DWARF: Read constant-class addresses correctly
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73
74 #include <fcntl.h>
75 #include <string.h>
76 #include "gdb_assert.h"
77 #include <sys/types.h>
78
79 typedef struct symbol *symbolp;
80 DEF_VEC_P (symbolp);
81
82 /* When == 1, print basic high level tracing messages.
83 When > 1, be more verbose.
84 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
85 static unsigned int dwarf2_read_debug = 0;
86
87 /* When non-zero, dump DIEs after they are read in. */
88 static unsigned int dwarf2_die_debug = 0;
89
90 /* When non-zero, cross-check physname against demangler. */
91 static int check_physname = 0;
92
93 /* When non-zero, do not reject deprecated .gdb_index sections. */
94 static int use_deprecated_index_sections = 0;
95
96 static const struct objfile_data *dwarf2_objfile_data_key;
97
98 /* The "aclass" indices for various kinds of computed DWARF symbols. */
99
100 static int dwarf2_locexpr_index;
101 static int dwarf2_loclist_index;
102 static int dwarf2_locexpr_block_index;
103 static int dwarf2_loclist_block_index;
104
105 /* A descriptor for dwarf sections.
106
107 S.ASECTION, SIZE are typically initialized when the objfile is first
108 scanned. BUFFER, READIN are filled in later when the section is read.
109 If the section contained compressed data then SIZE is updated to record
110 the uncompressed size of the section.
111
112 DWP file format V2 introduces a wrinkle that is easiest to handle by
113 creating the concept of virtual sections contained within a real section.
114 In DWP V2 the sections of the input DWO files are concatenated together
115 into one section, but section offsets are kept relative to the original
116 input section.
117 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
118 the real section this "virtual" section is contained in, and BUFFER,SIZE
119 describe the virtual section. */
120
121 struct dwarf2_section_info
122 {
123 union
124 {
125 /* If this is a real section, the bfd section. */
126 asection *asection;
127 /* If this is a virtual section, pointer to the containing ("real")
128 section. */
129 struct dwarf2_section_info *containing_section;
130 } s;
131 /* Pointer to section data, only valid if readin. */
132 const gdb_byte *buffer;
133 /* The size of the section, real or virtual. */
134 bfd_size_type size;
135 /* If this is a virtual section, the offset in the real section.
136 Only valid if is_virtual. */
137 bfd_size_type virtual_offset;
138 /* True if we have tried to read this section. */
139 char readin;
140 /* True if this is a virtual section, False otherwise.
141 This specifies which of s.asection and s.containing_section to use. */
142 char is_virtual;
143 };
144
145 typedef struct dwarf2_section_info dwarf2_section_info_def;
146 DEF_VEC_O (dwarf2_section_info_def);
147
148 /* All offsets in the index are of this type. It must be
149 architecture-independent. */
150 typedef uint32_t offset_type;
151
152 DEF_VEC_I (offset_type);
153
154 /* Ensure only legit values are used. */
155 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
156 do { \
157 gdb_assert ((unsigned int) (value) <= 1); \
158 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
159 } while (0)
160
161 /* Ensure only legit values are used. */
162 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
163 do { \
164 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
165 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
166 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
170 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
173 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
174 } while (0)
175
176 /* A description of the mapped index. The file format is described in
177 a comment by the code that writes the index. */
178 struct mapped_index
179 {
180 /* Index data format version. */
181 int version;
182
183 /* The total length of the buffer. */
184 off_t total_size;
185
186 /* A pointer to the address table data. */
187 const gdb_byte *address_table;
188
189 /* Size of the address table data in bytes. */
190 offset_type address_table_size;
191
192 /* The symbol table, implemented as a hash table. */
193 const offset_type *symbol_table;
194
195 /* Size in slots, each slot is 2 offset_types. */
196 offset_type symbol_table_slots;
197
198 /* A pointer to the constant pool. */
199 const char *constant_pool;
200 };
201
202 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
203 DEF_VEC_P (dwarf2_per_cu_ptr);
204
205 /* Collection of data recorded per objfile.
206 This hangs off of dwarf2_objfile_data_key. */
207
208 struct dwarf2_per_objfile
209 {
210 struct dwarf2_section_info info;
211 struct dwarf2_section_info abbrev;
212 struct dwarf2_section_info line;
213 struct dwarf2_section_info loc;
214 struct dwarf2_section_info macinfo;
215 struct dwarf2_section_info macro;
216 struct dwarf2_section_info str;
217 struct dwarf2_section_info ranges;
218 struct dwarf2_section_info addr;
219 struct dwarf2_section_info frame;
220 struct dwarf2_section_info eh_frame;
221 struct dwarf2_section_info gdb_index;
222
223 VEC (dwarf2_section_info_def) *types;
224
225 /* Back link. */
226 struct objfile *objfile;
227
228 /* Table of all the compilation units. This is used to locate
229 the target compilation unit of a particular reference. */
230 struct dwarf2_per_cu_data **all_comp_units;
231
232 /* The number of compilation units in ALL_COMP_UNITS. */
233 int n_comp_units;
234
235 /* The number of .debug_types-related CUs. */
236 int n_type_units;
237
238 /* The .debug_types-related CUs (TUs).
239 This is stored in malloc space because we may realloc it. */
240 struct signatured_type **all_type_units;
241
242 /* The number of entries in all_type_unit_groups. */
243 int n_type_unit_groups;
244
245 /* Table of type unit groups.
246 This exists to make it easy to iterate over all CUs and TU groups. */
247 struct type_unit_group **all_type_unit_groups;
248
249 /* Table of struct type_unit_group objects.
250 The hash key is the DW_AT_stmt_list value. */
251 htab_t type_unit_groups;
252
253 /* A table mapping .debug_types signatures to its signatured_type entry.
254 This is NULL if the .debug_types section hasn't been read in yet. */
255 htab_t signatured_types;
256
257 /* Type unit statistics, to see how well the scaling improvements
258 are doing. */
259 struct tu_stats
260 {
261 int nr_uniq_abbrev_tables;
262 int nr_symtabs;
263 int nr_symtab_sharers;
264 int nr_stmt_less_type_units;
265 } tu_stats;
266
267 /* A chain of compilation units that are currently read in, so that
268 they can be freed later. */
269 struct dwarf2_per_cu_data *read_in_chain;
270
271 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
272 This is NULL if the table hasn't been allocated yet. */
273 htab_t dwo_files;
274
275 /* Non-zero if we've check for whether there is a DWP file. */
276 int dwp_checked;
277
278 /* The DWP file if there is one, or NULL. */
279 struct dwp_file *dwp_file;
280
281 /* The shared '.dwz' file, if one exists. This is used when the
282 original data was compressed using 'dwz -m'. */
283 struct dwz_file *dwz_file;
284
285 /* A flag indicating wether this objfile has a section loaded at a
286 VMA of 0. */
287 int has_section_at_zero;
288
289 /* True if we are using the mapped index,
290 or we are faking it for OBJF_READNOW's sake. */
291 unsigned char using_index;
292
293 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
294 struct mapped_index *index_table;
295
296 /* When using index_table, this keeps track of all quick_file_names entries.
297 TUs typically share line table entries with a CU, so we maintain a
298 separate table of all line table entries to support the sharing.
299 Note that while there can be way more TUs than CUs, we've already
300 sorted all the TUs into "type unit groups", grouped by their
301 DW_AT_stmt_list value. Therefore the only sharing done here is with a
302 CU and its associated TU group if there is one. */
303 htab_t quick_file_names_table;
304
305 /* Set during partial symbol reading, to prevent queueing of full
306 symbols. */
307 int reading_partial_symbols;
308
309 /* Table mapping type DIEs to their struct type *.
310 This is NULL if not allocated yet.
311 The mapping is done via (CU/TU + DIE offset) -> type. */
312 htab_t die_type_hash;
313
314 /* The CUs we recently read. */
315 VEC (dwarf2_per_cu_ptr) *just_read_cus;
316 };
317
318 static struct dwarf2_per_objfile *dwarf2_per_objfile;
319
320 /* Default names of the debugging sections. */
321
322 /* Note that if the debugging section has been compressed, it might
323 have a name like .zdebug_info. */
324
325 static const struct dwarf2_debug_sections dwarf2_elf_names =
326 {
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_abbrev", ".zdebug_abbrev" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
332 { ".debug_macro", ".zdebug_macro" },
333 { ".debug_str", ".zdebug_str" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_types", ".zdebug_types" },
336 { ".debug_addr", ".zdebug_addr" },
337 { ".debug_frame", ".zdebug_frame" },
338 { ".eh_frame", NULL },
339 { ".gdb_index", ".zgdb_index" },
340 23
341 };
342
343 /* List of DWO/DWP sections. */
344
345 static const struct dwop_section_names
346 {
347 struct dwarf2_section_names abbrev_dwo;
348 struct dwarf2_section_names info_dwo;
349 struct dwarf2_section_names line_dwo;
350 struct dwarf2_section_names loc_dwo;
351 struct dwarf2_section_names macinfo_dwo;
352 struct dwarf2_section_names macro_dwo;
353 struct dwarf2_section_names str_dwo;
354 struct dwarf2_section_names str_offsets_dwo;
355 struct dwarf2_section_names types_dwo;
356 struct dwarf2_section_names cu_index;
357 struct dwarf2_section_names tu_index;
358 }
359 dwop_section_names =
360 {
361 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
362 { ".debug_info.dwo", ".zdebug_info.dwo" },
363 { ".debug_line.dwo", ".zdebug_line.dwo" },
364 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
365 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
366 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
367 { ".debug_str.dwo", ".zdebug_str.dwo" },
368 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
369 { ".debug_types.dwo", ".zdebug_types.dwo" },
370 { ".debug_cu_index", ".zdebug_cu_index" },
371 { ".debug_tu_index", ".zdebug_tu_index" },
372 };
373
374 /* local data types */
375
376 /* The data in a compilation unit header, after target2host
377 translation, looks like this. */
378 struct comp_unit_head
379 {
380 unsigned int length;
381 short version;
382 unsigned char addr_size;
383 unsigned char signed_addr_p;
384 sect_offset abbrev_offset;
385
386 /* Size of file offsets; either 4 or 8. */
387 unsigned int offset_size;
388
389 /* Size of the length field; either 4 or 12. */
390 unsigned int initial_length_size;
391
392 /* Offset to the first byte of this compilation unit header in the
393 .debug_info section, for resolving relative reference dies. */
394 sect_offset offset;
395
396 /* Offset to first die in this cu from the start of the cu.
397 This will be the first byte following the compilation unit header. */
398 cu_offset first_die_offset;
399 };
400
401 /* Type used for delaying computation of method physnames.
402 See comments for compute_delayed_physnames. */
403 struct delayed_method_info
404 {
405 /* The type to which the method is attached, i.e., its parent class. */
406 struct type *type;
407
408 /* The index of the method in the type's function fieldlists. */
409 int fnfield_index;
410
411 /* The index of the method in the fieldlist. */
412 int index;
413
414 /* The name of the DIE. */
415 const char *name;
416
417 /* The DIE associated with this method. */
418 struct die_info *die;
419 };
420
421 typedef struct delayed_method_info delayed_method_info;
422 DEF_VEC_O (delayed_method_info);
423
424 /* Internal state when decoding a particular compilation unit. */
425 struct dwarf2_cu
426 {
427 /* The objfile containing this compilation unit. */
428 struct objfile *objfile;
429
430 /* The header of the compilation unit. */
431 struct comp_unit_head header;
432
433 /* Base address of this compilation unit. */
434 CORE_ADDR base_address;
435
436 /* Non-zero if base_address has been set. */
437 int base_known;
438
439 /* The language we are debugging. */
440 enum language language;
441 const struct language_defn *language_defn;
442
443 const char *producer;
444
445 /* The generic symbol table building routines have separate lists for
446 file scope symbols and all all other scopes (local scopes). So
447 we need to select the right one to pass to add_symbol_to_list().
448 We do it by keeping a pointer to the correct list in list_in_scope.
449
450 FIXME: The original dwarf code just treated the file scope as the
451 first local scope, and all other local scopes as nested local
452 scopes, and worked fine. Check to see if we really need to
453 distinguish these in buildsym.c. */
454 struct pending **list_in_scope;
455
456 /* The abbrev table for this CU.
457 Normally this points to the abbrev table in the objfile.
458 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
459 struct abbrev_table *abbrev_table;
460
461 /* Hash table holding all the loaded partial DIEs
462 with partial_die->offset.SECT_OFF as hash. */
463 htab_t partial_dies;
464
465 /* Storage for things with the same lifetime as this read-in compilation
466 unit, including partial DIEs. */
467 struct obstack comp_unit_obstack;
468
469 /* When multiple dwarf2_cu structures are living in memory, this field
470 chains them all together, so that they can be released efficiently.
471 We will probably also want a generation counter so that most-recently-used
472 compilation units are cached... */
473 struct dwarf2_per_cu_data *read_in_chain;
474
475 /* Backlink to our per_cu entry. */
476 struct dwarf2_per_cu_data *per_cu;
477
478 /* How many compilation units ago was this CU last referenced? */
479 int last_used;
480
481 /* A hash table of DIE cu_offset for following references with
482 die_info->offset.sect_off as hash. */
483 htab_t die_hash;
484
485 /* Full DIEs if read in. */
486 struct die_info *dies;
487
488 /* A set of pointers to dwarf2_per_cu_data objects for compilation
489 units referenced by this one. Only set during full symbol processing;
490 partial symbol tables do not have dependencies. */
491 htab_t dependencies;
492
493 /* Header data from the line table, during full symbol processing. */
494 struct line_header *line_header;
495
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 VEC (delayed_method_info) *method_list;
499
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab;
502
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
511 is non-NULL). */
512 struct dwo_unit *dwo_unit;
513
514 /* The DW_AT_addr_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the stub CU/TU's DIE. */
517 ULONGEST addr_base;
518
519 /* The DW_AT_ranges_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the stub CU/TU's DIE.
522 Also note that the value is zero in the non-DWO case so this value can
523 be used without needing to know whether DWO files are in use or not.
524 N.B. This does not apply to DW_AT_ranges appearing in
525 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
526 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
527 DW_AT_ranges_base *would* have to be applied, and we'd have to care
528 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
529 ULONGEST ranges_base;
530
531 /* Mark used when releasing cached dies. */
532 unsigned int mark : 1;
533
534 /* This CU references .debug_loc. See the symtab->locations_valid field.
535 This test is imperfect as there may exist optimized debug code not using
536 any location list and still facing inlining issues if handled as
537 unoptimized code. For a future better test see GCC PR other/32998. */
538 unsigned int has_loclist : 1;
539
540 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
541 if all the producer_is_* fields are valid. This information is cached
542 because profiling CU expansion showed excessive time spent in
543 producer_is_gxx_lt_4_6. */
544 unsigned int checked_producer : 1;
545 unsigned int producer_is_gxx_lt_4_6 : 1;
546 unsigned int producer_is_gcc_lt_4_3 : 1;
547 unsigned int producer_is_icc : 1;
548
549 /* When set, the file that we're processing is known to have
550 debugging info for C++ namespaces. GCC 3.3.x did not produce
551 this information, but later versions do. */
552
553 unsigned int processing_has_namespace_info : 1;
554 };
555
556 /* Persistent data held for a compilation unit, even when not
557 processing it. We put a pointer to this structure in the
558 read_symtab_private field of the psymtab. */
559
560 struct dwarf2_per_cu_data
561 {
562 /* The start offset and length of this compilation unit.
563 NOTE: Unlike comp_unit_head.length, this length includes
564 initial_length_size.
565 If the DIE refers to a DWO file, this is always of the original die,
566 not the DWO file. */
567 sect_offset offset;
568 unsigned int length;
569
570 /* Flag indicating this compilation unit will be read in before
571 any of the current compilation units are processed. */
572 unsigned int queued : 1;
573
574 /* This flag will be set when reading partial DIEs if we need to load
575 absolutely all DIEs for this compilation unit, instead of just the ones
576 we think are interesting. It gets set if we look for a DIE in the
577 hash table and don't find it. */
578 unsigned int load_all_dies : 1;
579
580 /* Non-zero if this CU is from .debug_types.
581 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
582 this is non-zero. */
583 unsigned int is_debug_types : 1;
584
585 /* Non-zero if this CU is from the .dwz file. */
586 unsigned int is_dwz : 1;
587
588 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
589 This flag is only valid if is_debug_types is true.
590 We can't read a CU directly from a DWO file: There are required
591 attributes in the stub. */
592 unsigned int reading_dwo_directly : 1;
593
594 /* Non-zero if the TU has been read.
595 This is used to assist the "Stay in DWO Optimization" for Fission:
596 When reading a DWO, it's faster to read TUs from the DWO instead of
597 fetching them from random other DWOs (due to comdat folding).
598 If the TU has already been read, the optimization is unnecessary
599 (and unwise - we don't want to change where gdb thinks the TU lives
600 "midflight").
601 This flag is only valid if is_debug_types is true. */
602 unsigned int tu_read : 1;
603
604 /* The section this CU/TU lives in.
605 If the DIE refers to a DWO file, this is always the original die,
606 not the DWO file. */
607 struct dwarf2_section_info *section;
608
609 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
610 of the CU cache it gets reset to NULL again. */
611 struct dwarf2_cu *cu;
612
613 /* The corresponding objfile.
614 Normally we can get the objfile from dwarf2_per_objfile.
615 However we can enter this file with just a "per_cu" handle. */
616 struct objfile *objfile;
617
618 /* When using partial symbol tables, the 'psymtab' field is active.
619 Otherwise the 'quick' field is active. */
620 union
621 {
622 /* The partial symbol table associated with this compilation unit,
623 or NULL for unread partial units. */
624 struct partial_symtab *psymtab;
625
626 /* Data needed by the "quick" functions. */
627 struct dwarf2_per_cu_quick_data *quick;
628 } v;
629
630 /* The CUs we import using DW_TAG_imported_unit. This is filled in
631 while reading psymtabs, used to compute the psymtab dependencies,
632 and then cleared. Then it is filled in again while reading full
633 symbols, and only deleted when the objfile is destroyed.
634
635 This is also used to work around a difference between the way gold
636 generates .gdb_index version <=7 and the way gdb does. Arguably this
637 is a gold bug. For symbols coming from TUs, gold records in the index
638 the CU that includes the TU instead of the TU itself. This breaks
639 dw2_lookup_symbol: It assumes that if the index says symbol X lives
640 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
641 will find X. Alas TUs live in their own symtab, so after expanding CU Y
642 we need to look in TU Z to find X. Fortunately, this is akin to
643 DW_TAG_imported_unit, so we just use the same mechanism: For
644 .gdb_index version <=7 this also records the TUs that the CU referred
645 to. Concurrently with this change gdb was modified to emit version 8
646 indices so we only pay a price for gold generated indices.
647 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
648 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
649 };
650
651 /* Entry in the signatured_types hash table. */
652
653 struct signatured_type
654 {
655 /* The "per_cu" object of this type.
656 This struct is used iff per_cu.is_debug_types.
657 N.B.: This is the first member so that it's easy to convert pointers
658 between them. */
659 struct dwarf2_per_cu_data per_cu;
660
661 /* The type's signature. */
662 ULONGEST signature;
663
664 /* Offset in the TU of the type's DIE, as read from the TU header.
665 If this TU is a DWO stub and the definition lives in a DWO file
666 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
667 cu_offset type_offset_in_tu;
668
669 /* Offset in the section of the type's DIE.
670 If the definition lives in a DWO file, this is the offset in the
671 .debug_types.dwo section.
672 The value is zero until the actual value is known.
673 Zero is otherwise not a valid section offset. */
674 sect_offset type_offset_in_section;
675
676 /* Type units are grouped by their DW_AT_stmt_list entry so that they
677 can share them. This points to the containing symtab. */
678 struct type_unit_group *type_unit_group;
679
680 /* The type.
681 The first time we encounter this type we fully read it in and install it
682 in the symbol tables. Subsequent times we only need the type. */
683 struct type *type;
684
685 /* Containing DWO unit.
686 This field is valid iff per_cu.reading_dwo_directly. */
687 struct dwo_unit *dwo_unit;
688 };
689
690 typedef struct signatured_type *sig_type_ptr;
691 DEF_VEC_P (sig_type_ptr);
692
693 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
694 This includes type_unit_group and quick_file_names. */
695
696 struct stmt_list_hash
697 {
698 /* The DWO unit this table is from or NULL if there is none. */
699 struct dwo_unit *dwo_unit;
700
701 /* Offset in .debug_line or .debug_line.dwo. */
702 sect_offset line_offset;
703 };
704
705 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
706 an object of this type. */
707
708 struct type_unit_group
709 {
710 /* dwarf2read.c's main "handle" on a TU symtab.
711 To simplify things we create an artificial CU that "includes" all the
712 type units using this stmt_list so that the rest of the code still has
713 a "per_cu" handle on the symtab.
714 This PER_CU is recognized by having no section. */
715 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
716 struct dwarf2_per_cu_data per_cu;
717
718 /* The TUs that share this DW_AT_stmt_list entry.
719 This is added to while parsing type units to build partial symtabs,
720 and is deleted afterwards and not used again. */
721 VEC (sig_type_ptr) *tus;
722
723 /* The primary symtab.
724 Type units in a group needn't all be defined in the same source file,
725 so we create an essentially anonymous symtab as the primary symtab. */
726 struct symtab *primary_symtab;
727
728 /* The data used to construct the hash key. */
729 struct stmt_list_hash hash;
730
731 /* The number of symtabs from the line header.
732 The value here must match line_header.num_file_names. */
733 unsigned int num_symtabs;
734
735 /* The symbol tables for this TU (obtained from the files listed in
736 DW_AT_stmt_list).
737 WARNING: The order of entries here must match the order of entries
738 in the line header. After the first TU using this type_unit_group, the
739 line header for the subsequent TUs is recreated from this. This is done
740 because we need to use the same symtabs for each TU using the same
741 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
742 there's no guarantee the line header doesn't have duplicate entries. */
743 struct symtab **symtabs;
744 };
745
746 /* These sections are what may appear in a (real or virtual) DWO file. */
747
748 struct dwo_sections
749 {
750 struct dwarf2_section_info abbrev;
751 struct dwarf2_section_info line;
752 struct dwarf2_section_info loc;
753 struct dwarf2_section_info macinfo;
754 struct dwarf2_section_info macro;
755 struct dwarf2_section_info str;
756 struct dwarf2_section_info str_offsets;
757 /* In the case of a virtual DWO file, these two are unused. */
758 struct dwarf2_section_info info;
759 VEC (dwarf2_section_info_def) *types;
760 };
761
762 /* CUs/TUs in DWP/DWO files. */
763
764 struct dwo_unit
765 {
766 /* Backlink to the containing struct dwo_file. */
767 struct dwo_file *dwo_file;
768
769 /* The "id" that distinguishes this CU/TU.
770 .debug_info calls this "dwo_id", .debug_types calls this "signature".
771 Since signatures came first, we stick with it for consistency. */
772 ULONGEST signature;
773
774 /* The section this CU/TU lives in, in the DWO file. */
775 struct dwarf2_section_info *section;
776
777 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
778 sect_offset offset;
779 unsigned int length;
780
781 /* For types, offset in the type's DIE of the type defined by this TU. */
782 cu_offset type_offset_in_tu;
783 };
784
785 /* include/dwarf2.h defines the DWP section codes.
786 It defines a max value but it doesn't define a min value, which we
787 use for error checking, so provide one. */
788
789 enum dwp_v2_section_ids
790 {
791 DW_SECT_MIN = 1
792 };
793
794 /* Data for one DWO file.
795
796 This includes virtual DWO files (a virtual DWO file is a DWO file as it
797 appears in a DWP file). DWP files don't really have DWO files per se -
798 comdat folding of types "loses" the DWO file they came from, and from
799 a high level view DWP files appear to contain a mass of random types.
800 However, to maintain consistency with the non-DWP case we pretend DWP
801 files contain virtual DWO files, and we assign each TU with one virtual
802 DWO file (generally based on the line and abbrev section offsets -
803 a heuristic that seems to work in practice). */
804
805 struct dwo_file
806 {
807 /* The DW_AT_GNU_dwo_name attribute.
808 For virtual DWO files the name is constructed from the section offsets
809 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
810 from related CU+TUs. */
811 const char *dwo_name;
812
813 /* The DW_AT_comp_dir attribute. */
814 const char *comp_dir;
815
816 /* The bfd, when the file is open. Otherwise this is NULL.
817 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
818 bfd *dbfd;
819
820 /* The sections that make up this DWO file.
821 Remember that for virtual DWO files in DWP V2, these are virtual
822 sections (for lack of a better name). */
823 struct dwo_sections sections;
824
825 /* The CU in the file.
826 We only support one because having more than one requires hacking the
827 dwo_name of each to match, which is highly unlikely to happen.
828 Doing this means all TUs can share comp_dir: We also assume that
829 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
830 struct dwo_unit *cu;
831
832 /* Table of TUs in the file.
833 Each element is a struct dwo_unit. */
834 htab_t tus;
835 };
836
837 /* These sections are what may appear in a DWP file. */
838
839 struct dwp_sections
840 {
841 /* These are used by both DWP version 1 and 2. */
842 struct dwarf2_section_info str;
843 struct dwarf2_section_info cu_index;
844 struct dwarf2_section_info tu_index;
845
846 /* These are only used by DWP version 2 files.
847 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
848 sections are referenced by section number, and are not recorded here.
849 In DWP version 2 there is at most one copy of all these sections, each
850 section being (effectively) comprised of the concatenation of all of the
851 individual sections that exist in the version 1 format.
852 To keep the code simple we treat each of these concatenated pieces as a
853 section itself (a virtual section?). */
854 struct dwarf2_section_info abbrev;
855 struct dwarf2_section_info info;
856 struct dwarf2_section_info line;
857 struct dwarf2_section_info loc;
858 struct dwarf2_section_info macinfo;
859 struct dwarf2_section_info macro;
860 struct dwarf2_section_info str_offsets;
861 struct dwarf2_section_info types;
862 };
863
864 /* These sections are what may appear in a virtual DWO file in DWP version 1.
865 A virtual DWO file is a DWO file as it appears in a DWP file. */
866
867 struct virtual_v1_dwo_sections
868 {
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info macinfo;
873 struct dwarf2_section_info macro;
874 struct dwarf2_section_info str_offsets;
875 /* Each DWP hash table entry records one CU or one TU.
876 That is recorded here, and copied to dwo_unit.section. */
877 struct dwarf2_section_info info_or_types;
878 };
879
880 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
881 In version 2, the sections of the DWO files are concatenated together
882 and stored in one section of that name. Thus each ELF section contains
883 several "virtual" sections. */
884
885 struct virtual_v2_dwo_sections
886 {
887 bfd_size_type abbrev_offset;
888 bfd_size_type abbrev_size;
889
890 bfd_size_type line_offset;
891 bfd_size_type line_size;
892
893 bfd_size_type loc_offset;
894 bfd_size_type loc_size;
895
896 bfd_size_type macinfo_offset;
897 bfd_size_type macinfo_size;
898
899 bfd_size_type macro_offset;
900 bfd_size_type macro_size;
901
902 bfd_size_type str_offsets_offset;
903 bfd_size_type str_offsets_size;
904
905 /* Each DWP hash table entry records one CU or one TU.
906 That is recorded here, and copied to dwo_unit.section. */
907 bfd_size_type info_or_types_offset;
908 bfd_size_type info_or_types_size;
909 };
910
911 /* Contents of DWP hash tables. */
912
913 struct dwp_hash_table
914 {
915 uint32_t version, nr_columns;
916 uint32_t nr_units, nr_slots;
917 const gdb_byte *hash_table, *unit_table;
918 union
919 {
920 struct
921 {
922 const gdb_byte *indices;
923 } v1;
924 struct
925 {
926 /* This is indexed by column number and gives the id of the section
927 in that column. */
928 #define MAX_NR_V2_DWO_SECTIONS \
929 (1 /* .debug_info or .debug_types */ \
930 + 1 /* .debug_abbrev */ \
931 + 1 /* .debug_line */ \
932 + 1 /* .debug_loc */ \
933 + 1 /* .debug_str_offsets */ \
934 + 1 /* .debug_macro or .debug_macinfo */)
935 int section_ids[MAX_NR_V2_DWO_SECTIONS];
936 const gdb_byte *offsets;
937 const gdb_byte *sizes;
938 } v2;
939 } section_pool;
940 };
941
942 /* Data for one DWP file. */
943
944 struct dwp_file
945 {
946 /* Name of the file. */
947 const char *name;
948
949 /* File format version. */
950 int version;
951
952 /* The bfd. */
953 bfd *dbfd;
954
955 /* Section info for this file. */
956 struct dwp_sections sections;
957
958 /* Table of CUs in the file. */
959 const struct dwp_hash_table *cus;
960
961 /* Table of TUs in the file. */
962 const struct dwp_hash_table *tus;
963
964 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
965 htab_t loaded_cus;
966 htab_t loaded_tus;
967
968 /* Table to map ELF section numbers to their sections.
