
8458 void *data)
8459 {
8460 struct dwarf2_per_objfile *dwarf2_per_objfile
8461 = reader->cu->per_cu->dwarf2_per_objfile;
8462 struct objfile *objfile = dwarf2_per_objfile->objfile;
8463 struct dwarf2_cu *cu = reader->cu;
8464 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8465 struct signatured_type *sig_type;
8466 struct type_unit_group *tu_group;
8467 struct attribute *attr;
8468 struct partial_die_info *first_die;
8469 CORE_ADDR lowpc, highpc;
8470 struct partial_symtab *pst;
8471
8472 gdb_assert (data == NULL);
8473 gdb_assert (per_cu->is_debug_types);
8474 sig_type = (struct signatured_type *) per_cu;
8475
8476 if (! has_children)
8477 return;
8478
8479 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8480 tu_group = get_type_unit_group (cu, attr);
8481
8482 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8483
8484 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8485 cu->list_in_scope = &file_symbols;
8486 pst = create_partial_symtab (per_cu, "");
8487 pst->anonymous = 1;
8488
8489 first_die = load_partial_dies (reader, info_ptr, 1);
8490
8491 lowpc = (CORE_ADDR) -1;
8492 highpc = (CORE_ADDR) 0;
8493 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8494
8495 end_psymtab_common (objfile, pst);
8496 }
8497
8498 /* Struct used to sort TUs by their abbreviation table offset. */
8499
8500 struct tu_abbrev_offset
8501 {
8502 struct signatured_type *sig_type;
8503 sect_offset abbrev_offset;
8504 };
8505
8506 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
8507
8508 static int
8509 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
8510 {
8511 const struct tu_abbrev_offset * const *a
8512 = (const struct tu_abbrev_offset * const*) ap;
8513 const struct tu_abbrev_offset * const *b
8514 = (const struct tu_abbrev_offset * const*) bp;
8515 sect_offset aoff = (*a)->abbrev_offset;
8516 sect_offset boff = (*b)->abbrev_offset;
8517
8518 return (aoff > boff) - (aoff < boff);
8519 }
8520
8521 /* Efficiently read all the type units.
8522 This does the bulk of the work for build_type_psymtabs.
8523
8524 The efficiency is because we sort TUs by the abbrev table they use and
8525 only read each abbrev table once. In one program there are 200K TUs
8526 sharing 8K abbrev tables.
8527
8528 The main purpose of this function is to support building the
8529 dwarf2_per_objfile->type_unit_groups table.
8530 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8531 can collapse the search space by grouping them by stmt_list.
8532 The savings can be significant, in the same program from above the 200K TUs
8533 share 8K stmt_list tables.
8534
8535 FUNC is expected to call get_type_unit_group, which will create the
8536 struct type_unit_group if necessary and add it to
8537 dwarf2_per_objfile->type_unit_groups. */
8538
8539 static void
8540 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8541 {
8542 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8543 struct cleanup *cleanups;
8544 abbrev_table_up abbrev_table;
8545 sect_offset abbrev_offset;
8546 struct tu_abbrev_offset *sorted_by_abbrev;
8547 int i;
8548
8549 /* It's up to the caller to not call us multiple times. */
8550 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8551
8552 if (dwarf2_per_objfile->n_type_units == 0)
8553 return;
8554
8555 /* TUs typically share abbrev tables, and there can be way more TUs than
8556 abbrev tables. Sort by abbrev table to reduce the number of times we
8557 read each abbrev table in.
8558 Alternatives are to punt or to maintain a cache of abbrev tables.
8559 This is simpler and efficient enough for now.
8560
8561 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8562 symtab to use). Typically TUs with the same abbrev offset have the same
8563 stmt_list value too so in practice this should work well.
8564
8565 The basic algorithm here is:
8566
8567 sort TUs by abbrev table
8568 for each TU with same abbrev table:
8569 read abbrev table if first user
8570 read TU top level DIE
8571 [IWBN if DWO skeletons had DW_AT_stmt_list]
8572 call FUNC */
8573
8574 if (dwarf_read_debug)
8575 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8576
8577 /* Sort in a separate table to maintain the order of all_type_units
8578 for .gdb_index: TU indices directly index all_type_units. */
8579 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
8580 dwarf2_per_objfile->n_type_units);
8581 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
8582 {
8583 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
8584
8585 sorted_by_abbrev[i].sig_type = sig_type;
8586 sorted_by_abbrev[i].abbrev_offset =
8587 read_abbrev_offset (dwarf2_per_objfile,
8588 sig_type->per_cu.section,
8589 sig_type->per_cu.sect_off);
8590 }
8591 cleanups = make_cleanup (xfree, sorted_by_abbrev);
8592 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
8593 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
8594
8595 abbrev_offset = (sect_offset) ~(unsigned) 0;
8596
8597 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
8598 {
8599 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
8600
8601 /* Switch to the next abbrev table if necessary. */
8602 if (abbrev_table == NULL
8603 || tu->abbrev_offset != abbrev_offset)
8604 {
8605 abbrev_offset = tu->abbrev_offset;
8606 abbrev_table =
8607 abbrev_table_read_table (dwarf2_per_objfile,
8608 &dwarf2_per_objfile->abbrev,
8609 abbrev_offset);
8610 ++tu_stats->nr_uniq_abbrev_tables;
8611 }
8612
8613 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table.get (),
8614 0, 0, build_type_psymtabs_reader, NULL);
8615 }
8616
8617 do_cleanups (cleanups);
8618 }
8619
8620 /* Print collected type unit statistics. */
8621
8622 static void
8623 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8624 {
8625 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8626
8627 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8628 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
8629 dwarf2_per_objfile->n_type_units);
8630 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8631 tu_stats->nr_uniq_abbrev_tables);
8632 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8633 tu_stats->nr_symtabs);
8634 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8635 tu_stats->nr_symtab_sharers);
8636 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8637 tu_stats->nr_stmt_less_type_units);
8638 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8639 tu_stats->nr_all_type_units_reallocs);
8640 }
8641
8642 /* Traversal function for build_type_psymtabs. */
8643
8644 static int
8645 build_type_psymtab_dependencies (void **slot, void *info)
8646 {
8647 struct dwarf2_per_objfile *dwarf2_per_objfile
8648 = (struct dwarf2_per_objfile *) info;
8649 struct objfile *objfile = dwarf2_per_objfile->objfile;
8650 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8651 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8652 struct partial_symtab *pst = per_cu->v.psymtab;
8653 int len = VEC_length (sig_type_ptr, tu_group->tus);
8654 struct signatured_type *iter;
8655 int i;
8656
8657 gdb_assert (len > 0);
8658 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8659
8660 pst->number_of_dependencies = len;
8661 pst->dependencies =
8662 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8663 for (i = 0;
8664 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8665 ++i)
8666 {
8667 gdb_assert (iter->per_cu.is_debug_types);
8668 pst->dependencies[i] = iter->per_cu.v.psymtab;
8669 iter->type_unit_group = tu_group;
8670 }
8671
8672 VEC_free (sig_type_ptr, tu_group->tus);
8673
8674 return 1;
8675 }
8676
8677 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8678 Build partial symbol tables for the .debug_types comp-units. */
8679
8680 static void
8681 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8682 {
8683 if (! create_all_type_units (dwarf2_per_objfile))
8684 return;
8685
8686 build_type_psymtabs_1 (dwarf2_per_objfile);
8687 }
8688
8689 /* Traversal function for process_skeletonless_type_unit.
8690 Read a TU in a DWO file and build partial symbols for it. */
8691
8692 static int
8693 process_skeletonless_type_unit (void **slot, void *info)
8694 {
8695 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8696 struct dwarf2_per_objfile *dwarf2_per_objfile
8697 = (struct dwarf2_per_objfile *) info;
8698 struct signatured_type find_entry, *entry;
8699
8700 /* If this TU doesn't exist in the global table, add it and read it in. */
8701
8702 if (dwarf2_per_objfile->signatured_types == NULL)
8703 {
8704 dwarf2_per_objfile->signatured_types
8705 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8706 }
8707
8708 find_entry.signature = dwo_unit->signature;
8709 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8710 INSERT);
8711 /* If we've already seen this type there's nothing to do. What's happening
8712 is we're doing our own version of comdat-folding here. */
8713 if (*slot != NULL)
8714 return 1;
8715
8716 /* This does the job that create_all_type_units would have done for
8717 this TU. */
8718 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8719 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8720 *slot = entry;
8721
8722 /* This does the job that build_type_psymtabs_1 would have done. */
8723 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
8724 build_type_psymtabs_reader, NULL);
8725
8726 return 1;
8727 }
8728
8729 /* Traversal function for process_skeletonless_type_units. */
8730
8731 static int
8732 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8733 {
8734 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8735
8736 if (dwo_file->tus != NULL)
8737 {
8738 htab_traverse_noresize (dwo_file->tus,
8739 process_skeletonless_type_unit, info);
8740 }
8741
8742 return 1;
8743 }
8744
8745 /* Scan all TUs of DWO files, verifying we've processed them.
8746 This is needed in case a TU was emitted without its skeleton.
8747 Note: This can't be done until we know what all the DWO files are. */
8748
8749 static void
8750 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8751 {
8752 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8753 if (get_dwp_file (dwarf2_per_objfile) == NULL
8754 && dwarf2_per_objfile->dwo_files != NULL)
8755 {
8756 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8757 process_dwo_file_for_skeletonless_type_units,
8758 dwarf2_per_objfile);
8759 }
8760 }
8761
8762 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8763
8764 static void
8765 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8766 {
8767 int i;
8768
8769 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
8770 {
8771 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
8772 struct partial_symtab *pst = per_cu->v.psymtab;
8773 int j;
8774
8775 if (pst == NULL)
8776 continue;
8777
8778 for (j = 0; j < pst->number_of_dependencies; ++j)
8779 {
8780 /* Set the 'user' field only if it is not already set. */
8781 if (pst->dependencies[j]->user == NULL)
8782 pst->dependencies[j]->user = pst;
8783 }
8784 }
8785 }
8786
8787 /* Build the partial symbol table by doing a quick pass through the
8788 .debug_info and .debug_abbrev sections. */
8789
8790 static void
8791 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8792 {
8793 struct cleanup *back_to;
8794 int i;
8795 struct objfile *objfile = dwarf2_per_objfile->objfile;
8796
8797 if (dwarf_read_debug)
8798 {
8799 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8800 objfile_name (objfile));
8801 }
8802
8803 dwarf2_per_objfile->reading_partial_symbols = 1;
8804
8805 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8806
8807 /* Any cached compilation units will be linked by the per-objfile
8808 read_in_chain. Make sure to free them when we're done. */
8809 back_to = make_cleanup (free_cached_comp_units, dwarf2_per_objfile);
8810
8811 build_type_psymtabs (dwarf2_per_objfile);
8812
8813 create_all_comp_units (dwarf2_per_objfile);
8814
8815 /* Create a temporary address map on a temporary obstack. We later
8816 copy this to the final obstack. */
8817 auto_obstack temp_obstack;
8818
8819 scoped_restore save_psymtabs_addrmap
8820 = make_scoped_restore (&objfile->psymtabs_addrmap,
8821 addrmap_create_mutable (&temp_obstack));
8822
8823 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
8824 {
8825 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
8826
8827 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8828 }
8829
8830 /* This has to wait until we read the CUs, we need the list of DWOs. */
8831 process_skeletonless_type_units (dwarf2_per_objfile);
8832
8833 /* Now that all TUs have been processed we can fill in the dependencies. */
8834 if (dwarf2_per_objfile->type_unit_groups != NULL)
8835 {
8836 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8837 build_type_psymtab_dependencies, dwarf2_per_objfile);
8838 }
8839
8840 if (dwarf_read_debug)
8841 print_tu_stats (dwarf2_per_objfile);
8842
8843 set_partial_user (dwarf2_per_objfile);
8844
8845 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8846 &objfile->objfile_obstack);
8847 /* At this point we want to keep the address map. */
8848 save_psymtabs_addrmap.release ();
8849
8850 do_cleanups (back_to);
8851
8852 if (dwarf_read_debug)
8853 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8854 objfile_name (objfile));
8855 }
8856
8857 /* die_reader_func for load_partial_comp_unit. */
8858
8859 static void
8860 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8861 const gdb_byte *info_ptr,
8862 struct die_info *comp_unit_die,
8863 int has_children,
8864 void *data)
8865 {
8866 struct dwarf2_cu *cu = reader->cu;
8867
8868 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8869
8870 /* Check if comp unit has_children.
8871 If so, read the rest of the partial symbols from this comp unit.
8872 If not, there's no more debug_info for this comp unit. */
8873 if (has_children)
8874 load_partial_dies (reader, info_ptr, 0);
8875 }
8876
8877 /* Load the partial DIEs for a secondary CU into memory.
8878 This is also used when rereading a primary CU with load_all_dies. */
8879
8880 static void
8881 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8882 {
8883 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8884 load_partial_comp_unit_reader, NULL);
8885 }
8886
8887 static void
8888 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8889 struct dwarf2_section_info *section,
8890 struct dwarf2_section_info *abbrev_section,
8891 unsigned int is_dwz,
8892 int *n_allocated,
8893 int *n_comp_units,
8894 struct dwarf2_per_cu_data ***all_comp_units)
8895 {
8896 const gdb_byte *info_ptr;
8897 struct objfile *objfile = dwarf2_per_objfile->objfile;
8898
8899 if (dwarf_read_debug)
8900 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8901 get_section_name (section),
8902 get_section_file_name (section));
8903
8904 dwarf2_read_section (objfile, section);
8905
8906 info_ptr = section->buffer;
8907
8908 while (info_ptr < section->buffer + section->size)
8909 {
8910 struct dwarf2_per_cu_data *this_cu;
8911
8912 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8913
8914 comp_unit_head cu_header;
8915 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8916 abbrev_section, info_ptr,
8917 rcuh_kind::COMPILE);
8918
8919 /* Save the compilation unit for later lookup. */
8920 if (cu_header.unit_type != DW_UT_type)
8921 {
8922 this_cu = XOBNEW (&objfile->objfile_obstack,
8923 struct dwarf2_per_cu_data);
8924 memset (this_cu, 0, sizeof (*this_cu));
8925 }
8926 else
8927 {
8928 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8929 struct signatured_type);
8930 memset (sig_type, 0, sizeof (*sig_type));
8931 sig_type->signature = cu_header.signature;
8932 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8933 this_cu = &sig_type->per_cu;
8934 }
8935 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8936 this_cu->sect_off = sect_off;
8937 this_cu->length = cu_header.length + cu_header.initial_length_size;
8938 this_cu->is_dwz = is_dwz;
8939 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8940 this_cu->section = section;
8941
8942 if (*n_comp_units == *n_allocated)
8943 {
8944 *n_allocated *= 2;
8945 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
8946 *all_comp_units, *n_allocated);
8947 }
8948 (*all_comp_units)[*n_comp_units] = this_cu;
8949 ++*n_comp_units;
8950
8951 info_ptr = info_ptr + this_cu->length;
8952 }
8953 }
8954
8955 /* Create a list of all compilation units in OBJFILE.
8956 This is only done for -readnow and building partial symtabs. */
8957
8958 static void
8959 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8960 {
8961 int n_allocated;
8962 int n_comp_units;
8963 struct dwarf2_per_cu_data **all_comp_units;
8964 struct dwz_file *dwz;
8965 struct objfile *objfile = dwarf2_per_objfile->objfile;
8966
8967 n_comp_units = 0;
8968 n_allocated = 10;
8969 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
8970
8971 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8972 &dwarf2_per_objfile->abbrev, 0,
8973 &n_allocated, &n_comp_units, &all_comp_units);
8974
8975 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8976 if (dwz != NULL)
8977 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8978 1, &n_allocated, &n_comp_units,
8979 &all_comp_units);
8980
8981 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
8982 struct dwarf2_per_cu_data *,
8983 n_comp_units);
8984 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
8985 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
8986 xfree (all_comp_units);
8987 dwarf2_per_objfile->n_comp_units = n_comp_units;
8988 }
8989
8990 /* Process all loaded DIEs for compilation unit CU, starting at
8991 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8992 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8993 DW_AT_ranges). See the comments of add_partial_subprogram on how
8994 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8995
8996 static void
8997 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8998 CORE_ADDR *highpc, int set_addrmap,
8999 struct dwarf2_cu *cu)
9000 {
9001 struct partial_die_info *pdi;
9002
9003 /* Now, march along the PDI's, descending into ones which have
9004 interesting children but skipping the children of the other ones,
9005 until we reach the end of the compilation unit. */
9006
9007 pdi = first_die;
9008
9009 while (pdi != NULL)
9010 {
9011 fixup_partial_die (pdi, cu);
9012
9013 /* Anonymous namespaces or modules have no name but have interesting
9014 children, so we need to look at them. Ditto for anonymous
9015 enums. */
9016
9017 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
9018 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
9019 || pdi->tag == DW_TAG_imported_unit
9020 || pdi->tag == DW_TAG_inlined_subroutine)
9021 {
9022 switch (pdi->tag)
9023 {
9024 case DW_TAG_subprogram:
9025 case DW_TAG_inlined_subroutine:
9026 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9027 break;
9028 case DW_TAG_constant:
9029 case DW_TAG_variable:
9030 case DW_TAG_typedef:
9031 case DW_TAG_union_type:
9032 if (!pdi->is_declaration)
9033 {
9034 add_partial_symbol (pdi, cu);
9035 }
9036 break;
9037 case DW_TAG_class_type:
9038 case DW_TAG_interface_type:
9039 case DW_TAG_structure_type:
9040 if (!pdi->is_declaration)
9041 {
9042 add_partial_symbol (pdi, cu);
9043 }
9044 if (cu->language == language_rust && pdi->has_children)
9045 scan_partial_symbols (pdi->die_child, lowpc, highpc,
9046 set_addrmap, cu);
9047 break;
9048 case DW_TAG_enumeration_type:
9049 if (!pdi->is_declaration)
9050 add_partial_enumeration (pdi, cu);
9051 break;
9052 case DW_TAG_base_type:
9053 case DW_TAG_subrange_type:
9054 /* File scope base type definitions are added to the partial
9055 symbol table. */
9056 add_partial_symbol (pdi, cu);
9057 break;
9058 case DW_TAG_namespace:
9059 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
9060 break;
9061 case DW_TAG_module:
9062 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
9063 break;
9064 case DW_TAG_imported_unit:
9065 {
9066 struct dwarf2_per_cu_data *per_cu;
9067
9068 /* For now we don't handle imported units in type units. */
9069 if (cu->per_cu->is_debug_types)
9070 {
9071 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9072 " supported in type units [in module %s]"),
9073 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
9074 }
9075
9076 per_cu = dwarf2_find_containing_comp_unit
9077 (pdi->d.sect_off, pdi->is_dwz,
9078 cu->per_cu->dwarf2_per_objfile);
9079
9080 /* Go read the partial unit, if needed. */
9081 if (per_cu->v.psymtab == NULL)
9082 process_psymtab_comp_unit (per_cu, 1, cu->language);
9083
9084 VEC_safe_push (dwarf2_per_cu_ptr,
9085 cu->per_cu->imported_symtabs, per_cu);
9086 }
9087 break;
9088 case DW_TAG_imported_declaration:
9089 add_partial_symbol (pdi, cu);
9090 break;
9091 default:
9092 break;
9093 }
9094 }
9095
9096 /* If the die has a sibling, skip to the sibling. */
9097
9098 pdi = pdi->die_sibling;
9099 }
9100 }
9101
9102 /* Functions used to compute the fully scoped name of a partial DIE.
9103
9104 Normally, this is simple. For C++, the parent DIE's fully scoped
9105 name is concatenated with "::" and the partial DIE's name.
9106 Enumerators are an exception; they use the scope of their parent
9107 enumeration type, i.e. the name of the enumeration type is not
9108 prepended to the enumerator.
9109
9110 There are two complexities. One is DW_AT_specification; in this
9111 case "parent" means the parent of the target of the specification,
9112 instead of the direct parent of the DIE. The other is compilers
9113 which do not emit DW_TAG_namespace; in this case we try to guess
9114 the fully qualified name of structure types from their members'
9115 linkage names. This must be done using the DIE's children rather
9116 than the children of any DW_AT_specification target. We only need
9117 to do this for structures at the top level, i.e. if the target of
9118 any DW_AT_specification (if any; otherwise the DIE itself) does not
9119 have a parent. */
9120
9121 /* Compute the scope prefix associated with PDI's parent, in
9122 compilation unit CU. The result will be allocated on CU's
9123 comp_unit_obstack, or a copy of the already allocated PDI->NAME
9124 field. NULL is returned if no prefix is necessary. */
9125 static const char *
9126 partial_die_parent_scope (struct partial_die_info *pdi,
9127 struct dwarf2_cu *cu)
9128 {
9129 const char *grandparent_scope;
9130 struct partial_die_info *parent, *real_pdi;
9131
9132 /* We need to look at our parent DIE; if we have a DW_AT_specification,
9133 then this means the parent of the specification DIE. */
9134
9135 real_pdi = pdi;
9136 while (real_pdi->has_specification)
9137 real_pdi = find_partial_die (real_pdi->spec_offset,
9138 real_pdi->spec_is_dwz, cu);
9139
9140 parent = real_pdi->die_parent;
9141 if (parent == NULL)
9142 return NULL;
9143
9144 if (parent->scope_set)
9145 return parent->scope;
9146
9147 fixup_partial_die (parent, cu);
9148
9149 grandparent_scope = partial_die_parent_scope (parent, cu);
9150
9151 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
9152 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
9153 Work around this problem here. */
9154 if (cu->language == language_cplus
9155 && parent->tag == DW_TAG_namespace
9156 && strcmp (parent->name, "::") == 0
9157 && grandparent_scope == NULL)
9158 {
9159 parent->scope = NULL;
9160 parent->scope_set = 1;
9161 return NULL;
9162 }
9163
9164 if (pdi->tag == DW_TAG_enumerator)
9165 /* Enumerators should not get the name of the enumeration as a prefix. */
9166 parent->scope = grandparent_scope;
9167 else if (parent->tag == DW_TAG_namespace
9168 || parent->tag == DW_TAG_module
9169 || parent->tag == DW_TAG_structure_type
9170 || parent->tag == DW_TAG_class_type
9171 || parent->tag == DW_TAG_interface_type
9172 || parent->tag == DW_TAG_union_type
9173 || parent->tag == DW_TAG_enumeration_type)
9174 {
9175 if (grandparent_scope == NULL)
9176 parent->scope = parent->name;
9177 else
9178 parent->scope = typename_concat (&cu->comp_unit_obstack,
9179 grandparent_scope,
9180 parent->name, 0, cu);
9181 }
9182 else
9183 {
9184 /* FIXME drow/2004-04-01: What should we be doing with
9185 function-local names? For partial symbols, we should probably be
9186 ignoring them. */
9187 complaint (&symfile_complaints,
9188 _("unhandled containing DIE tag %d for DIE at %d"),
9189 parent->tag, to_underlying (pdi->sect_off));
9190 parent->scope = grandparent_scope;
9191 }
9192
9193 parent->scope_set = 1;
9194 return parent->scope;
9195 }
9196
9197 /* Return the fully scoped name associated with PDI, from compilation unit
9198 CU. The result will be allocated with malloc. */
9199
9200 static char *
9201 partial_die_full_name (struct partial_die_info *pdi,
9202 struct dwarf2_cu *cu)
9203 {
9204 const char *parent_scope;
9205
9206 /* If this is a template instantiation, we can not work out the
9207 template arguments from partial DIEs. So, unfortunately, we have
9208 to go through the full DIEs. At least any work we do building
9209 types here will be reused if full symbols are loaded later. */
9210 if (pdi->has_template_arguments)
9211 {
9212 fixup_partial_die (pdi, cu);
9213
9214 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
9215 {
9216 struct die_info *die;
9217 struct attribute attr;
9218 struct dwarf2_cu *ref_cu = cu;
9219
9220 /* DW_FORM_ref_addr is using section offset. */
9221 attr.name = (enum dwarf_attribute) 0;
9222 attr.form = DW_FORM_ref_addr;
9223 attr.u.unsnd = to_underlying (pdi->sect_off);
9224 die = follow_die_ref (NULL, &attr, &ref_cu);
9225
9226 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
9227 }
9228 }
9229
9230 parent_scope = partial_die_parent_scope (pdi, cu);
9231 if (parent_scope == NULL)
9232 return NULL;
9233 else
9234 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
9235 }
9236
9237 static void
9238 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
9239 {
9240 struct dwarf2_per_objfile *dwarf2_per_objfile
9241 = cu->per_cu->dwarf2_per_objfile;
9242 struct objfile *objfile = dwarf2_per_objfile->objfile;
9243 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9244 CORE_ADDR addr = 0;
9245 const char *actual_name = NULL;
9246 CORE_ADDR baseaddr;
9247 char *built_actual_name;
9248
9249 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9250
9251 built_actual_name = partial_die_full_name (pdi, cu);
9252 if (built_actual_name != NULL)
9253 actual_name = built_actual_name;
9254
9255 if (actual_name == NULL)
9256 actual_name = pdi->name;
9257
9258 switch (pdi->tag)
9259 {
9260 case DW_TAG_inlined_subroutine:
9261 case DW_TAG_subprogram:
9262 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
9263 if (pdi->is_external || cu->language == language_ada)
9264 {
9265 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
9266 of the global scope. But in Ada, we want to be able to access
9267 nested procedures globally. So all Ada subprograms are stored
9268 in the global scope. */
9269 add_psymbol_to_list (actual_name, strlen (actual_name),
9270 built_actual_name != NULL,
9271 VAR_DOMAIN, LOC_BLOCK,
9272 &objfile->global_psymbols,
9273 addr, cu->language, objfile);
9274 }
9275 else
9276 {
9277 add_psymbol_to_list (actual_name, strlen (actual_name),
9278 built_actual_name != NULL,
9279 VAR_DOMAIN, LOC_BLOCK,
9280 &objfile->static_psymbols,
9281 addr, cu->language, objfile);
9282 }
9283
9284 if (pdi->main_subprogram && actual_name != NULL)
9285 set_objfile_main_name (objfile, actual_name, cu->language);
9286 break;
9287 case DW_TAG_constant:
9288 {
9289 std::vector<partial_symbol *> *list;
9290
9291 if (pdi->is_external)
9292 list = &objfile->global_psymbols;
9293 else
9294 list = &objfile->static_psymbols;
9295 add_psymbol_to_list (actual_name, strlen (actual_name),
9296 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
9297 list, 0, cu->language, objfile);
9298 }
9299 break;
9300 case DW_TAG_variable:
9301 if (pdi->d.locdesc)
9302 addr = decode_locdesc (pdi->d.locdesc, cu);
9303
9304 if (pdi->d.locdesc
9305 && addr == 0
9306 && !dwarf2_per_objfile->has_section_at_zero)
9307 {
9308 /* A global or static variable may also have been stripped
9309 out by the linker if unused, in which case its address
9310 will be nullified; do not add such variables into partial
9311 symbol table then. */
9312 }
9313 else if (pdi->is_external)
9314 {
9315 /* Global Variable.
9316 Don't enter into the minimal symbol tables as there is
9317 a minimal symbol table entry from the ELF symbols already.
9318 Enter into partial symbol table if it has a location
9319 descriptor or a type.
9320 If the location descriptor is missing, new_symbol will create
9321 a LOC_UNRESOLVED symbol, the address of the variable will then
9322 be determined from the minimal symbol table whenever the variable
9323 is referenced.
9324 The address for the partial symbol table entry is not
9325 used by GDB, but it comes in handy for debugging partial symbol
9326 table building. */
9327
9328 if (pdi->d.locdesc || pdi->has_type)
9329 add_psymbol_to_list (actual_name, strlen (actual_name),
9330 built_actual_name != NULL,
9331 VAR_DOMAIN, LOC_STATIC,
9332 &objfile->global_psymbols,
9333 addr + baseaddr,
9334 cu->language, objfile);
9335 }
9336 else
9337 {
9338 int has_loc = pdi->d.locdesc != NULL;
9339
9340 /* Static Variable. Skip symbols whose value we cannot know (those
9341 without location descriptors or constant values). */
9342 if (!has_loc && !pdi->has_const_value)
9343 {
9344 xfree (built_actual_name);
9345 return;
9346 }
9347
9348 add_psymbol_to_list (actual_name, strlen (actual_name),
9349 built_actual_name != NULL,
9350 VAR_DOMAIN, LOC_STATIC,
9351 &objfile->static_psymbols,
9352 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
9353 cu->language, objfile);
9354 }
9355 break;
9356 case DW_TAG_typedef:
9357 case DW_TAG_base_type:
9358 case DW_TAG_subrange_type:
9359 add_psymbol_to_list (actual_name, strlen (actual_name),
9360 built_actual_name != NULL,
9361 VAR_DOMAIN, LOC_TYPEDEF,
9362 &objfile->static_psymbols,
9363 0, cu->language, objfile);
9364 break;
9365 case DW_TAG_imported_declaration:
9366 case DW_TAG_namespace:
9367 add_psymbol_to_list (actual_name, strlen (actual_name),
9368 built_actual_name != NULL,
9369 VAR_DOMAIN, LOC_TYPEDEF,
9370 &objfile->global_psymbols,
9371 0, cu->language, objfile);
9372 break;
9373 case DW_TAG_module:
9374 add_psymbol_to_list (actual_name, strlen (actual_name),
9375 built_actual_name != NULL,
9376 MODULE_DOMAIN, LOC_TYPEDEF,
9377 &objfile->global_psymbols,
9378 0, cu->language, objfile);
9379 break;
9380 case DW_TAG_class_type:
9381 case DW_TAG_interface_type:
9382 case DW_TAG_structure_type:
9383 case DW_TAG_union_type:
9384 case DW_TAG_enumeration_type:
9385 /* Skip external references. The DWARF standard says in the section
9386 about "Structure, Union, and Class Type Entries": "An incomplete
9387 structure, union or class type is represented by a structure,
9388 union or class entry that does not have a byte size attribute
9389 and that has a DW_AT_declaration attribute." */
9390 if (!pdi->has_byte_size && pdi->is_declaration)
9391 {
9392 xfree (built_actual_name);
9393 return;
9394 }
9395
9396 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9397 static vs. global. */
9398 add_psymbol_to_list (actual_name, strlen (actual_name),
9399 built_actual_name != NULL,
9400 STRUCT_DOMAIN, LOC_TYPEDEF,
9401 cu->language == language_cplus
9402 ? &objfile->global_psymbols
9403 : &objfile->static_psymbols,
9404 0, cu->language, objfile);
9405
9406 break;
9407 case DW_TAG_enumerator:
9408 add_psymbol_to_list (actual_name, strlen (actual_name),
9409 built_actual_name != NULL,
9410 VAR_DOMAIN, LOC_CONST,
9411 cu->language == language_cplus
9412 ? &objfile->global_psymbols
9413 : &objfile->static_psymbols,
9414 0, cu->language, objfile);
9415 break;
9416 default:
9417 break;
9418 }
9419
9420 xfree (built_actual_name);
9421 }
9422
9423 /* Read a partial die corresponding to a namespace; also, add a symbol
9424 corresponding to that namespace to the symbol table. NAMESPACE is
9425 the name of the enclosing namespace. */
9426
9427 static void
9428 add_partial_namespace (struct partial_die_info *pdi,
9429 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9430 int set_addrmap, struct dwarf2_cu *cu)
9431 {
9432 /* Add a symbol for the namespace. */
9433
9434 add_partial_symbol (pdi, cu);
9435
9436 /* Now scan partial symbols in that namespace. */
9437
9438 if (pdi->has_children)
9439 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9440 }
9441
9442 /* Read a partial die corresponding to a Fortran module. */
9443
9444 static void
9445 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9446 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9447 {
9448 /* Add a symbol for the namespace. */
9449
9450 add_partial_symbol (pdi, cu);
9451
9452 /* Now scan partial symbols in that module. */
9453
9454 if (pdi->has_children)
9455 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9456 }
9457
9458 /* Read a partial die corresponding to a subprogram or an inlined
9459 subprogram and create a partial symbol for that subprogram.
9460 When the CU language allows it, this routine also defines a partial
9461 symbol for each nested subprogram that this subprogram contains.
9462 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9463 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9464
9465 PDI may also be a lexical block, in which case we simply search
9466 recursively for subprograms defined inside that lexical block.
9467 Again, this is only performed when the CU language allows this
9468 type of definitions. */
9469
9470 static void
9471 add_partial_subprogram (struct partial_die_info *pdi,
9472 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9473 int set_addrmap, struct dwarf2_cu *cu)
9474 {
9475 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9476 {
9477 if (pdi->has_pc_info)
9478 {
9479 if (pdi->lowpc < *lowpc)
9480 *lowpc = pdi->lowpc;
9481 if (pdi->highpc > *highpc)
9482 *highpc = pdi->highpc;
9483 if (set_addrmap)
9484 {
9485 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9486 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9487 CORE_ADDR baseaddr;
9488 CORE_ADDR highpc;
9489 CORE_ADDR lowpc;
9490
9491 baseaddr = ANOFFSET (objfile->section_offsets,
9492 SECT_OFF_TEXT (objfile));
9493 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9494 pdi->lowpc + baseaddr);
9495 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9496 pdi->highpc + baseaddr);
9497 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9498 cu->per_cu->v.psymtab);
9499 }
9500 }
9501
9502 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9503 {
9504 if (!pdi->is_declaration)
9505 /* Ignore subprogram DIEs that do not have a name, they are
9506 illegal. Do not emit a complaint at this point, we will
9507 do so when we convert this psymtab into a symtab. */
9508 if (pdi->name)
9509 add_partial_symbol (pdi, cu);
9510 }
9511 }
9512
9513 if (! pdi->has_children)
9514 return;
9515
9516 if (cu->language == language_ada)
9517 {
9518 pdi = pdi->die_child;
9519 while (pdi != NULL)
9520 {
9521 fixup_partial_die (pdi, cu);
9522 if (pdi->tag == DW_TAG_subprogram
9523 || pdi->tag == DW_TAG_inlined_subroutine
9524 || pdi->tag == DW_TAG_lexical_block)
9525 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9526 pdi = pdi->die_sibling;
9527 }
9528 }
9529 }
9530
9531 /* Read a partial die corresponding to an enumeration type. */
9532
9533 static void
9534 add_partial_enumeration (struct partial_die_info *enum_pdi,
9535 struct dwarf2_cu *cu)
9536 {
9537 struct partial_die_info *pdi;
9538
9539 if (enum_pdi->name != NULL)
9540 add_partial_symbol (enum_pdi, cu);
9541
9542 pdi = enum_pdi->die_child;
9543 while (pdi)
9544 {
9545 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9546 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
9547 else
9548 add_partial_symbol (pdi, cu);
9549 pdi = pdi->die_sibling;
9550 }
9551 }
9552
9553 /* Return the initial uleb128 in the die at INFO_PTR. */
9554
9555 static unsigned int
9556 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9557 {
9558 unsigned int bytes_read;
9559
9560 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9561 }
9562
9563 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9564 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9565
9566 Return the corresponding abbrev, or NULL if the number is zero (indicating
9567 an empty DIE). In either case *BYTES_READ will be set to the length of
9568 the initial number. */
9569
9570 static struct abbrev_info *
9571 peek_die_abbrev (const die_reader_specs &reader,
9572 const gdb_byte *info_ptr, unsigned int *bytes_read)
9573 {
9574 dwarf2_cu *cu = reader.cu;
9575 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9576 unsigned int abbrev_number
9577 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9578
9579 if (abbrev_number == 0)
9580 return NULL;
9581
9582 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9583 if (!abbrev)
9584 {
9585 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9586 " at offset 0x%x [in module %s]"),
9587 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9588 to_underlying (cu->header.sect_off), bfd_get_filename (abfd));
9589 }
9590
9591 return abbrev;
9592 }
9593
9594 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9595 Returns a pointer to the end of a series of DIEs, terminated by an empty
9596 DIE. Any children of the skipped DIEs will also be skipped. */
9597
9598 static const gdb_byte *
9599 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9600 {
9601 while (1)
9602 {
9603 unsigned int bytes_read;
9604 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9605
9606 if (abbrev == NULL)
9607 return info_ptr + bytes_read;
9608 else
9609 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9610 }
9611 }
9612
9613 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9614 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9615 abbrev corresponding to that skipped uleb128 should be passed in
9616 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9617 children. */
9618
9619 static const gdb_byte *
9620 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9621 struct abbrev_info *abbrev)
9622 {
9623 unsigned int bytes_read;
9624 struct attribute attr;
9625 bfd *abfd = reader->abfd;
9626 struct dwarf2_cu *cu = reader->cu;
9627 const gdb_byte *buffer = reader->buffer;
9628 const gdb_byte *buffer_end = reader->buffer_end;
9629 unsigned int form, i;
9630
9631 for (i = 0; i < abbrev->num_attrs; i++)
9632 {
9633 /* The only abbrev we care about is DW_AT_sibling. */
9634 if (abbrev->attrs[i].name == DW_AT_sibling)
9635 {
9636 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9637 if (attr.form == DW_FORM_ref_addr)
9638 complaint (&symfile_complaints,
9639 _("ignoring absolute DW_AT_sibling"));
9640 else
9641 {
9642 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9643 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9644
9645 if (sibling_ptr < info_ptr)
9646 complaint (&symfile_complaints,
9647 _("DW_AT_sibling points backwards"));
9648 else if (sibling_ptr > reader->buffer_end)
9649 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9650 else
9651 return sibling_ptr;
9652 }
9653 }
9654
9655 /* If it isn't DW_AT_sibling, skip this attribute. */
9656 form = abbrev->attrs[i].form;
9657 skip_attribute:
9658 switch (form)
9659 {
9660 case DW_FORM_ref_addr:
9661 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9662 and later it is offset sized. */
9663 if (cu->header.version == 2)
9664 info_ptr += cu->header.addr_size;
9665 else
9666 info_ptr += cu->header.offset_size;
9667 break;
9668 case DW_FORM_GNU_ref_alt:
9669 info_ptr += cu->header.offset_size;
9670 break;
9671 case DW_FORM_addr:
9672 info_ptr += cu->header.addr_size;
9673 break;
9674 case DW_FORM_data1:
9675 case DW_FORM_ref1:
9676 case DW_FORM_flag:
9677 info_ptr += 1;
9678 break;
9679 case DW_FORM_flag_present:
9680 case DW_FORM_implicit_const:
9681 break;
9682 case DW_FORM_data2:
9683 case DW_FORM_ref2:
9684 info_ptr += 2;
9685 break;
9686 case DW_FORM_data4:
9687 case DW_FORM_ref4:
9688 info_ptr += 4;
9689 break;
9690 case DW_FORM_data8:
9691 case DW_FORM_ref8:
9692 case DW_FORM_ref_sig8:
9693 info_ptr += 8;
9694 break;
9695 case DW_FORM_data16:
9696 info_ptr += 16;
9697 break;
9698 case DW_FORM_string:
9699 read_direct_string (abfd, info_ptr, &bytes_read);
9700 info_ptr += bytes_read;
9701 break;
9702 case DW_FORM_sec_offset:
9703 case DW_FORM_strp:
9704 case DW_FORM_GNU_strp_alt:
9705 info_ptr += cu->header.offset_size;
9706 break;
9707 case DW_FORM_exprloc:
9708 case DW_FORM_block:
9709 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9710 info_ptr += bytes_read;
9711 break;
9712 case DW_FORM_block1:
9713 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9714 break;
9715 case DW_FORM_block2:
9716 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9717 break;
9718 case DW_FORM_block4:
9719 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9720 break;
9721 case DW_FORM_sdata:
9722 case DW_FORM_udata:
9723 case DW_FORM_ref_udata:
9724 case DW_FORM_GNU_addr_index:
9725 case DW_FORM_GNU_str_index:
9726 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9727 break;
9728 case DW_FORM_indirect:
9729 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9730 info_ptr += bytes_read;
9731 /* We need to continue parsing from here, so just go back to
9732 the top. */
9733 goto skip_attribute;
9734
9735 default:
9736 error (_("Dwarf Error: Cannot handle %s "
9737 "in DWARF reader [in module %s]"),
9738 dwarf_form_name (form),
9739 bfd_get_filename (abfd));
9740 }
9741 }
9742
9743 if (abbrev->has_children)
9744 return skip_children (reader, info_ptr);
9745 else
9746 return info_ptr;
9747 }
9748
9749 /* Locate ORIG_PDI's sibling.
9750 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9751
9752 static const gdb_byte *
9753 locate_pdi_sibling (const struct die_reader_specs *reader,
9754 struct partial_die_info *orig_pdi,
9755 const gdb_byte *info_ptr)
9756 {
9757 /* Do we know the sibling already? */
9758
9759 if (orig_pdi->sibling)
9760 return orig_pdi->sibling;
9761
9762 /* Are there any children to deal with? */
9763
9764 if (!orig_pdi->has_children)
9765 return info_ptr;
9766
9767 /* Skip the children the long way. */
9768
9769 return skip_children (reader, info_ptr);
9770 }
9771
9772 /* Expand this partial symbol table into a full symbol table. SELF is
9773 not NULL. */
9774
9775 static void
9776 dwarf2_read_symtab (struct partial_symtab *self,
9777 struct objfile *objfile)
9778 {
9779 struct dwarf2_per_objfile *dwarf2_per_objfile
9780 = get_dwarf2_per_objfile (objfile);
9781
9782 if (self->readin)
9783 {
9784 warning (_("bug: psymtab for %s is already read in."),
9785 self->filename);
9786 }
9787 else
9788 {
9789 if (info_verbose)
9790 {
9791 printf_filtered (_("Reading in symbols for %s..."),
9792 self->filename);
9793 gdb_flush (gdb_stdout);
9794 }
9795
9796 /* If this psymtab is constructed from a debug-only objfile, the
9797 has_section_at_zero flag will not necessarily be correct. We
9798 can get the correct value for this flag by looking at the data
9799 associated with the (presumably stripped) associated objfile. */
9800 if (objfile->separate_debug_objfile_backlink)
9801 {
9802 struct dwarf2_per_objfile *dpo_backlink
9803 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9804
9805 dwarf2_per_objfile->has_section_at_zero
9806 = dpo_backlink->has_section_at_zero;
9807 }
9808
9809 dwarf2_per_objfile->reading_partial_symbols = 0;
9810
9811 psymtab_to_symtab_1 (self);
9812
9813 /* Finish up the debug error message. */
9814 if (info_verbose)
9815 printf_filtered (_("done.\n"));
9816 }
9817
9818 process_cu_includes (dwarf2_per_objfile);
9819 }
9820 \f
9821 /* Reading in full CUs. */
9822
9823 /* Add PER_CU to the queue. */
9824
9825 static void
9826 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9827 enum language pretend_language)
9828 {
9829 struct dwarf2_queue_item *item;
9830
9831 per_cu->queued = 1;
9832 item = XNEW (struct dwarf2_queue_item);
9833 item->per_cu = per_cu;
9834 item->pretend_language = pretend_language;
9835 item->next = NULL;
9836
9837 if (dwarf2_queue == NULL)
9838 dwarf2_queue = item;
9839 else
9840 dwarf2_queue_tail->next = item;
9841
9842 dwarf2_queue_tail = item;
9843 }
9844
9845 /* If PER_CU is not yet queued, add it to the queue.
9846 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9847 dependency.
9848 The result is non-zero if PER_CU was queued, otherwise the result is zero
9849 meaning either PER_CU is already queued or it is already loaded.
9850
9851 N.B. There is an invariant here that if a CU is queued then it is loaded.
9852 The caller is required to load PER_CU if we return non-zero. */
9853
9854 static int
9855 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9856 struct dwarf2_per_cu_data *per_cu,
9857 enum language pretend_language)
9858 {
9859 /* We may arrive here during partial symbol reading, if we need full
9860 DIEs to process an unusual case (e.g. template arguments). Do
9861 not queue PER_CU, just tell our caller to load its DIEs. */
9862 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9863 {
9864 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9865 return 1;
9866 return 0;
9867 }
9868
9869 /* Mark the dependence relation so that we don't flush PER_CU
9870 too early. */
9871 if (dependent_cu != NULL)
9872 dwarf2_add_dependence (dependent_cu, per_cu);
9873
9874 /* If it's already on the queue, we have nothing to do. */
9875 if (per_cu->queued)
9876 return 0;
9877
9878 /* If the compilation unit is already loaded, just mark it as
9879 used. */
9880 if (per_cu->cu != NULL)
9881 {
9882 per_cu->cu->last_used = 0;
9883 return 0;
9884 }
9885
9886 /* Add it to the queue. */
9887 queue_comp_unit (per_cu, pretend_language);
9888
9889 return 1;
9890 }
9891
9892 /* Process the queue. */
9893
9894 static void
9895 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9896 {
9897 struct dwarf2_queue_item *item, *next_item;
9898
9899 if (dwarf_read_debug)
9900 {
9901 fprintf_unfiltered (gdb_stdlog,
9902 "Expanding one or more symtabs of objfile %s ...\n",
9903 objfile_name (dwarf2_per_objfile->objfile));
9904 }
9905
9906 /* The queue starts out with one item, but following a DIE reference
9907 may load a new CU, adding it to the end of the queue. */
9908 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9909 {
9910 if ((dwarf2_per_objfile->using_index
9911 ? !item->per_cu->v.quick->compunit_symtab
9912 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9913 /* Skip dummy CUs. */
9914 && item->per_cu->cu != NULL)
9915 {
9916 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9917 unsigned int debug_print_threshold;
9918 char buf[100];
9919
9920 if (per_cu->is_debug_types)
9921 {
9922 struct signatured_type *sig_type =
9923 (struct signatured_type *) per_cu;
9924
9925 sprintf (buf, "TU %s at offset 0x%x",
9926 hex_string (sig_type->signature),
9927 to_underlying (per_cu->sect_off));
9928 /* There can be 100s of TUs.
9929 Only print them in verbose mode. */
9930 debug_print_threshold = 2;
9931 }
9932 else
9933 {
9934 sprintf (buf, "CU at offset 0x%x",
9935 to_underlying (per_cu->sect_off));
9936 debug_print_threshold = 1;
9937 }
9938
9939 if (dwarf_read_debug >= debug_print_threshold)
9940 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9941
9942 if (per_cu->is_debug_types)
9943 process_full_type_unit (per_cu, item->pretend_language);
9944 else
9945 process_full_comp_unit (per_cu, item->pretend_language);
9946
9947 if (dwarf_read_debug >= debug_print_threshold)
9948 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9949 }
9950
9951 item->per_cu->queued = 0;
9952 next_item = item->next;
9953 xfree (item);
9954 }
9955
9956 dwarf2_queue_tail = NULL;
9957
9958 if (dwarf_read_debug)
9959 {
9960 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9961 objfile_name (dwarf2_per_objfile->objfile));
9962 }
9963 }
9964
9965 /* Free all allocated queue entries. This function only releases anything if
9966 an error was thrown; if the queue was processed then it would have been
9967 freed as we went along. */
9968
9969 static void
9970 dwarf2_release_queue (void *dummy)
9971 {
9972 struct dwarf2_queue_item *item, *last;
9973
9974 item = dwarf2_queue;
9975 while (item)
9976 {
9977 /* Anything still marked queued is likely to be in an
9978 inconsistent state, so discard it. */
9979 if (item->per_cu->queued)
9980 {
9981 if (item->per_cu->cu != NULL)
9982 free_one_cached_comp_unit (item->per_cu);
9983 item->per_cu->queued = 0;
9984 }
9985
9986 last = item;
9987 item = item->next;
9988 xfree (last);
9989 }
9990
9991 dwarf2_queue = dwarf2_queue_tail = NULL;
9992 }
9993
9994 /* Read in full symbols for PST, and anything it depends on. */
9995
9996 static void
9997 psymtab_to_symtab_1 (struct partial_symtab *pst)
9998 {
9999 struct dwarf2_per_cu_data *per_cu;
10000 int i;
10001
10002 if (pst->readin)
10003 return;
10004
10005 for (i = 0; i < pst->number_of_dependencies; i++)
10006 if (!pst->dependencies[i]->readin
10007 && pst->dependencies[i]->user == NULL)
10008 {
10009 /* Inform about additional files that need to be read in. */
10010 if (info_verbose)
10011 {
10012 /* FIXME: i18n: Need to make this a single string. */
10013 fputs_filtered (" ", gdb_stdout);
10014 wrap_here ("");
10015 fputs_filtered ("and ", gdb_stdout);
10016 wrap_here ("");
10017 printf_filtered ("%s...", pst->dependencies[i]->filename);
10018 wrap_here (""); /* Flush output. */
10019 gdb_flush (gdb_stdout);
10020 }
10021 psymtab_to_symtab_1 (pst->dependencies[i]);
10022 }
10023
10024 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10025
10026 if (per_cu == NULL)
10027 {
10028 /* It's an include file, no symbols to read for it.
10029 Everything is in the parent symtab. */
10030 pst->readin = 1;
10031 return;
10032 }
10033
10034 dw2_do_instantiate_symtab (per_cu);
10035 }
10036
10037 /* Trivial hash function for die_info: the hash value of a DIE
10038 is its offset in .debug_info for this objfile. */
10039
10040 static hashval_t
10041 die_hash (const void *item)
10042 {
10043 const struct die_info *die = (const struct die_info *) item;
10044
10045 return to_underlying (die->sect_off);
10046 }
10047
10048 /* Trivial comparison function for die_info structures: two DIEs
10049 are equal if they have the same offset. */
10050
10051 static int
10052 die_eq (const void *item_lhs, const void *item_rhs)
10053 {
10054 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
10055 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
10056
10057 return die_lhs->sect_off == die_rhs->sect_off;
10058 }
10059
10060 /* die_reader_func for load_full_comp_unit.
10061 This is identical to read_signatured_type_reader,
10062 but is kept separate for now. */
10063
10064 static void
10065 load_full_comp_unit_reader (const struct die_reader_specs *reader,
10066 const gdb_byte *info_ptr,
10067 struct die_info *comp_unit_die,
10068 int has_children,
10069 void *data)
10070 {
10071 struct dwarf2_cu *cu = reader->cu;
10072 enum language *language_ptr = (enum language *) data;
10073
10074 gdb_assert (cu->die_hash == NULL);
10075 cu->die_hash =
10076 htab_create_alloc_ex (cu->header.length / 12,
10077 die_hash,
10078 die_eq,
10079 NULL,
10080 &cu->comp_unit_obstack,
10081 hashtab_obstack_allocate,
10082 dummy_obstack_deallocate);
10083
10084 if (has_children)
10085 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
10086 &info_ptr, comp_unit_die);
10087 cu->dies = comp_unit_die;
10088 /* comp_unit_die is not stored in die_hash, no need. */
10089
10090 /* We try not to read any attributes in this function, because not
10091 all CUs needed for references have been loaded yet, and symbol
10092 table processing isn't initialized. But we have to set the CU language,
10093 or we won't be able to build types correctly.
10094 Similarly, if we do not read the producer, we can not apply
10095 producer-specific interpretation. */
10096 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
10097 }
10098
10099 /* Load the DIEs associated with PER_CU into memory. */
10100
10101 static void
10102 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
10103 enum language pretend_language)
10104 {
10105 gdb_assert (! this_cu->is_debug_types);
10106
10107 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
10108 load_full_comp_unit_reader, &pretend_language);
10109 }
10110
10111 /* Add a DIE to the delayed physname list. */
10112
10113 static void
10114 add_to_method_list (struct type *type, int fnfield_index, int index,
10115 const char *name, struct die_info *die,
10116 struct dwarf2_cu *cu)
10117 {
10118 struct delayed_method_info mi;
10119 mi.type = type;
10120 mi.fnfield_index = fnfield_index;
10121 mi.index = index;
10122 mi.name = name;
10123 mi.die = die;
10124 cu->method_list.push_back (mi);
10125 }
10126
10127 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
10128 "const" / "volatile". If so, decrements LEN by the length of the
10129 modifier and return true. Otherwise return false. */
10130
10131 template<size_t N>
10132 static bool
10133 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
10134 {
10135 size_t mod_len = sizeof (mod) - 1;
10136 if (len > mod_len && startswith (physname + (len - mod_len), mod))
10137 {
10138 len -= mod_len;
10139 return true;
10140 }
10141 return false;
10142 }
10143
10144 /* Compute the physnames of any methods on the CU's method list.
10145
10146 The computation of method physnames is delayed in order to avoid the
10147 (bad) condition that one of the method's formal parameters is of an as yet
10148 incomplete type. */
10149
10150 static void
10151 compute_delayed_physnames (struct dwarf2_cu *cu)
10152 {
10153 /* Only C++ delays computing physnames. */
10154 if (cu->method_list.empty ())
10155 return;
10156 gdb_assert (cu->language == language_cplus);
10157
10158 for (struct delayed_method_info &mi : cu->method_list)
10159 {
10160 const char *physname;
10161 struct fn_fieldlist *fn_flp
10162 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
10163 physname = dwarf2_physname (mi.name, mi.die, cu);
10164 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
10165 = physname ? physname : "";
10166
10167 /* Since there's no tag to indicate whether a method is a
10168 const/volatile overload, extract that information out of the
10169 demangled name. */
10170 if (physname != NULL)
10171 {
10172 size_t len = strlen (physname);
10173
10174 while (1)
10175 {
10176 if (physname[len] == ')') /* shortcut */
10177 break;
10178 else if (check_modifier (physname, len, " const"))
10179 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
10180 else if (check_modifier (physname, len, " volatile"))
10181 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
10182 else
10183 break;
10184 }
10185 }
10186 }
10187
10188 /* The list is no longer needed. */
10189 cu->method_list.clear ();
10190 }
10191
10192 /* Go objects should be embedded in a DW_TAG_module DIE,
10193 and it's not clear if/how imported objects will appear.
10194 To keep Go support simple until that's worked out,
10195 go back through what we've read and create something usable.
10196 We could do this while processing each DIE, and feels kinda cleaner,
10197 but that way is more invasive.
10198 This is to, for example, allow the user to type "p var" or "b main"
10199 without having to specify the package name, and allow lookups
10200 of module.object to work in contexts that use the expression
10201 parser. */
10202
10203 static void
10204 fixup_go_packaging (struct dwarf2_cu *cu)
10205 {
10206 char *package_name = NULL;
10207 struct pending *list;
10208 int i;
10209
10210 for (list = global_symbols; list != NULL; list = list->next)
10211 {
10212 for (i = 0; i < list->nsyms; ++i)
10213 {
10214 struct symbol *sym = list->symbol[i];
10215
10216 if (SYMBOL_LANGUAGE (sym) == language_go
10217 && SYMBOL_CLASS (sym) == LOC_BLOCK)
10218 {
10219 char *this_package_name = go_symbol_package_name (sym);
10220
10221 if (this_package_name == NULL)
10222 continue;
10223 if (package_name == NULL)
10224 package_name = this_package_name;
10225 else
10226 {
10227 struct objfile *objfile
10228 = cu->per_cu->dwarf2_per_objfile->objfile;
10229 if (strcmp (package_name, this_package_name) != 0)
10230 complaint (&symfile_complaints,
10231 _("Symtab %s has objects from two different Go packages: %s and %s"),
10232 (symbol_symtab (sym) != NULL
10233 ? symtab_to_filename_for_display
10234 (symbol_symtab (sym))
10235 : objfile_name (objfile)),
10236 this_package_name, package_name);
10237 xfree (this_package_name);
10238 }
10239 }
10240 }
10241 }
10242
10243 if (package_name != NULL)
10244 {
10245 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10246 const char *saved_package_name
10247 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
10248 package_name,
10249 strlen (package_name));
10250 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
10251 saved_package_name);
10252 struct symbol *sym;
10253
10254 TYPE_TAG_NAME (type) = TYPE_NAME (type);
10255
10256 sym = allocate_symbol (objfile);
10257 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
10258 SYMBOL_SET_NAMES (sym, saved_package_name,
10259 strlen (saved_package_name), 0, objfile);
10260 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
10261 e.g., "main" finds the "main" module and not C's main(). */
10262 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
10263 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
10264 SYMBOL_TYPE (sym) = type;
10265
10266 add_symbol_to_list (sym, &global_symbols);
10267
10268 xfree (package_name);
10269 }
10270 }
10271
10272 /* Return the symtab for PER_CU. This works properly regardless of
10273 whether we're using the index or psymtabs. */
10274
10275 static struct compunit_symtab *
10276 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10277 {
10278 return (per_cu->dwarf2_per_objfile->using_index
10279 ? per_cu->v.quick->compunit_symtab
10280 : per_cu->v.psymtab->compunit_symtab);
10281 }
10282
10283 /* A helper function for computing the list of all symbol tables
10284 included by PER_CU. */
10285
10286 static void
10287 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10288 htab_t all_children, htab_t all_type_symtabs,
10289 struct dwarf2_per_cu_data *per_cu,
10290 struct compunit_symtab *immediate_parent)
10291 {
10292 void **slot;
10293 int ix;
10294 struct compunit_symtab *cust;
10295 struct dwarf2_per_cu_data *iter;
10296
10297 slot = htab_find_slot (all_children, per_cu, INSERT);
10298 if (*slot != NULL)
10299 {
10300 /* This inclusion and its children have been processed. */
10301 return;
10302 }
10303
10304 *slot = per_cu;
10305 /* Only add a CU if it has a symbol table. */
10306 cust = get_compunit_symtab (per_cu);
10307 if (cust != NULL)
10308 {
10309 /* If this is a type unit only add its symbol table if we haven't
10310 seen it yet (type unit per_cu's can share symtabs). */
10311 if (per_cu->is_debug_types)
10312 {
10313 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10314 if (*slot == NULL)
10315 {
10316 *slot = cust;
10317 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10318 if (cust->user == NULL)
10319 cust->user = immediate_parent;
10320 }
10321 }
10322 else
10323 {
10324 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10325 if (cust->user == NULL)
10326 cust->user = immediate_parent;
10327 }
10328 }
10329
10330 for (ix = 0;
10331 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10332 ++ix)
10333 {
10334 recursively_compute_inclusions (result, all_children,
10335 all_type_symtabs, iter, cust);
10336 }
10337 }
10338
10339 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10340 PER_CU. */
10341
10342 static void
10343 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10344 {
10345 gdb_assert (! per_cu->is_debug_types);
10346
10347 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10348 {
10349 int ix, len;
10350 struct dwarf2_per_cu_data *per_cu_iter;
10351 struct compunit_symtab *compunit_symtab_iter;
10352 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10353 htab_t all_children, all_type_symtabs;
10354 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10355
10356 /* If we don't have a symtab, we can just skip this case. */
10357 if (cust == NULL)
10358 return;
10359
10360 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10361 NULL, xcalloc, xfree);
10362 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10363 NULL, xcalloc, xfree);
10364
10365 for (ix = 0;
10366 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10367 ix, per_cu_iter);
10368 ++ix)
10369 {
10370 recursively_compute_inclusions (&result_symtabs, all_children,
10371 all_type_symtabs, per_cu_iter,
10372 cust);
10373 }
10374
10375 /* Now we have a transitive closure of all the included symtabs. */
10376 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10377 cust->includes
10378 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10379 struct compunit_symtab *, len + 1);
10380 for (ix = 0;
10381 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10382 compunit_symtab_iter);
10383 ++ix)
10384 cust->includes[ix] = compunit_symtab_iter;
10385 cust->includes[len] = NULL;
10386
10387 VEC_free (compunit_symtab_ptr, result_symtabs);
10388 htab_delete (all_children);
10389 htab_delete (all_type_symtabs);
10390 }
10391 }
10392
10393 /* Compute the 'includes' field for the symtabs of all the CUs we just
10394 read. */
10395
10396 static void
10397 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10398 {
10399 int ix;
10400 struct dwarf2_per_cu_data *iter;
10401
10402 for (ix = 0;
10403 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
10404 ix, iter);
10405 ++ix)
10406 {
10407 if (! iter->is_debug_types)
10408 compute_compunit_symtab_includes (iter);
10409 }
10410
10411 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
10412 }
10413
10414 /* Generate full symbol information for PER_CU, whose DIEs have
10415 already been loaded into memory. */
10416
10417 static void
10418 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10419 enum language pretend_language)
10420 {
10421 struct dwarf2_cu *cu = per_cu->cu;
10422 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10423 struct objfile *objfile = dwarf2_per_objfile->objfile;
10424 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10425 CORE_ADDR lowpc, highpc;
10426 struct compunit_symtab *cust;
10427 CORE_ADDR baseaddr;
10428 struct block *static_block;
10429 CORE_ADDR addr;
10430
10431 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10432
10433 buildsym_init ();
10434 scoped_free_pendings free_pending;
10435
10436 /* Clear the list here in case something was left over. */
10437 cu->method_list.clear ();
10438
10439 cu->list_in_scope = &file_symbols;
10440
10441 cu->language = pretend_language;
10442 cu->language_defn = language_def (cu->language);
10443
10444 /* Do line number decoding in read_file_scope () */
10445 process_die (cu->dies, cu);
10446
10447 /* For now fudge the Go package. */
10448 if (cu->language == language_go)
10449 fixup_go_packaging (cu);
10450
10451 /* Now that we have processed all the DIEs in the CU, all the types
10452 should be complete, and it should now be safe to compute all of the
10453 physnames. */
10454 compute_delayed_physnames (cu);
10455
10456 /* Some compilers don't define a DW_AT_high_pc attribute for the
10457 compilation unit. If the DW_AT_high_pc is missing, synthesize
10458 it, by scanning the DIE's below the compilation unit. */
10459 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10460
10461 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10462 static_block = end_symtab_get_static_block (addr, 0, 1);
10463
10464 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10465 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10466 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10467 addrmap to help ensure it has an accurate map of pc values belonging to
10468 this comp unit. */
10469 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10470
10471 cust = end_symtab_from_static_block (static_block,
10472 SECT_OFF_TEXT (objfile), 0);
10473
10474 if (cust != NULL)
10475 {
10476 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10477
10478 /* Set symtab language to language from DW_AT_language. If the
10479 compilation is from a C file generated by language preprocessors, do
10480 not set the language if it was already deduced by start_subfile. */
10481 if (!(cu->language == language_c
10482 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10483 COMPUNIT_FILETABS (cust)->language = cu->language;
10484
10485 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10486 produce DW_AT_location with location lists but it can be possibly
10487 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10488 there were bugs in prologue debug info, fixed later in GCC-4.5
10489 by "unwind info for epilogues" patch (which is not directly related).
10490
10491 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10492 needed, it would be wrong due to missing DW_AT_producer there.
10493
10494 Still one can confuse GDB by using non-standard GCC compilation
10495 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10496 */
10497 if (cu->has_loclist && gcc_4_minor >= 5)
10498 cust->locations_valid = 1;
10499
10500 if (gcc_4_minor >= 5)
10501 cust->epilogue_unwind_valid = 1;
10502
10503 cust->call_site_htab = cu->call_site_htab;
10504 }
10505
10506 if (dwarf2_per_objfile->using_index)
10507 per_cu->v.quick->compunit_symtab = cust;
10508 else
10509 {
10510 struct partial_symtab *pst = per_cu->v.psymtab;
10511 pst->compunit_symtab = cust;
10512 pst->readin = 1;
10513 }
10514
10515 /* Push it for inclusion processing later. */
10516 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
10517 }
10518
10519 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10520 already been loaded into memory. */
10521
10522 static void
10523 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10524 enum language pretend_language)
10525 {
10526 struct dwarf2_cu *cu = per_cu->cu;
10527 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10528 struct objfile *objfile = dwarf2_per_objfile->objfile;
10529 struct compunit_symtab *cust;
10530 struct signatured_type *sig_type;
10531
10532 gdb_assert (per_cu->is_debug_types);
10533 sig_type = (struct signatured_type *) per_cu;
10534
10535 buildsym_init ();
10536 scoped_free_pendings free_pending;
10537
10538 /* Clear the list here in case something was left over. */
10539 cu->method_list.clear ();
10540
10541 cu->list_in_scope = &file_symbols;
10542
10543 cu->language = pretend_language;
10544 cu->language_defn = language_def (cu->language);
10545
10546 /* The symbol tables are set up in read_type_unit_scope. */
10547 process_die (cu->dies, cu);
10548
10549 /* For now fudge the Go package. */
10550 if (cu->language == language_go)
10551 fixup_go_packaging (cu);
10552
10553 /* Now that we have processed all the DIEs in the CU, all the types
10554 should be complete, and it should now be safe to compute all of the
10555 physnames. */
10556 compute_delayed_physnames (cu);
10557
10558 /* TUs share symbol tables.
10559 If this is the first TU to use this symtab, complete the construction
10560 of it with end_expandable_symtab. Otherwise, complete the addition of
10561 this TU's symbols to the existing symtab. */
10562 if (sig_type->type_unit_group->compunit_symtab == NULL)
10563 {
10564 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10565 sig_type->type_unit_group->compunit_symtab = cust;
10566
10567 if (cust != NULL)
10568 {
10569 /* Set symtab language to language from DW_AT_language. If the
10570 compilation is from a C file generated by language preprocessors,
10571 do not set the language if it was already deduced by
10572 start_subfile. */
10573 if (!(cu->language == language_c
10574 && COMPUNIT_FILETABS (cust)->language != language_c))
10575 COMPUNIT_FILETABS (cust)->language = cu->language;
10576 }
10577 }
10578 else
10579 {
10580 augment_type_symtab ();
10581 cust = sig_type->type_unit_group->compunit_symtab;
10582 }
10583
10584 if (dwarf2_per_objfile->using_index)
10585 per_cu->v.quick->compunit_symtab = cust;
10586 else
10587 {
10588 struct partial_symtab *pst = per_cu->v.psymtab;
10589 pst->compunit_symtab = cust;
10590 pst->readin = 1;
10591 }
10592 }
10593
10594 /* Process an imported unit DIE. */
10595
10596 static void
10597 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10598 {
10599 struct attribute *attr;
10600
10601 /* For now we don't handle imported units in type units. */
10602 if (cu->per_cu->is_debug_types)
10603 {
10604 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10605 " supported in type units [in module %s]"),
10606 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10607 }
10608
10609 attr = dwarf2_attr (die, DW_AT_import, cu);
10610 if (attr != NULL)
10611 {
10612 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10613 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10614 dwarf2_per_cu_data *per_cu
10615 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10616 cu->per_cu->dwarf2_per_objfile);
10617
10618 /* If necessary, add it to the queue and load its DIEs. */
10619 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10620 load_full_comp_unit (per_cu, cu->language);
10621
10622 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10623 per_cu);
10624 }
10625 }
10626
10627 /* RAII object that represents a process_die scope: i.e.,
10628 starts/finishes processing a DIE. */
10629 class process_die_scope
10630 {
10631 public:
10632 process_die_scope (die_info *die, dwarf2_cu *cu)
10633 : m_die (die), m_cu (cu)
10634 {
10635 /* We should only be processing DIEs not already in process. */
10636 gdb_assert (!m_die->in_process);
10637 m_die->in_process = true;
10638 }
10639
10640 ~process_die_scope ()
10641 {
10642 m_die->in_process = false;
10643
10644 /* If we're done processing the DIE for the CU that owns the line
10645 header, we don't need the line header anymore. */
10646 if (m_cu->line_header_die_owner == m_die)
10647 {
10648 delete m_cu->line_header;
10649 m_cu->line_header = NULL;
10650 m_cu->line_header_die_owner = NULL;
10651 }
10652 }
10653
10654 private:
10655 die_info *m_die;
10656 dwarf2_cu *m_cu;
10657 };
10658
10659 /* Process a die and its children. */
10660
10661 static void
10662 process_die (struct die_info *die, struct dwarf2_cu *cu)
10663 {
10664 process_die_scope scope (die, cu);
10665
10666 switch (die->tag)
10667 {
10668 case DW_TAG_padding:
10669 break;
10670 case DW_TAG_compile_unit:
10671 case DW_TAG_partial_unit:
10672 read_file_scope (die, cu);
10673 break;
10674 case DW_TAG_type_unit:
10675 read_type_unit_scope (die, cu);
10676 break;
10677 case DW_TAG_subprogram:
10678 case DW_TAG_inlined_subroutine:
10679 read_func_scope (die, cu);
10680 break;
10681 case DW_TAG_lexical_block:
10682 case DW_TAG_try_block:
10683 case DW_TAG_catch_block:
10684 read_lexical_block_scope (die, cu);
10685 break;
10686 case DW_TAG_call_site:
10687 case DW_TAG_GNU_call_site:
10688 read_call_site_scope (die, cu);
10689 break;
10690 case DW_TAG_class_type:
10691 case DW_TAG_interface_type:
10692 case DW_TAG_structure_type:
10693 case DW_TAG_union_type:
10694 process_structure_scope (die, cu);
10695 break;
10696 case DW_TAG_enumeration_type:
10697 process_enumeration_scope (die, cu);
10698 break;
10699
10700 /* These dies have a type, but processing them does not create
10701 a symbol or recurse to process the children. Therefore we can
10702 read them on-demand through read_type_die. */
10703 case DW_TAG_subroutine_type:
10704 case DW_TAG_set_type:
10705 case DW_TAG_array_type:
10706 case DW_TAG_pointer_type:
10707 case DW_TAG_ptr_to_member_type:
10708 case DW_TAG_reference_type:
10709 case DW_TAG_rvalue_reference_type:
10710 case DW_TAG_string_type:
10711 break;
10712
10713 case DW_TAG_base_type:
10714 case DW_TAG_subrange_type:
10715 case DW_TAG_typedef:
10716 /* Add a typedef symbol for the type definition, if it has a
10717 DW_AT_name. */
10718 new_symbol (die, read_type_die (die, cu), cu);
10719 break;
10720 case DW_TAG_common_block:
10721 read_common_block (die, cu);
10722 break;
10723 case DW_TAG_common_inclusion:
10724 break;
10725 case DW_TAG_namespace:
10726 cu->processing_has_namespace_info = 1;
10727 read_namespace (die, cu);
10728 break;
10729 case DW_TAG_module:
10730 cu->processing_has_namespace_info = 1;
10731 read_module (die, cu);
10732 break;
10733 case DW_TAG_imported_declaration:
10734 cu->processing_has_namespace_info = 1;
10735 if (read_namespace_alias (die, cu))
10736 break;
10737 /* The declaration is not a global namespace alias: fall through. */
10738 case DW_TAG_imported_module:
10739 cu->processing_has_namespace_info = 1;
10740 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10741 || cu->language != language_fortran))
10742 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
10743 dwarf_tag_name (die->tag));
10744 read_import_statement (die, cu);
10745 break;
10746
10747 case DW_TAG_imported_unit:
10748 process_imported_unit_die (die, cu);
10749 break;
10750
10751 case DW_TAG_variable:
10752 read_variable (die, cu);
10753 break;
10754
10755 default:
10756 new_symbol (die, NULL, cu);
10757 break;
10758 }
10759 }
10760 \f
10761 /* DWARF name computation. */
10762
10763 /* A helper function for dwarf2_compute_name which determines whether DIE
10764 needs to have the name of the scope prepended to the name listed in the
10765 die. */
10766
10767 static int
10768 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10769 {
10770 struct attribute *attr;
10771
10772 switch (die->tag)
10773 {
10774 case DW_TAG_namespace:
10775 case DW_TAG_typedef:
10776 case DW_TAG_class_type:
10777 case DW_TAG_interface_type:
10778 case DW_TAG_structure_type:
10779 case DW_TAG_union_type:
10780 case DW_TAG_enumeration_type:
10781 case DW_TAG_enumerator:
10782 case DW_TAG_subprogram:
10783 case DW_TAG_inlined_subroutine:
10784 case DW_TAG_member:
10785 case DW_TAG_imported_declaration:
10786 return 1;
10787
10788 case DW_TAG_variable:
10789 case DW_TAG_constant:
10790 /* We only need to prefix "globally" visible variables. These include
10791 any variable marked with DW_AT_external or any variable that
10792 lives in a namespace. [Variables in anonymous namespaces
10793 require prefixing, but they are not DW_AT_external.] */
10794
10795 if (dwarf2_attr (die, DW_AT_specification, cu))
10796 {
10797 struct dwarf2_cu *spec_cu = cu;
10798
10799 return die_needs_namespace (die_specification (die, &spec_cu),
10800 spec_cu);
10801 }
10802
10803 attr = dwarf2_attr (die, DW_AT_external, cu);
10804 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10805 && die->parent->tag != DW_TAG_module)
10806 return 0;
10807 /* A variable in a lexical block of some kind does not need a
10808 namespace, even though in C++ such variables may be external
10809 and have a mangled name. */
10810 if (die->parent->tag == DW_TAG_lexical_block
10811 || die->parent->tag == DW_TAG_try_block
10812 || die->parent->tag == DW_TAG_catch_block
10813 || die->parent->tag == DW_TAG_subprogram)
10814 return 0;
10815 return 1;
10816
10817 default:
10818 return 0;
10819 }
10820 }
10821
10822 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10823 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10824 defined for the given DIE. */
10825
10826 static struct attribute *
10827 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10828 {
10829 struct attribute *attr;
10830
10831 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10832 if (attr == NULL)
10833 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10834
10835 return attr;
10836 }
10837
10838 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10839 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10840 defined for the given DIE. */
10841
10842 static const char *
10843 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10844 {
10845 const char *linkage_name;
10846
10847 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10848 if (linkage_name == NULL)
10849 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10850
10851 return linkage_name;
10852 }
10853
10854 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10855 compute the physname for the object, which include a method's:
10856 - formal parameters (C++),
10857 - receiver type (Go),
10858
10859 The term "physname" is a bit confusing.
10860 For C++, for example, it is the demangled name.
10861 For Go, for example, it's the mangled name.
10862
10863 For Ada, return the DIE's linkage name rather than the fully qualified
10864 name. PHYSNAME is ignored..