969 This is only needed for the DWP V1 file format. */
970 unsigned int num_sections;
971 asection **elf_sections;
972 };
973
974 /* This represents a '.dwz' file. */
975
976 struct dwz_file
977 {
978 /* A dwz file can only contain a few sections. */
979 struct dwarf2_section_info abbrev;
980 struct dwarf2_section_info info;
981 struct dwarf2_section_info str;
982 struct dwarf2_section_info line;
983 struct dwarf2_section_info macro;
984 struct dwarf2_section_info gdb_index;
985
986 /* The dwz's BFD. */
987 bfd *dwz_bfd;
988 };
989
990 /* Struct used to pass misc. parameters to read_die_and_children, et
991 al. which are used for both .debug_info and .debug_types dies.
992 All parameters here are unchanging for the life of the call. This
993 struct exists to abstract away the constant parameters of die reading. */
994
995 struct die_reader_specs
996 {
997 /* The bfd of die_section. */
998 bfd* abfd;
999
1000 /* The CU of the DIE we are parsing. */
1001 struct dwarf2_cu *cu;
1002
1003 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1004 struct dwo_file *dwo_file;
1005
1006 /* The section the die comes from.
1007 This is either .debug_info or .debug_types, or the .dwo variants. */
1008 struct dwarf2_section_info *die_section;
1009
1010 /* die_section->buffer. */
1011 const gdb_byte *buffer;
1012
1013 /* The end of the buffer. */
1014 const gdb_byte *buffer_end;
1015
1016 /* The value of the DW_AT_comp_dir attribute. */
1017 const char *comp_dir;
1018 };
1019
1020 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1021 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1022 const gdb_byte *info_ptr,
1023 struct die_info *comp_unit_die,
1024 int has_children,
1025 void *data);
1026
1027 /* The line number information for a compilation unit (found in the
1028 .debug_line section) begins with a "statement program header",
1029 which contains the following information. */
1030 struct line_header
1031 {
1032 unsigned int total_length;
1033 unsigned short version;
1034 unsigned int header_length;
1035 unsigned char minimum_instruction_length;
1036 unsigned char maximum_ops_per_instruction;
1037 unsigned char default_is_stmt;
1038 int line_base;
1039 unsigned char line_range;
1040 unsigned char opcode_base;
1041
1042 /* standard_opcode_lengths[i] is the number of operands for the
1043 standard opcode whose value is i. This means that
1044 standard_opcode_lengths[0] is unused, and the last meaningful
1045 element is standard_opcode_lengths[opcode_base - 1]. */
1046 unsigned char *standard_opcode_lengths;
1047
1048 /* The include_directories table. NOTE! These strings are not
1049 allocated with xmalloc; instead, they are pointers into
1050 debug_line_buffer. If you try to free them, `free' will get
1051 indigestion. */
1052 unsigned int num_include_dirs, include_dirs_size;
1053 const char **include_dirs;
1054
1055 /* The file_names table. NOTE! These strings are not allocated
1056 with xmalloc; instead, they are pointers into debug_line_buffer.
1057 Don't try to free them directly. */
1058 unsigned int num_file_names, file_names_size;
1059 struct file_entry
1060 {
1061 const char *name;
1062 unsigned int dir_index;
1063 unsigned int mod_time;
1064 unsigned int length;
1065 int included_p; /* Non-zero if referenced by the Line Number Program. */
1066 struct symtab *symtab; /* The associated symbol table, if any. */
1067 } *file_names;
1068
1069 /* The start and end of the statement program following this
1070 header. These point into dwarf2_per_objfile->line_buffer. */
1071 const gdb_byte *statement_program_start, *statement_program_end;
1072 };
1073
1074 /* When we construct a partial symbol table entry we only
1075 need this much information. */
1076 struct partial_die_info
1077 {
1078 /* Offset of this DIE. */
1079 sect_offset offset;
1080
1081 /* DWARF-2 tag for this DIE. */
1082 ENUM_BITFIELD(dwarf_tag) tag : 16;
1083
1084 /* Assorted flags describing the data found in this DIE. */
1085 unsigned int has_children : 1;
1086 unsigned int is_external : 1;
1087 unsigned int is_declaration : 1;
1088 unsigned int has_type : 1;
1089 unsigned int has_specification : 1;
1090 unsigned int has_pc_info : 1;
1091 unsigned int may_be_inlined : 1;
1092
1093 /* Flag set if the SCOPE field of this structure has been
1094 computed. */
1095 unsigned int scope_set : 1;
1096
1097 /* Flag set if the DIE has a byte_size attribute. */
1098 unsigned int has_byte_size : 1;
1099
1100 /* Flag set if any of the DIE's children are template arguments. */
1101 unsigned int has_template_arguments : 1;
1102
1103 /* Flag set if fixup_partial_die has been called on this die. */
1104 unsigned int fixup_called : 1;
1105
1106 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1107 unsigned int is_dwz : 1;
1108
1109 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1110 unsigned int spec_is_dwz : 1;
1111
1112 /* The name of this DIE. Normally the value of DW_AT_name, but
1113 sometimes a default name for unnamed DIEs. */
1114 const char *name;
1115
1116 /* The linkage name, if present. */
1117 const char *linkage_name;
1118
1119 /* The scope to prepend to our children. This is generally
1120 allocated on the comp_unit_obstack, so will disappear
1121 when this compilation unit leaves the cache. */
1122 const char *scope;
1123
1124 /* Some data associated with the partial DIE. The tag determines
1125 which field is live. */
1126 union
1127 {
1128 /* The location description associated with this DIE, if any. */
1129 struct dwarf_block *locdesc;
1130 /* The offset of an import, for DW_TAG_imported_unit. */
1131 sect_offset offset;
1132 } d;
1133
1134 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1135 CORE_ADDR lowpc;
1136 CORE_ADDR highpc;
1137
1138 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1139 DW_AT_sibling, if any. */
1140 /* NOTE: This member isn't strictly necessary, read_partial_die could
1141 return DW_AT_sibling values to its caller load_partial_dies. */
1142 const gdb_byte *sibling;
1143
1144 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1145 DW_AT_specification (or DW_AT_abstract_origin or
1146 DW_AT_extension). */
1147 sect_offset spec_offset;
1148
1149 /* Pointers to this DIE's parent, first child, and next sibling,
1150 if any. */
1151 struct partial_die_info *die_parent, *die_child, *die_sibling;
1152 };
1153
1154 /* This data structure holds the information of an abbrev. */
1155 struct abbrev_info
1156 {
1157 unsigned int number; /* number identifying abbrev */
1158 enum dwarf_tag tag; /* dwarf tag */
1159 unsigned short has_children; /* boolean */
1160 unsigned short num_attrs; /* number of attributes */
1161 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1162 struct abbrev_info *next; /* next in chain */
1163 };
1164
1165 struct attr_abbrev
1166 {
1167 ENUM_BITFIELD(dwarf_attribute) name : 16;
1168 ENUM_BITFIELD(dwarf_form) form : 16;
1169 };
1170
1171 /* Size of abbrev_table.abbrev_hash_table. */
1172 #define ABBREV_HASH_SIZE 121
1173
1174 /* Top level data structure to contain an abbreviation table. */
1175
1176 struct abbrev_table
1177 {
1178 /* Where the abbrev table came from.
1179 This is used as a sanity check when the table is used. */
1180 sect_offset offset;
1181
1182 /* Storage for the abbrev table. */
1183 struct obstack abbrev_obstack;
1184
1185 /* Hash table of abbrevs.
1186 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1187 It could be statically allocated, but the previous code didn't so we
1188 don't either. */
1189 struct abbrev_info **abbrevs;
1190 };
1191
1192 /* Attributes have a name and a value. */
1193 struct attribute
1194 {
1195 ENUM_BITFIELD(dwarf_attribute) name : 16;
1196 ENUM_BITFIELD(dwarf_form) form : 15;
1197
1198 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1199 field should be in u.str (existing only for DW_STRING) but it is kept
1200 here for better struct attribute alignment. */
1201 unsigned int string_is_canonical : 1;
1202
1203 union
1204 {
1205 const char *str;
1206 struct dwarf_block *blk;
1207 ULONGEST unsnd;
1208 LONGEST snd;
1209 CORE_ADDR addr;
1210 ULONGEST signature;
1211 }
1212 u;
1213 };
1214
1215 /* This data structure holds a complete die structure. */
1216 struct die_info
1217 {
1218 /* DWARF-2 tag for this DIE. */
1219 ENUM_BITFIELD(dwarf_tag) tag : 16;
1220
1221 /* Number of attributes */
1222 unsigned char num_attrs;
1223
1224 /* True if we're presently building the full type name for the
1225 type derived from this DIE. */
1226 unsigned char building_fullname : 1;
1227
1228 /* True if this die is in process. PR 16581. */
1229 unsigned char in_process : 1;
1230
1231 /* Abbrev number */
1232 unsigned int abbrev;
1233
1234 /* Offset in .debug_info or .debug_types section. */
1235 sect_offset offset;
1236
1237 /* The dies in a compilation unit form an n-ary tree. PARENT
1238 points to this die's parent; CHILD points to the first child of
1239 this node; and all the children of a given node are chained
1240 together via their SIBLING fields. */
1241 struct die_info *child; /* Its first child, if any. */
1242 struct die_info *sibling; /* Its next sibling, if any. */
1243 struct die_info *parent; /* Its parent, if any. */
1244
1245 /* An array of attributes, with NUM_ATTRS elements. There may be
1246 zero, but it's not common and zero-sized arrays are not
1247 sufficiently portable C. */
1248 struct attribute attrs[1];
1249 };
1250
1251 /* Get at parts of an attribute structure. */
1252
1253 #define DW_STRING(attr) ((attr)->u.str)
1254 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1255 #define DW_UNSND(attr) ((attr)->u.unsnd)
1256 #define DW_BLOCK(attr) ((attr)->u.blk)
1257 #define DW_SND(attr) ((attr)->u.snd)
1258 #define DW_ADDR(attr) ((attr)->u.addr)
1259 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1260
1261 /* Blocks are a bunch of untyped bytes. */
1262 struct dwarf_block
1263 {
1264 size_t size;
1265
1266 /* Valid only if SIZE is not zero. */
1267 const gdb_byte *data;
1268 };
1269
1270 #ifndef ATTR_ALLOC_CHUNK
1271 #define ATTR_ALLOC_CHUNK 4
1272 #endif
1273
1274 /* Allocate fields for structs, unions and enums in this size. */
1275 #ifndef DW_FIELD_ALLOC_CHUNK
1276 #define DW_FIELD_ALLOC_CHUNK 4
1277 #endif
1278
1279 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1280 but this would require a corresponding change in unpack_field_as_long
1281 and friends. */
1282 static int bits_per_byte = 8;
1283
1284 /* The routines that read and process dies for a C struct or C++ class
1285 pass lists of data member fields and lists of member function fields
1286 in an instance of a field_info structure, as defined below. */
1287 struct field_info
1288 {
1289 /* List of data member and baseclasses fields. */
1290 struct nextfield
1291 {
1292 struct nextfield *next;
1293 int accessibility;
1294 int virtuality;
1295 struct field field;
1296 }
1297 *fields, *baseclasses;
1298
1299 /* Number of fields (including baseclasses). */
1300 int nfields;
1301
1302 /* Number of baseclasses. */
1303 int nbaseclasses;
1304
1305 /* Set if the accesibility of one of the fields is not public. */
1306 int non_public_fields;
1307
1308 /* Member function fields array, entries are allocated in the order they
1309 are encountered in the object file. */
1310 struct nextfnfield
1311 {
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314 }
1315 *fnfields;
1316
1317 /* Member function fieldlist array, contains name of possibly overloaded
1318 member function, number of overloaded member functions and a pointer
1319 to the head of the member function field chain. */
1320 struct fnfieldlist
1321 {
1322 const char *name;
1323 int length;
1324 struct nextfnfield *head;
1325 }
1326 *fnfieldlists;
1327
1328 /* Number of entries in the fnfieldlists array. */
1329 int nfnfields;
1330
1331 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1332 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1333 struct typedef_field_list
1334 {
1335 struct typedef_field field;
1336 struct typedef_field_list *next;
1337 }
1338 *typedef_field_list;
1339 unsigned typedef_field_list_count;
1340 };
1341
1342 /* One item on the queue of compilation units to read in full symbols
1343 for. */
1344 struct dwarf2_queue_item
1345 {
1346 struct dwarf2_per_cu_data *per_cu;
1347 enum language pretend_language;
1348 struct dwarf2_queue_item *next;
1349 };
1350
1351 /* The current queue. */
1352 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1353
1354 /* Loaded secondary compilation units are kept in memory until they
1355 have not been referenced for the processing of this many
1356 compilation units. Set this to zero to disable caching. Cache
1357 sizes of up to at least twenty will improve startup time for
1358 typical inter-CU-reference binaries, at an obvious memory cost. */
1359 static int dwarf2_max_cache_age = 5;
1360 static void
1361 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1362 struct cmd_list_element *c, const char *value)
1363 {
1364 fprintf_filtered (file, _("The upper bound on the age of cached "
1365 "dwarf2 compilation units is %s.\n"),
1366 value);
1367 }
1368 \f
1369 /* local function prototypes */
1370
1371 static const char *get_section_name (const struct dwarf2_section_info *);
1372
1373 static const char *get_section_file_name (const struct dwarf2_section_info *);
1374
1375 static void dwarf2_locate_sections (bfd *, asection *, void *);
1376
1377 static void dwarf2_find_base_address (struct die_info *die,
1378 struct dwarf2_cu *cu);
1379
1380 static struct partial_symtab *create_partial_symtab
1381 (struct dwarf2_per_cu_data *per_cu, const char *name);
1382
1383 static void dwarf2_build_psymtabs_hard (struct objfile *);
1384
1385 static void scan_partial_symbols (struct partial_die_info *,
1386 CORE_ADDR *, CORE_ADDR *,
1387 int, struct dwarf2_cu *);
1388
1389 static void add_partial_symbol (struct partial_die_info *,
1390 struct dwarf2_cu *);
1391
1392 static void add_partial_namespace (struct partial_die_info *pdi,
1393 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1394 int need_pc, struct dwarf2_cu *cu);
1395
1396 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1397 CORE_ADDR *highpc, int need_pc,
1398 struct dwarf2_cu *cu);
1399
1400 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1401 struct dwarf2_cu *cu);
1402
1403 static void add_partial_subprogram (struct partial_die_info *pdi,
1404 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1405 int need_pc, struct dwarf2_cu *cu);
1406
1407 static void dwarf2_read_symtab (struct partial_symtab *,
1408 struct objfile *);
1409
1410 static void psymtab_to_symtab_1 (struct partial_symtab *);
1411
1412 static struct abbrev_info *abbrev_table_lookup_abbrev
1413 (const struct abbrev_table *, unsigned int);
1414
1415 static struct abbrev_table *abbrev_table_read_table
1416 (struct dwarf2_section_info *, sect_offset);
1417
1418 static void abbrev_table_free (struct abbrev_table *);
1419
1420 static void abbrev_table_free_cleanup (void *);
1421
1422 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1423 struct dwarf2_section_info *);
1424
1425 static void dwarf2_free_abbrev_table (void *);
1426
1427 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1428
1429 static struct partial_die_info *load_partial_dies
1430 (const struct die_reader_specs *, const gdb_byte *, int);
1431
1432 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1433 struct partial_die_info *,
1434 struct abbrev_info *,
1435 unsigned int,
1436 const gdb_byte *);
1437
1438 static struct partial_die_info *find_partial_die (sect_offset, int,
1439 struct dwarf2_cu *);
1440
1441 static void fixup_partial_die (struct partial_die_info *,
1442 struct dwarf2_cu *);
1443
1444 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1445 struct attribute *, struct attr_abbrev *,
1446 const gdb_byte *);
1447
1448 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1449
1450 static int read_1_signed_byte (bfd *, const gdb_byte *);
1451
1452 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1453
1454 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1455
1456 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1457
1458 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1459 unsigned int *);
1460
1461 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1462
1463 static LONGEST read_checked_initial_length_and_offset
1464 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1465 unsigned int *, unsigned int *);
1466
1467 static LONGEST read_offset (bfd *, const gdb_byte *,
1468 const struct comp_unit_head *,
1469 unsigned int *);
1470
1471 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1472
1473 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1474 sect_offset);
1475
1476 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1477
1478 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1479
1480 static const char *read_indirect_string (bfd *, const gdb_byte *,
1481 const struct comp_unit_head *,
1482 unsigned int *);
1483
1484 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1485
1486 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1487
1488 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1489
1490 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1491 const gdb_byte *,
1492 unsigned int *);
1493
1494 static const char *read_str_index (const struct die_reader_specs *reader,
1495 struct dwarf2_cu *cu, ULONGEST str_index);
1496
1497 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1498
1499 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1500 struct dwarf2_cu *);
1501
1502 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1503 unsigned int);
1504
1505 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1506 struct dwarf2_cu *cu);
1507
1508 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1509
1510 static struct die_info *die_specification (struct die_info *die,
1511 struct dwarf2_cu **);
1512
1513 static void free_line_header (struct line_header *lh);
1514
1515 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1516 struct dwarf2_cu *cu);
1517
1518 static void dwarf_decode_lines (struct line_header *, const char *,
1519 struct dwarf2_cu *, struct partial_symtab *,
1520 int);
1521
1522 static void dwarf2_start_subfile (const char *, const char *, const char *);
1523
1524 static void dwarf2_start_symtab (struct dwarf2_cu *,
1525 const char *, const char *, CORE_ADDR);
1526
1527 static struct symbol *new_symbol (struct die_info *, struct type *,
1528 struct dwarf2_cu *);
1529
1530 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1531 struct dwarf2_cu *, struct symbol *);
1532
1533 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1534 struct dwarf2_cu *);
1535
1536 static void dwarf2_const_value_attr (const struct attribute *attr,
1537 struct type *type,
1538 const char *name,
1539 struct obstack *obstack,
1540 struct dwarf2_cu *cu, LONGEST *value,
1541 const gdb_byte **bytes,
1542 struct dwarf2_locexpr_baton **baton);
1543
1544 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1545
1546 static int need_gnat_info (struct dwarf2_cu *);
1547
1548 static struct type *die_descriptive_type (struct die_info *,
1549 struct dwarf2_cu *);
1550
1551 static void set_descriptive_type (struct type *, struct die_info *,
1552 struct dwarf2_cu *);
1553
1554 static struct type *die_containing_type (struct die_info *,
1555 struct dwarf2_cu *);
1556
1557 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1558 struct dwarf2_cu *);
1559
1560 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1561
1562 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1563
1564 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1565
1566 static char *typename_concat (struct obstack *obs, const char *prefix,
1567 const char *suffix, int physname,
1568 struct dwarf2_cu *cu);
1569
1570 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1571
1572 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1573
1574 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1575
1576 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1577
1578 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1579
1580 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1581 struct dwarf2_cu *, struct partial_symtab *);
1582
1583 static int dwarf2_get_pc_bounds (struct die_info *,
1584 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1585 struct partial_symtab *);
1586
1587 static void get_scope_pc_bounds (struct die_info *,
1588 CORE_ADDR *, CORE_ADDR *,
1589 struct dwarf2_cu *);
1590
1591 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1592 CORE_ADDR, struct dwarf2_cu *);
1593
1594 static void dwarf2_add_field (struct field_info *, struct die_info *,
1595 struct dwarf2_cu *);
1596
1597 static void dwarf2_attach_fields_to_type (struct field_info *,
1598 struct type *, struct dwarf2_cu *);
1599
1600 static void dwarf2_add_member_fn (struct field_info *,
1601 struct die_info *, struct type *,
1602 struct dwarf2_cu *);
1603
1604 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1605 struct type *,
1606 struct dwarf2_cu *);
1607
1608 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1609
1610 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1611
1612 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1613
1614 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1615
1616 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1617
1618 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1619
1620 static struct type *read_module_type (struct die_info *die,
1621 struct dwarf2_cu *cu);
1622
1623 static const char *namespace_name (struct die_info *die,
1624 int *is_anonymous, struct dwarf2_cu *);
1625
1626 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1627
1628 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1629
1630 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1631 struct dwarf2_cu *);
1632
1633 static struct die_info *read_die_and_siblings_1
1634 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1635 struct die_info *);
1636
1637 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1638 const gdb_byte *info_ptr,
1639 const gdb_byte **new_info_ptr,
1640 struct die_info *parent);
1641
1642 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1643 struct die_info **, const gdb_byte *,
1644 int *, int);
1645
1646 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1647 struct die_info **, const gdb_byte *,
1648 int *);
1649
1650 static void process_die (struct die_info *, struct dwarf2_cu *);
1651
1652 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1653 struct obstack *);
1654
1655 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1656
1657 static const char *dwarf2_full_name (const char *name,
1658 struct die_info *die,
1659 struct dwarf2_cu *cu);
1660
1661 static const char *dwarf2_physname (const char *name, struct die_info *die,
1662 struct dwarf2_cu *cu);
1663
1664 static struct die_info *dwarf2_extension (struct die_info *die,
1665 struct dwarf2_cu **);
1666
1667 static const char *dwarf_tag_name (unsigned int);
1668
1669 static const char *dwarf_attr_name (unsigned int);
1670
1671 static const char *dwarf_form_name (unsigned int);
1672
1673 static char *dwarf_bool_name (unsigned int);
1674
1675 static const char *dwarf_type_encoding_name (unsigned int);
1676
1677 static struct die_info *sibling_die (struct die_info *);
1678
1679 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1680
1681 static void dump_die_for_error (struct die_info *);
1682
1683 static void dump_die_1 (struct ui_file *, int level, int max_level,
1684 struct die_info *);
1685
1686 /*static*/ void dump_die (struct die_info *, int max_level);
1687
1688 static void store_in_ref_table (struct die_info *,
1689 struct dwarf2_cu *);
1690
1691 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1692
1693 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1694
1695 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1696 const struct attribute *,
1697 struct dwarf2_cu **);
1698
1699 static struct die_info *follow_die_ref (struct die_info *,
1700 const struct attribute *,
1701 struct dwarf2_cu **);
1702
1703 static struct die_info *follow_die_sig (struct die_info *,
1704 const struct attribute *,
1705 struct dwarf2_cu **);
1706
1707 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1708 struct dwarf2_cu *);
1709
1710 static struct type *get_DW_AT_signature_type (struct die_info *,
1711 const struct attribute *,
1712 struct dwarf2_cu *);
1713
1714 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1715
1716 static void read_signatured_type (struct signatured_type *);
1717
1718 static struct type_unit_group *get_type_unit_group
1719 (struct dwarf2_cu *, const struct attribute *);
1720
1721 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1722
1723 /* memory allocation interface */
1724
1725 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1726
1727 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1728
1729 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1730 const char *, int);
1731
1732 static int attr_form_is_block (const struct attribute *);
1733
1734 static int attr_form_is_section_offset (const struct attribute *);
1735
1736 static int attr_form_is_constant (const struct attribute *);
1737
1738 static int attr_form_is_ref (const struct attribute *);
1739
1740 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1741 struct dwarf2_loclist_baton *baton,
1742 const struct attribute *attr);
1743
1744 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1745 struct symbol *sym,
1746 struct dwarf2_cu *cu,
1747 int is_block);
1748
1749 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1750 const gdb_byte *info_ptr,
1751 struct abbrev_info *abbrev);
1752
1753 static void free_stack_comp_unit (void *);
1754
1755 static hashval_t partial_die_hash (const void *item);
1756
1757 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1758
1759 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1760 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1761
1762 static void init_one_comp_unit (struct dwarf2_cu *cu,
1763 struct dwarf2_per_cu_data *per_cu);
1764
1765 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1766 struct die_info *comp_unit_die,
1767 enum language pretend_language);
1768
1769 static void free_heap_comp_unit (void *);
1770
1771 static void free_cached_comp_units (void *);
1772
1773 static void age_cached_comp_units (void);
1774
1775 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1776
1777 static struct type *set_die_type (struct die_info *, struct type *,
1778 struct dwarf2_cu *);
1779
1780 static void create_all_comp_units (struct objfile *);
1781
1782 static int create_all_type_units (struct objfile *);
1783
1784 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1785 enum language);
1786
1787 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1788 enum language);
1789
1790 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1791 enum language);
1792
1793 static void dwarf2_add_dependence (struct dwarf2_cu *,
1794 struct dwarf2_per_cu_data *);
1795
1796 static void dwarf2_mark (struct dwarf2_cu *);
1797
1798 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1799
1800 static struct type *get_die_type_at_offset (sect_offset,
1801 struct dwarf2_per_cu_data *);
1802
1803 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1804
1805 static void dwarf2_release_queue (void *dummy);
1806
1807 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1808 enum language pretend_language);
1809
1810 static void process_queue (void);
1811
1812 static void find_file_and_directory (struct die_info *die,
1813 struct dwarf2_cu *cu,
1814 const char **name, const char **comp_dir);
1815
1816 static char *file_full_name (int file, struct line_header *lh,
1817 const char *comp_dir);
1818
1819 static const gdb_byte *read_and_check_comp_unit_head
1820 (struct comp_unit_head *header,
1821 struct dwarf2_section_info *section,
1822 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1823 int is_debug_types_section);
1824
1825 static void init_cutu_and_read_dies
1826 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1827 int use_existing_cu, int keep,
1828 die_reader_func_ftype *die_reader_func, void *data);
1829
1830 static void init_cutu_and_read_dies_simple
1831 (struct dwarf2_per_cu_data *this_cu,
1832 die_reader_func_ftype *die_reader_func, void *data);
1833
1834 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1835
1836 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1837
1838 static struct dwo_unit *lookup_dwo_unit_in_dwp
1839 (struct dwp_file *dwp_file, const char *comp_dir,
1840 ULONGEST signature, int is_debug_types);
1841
1842 static struct dwp_file *get_dwp_file (void);
1843
1844 static struct dwo_unit *lookup_dwo_comp_unit
1845 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1846
1847 static struct dwo_unit *lookup_dwo_type_unit
1848 (struct signatured_type *, const char *, const char *);
1849
1850 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1851
1852 static void free_dwo_file_cleanup (void *);
1853
1854 static void process_cu_includes (void);
1855
1856 static void check_producer (struct dwarf2_cu *cu);
1857 \f
1858 /* Various complaints about symbol reading that don't abort the process. */
1859
1860 static void
1861 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1862 {
1863 complaint (&symfile_complaints,
1864 _("statement list doesn't fit in .debug_line section"));
1865 }
1866
1867 static void
1868 dwarf2_debug_line_missing_file_complaint (void)
1869 {
1870 complaint (&symfile_complaints,
1871 _(".debug_line section has line data without a file"));
1872 }
1873
1874 static void
1875 dwarf2_debug_line_missing_end_sequence_complaint (void)
1876 {
1877 complaint (&symfile_complaints,
1878 _(".debug_line section has line "
1879 "program sequence without an end"));
1880 }
1881
1882 static void
1883 dwarf2_complex_location_expr_complaint (void)
1884 {
1885 complaint (&symfile_complaints, _("location expression too complex"));
1886 }
1887
1888 static void
1889 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1890 int arg3)
1891 {
1892 complaint (&symfile_complaints,
1893 _("const value length mismatch for '%s', got %d, expected %d"),
1894 arg1, arg2, arg3);
1895 }
1896
1897 static void
1898 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1899 {
1900 complaint (&symfile_complaints,
1901 _("debug info runs off end of %s section"
1902 " [in module %s]"),
1903 get_section_name (section),
1904 get_section_file_name (section));
1905 }
1906
1907 static void
1908 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1909 {
1910 complaint (&symfile_complaints,
1911 _("macro debug info contains a "
1912 "malformed macro definition:\n`%s'"),
1913 arg1);
1914 }
1915
1916 static void
1917 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1918 {
1919 complaint (&symfile_complaints,
1920 _("invalid attribute class or form for '%s' in '%s'"),
1921 arg1, arg2);
1922 }
1923 \f
1924 #if WORDS_BIGENDIAN
1925
1926 /* Convert VALUE between big- and little-endian. */
1927 static offset_type
1928 byte_swap (offset_type value)
1929 {
1930 offset_type result;
1931
1932 result = (value & 0xff) << 24;
1933 result |= (value & 0xff00) << 8;
1934 result |= (value & 0xff0000) >> 8;
1935 result |= (value & 0xff000000) >> 24;
1936 return result;
1937 }
1938
1939 #define MAYBE_SWAP(V) byte_swap (V)
1940
1941 #else
1942 #define MAYBE_SWAP(V) (V)
1943 #endif /* WORDS_BIGENDIAN */
1944
1945 /* Read the given attribute value as an address, taking the attribute's
1946 form into account. */
1947
1948 static CORE_ADDR
1949 attr_value_as_address (struct attribute *attr)
1950 {
1951 CORE_ADDR addr;
1952
1953 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1954 {
1955 /* Aside from a few clearly defined exceptions, attributes that
1956 contain an address must always be in DW_FORM_addr form.
1957 Unfortunately, some compilers happen to be violating this
1958 requirement by encoding addresses using other forms, such
1959 as DW_FORM_data4 for example. For those broken compilers,
1960 we try to do our best, without any guarantee of success,
1961 to interpret the address correctly. It would also be nice
1962 to generate a complaint, but that would require us to maintain
1963 a list of legitimate cases where a non-address form is allowed,
1964 as well as update callers to pass in at least the CU's DWARF
1965 version. This is more overhead than what we're willing to
1966 expand for a pretty rare case. */
1967 addr = DW_UNSND (attr);
1968 }
1969 else
1970 addr = DW_ADDR (attr);
1971
1972 return addr;
1973 }
1974
1975 /* The suffix for an index file. */
1976 #define INDEX_SUFFIX ".gdb-index"
1977
1978 /* Try to locate the sections we need for DWARF 2 debugging
1979 information and return true if we have enough to do something.
1980 NAMES points to the dwarf2 section names, or is NULL if the standard
1981 ELF names are used. */
1982
1983 int
1984 dwarf2_has_info (struct objfile *objfile,
1985 const struct dwarf2_debug_sections *names)
1986 {
1987 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1988 if (!dwarf2_per_objfile)
1989 {
1990 /* Initialize per-objfile state. */
1991 struct dwarf2_per_objfile *data
1992 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1993
1994 memset (data, 0, sizeof (*data));
1995 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1996 dwarf2_per_objfile = data;
1997
1998 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1999 (void *) names);
2000 dwarf2_per_objfile->objfile = objfile;
2001 }
2002 return (!dwarf2_per_objfile->info.is_virtual
2003 && dwarf2_per_objfile->info.s.asection != NULL
2004 && !dwarf2_per_objfile->abbrev.is_virtual
2005 && dwarf2_per_objfile->abbrev.s.asection != NULL);
2006 }
2007
2008 /* Return the containing section of virtual section SECTION. */
2009
2010 static struct dwarf2_section_info *
2011 get_containing_section (const struct dwarf2_section_info *section)
2012 {
2013 gdb_assert (section->is_virtual);
2014 return section->s.containing_section;
2015 }
2016
2017 /* Return the bfd owner of SECTION. */
2018
2019 static struct bfd *
2020 get_section_bfd_owner (const struct dwarf2_section_info *section)
2021 {
2022 if (section->is_virtual)
2023 {
2024 section = get_containing_section (section);
2025 gdb_assert (!section->is_virtual);
2026 }
2027 return section->s.asection->owner;
2028 }
2029
2030 /* Return the bfd section of SECTION.
2031 Returns NULL if the section is not present. */
2032
2033 static asection *
2034 get_section_bfd_section (const struct dwarf2_section_info *section)
2035 {
2036 if (section->is_virtual)
2037 {
2038 section = get_containing_section (section);
2039 gdb_assert (!section->is_virtual);
2040 }
2041 return section->s.asection;
2042 }
2043
2044 /* Return the name of SECTION. */
2045
2046 static const char *
2047 get_section_name (const struct dwarf2_section_info *section)
2048 {
2049 asection *sectp = get_section_bfd_section (section);
2050
2051 gdb_assert (sectp != NULL);
2052 return bfd_section_name (get_section_bfd_owner (section), sectp);
2053 }
2054
2055 /* Return the name of the file SECTION is in. */
2056
2057 static const char *
2058 get_section_file_name (const struct dwarf2_section_info *section)
2059 {
2060 bfd *abfd = get_section_bfd_owner (section);
2061
2062 return bfd_get_filename (abfd);
2063 }
2064
2065 /* Return the id of SECTION.
2066 Returns 0 if SECTION doesn't exist. */
2067
2068 static int
2069 get_section_id (const struct dwarf2_section_info *section)
2070 {
2071 asection *sectp = get_section_bfd_section (section);
2072
2073 if (sectp == NULL)
2074 return 0;
2075 return sectp->id;
2076 }
2077
2078 /* Return the flags of SECTION.
2079 SECTION (or containing section if this is a virtual section) must exist. */
2080
2081 static int
2082 get_section_flags (const struct dwarf2_section_info *section)
2083 {
2084 asection *sectp = get_section_bfd_section (section);
2085
2086 gdb_assert (sectp != NULL);
2087 return bfd_get_section_flags (sectp->owner, sectp);
2088 }
2089
2090 /* When loading sections, we look either for uncompressed section or for
2091 compressed section names. */
2092
2093 static int
2094 section_is_p (const char *section_name,
2095 const struct dwarf2_section_names *names)
2096 {
2097 if (names->normal != NULL
2098 && strcmp (section_name, names->normal) == 0)
2099 return 1;
2100 if (names->compressed != NULL
2101 && strcmp (section_name, names->compressed) == 0)
2102 return 1;
2103 return 0;
2104 }
2105
2106 /* This function is mapped across the sections and remembers the
2107 offset and size of each of the debugging sections we are interested
2108 in. */
2109
2110 static void
2111 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2112 {
2113 const struct dwarf2_debug_sections *names;
2114 flagword aflag = bfd_get_section_flags (abfd, sectp);
2115
2116 if (vnames == NULL)
2117 names = &dwarf2_elf_names;
2118 else
2119 names = (const struct dwarf2_debug_sections *) vnames;
2120
2121 if ((aflag & SEC_HAS_CONTENTS) == 0)
2122 {
2123 }
2124 else if (section_is_p (sectp->name, &names->info))
2125 {
2126 dwarf2_per_objfile->info.s.asection = sectp;
2127 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2128 }
2129 else if (section_is_p (sectp->name, &names->abbrev))
2130 {
2131 dwarf2_per_objfile->abbrev.s.asection = sectp;
2132 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2133 }
2134 else if (section_is_p (sectp->name, &names->line))
2135 {
2136 dwarf2_per_objfile->line.s.asection = sectp;
2137 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2138 }
2139 else if (section_is_p (sectp->name, &names->loc))
2140 {
2141 dwarf2_per_objfile->loc.s.asection = sectp;
2142 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2143 }
2144 else if (section_is_p (sectp->name, &names->macinfo))
2145 {
2146 dwarf2_per_objfile->macinfo.s.asection = sectp;
2147 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2148 }
2149 else if (section_is_p (sectp->name, &names->macro))
2150 {
2151 dwarf2_per_objfile->macro.s.asection = sectp;
2152 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2153 }
2154 else if (section_is_p (sectp->name, &names->str))
2155 {
2156 dwarf2_per_objfile->str.s.asection = sectp;
2157 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2158 }
2159 else if (section_is_p (sectp->name, &names->addr))
2160 {
2161 dwarf2_per_objfile->addr.s.asection = sectp;
2162 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2163 }
2164 else if (section_is_p (sectp->name, &names->frame))
2165 {
2166 dwarf2_per_objfile->frame.s.asection = sectp;
2167 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2168 }
2169 else if (section_is_p (sectp->name, &names->eh_frame))
2170 {
2171 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2172 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2173 }
2174 else if (section_is_p (sectp->name, &names->ranges))
2175 {
2176 dwarf2_per_objfile->ranges.s.asection = sectp;
2177 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2178 }
2179 else if (section_is_p (sectp->name, &names->types))
2180 {
2181 struct dwarf2_section_info type_section;
2182
2183 memset (&type_section, 0, sizeof (type_section));
2184 type_section.s.asection = sectp;
2185 type_section.size = bfd_get_section_size (sectp);
2186
2187 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2188 &type_section);
2189 }
2190 else if (section_is_p (sectp->name, &names->gdb_index))
2191 {
2192 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2193 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2194 }
2195
2196 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2197 && bfd_section_vma (abfd, sectp) == 0)
2198 dwarf2_per_objfile->has_section_at_zero = 1;
2199 }
2200
2201 /* A helper function that decides whether a section is empty,
2202 or not present. */
2203
2204 static int
2205 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2206 {
2207 if (section->is_virtual)
2208 return section->size == 0;
2209 return section->s.asection == NULL || section->size == 0;
2210 }
2211
2212 /* Read the contents of the section INFO.
2213 OBJFILE is the main object file, but not necessarily the file where
2214 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2215 of the DWO file.
2216 If the section is compressed, uncompress it before returning. */
2217
2218 static void
2219 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2220 {
2221 asection *sectp;
2222 bfd *abfd;
2223 gdb_byte *buf, *retbuf;
2224
2225 if (info->readin)
2226 return;
2227 info->buffer = NULL;
2228 info->readin = 1;
2229
2230 if (dwarf2_section_empty_p (info))
2231 return;
2232
2233 sectp = get_section_bfd_section (info);
2234
2235 /* If this is a virtual section we need to read in the real one first. */
2236 if (info->is_virtual)
2237 {
2238 struct dwarf2_section_info *containing_section =
2239 get_containing_section (info);
2240
2241 gdb_assert (sectp != NULL);
2242 if ((sectp->flags & SEC_RELOC) != 0)
2243 {
2244 error (_("Dwarf Error: DWP format V2 with relocations is not"
2245 " supported in section %s [in module %s]"),
2246 get_section_name (info), get_section_file_name (info));
2247 }
2248 dwarf2_read_section (objfile, containing_section);
2249 /* Other code should have already caught virtual sections that don't
2250 fit. */
2251 gdb_assert (info->virtual_offset + info->size
2252 <= containing_section->size);
2253 /* If the real section is empty or there was a problem reading the
2254 section we shouldn't get here. */
2255 gdb_assert (containing_section->buffer != NULL);
2256 info->buffer = containing_section->buffer + info->virtual_offset;
2257 return;
2258 }
2259
2260 /* If the section has relocations, we must read it ourselves.
2261 Otherwise we attach it to the BFD. */
2262 if ((sectp->flags & SEC_RELOC) == 0)
2263 {
2264 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2265 return;
2266 }
2267
2268 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2269 info->buffer = buf;
2270
2271 /* When debugging .o files, we may need to apply relocations; see
2272 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2273 We never compress sections in .o files, so we only need to
2274 try this when the section is not compressed. */
2275 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2276 if (retbuf != NULL)
2277 {
2278 info->buffer = retbuf;
2279 return;
2280 }
2281
2282 abfd = get_section_bfd_owner (info);
2283 gdb_assert (abfd != NULL);
2284
2285 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2286 || bfd_bread (buf, info->size, abfd) != info->size)
2287 {
2288 error (_("Dwarf Error: Can't read DWARF data"
2289 " in section %s [in module %s]"),
2290 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2291 }
2292 }
2293
2294 /* A helper function that returns the size of a section in a safe way.
2295 If you are positive that the section has been read before using the
2296 size, then it is safe to refer to the dwarf2_section_info object's
2297 "size" field directly. In other cases, you must call this
2298 function, because for compressed sections the size field is not set
2299 correctly until the section has been read. */
2300
2301 static bfd_size_type
2302 dwarf2_section_size (struct objfile *objfile,
2303 struct dwarf2_section_info *info)
2304 {
2305 if (!info->readin)
2306 dwarf2_read_section (objfile, info);
2307 return info->size;
2308 }
2309
2310 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2311 SECTION_NAME. */
2312
2313 void
2314 dwarf2_get_section_info (struct objfile *objfile,
2315 enum dwarf2_section_enum sect,
2316 asection **sectp, const gdb_byte **bufp,
2317 bfd_size_type *sizep)
2318 {
2319 struct dwarf2_per_objfile *data
2320 = objfile_data (objfile, dwarf2_objfile_data_key);
2321 struct dwarf2_section_info *info;
2322
2323 /* We may see an objfile without any DWARF, in which case we just
2324 return nothing. */
2325 if (data == NULL)
2326 {
2327 *sectp = NULL;
2328 *bufp = NULL;
2329 *sizep = 0;
2330 return;
2331 }
2332 switch (sect)
2333 {
2334 case DWARF2_DEBUG_FRAME:
2335 info = &data->frame;
2336 break;
2337 case DWARF2_EH_FRAME:
2338 info = &data->eh_frame;
2339 break;
2340 default:
2341 gdb_assert_not_reached ("unexpected section");
2342 }
2343
2344 dwarf2_read_section (objfile, info);
2345
2346 *sectp = get_section_bfd_section (info);
2347 *bufp = info->buffer;
2348 *sizep = info->size;
2349 }
2350
2351 /* A helper function to find the sections for a .dwz file. */
2352
2353 static void
2354 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2355 {
2356 struct dwz_file *dwz_file = arg;
2357
2358 /* Note that we only support the standard ELF names, because .dwz
2359 is ELF-only (at the time of writing). */
2360 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2361 {
2362 dwz_file->abbrev.s.asection = sectp;
2363 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2364 }
2365 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2366 {
2367 dwz_file->info.s.asection = sectp;
2368 dwz_file->info.size = bfd_get_section_size (sectp);
2369 }
2370 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2371 {
2372 dwz_file->str.s.asection = sectp;
2373 dwz_file->str.size = bfd_get_section_size (sectp);
2374 }
2375 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2376 {
2377 dwz_file->line.s.asection = sectp;
2378 dwz_file->line.size = bfd_get_section_size (sectp);
2379 }
2380 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2381 {
2382 dwz_file->macro.s.asection = sectp;
2383 dwz_file->macro.size = bfd_get_section_size (sectp);
2384 }
2385 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2386 {
2387 dwz_file->gdb_index.s.asection = sectp;
2388 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2389 }
2390 }
2391
2392 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2393 there is no .gnu_debugaltlink section in the file. Error if there
2394 is such a section but the file cannot be found. */
2395
2396 static struct dwz_file *
2397 dwarf2_get_dwz_file (void)
2398 {
2399 bfd *dwz_bfd;
2400 char *data;
2401 struct cleanup *cleanup;
2402 const char *filename;
2403 struct dwz_file *result;
2404 bfd_size_type buildid_len_arg;
2405 size_t buildid_len;
2406 bfd_byte *buildid;
2407
2408 if (dwarf2_per_objfile->dwz_file != NULL)
2409 return dwarf2_per_objfile->dwz_file;
2410
2411 bfd_set_error (bfd_error_no_error);
2412 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2413 &buildid_len_arg, &buildid);
2414 if (data == NULL)
2415 {
2416 if (bfd_get_error () == bfd_error_no_error)
2417 return NULL;
2418 error (_("could not read '.gnu_debugaltlink' section: %s"),
2419 bfd_errmsg (bfd_get_error ()));
2420 }
2421 cleanup = make_cleanup (xfree, data);
2422 make_cleanup (xfree, buildid);
2423
2424 buildid_len = (size_t) buildid_len_arg;
2425
2426 filename = (const char *) data;
2427 if (!IS_ABSOLUTE_PATH (filename))
2428 {
2429 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2430 char *rel;
2431
2432 make_cleanup (xfree, abs);
2433 abs = ldirname (abs);
2434 make_cleanup (xfree, abs);
2435
2436 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2437 make_cleanup (xfree, rel);
2438 filename = rel;
2439 }
2440
2441 /* First try the file name given in the section. If that doesn't
2442 work, try to use the build-id instead. */
2443 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2444 if (dwz_bfd != NULL)
2445 {
2446 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2447 {
2448 gdb_bfd_unref (dwz_bfd);
2449 dwz_bfd = NULL;
2450 }
2451 }
2452
2453 if (dwz_bfd == NULL)
2454 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2455
2456 if (dwz_bfd == NULL)
2457 error (_("could not find '.gnu_debugaltlink' file for %s"),
2458 objfile_name (dwarf2_per_objfile->objfile));
2459
2460 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2461 struct dwz_file);
2462 result->dwz_bfd = dwz_bfd;
2463
2464 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2465
2466 do_cleanups (cleanup);
2467
2468 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2469 dwarf2_per_objfile->dwz_file = result;
2470 return result;
2471 }
2472 \f
2473 /* DWARF quick_symbols_functions support. */
2474
2475 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2476 unique line tables, so we maintain a separate table of all .debug_line
2477 derived entries to support the sharing.
2478 All the quick functions need is the list of file names. We discard the
2479 line_header when we're done and don't need to record it here. */
2480 struct quick_file_names
2481 {
2482 /* The data used to construct the hash key. */
2483 struct stmt_list_hash hash;
2484
2485 /* The number of entries in file_names, real_names. */
2486 unsigned int num_file_names;
2487
2488 /* The file names from the line table, after being run through
2489 file_full_name. */
2490 const char **file_names;
2491
2492 /* The file names from the line table after being run through
2493 gdb_realpath. These are computed lazily. */
2494 const char **real_names;
2495 };
2496
2497 /* When using the index (and thus not using psymtabs), each CU has an
2498 object of this type. This is used to hold information needed by
2499 the various "quick" methods. */
2500 struct dwarf2_per_cu_quick_data
2501 {
2502 /* The file table. This can be NULL if there was no file table
2503 or it's currently not read in.
2504 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2505 struct quick_file_names *file_names;
2506
2507 /* The corresponding symbol table. This is NULL if symbols for this
2508 CU have not yet been read. */
2509 struct symtab *symtab;
2510
2511 /* A temporary mark bit used when iterating over all CUs in
2512 expand_symtabs_matching. */
2513 unsigned int mark : 1;
2514
2515 /* True if we've tried to read the file table and found there isn't one.
2516 There will be no point in trying to read it again next time. */
2517 unsigned int no_file_data : 1;
2518 };
2519
2520 /* Utility hash function for a stmt_list_hash. */
2521
2522 static hashval_t
2523 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2524 {
2525 hashval_t v = 0;
2526
2527 if (stmt_list_hash->dwo_unit != NULL)
2528 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2529 v += stmt_list_hash->line_offset.sect_off;
2530 return v;
2531 }
2532
2533 /* Utility equality function for a stmt_list_hash. */
2534
2535 static int
2536 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2537 const struct stmt_list_hash *rhs)
2538 {
2539 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2540 return 0;
2541 if (lhs->dwo_unit != NULL
2542 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2543 return 0;
2544
2545 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2546 }
2547
2548 /* Hash function for a quick_file_names. */
2549
2550 static hashval_t
2551 hash_file_name_entry (const void *e)
2552 {
2553 const struct quick_file_names *file_data = e;
2554
2555 return hash_stmt_list_entry (&file_data->hash);
2556 }
2557
2558 /* Equality function for a quick_file_names. */
2559
2560 static int
2561 eq_file_name_entry (const void *a, const void *b)
2562 {
2563 const struct quick_file_names *ea = a;
2564 const struct quick_file_names *eb = b;
2565
2566 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2567 }
2568
2569 /* Delete function for a quick_file_names. */
2570
2571 static void
2572 delete_file_name_entry (void *e)
2573 {
2574 struct quick_file_names *file_data = e;
2575 int i;
2576
2577 for (i = 0; i < file_data->num_file_names; ++i)
2578 {
2579 xfree ((void*) file_data->file_names[i]);
2580 if (file_data->real_names)
2581 xfree ((void*) file_data->real_names[i]);
2582 }
2583
2584 /* The space for the struct itself lives on objfile_obstack,
2585 so we don't free it here. */
2586 }
2587
2588 /* Create a quick_file_names hash table. */
2589
2590 static htab_t
2591 create_quick_file_names_table (unsigned int nr_initial_entries)
2592 {
2593 return htab_create_alloc (nr_initial_entries,
2594 hash_file_name_entry, eq_file_name_entry,
2595 delete_file_name_entry, xcalloc, xfree);
2596 }
2597
2598 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2599 have to be created afterwards. You should call age_cached_comp_units after
2600 processing PER_CU->CU. dw2_setup must have been already called. */
2601
2602 static void
2603 load_cu (struct dwarf2_per_cu_data *per_cu)
2604 {
2605 if (per_cu->is_debug_types)
2606 load_full_type_unit (per_cu);
2607 else
2608 load_full_comp_unit (per_cu, language_minimal);
2609
2610 gdb_assert (per_cu->cu != NULL);
2611
2612 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2613 }
2614
2615 /* Read in the symbols for PER_CU. */
2616
2617 static void
2618 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2619 {
2620 struct cleanup *back_to;
2621
2622 /* Skip type_unit_groups, reading the type units they contain
2623 is handled elsewhere. */
2624 if (IS_TYPE_UNIT_GROUP (per_cu))
2625 return;
2626
2627 back_to = make_cleanup (dwarf2_release_queue, NULL);
2628
2629 if (dwarf2_per_objfile->using_index
2630 ? per_cu->v.quick->symtab == NULL
2631 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2632 {
2633 queue_comp_unit (per_cu, language_minimal);
2634 load_cu (per_cu);
2635
2636 /* If we just loaded a CU from a DWO, and we're working with an index
2637 that may badly handle TUs, load all the TUs in that DWO as well.
2638 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2639 if (!per_cu->is_debug_types
2640 && per_cu->cu->dwo_unit != NULL
2641 && dwarf2_per_objfile->index_table != NULL
2642 && dwarf2_per_objfile->index_table->version <= 7
2643 /* DWP files aren't supported yet. */
2644 && get_dwp_file () == NULL)
2645 queue_and_load_all_dwo_tus (per_cu);
2646 }
2647
2648 process_queue ();
2649
2650 /* Age the cache, releasing compilation units that have not
2651 been used recently. */
2652 age_cached_comp_units ();
2653
2654 do_cleanups (back_to);
2655 }
2656
2657 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2658 the objfile from which this CU came. Returns the resulting symbol
2659 table. */
2660
2661 static struct symtab *
2662 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2663 {
2664 gdb_assert (dwarf2_per_objfile->using_index);
2665 if (!per_cu->v.quick->symtab)
2666 {
2667 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2668 increment_reading_symtab ();
2669 dw2_do_instantiate_symtab (per_cu);
2670 process_cu_includes ();
2671 do_cleanups (back_to);
2672 }
2673 return per_cu->v.quick->symtab;
2674 }
2675
2676 /* Return the CU given its index.
2677
2678 This is intended for loops like:
2679
2680 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2681 + dwarf2_per_objfile->n_type_units); ++i)
2682 {
2683 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2684
2685 ...;
2686 }
2687 */
2688
2689 static struct dwarf2_per_cu_data *
2690 dw2_get_cu (int index)
2691 {
2692 if (index >= dwarf2_per_objfile->n_comp_units)
2693 {
2694 index -= dwarf2_per_objfile->n_comp_units;
2695 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2696 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2697 }
2698
2699 return dwarf2_per_objfile->all_comp_units[index];
2700 }
2701
2702 /* Return the primary CU given its index.
2703 The difference between this function and dw2_get_cu is in the handling
2704 of type units (TUs). Here we return the type_unit_group object.
2705
2706 This is intended for loops like:
2707
2708 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2709 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2710 {
2711 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2712
2713 ...;
2714 }
2715 */
2716
2717 static struct dwarf2_per_cu_data *
2718 dw2_get_primary_cu (int index)
2719 {
2720 if (index >= dwarf2_per_objfile->n_comp_units)
2721 {
2722 index -= dwarf2_per_objfile->n_comp_units;
2723 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2724 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2725 }
2726
2727 return dwarf2_per_objfile->all_comp_units[index];
2728 }
2729
2730 /* A helper for create_cus_from_index that handles a given list of
2731 CUs. */
2732
2733 static void
2734 create_cus_from_index_list (struct objfile *objfile,
2735 const gdb_byte *cu_list, offset_type n_elements,
2736 struct dwarf2_section_info *section,
2737 int is_dwz,
2738 int base_offset)
2739 {
2740 offset_type i;
2741
2742 for (i = 0; i < n_elements; i += 2)
2743 {
2744 struct dwarf2_per_cu_data *the_cu;
2745 ULONGEST offset, length;
2746
2747 gdb_static_assert (sizeof (ULONGEST) >= 8);
2748 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2749 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2750 cu_list += 2 * 8;
2751
2752 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2753 struct dwarf2_per_cu_data);
2754 the_cu->offset.sect_off = offset;
2755 the_cu->length = length;
2756 the_cu->objfile = objfile;
2757 the_cu->section = section;
2758 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2759 struct dwarf2_per_cu_quick_data);
2760 the_cu->is_dwz = is_dwz;
2761 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2762 }
2763 }
2764
2765 /* Read the CU list from the mapped index, and use it to create all
2766 the CU objects for this objfile. */
2767
2768 static void
2769 create_cus_from_index (struct objfile *objfile,
2770 const gdb_byte *cu_list, offset_type cu_list_elements,
2771 const gdb_byte *dwz_list, offset_type dwz_elements)
2772 {
2773 struct dwz_file *dwz;
2774
2775 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2776 dwarf2_per_objfile->all_comp_units
2777 = obstack_alloc (&objfile->objfile_obstack,
2778 dwarf2_per_objfile->n_comp_units
2779 * sizeof (struct dwarf2_per_cu_data *));
2780
2781 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2782 &dwarf2_per_objfile->info, 0, 0);
2783
2784 if (dwz_elements == 0)
2785 return;
2786
2787 dwz = dwarf2_get_dwz_file ();
2788 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2789 cu_list_elements / 2);
2790 }
2791
2792 /* Create the signatured type hash table from the index. */
2793
2794 static void
2795 create_signatured_type_table_from_index (struct objfile *objfile,
2796 struct dwarf2_section_info *section,
2797 const gdb_byte *bytes,
2798 offset_type elements)
2799 {
2800 offset_type i;
2801 htab_t sig_types_hash;
2802
2803 dwarf2_per_objfile->n_type_units = elements / 3;
2804 dwarf2_per_objfile->all_type_units
2805 = xmalloc (dwarf2_per_objfile->n_type_units
2806 * sizeof (struct signatured_type *));
2807
2808 sig_types_hash = allocate_signatured_type_table (objfile);
2809
2810 for (i = 0; i < elements; i += 3)
2811 {
2812 struct signatured_type *sig_type;
2813 ULONGEST offset, type_offset_in_tu, signature;
2814 void **slot;
2815
2816 gdb_static_assert (sizeof (ULONGEST) >= 8);
2817 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2818 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2819 BFD_ENDIAN_LITTLE);
2820 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2821 bytes += 3 * 8;
2822
2823 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2824 struct signatured_type);
2825 sig_type->signature = signature;
2826 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2827 sig_type->per_cu.is_debug_types = 1;
2828 sig_type->per_cu.section = section;
2829 sig_type->per_cu.offset.sect_off = offset;
2830 sig_type->per_cu.objfile = objfile;
2831 sig_type->per_cu.v.quick
2832 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2833 struct dwarf2_per_cu_quick_data);
2834
2835 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2836 *slot = sig_type;
2837
2838 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2839 }
2840
2841 dwarf2_per_objfile->signatured_types = sig_types_hash;
2842 }
2843
2844 /* Read the address map data from the mapped index, and use it to
2845 populate the objfile's psymtabs_addrmap. */
2846
2847 static void
2848 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2849 {
2850 const gdb_byte *iter, *end;
2851 struct obstack temp_obstack;
2852 struct addrmap *mutable_map;
2853 struct cleanup *cleanup;
2854 CORE_ADDR baseaddr;
2855
2856 obstack_init (&temp_obstack);
2857 cleanup = make_cleanup_obstack_free (&temp_obstack);
2858 mutable_map = addrmap_create_mutable (&temp_obstack);
2859
2860 iter = index->address_table;
2861 end = iter + index->address_table_size;
2862
2863 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2864
2865 while (iter < end)
2866 {
2867 ULONGEST hi, lo, cu_index;
2868 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2869 iter += 8;
2870 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2871 iter += 8;
2872 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2873 iter += 4;
2874
2875 if (lo > hi)
2876 {
2877 complaint (&symfile_complaints,
2878 _(".gdb_index address table has invalid range (%s - %s)"),
2879 hex_string (lo), hex_string (hi));
2880 continue;
2881 }
2882
2883 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2884 {
2885 complaint (&symfile_complaints,
2886 _(".gdb_index address table has invalid CU number %u"),
2887 (unsigned) cu_index);
2888 continue;
2889 }
2890
2891 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2892 dw2_get_cu (cu_index));
2893 }
2894
2895 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2896 &objfile->objfile_obstack);
2897 do_cleanups (cleanup);
2898 }
2899
2900 /* The hash function for strings in the mapped index. This is the same as
2901 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2902 implementation. This is necessary because the hash function is tied to the
2903 format of the mapped index file. The hash values do not have to match with
2904 SYMBOL_HASH_NEXT.
2905
2906 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2907
2908 static hashval_t
2909 mapped_index_string_hash (int index_version, const void *p)
2910 {
2911 const unsigned char *str = (const unsigned char *) p;
2912 hashval_t r = 0;
2913 unsigned char c;
2914
2915 while ((c = *str++) != 0)
2916 {
2917 if (index_version >= 5)
2918 c = tolower (c);
2919 r = r * 67 + c - 113;
2920 }
2921
2922 return r;
2923 }
2924
2925 /* Find a slot in the mapped index INDEX for the object named NAME.
2926 If NAME is found, set *VEC_OUT to point to the CU vector in the
2927 constant pool and return 1. If NAME cannot be found, return 0. */
2928
2929 static int
2930 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2931 offset_type **vec_out)
2932 {
2933 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2934 offset_type hash;
2935 offset_type slot, step;
2936 int (*cmp) (const char *, const char *);
2937
2938 if (current_language->la_language == language_cplus
2939 || current_language->la_language == language_java
2940 || current_language->la_language == language_fortran)
2941 {
2942 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2943 not contain any. */
2944 const char *paren = strchr (name, '(');
2945
2946 if (paren)
2947 {
2948 char *dup;
2949
2950 dup = xmalloc (paren - name + 1);
2951 memcpy (dup, name, paren - name);
2952 dup[paren - name] = 0;
2953
2954 make_cleanup (xfree, dup);
2955 name = dup;
2956 }
2957 }
2958
2959 /* Index version 4 did not support case insensitive searches. But the
2960 indices for case insensitive languages are built in lowercase, therefore
2961 simulate our NAME being searched is also lowercased. */
2962 hash = mapped_index_string_hash ((index->version == 4
2963 && case_sensitivity == case_sensitive_off
2964 ? 5 : index->version),
2965 name);
2966
2967 slot = hash & (index->symbol_table_slots - 1);
2968 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2969 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2970
2971 for (;;)
2972 {
2973 /* Convert a slot number to an offset into the table. */
2974 offset_type i = 2 * slot;
2975 const char *str;
2976 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2977 {
2978 do_cleanups (back_to);
2979 return 0;
2980 }
2981
2982 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2983 if (!cmp (name, str))
2984 {
2985 *vec_out = (offset_type *) (index->constant_pool
2986 + MAYBE_SWAP (index->symbol_table[i + 1]));
2987 do_cleanups (back_to);
2988 return 1;
2989 }
2990
2991 slot = (slot + step) & (index->symbol_table_slots - 1);
2992 }
2993 }
2994
2995 /* A helper function that reads the .gdb_index from SECTION and fills
2996 in MAP. FILENAME is the name of the file containing the section;
2997 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2998 ok to use deprecated sections.