10865
10866 The result is allocated on the objfile_obstack and canonicalized. */
10867
10868 static const char *
10869 dwarf2_compute_name (const char *name,
10870 struct die_info *die, struct dwarf2_cu *cu,
10871 int physname)
10872 {
10873 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10874
10875 if (name == NULL)
10876 name = dwarf2_name (die, cu);
10877
10878 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10879 but otherwise compute it by typename_concat inside GDB.
10880 FIXME: Actually this is not really true, or at least not always true.
10881 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10882 Fortran names because there is no mangling standard. So new_symbol
10883 will set the demangled name to the result of dwarf2_full_name, and it is
10884 the demangled name that GDB uses if it exists. */
10885 if (cu->language == language_ada
10886 || (cu->language == language_fortran && physname))
10887 {
10888 /* For Ada unit, we prefer the linkage name over the name, as
10889 the former contains the exported name, which the user expects
10890 to be able to reference. Ideally, we want the user to be able
10891 to reference this entity using either natural or linkage name,
10892 but we haven't started looking at this enhancement yet. */
10893 const char *linkage_name = dw2_linkage_name (die, cu);
10894
10895 if (linkage_name != NULL)
10896 return linkage_name;
10897 }
10898
10899 /* These are the only languages we know how to qualify names in. */
10900 if (name != NULL
10901 && (cu->language == language_cplus
10902 || cu->language == language_fortran || cu->language == language_d
10903 || cu->language == language_rust))
10904 {
10905 if (die_needs_namespace (die, cu))
10906 {
10907 const char *prefix;
10908 const char *canonical_name = NULL;
10909
10910 string_file buf;
10911
10912 prefix = determine_prefix (die, cu);
10913 if (*prefix != '\0')
10914 {
10915 char *prefixed_name = typename_concat (NULL, prefix, name,
10916 physname, cu);
10917
10918 buf.puts (prefixed_name);
10919 xfree (prefixed_name);
10920 }
10921 else
10922 buf.puts (name);
10923
10924 /* Template parameters may be specified in the DIE's DW_AT_name, or
10925 as children with DW_TAG_template_type_param or
10926 DW_TAG_value_type_param. If the latter, add them to the name
10927 here. If the name already has template parameters, then
10928 skip this step; some versions of GCC emit both, and
10929 it is more efficient to use the pre-computed name.
10930
10931 Something to keep in mind about this process: it is very
10932 unlikely, or in some cases downright impossible, to produce
10933 something that will match the mangled name of a function.
10934 If the definition of the function has the same debug info,
10935 we should be able to match up with it anyway. But fallbacks
10936 using the minimal symbol, for instance to find a method
10937 implemented in a stripped copy of libstdc++, will not work.
10938 If we do not have debug info for the definition, we will have to
10939 match them up some other way.
10940
10941 When we do name matching there is a related problem with function
10942 templates; two instantiated function templates are allowed to
10943 differ only by their return types, which we do not add here. */
10944
10945 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10946 {
10947 struct attribute *attr;
10948 struct die_info *child;
10949 int first = 1;
10950
10951 die->building_fullname = 1;
10952
10953 for (child = die->child; child != NULL; child = child->sibling)
10954 {
10955 struct type *type;
10956 LONGEST value;
10957 const gdb_byte *bytes;
10958 struct dwarf2_locexpr_baton *baton;
10959 struct value *v;
10960
10961 if (child->tag != DW_TAG_template_type_param
10962 && child->tag != DW_TAG_template_value_param)
10963 continue;
10964
10965 if (first)
10966 {
10967 buf.puts ("<");
10968 first = 0;
10969 }
10970 else
10971 buf.puts (", ");
10972
10973 attr = dwarf2_attr (child, DW_AT_type, cu);
10974 if (attr == NULL)
10975 {
10976 complaint (&symfile_complaints,
10977 _("template parameter missing DW_AT_type"));
10978 buf.puts ("UNKNOWN_TYPE");
10979 continue;
10980 }
10981 type = die_type (child, cu);
10982
10983 if (child->tag == DW_TAG_template_type_param)
10984 {
10985 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
10986 continue;
10987 }
10988
10989 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10990 if (attr == NULL)
10991 {
10992 complaint (&symfile_complaints,
10993 _("template parameter missing "
10994 "DW_AT_const_value"));
10995 buf.puts ("UNKNOWN_VALUE");
10996 continue;
10997 }
10998
10999 dwarf2_const_value_attr (attr, type, name,
11000 &cu->comp_unit_obstack, cu,
11001 &value, &bytes, &baton);
11002
11003 if (TYPE_NOSIGN (type))
11004 /* GDB prints characters as NUMBER 'CHAR'. If that's
11005 changed, this can use value_print instead. */
11006 c_printchar (value, type, &buf);
11007 else
11008 {
11009 struct value_print_options opts;
11010
11011 if (baton != NULL)
11012 v = dwarf2_evaluate_loc_desc (type, NULL,
11013 baton->data,
11014 baton->size,
11015 baton->per_cu);
11016 else if (bytes != NULL)
11017 {
11018 v = allocate_value (type);
11019 memcpy (value_contents_writeable (v), bytes,
11020 TYPE_LENGTH (type));
11021 }
11022 else
11023 v = value_from_longest (type, value);
11024
11025 /* Specify decimal so that we do not depend on
11026 the radix. */
11027 get_formatted_print_options (&opts, 'd');
11028 opts.raw = 1;
11029 value_print (v, &buf, &opts);
11030 release_value (v);
11031 value_free (v);
11032 }
11033 }
11034
11035 die->building_fullname = 0;
11036
11037 if (!first)
11038 {
11039 /* Close the argument list, with a space if necessary
11040 (nested templates). */
11041 if (!buf.empty () && buf.string ().back () == '>')
11042 buf.puts (" >");
11043 else
11044 buf.puts (">");
11045 }
11046 }
11047
11048 /* For C++ methods, append formal parameter type
11049 information, if PHYSNAME. */
11050
11051 if (physname && die->tag == DW_TAG_subprogram
11052 && cu->language == language_cplus)
11053 {
11054 struct type *type = read_type_die (die, cu);
11055
11056 c_type_print_args (type, &buf, 1, cu->language,
11057 &type_print_raw_options);
11058
11059 if (cu->language == language_cplus)
11060 {
11061 /* Assume that an artificial first parameter is
11062 "this", but do not crash if it is not. RealView
11063 marks unnamed (and thus unused) parameters as
11064 artificial; there is no way to differentiate
11065 the two cases. */
11066 if (TYPE_NFIELDS (type) > 0
11067 && TYPE_FIELD_ARTIFICIAL (type, 0)
11068 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
11069 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
11070 0))))
11071 buf.puts (" const");
11072 }
11073 }
11074
11075 const std::string &intermediate_name = buf.string ();
11076
11077 if (cu->language == language_cplus)
11078 canonical_name
11079 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11080 &objfile->per_bfd->storage_obstack);
11081
11082 /* If we only computed INTERMEDIATE_NAME, or if
11083 INTERMEDIATE_NAME is already canonical, then we need to
11084 copy it to the appropriate obstack. */
11085 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11086 name = ((const char *)
11087 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11088 intermediate_name.c_str (),
11089 intermediate_name.length ()));
11090 else
11091 name = canonical_name;
11092 }
11093 }
11094
11095 return name;
11096 }
11097
11098 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11099 If scope qualifiers are appropriate they will be added. The result
11100 will be allocated on the storage_obstack, or NULL if the DIE does
11101 not have a name. NAME may either be from a previous call to
11102 dwarf2_name or NULL.
11103
11104 The output string will be canonicalized (if C++). */
11105
11106 static const char *
11107 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11108 {
11109 return dwarf2_compute_name (name, die, cu, 0);
11110 }
11111
11112 /* Construct a physname for the given DIE in CU. NAME may either be
11113 from a previous call to dwarf2_name or NULL. The result will be
11114 allocated on the objfile_objstack or NULL if the DIE does not have a
11115 name.
11116
11117 The output string will be canonicalized (if C++). */
11118
11119 static const char *
11120 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11121 {
11122 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11123 const char *retval, *mangled = NULL, *canon = NULL;
11124 int need_copy = 1;
11125
11126 /* In this case dwarf2_compute_name is just a shortcut not building anything
11127 on its own. */
11128 if (!die_needs_namespace (die, cu))
11129 return dwarf2_compute_name (name, die, cu, 1);
11130
11131 mangled = dw2_linkage_name (die, cu);
11132
11133 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11134 See https://github.com/rust-lang/rust/issues/32925. */
11135 if (cu->language == language_rust && mangled != NULL
11136 && strchr (mangled, '{') != NULL)
11137 mangled = NULL;
11138
11139 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11140 has computed. */
11141 gdb::unique_xmalloc_ptr<char> demangled;
11142 if (mangled != NULL)
11143 {
11144 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
11145 type. It is easier for GDB users to search for such functions as
11146 `name(params)' than `long name(params)'. In such case the minimal
11147 symbol names do not match the full symbol names but for template
11148 functions there is never a need to look up their definition from their
11149 declaration so the only disadvantage remains the minimal symbol
11150 variant `long name(params)' does not have the proper inferior type.
11151 */
11152
11153 if (cu->language == language_go)
11154 {
11155 /* This is a lie, but we already lie to the caller new_symbol.
11156 new_symbol assumes we return the mangled name.
11157 This just undoes that lie until things are cleaned up. */
11158 }
11159 else
11160 {
11161 demangled.reset (gdb_demangle (mangled,
11162 (DMGL_PARAMS | DMGL_ANSI
11163 | DMGL_RET_DROP)));
11164 }
11165 if (demangled)
11166 canon = demangled.get ();
11167 else
11168 {
11169 canon = mangled;
11170 need_copy = 0;
11171 }
11172 }
11173
11174 if (canon == NULL || check_physname)
11175 {
11176 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11177
11178 if (canon != NULL && strcmp (physname, canon) != 0)
11179 {
11180 /* It may not mean a bug in GDB. The compiler could also
11181 compute DW_AT_linkage_name incorrectly. But in such case
11182 GDB would need to be bug-to-bug compatible. */
11183
11184 complaint (&symfile_complaints,
11185 _("Computed physname <%s> does not match demangled <%s> "
11186 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
11187 physname, canon, mangled, to_underlying (die->sect_off),
11188 objfile_name (objfile));
11189
11190 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11191 is available here - over computed PHYSNAME. It is safer
11192 against both buggy GDB and buggy compilers. */
11193
11194 retval = canon;
11195 }
11196 else
11197 {
11198 retval = physname;
11199 need_copy = 0;
11200 }
11201 }
11202 else
11203 retval = canon;
11204
11205 if (need_copy)
11206 retval = ((const char *)
11207 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11208 retval, strlen (retval)));
11209
11210 return retval;
11211 }
11212
11213 /* Inspect DIE in CU for a namespace alias. If one exists, record
11214 a new symbol for it.
11215
11216 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11217
11218 static int
11219 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11220 {
11221 struct attribute *attr;
11222
11223 /* If the die does not have a name, this is not a namespace
11224 alias. */
11225 attr = dwarf2_attr (die, DW_AT_name, cu);
11226 if (attr != NULL)
11227 {
11228 int num;
11229 struct die_info *d = die;
11230 struct dwarf2_cu *imported_cu = cu;
11231
11232 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11233 keep inspecting DIEs until we hit the underlying import. */
11234 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11235 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11236 {
11237 attr = dwarf2_attr (d, DW_AT_import, cu);
11238 if (attr == NULL)
11239 break;
11240
11241 d = follow_die_ref (d, attr, &imported_cu);
11242 if (d->tag != DW_TAG_imported_declaration)
11243 break;
11244 }
11245
11246 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11247 {
11248 complaint (&symfile_complaints,
11249 _("DIE at 0x%x has too many recursively imported "
11250 "declarations"), to_underlying (d->sect_off));
11251 return 0;
11252 }
11253
11254 if (attr != NULL)
11255 {
11256 struct type *type;
11257 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11258
11259 type = get_die_type_at_offset (sect_off, cu->per_cu);
11260 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11261 {
11262 /* This declaration is a global namespace alias. Add
11263 a symbol for it whose type is the aliased namespace. */
11264 new_symbol (die, type, cu);
11265 return 1;
11266 }
11267 }
11268 }
11269
11270 return 0;
11271 }
11272
11273 /* Return the using directives repository (global or local?) to use in the
11274 current context for LANGUAGE.
11275
11276 For Ada, imported declarations can materialize renamings, which *may* be
11277 global. However it is impossible (for now?) in DWARF to distinguish
11278 "external" imported declarations and "static" ones. As all imported
11279 declarations seem to be static in all other languages, make them all CU-wide
11280 global only in Ada. */
11281
11282 static struct using_direct **
11283 using_directives (enum language language)
11284 {
11285 if (language == language_ada && context_stack_depth == 0)
11286 return &global_using_directives;
11287 else
11288 return &local_using_directives;
11289 }
11290
11291 /* Read the import statement specified by the given die and record it. */
11292
11293 static void
11294 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11295 {
11296 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11297 struct attribute *import_attr;
11298 struct die_info *imported_die, *child_die;
11299 struct dwarf2_cu *imported_cu;
11300 const char *imported_name;
11301 const char *imported_name_prefix;
11302 const char *canonical_name;
11303 const char *import_alias;
11304 const char *imported_declaration = NULL;
11305 const char *import_prefix;
11306 std::vector<const char *> excludes;
11307
11308 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11309 if (import_attr == NULL)
11310 {
11311 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11312 dwarf_tag_name (die->tag));
11313 return;
11314 }
11315
11316 imported_cu = cu;
11317 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11318 imported_name = dwarf2_name (imported_die, imported_cu);
11319 if (imported_name == NULL)
11320 {
11321 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11322
11323 The import in the following code:
11324 namespace A
11325 {
11326 typedef int B;
11327 }
11328
11329 int main ()
11330 {
11331 using A::B;
11332 B b;
11333 return b;
11334 }
11335
11336 ...
11337 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11338 <52> DW_AT_decl_file : 1
11339 <53> DW_AT_decl_line : 6
11340 <54> DW_AT_import : <0x75>
11341 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11342 <59> DW_AT_name : B
11343 <5b> DW_AT_decl_file : 1
11344 <5c> DW_AT_decl_line : 2
11345 <5d> DW_AT_type : <0x6e>
11346 ...
11347 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11348 <76> DW_AT_byte_size : 4
11349 <77> DW_AT_encoding : 5 (signed)
11350
11351 imports the wrong die ( 0x75 instead of 0x58 ).
11352 This case will be ignored until the gcc bug is fixed. */
11353 return;
11354 }
11355
11356 /* Figure out the local name after import. */
11357 import_alias = dwarf2_name (die, cu);
11358
11359 /* Figure out where the statement is being imported to. */
11360 import_prefix = determine_prefix (die, cu);
11361
11362 /* Figure out what the scope of the imported die is and prepend it
11363 to the name of the imported die. */
11364 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11365
11366 if (imported_die->tag != DW_TAG_namespace
11367 && imported_die->tag != DW_TAG_module)
11368 {
11369 imported_declaration = imported_name;
11370 canonical_name = imported_name_prefix;
11371 }
11372 else if (strlen (imported_name_prefix) > 0)
11373 canonical_name = obconcat (&objfile->objfile_obstack,
11374 imported_name_prefix,
11375 (cu->language == language_d ? "." : "::"),
11376 imported_name, (char *) NULL);
11377 else
11378 canonical_name = imported_name;
11379
11380 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11381 for (child_die = die->child; child_die && child_die->tag;
11382 child_die = sibling_die (child_die))
11383 {
11384 /* DWARF-4: A Fortran use statement with a “rename list” may be
11385 represented by an imported module entry with an import attribute
11386 referring to the module and owned entries corresponding to those
11387 entities that are renamed as part of being imported. */
11388
11389 if (child_die->tag != DW_TAG_imported_declaration)
11390 {
11391 complaint (&symfile_complaints,
11392 _("child DW_TAG_imported_declaration expected "
11393 "- DIE at 0x%x [in module %s]"),
11394 to_underlying (child_die->sect_off), objfile_name (objfile));
11395 continue;
11396 }
11397
11398 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11399 if (import_attr == NULL)
11400 {
11401 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11402 dwarf_tag_name (child_die->tag));
11403 continue;
11404 }
11405
11406 imported_cu = cu;
11407 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11408 &imported_cu);
11409 imported_name = dwarf2_name (imported_die, imported_cu);
11410 if (imported_name == NULL)
11411 {
11412 complaint (&symfile_complaints,
11413 _("child DW_TAG_imported_declaration has unknown "
11414 "imported name - DIE at 0x%x [in module %s]"),
11415 to_underlying (child_die->sect_off), objfile_name (objfile));
11416 continue;
11417 }
11418
11419 excludes.push_back (imported_name);
11420
11421 process_die (child_die, cu);
11422 }
11423
11424 add_using_directive (using_directives (cu->language),
11425 import_prefix,
11426 canonical_name,
11427 import_alias,
11428 imported_declaration,
11429 excludes,
11430 0,
11431 &objfile->objfile_obstack);
11432 }
11433
11434 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11435 types, but gives them a size of zero. Starting with version 14,
11436 ICC is compatible with GCC. */
11437
11438 static int
11439 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11440 {
11441 if (!cu->checked_producer)
11442 check_producer (cu);
11443
11444 return cu->producer_is_icc_lt_14;
11445 }
11446
11447 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11448 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11449 this, it was first present in GCC release 4.3.0. */
11450
11451 static int
11452 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11453 {
11454 if (!cu->checked_producer)
11455 check_producer (cu);
11456
11457 return cu->producer_is_gcc_lt_4_3;
11458 }
11459
11460 static file_and_directory
11461 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11462 {
11463 file_and_directory res;
11464
11465 /* Find the filename. Do not use dwarf2_name here, since the filename
11466 is not a source language identifier. */
11467 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11468 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11469
11470 if (res.comp_dir == NULL
11471 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11472 && IS_ABSOLUTE_PATH (res.name))
11473 {
11474 res.comp_dir_storage = ldirname (res.name);
11475 if (!res.comp_dir_storage.empty ())
11476 res.comp_dir = res.comp_dir_storage.c_str ();
11477 }
11478 if (res.comp_dir != NULL)
11479 {
11480 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11481 directory, get rid of it. */
11482 const char *cp = strchr (res.comp_dir, ':');
11483
11484 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11485 res.comp_dir = cp + 1;
11486 }
11487
11488 if (res.name == NULL)
11489 res.name = "<unknown>";
11490
11491 return res;
11492 }
11493
11494 /* Handle DW_AT_stmt_list for a compilation unit.
11495 DIE is the DW_TAG_compile_unit die for CU.
11496 COMP_DIR is the compilation directory. LOWPC is passed to
11497 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11498
11499 static void
11500 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11501 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11502 {
11503 struct dwarf2_per_objfile *dwarf2_per_objfile
11504 = cu->per_cu->dwarf2_per_objfile;
11505 struct objfile *objfile = dwarf2_per_objfile->objfile;
11506 struct attribute *attr;
11507 struct line_header line_header_local;
11508 hashval_t line_header_local_hash;
11509 void **slot;
11510 int decode_mapping;
11511
11512 gdb_assert (! cu->per_cu->is_debug_types);
11513
11514 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11515 if (attr == NULL)
11516 return;
11517
11518 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11519
11520 /* The line header hash table is only created if needed (it exists to
11521 prevent redundant reading of the line table for partial_units).
11522 If we're given a partial_unit, we'll need it. If we're given a
11523 compile_unit, then use the line header hash table if it's already
11524 created, but don't create one just yet. */
11525
11526 if (dwarf2_per_objfile->line_header_hash == NULL
11527 && die->tag == DW_TAG_partial_unit)
11528 {
11529 dwarf2_per_objfile->line_header_hash
11530 = htab_create_alloc_ex (127, line_header_hash_voidp,
11531 line_header_eq_voidp,
11532 free_line_header_voidp,
11533 &objfile->objfile_obstack,
11534 hashtab_obstack_allocate,
11535 dummy_obstack_deallocate);
11536 }
11537
11538 line_header_local.sect_off = line_offset;
11539 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11540 line_header_local_hash = line_header_hash (&line_header_local);
11541 if (dwarf2_per_objfile->line_header_hash != NULL)
11542 {
11543 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11544 &line_header_local,
11545 line_header_local_hash, NO_INSERT);
11546
11547 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11548 is not present in *SLOT (since if there is something in *SLOT then
11549 it will be for a partial_unit). */
11550 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11551 {
11552 gdb_assert (*slot != NULL);
11553 cu->line_header = (struct line_header *) *slot;
11554 return;
11555 }
11556 }
11557
11558 /* dwarf_decode_line_header does not yet provide sufficient information.
11559 We always have to call also dwarf_decode_lines for it. */
11560 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11561 if (lh == NULL)
11562 return;
11563
11564 cu->line_header = lh.release ();
11565 cu->line_header_die_owner = die;
11566
11567 if (dwarf2_per_objfile->line_header_hash == NULL)
11568 slot = NULL;
11569 else
11570 {
11571 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11572 &line_header_local,
11573 line_header_local_hash, INSERT);
11574 gdb_assert (slot != NULL);
11575 }
11576 if (slot != NULL && *slot == NULL)
11577 {
11578 /* This newly decoded line number information unit will be owned
11579 by line_header_hash hash table. */
11580 *slot = cu->line_header;
11581 cu->line_header_die_owner = NULL;
11582 }
11583 else
11584 {
11585 /* We cannot free any current entry in (*slot) as that struct line_header
11586 may be already used by multiple CUs. Create only temporary decoded
11587 line_header for this CU - it may happen at most once for each line
11588 number information unit. And if we're not using line_header_hash
11589 then this is what we want as well. */
11590 gdb_assert (die->tag != DW_TAG_partial_unit);
11591 }
11592 decode_mapping = (die->tag != DW_TAG_partial_unit);
11593 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11594 decode_mapping);
11595
11596 }
11597
11598 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11599
11600 static void
11601 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11602 {
11603 struct dwarf2_per_objfile *dwarf2_per_objfile
11604 = cu->per_cu->dwarf2_per_objfile;
11605 struct objfile *objfile = dwarf2_per_objfile->objfile;
11606 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11607 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11608 CORE_ADDR highpc = ((CORE_ADDR) 0);
11609 struct attribute *attr;
11610 struct die_info *child_die;
11611 CORE_ADDR baseaddr;
11612
11613 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11614
11615 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11616
11617 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11618 from finish_block. */
11619 if (lowpc == ((CORE_ADDR) -1))
11620 lowpc = highpc;
11621 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11622
11623 file_and_directory fnd = find_file_and_directory (die, cu);
11624
11625 prepare_one_comp_unit (cu, die, cu->language);
11626
11627 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11628 standardised yet. As a workaround for the language detection we fall
11629 back to the DW_AT_producer string. */
11630 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11631 cu->language = language_opencl;
11632
11633 /* Similar hack for Go. */
11634 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11635 set_cu_language (DW_LANG_Go, cu);
11636
11637 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11638
11639 /* Decode line number information if present. We do this before
11640 processing child DIEs, so that the line header table is available
11641 for DW_AT_decl_file. */
11642 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11643
11644 /* Process all dies in compilation unit. */
11645 if (die->child != NULL)
11646 {
11647 child_die = die->child;
11648 while (child_die && child_die->tag)
11649 {
11650 process_die (child_die, cu);
11651 child_die = sibling_die (child_die);
11652 }
11653 }
11654
11655 /* Decode macro information, if present. Dwarf 2 macro information
11656 refers to information in the line number info statement program
11657 header, so we can only read it if we've read the header
11658 successfully. */
11659 attr = dwarf2_attr (die, DW_AT_macros, cu);
11660 if (attr == NULL)
11661 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11662 if (attr && cu->line_header)
11663 {
11664 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11665 complaint (&symfile_complaints,
11666 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11667
11668 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11669 }
11670 else
11671 {
11672 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11673 if (attr && cu->line_header)
11674 {
11675 unsigned int macro_offset = DW_UNSND (attr);
11676
11677 dwarf_decode_macros (cu, macro_offset, 0);
11678 }
11679 }
11680 }
11681
11682 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11683 Create the set of symtabs used by this TU, or if this TU is sharing
11684 symtabs with another TU and the symtabs have already been created
11685 then restore those symtabs in the line header.
11686 We don't need the pc/line-number mapping for type units. */
11687
11688 static void
11689 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11690 {
11691 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11692 struct type_unit_group *tu_group;
11693 int first_time;
11694 struct attribute *attr;
11695 unsigned int i;
11696 struct signatured_type *sig_type;
11697
11698 gdb_assert (per_cu->is_debug_types);
11699 sig_type = (struct signatured_type *) per_cu;
11700
11701 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11702
11703 /* If we're using .gdb_index (includes -readnow) then
11704 per_cu->type_unit_group may not have been set up yet. */
11705 if (sig_type->type_unit_group == NULL)
11706 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11707 tu_group = sig_type->type_unit_group;
11708
11709 /* If we've already processed this stmt_list there's no real need to
11710 do it again, we could fake it and just recreate the part we need
11711 (file name,index -> symtab mapping). If data shows this optimization
11712 is useful we can do it then. */
11713 first_time = tu_group->compunit_symtab == NULL;
11714
11715 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11716 debug info. */
11717 line_header_up lh;
11718 if (attr != NULL)
11719 {
11720 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11721 lh = dwarf_decode_line_header (line_offset, cu);
11722 }
11723 if (lh == NULL)
11724 {
11725 if (first_time)
11726 dwarf2_start_symtab (cu, "", NULL, 0);
11727 else
11728 {
11729 gdb_assert (tu_group->symtabs == NULL);
11730 restart_symtab (tu_group->compunit_symtab, "", 0);
11731 }
11732 return;
11733 }
11734
11735 cu->line_header = lh.release ();
11736 cu->line_header_die_owner = die;
11737
11738 if (first_time)
11739 {
11740 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11741
11742 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11743 still initializing it, and our caller (a few levels up)
11744 process_full_type_unit still needs to know if this is the first
11745 time. */
11746
11747 tu_group->num_symtabs = cu->line_header->file_names.size ();
11748 tu_group->symtabs = XNEWVEC (struct symtab *,
11749 cu->line_header->file_names.size ());
11750
11751 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11752 {
11753 file_entry &fe = cu->line_header->file_names[i];
11754
11755 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
11756
11757 if (current_subfile->symtab == NULL)
11758 {
11759 /* NOTE: start_subfile will recognize when it's been
11760 passed a file it has already seen. So we can't
11761 assume there's a simple mapping from
11762 cu->line_header->file_names to subfiles, plus
11763 cu->line_header->file_names may contain dups. */
11764 current_subfile->symtab
11765 = allocate_symtab (cust, current_subfile->name);
11766 }
11767
11768 fe.symtab = current_subfile->symtab;
11769 tu_group->symtabs[i] = fe.symtab;
11770 }
11771 }
11772 else
11773 {
11774 restart_symtab (tu_group->compunit_symtab, "", 0);
11775
11776 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11777 {
11778 file_entry &fe = cu->line_header->file_names[i];
11779
11780 fe.symtab = tu_group->symtabs[i];
11781 }
11782 }
11783
11784 /* The main symtab is allocated last. Type units don't have DW_AT_name
11785 so they don't have a "real" (so to speak) symtab anyway.
11786 There is later code that will assign the main symtab to all symbols
11787 that don't have one. We need to handle the case of a symbol with a
11788 missing symtab (DW_AT_decl_file) anyway. */
11789 }
11790
11791 /* Process DW_TAG_type_unit.
11792 For TUs we want to skip the first top level sibling if it's not the
11793 actual type being defined by this TU. In this case the first top
11794 level sibling is there to provide context only. */
11795
11796 static void
11797 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11798 {
11799 struct die_info *child_die;
11800
11801 prepare_one_comp_unit (cu, die, language_minimal);
11802
11803 /* Initialize (or reinitialize) the machinery for building symtabs.
11804 We do this before processing child DIEs, so that the line header table
11805 is available for DW_AT_decl_file. */
11806 setup_type_unit_groups (die, cu);
11807
11808 if (die->child != NULL)
11809 {
11810 child_die = die->child;
11811 while (child_die && child_die->tag)
11812 {
11813 process_die (child_die, cu);
11814 child_die = sibling_die (child_die);
11815 }
11816 }
11817 }
11818 \f
11819 /* DWO/DWP files.
11820
11821 http://gcc.gnu.org/wiki/DebugFission
11822 http://gcc.gnu.org/wiki/DebugFissionDWP
11823
11824 To simplify handling of both DWO files ("object" files with the DWARF info)
11825 and DWP files (a file with the DWOs packaged up into one file), we treat
11826 DWP files as having a collection of virtual DWO files. */
11827
11828 static hashval_t
11829 hash_dwo_file (const void *item)
11830 {
11831 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11832 hashval_t hash;
11833
11834 hash = htab_hash_string (dwo_file->dwo_name);
11835 if (dwo_file->comp_dir != NULL)
11836 hash += htab_hash_string (dwo_file->comp_dir);
11837 return hash;
11838 }
11839
11840 static int
11841 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11842 {
11843 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11844 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11845
11846 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11847 return 0;
11848 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11849 return lhs->comp_dir == rhs->comp_dir;
11850 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11851 }
11852
11853 /* Allocate a hash table for DWO files. */
11854
11855 static htab_t
11856 allocate_dwo_file_hash_table (struct objfile *objfile)
11857 {
11858 return htab_create_alloc_ex (41,
11859 hash_dwo_file,
11860 eq_dwo_file,
11861 NULL,
11862 &objfile->objfile_obstack,
11863 hashtab_obstack_allocate,
11864 dummy_obstack_deallocate);
11865 }
11866
11867 /* Lookup DWO file DWO_NAME. */
11868
11869 static void **
11870 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11871 const char *dwo_name,
11872 const char *comp_dir)
11873 {
11874 struct dwo_file find_entry;
11875 void **slot;
11876
11877 if (dwarf2_per_objfile->dwo_files == NULL)
11878 dwarf2_per_objfile->dwo_files
11879 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11880
11881 memset (&find_entry, 0, sizeof (find_entry));
11882 find_entry.dwo_name = dwo_name;
11883 find_entry.comp_dir = comp_dir;
11884 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11885
11886 return slot;
11887 }
11888
11889 static hashval_t
11890 hash_dwo_unit (const void *item)
11891 {
11892 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11893
11894 /* This drops the top 32 bits of the id, but is ok for a hash. */
11895 return dwo_unit->signature;
11896 }
11897
11898 static int
11899 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11900 {
11901 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11902 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11903
11904 /* The signature is assumed to be unique within the DWO file.
11905 So while object file CU dwo_id's always have the value zero,
11906 that's OK, assuming each object file DWO file has only one CU,
11907 and that's the rule for now. */
11908 return lhs->signature == rhs->signature;
11909 }
11910
11911 /* Allocate a hash table for DWO CUs,TUs.
11912 There is one of these tables for each of CUs,TUs for each DWO file. */
11913
11914 static htab_t
11915 allocate_dwo_unit_table (struct objfile *objfile)
11916 {
11917 /* Start out with a pretty small number.
11918 Generally DWO files contain only one CU and maybe some TUs. */
11919 return htab_create_alloc_ex (3,
11920 hash_dwo_unit,
11921 eq_dwo_unit,
11922 NULL,
11923 &objfile->objfile_obstack,
11924 hashtab_obstack_allocate,
11925 dummy_obstack_deallocate);
11926 }
11927
11928 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11929
11930 struct create_dwo_cu_data
11931 {
11932 struct dwo_file *dwo_file;
11933 struct dwo_unit dwo_unit;
11934 };
11935
11936 /* die_reader_func for create_dwo_cu. */
11937
11938 static void
11939 create_dwo_cu_reader (const struct die_reader_specs *reader,
11940 const gdb_byte *info_ptr,
11941 struct die_info *comp_unit_die,
11942 int has_children,
11943 void *datap)
11944 {
11945 struct dwarf2_cu *cu = reader->cu;
11946 sect_offset sect_off = cu->per_cu->sect_off;
11947 struct dwarf2_section_info *section = cu->per_cu->section;
11948 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11949 struct dwo_file *dwo_file = data->dwo_file;
11950 struct dwo_unit *dwo_unit = &data->dwo_unit;
11951 struct attribute *attr;
11952
11953 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11954 if (attr == NULL)
11955 {
11956 complaint (&symfile_complaints,
11957 _("Dwarf Error: debug entry at offset 0x%x is missing"
11958 " its dwo_id [in module %s]"),
11959 to_underlying (sect_off), dwo_file->dwo_name);
11960 return;
11961 }
11962
11963 dwo_unit->dwo_file = dwo_file;
11964 dwo_unit->signature = DW_UNSND (attr);
11965 dwo_unit->section = section;
11966 dwo_unit->sect_off = sect_off;
11967 dwo_unit->length = cu->per_cu->length;
11968
11969 if (dwarf_read_debug)
11970 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
11971 to_underlying (sect_off),
11972 hex_string (dwo_unit->signature));
11973 }
11974
11975 /* Create the dwo_units for the CUs in a DWO_FILE.
11976 Note: This function processes DWO files only, not DWP files. */
11977
11978 static void
11979 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11980 struct dwo_file &dwo_file, dwarf2_section_info &section,
11981 htab_t &cus_htab)
11982 {
11983 struct objfile *objfile = dwarf2_per_objfile->objfile;
11984 const gdb_byte *info_ptr, *end_ptr;
11985
11986 dwarf2_read_section (objfile, &section);
11987 info_ptr = section.buffer;
11988
11989 if (info_ptr == NULL)
11990 return;
11991
11992 if (dwarf_read_debug)
11993 {
11994 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11995 get_section_name (&section),
11996 get_section_file_name (&section));
11997 }
11998
11999 end_ptr = info_ptr + section.size;
12000 while (info_ptr < end_ptr)
12001 {
12002 struct dwarf2_per_cu_data per_cu;
12003 struct create_dwo_cu_data create_dwo_cu_data;
12004 struct dwo_unit *dwo_unit;
12005 void **slot;
12006 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
12007
12008 memset (&create_dwo_cu_data.dwo_unit, 0,
12009 sizeof (create_dwo_cu_data.dwo_unit));
12010 memset (&per_cu, 0, sizeof (per_cu));
12011 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
12012 per_cu.is_debug_types = 0;
12013 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
12014 per_cu.section = &section;
12015 create_dwo_cu_data.dwo_file = &dwo_file;
12016
12017 init_cutu_and_read_dies_no_follow (
12018 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
12019 info_ptr += per_cu.length;
12020
12021 // If the unit could not be parsed, skip it.
12022 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
12023 continue;
12024
12025 if (cus_htab == NULL)
12026 cus_htab = allocate_dwo_unit_table (objfile);
12027
12028 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12029 *dwo_unit = create_dwo_cu_data.dwo_unit;
12030 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
12031 gdb_assert (slot != NULL);
12032 if (*slot != NULL)
12033 {
12034 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
12035 sect_offset dup_sect_off = dup_cu->sect_off;
12036
12037 complaint (&symfile_complaints,
12038 _("debug cu entry at offset 0x%x is duplicate to"
12039 " the entry at offset 0x%x, signature %s"),
12040 to_underlying (sect_off), to_underlying (dup_sect_off),
12041 hex_string (dwo_unit->signature));
12042 }
12043 *slot = (void *)dwo_unit;
12044 }
12045 }
12046
12047 /* DWP file .debug_{cu,tu}_index section format:
12048 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
12049
12050 DWP Version 1:
12051
12052 Both index sections have the same format, and serve to map a 64-bit
12053 signature to a set of section numbers. Each section begins with a header,
12054 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
12055 indexes, and a pool of 32-bit section numbers. The index sections will be
12056 aligned at 8-byte boundaries in the file.
12057
12058 The index section header consists of:
12059
12060 V, 32 bit version number
12061 -, 32 bits unused
12062 N, 32 bit number of compilation units or type units in the index
12063 M, 32 bit number of slots in the hash table
12064
12065 Numbers are recorded using the byte order of the application binary.
12066
12067 The hash table begins at offset 16 in the section, and consists of an array
12068 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12069 order of the application binary). Unused slots in the hash table are 0.
12070 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12071
12072 The parallel table begins immediately after the hash table
12073 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12074 array of 32-bit indexes (using the byte order of the application binary),
12075 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12076 table contains a 32-bit index into the pool of section numbers. For unused
12077 hash table slots, the corresponding entry in the parallel table will be 0.
12078
12079 The pool of section numbers begins immediately following the hash table
12080 (at offset 16 + 12 * M from the beginning of the section). The pool of
12081 section numbers consists of an array of 32-bit words (using the byte order
12082 of the application binary). Each item in the array is indexed starting
12083 from 0. The hash table entry provides the index of the first section
12084 number in the set. Additional section numbers in the set follow, and the
12085 set is terminated by a 0 entry (section number 0 is not used in ELF).
12086
12087 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12088 section must be the first entry in the set, and the .debug_abbrev.dwo must
12089 be the second entry. Other members of the set may follow in any order.
12090
12091 ---
12092
12093 DWP Version 2:
12094
12095 DWP Version 2 combines all the .debug_info, etc. sections into one,
12096 and the entries in the index tables are now offsets into these sections.
12097 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12098 section.
12099
12100 Index Section Contents:
12101 Header
12102 Hash Table of Signatures dwp_hash_table.hash_table
12103 Parallel Table of Indices dwp_hash_table.unit_table
12104 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12105 Table of Section Sizes dwp_hash_table.v2.sizes
12106
12107 The index section header consists of:
12108
12109 V, 32 bit version number
12110 L, 32 bit number of columns in the table of section offsets
12111 N, 32 bit number of compilation units or type units in the index
12112 M, 32 bit number of slots in the hash table
12113
12114 Numbers are recorded using the byte order of the application binary.
12115
12116 The hash table has the same format as version 1.
12117 The parallel table of indices has the same format as version 1,
12118 except that the entries are origin-1 indices into the table of sections
12119 offsets and the table of section sizes.
12120
12121 The table of offsets begins immediately following the parallel table
12122 (at offset 16 + 12 * M from the beginning of the section). The table is
12123 a two-dimensional array of 32-bit words (using the byte order of the
12124 application binary), with L columns and N+1 rows, in row-major order.
12125 Each row in the array is indexed starting from 0. The first row provides
12126 a key to the remaining rows: each column in this row provides an identifier
12127 for a debug section, and the offsets in the same column of subsequent rows
12128 refer to that section. The section identifiers are:
12129
12130 DW_SECT_INFO 1 .debug_info.dwo
12131 DW_SECT_TYPES 2 .debug_types.dwo
12132 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12133 DW_SECT_LINE 4 .debug_line.dwo
12134 DW_SECT_LOC 5 .debug_loc.dwo
12135 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12136 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12137 DW_SECT_MACRO 8 .debug_macro.dwo
12138
12139 The offsets provided by the CU and TU index sections are the base offsets
12140 for the contributions made by each CU or TU to the corresponding section
12141 in the package file. Each CU and TU header contains an abbrev_offset
12142 field, used to find the abbreviations table for that CU or TU within the
12143 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12144 be interpreted as relative to the base offset given in the index section.
12145 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12146 should be interpreted as relative to the base offset for .debug_line.dwo,
12147 and offsets into other debug sections obtained from DWARF attributes should
12148 also be interpreted as relative to the corresponding base offset.
12149
12150 The table of sizes begins immediately following the table of offsets.
12151 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12152 with L columns and N rows, in row-major order. Each row in the array is
12153 indexed starting from 1 (row 0 is shared by the two tables).
12154
12155 ---
12156
12157 Hash table lookup is handled the same in version 1 and 2:
12158
12159 We assume that N and M will not exceed 2^32 - 1.
12160 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12161
12162 Given a 64-bit compilation unit signature or a type signature S, an entry
12163 in the hash table is located as follows:
12164
12165 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12166 the low-order k bits all set to 1.
12167
12168 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12169
12170 3) If the hash table entry at index H matches the signature, use that
12171 entry. If the hash table entry at index H is unused (all zeroes),
12172 terminate the search: the signature is not present in the table.
12173
12174 4) Let H = (H + H') modulo M. Repeat at Step 3.
12175
12176 Because M > N and H' and M are relatively prime, the search is guaranteed
12177 to stop at an unused slot or find the match. */
12178
12179 /* Create a hash table to map DWO IDs to their CU/TU entry in
12180 .debug_{info,types}.dwo in DWP_FILE.
12181 Returns NULL if there isn't one.
12182 Note: This function processes DWP files only, not DWO files. */
12183
12184 static struct dwp_hash_table *
12185 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12186 struct dwp_file *dwp_file, int is_debug_types)
12187 {
12188 struct objfile *objfile = dwarf2_per_objfile->objfile;
12189 bfd *dbfd = dwp_file->dbfd;
12190 const gdb_byte *index_ptr, *index_end;
12191 struct dwarf2_section_info *index;
12192 uint32_t version, nr_columns, nr_units, nr_slots;
12193 struct dwp_hash_table *htab;
12194
12195 if (is_debug_types)
12196 index = &dwp_file->sections.tu_index;
12197 else
12198 index = &dwp_file->sections.cu_index;
12199
12200 if (dwarf2_section_empty_p (index))
12201 return NULL;
12202 dwarf2_read_section (objfile, index);
12203
12204 index_ptr = index->buffer;
12205 index_end = index_ptr + index->size;
12206
12207 version = read_4_bytes (dbfd, index_ptr);
12208 index_ptr += 4;
12209 if (version == 2)
12210 nr_columns = read_4_bytes (dbfd, index_ptr);
12211 else
12212 nr_columns = 0;
12213 index_ptr += 4;
12214 nr_units = read_4_bytes (dbfd, index_ptr);
12215 index_ptr += 4;
12216 nr_slots = read_4_bytes (dbfd, index_ptr);
12217 index_ptr += 4;
12218
12219 if (version != 1 && version != 2)
12220 {
12221 error (_("Dwarf Error: unsupported DWP file version (%s)"
12222 " [in module %s]"),
12223 pulongest (version), dwp_file->name);
12224 }
12225 if (nr_slots != (nr_slots & -nr_slots))
12226 {
12227 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12228 " is not power of 2 [in module %s]"),
12229 pulongest (nr_slots), dwp_file->name);
12230 }
12231
12232 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12233 htab->version = version;
12234 htab->nr_columns = nr_columns;
12235 htab->nr_units = nr_units;
12236 htab->nr_slots = nr_slots;
12237 htab->hash_table = index_ptr;
12238 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12239
12240 /* Exit early if the table is empty. */
12241 if (nr_slots == 0 || nr_units == 0
12242 || (version == 2 && nr_columns == 0))
12243 {
12244 /* All must be zero. */
12245 if (nr_slots != 0 || nr_units != 0
12246 || (version == 2 && nr_columns != 0))
12247 {
12248 complaint (&symfile_complaints,
12249 _("Empty DWP but nr_slots,nr_units,nr_columns not"
12250 " all zero [in modules %s]"),
12251 dwp_file->name);
12252 }
12253 return htab;
12254 }
12255
12256 if (version == 1)
12257 {
12258 htab->section_pool.v1.indices =
12259 htab->unit_table + sizeof (uint32_t) * nr_slots;
12260 /* It's harder to decide whether the section is too small in v1.
12261 V1 is deprecated anyway so we punt. */
12262 }
12263 else
12264 {
12265 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12266 int *ids = htab->section_pool.v2.section_ids;
12267 /* Reverse map for error checking. */
12268 int ids_seen[DW_SECT_MAX + 1];
12269 int i;
12270
12271 if (nr_columns < 2)
12272 {
12273 error (_("Dwarf Error: bad DWP hash table, too few columns"
12274 " in section table [in module %s]"),
12275 dwp_file->name);
12276 }
12277 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12278 {
12279 error (_("Dwarf Error: bad DWP hash table, too many columns"
12280 " in section table [in module %s]"),
12281 dwp_file->name);
12282 }
12283 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12284 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12285 for (i = 0; i < nr_columns; ++i)
12286 {
12287 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12288
12289 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12290 {
12291 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12292 " in section table [in module %s]"),
12293 id, dwp_file->name);
12294 }
12295 if (ids_seen[id] != -1)
12296 {
12297 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12298 " id %d in section table [in module %s]"),
12299 id, dwp_file->name);
12300 }
12301 ids_seen[id] = i;
12302 ids[i] = id;
12303 }
12304 /* Must have exactly one info or types section. */
12305 if (((ids_seen[DW_SECT_INFO] != -1)
12306 + (ids_seen[DW_SECT_TYPES] != -1))
12307 != 1)
12308 {
12309 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12310 " DWO info/types section [in module %s]"),
12311 dwp_file->name);
12312 }
12313 /* Must have an abbrev section. */
12314 if (ids_seen[DW_SECT_ABBREV] == -1)
12315 {
12316 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12317 " section [in module %s]"),
12318 dwp_file->name);
12319 }
12320 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12321 htab->section_pool.v2.sizes =
12322 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12323 * nr_units * nr_columns);
12324 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12325 * nr_units * nr_columns))
12326 > index_end)
12327 {
12328 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12329 " [in module %s]"),
12330 dwp_file->name);
12331 }
12332 }
12333
12334 return htab;
12335 }
12336
12337 /* Update SECTIONS with the data from SECTP.
12338
12339 This function is like the other "locate" section routines that are
12340 passed to bfd_map_over_sections, but in this context the sections to
12341 read comes from the DWP V1 hash table, not the full ELF section table.
12342
12343 The result is non-zero for success, or zero if an error was found. */
12344
12345 static int
12346 locate_v1_virtual_dwo_sections (asection *sectp,
12347 struct virtual_v1_dwo_sections *sections)
12348 {
12349 const struct dwop_section_names *names = &dwop_section_names;
12350
12351 if (section_is_p (sectp->name, &names->abbrev_dwo))
12352 {
12353 /* There can be only one. */
12354 if (sections->abbrev.s.section != NULL)
12355 return 0;
12356 sections->abbrev.s.section = sectp;
12357 sections->abbrev.size = bfd_get_section_size (sectp);
12358 }
12359 else if (section_is_p (sectp->name, &names->info_dwo)
12360 || section_is_p (sectp->name, &names->types_dwo))
12361 {
12362 /* There can be only one. */
12363 if (sections->info_or_types.s.section != NULL)
12364 return 0;
12365 sections->info_or_types.s.section = sectp;
12366 sections->info_or_types.size = bfd_get_section_size (sectp);
12367 }
12368 else if (section_is_p (sectp->name, &names->line_dwo))
12369 {
12370 /* There can be only one. */
12371 if (sections->line.s.section != NULL)
12372 return 0;
12373 sections->line.s.section = sectp;
12374 sections->line.size = bfd_get_section_size (sectp);
12375 }
12376 else if (section_is_p (sectp->name, &names->loc_dwo))
12377 {
12378 /* There can be only one. */
12379 if (sections->loc.s.section != NULL)
12380 return 0;
12381 sections->loc.s.section = sectp;
12382 sections->loc.size = bfd_get_section_size (sectp);
12383 }
12384 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12385 {
12386 /* There can be only one. */
12387 if (sections->macinfo.s.section != NULL)
12388 return 0;
12389 sections->macinfo.s.section = sectp;
12390 sections->macinfo.size = bfd_get_section_size (sectp);
12391 }
12392 else if (section_is_p (sectp->name, &names->macro_dwo))
12393 {
12394 /* There can be only one. */
12395 if (sections->macro.s.section != NULL)
12396 return 0;
12397 sections->macro.s.section = sectp;
12398 sections->macro.size = bfd_get_section_size (sectp);
12399 }
12400 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12401 {
12402 /* There can be only one. */
12403 if (sections->str_offsets.s.section != NULL)
12404 return 0;
12405 sections->str_offsets.s.section = sectp;
12406 sections->str_offsets.size = bfd_get_section_size (sectp);
12407 }
12408 else
12409 {
12410 /* No other kind of section is valid. */
12411 return 0;
12412 }
12413
12414 return 1;
12415 }
12416
12417 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12418 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12419 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12420 This is for DWP version 1 files. */
12421
12422 static struct dwo_unit *
12423 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12424 struct dwp_file *dwp_file,
12425 uint32_t unit_index,
12426 const char *comp_dir,
12427 ULONGEST signature, int is_debug_types)
12428 {
12429 struct objfile *objfile = dwarf2_per_objfile->objfile;
12430 const struct dwp_hash_table *dwp_htab =
12431 is_debug_types ? dwp_file->tus : dwp_file->cus;
12432 bfd *dbfd = dwp_file->dbfd;
12433 const char *kind = is_debug_types ? "TU" : "CU";
12434 struct dwo_file *dwo_file;
12435 struct dwo_unit *dwo_unit;
12436 struct virtual_v1_dwo_sections sections;
12437 void **dwo_file_slot;
12438 int i;
12439
12440 gdb_assert (dwp_file->version == 1);
12441
12442 if (dwarf_read_debug)
12443 {
12444 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12445 kind,
12446 pulongest (unit_index), hex_string (signature),
12447 dwp_file->name);
12448 }
12449
12450 /* Fetch the sections of this DWO unit.
12451 Put a limit on the number of sections we look for so that bad data
12452 doesn't cause us to loop forever. */
12453
12454 #define MAX_NR_V1_DWO_SECTIONS \
12455 (1 /* .debug_info or .debug_types */ \
12456 + 1 /* .debug_abbrev */ \
12457 + 1 /* .debug_line */ \
12458 + 1 /* .debug_loc */ \
12459 + 1 /* .debug_str_offsets */ \
12460 + 1 /* .debug_macro or .debug_macinfo */ \
12461 + 1 /* trailing zero */)
12462
12463 memset (&sections, 0, sizeof (sections));
12464
12465 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12466 {
12467 asection *sectp;
12468 uint32_t section_nr =
12469 read_4_bytes (dbfd,
12470 dwp_htab->section_pool.v1.indices
12471 + (unit_index + i) * sizeof (uint32_t));
12472
12473 if (section_nr == 0)
12474 break;
12475 if (section_nr >= dwp_file->num_sections)
12476 {
12477 error (_("Dwarf Error: bad DWP hash table, section number too large"
12478 " [in module %s]"),
12479 dwp_file->name);
12480 }
12481
12482 sectp = dwp_file->elf_sections[section_nr];
12483 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12484 {
12485 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12486 " [in module %s]"),
12487 dwp_file->name);
12488 }
12489 }
12490
12491 if (i < 2
12492 || dwarf2_section_empty_p (&sections.info_or_types)
12493 || dwarf2_section_empty_p (&sections.abbrev))
12494 {
12495 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12496 " [in module %s]"),
12497 dwp_file->name);
12498 }
12499 if (i == MAX_NR_V1_DWO_SECTIONS)
12500 {
12501 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12502 " [in module %s]"),
12503 dwp_file->name);
12504 }
12505
12506 /* It's easier for the rest of the code if we fake a struct dwo_file and
12507 have dwo_unit "live" in that. At least for now.
12508
12509 The DWP file can be made up of a random collection of CUs and TUs.
12510 However, for each CU + set of TUs that came from the same original DWO
12511 file, we can combine them back into a virtual DWO file to save space
12512 (fewer struct dwo_file objects to allocate). Remember that for really
12513 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12514
12515 std::string virtual_dwo_name =
12516 string_printf ("virtual-dwo/%d-%d-%d-%d",
12517 get_section_id (&sections.abbrev),
12518 get_section_id (&sections.line),
12519 get_section_id (&sections.loc),
12520 get_section_id (&sections.str_offsets));
12521 /* Can we use an existing virtual DWO file? */
12522 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12523 virtual_dwo_name.c_str (),
12524 comp_dir);
12525 /* Create one if necessary. */
12526 if (*dwo_file_slot == NULL)
12527 {
12528 if (dwarf_read_debug)
12529 {
12530 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12531 virtual_dwo_name.c_str ());
12532 }
12533 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12534 dwo_file->dwo_name
12535 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12536 virtual_dwo_name.c_str (),
12537 virtual_dwo_name.size ());
12538 dwo_file->comp_dir = comp_dir;
12539 dwo_file->sections.abbrev = sections.abbrev;
12540 dwo_file->sections.line = sections.line;
12541 dwo_file->sections.loc = sections.loc;
12542 dwo_file->sections.macinfo = sections.macinfo;
12543 dwo_file->sections.macro = sections.macro;
12544 dwo_file->sections.str_offsets = sections.str_offsets;
12545 /* The "str" section is global to the entire DWP file. */
12546 dwo_file->sections.str = dwp_file->sections.str;
12547 /* The info or types section is assigned below to dwo_unit,
12548 there's no need to record it in dwo_file.
12549 Also, we can't simply record type sections in dwo_file because
12550 we record a pointer into the vector in dwo_unit. As we collect more
12551 types we'll grow the vector and eventually have to reallocate space
12552 for it, invalidating all copies of pointers into the previous
12553 contents. */
12554 *dwo_file_slot = dwo_file;
12555 }
12556 else
12557 {
12558 if (dwarf_read_debug)
12559 {
12560 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12561 virtual_dwo_name.c_str ());
12562 }
12563 dwo_file = (struct dwo_file *) *dwo_file_slot;
12564 }
12565
12566 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12567 dwo_unit->dwo_file = dwo_file;
12568 dwo_unit->signature = signature;
12569 dwo_unit->section =
12570 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12571 *dwo_unit->section = sections.info_or_types;
12572 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12573
12574 return dwo_unit;
12575 }
12576
12577 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12578 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12579 piece within that section used by a TU/CU, return a virtual section
12580 of just that piece. */
12581
12582 static struct dwarf2_section_info
12583 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12584 struct dwarf2_section_info *section,
12585 bfd_size_type offset, bfd_size_type size)
12586 {
12587 struct dwarf2_section_info result;
12588 asection *sectp;
12589
12590 gdb_assert (section != NULL);
12591 gdb_assert (!section->is_virtual);
12592
12593 memset (&result, 0, sizeof (result));
12594 result.s.containing_section = section;
12595 result.is_virtual = 1;
12596
12597 if (size == 0)
12598 return result;
12599
12600 sectp = get_section_bfd_section (section);
12601
12602 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12603 bounds of the real section. This is a pretty-rare event, so just
12604 flag an error (easier) instead of a warning and trying to cope. */
12605 if (sectp == NULL
12606 || offset + size > bfd_get_section_size (sectp))
12607 {
12608 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12609 " in section %s [in module %s]"),
12610 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12611 objfile_name (dwarf2_per_objfile->objfile));
12612 }
12613
12614 result.virtual_offset = offset;
12615 result.size = size;
12616 return result;
12617 }
12618
12619 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12620 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12621 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12622 This is for DWP version 2 files. */
12623
12624 static struct dwo_unit *
12625 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12626 struct dwp_file *dwp_file,
12627 uint32_t unit_index,
12628 const char *comp_dir,
12629 ULONGEST signature, int is_debug_types)
12630 {
12631 struct objfile *objfile = dwarf2_per_objfile->objfile;
12632 const struct dwp_hash_table *dwp_htab =
12633 is_debug_types ? dwp_file->tus : dwp_file->cus;
12634 bfd *dbfd = dwp_file->dbfd;
12635 const char *kind = is_debug_types ? "TU" : "CU";
12636 struct dwo_file *dwo_file;
12637 struct dwo_unit *dwo_unit;
12638 struct virtual_v2_dwo_sections sections;
12639 void **dwo_file_slot;
12640 int i;
12641
12642 gdb_assert (dwp_file->version == 2);
12643
12644 if (dwarf_read_debug)
12645 {
12646 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12647 kind,
12648 pulongest (unit_index), hex_string (signature),
12649 dwp_file->name);
12650 }
12651
12652 /* Fetch the section offsets of this DWO unit. */
12653
12654 memset (&sections, 0, sizeof (sections));
12655
12656 for (i = 0; i < dwp_htab->nr_columns; ++i)
12657 {
12658 uint32_t offset = read_4_bytes (dbfd,
12659 dwp_htab->section_pool.v2.offsets
12660 + (((unit_index - 1) * dwp_htab->nr_columns
12661 + i)
12662 * sizeof (uint32_t)));
12663 uint32_t size = read_4_bytes (dbfd,
12664 dwp_htab->section_pool.v2.sizes
12665 + (((unit_index - 1) * dwp_htab->nr_columns
12666 + i)
12667 * sizeof (uint32_t)));
12668
12669 switch (dwp_htab->section_pool.v2.section_ids[i])
12670 {
12671 case DW_SECT_INFO:
12672 case DW_SECT_TYPES:
12673 sections.info_or_types_offset = offset;
12674 sections.info_or_types_size = size;
12675 break;
12676 case DW_SECT_ABBREV:
12677 sections.abbrev_offset = offset;
12678 sections.abbrev_size = size;
12679 break;
12680 case DW_SECT_LINE:
12681 sections.line_offset = offset;
12682 sections.line_size = size;
12683 break;
12684 case DW_SECT_LOC:
12685 sections.loc_offset = offset;
12686 sections.loc_size = size;
12687 break;
12688 case DW_SECT_STR_OFFSETS:
12689 sections.str_offsets_offset = offset;
12690 sections.str_offsets_size = size;
12691 break;
12692 case DW_SECT_MACINFO:
12693 sections.macinfo_offset = offset;
12694 sections.macinfo_size = size;
12695 break;
12696 case DW_SECT_MACRO:
12697 sections.macro_offset = offset;
12698 sections.macro_size = size;
12699 break;
12700 }
12701 }
12702
12703 /* It's easier for the rest of the code if we fake a struct dwo_file and
12704 have dwo_unit "live" in that. At least for now.
12705
12706 The DWP file can be made up of a random collection of CUs and TUs.
12707 However, for each CU + set of TUs that came from the same original DWO
12708 file, we can combine them back into a virtual DWO file to save space
12709 (fewer struct dwo_file objects to allocate). Remember that for really
12710 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12711
12712 std::string virtual_dwo_name =
12713 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12714 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12715 (long) (sections.line_size ? sections.line_offset : 0),
12716 (long) (sections.loc_size ? sections.loc_offset : 0),
12717 (long) (sections.str_offsets_size
12718 ? sections.str_offsets_offset : 0));
12719 /* Can we use an existing virtual DWO file? */
12720 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12721 virtual_dwo_name.c_str (),
12722 comp_dir);
12723 /* Create one if necessary. */
12724 if (*dwo_file_slot == NULL)
12725 {
12726 if (dwarf_read_debug)
12727 {
12728 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12729 virtual_dwo_name.c_str ());
12730 }
12731 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12732 dwo_file->dwo_name
12733 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12734 virtual_dwo_name.c_str (),
12735 virtual_dwo_name.size ());
12736 dwo_file->comp_dir = comp_dir;
12737 dwo_file->sections.abbrev =
12738 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12739 sections.abbrev_offset, sections.abbrev_size);
12740 dwo_file->sections.line =
12741 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12742 sections.line_offset, sections.line_size);
12743 dwo_file->sections.loc =
12744 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12745 sections.loc_offset, sections.loc_size);
12746 dwo_file->sections.macinfo =
12747 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12748 sections.macinfo_offset, sections.macinfo_size);
12749 dwo_file->sections.macro =
12750 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12751 sections.macro_offset, sections.macro_size);
12752 dwo_file->sections.str_offsets =
12753 create_dwp_v2_section (dwarf2_per_objfile,
12754 &dwp_file->sections.str_offsets,
12755 sections.str_offsets_offset,
12756 sections.str_offsets_size);
12757 /* The "str" section is global to the entire DWP file. */
12758 dwo_file->sections.str = dwp_file->sections.str;
12759 /* The info or types section is assigned below to dwo_unit,
12760 there's no need to record it in dwo_file.
12761 Also, we can't simply record type sections in dwo_file because
12762 we record a pointer into the vector in dwo_unit. As we collect more
12763 types we'll grow the vector and eventually have to reallocate space
12764 for it, invalidating all copies of pointers into the previous
12765 contents. */
12766 *dwo_file_slot = dwo_file;
12767 }
12768 else
12769 {
12770 if (dwarf_read_debug)
12771 {
12772 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12773 virtual_dwo_name.c_str ());
12774 }
12775 dwo_file = (struct dwo_file *) *dwo_file_slot;
12776 }
12777
12778 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12779 dwo_unit->dwo_file = dwo_file;
12780 dwo_unit->signature = signature;
12781 dwo_unit->section =
12782 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12783 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12784 is_debug_types
12785 ? &dwp_file->sections.types
12786 : &dwp_file->sections.info,
12787 sections.info_or_types_offset,
12788 sections.info_or_types_size);
12789 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12790
12791 return dwo_unit;
12792 }
12793
12794 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12795 Returns NULL if the signature isn't found. */
12796
12797 static struct dwo_unit *
12798 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12799 struct dwp_file *dwp_file, const char *comp_dir,
12800 ULONGEST signature, int is_debug_types)
12801 {
12802 const struct dwp_hash_table *dwp_htab =
12803 is_debug_types ? dwp_file->tus : dwp_file->cus;
12804 bfd *dbfd = dwp_file->dbfd;
12805 uint32_t mask = dwp_htab->nr_slots - 1;
12806 uint32_t hash = signature & mask;
12807 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12808 unsigned int i;
12809 void **slot;
12810 struct dwo_unit find_dwo_cu;
12811
12812 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12813 find_dwo_cu.signature = signature;
12814 slot = htab_find_slot (is_debug_types
12815 ? dwp_file->loaded_tus
12816 : dwp_file->loaded_cus,
12817 &find_dwo_cu, INSERT);
12818
12819 if (*slot != NULL)
12820 return (struct dwo_unit *) *slot;
12821
12822 /* Use a for loop so that we don't loop forever on bad debug info. */
12823 for (i = 0; i < dwp_htab->nr_slots; ++i)
12824 {
12825 ULONGEST signature_in_table;
12826
12827 signature_in_table =
12828 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12829 if (signature_in_table == signature)
12830 {
12831 uint32_t unit_index =
12832 read_4_bytes (dbfd,
12833 dwp_htab->unit_table + hash * sizeof (uint32_t));
12834
12835 if (dwp_file->version == 1)
12836 {
12837 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12838 dwp_file, unit_index,
12839 comp_dir, signature,
12840 is_debug_types);
12841 }
12842 else
12843 {
12844 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12845 dwp_file, unit_index,
12846 comp_dir, signature,
12847 is_debug_types);
12848 }
12849 return (struct dwo_unit *) *slot;
12850 }
12851 if (signature_in_table == 0)
12852 return NULL;
12853 hash = (hash + hash2) & mask;
12854 }
12855
12856 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12857 " [in module %s]"),
12858 dwp_file->name);
12859 }
12860
12861 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12862 Open the file specified by FILE_NAME and hand it off to BFD for
12863 preliminary analysis. Return a newly initialized bfd *, which
12864 includes a canonicalized copy of FILE_NAME.
12865 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12866 SEARCH_CWD is true if the current directory is to be searched.
12867 It will be searched before debug-file-directory.
12868 If successful, the file is added to the bfd include table of the
12869 objfile's bfd (see gdb_bfd_record_inclusion).
12870 If unable to find/open the file, return NULL.
12871 NOTE: This function is derived from symfile_bfd_open. */
12872
12873 static gdb_bfd_ref_ptr
12874 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12875 const char *file_name, int is_dwp, int search_cwd)
12876 {
12877 int desc, flags;
12878 char *absolute_name;
12879 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12880 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12881 to debug_file_directory. */
12882 char *search_path;
12883 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12884
12885 if (search_cwd)
12886 {
12887 if (*debug_file_directory != '\0')
12888 search_path = concat (".", dirname_separator_string,
12889 debug_file_directory, (char *) NULL);
12890 else
12891 search_path = xstrdup (".");
12892 }
12893 else
12894 search_path = xstrdup (debug_file_directory);
12895
12896 flags = OPF_RETURN_REALPATH;
12897 if (is_dwp)
12898 flags |= OPF_SEARCH_IN_PATH;
12899 desc = openp (search_path, flags, file_name,
12900 O_RDONLY | O_BINARY, &absolute_name);
12901 xfree (search_path);
12902 if (desc < 0)
12903 return NULL;
12904
12905 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
12906 xfree (absolute_name);
12907 if (sym_bfd == NULL)
12908 return NULL;
12909 bfd_set_cacheable (sym_bfd.get (), 1);
12910
12911 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12912 return NULL;
12913
12914 /* Success. Record the bfd as having been included by the objfile's bfd.
12915 This is important because things like demangled_names_hash lives in the
12916 objfile's per_bfd space and may have references to things like symbol
12917 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12918 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12919
12920 return sym_bfd;
12921 }
12922
12923 /* Try to open DWO file FILE_NAME.
12924 COMP_DIR is the DW_AT_comp_dir attribute.
12925 The result is the bfd handle of the file.
12926 If there is a problem finding or opening the file, return NULL.
12927 Upon success, the canonicalized path of the file is stored in the bfd,
12928 same as symfile_bfd_open. */
12929
12930 static gdb_bfd_ref_ptr
12931 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12932 const char *file_name, const char *comp_dir)
12933 {
12934 if (IS_ABSOLUTE_PATH (file_name))
12935 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12936 0 /*is_dwp*/, 0 /*search_cwd*/);
12937
12938 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12939
12940 if (comp_dir != NULL)
12941 {
12942 char *path_to_try = concat (comp_dir, SLASH_STRING,
12943 file_name, (char *) NULL);
12944
12945 /* NOTE: If comp_dir is a relative path, this will also try the
12946 search path, which seems useful. */
12947 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12948 path_to_try,
12949 0 /*is_dwp*/,
12950 1 /*search_cwd*/));
12951 xfree (path_to_try);
12952 if (abfd != NULL)
12953 return abfd;
12954 }
12955
12956 /* That didn't work, try debug-file-directory, which, despite its name,
12957 is a list of paths. */
12958
12959 if (*debug_file_directory == '\0')
12960 return NULL;
12961
12962 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12963 0 /*is_dwp*/, 1 /*search_cwd*/);
12964 }
12965
12966 /* This function is mapped across the sections and remembers the offset and
12967 size of each of the DWO debugging sections we are interested in. */
12968
12969 static void
12970 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12971 {
12972 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12973 const struct dwop_section_names *names = &dwop_section_names;
12974
12975 if (section_is_p (sectp->name, &names->abbrev_dwo))
12976 {
12977 dwo_sections->abbrev.s.section = sectp;
12978 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12979 }
12980 else if (section_is_p (sectp->name, &names->info_dwo))
12981 {
12982 dwo_sections->info.s.section = sectp;
12983 dwo_sections->info.size = bfd_get_section_size (sectp);
12984 }
12985 else if (section_is_p (sectp->name, &names->line_dwo))
12986 {
12987 dwo_sections->line.s.section = sectp;
12988 dwo_sections->line.size = bfd_get_section_size (sectp);
12989 }
12990 else if (section_is_p (sectp->name, &names->loc_dwo))
12991 {
12992 dwo_sections->loc.s.section = sectp;
12993 dwo_sections->loc.size = bfd_get_section_size (sectp);
12994 }
12995 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12996 {
12997 dwo_sections->macinfo.s.section = sectp;
12998 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12999 }
13000 else if (section_is_p (sectp->name, &names->macro_dwo))
13001 {
13002 dwo_sections->macro.s.section = sectp;
13003 dwo_sections->macro.size = bfd_get_section_size (sectp);
13004 }
13005 else if (section_is_p (sectp->name, &names->str_dwo))
13006 {
13007 dwo_sections->str.s.section = sectp;
13008 dwo_sections->str.size = bfd_get_section_size (sectp);
13009 }
13010 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13011 {
13012 dwo_sections->str_offsets.s.section = sectp;
13013 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
13014 }
13015 else if (section_is_p (sectp->name, &names->types_dwo))
13016 {
13017 struct dwarf2_section_info type_section;
13018
13019 memset (&type_section, 0, sizeof (type_section));
13020 type_section.s.section = sectp;
13021 type_section.size = bfd_get_section_size (sectp);
13022 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
13023 &type_section);
13024 }
13025 }
13026
13027 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
13028 by PER_CU. This is for the non-DWP case.