2999
3000 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3001 out parameters that are filled in with information about the CU and
3002 TU lists in the section.
3003
3004 Returns 1 if all went well, 0 otherwise. */
3005
3006 static int
3007 read_index_from_section (struct objfile *objfile,
3008 const char *filename,
3009 int deprecated_ok,
3010 struct dwarf2_section_info *section,
3011 struct mapped_index *map,
3012 const gdb_byte **cu_list,
3013 offset_type *cu_list_elements,
3014 const gdb_byte **types_list,
3015 offset_type *types_list_elements)
3016 {
3017 const gdb_byte *addr;
3018 offset_type version;
3019 offset_type *metadata;
3020 int i;
3021
3022 if (dwarf2_section_empty_p (section))
3023 return 0;
3024
3025 /* Older elfutils strip versions could keep the section in the main
3026 executable while splitting it for the separate debug info file. */
3027 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3028 return 0;
3029
3030 dwarf2_read_section (objfile, section);
3031
3032 addr = section->buffer;
3033 /* Version check. */
3034 version = MAYBE_SWAP (*(offset_type *) addr);
3035 /* Versions earlier than 3 emitted every copy of a psymbol. This
3036 causes the index to behave very poorly for certain requests. Version 3
3037 contained incomplete addrmap. So, it seems better to just ignore such
3038 indices. */
3039 if (version < 4)
3040 {
3041 static int warning_printed = 0;
3042 if (!warning_printed)
3043 {
3044 warning (_("Skipping obsolete .gdb_index section in %s."),
3045 filename);
3046 warning_printed = 1;
3047 }
3048 return 0;
3049 }
3050 /* Index version 4 uses a different hash function than index version
3051 5 and later.
3052
3053 Versions earlier than 6 did not emit psymbols for inlined
3054 functions. Using these files will cause GDB not to be able to
3055 set breakpoints on inlined functions by name, so we ignore these
3056 indices unless the user has done
3057 "set use-deprecated-index-sections on". */
3058 if (version < 6 && !deprecated_ok)
3059 {
3060 static int warning_printed = 0;
3061 if (!warning_printed)
3062 {
3063 warning (_("\
3064 Skipping deprecated .gdb_index section in %s.\n\
3065 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3066 to use the section anyway."),
3067 filename);
3068 warning_printed = 1;
3069 }
3070 return 0;
3071 }
3072 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3073 of the TU (for symbols coming from TUs),
3074 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3075 Plus gold-generated indices can have duplicate entries for global symbols,
3076 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3077 These are just performance bugs, and we can't distinguish gdb-generated
3078 indices from gold-generated ones, so issue no warning here. */
3079
3080 /* Indexes with higher version than the one supported by GDB may be no
3081 longer backward compatible. */
3082 if (version > 8)
3083 return 0;
3084
3085 map->version = version;
3086 map->total_size = section->size;
3087
3088 metadata = (offset_type *) (addr + sizeof (offset_type));
3089
3090 i = 0;
3091 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3092 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3093 / 8);
3094 ++i;
3095
3096 *types_list = addr + MAYBE_SWAP (metadata[i]);
3097 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3098 - MAYBE_SWAP (metadata[i]))
3099 / 8);
3100 ++i;
3101
3102 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3103 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3104 - MAYBE_SWAP (metadata[i]));
3105 ++i;
3106
3107 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3108 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3109 - MAYBE_SWAP (metadata[i]))
3110 / (2 * sizeof (offset_type)));
3111 ++i;
3112
3113 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3114
3115 return 1;
3116 }
3117
3118
3119 /* Read the index file. If everything went ok, initialize the "quick"
3120 elements of all the CUs and return 1. Otherwise, return 0. */
3121
3122 static int
3123 dwarf2_read_index (struct objfile *objfile)
3124 {
3125 struct mapped_index local_map, *map;
3126 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3127 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3128 struct dwz_file *dwz;
3129
3130 if (!read_index_from_section (objfile, objfile_name (objfile),
3131 use_deprecated_index_sections,
3132 &dwarf2_per_objfile->gdb_index, &local_map,
3133 &cu_list, &cu_list_elements,
3134 &types_list, &types_list_elements))
3135 return 0;
3136
3137 /* Don't use the index if it's empty. */
3138 if (local_map.symbol_table_slots == 0)
3139 return 0;
3140
3141 /* If there is a .dwz file, read it so we can get its CU list as
3142 well. */
3143 dwz = dwarf2_get_dwz_file ();
3144 if (dwz != NULL)
3145 {
3146 struct mapped_index dwz_map;
3147 const gdb_byte *dwz_types_ignore;
3148 offset_type dwz_types_elements_ignore;
3149
3150 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3151 1,
3152 &dwz->gdb_index, &dwz_map,
3153 &dwz_list, &dwz_list_elements,
3154 &dwz_types_ignore,
3155 &dwz_types_elements_ignore))
3156 {
3157 warning (_("could not read '.gdb_index' section from %s; skipping"),
3158 bfd_get_filename (dwz->dwz_bfd));
3159 return 0;
3160 }
3161 }
3162
3163 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3164 dwz_list_elements);
3165
3166 if (types_list_elements)
3167 {
3168 struct dwarf2_section_info *section;
3169
3170 /* We can only handle a single .debug_types when we have an
3171 index. */
3172 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3173 return 0;
3174
3175 section = VEC_index (dwarf2_section_info_def,
3176 dwarf2_per_objfile->types, 0);
3177
3178 create_signatured_type_table_from_index (objfile, section, types_list,
3179 types_list_elements);
3180 }
3181
3182 create_addrmap_from_index (objfile, &local_map);
3183
3184 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3185 *map = local_map;
3186
3187 dwarf2_per_objfile->index_table = map;
3188 dwarf2_per_objfile->using_index = 1;
3189 dwarf2_per_objfile->quick_file_names_table =
3190 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3191
3192 return 1;
3193 }
3194
3195 /* A helper for the "quick" functions which sets the global
3196 dwarf2_per_objfile according to OBJFILE. */
3197
3198 static void
3199 dw2_setup (struct objfile *objfile)
3200 {
3201 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3202 gdb_assert (dwarf2_per_objfile);
3203 }
3204
3205 /* die_reader_func for dw2_get_file_names. */
3206
3207 static void
3208 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3209 const gdb_byte *info_ptr,
3210 struct die_info *comp_unit_die,
3211 int has_children,
3212 void *data)
3213 {
3214 struct dwarf2_cu *cu = reader->cu;
3215 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3216 struct objfile *objfile = dwarf2_per_objfile->objfile;
3217 struct dwarf2_per_cu_data *lh_cu;
3218 struct line_header *lh;
3219 struct attribute *attr;
3220 int i;
3221 const char *name, *comp_dir;
3222 void **slot;
3223 struct quick_file_names *qfn;
3224 unsigned int line_offset;
3225
3226 gdb_assert (! this_cu->is_debug_types);
3227
3228 /* Our callers never want to match partial units -- instead they
3229 will match the enclosing full CU. */
3230 if (comp_unit_die->tag == DW_TAG_partial_unit)
3231 {
3232 this_cu->v.quick->no_file_data = 1;
3233 return;
3234 }
3235
3236 lh_cu = this_cu;
3237 lh = NULL;
3238 slot = NULL;
3239 line_offset = 0;
3240
3241 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3242 if (attr)
3243 {
3244 struct quick_file_names find_entry;
3245
3246 line_offset = DW_UNSND (attr);
3247
3248 /* We may have already read in this line header (TU line header sharing).
3249 If we have we're done. */
3250 find_entry.hash.dwo_unit = cu->dwo_unit;
3251 find_entry.hash.line_offset.sect_off = line_offset;
3252 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3253 &find_entry, INSERT);
3254 if (*slot != NULL)
3255 {
3256 lh_cu->v.quick->file_names = *slot;
3257 return;
3258 }
3259
3260 lh = dwarf_decode_line_header (line_offset, cu);
3261 }
3262 if (lh == NULL)
3263 {
3264 lh_cu->v.quick->no_file_data = 1;
3265 return;
3266 }
3267
3268 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3269 qfn->hash.dwo_unit = cu->dwo_unit;
3270 qfn->hash.line_offset.sect_off = line_offset;
3271 gdb_assert (slot != NULL);
3272 *slot = qfn;
3273
3274 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3275
3276 qfn->num_file_names = lh->num_file_names;
3277 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3278 lh->num_file_names * sizeof (char *));
3279 for (i = 0; i < lh->num_file_names; ++i)
3280 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3281 qfn->real_names = NULL;
3282
3283 free_line_header (lh);
3284
3285 lh_cu->v.quick->file_names = qfn;
3286 }
3287
3288 /* A helper for the "quick" functions which attempts to read the line
3289 table for THIS_CU. */
3290
3291 static struct quick_file_names *
3292 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3293 {
3294 /* This should never be called for TUs. */
3295 gdb_assert (! this_cu->is_debug_types);
3296 /* Nor type unit groups. */
3297 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3298
3299 if (this_cu->v.quick->file_names != NULL)
3300 return this_cu->v.quick->file_names;
3301 /* If we know there is no line data, no point in looking again. */
3302 if (this_cu->v.quick->no_file_data)
3303 return NULL;
3304
3305 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3306
3307 if (this_cu->v.quick->no_file_data)
3308 return NULL;
3309 return this_cu->v.quick->file_names;
3310 }
3311
3312 /* A helper for the "quick" functions which computes and caches the
3313 real path for a given file name from the line table. */
3314
3315 static const char *
3316 dw2_get_real_path (struct objfile *objfile,
3317 struct quick_file_names *qfn, int index)
3318 {
3319 if (qfn->real_names == NULL)
3320 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3321 qfn->num_file_names, char *);
3322
3323 if (qfn->real_names[index] == NULL)
3324 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3325
3326 return qfn->real_names[index];
3327 }
3328
3329 static struct symtab *
3330 dw2_find_last_source_symtab (struct objfile *objfile)
3331 {
3332 int index;
3333
3334 dw2_setup (objfile);
3335 index = dwarf2_per_objfile->n_comp_units - 1;
3336 return dw2_instantiate_symtab (dw2_get_cu (index));
3337 }
3338
3339 /* Traversal function for dw2_forget_cached_source_info. */
3340
3341 static int
3342 dw2_free_cached_file_names (void **slot, void *info)
3343 {
3344 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3345
3346 if (file_data->real_names)
3347 {
3348 int i;
3349
3350 for (i = 0; i < file_data->num_file_names; ++i)
3351 {
3352 xfree ((void*) file_data->real_names[i]);
3353 file_data->real_names[i] = NULL;
3354 }
3355 }
3356
3357 return 1;
3358 }
3359
3360 static void
3361 dw2_forget_cached_source_info (struct objfile *objfile)
3362 {
3363 dw2_setup (objfile);
3364
3365 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3366 dw2_free_cached_file_names, NULL);
3367 }
3368
3369 /* Helper function for dw2_map_symtabs_matching_filename that expands
3370 the symtabs and calls the iterator. */
3371
3372 static int
3373 dw2_map_expand_apply (struct objfile *objfile,
3374 struct dwarf2_per_cu_data *per_cu,
3375 const char *name, const char *real_path,
3376 int (*callback) (struct symtab *, void *),
3377 void *data)
3378 {
3379 struct symtab *last_made = objfile->symtabs;
3380
3381 /* Don't visit already-expanded CUs. */
3382 if (per_cu->v.quick->symtab)
3383 return 0;
3384
3385 /* This may expand more than one symtab, and we want to iterate over
3386 all of them. */
3387 dw2_instantiate_symtab (per_cu);
3388
3389 return iterate_over_some_symtabs (name, real_path, callback, data,
3390 objfile->symtabs, last_made);
3391 }
3392
3393 /* Implementation of the map_symtabs_matching_filename method. */
3394
3395 static int
3396 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3397 const char *real_path,
3398 int (*callback) (struct symtab *, void *),
3399 void *data)
3400 {
3401 int i;
3402 const char *name_basename = lbasename (name);
3403
3404 dw2_setup (objfile);
3405
3406 /* The rule is CUs specify all the files, including those used by
3407 any TU, so there's no need to scan TUs here. */
3408
3409 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3410 {
3411 int j;
3412 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3413 struct quick_file_names *file_data;
3414
3415 /* We only need to look at symtabs not already expanded. */
3416 if (per_cu->v.quick->symtab)
3417 continue;
3418
3419 file_data = dw2_get_file_names (per_cu);
3420 if (file_data == NULL)
3421 continue;
3422
3423 for (j = 0; j < file_data->num_file_names; ++j)
3424 {
3425 const char *this_name = file_data->file_names[j];
3426 const char *this_real_name;
3427
3428 if (compare_filenames_for_search (this_name, name))
3429 {
3430 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3431 callback, data))
3432 return 1;
3433 continue;
3434 }
3435
3436 /* Before we invoke realpath, which can get expensive when many
3437 files are involved, do a quick comparison of the basenames. */
3438 if (! basenames_may_differ
3439 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3440 continue;
3441
3442 this_real_name = dw2_get_real_path (objfile, file_data, j);
3443 if (compare_filenames_for_search (this_real_name, name))
3444 {
3445 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3446 callback, data))
3447 return 1;
3448 continue;
3449 }
3450
3451 if (real_path != NULL)
3452 {
3453 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3454 gdb_assert (IS_ABSOLUTE_PATH (name));
3455 if (this_real_name != NULL
3456 && FILENAME_CMP (real_path, this_real_name) == 0)
3457 {
3458 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3459 callback, data))
3460 return 1;
3461 continue;
3462 }
3463 }
3464 }
3465 }
3466
3467 return 0;
3468 }
3469
3470 /* Struct used to manage iterating over all CUs looking for a symbol. */
3471
3472 struct dw2_symtab_iterator
3473 {
3474 /* The internalized form of .gdb_index. */
3475 struct mapped_index *index;
3476 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3477 int want_specific_block;
3478 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3479 Unused if !WANT_SPECIFIC_BLOCK. */
3480 int block_index;
3481 /* The kind of symbol we're looking for. */
3482 domain_enum domain;
3483 /* The list of CUs from the index entry of the symbol,
3484 or NULL if not found. */
3485 offset_type *vec;
3486 /* The next element in VEC to look at. */
3487 int next;
3488 /* The number of elements in VEC, or zero if there is no match. */
3489 int length;
3490 /* Have we seen a global version of the symbol?
3491 If so we can ignore all further global instances.
3492 This is to work around gold/15646, inefficient gold-generated
3493 indices. */
3494 int global_seen;
3495 };
3496
3497 /* Initialize the index symtab iterator ITER.
3498 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3499 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3500
3501 static void
3502 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3503 struct mapped_index *index,
3504 int want_specific_block,
3505 int block_index,
3506 domain_enum domain,
3507 const char *name)
3508 {
3509 iter->index = index;
3510 iter->want_specific_block = want_specific_block;
3511 iter->block_index = block_index;
3512 iter->domain = domain;
3513 iter->next = 0;
3514 iter->global_seen = 0;
3515
3516 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3517 iter->length = MAYBE_SWAP (*iter->vec);
3518 else
3519 {
3520 iter->vec = NULL;
3521 iter->length = 0;
3522 }
3523 }
3524
3525 /* Return the next matching CU or NULL if there are no more. */
3526
3527 static struct dwarf2_per_cu_data *
3528 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3529 {
3530 for ( ; iter->next < iter->length; ++iter->next)
3531 {
3532 offset_type cu_index_and_attrs =
3533 MAYBE_SWAP (iter->vec[iter->next + 1]);
3534 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3535 struct dwarf2_per_cu_data *per_cu;
3536 int want_static = iter->block_index != GLOBAL_BLOCK;
3537 /* This value is only valid for index versions >= 7. */
3538 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3539 gdb_index_symbol_kind symbol_kind =
3540 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3541 /* Only check the symbol attributes if they're present.
3542 Indices prior to version 7 don't record them,
3543 and indices >= 7 may elide them for certain symbols
3544 (gold does this). */
3545 int attrs_valid =
3546 (iter->index->version >= 7
3547 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3548
3549 /* Don't crash on bad data. */
3550 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3551 + dwarf2_per_objfile->n_type_units))
3552 {
3553 complaint (&symfile_complaints,
3554 _(".gdb_index entry has bad CU index"
3555 " [in module %s]"),
3556 objfile_name (dwarf2_per_objfile->objfile));
3557 continue;
3558 }
3559
3560 per_cu = dw2_get_cu (cu_index);
3561
3562 /* Skip if already read in. */
3563 if (per_cu->v.quick->symtab)
3564 continue;
3565
3566 /* Check static vs global. */
3567 if (attrs_valid)
3568 {
3569 if (iter->want_specific_block
3570 && want_static != is_static)
3571 continue;
3572 /* Work around gold/15646. */
3573 if (!is_static && iter->global_seen)
3574 continue;
3575 if (!is_static)
3576 iter->global_seen = 1;
3577 }
3578
3579 /* Only check the symbol's kind if it has one. */
3580 if (attrs_valid)
3581 {
3582 switch (iter->domain)
3583 {
3584 case VAR_DOMAIN:
3585 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3586 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3587 /* Some types are also in VAR_DOMAIN. */
3588 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3589 continue;
3590 break;
3591 case STRUCT_DOMAIN:
3592 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3593 continue;
3594 break;
3595 case LABEL_DOMAIN:
3596 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3597 continue;
3598 break;
3599 default:
3600 break;
3601 }
3602 }
3603
3604 ++iter->next;
3605 return per_cu;
3606 }
3607
3608 return NULL;
3609 }
3610
3611 static struct symtab *
3612 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3613 const char *name, domain_enum domain)
3614 {
3615 struct symtab *stab_best = NULL;
3616 struct mapped_index *index;
3617
3618 dw2_setup (objfile);
3619
3620 index = dwarf2_per_objfile->index_table;
3621
3622 /* index is NULL if OBJF_READNOW. */
3623 if (index)
3624 {
3625 struct dw2_symtab_iterator iter;
3626 struct dwarf2_per_cu_data *per_cu;
3627
3628 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3629
3630 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3631 {
3632 struct symbol *sym = NULL;
3633 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3634
3635 /* Some caution must be observed with overloaded functions
3636 and methods, since the index will not contain any overload
3637 information (but NAME might contain it). */
3638 if (stab->primary)
3639 {
3640 struct blockvector *bv = BLOCKVECTOR (stab);
3641 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3642
3643 sym = lookup_block_symbol (block, name, domain);
3644 }
3645
3646 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3647 {
3648 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3649 return stab;
3650
3651 stab_best = stab;
3652 }
3653
3654 /* Keep looking through other CUs. */
3655 }
3656 }
3657
3658 return stab_best;
3659 }
3660
3661 static void
3662 dw2_print_stats (struct objfile *objfile)
3663 {
3664 int i, total, count;
3665
3666 dw2_setup (objfile);
3667 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3668 count = 0;
3669 for (i = 0; i < total; ++i)
3670 {
3671 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3672
3673 if (!per_cu->v.quick->symtab)
3674 ++count;
3675 }
3676 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3677 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3678 }
3679
3680 /* This dumps minimal information about the index.
3681 It is called via "mt print objfiles".
3682 One use is to verify .gdb_index has been loaded by the
3683 gdb.dwarf2/gdb-index.exp testcase. */
3684
3685 static void
3686 dw2_dump (struct objfile *objfile)
3687 {
3688 dw2_setup (objfile);
3689 gdb_assert (dwarf2_per_objfile->using_index);
3690 printf_filtered (".gdb_index:");
3691 if (dwarf2_per_objfile->index_table != NULL)
3692 {
3693 printf_filtered (" version %d\n",
3694 dwarf2_per_objfile->index_table->version);
3695 }
3696 else
3697 printf_filtered (" faked for \"readnow\"\n");
3698 printf_filtered ("\n");
3699 }
3700
3701 static void
3702 dw2_relocate (struct objfile *objfile,
3703 const struct section_offsets *new_offsets,
3704 const struct section_offsets *delta)
3705 {
3706 /* There's nothing to relocate here. */
3707 }
3708
3709 static void
3710 dw2_expand_symtabs_for_function (struct objfile *objfile,
3711 const char *func_name)
3712 {
3713 struct mapped_index *index;
3714
3715 dw2_setup (objfile);
3716
3717 index = dwarf2_per_objfile->index_table;
3718
3719 /* index is NULL if OBJF_READNOW. */
3720 if (index)
3721 {
3722 struct dw2_symtab_iterator iter;
3723 struct dwarf2_per_cu_data *per_cu;
3724
3725 /* Note: It doesn't matter what we pass for block_index here. */
3726 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3727 func_name);
3728
3729 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3730 dw2_instantiate_symtab (per_cu);
3731 }
3732 }
3733
3734 static void
3735 dw2_expand_all_symtabs (struct objfile *objfile)
3736 {
3737 int i;
3738
3739 dw2_setup (objfile);
3740
3741 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3742 + dwarf2_per_objfile->n_type_units); ++i)
3743 {
3744 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3745
3746 dw2_instantiate_symtab (per_cu);
3747 }
3748 }
3749
3750 static void
3751 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3752 const char *fullname)
3753 {
3754 int i;
3755
3756 dw2_setup (objfile);
3757
3758 /* We don't need to consider type units here.
3759 This is only called for examining code, e.g. expand_line_sal.
3760 There can be an order of magnitude (or more) more type units
3761 than comp units, and we avoid them if we can. */
3762
3763 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3764 {
3765 int j;
3766 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3767 struct quick_file_names *file_data;
3768
3769 /* We only need to look at symtabs not already expanded. */
3770 if (per_cu->v.quick->symtab)
3771 continue;
3772
3773 file_data = dw2_get_file_names (per_cu);
3774 if (file_data == NULL)
3775 continue;
3776
3777 for (j = 0; j < file_data->num_file_names; ++j)
3778 {
3779 const char *this_fullname = file_data->file_names[j];
3780
3781 if (filename_cmp (this_fullname, fullname) == 0)
3782 {
3783 dw2_instantiate_symtab (per_cu);
3784 break;
3785 }
3786 }
3787 }
3788 }
3789
3790 static void
3791 dw2_map_matching_symbols (struct objfile *objfile,
3792 const char * name, domain_enum namespace,
3793 int global,
3794 int (*callback) (struct block *,
3795 struct symbol *, void *),
3796 void *data, symbol_compare_ftype *match,
3797 symbol_compare_ftype *ordered_compare)
3798 {
3799 /* Currently unimplemented; used for Ada. The function can be called if the
3800 current language is Ada for a non-Ada objfile using GNU index. As Ada
3801 does not look for non-Ada symbols this function should just return. */
3802 }
3803
3804 static void
3805 dw2_expand_symtabs_matching
3806 (struct objfile *objfile,
3807 expand_symtabs_file_matcher_ftype *file_matcher,
3808 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3809 enum search_domain kind,
3810 void *data)
3811 {
3812 int i;
3813 offset_type iter;
3814 struct mapped_index *index;
3815
3816 dw2_setup (objfile);
3817
3818 /* index_table is NULL if OBJF_READNOW. */
3819 if (!dwarf2_per_objfile->index_table)
3820 return;
3821 index = dwarf2_per_objfile->index_table;
3822
3823 if (file_matcher != NULL)
3824 {
3825 struct cleanup *cleanup;
3826 htab_t visited_found, visited_not_found;
3827
3828 visited_found = htab_create_alloc (10,
3829 htab_hash_pointer, htab_eq_pointer,
3830 NULL, xcalloc, xfree);
3831 cleanup = make_cleanup_htab_delete (visited_found);
3832 visited_not_found = htab_create_alloc (10,
3833 htab_hash_pointer, htab_eq_pointer,
3834 NULL, xcalloc, xfree);
3835 make_cleanup_htab_delete (visited_not_found);
3836
3837 /* The rule is CUs specify all the files, including those used by
3838 any TU, so there's no need to scan TUs here. */
3839
3840 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3841 {
3842 int j;
3843 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3844 struct quick_file_names *file_data;
3845 void **slot;
3846
3847 per_cu->v.quick->mark = 0;
3848
3849 /* We only need to look at symtabs not already expanded. */
3850 if (per_cu->v.quick->symtab)
3851 continue;
3852
3853 file_data = dw2_get_file_names (per_cu);
3854 if (file_data == NULL)
3855 continue;
3856
3857 if (htab_find (visited_not_found, file_data) != NULL)
3858 continue;
3859 else if (htab_find (visited_found, file_data) != NULL)
3860 {
3861 per_cu->v.quick->mark = 1;
3862 continue;
3863 }
3864
3865 for (j = 0; j < file_data->num_file_names; ++j)
3866 {
3867 const char *this_real_name;
3868
3869 if (file_matcher (file_data->file_names[j], data, 0))
3870 {
3871 per_cu->v.quick->mark = 1;
3872 break;
3873 }
3874
3875 /* Before we invoke realpath, which can get expensive when many
3876 files are involved, do a quick comparison of the basenames. */
3877 if (!basenames_may_differ
3878 && !file_matcher (lbasename (file_data->file_names[j]),
3879 data, 1))
3880 continue;
3881
3882 this_real_name = dw2_get_real_path (objfile, file_data, j);
3883 if (file_matcher (this_real_name, data, 0))
3884 {
3885 per_cu->v.quick->mark = 1;
3886 break;
3887 }
3888 }
3889
3890 slot = htab_find_slot (per_cu->v.quick->mark
3891 ? visited_found
3892 : visited_not_found,
3893 file_data, INSERT);
3894 *slot = file_data;
3895 }
3896
3897 do_cleanups (cleanup);
3898 }
3899
3900 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3901 {
3902 offset_type idx = 2 * iter;
3903 const char *name;
3904 offset_type *vec, vec_len, vec_idx;
3905 int global_seen = 0;
3906
3907 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3908 continue;
3909
3910 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3911
3912 if (! (*symbol_matcher) (name, data))
3913 continue;
3914
3915 /* The name was matched, now expand corresponding CUs that were
3916 marked. */
3917 vec = (offset_type *) (index->constant_pool
3918 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3919 vec_len = MAYBE_SWAP (vec[0]);
3920 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3921 {
3922 struct dwarf2_per_cu_data *per_cu;
3923 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3924 /* This value is only valid for index versions >= 7. */
3925 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3926 gdb_index_symbol_kind symbol_kind =
3927 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3928 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3929 /* Only check the symbol attributes if they're present.
3930 Indices prior to version 7 don't record them,
3931 and indices >= 7 may elide them for certain symbols
3932 (gold does this). */
3933 int attrs_valid =
3934 (index->version >= 7
3935 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3936
3937 /* Work around gold/15646. */
3938 if (attrs_valid)
3939 {
3940 if (!is_static && global_seen)
3941 continue;
3942 if (!is_static)
3943 global_seen = 1;
3944 }
3945
3946 /* Only check the symbol's kind if it has one. */
3947 if (attrs_valid)
3948 {
3949 switch (kind)
3950 {
3951 case VARIABLES_DOMAIN:
3952 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3953 continue;
3954 break;
3955 case FUNCTIONS_DOMAIN:
3956 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3957 continue;
3958 break;
3959 case TYPES_DOMAIN:
3960 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3961 continue;
3962 break;
3963 default:
3964 break;
3965 }
3966 }
3967
3968 /* Don't crash on bad data. */
3969 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3970 + dwarf2_per_objfile->n_type_units))
3971 {
3972 complaint (&symfile_complaints,
3973 _(".gdb_index entry has bad CU index"
3974 " [in module %s]"), objfile_name (objfile));
3975 continue;
3976 }
3977
3978 per_cu = dw2_get_cu (cu_index);
3979 if (file_matcher == NULL || per_cu->v.quick->mark)
3980 dw2_instantiate_symtab (per_cu);
3981 }
3982 }
3983 }
3984
3985 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3986 symtab. */
3987
3988 static struct symtab *
3989 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3990 {
3991 int i;
3992
3993 if (BLOCKVECTOR (symtab) != NULL
3994 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3995 return symtab;
3996
3997 if (symtab->includes == NULL)
3998 return NULL;
3999
4000 for (i = 0; symtab->includes[i]; ++i)
4001 {
4002 struct symtab *s = symtab->includes[i];
4003
4004 s = recursively_find_pc_sect_symtab (s, pc);
4005 if (s != NULL)
4006 return s;
4007 }
4008
4009 return NULL;
4010 }
4011
4012 static struct symtab *
4013 dw2_find_pc_sect_symtab (struct objfile *objfile,
4014 struct bound_minimal_symbol msymbol,
4015 CORE_ADDR pc,
4016 struct obj_section *section,
4017 int warn_if_readin)
4018 {
4019 struct dwarf2_per_cu_data *data;
4020 struct symtab *result;
4021
4022 dw2_setup (objfile);
4023
4024 if (!objfile->psymtabs_addrmap)
4025 return NULL;
4026
4027 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4028 if (!data)
4029 return NULL;
4030
4031 if (warn_if_readin && data->v.quick->symtab)
4032 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4033 paddress (get_objfile_arch (objfile), pc));
4034
4035 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4036 gdb_assert (result != NULL);
4037 return result;
4038 }
4039
4040 static void
4041 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4042 void *data, int need_fullname)
4043 {
4044 int i;
4045 struct cleanup *cleanup;
4046 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4047 NULL, xcalloc, xfree);
4048
4049 cleanup = make_cleanup_htab_delete (visited);
4050 dw2_setup (objfile);
4051
4052 /* The rule is CUs specify all the files, including those used by
4053 any TU, so there's no need to scan TUs here.
4054 We can ignore file names coming from already-expanded CUs. */
4055
4056 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4057 {
4058 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4059
4060 if (per_cu->v.quick->symtab)
4061 {
4062 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4063 INSERT);
4064
4065 *slot = per_cu->v.quick->file_names;
4066 }
4067 }
4068
4069 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4070 {
4071 int j;
4072 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
4073 struct quick_file_names *file_data;
4074 void **slot;
4075
4076 /* We only need to look at symtabs not already expanded. */
4077 if (per_cu->v.quick->symtab)
4078 continue;
4079
4080 file_data = dw2_get_file_names (per_cu);
4081 if (file_data == NULL)
4082 continue;
4083
4084 slot = htab_find_slot (visited, file_data, INSERT);
4085 if (*slot)
4086 {
4087 /* Already visited. */
4088 continue;
4089 }
4090 *slot = file_data;
4091
4092 for (j = 0; j < file_data->num_file_names; ++j)
4093 {
4094 const char *this_real_name;
4095
4096 if (need_fullname)
4097 this_real_name = dw2_get_real_path (objfile, file_data, j);
4098 else
4099 this_real_name = NULL;
4100 (*fun) (file_data->file_names[j], this_real_name, data);
4101 }
4102 }
4103
4104 do_cleanups (cleanup);
4105 }
4106
4107 static int
4108 dw2_has_symbols (struct objfile *objfile)
4109 {
4110 return 1;
4111 }
4112
4113 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4114 {
4115 dw2_has_symbols,
4116 dw2_find_last_source_symtab,
4117 dw2_forget_cached_source_info,
4118 dw2_map_symtabs_matching_filename,
4119 dw2_lookup_symbol,
4120 dw2_print_stats,
4121 dw2_dump,
4122 dw2_relocate,
4123 dw2_expand_symtabs_for_function,
4124 dw2_expand_all_symtabs,
4125 dw2_expand_symtabs_with_fullname,
4126 dw2_map_matching_symbols,
4127 dw2_expand_symtabs_matching,
4128 dw2_find_pc_sect_symtab,
4129 dw2_map_symbol_filenames
4130 };
4131
4132 /* Initialize for reading DWARF for this objfile. Return 0 if this
4133 file will use psymtabs, or 1 if using the GNU index. */
4134
4135 int
4136 dwarf2_initialize_objfile (struct objfile *objfile)
4137 {
4138 /* If we're about to read full symbols, don't bother with the
4139 indices. In this case we also don't care if some other debug
4140 format is making psymtabs, because they are all about to be
4141 expanded anyway. */
4142 if ((objfile->flags & OBJF_READNOW))
4143 {
4144 int i;
4145
4146 dwarf2_per_objfile->using_index = 1;
4147 create_all_comp_units (objfile);
4148 create_all_type_units (objfile);
4149 dwarf2_per_objfile->quick_file_names_table =
4150 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4151
4152 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4153 + dwarf2_per_objfile->n_type_units); ++i)
4154 {
4155 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4156
4157 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4158 struct dwarf2_per_cu_quick_data);
4159 }
4160
4161 /* Return 1 so that gdb sees the "quick" functions. However,
4162 these functions will be no-ops because we will have expanded
4163 all symtabs. */
4164 return 1;
4165 }
4166
4167 if (dwarf2_read_index (objfile))
4168 return 1;
4169
4170 return 0;
4171 }
4172
4173 \f
4174
4175 /* Build a partial symbol table. */
4176
4177 void
4178 dwarf2_build_psymtabs (struct objfile *objfile)
4179 {
4180 volatile struct gdb_exception except;
4181
4182 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4183 {
4184 init_psymbol_list (objfile, 1024);
4185 }
4186
4187 TRY_CATCH (except, RETURN_MASK_ERROR)
4188 {
4189 /* This isn't really ideal: all the data we allocate on the
4190 objfile's obstack is still uselessly kept around. However,
4191 freeing it seems unsafe. */
4192 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4193
4194 dwarf2_build_psymtabs_hard (objfile);
4195 discard_cleanups (cleanups);
4196 }
4197 if (except.reason < 0)
4198 exception_print (gdb_stderr, except);
4199 }
4200
4201 /* Return the total length of the CU described by HEADER. */
4202
4203 static unsigned int
4204 get_cu_length (const struct comp_unit_head *header)
4205 {
4206 return header->initial_length_size + header->length;
4207 }
4208
4209 /* Return TRUE if OFFSET is within CU_HEADER. */
4210
4211 static inline int
4212 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4213 {
4214 sect_offset bottom = { cu_header->offset.sect_off };
4215 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4216
4217 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4218 }
4219
4220 /* Find the base address of the compilation unit for range lists and
4221 location lists. It will normally be specified by DW_AT_low_pc.
4222 In DWARF-3 draft 4, the base address could be overridden by
4223 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4224 compilation units with discontinuous ranges. */
4225
4226 static void
4227 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4228 {
4229 struct attribute *attr;
4230
4231 cu->base_known = 0;
4232 cu->base_address = 0;
4233
4234 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4235 if (attr)
4236 {
4237 cu->base_address = attr_value_as_address (attr);
4238 cu->base_known = 1;
4239 }
4240 else
4241 {
4242 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4243 if (attr)
4244 {
4245 cu->base_address = attr_value_as_address (attr);
4246 cu->base_known = 1;
4247 }
4248 }
4249 }
4250
4251 /* Read in the comp unit header information from the debug_info at info_ptr.
4252 NOTE: This leaves members offset, first_die_offset to be filled in
4253 by the caller. */
4254
4255 static const gdb_byte *
4256 read_comp_unit_head (struct comp_unit_head *cu_header,
4257 const gdb_byte *info_ptr, bfd *abfd)
4258 {
4259 int signed_addr;
4260 unsigned int bytes_read;
4261
4262 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4263 cu_header->initial_length_size = bytes_read;
4264 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4265 info_ptr += bytes_read;
4266 cu_header->version = read_2_bytes (abfd, info_ptr);
4267 info_ptr += 2;
4268 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4269 &bytes_read);
4270 info_ptr += bytes_read;
4271 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4272 info_ptr += 1;
4273 signed_addr = bfd_get_sign_extend_vma (abfd);
4274 if (signed_addr < 0)
4275 internal_error (__FILE__, __LINE__,
4276 _("read_comp_unit_head: dwarf from non elf file"));
4277 cu_header->signed_addr_p = signed_addr;
4278
4279 return info_ptr;
4280 }
4281
4282 /* Helper function that returns the proper abbrev section for
4283 THIS_CU. */
4284
4285 static struct dwarf2_section_info *
4286 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4287 {
4288 struct dwarf2_section_info *abbrev;
4289
4290 if (this_cu->is_dwz)
4291 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4292 else
4293 abbrev = &dwarf2_per_objfile->abbrev;
4294
4295 return abbrev;
4296 }
4297
4298 /* Subroutine of read_and_check_comp_unit_head and
4299 read_and_check_type_unit_head to simplify them.
4300 Perform various error checking on the header. */
4301
4302 static void
4303 error_check_comp_unit_head (struct comp_unit_head *header,
4304 struct dwarf2_section_info *section,
4305 struct dwarf2_section_info *abbrev_section)
4306 {
4307 bfd *abfd = get_section_bfd_owner (section);
4308 const char *filename = get_section_file_name (section);
4309
4310 if (header->version != 2 && header->version != 3 && header->version != 4)
4311 error (_("Dwarf Error: wrong version in compilation unit header "
4312 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4313 filename);
4314
4315 if (header->abbrev_offset.sect_off
4316 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4317 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4318 "(offset 0x%lx + 6) [in module %s]"),
4319 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4320 filename);
4321
4322 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4323 avoid potential 32-bit overflow. */
4324 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4325 > section->size)
4326 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4327 "(offset 0x%lx + 0) [in module %s]"),
4328 (long) header->length, (long) header->offset.sect_off,
4329 filename);
4330 }
4331
4332 /* Read in a CU/TU header and perform some basic error checking.
4333 The contents of the header are stored in HEADER.
4334 The result is a pointer to the start of the first DIE. */
4335
4336 static const gdb_byte *
4337 read_and_check_comp_unit_head (struct comp_unit_head *header,
4338 struct dwarf2_section_info *section,
4339 struct dwarf2_section_info *abbrev_section,
4340 const gdb_byte *info_ptr,
4341 int is_debug_types_section)
4342 {
4343 const gdb_byte *beg_of_comp_unit = info_ptr;
4344 bfd *abfd = get_section_bfd_owner (section);
4345
4346 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4347
4348 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4349
4350 /* If we're reading a type unit, skip over the signature and
4351 type_offset fields. */
4352 if (is_debug_types_section)
4353 info_ptr += 8 /*signature*/ + header->offset_size;
4354
4355 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4356
4357 error_check_comp_unit_head (header, section, abbrev_section);
4358
4359 return info_ptr;
4360 }
4361
4362 /* Read in the types comp unit header information from .debug_types entry at
4363 types_ptr. The result is a pointer to one past the end of the header. */
4364
4365 static const gdb_byte *
4366 read_and_check_type_unit_head (struct comp_unit_head *header,
4367 struct dwarf2_section_info *section,
4368 struct dwarf2_section_info *abbrev_section,
4369 const gdb_byte *info_ptr,
4370 ULONGEST *signature,
4371 cu_offset *type_offset_in_tu)
4372 {
4373 const gdb_byte *beg_of_comp_unit = info_ptr;
4374 bfd *abfd = get_section_bfd_owner (section);
4375
4376 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4377
4378 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4379
4380 /* If we're reading a type unit, skip over the signature and
4381 type_offset fields. */
4382 if (signature != NULL)
4383 *signature = read_8_bytes (abfd, info_ptr);
4384 info_ptr += 8;
4385 if (type_offset_in_tu != NULL)
4386 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4387 header->offset_size);
4388 info_ptr += header->offset_size;
4389
4390 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4391
4392 error_check_comp_unit_head (header, section, abbrev_section);
4393
4394 return info_ptr;
4395 }
4396
4397 /* Fetch the abbreviation table offset from a comp or type unit header. */
4398
4399 static sect_offset
4400 read_abbrev_offset (struct dwarf2_section_info *section,
4401 sect_offset offset)
4402 {
4403 bfd *abfd = get_section_bfd_owner (section);
4404 const gdb_byte *info_ptr;
4405 unsigned int length, initial_length_size, offset_size;
4406 sect_offset abbrev_offset;
4407
4408 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4409 info_ptr = section->buffer + offset.sect_off;
4410 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4411 offset_size = initial_length_size == 4 ? 4 : 8;
4412 info_ptr += initial_length_size + 2 /*version*/;
4413 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4414 return abbrev_offset;
4415 }
4416
4417 /* Allocate a new partial symtab for file named NAME and mark this new
4418 partial symtab as being an include of PST. */
4419
4420 static void
4421 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4422 struct objfile *objfile)
4423 {
4424 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4425
4426 if (!IS_ABSOLUTE_PATH (subpst->filename))
4427 {
4428 /* It shares objfile->objfile_obstack. */
4429 subpst->dirname = pst->dirname;
4430 }
4431
4432 subpst->section_offsets = pst->section_offsets;
4433 subpst->textlow = 0;
4434 subpst->texthigh = 0;
4435
4436 subpst->dependencies = (struct partial_symtab **)
4437 obstack_alloc (&objfile->objfile_obstack,
4438 sizeof (struct partial_symtab *));
4439 subpst->dependencies[0] = pst;
4440 subpst->number_of_dependencies = 1;
4441
4442 subpst->globals_offset = 0;
4443 subpst->n_global_syms = 0;
4444 subpst->statics_offset = 0;
4445 subpst->n_static_syms = 0;
4446 subpst->symtab = NULL;
4447 subpst->read_symtab = pst->read_symtab;
4448 subpst->readin = 0;
4449
4450 /* No private part is necessary for include psymtabs. This property
4451 can be used to differentiate between such include psymtabs and
4452 the regular ones. */
4453 subpst->read_symtab_private = NULL;
4454 }
4455
4456 /* Read the Line Number Program data and extract the list of files
4457 included by the source file represented by PST. Build an include
4458 partial symtab for each of these included files. */
4459
4460 static void
4461 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4462 struct die_info *die,
4463 struct partial_symtab *pst)
4464 {
4465 struct line_header *lh = NULL;
4466 struct attribute *attr;
4467
4468 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4469 if (attr)
4470 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4471 if (lh == NULL)
4472 return; /* No linetable, so no includes. */
4473
4474 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4475 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4476
4477 free_line_header (lh);
4478 }
4479
4480 static hashval_t
4481 hash_signatured_type (const void *item)
4482 {
4483 const struct signatured_type *sig_type = item;
4484
4485 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4486 return sig_type->signature;
4487 }
4488
4489 static int
4490 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4491 {
4492 const struct signatured_type *lhs = item_lhs;
4493 const struct signatured_type *rhs = item_rhs;
4494
4495 return lhs->signature == rhs->signature;
4496 }
4497
4498 /* Allocate a hash table for signatured types. */
4499
4500 static htab_t
4501 allocate_signatured_type_table (struct objfile *objfile)
4502 {
4503 return htab_create_alloc_ex (41,
4504 hash_signatured_type,
4505 eq_signatured_type,
4506 NULL,
4507 &objfile->objfile_obstack,
4508 hashtab_obstack_allocate,
4509 dummy_obstack_deallocate);
4510 }
4511
4512 /* A helper function to add a signatured type CU to a table. */
4513
4514 static int
4515 add_signatured_type_cu_to_table (void **slot, void *datum)
4516 {
4517 struct signatured_type *sigt = *slot;
4518 struct signatured_type ***datap = datum;
4519
4520 **datap = sigt;
4521 ++*datap;
4522
4523 return 1;
4524 }
4525
4526 /* Create the hash table of all entries in the .debug_types
4527 (or .debug_types.dwo) section(s).
4528 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4529 otherwise it is NULL.
4530
4531 The result is a pointer to the hash table or NULL if there are no types.
4532
4533 Note: This function processes DWO files only, not DWP files. */
4534
4535 static htab_t
4536 create_debug_types_hash_table (struct dwo_file *dwo_file,
4537 VEC (dwarf2_section_info_def) *types)
4538 {
4539 struct objfile *objfile = dwarf2_per_objfile->objfile;
4540 htab_t types_htab = NULL;
4541 int ix;
4542 struct dwarf2_section_info *section;
4543 struct dwarf2_section_info *abbrev_section;
4544
4545 if (VEC_empty (dwarf2_section_info_def, types))
4546 return NULL;
4547
4548 abbrev_section = (dwo_file != NULL
4549 ? &dwo_file->sections.abbrev
4550 : &dwarf2_per_objfile->abbrev);
4551
4552 if (dwarf2_read_debug)
4553 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4554 dwo_file ? ".dwo" : "",
4555 get_section_file_name (abbrev_section));
4556
4557 for (ix = 0;
4558 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4559 ++ix)
4560 {
4561 bfd *abfd;
4562 const gdb_byte *info_ptr, *end_ptr;
4563
4564 dwarf2_read_section (objfile, section);
4565 info_ptr = section->buffer;
4566
4567 if (info_ptr == NULL)
4568 continue;
4569
4570 /* We can't set abfd until now because the section may be empty or
4571 not present, in which case the bfd is unknown. */
4572 abfd = get_section_bfd_owner (section);
4573
4574 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4575 because we don't need to read any dies: the signature is in the
4576 header. */
4577
4578 end_ptr = info_ptr + section->size;
4579 while (info_ptr < end_ptr)
4580 {
4581 sect_offset offset;
4582 cu_offset type_offset_in_tu;
4583 ULONGEST signature;
4584 struct signatured_type *sig_type;
4585 struct dwo_unit *dwo_tu;
4586 void **slot;
4587 const gdb_byte *ptr = info_ptr;
4588 struct comp_unit_head header;
4589 unsigned int length;
4590
4591 offset.sect_off = ptr - section->buffer;
4592
4593 /* We need to read the type's signature in order to build the hash
4594 table, but we don't need anything else just yet. */
4595
4596 ptr = read_and_check_type_unit_head (&header, section,
4597 abbrev_section, ptr,
4598 &signature, &type_offset_in_tu);
4599
4600 length = get_cu_length (&header);
4601
4602 /* Skip dummy type units. */
4603 if (ptr >= info_ptr + length
4604 || peek_abbrev_code (abfd, ptr) == 0)
4605 {
4606 info_ptr += length;
4607 continue;
4608 }
4609
4610 if (types_htab == NULL)
4611 {
4612 if (dwo_file)
4613 types_htab = allocate_dwo_unit_table (objfile);
4614 else
4615 types_htab = allocate_signatured_type_table (objfile);
4616 }
4617
4618 if (dwo_file)
4619 {
4620 sig_type = NULL;
4621 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4622 struct dwo_unit);
4623 dwo_tu->dwo_file = dwo_file;
4624 dwo_tu->signature = signature;
4625 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4626 dwo_tu->section = section;
4627 dwo_tu->offset = offset;
4628 dwo_tu->length = length;
4629 }
4630 else
4631 {
4632 /* N.B.: type_offset is not usable if this type uses a DWO file.
4633 The real type_offset is in the DWO file. */
4634 dwo_tu = NULL;
4635 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4636 struct signatured_type);
4637 sig_type->signature = signature;
4638 sig_type->type_offset_in_tu = type_offset_in_tu;
4639 sig_type->per_cu.objfile = objfile;
4640 sig_type->per_cu.is_debug_types = 1;
4641 sig_type->per_cu.section = section;
4642 sig_type->per_cu.offset = offset;
4643 sig_type->per_cu.length = length;
4644 }
4645
4646 slot = htab_find_slot (types_htab,
4647 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4648 INSERT);
4649 gdb_assert (slot != NULL);
4650 if (*slot != NULL)
4651 {
4652 sect_offset dup_offset;
4653
4654 if (dwo_file)
4655 {
4656 const struct dwo_unit *dup_tu = *slot;
4657
4658 dup_offset = dup_tu->offset;
4659 }
4660 else
4661 {
4662 const struct signatured_type *dup_tu = *slot;
4663
4664 dup_offset = dup_tu->per_cu.offset;
4665 }
4666
4667 complaint (&symfile_complaints,
4668 _("debug type entry at offset 0x%x is duplicate to"
4669 " the entry at offset 0x%x, signature %s"),
4670 offset.sect_off, dup_offset.sect_off,
4671 hex_string (signature));
4672 }
4673 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4674
4675 if (dwarf2_read_debug > 1)
4676 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4677 offset.sect_off,
4678 hex_string (signature));
4679
4680 info_ptr += length;
4681 }
4682 }
4683
4684 return types_htab;
4685 }
4686
4687 /* Create the hash table of all entries in the .debug_types section,
4688 and initialize all_type_units.
4689 The result is zero if there is an error (e.g. missing .debug_types section),
4690 otherwise non-zero. */
4691
4692 static int
4693 create_all_type_units (struct objfile *objfile)
4694 {
4695 htab_t types_htab;
4696 struct signatured_type **iter;
4697
4698 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4699 if (types_htab == NULL)
4700 {
4701 dwarf2_per_objfile->signatured_types = NULL;
4702 return 0;
4703 }
4704
4705 dwarf2_per_objfile->signatured_types = types_htab;
4706
4707 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4708 dwarf2_per_objfile->all_type_units
4709 = xmalloc (dwarf2_per_objfile->n_type_units
4710 * sizeof (struct signatured_type *));
4711 iter = &dwarf2_per_objfile->all_type_units[0];
4712 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4713 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4714 == dwarf2_per_objfile->n_type_units);
4715
4716 return 1;
4717 }
4718
4719 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4720 Fill in SIG_ENTRY with DWO_ENTRY. */
4721
4722 static void
4723 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4724 struct signatured_type *sig_entry,
4725 struct dwo_unit *dwo_entry)
4726 {
4727 /* Make sure we're not clobbering something we don't expect to. */
4728 gdb_assert (! sig_entry->per_cu.queued);
4729 gdb_assert (sig_entry->per_cu.cu == NULL);
4730 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4731 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4732 gdb_assert (sig_entry->signature == dwo_entry->signature);
4733 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4734 gdb_assert (sig_entry->type_unit_group == NULL);
4735 gdb_assert (sig_entry->dwo_unit == NULL);
4736
4737 sig_entry->per_cu.section = dwo_entry->section;
4738 sig_entry->per_cu.offset = dwo_entry->offset;
4739 sig_entry->per_cu.length = dwo_entry->length;
4740 sig_entry->per_cu.reading_dwo_directly = 1;
4741 sig_entry->per_cu.objfile = objfile;
4742 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4743 sig_entry->dwo_unit = dwo_entry;
4744 }
4745
4746 /* Subroutine of lookup_signatured_type.
4747 If we haven't read the TU yet, create the signatured_type data structure
4748 for a TU to be read in directly from a DWO file, bypassing the stub.
4749 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4750 using .gdb_index, then when reading a CU we want to stay in the DWO file
4751 containing that CU. Otherwise we could end up reading several other DWO
4752 files (due to comdat folding) to process the transitive closure of all the
4753 mentioned TUs, and that can be slow. The current DWO file will have every
4754 type signature that it needs.
4755 We only do this for .gdb_index because in the psymtab case we already have
4756 to read all the DWOs to build the type unit groups. */
4757
4758 static struct signatured_type *
4759 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4760 {
4761 struct objfile *objfile = dwarf2_per_objfile->objfile;
4762 struct dwo_file *dwo_file;
4763 struct dwo_unit find_dwo_entry, *dwo_entry;
4764 struct signatured_type find_sig_entry, *sig_entry;
4765
4766 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4767
4768 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4769 dwo_unit of the TU itself. */
4770 dwo_file = cu->dwo_unit->dwo_file;
4771
4772 /* We only ever need to read in one copy of a signatured type.
4773 Just use the global signatured_types array. If this is the first time
4774 we're reading this type, replace the recorded data from .gdb_index with
4775 this TU. */
4776
4777 if (dwarf2_per_objfile->signatured_types == NULL)
4778 return NULL;
4779 find_sig_entry.signature = sig;
4780 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4781 if (sig_entry == NULL)
4782 return NULL;
4783
4784 /* We can get here with the TU already read, *or* in the process of being
4785 read. Don't reassign it if that's the case. Also note that if the TU is
4786 already being read, it may not have come from a DWO, the program may be
4787 a mix of Fission-compiled code and non-Fission-compiled code. */
4788 /* Have we already tried to read this TU? */
4789 if (sig_entry->per_cu.tu_read)
4790 return sig_entry;
4791
4792 /* Ok, this is the first time we're reading this TU. */
4793 if (dwo_file->tus == NULL)
4794 return NULL;
4795 find_dwo_entry.signature = sig;
4796 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4797 if (dwo_entry == NULL)
4798 return NULL;
4799
4800 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4801 sig_entry->per_cu.tu_read = 1;
4802 return sig_entry;
4803 }
4804
4805 /* Subroutine of lookup_dwp_signatured_type.
4806 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4807
4808 static struct signatured_type *
4809 add_type_unit (ULONGEST sig)
4810 {
4811 struct objfile *objfile = dwarf2_per_objfile->objfile;
4812 int n_type_units = dwarf2_per_objfile->n_type_units;
4813 struct signatured_type *sig_type;
4814 void **slot;
4815
4816 ++n_type_units;
4817 dwarf2_per_objfile->all_type_units =
4818 xrealloc (dwarf2_per_objfile->all_type_units,
4819 n_type_units * sizeof (struct signatured_type *));
4820 dwarf2_per_objfile->n_type_units = n_type_units;
4821 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4822 struct signatured_type);
4823 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4824 sig_type->signature = sig;
4825 sig_type->per_cu.is_debug_types = 1;
4826 sig_type->per_cu.v.quick =
4827 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4828 struct dwarf2_per_cu_quick_data);
4829 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4830 sig_type, INSERT);
4831 gdb_assert (*slot == NULL);
4832 *slot = sig_type;
4833 /* The rest of sig_type must be filled in by the caller. */
4834 return sig_type;
4835 }
4836
4837 /* Subroutine of lookup_signatured_type.
4838 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4839 then try the DWP file.
4840 Normally this "can't happen", but if there's a bug in signature
4841 generation and/or the DWP file is built incorrectly, it can happen.
4842 Using the type directly from the DWP file means we don't have the stub
4843 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4844 not critical. [Eventually the stub may go away for type units anyway.] */
4845
4846 static struct signatured_type *
4847 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4848 {
4849 struct objfile *objfile = dwarf2_per_objfile->objfile;
4850 struct dwp_file *dwp_file = get_dwp_file ();
4851 struct dwo_unit *dwo_entry;
4852 struct signatured_type find_sig_entry, *sig_entry;
4853
4854 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4855 gdb_assert (dwp_file != NULL);
4856
4857 if (dwarf2_per_objfile->signatured_types != NULL)
4858 {
4859 find_sig_entry.signature = sig;
4860 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4861 &find_sig_entry);
4862 if (sig_entry != NULL)
4863 return sig_entry;
4864 }
4865
4866 /* This is the "shouldn't happen" case.
4867 Try the DWP file and hope for the best. */
4868 if (dwp_file->tus == NULL)
4869 return NULL;
4870 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4871 sig, 1 /* is_debug_types */);
4872 if (dwo_entry == NULL)
4873 return NULL;
4874
4875 sig_entry = add_type_unit (sig);
4876 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4877
4878 /* The caller will signal a complaint if we return NULL.
4879 Here we don't return NULL but we still want to complain. */
4880 complaint (&symfile_complaints,
4881 _("Bad type signature %s referenced by %s at 0x%x,"
4882 " coping by using copy in DWP [in module %s]"),
4883 hex_string (sig),
4884 cu->per_cu->is_debug_types ? "TU" : "CU",
4885 cu->per_cu->offset.sect_off,
4886 objfile_name (objfile));
4887
4888 return sig_entry;
4889 }
4890
4891 /* Lookup a signature based type for DW_FORM_ref_sig8.
4892 Returns NULL if signature SIG is not present in the table.
4893 It is up to the caller to complain about this. */
4894
4895 static struct signatured_type *
4896 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4897 {
4898 if (cu->dwo_unit
4899 && dwarf2_per_objfile->using_index)
4900 {
4901 /* We're in a DWO/DWP file, and we're using .gdb_index.
4902 These cases require special processing. */
4903 if (get_dwp_file () == NULL)
4904 return lookup_dwo_signatured_type (cu, sig);
4905 else
4906 return lookup_dwp_signatured_type (cu, sig);
4907 }
4908 else
4909 {
4910 struct signatured_type find_entry, *entry;
4911
4912 if (dwarf2_per_objfile->signatured_types == NULL)
4913 return NULL;
4914 find_entry.signature = sig;
4915 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4916 return entry;
4917 }
4918 }
4919 \f
4920 /* Low level DIE reading support. */
4921
4922 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4923
4924 static void
4925 init_cu_die_reader (struct die_reader_specs *reader,
4926 struct dwarf2_cu *cu,
4927 struct dwarf2_section_info *section,
4928 struct dwo_file *dwo_file)
4929 {
4930 gdb_assert (section->readin && section->buffer != NULL);
4931 reader->abfd = get_section_bfd_owner (section);
4932 reader->cu = cu;
4933 reader->dwo_file = dwo_file;
4934 reader->die_section = section;
4935 reader->buffer = section->buffer;
4936 reader->buffer_end = section->buffer + section->size;
4937 reader->comp_dir = NULL;
4938 }
4939
4940 /* Subroutine of init_cutu_and_read_dies to simplify it.
4941 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4942 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4943 already.
4944
4945 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4946 from it to the DIE in the DWO. If NULL we are skipping the stub.
4947 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4948 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4949 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4950 COMP_DIR must be non-NULL.
4951 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4952 are filled in with the info of the DIE from the DWO file.
4953 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4954 provided an abbrev table to use.
4955 The result is non-zero if a valid (non-dummy) DIE was found. */
4956
4957 static int
4958 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4959 struct dwo_unit *dwo_unit,
4960 int abbrev_table_provided,
4961 struct die_info *stub_comp_unit_die,
4962 const char *stub_comp_dir,
4963 struct die_reader_specs *result_reader,
4964 const gdb_byte **result_info_ptr,
4965 struct die_info **result_comp_unit_die,
4966 int *result_has_children)
4967 {
4968 struct objfile *objfile = dwarf2_per_objfile->objfile;
4969 struct dwarf2_cu *cu = this_cu->cu;
4970 struct dwarf2_section_info *section;
4971 bfd *abfd;
4972 const gdb_byte *begin_info_ptr, *info_ptr;
4973 const char *comp_dir_string;
4974 ULONGEST signature; /* Or dwo_id. */
4975 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4976 int i,num_extra_attrs;
4977 struct dwarf2_section_info *dwo_abbrev_section;
4978 struct attribute *attr;
4979 struct attribute comp_dir_attr;
4980 struct die_info *comp_unit_die;
4981
4982 /* Both can't be provided. */
4983 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4984
4985 /* These attributes aren't processed until later:
4986 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4987 However, the attribute is found in the stub which we won't have later.