13029 The result is NULL if DWO_NAME can't be found. */
13030
13031 static struct dwo_file *
13032 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
13033 const char *dwo_name, const char *comp_dir)
13034 {
13035 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
13036 struct objfile *objfile = dwarf2_per_objfile->objfile;
13037 struct dwo_file *dwo_file;
13038 struct cleanup *cleanups;
13039
13040 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
13041 if (dbfd == NULL)
13042 {
13043 if (dwarf_read_debug)
13044 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
13045 return NULL;
13046 }
13047 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
13048 dwo_file->dwo_name = dwo_name;
13049 dwo_file->comp_dir = comp_dir;
13050 dwo_file->dbfd = dbfd.release ();
13051
13052 free_dwo_file_cleanup_data *cleanup_data = XNEW (free_dwo_file_cleanup_data);
13053 cleanup_data->dwo_file = dwo_file;
13054 cleanup_data->dwarf2_per_objfile = dwarf2_per_objfile;
13055
13056 cleanups = make_cleanup (free_dwo_file_cleanup, cleanup_data);
13057
13058 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
13059 &dwo_file->sections);
13060
13061 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13062 dwo_file->cus);
13063
13064 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file,
13065 dwo_file->sections.types, dwo_file->tus);
13066
13067 discard_cleanups (cleanups);
13068
13069 if (dwarf_read_debug)
13070 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13071
13072 return dwo_file;
13073 }
13074
13075 /* This function is mapped across the sections and remembers the offset and
13076 size of each of the DWP debugging sections common to version 1 and 2 that
13077 we are interested in. */
13078
13079 static void
13080 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13081 void *dwp_file_ptr)
13082 {
13083 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13084 const struct dwop_section_names *names = &dwop_section_names;
13085 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13086
13087 /* Record the ELF section number for later lookup: this is what the
13088 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13089 gdb_assert (elf_section_nr < dwp_file->num_sections);
13090 dwp_file->elf_sections[elf_section_nr] = sectp;
13091
13092 /* Look for specific sections that we need. */
13093 if (section_is_p (sectp->name, &names->str_dwo))
13094 {
13095 dwp_file->sections.str.s.section = sectp;
13096 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13097 }
13098 else if (section_is_p (sectp->name, &names->cu_index))
13099 {
13100 dwp_file->sections.cu_index.s.section = sectp;
13101 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13102 }
13103 else if (section_is_p (sectp->name, &names->tu_index))
13104 {
13105 dwp_file->sections.tu_index.s.section = sectp;
13106 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13107 }
13108 }
13109
13110 /* This function is mapped across the sections and remembers the offset and
13111 size of each of the DWP version 2 debugging sections that we are interested
13112 in. This is split into a separate function because we don't know if we
13113 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13114
13115 static void
13116 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13117 {
13118 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13119 const struct dwop_section_names *names = &dwop_section_names;
13120 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13121
13122 /* Record the ELF section number for later lookup: this is what the
13123 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13124 gdb_assert (elf_section_nr < dwp_file->num_sections);
13125 dwp_file->elf_sections[elf_section_nr] = sectp;
13126
13127 /* Look for specific sections that we need. */
13128 if (section_is_p (sectp->name, &names->abbrev_dwo))
13129 {
13130 dwp_file->sections.abbrev.s.section = sectp;
13131 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13132 }
13133 else if (section_is_p (sectp->name, &names->info_dwo))
13134 {
13135 dwp_file->sections.info.s.section = sectp;
13136 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13137 }
13138 else if (section_is_p (sectp->name, &names->line_dwo))
13139 {
13140 dwp_file->sections.line.s.section = sectp;
13141 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13142 }
13143 else if (section_is_p (sectp->name, &names->loc_dwo))
13144 {
13145 dwp_file->sections.loc.s.section = sectp;
13146 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13147 }
13148 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13149 {
13150 dwp_file->sections.macinfo.s.section = sectp;
13151 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13152 }
13153 else if (section_is_p (sectp->name, &names->macro_dwo))
13154 {
13155 dwp_file->sections.macro.s.section = sectp;
13156 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13157 }
13158 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13159 {
13160 dwp_file->sections.str_offsets.s.section = sectp;
13161 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13162 }
13163 else if (section_is_p (sectp->name, &names->types_dwo))
13164 {
13165 dwp_file->sections.types.s.section = sectp;
13166 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13167 }
13168 }
13169
13170 /* Hash function for dwp_file loaded CUs/TUs. */
13171
13172 static hashval_t
13173 hash_dwp_loaded_cutus (const void *item)
13174 {
13175 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13176
13177 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13178 return dwo_unit->signature;
13179 }
13180
13181 /* Equality function for dwp_file loaded CUs/TUs. */
13182
13183 static int
13184 eq_dwp_loaded_cutus (const void *a, const void *b)
13185 {
13186 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13187 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13188
13189 return dua->signature == dub->signature;
13190 }
13191
13192 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13193
13194 static htab_t
13195 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13196 {
13197 return htab_create_alloc_ex (3,
13198 hash_dwp_loaded_cutus,
13199 eq_dwp_loaded_cutus,
13200 NULL,
13201 &objfile->objfile_obstack,
13202 hashtab_obstack_allocate,
13203 dummy_obstack_deallocate);
13204 }
13205
13206 /* Try to open DWP file FILE_NAME.
13207 The result is the bfd handle of the file.
13208 If there is a problem finding or opening the file, return NULL.
13209 Upon success, the canonicalized path of the file is stored in the bfd,
13210 same as symfile_bfd_open. */
13211
13212 static gdb_bfd_ref_ptr
13213 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13214 const char *file_name)
13215 {
13216 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13217 1 /*is_dwp*/,
13218 1 /*search_cwd*/));
13219 if (abfd != NULL)
13220 return abfd;
13221
13222 /* Work around upstream bug 15652.
13223 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13224 [Whether that's a "bug" is debatable, but it is getting in our way.]
13225 We have no real idea where the dwp file is, because gdb's realpath-ing
13226 of the executable's path may have discarded the needed info.
13227 [IWBN if the dwp file name was recorded in the executable, akin to
13228 .gnu_debuglink, but that doesn't exist yet.]
13229 Strip the directory from FILE_NAME and search again. */
13230 if (*debug_file_directory != '\0')
13231 {
13232 /* Don't implicitly search the current directory here.
13233 If the user wants to search "." to handle this case,
13234 it must be added to debug-file-directory. */
13235 return try_open_dwop_file (dwarf2_per_objfile,
13236 lbasename (file_name), 1 /*is_dwp*/,
13237 0 /*search_cwd*/);
13238 }
13239
13240 return NULL;
13241 }
13242
13243 /* Initialize the use of the DWP file for the current objfile.
13244 By convention the name of the DWP file is ${objfile}.dwp.
13245 The result is NULL if it can't be found. */
13246
13247 static struct dwp_file *
13248 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13249 {
13250 struct objfile *objfile = dwarf2_per_objfile->objfile;
13251 struct dwp_file *dwp_file;
13252
13253 /* Try to find first .dwp for the binary file before any symbolic links
13254 resolving. */
13255
13256 /* If the objfile is a debug file, find the name of the real binary
13257 file and get the name of dwp file from there. */
13258 std::string dwp_name;
13259 if (objfile->separate_debug_objfile_backlink != NULL)
13260 {
13261 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13262 const char *backlink_basename = lbasename (backlink->original_name);
13263
13264 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13265 }
13266 else
13267 dwp_name = objfile->original_name;
13268
13269 dwp_name += ".dwp";
13270
13271 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13272 if (dbfd == NULL
13273 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13274 {
13275 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13276 dwp_name = objfile_name (objfile);
13277 dwp_name += ".dwp";
13278 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13279 }
13280
13281 if (dbfd == NULL)
13282 {
13283 if (dwarf_read_debug)
13284 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13285 return NULL;
13286 }
13287 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
13288 dwp_file->name = bfd_get_filename (dbfd.get ());
13289 dwp_file->dbfd = dbfd.release ();
13290
13291 /* +1: section 0 is unused */
13292 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13293 dwp_file->elf_sections =
13294 OBSTACK_CALLOC (&objfile->objfile_obstack,
13295 dwp_file->num_sections, asection *);
13296
13297 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
13298 dwp_file);
13299
13300 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 0);
13301
13302 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 1);
13303
13304 /* The DWP file version is stored in the hash table. Oh well. */
13305 if (dwp_file->cus && dwp_file->tus
13306 && dwp_file->cus->version != dwp_file->tus->version)
13307 {
13308 /* Technically speaking, we should try to limp along, but this is
13309 pretty bizarre. We use pulongest here because that's the established
13310 portability solution (e.g, we cannot use %u for uint32_t). */
13311 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13312 " TU version %s [in DWP file %s]"),
13313 pulongest (dwp_file->cus->version),
13314 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13315 }
13316
13317 if (dwp_file->cus)
13318 dwp_file->version = dwp_file->cus->version;
13319 else if (dwp_file->tus)
13320 dwp_file->version = dwp_file->tus->version;
13321 else
13322 dwp_file->version = 2;
13323
13324 if (dwp_file->version == 2)
13325 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
13326 dwp_file);
13327
13328 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13329 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13330
13331 if (dwarf_read_debug)
13332 {
13333 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13334 fprintf_unfiltered (gdb_stdlog,
13335 " %s CUs, %s TUs\n",
13336 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13337 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13338 }
13339
13340 return dwp_file;
13341 }
13342
13343 /* Wrapper around open_and_init_dwp_file, only open it once. */
13344
13345 static struct dwp_file *
13346 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13347 {
13348 if (! dwarf2_per_objfile->dwp_checked)
13349 {
13350 dwarf2_per_objfile->dwp_file
13351 = open_and_init_dwp_file (dwarf2_per_objfile);
13352 dwarf2_per_objfile->dwp_checked = 1;
13353 }
13354 return dwarf2_per_objfile->dwp_file;
13355 }
13356
13357 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13358 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13359 or in the DWP file for the objfile, referenced by THIS_UNIT.
13360 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13361 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13362
13363 This is called, for example, when wanting to read a variable with a
13364 complex location. Therefore we don't want to do file i/o for every call.
13365 Therefore we don't want to look for a DWO file on every call.
13366 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13367 then we check if we've already seen DWO_NAME, and only THEN do we check
13368 for a DWO file.
13369
13370 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13371 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13372
13373 static struct dwo_unit *
13374 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13375 const char *dwo_name, const char *comp_dir,
13376 ULONGEST signature, int is_debug_types)
13377 {
13378 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13379 struct objfile *objfile = dwarf2_per_objfile->objfile;
13380 const char *kind = is_debug_types ? "TU" : "CU";
13381 void **dwo_file_slot;
13382 struct dwo_file *dwo_file;
13383 struct dwp_file *dwp_file;
13384
13385 /* First see if there's a DWP file.
13386 If we have a DWP file but didn't find the DWO inside it, don't
13387 look for the original DWO file. It makes gdb behave differently
13388 depending on whether one is debugging in the build tree. */
13389
13390 dwp_file = get_dwp_file (dwarf2_per_objfile);
13391 if (dwp_file != NULL)
13392 {
13393 const struct dwp_hash_table *dwp_htab =
13394 is_debug_types ? dwp_file->tus : dwp_file->cus;
13395
13396 if (dwp_htab != NULL)
13397 {
13398 struct dwo_unit *dwo_cutu =
13399 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13400 signature, is_debug_types);
13401
13402 if (dwo_cutu != NULL)
13403 {
13404 if (dwarf_read_debug)
13405 {
13406 fprintf_unfiltered (gdb_stdlog,
13407 "Virtual DWO %s %s found: @%s\n",
13408 kind, hex_string (signature),
13409 host_address_to_string (dwo_cutu));
13410 }
13411 return dwo_cutu;
13412 }
13413 }
13414 }
13415 else
13416 {
13417 /* No DWP file, look for the DWO file. */
13418
13419 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13420 dwo_name, comp_dir);
13421 if (*dwo_file_slot == NULL)
13422 {
13423 /* Read in the file and build a table of the CUs/TUs it contains. */
13424 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13425 }
13426 /* NOTE: This will be NULL if unable to open the file. */
13427 dwo_file = (struct dwo_file *) *dwo_file_slot;
13428
13429 if (dwo_file != NULL)
13430 {
13431 struct dwo_unit *dwo_cutu = NULL;
13432
13433 if (is_debug_types && dwo_file->tus)
13434 {
13435 struct dwo_unit find_dwo_cutu;
13436
13437 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13438 find_dwo_cutu.signature = signature;
13439 dwo_cutu
13440 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13441 }
13442 else if (!is_debug_types && dwo_file->cus)
13443 {
13444 struct dwo_unit find_dwo_cutu;
13445
13446 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13447 find_dwo_cutu.signature = signature;
13448 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13449 &find_dwo_cutu);
13450 }
13451
13452 if (dwo_cutu != NULL)
13453 {
13454 if (dwarf_read_debug)
13455 {
13456 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13457 kind, dwo_name, hex_string (signature),
13458 host_address_to_string (dwo_cutu));
13459 }
13460 return dwo_cutu;
13461 }
13462 }
13463 }
13464
13465 /* We didn't find it. This could mean a dwo_id mismatch, or
13466 someone deleted the DWO/DWP file, or the search path isn't set up
13467 correctly to find the file. */
13468
13469 if (dwarf_read_debug)
13470 {
13471 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13472 kind, dwo_name, hex_string (signature));
13473 }
13474
13475 /* This is a warning and not a complaint because it can be caused by
13476 pilot error (e.g., user accidentally deleting the DWO). */
13477 {
13478 /* Print the name of the DWP file if we looked there, helps the user
13479 better diagnose the problem. */
13480 std::string dwp_text;
13481
13482 if (dwp_file != NULL)
13483 dwp_text = string_printf (" [in DWP file %s]",
13484 lbasename (dwp_file->name));
13485
13486 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
13487 " [in module %s]"),
13488 kind, dwo_name, hex_string (signature),
13489 dwp_text.c_str (),
13490 this_unit->is_debug_types ? "TU" : "CU",
13491 to_underlying (this_unit->sect_off), objfile_name (objfile));
13492 }
13493 return NULL;
13494 }
13495
13496 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13497 See lookup_dwo_cutu_unit for details. */
13498
13499 static struct dwo_unit *
13500 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13501 const char *dwo_name, const char *comp_dir,
13502 ULONGEST signature)
13503 {
13504 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13505 }
13506
13507 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13508 See lookup_dwo_cutu_unit for details. */
13509
13510 static struct dwo_unit *
13511 lookup_dwo_type_unit (struct signatured_type *this_tu,
13512 const char *dwo_name, const char *comp_dir)
13513 {
13514 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13515 }
13516
13517 /* Traversal function for queue_and_load_all_dwo_tus. */
13518
13519 static int
13520 queue_and_load_dwo_tu (void **slot, void *info)
13521 {
13522 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13523 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13524 ULONGEST signature = dwo_unit->signature;
13525 struct signatured_type *sig_type =
13526 lookup_dwo_signatured_type (per_cu->cu, signature);
13527
13528 if (sig_type != NULL)
13529 {
13530 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13531
13532 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13533 a real dependency of PER_CU on SIG_TYPE. That is detected later
13534 while processing PER_CU. */
13535 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13536 load_full_type_unit (sig_cu);
13537 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13538 }
13539
13540 return 1;
13541 }
13542
13543 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13544 The DWO may have the only definition of the type, though it may not be
13545 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13546 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13547
13548 static void
13549 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13550 {
13551 struct dwo_unit *dwo_unit;
13552 struct dwo_file *dwo_file;
13553
13554 gdb_assert (!per_cu->is_debug_types);
13555 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13556 gdb_assert (per_cu->cu != NULL);
13557
13558 dwo_unit = per_cu->cu->dwo_unit;
13559 gdb_assert (dwo_unit != NULL);
13560
13561 dwo_file = dwo_unit->dwo_file;
13562 if (dwo_file->tus != NULL)
13563 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13564 }
13565
13566 /* Free all resources associated with DWO_FILE.
13567 Close the DWO file and munmap the sections.
13568 All memory should be on the objfile obstack. */
13569
13570 static void
13571 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
13572 {
13573
13574 /* Note: dbfd is NULL for virtual DWO files. */
13575 gdb_bfd_unref (dwo_file->dbfd);
13576
13577 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13578 }
13579
13580 /* Wrapper for free_dwo_file for use in cleanups. */
13581
13582 static void
13583 free_dwo_file_cleanup (void *arg)
13584 {
13585 struct free_dwo_file_cleanup_data *data
13586 = (struct free_dwo_file_cleanup_data *) arg;
13587 struct objfile *objfile = data->dwarf2_per_objfile->objfile;
13588
13589 free_dwo_file (data->dwo_file, objfile);
13590
13591 xfree (data);
13592 }
13593
13594 /* Traversal function for free_dwo_files. */
13595
13596 static int
13597 free_dwo_file_from_slot (void **slot, void *info)
13598 {
13599 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13600 struct objfile *objfile = (struct objfile *) info;
13601
13602 free_dwo_file (dwo_file, objfile);
13603
13604 return 1;
13605 }
13606
13607 /* Free all resources associated with DWO_FILES. */
13608
13609 static void
13610 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13611 {
13612 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13613 }
13614 \f
13615 /* Read in various DIEs. */
13616
13617 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13618 Inherit only the children of the DW_AT_abstract_origin DIE not being
13619 already referenced by DW_AT_abstract_origin from the children of the
13620 current DIE. */
13621
13622 static void
13623 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13624 {
13625 struct die_info *child_die;
13626 sect_offset *offsetp;
13627 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13628 struct die_info *origin_die;
13629 /* Iterator of the ORIGIN_DIE children. */
13630 struct die_info *origin_child_die;
13631 struct attribute *attr;
13632 struct dwarf2_cu *origin_cu;
13633 struct pending **origin_previous_list_in_scope;
13634
13635 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13636 if (!attr)
13637 return;
13638
13639 /* Note that following die references may follow to a die in a
13640 different cu. */
13641
13642 origin_cu = cu;
13643 origin_die = follow_die_ref (die, attr, &origin_cu);
13644
13645 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13646 symbols in. */
13647 origin_previous_list_in_scope = origin_cu->list_in_scope;
13648 origin_cu->list_in_scope = cu->list_in_scope;
13649
13650 if (die->tag != origin_die->tag
13651 && !(die->tag == DW_TAG_inlined_subroutine
13652 && origin_die->tag == DW_TAG_subprogram))
13653 complaint (&symfile_complaints,
13654 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
13655 to_underlying (die->sect_off),
13656 to_underlying (origin_die->sect_off));
13657
13658 std::vector<sect_offset> offsets;
13659
13660 for (child_die = die->child;
13661 child_die && child_die->tag;
13662 child_die = sibling_die (child_die))
13663 {
13664 struct die_info *child_origin_die;
13665 struct dwarf2_cu *child_origin_cu;
13666
13667 /* We are trying to process concrete instance entries:
13668 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13669 it's not relevant to our analysis here. i.e. detecting DIEs that are
13670 present in the abstract instance but not referenced in the concrete
13671 one. */
13672 if (child_die->tag == DW_TAG_call_site
13673 || child_die->tag == DW_TAG_GNU_call_site)
13674 continue;
13675
13676 /* For each CHILD_DIE, find the corresponding child of
13677 ORIGIN_DIE. If there is more than one layer of
13678 DW_AT_abstract_origin, follow them all; there shouldn't be,
13679 but GCC versions at least through 4.4 generate this (GCC PR
13680 40573). */
13681 child_origin_die = child_die;
13682 child_origin_cu = cu;
13683 while (1)
13684 {
13685 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13686 child_origin_cu);
13687 if (attr == NULL)
13688 break;
13689 child_origin_die = follow_die_ref (child_origin_die, attr,
13690 &child_origin_cu);
13691 }
13692
13693 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13694 counterpart may exist. */
13695 if (child_origin_die != child_die)
13696 {
13697 if (child_die->tag != child_origin_die->tag
13698 && !(child_die->tag == DW_TAG_inlined_subroutine
13699 && child_origin_die->tag == DW_TAG_subprogram))
13700 complaint (&symfile_complaints,
13701 _("Child DIE 0x%x and its abstract origin 0x%x have "
13702 "different tags"),
13703 to_underlying (child_die->sect_off),
13704 to_underlying (child_origin_die->sect_off));
13705 if (child_origin_die->parent != origin_die)
13706 complaint (&symfile_complaints,
13707 _("Child DIE 0x%x and its abstract origin 0x%x have "
13708 "different parents"),
13709 to_underlying (child_die->sect_off),
13710 to_underlying (child_origin_die->sect_off));
13711 else
13712 offsets.push_back (child_origin_die->sect_off);
13713 }
13714 }
13715 std::sort (offsets.begin (), offsets.end ());
13716 sect_offset *offsets_end = offsets.data () + offsets.size ();
13717 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13718 if (offsetp[-1] == *offsetp)
13719 complaint (&symfile_complaints,
13720 _("Multiple children of DIE 0x%x refer "
13721 "to DIE 0x%x as their abstract origin"),
13722 to_underlying (die->sect_off), to_underlying (*offsetp));
13723
13724 offsetp = offsets.data ();
13725 origin_child_die = origin_die->child;
13726 while (origin_child_die && origin_child_die->tag)
13727 {
13728 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13729 while (offsetp < offsets_end
13730 && *offsetp < origin_child_die->sect_off)
13731 offsetp++;
13732 if (offsetp >= offsets_end
13733 || *offsetp > origin_child_die->sect_off)
13734 {
13735 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13736 Check whether we're already processing ORIGIN_CHILD_DIE.
13737 This can happen with mutually referenced abstract_origins.
13738 PR 16581. */
13739 if (!origin_child_die->in_process)
13740 process_die (origin_child_die, origin_cu);
13741 }
13742 origin_child_die = sibling_die (origin_child_die);
13743 }
13744 origin_cu->list_in_scope = origin_previous_list_in_scope;
13745 }
13746
13747 static void
13748 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13749 {
13750 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13751 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13752 struct context_stack *newobj;
13753 CORE_ADDR lowpc;
13754 CORE_ADDR highpc;
13755 struct die_info *child_die;
13756 struct attribute *attr, *call_line, *call_file;
13757 const char *name;
13758 CORE_ADDR baseaddr;
13759 struct block *block;
13760 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13761 std::vector<struct symbol *> template_args;
13762 struct template_symbol *templ_func = NULL;
13763
13764 if (inlined_func)
13765 {
13766 /* If we do not have call site information, we can't show the
13767 caller of this inlined function. That's too confusing, so
13768 only use the scope for local variables. */
13769 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13770 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13771 if (call_line == NULL || call_file == NULL)
13772 {
13773 read_lexical_block_scope (die, cu);
13774 return;
13775 }
13776 }
13777
13778 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13779
13780 name = dwarf2_name (die, cu);
13781
13782 /* Ignore functions with missing or empty names. These are actually
13783 illegal according to the DWARF standard. */
13784 if (name == NULL)
13785 {
13786 complaint (&symfile_complaints,
13787 _("missing name for subprogram DIE at %d"),
13788 to_underlying (die->sect_off));
13789 return;
13790 }
13791
13792 /* Ignore functions with missing or invalid low and high pc attributes. */
13793 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13794 <= PC_BOUNDS_INVALID)
13795 {
13796 attr = dwarf2_attr (die, DW_AT_external, cu);
13797 if (!attr || !DW_UNSND (attr))
13798 complaint (&symfile_complaints,
13799 _("cannot get low and high bounds "
13800 "for subprogram DIE at %d"),
13801 to_underlying (die->sect_off));
13802 return;
13803 }
13804
13805 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13806 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13807
13808 /* If we have any template arguments, then we must allocate a
13809 different sort of symbol. */
13810 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13811 {
13812 if (child_die->tag == DW_TAG_template_type_param
13813 || child_die->tag == DW_TAG_template_value_param)
13814 {
13815 templ_func = allocate_template_symbol (objfile);
13816 templ_func->subclass = SYMBOL_TEMPLATE;
13817 break;
13818 }
13819 }
13820
13821 newobj = push_context (0, lowpc);
13822 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13823 (struct symbol *) templ_func);
13824
13825 /* If there is a location expression for DW_AT_frame_base, record
13826 it. */
13827 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13828 if (attr)
13829 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13830
13831 /* If there is a location for the static link, record it. */
13832 newobj->static_link = NULL;
13833 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13834 if (attr)
13835 {
13836 newobj->static_link
13837 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13838 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13839 }
13840
13841 cu->list_in_scope = &local_symbols;
13842
13843 if (die->child != NULL)
13844 {
13845 child_die = die->child;
13846 while (child_die && child_die->tag)
13847 {
13848 if (child_die->tag == DW_TAG_template_type_param
13849 || child_die->tag == DW_TAG_template_value_param)
13850 {
13851 struct symbol *arg = new_symbol (child_die, NULL, cu);
13852
13853 if (arg != NULL)
13854 template_args.push_back (arg);
13855 }
13856 else
13857 process_die (child_die, cu);
13858 child_die = sibling_die (child_die);
13859 }
13860 }
13861
13862 inherit_abstract_dies (die, cu);
13863
13864 /* If we have a DW_AT_specification, we might need to import using
13865 directives from the context of the specification DIE. See the
13866 comment in determine_prefix. */
13867 if (cu->language == language_cplus
13868 && dwarf2_attr (die, DW_AT_specification, cu))
13869 {
13870 struct dwarf2_cu *spec_cu = cu;
13871 struct die_info *spec_die = die_specification (die, &spec_cu);
13872
13873 while (spec_die)
13874 {
13875 child_die = spec_die->child;
13876 while (child_die && child_die->tag)
13877 {
13878 if (child_die->tag == DW_TAG_imported_module)
13879 process_die (child_die, spec_cu);
13880 child_die = sibling_die (child_die);
13881 }
13882
13883 /* In some cases, GCC generates specification DIEs that
13884 themselves contain DW_AT_specification attributes. */
13885 spec_die = die_specification (spec_die, &spec_cu);
13886 }
13887 }
13888
13889 newobj = pop_context ();
13890 /* Make a block for the local symbols within. */
13891 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
13892 newobj->static_link, lowpc, highpc);
13893
13894 /* For C++, set the block's scope. */
13895 if ((cu->language == language_cplus
13896 || cu->language == language_fortran
13897 || cu->language == language_d
13898 || cu->language == language_rust)
13899 && cu->processing_has_namespace_info)
13900 block_set_scope (block, determine_prefix (die, cu),
13901 &objfile->objfile_obstack);
13902
13903 /* If we have address ranges, record them. */
13904 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13905
13906 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
13907
13908 /* Attach template arguments to function. */
13909 if (!template_args.empty ())
13910 {
13911 gdb_assert (templ_func != NULL);
13912
13913 templ_func->n_template_arguments = template_args.size ();
13914 templ_func->template_arguments
13915 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13916 templ_func->n_template_arguments);
13917 memcpy (templ_func->template_arguments,
13918 template_args.data (),
13919 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13920 }
13921
13922 /* In C++, we can have functions nested inside functions (e.g., when
13923 a function declares a class that has methods). This means that
13924 when we finish processing a function scope, we may need to go
13925 back to building a containing block's symbol lists. */
13926 local_symbols = newobj->locals;
13927 local_using_directives = newobj->local_using_directives;
13928
13929 /* If we've finished processing a top-level function, subsequent
13930 symbols go in the file symbol list. */
13931 if (outermost_context_p ())
13932 cu->list_in_scope = &file_symbols;
13933 }
13934
13935 /* Process all the DIES contained within a lexical block scope. Start
13936 a new scope, process the dies, and then close the scope. */
13937
13938 static void
13939 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13940 {
13941 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13942 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13943 struct context_stack *newobj;
13944 CORE_ADDR lowpc, highpc;
13945 struct die_info *child_die;
13946 CORE_ADDR baseaddr;
13947
13948 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13949
13950 /* Ignore blocks with missing or invalid low and high pc attributes. */
13951 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13952 as multiple lexical blocks? Handling children in a sane way would
13953 be nasty. Might be easier to properly extend generic blocks to
13954 describe ranges. */
13955 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13956 {
13957 case PC_BOUNDS_NOT_PRESENT:
13958 /* DW_TAG_lexical_block has no attributes, process its children as if
13959 there was no wrapping by that DW_TAG_lexical_block.
13960 GCC does no longer produces such DWARF since GCC r224161. */
13961 for (child_die = die->child;
13962 child_die != NULL && child_die->tag;
13963 child_die = sibling_die (child_die))
13964 process_die (child_die, cu);
13965 return;
13966 case PC_BOUNDS_INVALID:
13967 return;
13968 }
13969 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13970 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13971
13972 push_context (0, lowpc);
13973 if (die->child != NULL)
13974 {
13975 child_die = die->child;
13976 while (child_die && child_die->tag)
13977 {
13978 process_die (child_die, cu);
13979 child_die = sibling_die (child_die);
13980 }
13981 }
13982 inherit_abstract_dies (die, cu);
13983 newobj = pop_context ();
13984
13985 if (local_symbols != NULL || local_using_directives != NULL)
13986 {
13987 struct block *block
13988 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
13989 newobj->start_addr, highpc);
13990
13991 /* Note that recording ranges after traversing children, as we
13992 do here, means that recording a parent's ranges entails
13993 walking across all its children's ranges as they appear in
13994 the address map, which is quadratic behavior.
13995
13996 It would be nicer to record the parent's ranges before
13997 traversing its children, simply overriding whatever you find
13998 there. But since we don't even decide whether to create a
13999 block until after we've traversed its children, that's hard
14000 to do. */
14001 dwarf2_record_block_ranges (die, block, baseaddr, cu);
14002 }
14003 local_symbols = newobj->locals;
14004 local_using_directives = newobj->local_using_directives;
14005 }
14006
14007 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
14008
14009 static void
14010 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
14011 {
14012 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14013 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14014 CORE_ADDR pc, baseaddr;
14015 struct attribute *attr;
14016 struct call_site *call_site, call_site_local;
14017 void **slot;
14018 int nparams;
14019 struct die_info *child_die;
14020
14021 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14022
14023 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
14024 if (attr == NULL)
14025 {
14026 /* This was a pre-DWARF-5 GNU extension alias
14027 for DW_AT_call_return_pc. */
14028 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14029 }
14030 if (!attr)
14031 {
14032 complaint (&symfile_complaints,
14033 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
14034 "DIE 0x%x [in module %s]"),
14035 to_underlying (die->sect_off), objfile_name (objfile));
14036 return;
14037 }
14038 pc = attr_value_as_address (attr) + baseaddr;
14039 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
14040
14041 if (cu->call_site_htab == NULL)
14042 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
14043 NULL, &objfile->objfile_obstack,
14044 hashtab_obstack_allocate, NULL);
14045 call_site_local.pc = pc;
14046 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
14047 if (*slot != NULL)
14048 {
14049 complaint (&symfile_complaints,
14050 _("Duplicate PC %s for DW_TAG_call_site "
14051 "DIE 0x%x [in module %s]"),
14052 paddress (gdbarch, pc), to_underlying (die->sect_off),
14053 objfile_name (objfile));
14054 return;
14055 }
14056
14057 /* Count parameters at the caller. */
14058
14059 nparams = 0;
14060 for (child_die = die->child; child_die && child_die->tag;
14061 child_die = sibling_die (child_die))
14062 {
14063 if (child_die->tag != DW_TAG_call_site_parameter
14064 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14065 {
14066 complaint (&symfile_complaints,
14067 _("Tag %d is not DW_TAG_call_site_parameter in "
14068 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
14069 child_die->tag, to_underlying (child_die->sect_off),
14070 objfile_name (objfile));
14071 continue;
14072 }
14073
14074 nparams++;
14075 }
14076
14077 call_site
14078 = ((struct call_site *)
14079 obstack_alloc (&objfile->objfile_obstack,
14080 sizeof (*call_site)
14081 + (sizeof (*call_site->parameter) * (nparams - 1))));
14082 *slot = call_site;
14083 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14084 call_site->pc = pc;
14085
14086 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14087 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14088 {
14089 struct die_info *func_die;
14090
14091 /* Skip also over DW_TAG_inlined_subroutine. */
14092 for (func_die = die->parent;
14093 func_die && func_die->tag != DW_TAG_subprogram
14094 && func_die->tag != DW_TAG_subroutine_type;
14095 func_die = func_die->parent);
14096
14097 /* DW_AT_call_all_calls is a superset
14098 of DW_AT_call_all_tail_calls. */
14099 if (func_die
14100 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14101 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14102 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14103 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14104 {
14105 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14106 not complete. But keep CALL_SITE for look ups via call_site_htab,
14107 both the initial caller containing the real return address PC and
14108 the final callee containing the current PC of a chain of tail
14109 calls do not need to have the tail call list complete. But any
14110 function candidate for a virtual tail call frame searched via
14111 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14112 determined unambiguously. */
14113 }
14114 else
14115 {
14116 struct type *func_type = NULL;
14117
14118 if (func_die)
14119 func_type = get_die_type (func_die, cu);
14120 if (func_type != NULL)
14121 {
14122 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14123
14124 /* Enlist this call site to the function. */
14125 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14126 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14127 }
14128 else
14129 complaint (&symfile_complaints,
14130 _("Cannot find function owning DW_TAG_call_site "
14131 "DIE 0x%x [in module %s]"),
14132 to_underlying (die->sect_off), objfile_name (objfile));
14133 }
14134 }
14135
14136 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14137 if (attr == NULL)
14138 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14139 if (attr == NULL)
14140 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14141 if (attr == NULL)
14142 {
14143 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14144 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14145 }
14146 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14147 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14148 /* Keep NULL DWARF_BLOCK. */;
14149 else if (attr_form_is_block (attr))
14150 {
14151 struct dwarf2_locexpr_baton *dlbaton;
14152
14153 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14154 dlbaton->data = DW_BLOCK (attr)->data;
14155 dlbaton->size = DW_BLOCK (attr)->size;
14156 dlbaton->per_cu = cu->per_cu;
14157
14158 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14159 }
14160 else if (attr_form_is_ref (attr))
14161 {
14162 struct dwarf2_cu *target_cu = cu;
14163 struct die_info *target_die;
14164
14165 target_die = follow_die_ref (die, attr, &target_cu);
14166 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14167 if (die_is_declaration (target_die, target_cu))
14168 {
14169 const char *target_physname;
14170
14171 /* Prefer the mangled name; otherwise compute the demangled one. */
14172 target_physname = dw2_linkage_name (target_die, target_cu);
14173 if (target_physname == NULL)
14174 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14175 if (target_physname == NULL)
14176 complaint (&symfile_complaints,
14177 _("DW_AT_call_target target DIE has invalid "
14178 "physname, for referencing DIE 0x%x [in module %s]"),
14179 to_underlying (die->sect_off), objfile_name (objfile));
14180 else
14181 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14182 }
14183 else
14184 {
14185 CORE_ADDR lowpc;
14186
14187 /* DW_AT_entry_pc should be preferred. */
14188 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14189 <= PC_BOUNDS_INVALID)
14190 complaint (&symfile_complaints,
14191 _("DW_AT_call_target target DIE has invalid "
14192 "low pc, for referencing DIE 0x%x [in module %s]"),
14193 to_underlying (die->sect_off), objfile_name (objfile));
14194 else
14195 {
14196 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14197 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14198 }
14199 }
14200 }
14201 else
14202 complaint (&symfile_complaints,
14203 _("DW_TAG_call_site DW_AT_call_target is neither "
14204 "block nor reference, for DIE 0x%x [in module %s]"),
14205 to_underlying (die->sect_off), objfile_name (objfile));
14206
14207 call_site->per_cu = cu->per_cu;
14208
14209 for (child_die = die->child;
14210 child_die && child_die->tag;
14211 child_die = sibling_die (child_die))
14212 {
14213 struct call_site_parameter *parameter;
14214 struct attribute *loc, *origin;
14215
14216 if (child_die->tag != DW_TAG_call_site_parameter
14217 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14218 {
14219 /* Already printed the complaint above. */
14220 continue;
14221 }
14222
14223 gdb_assert (call_site->parameter_count < nparams);
14224 parameter = &call_site->parameter[call_site->parameter_count];
14225
14226 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14227 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14228 register is contained in DW_AT_call_value. */
14229
14230 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14231 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14232 if (origin == NULL)
14233 {
14234 /* This was a pre-DWARF-5 GNU extension alias
14235 for DW_AT_call_parameter. */
14236 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14237 }
14238 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14239 {
14240 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14241
14242 sect_offset sect_off
14243 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14244 if (!offset_in_cu_p (&cu->header, sect_off))
14245 {
14246 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14247 binding can be done only inside one CU. Such referenced DIE
14248 therefore cannot be even moved to DW_TAG_partial_unit. */
14249 complaint (&symfile_complaints,
14250 _("DW_AT_call_parameter offset is not in CU for "
14251 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
14252 to_underlying (child_die->sect_off),
14253 objfile_name (objfile));
14254 continue;
14255 }
14256 parameter->u.param_cu_off
14257 = (cu_offset) (sect_off - cu->header.sect_off);
14258 }
14259 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14260 {
14261 complaint (&symfile_complaints,
14262 _("No DW_FORM_block* DW_AT_location for "
14263 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
14264 to_underlying (child_die->sect_off), objfile_name (objfile));
14265 continue;
14266 }
14267 else
14268 {
14269 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14270 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14271 if (parameter->u.dwarf_reg != -1)
14272 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14273 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14274 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14275 &parameter->u.fb_offset))
14276 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14277 else
14278 {
14279 complaint (&symfile_complaints,
14280 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
14281 "for DW_FORM_block* DW_AT_location is supported for "
14282 "DW_TAG_call_site child DIE 0x%x "
14283 "[in module %s]"),
14284 to_underlying (child_die->sect_off),
14285 objfile_name (objfile));
14286 continue;
14287 }
14288 }
14289
14290 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14291 if (attr == NULL)
14292 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14293 if (!attr_form_is_block (attr))
14294 {
14295 complaint (&symfile_complaints,
14296 _("No DW_FORM_block* DW_AT_call_value for "
14297 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
14298 to_underlying (child_die->sect_off),
14299 objfile_name (objfile));
14300 continue;
14301 }
14302 parameter->value = DW_BLOCK (attr)->data;
14303 parameter->value_size = DW_BLOCK (attr)->size;
14304
14305 /* Parameters are not pre-cleared by memset above. */
14306 parameter->data_value = NULL;
14307 parameter->data_value_size = 0;
14308 call_site->parameter_count++;
14309
14310 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14311 if (attr == NULL)
14312 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14313 if (attr)
14314 {
14315 if (!attr_form_is_block (attr))
14316 complaint (&symfile_complaints,
14317 _("No DW_FORM_block* DW_AT_call_data_value for "
14318 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
14319 to_underlying (child_die->sect_off),
14320 objfile_name (objfile));
14321 else
14322 {
14323 parameter->data_value = DW_BLOCK (attr)->data;
14324 parameter->data_value_size = DW_BLOCK (attr)->size;
14325 }
14326 }
14327 }
14328 }
14329
14330 /* Helper function for read_variable. If DIE represents a virtual
14331 table, then return the type of the concrete object that is
14332 associated with the virtual table. Otherwise, return NULL. */
14333
14334 static struct type *
14335 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14336 {
14337 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14338 if (attr == NULL)
14339 return NULL;
14340
14341 /* Find the type DIE. */
14342 struct die_info *type_die = NULL;
14343 struct dwarf2_cu *type_cu = cu;
14344
14345 if (attr_form_is_ref (attr))
14346 type_die = follow_die_ref (die, attr, &type_cu);
14347 if (type_die == NULL)
14348 return NULL;
14349
14350 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14351 return NULL;
14352 return die_containing_type (type_die, type_cu);
14353 }
14354
14355 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14356
14357 static void
14358 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14359 {
14360 struct rust_vtable_symbol *storage = NULL;
14361
14362 if (cu->language == language_rust)
14363 {
14364 struct type *containing_type = rust_containing_type (die, cu);
14365
14366 if (containing_type != NULL)
14367 {
14368 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14369
14370 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14371 struct rust_vtable_symbol);
14372 initialize_objfile_symbol (storage);
14373 storage->concrete_type = containing_type;
14374 storage->subclass = SYMBOL_RUST_VTABLE;
14375 }
14376 }
14377
14378 new_symbol (die, NULL, cu, storage);
14379 }
14380
14381 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14382 reading .debug_rnglists.
14383 Callback's type should be:
14384 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14385 Return true if the attributes are present and valid, otherwise,
14386 return false. */
14387
14388 template <typename Callback>
14389 static bool
14390 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14391 Callback &&callback)
14392 {
14393 struct dwarf2_per_objfile *dwarf2_per_objfile
14394 = cu->per_cu->dwarf2_per_objfile;
14395 struct objfile *objfile = dwarf2_per_objfile->objfile;
14396 bfd *obfd = objfile->obfd;
14397 /* Base address selection entry. */
14398 CORE_ADDR base;
14399 int found_base;
14400 const gdb_byte *buffer;
14401 CORE_ADDR baseaddr;
14402 bool overflow = false;
14403
14404 found_base = cu->base_known;
14405 base = cu->base_address;
14406
14407 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14408 if (offset >= dwarf2_per_objfile->rnglists.size)
14409 {
14410 complaint (&symfile_complaints,
14411 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14412 offset);
14413 return false;
14414 }
14415 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14416
14417 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14418
14419 while (1)
14420 {
14421 /* Initialize it due to a false compiler warning. */
14422 CORE_ADDR range_beginning = 0, range_end = 0;
14423 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14424 + dwarf2_per_objfile->rnglists.size);
14425 unsigned int bytes_read;
14426
14427 if (buffer == buf_end)
14428 {
14429 overflow = true;
14430 break;
14431 }
14432 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14433 switch (rlet)
14434 {
14435 case DW_RLE_end_of_list:
14436 break;
14437 case DW_RLE_base_address:
14438 if (buffer + cu->header.addr_size > buf_end)
14439 {
14440 overflow = true;
14441 break;
14442 }
14443 base = read_address (obfd, buffer, cu, &bytes_read);
14444 found_base = 1;
14445 buffer += bytes_read;
14446 break;
14447 case DW_RLE_start_length:
14448 if (buffer + cu->header.addr_size > buf_end)
14449 {
14450 overflow = true;
14451 break;
14452 }
14453 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14454 buffer += bytes_read;
14455 range_end = (range_beginning
14456 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14457 buffer += bytes_read;
14458 if (buffer > buf_end)
14459 {
14460 overflow = true;
14461 break;
14462 }
14463 break;
14464 case DW_RLE_offset_pair:
14465 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14466 buffer += bytes_read;
14467 if (buffer > buf_end)
14468 {
14469 overflow = true;
14470 break;
14471 }
14472 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14473 buffer += bytes_read;
14474 if (buffer > buf_end)
14475 {
14476 overflow = true;
14477 break;
14478 }
14479 break;
14480 case DW_RLE_start_end:
14481 if (buffer + 2 * cu->header.addr_size > buf_end)
14482 {
14483 overflow = true;
14484 break;
14485 }
14486 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14487 buffer += bytes_read;
14488 range_end = read_address (obfd, buffer, cu, &bytes_read);
14489 buffer += bytes_read;
14490 break;
14491 default:
14492 complaint (&symfile_complaints,
14493 _("Invalid .debug_rnglists data (no base address)"));
14494 return false;
14495 }
14496 if (rlet == DW_RLE_end_of_list || overflow)
14497 break;
14498 if (rlet == DW_RLE_base_address)
14499 continue;
14500
14501 if (!found_base)
14502 {
14503 /* We have no valid base address for the ranges
14504 data. */
14505 complaint (&symfile_complaints,
14506 _("Invalid .debug_rnglists data (no base address)"));
14507 return false;
14508 }
14509
14510 if (range_beginning > range_end)
14511 {
14512 /* Inverted range entries are invalid. */
14513 complaint (&symfile_complaints,
14514 _("Invalid .debug_rnglists data (inverted range)"));
14515 return false;
14516 }
14517
14518 /* Empty range entries have no effect. */
14519 if (range_beginning == range_end)
14520 continue;
14521
14522 range_beginning += base;
14523 range_end += base;
14524
14525 /* A not-uncommon case of bad debug info.
14526 Don't pollute the addrmap with bad data. */
14527 if (range_beginning + baseaddr == 0
14528 && !dwarf2_per_objfile->has_section_at_zero)
14529 {
14530 complaint (&symfile_complaints,
14531 _(".debug_rnglists entry has start address of zero"
14532 " [in module %s]"), objfile_name (objfile));
14533 continue;
14534 }
14535
14536 callback (range_beginning, range_end);
14537 }
14538
14539 if (overflow)
14540 {
14541 complaint (&symfile_complaints,
14542 _("Offset %d is not terminated "
14543 "for DW_AT_ranges attribute"),
14544 offset);
14545 return false;
14546 }
14547
14548 return true;
14549 }
14550
14551 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14552 Callback's type should be:
14553 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14554 Return 1 if the attributes are present and valid, otherwise, return 0. */
14555
14556 template <typename Callback>
14557 static int
14558 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14559 Callback &&callback)
14560 {
14561 struct dwarf2_per_objfile *dwarf2_per_objfile
14562 = cu->per_cu->dwarf2_per_objfile;
14563 struct objfile *objfile = dwarf2_per_objfile->objfile;
14564 struct comp_unit_head *cu_header = &cu->header;
14565 bfd *obfd = objfile->obfd;
14566 unsigned int addr_size = cu_header->addr_size;
14567 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14568 /* Base address selection entry. */
14569 CORE_ADDR base;
14570 int found_base;
14571 unsigned int dummy;
14572 const gdb_byte *buffer;
14573 CORE_ADDR baseaddr;
14574
14575 if (cu_header->version >= 5)
14576 return dwarf2_rnglists_process (offset, cu, callback);
14577
14578 found_base = cu->base_known;
14579 base = cu->base_address;
14580
14581 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14582 if (offset >= dwarf2_per_objfile->ranges.size)
14583 {
14584 complaint (&symfile_complaints,
14585 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14586 offset);
14587 return 0;
14588 }
14589 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14590
14591 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14592
14593 while (1)
14594 {
14595 CORE_ADDR range_beginning, range_end;
14596
14597 range_beginning = read_address (obfd, buffer, cu, &dummy);
14598 buffer += addr_size;
14599 range_end = read_address (obfd, buffer, cu, &dummy);
14600 buffer += addr_size;
14601 offset += 2 * addr_size;
14602
14603 /* An end of list marker is a pair of zero addresses. */
14604 if (range_beginning == 0 && range_end == 0)
14605 /* Found the end of list entry. */
14606 break;
14607
14608 /* Each base address selection entry is a pair of 2 values.
14609 The first is the largest possible address, the second is
14610 the base address. Check for a base address here. */
14611 if ((range_beginning & mask) == mask)
14612 {
14613 /* If we found the largest possible address, then we already
14614 have the base address in range_end. */
14615 base = range_end;
14616 found_base = 1;
14617 continue;
14618 }
14619
14620 if (!found_base)
14621 {
14622 /* We have no valid base address for the ranges
14623 data. */
14624 complaint (&symfile_complaints,
14625 _("Invalid .debug_ranges data (no base address)"));
14626 return 0;
14627 }
14628
14629 if (range_beginning > range_end)
14630 {
14631 /* Inverted range entries are invalid. */
14632 complaint (&symfile_complaints,
14633 _("Invalid .debug_ranges data (inverted range)"));
14634 return 0;
14635 }
14636
14637 /* Empty range entries have no effect. */
14638 if (range_beginning == range_end)
14639 continue;
14640
14641 range_beginning += base;
14642 range_end += base;
14643
14644 /* A not-uncommon case of bad debug info.
14645 Don't pollute the addrmap with bad data. */
14646 if (range_beginning + baseaddr == 0
14647 && !dwarf2_per_objfile->has_section_at_zero)
14648 {
14649 complaint (&symfile_complaints,
14650 _(".debug_ranges entry has start address of zero"
14651 " [in module %s]"), objfile_name (objfile));
14652 continue;
14653 }
14654
14655 callback (range_beginning, range_end);
14656 }
14657
14658 return 1;
14659 }
14660
14661 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14662 Return 1 if the attributes are present and valid, otherwise, return 0.
14663 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14664
14665 static int
14666 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14667 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14668 struct partial_symtab *ranges_pst)
14669 {
14670 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14671 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14672 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14673 SECT_OFF_TEXT (objfile));
14674 int low_set = 0;
14675 CORE_ADDR low = 0;
14676 CORE_ADDR high = 0;
14677 int retval;
14678
14679 retval = dwarf2_ranges_process (offset, cu,
14680 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14681 {
14682 if (ranges_pst != NULL)
14683 {
14684 CORE_ADDR lowpc;
14685 CORE_ADDR highpc;
14686
14687 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14688 range_beginning + baseaddr);
14689 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14690 range_end + baseaddr);
14691 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14692 ranges_pst);
14693 }
14694
14695 /* FIXME: This is recording everything as a low-high
14696 segment of consecutive addresses. We should have a
14697 data structure for discontiguous block ranges
14698 instead. */
14699 if (! low_set)
14700 {
14701 low = range_beginning;
14702 high = range_end;
14703 low_set = 1;
14704 }
14705 else
14706 {
14707 if (range_beginning < low)
14708 low = range_beginning;
14709 if (range_end > high)
14710 high = range_end;
14711 }
14712 });
14713 if (!retval)
14714 return 0;
14715
14716 if (! low_set)
14717 /* If the first entry is an end-of-list marker, the range
14718 describes an empty scope, i.e. no instructions. */
14719 return 0;
14720
14721 if (low_return)
14722 *low_return = low;
14723 if (high_return)
14724 *high_return = high;
14725 return 1;
14726 }
14727
14728 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14729 definition for the return value. *LOWPC and *HIGHPC are set iff
14730 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14731
14732 static enum pc_bounds_kind
14733 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14734 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14735 struct partial_symtab *pst)
14736 {
14737 struct dwarf2_per_objfile *dwarf2_per_objfile
14738 = cu->per_cu->dwarf2_per_objfile;
14739 struct attribute *attr;
14740 struct attribute *attr_high;
14741 CORE_ADDR low = 0;
14742 CORE_ADDR high = 0;
14743 enum pc_bounds_kind ret;
14744
14745 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14746 if (attr_high)
14747 {
14748 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14749 if (attr)
14750 {
14751 low = attr_value_as_address (attr);
14752 high = attr_value_as_address (attr_high);
14753 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14754 high += low;
14755 }
14756 else
14757 /* Found high w/o low attribute. */
14758 return PC_BOUNDS_INVALID;
14759
14760 /* Found consecutive range of addresses. */
14761 ret = PC_BOUNDS_HIGH_LOW;
14762 }
14763 else
14764 {
14765 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14766 if (attr != NULL)
14767 {
14768 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14769 We take advantage of the fact that DW_AT_ranges does not appear
14770 in DW_TAG_compile_unit of DWO files. */
14771 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14772 unsigned int ranges_offset = (DW_UNSND (attr)
14773 + (need_ranges_base
14774 ? cu->ranges_base
14775 : 0));
14776
14777 /* Value of the DW_AT_ranges attribute is the offset in the
14778 .debug_ranges section. */
14779 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14780 return PC_BOUNDS_INVALID;
14781 /* Found discontinuous range of addresses. */
14782 ret = PC_BOUNDS_RANGES;
14783 }
14784 else
14785 return PC_BOUNDS_NOT_PRESENT;
14786 }
14787
14788 /* read_partial_die has also the strict LOW < HIGH requirement. */
14789 if (high <= low)
14790 return PC_BOUNDS_INVALID;
14791
14792 /* When using the GNU linker, .gnu.linkonce. sections are used to
14793 eliminate duplicate copies of functions and vtables and such.
14794 The linker will arbitrarily choose one and discard the others.
14795 The AT_*_pc values for such functions refer to local labels in
14796 these sections. If the section from that file was discarded, the
14797 labels are not in the output, so the relocs get a value of 0.
14798 If this is a discarded function, mark the pc bounds as invalid,
14799 so that GDB will ignore it. */
14800 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14801 return PC_BOUNDS_INVALID;
14802
14803 *lowpc = low;
14804 if (highpc)
14805 *highpc = high;
14806 return ret;
14807 }
14808
14809 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14810 its low and high PC addresses. Do nothing if these addresses could not
14811 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14812 and HIGHPC to the high address if greater than HIGHPC. */
14813
14814 static void
14815 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14816 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14817 struct dwarf2_cu *cu)
14818 {
14819 CORE_ADDR low, high;
14820 struct die_info *child = die->child;
14821
14822 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14823 {
14824 *lowpc = std::min (*lowpc, low);
14825 *highpc = std::max (*highpc, high);
14826 }
14827
14828 /* If the language does not allow nested subprograms (either inside
14829 subprograms or lexical blocks), we're done. */
14830 if (cu->language != language_ada)
14831 return;
14832
14833 /* Check all the children of the given DIE. If it contains nested
14834 subprograms, then check their pc bounds. Likewise, we need to
14835 check lexical blocks as well, as they may also contain subprogram
14836 definitions. */
14837 while (child && child->tag)
14838 {
14839 if (child->tag == DW_TAG_subprogram
14840 || child->tag == DW_TAG_lexical_block)
14841 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14842 child = sibling_die (child);
14843 }
14844 }
14845
14846 /* Get the low and high pc's represented by the scope DIE, and store
14847 them in *LOWPC and *HIGHPC. If the correct values can't be
14848 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14849
14850 static void
14851 get_scope_pc_bounds (struct die_info *die,
14852 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14853 struct dwarf2_cu *cu)
14854 {
14855 CORE_ADDR best_low = (CORE_ADDR) -1;
14856 CORE_ADDR best_high = (CORE_ADDR) 0;
14857 CORE_ADDR current_low, current_high;
14858
14859 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14860 >= PC_BOUNDS_RANGES)
14861 {
14862 best_low = current_low;
14863 best_high = current_high;
14864 }
14865 else
14866 {
14867 struct die_info *child = die->child;
14868
14869 while (child && child->tag)
14870 {
14871 switch (child->tag) {
14872 case DW_TAG_subprogram:
14873 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14874 break;
14875 case DW_TAG_namespace:
14876 case DW_TAG_module:
14877 /* FIXME: carlton/2004-01-16: Should we do this for
14878 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14879 that current GCC's always emit the DIEs corresponding
14880 to definitions of methods of classes as children of a
14881 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14882 the DIEs giving the declarations, which could be
14883 anywhere). But I don't see any reason why the
14884 standards says that they have to be there. */
14885 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14886
14887 if (current_low != ((CORE_ADDR) -1))
14888 {
14889 best_low = std::min (best_low, current_low);
14890 best_high = std::max (best_high, current_high);
14891 }
14892 break;
14893 default:
14894 /* Ignore. */
14895 break;
14896 }
14897
14898 child = sibling_die (child);
14899 }
14900 }
14901
14902 *lowpc = best_low;
14903 *highpc = best_high;
14904 }
14905
14906 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14907 in DIE. */
14908
14909 static void
14910 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14911 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14912 {
14913 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14914 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14915 struct attribute *attr;
14916 struct attribute *attr_high;
14917
14918 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14919 if (attr_high)
14920 {
14921 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14922 if (attr)
14923 {
14924 CORE_ADDR low = attr_value_as_address (attr);
14925 CORE_ADDR high = attr_value_as_address (attr_high);
14926
14927 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14928 high += low;
14929
14930 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14931 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14932 record_block_range (block, low, high - 1);
14933 }
14934 }
14935
14936 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14937 if (attr)
14938 {
14939 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14940 We take advantage of the fact that DW_AT_ranges does not appear
14941 in DW_TAG_compile_unit of DWO files. */
14942 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14943
14944 /* The value of the DW_AT_ranges attribute is the offset of the
14945 address range list in the .debug_ranges section. */
14946 unsigned long offset = (DW_UNSND (attr)
14947 + (need_ranges_base ? cu->ranges_base : 0));
14948 const gdb_byte *buffer;
14949
14950 /* For some target architectures, but not others, the
14951 read_address function sign-extends the addresses it returns.
14952 To recognize base address selection entries, we need a
14953 mask. */
14954 unsigned int addr_size = cu->header.addr_size;
14955 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14956
14957 /* The base address, to which the next pair is relative. Note
14958 that this 'base' is a DWARF concept: most entries in a range
14959 list are relative, to reduce the number of relocs against the
14960 debugging information. This is separate from this function's
14961 'baseaddr' argument, which GDB uses to relocate debugging
14962 information from a shared library based on the address at
14963 which the library was loaded. */
14964 CORE_ADDR base = cu->base_address;
14965 int base_known = cu->base_known;
14966
14967 dwarf2_ranges_process (offset, cu,
14968 [&] (CORE_ADDR start, CORE_ADDR end)
14969 {
14970 start += baseaddr;
14971 end += baseaddr;
14972 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14973 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14974 record_block_range (block, start, end - 1);
14975 });
14976 }
14977 }
14978
14979 /* Check whether the producer field indicates either of GCC < 4.6, or the
14980 Intel C/C++ compiler, and cache the result in CU. */
14981
14982 static void
14983 check_producer (struct dwarf2_cu *cu)
14984 {
14985 int major, minor;
14986
14987 if (cu->producer == NULL)
14988 {
14989 /* For unknown compilers expect their behavior is DWARF version
14990 compliant.
14991
14992 GCC started to support .debug_types sections by -gdwarf-4 since
14993 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14994 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14995 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14996 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14997 }
14998 else if (producer_is_gcc (cu->producer, &major, &minor))
14999 {
15000 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
15001 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
15002 }
15003 else if (producer_is_icc (cu->producer, &major, &minor))
15004 cu->producer_is_icc_lt_14 = major < 14;
15005 else
15006 {
15007 /* For other non-GCC compilers, expect their behavior is DWARF version
15008 compliant. */
15009 }
15010
15011 cu->checked_producer = 1;
15012 }
15013
15014 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
15015 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
15016 during 4.6.0 experimental. */
15017
15018 static int
15019 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
15020 {
15021 if (!cu->checked_producer)
15022 check_producer (cu);
15023
15024 return cu->producer_is_gxx_lt_4_6;
15025 }
15026
15027 /* Return the default accessibility type if it is not overriden by
15028 DW_AT_accessibility. */
15029
15030 static enum dwarf_access_attribute
15031 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
15032 {
15033 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
15034 {
15035 /* The default DWARF 2 accessibility for members is public, the default
15036 accessibility for inheritance is private. */
15037
15038 if (die->tag != DW_TAG_inheritance)
15039 return DW_ACCESS_public;
15040 else
15041 return DW_ACCESS_private;
15042 }
15043 else
15044 {
15045 /* DWARF 3+ defines the default accessibility a different way. The same
15046 rules apply now for DW_TAG_inheritance as for the members and it only
15047 depends on the container kind. */
15048
15049 if (die->parent->tag == DW_TAG_class_type)
15050 return DW_ACCESS_private;
15051 else
15052 return DW_ACCESS_public;
15053 }
15054 }
15055
15056 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
15057 offset. If the attribute was not found return 0, otherwise return
15058 1. If it was found but could not properly be handled, set *OFFSET
15059 to 0. */
15060
15061 static int
15062 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
15063 LONGEST *offset)
15064 {
15065 struct attribute *attr;
15066
15067 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
15068 if (attr != NULL)
15069 {
15070 *offset = 0;
15071
15072 /* Note that we do not check for a section offset first here.
15073 This is because DW_AT_data_member_location is new in DWARF 4,
15074 so if we see it, we can assume that a constant form is really
15075 a constant and not a section offset. */
15076 if (attr_form_is_constant (attr))
15077 *offset = dwarf2_get_attr_constant_value (attr, 0);
15078 else if (attr_form_is_section_offset (attr))
15079 dwarf2_complex_location_expr_complaint ();
15080 else if (attr_form_is_block (attr))
15081 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15082 else
15083 dwarf2_complex_location_expr_complaint ();
15084
15085 return 1;
15086 }
15087
15088 return 0;
15089 }
15090
15091 /* Add an aggregate field to the field list. */
15092
15093 static void
15094 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15095 struct dwarf2_cu *cu)
15096 {
15097 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15098 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15099 struct nextfield *new_field;
15100 struct attribute *attr;
15101 struct field *fp;
15102 const char *fieldname = "";
15103
15104 /* Allocate a new field list entry and link it in. */
15105 new_field = XNEW (struct nextfield);
15106 make_cleanup (xfree, new_field);
15107 memset (new_field, 0, sizeof (struct nextfield));
15108
15109 if (die->tag == DW_TAG_inheritance)
15110 {
15111 new_field->next = fip->baseclasses;
15112 fip->baseclasses = new_field;
15113 }
15114 else
15115 {
15116 new_field->next = fip->fields;
15117 fip->fields = new_field;
15118 }
15119 fip->nfields++;
15120
15121 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15122 if (attr)
15123 new_field->accessibility = DW_UNSND (attr);
15124 else
15125 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15126 if (new_field->accessibility != DW_ACCESS_public)
15127 fip->non_public_fields = 1;
15128
15129 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15130 if (attr)
15131 new_field->virtuality = DW_UNSND (attr);
15132 else
15133 new_field->virtuality = DW_VIRTUALITY_none;
15134
15135 fp = &new_field->field;
15136
15137 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15138 {
15139 LONGEST offset;
15140
15141 /* Data member other than a C++ static data member. */
15142
15143 /* Get type of field. */
15144 fp->type = die_type (die, cu);
15145
15146 SET_FIELD_BITPOS (*fp, 0);
15147
15148 /* Get bit size of field (zero if none). */
15149 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15150 if (attr)
15151 {
15152 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15153 }
15154 else
15155 {
15156 FIELD_BITSIZE (*fp) = 0;
15157 }
15158
15159 /* Get bit offset of field. */
15160 if (handle_data_member_location (die, cu, &offset))
15161 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15162 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15163 if (attr)
15164 {
15165 if (gdbarch_bits_big_endian (gdbarch))
15166 {
15167 /* For big endian bits, the DW_AT_bit_offset gives the
15168 additional bit offset from the MSB of the containing
15169 anonymous object to the MSB of the field. We don't
15170 have to do anything special since we don't need to
15171 know the size of the anonymous object. */
15172 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15173 }
15174 else
15175 {
15176 /* For little endian bits, compute the bit offset to the
15177 MSB of the anonymous object, subtract off the number of
15178 bits from the MSB of the field to the MSB of the
15179 object, and then subtract off the number of bits of
15180 the field itself. The result is the bit offset of
15181 the LSB of the field. */
15182 int anonymous_size;
15183 int bit_offset = DW_UNSND (attr);
15184
15185 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15186 if (attr)
15187 {
15188 /* The size of the anonymous object containing
15189 the bit field is explicit, so use the
15190 indicated size (in bytes). */
15191 anonymous_size = DW_UNSND (attr);
15192 }
15193 else
15194 {
15195 /* The size of the anonymous object containing
15196 the bit field must be inferred from the type
15197 attribute of the data member containing the
15198 bit field. */
15199 anonymous_size = TYPE_LENGTH (fp->type);
15200 }
15201 SET_FIELD_BITPOS (*fp,
15202 (FIELD_BITPOS (*fp)
15203 + anonymous_size * bits_per_byte
15204 - bit_offset - FIELD_BITSIZE (*fp)));
15205 }
15206 }
15207 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15208 if (attr != NULL)
15209 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15210 + dwarf2_get_attr_constant_value (attr, 0)));
15211
15212 /* Get name of field. */
15213 fieldname = dwarf2_name (die, cu);
15214 if (fieldname == NULL)
15215 fieldname = "";
15216
15217 /* The name is already allocated along with this objfile, so we don't
15218 need to duplicate it for the type. */
15219 fp->name = fieldname;
15220
15221 /* Change accessibility for artificial fields (e.g. virtual table
15222 pointer or virtual base class pointer) to private. */
15223 if (dwarf2_attr (die, DW_AT_artificial, cu))
15224 {
15225 FIELD_ARTIFICIAL (*fp) = 1;
15226 new_field->accessibility = DW_ACCESS_private;
15227 fip->non_public_fields = 1;
15228 }
15229 }
15230 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15231 {
15232 /* C++ static member. */
15233
15234 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15235 is a declaration, but all versions of G++ as of this writing
15236 (so through at least 3.2.1) incorrectly generate
15237 DW_TAG_variable tags. */
15238
15239 const char *physname;
15240
15241 /* Get name of field. */
15242 fieldname = dwarf2_name (die, cu);
15243 if (fieldname == NULL)
15244 return;
15245
15246 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15247 if (attr
15248 /* Only create a symbol if this is an external value.
15249 new_symbol checks this and puts the value in the global symbol
15250 table, which we want. If it is not external, new_symbol
15251 will try to put the value in cu->list_in_scope which is wrong. */
15252 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15253 {
15254 /* A static const member, not much different than an enum as far as
15255 we're concerned, except that we can support more types. */
15256 new_symbol (die, NULL, cu);
15257 }
15258
15259 /* Get physical name. */
15260 physname = dwarf2_physname (fieldname, die, cu);
15261
15262 /* The name is already allocated along with this objfile, so we don't
15263 need to duplicate it for the type. */
15264 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15265 FIELD_TYPE (*fp) = die_type (die, cu);
15266 FIELD_NAME (*fp) = fieldname;
15267 }
15268 else if (die->tag == DW_TAG_inheritance)
15269 {
15270 LONGEST offset;
15271
15272 /* C++ base class field. */
15273 if (handle_data_member_location (die, cu, &offset))
15274 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15275 FIELD_BITSIZE (*fp) = 0;
15276 FIELD_TYPE (*fp) = die_type (die, cu);
15277 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
15278 fip->nbaseclasses++;
15279 }
15280 }
15281
15282 /* Can the type given by DIE define another type? */
15283
15284 static bool
15285 type_can_define_types (const struct die_info *die)
15286 {
15287 switch (die->tag)
15288 {
15289 case DW_TAG_typedef:
15290 case DW_TAG_class_type:
15291 case DW_TAG_structure_type:
15292 case DW_TAG_union_type:
15293 case DW_TAG_enumeration_type:
15294 return true;
15295
15296 default:
15297 return false;
15298 }
15299 }
15300
15301 /* Add a type definition defined in the scope of the FIP's class. */
15302
15303 static void
15304 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15305 struct dwarf2_cu *cu)
15306 {
15307 struct decl_field_list *new_field;
15308 struct decl_field *fp;
15309
15310 /* Allocate a new field list entry and link it in. */
15311 new_field = XCNEW (struct decl_field_list);
15312 make_cleanup (xfree, new_field);
15313
15314 gdb_assert (type_can_define_types (die));
15315
15316 fp = &new_field->field;
15317
15318 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15319 fp->name = dwarf2_name (die, cu);
15320 fp->type = read_type_die (die, cu);
15321
15322 /* Save accessibility. */
15323 enum dwarf_access_attribute accessibility;
15324 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15325 if (attr != NULL)
15326 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15327 else
15328 accessibility = dwarf2_default_access_attribute (die, cu);
15329 switch (accessibility)
15330 {
15331 case DW_ACCESS_public:
15332 /* The assumed value if neither private nor protected. */
15333 break;
15334 case DW_ACCESS_private:
15335 fp->is_private = 1;
15336 break;
15337 case DW_ACCESS_protected:
15338 fp->is_protected = 1;
15339 break;
15340 default:
15341 complaint (&symfile_complaints,
15342 _("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15343 }
15344
15345 if (die->tag == DW_TAG_typedef)
15346 {
15347 new_field->next = fip->typedef_field_list;
15348 fip->typedef_field_list = new_field;
15349 fip->typedef_field_list_count++;
15350 }
15351 else
15352 {
15353 new_field->next = fip->nested_types_list;
15354 fip->nested_types_list = new_field;
15355 fip->nested_types_list_count++;
15356 }
15357 }
15358
15359 /* Create the vector of fields, and attach it to the type. */
15360
15361 static void
15362 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15363 struct dwarf2_cu *cu)
15364 {
15365 int nfields = fip->nfields;
15366
15367 /* Record the field count, allocate space for the array of fields,
15368 and create blank accessibility bitfields if necessary. */
15369 TYPE_NFIELDS (type) = nfields;
15370 TYPE_FIELDS (type) = (struct field *)
15371 TYPE_ALLOC (type, sizeof (struct field) * nfields);
15372 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
15373
15374 if (fip->non_public_fields && cu->language != language_ada)
15375 {
15376 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15377
15378 TYPE_FIELD_PRIVATE_BITS (type) =
15379 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15380 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15381
15382 TYPE_FIELD_PROTECTED_BITS (type) =
15383 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15384 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15385
15386 TYPE_FIELD_IGNORE_BITS (type) =
15387 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15388 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15389 }
15390
15391 /* If the type has baseclasses, allocate and clear a bit vector for
15392 TYPE_FIELD_VIRTUAL_BITS. */
15393 if (fip->nbaseclasses && cu->language != language_ada)
15394 {
15395 int num_bytes = B_BYTES (fip->nbaseclasses);
15396 unsigned char *pointer;
15397
15398 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15399 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15400 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15401 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
15402 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
15403 }
15404
15405 /* Copy the saved-up fields into the field vector. Start from the head of
15406 the list, adding to the tail of the field array, so that they end up in
15407 the same order in the array in which they were added to the list. */
15408 while (nfields-- > 0)
15409 {
15410 struct nextfield *fieldp;
15411
15412 if (fip->fields)
15413 {
15414 fieldp = fip->fields;
15415 fip->fields = fieldp->next;
15416 }
15417 else
15418 {
15419 fieldp = fip->baseclasses;
15420 fip->baseclasses = fieldp->next;
15421 }
15422
15423 TYPE_FIELD (type, nfields) = fieldp->field;
15424 switch (fieldp->accessibility)
15425 {
15426 case DW_ACCESS_private:
15427 if (cu->language != language_ada)
15428 SET_TYPE_FIELD_PRIVATE (type, nfields);
15429 break;
15430
15431 case DW_ACCESS_protected:
15432 if (cu->language != language_ada)
15433 SET_TYPE_FIELD_PROTECTED (type, nfields);
15434 break;
15435
15436 case DW_ACCESS_public:
15437 break;
15438
15439 default:
15440 /* Unknown accessibility. Complain and treat it as public. */
15441 {
15442 complaint (&symfile_complaints, _("unsupported accessibility %d"),
15443 fieldp->accessibility);
15444 }
15445 break;
15446 }
15447 if (nfields < fip->nbaseclasses)
15448 {
15449 switch (fieldp->virtuality)
15450 {
15451 case DW_VIRTUALITY_virtual:
15452 case DW_VIRTUALITY_pure_virtual:
15453 if (cu->language == language_ada)
15454 error (_("unexpected virtuality in component of Ada type"));
15455 SET_TYPE_FIELD_VIRTUAL (type, nfields);
15456 break;
15457 }
15458 }
15459 }
15460 }
15461
15462 /* Return true if this member function is a constructor, false
15463 otherwise. */
15464
15465 static int
15466 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15467 {
15468 const char *fieldname;
15469 const char *type_name;
15470 int len;
15471
15472 if (die->parent == NULL)
15473 return 0;
15474
15475 if (die->parent->tag != DW_TAG_structure_type
15476 && die->parent->tag != DW_TAG_union_type
15477 && die->parent->tag != DW_TAG_class_type)
15478 return 0;
15479
15480 fieldname = dwarf2_name (die, cu);
15481 type_name = dwarf2_name (die->parent, cu);
15482 if (fieldname == NULL || type_name == NULL)
15483 return 0;
15484
15485 len = strlen (fieldname);
15486 return (strncmp (fieldname, type_name, len) == 0
15487 && (type_name[len] == '\0' || type_name[len] == '<'));
15488 }
15489
15490 /* Add a member function to the proper fieldlist. */
15491
15492 static void
15493 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15494 struct type *type, struct dwarf2_cu *cu)
15495 {
15496 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15497 struct attribute *attr;
15498 struct fnfieldlist *flp;
15499 int i;
15500 struct fn_field *fnp;
15501 const char *fieldname;
15502 struct nextfnfield *new_fnfield;
15503 struct type *this_type;
15504 enum dwarf_access_attribute accessibility;
15505
15506 if (cu->language == language_ada)
15507 error (_("unexpected member function in Ada type"));
15508
15509 /* Get name of member function. */
15510 fieldname = dwarf2_name (die, cu);
15511 if (fieldname == NULL)
15512 return;
15513
15514 /* Look up member function name in fieldlist. */
15515 for (i = 0; i < fip->nfnfields; i++)
15516 {
15517 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15518 break;
15519 }
15520
15521 /* Create new list element if necessary. */
15522 if (i < fip->nfnfields)
15523 flp = &fip->fnfieldlists[i];
15524 else
15525 {
15526 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
15527 {
15528 fip->fnfieldlists = (struct fnfieldlist *)
15529 xrealloc (fip->fnfieldlists,
15530 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
15531 * sizeof (struct fnfieldlist));
15532 if (fip->nfnfields == 0)
15533 make_cleanup (free_current_contents, &fip->fnfieldlists);
15534 }
15535 flp = &fip->fnfieldlists[fip->nfnfields];
15536 flp->name = fieldname;
15537 flp->length = 0;
15538 flp->head = NULL;
15539 i = fip->nfnfields++;
15540 }
15541
15542 /* Create a new member function field and chain it to the field list
15543 entry. */
15544 new_fnfield = XNEW (struct nextfnfield);
15545 make_cleanup (xfree, new_fnfield);
15546 memset (new_fnfield, 0, sizeof (struct nextfnfield));
15547 new_fnfield->next = flp->head;
15548 flp->head = new_fnfield;
15549 flp->length++;
15550
15551 /* Fill in the member function field info. */
15552 fnp = &new_fnfield->fnfield;
15553
15554 /* Delay processing of the physname until later. */
15555 if (cu->language == language_cplus)
15556 {
15557 add_to_method_list (type, i, flp->length - 1, fieldname,
15558 die, cu);
15559 }
15560 else
15561 {
15562 const char *physname = dwarf2_physname (fieldname, die, cu);
15563 fnp->physname = physname ? physname : "";
15564 }
15565
15566 fnp->type = alloc_type (objfile);
15567 this_type = read_type_die (die, cu);
15568 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15569 {
15570 int nparams = TYPE_NFIELDS (this_type);
15571
15572 /* TYPE is the domain of this method, and THIS_TYPE is the type
15573 of the method itself (TYPE_CODE_METHOD). */
15574 smash_to_method_type (fnp->type, type,
15575 TYPE_TARGET_TYPE (this_type),
15576 TYPE_FIELDS (this_type),
15577 TYPE_NFIELDS (this_type),
15578 TYPE_VARARGS (this_type));
15579
15580 /* Handle static member functions.
15581 Dwarf2 has no clean way to discern C++ static and non-static
15582 member functions. G++ helps GDB by marking the first
15583 parameter for non-static member functions (which is the this
15584 pointer) as artificial. We obtain this information from
15585 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15586 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15587 fnp->voffset = VOFFSET_STATIC;
15588 }
15589 else
15590 complaint (&symfile_complaints, _("member function type missing for '%s'"),
15591 dwarf2_full_name (fieldname, die, cu));
15592
15593 /* Get fcontext from DW_AT_containing_type if present. */
15594 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15595 fnp->fcontext = die_containing_type (die, cu);
15596
15597 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15598 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15599
15600 /* Get accessibility. */
15601 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15602 if (attr)
15603 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15604 else
15605 accessibility = dwarf2_default_access_attribute (die, cu);
15606 switch (accessibility)
15607 {
15608 case DW_ACCESS_private:
15609 fnp->is_private = 1;
15610 break;
15611 case DW_ACCESS_protected:
15612 fnp->is_protected = 1;
15613 break;
15614 }
15615
15616 /* Check for artificial methods. */
15617 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15618 if (attr && DW_UNSND (attr) != 0)
15619 fnp->is_artificial = 1;
15620
15621 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15622
15623 /* Get index in virtual function table if it is a virtual member
15624 function. For older versions of GCC, this is an offset in the
15625 appropriate virtual table, as specified by DW_AT_containing_type.
15626 For everyone else, it is an expression to be evaluated relative
15627 to the object address. */
15628
15629 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15630 if (attr)
15631 {
15632 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15633 {
15634 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15635 {
15636 /* Old-style GCC. */
15637 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15638 }
15639 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15640 || (DW_BLOCK (attr)->size > 1
15641 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15642 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15643 {
15644 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15645 if ((fnp->voffset % cu->header.addr_size) != 0)
15646 dwarf2_complex_location_expr_complaint ();
15647 else
15648 fnp->voffset /= cu->header.addr_size;
15649 fnp->voffset += 2;
15650 }
15651 else
15652 dwarf2_complex_location_expr_complaint ();
15653
15654 if (!fnp->fcontext)
15655 {
15656 /* If there is no `this' field and no DW_AT_containing_type,
15657 we cannot actually find a base class context for the
15658 vtable! */
15659 if (TYPE_NFIELDS (this_type) == 0
15660 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15661 {
15662 complaint (&symfile_complaints,
15663 _("cannot determine context for virtual member "
15664 "function \"%s\" (offset %d)"),
15665 fieldname, to_underlying (die->sect_off));
15666 }
15667 else
15668 {
15669 fnp->fcontext
15670 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15671 }
15672 }
15673 }
15674 else if (attr_form_is_section_offset (attr))
15675 {
15676 dwarf2_complex_location_expr_complaint ();
15677 }
15678 else
15679 {
15680 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15681 fieldname);
15682 }
15683 }
15684 else
15685 {
15686 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15687 if (attr && DW_UNSND (attr))
15688 {
15689 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15690 complaint (&symfile_complaints,
15691 _("Member function \"%s\" (offset %d) is virtual "
15692 "but the vtable offset is not specified"),
15693 fieldname, to_underlying (die->sect_off));
15694 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15695 TYPE_CPLUS_DYNAMIC (type) = 1;
15696 }
15697 }
15698 }
15699
15700 /* Create the vector of member function fields, and attach it to the type. */
15701
15702 static void
15703 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15704 struct dwarf2_cu *cu)
15705 {
15706 struct fnfieldlist *flp;
15707 int i;
15708
15709 if (cu->language == language_ada)
15710 error (_("unexpected member functions in Ada type"));
15711
15712 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15713 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15714 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
15715
15716 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
15717 {
15718 struct nextfnfield *nfp = flp->head;
15719 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15720 int k;
15721
15722 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
15723 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
15724 fn_flp->fn_fields = (struct fn_field *)
15725 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
15726 for (k = flp->length; (k--, nfp); nfp = nfp->next)
15727 fn_flp->fn_fields[k] = nfp->fnfield;
15728 }
15729
15730 TYPE_NFN_FIELDS (type) = fip->nfnfields;
15731 }
15732
15733 /* Returns non-zero if NAME is the name of a vtable member in CU's
15734 language, zero otherwise. */
15735 static int
15736 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15737 {
15738 static const char vptr[] = "_vptr";
15739
15740 /* Look for the C++ form of the vtable. */
15741 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15742 return 1;
15743
15744 return 0;
15745 }
15746
15747 /* GCC outputs unnamed structures that are really pointers to member
15748 functions, with the ABI-specified layout. If TYPE describes
15749 such a structure, smash it into a member function type.
15750
15751 GCC shouldn't do this; it should just output pointer to member DIEs.
15752 This is GCC PR debug/28767. */
15753
15754 static void
15755 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15756 {
15757 struct type *pfn_type, *self_type, *new_type;
15758
15759 /* Check for a structure with no name and two children. */
15760 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15761 return;
15762
15763 /* Check for __pfn and __delta members. */
15764 if (TYPE_FIELD_NAME (type, 0) == NULL
15765 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15766 || TYPE_FIELD_NAME (type, 1) == NULL
15767 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15768 return;
15769
15770 /* Find the type of the method. */
15771 pfn_type = TYPE_FIELD_TYPE (type, 0);
15772 if (pfn_type == NULL
15773 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15774 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15775 return;
15776
15777 /* Look for the "this" argument. */
15778 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15779 if (TYPE_NFIELDS (pfn_type) == 0
15780 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15781 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15782 return;
15783
15784 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15785 new_type = alloc_type (objfile);
15786 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15787 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15788 TYPE_VARARGS (pfn_type));
15789 smash_to_methodptr_type (type, new_type);
15790 }
15791
15792
15793 /* Called when we find the DIE that starts a structure or union scope
15794 (definition) to create a type for the structure or union. Fill in
15795 the type's name and general properties; the members will not be
15796 processed until process_structure_scope. A symbol table entry for
15797 the type will also not be done until process_structure_scope (assuming
15798 the type has a name).
15799
15800 NOTE: we need to call these functions regardless of whether or not the
15801 DIE has a DW_AT_name attribute, since it might be an anonymous
15802 structure or union. This gets the type entered into our set of
15803 user defined types. */
15804
15805 static struct type *
15806 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15807 {
15808 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15809 struct type *type;
15810 struct attribute *attr;
15811 const char *name;
15812
15813 /* If the definition of this type lives in .debug_types, read that type.
15814 Don't follow DW_AT_specification though, that will take us back up
15815 the chain and we want to go down. */
15816 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15817 if (attr)
15818 {
15819 type = get_DW_AT_signature_type (die, attr, cu);
15820
15821 /* The type's CU may not be the same as CU.
15822 Ensure TYPE is recorded with CU in die_type_hash. */
15823 return set_die_type (die, type, cu);
15824 }
15825
15826 type = alloc_type (objfile);
15827 INIT_CPLUS_SPECIFIC (type);
15828
15829 name = dwarf2_name (die, cu);
15830 if (name != NULL)
15831 {
15832 if (cu->language == language_cplus
15833 || cu->language == language_d
15834 || cu->language == language_rust)
15835 {
15836 const char *full_name = dwarf2_full_name (name, die, cu);
15837
15838 /* dwarf2_full_name might have already finished building the DIE's
15839 type. If so, there is no need to continue. */
15840 if (get_die_type (die, cu) != NULL)
15841 return get_die_type (die, cu);
15842
15843 TYPE_TAG_NAME (type) = full_name;
15844 if (die->tag == DW_TAG_structure_type
15845 || die->tag == DW_TAG_class_type)
15846 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15847 }
15848 else
15849 {
15850 /* The name is already allocated along with this objfile, so
15851 we don't need to duplicate it for the type. */
15852 TYPE_TAG_NAME (type) = name;
15853 if (die->tag == DW_TAG_class_type)
15854 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15855 }
15856 }
15857
15858 if (die->tag == DW_TAG_structure_type)
15859 {
15860 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15861 }
15862 else if (die->tag == DW_TAG_union_type)
15863 {
15864 TYPE_CODE (type) = TYPE_CODE_UNION;
15865 }
15866 else
15867 {
15868 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15869 }
15870
15871 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15872 TYPE_DECLARED_CLASS (type) = 1;
15873
15874 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15875 if (attr)
15876 {
15877 if (attr_form_is_constant (attr))
15878 TYPE_LENGTH (type) = DW_UNSND (attr);
15879 else
15880 {
15881 /* For the moment, dynamic type sizes are not supported
15882 by GDB's struct type. The actual size is determined
15883 on-demand when resolving the type of a given object,
15884 so set the type's length to zero for now. Otherwise,
15885 we record an expression as the length, and that expression
15886 could lead to a very large value, which could eventually
15887 lead to us trying to allocate that much memory when creating
15888 a value of that type. */
15889 TYPE_LENGTH (type) = 0;
15890 }
15891 }
15892 else
15893 {
15894 TYPE_LENGTH (type) = 0;
15895 }
15896
15897 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15898 {
15899 /* ICC<14 does not output the required DW_AT_declaration on
15900 incomplete types, but gives them a size of zero. */
15901 TYPE_STUB (type) = 1;
15902 }
15903 else
15904 TYPE_STUB_SUPPORTED (type) = 1;
15905
15906 if (die_is_declaration (die, cu))
15907 TYPE_STUB (type) = 1;
15908 else if (attr == NULL && die->child == NULL
15909 && producer_is_realview (cu->producer))
15910 /* RealView does not output the required DW_AT_declaration
15911 on incomplete types. */
15912 TYPE_STUB (type) = 1;
15913
15914 /* We need to add the type field to the die immediately so we don't
15915 infinitely recurse when dealing with pointers to the structure
15916 type within the structure itself. */
15917 set_die_type (die, type, cu);
15918
15919 /* set_die_type should be already done. */
15920 set_descriptive_type (type, die, cu);
15921
15922 return type;
15923 }
15924
15925 /* Finish creating a structure or union type, including filling in
15926 its members and creating a symbol for it. */
15927
15928 static void
15929 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15930 {
15931 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15932 struct die_info *child_die;
15933 struct type *type;
15934
15935 type = get_die_type (die, cu);
15936 if (type == NULL)
15937 type = read_structure_type (die, cu);
15938
15939 if (die->child != NULL && ! die_is_declaration (die, cu))
15940 {
15941 struct field_info fi;
15942 std::vector<struct symbol *> template_args;
15943 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
15944
15945 memset (&fi, 0, sizeof (struct field_info));
15946
15947 child_die = die->child;
15948
15949 while (child_die && child_die->tag)
15950 {
15951 if (child_die->tag == DW_TAG_member
15952 || child_die->tag == DW_TAG_variable)
15953 {
15954 /* NOTE: carlton/2002-11-05: A C++ static data member
15955 should be a DW_TAG_member that is a declaration, but
15956 all versions of G++ as of this writing (so through at
15957 least 3.2.1) incorrectly generate DW_TAG_variable
15958 tags for them instead. */
15959 dwarf2_add_field (&fi, child_die, cu);
15960 }
15961 else if (child_die->tag == DW_TAG_subprogram)
15962 {
15963 /* Rust doesn't have member functions in the C++ sense.
15964 However, it does emit ordinary functions as children
15965 of a struct DIE. */
15966 if (cu->language == language_rust)
15967 read_func_scope (child_die, cu);
15968 else
15969 {
15970 /* C++ member function. */
15971 dwarf2_add_member_fn (&fi, child_die, type, cu);
15972 }
15973 }
15974 else if (child_die->tag == DW_TAG_inheritance)
15975 {
15976 /* C++ base class field. */
15977 dwarf2_add_field (&fi, child_die, cu);
15978 }
15979 else if (type_can_define_types (child_die))
15980 dwarf2_add_type_defn (&fi, child_die, cu);
15981 else if (child_die->tag == DW_TAG_template_type_param
15982 || child_die->tag == DW_TAG_template_value_param)
15983 {
15984 struct symbol *arg = new_symbol (child_die, NULL, cu);
15985
15986 if (arg != NULL)
15987 template_args.push_back (arg);
15988 }
15989
15990 child_die = sibling_die (child_die);
15991 }
15992
15993 /* Attach template arguments to type. */
15994 if (!template_args.empty ())
15995 {
15996 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15997 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15998 TYPE_TEMPLATE_ARGUMENTS (type)
15999 = XOBNEWVEC (&objfile->objfile_obstack,
16000 struct symbol *,
16001 TYPE_N_TEMPLATE_ARGUMENTS (type));
16002 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16003 template_args.data (),
16004 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16005 * sizeof (struct symbol *)));
16006 }
16007
16008 /* Attach fields and member functions to the type. */
16009 if (fi.nfields)
16010 dwarf2_attach_fields_to_type (&fi, type, cu);
16011 if (fi.nfnfields)
16012 {
16013 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16014
16015 /* Get the type which refers to the base class (possibly this
16016 class itself) which contains the vtable pointer for the current
16017 class from the DW_AT_containing_type attribute. This use of
16018 DW_AT_containing_type is a GNU extension. */
16019
16020 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16021 {
16022 struct type *t = die_containing_type (die, cu);
16023
16024 set_type_vptr_basetype (type, t);
16025 if (type == t)
16026 {
16027 int i;
16028
16029 /* Our own class provides vtbl ptr. */
16030 for (i = TYPE_NFIELDS (t) - 1;
16031 i >= TYPE_N_BASECLASSES (t);
16032 --i)
16033 {
16034 const char *fieldname = TYPE_FIELD_NAME (t, i);
16035
16036 if (is_vtable_name (fieldname, cu))
16037 {
16038 set_type_vptr_fieldno (type, i);
16039 break;
16040 }
16041 }
16042
16043 /* Complain if virtual function table field not found. */
16044 if (i < TYPE_N_BASECLASSES (t))
16045 complaint (&symfile_complaints,
16046 _("virtual function table pointer "
16047 "not found when defining class '%s'"),
16048 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
16049 "");
16050 }
16051 else
16052 {
16053 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16054 }
16055 }
16056 else if (cu->producer
16057 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16058 {
16059 /* The IBM XLC compiler does not provide direct indication
16060 of the containing type, but the vtable pointer is
16061 always named __vfp. */
16062
16063 int i;
16064
16065 for (i = TYPE_NFIELDS (type) - 1;
16066 i >= TYPE_N_BASECLASSES (type);
16067 --i)
16068 {
16069 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16070 {
16071 set_type_vptr_fieldno (type, i);
16072 set_type_vptr_basetype (type, type);
16073 break;
16074 }
16075 }
16076 }
16077 }
16078
16079 /* Copy fi.typedef_field_list linked list elements content into the
16080 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16081 if (fi.typedef_field_list)
16082 {
16083 int i = fi.typedef_field_list_count;
16084
16085 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16086 TYPE_TYPEDEF_FIELD_ARRAY (type)
16087 = ((struct decl_field *)
16088 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
16089 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
16090
16091 /* Reverse the list order to keep the debug info elements order. */
16092 while (--i >= 0)
16093 {
16094 struct decl_field *dest, *src;
16095
16096 dest = &TYPE_TYPEDEF_FIELD (type, i);
16097 src = &fi.typedef_field_list->field;
16098 fi.typedef_field_list = fi.typedef_field_list->next;
16099 *dest = *src;
16100 }
16101 }
16102
16103 /* Copy fi.nested_types_list linked list elements content into the
16104 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16105 if (fi.nested_types_list != NULL && cu->language != language_ada)
16106 {
16107 int i = fi.nested_types_list_count;
16108
16109 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16110 TYPE_NESTED_TYPES_ARRAY (type)
16111 = ((struct decl_field *)
16112 TYPE_ALLOC (type, sizeof (struct decl_field) * i));
16113 TYPE_NESTED_TYPES_COUNT (type) = i;
16114
16115 /* Reverse the list order to keep the debug info elements order. */
16116 while (--i >= 0)
16117 {
16118 struct decl_field *dest, *src;
16119
16120 dest = &TYPE_NESTED_TYPES_FIELD (type, i);
16121 src = &fi.nested_types_list->field;
16122 fi.nested_types_list = fi.nested_types_list->next;
16123 *dest = *src;
16124 }
16125 }
16126
16127 do_cleanups (back_to);
16128 }
16129
16130 quirk_gcc_member_function_pointer (type, objfile);
16131
16132 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16133 snapshots) has been known to create a die giving a declaration
16134 for a class that has, as a child, a die giving a definition for a
16135 nested class. So we have to process our children even if the
16136 current die is a declaration. Normally, of course, a declaration
16137 won't have any children at all. */
16138
16139 child_die = die->child;
16140
16141 while (child_die != NULL && child_die->tag)
16142 {
16143 if (child_die->tag == DW_TAG_member
16144 || child_die->tag == DW_TAG_variable
16145 || child_die->tag == DW_TAG_inheritance
16146 || child_die->tag == DW_TAG_template_value_param
16147 || child_die->tag == DW_TAG_template_type_param)
16148 {
16149 /* Do nothing. */
16150 }
16151 else
16152 process_die (child_die, cu);
16153
16154 child_die = sibling_die (child_die);
16155 }
16156
16157 /* Do not consider external references. According to the DWARF standard,
16158 these DIEs are identified by the fact that they have no byte_size
16159 attribute, and a declaration attribute. */
16160 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16161 || !die_is_declaration (die, cu))
16162 new_symbol (die, type, cu);
16163 }
16164
16165 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16166 update TYPE using some information only available in DIE's children. */
16167
16168 static void
16169 update_enumeration_type_from_children (struct die_info *die,
16170 struct type *type,
16171 struct dwarf2_cu *cu)
16172 {
16173 struct die_info *child_die;
16174 int unsigned_enum = 1;
16175 int flag_enum = 1;
16176 ULONGEST mask = 0;
16177
16178 auto_obstack obstack;
16179
16180 for (child_die = die->child;
16181 child_die != NULL && child_die->tag;
16182 child_die = sibling_die (child_die))
16183 {
16184 struct attribute *attr;
16185 LONGEST value;
16186 const gdb_byte *bytes;
16187 struct dwarf2_locexpr_baton *baton;
16188 const char *name;
16189
16190 if (child_die->tag != DW_TAG_enumerator)
16191 continue;
16192
16193 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16194 if (attr == NULL)
16195 continue;
16196
16197 name = dwarf2_name (child_die, cu);
16198 if (name == NULL)
16199 name = "<anonymous enumerator>";
16200
16201 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16202 &value, &bytes, &baton);
16203 if (value < 0)
16204 {
16205 unsigned_enum = 0;
16206 flag_enum = 0;
16207 }
16208 else if ((mask & value) != 0)
16209 flag_enum = 0;
16210 else
16211 mask |= value;
16212
16213 /* If we already know that the enum type is neither unsigned, nor
16214 a flag type, no need to look at the rest of the enumerates. */
16215 if (!unsigned_enum && !flag_enum)
16216 break;
16217 }
16218
16219 if (unsigned_enum)
16220 TYPE_UNSIGNED (type) = 1;
16221 if (flag_enum)
16222 TYPE_FLAG_ENUM (type) = 1;
16223 }
16224
16225 /* Given a DW_AT_enumeration_type die, set its type. We do not
16226 complete the type's fields yet, or create any symbols. */
16227
16228 static struct type *
16229 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16230 {
16231 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16232 struct type *type;
16233 struct attribute *attr;
16234 const char *name;
16235
16236 /* If the definition of this type lives in .debug_types, read that type.
16237 Don't follow DW_AT_specification though, that will take us back up
16238 the chain and we want to go down. */
16239 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16240 if (attr)
16241 {
16242 type = get_DW_AT_signature_type (die, attr, cu);
16243
16244 /* The type's CU may not be the same as CU.
16245 Ensure TYPE is recorded with CU in die_type_hash. */
16246 return set_die_type (die, type, cu);
16247 }
16248
16249 type = alloc_type (objfile);
16250
16251 TYPE_CODE (type) = TYPE_CODE_ENUM;
16252 name = dwarf2_full_name (NULL, die, cu);
16253 if (name != NULL)
16254 TYPE_TAG_NAME (type) = name;
16255
16256 attr = dwarf2_attr (die, DW_AT_type, cu);
16257 if (attr != NULL)
16258 {
16259 struct type *underlying_type = die_type (die, cu);
16260
16261 TYPE_TARGET_TYPE (type) = underlying_type;
16262 }
16263
16264 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16265 if (attr)
16266 {
16267 TYPE_LENGTH (type) = DW_UNSND (attr);
16268 }
16269 else
16270 {
16271 TYPE_LENGTH (type) = 0;
16272 }
16273
16274 /* The enumeration DIE can be incomplete. In Ada, any type can be
16275 declared as private in the package spec, and then defined only
16276 inside the package body. Such types are known as Taft Amendment
16277 Types. When another package uses such a type, an incomplete DIE
16278 may be generated by the compiler. */
16279 if (die_is_declaration (die, cu))
16280 TYPE_STUB (type) = 1;
16281
16282 /* Finish the creation of this type by using the enum's children.
16283 We must call this even when the underlying type has been provided
16284 so that we can determine if we're looking at a "flag" enum. */
16285 update_enumeration_type_from_children (die, type, cu);
16286
16287 /* If this type has an underlying type that is not a stub, then we
16288 may use its attributes. We always use the "unsigned" attribute
16289 in this situation, because ordinarily we guess whether the type
16290 is unsigned -- but the guess can be wrong and the underlying type
16291 can tell us the reality. However, we defer to a local size
16292 attribute if one exists, because this lets the compiler override
16293 the underlying type if needed. */
16294 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16295 {
16296 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16297 if (TYPE_LENGTH (type) == 0)
16298 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16299 }
16300
16301 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16302
16303 return set_die_type (die, type, cu);
16304 }
16305
16306 /* Given a pointer to a die which begins an enumeration, process all
16307 the dies that define the members of the enumeration, and create the
16308 symbol for the enumeration type.
16309
16310 NOTE: We reverse the order of the element list. */
16311
16312 static void
16313 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16314 {
16315 struct type *this_type;
16316
16317 this_type = get_die_type (die, cu);
16318 if (this_type == NULL)
16319 this_type = read_enumeration_type (die, cu);
16320
16321 if (die->child != NULL)
16322 {
16323 struct die_info *child_die;
16324 struct symbol *sym;
16325 struct field *fields = NULL;
16326 int num_fields = 0;
16327 const char *name;
16328
16329 child_die = die->child;
16330 while (child_die && child_die->tag)
16331 {
16332 if (child_die->tag != DW_TAG_enumerator)
16333 {
16334 process_die (child_die, cu);
16335 }
16336 else
16337 {
16338 name = dwarf2_name (child_die, cu);
16339 if (name)
16340 {
16341 sym = new_symbol (child_die, this_type, cu);
16342
16343 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16344 {
16345 fields = (struct field *)
16346 xrealloc (fields,
16347 (num_fields + DW_FIELD_ALLOC_CHUNK)
16348 * sizeof (struct field));
16349 }
16350
16351 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16352 FIELD_TYPE (fields[num_fields]) = NULL;
16353 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16354 FIELD_BITSIZE (fields[num_fields]) = 0;
16355
16356 num_fields++;
16357 }
16358 }
16359
16360 child_die = sibling_die (child_die);
16361 }
16362
16363 if (num_fields)
16364 {
16365 TYPE_NFIELDS (this_type) = num_fields;
16366 TYPE_FIELDS (this_type) = (struct field *)
16367 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16368 memcpy (TYPE_FIELDS (this_type), fields,
16369 sizeof (struct field) * num_fields);
16370 xfree (fields);
16371 }
16372 }
16373
16374 /* If we are reading an enum from a .debug_types unit, and the enum
16375 is a declaration, and the enum is not the signatured type in the
16376 unit, then we do not want to add a symbol for it. Adding a
16377 symbol would in some cases obscure the true definition of the
16378 enum, giving users an incomplete type when the definition is
16379 actually available. Note that we do not want to do this for all
16380 enums which are just declarations, because C++0x allows forward
16381 enum declarations. */
16382 if (cu->per_cu->is_debug_types
16383 && die_is_declaration (die, cu))
16384 {
16385 struct signatured_type *sig_type;
16386
16387 sig_type = (struct signatured_type *) cu->per_cu;
16388 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16389 if (sig_type->type_offset_in_section != die->sect_off)
16390 return;
16391 }
16392
16393 new_symbol (die, this_type, cu);
16394 }
16395
16396 /* Extract all information from a DW_TAG_array_type DIE and put it in
16397 the DIE's type field. For now, this only handles one dimensional
16398 arrays. */
16399
16400 static struct type *
16401 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16402 {
16403 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16404 struct die_info *child_die;
16405 struct type *type;
16406 struct type *element_type, *range_type, *index_type;
16407 struct attribute *attr;
16408 const char *name;
16409 struct dynamic_prop *byte_stride_prop = NULL;
16410 unsigned int bit_stride = 0;
16411
16412 element_type = die_type (die, cu);
16413
16414 /* The die_type call above may have already set the type for this DIE. */
16415 type = get_die_type (die, cu);
16416 if (type)
16417 return type;
16418
16419 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16420 if (attr != NULL)
16421 {
16422 int stride_ok;
16423
16424 byte_stride_prop
16425 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16426 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16427 if (!stride_ok)
16428 {
16429 complaint (&symfile_complaints,
16430 _("unable to read array DW_AT_byte_stride "
16431 " - DIE at 0x%x [in module %s]"),
16432 to_underlying (die->sect_off),
16433 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16434 /* Ignore this attribute. We will likely not be able to print
16435 arrays of this type correctly, but there is little we can do
16436 to help if we cannot read the attribute's value. */
16437 byte_stride_prop = NULL;
16438 }
16439 }
16440
16441 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16442 if (attr != NULL)
16443 bit_stride = DW_UNSND (attr);
16444
16445 /* Irix 6.2 native cc creates array types without children for
16446 arrays with unspecified length. */
16447 if (die->child == NULL)
16448 {
16449 index_type = objfile_type (objfile)->builtin_int;
16450 range_type = create_static_range_type (NULL, index_type, 0, -1);
16451 type = create_array_type_with_stride (NULL, element_type, range_type,
16452 byte_stride_prop, bit_stride);
16453 return set_die_type (die, type, cu);
16454 }
16455
16456 std::vector<struct type *> range_types;
16457 child_die = die->child;
16458 while (child_die && child_die->tag)
16459 {
16460 if (child_die->tag == DW_TAG_subrange_type)
16461 {
16462 struct type *child_type = read_type_die (child_die, cu);
16463
16464 if (child_type != NULL)
16465 {
16466 /* The range type was succesfully read. Save it for the
16467 array type creation. */
16468 range_types.push_back (child_type);
16469 }
16470 }
16471 child_die = sibling_die (child_die);
16472 }
16473
16474 /* Dwarf2 dimensions are output from left to right, create the
16475 necessary array types in backwards order. */
16476
16477 type = element_type;
16478
16479 if (read_array_order (die, cu) == DW_ORD_col_major)
16480 {
16481 int i = 0;
16482
16483 while (i < range_types.size ())
16484 type = create_array_type_with_stride (NULL, type, range_types[i++],
16485 byte_stride_prop, bit_stride);
16486 }
16487 else
16488 {
16489 size_t ndim = range_types.size ();
16490 while (ndim-- > 0)
16491 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16492 byte_stride_prop, bit_stride);
16493 }
16494
16495 /* Understand Dwarf2 support for vector types (like they occur on
16496 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16497 array type. This is not part of the Dwarf2/3 standard yet, but a
16498 custom vendor extension. The main difference between a regular
16499 array and the vector variant is that vectors are passed by value
16500 to functions. */
16501 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16502 if (attr)
16503 make_vector_type (type);
16504
16505 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16506 implementation may choose to implement triple vectors using this
16507 attribute. */
16508 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16509 if (attr)
16510 {
16511 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16512 TYPE_LENGTH (type) = DW_UNSND (attr);
16513 else
16514 complaint (&symfile_complaints,
16515 _("DW_AT_byte_size for array type smaller "
16516 "than the total size of elements"));
16517 }
16518
16519 name = dwarf2_name (die, cu);
16520 if (name)
16521 TYPE_NAME (type) = name;
16522
16523 /* Install the type in the die. */
16524 set_die_type (die, type, cu);
16525
16526 /* set_die_type should be already done. */
16527 set_descriptive_type (type, die, cu);
16528
16529 return type;
16530 }
16531
16532 static enum dwarf_array_dim_ordering
16533 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16534 {
16535 struct attribute *attr;
16536
16537 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16538
16539 if (attr)
16540 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16541
16542 /* GNU F77 is a special case, as at 08/2004 array type info is the
16543 opposite order to the dwarf2 specification, but data is still
16544 laid out as per normal fortran.
16545
16546 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16547 version checking. */
16548
16549 if (cu->language == language_fortran
16550 && cu->producer && strstr (cu->producer, "GNU F77"))
16551 {
16552 return DW_ORD_row_major;
16553 }
16554
16555 switch (cu->language_defn->la_array_ordering)
16556 {
16557 case array_column_major:
16558 return DW_ORD_col_major;
16559 case array_row_major:
16560 default:
16561 return DW_ORD_row_major;
16562 };
16563 }
16564
16565 /* Extract all information from a DW_TAG_set_type DIE and put it in
16566 the DIE's type field. */
16567
16568 static struct type *
16569 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16570 {
16571 struct type *domain_type, *set_type;
16572 struct attribute *attr;
16573
16574 domain_type = die_type (die, cu);
16575
16576 /* The die_type call above may have already set the type for this DIE. */
16577 set_type = get_die_type (die, cu);
16578 if (set_type)
16579 return set_type;
16580
16581 set_type = create_set_type (NULL, domain_type);
16582
16583 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16584 if (attr)
16585 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16586
16587 return set_die_type (die, set_type, cu);
16588 }
16589
16590 /* A helper for read_common_block that creates a locexpr baton.
16591 SYM is the symbol which we are marking as computed.
16592 COMMON_DIE is the DIE for the common block.
16593 COMMON_LOC is the location expression attribute for the common
16594 block itself.
16595 MEMBER_LOC is the location expression attribute for the particular
16596 member of the common block that we are processing.
16597 CU is the CU from which the above come. */
16598
16599 static void
16600 mark_common_block_symbol_computed (struct symbol *sym,
16601 struct die_info *common_die,
16602 struct attribute *common_loc,
16603 struct attribute *member_loc,
16604 struct dwarf2_cu *cu)
16605 {
16606 struct dwarf2_per_objfile *dwarf2_per_objfile
16607 = cu->per_cu->dwarf2_per_objfile;
16608 struct objfile *objfile = dwarf2_per_objfile->objfile;
16609 struct dwarf2_locexpr_baton *baton;
16610 gdb_byte *ptr;
16611 unsigned int cu_off;
16612 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16613 LONGEST offset = 0;
16614
16615 gdb_assert (common_loc && member_loc);
16616 gdb_assert (attr_form_is_block (common_loc));
16617 gdb_assert (attr_form_is_block (member_loc)
16618 || attr_form_is_constant (member_loc));
16619
16620 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16621 baton->per_cu = cu->per_cu;
16622 gdb_assert (baton->per_cu);
16623
16624 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16625
16626 if (attr_form_is_constant (member_loc))
16627 {
16628 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16629 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16630 }
16631 else
16632 baton->size += DW_BLOCK (member_loc)->size;
16633
16634 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16635 baton->data = ptr;
16636
16637 *ptr++ = DW_OP_call4;
16638 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16639 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16640 ptr += 4;
16641
16642 if (attr_form_is_constant (member_loc))
16643 {
16644 *ptr++ = DW_OP_addr;
16645 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16646 ptr += cu->header.addr_size;
16647 }
16648 else
16649 {
16650 /* We have to copy the data here, because DW_OP_call4 will only
16651 use a DW_AT_location attribute. */
16652 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16653 ptr += DW_BLOCK (member_loc)->size;
16654 }
16655
16656 *ptr++ = DW_OP_plus;
16657 gdb_assert (ptr - baton->data == baton->size);
16658
16659 SYMBOL_LOCATION_BATON (sym) = baton;
16660 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16661 }
16662
16663 /* Create appropriate locally-scoped variables for all the
16664 DW_TAG_common_block entries. Also create a struct common_block
16665 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16666 is used to sepate the common blocks name namespace from regular
16667 variable names. */
16668
16669 static void
16670 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16671 {
16672 struct attribute *attr;
16673
16674 attr = dwarf2_attr (die, DW_AT_location, cu);
16675 if (attr)
16676 {
16677 /* Support the .debug_loc offsets. */
16678 if (attr_form_is_block (attr))
16679 {
16680 /* Ok. */
16681 }
16682 else if (attr_form_is_section_offset (attr))
16683 {
16684 dwarf2_complex_location_expr_complaint ();
16685 attr = NULL;
16686 }
16687 else
16688 {
16689 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16690 "common block member");
16691 attr = NULL;
16692 }
16693 }
16694
16695 if (die->child != NULL)
16696 {
16697 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16698 struct die_info *child_die;
16699 size_t n_entries = 0, size;
16700 struct common_block *common_block;
16701 struct symbol *sym;
16702
16703 for (child_die = die->child;
16704 child_die && child_die->tag;
16705 child_die = sibling_die (child_die))
16706 ++n_entries;
16707
16708 size = (sizeof (struct common_block)
16709 + (n_entries - 1) * sizeof (struct symbol *));
16710 common_block
16711 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16712 size);
16713 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16714 common_block->n_entries = 0;
16715
16716 for (child_die = die->child;
16717 child_die && child_die->tag;
16718 child_die = sibling_die (child_die))
16719 {
16720 /* Create the symbol in the DW_TAG_common_block block in the current
16721 symbol scope. */
16722 sym = new_symbol (child_die, NULL, cu);
16723 if (sym != NULL)
16724 {
16725 struct attribute *member_loc;
16726
16727 common_block->contents[common_block->n_entries++] = sym;
16728
16729 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16730 cu);
16731 if (member_loc)
16732 {
16733 /* GDB has handled this for a long time, but it is
16734 not specified by DWARF. It seems to have been
16735 emitted by gfortran at least as recently as:
16736 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16737 complaint (&symfile_complaints,
16738 _("Variable in common block has "
16739 "DW_AT_data_member_location "
16740 "- DIE at 0x%x [in module %s]"),
16741 to_underlying (child_die->sect_off),
16742 objfile_name (objfile));
16743
16744 if (attr_form_is_section_offset (member_loc))
16745 dwarf2_complex_location_expr_complaint ();
16746 else if (attr_form_is_constant (member_loc)
16747 || attr_form_is_block (member_loc))
16748 {
16749 if (attr)
16750 mark_common_block_symbol_computed (sym, die, attr,
16751 member_loc, cu);
16752 }
16753 else
16754 dwarf2_complex_location_expr_complaint ();
16755 }
16756 }
16757 }
16758
16759 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16760 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16761 }
16762 }
16763
16764 /* Create a type for a C++ namespace. */
16765
16766 static struct type *
16767 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16768 {
16769 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16770 const char *previous_prefix, *name;
16771 int is_anonymous;
16772 struct type *type;
16773
16774 /* For extensions, reuse the type of the original namespace. */
16775 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16776 {
16777 struct die_info *ext_die;
16778 struct dwarf2_cu *ext_cu = cu;
16779
16780 ext_die = dwarf2_extension (die, &ext_cu);
16781 type = read_type_die (ext_die, ext_cu);
16782
16783 /* EXT_CU may not be the same as CU.
16784 Ensure TYPE is recorded with CU in die_type_hash. */
16785 return set_die_type (die, type, cu);
16786 }
16787
16788 name = namespace_name (die, &is_anonymous, cu);
16789
16790 /* Now build the name of the current namespace. */
16791
16792 previous_prefix = determine_prefix (die, cu);
16793 if (previous_prefix[0] != '\0')
16794 name = typename_concat (&objfile->objfile_obstack,
16795 previous_prefix, name, 0, cu);
16796
16797 /* Create the type. */
16798 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16799 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16800
16801 return set_die_type (die, type, cu);
16802 }
16803
16804 /* Read a namespace scope. */
16805
16806 static void
16807 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16808 {
16809 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16810 int is_anonymous;
16811
16812 /* Add a symbol associated to this if we haven't seen the namespace
16813 before. Also, add a using directive if it's an anonymous
16814 namespace. */
16815
16816 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16817 {
16818 struct type *type;
16819
16820 type = read_type_die (die, cu);
16821 new_symbol (die, type, cu);
16822
16823 namespace_name (die, &is_anonymous, cu);
16824 if (is_anonymous)
16825 {
16826 const char *previous_prefix = determine_prefix (die, cu);
16827
16828 std::vector<const char *> excludes;
16829 add_using_directive (using_directives (cu->language),
16830 previous_prefix, TYPE_NAME (type), NULL,
16831 NULL, excludes, 0, &objfile->objfile_obstack);
16832 }
16833 }
16834
16835 if (die->child != NULL)
16836 {
16837 struct die_info *child_die = die->child;
16838
16839 while (child_die && child_die->tag)
16840 {
16841 process_die (child_die, cu);
16842 child_die = sibling_die (child_die);
16843 }
16844 }
16845 }
16846
16847 /* Read a Fortran module as type. This DIE can be only a declaration used for
16848 imported module. Still we need that type as local Fortran "use ... only"
16849 declaration imports depend on the created type in determine_prefix. */
16850
16851 static struct type *
16852 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16853 {
16854 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16855 const char *module_name;
16856 struct type *type;
16857
16858 module_name = dwarf2_name (die, cu);
16859 if (!module_name)
16860 complaint (&symfile_complaints,
16861 _("DW_TAG_module has no name, offset 0x%x"),
16862 to_underlying (die->sect_off));
16863 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16864
16865 /* determine_prefix uses TYPE_TAG_NAME. */
16866 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16867
16868 return set_die_type (die, type, cu);
16869 }
16870
16871 /* Read a Fortran module. */
16872
16873 static void
16874 read_module (struct die_info *die, struct dwarf2_cu *cu)
16875 {
16876 struct die_info *child_die = die->child;
16877 struct type *type;
16878
16879 type = read_type_die (die, cu);
16880 new_symbol (die, type, cu);
16881
16882 while (child_die && child_die->tag)
16883 {
16884 process_die (child_die, cu);
16885 child_die = sibling_die (child_die);
16886 }
16887 }
16888
16889 /* Return the name of the namespace represented by DIE. Set
16890 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16891 namespace. */
16892
16893 static const char *
16894 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16895 {
16896 struct die_info *current_die;
16897 const char *name = NULL;
16898
16899 /* Loop through the extensions until we find a name. */
16900
16901 for (current_die = die;
16902 current_die != NULL;
16903 current_die = dwarf2_extension (die, &cu))
16904 {
16905 /* We don't use dwarf2_name here so that we can detect the absence
16906 of a name -> anonymous namespace. */
16907 name = dwarf2_string_attr (die, DW_AT_name, cu);
16908
16909 if (name != NULL)
16910 break;
16911 }
16912
16913 /* Is it an anonymous namespace? */
16914
16915 *is_anonymous = (name == NULL);
16916 if (*is_anonymous)
16917 name = CP_ANONYMOUS_NAMESPACE_STR;
16918
16919 return name;
16920 }
16921
16922 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16923 the user defined type vector. */
16924
16925 static struct type *
16926 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16927 {
16928 struct gdbarch *gdbarch
16929 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16930 struct comp_unit_head *cu_header = &cu->header;
16931 struct type *type;
16932 struct attribute *attr_byte_size;
16933 struct attribute *attr_address_class;
16934 int byte_size, addr_class;
16935 struct type *target_type;
16936
16937 target_type = die_type (die, cu);
16938
16939 /* The die_type call above may have already set the type for this DIE. */
16940 type = get_die_type (die, cu);
16941 if (type)
16942 return type;
16943
16944 type = lookup_pointer_type (target_type);
16945
16946 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16947 if (attr_byte_size)
16948 byte_size = DW_UNSND (attr_byte_size);
16949 else
16950 byte_size = cu_header->addr_size;
16951
16952 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16953 if (attr_address_class)
16954 addr_class = DW_UNSND (attr_address_class);
16955 else
16956 addr_class = DW_ADDR_none;
16957
16958 /* If the pointer size or address class is different than the
16959 default, create a type variant marked as such and set the
16960 length accordingly. */
16961 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
16962 {
16963 if (gdbarch_address_class_type_flags_p (gdbarch))
16964 {
16965 int type_flags;
16966
16967 type_flags = gdbarch_address_class_type_flags
16968 (gdbarch, byte_size, addr_class);
16969 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16970 == 0);
16971 type = make_type_with_address_space (type, type_flags);
16972 }
16973 else if (TYPE_LENGTH (type) != byte_size)
16974 {
16975 complaint (&symfile_complaints,
16976 _("invalid pointer size %d"), byte_size);
16977 }
16978 else
16979 {
16980 /* Should we also complain about unhandled address classes? */
16981 }
16982 }
16983
16984 TYPE_LENGTH (type) = byte_size;
16985 return set_die_type (die, type, cu);
16986 }
16987
16988 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16989 the user defined type vector. */
16990
16991 static struct type *
16992 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16993 {
16994 struct type *type;
16995 struct type *to_type;
16996 struct type *domain;
16997
16998 to_type = die_type (die, cu);
16999 domain = die_containing_type (die, cu);
17000
17001 /* The calls above may have already set the type for this DIE. */
17002 type = get_die_type (die, cu);
17003 if (type)
17004 return type;
17005
17006 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17007 type = lookup_methodptr_type (to_type);
17008 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17009 {
17010 struct type *new_type
17011 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17012
17013 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17014 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17015 TYPE_VARARGS (to_type));
17016 type = lookup_methodptr_type (new_type);
17017 }
17018 else
17019 type = lookup_memberptr_type (to_type, domain);
17020
17021 return set_die_type (die, type, cu);
17022 }
17023
17024 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17025 the user defined type vector. */
17026
17027 static struct type *
17028 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17029 enum type_code refcode)
17030 {
17031 struct comp_unit_head *cu_header = &cu->header;
17032 struct type *type, *target_type;
17033 struct attribute *attr;
17034
17035 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17036
17037 target_type = die_type (die, cu);
17038
17039 /* The die_type call above may have already set the type for this DIE. */
17040 type = get_die_type (die, cu);
17041 if (type)
17042 return type;
17043
17044 type = lookup_reference_type (target_type, refcode);
17045 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17046 if (attr)
17047 {
17048 TYPE_LENGTH (type) = DW_UNSND (attr);
17049 }
17050 else
17051 {
17052 TYPE_LENGTH (type) = cu_header->addr_size;
17053 }
17054 return set_die_type (die, type, cu);
17055 }
17056
17057 /* Add the given cv-qualifiers to the element type of the array. GCC
17058 outputs DWARF type qualifiers that apply to an array, not the
17059 element type. But GDB relies on the array element type to carry
17060 the cv-qualifiers. This mimics section 6.7.3 of the C99
17061 specification. */
17062
17063 static struct type *
17064 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17065 struct type *base_type, int cnst, int voltl)
17066 {
17067 struct type *el_type, *inner_array;
17068
17069 base_type = copy_type (base_type);
17070 inner_array = base_type;
17071
17072 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17073 {
17074 TYPE_TARGET_TYPE (inner_array) =
17075 copy_type (TYPE_TARGET_TYPE (inner_array));
17076 inner_array = TYPE_TARGET_TYPE (inner_array);
17077 }
17078
17079 el_type = TYPE_TARGET_TYPE (inner_array);
17080 cnst |= TYPE_CONST (el_type);
17081 voltl |= TYPE_VOLATILE (el_type);
17082 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17083
17084 return set_die_type (die, base_type, cu);
17085 }
17086
17087 static struct type *
17088 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17089 {
17090 struct type *base_type, *cv_type;
17091
17092 base_type = die_type (die, cu);
17093
17094 /* The die_type call above may have already set the type for this DIE. */
17095 cv_type = get_die_type (die, cu);
17096 if (cv_type)
17097 return cv_type;
17098
17099 /* In case the const qualifier is applied to an array type, the element type
17100 is so qualified, not the array type (section 6.7.3 of C99). */
17101 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17102 return add_array_cv_type (die, cu, base_type, 1, 0);
17103
17104 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17105 return set_die_type (die, cv_type, cu);
17106 }
17107
17108 static struct type *
17109 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17110 {
17111 struct type *base_type, *cv_type;
17112
17113 base_type = die_type (die, cu);
17114
17115 /* The die_type call above may have already set the type for this DIE. */
17116 cv_type = get_die_type (die, cu);
17117 if (cv_type)
17118 return cv_type;
17119
17120 /* In case the volatile qualifier is applied to an array type, the
17121 element type is so qualified, not the array type (section 6.7.3
17122 of C99). */
17123 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17124 return add_array_cv_type (die, cu, base_type, 0, 1);
17125
17126 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17127 return set_die_type (die, cv_type, cu);
17128 }
17129
17130 /* Handle DW_TAG_restrict_type. */
17131
17132 static struct type *
17133 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17134 {
17135 struct type *base_type, *cv_type;
17136
17137 base_type = die_type (die, cu);
17138
17139 /* The die_type call above may have already set the type for this DIE. */
17140 cv_type = get_die_type (die, cu);
17141 if (cv_type)
17142 return cv_type;
17143
17144 cv_type = make_restrict_type (base_type);
17145 return set_die_type (die, cv_type, cu);
17146 }
17147
17148 /* Handle DW_TAG_atomic_type. */
17149
17150 static struct type *
17151 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17152 {
17153 struct type *base_type, *cv_type;
17154
17155 base_type = die_type (die, cu);
17156
17157 /* The die_type call above may have already set the type for this DIE. */
17158 cv_type = get_die_type (die, cu);
17159 if (cv_type)
17160 return cv_type;
17161
17162 cv_type = make_atomic_type (base_type);
17163 return set_die_type (die, cv_type, cu);
17164 }
17165
17166 /* Extract all information from a DW_TAG_string_type DIE and add to
17167 the user defined type vector. It isn't really a user defined type,
17168 but it behaves like one, with other DIE's using an AT_user_def_type
17169 attribute to reference it. */
17170
17171 static struct type *
17172 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17173 {
17174 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17175 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17176 struct type *type, *range_type, *index_type, *char_type;
17177 struct attribute *attr;
17178 unsigned int length;
17179
17180 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17181 if (attr)
17182 {
17183 length = DW_UNSND (attr);
17184 }
17185 else
17186 {
17187 /* Check for the DW_AT_byte_size attribute. */
17188 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17189 if (attr)
17190 {
17191 length = DW_UNSND (attr);
17192 }
17193 else
17194 {
17195 length = 1;
17196 }
17197 }
17198
17199 index_type = objfile_type (objfile)->builtin_int;
17200 range_type = create_static_range_type (NULL, index_type, 1, length);
17201 char_type = language_string_char_type (cu->language_defn, gdbarch);
17202 type = create_string_type (NULL, char_type, range_type);
17203
17204 return set_die_type (die, type, cu);
17205 }
17206
17207 /* Assuming that DIE corresponds to a function, returns nonzero
17208 if the function is prototyped. */
17209
17210 static int
17211 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17212 {
17213 struct attribute *attr;
17214
17215 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17216 if (attr && (DW_UNSND (attr) != 0))
17217 return 1;
17218
17219 /* The DWARF standard implies that the DW_AT_prototyped attribute
17220 is only meaninful for C, but the concept also extends to other
17221 languages that allow unprototyped functions (Eg: Objective C).
17222 For all other languages, assume that functions are always
17223 prototyped. */
17224 if (cu->language != language_c
17225 && cu->language != language_objc
17226 && cu->language != language_opencl)
17227 return 1;
17228
17229 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17230 prototyped and unprototyped functions; default to prototyped,
17231 since that is more common in modern code (and RealView warns
17232 about unprototyped functions). */
17233 if (producer_is_realview (cu->producer))
17234 return 1;
17235
17236 return 0;
17237 }
17238
17239 /* Handle DIES due to C code like:
17240
17241 struct foo
17242 {
17243 int (*funcp)(int a, long l);
17244 int b;
17245 };
17246
17247 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17248
17249 static struct type *
17250 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17251 {
17252 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17253 struct type *type; /* Type that this function returns. */
17254 struct type *ftype; /* Function that returns above type. */
17255 struct attribute *attr;
17256
17257 type = die_type (die, cu);
17258
17259 /* The die_type call above may have already set the type for this DIE. */
17260 ftype = get_die_type (die, cu);
17261 if (ftype)
17262 return ftype;
17263
17264 ftype = lookup_function_type (type);
17265
17266 if (prototyped_function_p (die, cu))
17267 TYPE_PROTOTYPED (ftype) = 1;
17268
17269 /* Store the calling convention in the type if it's available in
17270 the subroutine die. Otherwise set the calling convention to
17271 the default value DW_CC_normal. */
17272 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17273 if (attr)
17274 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17275 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17276 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17277 else
17278 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17279
17280 /* Record whether the function returns normally to its caller or not
17281 if the DWARF producer set that information. */
17282 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17283 if (attr && (DW_UNSND (attr) != 0))
17284 TYPE_NO_RETURN (ftype) = 1;
17285
17286 /* We need to add the subroutine type to the die immediately so
17287 we don't infinitely recurse when dealing with parameters
17288 declared as the same subroutine type. */
17289 set_die_type (die, ftype, cu);
17290
17291 if (die->child != NULL)
17292 {
17293 struct type *void_type = objfile_type (objfile)->builtin_void;
17294 struct die_info *child_die;
17295 int nparams, iparams;
17296
17297 /* Count the number of parameters.
17298 FIXME: GDB currently ignores vararg functions, but knows about
17299 vararg member functions. */
17300 nparams = 0;
17301 child_die = die->child;
17302 while (child_die && child_die->tag)
17303 {
17304 if (child_die->tag == DW_TAG_formal_parameter)
17305 nparams++;
17306 else if (child_die->tag == DW_TAG_unspecified_parameters)
17307 TYPE_VARARGS (ftype) = 1;
17308 child_die = sibling_die (child_die);
17309 }
17310
17311 /* Allocate storage for parameters and fill them in. */
17312 TYPE_NFIELDS (ftype) = nparams;
17313 TYPE_FIELDS (ftype) = (struct field *)
17314 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17315
17316 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17317 even if we error out during the parameters reading below. */
17318 for (iparams = 0; iparams < nparams; iparams++)
17319 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17320
17321 iparams = 0;
17322 child_die = die->child;
17323 while (child_die && child_die->tag)
17324 {
17325 if (child_die->tag == DW_TAG_formal_parameter)
17326 {
17327 struct type *arg_type;
17328
17329 /* DWARF version 2 has no clean way to discern C++
17330 static and non-static member functions. G++ helps
17331 GDB by marking the first parameter for non-static
17332 member functions (which is the this pointer) as
17333 artificial. We pass this information to
17334 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17335
17336 DWARF version 3 added DW_AT_object_pointer, which GCC
17337 4.5 does not yet generate. */
17338 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17339 if (attr)
17340 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17341 else
17342 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17343 arg_type = die_type (child_die, cu);
17344
17345 /* RealView does not mark THIS as const, which the testsuite
17346 expects. GCC marks THIS as const in method definitions,
17347 but not in the class specifications (GCC PR 43053). */
17348 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17349 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17350 {
17351 int is_this = 0;
17352 struct dwarf2_cu *arg_cu = cu;
17353 const char *name = dwarf2_name (child_die, cu);
17354
17355 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17356 if (attr)
17357 {
17358 /* If the compiler emits this, use it. */
17359 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17360 is_this = 1;
17361 }
17362 else if (name && strcmp (name, "this") == 0)
17363 /* Function definitions will have the argument names. */
17364 is_this = 1;
17365 else if (name == NULL && iparams == 0)
17366 /* Declarations may not have the names, so like
17367 elsewhere in GDB, assume an artificial first
17368 argument is "this". */
17369 is_this = 1;
17370
17371 if (is_this)
17372 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17373 arg_type, 0);
17374 }
17375
17376 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17377 iparams++;
17378 }
17379 child_die = sibling_die (child_die);
17380 }
17381 }
17382
17383 return ftype;
17384 }
17385
17386 static struct type *
17387 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17388 {
17389 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17390 const char *name = NULL;
17391 struct type *this_type, *target_type;
17392
17393 name = dwarf2_full_name (NULL, die, cu);
17394 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17395 TYPE_TARGET_STUB (this_type) = 1;
17396 set_die_type (die, this_type, cu);
17397 target_type = die_type (die, cu);
17398 if (target_type != this_type)
17399 TYPE_TARGET_TYPE (this_type) = target_type;
17400 else
17401 {
17402 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17403 spec and cause infinite loops in GDB. */
17404 complaint (&symfile_complaints,
17405 _("Self-referential DW_TAG_typedef "
17406 "- DIE at 0x%x [in module %s]"),
17407 to_underlying (die->sect_off), objfile_name (objfile));
17408 TYPE_TARGET_TYPE (this_type) = NULL;
17409 }
17410 return this_type;
17411 }
17412
17413 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17414 (which may be different from NAME) to the architecture back-end to allow
17415 it to guess the correct format if necessary. */
17416
17417 static struct type *
17418 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17419 const char *name_hint)
17420 {
17421 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17422 const struct floatformat **format;
17423 struct type *type;
17424
17425 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17426 if (format)
17427 type = init_float_type (objfile, bits, name, format);
17428 else
17429 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17430
17431 return type;
17432 }
17433
17434 /* Find a representation of a given base type and install
17435 it in the TYPE field of the die. */
17436
17437 static struct type *
17438 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17439 {
17440 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17441 struct type *type;
17442 struct attribute *attr;
17443 int encoding = 0, bits = 0;
17444 const char *name;
17445
17446 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17447 if (attr)
17448 {
17449 encoding = DW_UNSND (attr);
17450 }
17451 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17452 if (attr)
17453 {
17454 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17455 }
17456 name = dwarf2_name (die, cu);
17457 if (!name)
17458 {
17459 complaint (&symfile_complaints,
17460 _("DW_AT_name missing from DW_TAG_base_type"));
17461 }
17462
17463 switch (encoding)
17464 {
17465 case DW_ATE_address:
17466 /* Turn DW_ATE_address into a void * pointer. */
17467 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17468 type = init_pointer_type (objfile, bits, name, type);
17469 break;
17470 case DW_ATE_boolean:
17471 type = init_boolean_type (objfile, bits, 1, name);
17472 break;
17473 case DW_ATE_complex_float:
17474 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17475 type = init_complex_type (objfile, name, type);
17476 break;
17477 case DW_ATE_decimal_float:
17478 type = init_decfloat_type (objfile, bits, name);
17479 break;
17480 case DW_ATE_float:
17481 type = dwarf2_init_float_type (objfile, bits, name, name);
17482 break;
17483 case DW_ATE_signed:
17484 type = init_integer_type (objfile, bits, 0, name);
17485 break;
17486 case DW_ATE_unsigned:
17487 if (cu->language == language_fortran
17488 && name
17489 && startswith (name, "character("))
17490 type = init_character_type (objfile, bits, 1, name);
17491 else
17492 type = init_integer_type (objfile, bits, 1, name);
17493 break;
17494 case DW_ATE_signed_char:
17495 if (cu->language == language_ada || cu->language == language_m2
17496 || cu->language == language_pascal
17497 || cu->language == language_fortran)
17498 type = init_character_type (objfile, bits, 0, name);
17499 else
17500 type = init_integer_type (objfile, bits, 0, name);
17501 break;
17502 case DW_ATE_unsigned_char:
17503 if (cu->language == language_ada || cu->language == language_m2
17504 || cu->language == language_pascal
17505 || cu->language == language_fortran
17506 || cu->language == language_rust)
17507 type = init_character_type (objfile, bits, 1, name);
17508 else
17509 type = init_integer_type (objfile, bits, 1, name);
17510 break;
17511 case DW_ATE_UTF:
17512 {
17513 gdbarch *arch = get_objfile_arch (objfile);
17514
17515 if (bits == 16)
17516 type = builtin_type (arch)->builtin_char16;
17517 else if (bits == 32)
17518 type = builtin_type (arch)->builtin_char32;
17519 else
17520 {
17521 complaint (&symfile_complaints,
17522 _("unsupported DW_ATE_UTF bit size: '%d'"),
17523 bits);
17524 type = init_integer_type (objfile, bits, 1, name);
17525 }
17526 return set_die_type (die, type, cu);
17527 }
17528 break;
17529
17530 default:
17531 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
17532 dwarf_type_encoding_name (encoding));
17533 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17534 break;
17535 }
17536
17537 if (name && strcmp (name, "char") == 0)
17538 TYPE_NOSIGN (type) = 1;
17539
17540 return set_die_type (die, type, cu);
17541 }
17542
17543 /* Parse dwarf attribute if it's a block, reference or constant and put the
17544 resulting value of the attribute into struct bound_prop.
17545 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17546
17547 static int
17548 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17549 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17550 {
17551 struct dwarf2_property_baton *baton;
17552 struct obstack *obstack
17553 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17554
17555 if (attr == NULL || prop == NULL)
17556 return 0;
17557
17558 if (attr_form_is_block (attr))
17559 {
17560 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17561 baton->referenced_type = NULL;
17562 baton->locexpr.per_cu = cu->per_cu;
17563 baton->locexpr.size = DW_BLOCK (attr)->size;
17564 baton->locexpr.data = DW_BLOCK (attr)->data;
17565 prop->data.baton = baton;
17566 prop->kind = PROP_LOCEXPR;
17567 gdb_assert (prop->data.baton != NULL);
17568 }
17569 else if (attr_form_is_ref (attr))
17570 {
17571 struct dwarf2_cu *target_cu = cu;
17572 struct die_info *target_die;
17573 struct attribute *target_attr;
17574
17575 target_die = follow_die_ref (die, attr, &target_cu);
17576 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17577 if (target_attr == NULL)
17578 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17579 target_cu);
17580 if (target_attr == NULL)
17581 return 0;
17582
17583 switch (target_attr->name)
17584 {
17585 case DW_AT_location:
17586 if (attr_form_is_section_offset (target_attr))
17587 {
17588 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17589 baton->referenced_type = die_type (target_die, target_cu);
17590 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17591 prop->data.baton = baton;
17592 prop->kind = PROP_LOCLIST;
17593 gdb_assert (prop->data.baton != NULL);
17594 }
17595 else if (attr_form_is_block (target_attr))
17596 {
17597 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17598 baton->referenced_type = die_type (target_die, target_cu);
17599 baton->locexpr.per_cu = cu->per_cu;
17600 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17601 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17602 prop->data.baton = baton;
17603 prop->kind = PROP_LOCEXPR;
17604 gdb_assert (prop->data.baton != NULL);
17605 }
17606 else
17607 {
17608 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17609 "dynamic property");
17610 return 0;
17611 }
17612 break;
17613 case DW_AT_data_member_location:
17614 {
17615 LONGEST offset;
17616
17617 if (!handle_data_member_location (target_die, target_cu,
17618 &offset))
17619 return 0;
17620
17621 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17622 baton->referenced_type = read_type_die (target_die->parent,
17623 target_cu);
17624 baton->offset_info.offset = offset;
17625 baton->offset_info.type = die_type (target_die, target_cu);
17626 prop->data.baton = baton;
17627 prop->kind = PROP_ADDR_OFFSET;
17628 break;
17629 }
17630 }
17631 }
17632 else if (attr_form_is_constant (attr))
17633 {
17634 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17635 prop->kind = PROP_CONST;
17636 }
17637 else
17638 {
17639 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17640 dwarf2_name (die, cu));
17641 return 0;
17642 }
17643
17644 return 1;
17645 }
17646
17647 /* Read the given DW_AT_subrange DIE. */
17648
17649 static struct type *
17650 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17651 {
17652 struct type *base_type, *orig_base_type;
17653 struct type *range_type;
17654 struct attribute *attr;
17655 struct dynamic_prop low, high;
17656 int low_default_is_valid;
17657 int high_bound_is_count = 0;
17658 const char *name;
17659 LONGEST negative_mask;
17660
17661 orig_base_type = die_type (die, cu);
17662 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17663 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17664 creating the range type, but we use the result of check_typedef
17665 when examining properties of the type. */
17666 base_type = check_typedef (orig_base_type);
17667
17668 /* The die_type call above may have already set the type for this DIE. */
17669 range_type = get_die_type (die, cu);
17670 if (range_type)
17671 return range_type;
17672
17673 low.kind = PROP_CONST;
17674 high.kind = PROP_CONST;
17675 high.data.const_val = 0;
17676
17677 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17678 omitting DW_AT_lower_bound. */
17679 switch (cu->language)
17680 {
17681 case language_c:
17682 case language_cplus:
17683 low.data.const_val = 0;
17684 low_default_is_valid = 1;
17685 break;
17686 case language_fortran:
17687 low.data.const_val = 1;
17688 low_default_is_valid = 1;
17689 break;
17690 case language_d:
17691 case language_objc:
17692 case language_rust:
17693 low.data.const_val = 0;
17694 low_default_is_valid = (cu->header.version >= 4);
17695 break;
17696 case language_ada:
17697 case language_m2:
17698 case language_pascal:
17699 low.data.const_val = 1;
17700 low_default_is_valid = (cu->header.version >= 4);
17701 break;
17702 default:
17703 low.data.const_val = 0;
17704 low_default_is_valid = 0;
17705 break;
17706 }
17707
17708 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17709 if (attr)
17710 attr_to_dynamic_prop (attr, die, cu, &low);
17711 else if (!low_default_is_valid)
17712 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
17713 "- DIE at 0x%x [in module %s]"),
17714 to_underlying (die->sect_off),
17715 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17716
17717 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
17718 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17719 {
17720 attr = dwarf2_attr (die, DW_AT_count, cu);
17721 if (attr_to_dynamic_prop (attr, die, cu, &high))
17722 {
17723 /* If bounds are constant do the final calculation here. */
17724 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17725 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17726 else
17727 high_bound_is_count = 1;
17728 }
17729 }
17730
17731 /* Dwarf-2 specifications explicitly allows to create subrange types
17732 without specifying a base type.
17733 In that case, the base type must be set to the type of
17734 the lower bound, upper bound or count, in that order, if any of these
17735 three attributes references an object that has a type.
17736 If no base type is found, the Dwarf-2 specifications say that
17737 a signed integer type of size equal to the size of an address should
17738 be used.
17739 For the following C code: `extern char gdb_int [];'
17740 GCC produces an empty range DIE.
17741 FIXME: muller/2010-05-28: Possible references to object for low bound,
17742 high bound or count are not yet handled by this code. */
17743 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17744 {
17745 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17746 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17747 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17748 struct type *int_type = objfile_type (objfile)->builtin_int;
17749
17750 /* Test "int", "long int", and "long long int" objfile types,
17751 and select the first one having a size above or equal to the
17752 architecture address size. */
17753 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17754 base_type = int_type;
17755 else
17756 {
17757 int_type = objfile_type (objfile)->builtin_long;
17758 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17759 base_type = int_type;
17760 else
17761 {
17762 int_type = objfile_type (objfile)->builtin_long_long;
17763 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17764 base_type = int_type;
17765 }
17766 }
17767 }
17768
17769 /* Normally, the DWARF producers are expected to use a signed
17770 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17771 But this is unfortunately not always the case, as witnessed
17772 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17773 is used instead. To work around that ambiguity, we treat
17774 the bounds as signed, and thus sign-extend their values, when
17775 the base type is signed. */
17776 negative_mask =
17777 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17778 if (low.kind == PROP_CONST
17779 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17780 low.data.const_val |= negative_mask;
17781 if (high.kind == PROP_CONST
17782 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17783 high.data.const_val |= negative_mask;
17784
17785 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17786
17787 if (high_bound_is_count)
17788 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17789
17790 /* Ada expects an empty array on no boundary attributes. */
17791 if (attr == NULL && cu->language != language_ada)
17792 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17793
17794 name = dwarf2_name (die, cu);
17795 if (name)
17796 TYPE_NAME (range_type) = name;
17797
17798 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17799 if (attr)
17800 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17801
17802 set_die_type (die, range_type, cu);
17803
17804 /* set_die_type should be already done. */
17805 set_descriptive_type (range_type, die, cu);
17806
17807 return range_type;
17808 }
17809
17810 static struct type *
17811 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17812 {
17813 struct type *type;
17814
17815 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17816 NULL);
17817 TYPE_NAME (type) = dwarf2_name (die, cu);
17818
17819 /* In Ada, an unspecified type is typically used when the description
17820 of the type is defered to a different unit. When encountering
17821 such a type, we treat it as a stub, and try to resolve it later on,
17822 when needed. */
17823 if (cu->language == language_ada)
17824 TYPE_STUB (type) = 1;
17825
17826 return set_die_type (die, type, cu);
17827 }
17828
17829 /* Read a single die and all its descendents. Set the die's sibling
17830 field to NULL; set other fields in the die correctly, and set all
17831 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17832 location of the info_ptr after reading all of those dies. PARENT
17833 is the parent of the die in question. */
17834
17835 static struct die_info *
17836 read_die_and_children (const struct die_reader_specs *reader,
17837 const gdb_byte *info_ptr,
17838 const gdb_byte **new_info_ptr,
17839 struct die_info *parent)
17840 {
17841 struct die_info *die;
17842 const gdb_byte *cur_ptr;
17843 int has_children;
17844
17845 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17846 if (die == NULL)
17847 {
17848 *new_info_ptr = cur_ptr;
17849 return NULL;
17850 }
17851 store_in_ref_table (die, reader->cu);
17852
17853 if (has_children)
17854 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17855 else
17856 {
17857 die->child = NULL;
17858 *new_info_ptr = cur_ptr;
17859 }
17860
17861 die->sibling = NULL;
17862 die->parent = parent;
17863 return die;
17864 }
17865
17866 /* Read a die, all of its descendents, and all of its siblings; set
17867 all of the fields of all of the dies correctly. Arguments are as
17868 in read_die_and_children. */
17869
17870 static struct die_info *
17871 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17872 const gdb_byte *info_ptr,
17873 const gdb_byte **new_info_ptr,
17874 struct die_info *parent)
17875 {
17876 struct die_info *first_die, *last_sibling;
17877 const gdb_byte *cur_ptr;
17878
17879 cur_ptr = info_ptr;
17880 first_die = last_sibling = NULL;
17881
17882 while (1)
17883 {
17884 struct die_info *die
17885 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17886
17887 if (die == NULL)
17888 {
17889 *new_info_ptr = cur_ptr;
17890 return first_die;
17891 }
17892
17893 if (!first_die)
17894 first_die = die;
17895 else
17896 last_sibling->sibling = die;
17897
17898 last_sibling = die;
17899 }
17900 }
17901
17902 /* Read a die, all of its descendents, and all of its siblings; set
17903 all of the fields of all of the dies correctly. Arguments are as
17904 in read_die_and_children.
17905 This the main entry point for reading a DIE and all its children. */
17906
17907 static struct die_info *
17908 read_die_and_siblings (const struct die_reader_specs *reader,
17909 const gdb_byte *info_ptr,
17910 const gdb_byte **new_info_ptr,
17911 struct die_info *parent)
17912 {
17913 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17914 new_info_ptr, parent);
17915
17916 if (dwarf_die_debug)
17917 {
17918 fprintf_unfiltered (gdb_stdlog,
17919 "Read die from %s@0x%x of %s:\n",
17920 get_section_name (reader->die_section),
17921 (unsigned) (info_ptr - reader->die_section->buffer),
17922 bfd_get_filename (reader->abfd));
17923 dump_die (die, dwarf_die_debug);
17924 }
17925
17926 return die;
17927 }
17928
17929 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17930 attributes.
17931 The caller is responsible for filling in the extra attributes
17932 and updating (*DIEP)->num_attrs.
17933 Set DIEP to point to a newly allocated die with its information,
17934 except for its child, sibling, and parent fields.
17935 Set HAS_CHILDREN to tell whether the die has children or not. */
17936
17937 static const gdb_byte *
17938 read_full_die_1 (const struct die_reader_specs *reader,
17939 struct die_info **diep, const gdb_byte *info_ptr,
17940 int *has_children, int num_extra_attrs)
17941 {
17942 unsigned int abbrev_number, bytes_read, i;
17943 struct abbrev_info *abbrev;
17944 struct die_info *die;
17945 struct dwarf2_cu *cu = reader->cu;
17946 bfd *abfd = reader->abfd;
17947
17948 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17949 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17950 info_ptr += bytes_read;
17951 if (!abbrev_number)
17952 {
17953 *diep = NULL;
17954 *has_children = 0;
17955 return info_ptr;
17956 }
17957
17958 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17959 if (!abbrev)
17960 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17961 abbrev_number,
17962 bfd_get_filename (abfd));
17963
17964 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17965 die->sect_off = sect_off;
17966 die->tag = abbrev->tag;
17967 die->abbrev = abbrev_number;
17968
17969 /* Make the result usable.
17970 The caller needs to update num_attrs after adding the extra
17971 attributes. */
17972 die->num_attrs = abbrev->num_attrs;
17973
17974 for (i = 0; i < abbrev->num_attrs; ++i)
17975 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17976 info_ptr);
17977
17978 *diep = die;
17979 *has_children = abbrev->has_children;
17980 return info_ptr;
17981 }
17982
17983 /* Read a die and all its attributes.
17984 Set DIEP to point to a newly allocated die with its information,
17985 except for its child, sibling, and parent fields.
17986 Set HAS_CHILDREN to tell whether the die has children or not. */
17987
17988 static const gdb_byte *
17989 read_full_die (const struct die_reader_specs *reader,
17990 struct die_info **diep, const gdb_byte *info_ptr,
17991 int *has_children)
17992 {
17993 const gdb_byte *result;
17994
17995 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
17996
17997 if (dwarf_die_debug)
17998 {
17999 fprintf_unfiltered (gdb_stdlog,
18000 "Read die from %s@0x%x of %s:\n",
18001 get_section_name (reader->die_section),
18002 (unsigned) (info_ptr - reader->die_section->buffer),
18003 bfd_get_filename (reader->abfd));
18004 dump_die (*diep, dwarf_die_debug);
18005 }
18006
18007 return result;
18008 }
18009 \f
18010 /* Abbreviation tables.
18011
18012 In DWARF version 2, the description of the debugging information is
18013 stored in a separate .debug_abbrev section. Before we read any
18014 dies from a section we read in all abbreviations and install them
18015 in a hash table. */
18016
18017 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18018
18019 struct abbrev_info *
18020 abbrev_table::alloc_abbrev ()
18021 {
18022 struct abbrev_info *abbrev;
18023
18024 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18025 memset (abbrev, 0, sizeof (struct abbrev_info));
18026
18027 return abbrev;
18028 }
18029
18030 /* Add an abbreviation to the table. */
18031
18032 void
18033 abbrev_table::add_abbrev (unsigned int abbrev_number,
18034 struct abbrev_info *abbrev)
18035 {
18036 unsigned int hash_number;
18037
18038 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18039 abbrev->next = m_abbrevs[hash_number];
18040 m_abbrevs[hash_number] = abbrev;
18041 }
18042
18043 /* Look up an abbrev in the table.