4988 In order to not impose this complication on the rest of the code,
4989 we read them here and copy them to the DWO CU/TU die. */
4990
4991 stmt_list = NULL;
4992 low_pc = NULL;
4993 high_pc = NULL;
4994 ranges = NULL;
4995 comp_dir = NULL;
4996
4997 if (stub_comp_unit_die != NULL)
4998 {
4999 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5000 DWO file. */
5001 if (! this_cu->is_debug_types)
5002 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5003 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5004 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5005 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5006 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5007
5008 /* There should be a DW_AT_addr_base attribute here (if needed).
5009 We need the value before we can process DW_FORM_GNU_addr_index. */
5010 cu->addr_base = 0;
5011 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5012 if (attr)
5013 cu->addr_base = DW_UNSND (attr);
5014
5015 /* There should be a DW_AT_ranges_base attribute here (if needed).
5016 We need the value before we can process DW_AT_ranges. */
5017 cu->ranges_base = 0;
5018 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5019 if (attr)
5020 cu->ranges_base = DW_UNSND (attr);
5021 }
5022 else if (stub_comp_dir != NULL)
5023 {
5024 /* Reconstruct the comp_dir attribute to simplify the code below. */
5025 comp_dir = (struct attribute *)
5026 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5027 comp_dir->name = DW_AT_comp_dir;
5028 comp_dir->form = DW_FORM_string;
5029 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5030 DW_STRING (comp_dir) = stub_comp_dir;
5031 }
5032
5033 /* Set up for reading the DWO CU/TU. */
5034 cu->dwo_unit = dwo_unit;
5035 section = dwo_unit->section;
5036 dwarf2_read_section (objfile, section);
5037 abfd = get_section_bfd_owner (section);
5038 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5039 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5040 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5041
5042 if (this_cu->is_debug_types)
5043 {
5044 ULONGEST header_signature;
5045 cu_offset type_offset_in_tu;
5046 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5047
5048 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5049 dwo_abbrev_section,
5050 info_ptr,
5051 &header_signature,
5052 &type_offset_in_tu);
5053 /* This is not an assert because it can be caused by bad debug info. */
5054 if (sig_type->signature != header_signature)
5055 {
5056 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5057 " TU at offset 0x%x [in module %s]"),
5058 hex_string (sig_type->signature),
5059 hex_string (header_signature),
5060 dwo_unit->offset.sect_off,
5061 bfd_get_filename (abfd));
5062 }
5063 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5064 /* For DWOs coming from DWP files, we don't know the CU length
5065 nor the type's offset in the TU until now. */
5066 dwo_unit->length = get_cu_length (&cu->header);
5067 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5068
5069 /* Establish the type offset that can be used to lookup the type.
5070 For DWO files, we don't know it until now. */
5071 sig_type->type_offset_in_section.sect_off =
5072 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5073 }
5074 else
5075 {
5076 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5077 dwo_abbrev_section,
5078 info_ptr, 0);
5079 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5080 /* For DWOs coming from DWP files, we don't know the CU length
5081 until now. */
5082 dwo_unit->length = get_cu_length (&cu->header);
5083 }
5084
5085 /* Replace the CU's original abbrev table with the DWO's.
5086 Reminder: We can't read the abbrev table until we've read the header. */
5087 if (abbrev_table_provided)
5088 {
5089 /* Don't free the provided abbrev table, the caller of
5090 init_cutu_and_read_dies owns it. */
5091 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5092 /* Ensure the DWO abbrev table gets freed. */
5093 make_cleanup (dwarf2_free_abbrev_table, cu);
5094 }
5095 else
5096 {
5097 dwarf2_free_abbrev_table (cu);
5098 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5099 /* Leave any existing abbrev table cleanup as is. */
5100 }
5101
5102 /* Read in the die, but leave space to copy over the attributes
5103 from the stub. This has the benefit of simplifying the rest of
5104 the code - all the work to maintain the illusion of a single
5105 DW_TAG_{compile,type}_unit DIE is done here. */
5106 num_extra_attrs = ((stmt_list != NULL)
5107 + (low_pc != NULL)
5108 + (high_pc != NULL)
5109 + (ranges != NULL)
5110 + (comp_dir != NULL));
5111 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5112 result_has_children, num_extra_attrs);
5113
5114 /* Copy over the attributes from the stub to the DIE we just read in. */
5115 comp_unit_die = *result_comp_unit_die;
5116 i = comp_unit_die->num_attrs;
5117 if (stmt_list != NULL)
5118 comp_unit_die->attrs[i++] = *stmt_list;
5119 if (low_pc != NULL)
5120 comp_unit_die->attrs[i++] = *low_pc;
5121 if (high_pc != NULL)
5122 comp_unit_die->attrs[i++] = *high_pc;
5123 if (ranges != NULL)
5124 comp_unit_die->attrs[i++] = *ranges;
5125 if (comp_dir != NULL)
5126 comp_unit_die->attrs[i++] = *comp_dir;
5127 comp_unit_die->num_attrs += num_extra_attrs;
5128
5129 if (dwarf2_die_debug)
5130 {
5131 fprintf_unfiltered (gdb_stdlog,
5132 "Read die from %s@0x%x of %s:\n",
5133 get_section_name (section),
5134 (unsigned) (begin_info_ptr - section->buffer),
5135 bfd_get_filename (abfd));
5136 dump_die (comp_unit_die, dwarf2_die_debug);
5137 }
5138
5139 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5140 TUs by skipping the stub and going directly to the entry in the DWO file.
5141 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5142 to get it via circuitous means. Blech. */
5143 if (comp_dir != NULL)
5144 result_reader->comp_dir = DW_STRING (comp_dir);
5145
5146 /* Skip dummy compilation units. */
5147 if (info_ptr >= begin_info_ptr + dwo_unit->length
5148 || peek_abbrev_code (abfd, info_ptr) == 0)
5149 return 0;
5150
5151 *result_info_ptr = info_ptr;
5152 return 1;
5153 }
5154
5155 /* Subroutine of init_cutu_and_read_dies to simplify it.
5156 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5157 Returns NULL if the specified DWO unit cannot be found. */
5158
5159 static struct dwo_unit *
5160 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5161 struct die_info *comp_unit_die)
5162 {
5163 struct dwarf2_cu *cu = this_cu->cu;
5164 struct attribute *attr;
5165 ULONGEST signature;
5166 struct dwo_unit *dwo_unit;
5167 const char *comp_dir, *dwo_name;
5168
5169 gdb_assert (cu != NULL);
5170
5171 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5172 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5173 gdb_assert (attr != NULL);
5174 dwo_name = DW_STRING (attr);
5175 comp_dir = NULL;
5176 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5177 if (attr)
5178 comp_dir = DW_STRING (attr);
5179
5180 if (this_cu->is_debug_types)
5181 {
5182 struct signatured_type *sig_type;
5183
5184 /* Since this_cu is the first member of struct signatured_type,
5185 we can go from a pointer to one to a pointer to the other. */
5186 sig_type = (struct signatured_type *) this_cu;
5187 signature = sig_type->signature;
5188 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5189 }
5190 else
5191 {
5192 struct attribute *attr;
5193
5194 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5195 if (! attr)
5196 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5197 " [in module %s]"),
5198 dwo_name, objfile_name (this_cu->objfile));
5199 signature = DW_UNSND (attr);
5200 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5201 signature);
5202 }
5203
5204 return dwo_unit;
5205 }
5206
5207 /* Subroutine of init_cutu_and_read_dies to simplify it.
5208 Read a TU directly from a DWO file, bypassing the stub. */
5209
5210 static void
5211 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
5212 die_reader_func_ftype *die_reader_func,
5213 void *data)
5214 {
5215 struct dwarf2_cu *cu;
5216 struct signatured_type *sig_type;
5217 struct cleanup *cleanups, *free_cu_cleanup;
5218 struct die_reader_specs reader;
5219 const gdb_byte *info_ptr;
5220 struct die_info *comp_unit_die;
5221 int has_children;
5222
5223 /* Verify we can do the following downcast, and that we have the
5224 data we need. */
5225 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5226 sig_type = (struct signatured_type *) this_cu;
5227 gdb_assert (sig_type->dwo_unit != NULL);
5228
5229 cleanups = make_cleanup (null_cleanup, NULL);
5230
5231 gdb_assert (this_cu->cu == NULL);
5232 cu = xmalloc (sizeof (*cu));
5233 init_one_comp_unit (cu, this_cu);
5234 /* If an error occurs while loading, release our storage. */
5235 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5236
5237 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5238 0 /* abbrev_table_provided */,
5239 NULL /* stub_comp_unit_die */,
5240 sig_type->dwo_unit->dwo_file->comp_dir,
5241 &reader, &info_ptr,
5242 &comp_unit_die, &has_children) == 0)
5243 {
5244 /* Dummy die. */
5245 do_cleanups (cleanups);
5246 return;
5247 }
5248
5249 /* All the "real" work is done here. */
5250 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5251
5252 /* This duplicates some code in init_cutu_and_read_dies,
5253 but the alternative is making the latter more complex.
5254 This function is only for the special case of using DWO files directly:
5255 no point in overly complicating the general case just to handle this. */
5256 if (keep)
5257 {
5258 /* We've successfully allocated this compilation unit. Let our
5259 caller clean it up when finished with it. */
5260 discard_cleanups (free_cu_cleanup);
5261
5262 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5263 So we have to manually free the abbrev table. */
5264 dwarf2_free_abbrev_table (cu);
5265
5266 /* Link this CU into read_in_chain. */
5267 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5268 dwarf2_per_objfile->read_in_chain = this_cu;
5269 }
5270 else
5271 do_cleanups (free_cu_cleanup);
5272
5273 do_cleanups (cleanups);
5274 }
5275
5276 /* Initialize a CU (or TU) and read its DIEs.
5277 If the CU defers to a DWO file, read the DWO file as well.
5278
5279 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5280 Otherwise the table specified in the comp unit header is read in and used.
5281 This is an optimization for when we already have the abbrev table.
5282
5283 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5284 Otherwise, a new CU is allocated with xmalloc.
5285
5286 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5287 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5288
5289 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5290 linker) then DIE_READER_FUNC will not get called. */
5291
5292 static void
5293 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5294 struct abbrev_table *abbrev_table,
5295 int use_existing_cu, int keep,
5296 die_reader_func_ftype *die_reader_func,
5297 void *data)
5298 {
5299 struct objfile *objfile = dwarf2_per_objfile->objfile;
5300 struct dwarf2_section_info *section = this_cu->section;
5301 bfd *abfd = get_section_bfd_owner (section);
5302 struct dwarf2_cu *cu;
5303 const gdb_byte *begin_info_ptr, *info_ptr;
5304 struct die_reader_specs reader;
5305 struct die_info *comp_unit_die;
5306 int has_children;
5307 struct attribute *attr;
5308 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5309 struct signatured_type *sig_type = NULL;
5310 struct dwarf2_section_info *abbrev_section;
5311 /* Non-zero if CU currently points to a DWO file and we need to
5312 reread it. When this happens we need to reread the skeleton die
5313 before we can reread the DWO file (this only applies to CUs, not TUs). */
5314 int rereading_dwo_cu = 0;
5315
5316 if (dwarf2_die_debug)
5317 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5318 this_cu->is_debug_types ? "type" : "comp",
5319 this_cu->offset.sect_off);
5320
5321 if (use_existing_cu)
5322 gdb_assert (keep);
5323
5324 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5325 file (instead of going through the stub), short-circuit all of this. */
5326 if (this_cu->reading_dwo_directly)
5327 {
5328 /* Narrow down the scope of possibilities to have to understand. */
5329 gdb_assert (this_cu->is_debug_types);
5330 gdb_assert (abbrev_table == NULL);
5331 gdb_assert (!use_existing_cu);
5332 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5333 return;
5334 }
5335
5336 cleanups = make_cleanup (null_cleanup, NULL);
5337
5338 /* This is cheap if the section is already read in. */
5339 dwarf2_read_section (objfile, section);
5340
5341 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5342
5343 abbrev_section = get_abbrev_section_for_cu (this_cu);
5344
5345 if (use_existing_cu && this_cu->cu != NULL)
5346 {
5347 cu = this_cu->cu;
5348
5349 /* If this CU is from a DWO file we need to start over, we need to
5350 refetch the attributes from the skeleton CU.
5351 This could be optimized by retrieving those attributes from when we
5352 were here the first time: the previous comp_unit_die was stored in
5353 comp_unit_obstack. But there's no data yet that we need this
5354 optimization. */
5355 if (cu->dwo_unit != NULL)
5356 rereading_dwo_cu = 1;
5357 }
5358 else
5359 {
5360 /* If !use_existing_cu, this_cu->cu must be NULL. */
5361 gdb_assert (this_cu->cu == NULL);
5362
5363 cu = xmalloc (sizeof (*cu));
5364 init_one_comp_unit (cu, this_cu);
5365
5366 /* If an error occurs while loading, release our storage. */
5367 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5368 }
5369
5370 /* Get the header. */
5371 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5372 {
5373 /* We already have the header, there's no need to read it in again. */
5374 info_ptr += cu->header.first_die_offset.cu_off;
5375 }
5376 else
5377 {
5378 if (this_cu->is_debug_types)
5379 {
5380 ULONGEST signature;
5381 cu_offset type_offset_in_tu;
5382
5383 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5384 abbrev_section, info_ptr,
5385 &signature,
5386 &type_offset_in_tu);
5387
5388 /* Since per_cu is the first member of struct signatured_type,
5389 we can go from a pointer to one to a pointer to the other. */
5390 sig_type = (struct signatured_type *) this_cu;
5391 gdb_assert (sig_type->signature == signature);
5392 gdb_assert (sig_type->type_offset_in_tu.cu_off
5393 == type_offset_in_tu.cu_off);
5394 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5395
5396 /* LENGTH has not been set yet for type units if we're
5397 using .gdb_index. */
5398 this_cu->length = get_cu_length (&cu->header);
5399
5400 /* Establish the type offset that can be used to lookup the type. */
5401 sig_type->type_offset_in_section.sect_off =
5402 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5403 }
5404 else
5405 {
5406 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5407 abbrev_section,
5408 info_ptr, 0);
5409
5410 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5411 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5412 }
5413 }
5414
5415 /* Skip dummy compilation units. */
5416 if (info_ptr >= begin_info_ptr + this_cu->length
5417 || peek_abbrev_code (abfd, info_ptr) == 0)
5418 {
5419 do_cleanups (cleanups);
5420 return;
5421 }
5422
5423 /* If we don't have them yet, read the abbrevs for this compilation unit.
5424 And if we need to read them now, make sure they're freed when we're
5425 done. Note that it's important that if the CU had an abbrev table
5426 on entry we don't free it when we're done: Somewhere up the call stack
5427 it may be in use. */
5428 if (abbrev_table != NULL)
5429 {
5430 gdb_assert (cu->abbrev_table == NULL);
5431 gdb_assert (cu->header.abbrev_offset.sect_off
5432 == abbrev_table->offset.sect_off);
5433 cu->abbrev_table = abbrev_table;
5434 }
5435 else if (cu->abbrev_table == NULL)
5436 {
5437 dwarf2_read_abbrevs (cu, abbrev_section);
5438 make_cleanup (dwarf2_free_abbrev_table, cu);
5439 }
5440 else if (rereading_dwo_cu)
5441 {
5442 dwarf2_free_abbrev_table (cu);
5443 dwarf2_read_abbrevs (cu, abbrev_section);
5444 }
5445
5446 /* Read the top level CU/TU die. */
5447 init_cu_die_reader (&reader, cu, section, NULL);
5448 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5449
5450 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5451 from the DWO file.
5452 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5453 DWO CU, that this test will fail (the attribute will not be present). */
5454 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5455 if (attr)
5456 {
5457 struct dwo_unit *dwo_unit;
5458 struct die_info *dwo_comp_unit_die;
5459
5460 if (has_children)
5461 {
5462 complaint (&symfile_complaints,
5463 _("compilation unit with DW_AT_GNU_dwo_name"
5464 " has children (offset 0x%x) [in module %s]"),
5465 this_cu->offset.sect_off, bfd_get_filename (abfd));
5466 }
5467 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5468 if (dwo_unit != NULL)
5469 {
5470 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5471 abbrev_table != NULL,
5472 comp_unit_die, NULL,
5473 &reader, &info_ptr,
5474 &dwo_comp_unit_die, &has_children) == 0)
5475 {
5476 /* Dummy die. */
5477 do_cleanups (cleanups);
5478 return;
5479 }
5480 comp_unit_die = dwo_comp_unit_die;
5481 }
5482 else
5483 {
5484 /* Yikes, we couldn't find the rest of the DIE, we only have
5485 the stub. A complaint has already been logged. There's
5486 not much more we can do except pass on the stub DIE to
5487 die_reader_func. We don't want to throw an error on bad
5488 debug info. */
5489 }
5490 }
5491
5492 /* All of the above is setup for this call. Yikes. */
5493 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5494
5495 /* Done, clean up. */
5496 if (free_cu_cleanup != NULL)
5497 {
5498 if (keep)
5499 {
5500 /* We've successfully allocated this compilation unit. Let our
5501 caller clean it up when finished with it. */
5502 discard_cleanups (free_cu_cleanup);
5503
5504 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5505 So we have to manually free the abbrev table. */
5506 dwarf2_free_abbrev_table (cu);
5507
5508 /* Link this CU into read_in_chain. */
5509 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5510 dwarf2_per_objfile->read_in_chain = this_cu;
5511 }
5512 else
5513 do_cleanups (free_cu_cleanup);
5514 }
5515
5516 do_cleanups (cleanups);
5517 }
5518
5519 /* Read CU/TU THIS_CU in section SECTION,
5520 but do not follow DW_AT_GNU_dwo_name if present.
5521 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5522 to have already done the lookup to find the DWO/DWP file).
5523
5524 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5525 THIS_CU->is_debug_types, but nothing else.
5526
5527 We fill in THIS_CU->length.
5528
5529 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5530 linker) then DIE_READER_FUNC will not get called.
5531
5532 THIS_CU->cu is always freed when done.
5533 This is done in order to not leave THIS_CU->cu in a state where we have
5534 to care whether it refers to the "main" CU or the DWO CU. */
5535
5536 static void
5537 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5538 struct dwarf2_section_info *abbrev_section,
5539 struct dwo_file *dwo_file,
5540 die_reader_func_ftype *die_reader_func,
5541 void *data)
5542 {
5543 struct objfile *objfile = dwarf2_per_objfile->objfile;
5544 struct dwarf2_section_info *section = this_cu->section;
5545 bfd *abfd = get_section_bfd_owner (section);
5546 struct dwarf2_cu cu;
5547 const gdb_byte *begin_info_ptr, *info_ptr;
5548 struct die_reader_specs reader;
5549 struct cleanup *cleanups;
5550 struct die_info *comp_unit_die;
5551 int has_children;
5552
5553 if (dwarf2_die_debug)
5554 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5555 this_cu->is_debug_types ? "type" : "comp",
5556 this_cu->offset.sect_off);
5557
5558 gdb_assert (this_cu->cu == NULL);
5559
5560 /* This is cheap if the section is already read in. */
5561 dwarf2_read_section (objfile, section);
5562
5563 init_one_comp_unit (&cu, this_cu);
5564
5565 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5566
5567 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5568 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5569 abbrev_section, info_ptr,
5570 this_cu->is_debug_types);
5571
5572 this_cu->length = get_cu_length (&cu.header);
5573
5574 /* Skip dummy compilation units. */
5575 if (info_ptr >= begin_info_ptr + this_cu->length
5576 || peek_abbrev_code (abfd, info_ptr) == 0)
5577 {
5578 do_cleanups (cleanups);
5579 return;
5580 }
5581
5582 dwarf2_read_abbrevs (&cu, abbrev_section);
5583 make_cleanup (dwarf2_free_abbrev_table, &cu);
5584
5585 init_cu_die_reader (&reader, &cu, section, dwo_file);
5586 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5587
5588 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5589
5590 do_cleanups (cleanups);
5591 }
5592
5593 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5594 does not lookup the specified DWO file.
5595 This cannot be used to read DWO files.
5596
5597 THIS_CU->cu is always freed when done.
5598 This is done in order to not leave THIS_CU->cu in a state where we have
5599 to care whether it refers to the "main" CU or the DWO CU.
5600 We can revisit this if the data shows there's a performance issue. */
5601
5602 static void
5603 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5604 die_reader_func_ftype *die_reader_func,
5605 void *data)
5606 {
5607 init_cutu_and_read_dies_no_follow (this_cu,
5608 get_abbrev_section_for_cu (this_cu),
5609 NULL,
5610 die_reader_func, data);
5611 }
5612 \f
5613 /* Type Unit Groups.
5614
5615 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5616 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5617 so that all types coming from the same compilation (.o file) are grouped
5618 together. A future step could be to put the types in the same symtab as
5619 the CU the types ultimately came from. */
5620
5621 static hashval_t
5622 hash_type_unit_group (const void *item)
5623 {
5624 const struct type_unit_group *tu_group = item;
5625
5626 return hash_stmt_list_entry (&tu_group->hash);
5627 }
5628
5629 static int
5630 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5631 {
5632 const struct type_unit_group *lhs = item_lhs;
5633 const struct type_unit_group *rhs = item_rhs;
5634
5635 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5636 }
5637
5638 /* Allocate a hash table for type unit groups. */
5639
5640 static htab_t
5641 allocate_type_unit_groups_table (void)
5642 {
5643 return htab_create_alloc_ex (3,
5644 hash_type_unit_group,
5645 eq_type_unit_group,
5646 NULL,
5647 &dwarf2_per_objfile->objfile->objfile_obstack,
5648 hashtab_obstack_allocate,
5649 dummy_obstack_deallocate);
5650 }
5651
5652 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5653 partial symtabs. We combine several TUs per psymtab to not let the size
5654 of any one psymtab grow too big. */
5655 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5656 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5657
5658 /* Helper routine for get_type_unit_group.
5659 Create the type_unit_group object used to hold one or more TUs. */
5660
5661 static struct type_unit_group *
5662 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5663 {
5664 struct objfile *objfile = dwarf2_per_objfile->objfile;
5665 struct dwarf2_per_cu_data *per_cu;
5666 struct type_unit_group *tu_group;
5667
5668 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5669 struct type_unit_group);
5670 per_cu = &tu_group->per_cu;
5671 per_cu->objfile = objfile;
5672
5673 if (dwarf2_per_objfile->using_index)
5674 {
5675 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5676 struct dwarf2_per_cu_quick_data);
5677 }
5678 else
5679 {
5680 unsigned int line_offset = line_offset_struct.sect_off;
5681 struct partial_symtab *pst;
5682 char *name;
5683
5684 /* Give the symtab a useful name for debug purposes. */
5685 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5686 name = xstrprintf ("<type_units_%d>",
5687 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5688 else
5689 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5690
5691 pst = create_partial_symtab (per_cu, name);
5692 pst->anonymous = 1;
5693
5694 xfree (name);
5695 }
5696
5697 tu_group->hash.dwo_unit = cu->dwo_unit;
5698 tu_group->hash.line_offset = line_offset_struct;
5699
5700 return tu_group;
5701 }
5702
5703 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5704 STMT_LIST is a DW_AT_stmt_list attribute. */
5705
5706 static struct type_unit_group *
5707 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5708 {
5709 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5710 struct type_unit_group *tu_group;
5711 void **slot;
5712 unsigned int line_offset;
5713 struct type_unit_group type_unit_group_for_lookup;
5714
5715 if (dwarf2_per_objfile->type_unit_groups == NULL)
5716 {
5717 dwarf2_per_objfile->type_unit_groups =
5718 allocate_type_unit_groups_table ();
5719 }
5720
5721 /* Do we need to create a new group, or can we use an existing one? */
5722
5723 if (stmt_list)
5724 {
5725 line_offset = DW_UNSND (stmt_list);
5726 ++tu_stats->nr_symtab_sharers;
5727 }
5728 else
5729 {
5730 /* Ugh, no stmt_list. Rare, but we have to handle it.
5731 We can do various things here like create one group per TU or
5732 spread them over multiple groups to split up the expansion work.
5733 To avoid worst case scenarios (too many groups or too large groups)
5734 we, umm, group them in bunches. */
5735 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5736 | (tu_stats->nr_stmt_less_type_units
5737 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5738 ++tu_stats->nr_stmt_less_type_units;
5739 }
5740
5741 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5742 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5743 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5744 &type_unit_group_for_lookup, INSERT);
5745 if (*slot != NULL)
5746 {
5747 tu_group = *slot;
5748 gdb_assert (tu_group != NULL);
5749 }
5750 else
5751 {
5752 sect_offset line_offset_struct;
5753
5754 line_offset_struct.sect_off = line_offset;
5755 tu_group = create_type_unit_group (cu, line_offset_struct);
5756 *slot = tu_group;
5757 ++tu_stats->nr_symtabs;
5758 }
5759
5760 return tu_group;
5761 }
5762
5763 /* Struct used to sort TUs by their abbreviation table offset. */
5764
5765 struct tu_abbrev_offset
5766 {
5767 struct signatured_type *sig_type;
5768 sect_offset abbrev_offset;
5769 };
5770
5771 /* Helper routine for build_type_unit_groups, passed to qsort. */
5772
5773 static int
5774 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5775 {
5776 const struct tu_abbrev_offset * const *a = ap;
5777 const struct tu_abbrev_offset * const *b = bp;
5778 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5779 unsigned int boff = (*b)->abbrev_offset.sect_off;
5780
5781 return (aoff > boff) - (aoff < boff);
5782 }
5783
5784 /* A helper function to add a type_unit_group to a table. */
5785
5786 static int
5787 add_type_unit_group_to_table (void **slot, void *datum)
5788 {
5789 struct type_unit_group *tu_group = *slot;
5790 struct type_unit_group ***datap = datum;
5791
5792 **datap = tu_group;
5793 ++*datap;
5794
5795 return 1;
5796 }
5797
5798 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5799 each one passing FUNC,DATA.
5800
5801 The efficiency is because we sort TUs by the abbrev table they use and
5802 only read each abbrev table once. In one program there are 200K TUs
5803 sharing 8K abbrev tables.
5804
5805 The main purpose of this function is to support building the
5806 dwarf2_per_objfile->type_unit_groups table.
5807 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5808 can collapse the search space by grouping them by stmt_list.
5809 The savings can be significant, in the same program from above the 200K TUs
5810 share 8K stmt_list tables.
5811
5812 FUNC is expected to call get_type_unit_group, which will create the
5813 struct type_unit_group if necessary and add it to
5814 dwarf2_per_objfile->type_unit_groups. */
5815
5816 static void
5817 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5818 {
5819 struct objfile *objfile = dwarf2_per_objfile->objfile;
5820 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5821 struct cleanup *cleanups;
5822 struct abbrev_table *abbrev_table;
5823 sect_offset abbrev_offset;
5824 struct tu_abbrev_offset *sorted_by_abbrev;
5825 struct type_unit_group **iter;
5826 int i;
5827
5828 /* It's up to the caller to not call us multiple times. */
5829 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5830
5831 if (dwarf2_per_objfile->n_type_units == 0)
5832 return;
5833
5834 /* TUs typically share abbrev tables, and there can be way more TUs than
5835 abbrev tables. Sort by abbrev table to reduce the number of times we
5836 read each abbrev table in.
5837 Alternatives are to punt or to maintain a cache of abbrev tables.
5838 This is simpler and efficient enough for now.
5839
5840 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5841 symtab to use). Typically TUs with the same abbrev offset have the same
5842 stmt_list value too so in practice this should work well.
5843
5844 The basic algorithm here is:
5845
5846 sort TUs by abbrev table
5847 for each TU with same abbrev table:
5848 read abbrev table if first user
5849 read TU top level DIE
5850 [IWBN if DWO skeletons had DW_AT_stmt_list]
5851 call FUNC */
5852
5853 if (dwarf2_read_debug)
5854 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5855
5856 /* Sort in a separate table to maintain the order of all_type_units
5857 for .gdb_index: TU indices directly index all_type_units. */
5858 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5859 dwarf2_per_objfile->n_type_units);
5860 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5861 {
5862 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5863
5864 sorted_by_abbrev[i].sig_type = sig_type;
5865 sorted_by_abbrev[i].abbrev_offset =
5866 read_abbrev_offset (sig_type->per_cu.section,
5867 sig_type->per_cu.offset);
5868 }
5869 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5870 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5871 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5872
5873 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5874 called any number of times, so we don't reset tu_stats here. */
5875
5876 abbrev_offset.sect_off = ~(unsigned) 0;
5877 abbrev_table = NULL;
5878 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5879
5880 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5881 {
5882 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5883
5884 /* Switch to the next abbrev table if necessary. */
5885 if (abbrev_table == NULL
5886 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5887 {
5888 if (abbrev_table != NULL)
5889 {
5890 abbrev_table_free (abbrev_table);
5891 /* Reset to NULL in case abbrev_table_read_table throws
5892 an error: abbrev_table_free_cleanup will get called. */
5893 abbrev_table = NULL;
5894 }
5895 abbrev_offset = tu->abbrev_offset;
5896 abbrev_table =
5897 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5898 abbrev_offset);
5899 ++tu_stats->nr_uniq_abbrev_tables;
5900 }
5901
5902 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5903 func, data);
5904 }
5905
5906 /* type_unit_groups can be NULL if there is an error in the debug info.