18044 Returns NULL if the abbrev is not found. */
18045
18046 struct abbrev_info *
18047 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18048 {
18049 unsigned int hash_number;
18050 struct abbrev_info *abbrev;
18051
18052 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18053 abbrev = m_abbrevs[hash_number];
18054
18055 while (abbrev)
18056 {
18057 if (abbrev->number == abbrev_number)
18058 return abbrev;
18059 abbrev = abbrev->next;
18060 }
18061 return NULL;
18062 }
18063
18064 /* Read in an abbrev table. */
18065
18066 static abbrev_table_up
18067 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18068 struct dwarf2_section_info *section,
18069 sect_offset sect_off)
18070 {
18071 struct objfile *objfile = dwarf2_per_objfile->objfile;
18072 bfd *abfd = get_section_bfd_owner (section);
18073 const gdb_byte *abbrev_ptr;
18074 struct abbrev_info *cur_abbrev;
18075 unsigned int abbrev_number, bytes_read, abbrev_name;
18076 unsigned int abbrev_form;
18077 struct attr_abbrev *cur_attrs;
18078 unsigned int allocated_attrs;
18079
18080 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18081
18082 dwarf2_read_section (objfile, section);
18083 abbrev_ptr = section->buffer + to_underlying (sect_off);
18084 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18085 abbrev_ptr += bytes_read;
18086
18087 allocated_attrs = ATTR_ALLOC_CHUNK;
18088 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18089
18090 /* Loop until we reach an abbrev number of 0. */
18091 while (abbrev_number)
18092 {
18093 cur_abbrev = abbrev_table->alloc_abbrev ();
18094
18095 /* read in abbrev header */
18096 cur_abbrev->number = abbrev_number;
18097 cur_abbrev->tag
18098 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18099 abbrev_ptr += bytes_read;
18100 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18101 abbrev_ptr += 1;
18102
18103 /* now read in declarations */
18104 for (;;)
18105 {
18106 LONGEST implicit_const;
18107
18108 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18109 abbrev_ptr += bytes_read;
18110 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18111 abbrev_ptr += bytes_read;
18112 if (abbrev_form == DW_FORM_implicit_const)
18113 {
18114 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18115 &bytes_read);
18116 abbrev_ptr += bytes_read;
18117 }
18118 else
18119 {
18120 /* Initialize it due to a false compiler warning. */
18121 implicit_const = -1;
18122 }
18123
18124 if (abbrev_name == 0)
18125 break;
18126
18127 if (cur_abbrev->num_attrs == allocated_attrs)
18128 {
18129 allocated_attrs += ATTR_ALLOC_CHUNK;
18130 cur_attrs
18131 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18132 }
18133
18134 cur_attrs[cur_abbrev->num_attrs].name
18135 = (enum dwarf_attribute) abbrev_name;
18136 cur_attrs[cur_abbrev->num_attrs].form
18137 = (enum dwarf_form) abbrev_form;
18138 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18139 ++cur_abbrev->num_attrs;
18140 }
18141
18142 cur_abbrev->attrs =
18143 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18144 cur_abbrev->num_attrs);
18145 memcpy (cur_abbrev->attrs, cur_attrs,
18146 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18147
18148 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18149
18150 /* Get next abbreviation.
18151 Under Irix6 the abbreviations for a compilation unit are not
18152 always properly terminated with an abbrev number of 0.
18153 Exit loop if we encounter an abbreviation which we have
18154 already read (which means we are about to read the abbreviations
18155 for the next compile unit) or if the end of the abbreviation
18156 table is reached. */
18157 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18158 break;
18159 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18160 abbrev_ptr += bytes_read;
18161 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18162 break;
18163 }
18164
18165 xfree (cur_attrs);
18166 return abbrev_table;
18167 }
18168
18169 /* Returns nonzero if TAG represents a type that we might generate a partial
18170 symbol for. */
18171
18172 static int
18173 is_type_tag_for_partial (int tag)
18174 {
18175 switch (tag)
18176 {
18177 #if 0
18178 /* Some types that would be reasonable to generate partial symbols for,
18179 that we don't at present. */
18180 case DW_TAG_array_type:
18181 case DW_TAG_file_type:
18182 case DW_TAG_ptr_to_member_type:
18183 case DW_TAG_set_type:
18184 case DW_TAG_string_type:
18185 case DW_TAG_subroutine_type:
18186 #endif
18187 case DW_TAG_base_type:
18188 case DW_TAG_class_type:
18189 case DW_TAG_interface_type:
18190 case DW_TAG_enumeration_type:
18191 case DW_TAG_structure_type:
18192 case DW_TAG_subrange_type:
18193 case DW_TAG_typedef:
18194 case DW_TAG_union_type:
18195 return 1;
18196 default:
18197 return 0;
18198 }
18199 }
18200
18201 /* Load all DIEs that are interesting for partial symbols into memory. */
18202
18203 static struct partial_die_info *
18204 load_partial_dies (const struct die_reader_specs *reader,
18205 const gdb_byte *info_ptr, int building_psymtab)
18206 {
18207 struct dwarf2_cu *cu = reader->cu;
18208 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18209 struct partial_die_info *part_die;
18210 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18211 unsigned int bytes_read;
18212 unsigned int load_all = 0;
18213 int nesting_level = 1;
18214
18215 parent_die = NULL;
18216 last_die = NULL;
18217
18218 gdb_assert (cu->per_cu != NULL);
18219 if (cu->per_cu->load_all_dies)
18220 load_all = 1;
18221
18222 cu->partial_dies
18223 = htab_create_alloc_ex (cu->header.length / 12,
18224 partial_die_hash,
18225 partial_die_eq,
18226 NULL,
18227 &cu->comp_unit_obstack,
18228 hashtab_obstack_allocate,
18229 dummy_obstack_deallocate);
18230
18231 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
18232
18233 while (1)
18234 {
18235 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18236
18237 /* A NULL abbrev means the end of a series of children. */
18238 if (abbrev == NULL)
18239 {
18240 if (--nesting_level == 0)
18241 {
18242 /* PART_DIE was probably the last thing allocated on the
18243 comp_unit_obstack, so we could call obstack_free
18244 here. We don't do that because the waste is small,
18245 and will be cleaned up when we're done with this
18246 compilation unit. This way, we're also more robust
18247 against other users of the comp_unit_obstack. */
18248 return first_die;
18249 }
18250 info_ptr += bytes_read;
18251 last_die = parent_die;
18252 parent_die = parent_die->die_parent;
18253 continue;
18254 }
18255
18256 /* Check for template arguments. We never save these; if
18257 they're seen, we just mark the parent, and go on our way. */
18258 if (parent_die != NULL
18259 && cu->language == language_cplus
18260 && (abbrev->tag == DW_TAG_template_type_param
18261 || abbrev->tag == DW_TAG_template_value_param))
18262 {
18263 parent_die->has_template_arguments = 1;
18264
18265 if (!load_all)
18266 {
18267 /* We don't need a partial DIE for the template argument. */
18268 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18269 continue;
18270 }
18271 }
18272
18273 /* We only recurse into c++ subprograms looking for template arguments.
18274 Skip their other children. */
18275 if (!load_all
18276 && cu->language == language_cplus
18277 && parent_die != NULL
18278 && parent_die->tag == DW_TAG_subprogram)
18279 {
18280 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18281 continue;
18282 }
18283
18284 /* Check whether this DIE is interesting enough to save. Normally
18285 we would not be interested in members here, but there may be
18286 later variables referencing them via DW_AT_specification (for
18287 static members). */
18288 if (!load_all
18289 && !is_type_tag_for_partial (abbrev->tag)
18290 && abbrev->tag != DW_TAG_constant
18291 && abbrev->tag != DW_TAG_enumerator
18292 && abbrev->tag != DW_TAG_subprogram
18293 && abbrev->tag != DW_TAG_inlined_subroutine
18294 && abbrev->tag != DW_TAG_lexical_block
18295 && abbrev->tag != DW_TAG_variable
18296 && abbrev->tag != DW_TAG_namespace
18297 && abbrev->tag != DW_TAG_module
18298 && abbrev->tag != DW_TAG_member
18299 && abbrev->tag != DW_TAG_imported_unit
18300 && abbrev->tag != DW_TAG_imported_declaration)
18301 {
18302 /* Otherwise we skip to the next sibling, if any. */
18303 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18304 continue;
18305 }
18306
18307 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
18308 info_ptr);
18309
18310 /* This two-pass algorithm for processing partial symbols has a
18311 high cost in cache pressure. Thus, handle some simple cases
18312 here which cover the majority of C partial symbols. DIEs
18313 which neither have specification tags in them, nor could have
18314 specification tags elsewhere pointing at them, can simply be
18315 processed and discarded.
18316
18317 This segment is also optional; scan_partial_symbols and
18318 add_partial_symbol will handle these DIEs if we chain
18319 them in normally. When compilers which do not emit large
18320 quantities of duplicate debug information are more common,
18321 this code can probably be removed. */
18322
18323 /* Any complete simple types at the top level (pretty much all
18324 of them, for a language without namespaces), can be processed
18325 directly. */
18326 if (parent_die == NULL
18327 && part_die->has_specification == 0
18328 && part_die->is_declaration == 0
18329 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
18330 || part_die->tag == DW_TAG_base_type
18331 || part_die->tag == DW_TAG_subrange_type))
18332 {
18333 if (building_psymtab && part_die->name != NULL)
18334 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
18335 VAR_DOMAIN, LOC_TYPEDEF,
18336 &objfile->static_psymbols,
18337 0, cu->language, objfile);
18338 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
18339 continue;
18340 }
18341
18342 /* The exception for DW_TAG_typedef with has_children above is
18343 a workaround of GCC PR debug/47510. In the case of this complaint
18344 type_name_no_tag_or_error will error on such types later.
18345
18346 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18347 it could not find the child DIEs referenced later, this is checked
18348 above. In correct DWARF DW_TAG_typedef should have no children. */
18349
18350 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
18351 complaint (&symfile_complaints,
18352 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18353 "- DIE at 0x%x [in module %s]"),
18354 to_underlying (part_die->sect_off), objfile_name (objfile));
18355
18356 /* If we're at the second level, and we're an enumerator, and
18357 our parent has no specification (meaning possibly lives in a
18358 namespace elsewhere), then we can add the partial symbol now
18359 instead of queueing it. */
18360 if (part_die->tag == DW_TAG_enumerator
18361 && parent_die != NULL
18362 && parent_die->die_parent == NULL
18363 && parent_die->tag == DW_TAG_enumeration_type
18364 && parent_die->has_specification == 0)
18365 {
18366 if (part_die->name == NULL)
18367 complaint (&symfile_complaints,
18368 _("malformed enumerator DIE ignored"));
18369 else if (building_psymtab)
18370 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
18371 VAR_DOMAIN, LOC_CONST,
18372 cu->language == language_cplus
18373 ? &objfile->global_psymbols
18374 : &objfile->static_psymbols,
18375 0, cu->language, objfile);
18376
18377 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
18378 continue;
18379 }
18380
18381 /* We'll save this DIE so link it in. */
18382 part_die->die_parent = parent_die;
18383 part_die->die_sibling = NULL;
18384 part_die->die_child = NULL;
18385
18386 if (last_die && last_die == parent_die)
18387 last_die->die_child = part_die;
18388 else if (last_die)
18389 last_die->die_sibling = part_die;
18390
18391 last_die = part_die;
18392
18393 if (first_die == NULL)
18394 first_die = part_die;
18395
18396 /* Maybe add the DIE to the hash table. Not all DIEs that we
18397 find interesting need to be in the hash table, because we
18398 also have the parent/sibling/child chains; only those that we
18399 might refer to by offset later during partial symbol reading.
18400
18401 For now this means things that might have be the target of a
18402 DW_AT_specification, DW_AT_abstract_origin, or
18403 DW_AT_extension. DW_AT_extension will refer only to
18404 namespaces; DW_AT_abstract_origin refers to functions (and
18405 many things under the function DIE, but we do not recurse
18406 into function DIEs during partial symbol reading) and
18407 possibly variables as well; DW_AT_specification refers to
18408 declarations. Declarations ought to have the DW_AT_declaration
18409 flag. It happens that GCC forgets to put it in sometimes, but
18410 only for functions, not for types.
18411
18412 Adding more things than necessary to the hash table is harmless
18413 except for the performance cost. Adding too few will result in
18414 wasted time in find_partial_die, when we reread the compilation
18415 unit with load_all_dies set. */
18416
18417 if (load_all
18418 || abbrev->tag == DW_TAG_constant
18419 || abbrev->tag == DW_TAG_subprogram
18420 || abbrev->tag == DW_TAG_variable
18421 || abbrev->tag == DW_TAG_namespace
18422 || part_die->is_declaration)
18423 {
18424 void **slot;
18425
18426 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18427 to_underlying (part_die->sect_off),
18428 INSERT);
18429 *slot = part_die;
18430 }
18431
18432 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
18433
18434 /* For some DIEs we want to follow their children (if any). For C
18435 we have no reason to follow the children of structures; for other
18436 languages we have to, so that we can get at method physnames
18437 to infer fully qualified class names, for DW_AT_specification,
18438 and for C++ template arguments. For C++, we also look one level
18439 inside functions to find template arguments (if the name of the
18440 function does not already contain the template arguments).
18441
18442 For Ada, we need to scan the children of subprograms and lexical
18443 blocks as well because Ada allows the definition of nested
18444 entities that could be interesting for the debugger, such as
18445 nested subprograms for instance. */
18446 if (last_die->has_children
18447 && (load_all
18448 || last_die->tag == DW_TAG_namespace
18449 || last_die->tag == DW_TAG_module
18450 || last_die->tag == DW_TAG_enumeration_type
18451 || (cu->language == language_cplus
18452 && last_die->tag == DW_TAG_subprogram
18453 && (last_die->name == NULL
18454 || strchr (last_die->name, '<') == NULL))
18455 || (cu->language != language_c
18456 && (last_die->tag == DW_TAG_class_type
18457 || last_die->tag == DW_TAG_interface_type
18458 || last_die->tag == DW_TAG_structure_type
18459 || last_die->tag == DW_TAG_union_type))
18460 || (cu->language == language_ada
18461 && (last_die->tag == DW_TAG_subprogram
18462 || last_die->tag == DW_TAG_lexical_block))))
18463 {
18464 nesting_level++;
18465 parent_die = last_die;
18466 continue;
18467 }
18468
18469 /* Otherwise we skip to the next sibling, if any. */
18470 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18471
18472 /* Back to the top, do it again. */
18473 }
18474 }
18475
18476 /* Read a minimal amount of information into the minimal die structure. */
18477
18478 static const gdb_byte *
18479 read_partial_die (const struct die_reader_specs *reader,
18480 struct partial_die_info *part_die,
18481 struct abbrev_info *abbrev, unsigned int abbrev_len,
18482 const gdb_byte *info_ptr)
18483 {
18484 struct dwarf2_cu *cu = reader->cu;
18485 struct dwarf2_per_objfile *dwarf2_per_objfile
18486 = cu->per_cu->dwarf2_per_objfile;
18487 struct objfile *objfile = dwarf2_per_objfile->objfile;
18488 const gdb_byte *buffer = reader->buffer;
18489 unsigned int i;
18490 struct attribute attr;
18491 int has_low_pc_attr = 0;
18492 int has_high_pc_attr = 0;
18493 int high_pc_relative = 0;
18494
18495 memset (part_die, 0, sizeof (struct partial_die_info));
18496
18497 part_die->sect_off = (sect_offset) (info_ptr - buffer);
18498
18499 info_ptr += abbrev_len;
18500
18501 if (abbrev == NULL)
18502 return info_ptr;
18503
18504 part_die->tag = abbrev->tag;
18505 part_die->has_children = abbrev->has_children;
18506
18507 for (i = 0; i < abbrev->num_attrs; ++i)
18508 {
18509 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
18510
18511 /* Store the data if it is of an attribute we want to keep in a
18512 partial symbol table. */
18513 switch (attr.name)
18514 {
18515 case DW_AT_name:
18516 switch (part_die->tag)
18517 {
18518 case DW_TAG_compile_unit:
18519 case DW_TAG_partial_unit:
18520 case DW_TAG_type_unit:
18521 /* Compilation units have a DW_AT_name that is a filename, not
18522 a source language identifier. */
18523 case DW_TAG_enumeration_type:
18524 case DW_TAG_enumerator:
18525 /* These tags always have simple identifiers already; no need
18526 to canonicalize them. */
18527 part_die->name = DW_STRING (&attr);
18528 break;
18529 default:
18530 part_die->name
18531 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18532 &objfile->per_bfd->storage_obstack);
18533 break;
18534 }
18535 break;
18536 case DW_AT_linkage_name:
18537 case DW_AT_MIPS_linkage_name:
18538 /* Note that both forms of linkage name might appear. We
18539 assume they will be the same, and we only store the last
18540 one we see. */
18541 if (cu->language == language_ada)
18542 part_die->name = DW_STRING (&attr);
18543 part_die->linkage_name = DW_STRING (&attr);
18544 break;
18545 case DW_AT_low_pc:
18546 has_low_pc_attr = 1;
18547 part_die->lowpc = attr_value_as_address (&attr);
18548 break;
18549 case DW_AT_high_pc:
18550 has_high_pc_attr = 1;
18551 part_die->highpc = attr_value_as_address (&attr);
18552 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18553 high_pc_relative = 1;
18554 break;
18555 case DW_AT_location:
18556 /* Support the .debug_loc offsets. */
18557 if (attr_form_is_block (&attr))
18558 {
18559 part_die->d.locdesc = DW_BLOCK (&attr);
18560 }
18561 else if (attr_form_is_section_offset (&attr))
18562 {
18563 dwarf2_complex_location_expr_complaint ();
18564 }
18565 else
18566 {
18567 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18568 "partial symbol information");
18569 }
18570 break;
18571 case DW_AT_external:
18572 part_die->is_external = DW_UNSND (&attr);
18573 break;
18574 case DW_AT_declaration:
18575 part_die->is_declaration = DW_UNSND (&attr);
18576 break;
18577 case DW_AT_type:
18578 part_die->has_type = 1;
18579 break;
18580 case DW_AT_abstract_origin:
18581 case DW_AT_specification:
18582 case DW_AT_extension:
18583 part_die->has_specification = 1;
18584 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
18585 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18586 || cu->per_cu->is_dwz);
18587 break;
18588 case DW_AT_sibling:
18589 /* Ignore absolute siblings, they might point outside of
18590 the current compile unit. */
18591 if (attr.form == DW_FORM_ref_addr)
18592 complaint (&symfile_complaints,
18593 _("ignoring absolute DW_AT_sibling"));
18594 else
18595 {
18596 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18597 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18598
18599 if (sibling_ptr < info_ptr)
18600 complaint (&symfile_complaints,
18601 _("DW_AT_sibling points backwards"));
18602 else if (sibling_ptr > reader->buffer_end)
18603 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18604 else
18605 part_die->sibling = sibling_ptr;
18606 }
18607 break;
18608 case DW_AT_byte_size:
18609 part_die->has_byte_size = 1;
18610 break;
18611 case DW_AT_const_value:
18612 part_die->has_const_value = 1;
18613 break;
18614 case DW_AT_calling_convention:
18615 /* DWARF doesn't provide a way to identify a program's source-level
18616 entry point. DW_AT_calling_convention attributes are only meant
18617 to describe functions' calling conventions.
18618
18619 However, because it's a necessary piece of information in
18620 Fortran, and before DWARF 4 DW_CC_program was the only
18621 piece of debugging information whose definition refers to
18622 a 'main program' at all, several compilers marked Fortran
18623 main programs with DW_CC_program --- even when those
18624 functions use the standard calling conventions.
18625
18626 Although DWARF now specifies a way to provide this
18627 information, we support this practice for backward
18628 compatibility. */
18629 if (DW_UNSND (&attr) == DW_CC_program
18630 && cu->language == language_fortran)
18631 part_die->main_subprogram = 1;
18632 break;
18633 case DW_AT_inline:
18634 if (DW_UNSND (&attr) == DW_INL_inlined
18635 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18636 part_die->may_be_inlined = 1;
18637 break;
18638
18639 case DW_AT_import:
18640 if (part_die->tag == DW_TAG_imported_unit)
18641 {
18642 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
18643 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18644 || cu->per_cu->is_dwz);
18645 }
18646 break;
18647
18648 case DW_AT_main_subprogram:
18649 part_die->main_subprogram = DW_UNSND (&attr);
18650 break;
18651
18652 default:
18653 break;
18654 }
18655 }
18656
18657 if (high_pc_relative)
18658 part_die->highpc += part_die->lowpc;
18659
18660 if (has_low_pc_attr && has_high_pc_attr)
18661 {
18662 /* When using the GNU linker, .gnu.linkonce. sections are used to
18663 eliminate duplicate copies of functions and vtables and such.
18664 The linker will arbitrarily choose one and discard the others.
18665 The AT_*_pc values for such functions refer to local labels in
18666 these sections. If the section from that file was discarded, the
18667 labels are not in the output, so the relocs get a value of 0.
18668 If this is a discarded function, mark the pc bounds as invalid,
18669 so that GDB will ignore it. */
18670 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18671 {
18672 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18673
18674 complaint (&symfile_complaints,
18675 _("DW_AT_low_pc %s is zero "
18676 "for DIE at 0x%x [in module %s]"),
18677 paddress (gdbarch, part_die->lowpc),
18678 to_underlying (part_die->sect_off), objfile_name (objfile));
18679 }
18680 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18681 else if (part_die->lowpc >= part_die->highpc)
18682 {
18683 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18684
18685 complaint (&symfile_complaints,
18686 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18687 "for DIE at 0x%x [in module %s]"),
18688 paddress (gdbarch, part_die->lowpc),
18689 paddress (gdbarch, part_die->highpc),
18690 to_underlying (part_die->sect_off),
18691 objfile_name (objfile));
18692 }
18693 else
18694 part_die->has_pc_info = 1;
18695 }
18696
18697 return info_ptr;
18698 }
18699
18700 /* Find a cached partial DIE at OFFSET in CU. */
18701
18702 static struct partial_die_info *
18703 find_partial_die_in_comp_unit (sect_offset sect_off, struct dwarf2_cu *cu)
18704 {
18705 struct partial_die_info *lookup_die = NULL;
18706 struct partial_die_info part_die;
18707
18708 part_die.sect_off = sect_off;
18709 lookup_die = ((struct partial_die_info *)
18710 htab_find_with_hash (cu->partial_dies, &part_die,
18711 to_underlying (sect_off)));
18712
18713 return lookup_die;
18714 }
18715
18716 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18717 except in the case of .debug_types DIEs which do not reference
18718 outside their CU (they do however referencing other types via
18719 DW_FORM_ref_sig8). */
18720
18721 static struct partial_die_info *
18722 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18723 {
18724 struct dwarf2_per_objfile *dwarf2_per_objfile
18725 = cu->per_cu->dwarf2_per_objfile;
18726 struct objfile *objfile = dwarf2_per_objfile->objfile;
18727 struct dwarf2_per_cu_data *per_cu = NULL;
18728 struct partial_die_info *pd = NULL;
18729
18730 if (offset_in_dwz == cu->per_cu->is_dwz
18731 && offset_in_cu_p (&cu->header, sect_off))
18732 {
18733 pd = find_partial_die_in_comp_unit (sect_off, cu);
18734 if (pd != NULL)
18735 return pd;
18736 /* We missed recording what we needed.
18737 Load all dies and try again. */
18738 per_cu = cu->per_cu;
18739 }
18740 else
18741 {
18742 /* TUs don't reference other CUs/TUs (except via type signatures). */
18743 if (cu->per_cu->is_debug_types)
18744 {
18745 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
18746 " external reference to offset 0x%x [in module %s].\n"),
18747 to_underlying (cu->header.sect_off), to_underlying (sect_off),
18748 bfd_get_filename (objfile->obfd));
18749 }
18750 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18751 dwarf2_per_objfile);
18752
18753 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18754 load_partial_comp_unit (per_cu);
18755
18756 per_cu->cu->last_used = 0;
18757 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
18758 }
18759
18760 /* If we didn't find it, and not all dies have been loaded,
18761 load them all and try again. */
18762
18763 if (pd == NULL && per_cu->load_all_dies == 0)
18764 {
18765 per_cu->load_all_dies = 1;
18766
18767 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18768 THIS_CU->cu may already be in use. So we can't just free it and
18769 replace its DIEs with the ones we read in. Instead, we leave those
18770 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18771 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18772 set. */
18773 load_partial_comp_unit (per_cu);
18774
18775 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
18776 }
18777
18778 if (pd == NULL)
18779 internal_error (__FILE__, __LINE__,
18780 _("could not find partial DIE 0x%x "
18781 "in cache [from module %s]\n"),
18782 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
18783 return pd;
18784 }
18785
18786 /* See if we can figure out if the class lives in a namespace. We do
18787 this by looking for a member function; its demangled name will
18788 contain namespace info, if there is any. */
18789
18790 static void
18791 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18792 struct dwarf2_cu *cu)
18793 {
18794 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18795 what template types look like, because the demangler
18796 frequently doesn't give the same name as the debug info. We
18797 could fix this by only using the demangled name to get the
18798 prefix (but see comment in read_structure_type). */
18799
18800 struct partial_die_info *real_pdi;
18801 struct partial_die_info *child_pdi;
18802
18803 /* If this DIE (this DIE's specification, if any) has a parent, then
18804 we should not do this. We'll prepend the parent's fully qualified
18805 name when we create the partial symbol. */
18806
18807 real_pdi = struct_pdi;
18808 while (real_pdi->has_specification)
18809 real_pdi = find_partial_die (real_pdi->spec_offset,
18810 real_pdi->spec_is_dwz, cu);
18811
18812 if (real_pdi->die_parent != NULL)
18813 return;
18814
18815 for (child_pdi = struct_pdi->die_child;
18816 child_pdi != NULL;
18817 child_pdi = child_pdi->die_sibling)
18818 {
18819 if (child_pdi->tag == DW_TAG_subprogram
18820 && child_pdi->linkage_name != NULL)
18821 {
18822 char *actual_class_name
18823 = language_class_name_from_physname (cu->language_defn,
18824 child_pdi->linkage_name);
18825 if (actual_class_name != NULL)
18826 {
18827 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18828 struct_pdi->name
18829 = ((const char *)
18830 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18831 actual_class_name,
18832 strlen (actual_class_name)));
18833 xfree (actual_class_name);
18834 }
18835 break;
18836 }
18837 }
18838 }
18839
18840 /* Adjust PART_DIE before generating a symbol for it. This function
18841 may set the is_external flag or change the DIE's name. */
18842
18843 static void
18844 fixup_partial_die (struct partial_die_info *part_die,
18845 struct dwarf2_cu *cu)
18846 {
18847 /* Once we've fixed up a die, there's no point in doing so again.
18848 This also avoids a memory leak if we were to call
18849 guess_partial_die_structure_name multiple times. */
18850 if (part_die->fixup_called)
18851 return;
18852
18853 /* If we found a reference attribute and the DIE has no name, try
18854 to find a name in the referred to DIE. */
18855
18856 if (part_die->name == NULL && part_die->has_specification)
18857 {
18858 struct partial_die_info *spec_die;
18859
18860 spec_die = find_partial_die (part_die->spec_offset,
18861 part_die->spec_is_dwz, cu);
18862
18863 fixup_partial_die (spec_die, cu);
18864
18865 if (spec_die->name)
18866 {
18867 part_die->name = spec_die->name;
18868
18869 /* Copy DW_AT_external attribute if it is set. */
18870 if (spec_die->is_external)
18871 part_die->is_external = spec_die->is_external;
18872 }
18873 }
18874
18875 /* Set default names for some unnamed DIEs. */
18876
18877 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
18878 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
18879
18880 /* If there is no parent die to provide a namespace, and there are
18881 children, see if we can determine the namespace from their linkage
18882 name. */
18883 if (cu->language == language_cplus
18884 && !VEC_empty (dwarf2_section_info_def,
18885 cu->per_cu->dwarf2_per_objfile->types)
18886 && part_die->die_parent == NULL
18887 && part_die->has_children
18888 && (part_die->tag == DW_TAG_class_type
18889 || part_die->tag == DW_TAG_structure_type
18890 || part_die->tag == DW_TAG_union_type))
18891 guess_partial_die_structure_name (part_die, cu);
18892
18893 /* GCC might emit a nameless struct or union that has a linkage
18894 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18895 if (part_die->name == NULL
18896 && (part_die->tag == DW_TAG_class_type
18897 || part_die->tag == DW_TAG_interface_type
18898 || part_die->tag == DW_TAG_structure_type
18899 || part_die->tag == DW_TAG_union_type)
18900 && part_die->linkage_name != NULL)
18901 {
18902 char *demangled;
18903
18904 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
18905 if (demangled)
18906 {
18907 const char *base;
18908
18909 /* Strip any leading namespaces/classes, keep only the base name.
18910 DW_AT_name for named DIEs does not contain the prefixes. */
18911 base = strrchr (demangled, ':');
18912 if (base && base > demangled && base[-1] == ':')
18913 base++;
18914 else
18915 base = demangled;
18916
18917 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18918 part_die->name
18919 = ((const char *)
18920 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18921 base, strlen (base)));
18922 xfree (demangled);
18923 }
18924 }
18925
18926 part_die->fixup_called = 1;
18927 }
18928
18929 /* Read an attribute value described by an attribute form. */
18930
18931 static const gdb_byte *
18932 read_attribute_value (const struct die_reader_specs *reader,
18933 struct attribute *attr, unsigned form,
18934 LONGEST implicit_const, const gdb_byte *info_ptr)
18935 {
18936 struct dwarf2_cu *cu = reader->cu;
18937 struct dwarf2_per_objfile *dwarf2_per_objfile
18938 = cu->per_cu->dwarf2_per_objfile;
18939 struct objfile *objfile = dwarf2_per_objfile->objfile;
18940 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18941 bfd *abfd = reader->abfd;
18942 struct comp_unit_head *cu_header = &cu->header;
18943 unsigned int bytes_read;
18944 struct dwarf_block *blk;
18945
18946 attr->form = (enum dwarf_form) form;
18947 switch (form)
18948 {
18949 case DW_FORM_ref_addr:
18950 if (cu->header.version == 2)
18951 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18952 else
18953 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18954 &cu->header, &bytes_read);
18955 info_ptr += bytes_read;
18956 break;
18957 case DW_FORM_GNU_ref_alt:
18958 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18959 info_ptr += bytes_read;
18960 break;
18961 case DW_FORM_addr:
18962 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18963 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18964 info_ptr += bytes_read;
18965 break;
18966 case DW_FORM_block2:
18967 blk = dwarf_alloc_block (cu);
18968 blk->size = read_2_bytes (abfd, info_ptr);
18969 info_ptr += 2;
18970 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18971 info_ptr += blk->size;
18972 DW_BLOCK (attr) = blk;
18973 break;
18974 case DW_FORM_block4:
18975 blk = dwarf_alloc_block (cu);
18976 blk->size = read_4_bytes (abfd, info_ptr);
18977 info_ptr += 4;
18978 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18979 info_ptr += blk->size;
18980 DW_BLOCK (attr) = blk;
18981 break;
18982 case DW_FORM_data2:
18983 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18984 info_ptr += 2;
18985 break;
18986 case DW_FORM_data4:
18987 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18988 info_ptr += 4;
18989 break;
18990 case DW_FORM_data8:
18991 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18992 info_ptr += 8;
18993 break;
18994 case DW_FORM_data16:
18995 blk = dwarf_alloc_block (cu);
18996 blk->size = 16;
18997 blk->data = read_n_bytes (abfd, info_ptr, 16);
18998 info_ptr += 16;
18999 DW_BLOCK (attr) = blk;
19000 break;
19001 case DW_FORM_sec_offset:
19002 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19003 info_ptr += bytes_read;
19004 break;
19005 case DW_FORM_string:
19006 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19007 DW_STRING_IS_CANONICAL (attr) = 0;
19008 info_ptr += bytes_read;
19009 break;
19010 case DW_FORM_strp:
19011 if (!cu->per_cu->is_dwz)
19012 {
19013 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19014 abfd, info_ptr, cu_header,
19015 &bytes_read);
19016 DW_STRING_IS_CANONICAL (attr) = 0;
19017 info_ptr += bytes_read;
19018 break;
19019 }
19020 /* FALLTHROUGH */
19021 case DW_FORM_line_strp:
19022 if (!cu->per_cu->is_dwz)
19023 {
19024 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19025 abfd, info_ptr,
19026 cu_header, &bytes_read);
19027 DW_STRING_IS_CANONICAL (attr) = 0;
19028 info_ptr += bytes_read;
19029 break;
19030 }
19031 /* FALLTHROUGH */
19032 case DW_FORM_GNU_strp_alt:
19033 {
19034 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19035 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19036 &bytes_read);
19037
19038 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19039 dwz, str_offset);
19040 DW_STRING_IS_CANONICAL (attr) = 0;
19041 info_ptr += bytes_read;
19042 }
19043 break;
19044 case DW_FORM_exprloc:
19045 case DW_FORM_block:
19046 blk = dwarf_alloc_block (cu);
19047 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19048 info_ptr += bytes_read;
19049 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19050 info_ptr += blk->size;
19051 DW_BLOCK (attr) = blk;
19052 break;
19053 case DW_FORM_block1:
19054 blk = dwarf_alloc_block (cu);
19055 blk->size = read_1_byte (abfd, info_ptr);
19056 info_ptr += 1;
19057 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19058 info_ptr += blk->size;
19059 DW_BLOCK (attr) = blk;
19060 break;
19061 case DW_FORM_data1:
19062 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19063 info_ptr += 1;
19064 break;
19065 case DW_FORM_flag:
19066 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19067 info_ptr += 1;
19068 break;
19069 case DW_FORM_flag_present:
19070 DW_UNSND (attr) = 1;
19071 break;
19072 case DW_FORM_sdata:
19073 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19074 info_ptr += bytes_read;
19075 break;
19076 case DW_FORM_udata:
19077 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19078 info_ptr += bytes_read;
19079 break;
19080 case DW_FORM_ref1:
19081 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19082 + read_1_byte (abfd, info_ptr));
19083 info_ptr += 1;
19084 break;
19085 case DW_FORM_ref2:
19086 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19087 + read_2_bytes (abfd, info_ptr));
19088 info_ptr += 2;
19089 break;
19090 case DW_FORM_ref4:
19091 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19092 + read_4_bytes (abfd, info_ptr));
19093 info_ptr += 4;
19094 break;
19095 case DW_FORM_ref8:
19096 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19097 + read_8_bytes (abfd, info_ptr));
19098 info_ptr += 8;
19099 break;
19100 case DW_FORM_ref_sig8:
19101 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19102 info_ptr += 8;
19103 break;
19104 case DW_FORM_ref_udata:
19105 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19106 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19107 info_ptr += bytes_read;
19108 break;
19109 case DW_FORM_indirect:
19110 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19111 info_ptr += bytes_read;
19112 if (form == DW_FORM_implicit_const)
19113 {
19114 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19115 info_ptr += bytes_read;
19116 }
19117 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19118 info_ptr);
19119 break;
19120 case DW_FORM_implicit_const:
19121 DW_SND (attr) = implicit_const;
19122 break;
19123 case DW_FORM_GNU_addr_index:
19124 if (reader->dwo_file == NULL)
19125 {
19126 /* For now flag a hard error.
19127 Later we can turn this into a complaint. */
19128 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19129 dwarf_form_name (form),
19130 bfd_get_filename (abfd));
19131 }
19132 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19133 info_ptr += bytes_read;
19134 break;
19135 case DW_FORM_GNU_str_index:
19136 if (reader->dwo_file == NULL)
19137 {
19138 /* For now flag a hard error.
19139 Later we can turn this into a complaint if warranted. */
19140 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19141 dwarf_form_name (form),
19142 bfd_get_filename (abfd));
19143 }
19144 {
19145 ULONGEST str_index =
19146 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19147
19148 DW_STRING (attr) = read_str_index (reader, str_index);
19149 DW_STRING_IS_CANONICAL (attr) = 0;
19150 info_ptr += bytes_read;
19151 }
19152 break;
19153 default:
19154 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19155 dwarf_form_name (form),
19156 bfd_get_filename (abfd));
19157 }
19158
19159 /* Super hack. */
19160 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19161 attr->form = DW_FORM_GNU_ref_alt;
19162
19163 /* We have seen instances where the compiler tried to emit a byte
19164 size attribute of -1 which ended up being encoded as an unsigned
19165 0xffffffff. Although 0xffffffff is technically a valid size value,
19166 an object of this size seems pretty unlikely so we can relatively
19167 safely treat these cases as if the size attribute was invalid and
19168 treat them as zero by default. */
19169 if (attr->name == DW_AT_byte_size
19170 && form == DW_FORM_data4
19171 && DW_UNSND (attr) >= 0xffffffff)
19172 {
19173 complaint
19174 (&symfile_complaints,
19175 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19176 hex_string (DW_UNSND (attr)));
19177 DW_UNSND (attr) = 0;
19178 }
19179
19180 return info_ptr;
19181 }
19182
19183 /* Read an attribute described by an abbreviated attribute. */
19184
19185 static const gdb_byte *
19186 read_attribute (const struct die_reader_specs *reader,
19187 struct attribute *attr, struct attr_abbrev *abbrev,
19188 const gdb_byte *info_ptr)
19189 {
19190 attr->name = abbrev->name;
19191 return read_attribute_value (reader, attr, abbrev->form,
19192 abbrev->implicit_const, info_ptr);
19193 }
19194
19195 /* Read dwarf information from a buffer. */
19196
19197 static unsigned int
19198 read_1_byte (bfd *abfd, const gdb_byte *buf)
19199 {
19200 return bfd_get_8 (abfd, buf);
19201 }
19202
19203 static int
19204 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19205 {
19206 return bfd_get_signed_8 (abfd, buf);
19207 }
19208
19209 static unsigned int
19210 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19211 {
19212 return bfd_get_16 (abfd, buf);
19213 }
19214
19215 static int
19216 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19217 {
19218 return bfd_get_signed_16 (abfd, buf);
19219 }
19220
19221 static unsigned int
19222 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19223 {
19224 return bfd_get_32 (abfd, buf);
19225 }
19226
19227 static int
19228 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19229 {
19230 return bfd_get_signed_32 (abfd, buf);
19231 }
19232
19233 static ULONGEST
19234 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19235 {
19236 return bfd_get_64 (abfd, buf);
19237 }
19238
19239 static CORE_ADDR
19240 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19241 unsigned int *bytes_read)
19242 {
19243 struct comp_unit_head *cu_header = &cu->header;
19244 CORE_ADDR retval = 0;
19245
19246 if (cu_header->signed_addr_p)
19247 {
19248 switch (cu_header->addr_size)
19249 {
19250 case 2:
19251 retval = bfd_get_signed_16 (abfd, buf);
19252 break;
19253 case 4:
19254 retval = bfd_get_signed_32 (abfd, buf);
19255 break;
19256 case 8:
19257 retval = bfd_get_signed_64 (abfd, buf);
19258 break;
19259 default:
19260 internal_error (__FILE__, __LINE__,
19261 _("read_address: bad switch, signed [in module %s]"),
19262 bfd_get_filename (abfd));
19263 }
19264 }
19265 else
19266 {
19267 switch (cu_header->addr_size)
19268 {
19269 case 2:
19270 retval = bfd_get_16 (abfd, buf);
19271 break;
19272 case 4:
19273 retval = bfd_get_32 (abfd, buf);
19274 break;
19275 case 8:
19276 retval = bfd_get_64 (abfd, buf);
19277 break;
19278 default:
19279 internal_error (__FILE__, __LINE__,
19280 _("read_address: bad switch, "
19281 "unsigned [in module %s]"),
19282 bfd_get_filename (abfd));
19283 }
19284 }
19285
19286 *bytes_read = cu_header->addr_size;
19287 return retval;
19288 }
19289
19290 /* Read the initial length from a section. The (draft) DWARF 3
19291 specification allows the initial length to take up either 4 bytes
19292 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19293 bytes describe the length and all offsets will be 8 bytes in length
19294 instead of 4.
19295
19296 An older, non-standard 64-bit format is also handled by this
19297 function. The older format in question stores the initial length
19298 as an 8-byte quantity without an escape value. Lengths greater
19299 than 2^32 aren't very common which means that the initial 4 bytes
19300 is almost always zero. Since a length value of zero doesn't make
19301 sense for the 32-bit format, this initial zero can be considered to
19302 be an escape value which indicates the presence of the older 64-bit
19303 format. As written, the code can't detect (old format) lengths
19304 greater than 4GB. If it becomes necessary to handle lengths
19305 somewhat larger than 4GB, we could allow other small values (such
19306 as the non-sensical values of 1, 2, and 3) to also be used as
19307 escape values indicating the presence of the old format.
19308
19309 The value returned via bytes_read should be used to increment the
19310 relevant pointer after calling read_initial_length().
19311
19312 [ Note: read_initial_length() and read_offset() are based on the
19313 document entitled "DWARF Debugging Information Format", revision
19314 3, draft 8, dated November 19, 2001. This document was obtained
19315 from:
19316
19317 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19318
19319 This document is only a draft and is subject to change. (So beware.)
19320
19321 Details regarding the older, non-standard 64-bit format were
19322 determined empirically by examining 64-bit ELF files produced by
19323 the SGI toolchain on an IRIX 6.5 machine.
19324
19325 - Kevin, July 16, 2002
19326 ] */
19327
19328 static LONGEST
19329 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19330 {
19331 LONGEST length = bfd_get_32 (abfd, buf);
19332
19333 if (length == 0xffffffff)
19334 {
19335 length = bfd_get_64 (abfd, buf + 4);
19336 *bytes_read = 12;
19337 }
19338 else if (length == 0)
19339 {
19340 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19341 length = bfd_get_64 (abfd, buf);
19342 *bytes_read = 8;
19343 }
19344 else
19345 {
19346 *bytes_read = 4;
19347 }
19348
19349 return length;
19350 }
19351
19352 /* Cover function for read_initial_length.
19353 Returns the length of the object at BUF, and stores the size of the
19354 initial length in *BYTES_READ and stores the size that offsets will be in
19355 *OFFSET_SIZE.
19356 If the initial length size is not equivalent to that specified in
19357 CU_HEADER then issue a complaint.
19358 This is useful when reading non-comp-unit headers. */
19359
19360 static LONGEST
19361 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19362 const struct comp_unit_head *cu_header,
19363 unsigned int *bytes_read,
19364 unsigned int *offset_size)
19365 {
19366 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19367
19368 gdb_assert (cu_header->initial_length_size == 4
19369 || cu_header->initial_length_size == 8
19370 || cu_header->initial_length_size == 12);
19371
19372 if (cu_header->initial_length_size != *bytes_read)
19373 complaint (&symfile_complaints,
19374 _("intermixed 32-bit and 64-bit DWARF sections"));
19375
19376 *offset_size = (*bytes_read == 4) ? 4 : 8;
19377 return length;
19378 }
19379
19380 /* Read an offset from the data stream. The size of the offset is
19381 given by cu_header->offset_size. */
19382
19383 static LONGEST
19384 read_offset (bfd *abfd, const gdb_byte *buf,
19385 const struct comp_unit_head *cu_header,
19386 unsigned int *bytes_read)
19387 {
19388 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19389
19390 *bytes_read = cu_header->offset_size;
19391 return offset;
19392 }
19393
19394 /* Read an offset from the data stream. */
19395
19396 static LONGEST
19397 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19398 {
19399 LONGEST retval = 0;
19400
19401 switch (offset_size)
19402 {
19403 case 4:
19404 retval = bfd_get_32 (abfd, buf);
19405 break;
19406 case 8:
19407 retval = bfd_get_64 (abfd, buf);
19408 break;
19409 default:
19410 internal_error (__FILE__, __LINE__,
19411 _("read_offset_1: bad switch [in module %s]"),
19412 bfd_get_filename (abfd));
19413 }
19414
19415 return retval;
19416 }
19417
19418 static const gdb_byte *
19419 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19420 {
19421 /* If the size of a host char is 8 bits, we can return a pointer
19422 to the buffer, otherwise we have to copy the data to a buffer
19423 allocated on the temporary obstack. */
19424 gdb_assert (HOST_CHAR_BIT == 8);
19425 return buf;
19426 }
19427
19428 static const char *
19429 read_direct_string (bfd *abfd, const gdb_byte *buf,
19430 unsigned int *bytes_read_ptr)
19431 {
19432 /* If the size of a host char is 8 bits, we can return a pointer
19433 to the string, otherwise we have to copy the string to a buffer
19434 allocated on the temporary obstack. */
19435 gdb_assert (HOST_CHAR_BIT == 8);
19436 if (*buf == '\0')
19437 {
19438 *bytes_read_ptr = 1;
19439 return NULL;
19440 }
19441 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19442 return (const char *) buf;
19443 }
19444
19445 /* Return pointer to string at section SECT offset STR_OFFSET with error
19446 reporting strings FORM_NAME and SECT_NAME. */
19447
19448 static const char *
19449 read_indirect_string_at_offset_from (struct objfile *objfile,
19450 bfd *abfd, LONGEST str_offset,
19451 struct dwarf2_section_info *sect,
19452 const char *form_name,
19453 const char *sect_name)
19454 {
19455 dwarf2_read_section (objfile, sect);
19456 if (sect->buffer == NULL)
19457 error (_("%s used without %s section [in module %s]"),
19458 form_name, sect_name, bfd_get_filename (abfd));
19459 if (str_offset >= sect->size)
19460 error (_("%s pointing outside of %s section [in module %s]"),
19461 form_name, sect_name, bfd_get_filename (abfd));
19462 gdb_assert (HOST_CHAR_BIT == 8);
19463 if (sect->buffer[str_offset] == '\0')
19464 return NULL;
19465 return (const char *) (sect->buffer + str_offset);
19466 }
19467
19468 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19469
19470 static const char *
19471 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19472 bfd *abfd, LONGEST str_offset)
19473 {
19474 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19475 abfd, str_offset,
19476 &dwarf2_per_objfile->str,
19477 "DW_FORM_strp", ".debug_str");
19478 }
19479
19480 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19481
19482 static const char *
19483 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19484 bfd *abfd, LONGEST str_offset)
19485 {
19486 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19487 abfd, str_offset,
19488 &dwarf2_per_objfile->line_str,
19489 "DW_FORM_line_strp",
19490 ".debug_line_str");
19491 }
19492
19493 /* Read a string at offset STR_OFFSET in the .debug_str section from
19494 the .dwz file DWZ. Throw an error if the offset is too large. If
19495 the string consists of a single NUL byte, return NULL; otherwise
19496 return a pointer to the string. */
19497
19498 static const char *
19499 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19500 LONGEST str_offset)
19501 {
19502 dwarf2_read_section (objfile, &dwz->str);
19503
19504 if (dwz->str.buffer == NULL)
19505 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19506 "section [in module %s]"),
19507 bfd_get_filename (dwz->dwz_bfd));
19508 if (str_offset >= dwz->str.size)
19509 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19510 ".debug_str section [in module %s]"),
19511 bfd_get_filename (dwz->dwz_bfd));
19512 gdb_assert (HOST_CHAR_BIT == 8);
19513 if (dwz->str.buffer[str_offset] == '\0')
19514 return NULL;
19515 return (const char *) (dwz->str.buffer + str_offset);
19516 }
19517
19518 /* Return pointer to string at .debug_str offset as read from BUF.
19519 BUF is assumed to be in a compilation unit described by CU_HEADER.
19520 Return *BYTES_READ_PTR count of bytes read from BUF. */
19521
19522 static const char *
19523 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19524 const gdb_byte *buf,
19525 const struct comp_unit_head *cu_header,
19526 unsigned int *bytes_read_ptr)
19527 {
19528 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19529
19530 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19531 }
19532
19533 /* Return pointer to string at .debug_line_str offset as read from BUF.
19534 BUF is assumed to be in a compilation unit described by CU_HEADER.
19535 Return *BYTES_READ_PTR count of bytes read from BUF. */
19536
19537 static const char *
19538 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19539 bfd *abfd, const gdb_byte *buf,
19540 const struct comp_unit_head *cu_header,
19541 unsigned int *bytes_read_ptr)
19542 {
19543 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19544
19545 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19546 str_offset);
19547 }
19548
19549 ULONGEST
19550 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19551 unsigned int *bytes_read_ptr)
19552 {
19553 ULONGEST result;
19554 unsigned int num_read;
19555 int shift;
19556 unsigned char byte;
19557
19558 result = 0;
19559 shift = 0;
19560 num_read = 0;
19561 while (1)
19562 {
19563 byte = bfd_get_8 (abfd, buf);
19564 buf++;
19565 num_read++;
19566 result |= ((ULONGEST) (byte & 127) << shift);
19567 if ((byte & 128) == 0)
19568 {
19569 break;
19570 }
19571 shift += 7;
19572 }
19573 *bytes_read_ptr = num_read;
19574 return result;
19575 }
19576
19577 static LONGEST
19578 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19579 unsigned int *bytes_read_ptr)
19580 {
19581 LONGEST result;
19582 int shift, num_read;
19583 unsigned char byte;
19584
19585 result = 0;
19586 shift = 0;
19587 num_read = 0;
19588 while (1)
19589 {
19590 byte = bfd_get_8 (abfd, buf);
19591 buf++;
19592 num_read++;
19593 result |= ((LONGEST) (byte & 127) << shift);
19594 shift += 7;
19595 if ((byte & 128) == 0)
19596 {
19597 break;
19598 }
19599 }
19600 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19601 result |= -(((LONGEST) 1) << shift);
19602 *bytes_read_ptr = num_read;
19603 return result;
19604 }
19605
19606 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19607 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19608 ADDR_SIZE is the size of addresses from the CU header. */
19609
19610 static CORE_ADDR
19611 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19612 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19613 {
19614 struct objfile *objfile = dwarf2_per_objfile->objfile;
19615 bfd *abfd = objfile->obfd;
19616 const gdb_byte *info_ptr;
19617
19618 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19619 if (dwarf2_per_objfile->addr.buffer == NULL)
19620 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19621 objfile_name (objfile));
19622 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19623 error (_("DW_FORM_addr_index pointing outside of "
19624 ".debug_addr section [in module %s]"),
19625 objfile_name (objfile));
19626 info_ptr = (dwarf2_per_objfile->addr.buffer
19627 + addr_base + addr_index * addr_size);
19628 if (addr_size == 4)
19629 return bfd_get_32 (abfd, info_ptr);
19630 else
19631 return bfd_get_64 (abfd, info_ptr);
19632 }
19633
19634 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19635
19636 static CORE_ADDR
19637 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19638 {
19639 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19640 cu->addr_base, cu->header.addr_size);
19641 }
19642
19643 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19644
19645 static CORE_ADDR
19646 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19647 unsigned int *bytes_read)
19648 {
19649 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19650 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19651
19652 return read_addr_index (cu, addr_index);
19653 }
19654
19655 /* Data structure to pass results from dwarf2_read_addr_index_reader
19656 back to dwarf2_read_addr_index. */
19657
19658 struct dwarf2_read_addr_index_data
19659 {
19660 ULONGEST addr_base;
19661 int addr_size;
19662 };
19663
19664 /* die_reader_func for dwarf2_read_addr_index. */
19665
19666 static void
19667 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19668 const gdb_byte *info_ptr,
19669 struct die_info *comp_unit_die,
19670 int has_children,
19671 void *data)
19672 {
19673 struct dwarf2_cu *cu = reader->cu;
19674 struct dwarf2_read_addr_index_data *aidata =
19675 (struct dwarf2_read_addr_index_data *) data;
19676
19677 aidata->addr_base = cu->addr_base;
19678 aidata->addr_size = cu->header.addr_size;
19679 }
19680
19681 /* Given an index in .debug_addr, fetch the value.
19682 NOTE: This can be called during dwarf expression evaluation,
19683 long after the debug information has been read, and thus per_cu->cu
19684 may no longer exist. */
19685
19686 CORE_ADDR
19687 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19688 unsigned int addr_index)
19689 {
19690 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19691 struct objfile *objfile = dwarf2_per_objfile->objfile;
19692 struct dwarf2_cu *cu = per_cu->cu;
19693 ULONGEST addr_base;
19694 int addr_size;
19695
19696 /* We need addr_base and addr_size.
19697 If we don't have PER_CU->cu, we have to get it.
19698 Nasty, but the alternative is storing the needed info in PER_CU,
19699 which at this point doesn't seem justified: it's not clear how frequently
19700 it would get used and it would increase the size of every PER_CU.
19701 Entry points like dwarf2_per_cu_addr_size do a similar thing
19702 so we're not in uncharted territory here.
19703 Alas we need to be a bit more complicated as addr_base is contained
19704 in the DIE.
19705
19706 We don't need to read the entire CU(/TU).
19707 We just need the header and top level die.
19708
19709 IWBN to use the aging mechanism to let us lazily later discard the CU.
19710 For now we skip this optimization. */
19711
19712 if (cu != NULL)
19713 {
19714 addr_base = cu->addr_base;
19715 addr_size = cu->header.addr_size;
19716 }
19717 else
19718 {
19719 struct dwarf2_read_addr_index_data aidata;
19720
19721 /* Note: We can't use init_cutu_and_read_dies_simple here,
19722 we need addr_base. */
19723 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
19724 dwarf2_read_addr_index_reader, &aidata);
19725 addr_base = aidata.addr_base;
19726 addr_size = aidata.addr_size;
19727 }
19728
19729 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19730 addr_size);
19731 }
19732
19733 /* Given a DW_FORM_GNU_str_index, fetch the string.
19734 This is only used by the Fission support. */
19735
19736 static const char *
19737 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19738 {
19739 struct dwarf2_cu *cu = reader->cu;
19740 struct dwarf2_per_objfile *dwarf2_per_objfile
19741 = cu->per_cu->dwarf2_per_objfile;
19742 struct objfile *objfile = dwarf2_per_objfile->objfile;
19743 const char *objf_name = objfile_name (objfile);
19744 bfd *abfd = objfile->obfd;
19745 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19746 struct dwarf2_section_info *str_offsets_section =
19747 &reader->dwo_file->sections.str_offsets;
19748 const gdb_byte *info_ptr;
19749 ULONGEST str_offset;
19750 static const char form_name[] = "DW_FORM_GNU_str_index";
19751
19752 dwarf2_read_section (objfile, str_section);
19753 dwarf2_read_section (objfile, str_offsets_section);
19754 if (str_section->buffer == NULL)
19755 error (_("%s used without .debug_str.dwo section"
19756 " in CU at offset 0x%x [in module %s]"),
19757 form_name, to_underlying (cu->header.sect_off), objf_name);
19758 if (str_offsets_section->buffer == NULL)
19759 error (_("%s used without .debug_str_offsets.dwo section"
19760 " in CU at offset 0x%x [in module %s]"),
19761 form_name, to_underlying (cu->header.sect_off), objf_name);
19762 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19763 error (_("%s pointing outside of .debug_str_offsets.dwo"
19764 " section in CU at offset 0x%x [in module %s]"),
19765 form_name, to_underlying (cu->header.sect_off), objf_name);
19766 info_ptr = (str_offsets_section->buffer
19767 + str_index * cu->header.offset_size);
19768 if (cu->header.offset_size == 4)
19769 str_offset = bfd_get_32 (abfd, info_ptr);
19770 else
19771 str_offset = bfd_get_64 (abfd, info_ptr);
19772 if (str_offset >= str_section->size)
19773 error (_("Offset from %s pointing outside of"
19774 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
19775 form_name, to_underlying (cu->header.sect_off), objf_name);
19776 return (const char *) (str_section->buffer + str_offset);
19777 }
19778
19779 /* Return the length of an LEB128 number in BUF. */
19780
19781 static int
19782 leb128_size (const gdb_byte *buf)
19783 {
19784 const gdb_byte *begin = buf;
19785 gdb_byte byte;
19786
19787 while (1)
19788 {
19789 byte = *buf++;
19790 if ((byte & 128) == 0)
19791 return buf - begin;
19792 }
19793 }
19794
19795 static void
19796 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19797 {
19798 switch (lang)
19799 {
19800 case DW_LANG_C89:
19801 case DW_LANG_C99:
19802 case DW_LANG_C11:
19803 case DW_LANG_C:
19804 case DW_LANG_UPC:
19805 cu->language = language_c;
19806 break;
19807 case DW_LANG_Java:
19808 case DW_LANG_C_plus_plus:
19809 case DW_LANG_C_plus_plus_11:
19810 case DW_LANG_C_plus_plus_14:
19811 cu->language = language_cplus;
19812 break;
19813 case DW_LANG_D:
19814 cu->language = language_d;
19815 break;
19816 case DW_LANG_Fortran77:
19817 case DW_LANG_Fortran90:
19818 case DW_LANG_Fortran95:
19819 case DW_LANG_Fortran03:
19820 case DW_LANG_Fortran08:
19821 cu->language = language_fortran;
19822 break;
19823 case DW_LANG_Go:
19824 cu->language = language_go;
19825 break;
19826 case DW_LANG_Mips_Assembler:
19827 cu->language = language_asm;
19828 break;
19829 case DW_LANG_Ada83:
19830 case DW_LANG_Ada95:
19831 cu->language = language_ada;
19832 break;
19833 case DW_LANG_Modula2:
19834 cu->language = language_m2;
19835 break;
19836 case DW_LANG_Pascal83:
19837 cu->language = language_pascal;
19838 break;
19839 case DW_LANG_ObjC:
19840 cu->language = language_objc;
19841 break;
19842 case DW_LANG_Rust:
19843 case DW_LANG_Rust_old:
19844 cu->language = language_rust;
19845 break;
19846 case DW_LANG_Cobol74:
19847 case DW_LANG_Cobol85:
19848 default:
19849 cu->language = language_minimal;
19850 break;
19851 }
19852 cu->language_defn = language_def (cu->language);
19853 }
19854
19855 /* Return the named attribute or NULL if not there. */
19856
19857 static struct attribute *
19858 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19859 {
19860 for (;;)
19861 {
19862 unsigned int i;
19863 struct attribute *spec = NULL;
19864
19865 for (i = 0; i < die->num_attrs; ++i)
19866 {
19867 if (die->attrs[i].name == name)
19868 return &die->attrs[i];
19869 if (die->attrs[i].name == DW_AT_specification
19870 || die->attrs[i].name == DW_AT_abstract_origin)
19871 spec = &die->attrs[i];
19872 }
19873
19874 if (!spec)
19875 break;
19876
19877 die = follow_die_ref (die, spec, &cu);
19878 }
19879
19880 return NULL;
19881 }
19882
19883 /* Return the named attribute or NULL if not there,
19884 but do not follow DW_AT_specification, etc.
19885 This is for use in contexts where we're reading .debug_types dies.
19886 Following DW_AT_specification, DW_AT_abstract_origin will take us
19887 back up the chain, and we want to go down. */
19888
19889 static struct attribute *
19890 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19891 {
19892 unsigned int i;
19893
19894 for (i = 0; i < die->num_attrs; ++i)
19895 if (die->attrs[i].name == name)
19896 return &die->attrs[i];
19897
19898 return NULL;
19899 }
19900
19901 /* Return the string associated with a string-typed attribute, or NULL if it
19902 is either not found or is of an incorrect type. */
19903
19904 static const char *
19905 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19906 {
19907 struct attribute *attr;
19908 const char *str = NULL;
19909
19910 attr = dwarf2_attr (die, name, cu);
19911
19912 if (attr != NULL)
19913 {
19914 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19915 || attr->form == DW_FORM_string
19916 || attr->form == DW_FORM_GNU_str_index
19917 || attr->form == DW_FORM_GNU_strp_alt)
19918 str = DW_STRING (attr);
19919 else
19920 complaint (&symfile_complaints,
19921 _("string type expected for attribute %s for "
19922 "DIE at 0x%x in module %s"),
19923 dwarf_attr_name (name), to_underlying (die->sect_off),
19924 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19925 }
19926
19927 return str;
19928 }
19929
19930 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19931 and holds a non-zero value. This function should only be used for
19932 DW_FORM_flag or DW_FORM_flag_present attributes. */
19933
19934 static int
19935 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19936 {
19937 struct attribute *attr = dwarf2_attr (die, name, cu);
19938
19939 return (attr && DW_UNSND (attr));
19940 }
19941
19942 static int
19943 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19944 {
19945 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19946 which value is non-zero. However, we have to be careful with
19947 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19948 (via dwarf2_flag_true_p) follows this attribute. So we may
19949 end up accidently finding a declaration attribute that belongs
19950 to a different DIE referenced by the specification attribute,
19951 even though the given DIE does not have a declaration attribute. */
19952 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19953 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19954 }
19955
19956 /* Return the die giving the specification for DIE, if there is
19957 one. *SPEC_CU is the CU containing DIE on input, and the CU
19958 containing the return value on output. If there is no
19959 specification, but there is an abstract origin, that is
19960 returned. */
19961
19962 static struct die_info *
19963 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19964 {
19965 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19966 *spec_cu);
19967
19968 if (spec_attr == NULL)
19969 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19970
19971 if (spec_attr == NULL)
19972 return NULL;
19973 else
19974 return follow_die_ref (die, spec_attr, spec_cu);
19975 }
19976
19977 /* Stub for free_line_header to match void * callback types. */
19978
19979 static void
19980 free_line_header_voidp (void *arg)
19981 {
19982 struct line_header *lh = (struct line_header *) arg;
19983
19984 delete lh;
19985 }
19986
19987 void
19988 line_header::add_include_dir (const char *include_dir)
19989 {
19990 if (dwarf_line_debug >= 2)
19991 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
19992 include_dirs.size () + 1, include_dir);
19993
19994 include_dirs.push_back (include_dir);
19995 }
19996
19997 void
19998 line_header::add_file_name (const char *name,
19999 dir_index d_index,
20000 unsigned int mod_time,
20001 unsigned int length)
20002 {
20003 if (dwarf_line_debug >= 2)
20004 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20005 (unsigned) file_names.size () + 1, name);
20006
20007 file_names.emplace_back (name, d_index, mod_time, length);
20008 }
20009
20010 /* A convenience function to find the proper .debug_line section for a CU. */
20011
20012 static struct dwarf2_section_info *
20013 get_debug_line_section (struct dwarf2_cu *cu)
20014 {
20015 struct dwarf2_section_info *section;
20016 struct dwarf2_per_objfile *dwarf2_per_objfile
20017 = cu->per_cu->dwarf2_per_objfile;
20018
20019 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20020 DWO file. */
20021 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20022 section = &cu->dwo_unit->dwo_file->sections.line;
20023 else if (cu->per_cu->is_dwz)
20024 {
20025 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20026
20027 section = &dwz->line;
20028 }
20029 else
20030 section = &dwarf2_per_objfile->line;
20031
20032 return section;
20033 }
20034
20035 /* Read directory or file name entry format, starting with byte of
20036 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20037 entries count and the entries themselves in the described entry
20038 format. */
20039
20040 static void
20041 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20042 bfd *abfd, const gdb_byte **bufp,
20043 struct line_header *lh,
20044 const struct comp_unit_head *cu_header,
20045 void (*callback) (struct line_header *lh,
20046 const char *name,
20047 dir_index d_index,
20048 unsigned int mod_time,
20049 unsigned int length))
20050 {
20051 gdb_byte format_count, formati;
20052 ULONGEST data_count, datai;
20053 const gdb_byte *buf = *bufp;
20054 const gdb_byte *format_header_data;
20055 unsigned int bytes_read;
20056
20057 format_count = read_1_byte (abfd, buf);
20058 buf += 1;
20059 format_header_data = buf;
20060 for (formati = 0; formati < format_count; formati++)
20061 {
20062 read_unsigned_leb128 (abfd, buf, &bytes_read);
20063 buf += bytes_read;
20064 read_unsigned_leb128 (abfd, buf, &bytes_read);
20065 buf += bytes_read;
20066 }
20067
20068 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20069 buf += bytes_read;
20070 for (datai = 0; datai < data_count; datai++)
20071 {
20072 const gdb_byte *format = format_header_data;
20073 struct file_entry fe;
20074
20075 for (formati = 0; formati < format_count; formati++)
20076 {
20077 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20078 format += bytes_read;
20079
20080 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20081 format += bytes_read;
20082
20083 gdb::optional<const char *> string;
20084 gdb::optional<unsigned int> uint;
20085
20086 switch (form)
20087 {
20088 case DW_FORM_string:
20089 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20090 buf += bytes_read;
20091 break;
20092
20093 case DW_FORM_line_strp:
20094 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20095 abfd, buf,
20096 cu_header,
20097 &bytes_read));
20098 buf += bytes_read;
20099 break;
20100
20101 case DW_FORM_data1:
20102 uint.emplace (read_1_byte (abfd, buf));
20103 buf += 1;
20104 break;
20105
20106 case DW_FORM_data2:
20107 uint.emplace (read_2_bytes (abfd, buf));
20108 buf += 2;
20109 break;
20110
20111 case DW_FORM_data4:
20112 uint.emplace (read_4_bytes (abfd, buf));
20113 buf += 4;
20114 break;
20115
20116 case DW_FORM_data8:
20117 uint.emplace (read_8_bytes (abfd, buf));
20118 buf += 8;
20119 break;
20120
20121 case DW_FORM_udata:
20122 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20123 buf += bytes_read;
20124 break;
20125
20126 case DW_FORM_block:
20127 /* It is valid only for DW_LNCT_timestamp which is ignored by
20128 current GDB. */
20129 break;
20130 }
20131
20132 switch (content_type)
20133 {
20134 case DW_LNCT_path:
20135 if (string.has_value ())
20136 fe.name = *string;
20137 break;
20138 case DW_LNCT_directory_index:
20139 if (uint.has_value ())
20140 fe.d_index = (dir_index) *uint;
20141 break;
20142 case DW_LNCT_timestamp:
20143 if (uint.has_value ())
20144 fe.mod_time = *uint;
20145 break;
20146 case DW_LNCT_size:
20147 if (uint.has_value ())
20148 fe.length = *uint;
20149 break;
20150 case DW_LNCT_MD5:
20151 break;
20152 default:
20153 complaint (&symfile_complaints,
20154 _("Unknown format content type %s"),
20155 pulongest (content_type));
20156 }
20157 }
20158
20159 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20160 }
20161
20162 *bufp = buf;
20163 }
20164
20165 /* Read the statement program header starting at OFFSET in
20166 .debug_line, or .debug_line.dwo. Return a pointer
20167 to a struct line_header, allocated using xmalloc.
20168 Returns NULL if there is a problem reading the header, e.g., if it
20169 has a version we don't understand.
20170
20171 NOTE: the strings in the include directory and file name tables of
20172 the returned object point into the dwarf line section buffer,
20173 and must not be freed. */
20174
20175 static line_header_up
20176 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20177 {
20178 const gdb_byte *line_ptr;
20179 unsigned int bytes_read, offset_size;
20180 int i;
20181 const char *cur_dir, *cur_file;
20182 struct dwarf2_section_info *section;
20183 bfd *abfd;
20184 struct dwarf2_per_objfile *dwarf2_per_objfile
20185 = cu->per_cu->dwarf2_per_objfile;
20186
20187 section = get_debug_line_section (cu);
20188 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20189 if (section->buffer == NULL)
20190 {
20191 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20192 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
20193 else
20194 complaint (&symfile_complaints, _("missing .debug_line section"));
20195 return 0;
20196 }
20197
20198 /* We can't do this until we know the section is non-empty.
20199 Only then do we know we have such a section. */
20200 abfd = get_section_bfd_owner (section);
20201
20202 /* Make sure that at least there's room for the total_length field.
20203 That could be 12 bytes long, but we're just going to fudge that. */
20204 if (to_underlying (sect_off) + 4 >= section->size)
20205 {
20206 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20207 return 0;
20208 }
20209
20210 line_header_up lh (new line_header ());
20211
20212 lh->sect_off = sect_off;
20213 lh->offset_in_dwz = cu->per_cu->is_dwz;
20214
20215 line_ptr = section->buffer + to_underlying (sect_off);
20216
20217 /* Read in the header. */
20218 lh->total_length =
20219 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20220 &bytes_read, &offset_size);
20221 line_ptr += bytes_read;
20222 if (line_ptr + lh->total_length > (section->buffer + section->size))
20223 {
20224 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20225 return 0;
20226 }
20227 lh->statement_program_end = line_ptr + lh->total_length;
20228 lh->version = read_2_bytes (abfd, line_ptr);
20229 line_ptr += 2;
20230 if (lh->version > 5)
20231 {
20232 /* This is a version we don't understand. The format could have
20233 changed in ways we don't handle properly so just punt. */
20234 complaint (&symfile_complaints,
20235 _("unsupported version in .debug_line section"));
20236 return NULL;
20237 }
20238 if (lh->version >= 5)
20239 {
20240 gdb_byte segment_selector_size;
20241
20242 /* Skip address size. */
20243 read_1_byte (abfd, line_ptr);
20244 line_ptr += 1;
20245
20246 segment_selector_size = read_1_byte (abfd, line_ptr);
20247 line_ptr += 1;
20248 if (segment_selector_size != 0)
20249 {
20250 complaint (&symfile_complaints,
20251 _("unsupported segment selector size %u "
20252 "in .debug_line section"),
20253 segment_selector_size);
20254 return NULL;
20255 }
20256 }
20257 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20258 line_ptr += offset_size;
20259 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20260 line_ptr += 1;
20261 if (lh->version >= 4)
20262 {
20263 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20264 line_ptr += 1;
20265 }
20266 else
20267 lh->maximum_ops_per_instruction = 1;
20268
20269 if (lh->maximum_ops_per_instruction == 0)
20270 {
20271 lh->maximum_ops_per_instruction = 1;
20272 complaint (&symfile_complaints,
20273 _("invalid maximum_ops_per_instruction "
20274 "in `.debug_line' section"));
20275 }
20276
20277 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20278 line_ptr += 1;
20279 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20280 line_ptr += 1;
20281 lh->line_range = read_1_byte (abfd, line_ptr);
20282 line_ptr += 1;
20283 lh->opcode_base = read_1_byte (abfd, line_ptr);
20284 line_ptr += 1;
20285 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20286
20287 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20288 for (i = 1; i < lh->opcode_base; ++i)
20289 {
20290 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20291 line_ptr += 1;
20292 }
20293
20294 if (lh->version >= 5)
20295 {
20296 /* Read directory table. */
20297 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20298 &cu->header,
20299 [] (struct line_header *lh, const char *name,
20300 dir_index d_index, unsigned int mod_time,
20301 unsigned int length)
20302 {
20303 lh->add_include_dir (name);
20304 });
20305
20306 /* Read file name table. */
20307 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20308 &cu->header,
20309 [] (struct line_header *lh, const char *name,
20310 dir_index d_index, unsigned int mod_time,
20311 unsigned int length)
20312 {
20313 lh->add_file_name (name, d_index, mod_time, length);
20314 });
20315 }
20316 else
20317 {
20318 /* Read directory table. */
20319 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20320 {
20321 line_ptr += bytes_read;
20322 lh->add_include_dir (cur_dir);
20323 }
20324 line_ptr += bytes_read;
20325
20326 /* Read file name table. */
20327 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20328 {
20329 unsigned int mod_time, length;
20330 dir_index d_index;
20331
20332 line_ptr += bytes_read;
20333 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20334 line_ptr += bytes_read;
20335 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20336 line_ptr += bytes_read;
20337 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20338 line_ptr += bytes_read;
20339
20340 lh->add_file_name (cur_file, d_index, mod_time, length);
20341 }
20342 line_ptr += bytes_read;
20343 }
20344 lh->statement_program_start = line_ptr;
20345
20346 if (line_ptr > (section->buffer + section->size))
20347 complaint (&symfile_complaints,
20348 _("line number info header doesn't "
20349 "fit in `.debug_line' section"));
20350
20351 return lh;
20352 }
20353
20354 /* Subroutine of dwarf_decode_lines to simplify it.
20355 Return the file name of the psymtab for included file FILE_INDEX
20356 in line header LH of PST.
20357 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20358 If space for the result is malloc'd, *NAME_HOLDER will be set.
20359 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20360
20361 static const char *
20362 psymtab_include_file_name (const struct line_header *lh, int file_index,
20363 const struct partial_symtab *pst,
20364 const char *comp_dir,
20365 gdb::unique_xmalloc_ptr<char> *name_holder)
20366 {
20367 const file_entry &fe = lh->file_names[file_index];
20368 const char *include_name = fe.name;
20369 const char *include_name_to_compare = include_name;
20370 const char *pst_filename;
20371 int file_is_pst;
20372
20373 const char *dir_name = fe.include_dir (lh);
20374
20375 gdb::unique_xmalloc_ptr<char> hold_compare;
20376 if (!IS_ABSOLUTE_PATH (include_name)
20377 && (dir_name != NULL || comp_dir != NULL))
20378 {
20379 /* Avoid creating a duplicate psymtab for PST.
20380 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20381 Before we do the comparison, however, we need to account
20382 for DIR_NAME and COMP_DIR.
20383 First prepend dir_name (if non-NULL). If we still don't
20384 have an absolute path prepend comp_dir (if non-NULL).
20385 However, the directory we record in the include-file's
20386 psymtab does not contain COMP_DIR (to match the
20387 corresponding symtab(s)).
20388
20389 Example:
20390
20391 bash$ cd /tmp
20392 bash$ gcc -g ./hello.c
20393 include_name = "hello.c"
20394 dir_name = "."
20395 DW_AT_comp_dir = comp_dir = "/tmp"
20396 DW_AT_name = "./hello.c"
20397
20398 */
20399
20400 if (dir_name != NULL)
20401 {
20402 name_holder->reset (concat (dir_name, SLASH_STRING,
20403 include_name, (char *) NULL));
20404 include_name = name_holder->get ();
20405 include_name_to_compare = include_name;
20406 }
20407 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20408 {
20409 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20410 include_name, (char *) NULL));
20411 include_name_to_compare = hold_compare.get ();
20412 }
20413 }
20414
20415 pst_filename = pst->filename;
20416 gdb::unique_xmalloc_ptr<char> copied_name;
20417 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20418 {
20419 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20420 pst_filename, (char *) NULL));
20421 pst_filename = copied_name.get ();
20422 }
20423
20424 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20425
20426 if (file_is_pst)
20427 return NULL;
20428 return include_name;
20429 }
20430
20431 /* State machine to track the state of the line number program. */
20432
20433 class lnp_state_machine
20434 {
20435 public:
20436 /* Initialize a machine state for the start of a line number
20437 program. */
20438 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
20439
20440 file_entry *current_file ()
20441 {
20442 /* lh->file_names is 0-based, but the file name numbers in the
20443 statement program are 1-based. */
20444 return m_line_header->file_name_at (m_file);
20445 }
20446
20447 /* Record the line in the state machine. END_SEQUENCE is true if
20448 we're processing the end of a sequence. */
20449 void record_line (bool end_sequence);
20450
20451 /* Check address and if invalid nop-out the rest of the lines in this
20452 sequence. */
20453 void check_line_address (struct dwarf2_cu *cu,
20454 const gdb_byte *line_ptr,
20455 CORE_ADDR lowpc, CORE_ADDR address);
20456
20457 void handle_set_discriminator (unsigned int discriminator)
20458 {
20459 m_discriminator = discriminator;
20460 m_line_has_non_zero_discriminator |= discriminator != 0;
20461 }
20462
20463 /* Handle DW_LNE_set_address. */
20464 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20465 {
20466 m_op_index = 0;
20467 address += baseaddr;
20468 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20469 }
20470
20471 /* Handle DW_LNS_advance_pc. */
20472 void handle_advance_pc (CORE_ADDR adjust);
20473
20474 /* Handle a special opcode. */
20475 void handle_special_opcode (unsigned char op_code);
20476
20477 /* Handle DW_LNS_advance_line. */
20478 void handle_advance_line (int line_delta)
20479 {
20480 advance_line (line_delta);
20481 }
20482
20483 /* Handle DW_LNS_set_file. */
20484 void handle_set_file (file_name_index file);
20485
20486 /* Handle DW_LNS_negate_stmt. */
20487 void handle_negate_stmt ()
20488 {
20489 m_is_stmt = !m_is_stmt;
20490 }
20491
20492 /* Handle DW_LNS_const_add_pc. */
20493 void handle_const_add_pc ();
20494
20495 /* Handle DW_LNS_fixed_advance_pc. */
20496 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20497 {
20498 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20499 m_op_index = 0;
20500 }
20501
20502 /* Handle DW_LNS_copy. */
20503 void handle_copy ()
20504 {
20505 record_line (false);
20506 m_discriminator = 0;
20507 }
20508
20509 /* Handle DW_LNE_end_sequence. */
20510 void handle_end_sequence ()
20511 {
20512 m_record_line_callback = ::record_line;
20513 }
20514
20515 private:
20516 /* Advance the line by LINE_DELTA. */
20517 void advance_line (int line_delta)
20518 {
20519 m_line += line_delta;
20520
20521 if (line_delta != 0)
20522 m_line_has_non_zero_discriminator = m_discriminator != 0;
20523 }
20524
20525 gdbarch *m_gdbarch;
20526
20527 /* True if we're recording lines.
20528 Otherwise we're building partial symtabs and are just interested in
20529 finding include files mentioned by the line number program. */
20530 bool m_record_lines_p;
20531
20532 /* The line number header. */
20533 line_header *m_line_header;
20534
20535 /* These are part of the standard DWARF line number state machine,
20536 and initialized according to the DWARF spec. */
20537
20538 unsigned char m_op_index = 0;
20539 /* The line table index (1-based) of the current file. */
20540 file_name_index m_file = (file_name_index) 1;
20541 unsigned int m_line = 1;
20542
20543 /* These are initialized in the constructor. */
20544
20545 CORE_ADDR m_address;
20546 bool m_is_stmt;
20547 unsigned int m_discriminator;
20548
20549 /* Additional bits of state we need to track. */
20550
20551 /* The last file that we called dwarf2_start_subfile for.
20552 This is only used for TLLs. */
20553 unsigned int m_last_file = 0;
20554 /* The last file a line number was recorded for. */
20555 struct subfile *m_last_subfile = NULL;
20556
20557 /* The function to call to record a line. */
20558 record_line_ftype *m_record_line_callback = NULL;
20559
20560 /* The last line number that was recorded, used to coalesce
20561 consecutive entries for the same line. This can happen, for
20562 example, when discriminators are present. PR 17276. */
20563 unsigned int m_last_line = 0;
20564 bool m_line_has_non_zero_discriminator = false;
20565 };
20566
20567 void
20568 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20569 {
20570 CORE_ADDR addr_adj = (((m_op_index + adjust)
20571 / m_line_header->maximum_ops_per_instruction)
20572 * m_line_header->minimum_instruction_length);
20573 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20574 m_op_index = ((m_op_index + adjust)
20575 % m_line_header->maximum_ops_per_instruction);
20576 }
20577
20578 void
20579 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20580 {
20581 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20582 CORE_ADDR addr_adj = (((m_op_index
20583 + (adj_opcode / m_line_header->line_range))
20584 / m_line_header->maximum_ops_per_instruction)
20585 * m_line_header->minimum_instruction_length);
20586 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20587 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20588 % m_line_header->maximum_ops_per_instruction);
20589
20590 int line_delta = (m_line_header->line_base
20591 + (adj_opcode % m_line_header->line_range));
20592 advance_line (line_delta);
20593 record_line (false);
20594 m_discriminator = 0;
20595 }
20596
20597 void
20598 lnp_state_machine::handle_set_file (file_name_index file)
20599 {
20600 m_file = file;
20601
20602 const file_entry *fe = current_file ();
20603 if (fe == NULL)
20604 dwarf2_debug_line_missing_file_complaint ();
20605 else if (m_record_lines_p)
20606 {
20607 const char *dir = fe->include_dir (m_line_header);
20608
20609 m_last_subfile = current_subfile;
20610 m_line_has_non_zero_discriminator = m_discriminator != 0;
20611 dwarf2_start_subfile (fe->name, dir);
20612 }
20613 }
20614
20615 void
20616 lnp_state_machine::handle_const_add_pc ()
20617 {
20618 CORE_ADDR adjust
20619 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20620
20621 CORE_ADDR addr_adj
20622 = (((m_op_index + adjust)
20623 / m_line_header->maximum_ops_per_instruction)
20624 * m_line_header->minimum_instruction_length);
20625
20626 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20627 m_op_index = ((m_op_index + adjust)
20628 % m_line_header->maximum_ops_per_instruction);
20629 }
20630
20631 /* Ignore this record_line request. */
20632
20633 static void
20634 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
20635 {
20636 return;
20637 }
20638
20639 /* Return non-zero if we should add LINE to the line number table.
20640 LINE is the line to add, LAST_LINE is the last line that was added,
20641 LAST_SUBFILE is the subfile for LAST_LINE.
20642 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20643 had a non-zero discriminator.
20644
20645 We have to be careful in the presence of discriminators.
20646 E.g., for this line:
20647
20648 for (i = 0; i < 100000; i++);
20649
20650 clang can emit four line number entries for that one line,
20651 each with a different discriminator.
20652 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20653
20654 However, we want gdb to coalesce all four entries into one.
20655 Otherwise the user could stepi into the middle of the line and
20656 gdb would get confused about whether the pc really was in the
20657 middle of the line.
20658
20659 Things are further complicated by the fact that two consecutive
20660 line number entries for the same line is a heuristic used by gcc
20661 to denote the end of the prologue. So we can't just discard duplicate
20662 entries, we have to be selective about it. The heuristic we use is
20663 that we only collapse consecutive entries for the same line if at least
20664 one of those entries has a non-zero discriminator. PR 17276.
20665
20666 Note: Addresses in the line number state machine can never go backwards
20667 within one sequence, thus this coalescing is ok. */
20668
20669 static int
20670 dwarf_record_line_p (unsigned int line, unsigned int last_line,
20671 int line_has_non_zero_discriminator,
20672 struct subfile *last_subfile)
20673 {
20674 if (current_subfile != last_subfile)
20675 return 1;
20676 if (line != last_line)
20677 return 1;
20678 /* Same line for the same file that we've seen already.
20679 As a last check, for pr 17276, only record the line if the line
20680 has never had a non-zero discriminator. */
20681 if (!line_has_non_zero_discriminator)
20682 return 1;
20683 return 0;
20684 }
20685
20686 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
20687 in the line table of subfile SUBFILE. */
20688
20689 static void
20690 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20691 unsigned int line, CORE_ADDR address,
20692 record_line_ftype p_record_line)
20693 {
20694 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20695
20696 if (dwarf_line_debug)
20697 {
20698 fprintf_unfiltered (gdb_stdlog,
20699 "Recording line %u, file %s, address %s\n",
20700 line, lbasename (subfile->name),
20701 paddress (gdbarch, address));
20702 }
20703
20704 (*p_record_line) (subfile, line, addr);
20705 }
20706
20707 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20708 Mark the end of a set of line number records.
20709 The arguments are the same as for dwarf_record_line_1.
20710 If SUBFILE is NULL the request is ignored. */
20711
20712 static void
20713 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20714 CORE_ADDR address, record_line_ftype p_record_line)
20715 {
20716 if (subfile == NULL)
20717 return;
20718
20719 if (dwarf_line_debug)
20720 {
20721 fprintf_unfiltered (gdb_stdlog,
20722 "Finishing current line, file %s, address %s\n",
20723 lbasename (subfile->name),
20724 paddress (gdbarch, address));
20725 }
20726
20727 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
20728 }
20729
20730 void
20731 lnp_state_machine::record_line (bool end_sequence)
20732 {
20733 if (dwarf_line_debug)
20734 {
20735 fprintf_unfiltered (gdb_stdlog,
20736 "Processing actual line %u: file %u,"
20737 " address %s, is_stmt %u, discrim %u\n",
20738 m_line, to_underlying (m_file),
20739 paddress (m_gdbarch, m_address),
20740 m_is_stmt, m_discriminator);
20741 }
20742
20743 file_entry *fe = current_file ();
20744
20745 if (fe == NULL)
20746 dwarf2_debug_line_missing_file_complaint ();
20747 /* For now we ignore lines not starting on an instruction boundary.
20748 But not when processing end_sequence for compatibility with the
20749 previous version of the code. */
20750 else if (m_op_index == 0 || end_sequence)
20751 {
20752 fe->included_p = 1;
20753 if (m_record_lines_p && m_is_stmt)
20754 {
20755 if (m_last_subfile != current_subfile || end_sequence)
20756 {
20757 dwarf_finish_line (m_gdbarch, m_last_subfile,
20758 m_address, m_record_line_callback);
20759 }
20760
20761 if (!end_sequence)
20762 {
20763 if (dwarf_record_line_p (m_line, m_last_line,
20764 m_line_has_non_zero_discriminator,
20765 m_last_subfile))
20766 {
20767 dwarf_record_line_1 (m_gdbarch, current_subfile,
20768 m_line, m_address,
20769 m_record_line_callback);
20770 }
20771 m_last_subfile = current_subfile;
20772 m_last_line = m_line;
20773 }
20774 }
20775 }
20776 }
20777
20778 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
20779 bool record_lines_p)
20780 {
20781 m_gdbarch = arch;
20782 m_record_lines_p = record_lines_p;
20783 m_line_header = lh;
20784
20785 m_record_line_callback = ::record_line;
20786
20787 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20788 was a line entry for it so that the backend has a chance to adjust it
20789 and also record it in case it needs it. This is currently used by MIPS
20790 code, cf. `mips_adjust_dwarf2_line'. */
20791 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20792 m_is_stmt = lh->default_is_stmt;
20793 m_discriminator = 0;
20794 }
20795
20796 void
20797 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20798 const gdb_byte *line_ptr,
20799 CORE_ADDR lowpc, CORE_ADDR address)
20800 {
20801 /* If address < lowpc then it's not a usable value, it's outside the
20802 pc range of the CU. However, we restrict the test to only address
20803 values of zero to preserve GDB's previous behaviour which is to
20804 handle the specific case of a function being GC'd by the linker. */
20805
20806 if (address == 0 && address < lowpc)
20807 {
20808 /* This line table is for a function which has been
20809 GCd by the linker. Ignore it. PR gdb/12528 */
20810
20811 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20812 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20813
20814 complaint (&symfile_complaints,
20815 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20816 line_offset, objfile_name (objfile));
20817 m_record_line_callback = noop_record_line;
20818 /* Note: record_line_callback is left as noop_record_line until
20819 we see DW_LNE_end_sequence. */
20820 }
20821 }
20822
20823 /* Subroutine of dwarf_decode_lines to simplify it.
20824 Process the line number information in LH.
20825 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20826 program in order to set included_p for every referenced header. */
20827
20828 static void
20829 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20830 const int decode_for_pst_p, CORE_ADDR lowpc)
20831 {
20832 const gdb_byte *line_ptr, *extended_end;
20833 const gdb_byte *line_end;
20834 unsigned int bytes_read, extended_len;
20835 unsigned char op_code, extended_op;
20836 CORE_ADDR baseaddr;
20837 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20838 bfd *abfd = objfile->obfd;
20839 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20840 /* True if we're recording line info (as opposed to building partial
20841 symtabs and just interested in finding include files mentioned by
20842 the line number program). */
20843 bool record_lines_p = !decode_for_pst_p;
20844
20845 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20846
20847 line_ptr = lh->statement_program_start;
20848 line_end = lh->statement_program_end;
20849
20850 /* Read the statement sequences until there's nothing left. */
20851 while (line_ptr < line_end)
20852 {
20853 /* The DWARF line number program state machine. Reset the state
20854 machine at the start of each sequence. */
20855 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
20856 bool end_sequence = false;
20857
20858 if (record_lines_p)
20859 {
20860 /* Start a subfile for the current file of the state
20861 machine. */
20862 const file_entry *fe = state_machine.current_file ();
20863
20864 if (fe != NULL)
20865 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
20866 }
20867
20868 /* Decode the table. */
20869 while (line_ptr < line_end && !end_sequence)
20870 {
20871 op_code = read_1_byte (abfd, line_ptr);
20872 line_ptr += 1;
20873
20874 if (op_code >= lh->opcode_base)
20875 {
20876 /* Special opcode. */
20877 state_machine.handle_special_opcode (op_code);
20878 }
20879 else switch (op_code)
20880 {
20881 case DW_LNS_extended_op:
20882 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20883 &bytes_read);
20884 line_ptr += bytes_read;
20885 extended_end = line_ptr + extended_len;
20886 extended_op = read_1_byte (abfd, line_ptr);
20887 line_ptr += 1;
20888 switch (extended_op)
20889 {
20890 case DW_LNE_end_sequence:
20891 state_machine.handle_end_sequence ();
20892 end_sequence = true;
20893 break;
20894 case DW_LNE_set_address:
20895 {
20896 CORE_ADDR address
20897 = read_address (abfd, line_ptr, cu, &bytes_read);
20898 line_ptr += bytes_read;
20899
20900 state_machine.check_line_address (cu, line_ptr,
20901 lowpc, address);
20902 state_machine.handle_set_address (baseaddr, address);
20903 }
20904 break;
20905 case DW_LNE_define_file:
20906 {
20907 const char *cur_file;
20908 unsigned int mod_time, length;
20909 dir_index dindex;
20910
20911 cur_file = read_direct_string (abfd, line_ptr,
20912 &bytes_read);
20913 line_ptr += bytes_read;
20914 dindex = (dir_index)
20915 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20916 line_ptr += bytes_read;
20917 mod_time =
20918 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20919 line_ptr += bytes_read;
20920 length =
20921 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20922 line_ptr += bytes_read;
20923 lh->add_file_name (cur_file, dindex, mod_time, length);
20924 }
20925 break;
20926 case DW_LNE_set_discriminator:
20927 {
20928 /* The discriminator is not interesting to the
20929 debugger; just ignore it. We still need to
20930 check its value though:
20931 if there are consecutive entries for the same
20932 (non-prologue) line we want to coalesce them.
20933 PR 17276. */
20934 unsigned int discr
20935 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20936 line_ptr += bytes_read;
20937
20938 state_machine.handle_set_discriminator (discr);
20939 }
20940 break;
20941 default:
20942 complaint (&symfile_complaints,
20943 _("mangled .debug_line section"));
20944 return;
20945 }
20946 /* Make sure that we parsed the extended op correctly. If e.g.
20947 we expected a different address size than the producer used,
20948 we may have read the wrong number of bytes. */
20949 if (line_ptr != extended_end)
20950 {
20951 complaint (&symfile_complaints,
20952 _("mangled .debug_line section"));
20953 return;
20954 }
20955 break;
20956 case DW_LNS_copy:
20957 state_machine.handle_copy ();
20958 break;
20959 case DW_LNS_advance_pc:
20960 {
20961 CORE_ADDR adjust
20962 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20963 line_ptr += bytes_read;
20964
20965 state_machine.handle_advance_pc (adjust);
20966 }
20967 break;
20968 case DW_LNS_advance_line:
20969 {
20970 int line_delta
20971 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20972 line_ptr += bytes_read;
20973
20974 state_machine.handle_advance_line (line_delta);
20975 }
20976 break;
20977 case DW_LNS_set_file:
20978 {
20979 file_name_index file
20980 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20981 &bytes_read);
20982 line_ptr += bytes_read;
20983
20984 state_machine.handle_set_file (file);
20985 }
20986 break;
20987 case DW_LNS_set_column:
20988 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20989 line_ptr += bytes_read;
20990 break;
20991 case DW_LNS_negate_stmt:
20992 state_machine.handle_negate_stmt ();
20993 break;
20994 case DW_LNS_set_basic_block:
20995 break;
20996 /* Add to the address register of the state machine the
20997 address increment value corresponding to special opcode
20998 255. I.e., this value is scaled by the minimum
20999 instruction length since special opcode 255 would have
21000 scaled the increment. */
21001 case DW_LNS_const_add_pc:
21002 state_machine.handle_const_add_pc ();
21003 break;
21004 case DW_LNS_fixed_advance_pc:
21005 {
21006 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21007 line_ptr += 2;
21008
21009 state_machine.handle_fixed_advance_pc (addr_adj);
21010 }
21011 break;
21012 default:
21013 {
21014 /* Unknown standard opcode, ignore it. */
21015 int i;
21016
21017 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21018 {
21019 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21020 line_ptr += bytes_read;
21021 }
21022 }
21023 }
21024 }
21025
21026 if (!end_sequence)
21027 dwarf2_debug_line_missing_end_sequence_complaint ();
21028
21029 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21030 in which case we still finish recording the last line). */
21031 state_machine.record_line (true);
21032 }
21033 }
21034
21035 /* Decode the Line Number Program (LNP) for the given line_header
21036 structure and CU. The actual information extracted and the type
21037 of structures created from the LNP depends on the value of PST.
21038
21039 1. If PST is NULL, then this procedure uses the data from the program
21040 to create all necessary symbol tables, and their linetables.
21041
21042 2. If PST is not NULL, this procedure reads the program to determine
21043 the list of files included by the unit represented by PST, and
21044 builds all the associated partial symbol tables.
21045
21046 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21047 It is used for relative paths in the line table.
21048 NOTE: When processing partial symtabs (pst != NULL),
21049 comp_dir == pst->dirname.
21050
21051 NOTE: It is important that psymtabs have the same file name (via strcmp)
21052 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21053 symtab we don't use it in the name of the psymtabs we create.
21054 E.g. expand_line_sal requires this when finding psymtabs to expand.
21055 A good testcase for this is mb-inline.exp.
21056
21057 LOWPC is the lowest address in CU (or 0 if not known).
21058
21059 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21060 for its PC<->lines mapping information. Otherwise only the filename
21061 table is read in. */
21062
21063 static void
21064 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21065 struct dwarf2_cu *cu, struct partial_symtab *pst,
21066 CORE_ADDR lowpc, int decode_mapping)
21067 {
21068 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21069 const int decode_for_pst_p = (pst != NULL);
21070
21071 if (decode_mapping)
21072 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21073
21074 if (decode_for_pst_p)
21075 {
21076 int file_index;
21077
21078 /* Now that we're done scanning the Line Header Program, we can
21079 create the psymtab of each included file. */
21080 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21081 if (lh->file_names[file_index].included_p == 1)
21082 {
21083 gdb::unique_xmalloc_ptr<char> name_holder;
21084 const char *include_name =
21085 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21086 &name_holder);
21087 if (include_name != NULL)
21088 dwarf2_create_include_psymtab (include_name, pst, objfile);
21089 }
21090 }
21091 else
21092 {
21093 /* Make sure a symtab is created for every file, even files
21094 which contain only variables (i.e. no code with associated
21095 line numbers). */
21096 struct compunit_symtab *cust = buildsym_compunit_symtab ();
21097 int i;
21098
21099 for (i = 0; i < lh->file_names.size (); i++)
21100 {
21101 file_entry &fe = lh->file_names[i];
21102
21103 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
21104
21105 if (current_subfile->symtab == NULL)
21106 {
21107 current_subfile->symtab
21108 = allocate_symtab (cust, current_subfile->name);
21109 }
21110 fe.symtab = current_subfile->symtab;
21111 }
21112 }
21113 }
21114
21115 /* Start a subfile for DWARF. FILENAME is the name of the file and
21116 DIRNAME the name of the source directory which contains FILENAME
21117 or NULL if not known.
21118 This routine tries to keep line numbers from identical absolute and
21119 relative file names in a common subfile.
21120
21121 Using the `list' example from the GDB testsuite, which resides in
21122 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21123 of /srcdir/list0.c yields the following debugging information for list0.c:
21124
21125 DW_AT_name: /srcdir/list0.c
21126 DW_AT_comp_dir: /compdir
21127 files.files[0].name: list0.h
21128 files.files[0].dir: /srcdir
21129 files.files[1].name: list0.c
21130 files.files[1].dir: /srcdir
21131
21132 The line number information for list0.c has to end up in a single
21133 subfile, so that `break /srcdir/list0.c:1' works as expected.
21134 start_subfile will ensure that this happens provided that we pass the
21135 concatenation of files.files[1].dir and files.files[1].name as the
21136 subfile's name. */
21137
21138 static void
21139 dwarf2_start_subfile (const char *filename, const char *dirname)
21140 {
21141 char *copy = NULL;
21142
21143 /* In order not to lose the line information directory,
21144 we concatenate it to the filename when it makes sense.
21145 Note that the Dwarf3 standard says (speaking of filenames in line
21146 information): ``The directory index is ignored for file names
21147 that represent full path names''. Thus ignoring dirname in the
21148 `else' branch below isn't an issue. */
21149
21150 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21151 {
21152 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21153 filename = copy;
21154 }
21155
21156 start_subfile (filename);
21157
21158 if (copy != NULL)
21159 xfree (copy);
21160 }
21161
21162 /* Start a symtab for DWARF.
21163 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
21164
21165 static struct compunit_symtab *
21166 dwarf2_start_symtab (struct dwarf2_cu *cu,
21167 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21168 {
21169 struct compunit_symtab *cust
21170 = start_symtab (cu->per_cu->dwarf2_per_objfile->objfile, name, comp_dir,
21171 low_pc, cu->language);
21172
21173 record_debugformat ("DWARF 2");
21174 record_producer (cu->producer);
21175
21176 /* We assume that we're processing GCC output. */
21177 processing_gcc_compilation = 2;
21178
21179 cu->processing_has_namespace_info = 0;
21180
21181 return cust;
21182 }
21183
21184 static void
21185 var_decode_location (struct attribute *attr, struct symbol *sym,
21186 struct dwarf2_cu *cu)
21187 {
21188 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21189 struct comp_unit_head *cu_header = &cu->header;
21190
21191 /* NOTE drow/2003-01-30: There used to be a comment and some special
21192 code here to turn a symbol with DW_AT_external and a
21193 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21194 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21195 with some versions of binutils) where shared libraries could have
21196 relocations against symbols in their debug information - the
21197 minimal symbol would have the right address, but the debug info
21198 would not. It's no longer necessary, because we will explicitly
21199 apply relocations when we read in the debug information now. */
21200
21201 /* A DW_AT_location attribute with no contents indicates that a
21202 variable has been optimized away. */
21203 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21204 {
21205 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21206 return;
21207 }
21208
21209 /* Handle one degenerate form of location expression specially, to
21210 preserve GDB's previous behavior when section offsets are
21211 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21212 then mark this symbol as LOC_STATIC. */
21213
21214 if (attr_form_is_block (attr)
21215 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21216 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21217 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21218 && (DW_BLOCK (attr)->size
21219 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21220 {
21221 unsigned int dummy;
21222
21223 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21224 SYMBOL_VALUE_ADDRESS (sym) =
21225 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21226 else
21227 SYMBOL_VALUE_ADDRESS (sym) =
21228 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21229 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21230 fixup_symbol_section (sym, objfile);
21231 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21232 SYMBOL_SECTION (sym));
21233 return;
21234 }
21235
21236 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21237 expression evaluator, and use LOC_COMPUTED only when necessary
21238 (i.e. when the value of a register or memory location is
21239 referenced, or a thread-local block, etc.). Then again, it might
21240 not be worthwhile. I'm assuming that it isn't unless performance
21241 or memory numbers show me otherwise. */
21242
21243 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21244
21245 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21246 cu->has_loclist = 1;
21247 }
21248
21249 /* Given a pointer to a DWARF information entry, figure out if we need
21250 to make a symbol table entry for it, and if so, create a new entry
21251 and return a pointer to it.
21252 If TYPE is NULL, determine symbol type from the die, otherwise
21253 used the passed type.
21254 If SPACE is not NULL, use it to hold the new symbol. If it is
21255 NULL, allocate a new symbol on the objfile's obstack. */
21256
21257 static struct symbol *
21258 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21259 struct symbol *space)
21260 {
21261 struct dwarf2_per_objfile *dwarf2_per_objfile
21262 = cu->per_cu->dwarf2_per_objfile;
21263 struct objfile *objfile = dwarf2_per_objfile->objfile;
21264 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21265 struct symbol *sym = NULL;
21266 const char *name;
21267 struct attribute *attr = NULL;
21268 struct attribute *attr2 = NULL;
21269 CORE_ADDR baseaddr;
21270 struct pending **list_to_add = NULL;
21271
21272 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21273
21274 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21275
21276 name = dwarf2_name (die, cu);
21277 if (name)
21278 {
21279 const char *linkagename;
21280 int suppress_add = 0;
21281
21282 if (space)
21283 sym = space;
21284 else
21285 sym = allocate_symbol (objfile);
21286 OBJSTAT (objfile, n_syms++);
21287
21288 /* Cache this symbol's name and the name's demangled form (if any). */
21289 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21290 linkagename = dwarf2_physname (name, die, cu);
21291 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21292
21293 /* Fortran does not have mangling standard and the mangling does differ
21294 between gfortran, iFort etc. */
21295 if (cu->language == language_fortran
21296 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21297 symbol_set_demangled_name (&(sym->ginfo),
21298 dwarf2_full_name (name, die, cu),
21299 NULL);
21300
21301 /* Default assumptions.
21302 Use the passed type or decode it from the die. */
21303 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21304 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21305 if (type != NULL)
21306 SYMBOL_TYPE (sym) = type;
21307 else
21308 SYMBOL_TYPE (sym) = die_type (die, cu);
21309 attr = dwarf2_attr (die,
21310 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21311 cu);
21312 if (attr)
21313 {
21314 SYMBOL_LINE (sym) = DW_UNSND (attr);
21315 }
21316
21317 attr = dwarf2_attr (die,
21318 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21319 cu);
21320 if (attr)
21321 {
21322 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21323 struct file_entry *fe;
21324
21325 if (cu->line_header != NULL)
21326 fe = cu->line_header->file_name_at (file_index);
21327 else
21328 fe = NULL;
21329
21330 if (fe == NULL)
21331 complaint (&symfile_complaints,
21332 _("file index out of range"));
21333 else
21334 symbol_set_symtab (sym, fe->symtab);
21335 }
21336
21337 switch (die->tag)
21338 {
21339 case DW_TAG_label:
21340 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21341 if (attr)
21342 {
21343 CORE_ADDR addr;
21344
21345 addr = attr_value_as_address (attr);
21346 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21347 SYMBOL_VALUE_ADDRESS (sym) = addr;
21348 }
21349 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21350 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21351 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21352 add_symbol_to_list (sym, cu->list_in_scope);
21353 break;
21354 case DW_TAG_subprogram:
21355 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21356 finish_block. */
21357 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21358 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21359 if ((attr2 && (DW_UNSND (attr2) != 0))
21360 || cu->language == language_ada)
21361 {
21362 /* Subprograms marked external are stored as a global symbol.
21363 Ada subprograms, whether marked external or not, are always
21364 stored as a global symbol, because we want to be able to
21365 access them globally. For instance, we want to be able
21366 to break on a nested subprogram without having to
21367 specify the context. */
21368 list_to_add = &global_symbols;
21369 }
21370 else
21371 {
21372 list_to_add = cu->list_in_scope;
21373 }
21374 break;
21375 case DW_TAG_inlined_subroutine:
21376 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21377 finish_block. */
21378 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21379 SYMBOL_INLINED (sym) = 1;
21380 list_to_add = cu->list_in_scope;
21381 break;
21382 case DW_TAG_template_value_param:
21383 suppress_add = 1;
21384 /* Fall through. */
21385 case DW_TAG_constant:
21386 case DW_TAG_variable:
21387 case DW_TAG_member:
21388 /* Compilation with minimal debug info may result in
21389 variables with missing type entries. Change the
21390 misleading `void' type to something sensible. */
21391 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21392 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21393
21394 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21395 /* In the case of DW_TAG_member, we should only be called for
21396 static const members. */
21397 if (die->tag == DW_TAG_member)
21398 {
21399 /* dwarf2_add_field uses die_is_declaration,
21400 so we do the same. */
21401 gdb_assert (die_is_declaration (die, cu));
21402 gdb_assert (attr);
21403 }
21404 if (attr)
21405 {
21406 dwarf2_const_value (attr, sym, cu);
21407 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21408 if (!suppress_add)
21409 {
21410 if (attr2 && (DW_UNSND (attr2) != 0))
21411 list_to_add = &global_symbols;
21412 else
21413 list_to_add = cu->list_in_scope;
21414 }
21415 break;
21416 }
21417 attr = dwarf2_attr (die, DW_AT_location, cu);
21418 if (attr)
21419 {
21420 var_decode_location (attr, sym, cu);
21421 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21422
21423 /* Fortran explicitly imports any global symbols to the local
21424 scope by DW_TAG_common_block. */
21425 if (cu->language == language_fortran && die->parent
21426 && die->parent->tag == DW_TAG_common_block)
21427 attr2 = NULL;
21428
21429 if (SYMBOL_CLASS (sym) == LOC_STATIC
21430 && SYMBOL_VALUE_ADDRESS (sym) == 0
21431 && !dwarf2_per_objfile->has_section_at_zero)
21432 {
21433 /* When a static variable is eliminated by the linker,
21434 the corresponding debug information is not stripped
21435 out, but the variable address is set to null;
21436 do not add such variables into symbol table. */
21437 }
21438 else if (attr2 && (DW_UNSND (attr2) != 0))
21439 {
21440 /* Workaround gfortran PR debug/40040 - it uses
21441 DW_AT_location for variables in -fPIC libraries which may
21442 get overriden by other libraries/executable and get
21443 a different address. Resolve it by the minimal symbol
21444 which may come from inferior's executable using copy
21445 relocation. Make this workaround only for gfortran as for
21446 other compilers GDB cannot guess the minimal symbol
21447 Fortran mangling kind. */
21448 if (cu->language == language_fortran && die->parent
21449 && die->parent->tag == DW_TAG_module
21450 && cu->producer
21451 && startswith (cu->producer, "GNU Fortran"))
21452 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21453
21454 /* A variable with DW_AT_external is never static,
21455 but it may be block-scoped. */
21456 list_to_add = (cu->list_in_scope == &file_symbols
21457 ? &global_symbols : cu->list_in_scope);
21458 }
21459 else
21460 list_to_add = cu->list_in_scope;
21461 }
21462 else
21463 {
21464 /* We do not know the address of this symbol.
21465 If it is an external symbol and we have type information
21466 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21467 The address of the variable will then be determined from
21468 the minimal symbol table whenever the variable is
21469 referenced. */
21470 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21471
21472 /* Fortran explicitly imports any global symbols to the local
21473 scope by DW_TAG_common_block. */
21474 if (cu->language == language_fortran && die->parent
21475 && die->parent->tag == DW_TAG_common_block)
21476 {
21477 /* SYMBOL_CLASS doesn't matter here because
21478 read_common_block is going to reset it. */
21479 if (!suppress_add)
21480 list_to_add = cu->list_in_scope;
21481 }
21482 else if (attr2 && (DW_UNSND (attr2) != 0)
21483 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21484 {
21485 /* A variable with DW_AT_external is never static, but it
21486 may be block-scoped. */
21487 list_to_add = (cu->list_in_scope == &file_symbols
21488 ? &global_symbols : cu->list_in_scope);
21489
21490 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21491 }
21492 else if (!die_is_declaration (die, cu))
21493 {
21494 /* Use the default LOC_OPTIMIZED_OUT class. */
21495 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21496 if (!suppress_add)
21497 list_to_add = cu->list_in_scope;
21498 }
21499 }
21500 break;
21501 case DW_TAG_formal_parameter:
21502 /* If we are inside a function, mark this as an argument. If
21503 not, we might be looking at an argument to an inlined function
21504 when we do not have enough information to show inlined frames;
21505 pretend it's a local variable in that case so that the user can
21506 still see it. */
21507 if (context_stack_depth > 0
21508 && context_stack[context_stack_depth - 1].name != NULL)
21509 SYMBOL_IS_ARGUMENT (sym) = 1;
21510 attr = dwarf2_attr (die, DW_AT_location, cu);
21511 if (attr)
21512 {
21513 var_decode_location (attr, sym, cu);
21514 }
21515 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21516 if (attr)
21517 {
21518 dwarf2_const_value (attr, sym, cu);
21519 }
21520
21521 list_to_add = cu->list_in_scope;
21522 break;
21523 case DW_TAG_unspecified_parameters:
21524 /* From varargs functions; gdb doesn't seem to have any
21525 interest in this information, so just ignore it for now.
21526 (FIXME?) */
21527 break;
21528 case DW_TAG_template_type_param:
21529 suppress_add = 1;
21530 /* Fall through. */
21531 case DW_TAG_class_type:
21532 case DW_TAG_interface_type:
21533 case DW_TAG_structure_type:
21534 case DW_TAG_union_type:
21535 case DW_TAG_set_type:
21536 case DW_TAG_enumeration_type:
21537 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21538 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21539
21540 {
21541 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21542 really ever be static objects: otherwise, if you try
21543 to, say, break of a class's method and you're in a file
21544 which doesn't mention that class, it won't work unless
21545 the check for all static symbols in lookup_symbol_aux
21546 saves you. See the OtherFileClass tests in
21547 gdb.c++/namespace.exp. */
21548
21549 if (!suppress_add)
21550 {
21551 list_to_add = (cu->list_in_scope == &file_symbols
21552 && cu->language == language_cplus
21553 ? &global_symbols : cu->list_in_scope);
21554
21555 /* The semantics of C++ state that "struct foo {
21556 ... }" also defines a typedef for "foo". */
21557 if (cu->language == language_cplus
21558 || cu->language == language_ada
21559 || cu->language == language_d
21560 || cu->language == language_rust)
21561 {
21562 /* The symbol's name is already allocated along
21563 with this objfile, so we don't need to
21564 duplicate it for the type. */
21565 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21566 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21567 }
21568 }
21569 }
21570 break;
21571 case DW_TAG_typedef:
21572 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21573 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21574 list_to_add = cu->list_in_scope;
21575 break;
21576 case DW_TAG_base_type:
21577 case DW_TAG_subrange_type:
21578 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21579 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21580 list_to_add = cu->list_in_scope;
21581 break;
21582 case DW_TAG_enumerator:
21583 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21584 if (attr)
21585 {
21586 dwarf2_const_value (attr, sym, cu);
21587 }
21588 {
21589 /* NOTE: carlton/2003-11-10: See comment above in the
21590 DW_TAG_class_type, etc. block. */
21591
21592 list_to_add = (cu->list_in_scope == &file_symbols
21593 && cu->language == language_cplus
21594 ? &global_symbols : cu->list_in_scope);
21595 }
21596 break;
21597 case DW_TAG_imported_declaration:
21598 case DW_TAG_namespace:
21599 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21600 list_to_add = &global_symbols;
21601 break;
21602 case DW_TAG_module:
21603 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21604 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21605 list_to_add = &global_symbols;
21606 break;
21607 case DW_TAG_common_block:
21608 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21609 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21610 add_symbol_to_list (sym, cu->list_in_scope);
21611 break;
21612 default:
21613 /* Not a tag we recognize. Hopefully we aren't processing
21614 trash data, but since we must specifically ignore things
21615 we don't recognize, there is nothing else we should do at
21616 this point. */
21617 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
21618 dwarf_tag_name (die->tag));
21619 break;
21620 }
21621
21622 if (suppress_add)
21623 {
21624 sym->hash_next = objfile->template_symbols;
21625 objfile->template_symbols = sym;
21626 list_to_add = NULL;
21627 }
21628
21629 if (list_to_add != NULL)
21630 add_symbol_to_list (sym, list_to_add);
21631
21632 /* For the benefit of old versions of GCC, check for anonymous
21633 namespaces based on the demangled name. */
21634 if (!cu->processing_has_namespace_info
21635 && cu->language == language_cplus)
21636 cp_scan_for_anonymous_namespaces (sym, objfile);
21637 }
21638 return (sym);
21639 }
21640
21641 /* Given an attr with a DW_FORM_dataN value in host byte order,
21642 zero-extend it as appropriate for the symbol's type. The DWARF
21643 standard (v4) is not entirely clear about the meaning of using
21644 DW_FORM_dataN for a constant with a signed type, where the type is
21645 wider than the data. The conclusion of a discussion on the DWARF
21646 list was that this is unspecified. We choose to always zero-extend
21647 because that is the interpretation long in use by GCC. */
21648
21649 static gdb_byte *
21650 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21651 struct dwarf2_cu *cu, LONGEST *value, int bits)
21652 {
21653 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21654 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21655 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21656 LONGEST l = DW_UNSND (attr);
21657
21658 if (bits < sizeof (*value) * 8)
21659 {
21660 l &= ((LONGEST) 1 << bits) - 1;
21661 *value = l;
21662 }
21663 else if (bits == sizeof (*value) * 8)
21664 *value = l;
21665 else
21666 {
21667 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21668 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21669 return bytes;
21670 }
21671
21672 return NULL;
21673 }
21674
21675 /* Read a constant value from an attribute. Either set *VALUE, or if
21676 the value does not fit in *VALUE, set *BYTES - either already
21677 allocated on the objfile obstack, or newly allocated on OBSTACK,
21678 or, set *BATON, if we translated the constant to a location
21679 expression. */
21680
21681 static void
21682 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21683 const char *name, struct obstack *obstack,
21684 struct dwarf2_cu *cu,
21685 LONGEST *value, const gdb_byte **bytes,
21686 struct dwarf2_locexpr_baton **baton)
21687 {
21688 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21689 struct comp_unit_head *cu_header = &cu->header;
21690 struct dwarf_block *blk;
21691 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21692 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21693
21694 *value = 0;
21695 *bytes = NULL;
21696 *baton = NULL;
21697
21698 switch (attr->form)
21699 {
21700 case DW_FORM_addr:
21701 case DW_FORM_GNU_addr_index:
21702 {
21703 gdb_byte *data;
21704
21705 if (TYPE_LENGTH (type) != cu_header->addr_size)
21706 dwarf2_const_value_length_mismatch_complaint (name,
21707 cu_header->addr_size,
21708 TYPE_LENGTH (type));
21709 /* Symbols of this form are reasonably rare, so we just
21710 piggyback on the existing location code rather than writing
21711 a new implementation of symbol_computed_ops. */
21712 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21713 (*baton)->per_cu = cu->per_cu;
21714 gdb_assert ((*baton)->per_cu);
21715
21716 (*baton)->size = 2 + cu_header->addr_size;
21717 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21718 (*baton)->data = data;
21719
21720 data[0] = DW_OP_addr;
21721 store_unsigned_integer (&data[1], cu_header->addr_size,
21722 byte_order, DW_ADDR (attr));
21723 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21724 }
21725 break;
21726 case DW_FORM_string:
21727 case DW_FORM_strp:
21728 case DW_FORM_GNU_str_index:
21729 case DW_FORM_GNU_strp_alt:
21730 /* DW_STRING is already allocated on the objfile obstack, point
21731 directly to it. */
21732 *bytes = (const gdb_byte *) DW_STRING (attr);
21733 break;
21734 case DW_FORM_block1:
21735 case DW_FORM_block2:
21736 case DW_FORM_block4:
21737 case DW_FORM_block:
21738 case DW_FORM_exprloc:
21739 case DW_FORM_data16:
21740 blk = DW_BLOCK (attr);
21741 if (TYPE_LENGTH (type) != blk->size)
21742 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21743 TYPE_LENGTH (type));
21744 *bytes = blk->data;
21745 break;
21746
21747 /* The DW_AT_const_value attributes are supposed to carry the
21748 symbol's value "represented as it would be on the target
21749 architecture." By the time we get here, it's already been
21750 converted to host endianness, so we just need to sign- or
21751 zero-extend it as appropriate. */
21752 case DW_FORM_data1:
21753 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21754 break;
21755 case DW_FORM_data2:
21756 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21757 break;
21758 case DW_FORM_data4:
21759 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21760 break;
21761 case DW_FORM_data8:
21762 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21763 break;
21764
21765 case DW_FORM_sdata:
21766 case DW_FORM_implicit_const:
21767 *value = DW_SND (attr);
21768 break;
21769
21770 case DW_FORM_udata:
21771 *value = DW_UNSND (attr);
21772 break;
21773
21774 default:
21775 complaint (&symfile_complaints,
21776 _("unsupported const value attribute form: '%s'"),
21777 dwarf_form_name (attr->form));
21778 *value = 0;
21779 break;
21780 }
21781 }
21782
21783
21784 /* Copy constant value from an attribute to a symbol. */
21785
21786 static void
21787 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21788 struct dwarf2_cu *cu)
21789 {
21790 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21791 LONGEST value;
21792 const gdb_byte *bytes;
21793 struct dwarf2_locexpr_baton *baton;
21794
21795 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21796 SYMBOL_PRINT_NAME (sym),
21797 &objfile->objfile_obstack, cu,
21798 &value, &bytes, &baton);
21799
21800 if (baton != NULL)
21801 {
21802 SYMBOL_LOCATION_BATON (sym) = baton;
21803 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21804 }
21805 else if (bytes != NULL)
21806 {
21807 SYMBOL_VALUE_BYTES (sym) = bytes;
21808 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21809 }
21810 else
21811 {
21812 SYMBOL_VALUE (sym) = value;
21813 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21814 }
21815 }
21816
21817 /* Return the type of the die in question using its DW_AT_type attribute. */
21818
21819 static struct type *
21820 die_type (struct die_info *die, struct dwarf2_cu *cu)
21821 {
21822 struct attribute *type_attr;
21823
21824 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21825 if (!type_attr)
21826 {
21827 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21828 /* A missing DW_AT_type represents a void type. */
21829 return objfile_type (objfile)->builtin_void;
21830 }
21831
21832 return lookup_die_type (die, type_attr, cu);
21833 }
21834
21835 /* True iff CU's producer generates GNAT Ada auxiliary information
21836 that allows to find parallel types through that information instead
21837 of having to do expensive parallel lookups by type name. */
21838
21839 static int
21840 need_gnat_info (struct dwarf2_cu *cu)
21841 {
21842 /* Assume that the Ada compiler was GNAT, which always produces
21843 the auxiliary information. */
21844 return (cu->language == language_ada);
21845 }
21846
21847 /* Return the auxiliary type of the die in question using its
21848 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21849 attribute is not present. */
21850
21851 static struct type *
21852 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21853 {
21854 struct attribute *type_attr;
21855
21856 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21857 if (!type_attr)
21858 return NULL;
21859
21860 return lookup_die_type (die, type_attr, cu);
21861 }
21862
21863 /* If DIE has a descriptive_type attribute, then set the TYPE's
21864 descriptive type accordingly. */
21865
21866 static void
21867 set_descriptive_type (struct type *type, struct die_info *die,
21868 struct dwarf2_cu *cu)
21869 {
21870 struct type *descriptive_type = die_descriptive_type (die, cu);
21871
21872 if (descriptive_type)
21873 {
21874 ALLOCATE_GNAT_AUX_TYPE (type);
21875 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21876 }
21877 }
21878
21879 /* Return the containing type of the die in question using its
21880 DW_AT_containing_type attribute. */
21881
21882 static struct type *
21883 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21884 {
21885 struct attribute *type_attr;
21886 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21887
21888 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21889 if (!type_attr)
21890 error (_("Dwarf Error: Problem turning containing type into gdb type "
21891 "[in module %s]"), objfile_name (objfile));
21892
21893 return lookup_die_type (die, type_attr, cu);
21894 }
21895
21896 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21897
21898 static struct type *
21899 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21900 {
21901 struct dwarf2_per_objfile *dwarf2_per_objfile
21902 = cu->per_cu->dwarf2_per_objfile;
21903 struct objfile *objfile = dwarf2_per_objfile->objfile;
21904 char *message, *saved;
21905
21906 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
21907 objfile_name (objfile),
21908 to_underlying (cu->header.sect_off),
21909 to_underlying (die->sect_off));
21910 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21911 message, strlen (message));
21912 xfree (message);
21913
21914 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21915 }
21916
21917 /* Look up the type of DIE in CU using its type attribute ATTR.
21918 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21919 DW_AT_containing_type.
21920 If there is no type substitute an error marker. */
21921
21922 static struct type *
21923 lookup_die_type (struct die_info *die, const struct attribute *attr,
21924 struct dwarf2_cu *cu)
21925 {
21926 struct dwarf2_per_objfile *dwarf2_per_objfile
21927 = cu->per_cu->dwarf2_per_objfile;
21928 struct objfile *objfile = dwarf2_per_objfile->objfile;
21929 struct type *this_type;
21930
21931 gdb_assert (attr->name == DW_AT_type
21932 || attr->name == DW_AT_GNAT_descriptive_type
21933 || attr->name == DW_AT_containing_type);
21934
21935 /* First see if we have it cached. */
21936
21937 if (attr->form == DW_FORM_GNU_ref_alt)
21938 {
21939 struct dwarf2_per_cu_data *per_cu;
21940 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21941
21942 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21943 dwarf2_per_objfile);
21944 this_type = get_die_type_at_offset (sect_off, per_cu);
21945 }
21946 else if (attr_form_is_ref (attr))
21947 {
21948 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21949
21950 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21951 }
21952 else if (attr->form == DW_FORM_ref_sig8)
21953 {
21954 ULONGEST signature = DW_SIGNATURE (attr);
21955
21956 return get_signatured_type (die, signature, cu);
21957 }
21958 else
21959 {
21960 complaint (&symfile_complaints,
21961 _("Dwarf Error: Bad type attribute %s in DIE"
21962 " at 0x%x [in module %s]"),
21963 dwarf_attr_name (attr->name), to_underlying (die->sect_off),
21964 objfile_name (objfile));
21965 return build_error_marker_type (cu, die);
21966 }
21967
21968 /* If not cached we need to read it in. */
21969
21970 if (this_type == NULL)
21971 {
21972 struct die_info *type_die = NULL;
21973 struct dwarf2_cu *type_cu = cu;
21974
21975 if (attr_form_is_ref (attr))
21976 type_die = follow_die_ref (die, attr, &type_cu);
21977 if (type_die == NULL)
21978 return build_error_marker_type (cu, die);
21979 /* If we find the type now, it's probably because the type came
21980 from an inter-CU reference and the type's CU got expanded before
21981 ours. */
21982 this_type = read_type_die (type_die, type_cu);
21983 }
21984
21985 /* If we still don't have a type use an error marker. */
21986
21987 if (this_type == NULL)
21988 return build_error_marker_type (cu, die);
21989
21990 return this_type;
21991 }
21992
21993 /* Return the type in DIE, CU.
21994 Returns NULL for invalid types.
21995
21996 This first does a lookup in die_type_hash,
21997 and only reads the die in if necessary.
21998
21999 NOTE: This can be called when reading in partial or full symbols. */
22000
22001 static struct type *
22002 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22003 {
22004 struct type *this_type;
22005
22006 this_type = get_die_type (die, cu);
22007 if (this_type)
22008 return this_type;
22009
22010 return read_type_die_1 (die, cu);
22011 }
22012
22013 /* Read the type in DIE, CU.
22014 Returns NULL for invalid types. */
22015
22016 static struct type *
22017 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22018 {
22019 struct type *this_type = NULL;
22020
22021 switch (die->tag)
22022 {
22023 case DW_TAG_class_type:
22024 case DW_TAG_interface_type:
22025 case DW_TAG_structure_type:
22026 case DW_TAG_union_type:
22027 this_type = read_structure_type (die, cu);
22028 break;
22029 case DW_TAG_enumeration_type:
22030 this_type = read_enumeration_type (die, cu);
22031 break;
22032 case DW_TAG_subprogram:
22033 case DW_TAG_subroutine_type:
22034 case DW_TAG_inlined_subroutine:
22035 this_type = read_subroutine_type (die, cu);
22036 break;
22037 case DW_TAG_array_type:
22038 this_type = read_array_type (die, cu);
22039 break;
22040 case DW_TAG_set_type:
22041 this_type = read_set_type (die, cu);
22042 break;
22043 case DW_TAG_pointer_type:
22044 this_type = read_tag_pointer_type (die, cu);
22045 break;
22046 case DW_TAG_ptr_to_member_type:
22047 this_type = read_tag_ptr_to_member_type (die, cu);
22048 break;
22049 case DW_TAG_reference_type:
22050 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22051 break;
22052 case DW_TAG_rvalue_reference_type:
22053 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22054 break;
22055 case DW_TAG_const_type:
22056 this_type = read_tag_const_type (die, cu);
22057 break;
22058 case DW_TAG_volatile_type:
22059 this_type = read_tag_volatile_type (die, cu);
22060 break;
22061 case DW_TAG_restrict_type:
22062 this_type = read_tag_restrict_type (die, cu);
22063 break;
22064 case DW_TAG_string_type:
22065 this_type = read_tag_string_type (die, cu);
22066 break;
22067 case DW_TAG_typedef:
22068 this_type = read_typedef (die, cu);
22069 break;
22070 case DW_TAG_subrange_type:
22071 this_type = read_subrange_type (die, cu);
22072 break;
22073 case DW_TAG_base_type:
22074 this_type = read_base_type (die, cu);
22075 break;
22076 case DW_TAG_unspecified_type:
22077 this_type = read_unspecified_type (die, cu);
22078 break;
22079 case DW_TAG_namespace:
22080 this_type = read_namespace_type (die, cu);
22081 break;
22082 case DW_TAG_module:
22083 this_type = read_module_type (die, cu);
22084 break;
22085 case DW_TAG_atomic_type:
22086 this_type = read_tag_atomic_type (die, cu);
22087 break;
22088 default:
22089 complaint (&symfile_complaints,
22090 _("unexpected tag in read_type_die: '%s'"),
22091 dwarf_tag_name (die->tag));
22092 break;
22093 }
22094
22095 return this_type;
22096 }
22097
22098 /* See if we can figure out if the class lives in a namespace. We do
22099 this by looking for a member function; its demangled name will
22100 contain namespace info, if there is any.
22101 Return the computed name or NULL.
22102 Space for the result is allocated on the objfile's obstack.
22103 This is the full-die version of guess_partial_die_structure_name.
22104 In this case we know DIE has no useful parent. */
22105
22106 static char *
22107 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22108 {
22109 struct die_info *spec_die;
22110 struct dwarf2_cu *spec_cu;
22111 struct die_info *child;
22112 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22113
22114 spec_cu = cu;
22115 spec_die = die_specification (die, &spec_cu);
22116 if (spec_die != NULL)
22117 {
22118 die = spec_die;
22119 cu = spec_cu;
22120 }
22121
22122 for (child = die->child;
22123 child != NULL;
22124 child = child->sibling)
22125 {
22126 if (child->tag == DW_TAG_subprogram)
22127 {
22128 const char *linkage_name = dw2_linkage_name (child, cu);
22129
22130 if (linkage_name != NULL)
22131 {
22132 char *actual_name
22133 = language_class_name_from_physname (cu->language_defn,
22134 linkage_name);
22135 char *name = NULL;
22136
22137 if (actual_name != NULL)
22138 {
22139 const char *die_name = dwarf2_name (die, cu);
22140
22141 if (die_name != NULL
22142 && strcmp (die_name, actual_name) != 0)
22143 {
22144 /* Strip off the class name from the full name.
22145 We want the prefix. */
22146 int die_name_len = strlen (die_name);
22147 int actual_name_len = strlen (actual_name);
22148
22149 /* Test for '::' as a sanity check. */
22150 if (actual_name_len > die_name_len + 2
22151 && actual_name[actual_name_len
22152 - die_name_len - 1] == ':')
22153 name = (char *) obstack_copy0 (
22154 &objfile->per_bfd->storage_obstack,
22155 actual_name, actual_name_len - die_name_len - 2);
22156 }
22157 }
22158 xfree (actual_name);
22159 return name;
22160 }
22161 }
22162 }
22163
22164 return NULL;
22165 }
22166
22167 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22168 prefix part in such case. See
22169 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22170
22171 static const char *
22172 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22173 {
22174 struct attribute *attr;
22175 const char *base;
22176
22177 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22178 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22179 return NULL;
22180
22181 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22182 return NULL;
22183
22184 attr = dw2_linkage_name_attr (die, cu);
22185 if (attr == NULL || DW_STRING (attr) == NULL)
22186 return NULL;
22187
22188 /* dwarf2_name had to be already called. */
22189 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22190
22191 /* Strip the base name, keep any leading namespaces/classes. */
22192 base = strrchr (DW_STRING (attr), ':');
22193 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22194 return "";
22195
22196 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22197 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22198 DW_STRING (attr),
22199 &base[-1] - DW_STRING (attr));
22200 }
22201
22202 /* Return the name of the namespace/class that DIE is defined within,
22203 or "" if we can't tell. The caller should not xfree the result.
22204
22205 For example, if we're within the method foo() in the following
22206 code:
22207
22208 namespace N {
22209 class C {
22210 void foo () {
22211 }
22212 };
22213 }
22214
22215 then determine_prefix on foo's die will return "N::C". */
22216
22217 static const char *
22218 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22219 {
22220 struct dwarf2_per_objfile *dwarf2_per_objfile
22221 = cu->per_cu->dwarf2_per_objfile;
22222 struct die_info *parent, *spec_die;
22223 struct dwarf2_cu *spec_cu;
22224 struct type *parent_type;
22225 const char *retval;
22226
22227 if (cu->language != language_cplus
22228 && cu->language != language_fortran && cu->language != language_d
22229 && cu->language != language_rust)
22230 return "";
22231
22232 retval = anonymous_struct_prefix (die, cu);
22233 if (retval)
22234 return retval;
22235
22236 /* We have to be careful in the presence of DW_AT_specification.
22237 For example, with GCC 3.4, given the code
22238
22239 namespace N {
22240 void foo() {
22241 // Definition of N::foo.
22242 }
22243 }
22244
22245 then we'll have a tree of DIEs like this:
22246
22247 1: DW_TAG_compile_unit
22248 2: DW_TAG_namespace // N
22249 3: DW_TAG_subprogram // declaration of N::foo
22250 4: DW_TAG_subprogram // definition of N::foo
22251 DW_AT_specification // refers to die #3
22252
22253 Thus, when processing die #4, we have to pretend that we're in
22254 the context of its DW_AT_specification, namely the contex of die
22255 #3. */
22256 spec_cu = cu;
22257 spec_die = die_specification (die, &spec_cu);
22258 if (spec_die == NULL)
22259 parent = die->parent;
22260 else
22261 {
22262 parent = spec_die->parent;
22263 cu = spec_cu;
22264 }
22265
22266 if (parent == NULL)
22267 return "";
22268 else if (parent->building_fullname)
22269 {
22270 const char *name;
22271 const char *parent_name;
22272
22273 /* It has been seen on RealView 2.2 built binaries,
22274 DW_TAG_template_type_param types actually _defined_ as
22275 children of the parent class:
22276
22277 enum E {};
22278 template class <class Enum> Class{};
22279 Class<enum E> class_e;
22280
22281 1: DW_TAG_class_type (Class)
22282 2: DW_TAG_enumeration_type (E)
22283 3: DW_TAG_enumerator (enum1:0)
22284 3: DW_TAG_enumerator (enum2:1)
22285 ...
22286 2: DW_TAG_template_type_param
22287 DW_AT_type DW_FORM_ref_udata (E)
22288
22289 Besides being broken debug info, it can put GDB into an
22290 infinite loop. Consider:
22291
22292 When we're building the full name for Class<E>, we'll start
22293 at Class, and go look over its template type parameters,
22294 finding E. We'll then try to build the full name of E, and
22295 reach here. We're now trying to build the full name of E,
22296 and look over the parent DIE for containing scope. In the
22297 broken case, if we followed the parent DIE of E, we'd again
22298 find Class, and once again go look at its template type
22299 arguments, etc., etc. Simply don't consider such parent die
22300 as source-level parent of this die (it can't be, the language
22301 doesn't allow it), and break the loop here. */
22302 name = dwarf2_name (die, cu);
22303 parent_name = dwarf2_name (parent, cu);
22304 complaint (&symfile_complaints,
22305 _("template param type '%s' defined within parent '%s'"),
22306 name ? name : "<unknown>",
22307 parent_name ? parent_name : "<unknown>");
22308 return "";
22309 }
22310 else
22311 switch (parent->tag)
22312 {
22313 case DW_TAG_namespace:
22314 parent_type = read_type_die (parent, cu);
22315 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22316 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22317 Work around this problem here. */
22318 if (cu->language == language_cplus
22319 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
22320 return "";
22321 /* We give a name to even anonymous namespaces. */
22322 return TYPE_TAG_NAME (parent_type);
22323 case DW_TAG_class_type:
22324 case DW_TAG_interface_type:
22325 case DW_TAG_structure_type:
22326 case DW_TAG_union_type:
22327 case DW_TAG_module:
22328 parent_type = read_type_die (parent, cu);
22329 if (TYPE_TAG_NAME (parent_type) != NULL)
22330 return TYPE_TAG_NAME (parent_type);
22331 else
22332 /* An anonymous structure is only allowed non-static data
22333 members; no typedefs, no member functions, et cetera.
22334 So it does not need a prefix. */
22335 return "";
22336 case DW_TAG_compile_unit:
22337 case DW_TAG_partial_unit:
22338 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22339 if (cu->language == language_cplus
22340 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22341 && die->child != NULL
22342 && (die->tag == DW_TAG_class_type
22343 || die->tag == DW_TAG_structure_type
22344 || die->tag == DW_TAG_union_type))
22345 {
22346 char *name = guess_full_die_structure_name (die, cu);
22347 if (name != NULL)
22348 return name;
22349 }
22350 return "";
22351 case DW_TAG_enumeration_type:
22352 parent_type = read_type_die (parent, cu);
22353 if (TYPE_DECLARED_CLASS (parent_type))
22354 {
22355 if (TYPE_TAG_NAME (parent_type) != NULL)
22356 return TYPE_TAG_NAME (parent_type);
22357 return "";
22358 }
22359 /* Fall through. */
22360 default:
22361 return determine_prefix (parent, cu);
22362 }
22363 }
22364
22365 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22366 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22367 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22368 an obconcat, otherwise allocate storage for the result. The CU argument is
22369 used to determine the language and hence, the appropriate separator. */
22370
22371 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22372
22373 static char *
22374 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22375 int physname, struct dwarf2_cu *cu)
22376 {
22377 const char *lead = "";
22378 const char *sep;
22379
22380 if (suffix == NULL || suffix[0] == '\0'
22381 || prefix == NULL || prefix[0] == '\0')
22382 sep = "";
22383 else if (cu->language == language_d)
22384 {
22385 /* For D, the 'main' function could be defined in any module, but it
22386 should never be prefixed. */
22387 if (strcmp (suffix, "D main") == 0)
22388 {
22389 prefix = "";
22390 sep = "";
22391 }
22392 else
22393 sep = ".";
22394 }
22395 else if (cu->language == language_fortran && physname)
22396 {
22397 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22398 DW_AT_MIPS_linkage_name is preferred and used instead. */
22399
22400 lead = "__";
22401 sep = "_MOD_";
22402 }
22403 else
22404 sep = "::";
22405
22406 if (prefix == NULL)
22407 prefix = "";
22408 if (suffix == NULL)
22409 suffix = "";
22410
22411 if (obs == NULL)
22412 {
22413 char *retval
22414 = ((char *)
22415 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22416
22417 strcpy (retval, lead);
22418 strcat (retval, prefix);
22419 strcat (retval, sep);
22420 strcat (retval, suffix);
22421 return retval;
22422 }
22423 else
22424 {
22425 /* We have an obstack. */
22426 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22427 }
22428 }
22429
22430 /* Return sibling of die, NULL if no sibling. */
22431
22432 static struct die_info *
22433 sibling_die (struct die_info *die)
22434 {
22435 return die->sibling;
22436 }
22437
22438 /* Get name of a die, return NULL if not found. */
22439
22440 static const char *
22441 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22442 struct obstack *obstack)
22443 {
22444 if (name && cu->language == language_cplus)
22445 {
22446 std::string canon_name = cp_canonicalize_string (name);
22447
22448 if (!canon_name.empty ())
22449 {
22450 if (canon_name != name)
22451 name = (const char *) obstack_copy0 (obstack,
22452 canon_name.c_str (),
22453 canon_name.length ());
22454 }
22455 }
22456
22457 return name;
22458 }
22459
22460 /* Get name of a die, return NULL if not found.
22461 Anonymous namespaces are converted to their magic string. */
22462
22463 static const char *
22464 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22465 {
22466 struct attribute *attr;
22467 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22468
22469 attr = dwarf2_attr (die, DW_AT_name, cu);
22470 if ((!attr || !DW_STRING (attr))
22471 && die->tag != DW_TAG_namespace
22472 && die->tag != DW_TAG_class_type
22473 && die->tag != DW_TAG_interface_type
22474 && die->tag != DW_TAG_structure_type
22475 && die->tag != DW_TAG_union_type)
22476 return NULL;
22477
22478 switch (die->tag)
22479 {
22480 case DW_TAG_compile_unit:
22481 case DW_TAG_partial_unit:
22482 /* Compilation units have a DW_AT_name that is a filename, not
22483 a source language identifier. */
22484 case DW_TAG_enumeration_type:
22485 case DW_TAG_enumerator:
22486 /* These tags always have simple identifiers already; no need
22487 to canonicalize them. */
22488 return DW_STRING (attr);
22489
22490 case DW_TAG_namespace:
22491 if (attr != NULL && DW_STRING (attr) != NULL)
22492 return DW_STRING (attr);
22493 return CP_ANONYMOUS_NAMESPACE_STR;
22494
22495 case DW_TAG_class_type:
22496 case DW_TAG_interface_type:
22497 case DW_TAG_structure_type:
22498 case DW_TAG_union_type:
22499 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22500 structures or unions. These were of the form "._%d" in GCC 4.1,
22501 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22502 and GCC 4.4. We work around this problem by ignoring these. */
22503 if (attr && DW_STRING (attr)
22504 && (startswith (DW_STRING (attr), "._")
22505 || startswith (DW_STRING (attr), "<anonymous")))
22506 return NULL;
22507
22508 /* GCC might emit a nameless typedef that has a linkage name. See
22509 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22510 if (!attr || DW_STRING (attr) == NULL)
22511 {
22512 char *demangled = NULL;
22513
22514 attr = dw2_linkage_name_attr (die, cu);
22515 if (attr == NULL || DW_STRING (attr) == NULL)
22516 return NULL;
22517
22518 /* Avoid demangling DW_STRING (attr) the second time on a second
22519 call for the same DIE. */
22520 if (!DW_STRING_IS_CANONICAL (attr))
22521 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22522
22523 if (demangled)
22524 {
22525 const char *base;
22526
22527 /* FIXME: we already did this for the partial symbol... */
22528 DW_STRING (attr)
22529 = ((const char *)
22530 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22531 demangled, strlen (demangled)));
22532 DW_STRING_IS_CANONICAL (attr) = 1;
22533 xfree (demangled);
22534
22535 /* Strip any leading namespaces/classes, keep only the base name.
22536 DW_AT_name for named DIEs does not contain the prefixes. */
22537 base = strrchr (DW_STRING (attr), ':');
22538 if (base && base > DW_STRING (attr) && base[-1] == ':')
22539 return &base[1];
22540 else
22541 return DW_STRING (attr);
22542 }
22543 }
22544 break;
22545
22546 default:
22547 break;
22548 }
22549
22550 if (!DW_STRING_IS_CANONICAL (attr))
22551 {
22552 DW_STRING (attr)
22553 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22554 &objfile->per_bfd->storage_obstack);
22555 DW_STRING_IS_CANONICAL (attr) = 1;
22556 }
22557 return DW_STRING (attr);
22558 }
22559
22560 /* Return the die that this die in an extension of, or NULL if there
22561 is none. *EXT_CU is the CU containing DIE on input, and the CU
22562 containing the return value on output. */
22563
22564 static struct die_info *
22565 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22566 {
22567 struct attribute *attr;
22568
22569 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22570 if (attr == NULL)
22571 return NULL;
22572
22573 return follow_die_ref (die, attr, ext_cu);
22574 }
22575
22576 /* Convert a DIE tag into its string name. */
22577
22578 static const char *
22579 dwarf_tag_name (unsigned tag)
22580 {
22581 const char *name = get_DW_TAG_name (tag);
22582
22583 if (name == NULL)
22584 return "DW_TAG_<unknown>";
22585
22586 return name;
22587 }
22588
22589 /* Convert a DWARF attribute code into its string name. */
22590
22591 static const char *
22592 dwarf_attr_name (unsigned attr)
22593 {
22594 const char *name;
22595
22596 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22597 if (attr == DW_AT_MIPS_fde)
22598 return "DW_AT_MIPS_fde";
22599 #else
22600 if (attr == DW_AT_HP_block_index)
22601 return "DW_AT_HP_block_index";
22602 #endif
22603
22604 name = get_DW_AT_name (attr);
22605
22606 if (name == NULL)
22607 return "DW_AT_<unknown>";
22608
22609 return name;
22610 }
22611
22612 /* Convert a DWARF value form code into its string name. */
22613
22614 static const char *
22615 dwarf_form_name (unsigned form)
22616 {
22617 const char *name = get_DW_FORM_name (form);
22618
22619 if (name == NULL)
22620 return "DW_FORM_<unknown>";
22621
22622 return name;
22623 }
22624
22625 static const char *
22626 dwarf_bool_name (unsigned mybool)
22627 {
22628 if (mybool)
22629 return "TRUE";
22630 else
22631 return "FALSE";
22632 }
22633
22634 /* Convert a DWARF type code into its string name. */
22635
22636 static const char *
22637 dwarf_type_encoding_name (unsigned enc)
22638 {
22639 const char *name = get_DW_ATE_name (enc);
22640
22641 if (name == NULL)
22642 return "DW_ATE_<unknown>";
22643
22644 return name;
22645 }
22646
22647 static void
22648 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22649 {
22650 unsigned int i;
22651
22652 print_spaces (indent, f);
22653 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
22654 dwarf_tag_name (die->tag), die->abbrev,
22655 to_underlying (die->sect_off));
22656
22657 if (die->parent != NULL)
22658 {
22659 print_spaces (indent, f);
22660 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
22661 to_underlying (die->parent->sect_off));
22662 }
22663
22664 print_spaces (indent, f);
22665 fprintf_unfiltered (f, " has children: %s\n",
22666 dwarf_bool_name (die->child != NULL));
22667
22668 print_spaces (indent, f);
22669 fprintf_unfiltered (f, " attributes:\n");
22670
22671 for (i = 0; i < die->num_attrs; ++i)
22672 {
22673 print_spaces (indent, f);
22674 fprintf_unfiltered (f, " %s (%s) ",
22675 dwarf_attr_name (die->attrs[i].name),
22676 dwarf_form_name (die->attrs[i].form));
22677
22678 switch (die->attrs[i].form)
22679 {
22680 case DW_FORM_addr:
22681 case DW_FORM_GNU_addr_index:
22682 fprintf_unfiltered (f, "address: ");
22683 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22684 break;
22685 case DW_FORM_block2:
22686 case DW_FORM_block4:
22687 case DW_FORM_block:
22688 case DW_FORM_block1:
22689 fprintf_unfiltered (f, "block: size %s",
22690 pulongest (DW_BLOCK (&die->attrs[i])->size));
22691 break;
22692 case DW_FORM_exprloc:
22693 fprintf_unfiltered (f, "expression: size %s",
22694 pulongest (DW_BLOCK (&die->attrs[i])->size));
22695 break;
22696 case DW_FORM_data16:
22697 fprintf_unfiltered (f, "constant of 16 bytes");
22698 break;
22699 case DW_FORM_ref_addr:
22700 fprintf_unfiltered (f, "ref address: ");
22701 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22702 break;
22703 case DW_FORM_GNU_ref_alt:
22704 fprintf_unfiltered (f, "alt ref address: ");
22705 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22706 break;
22707 case DW_FORM_ref1:
22708 case DW_FORM_ref2:
22709 case DW_FORM_ref4:
22710 case DW_FORM_ref8:
22711 case DW_FORM_ref_udata:
22712 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22713 (long) (DW_UNSND (&die->attrs[i])));
22714 break;
22715 case DW_FORM_data1:
22716 case DW_FORM_data2:
22717 case DW_FORM_data4:
22718 case DW_FORM_data8:
22719 case DW_FORM_udata:
22720 case DW_FORM_sdata:
22721 fprintf_unfiltered (f, "constant: %s",
22722 pulongest (DW_UNSND (&die->attrs[i])));
22723 break;
22724 case DW_FORM_sec_offset:
22725 fprintf_unfiltered (f, "section offset: %s",
22726 pulongest (DW_UNSND (&die->attrs[i])));
22727 break;
22728 case DW_FORM_ref_sig8:
22729 fprintf_unfiltered (f, "signature: %s",
22730 hex_string (DW_SIGNATURE (&die->attrs[i])));
22731 break;
22732 case DW_FORM_string:
22733 case DW_FORM_strp:
22734 case DW_FORM_line_strp:
22735 case DW_FORM_GNU_str_index:
22736 case DW_FORM_GNU_strp_alt:
22737 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22738 DW_STRING (&die->attrs[i])
22739 ? DW_STRING (&die->attrs[i]) : "",
22740 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22741 break;
22742 case DW_FORM_flag:
22743 if (DW_UNSND (&die->attrs[i]))
22744 fprintf_unfiltered (f, "flag: TRUE");
22745 else
22746 fprintf_unfiltered (f, "flag: FALSE");
22747 break;
22748 case DW_FORM_flag_present:
22749 fprintf_unfiltered (f, "flag: TRUE");
22750 break;
22751 case DW_FORM_indirect:
22752 /* The reader will have reduced the indirect form to
22753 the "base form" so this form should not occur. */
22754 fprintf_unfiltered (f,
22755 "unexpected attribute form: DW_FORM_indirect");
22756 break;
22757 case DW_FORM_implicit_const:
22758 fprintf_unfiltered (f, "constant: %s",
22759 plongest (DW_SND (&die->attrs[i])));
22760 break;
22761 default:
22762 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22763 die->attrs[i].form);
22764 break;
22765 }
22766 fprintf_unfiltered (f, "\n");
22767 }
22768 }
22769
22770 static void
22771 dump_die_for_error (struct die_info *die)
22772 {
22773 dump_die_shallow (gdb_stderr, 0, die);
22774 }
22775
22776 static void
22777 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22778 {
22779 int indent = level * 4;
22780
22781 gdb_assert (die != NULL);
22782
22783 if (level >= max_level)
22784 return;
22785
22786 dump_die_shallow (f, indent, die);
22787
22788 if (die->child != NULL)
22789 {
22790 print_spaces (indent, f);
22791 fprintf_unfiltered (f, " Children:");
22792 if (level + 1 < max_level)
22793 {
22794 fprintf_unfiltered (f, "\n");
22795 dump_die_1 (f, level + 1, max_level, die->child);
22796 }
22797 else
22798 {
22799 fprintf_unfiltered (f,
22800 " [not printed, max nesting level reached]\n");
22801 }
22802 }
22803
22804 if (die->sibling != NULL && level > 0)
22805 {
22806 dump_die_1 (f, level, max_level, die->sibling);
22807 }
22808 }
22809
22810 /* This is called from the pdie macro in gdbinit.in.