5907 Just create an empty table so the rest of gdb doesn't have to watch
5908 for this error case. */
5909 if (dwarf2_per_objfile->type_unit_groups == NULL)
5910 {
5911 dwarf2_per_objfile->type_unit_groups =
5912 allocate_type_unit_groups_table ();
5913 dwarf2_per_objfile->n_type_unit_groups = 0;
5914 }
5915
5916 /* Create a vector of pointers to primary type units to make it easy to
5917 iterate over them and CUs. See dw2_get_primary_cu. */
5918 dwarf2_per_objfile->n_type_unit_groups =
5919 htab_elements (dwarf2_per_objfile->type_unit_groups);
5920 dwarf2_per_objfile->all_type_unit_groups =
5921 obstack_alloc (&objfile->objfile_obstack,
5922 dwarf2_per_objfile->n_type_unit_groups
5923 * sizeof (struct type_unit_group *));
5924 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5925 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5926 add_type_unit_group_to_table, &iter);
5927 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5928 == dwarf2_per_objfile->n_type_unit_groups);
5929
5930 do_cleanups (cleanups);
5931
5932 if (dwarf2_read_debug)
5933 {
5934 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5935 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5936 dwarf2_per_objfile->n_type_units);
5937 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5938 tu_stats->nr_uniq_abbrev_tables);
5939 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5940 tu_stats->nr_symtabs);
5941 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5942 tu_stats->nr_symtab_sharers);
5943 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5944 tu_stats->nr_stmt_less_type_units);
5945 }
5946 }
5947 \f
5948 /* Partial symbol tables. */
5949
5950 /* Create a psymtab named NAME and assign it to PER_CU.
5951
5952 The caller must fill in the following details:
5953 dirname, textlow, texthigh. */
5954
5955 static struct partial_symtab *
5956 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5957 {
5958 struct objfile *objfile = per_cu->objfile;
5959 struct partial_symtab *pst;
5960
5961 pst = start_psymtab_common (objfile, objfile->section_offsets,
5962 name, 0,
5963 objfile->global_psymbols.next,
5964 objfile->static_psymbols.next);
5965
5966 pst->psymtabs_addrmap_supported = 1;
5967
5968 /* This is the glue that links PST into GDB's symbol API. */
5969 pst->read_symtab_private = per_cu;
5970 pst->read_symtab = dwarf2_read_symtab;
5971 per_cu->v.psymtab = pst;
5972
5973 return pst;
5974 }
5975
5976 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5977 type. */
5978
5979 struct process_psymtab_comp_unit_data
5980 {
5981 /* True if we are reading a DW_TAG_partial_unit. */
5982
5983 int want_partial_unit;
5984
5985 /* The "pretend" language that is used if the CU doesn't declare a
5986 language. */
5987
5988 enum language pretend_language;
5989 };
5990
5991 /* die_reader_func for process_psymtab_comp_unit. */
5992
5993 static void
5994 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5995 const gdb_byte *info_ptr,
5996 struct die_info *comp_unit_die,
5997 int has_children,
5998 void *data)
5999 {
6000 struct dwarf2_cu *cu = reader->cu;
6001 struct objfile *objfile = cu->objfile;
6002 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6003 struct attribute *attr;
6004 CORE_ADDR baseaddr;
6005 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6006 struct partial_symtab *pst;
6007 int has_pc_info;
6008 const char *filename;
6009 struct process_psymtab_comp_unit_data *info = data;
6010
6011 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
6012 return;
6013
6014 gdb_assert (! per_cu->is_debug_types);
6015
6016 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
6017
6018 cu->list_in_scope = &file_symbols;
6019
6020 /* Allocate a new partial symbol table structure. */
6021 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
6022 if (attr == NULL || !DW_STRING (attr))
6023 filename = "";
6024 else
6025 filename = DW_STRING (attr);
6026
6027 pst = create_partial_symtab (per_cu, filename);
6028
6029 /* This must be done before calling dwarf2_build_include_psymtabs. */
6030 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
6031 if (attr != NULL)
6032 pst->dirname = DW_STRING (attr);
6033
6034 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6035
6036 dwarf2_find_base_address (comp_unit_die, cu);
6037
6038 /* Possibly set the default values of LOWPC and HIGHPC from
6039 `DW_AT_ranges'. */
6040 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6041 &best_highpc, cu, pst);
6042 if (has_pc_info == 1 && best_lowpc < best_highpc)
6043 /* Store the contiguous range if it is not empty; it can be empty for
6044 CUs with no code. */
6045 addrmap_set_empty (objfile->psymtabs_addrmap,
6046 best_lowpc + baseaddr,
6047 best_highpc + baseaddr - 1, pst);
6048
6049 /* Check if comp unit has_children.
6050 If so, read the rest of the partial symbols from this comp unit.
6051 If not, there's no more debug_info for this comp unit. */
6052 if (has_children)
6053 {
6054 struct partial_die_info *first_die;
6055 CORE_ADDR lowpc, highpc;
6056
6057 lowpc = ((CORE_ADDR) -1);
6058 highpc = ((CORE_ADDR) 0);
6059
6060 first_die = load_partial_dies (reader, info_ptr, 1);
6061
6062 scan_partial_symbols (first_die, &lowpc, &highpc,
6063 ! has_pc_info, cu);
6064
6065 /* If we didn't find a lowpc, set it to highpc to avoid
6066 complaints from `maint check'. */
6067 if (lowpc == ((CORE_ADDR) -1))
6068 lowpc = highpc;
6069
6070 /* If the compilation unit didn't have an explicit address range,
6071 then use the information extracted from its child dies. */
6072 if (! has_pc_info)
6073 {
6074 best_lowpc = lowpc;
6075 best_highpc = highpc;
6076 }
6077 }
6078 pst->textlow = best_lowpc + baseaddr;
6079 pst->texthigh = best_highpc + baseaddr;
6080
6081 pst->n_global_syms = objfile->global_psymbols.next -
6082 (objfile->global_psymbols.list + pst->globals_offset);
6083 pst->n_static_syms = objfile->static_psymbols.next -
6084 (objfile->static_psymbols.list + pst->statics_offset);
6085 sort_pst_symbols (objfile, pst);
6086
6087 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6088 {
6089 int i;
6090 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6091 struct dwarf2_per_cu_data *iter;
6092
6093 /* Fill in 'dependencies' here; we fill in 'users' in a
6094 post-pass. */
6095 pst->number_of_dependencies = len;
6096 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6097 len * sizeof (struct symtab *));
6098 for (i = 0;
6099 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6100 i, iter);
6101 ++i)
6102 pst->dependencies[i] = iter->v.psymtab;
6103
6104 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6105 }
6106
6107 /* Get the list of files included in the current compilation unit,
6108 and build a psymtab for each of them. */
6109 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6110
6111 if (dwarf2_read_debug)
6112 {
6113 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6114
6115 fprintf_unfiltered (gdb_stdlog,
6116 "Psymtab for %s unit @0x%x: %s - %s"
6117 ", %d global, %d static syms\n",
6118 per_cu->is_debug_types ? "type" : "comp",
6119 per_cu->offset.sect_off,
6120 paddress (gdbarch, pst->textlow),
6121 paddress (gdbarch, pst->texthigh),
6122 pst->n_global_syms, pst->n_static_syms);
6123 }
6124 }
6125
6126 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6127 Process compilation unit THIS_CU for a psymtab. */
6128
6129 static void
6130 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6131 int want_partial_unit,
6132 enum language pretend_language)
6133 {
6134 struct process_psymtab_comp_unit_data info;
6135
6136 /* If this compilation unit was already read in, free the
6137 cached copy in order to read it in again. This is
6138 necessary because we skipped some symbols when we first
6139 read in the compilation unit (see load_partial_dies).
6140 This problem could be avoided, but the benefit is unclear. */
6141 if (this_cu->cu != NULL)
6142 free_one_cached_comp_unit (this_cu);
6143
6144 gdb_assert (! this_cu->is_debug_types);
6145 info.want_partial_unit = want_partial_unit;
6146 info.pretend_language = pretend_language;
6147 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6148 process_psymtab_comp_unit_reader,
6149 &info);
6150
6151 /* Age out any secondary CUs. */
6152 age_cached_comp_units ();
6153 }
6154
6155 /* Reader function for build_type_psymtabs. */
6156
6157 static void
6158 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6159 const gdb_byte *info_ptr,
6160 struct die_info *type_unit_die,
6161 int has_children,
6162 void *data)
6163 {
6164 struct objfile *objfile = dwarf2_per_objfile->objfile;
6165 struct dwarf2_cu *cu = reader->cu;
6166 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6167 struct signatured_type *sig_type;
6168 struct type_unit_group *tu_group;
6169 struct attribute *attr;
6170 struct partial_die_info *first_die;
6171 CORE_ADDR lowpc, highpc;
6172 struct partial_symtab *pst;
6173
6174 gdb_assert (data == NULL);
6175 gdb_assert (per_cu->is_debug_types);
6176 sig_type = (struct signatured_type *) per_cu;
6177
6178 if (! has_children)
6179 return;
6180
6181 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6182 tu_group = get_type_unit_group (cu, attr);
6183
6184 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6185
6186 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6187 cu->list_in_scope = &file_symbols;
6188 pst = create_partial_symtab (per_cu, "");
6189 pst->anonymous = 1;
6190
6191 first_die = load_partial_dies (reader, info_ptr, 1);
6192
6193 lowpc = (CORE_ADDR) -1;
6194 highpc = (CORE_ADDR) 0;
6195 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6196
6197 pst->n_global_syms = objfile->global_psymbols.next -
6198 (objfile->global_psymbols.list + pst->globals_offset);
6199 pst->n_static_syms = objfile->static_psymbols.next -
6200 (objfile->static_psymbols.list + pst->statics_offset);
6201 sort_pst_symbols (objfile, pst);
6202 }
6203
6204 /* Traversal function for build_type_psymtabs. */
6205
6206 static int
6207 build_type_psymtab_dependencies (void **slot, void *info)
6208 {
6209 struct objfile *objfile = dwarf2_per_objfile->objfile;
6210 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6211 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6212 struct partial_symtab *pst = per_cu->v.psymtab;
6213 int len = VEC_length (sig_type_ptr, tu_group->tus);
6214 struct signatured_type *iter;
6215 int i;
6216
6217 gdb_assert (len > 0);
6218 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6219
6220 pst->number_of_dependencies = len;
6221 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6222 len * sizeof (struct psymtab *));
6223 for (i = 0;
6224 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6225 ++i)
6226 {
6227 gdb_assert (iter->per_cu.is_debug_types);
6228 pst->dependencies[i] = iter->per_cu.v.psymtab;
6229 iter->type_unit_group = tu_group;
6230 }
6231
6232 VEC_free (sig_type_ptr, tu_group->tus);
6233
6234 return 1;
6235 }
6236
6237 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6238 Build partial symbol tables for the .debug_types comp-units. */
6239
6240 static void
6241 build_type_psymtabs (struct objfile *objfile)
6242 {
6243 if (! create_all_type_units (objfile))
6244 return;
6245
6246 build_type_unit_groups (build_type_psymtabs_reader, NULL);
6247
6248 /* Now that all TUs have been processed we can fill in the dependencies. */
6249 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6250 build_type_psymtab_dependencies, NULL);
6251 }
6252
6253 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6254
6255 static void
6256 psymtabs_addrmap_cleanup (void *o)
6257 {
6258 struct objfile *objfile = o;
6259
6260 objfile->psymtabs_addrmap = NULL;
6261 }
6262
6263 /* Compute the 'user' field for each psymtab in OBJFILE. */
6264
6265 static void
6266 set_partial_user (struct objfile *objfile)
6267 {
6268 int i;
6269
6270 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6271 {
6272 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6273 struct partial_symtab *pst = per_cu->v.psymtab;
6274 int j;
6275
6276 if (pst == NULL)
6277 continue;
6278
6279 for (j = 0; j < pst->number_of_dependencies; ++j)
6280 {
6281 /* Set the 'user' field only if it is not already set. */
6282 if (pst->dependencies[j]->user == NULL)
6283 pst->dependencies[j]->user = pst;
6284 }
6285 }
6286 }
6287
6288 /* Build the partial symbol table by doing a quick pass through the
6289 .debug_info and .debug_abbrev sections. */
6290
6291 static void
6292 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6293 {
6294 struct cleanup *back_to, *addrmap_cleanup;
6295 struct obstack temp_obstack;
6296 int i;
6297
6298 if (dwarf2_read_debug)
6299 {
6300 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6301 objfile_name (objfile));
6302 }
6303
6304 dwarf2_per_objfile->reading_partial_symbols = 1;
6305
6306 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6307
6308 /* Any cached compilation units will be linked by the per-objfile
6309 read_in_chain. Make sure to free them when we're done. */
6310 back_to = make_cleanup (free_cached_comp_units, NULL);
6311
6312 build_type_psymtabs (objfile);
6313
6314 create_all_comp_units (objfile);
6315
6316 /* Create a temporary address map on a temporary obstack. We later
6317 copy this to the final obstack. */
6318 obstack_init (&temp_obstack);
6319 make_cleanup_obstack_free (&temp_obstack);
6320 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6321 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6322
6323 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6324 {
6325 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6326
6327 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6328 }
6329
6330 set_partial_user (objfile);
6331
6332 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6333 &objfile->objfile_obstack);
6334 discard_cleanups (addrmap_cleanup);
6335
6336 do_cleanups (back_to);
6337
6338 if (dwarf2_read_debug)
6339 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6340 objfile_name (objfile));
6341 }
6342
6343 /* die_reader_func for load_partial_comp_unit. */
6344
6345 static void
6346 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6347 const gdb_byte *info_ptr,
6348 struct die_info *comp_unit_die,
6349 int has_children,
6350 void *data)
6351 {
6352 struct dwarf2_cu *cu = reader->cu;
6353
6354 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6355
6356 /* Check if comp unit has_children.
6357 If so, read the rest of the partial symbols from this comp unit.
6358 If not, there's no more debug_info for this comp unit. */
6359 if (has_children)
6360 load_partial_dies (reader, info_ptr, 0);
6361 }
6362
6363 /* Load the partial DIEs for a secondary CU into memory.
6364 This is also used when rereading a primary CU with load_all_dies. */
6365
6366 static void
6367 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6368 {
6369 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6370 load_partial_comp_unit_reader, NULL);
6371 }
6372
6373 static void
6374 read_comp_units_from_section (struct objfile *objfile,
6375 struct dwarf2_section_info *section,
6376 unsigned int is_dwz,
6377 int *n_allocated,
6378 int *n_comp_units,
6379 struct dwarf2_per_cu_data ***all_comp_units)
6380 {
6381 const gdb_byte *info_ptr;
6382 bfd *abfd = get_section_bfd_owner (section);
6383
6384 if (dwarf2_read_debug)
6385 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6386 get_section_name (section),
6387 get_section_file_name (section));
6388
6389 dwarf2_read_section (objfile, section);
6390
6391 info_ptr = section->buffer;
6392
6393 while (info_ptr < section->buffer + section->size)
6394 {
6395 unsigned int length, initial_length_size;
6396 struct dwarf2_per_cu_data *this_cu;
6397 sect_offset offset;
6398
6399 offset.sect_off = info_ptr - section->buffer;
6400
6401 /* Read just enough information to find out where the next
6402 compilation unit is. */
6403 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6404
6405 /* Save the compilation unit for later lookup. */
6406 this_cu = obstack_alloc (&objfile->objfile_obstack,
6407 sizeof (struct dwarf2_per_cu_data));
6408 memset (this_cu, 0, sizeof (*this_cu));
6409 this_cu->offset = offset;
6410 this_cu->length = length + initial_length_size;
6411 this_cu->is_dwz = is_dwz;
6412 this_cu->objfile = objfile;
6413 this_cu->section = section;
6414
6415 if (*n_comp_units == *n_allocated)
6416 {
6417 *n_allocated *= 2;
6418 *all_comp_units = xrealloc (*all_comp_units,
6419 *n_allocated
6420 * sizeof (struct dwarf2_per_cu_data *));
6421 }
6422 (*all_comp_units)[*n_comp_units] = this_cu;
6423 ++*n_comp_units;
6424
6425 info_ptr = info_ptr + this_cu->length;
6426 }
6427 }
6428
6429 /* Create a list of all compilation units in OBJFILE.
6430 This is only done for -readnow and building partial symtabs. */
6431
6432 static void
6433 create_all_comp_units (struct objfile *objfile)
6434 {
6435 int n_allocated;
6436 int n_comp_units;
6437 struct dwarf2_per_cu_data **all_comp_units;
6438 struct dwz_file *dwz;
6439
6440 n_comp_units = 0;
6441 n_allocated = 10;
6442 all_comp_units = xmalloc (n_allocated
6443 * sizeof (struct dwarf2_per_cu_data *));
6444
6445 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6446 &n_allocated, &n_comp_units, &all_comp_units);
6447
6448 dwz = dwarf2_get_dwz_file ();
6449 if (dwz != NULL)
6450 read_comp_units_from_section (objfile, &dwz->info, 1,
6451 &n_allocated, &n_comp_units,
6452 &all_comp_units);
6453
6454 dwarf2_per_objfile->all_comp_units
6455 = obstack_alloc (&objfile->objfile_obstack,
6456 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6457 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6458 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6459 xfree (all_comp_units);
6460 dwarf2_per_objfile->n_comp_units = n_comp_units;
6461 }
6462
6463 /* Process all loaded DIEs for compilation unit CU, starting at
6464 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6465 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6466 DW_AT_ranges). If NEED_PC is set, then this function will set
6467 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6468 and record the covered ranges in the addrmap. */
6469
6470 static void
6471 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6472 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6473 {
6474 struct partial_die_info *pdi;
6475
6476 /* Now, march along the PDI's, descending into ones which have
6477 interesting children but skipping the children of the other ones,
6478 until we reach the end of the compilation unit. */
6479
6480 pdi = first_die;
6481
6482 while (pdi != NULL)
6483 {
6484 fixup_partial_die (pdi, cu);
6485
6486 /* Anonymous namespaces or modules have no name but have interesting
6487 children, so we need to look at them. Ditto for anonymous
6488 enums. */
6489
6490 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6491 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6492 || pdi->tag == DW_TAG_imported_unit)
6493 {
6494 switch (pdi->tag)
6495 {
6496 case DW_TAG_subprogram:
6497 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6498 break;
6499 case DW_TAG_constant:
6500 case DW_TAG_variable:
6501 case DW_TAG_typedef:
6502 case DW_TAG_union_type:
6503 if (!pdi->is_declaration)
6504 {
6505 add_partial_symbol (pdi, cu);
6506 }
6507 break;
6508 case DW_TAG_class_type:
6509 case DW_TAG_interface_type:
6510 case DW_TAG_structure_type:
6511 if (!pdi->is_declaration)
6512 {
6513 add_partial_symbol (pdi, cu);
6514 }
6515 break;
6516 case DW_TAG_enumeration_type:
6517 if (!pdi->is_declaration)
6518 add_partial_enumeration (pdi, cu);
6519 break;
6520 case DW_TAG_base_type:
6521 case DW_TAG_subrange_type:
6522 /* File scope base type definitions are added to the partial
6523 symbol table. */
6524 add_partial_symbol (pdi, cu);
6525 break;
6526 case DW_TAG_namespace:
6527 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6528 break;
6529 case DW_TAG_module:
6530 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6531 break;
6532 case DW_TAG_imported_unit:
6533 {
6534 struct dwarf2_per_cu_data *per_cu;
6535
6536 /* For now we don't handle imported units in type units. */
6537 if (cu->per_cu->is_debug_types)
6538 {
6539 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6540 " supported in type units [in module %s]"),
6541 objfile_name (cu->objfile));
6542 }
6543
6544 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6545 pdi->is_dwz,
6546 cu->objfile);
6547
6548 /* Go read the partial unit, if needed. */
6549 if (per_cu->v.psymtab == NULL)
6550 process_psymtab_comp_unit (per_cu, 1, cu->language);
6551
6552 VEC_safe_push (dwarf2_per_cu_ptr,
6553 cu->per_cu->imported_symtabs, per_cu);
6554 }
6555 break;
6556 case DW_TAG_imported_declaration:
6557 add_partial_symbol (pdi, cu);
6558 break;
6559 default:
6560 break;
6561 }
6562 }
6563
6564 /* If the die has a sibling, skip to the sibling. */
6565
6566 pdi = pdi->die_sibling;
6567 }
6568 }
6569
6570 /* Functions used to compute the fully scoped name of a partial DIE.
6571
6572 Normally, this is simple. For C++, the parent DIE's fully scoped
6573 name is concatenated with "::" and the partial DIE's name. For
6574 Java, the same thing occurs except that "." is used instead of "::".
6575 Enumerators are an exception; they use the scope of their parent
6576 enumeration type, i.e. the name of the enumeration type is not
6577 prepended to the enumerator.
6578
6579 There are two complexities. One is DW_AT_specification; in this
6580 case "parent" means the parent of the target of the specification,
6581 instead of the direct parent of the DIE. The other is compilers
6582 which do not emit DW_TAG_namespace; in this case we try to guess
6583 the fully qualified name of structure types from their members'
6584 linkage names. This must be done using the DIE's children rather
6585 than the children of any DW_AT_specification target. We only need
6586 to do this for structures at the top level, i.e. if the target of
6587 any DW_AT_specification (if any; otherwise the DIE itself) does not
6588 have a parent. */
6589
6590 /* Compute the scope prefix associated with PDI's parent, in
6591 compilation unit CU. The result will be allocated on CU's
6592 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6593 field. NULL is returned if no prefix is necessary. */
6594 static const char *
6595 partial_die_parent_scope (struct partial_die_info *pdi,
6596 struct dwarf2_cu *cu)
6597 {
6598 const char *grandparent_scope;
6599 struct partial_die_info *parent, *real_pdi;
6600
6601 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6602 then this means the parent of the specification DIE. */
6603
6604 real_pdi = pdi;
6605 while (real_pdi->has_specification)
6606 real_pdi = find_partial_die (real_pdi->spec_offset,
6607 real_pdi->spec_is_dwz, cu);
6608
6609 parent = real_pdi->die_parent;
6610 if (parent == NULL)
6611 return NULL;
6612
6613 if (parent->scope_set)
6614 return parent->scope;
6615
6616 fixup_partial_die (parent, cu);
6617
6618 grandparent_scope = partial_die_parent_scope (parent, cu);
6619
6620 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6621 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6622 Work around this problem here. */
6623 if (cu->language == language_cplus
6624 && parent->tag == DW_TAG_namespace
6625 && strcmp (parent->name, "::") == 0
6626 && grandparent_scope == NULL)
6627 {
6628 parent->scope = NULL;
6629 parent->scope_set = 1;
6630 return NULL;
6631 }
6632
6633 if (pdi->tag == DW_TAG_enumerator)
6634 /* Enumerators should not get the name of the enumeration as a prefix. */
6635 parent->scope = grandparent_scope;
6636 else if (parent->tag == DW_TAG_namespace
6637 || parent->tag == DW_TAG_module
6638 || parent->tag == DW_TAG_structure_type
6639 || parent->tag == DW_TAG_class_type
6640 || parent->tag == DW_TAG_interface_type
6641 || parent->tag == DW_TAG_union_type
6642 || parent->tag == DW_TAG_enumeration_type)
6643 {
6644 if (grandparent_scope == NULL)
6645 parent->scope = parent->name;
6646 else
6647 parent->scope = typename_concat (&cu->comp_unit_obstack,
6648 grandparent_scope,
6649 parent->name, 0, cu);
6650 }
6651 else
6652 {
6653 /* FIXME drow/2004-04-01: What should we be doing with
6654 function-local names? For partial symbols, we should probably be
6655 ignoring them. */
6656 complaint (&symfile_complaints,
6657 _("unhandled containing DIE tag %d for DIE at %d"),
6658 parent->tag, pdi->offset.sect_off);
6659 parent->scope = grandparent_scope;
6660 }
6661
6662 parent->scope_set = 1;
6663 return parent->scope;
6664 }
6665
6666 /* Return the fully scoped name associated with PDI, from compilation unit
6667 CU. The result will be allocated with malloc. */
6668
6669 static char *
6670 partial_die_full_name (struct partial_die_info *pdi,
6671 struct dwarf2_cu *cu)
6672 {
6673 const char *parent_scope;
6674
6675 /* If this is a template instantiation, we can not work out the
6676 template arguments from partial DIEs. So, unfortunately, we have
6677 to go through the full DIEs. At least any work we do building
6678 types here will be reused if full symbols are loaded later. */
6679 if (pdi->has_template_arguments)
6680 {
6681 fixup_partial_die (pdi, cu);
6682
6683 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6684 {
6685 struct die_info *die;
6686 struct attribute attr;
6687 struct dwarf2_cu *ref_cu = cu;
6688
6689 /* DW_FORM_ref_addr is using section offset. */
6690 attr.name = 0;
6691 attr.form = DW_FORM_ref_addr;
6692 attr.u.unsnd = pdi->offset.sect_off;
6693 die = follow_die_ref (NULL, &attr, &ref_cu);
6694
6695 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6696 }
6697 }
6698
6699 parent_scope = partial_die_parent_scope (pdi, cu);
6700 if (parent_scope == NULL)
6701 return NULL;
6702 else
6703 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6704 }
6705
6706 static void
6707 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6708 {
6709 struct objfile *objfile = cu->objfile;
6710 CORE_ADDR addr = 0;
6711 const char *actual_name = NULL;
6712 CORE_ADDR baseaddr;
6713 char *built_actual_name;
6714
6715 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6716
6717 built_actual_name = partial_die_full_name (pdi, cu);
6718 if (built_actual_name != NULL)
6719 actual_name = built_actual_name;
6720
6721 if (actual_name == NULL)
6722 actual_name = pdi->name;
6723
6724 switch (pdi->tag)
6725 {
6726 case DW_TAG_subprogram:
6727 if (pdi->is_external || cu->language == language_ada)
6728 {
6729 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6730 of the global scope. But in Ada, we want to be able to access
6731 nested procedures globally. So all Ada subprograms are stored
6732 in the global scope. */
6733 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6734 mst_text, objfile); */
6735 add_psymbol_to_list (actual_name, strlen (actual_name),
6736 built_actual_name != NULL,
6737 VAR_DOMAIN, LOC_BLOCK,
6738 &objfile->global_psymbols,
6739 0, pdi->lowpc + baseaddr,
6740 cu->language, objfile);
6741 }
6742 else
6743 {
6744 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6745 mst_file_text, objfile); */
6746 add_psymbol_to_list (actual_name, strlen (actual_name),
6747 built_actual_name != NULL,
6748 VAR_DOMAIN, LOC_BLOCK,
6749 &objfile->static_psymbols,
6750 0, pdi->lowpc + baseaddr,
6751 cu->language, objfile);
6752 }
6753 break;
6754 case DW_TAG_constant:
6755 {
6756 struct psymbol_allocation_list *list;
6757
6758 if (pdi->is_external)
6759 list = &objfile->global_psymbols;
6760 else
6761 list = &objfile->static_psymbols;
6762 add_psymbol_to_list (actual_name, strlen (actual_name),
6763 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6764 list, 0, 0, cu->language, objfile);
6765 }
6766 break;
6767 case DW_TAG_variable:
6768 if (pdi->d.locdesc)
6769 addr = decode_locdesc (pdi->d.locdesc, cu);
6770
6771 if (pdi->d.locdesc
6772 && addr == 0
6773 && !dwarf2_per_objfile->has_section_at_zero)
6774 {
6775 /* A global or static variable may also have been stripped
6776 out by the linker if unused, in which case its address
6777 will be nullified; do not add such variables into partial
6778 symbol table then. */
6779 }
6780 else if (pdi->is_external)
6781 {
6782 /* Global Variable.
6783 Don't enter into the minimal symbol tables as there is
6784 a minimal symbol table entry from the ELF symbols already.
6785 Enter into partial symbol table if it has a location
6786 descriptor or a type.
6787 If the location descriptor is missing, new_symbol will create
6788 a LOC_UNRESOLVED symbol, the address of the variable will then
6789 be determined from the minimal symbol table whenever the variable
6790 is referenced.