22811 It's not static so gcc will keep a copy callable from gdb. */
22812
22813 void
22814 dump_die (struct die_info *die, int max_level)
22815 {
22816 dump_die_1 (gdb_stdlog, 0, max_level, die);
22817 }
22818
22819 static void
22820 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22821 {
22822 void **slot;
22823
22824 slot = htab_find_slot_with_hash (cu->die_hash, die,
22825 to_underlying (die->sect_off),
22826 INSERT);
22827
22828 *slot = die;
22829 }
22830
22831 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22832 required kind. */
22833
22834 static sect_offset
22835 dwarf2_get_ref_die_offset (const struct attribute *attr)
22836 {
22837 if (attr_form_is_ref (attr))
22838 return (sect_offset) DW_UNSND (attr);
22839
22840 complaint (&symfile_complaints,
22841 _("unsupported die ref attribute form: '%s'"),
22842 dwarf_form_name (attr->form));
22843 return {};
22844 }
22845
22846 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22847 * the value held by the attribute is not constant. */
22848
22849 static LONGEST
22850 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22851 {
22852 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22853 return DW_SND (attr);
22854 else if (attr->form == DW_FORM_udata
22855 || attr->form == DW_FORM_data1
22856 || attr->form == DW_FORM_data2
22857 || attr->form == DW_FORM_data4
22858 || attr->form == DW_FORM_data8)
22859 return DW_UNSND (attr);
22860 else
22861 {
22862 /* For DW_FORM_data16 see attr_form_is_constant. */
22863 complaint (&symfile_complaints,
22864 _("Attribute value is not a constant (%s)"),
22865 dwarf_form_name (attr->form));
22866 return default_value;
22867 }
22868 }
22869
22870 /* Follow reference or signature attribute ATTR of SRC_DIE.
22871 On entry *REF_CU is the CU of SRC_DIE.
22872 On exit *REF_CU is the CU of the result. */
22873
22874 static struct die_info *
22875 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22876 struct dwarf2_cu **ref_cu)
22877 {
22878 struct die_info *die;
22879
22880 if (attr_form_is_ref (attr))
22881 die = follow_die_ref (src_die, attr, ref_cu);
22882 else if (attr->form == DW_FORM_ref_sig8)
22883 die = follow_die_sig (src_die, attr, ref_cu);
22884 else
22885 {
22886 dump_die_for_error (src_die);
22887 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22888 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22889 }
22890
22891 return die;
22892 }
22893
22894 /* Follow reference OFFSET.
22895 On entry *REF_CU is the CU of the source die referencing OFFSET.
22896 On exit *REF_CU is the CU of the result.
22897 Returns NULL if OFFSET is invalid. */
22898
22899 static struct die_info *
22900 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22901 struct dwarf2_cu **ref_cu)
22902 {
22903 struct die_info temp_die;
22904 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22905 struct dwarf2_per_objfile *dwarf2_per_objfile
22906 = cu->per_cu->dwarf2_per_objfile;
22907 struct objfile *objfile = dwarf2_per_objfile->objfile;
22908
22909 gdb_assert (cu->per_cu != NULL);
22910
22911 target_cu = cu;
22912
22913 if (cu->per_cu->is_debug_types)
22914 {
22915 /* .debug_types CUs cannot reference anything outside their CU.
22916 If they need to, they have to reference a signatured type via
22917 DW_FORM_ref_sig8. */
22918 if (!offset_in_cu_p (&cu->header, sect_off))
22919 return NULL;
22920 }
22921 else if (offset_in_dwz != cu->per_cu->is_dwz
22922 || !offset_in_cu_p (&cu->header, sect_off))
22923 {
22924 struct dwarf2_per_cu_data *per_cu;
22925
22926 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22927 dwarf2_per_objfile);
22928
22929 /* If necessary, add it to the queue and load its DIEs. */
22930 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22931 load_full_comp_unit (per_cu, cu->language);
22932
22933 target_cu = per_cu->cu;
22934 }
22935 else if (cu->dies == NULL)
22936 {
22937 /* We're loading full DIEs during partial symbol reading. */
22938 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22939 load_full_comp_unit (cu->per_cu, language_minimal);
22940 }
22941
22942 *ref_cu = target_cu;
22943 temp_die.sect_off = sect_off;
22944 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22945 &temp_die,
22946 to_underlying (sect_off));
22947 }
22948
22949 /* Follow reference attribute ATTR of SRC_DIE.
22950 On entry *REF_CU is the CU of SRC_DIE.
22951 On exit *REF_CU is the CU of the result. */
22952
22953 static struct die_info *
22954 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22955 struct dwarf2_cu **ref_cu)
22956 {
22957 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22958 struct dwarf2_cu *cu = *ref_cu;
22959 struct die_info *die;
22960
22961 die = follow_die_offset (sect_off,
22962 (attr->form == DW_FORM_GNU_ref_alt
22963 || cu->per_cu->is_dwz),
22964 ref_cu);
22965 if (!die)
22966 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
22967 "at 0x%x [in module %s]"),
22968 to_underlying (sect_off), to_underlying (src_die->sect_off),
22969 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22970
22971 return die;
22972 }
22973
22974 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22975 Returned value is intended for DW_OP_call*. Returned
22976 dwarf2_locexpr_baton->data has lifetime of
22977 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22978
22979 struct dwarf2_locexpr_baton
22980 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22981 struct dwarf2_per_cu_data *per_cu,
22982 CORE_ADDR (*get_frame_pc) (void *baton),
22983 void *baton)
22984 {
22985 struct dwarf2_cu *cu;
22986 struct die_info *die;
22987 struct attribute *attr;
22988 struct dwarf2_locexpr_baton retval;
22989 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22990 struct dwarf2_per_objfile *dwarf2_per_objfile
22991 = get_dwarf2_per_objfile (objfile);
22992
22993 if (per_cu->cu == NULL)
22994 load_cu (per_cu);
22995 cu = per_cu->cu;
22996 if (cu == NULL)
22997 {
22998 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22999 Instead just throw an error, not much else we can do. */
23000 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
23001 to_underlying (sect_off), objfile_name (objfile));
23002 }
23003
23004 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23005 if (!die)
23006 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
23007 to_underlying (sect_off), objfile_name (objfile));
23008
23009 attr = dwarf2_attr (die, DW_AT_location, cu);
23010 if (!attr)
23011 {
23012 /* DWARF: "If there is no such attribute, then there is no effect.".
23013 DATA is ignored if SIZE is 0. */
23014
23015 retval.data = NULL;
23016 retval.size = 0;
23017 }
23018 else if (attr_form_is_section_offset (attr))
23019 {
23020 struct dwarf2_loclist_baton loclist_baton;
23021 CORE_ADDR pc = (*get_frame_pc) (baton);
23022 size_t size;
23023
23024 fill_in_loclist_baton (cu, &loclist_baton, attr);
23025
23026 retval.data = dwarf2_find_location_expression (&loclist_baton,
23027 &size, pc);
23028 retval.size = size;
23029 }
23030 else
23031 {
23032 if (!attr_form_is_block (attr))
23033 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
23034 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23035 to_underlying (sect_off), objfile_name (objfile));
23036
23037 retval.data = DW_BLOCK (attr)->data;
23038 retval.size = DW_BLOCK (attr)->size;
23039 }
23040 retval.per_cu = cu->per_cu;
23041
23042 age_cached_comp_units (dwarf2_per_objfile);
23043
23044 return retval;
23045 }
23046
23047 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23048 offset. */
23049
23050 struct dwarf2_locexpr_baton
23051 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23052 struct dwarf2_per_cu_data *per_cu,
23053 CORE_ADDR (*get_frame_pc) (void *baton),
23054 void *baton)
23055 {
23056 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23057
23058 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23059 }
23060
23061 /* Write a constant of a given type as target-ordered bytes into
23062 OBSTACK. */
23063
23064 static const gdb_byte *
23065 write_constant_as_bytes (struct obstack *obstack,
23066 enum bfd_endian byte_order,
23067 struct type *type,
23068 ULONGEST value,
23069 LONGEST *len)
23070 {
23071 gdb_byte *result;
23072
23073 *len = TYPE_LENGTH (type);
23074 result = (gdb_byte *) obstack_alloc (obstack, *len);
23075 store_unsigned_integer (result, *len, byte_order, value);
23076
23077 return result;
23078 }
23079
23080 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23081 pointer to the constant bytes and set LEN to the length of the
23082 data. If memory is needed, allocate it on OBSTACK. If the DIE
23083 does not have a DW_AT_const_value, return NULL. */
23084
23085 const gdb_byte *
23086 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23087 struct dwarf2_per_cu_data *per_cu,
23088 struct obstack *obstack,
23089 LONGEST *len)
23090 {
23091 struct dwarf2_cu *cu;
23092 struct die_info *die;
23093 struct attribute *attr;
23094 const gdb_byte *result = NULL;
23095 struct type *type;
23096 LONGEST value;
23097 enum bfd_endian byte_order;
23098 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23099
23100 if (per_cu->cu == NULL)
23101 load_cu (per_cu);
23102 cu = per_cu->cu;
23103 if (cu == NULL)
23104 {
23105 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23106 Instead just throw an error, not much else we can do. */
23107 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
23108 to_underlying (sect_off), objfile_name (objfile));
23109 }
23110
23111 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23112 if (!die)
23113 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
23114 to_underlying (sect_off), objfile_name (objfile));
23115
23116
23117 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23118 if (attr == NULL)
23119 return NULL;
23120
23121 byte_order = (bfd_big_endian (objfile->obfd)
23122 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23123
23124 switch (attr->form)
23125 {
23126 case DW_FORM_addr:
23127 case DW_FORM_GNU_addr_index:
23128 {
23129 gdb_byte *tem;
23130
23131 *len = cu->header.addr_size;
23132 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23133 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23134 result = tem;
23135 }
23136 break;
23137 case DW_FORM_string:
23138 case DW_FORM_strp:
23139 case DW_FORM_GNU_str_index:
23140 case DW_FORM_GNU_strp_alt:
23141 /* DW_STRING is already allocated on the objfile obstack, point
23142 directly to it. */
23143 result = (const gdb_byte *) DW_STRING (attr);
23144 *len = strlen (DW_STRING (attr));
23145 break;
23146 case DW_FORM_block1:
23147 case DW_FORM_block2:
23148 case DW_FORM_block4:
23149 case DW_FORM_block:
23150 case DW_FORM_exprloc:
23151 case DW_FORM_data16:
23152 result = DW_BLOCK (attr)->data;
23153 *len = DW_BLOCK (attr)->size;
23154 break;
23155
23156 /* The DW_AT_const_value attributes are supposed to carry the
23157 symbol's value "represented as it would be on the target
23158 architecture." By the time we get here, it's already been
23159 converted to host endianness, so we just need to sign- or
23160 zero-extend it as appropriate. */
23161 case DW_FORM_data1:
23162 type = die_type (die, cu);
23163 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23164 if (result == NULL)
23165 result = write_constant_as_bytes (obstack, byte_order,
23166 type, value, len);
23167 break;
23168 case DW_FORM_data2:
23169 type = die_type (die, cu);
23170 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23171 if (result == NULL)
23172 result = write_constant_as_bytes (obstack, byte_order,
23173 type, value, len);
23174 break;
23175 case DW_FORM_data4:
23176 type = die_type (die, cu);
23177 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23178 if (result == NULL)
23179 result = write_constant_as_bytes (obstack, byte_order,
23180 type, value, len);
23181 break;
23182 case DW_FORM_data8:
23183 type = die_type (die, cu);
23184 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23185 if (result == NULL)
23186 result = write_constant_as_bytes (obstack, byte_order,
23187 type, value, len);
23188 break;
23189
23190 case DW_FORM_sdata:
23191 case DW_FORM_implicit_const:
23192 type = die_type (die, cu);
23193 result = write_constant_as_bytes (obstack, byte_order,
23194 type, DW_SND (attr), len);
23195 break;
23196
23197 case DW_FORM_udata:
23198 type = die_type (die, cu);
23199 result = write_constant_as_bytes (obstack, byte_order,
23200 type, DW_UNSND (attr), len);
23201 break;
23202
23203 default:
23204 complaint (&symfile_complaints,
23205 _("unsupported const value attribute form: '%s'"),
23206 dwarf_form_name (attr->form));
23207 break;
23208 }
23209
23210 return result;
23211 }
23212
23213 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23214 valid type for this die is found. */
23215
23216 struct type *
23217 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23218 struct dwarf2_per_cu_data *per_cu)
23219 {
23220 struct dwarf2_cu *cu;
23221 struct die_info *die;
23222
23223 if (per_cu->cu == NULL)
23224 load_cu (per_cu);
23225 cu = per_cu->cu;
23226 if (!cu)
23227 return NULL;
23228
23229 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23230 if (!die)
23231 return NULL;
23232
23233 return die_type (die, cu);
23234 }
23235
23236 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23237 PER_CU. */
23238
23239 struct type *
23240 dwarf2_get_die_type (cu_offset die_offset,
23241 struct dwarf2_per_cu_data *per_cu)
23242 {
23243 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23244 return get_die_type_at_offset (die_offset_sect, per_cu);
23245 }
23246
23247 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23248 On entry *REF_CU is the CU of SRC_DIE.
23249 On exit *REF_CU is the CU of the result.
23250 Returns NULL if the referenced DIE isn't found. */
23251
23252 static struct die_info *
23253 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23254 struct dwarf2_cu **ref_cu)
23255 {
23256 struct die_info temp_die;
23257 struct dwarf2_cu *sig_cu;
23258 struct die_info *die;
23259
23260 /* While it might be nice to assert sig_type->type == NULL here,
23261 we can get here for DW_AT_imported_declaration where we need
23262 the DIE not the type. */
23263
23264 /* If necessary, add it to the queue and load its DIEs. */
23265
23266 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23267 read_signatured_type (sig_type);
23268
23269 sig_cu = sig_type->per_cu.cu;
23270 gdb_assert (sig_cu != NULL);
23271 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23272 temp_die.sect_off = sig_type->type_offset_in_section;
23273 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23274 to_underlying (temp_die.sect_off));
23275 if (die)
23276 {
23277 struct dwarf2_per_objfile *dwarf2_per_objfile
23278 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23279
23280 /* For .gdb_index version 7 keep track of included TUs.
23281 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23282 if (dwarf2_per_objfile->index_table != NULL
23283 && dwarf2_per_objfile->index_table->version <= 7)
23284 {
23285 VEC_safe_push (dwarf2_per_cu_ptr,
23286 (*ref_cu)->per_cu->imported_symtabs,
23287 sig_cu->per_cu);
23288 }
23289
23290 *ref_cu = sig_cu;
23291 return die;
23292 }
23293
23294 return NULL;
23295 }
23296
23297 /* Follow signatured type referenced by ATTR in SRC_DIE.
23298 On entry *REF_CU is the CU of SRC_DIE.
23299 On exit *REF_CU is the CU of the result.
23300 The result is the DIE of the type.
23301 If the referenced type cannot be found an error is thrown. */
23302
23303 static struct die_info *
23304 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23305 struct dwarf2_cu **ref_cu)
23306 {
23307 ULONGEST signature = DW_SIGNATURE (attr);
23308 struct signatured_type *sig_type;
23309 struct die_info *die;
23310
23311 gdb_assert (attr->form == DW_FORM_ref_sig8);
23312
23313 sig_type = lookup_signatured_type (*ref_cu, signature);
23314 /* sig_type will be NULL if the signatured type is missing from
23315 the debug info. */
23316 if (sig_type == NULL)
23317 {
23318 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23319 " from DIE at 0x%x [in module %s]"),
23320 hex_string (signature), to_underlying (src_die->sect_off),
23321 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23322 }
23323
23324 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23325 if (die == NULL)
23326 {
23327 dump_die_for_error (src_die);
23328 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23329 " from DIE at 0x%x [in module %s]"),
23330 hex_string (signature), to_underlying (src_die->sect_off),
23331 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23332 }
23333
23334 return die;
23335 }
23336
23337 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23338 reading in and processing the type unit if necessary. */
23339
23340 static struct type *
23341 get_signatured_type (struct die_info *die, ULONGEST signature,
23342 struct dwarf2_cu *cu)
23343 {
23344 struct dwarf2_per_objfile *dwarf2_per_objfile
23345 = cu->per_cu->dwarf2_per_objfile;
23346 struct signatured_type *sig_type;
23347 struct dwarf2_cu *type_cu;
23348 struct die_info *type_die;
23349 struct type *type;
23350
23351 sig_type = lookup_signatured_type (cu, signature);
23352 /* sig_type will be NULL if the signatured type is missing from
23353 the debug info. */
23354 if (sig_type == NULL)
23355 {
23356 complaint (&symfile_complaints,
23357 _("Dwarf Error: Cannot find signatured DIE %s referenced"
23358 " from DIE at 0x%x [in module %s]"),
23359 hex_string (signature), to_underlying (die->sect_off),
23360 objfile_name (dwarf2_per_objfile->objfile));
23361 return build_error_marker_type (cu, die);
23362 }
23363
23364 /* If we already know the type we're done. */
23365 if (sig_type->type != NULL)
23366 return sig_type->type;
23367
23368 type_cu = cu;
23369 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23370 if (type_die != NULL)
23371 {
23372 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23373 is created. This is important, for example, because for c++ classes
23374 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23375 type = read_type_die (type_die, type_cu);
23376 if (type == NULL)
23377 {
23378 complaint (&symfile_complaints,
23379 _("Dwarf Error: Cannot build signatured type %s"
23380 " referenced from DIE at 0x%x [in module %s]"),
23381 hex_string (signature), to_underlying (die->sect_off),
23382 objfile_name (dwarf2_per_objfile->objfile));
23383 type = build_error_marker_type (cu, die);
23384 }
23385 }
23386 else
23387 {
23388 complaint (&symfile_complaints,
23389 _("Dwarf Error: Problem reading signatured DIE %s referenced"
23390 " from DIE at 0x%x [in module %s]"),
23391 hex_string (signature), to_underlying (die->sect_off),
23392 objfile_name (dwarf2_per_objfile->objfile));
23393 type = build_error_marker_type (cu, die);
23394 }
23395 sig_type->type = type;
23396
23397 return type;
23398 }
23399
23400 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23401 reading in and processing the type unit if necessary. */
23402
23403 static struct type *
23404 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23405 struct dwarf2_cu *cu) /* ARI: editCase function */
23406 {
23407 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23408 if (attr_form_is_ref (attr))
23409 {
23410 struct dwarf2_cu *type_cu = cu;
23411 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23412
23413 return read_type_die (type_die, type_cu);
23414 }
23415 else if (attr->form == DW_FORM_ref_sig8)
23416 {
23417 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23418 }
23419 else
23420 {
23421 struct dwarf2_per_objfile *dwarf2_per_objfile
23422 = cu->per_cu->dwarf2_per_objfile;
23423
23424 complaint (&symfile_complaints,
23425 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23426 " at 0x%x [in module %s]"),
23427 dwarf_form_name (attr->form), to_underlying (die->sect_off),
23428 objfile_name (dwarf2_per_objfile->objfile));
23429 return build_error_marker_type (cu, die);
23430 }
23431 }
23432
23433 /* Load the DIEs associated with type unit PER_CU into memory. */
23434
23435 static void
23436 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23437 {
23438 struct signatured_type *sig_type;
23439
23440 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23441 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23442
23443 /* We have the per_cu, but we need the signatured_type.
23444 Fortunately this is an easy translation. */
23445 gdb_assert (per_cu->is_debug_types);
23446 sig_type = (struct signatured_type *) per_cu;
23447
23448 gdb_assert (per_cu->cu == NULL);
23449
23450 read_signatured_type (sig_type);
23451
23452 gdb_assert (per_cu->cu != NULL);
23453 }
23454
23455 /* die_reader_func for read_signatured_type.
23456 This is identical to load_full_comp_unit_reader,
23457 but is kept separate for now. */
23458
23459 static void
23460 read_signatured_type_reader (const struct die_reader_specs *reader,
23461 const gdb_byte *info_ptr,
23462 struct die_info *comp_unit_die,
23463 int has_children,
23464 void *data)
23465 {
23466 struct dwarf2_cu *cu = reader->cu;
23467
23468 gdb_assert (cu->die_hash == NULL);
23469 cu->die_hash =
23470 htab_create_alloc_ex (cu->header.length / 12,
23471 die_hash,
23472 die_eq,
23473 NULL,
23474 &cu->comp_unit_obstack,
23475 hashtab_obstack_allocate,
23476 dummy_obstack_deallocate);
23477
23478 if (has_children)
23479 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23480 &info_ptr, comp_unit_die);
23481 cu->dies = comp_unit_die;
23482 /* comp_unit_die is not stored in die_hash, no need. */
23483
23484 /* We try not to read any attributes in this function, because not
23485 all CUs needed for references have been loaded yet, and symbol
23486 table processing isn't initialized. But we have to set the CU language,
23487 or we won't be able to build types correctly.
23488 Similarly, if we do not read the producer, we can not apply
23489 producer-specific interpretation. */
23490 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23491 }
23492
23493 /* Read in a signatured type and build its CU and DIEs.
23494 If the type is a stub for the real type in a DWO file,
23495 read in the real type from the DWO file as well. */
23496
23497 static void
23498 read_signatured_type (struct signatured_type *sig_type)
23499 {
23500 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23501
23502 gdb_assert (per_cu->is_debug_types);
23503 gdb_assert (per_cu->cu == NULL);
23504
23505 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
23506 read_signatured_type_reader, NULL);
23507 sig_type->per_cu.tu_read = 1;
23508 }
23509
23510 /* Decode simple location descriptions.
23511 Given a pointer to a dwarf block that defines a location, compute
23512 the location and return the value.
23513
23514 NOTE drow/2003-11-18: This function is called in two situations
23515 now: for the address of static or global variables (partial symbols
23516 only) and for offsets into structures which are expected to be
23517 (more or less) constant. The partial symbol case should go away,
23518 and only the constant case should remain. That will let this
23519 function complain more accurately. A few special modes are allowed
23520 without complaint for global variables (for instance, global
23521 register values and thread-local values).
23522
23523 A location description containing no operations indicates that the
23524 object is optimized out. The return value is 0 for that case.
23525 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23526 callers will only want a very basic result and this can become a
23527 complaint.
23528
23529 Note that stack[0] is unused except as a default error return. */
23530
23531 static CORE_ADDR
23532 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23533 {
23534 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23535 size_t i;
23536 size_t size = blk->size;
23537 const gdb_byte *data = blk->data;
23538 CORE_ADDR stack[64];
23539 int stacki;
23540 unsigned int bytes_read, unsnd;
23541 gdb_byte op;
23542
23543 i = 0;
23544 stacki = 0;
23545 stack[stacki] = 0;
23546 stack[++stacki] = 0;
23547
23548 while (i < size)
23549 {
23550 op = data[i++];
23551 switch (op)
23552 {
23553 case DW_OP_lit0:
23554 case DW_OP_lit1:
23555 case DW_OP_lit2:
23556 case DW_OP_lit3:
23557 case DW_OP_lit4:
23558 case DW_OP_lit5:
23559 case DW_OP_lit6:
23560 case DW_OP_lit7:
23561 case DW_OP_lit8:
23562 case DW_OP_lit9:
23563 case DW_OP_lit10:
23564 case DW_OP_lit11:
23565 case DW_OP_lit12:
23566 case DW_OP_lit13:
23567 case DW_OP_lit14:
23568 case DW_OP_lit15:
23569 case DW_OP_lit16:
23570 case DW_OP_lit17:
23571 case DW_OP_lit18:
23572 case DW_OP_lit19:
23573 case DW_OP_lit20:
23574 case DW_OP_lit21:
23575 case DW_OP_lit22:
23576 case DW_OP_lit23:
23577 case DW_OP_lit24:
23578 case DW_OP_lit25:
23579 case DW_OP_lit26:
23580 case DW_OP_lit27:
23581 case DW_OP_lit28:
23582 case DW_OP_lit29:
23583 case DW_OP_lit30:
23584 case DW_OP_lit31:
23585 stack[++stacki] = op - DW_OP_lit0;
23586 break;
23587
23588 case DW_OP_reg0:
23589 case DW_OP_reg1:
23590 case DW_OP_reg2:
23591 case DW_OP_reg3:
23592 case DW_OP_reg4:
23593 case DW_OP_reg5:
23594 case DW_OP_reg6:
23595 case DW_OP_reg7:
23596 case DW_OP_reg8:
23597 case DW_OP_reg9:
23598 case DW_OP_reg10:
23599 case DW_OP_reg11:
23600 case DW_OP_reg12:
23601 case DW_OP_reg13:
23602 case DW_OP_reg14:
23603 case DW_OP_reg15:
23604 case DW_OP_reg16:
23605 case DW_OP_reg17:
23606 case DW_OP_reg18:
23607 case DW_OP_reg19:
23608 case DW_OP_reg20:
23609 case DW_OP_reg21:
23610 case DW_OP_reg22:
23611 case DW_OP_reg23:
23612 case DW_OP_reg24:
23613 case DW_OP_reg25:
23614 case DW_OP_reg26:
23615 case DW_OP_reg27:
23616 case DW_OP_reg28:
23617 case DW_OP_reg29:
23618 case DW_OP_reg30:
23619 case DW_OP_reg31:
23620 stack[++stacki] = op - DW_OP_reg0;
23621 if (i < size)
23622 dwarf2_complex_location_expr_complaint ();
23623 break;
23624
23625 case DW_OP_regx:
23626 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23627 i += bytes_read;
23628 stack[++stacki] = unsnd;
23629 if (i < size)
23630 dwarf2_complex_location_expr_complaint ();
23631 break;
23632
23633 case DW_OP_addr:
23634 stack[++stacki] = read_address (objfile->obfd, &data[i],
23635 cu, &bytes_read);
23636 i += bytes_read;
23637 break;
23638
23639 case DW_OP_const1u:
23640 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23641 i += 1;
23642 break;
23643
23644 case DW_OP_const1s:
23645 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23646 i += 1;
23647 break;
23648
23649 case DW_OP_const2u:
23650 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23651 i += 2;
23652 break;
23653
23654 case DW_OP_const2s:
23655 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23656 i += 2;
23657 break;
23658
23659 case DW_OP_const4u:
23660 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23661 i += 4;
23662 break;
23663
23664 case DW_OP_const4s:
23665 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23666 i += 4;
23667 break;
23668
23669 case DW_OP_const8u:
23670 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23671 i += 8;
23672 break;
23673
23674 case DW_OP_constu:
23675 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23676 &bytes_read);
23677 i += bytes_read;
23678 break;
23679
23680 case DW_OP_consts:
23681 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23682 i += bytes_read;
23683 break;
23684
23685 case DW_OP_dup:
23686 stack[stacki + 1] = stack[stacki];
23687 stacki++;
23688 break;
23689
23690 case DW_OP_plus:
23691 stack[stacki - 1] += stack[stacki];
23692 stacki--;
23693 break;
23694
23695 case DW_OP_plus_uconst:
23696 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23697 &bytes_read);
23698 i += bytes_read;
23699 break;
23700
23701 case DW_OP_minus:
23702 stack[stacki - 1] -= stack[stacki];
23703 stacki--;
23704 break;
23705
23706 case DW_OP_deref:
23707 /* If we're not the last op, then we definitely can't encode
23708 this using GDB's address_class enum. This is valid for partial
23709 global symbols, although the variable's address will be bogus
23710 in the psymtab. */
23711 if (i < size)
23712 dwarf2_complex_location_expr_complaint ();
23713 break;
23714
23715 case DW_OP_GNU_push_tls_address:
23716 case DW_OP_form_tls_address:
23717 /* The top of the stack has the offset from the beginning
23718 of the thread control block at which the variable is located. */
23719 /* Nothing should follow this operator, so the top of stack would
23720 be returned. */
23721 /* This is valid for partial global symbols, but the variable's
23722 address will be bogus in the psymtab. Make it always at least
23723 non-zero to not look as a variable garbage collected by linker
23724 which have DW_OP_addr 0. */
23725 if (i < size)
23726 dwarf2_complex_location_expr_complaint ();
23727 stack[stacki]++;
23728 break;
23729
23730 case DW_OP_GNU_uninit:
23731 break;
23732
23733 case DW_OP_GNU_addr_index:
23734 case DW_OP_GNU_const_index:
23735 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23736 &bytes_read);
23737 i += bytes_read;
23738 break;
23739
23740 default:
23741 {
23742 const char *name = get_DW_OP_name (op);
23743
23744 if (name)
23745 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
23746 name);
23747 else
23748 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
23749 op);
23750 }
23751
23752 return (stack[stacki]);
23753 }
23754
23755 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23756 outside of the allocated space. Also enforce minimum>0. */
23757 if (stacki >= ARRAY_SIZE (stack) - 1)
23758 {
23759 complaint (&symfile_complaints,
23760 _("location description stack overflow"));
23761 return 0;
23762 }
23763
23764 if (stacki <= 0)
23765 {
23766 complaint (&symfile_complaints,
23767 _("location description stack underflow"));
23768 return 0;
23769 }
23770 }
23771 return (stack[stacki]);
23772 }
23773
23774 /* memory allocation interface */
23775
23776 static struct dwarf_block *
23777 dwarf_alloc_block (struct dwarf2_cu *cu)
23778 {
23779 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23780 }
23781
23782 static struct die_info *
23783 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23784 {
23785 struct die_info *die;
23786 size_t size = sizeof (struct die_info);
23787
23788 if (num_attrs > 1)
23789 size += (num_attrs - 1) * sizeof (struct attribute);
23790
23791 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23792 memset (die, 0, sizeof (struct die_info));
23793 return (die);
23794 }
23795
23796 \f
23797 /* Macro support. */
23798
23799 /* Return file name relative to the compilation directory of file number I in
23800 *LH's file name table. The result is allocated using xmalloc; the caller is
23801 responsible for freeing it. */
23802
23803 static char *
23804 file_file_name (int file, struct line_header *lh)
23805 {
23806 /* Is the file number a valid index into the line header's file name
23807 table? Remember that file numbers start with one, not zero. */
23808 if (1 <= file && file <= lh->file_names.size ())
23809 {
23810 const file_entry &fe = lh->file_names[file - 1];
23811
23812 if (!IS_ABSOLUTE_PATH (fe.name))
23813 {
23814 const char *dir = fe.include_dir (lh);
23815 if (dir != NULL)
23816 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23817 }
23818 return xstrdup (fe.name);
23819 }
23820 else
23821 {
23822 /* The compiler produced a bogus file number. We can at least
23823 record the macro definitions made in the file, even if we
23824 won't be able to find the file by name. */
23825 char fake_name[80];
23826
23827 xsnprintf (fake_name, sizeof (fake_name),
23828 "<bad macro file number %d>", file);
23829
23830 complaint (&symfile_complaints,
23831 _("bad file number in macro information (%d)"),
23832 file);
23833
23834 return xstrdup (fake_name);
23835 }
23836 }
23837
23838 /* Return the full name of file number I in *LH's file name table.
23839 Use COMP_DIR as the name of the current directory of the
23840 compilation. The result is allocated using xmalloc; the caller is
23841 responsible for freeing it. */
23842 static char *
23843 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23844 {
23845 /* Is the file number a valid index into the line header's file name
23846 table? Remember that file numbers start with one, not zero. */
23847 if (1 <= file && file <= lh->file_names.size ())
23848 {
23849 char *relative = file_file_name (file, lh);
23850
23851 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23852 return relative;
23853 return reconcat (relative, comp_dir, SLASH_STRING,
23854 relative, (char *) NULL);
23855 }
23856 else
23857 return file_file_name (file, lh);
23858 }
23859
23860
23861 static struct macro_source_file *
23862 macro_start_file (int file, int line,
23863 struct macro_source_file *current_file,
23864 struct line_header *lh)
23865 {
23866 /* File name relative to the compilation directory of this source file. */
23867 char *file_name = file_file_name (file, lh);
23868
23869 if (! current_file)
23870 {
23871 /* Note: We don't create a macro table for this compilation unit
23872 at all until we actually get a filename. */
23873 struct macro_table *macro_table = get_macro_table ();
23874
23875 /* If we have no current file, then this must be the start_file
23876 directive for the compilation unit's main source file. */
23877 current_file = macro_set_main (macro_table, file_name);
23878 macro_define_special (macro_table);
23879 }
23880 else
23881 current_file = macro_include (current_file, line, file_name);
23882
23883 xfree (file_name);
23884
23885 return current_file;
23886 }
23887
23888 static const char *
23889 consume_improper_spaces (const char *p, const char *body)
23890 {
23891 if (*p == ' ')
23892 {
23893 complaint (&symfile_complaints,
23894 _("macro definition contains spaces "
23895 "in formal argument list:\n`%s'"),
23896 body);
23897
23898 while (*p == ' ')
23899 p++;
23900 }
23901
23902 return p;
23903 }
23904
23905
23906 static void
23907 parse_macro_definition (struct macro_source_file *file, int line,
23908 const char *body)
23909 {
23910 const char *p;
23911
23912 /* The body string takes one of two forms. For object-like macro
23913 definitions, it should be:
23914
23915 <macro name> " " <definition>
23916
23917 For function-like macro definitions, it should be:
23918
23919 <macro name> "() " <definition>
23920 or
23921 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23922
23923 Spaces may appear only where explicitly indicated, and in the
23924 <definition>.
23925
23926 The Dwarf 2 spec says that an object-like macro's name is always
23927 followed by a space, but versions of GCC around March 2002 omit
23928 the space when the macro's definition is the empty string.
23929
23930 The Dwarf 2 spec says that there should be no spaces between the
23931 formal arguments in a function-like macro's formal argument list,
23932 but versions of GCC around March 2002 include spaces after the
23933 commas. */
23934
23935
23936 /* Find the extent of the macro name. The macro name is terminated
23937 by either a space or null character (for an object-like macro) or
23938 an opening paren (for a function-like macro). */
23939 for (p = body; *p; p++)
23940 if (*p == ' ' || *p == '(')
23941 break;
23942
23943 if (*p == ' ' || *p == '\0')
23944 {
23945 /* It's an object-like macro. */
23946 int name_len = p - body;
23947 char *name = savestring (body, name_len);
23948 const char *replacement;
23949
23950 if (*p == ' ')
23951 replacement = body + name_len + 1;
23952 else
23953 {
23954 dwarf2_macro_malformed_definition_complaint (body);
23955 replacement = body + name_len;
23956 }
23957
23958 macro_define_object (file, line, name, replacement);
23959
23960 xfree (name);
23961 }
23962 else if (*p == '(')
23963 {
23964 /* It's a function-like macro. */
23965 char *name = savestring (body, p - body);
23966 int argc = 0;
23967 int argv_size = 1;
23968 char **argv = XNEWVEC (char *, argv_size);
23969
23970 p++;
23971
23972 p = consume_improper_spaces (p, body);
23973
23974 /* Parse the formal argument list. */
23975 while (*p && *p != ')')
23976 {
23977 /* Find the extent of the current argument name. */
23978 const char *arg_start = p;
23979
23980 while (*p && *p != ',' && *p != ')' && *p != ' ')
23981 p++;
23982
23983 if (! *p || p == arg_start)
23984 dwarf2_macro_malformed_definition_complaint (body);
23985 else
23986 {
23987 /* Make sure argv has room for the new argument. */
23988 if (argc >= argv_size)
23989 {
23990 argv_size *= 2;
23991 argv = XRESIZEVEC (char *, argv, argv_size);
23992 }
23993
23994 argv[argc++] = savestring (arg_start, p - arg_start);
23995 }
23996
23997 p = consume_improper_spaces (p, body);
23998
23999 /* Consume the comma, if present. */
24000 if (*p == ',')
24001 {
24002 p++;
24003
24004 p = consume_improper_spaces (p, body);
24005 }
24006 }
24007
24008 if (*p == ')')
24009 {
24010 p++;
24011
24012 if (*p == ' ')
24013 /* Perfectly formed definition, no complaints. */
24014 macro_define_function (file, line, name,
24015 argc, (const char **) argv,
24016 p + 1);
24017 else if (*p == '\0')
24018 {
24019 /* Complain, but do define it. */
24020 dwarf2_macro_malformed_definition_complaint (body);
24021 macro_define_function (file, line, name,
24022 argc, (const char **) argv,
24023 p);
24024 }
24025 else
24026 /* Just complain. */
24027 dwarf2_macro_malformed_definition_complaint (body);
24028 }
24029 else
24030 /* Just complain. */
24031 dwarf2_macro_malformed_definition_complaint (body);
24032
24033 xfree (name);
24034 {
24035 int i;
24036
24037 for (i = 0; i < argc; i++)
24038 xfree (argv[i]);
24039 }
24040 xfree (argv);
24041 }
24042 else
24043 dwarf2_macro_malformed_definition_complaint (body);
24044 }
24045
24046 /* Skip some bytes from BYTES according to the form given in FORM.
24047 Returns the new pointer. */
24048
24049 static const gdb_byte *
24050 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24051 enum dwarf_form form,
24052 unsigned int offset_size,
24053 struct dwarf2_section_info *section)
24054 {
24055 unsigned int bytes_read;
24056
24057 switch (form)
24058 {
24059 case DW_FORM_data1:
24060 case DW_FORM_flag:
24061 ++bytes;
24062 break;
24063
24064 case DW_FORM_data2:
24065 bytes += 2;
24066 break;
24067
24068 case DW_FORM_data4:
24069 bytes += 4;
24070 break;
24071
24072 case DW_FORM_data8:
24073 bytes += 8;
24074 break;
24075
24076 case DW_FORM_data16:
24077 bytes += 16;
24078 break;
24079
24080 case DW_FORM_string:
24081 read_direct_string (abfd, bytes, &bytes_read);
24082 bytes += bytes_read;
24083 break;
24084
24085 case DW_FORM_sec_offset:
24086 case DW_FORM_strp:
24087 case DW_FORM_GNU_strp_alt:
24088 bytes += offset_size;
24089 break;
24090
24091 case DW_FORM_block:
24092 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24093 bytes += bytes_read;
24094 break;
24095
24096 case DW_FORM_block1:
24097 bytes += 1 + read_1_byte (abfd, bytes);
24098 break;
24099 case DW_FORM_block2:
24100 bytes += 2 + read_2_bytes (abfd, bytes);
24101 break;
24102 case DW_FORM_block4:
24103 bytes += 4 + read_4_bytes (abfd, bytes);
24104 break;
24105
24106 case DW_FORM_sdata:
24107 case DW_FORM_udata:
24108 case DW_FORM_GNU_addr_index:
24109 case DW_FORM_GNU_str_index:
24110 bytes = gdb_skip_leb128 (bytes, buffer_end);
24111 if (bytes == NULL)
24112 {
24113 dwarf2_section_buffer_overflow_complaint (section);
24114 return NULL;
24115 }
24116 break;
24117
24118 case DW_FORM_implicit_const:
24119 break;
24120
24121 default:
24122 {
24123 complaint (&symfile_complaints,
24124 _("invalid form 0x%x in `%s'"),
24125 form, get_section_name (section));
24126 return NULL;
24127 }
24128 }
24129
24130 return bytes;
24131 }
24132
24133 /* A helper for dwarf_decode_macros that handles skipping an unknown
24134 opcode. Returns an updated pointer to the macro data buffer; or,
24135 on error, issues a complaint and returns NULL. */
24136
24137 static const gdb_byte *
24138 skip_unknown_opcode (unsigned int opcode,
24139 const gdb_byte **opcode_definitions,
24140 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24141 bfd *abfd,
24142 unsigned int offset_size,
24143 struct dwarf2_section_info *section)
24144 {
24145 unsigned int bytes_read, i;
24146 unsigned long arg;
24147 const gdb_byte *defn;
24148
24149 if (opcode_definitions[opcode] == NULL)
24150 {
24151 complaint (&symfile_complaints,
24152 _("unrecognized DW_MACFINO opcode 0x%x"),
24153 opcode);
24154 return NULL;
24155 }
24156
24157 defn = opcode_definitions[opcode];
24158 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24159 defn += bytes_read;
24160
24161 for (i = 0; i < arg; ++i)
24162 {
24163 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24164 (enum dwarf_form) defn[i], offset_size,
24165 section);
24166 if (mac_ptr == NULL)
24167 {
24168 /* skip_form_bytes already issued the complaint. */
24169 return NULL;
24170 }
24171 }
24172
24173 return mac_ptr;
24174 }
24175
24176 /* A helper function which parses the header of a macro section.
24177 If the macro section is the extended (for now called "GNU") type,
24178 then this updates *OFFSET_SIZE. Returns a pointer to just after
24179 the header, or issues a complaint and returns NULL on error. */
24180
24181 static const gdb_byte *
24182 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24183 bfd *abfd,
24184 const gdb_byte *mac_ptr,
24185 unsigned int *offset_size,
24186 int section_is_gnu)
24187 {
24188 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24189
24190 if (section_is_gnu)
24191 {
24192 unsigned int version, flags;
24193
24194 version = read_2_bytes (abfd, mac_ptr);
24195 if (version != 4 && version != 5)
24196 {
24197 complaint (&symfile_complaints,
24198 _("unrecognized version `%d' in .debug_macro section"),
24199 version);
24200 return NULL;
24201 }
24202 mac_ptr += 2;
24203
24204 flags = read_1_byte (abfd, mac_ptr);
24205 ++mac_ptr;
24206 *offset_size = (flags & 1) ? 8 : 4;
24207
24208 if ((flags & 2) != 0)
24209 /* We don't need the line table offset. */
24210 mac_ptr += *offset_size;
24211
24212 /* Vendor opcode descriptions. */
24213 if ((flags & 4) != 0)
24214 {
24215 unsigned int i, count;
24216
24217 count = read_1_byte (abfd, mac_ptr);
24218 ++mac_ptr;
24219 for (i = 0; i < count; ++i)
24220 {
24221 unsigned int opcode, bytes_read;
24222 unsigned long arg;
24223
24224 opcode = read_1_byte (abfd, mac_ptr);
24225 ++mac_ptr;
24226 opcode_definitions[opcode] = mac_ptr;
24227 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24228 mac_ptr += bytes_read;
24229 mac_ptr += arg;
24230 }
24231 }
24232 }
24233
24234 return mac_ptr;
24235 }
24236
24237 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24238 including DW_MACRO_import. */
24239
24240 static void
24241 dwarf_decode_macro_bytes (struct dwarf2_per_objfile *dwarf2_per_objfile,
24242 bfd *abfd,
24243 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24244 struct macro_source_file *current_file,
24245 struct line_header *lh,
24246 struct dwarf2_section_info *section,
24247 int section_is_gnu, int section_is_dwz,
24248 unsigned int offset_size,
24249 htab_t include_hash)
24250 {
24251 struct objfile *objfile = dwarf2_per_objfile->objfile;
24252 enum dwarf_macro_record_type macinfo_type;
24253 int at_commandline;
24254 const gdb_byte *opcode_definitions[256];
24255
24256 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24257 &offset_size, section_is_gnu);
24258 if (mac_ptr == NULL)
24259 {
24260 /* We already issued a complaint. */
24261 return;
24262 }
24263
24264 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24265 GDB is still reading the definitions from command line. First
24266 DW_MACINFO_start_file will need to be ignored as it was already executed
24267 to create CURRENT_FILE for the main source holding also the command line
24268 definitions. On first met DW_MACINFO_start_file this flag is reset to
24269 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24270
24271 at_commandline = 1;
24272
24273 do
24274 {
24275 /* Do we at least have room for a macinfo type byte? */
24276 if (mac_ptr >= mac_end)
24277 {
24278 dwarf2_section_buffer_overflow_complaint (section);
24279 break;
24280 }
24281
24282 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24283 mac_ptr++;
24284
24285 /* Note that we rely on the fact that the corresponding GNU and
24286 DWARF constants are the same. */
24287 DIAGNOSTIC_PUSH
24288 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24289 switch (macinfo_type)
24290 {
24291 /* A zero macinfo type indicates the end of the macro
24292 information. */
24293 case 0:
24294 break;
24295
24296 case DW_MACRO_define:
24297 case DW_MACRO_undef:
24298 case DW_MACRO_define_strp:
24299 case DW_MACRO_undef_strp:
24300 case DW_MACRO_define_sup:
24301 case DW_MACRO_undef_sup:
24302 {
24303 unsigned int bytes_read;
24304 int line;
24305 const char *body;
24306 int is_define;
24307
24308 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24309 mac_ptr += bytes_read;
24310
24311 if (macinfo_type == DW_MACRO_define
24312 || macinfo_type == DW_MACRO_undef)
24313 {
24314 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24315 mac_ptr += bytes_read;
24316 }
24317 else
24318 {
24319 LONGEST str_offset;
24320
24321 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24322 mac_ptr += offset_size;
24323
24324 if (macinfo_type == DW_MACRO_define_sup
24325 || macinfo_type == DW_MACRO_undef_sup
24326 || section_is_dwz)
24327 {
24328 struct dwz_file *dwz
24329 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24330
24331 body = read_indirect_string_from_dwz (objfile,
24332 dwz, str_offset);
24333 }
24334 else
24335 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24336 abfd, str_offset);
24337 }
24338
24339 is_define = (macinfo_type == DW_MACRO_define
24340 || macinfo_type == DW_MACRO_define_strp
24341 || macinfo_type == DW_MACRO_define_sup);
24342 if (! current_file)
24343 {
24344 /* DWARF violation as no main source is present. */
24345 complaint (&symfile_complaints,
24346 _("debug info with no main source gives macro %s "
24347 "on line %d: %s"),
24348 is_define ? _("definition") : _("undefinition"),
24349 line, body);
24350 break;
24351 }
24352 if ((line == 0 && !at_commandline)
24353 || (line != 0 && at_commandline))
24354 complaint (&symfile_complaints,
24355 _("debug info gives %s macro %s with %s line %d: %s"),
24356 at_commandline ? _("command-line") : _("in-file"),
24357 is_define ? _("definition") : _("undefinition"),
24358 line == 0 ? _("zero") : _("non-zero"), line, body);
24359
24360 if (is_define)
24361 parse_macro_definition (current_file, line, body);
24362 else
24363 {
24364 gdb_assert (macinfo_type == DW_MACRO_undef
24365 || macinfo_type == DW_MACRO_undef_strp
24366 || macinfo_type == DW_MACRO_undef_sup);
24367 macro_undef (current_file, line, body);
24368 }
24369 }
24370 break;
24371
24372 case DW_MACRO_start_file:
24373 {
24374 unsigned int bytes_read;
24375 int line, file;
24376
24377 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24378 mac_ptr += bytes_read;
24379 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24380 mac_ptr += bytes_read;
24381
24382 if ((line == 0 && !at_commandline)
24383 || (line != 0 && at_commandline))
24384 complaint (&symfile_complaints,
24385 _("debug info gives source %d included "
24386 "from %s at %s line %d"),
24387 file, at_commandline ? _("command-line") : _("file"),
24388 line == 0 ? _("zero") : _("non-zero"), line);
24389
24390 if (at_commandline)
24391 {
24392 /* This DW_MACRO_start_file was executed in the
24393 pass one. */
24394 at_commandline = 0;
24395 }
24396 else
24397 current_file = macro_start_file (file, line, current_file, lh);
24398 }
24399 break;
24400
24401 case DW_MACRO_end_file:
24402 if (! current_file)
24403 complaint (&symfile_complaints,
24404 _("macro debug info has an unmatched "
24405 "`close_file' directive"));
24406 else
24407 {
24408 current_file = current_file->included_by;
24409 if (! current_file)
24410 {
24411 enum dwarf_macro_record_type next_type;
24412
24413 /* GCC circa March 2002 doesn't produce the zero
24414 type byte marking the end of the compilation
24415 unit. Complain if it's not there, but exit no
24416 matter what. */
24417
24418 /* Do we at least have room for a macinfo type byte? */
24419 if (mac_ptr >= mac_end)
24420 {
24421 dwarf2_section_buffer_overflow_complaint (section);
24422 return;
24423 }
24424
24425 /* We don't increment mac_ptr here, so this is just
24426 a look-ahead. */
24427 next_type
24428 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24429 mac_ptr);
24430 if (next_type != 0)
24431 complaint (&symfile_complaints,
24432 _("no terminating 0-type entry for "
24433 "macros in `.debug_macinfo' section"));
24434
24435 return;
24436 }
24437 }
24438 break;
24439
24440 case DW_MACRO_import:
24441 case DW_MACRO_import_sup:
24442 {
24443 LONGEST offset;
24444 void **slot;
24445 bfd *include_bfd = abfd;
24446 struct dwarf2_section_info *include_section = section;
24447 const gdb_byte *include_mac_end = mac_end;
24448 int is_dwz = section_is_dwz;
24449 const gdb_byte *new_mac_ptr;
24450
24451 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24452 mac_ptr += offset_size;
24453
24454 if (macinfo_type == DW_MACRO_import_sup)
24455 {
24456 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24457
24458 dwarf2_read_section (objfile, &dwz->macro);
24459
24460 include_section = &dwz->macro;
24461 include_bfd = get_section_bfd_owner (include_section);
24462 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24463 is_dwz = 1;
24464 }
24465
24466 new_mac_ptr = include_section->buffer + offset;
24467 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24468
24469 if (*slot != NULL)
24470 {
24471 /* This has actually happened; see
24472 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24473 complaint (&symfile_complaints,
24474 _("recursive DW_MACRO_import in "
24475 ".debug_macro section"));
24476 }
24477 else
24478 {
24479 *slot = (void *) new_mac_ptr;
24480
24481 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24482 include_bfd, new_mac_ptr,
24483 include_mac_end, current_file, lh,
24484 section, section_is_gnu, is_dwz,
24485 offset_size, include_hash);
24486
24487 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24488 }
24489 }
24490 break;
24491
24492 case DW_MACINFO_vendor_ext:
24493 if (!section_is_gnu)
24494 {
24495 unsigned int bytes_read;
24496
24497 /* This reads the constant, but since we don't recognize
24498 any vendor extensions, we ignore it. */
24499 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24500 mac_ptr += bytes_read;
24501 read_direct_string (abfd, mac_ptr, &bytes_read);
24502 mac_ptr += bytes_read;
24503
24504 /* We don't recognize any vendor extensions. */
24505 break;
24506 }
24507 /* FALLTHROUGH */
24508
24509 default:
24510 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24511 mac_ptr, mac_end, abfd, offset_size,
24512 section);
24513 if (mac_ptr == NULL)
24514 return;
24515 break;
24516 }
24517 DIAGNOSTIC_POP
24518 } while (macinfo_type != 0);
24519 }
24520
24521 static void
24522 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24523 int section_is_gnu)
24524 {
24525 struct dwarf2_per_objfile *dwarf2_per_objfile
24526 = cu->per_cu->dwarf2_per_objfile;
24527 struct objfile *objfile = dwarf2_per_objfile->objfile;
24528 struct line_header *lh = cu->line_header;
24529 bfd *abfd;
24530 const gdb_byte *mac_ptr, *mac_end;
24531 struct macro_source_file *current_file = 0;
24532 enum dwarf_macro_record_type macinfo_type;
24533 unsigned int offset_size = cu->header.offset_size;
24534 const gdb_byte *opcode_definitions[256];
24535 void **slot;
24536 struct dwarf2_section_info *section;
24537 const char *section_name;
24538
24539 if (cu->dwo_unit != NULL)
24540 {
24541 if (section_is_gnu)
24542 {
24543 section = &cu->dwo_unit->dwo_file->sections.macro;
24544 section_name = ".debug_macro.dwo";
24545 }
24546 else
24547 {
24548 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24549 section_name = ".debug_macinfo.dwo";
24550 }
24551 }
24552 else
24553 {
24554 if (section_is_gnu)
24555 {
24556 section = &dwarf2_per_objfile->macro;
24557 section_name = ".debug_macro";
24558 }
24559 else
24560 {
24561 section = &dwarf2_per_objfile->macinfo;
24562 section_name = ".debug_macinfo";
24563 }
24564 }
24565
24566 dwarf2_read_section (objfile, section);
24567 if (section->buffer == NULL)
24568 {
24569 complaint (&symfile_complaints, _("missing %s section"), section_name);
24570 return;
24571 }
24572 abfd = get_section_bfd_owner (section);
24573
24574 /* First pass: Find the name of the base filename.
24575 This filename is needed in order to process all macros whose definition
24576 (or undefinition) comes from the command line. These macros are defined
24577 before the first DW_MACINFO_start_file entry, and yet still need to be
24578 associated to the base file.
24579
24580 To determine the base file name, we scan the macro definitions until we
24581 reach the first DW_MACINFO_start_file entry. We then initialize
24582 CURRENT_FILE accordingly so that any macro definition found before the
24583 first DW_MACINFO_start_file can still be associated to the base file. */
24584
24585 mac_ptr = section->buffer + offset;
24586 mac_end = section->buffer + section->size;
24587
24588 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24589 &offset_size, section_is_gnu);
24590 if (mac_ptr == NULL)
24591 {
24592 /* We already issued a complaint. */
24593 return;
24594 }
24595
24596 do
24597 {
24598 /* Do we at least have room for a macinfo type byte? */
24599 if (mac_ptr >= mac_end)
24600 {
24601 /* Complaint is printed during the second pass as GDB will probably
24602 stop the first pass earlier upon finding
24603 DW_MACINFO_start_file. */
24604 break;
24605 }
24606
24607 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24608 mac_ptr++;
24609
24610 /* Note that we rely on the fact that the corresponding GNU and
24611 DWARF constants are the same. */
24612 DIAGNOSTIC_PUSH
24613 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24614 switch (macinfo_type)
24615 {
24616 /* A zero macinfo type indicates the end of the macro
24617 information. */
24618 case 0:
24619 break;
24620
24621 case DW_MACRO_define:
24622 case DW_MACRO_undef:
24623 /* Only skip the data by MAC_PTR. */
24624 {
24625 unsigned int bytes_read;
24626
24627 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24628 mac_ptr += bytes_read;
24629 read_direct_string (abfd, mac_ptr, &bytes_read);
24630 mac_ptr += bytes_read;
24631 }
24632 break;
24633
24634 case DW_MACRO_start_file:
24635 {
24636 unsigned int bytes_read;
24637 int line, file;
24638
24639 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24640 mac_ptr += bytes_read;
24641 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24642 mac_ptr += bytes_read;
24643
24644 current_file = macro_start_file (file, line, current_file, lh);
24645 }
24646 break;
24647
24648 case DW_MACRO_end_file:
24649 /* No data to skip by MAC_PTR. */
24650 break;
24651
24652 case DW_MACRO_define_strp:
24653 case DW_MACRO_undef_strp:
24654 case DW_MACRO_define_sup:
24655 case DW_MACRO_undef_sup:
24656 {
24657 unsigned int bytes_read;
24658
24659 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24660 mac_ptr += bytes_read;
24661 mac_ptr += offset_size;
24662 }
24663 break;
24664
24665 case DW_MACRO_import:
24666 case DW_MACRO_import_sup:
24667 /* Note that, according to the spec, a transparent include
24668 chain cannot call DW_MACRO_start_file. So, we can just
24669 skip this opcode. */
24670 mac_ptr += offset_size;
24671 break;
24672
24673 case DW_MACINFO_vendor_ext:
24674 /* Only skip the data by MAC_PTR. */
24675 if (!section_is_gnu)
24676 {
24677 unsigned int bytes_read;
24678
24679 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24680 mac_ptr += bytes_read;
24681 read_direct_string (abfd, mac_ptr, &bytes_read);
24682 mac_ptr += bytes_read;
24683 }
24684 /* FALLTHROUGH */
24685
24686 default:
24687 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24688 mac_ptr, mac_end, abfd, offset_size,
24689 section);
24690 if (mac_ptr == NULL)
24691 return;
24692 break;
24693 }
24694 DIAGNOSTIC_POP
24695 } while (macinfo_type != 0 && current_file == NULL);
24696
24697 /* Second pass: Process all entries.
24698
24699 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24700 command-line macro definitions/undefinitions. This flag is unset when we
24701 reach the first DW_MACINFO_start_file entry. */
24702
24703 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24704 htab_eq_pointer,
24705 NULL, xcalloc, xfree));
24706 mac_ptr = section->buffer + offset;
24707 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24708 *slot = (void *) mac_ptr;
24709 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24710 abfd, mac_ptr, mac_end,
24711 current_file, lh, section,
24712 section_is_gnu, 0, offset_size,
24713 include_hash.get ());
24714 }
24715
24716 /* Check if the attribute's form is a DW_FORM_block*
24717 if so return true else false. */
24718
24719 static int
24720 attr_form_is_block (const struct attribute *attr)
24721 {
24722 return (attr == NULL ? 0 :
24723 attr->form == DW_FORM_block1
24724 || attr->form == DW_FORM_block2
24725 || attr->form == DW_FORM_block4
24726 || attr->form == DW_FORM_block
24727 || attr->form == DW_FORM_exprloc);
24728 }
24729
24730 /* Return non-zero if ATTR's value is a section offset --- classes
24731 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24732 You may use DW_UNSND (attr) to retrieve such offsets.
24733
24734 Section 7.5.4, "Attribute Encodings", explains that no attribute
24735 may have a value that belongs to more than one of these classes; it
24736 would be ambiguous if we did, because we use the same forms for all
24737 of them. */
24738
24739 static int
24740 attr_form_is_section_offset (const struct attribute *attr)
24741 {
24742 return (attr->form == DW_FORM_data4
24743 || attr->form == DW_FORM_data8
24744 || attr->form == DW_FORM_sec_offset);
24745 }
24746
24747 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24748 zero otherwise. When this function returns true, you can apply
24749 dwarf2_get_attr_constant_value to it.
24750
24751 However, note that for some attributes you must check
24752 attr_form_is_section_offset before using this test. DW_FORM_data4
24753 and DW_FORM_data8 are members of both the constant class, and of
24754 the classes that contain offsets into other debug sections
24755 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24756 that, if an attribute's can be either a constant or one of the
24757 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24758 taken as section offsets, not constants.
24759
24760 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24761 cannot handle that. */
24762
24763 static int
24764 attr_form_is_constant (const struct attribute *attr)
24765 {
24766 switch (attr->form)
24767 {
24768 case DW_FORM_sdata:
24769 case DW_FORM_udata:
24770 case DW_FORM_data1:
24771 case DW_FORM_data2:
24772 case DW_FORM_data4:
24773 case DW_FORM_data8:
24774 case DW_FORM_implicit_const:
24775 return 1;
24776 default:
24777 return 0;
24778 }
24779 }
24780
24781
24782 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24783 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24784
24785 static int
24786 attr_form_is_ref (const struct attribute *attr)
24787 {
24788 switch (attr->form)
24789 {
24790 case DW_FORM_ref_addr:
24791 case DW_FORM_ref1:
24792 case DW_FORM_ref2:
24793 case DW_FORM_ref4:
24794 case DW_FORM_ref8:
24795 case DW_FORM_ref_udata:
24796 case DW_FORM_GNU_ref_alt:
24797 return 1;
24798 default:
24799 return 0;
24800 }
24801 }
24802
24803 /* Return the .debug_loc section to use for CU.
24804 For DWO files use .debug_loc.dwo. */
24805
24806 static struct dwarf2_section_info *
24807 cu_debug_loc_section (struct dwarf2_cu *cu)
24808 {
24809 struct dwarf2_per_objfile *dwarf2_per_objfile
24810 = cu->per_cu->dwarf2_per_objfile;
24811
24812 if (cu->dwo_unit)
24813 {
24814 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24815
24816 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24817 }
24818 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24819 : &dwarf2_per_objfile->loc);
24820 }
24821
24822 /* A helper function that fills in a dwarf2_loclist_baton. */
24823
24824 static void
24825 fill_in_loclist_baton (struct dwarf2_cu *cu,
24826 struct dwarf2_loclist_baton *baton,
24827 const struct attribute *attr)
24828 {
24829 struct dwarf2_per_objfile *dwarf2_per_objfile
24830 = cu->per_cu->dwarf2_per_objfile;
24831 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24832
24833 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24834
24835 baton->per_cu = cu->per_cu;
24836 gdb_assert (baton->per_cu);
24837 /* We don't know how long the location list is, but make sure we
24838 don't run off the edge of the section. */
24839 baton->size = section->size - DW_UNSND (attr);
24840 baton->data = section->buffer + DW_UNSND (attr);
24841 baton->base_address = cu->base_address;
24842 baton->from_dwo = cu->dwo_unit != NULL;
24843 }
24844
24845 static void
24846 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24847 struct dwarf2_cu *cu, int is_block)
24848 {
24849 struct dwarf2_per_objfile *dwarf2_per_objfile
24850 = cu->per_cu->dwarf2_per_objfile;
24851 struct objfile *objfile = dwarf2_per_objfile->objfile;
24852 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24853
24854 if (attr_form_is_section_offset (attr)
24855 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24856 the section. If so, fall through to the complaint in the
24857 other branch. */
24858 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24859 {
24860 struct dwarf2_loclist_baton *baton;
24861
24862 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24863
24864 fill_in_loclist_baton (cu, baton, attr);
24865
24866 if (cu->base_known == 0)
24867 complaint (&symfile_complaints,
24868 _("Location list used without "
24869 "specifying the CU base address."));
24870
24871 SYMBOL_ACLASS_INDEX (sym) = (is_block
24872 ? dwarf2_loclist_block_index
24873 : dwarf2_loclist_index);
24874 SYMBOL_LOCATION_BATON (sym) = baton;
24875 }
24876 else
24877 {
24878 struct dwarf2_locexpr_baton *baton;
24879
24880 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24881 baton->per_cu = cu->per_cu;
24882 gdb_assert (baton->per_cu);
24883
24884 if (attr_form_is_block (attr))
24885 {
24886 /* Note that we're just copying the block's data pointer
24887 here, not the actual data. We're still pointing into the
24888 info_buffer for SYM's objfile; right now we never release
24889 that buffer, but when we do clean up properly this may
24890 need to change. */
24891 baton->size = DW_BLOCK (attr)->size;
24892 baton->data = DW_BLOCK (attr)->data;
24893 }
24894 else
24895 {
24896 dwarf2_invalid_attrib_class_complaint ("location description",
24897 SYMBOL_NATURAL_NAME (sym));
24898 baton->size = 0;
24899 }
24900
24901 SYMBOL_ACLASS_INDEX (sym) = (is_block
24902 ? dwarf2_locexpr_block_index
24903 : dwarf2_locexpr_index);
24904 SYMBOL_LOCATION_BATON (sym) = baton;
24905 }
24906 }
24907
24908 /* Return the OBJFILE associated with the compilation unit CU. If CU
24909 came from a separate debuginfo file, then the master objfile is
24910 returned. */
24911
24912 struct objfile *
24913 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24914 {
24915 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24916
24917 /* Return the master objfile, so that we can report and look up the
24918 correct file containing this variable. */
24919 if (objfile->separate_debug_objfile_backlink)
24920 objfile = objfile->separate_debug_objfile_backlink;
24921
24922 return objfile;
24923 }
24924
24925 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24926 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24927 CU_HEADERP first. */
24928
24929 static const struct comp_unit_head *
24930 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24931 struct dwarf2_per_cu_data *per_cu)
24932 {
24933 const gdb_byte *info_ptr;
24934
24935 if (per_cu->cu)
24936 return &per_cu->cu->header;
24937
24938 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24939
24940 memset (cu_headerp, 0, sizeof (*cu_headerp));
24941 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24942 rcuh_kind::COMPILE);
24943
24944 return cu_headerp;
24945 }
24946
24947 /* Return the address size given in the compilation unit header for CU. */
24948
24949 int
24950 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24951 {
24952 struct comp_unit_head cu_header_local;
24953 const struct comp_unit_head *cu_headerp;
24954
24955 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24956
24957 return cu_headerp->addr_size;
24958 }
24959
24960 /* Return the offset size given in the compilation unit header for CU. */
24961
24962 int
24963 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24964 {
24965 struct comp_unit_head cu_header_local;
24966 const struct comp_unit_head *cu_headerp;
24967
24968 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24969
24970 return cu_headerp->offset_size;
24971 }
24972
24973 /* See its dwarf2loc.h declaration. */
24974
24975 int
24976 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24977 {
24978 struct comp_unit_head cu_header_local;
24979 const struct comp_unit_head *cu_headerp;
24980
24981 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24982
24983 if (cu_headerp->version == 2)
24984 return cu_headerp->addr_size;
24985 else
24986 return cu_headerp->offset_size;
24987 }
24988
24989 /* Return the text offset of the CU. The returned offset comes from
24990 this CU's objfile. If this objfile came from a separate debuginfo
24991 file, then the offset may be different from the corresponding
24992 offset in the parent objfile. */
24993
24994 CORE_ADDR
24995 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
24996 {
24997 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24998
24999 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25000 }
25001
25002 /* Return DWARF version number of PER_CU. */
25003
25004 short
25005 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25006 {
25007 return per_cu->dwarf_version;
25008 }
25009
25010 /* Locate the .debug_info compilation unit from CU's objfile which contains
25011 the DIE at OFFSET. Raises an error on failure. */
25012
25013 static struct dwarf2_per_cu_data *
25014 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25015 unsigned int offset_in_dwz,
25016 struct dwarf2_per_objfile *dwarf2_per_objfile)
25017 {
25018 struct dwarf2_per_cu_data *this_cu;
25019 int low, high;
25020 const sect_offset *cu_off;
25021
25022 low = 0;
25023 high = dwarf2_per_objfile->n_comp_units - 1;
25024 while (high > low)
25025 {
25026 struct dwarf2_per_cu_data *mid_cu;
25027 int mid = low + (high - low) / 2;
25028
25029 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25030 cu_off = &mid_cu->sect_off;
25031 if (mid_cu->is_dwz > offset_in_dwz
25032 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
25033 high = mid;
25034 else
25035 low = mid + 1;
25036 }
25037 gdb_assert (low == high);
25038 this_cu = dwarf2_per_objfile->all_comp_units[low];
25039 cu_off = &this_cu->sect_off;
25040 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
25041 {
25042 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25043 error (_("Dwarf Error: could not find partial DIE containing "
25044 "offset 0x%x [in module %s]"),
25045 to_underlying (sect_off),
25046 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25047
25048 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25049 <= sect_off);
25050 return dwarf2_per_objfile->all_comp_units[low-1];
25051 }
25052 else
25053 {
25054 this_cu = dwarf2_per_objfile->all_comp_units[low];
25055 if (low == dwarf2_per_objfile->n_comp_units - 1
25056 && sect_off >= this_cu->sect_off + this_cu->length)
25057 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off));
25058 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25059 return this_cu;
25060 }
25061 }
25062
25063 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25064
25065 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25066 : per_cu (per_cu_),
25067 mark (0),
25068 has_loclist (0),
25069 checked_producer (0),
25070 producer_is_gxx_lt_4_6 (0),
25071 producer_is_gcc_lt_4_3 (0),
25072 producer_is_icc_lt_14 (0),
25073 processing_has_namespace_info (0)
25074 {
25075 per_cu->cu = this;
25076 }
25077
25078 /* Destroy a dwarf2_cu. */
25079
25080 dwarf2_cu::~dwarf2_cu ()
25081 {
25082 per_cu->cu = NULL;
25083 }
25084
25085 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25086
25087 static void
25088 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25089 enum language pretend_language)
25090 {
25091 struct attribute *attr;
25092
25093 /* Set the language we're debugging. */
25094 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25095 if (attr)
25096 set_cu_language (DW_UNSND (attr), cu);
25097 else
25098 {
25099 cu->language = pretend_language;
25100 cu->language_defn = language_def (cu->language);
25101 }
25102
25103 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25104 }
25105
25106 /* Free all cached compilation units. */
25107
25108 static void
25109 free_cached_comp_units (void *data)
25110 {
25111 struct dwarf2_per_objfile *dwarf2_per_objfile
25112 = (struct dwarf2_per_objfile *) data;
25113
25114 dwarf2_per_objfile->free_cached_comp_units ();
25115 }
25116
25117 /* Increase the age counter on each cached compilation unit, and free
25118 any that are too old. */
25119
25120 static void
25121 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25122 {
25123 struct dwarf2_per_cu_data *per_cu, **last_chain;
25124
25125 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25126 per_cu = dwarf2_per_objfile->read_in_chain;
25127 while (per_cu != NULL)
25128 {
25129 per_cu->cu->last_used ++;
25130 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25131 dwarf2_mark (per_cu->cu);
25132 per_cu = per_cu->cu->read_in_chain;
25133 }
25134
25135 per_cu = dwarf2_per_objfile->read_in_chain;
25136 last_chain = &dwarf2_per_objfile->read_in_chain;
25137 while (per_cu != NULL)
25138 {
25139 struct dwarf2_per_cu_data *next_cu;
25140
25141 next_cu = per_cu->cu->read_in_chain;
25142
25143 if (!per_cu->cu->mark)
25144 {
25145 delete per_cu->cu;
25146 *last_chain = next_cu;
25147 }
25148 else
25149 last_chain = &per_cu->cu->read_in_chain;
25150
25151 per_cu = next_cu;
25152 }
25153 }
25154
25155 /* Remove a single compilation unit from the cache. */
25156
25157 static void
25158 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25159 {
25160 struct dwarf2_per_cu_data *per_cu, **last_chain;
25161 struct dwarf2_per_objfile *dwarf2_per_objfile
25162 = target_per_cu->dwarf2_per_objfile;
25163
25164 per_cu = dwarf2_per_objfile->read_in_chain;
25165 last_chain = &dwarf2_per_objfile->read_in_chain;
25166 while (per_cu != NULL)
25167 {
25168 struct dwarf2_per_cu_data *next_cu;
25169
25170 next_cu = per_cu->cu->read_in_chain;
25171
25172 if (per_cu == target_per_cu)
25173 {
25174 delete per_cu->cu;
25175 per_cu->cu = NULL;
25176 *last_chain = next_cu;
25177 break;
25178 }
25179 else
25180 last_chain = &per_cu->cu->read_in_chain;
25181
25182 per_cu = next_cu;
25183 }
25184 }
25185
25186 /* Release all extra memory associated with OBJFILE. */
25187
25188 void
25189 dwarf2_free_objfile (struct objfile *objfile)
25190 {
25191 struct dwarf2_per_objfile *dwarf2_per_objfile
25192 = get_dwarf2_per_objfile (objfile);
25193
25194 if (dwarf2_per_objfile == NULL)
25195 return;
25196
25197 dwarf2_per_objfile->~dwarf2_per_objfile ();
25198 }
25199
25200 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25201 We store these in a hash table separate from the DIEs, and preserve them
25202 when the DIEs are flushed out of cache.
25203
25204 The CU "per_cu" pointer is needed because offset alone is not enough to
25205 uniquely identify the type. A file may have multiple .debug_types sections,
25206 or the type may come from a DWO file. Furthermore, while it's more logical
25207 to use per_cu->section+offset, with Fission the section with the data is in
25208 the DWO file but we don't know that section at the point we need it.
25209 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25210 because we can enter the lookup routine, get_die_type_at_offset, from
25211 outside this file, and thus won't necessarily have PER_CU->cu.
25212 Fortunately, PER_CU is stable for the life of the objfile. */
25213
25214 struct dwarf2_per_cu_offset_and_type
25215 {
25216 const struct dwarf2_per_cu_data *per_cu;
25217 sect_offset sect_off;
25218 struct type *type;
25219 };
25220
25221 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25222
25223 static hashval_t
25224 per_cu_offset_and_type_hash (const void *item)
25225 {
25226 const struct dwarf2_per_cu_offset_and_type *ofs
25227 = (const struct dwarf2_per_cu_offset_and_type *) item;
25228
25229 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25230 }
25231
25232 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25233
25234 static int
25235 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25236 {
25237 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25238 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25239 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25240 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25241
25242 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25243 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25244 }
25245
25246 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25247 table if necessary. For convenience, return TYPE.
25248
25249 The DIEs reading must have careful ordering to:
25250 * Not cause infite loops trying to read in DIEs as a prerequisite for
25251 reading current DIE.
25252 * Not trying to dereference contents of still incompletely read in types
25253 while reading in other DIEs.
25254 * Enable referencing still incompletely read in types just by a pointer to
25255 the type without accessing its fields.
25256
25257 Therefore caller should follow these rules:
25258 * Try to fetch any prerequisite types we may need to build this DIE type
25259 before building the type and calling set_die_type.
25260 * After building type call set_die_type for current DIE as soon as
25261 possible before fetching more types to complete the current type.
25262 * Make the type as complete as possible before fetching more types. */
25263
25264 static struct type *
25265 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25266 {
25267 struct dwarf2_per_objfile *dwarf2_per_objfile
25268 = cu->per_cu->dwarf2_per_objfile;
25269 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25270 struct objfile *objfile = dwarf2_per_objfile->objfile;
25271 struct attribute *attr;
25272 struct dynamic_prop prop;
25273
25274 /* For Ada types, make sure that the gnat-specific data is always
25275 initialized (if not already set). There are a few types where
25276 we should not be doing so, because the type-specific area is
25277 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25278 where the type-specific area is used to store the floatformat).
25279 But this is not a problem, because the gnat-specific information
25280 is actually not needed for these types. */
25281 if (need_gnat_info (cu)
25282 && TYPE_CODE (type) != TYPE_CODE_FUNC
25283 && TYPE_CODE (type) != TYPE_CODE_FLT
25284 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25285 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25286 && TYPE_CODE (type) != TYPE_CODE_METHOD
25287 && !HAVE_GNAT_AUX_INFO (type))
25288 INIT_GNAT_SPECIFIC (type);
25289
25290 /* Read DW_AT_allocated and set in type. */
25291 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25292 if (attr_form_is_block (attr))
25293 {
25294 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25295 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25296 }
25297 else if (attr != NULL)
25298 {
25299 complaint (&symfile_complaints,
25300 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
25301 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25302 to_underlying (die->sect_off));
25303 }
25304
25305 /* Read DW_AT_associated and set in type. */
25306 attr = dwarf2_attr (die, DW_AT_associated, cu);
25307 if (attr_form_is_block (attr))
25308 {
25309 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25310 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25311 }
25312 else if (attr != NULL)
25313 {
25314 complaint (&symfile_complaints,
25315 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
25316 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25317 to_underlying (die->sect_off));
25318 }
25319
25320 /* Read DW_AT_data_location and set in type. */
25321 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25322 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25323 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25324
25325 if (dwarf2_per_objfile->die_type_hash == NULL)
25326 {
25327 dwarf2_per_objfile->die_type_hash =
25328 htab_create_alloc_ex (127,
25329 per_cu_offset_and_type_hash,
25330 per_cu_offset_and_type_eq,
25331 NULL,
25332 &objfile->objfile_obstack,
25333 hashtab_obstack_allocate,
25334 dummy_obstack_deallocate);
25335 }
25336
25337 ofs.per_cu = cu->per_cu;
25338 ofs.sect_off = die->sect_off;
25339 ofs.type = type;
25340 slot = (struct dwarf2_per_cu_offset_and_type **)
25341 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25342 if (*slot)
25343 complaint (&symfile_complaints,
25344 _("A problem internal to GDB: DIE 0x%x has type already set"),
25345 to_underlying (die->sect_off));
25346 *slot = XOBNEW (&objfile->objfile_obstack,
25347 struct dwarf2_per_cu_offset_and_type);
25348 **slot = ofs;
25349 return type;
25350 }
25351
25352 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25353 or return NULL if the die does not have a saved type. */
25354
25355 static struct type *
25356 get_die_type_at_offset (sect_offset sect_off,
25357 struct dwarf2_per_cu_data *per_cu)
25358 {
25359 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25360 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25361
25362 if (dwarf2_per_objfile->die_type_hash == NULL)
25363 return NULL;
25364
25365 ofs.per_cu = per_cu;
25366 ofs.sect_off = sect_off;
25367 slot = ((struct dwarf2_per_cu_offset_and_type *)
25368 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25369 if (slot)
25370 return slot->type;
25371 else
25372 return NULL;
25373 }
25374
25375 /* Look up the type for DIE in CU in die_type_hash,
25376 or return NULL if DIE does not have a saved type. */
25377
25378 static struct type *
25379 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25380 {
25381 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25382 }
25383
25384 /* Add a dependence relationship from CU to REF_PER_CU. */
25385
25386 static void
25387 dwarf2_add_dependence (struct dwarf2_cu *cu,
25388 struct dwarf2_per_cu_data *ref_per_cu)
25389 {
25390 void **slot;
25391
25392 if (cu->dependencies == NULL)
25393 cu->dependencies
25394 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25395 NULL, &cu->comp_unit_obstack,
25396 hashtab_obstack_allocate,
25397 dummy_obstack_deallocate);
25398
25399 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25400 if (*slot == NULL)
25401 *slot = ref_per_cu;
25402 }
25403
25404 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25405 Set the mark field in every compilation unit in the
25406 cache that we must keep because we are keeping CU. */
25407
25408 static int
25409 dwarf2_mark_helper (void **slot, void *data)
25410 {
25411 struct dwarf2_per_cu_data *per_cu;
25412
25413 per_cu = (struct dwarf2_per_cu_data *) *slot;
25414
25415 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25416 reading of the chain. As such dependencies remain valid it is not much
25417 useful to track and undo them during QUIT cleanups. */
25418 if (per_cu->cu == NULL)
25419 return 1;
25420
25421 if (per_cu->cu->mark)
25422 return 1;
25423 per_cu->cu->mark = 1;
25424
25425 if (per_cu->cu->dependencies != NULL)
25426 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25427
25428 return 1;
25429 }
25430
25431 /* Set the mark field in CU and in every other compilation unit in the
25432 cache that we must keep because we are keeping CU. */
25433
25434 static void
25435 dwarf2_mark (struct dwarf2_cu *cu)
25436 {
25437 if (cu->mark)
25438 return;
25439 cu->mark = 1;
25440 if (cu->dependencies != NULL)
25441 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25442 }
25443
25444 static void
25445 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25446 {
25447 while (per_cu)
25448 {
25449 per_cu->cu->mark = 0;
25450 per_cu = per_cu->cu->read_in_chain;
25451 }
25452 }
25453
25454 /* Trivial hash function for partial_die_info: the hash value of a DIE
25455 is its offset in .debug_info for this objfile. */
25456
25457 static hashval_t
25458 partial_die_hash (const void *item)
25459 {
25460 const struct partial_die_info *part_die
25461 = (const struct partial_die_info *) item;
25462
25463 return to_underlying (part_die->sect_off);
25464 }
25465
25466 /* Trivial comparison function for partial_die_info structures: two DIEs
25467 are equal if they have the same offset. */
25468
25469 static int
25470 partial_die_eq (const void *item_lhs, const void *item_rhs)
25471 {
25472 const struct partial_die_info *part_die_lhs
25473 = (const struct partial_die_info *) item_lhs;
25474 const struct partial_die_info *part_die_rhs
25475 = (const struct partial_die_info *) item_rhs;
25476
25477 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25478 }
25479
25480 static struct cmd_list_element *set_dwarf_cmdlist;
25481 static struct cmd_list_element *show_dwarf_cmdlist;
25482
25483 static void
25484 set_dwarf_cmd (const char *args, int from_tty)
25485 {
25486 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25487 gdb_stdout);
25488 }
25489
25490 static void
25491 show_dwarf_cmd (const char *args, int from_tty)
25492 {
25493 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25494 }
25495
25496 /* The "save gdb-index" command. */
25497
25498 /* Write SIZE bytes from the buffer pointed to by DATA to FILE, with
25499 error checking. */
25500
25501 static void
25502 file_write (FILE *file, const void *data, size_t size)
25503 {
25504 if (fwrite (data, 1, size, file) != size)
25505 error (_("couldn't data write to file"));
25506 }
25507
25508 /* Write the contents of VEC to FILE, with error checking. */
25509
25510 template<typename Elem, typename Alloc>
25511 static void
25512 file_write (FILE *file, const std::vector<Elem, Alloc> &vec)
25513 {
25514 file_write (file, vec.data (), vec.size () * sizeof (vec[0]));
25515 }
25516
25517 /* In-memory buffer to prepare data to be written later to a file. */
25518 class data_buf
25519 {
25520 public:
25521 /* Copy DATA to the end of the buffer. */
25522 template<typename T>
25523 void append_data (const T &data)
25524 {
25525 std::copy (reinterpret_cast<const gdb_byte *> (&data),
25526 reinterpret_cast<const gdb_byte *> (&data + 1),
25527 grow (sizeof (data)));
25528 }
25529
25530 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
25531 terminating zero is appended too. */
25532 void append_cstr0 (const char *cstr)
25533 {
25534 const size_t size = strlen (cstr) + 1;
25535 std::copy (cstr, cstr + size, grow (size));
25536 }
25537
25538 /* Store INPUT as ULEB128 to the end of buffer. */
25539 void append_unsigned_leb128 (ULONGEST input)
25540 {
25541 for (;;)
25542 {
25543 gdb_byte output = input & 0x7f;
25544 input >>= 7;
25545 if (input)
25546 output |= 0x80;
25547 append_data (output);
25548 if (input == 0)
25549 break;
25550 }
25551 }
25552
25553 /* Accept a host-format integer in VAL and append it to the buffer
25554 as a target-format integer which is LEN bytes long. */
25555 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
25556 {
25557 ::store_unsigned_integer (grow (len), len, byte_order, val);
25558 }
25559
25560 /* Return the size of the buffer. */
25561 size_t size () const
25562 {
25563 return m_vec.size ();
25564 }
25565
25566 /* Return true iff the buffer is empty. */
25567 bool empty () const
25568 {
25569 return m_vec.empty ();
25570 }
25571
25572 /* Write the buffer to FILE. */
25573 void file_write (FILE *file) const
25574 {
25575 ::file_write (file, m_vec);
25576 }
25577
25578 private:
25579 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
25580 the start of the new block. */
25581 gdb_byte *grow (size_t size)
25582 {
25583 m_vec.resize (m_vec.size () + size);
25584 return &*m_vec.end () - size;
25585 }
25586
25587 gdb::byte_vector m_vec;
25588 };
25589
25590 /* An entry in the symbol table. */
25591 struct symtab_index_entry
25592 {
25593 /* The name of the symbol. */
25594 const char *name;
25595 /* The offset of the name in the constant pool. */
25596 offset_type index_offset;
25597 /* A sorted vector of the indices of all the CUs that hold an object
25598 of this name. */
25599 std::vector<offset_type> cu_indices;
25600 };
25601
25602 /* The symbol table. This is a power-of-2-sized hash table. */
25603 struct mapped_symtab
25604 {
25605 mapped_symtab ()
25606 {
25607 data.resize (1024);
25608 }
25609
25610 offset_type n_elements = 0;
25611 std::vector<symtab_index_entry> data;
25612 };
25613
25614 /* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
25615 the slot.
25616
25617 Function is used only during write_hash_table so no index format backward
25618 compatibility is needed. */
25619
25620 static symtab_index_entry &
25621 find_slot (struct mapped_symtab *symtab, const char *name)
25622 {
25623 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
25624
25625 index = hash & (symtab->data.size () - 1);
25626 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
25627
25628 for (;;)
25629 {
25630 if (symtab->data[index].name == NULL
25631 || strcmp (name, symtab->data[index].name) == 0)
25632 return symtab->data[index];
25633 index = (index + step) & (symtab->data.size () - 1);
25634 }
25635 }
25636
25637 /* Expand SYMTAB's hash table. */
25638
25639 static void
25640 hash_expand (struct mapped_symtab *symtab)
25641 {
25642 auto old_entries = std::move (symtab->data);
25643
25644 symtab->data.clear ();
25645 symtab->data.resize (old_entries.size () * 2);
25646
25647 for (auto &it : old_entries)
25648 if (it.name != NULL)
25649 {
25650 auto &ref = find_slot (symtab, it.name);
25651 ref = std::move (it);
25652 }
25653 }
25654
25655 /* Add an entry to SYMTAB. NAME is the name of the symbol.
25656 CU_INDEX is the index of the CU in which the symbol appears.
25657 IS_STATIC is one if the symbol is static, otherwise zero (global). */
25658
25659 static void
25660 add_index_entry (struct mapped_symtab *symtab, const char *name,
25661 int is_static, gdb_index_symbol_kind kind,
25662 offset_type cu_index)
25663 {
25664 offset_type cu_index_and_attrs;
25665
25666 ++symtab->n_elements;
25667 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
25668 hash_expand (symtab);
25669
25670 symtab_index_entry &slot = find_slot (symtab, name);
25671 if (slot.name == NULL)
25672 {
25673 slot.name = name;
25674 /* index_offset is set later. */
25675 }
25676
25677 cu_index_and_attrs = 0;
25678 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
25679 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
25680 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
25681
25682 /* We don't want to record an index value twice as we want to avoid the
25683 duplication.
25684 We process all global symbols and then all static symbols
25685 (which would allow us to avoid the duplication by only having to check
25686 the last entry pushed), but a symbol could have multiple kinds in one CU.
25687 To keep things simple we don't worry about the duplication here and
25688 sort and uniqufy the list after we've processed all symbols. */
25689 slot.cu_indices.push_back (cu_index_and_attrs);
25690 }
25691
25692 /* Sort and remove duplicates of all symbols' cu_indices lists. */
25693
25694 static void
25695 uniquify_cu_indices (struct mapped_symtab *symtab)
25696 {
25697 for (auto &entry : symtab->data)
25698 {
25699 if (entry.name != NULL && !entry.cu_indices.empty ())
25700 {
25701 auto &cu_indices = entry.cu_indices;
25702 std::sort (cu_indices.begin (), cu_indices.end ());
25703 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
25704 cu_indices.erase (from, cu_indices.end ());
25705 }
25706 }
25707 }
25708
25709 /* A form of 'const char *' suitable for container keys. Only the
25710 pointer is stored. The strings themselves are compared, not the
25711 pointers. */
25712 class c_str_view
25713 {
25714 public:
25715 c_str_view (const char *cstr)
25716 : m_cstr (cstr)
25717 {}
25718
25719 bool operator== (const c_str_view &other) const
25720 {
25721 return strcmp (m_cstr, other.m_cstr) == 0;
25722 }
25723
25724 /* Return the underlying C string. Note, the returned string is
25725 only a reference with lifetime of this object. */
25726 const char *c_str () const
25727 {
25728 return m_cstr;
25729 }
25730
25731 private:
25732 friend class c_str_view_hasher;
25733 const char *const m_cstr;
25734 };
25735
25736 /* A std::unordered_map::hasher for c_str_view that uses the right
25737 hash function for strings in a mapped index. */
25738 class c_str_view_hasher
25739 {
25740 public:
25741 size_t operator () (const c_str_view &x) const
25742 {
25743 return mapped_index_string_hash (INT_MAX, x.m_cstr);
25744 }
25745 };
25746
25747 /* A std::unordered_map::hasher for std::vector<>. */
25748 template<typename T>
25749 class vector_hasher
25750 {
25751 public:
25752 size_t operator () (const std::vector<T> &key) const
25753 {
25754 return iterative_hash (key.data (),
25755 sizeof (key.front ()) * key.size (), 0);
25756 }
25757 };
25758
25759 /* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
25760 constant pool entries going into the data buffer CPOOL. */
25761
25762 static void
25763 write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
25764 {
25765 {
25766 /* Elements are sorted vectors of the indices of all the CUs that
25767 hold an object of this name. */
25768 std::unordered_map<std::vector<offset_type>, offset_type,
25769 vector_hasher<offset_type>>
25770 symbol_hash_table;
25771
25772 /* We add all the index vectors to the constant pool first, to
25773 ensure alignment is ok. */
25774 for (symtab_index_entry &entry : symtab->data)
25775 {
25776 if (entry.name == NULL)
25777 continue;
25778 gdb_assert (entry.index_offset == 0);
25779
25780 /* Finding before inserting is faster than always trying to
25781 insert, because inserting always allocates a node, does the
25782 lookup, and then destroys the new node if another node
25783 already had the same key. C++17 try_emplace will avoid
25784 this. */
25785 const auto found
25786 = symbol_hash_table.find (entry.cu_indices);
25787 if (found != symbol_hash_table.end ())
25788 {
25789 entry.index_offset = found->second;
25790 continue;
25791 }
25792
25793 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
25794 entry.index_offset = cpool.size ();
25795 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
25796 for (const auto index : entry.cu_indices)
25797 cpool.append_data (MAYBE_SWAP (index));
25798 }
25799 }
25800
25801 /* Now write out the hash table. */
25802 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
25803 for (const auto &entry : symtab->data)
25804 {
25805 offset_type str_off, vec_off;
25806
25807 if (entry.name != NULL)
25808 {
25809 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
25810 if (insertpair.second)
25811 cpool.append_cstr0 (entry.name);
25812 str_off = insertpair.first->second;
25813 vec_off = entry.index_offset;
25814 }
25815 else
25816 {
25817 /* While 0 is a valid constant pool index, it is not valid
25818 to have 0 for both offsets. */
25819 str_off = 0;
25820 vec_off = 0;
25821 }
25822
25823 output.append_data (MAYBE_SWAP (str_off));
25824 output.append_data (MAYBE_SWAP (vec_off));
25825 }
25826 }
25827
25828 typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
25829
25830 /* Helper struct for building the address table. */
25831 struct addrmap_index_data
25832 {
25833 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
25834 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
25835 {}
25836
25837 struct objfile *objfile;
25838 data_buf &addr_vec;
25839 psym_index_map &cu_index_htab;
25840
25841 /* Non-zero if the previous_* fields are valid.
25842 We can't write an entry until we see the next entry (since it is only then
25843 that we know the end of the entry). */
25844 int previous_valid;
25845 /* Index of the CU in the table of all CUs in the index file. */
25846 unsigned int previous_cu_index;
25847 /* Start address of the CU. */
25848 CORE_ADDR previous_cu_start;
25849 };
25850
25851 /* Write an address entry to ADDR_VEC. */
25852
25853 static void
25854 add_address_entry (struct objfile *objfile, data_buf &addr_vec,
25855 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
25856 {
25857 CORE_ADDR baseaddr;
25858
25859 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25860
25861 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
25862 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
25863 addr_vec.append_data (MAYBE_SWAP (cu_index));
25864 }
25865
25866 /* Worker function for traversing an addrmap to build the address table. */
25867
25868 static int
25869 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
25870 {
25871 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
25872 struct partial_symtab *pst = (struct partial_symtab *) obj;
25873
25874 if (data->previous_valid)
25875 add_address_entry (data->objfile, data->addr_vec,
25876 data->previous_cu_start, start_addr,
25877 data->previous_cu_index);
25878
25879 data->previous_cu_start = start_addr;
25880 if (pst != NULL)
25881 {
25882 const auto it = data->cu_index_htab.find (pst);
25883 gdb_assert (it != data->cu_index_htab.cend ());
25884 data->previous_cu_index = it->second;
25885 data->previous_valid = 1;
25886 }
25887 else
25888 data->previous_valid = 0;
25889
25890 return 0;
25891 }
25892
25893 /* Write OBJFILE's address map to ADDR_VEC.
25894 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
25895 in the index file. */
25896
25897 static void
25898 write_address_map (struct objfile *objfile, data_buf &addr_vec,
25899 psym_index_map &cu_index_htab)
25900 {
25901 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
25902
25903 /* When writing the address table, we have to cope with the fact that
25904 the addrmap iterator only provides the start of a region; we have to
25905 wait until the next invocation to get the start of the next region. */
25906
25907 addrmap_index_data.objfile = objfile;
25908 addrmap_index_data.previous_valid = 0;
25909
25910 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
25911 &addrmap_index_data);
25912
25913 /* It's highly unlikely the last entry (end address = 0xff...ff)
25914 is valid, but we should still handle it.
25915 The end address is recorded as the start of the next region, but that
25916 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
25917 anyway. */
25918 if (addrmap_index_data.previous_valid)
25919 add_address_entry (objfile, addr_vec,
25920 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
25921 addrmap_index_data.previous_cu_index);
25922 }
25923
25924 /* Return the symbol kind of PSYM. */
25925
25926 static gdb_index_symbol_kind
25927 symbol_kind (struct partial_symbol *psym)
25928 {
25929 domain_enum domain = PSYMBOL_DOMAIN (psym);
25930 enum address_class aclass = PSYMBOL_CLASS (psym);
25931
25932 switch (domain)
25933 {
25934 case VAR_DOMAIN:
25935 switch (aclass)
25936 {
25937 case LOC_BLOCK:
25938 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
25939 case LOC_TYPEDEF:
25940 return GDB_INDEX_SYMBOL_KIND_TYPE;
25941 case LOC_COMPUTED:
25942 case LOC_CONST_BYTES:
25943 case LOC_OPTIMIZED_OUT:
25944 case LOC_STATIC:
25945 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
25946 case LOC_CONST:
25947 /* Note: It's currently impossible to recognize psyms as enum values
25948 short of reading the type info. For now punt. */
25949 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
25950 default:
25951 /* There are other LOC_FOO values that one might want to classify
25952 as variables, but dwarf2read.c doesn't currently use them. */
25953 return GDB_INDEX_SYMBOL_KIND_OTHER;
25954 }
25955 case STRUCT_DOMAIN:
25956 return GDB_INDEX_SYMBOL_KIND_TYPE;
25957 default:
25958 return GDB_INDEX_SYMBOL_KIND_OTHER;
25959 }
25960 }
25961
25962 /* Add a list of partial symbols to SYMTAB. */
25963
25964 static void
25965 write_psymbols (struct mapped_symtab *symtab,
25966 std::unordered_set<partial_symbol *> &psyms_seen,
25967 struct partial_symbol **psymp,
25968 int count,
25969 offset_type cu_index,
25970 int is_static)
25971 {
25972 for (; count-- > 0; ++psymp)
25973 {
25974 struct partial_symbol *psym = *psymp;
25975
25976 if (SYMBOL_LANGUAGE (psym) == language_ada)
25977 error (_("Ada is not currently supported by the index"));
25978
25979 /* Only add a given psymbol once. */
25980 if (psyms_seen.insert (psym).second)
25981 {
25982 gdb_index_symbol_kind kind = symbol_kind (psym);
25983
25984 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
25985 is_static, kind, cu_index);
25986 }
25987 }
25988 }
25989
25990 /* A helper struct used when iterating over debug_types. */
25991 struct signatured_type_index_data
25992 {
25993 signatured_type_index_data (data_buf &types_list_,
25994 std::unordered_set<partial_symbol *> &psyms_seen_)
25995 : types_list (types_list_), psyms_seen (psyms_seen_)
25996 {}
25997
25998 struct objfile *objfile;
25999 struct mapped_symtab *symtab;
26000 data_buf &types_list;
26001 std::unordered_set<partial_symbol *> &psyms_seen;
26002 int cu_index;
26003 };
26004
26005 /* A helper function that writes a single signatured_type to an
26006 obstack. */
26007
26008 static int
26009 write_one_signatured_type (void **slot, void *d)
26010 {
26011 struct signatured_type_index_data *info
26012 = (struct signatured_type_index_data *) d;
26013 struct signatured_type *entry = (struct signatured_type *) *slot;
26014 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
26015
26016 write_psymbols (info->symtab,
26017 info->psyms_seen,
26018 &info->objfile->global_psymbols[psymtab->globals_offset],
26019 psymtab->n_global_syms, info->cu_index,
26020 0);
26021 write_psymbols (info->symtab,
26022 info->psyms_seen,
26023 &info->objfile->static_psymbols[psymtab->statics_offset],
26024 psymtab->n_static_syms, info->cu_index,
26025 1);
26026
26027 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
26028 to_underlying (entry->per_cu.sect_off));
26029 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
26030 to_underlying (entry->type_offset_in_tu));
26031 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
26032
26033 ++info->cu_index;
26034
26035 return 1;
26036 }
26037
26038 /* Recurse into all "included" dependencies and count their symbols as
26039 if they appeared in this psymtab. */
26040
26041 static void
26042 recursively_count_psymbols (struct partial_symtab *psymtab,
26043 size_t &psyms_seen)
26044 {
26045 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
26046 if (psymtab->dependencies[i]->user != NULL)
26047 recursively_count_psymbols (psymtab->dependencies[i],
26048 psyms_seen);
26049
26050 psyms_seen += psymtab->n_global_syms;
26051 psyms_seen += psymtab->n_static_syms;
26052 }
26053
26054 /* Recurse into all "included" dependencies and write their symbols as
26055 if they appeared in this psymtab. */
26056
26057 static void
26058 recursively_write_psymbols (struct objfile *objfile,
26059 struct partial_symtab *psymtab,
26060 struct mapped_symtab *symtab,
26061 std::unordered_set<partial_symbol *> &psyms_seen,
26062 offset_type cu_index)
26063 {
26064 int i;
26065
26066 for (i = 0; i < psymtab->number_of_dependencies; ++i)
26067 if (psymtab->dependencies[i]->user != NULL)
26068 recursively_write_psymbols (objfile, psymtab->dependencies[i],
26069 symtab, psyms_seen, cu_index);
26070
26071 write_psymbols (symtab,
26072 psyms_seen,
26073 &objfile->global_psymbols[psymtab->globals_offset],
26074 psymtab->n_global_syms, cu_index,
26075 0);
26076 write_psymbols (symtab,
26077 psyms_seen,
26078 &objfile->static_psymbols[psymtab->statics_offset],
26079 psymtab->n_static_syms, cu_index,
26080 1);
26081 }
26082
26083 /* DWARF-5 .debug_names builder. */
26084 class debug_names
26085 {
26086 public:
26087 debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile, bool is_dwarf64,
26088 bfd_endian dwarf5_byte_order)
26089 : m_dwarf5_byte_order (dwarf5_byte_order),
26090 m_dwarf32 (dwarf5_byte_order),
26091 m_dwarf64 (dwarf5_byte_order),
26092 m_dwarf (is_dwarf64
26093 ? static_cast<dwarf &> (m_dwarf64)
26094 : static_cast<dwarf &> (m_dwarf32)),
26095 m_name_table_string_offs (m_dwarf.name_table_string_offs),
26096 m_name_table_entry_offs (m_dwarf.name_table_entry_offs),
26097 m_debugstrlookup (dwarf2_per_objfile)
26098 {}
26099
26100 int dwarf5_offset_size () const
26101 {
26102 const bool dwarf5_is_dwarf64 = &m_dwarf == &m_dwarf64;
26103 return dwarf5_is_dwarf64 ? 8 : 4;
26104 }
26105
26106 /* Is this symbol from DW_TAG_compile_unit or DW_TAG_type_unit? */
26107 enum class unit_kind { cu, tu };
26108
26109 /* Insert one symbol. */
26110 void insert (const partial_symbol *psym, int cu_index, bool is_static,
26111 unit_kind kind)
26112 {
26113 const int dwarf_tag = psymbol_tag (psym);
26114 if (dwarf_tag == 0)
26115 return;
26116 const char *const name = SYMBOL_SEARCH_NAME (psym);
26117 const auto insertpair
26118 = m_name_to_value_set.emplace (c_str_view (name),
26119 std::set<symbol_value> ());
26120 std::set<symbol_value> &value_set = insertpair.first->second;
26121 value_set.emplace (symbol_value (dwarf_tag, cu_index, is_static, kind));
26122 }
26123
26124 /* Build all the tables. All symbols must be already inserted.
26125 This function does not call file_write, caller has to do it
26126 afterwards. */
26127 void build ()
26128 {
26129 /* Verify the build method has not be called twice. */
26130 gdb_assert (m_abbrev_table.empty ());
26131 const size_t name_count = m_name_to_value_set.size ();
26132 m_bucket_table.resize
26133 (std::pow (2, std::ceil (std::log2 (name_count * 4 / 3))));
26134 m_hash_table.reserve (name_count);
26135 m_name_table_string_offs.reserve (name_count);
26136 m_name_table_entry_offs.reserve (name_count);
26137
26138 /* Map each hash of symbol to its name and value. */
26139 struct hash_it_pair
26140 {
26141 uint32_t hash;
26142 decltype (m_name_to_value_set)::const_iterator it;
26143 };
26144 std::vector<std::forward_list<hash_it_pair>> bucket_hash;
26145 bucket_hash.resize (m_bucket_table.size ());
26146 for (decltype (m_name_to_value_set)::const_iterator it
26147 = m_name_to_value_set.cbegin ();
26148 it != m_name_to_value_set.cend ();
26149 ++it)
26150 {
26151 const char *const name = it->first.c_str ();
26152 const uint32_t hash = dwarf5_djb_hash (name);
26153 hash_it_pair hashitpair;
26154 hashitpair.hash = hash;
26155 hashitpair.it = it;
26156 auto &slot = bucket_hash[hash % bucket_hash.size()];
26157 slot.push_front (std::move (hashitpair));
26158 }
26159 for (size_t bucket_ix = 0; bucket_ix < bucket_hash.size (); ++bucket_ix)
26160 {
26161 const std::forward_list<hash_it_pair> &hashitlist
26162 = bucket_hash[bucket_ix];
26163 if (hashitlist.empty ())
26164 continue;
26165 uint32_t &bucket_slot = m_bucket_table[bucket_ix];
26166 /* The hashes array is indexed starting at 1. */
26167 store_unsigned_integer (reinterpret_cast<gdb_byte *> (&bucket_slot),
26168 sizeof (bucket_slot), m_dwarf5_byte_order,
26169 m_hash_table.size () + 1);
26170 for (const hash_it_pair &hashitpair : hashitlist)
26171 {
26172 m_hash_table.push_back (0);
26173 store_unsigned_integer (reinterpret_cast<gdb_byte *>
26174 (&m_hash_table.back ()),
26175 sizeof (m_hash_table.back ()),
26176 m_dwarf5_byte_order, hashitpair.hash);
26177 const c_str_view &name = hashitpair.it->first;
26178 const std::set<symbol_value> &value_set = hashitpair.it->second;
26179 m_name_table_string_offs.push_back_reorder
26180 (m_debugstrlookup.lookup (name.c_str ()));
26181 m_name_table_entry_offs.push_back_reorder (m_entry_pool.size ());
26182 gdb_assert (!value_set.empty ());
26183 for (const symbol_value &value : value_set)
26184 {
26185 int &idx = m_indexkey_to_idx[index_key (value.dwarf_tag,
26186 value.is_static,
26187 value.kind)];
26188 if (idx == 0)
26189 {
26190 idx = m_idx_next++;
26191 m_abbrev_table.append_unsigned_leb128 (idx);
26192 m_abbrev_table.append_unsigned_leb128 (value.dwarf_tag);
26193 m_abbrev_table.append_unsigned_leb128
26194 (value.kind == unit_kind::cu ? DW_IDX_compile_unit
26195 : DW_IDX_type_unit);
26196 m_abbrev_table.append_unsigned_leb128 (DW_FORM_udata);
26197 m_abbrev_table.append_unsigned_leb128 (value.is_static
26198 ? DW_IDX_GNU_internal
26199 : DW_IDX_GNU_external);
26200 m_abbrev_table.append_unsigned_leb128 (DW_FORM_flag_present);
26201
26202 /* Terminate attributes list. */
26203 m_abbrev_table.append_unsigned_leb128 (0);
26204 m_abbrev_table.append_unsigned_leb128 (0);
26205 }
26206
26207 m_entry_pool.append_unsigned_leb128 (idx);
26208 m_entry_pool.append_unsigned_leb128 (value.cu_index);
26209 }
26210
26211 /* Terminate the list of CUs. */
26212 m_entry_pool.append_unsigned_leb128 (0);
26213 }
26214 }
26215 gdb_assert (m_hash_table.size () == name_count);
26216
26217 /* Terminate tags list. */
26218 m_abbrev_table.append_unsigned_leb128 (0);
26219 }
26220
26221 /* Return .debug_names bucket count. This must be called only after
26222 calling the build method. */
26223 uint32_t bucket_count () const
26224 {
26225 /* Verify the build method has been already called. */
26226 gdb_assert (!m_abbrev_table.empty ());
26227 const uint32_t retval = m_bucket_table.size ();
26228
26229 /* Check for overflow. */
26230 gdb_assert (retval == m_bucket_table.size ());
26231 return retval;
26232 }
26233
26234 /* Return .debug_names names count. This must be called only after
26235 calling the build method. */
26236 uint32_t name_count () const
26237 {
26238 /* Verify the build method has been already called. */
26239 gdb_assert (!m_abbrev_table.empty ());
26240 const uint32_t retval = m_hash_table.size ();
26241
26242 /* Check for overflow. */
26243 gdb_assert (retval == m_hash_table.size ());
26244 return retval;
26245 }
26246
26247 /* Return number of bytes of .debug_names abbreviation table. This
26248 must be called only after calling the build method. */
26249 uint32_t abbrev_table_bytes () const
26250 {
26251 gdb_assert (!m_abbrev_table.empty ());
26252 return m_abbrev_table.size ();
26253 }
26254
26255 /* Recurse into all "included" dependencies and store their symbols
26256 as if they appeared in this psymtab. */
26257 void recursively_write_psymbols
26258 (struct objfile *objfile,
26259 struct partial_symtab *psymtab,
26260 std::unordered_set<partial_symbol *> &psyms_seen,
26261 int cu_index)
26262 {
26263 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
26264 if (psymtab->dependencies[i]->user != NULL)
26265 recursively_write_psymbols (objfile, psymtab->dependencies[i],
26266 psyms_seen, cu_index);
26267
26268 write_psymbols (psyms_seen,
26269 &objfile->global_psymbols[psymtab->globals_offset],
26270 psymtab->n_global_syms, cu_index, false, unit_kind::cu);
26271 write_psymbols (psyms_seen,
26272 &objfile->static_psymbols[psymtab->statics_offset],
26273 psymtab->n_static_syms, cu_index, true, unit_kind::cu);
26274 }
26275
26276 /* Return number of bytes the .debug_names section will have. This
26277 must be called only after calling the build method. */
26278 size_t bytes () const
26279 {
26280 /* Verify the build method has been already called. */
26281 gdb_assert (!m_abbrev_table.empty ());
26282 size_t expected_bytes = 0;
26283 expected_bytes += m_bucket_table.size () * sizeof (m_bucket_table[0]);
26284 expected_bytes += m_hash_table.size () * sizeof (m_hash_table[0]);
26285 expected_bytes += m_name_table_string_offs.bytes ();
26286 expected_bytes += m_name_table_entry_offs.bytes ();
26287 expected_bytes += m_abbrev_table.size ();
26288 expected_bytes += m_entry_pool.size ();
26289 return expected_bytes;
26290 }
26291
26292 /* Write .debug_names to FILE_NAMES and .debug_str addition to
26293 FILE_STR. This must be called only after calling the build
26294 method. */
26295 void file_write (FILE *file_names, FILE *file_str) const
26296 {
26297 /* Verify the build method has been already called. */
26298 gdb_assert (!m_abbrev_table.empty ());
26299 ::file_write (file_names, m_bucket_table);
26300 ::file_write (file_names, m_hash_table);
26301 m_name_table_string_offs.file_write (file_names);
26302 m_name_table_entry_offs.file_write (file_names);
26303 m_abbrev_table.file_write (file_names);
26304 m_entry_pool.file_write (file_names);
26305 m_debugstrlookup.file_write (file_str);
26306 }
26307
26308 /* A helper user data for write_one_signatured_type. */
26309 class write_one_signatured_type_data
26310 {
26311 public:
26312 write_one_signatured_type_data (debug_names &nametable_,
26313 signatured_type_index_data &&info_)
26314 : nametable (nametable_), info (std::move (info_))
26315 {}
26316 debug_names &nametable;
26317 struct signatured_type_index_data info;
26318 };
26319
26320 /* A helper function to pass write_one_signatured_type to
26321 htab_traverse_noresize. */
26322 static int
26323 write_one_signatured_type (void **slot, void *d)
26324 {
26325 write_one_signatured_type_data *data = (write_one_signatured_type_data *) d;
26326 struct signatured_type_index_data *info = &data->info;
26327 struct signatured_type *entry = (struct signatured_type *) *slot;
26328
26329 data->nametable.write_one_signatured_type (entry, info);
26330
26331 return 1;
26332 }
26333
26334 private:
26335
26336 /* Storage for symbol names mapping them to their .debug_str section
26337 offsets. */
26338 class debug_str_lookup
26339 {
26340 public:
26341
26342 /* Object costructor to be called for current DWARF2_PER_OBJFILE.
26343 All .debug_str section strings are automatically stored. */
26344 debug_str_lookup (struct dwarf2_per_objfile *dwarf2_per_objfile)
26345 : m_abfd (dwarf2_per_objfile->objfile->obfd),
26346 m_dwarf2_per_objfile (dwarf2_per_objfile)
26347 {
26348 dwarf2_read_section (dwarf2_per_objfile->objfile,
26349 &dwarf2_per_objfile->str);
26350 if (dwarf2_per_objfile->str.buffer == NULL)
26351 return;
26352 for (const gdb_byte *data = dwarf2_per_objfile->str.buffer;
26353 data < (dwarf2_per_objfile->str.buffer
26354 + dwarf2_per_objfile->str.size);)
26355 {
26356 const char *const s = reinterpret_cast<const char *> (data);
26357 const auto insertpair
26358 = m_str_table.emplace (c_str_view (s),
26359 data - dwarf2_per_objfile->str.buffer);
26360 if (!insertpair.second)
26361 complaint (&symfile_complaints,
26362 _("Duplicate string \"%s\" in "
26363 ".debug_str section [in module %s]"),
26364 s, bfd_get_filename (m_abfd));
26365 data += strlen (s) + 1;
26366 }
26367 }
26368
26369 /* Return offset of symbol name S in the .debug_str section. Add
26370 such symbol to the section's end if it does not exist there
26371 yet. */
26372 size_t lookup (const char *s)
26373 {
26374 const auto it = m_str_table.find (c_str_view (s));
26375 if (it != m_str_table.end ())
26376 return it->second;
26377 const size_t offset = (m_dwarf2_per_objfile->str.size
26378 + m_str_add_buf.size ());
26379 m_str_table.emplace (c_str_view (s), offset);
26380 m_str_add_buf.append_cstr0 (s);
26381 return offset;
26382 }
26383
26384 /* Append the end of the .debug_str section to FILE. */
26385 void file_write (FILE *file) const
26386 {
26387 m_str_add_buf.file_write (file);
26388 }
26389
26390 private:
26391 std::unordered_map<c_str_view, size_t, c_str_view_hasher> m_str_table;
26392 bfd *const m_abfd;
26393 struct dwarf2_per_objfile *m_dwarf2_per_objfile;
26394
26395 /* Data to add at the end of .debug_str for new needed symbol names. */
26396 data_buf m_str_add_buf;
26397 };
26398
26399 /* Container to map used DWARF tags to their .debug_names abbreviation
26400 tags. */
26401 class index_key
26402 {
26403 public:
26404 index_key (int dwarf_tag_, bool is_static_, unit_kind kind_)
26405 : dwarf_tag (dwarf_tag_), is_static (is_static_), kind (kind_)
26406 {
26407 }
26408
26409 bool
26410 operator== (const index_key &other) const
26411 {
26412 return (dwarf_tag == other.dwarf_tag && is_static == other.is_static
26413 && kind == other.kind);
26414 }
26415
26416 const int dwarf_tag;
26417 const bool is_static;
26418 const unit_kind kind;
26419 };
26420
26421 /* Provide std::unordered_map::hasher for index_key. */
26422 class index_key_hasher
26423 {
26424 public:
26425 size_t
26426 operator () (const index_key &key) const
26427 {
26428 return (std::hash<int>() (key.dwarf_tag) << 1) | key.is_static;
26429 }
26430 };
26431
26432 /* Parameters of one symbol entry. */
26433 class symbol_value
26434 {
26435 public:
26436 const int dwarf_tag, cu_index;
26437 const bool is_static;
26438 const unit_kind kind;
26439
26440 symbol_value (int dwarf_tag_, int cu_index_, bool is_static_,
26441 unit_kind kind_)
26442 : dwarf_tag (dwarf_tag_), cu_index (cu_index_), is_static (is_static_),
26443 kind (kind_)
26444 {}
26445
26446 bool
26447 operator< (const symbol_value &other) const
26448 {
26449 #define X(n) \
26450 do \
26451 { \
26452 if (n < other.n) \
26453 return true; \
26454 if (n > other.n) \
26455 return false; \
26456 } \
26457 while (0)
26458 X (dwarf_tag);
26459 X (is_static);
26460 X (kind);
26461 X (cu_index);
26462 #undef X
26463 return false;
26464 }
26465 };
26466
26467 /* Abstract base class to unify DWARF-32 and DWARF-64 name table
26468 output. */
26469 class offset_vec
26470 {
26471 protected:
26472 const bfd_endian dwarf5_byte_order;
26473 public:
26474 explicit offset_vec (bfd_endian dwarf5_byte_order_)
26475 : dwarf5_byte_order (dwarf5_byte_order_)
26476 {}
26477
26478 /* Call std::vector::reserve for NELEM elements. */
26479 virtual void reserve (size_t nelem) = 0;
26480
26481 /* Call std::vector::push_back with store_unsigned_integer byte
26482 reordering for ELEM. */
26483 virtual void push_back_reorder (size_t elem) = 0;
26484
26485 /* Return expected output size in bytes. */
26486 virtual size_t bytes () const = 0;
26487
26488 /* Write name table to FILE. */
26489 virtual void file_write (FILE *file) const = 0;
26490 };
26491
26492 /* Template to unify DWARF-32 and DWARF-64 output. */
26493 template<typename OffsetSize>
26494 class offset_vec_tmpl : public offset_vec
26495 {
26496 public:
26497 explicit offset_vec_tmpl (bfd_endian dwarf5_byte_order_)
26498 : offset_vec (dwarf5_byte_order_)
26499 {}
26500
26501 /* Implement offset_vec::reserve. */
26502 void reserve (size_t nelem) override
26503 {
26504 m_vec.reserve (nelem);
26505 }
26506
26507 /* Implement offset_vec::push_back_reorder. */
26508 void push_back_reorder (size_t elem) override
26509 {
26510 m_vec.push_back (elem);
26511 /* Check for overflow. */
26512 gdb_assert (m_vec.back () == elem);
26513 store_unsigned_integer (reinterpret_cast<gdb_byte *> (&m_vec.back ()),
26514 sizeof (m_vec.back ()), dwarf5_byte_order, elem);
26515 }
26516
26517 /* Implement offset_vec::bytes. */
26518 size_t bytes () const override
26519 {
26520 return m_vec.size () * sizeof (m_vec[0]);
26521 }
26522
26523 /* Implement offset_vec::file_write. */
26524 void file_write (FILE *file) const override
26525 {
26526 ::file_write (file, m_vec);
26527 }
26528
26529 private:
26530 std::vector<OffsetSize> m_vec;
26531 };
26532
26533 /* Base class to unify DWARF-32 and DWARF-64 .debug_names output
26534 respecting name table width. */
26535 class dwarf
26536 {
26537 public:
26538 offset_vec &name_table_string_offs, &name_table_entry_offs;
26539
26540 dwarf (offset_vec &name_table_string_offs_,
26541 offset_vec &name_table_entry_offs_)
26542 : name_table_string_offs (name_table_string_offs_),
26543 name_table_entry_offs (name_table_entry_offs_)
26544 {
26545 }
26546 };
26547
26548 /* Template to unify DWARF-32 and DWARF-64 .debug_names output
26549 respecting name table width. */
26550 template<typename OffsetSize>
26551 class dwarf_tmpl : public dwarf
26552 {
26553 public:
26554 explicit dwarf_tmpl (bfd_endian dwarf5_byte_order_)
26555 : dwarf (m_name_table_string_offs, m_name_table_entry_offs),
26556 m_name_table_string_offs (dwarf5_byte_order_),
26557 m_name_table_entry_offs (dwarf5_byte_order_)
26558 {}
26559
26560 private:
26561 offset_vec_tmpl<OffsetSize> m_name_table_string_offs;
26562 offset_vec_tmpl<OffsetSize> m_name_table_entry_offs;
26563 };
26564
26565 /* Try to reconstruct original DWARF tag for given partial_symbol.
26566 This function is not DWARF-5 compliant but it is sufficient for
26567 GDB as a DWARF-5 index consumer. */
26568 static int psymbol_tag (const struct partial_symbol *psym)
26569 {
26570 domain_enum domain = PSYMBOL_DOMAIN (psym);
26571 enum address_class aclass = PSYMBOL_CLASS (psym);
26572
26573 switch (domain)
26574 {
26575 case VAR_DOMAIN:
26576 switch (aclass)
26577 {
26578 case LOC_BLOCK:
26579 return DW_TAG_subprogram;
26580 case LOC_TYPEDEF:
26581 return DW_TAG_typedef;
26582 case LOC_COMPUTED:
26583 case LOC_CONST_BYTES:
26584 case LOC_OPTIMIZED_OUT:
26585 case LOC_STATIC:
26586 return DW_TAG_variable;
26587 case LOC_CONST:
26588 /* Note: It's currently impossible to recognize psyms as enum values
26589 short of reading the type info. For now punt. */
26590 return DW_TAG_variable;
26591 default:
26592 /* There are other LOC_FOO values that one might want to classify
26593 as variables, but dwarf2read.c doesn't currently use them. */
26594 return DW_TAG_variable;
26595 }
26596 case STRUCT_DOMAIN:
26597 return DW_TAG_structure_type;
26598 default:
26599 return 0;
26600 }
26601 }
26602
26603 /* Call insert for all partial symbols and mark them in PSYMS_SEEN. */
26604 void write_psymbols (std::unordered_set<partial_symbol *> &psyms_seen,
26605 struct partial_symbol **psymp, int count, int cu_index,
26606 bool is_static, unit_kind kind)
26607 {
26608 for (; count-- > 0; ++psymp)
26609 {
26610 struct partial_symbol *psym = *psymp;
26611
26612 if (SYMBOL_LANGUAGE (psym) == language_ada)
26613 error (_("Ada is not currently supported by the index"));
26614
26615 /* Only add a given psymbol once. */
26616 if (psyms_seen.insert (psym).second)
26617 insert (psym, cu_index, is_static, kind);
26618 }
26619 }
26620
26621 /* A helper function that writes a single signatured_type
26622 to a debug_names. */
26623 void
26624 write_one_signatured_type (struct signatured_type *entry,
26625 struct signatured_type_index_data *info)
26626 {
26627 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
26628
26629 write_psymbols (info->psyms_seen,
26630 &info->objfile->global_psymbols[psymtab->globals_offset],
26631 psymtab->n_global_syms, info->cu_index, false,
26632 unit_kind::tu);
26633 write_psymbols (info->psyms_seen,
26634 &info->objfile->static_psymbols[psymtab->statics_offset],
26635 psymtab->n_static_syms, info->cu_index, true,
26636 unit_kind::tu);
26637
26638 info->types_list.append_uint (dwarf5_offset_size (), m_dwarf5_byte_order,
26639 to_underlying (entry->per_cu.sect_off));
26640
26641 ++info->cu_index;
26642 }
26643
26644 /* Store value of each symbol. */
26645 std::unordered_map<c_str_view, std::set<symbol_value>, c_str_view_hasher>
26646 m_name_to_value_set;
26647
26648 /* Tables of DWARF-5 .debug_names. They are in object file byte
26649 order. */
26650 std::vector<uint32_t> m_bucket_table;
26651 std::vector<uint32_t> m_hash_table;
26652
26653 const bfd_endian m_dwarf5_byte_order;
26654 dwarf_tmpl<uint32_t> m_dwarf32;
26655 dwarf_tmpl<uint64_t> m_dwarf64;
26656 dwarf &m_dwarf;
26657 offset_vec &m_name_table_string_offs, &m_name_table_entry_offs;
26658 debug_str_lookup m_debugstrlookup;
26659
26660 /* Map each used .debug_names abbreviation tag parameter to its
26661 index value. */
26662 std::unordered_map<index_key, int, index_key_hasher> m_indexkey_to_idx;
26663
26664 /* Next unused .debug_names abbreviation tag for
26665 m_indexkey_to_idx. */
26666 int m_idx_next = 1;
26667
26668 /* .debug_names abbreviation table. */
26669 data_buf m_abbrev_table;
26670
26671 /* .debug_names entry pool. */
26672 data_buf m_entry_pool;
26673 };
26674
26675 /* Return iff any of the needed offsets does not fit into 32-bit
26676 .debug_names section. */
26677
26678 static bool
26679 check_dwarf64_offsets (struct dwarf2_per_objfile *dwarf2_per_objfile)
26680 {
26681 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
26682 {
26683 const dwarf2_per_cu_data &per_cu = *dwarf2_per_objfile->all_comp_units[i];
26684
26685 if (to_underlying (per_cu.sect_off) >= (static_cast<uint64_t> (1) << 32))
26686 return true;
26687 }
26688 for (int i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
26689 {
26690 const signatured_type &sigtype = *dwarf2_per_objfile->all_type_units[i];
26691 const dwarf2_per_cu_data &per_cu = sigtype.per_cu;
26692
26693 if (to_underlying (per_cu.sect_off) >= (static_cast<uint64_t> (1) << 32))
26694 return true;
26695 }
26696 return false;
26697 }
26698
26699 /* The psyms_seen set is potentially going to be largish (~40k
26700 elements when indexing a -g3 build of GDB itself). Estimate the
26701 number of elements in order to avoid too many rehashes, which
26702 require rebuilding buckets and thus many trips to
26703 malloc/free. */
26704
26705 static size_t
26706 psyms_seen_size (struct dwarf2_per_objfile *dwarf2_per_objfile)
26707 {
26708 size_t psyms_count = 0;
26709 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
26710 {
26711 struct dwarf2_per_cu_data *per_cu
26712 = dwarf2_per_objfile->all_comp_units[i];
26713 struct partial_symtab *psymtab = per_cu->v.psymtab;
26714
26715 if (psymtab != NULL && psymtab->user == NULL)
26716 recursively_count_psymbols (psymtab, psyms_count);
26717 }
26718 /* Generating an index for gdb itself shows a ratio of
26719 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
26720 return psyms_count / 4;
26721 }
26722
26723 /* Write new .gdb_index section for OBJFILE into OUT_FILE.
26724 Return how many bytes were expected to be written into OUT_FILE. */
26725
26726 static size_t
26727 write_gdbindex (struct dwarf2_per_objfile *dwarf2_per_objfile, FILE *out_file)
26728 {
26729 struct objfile *objfile = dwarf2_per_objfile->objfile;
26730 mapped_symtab symtab;
26731 data_buf cu_list;
26732
26733 /* While we're scanning CU's create a table that maps a psymtab pointer
26734 (which is what addrmap records) to its index (which is what is recorded
26735 in the index file). This will later be needed to write the address
26736 table. */
26737 psym_index_map cu_index_htab;
26738 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
26739
26740 /* The CU list is already sorted, so we don't need to do additional
26741 work here. Also, the debug_types entries do not appear in
26742 all_comp_units, but only in their own hash table. */
26743
26744 std::unordered_set<partial_symbol *> psyms_seen
26745 (psyms_seen_size (dwarf2_per_objfile));
26746 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
26747 {
26748 struct dwarf2_per_cu_data *per_cu
26749 = dwarf2_per_objfile->all_comp_units[i];
26750 struct partial_symtab *psymtab = per_cu->v.psymtab;
26751
26752 /* CU of a shared file from 'dwz -m' may be unused by this main file.
26753 It may be referenced from a local scope but in such case it does not
26754 need to be present in .gdb_index. */
26755 if (psymtab == NULL)
26756 continue;
26757
26758 if (psymtab->user == NULL)
26759 recursively_write_psymbols (objfile, psymtab, &symtab,
26760 psyms_seen, i);
26761
26762 const auto insertpair = cu_index_htab.emplace (psymtab, i);
26763 gdb_assert (insertpair.second);
26764
26765 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
26766 to_underlying (per_cu->sect_off));
26767 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
26768 }
26769
26770 /* Dump the address map. */
26771 data_buf addr_vec;
26772 write_address_map (objfile, addr_vec, cu_index_htab);
26773
26774 /* Write out the .debug_type entries, if any. */
26775 data_buf types_cu_list;
26776 if (dwarf2_per_objfile->signatured_types)
26777 {
26778 signatured_type_index_data sig_data (types_cu_list,
26779 psyms_seen);
26780
26781 sig_data.objfile = objfile;
26782 sig_data.symtab = &symtab;
26783 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
26784 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
26785 write_one_signatured_type, &sig_data);
26786 }
26787
26788 /* Now that we've processed all symbols we can shrink their cu_indices
26789 lists. */
26790 uniquify_cu_indices (&symtab);
26791
26792 data_buf symtab_vec, constant_pool;
26793 write_hash_table (&symtab, symtab_vec, constant_pool);
26794
26795 data_buf contents;
26796 const offset_type size_of_contents = 6 * sizeof (offset_type);
26797 offset_type total_len = size_of_contents;
26798
26799 /* The version number. */
26800 contents.append_data (MAYBE_SWAP (8));
26801
26802 /* The offset of the CU list from the start of the file. */
26803 contents.append_data (MAYBE_SWAP (total_len));
26804 total_len += cu_list.size ();
26805
26806 /* The offset of the types CU list from the start of the file. */
26807 contents.append_data (MAYBE_SWAP (total_len));
26808 total_len += types_cu_list.size ();
26809
26810 /* The offset of the address table from the start of the file. */
26811 contents.append_data (MAYBE_SWAP (total_len));
26812 total_len += addr_vec.size ();
26813
26814 /* The offset of the symbol table from the start of the file. */
26815 contents.append_data (MAYBE_SWAP (total_len));
26816 total_len += symtab_vec.size ();
26817
26818 /* The offset of the constant pool from the start of the file. */
26819 contents.append_data (MAYBE_SWAP (total_len));
26820 total_len += constant_pool.size ();
26821
26822 gdb_assert (contents.size () == size_of_contents);
26823
26824 contents.file_write (out_file);
26825 cu_list.file_write (out_file);
26826 types_cu_list.file_write (out_file);
26827 addr_vec.file_write (out_file);
26828 symtab_vec.file_write (out_file);
26829 constant_pool.file_write (out_file);
26830
26831 return total_len;
26832 }
26833
26834 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
26835 static const gdb_byte dwarf5_gdb_augmentation[] = { 'G', 'D', 'B', 0 };
26836
26837 /* Write a new .debug_names section for OBJFILE into OUT_FILE, write
26838 needed addition to .debug_str section to OUT_FILE_STR. Return how
26839 many bytes were expected to be written into OUT_FILE. */
26840
26841 static size_t
26842 write_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
26843 FILE *out_file, FILE *out_file_str)
26844 {
26845 const bool dwarf5_is_dwarf64 = check_dwarf64_offsets (dwarf2_per_objfile);
26846 struct objfile *objfile = dwarf2_per_objfile->objfile;
26847 const enum bfd_endian dwarf5_byte_order
26848 = gdbarch_byte_order (get_objfile_arch (objfile));
26849
26850 /* The CU list is already sorted, so we don't need to do additional
26851 work here. Also, the debug_types entries do not appear in
26852 all_comp_units, but only in their own hash table. */
26853 data_buf cu_list;
26854 debug_names nametable (dwarf2_per_objfile, dwarf5_is_dwarf64,
26855 dwarf5_byte_order);
26856 std::unordered_set<partial_symbol *>
26857 psyms_seen (psyms_seen_size (dwarf2_per_objfile));
26858 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
26859 {
26860 const dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->all_comp_units[i];
26861 partial_symtab *psymtab = per_cu->v.psymtab;
26862
26863 /* CU of a shared file from 'dwz -m' may be unused by this main
26864 file. It may be referenced from a local scope but in such
26865 case it does not need to be present in .debug_names. */
26866 if (psymtab == NULL)
26867 continue;
26868
26869 if (psymtab->user == NULL)
26870 nametable.recursively_write_psymbols (objfile, psymtab, psyms_seen, i);
26871
26872 cu_list.append_uint (nametable.dwarf5_offset_size (), dwarf5_byte_order,
26873 to_underlying (per_cu->sect_off));
26874 }
26875
26876 /* Write out the .debug_type entries, if any. */
26877 data_buf types_cu_list;
26878 if (dwarf2_per_objfile->signatured_types)
26879 {
26880 debug_names::write_one_signatured_type_data sig_data (nametable,
26881 signatured_type_index_data (types_cu_list, psyms_seen));
26882
26883 sig_data.info.objfile = objfile;
26884 /* It is used only for gdb_index. */
26885 sig_data.info.symtab = nullptr;
26886 sig_data.info.cu_index = 0;
26887 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
26888 debug_names::write_one_signatured_type,
26889 &sig_data);
26890 }
26891
26892 nametable.build ();
26893
26894 /* No addr_vec - DWARF-5 uses .debug_aranges generated by GCC. */
26895
26896 const offset_type bytes_of_header
26897 = ((dwarf5_is_dwarf64 ? 12 : 4)
26898 + 2 + 2 + 7 * 4
26899 + sizeof (dwarf5_gdb_augmentation));
26900 size_t expected_bytes = 0;
26901 expected_bytes += bytes_of_header;
26902 expected_bytes += cu_list.size ();
26903 expected_bytes += types_cu_list.size ();
26904 expected_bytes += nametable.bytes ();
26905 data_buf header;
26906
26907 if (!dwarf5_is_dwarf64)
26908 {
26909 const uint64_t size64 = expected_bytes - 4;
26910 gdb_assert (size64 < 0xfffffff0);
26911 header.append_uint (4, dwarf5_byte_order, size64);
26912 }
26913 else
26914 {
26915 header.append_uint (4, dwarf5_byte_order, 0xffffffff);
26916 header.append_uint (8, dwarf5_byte_order, expected_bytes - 12);
26917 }
26918
26919 /* The version number. */
26920 header.append_uint (2, dwarf5_byte_order, 5);
26921
26922 /* Padding. */
26923 header.append_uint (2, dwarf5_byte_order, 0);
26924
26925 /* comp_unit_count - The number of CUs in the CU list. */
26926 header.append_uint (4, dwarf5_byte_order, dwarf2_per_objfile->n_comp_units);
26927
26928 /* local_type_unit_count - The number of TUs in the local TU
26929 list. */
26930 header.append_uint (4, dwarf5_byte_order, dwarf2_per_objfile->n_type_units);
26931
26932 /* foreign_type_unit_count - The number of TUs in the foreign TU
26933 list. */
26934 header.append_uint (4, dwarf5_byte_order, 0);
26935
26936 /* bucket_count - The number of hash buckets in the hash lookup
26937 table. */
26938 header.append_uint (4, dwarf5_byte_order, nametable.bucket_count ());
26939
26940 /* name_count - The number of unique names in the index. */
26941 header.append_uint (4, dwarf5_byte_order, nametable.name_count ());
26942
26943 /* abbrev_table_size - The size in bytes of the abbreviations
26944 table. */
26945 header.append_uint (4, dwarf5_byte_order, nametable.abbrev_table_bytes ());
26946
26947 /* augmentation_string_size - The size in bytes of the augmentation
26948 string. This value is rounded up to a multiple of 4. */
26949 static_assert (sizeof (dwarf5_gdb_augmentation) % 4 == 0, "");
26950 header.append_uint (4, dwarf5_byte_order, sizeof (dwarf5_gdb_augmentation));
26951 header.append_data (dwarf5_gdb_augmentation);
26952
26953 gdb_assert (header.size () == bytes_of_header);
26954
26955 header.file_write (out_file);
26956 cu_list.file_write (out_file);
26957 types_cu_list.file_write (out_file);
26958 nametable.file_write (out_file, out_file_str);
26959
26960 return expected_bytes;
26961 }
26962
26963 /* Assert that FILE's size is EXPECTED_SIZE. Assumes file's seek
26964 position is at the end of the file. */
26965
26966 static void
26967 assert_file_size (FILE *file, const char *filename, size_t expected_size)
26968 {
26969 const auto file_size = ftell (file);
26970 if (file_size == -1)
26971 error (_("Can't get `%s' size"), filename);
26972 gdb_assert (file_size == expected_size);
26973 }
26974
26975 /* Create an index file for OBJFILE in the directory DIR. */
26976
26977 static void
26978 write_psymtabs_to_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
26979 const char *dir,
26980 dw_index_kind index_kind)
26981 {
26982 struct objfile *objfile = dwarf2_per_objfile->objfile;
26983
26984 if (dwarf2_per_objfile->using_index)
26985 error (_("Cannot use an index to create the index"));
26986
26987 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
26988 error (_("Cannot make an index when the file has multiple .debug_types sections"));
26989
26990 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
26991 return;
26992
26993 struct stat st;
26994 if (stat (objfile_name (objfile), &st) < 0)
26995 perror_with_name (objfile_name (objfile));
26996
26997 std::string filename (std::string (dir) + SLASH_STRING
26998 + lbasename (objfile_name (objfile))
26999 + (index_kind == dw_index_kind::DEBUG_NAMES
27000 ? INDEX5_SUFFIX : INDEX4_SUFFIX));
27001
27002 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
27003 if (!out_file)
27004 error (_("Can't open `%s' for writing"), filename.c_str ());
27005
27006 /* Order matters here; we want FILE to be closed before FILENAME is
27007 unlinked, because on MS-Windows one cannot delete a file that is
27008 still open. (Don't call anything here that might throw until
27009 file_closer is created.) */
27010 gdb::unlinker unlink_file (filename.c_str ());
27011 gdb_file_up close_out_file (out_file);
27012
27013 if (index_kind == dw_index_kind::DEBUG_NAMES)
27014 {
27015 std::string filename_str (std::string (dir) + SLASH_STRING
27016 + lbasename (objfile_name (objfile))
27017 + DEBUG_STR_SUFFIX);
27018 FILE *out_file_str
27019 = gdb_fopen_cloexec (filename_str.c_str (), "wb").release ();
27020 if (!out_file_str)
27021 error (_("Can't open `%s' for writing"), filename_str.c_str ());
27022 gdb::unlinker unlink_file_str (filename_str.c_str ());
27023 gdb_file_up close_out_file_str (out_file_str);
27024
27025 const size_t total_len
27026 = write_debug_names (dwarf2_per_objfile, out_file, out_file_str);
27027 assert_file_size (out_file, filename.c_str (), total_len);
27028
27029 /* We want to keep the file .debug_str file too. */
27030 unlink_file_str.keep ();
27031 }
27032 else
27033 {
27034 const size_t total_len
27035 = write_gdbindex (dwarf2_per_objfile, out_file);
27036 assert_file_size (out_file, filename.c_str (), total_len);
27037 }
27038
27039 /* We want to keep the file. */
27040 unlink_file.keep ();
27041 }
27042
27043 /* Implementation of the `save gdb-index' command.
27044
27045 Note that the .gdb_index file format used by this command is
27046 documented in the GDB manual. Any changes here must be documented
27047 there. */
27048
27049 static void
27050 save_gdb_index_command (const char *arg, int from_tty)
27051 {
27052 struct objfile *objfile;
27053 const char dwarf5space[] = "-dwarf-5 ";
27054 dw_index_kind index_kind = dw_index_kind::GDB_INDEX;
27055
27056 if (!arg)
27057 arg = "";
27058
27059 arg = skip_spaces (arg);
27060 if (strncmp (arg, dwarf5space, strlen (dwarf5space)) == 0)
27061 {
27062 index_kind = dw_index_kind::DEBUG_NAMES;
27063 arg += strlen (dwarf5space);
27064 arg = skip_spaces (arg);
27065 }
27066
27067 if (!*arg)
27068 error (_("usage: save gdb-index [-dwarf-5] DIRECTORY"));
27069
27070 ALL_OBJFILES (objfile)
27071 {
27072 struct stat st;
27073
27074 /* If the objfile does not correspond to an actual file, skip it. */
27075 if (stat (objfile_name (objfile), &st) < 0)
27076 continue;
27077
27078 struct dwarf2_per_objfile *dwarf2_per_objfile
27079 = get_dwarf2_per_objfile (objfile);
27080
27081 if (dwarf2_per_objfile != NULL)
27082 {
27083 TRY
27084 {
27085 write_psymtabs_to_index (dwarf2_per_objfile, arg, index_kind);
27086 }
27087 CATCH (except, RETURN_MASK_ERROR)
27088 {
27089 exception_fprintf (gdb_stderr, except,
27090 _("Error while writing index for `%s': "),
27091 objfile_name (objfile));
27092 }
27093 END_CATCH
27094 }
27095
27096 }
27097 }
27098
27099 \f
27100
27101 int dwarf_always_disassemble;
27102
27103 static void
27104 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
27105 struct cmd_list_element *c, const char *value)
27106 {
27107 fprintf_filtered (file,
27108 _("Whether to always disassemble "
27109 "DWARF expressions is %s.\n"),
27110 value);
27111 }
27112
27113 static void
27114 show_check_physname (struct ui_file *file, int from_tty,
27115 struct cmd_list_element *c, const char *value)
27116 {
27117 fprintf_filtered (file,
27118 _("Whether to check \"physname\" is %s.\n"),
27119 value);
27120 }
27121
27122 void
27123 _initialize_dwarf2_read (void)
27124 {
27125 struct cmd_list_element *c;
27126
27127 dwarf2_objfile_data_key = register_objfile_data ();
27128
27129 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
27130 Set DWARF specific variables.\n\
27131 Configure DWARF variables such as the cache size"),
27132 &set_dwarf_cmdlist, "maintenance set dwarf ",
27133 0/*allow-unknown*/, &maintenance_set_cmdlist);
27134
27135 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
27136 Show DWARF specific variables\n\
27137 Show DWARF variables such as the cache size"),
27138 &show_dwarf_cmdlist, "maintenance show dwarf ",
27139 0/*allow-unknown*/, &maintenance_show_cmdlist);
27140
27141 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
27142 &dwarf_max_cache_age, _("\
27143 Set the upper bound on the age of cached DWARF compilation units."), _("\
27144 Show the upper bound on the age of cached DWARF compilation units."), _("\
27145 A higher limit means that cached compilation units will be stored\n\
27146 in memory longer, and more total memory will be used. Zero disables\n\
27147 caching, which can slow down startup."),
27148 NULL,
27149 show_dwarf_max_cache_age,
27150 &set_dwarf_cmdlist,
27151 &show_dwarf_cmdlist);
27152
27153 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
27154 &dwarf_always_disassemble, _("\
27155 Set whether `info address' always disassembles DWARF expressions."), _("\
27156 Show whether `info address' always disassembles DWARF expressions."), _("\
27157 When enabled, DWARF expressions are always printed in an assembly-like\n\
27158 syntax. When disabled, expressions will be printed in a more\n\
27159 conversational style, when possible."),
27160 NULL,
27161 show_dwarf_always_disassemble,
27162 &set_dwarf_cmdlist,
27163 &show_dwarf_cmdlist);
27164
27165 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
27166 Set debugging of the DWARF reader."), _("\
27167 Show debugging of the DWARF reader."), _("\
27168 When enabled (non-zero), debugging messages are printed during DWARF\n\
27169 reading and symtab expansion. A value of 1 (one) provides basic\n\
27170 information. A value greater than 1 provides more verbose information."),
27171 NULL,
27172 NULL,
27173 &setdebuglist, &showdebuglist);
27174
27175 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
27176 Set debugging of the DWARF DIE reader."), _("\
27177 Show debugging of the DWARF DIE reader."), _("\
27178 When enabled (non-zero), DIEs are dumped after they are read in.\n\
27179 The value is the maximum depth to print."),
27180 NULL,
27181 NULL,
27182 &setdebuglist, &showdebuglist);
27183
27184 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
27185 Set debugging of the dwarf line reader."), _("\
27186 Show debugging of the dwarf line reader."), _("\
27187 When enabled (non-zero), line number entries are dumped as they are read in.\n\
27188 A value of 1 (one) provides basic information.\n\
27189 A value greater than 1 provides more verbose information."),
27190 NULL,
27191 NULL,
27192 &setdebuglist, &showdebuglist);
27193
27194 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
27195 Set cross-checking of \"physname\" code against demangler."), _("\
27196 Show cross-checking of \"physname\" code against demangler."), _("\
27197 When enabled, GDB's internal \"physname\" code is checked against\n\
27198 the demangler."),
27199 NULL, show_check_physname,
27200 &setdebuglist, &showdebuglist);
27201
27202 add_setshow_boolean_cmd ("use-deprecated-index-sections",
27203 no_class, &use_deprecated_index_sections, _("\
27204 Set whether to use deprecated gdb_index sections."), _("\
27205 Show whether to use deprecated gdb_index sections."), _("\
27206 When enabled, deprecated .gdb_index sections are used anyway.\n\
27207 Normally they are ignored either because of a missing feature or\n\
27208 performance issue.\n\
27209 Warning: This option must be enabled before gdb reads the file."),
27210 NULL,
27211 NULL,
27212 &setlist, &showlist);
27213
27214 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
27215 _("\
27216 Save a gdb-index file.\n\
27217 Usage: save gdb-index [-dwarf-5] DIRECTORY\n\
27218 \n\
27219 No options create one file with .gdb-index extension for pre-DWARF-5\n\
27220 compatible .gdb_index section. With -dwarf-5 creates two files with\n\
27221 extension .debug_names and .debug_str for DWARF-5 .debug_names section."),
27222 &save_cmdlist);
27223 set_cmd_completer (c, filename_completer);
27224
27225 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
27226 &dwarf2_locexpr_funcs);
27227 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
27228 &dwarf2_loclist_funcs);
27229
27230 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
27231 &dwarf2_block_frame_base_locexpr_funcs);
27232 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
27233 &dwarf2_block_frame_base_loclist_funcs);
27234
27235 #if GDB_SELF_TEST
27236 selftests::register_test ("dw2_expand_symtabs_matching",
27237 selftests::dw2_expand_symtabs_matching::run_test);
27238 #endif
27239 }
This page took 1.039187 seconds and 5 git commands to generate.