6791 The address for the partial symbol table entry is not
6792 used by GDB, but it comes in handy for debugging partial symbol
6793 table building. */
6794
6795 if (pdi->d.locdesc || pdi->has_type)
6796 add_psymbol_to_list (actual_name, strlen (actual_name),
6797 built_actual_name != NULL,
6798 VAR_DOMAIN, LOC_STATIC,
6799 &objfile->global_psymbols,
6800 0, addr + baseaddr,
6801 cu->language, objfile);
6802 }
6803 else
6804 {
6805 /* Static Variable. Skip symbols without location descriptors. */
6806 if (pdi->d.locdesc == NULL)
6807 {
6808 xfree (built_actual_name);
6809 return;
6810 }
6811 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6812 mst_file_data, objfile); */
6813 add_psymbol_to_list (actual_name, strlen (actual_name),
6814 built_actual_name != NULL,
6815 VAR_DOMAIN, LOC_STATIC,
6816 &objfile->static_psymbols,
6817 0, addr + baseaddr,
6818 cu->language, objfile);
6819 }
6820 break;
6821 case DW_TAG_typedef:
6822 case DW_TAG_base_type:
6823 case DW_TAG_subrange_type:
6824 add_psymbol_to_list (actual_name, strlen (actual_name),
6825 built_actual_name != NULL,
6826 VAR_DOMAIN, LOC_TYPEDEF,
6827 &objfile->static_psymbols,
6828 0, (CORE_ADDR) 0, cu->language, objfile);
6829 break;
6830 case DW_TAG_imported_declaration:
6831 case DW_TAG_namespace:
6832 add_psymbol_to_list (actual_name, strlen (actual_name),
6833 built_actual_name != NULL,
6834 VAR_DOMAIN, LOC_TYPEDEF,
6835 &objfile->global_psymbols,
6836 0, (CORE_ADDR) 0, cu->language, objfile);
6837 break;
6838 case DW_TAG_module:
6839 add_psymbol_to_list (actual_name, strlen (actual_name),
6840 built_actual_name != NULL,
6841 MODULE_DOMAIN, LOC_TYPEDEF,
6842 &objfile->global_psymbols,
6843 0, (CORE_ADDR) 0, cu->language, objfile);
6844 break;
6845 case DW_TAG_class_type:
6846 case DW_TAG_interface_type:
6847 case DW_TAG_structure_type:
6848 case DW_TAG_union_type:
6849 case DW_TAG_enumeration_type:
6850 /* Skip external references. The DWARF standard says in the section
6851 about "Structure, Union, and Class Type Entries": "An incomplete
6852 structure, union or class type is represented by a structure,
6853 union or class entry that does not have a byte size attribute
6854 and that has a DW_AT_declaration attribute." */
6855 if (!pdi->has_byte_size && pdi->is_declaration)
6856 {
6857 xfree (built_actual_name);
6858 return;
6859 }
6860
6861 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6862 static vs. global. */
6863 add_psymbol_to_list (actual_name, strlen (actual_name),
6864 built_actual_name != NULL,
6865 STRUCT_DOMAIN, LOC_TYPEDEF,
6866 (cu->language == language_cplus
6867 || cu->language == language_java)
6868 ? &objfile->global_psymbols
6869 : &objfile->static_psymbols,
6870 0, (CORE_ADDR) 0, cu->language, objfile);
6871
6872 break;
6873 case DW_TAG_enumerator:
6874 add_psymbol_to_list (actual_name, strlen (actual_name),
6875 built_actual_name != NULL,
6876 VAR_DOMAIN, LOC_CONST,
6877 (cu->language == language_cplus
6878 || cu->language == language_java)
6879 ? &objfile->global_psymbols
6880 : &objfile->static_psymbols,
6881 0, (CORE_ADDR) 0, cu->language, objfile);
6882 break;
6883 default:
6884 break;
6885 }
6886
6887 xfree (built_actual_name);
6888 }
6889
6890 /* Read a partial die corresponding to a namespace; also, add a symbol
6891 corresponding to that namespace to the symbol table. NAMESPACE is
6892 the name of the enclosing namespace. */
6893
6894 static void
6895 add_partial_namespace (struct partial_die_info *pdi,
6896 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6897 int need_pc, struct dwarf2_cu *cu)
6898 {
6899 /* Add a symbol for the namespace. */
6900
6901 add_partial_symbol (pdi, cu);
6902
6903 /* Now scan partial symbols in that namespace. */
6904
6905 if (pdi->has_children)
6906 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6907 }
6908
6909 /* Read a partial die corresponding to a Fortran module. */
6910
6911 static void
6912 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6913 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6914 {
6915 /* Add a symbol for the namespace. */
6916
6917 add_partial_symbol (pdi, cu);
6918
6919 /* Now scan partial symbols in that module. */
6920
6921 if (pdi->has_children)
6922 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6923 }
6924
6925 /* Read a partial die corresponding to a subprogram and create a partial
6926 symbol for that subprogram. When the CU language allows it, this
6927 routine also defines a partial symbol for each nested subprogram
6928 that this subprogram contains.
6929
6930 DIE my also be a lexical block, in which case we simply search
6931 recursively for suprograms defined inside that lexical block.
6932 Again, this is only performed when the CU language allows this
6933 type of definitions. */
6934
6935 static void
6936 add_partial_subprogram (struct partial_die_info *pdi,
6937 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6938 int need_pc, struct dwarf2_cu *cu)
6939 {
6940 if (pdi->tag == DW_TAG_subprogram)
6941 {
6942 if (pdi->has_pc_info)
6943 {
6944 if (pdi->lowpc < *lowpc)
6945 *lowpc = pdi->lowpc;
6946 if (pdi->highpc > *highpc)
6947 *highpc = pdi->highpc;
6948 if (need_pc)
6949 {
6950 CORE_ADDR baseaddr;
6951 struct objfile *objfile = cu->objfile;
6952
6953 baseaddr = ANOFFSET (objfile->section_offsets,
6954 SECT_OFF_TEXT (objfile));
6955 addrmap_set_empty (objfile->psymtabs_addrmap,
6956 pdi->lowpc + baseaddr,
6957 pdi->highpc - 1 + baseaddr,
6958 cu->per_cu->v.psymtab);
6959 }
6960 }
6961
6962 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6963 {
6964 if (!pdi->is_declaration)
6965 /* Ignore subprogram DIEs that do not have a name, they are
6966 illegal. Do not emit a complaint at this point, we will
6967 do so when we convert this psymtab into a symtab. */
6968 if (pdi->name)
6969 add_partial_symbol (pdi, cu);
6970 }
6971 }
6972
6973 if (! pdi->has_children)
6974 return;
6975
6976 if (cu->language == language_ada)
6977 {
6978 pdi = pdi->die_child;
6979 while (pdi != NULL)
6980 {
6981 fixup_partial_die (pdi, cu);
6982 if (pdi->tag == DW_TAG_subprogram
6983 || pdi->tag == DW_TAG_lexical_block)
6984 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6985 pdi = pdi->die_sibling;
6986 }
6987 }
6988 }
6989
6990 /* Read a partial die corresponding to an enumeration type. */
6991
6992 static void
6993 add_partial_enumeration (struct partial_die_info *enum_pdi,
6994 struct dwarf2_cu *cu)
6995 {
6996 struct partial_die_info *pdi;
6997
6998 if (enum_pdi->name != NULL)
6999 add_partial_symbol (enum_pdi, cu);
7000
7001 pdi = enum_pdi->die_child;
7002 while (pdi)
7003 {
7004 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7005 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7006 else
7007 add_partial_symbol (pdi, cu);
7008 pdi = pdi->die_sibling;
7009 }
7010 }
7011
7012 /* Return the initial uleb128 in the die at INFO_PTR. */
7013
7014 static unsigned int
7015 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7016 {
7017 unsigned int bytes_read;
7018
7019 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7020 }
7021
7022 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7023 Return the corresponding abbrev, or NULL if the number is zero (indicating
7024 an empty DIE). In either case *BYTES_READ will be set to the length of
7025 the initial number. */
7026
7027 static struct abbrev_info *
7028 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7029 struct dwarf2_cu *cu)
7030 {
7031 bfd *abfd = cu->objfile->obfd;
7032 unsigned int abbrev_number;
7033 struct abbrev_info *abbrev;
7034
7035 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7036
7037 if (abbrev_number == 0)
7038 return NULL;
7039
7040 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7041 if (!abbrev)
7042 {
7043 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7044 abbrev_number, bfd_get_filename (abfd));
7045 }
7046
7047 return abbrev;
7048 }
7049
7050 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7051 Returns a pointer to the end of a series of DIEs, terminated by an empty
7052 DIE. Any children of the skipped DIEs will also be skipped. */
7053
7054 static const gdb_byte *
7055 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7056 {
7057 struct dwarf2_cu *cu = reader->cu;
7058 struct abbrev_info *abbrev;
7059 unsigned int bytes_read;
7060
7061 while (1)
7062 {
7063 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7064 if (abbrev == NULL)
7065 return info_ptr + bytes_read;
7066 else
7067 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7068 }
7069 }
7070
7071 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7072 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7073 abbrev corresponding to that skipped uleb128 should be passed in
7074 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7075 children. */
7076
7077 static const gdb_byte *
7078 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7079 struct abbrev_info *abbrev)
7080 {
7081 unsigned int bytes_read;
7082 struct attribute attr;
7083 bfd *abfd = reader->abfd;
7084 struct dwarf2_cu *cu = reader->cu;
7085 const gdb_byte *buffer = reader->buffer;
7086 const gdb_byte *buffer_end = reader->buffer_end;
7087 const gdb_byte *start_info_ptr = info_ptr;
7088 unsigned int form, i;
7089
7090 for (i = 0; i < abbrev->num_attrs; i++)
7091 {
7092 /* The only abbrev we care about is DW_AT_sibling. */
7093 if (abbrev->attrs[i].name == DW_AT_sibling)
7094 {
7095 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7096 if (attr.form == DW_FORM_ref_addr)
7097 complaint (&symfile_complaints,
7098 _("ignoring absolute DW_AT_sibling"));
7099 else
7100 {
7101 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7102 const gdb_byte *sibling_ptr = buffer + off;
7103
7104 if (sibling_ptr < info_ptr)
7105 complaint (&symfile_complaints,
7106 _("DW_AT_sibling points backwards"));
7107 else
7108 return sibling_ptr;
7109 }
7110 }
7111
7112 /* If it isn't DW_AT_sibling, skip this attribute. */
7113 form = abbrev->attrs[i].form;
7114 skip_attribute:
7115 switch (form)
7116 {
7117 case DW_FORM_ref_addr:
7118 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7119 and later it is offset sized. */
7120 if (cu->header.version == 2)
7121 info_ptr += cu->header.addr_size;
7122 else
7123 info_ptr += cu->header.offset_size;
7124 break;
7125 case DW_FORM_GNU_ref_alt:
7126 info_ptr += cu->header.offset_size;
7127 break;
7128 case DW_FORM_addr:
7129 info_ptr += cu->header.addr_size;
7130 break;
7131 case DW_FORM_data1:
7132 case DW_FORM_ref1:
7133 case DW_FORM_flag:
7134 info_ptr += 1;
7135 break;
7136 case DW_FORM_flag_present:
7137 break;
7138 case DW_FORM_data2:
7139 case DW_FORM_ref2:
7140 info_ptr += 2;
7141 break;
7142 case DW_FORM_data4:
7143 case DW_FORM_ref4:
7144 info_ptr += 4;
7145 break;
7146 case DW_FORM_data8:
7147 case DW_FORM_ref8:
7148 case DW_FORM_ref_sig8:
7149 info_ptr += 8;
7150 break;
7151 case DW_FORM_string:
7152 read_direct_string (abfd, info_ptr, &bytes_read);
7153 info_ptr += bytes_read;
7154 break;
7155 case DW_FORM_sec_offset:
7156 case DW_FORM_strp:
7157 case DW_FORM_GNU_strp_alt:
7158 info_ptr += cu->header.offset_size;
7159 break;
7160 case DW_FORM_exprloc:
7161 case DW_FORM_block:
7162 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7163 info_ptr += bytes_read;
7164 break;
7165 case DW_FORM_block1:
7166 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7167 break;
7168 case DW_FORM_block2:
7169 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7170 break;
7171 case DW_FORM_block4:
7172 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7173 break;
7174 case DW_FORM_sdata:
7175 case DW_FORM_udata:
7176 case DW_FORM_ref_udata:
7177 case DW_FORM_GNU_addr_index:
7178 case DW_FORM_GNU_str_index:
7179 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7180 break;
7181 case DW_FORM_indirect:
7182 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7183 info_ptr += bytes_read;
7184 /* We need to continue parsing from here, so just go back to
7185 the top. */
7186 goto skip_attribute;
7187
7188 default:
7189 error (_("Dwarf Error: Cannot handle %s "
7190 "in DWARF reader [in module %s]"),
7191 dwarf_form_name (form),
7192 bfd_get_filename (abfd));
7193 }
7194 }
7195
7196 if (abbrev->has_children)
7197 return skip_children (reader, info_ptr);
7198 else
7199 return info_ptr;
7200 }
7201
7202 /* Locate ORIG_PDI's sibling.
7203 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7204
7205 static const gdb_byte *
7206 locate_pdi_sibling (const struct die_reader_specs *reader,
7207 struct partial_die_info *orig_pdi,
7208 const gdb_byte *info_ptr)
7209 {
7210 /* Do we know the sibling already? */
7211
7212 if (orig_pdi->sibling)
7213 return orig_pdi->sibling;
7214
7215 /* Are there any children to deal with? */
7216
7217 if (!orig_pdi->has_children)
7218 return info_ptr;
7219
7220 /* Skip the children the long way. */
7221
7222 return skip_children (reader, info_ptr);
7223 }
7224
7225 /* Expand this partial symbol table into a full symbol table. SELF is
7226 not NULL. */
7227
7228 static void
7229 dwarf2_read_symtab (struct partial_symtab *self,
7230 struct objfile *objfile)
7231 {
7232 if (self->readin)
7233 {
7234 warning (_("bug: psymtab for %s is already read in."),
7235 self->filename);
7236 }
7237 else
7238 {
7239 if (info_verbose)
7240 {
7241 printf_filtered (_("Reading in symbols for %s..."),
7242 self->filename);
7243 gdb_flush (gdb_stdout);
7244 }
7245
7246 /* Restore our global data. */
7247 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7248
7249 /* If this psymtab is constructed from a debug-only objfile, the
7250 has_section_at_zero flag will not necessarily be correct. We
7251 can get the correct value for this flag by looking at the data
7252 associated with the (presumably stripped) associated objfile. */
7253 if (objfile->separate_debug_objfile_backlink)
7254 {
7255 struct dwarf2_per_objfile *dpo_backlink
7256 = objfile_data (objfile->separate_debug_objfile_backlink,
7257 dwarf2_objfile_data_key);
7258
7259 dwarf2_per_objfile->has_section_at_zero
7260 = dpo_backlink->has_section_at_zero;
7261 }
7262
7263 dwarf2_per_objfile->reading_partial_symbols = 0;
7264
7265 psymtab_to_symtab_1 (self);
7266
7267 /* Finish up the debug error message. */
7268 if (info_verbose)
7269 printf_filtered (_("done.\n"));
7270 }
7271
7272 process_cu_includes ();
7273 }
7274 \f
7275 /* Reading in full CUs. */
7276
7277 /* Add PER_CU to the queue. */
7278
7279 static void
7280 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7281 enum language pretend_language)
7282 {
7283 struct dwarf2_queue_item *item;
7284
7285 per_cu->queued = 1;
7286 item = xmalloc (sizeof (*item));
7287 item->per_cu = per_cu;
7288 item->pretend_language = pretend_language;
7289 item->next = NULL;
7290
7291 if (dwarf2_queue == NULL)
7292 dwarf2_queue = item;
7293 else
7294 dwarf2_queue_tail->next = item;
7295
7296 dwarf2_queue_tail = item;
7297 }
7298
7299 /* If PER_CU is not yet queued, add it to the queue.
7300 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7301 dependency.
7302 The result is non-zero if PER_CU was queued, otherwise the result is zero
7303 meaning either PER_CU is already queued or it is already loaded.
7304
7305 N.B. There is an invariant here that if a CU is queued then it is loaded.
7306 The caller is required to load PER_CU if we return non-zero. */
7307
7308 static int
7309 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7310 struct dwarf2_per_cu_data *per_cu,
7311 enum language pretend_language)
7312 {
7313 /* We may arrive here during partial symbol reading, if we need full
7314 DIEs to process an unusual case (e.g. template arguments). Do
7315 not queue PER_CU, just tell our caller to load its DIEs. */
7316 if (dwarf2_per_objfile->reading_partial_symbols)
7317 {
7318 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7319 return 1;
7320 return 0;
7321 }
7322
7323 /* Mark the dependence relation so that we don't flush PER_CU
7324 too early. */
7325 if (dependent_cu != NULL)
7326 dwarf2_add_dependence (dependent_cu, per_cu);
7327
7328 /* If it's already on the queue, we have nothing to do. */
7329 if (per_cu->queued)
7330 return 0;
7331
7332 /* If the compilation unit is already loaded, just mark it as
7333 used. */
7334 if (per_cu->cu != NULL)
7335 {
7336 per_cu->cu->last_used = 0;
7337 return 0;
7338 }
7339
7340 /* Add it to the queue. */
7341 queue_comp_unit (per_cu, pretend_language);
7342
7343 return 1;
7344 }
7345
7346 /* Process the queue. */
7347
7348 static void
7349 process_queue (void)
7350 {
7351 struct dwarf2_queue_item *item, *next_item;
7352
7353 if (dwarf2_read_debug)
7354 {
7355 fprintf_unfiltered (gdb_stdlog,
7356 "Expanding one or more symtabs of objfile %s ...\n",
7357 objfile_name (dwarf2_per_objfile->objfile));
7358 }
7359
7360 /* The queue starts out with one item, but following a DIE reference
7361 may load a new CU, adding it to the end of the queue. */
7362 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7363 {
7364 if (dwarf2_per_objfile->using_index
7365 ? !item->per_cu->v.quick->symtab
7366 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7367 {
7368 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7369 unsigned int debug_print_threshold;
7370 char buf[100];
7371
7372 if (per_cu->is_debug_types)
7373 {
7374 struct signatured_type *sig_type =
7375 (struct signatured_type *) per_cu;
7376
7377 sprintf (buf, "TU %s at offset 0x%x",
7378 hex_string (sig_type->signature),
7379 per_cu->offset.sect_off);
7380 /* There can be 100s of TUs.
7381 Only print them in verbose mode. */
7382 debug_print_threshold = 2;
7383 }
7384 else
7385 {
7386 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7387 debug_print_threshold = 1;
7388 }
7389
7390 if (dwarf2_read_debug >= debug_print_threshold)
7391 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7392
7393 if (per_cu->is_debug_types)
7394 process_full_type_unit (per_cu, item->pretend_language);
7395 else
7396 process_full_comp_unit (per_cu, item->pretend_language);
7397
7398 if (dwarf2_read_debug >= debug_print_threshold)
7399 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7400 }
7401
7402 item->per_cu->queued = 0;
7403 next_item = item->next;
7404 xfree (item);
7405 }
7406
7407 dwarf2_queue_tail = NULL;
7408
7409 if (dwarf2_read_debug)
7410 {
7411 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7412 objfile_name (dwarf2_per_objfile->objfile));
7413 }
7414 }
7415
7416 /* Free all allocated queue entries. This function only releases anything if
7417 an error was thrown; if the queue was processed then it would have been
7418 freed as we went along. */
7419
7420 static void
7421 dwarf2_release_queue (void *dummy)
7422 {
7423 struct dwarf2_queue_item *item, *last;
7424
7425 item = dwarf2_queue;
7426 while (item)
7427 {
7428 /* Anything still marked queued is likely to be in an
7429 inconsistent state, so discard it. */
7430 if (item->per_cu->queued)
7431 {
7432 if (item->per_cu->cu != NULL)
7433 free_one_cached_comp_unit (item->per_cu);
7434 item->per_cu->queued = 0;
7435 }
7436
7437 last = item;
7438 item = item->next;
7439 xfree (last);
7440 }
7441
7442 dwarf2_queue = dwarf2_queue_tail = NULL;
7443 }
7444
7445 /* Read in full symbols for PST, and anything it depends on. */
7446
7447 static void
7448 psymtab_to_symtab_1 (struct partial_symtab *pst)
7449 {
7450 struct dwarf2_per_cu_data *per_cu;
7451 int i;
7452
7453 if (pst->readin)
7454 return;
7455
7456 for (i = 0; i < pst->number_of_dependencies; i++)
7457 if (!pst->dependencies[i]->readin
7458 && pst->dependencies[i]->user == NULL)
7459 {
7460 /* Inform about additional files that need to be read in. */
7461 if (info_verbose)
7462 {
7463 /* FIXME: i18n: Need to make this a single string. */
7464 fputs_filtered (" ", gdb_stdout);
7465 wrap_here ("");
7466 fputs_filtered ("and ", gdb_stdout);
7467 wrap_here ("");
7468 printf_filtered ("%s...", pst->dependencies[i]->filename);
7469 wrap_here (""); /* Flush output. */
7470 gdb_flush (gdb_stdout);
7471 }
7472 psymtab_to_symtab_1 (pst->dependencies[i]);
7473 }
7474
7475 per_cu = pst->read_symtab_private;
7476
7477 if (per_cu == NULL)
7478 {
7479 /* It's an include file, no symbols to read for it.
7480 Everything is in the parent symtab. */
7481 pst->readin = 1;
7482 return;
7483 }
7484
7485 dw2_do_instantiate_symtab (per_cu);
7486 }
7487
7488 /* Trivial hash function for die_info: the hash value of a DIE
7489 is its offset in .debug_info for this objfile. */
7490
7491 static hashval_t
7492 die_hash (const void *item)
7493 {
7494 const struct die_info *die = item;
7495
7496 return die->offset.sect_off;
7497 }
7498
7499 /* Trivial comparison function for die_info structures: two DIEs
7500 are equal if they have the same offset. */
7501
7502 static int
7503 die_eq (const void *item_lhs, const void *item_rhs)
7504 {
7505 const struct die_info *die_lhs = item_lhs;
7506 const struct die_info *die_rhs = item_rhs;
7507
7508 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7509 }
7510
7511 /* die_reader_func for load_full_comp_unit.
7512 This is identical to read_signatured_type_reader,
7513 but is kept separate for now. */
7514
7515 static void
7516 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7517 const gdb_byte *info_ptr,
7518 struct die_info *comp_unit_die,
7519 int has_children,
7520 void *data)
7521 {
7522 struct dwarf2_cu *cu = reader->cu;
7523 enum language *language_ptr = data;
7524
7525 gdb_assert (cu->die_hash == NULL);
7526 cu->die_hash =
7527 htab_create_alloc_ex (cu->header.length / 12,
7528 die_hash,
7529 die_eq,
7530 NULL,
7531 &cu->comp_unit_obstack,
7532 hashtab_obstack_allocate,
7533 dummy_obstack_deallocate);
7534
7535 if (has_children)
7536 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7537 &info_ptr, comp_unit_die);
7538 cu->dies = comp_unit_die;
7539 /* comp_unit_die is not stored in die_hash, no need. */
7540
7541 /* We try not to read any attributes in this function, because not
7542 all CUs needed for references have been loaded yet, and symbol
7543 table processing isn't initialized. But we have to set the CU language,
7544 or we won't be able to build types correctly.
7545 Similarly, if we do not read the producer, we can not apply
7546 producer-specific interpretation. */
7547 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7548 }
7549
7550 /* Load the DIEs associated with PER_CU into memory. */
7551
7552 static void
7553 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7554 enum language pretend_language)
7555 {
7556 gdb_assert (! this_cu->is_debug_types);
7557
7558 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7559 load_full_comp_unit_reader, &pretend_language);
7560 }
7561
7562 /* Add a DIE to the delayed physname list. */
7563
7564 static void
7565 add_to_method_list (struct type *type, int fnfield_index, int index,
7566 const char *name, struct die_info *die,
7567 struct dwarf2_cu *cu)
7568 {
7569 struct delayed_method_info mi;
7570 mi.type = type;
7571 mi.fnfield_index = fnfield_index;
7572 mi.index = index;
7573 mi.name = name;
7574 mi.die = die;
7575 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7576 }
7577
7578 /* A cleanup for freeing the delayed method list. */
7579
7580 static void
7581 free_delayed_list (void *ptr)
7582 {
7583 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7584 if (cu->method_list != NULL)
7585 {
7586 VEC_free (delayed_method_info, cu->method_list);
7587 cu->method_list = NULL;
7588 }
7589 }
7590
7591 /* Compute the physnames of any methods on the CU's method list.
7592
7593 The computation of method physnames is delayed in order to avoid the
7594 (bad) condition that one of the method's formal parameters is of an as yet
7595 incomplete type. */
7596
7597 static void
7598 compute_delayed_physnames (struct dwarf2_cu *cu)
7599 {
7600 int i;
7601 struct delayed_method_info *mi;
7602 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7603 {
7604 const char *physname;
7605 struct fn_fieldlist *fn_flp
7606 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7607 physname = dwarf2_physname (mi->name, mi->die, cu);
7608 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7609 }
7610 }
7611
7612 /* Go objects should be embedded in a DW_TAG_module DIE,
7613 and it's not clear if/how imported objects will appear.
7614 To keep Go support simple until that's worked out,
7615 go back through what we've read and create something usable.
7616 We could do this while processing each DIE, and feels kinda cleaner,
7617 but that way is more invasive.
7618 This is to, for example, allow the user to type "p var" or "b main"
7619 without having to specify the package name, and allow lookups
7620 of module.object to work in contexts that use the expression
7621 parser. */
7622
7623 static void
7624 fixup_go_packaging (struct dwarf2_cu *cu)
7625 {
7626 char *package_name = NULL;
7627 struct pending *list;
7628 int i;
7629
7630 for (list = global_symbols; list != NULL; list = list->next)
7631 {
7632 for (i = 0; i < list->nsyms; ++i)
7633 {
7634 struct symbol *sym = list->symbol[i];
7635
7636 if (SYMBOL_LANGUAGE (sym) == language_go
7637 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7638 {
7639 char *this_package_name = go_symbol_package_name (sym);
7640
7641 if (this_package_name == NULL)
7642 continue;
7643 if (package_name == NULL)
7644 package_name = this_package_name;
7645 else
7646 {
7647 if (strcmp (package_name, this_package_name) != 0)
7648 complaint (&symfile_complaints,
7649 _("Symtab %s has objects from two different Go packages: %s and %s"),
7650 (SYMBOL_SYMTAB (sym)
7651 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7652 : objfile_name (cu->objfile)),
7653 this_package_name, package_name);
7654 xfree (this_package_name);
7655 }
7656 }
7657 }
7658 }
7659
7660 if (package_name != NULL)
7661 {
7662 struct objfile *objfile = cu->objfile;
7663 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7664 package_name,
7665 strlen (package_name));
7666 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7667 saved_package_name, objfile);
7668 struct symbol *sym;
7669
7670 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7671
7672 sym = allocate_symbol (objfile);
7673 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7674 SYMBOL_SET_NAMES (sym, saved_package_name,
7675 strlen (saved_package_name), 0, objfile);
7676 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7677 e.g., "main" finds the "main" module and not C's main(). */
7678 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7679 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7680 SYMBOL_TYPE (sym) = type;
7681
7682 add_symbol_to_list (sym, &global_symbols);
7683
7684 xfree (package_name);
7685 }
7686 }
7687
7688 /* Return the symtab for PER_CU. This works properly regardless of
7689 whether we're using the index or psymtabs. */
7690
7691 static struct symtab *
7692 get_symtab (struct dwarf2_per_cu_data *per_cu)
7693 {
7694 return (dwarf2_per_objfile->using_index
7695 ? per_cu->v.quick->symtab
7696 : per_cu->v.psymtab->symtab);
7697 }
7698
7699 /* A helper function for computing the list of all symbol tables
7700 included by PER_CU. */
7701
7702 static void
7703 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7704 htab_t all_children, htab_t all_type_symtabs,
7705 struct dwarf2_per_cu_data *per_cu,
7706 struct symtab *immediate_parent)
7707 {
7708 void **slot;
7709 int ix;
7710 struct symtab *symtab;
7711 struct dwarf2_per_cu_data *iter;
7712
7713 slot = htab_find_slot (all_children, per_cu, INSERT);
7714 if (*slot != NULL)
7715 {
7716 /* This inclusion and its children have been processed. */
7717 return;
7718 }
7719
7720 *slot = per_cu;
7721 /* Only add a CU if it has a symbol table. */
7722 symtab = get_symtab (per_cu);
7723 if (symtab != NULL)
7724 {
7725 /* If this is a type unit only add its symbol table if we haven't
7726 seen it yet (type unit per_cu's can share symtabs). */
7727 if (per_cu->is_debug_types)
7728 {
7729 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7730 if (*slot == NULL)
7731 {
7732 *slot = symtab;
7733 VEC_safe_push (symtab_ptr, *result, symtab);
7734 if (symtab->user == NULL)
7735 symtab->user = immediate_parent;
7736 }
7737 }
7738 else
7739 {
7740 VEC_safe_push (symtab_ptr, *result, symtab);
7741 if (symtab->user == NULL)
7742 symtab->user = immediate_parent;
7743 }
7744 }
7745
7746 for (ix = 0;
7747 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7748 ++ix)
7749 {
7750 recursively_compute_inclusions (result, all_children,
7751 all_type_symtabs, iter, symtab);
7752 }
7753 }
7754
7755 /* Compute the symtab 'includes' fields for the symtab related to
7756 PER_CU. */
7757
7758 static void
7759 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7760 {
7761 gdb_assert (! per_cu->is_debug_types);
7762
7763 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7764 {
7765 int ix, len;
7766 struct dwarf2_per_cu_data *per_cu_iter;
7767 struct symtab *symtab_iter;
7768 VEC (symtab_ptr) *result_symtabs = NULL;
7769 htab_t all_children, all_type_symtabs;
7770 struct symtab *symtab = get_symtab (per_cu);
7771
7772 /* If we don't have a symtab, we can just skip this case. */
7773 if (symtab == NULL)
7774 return;
7775
7776 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7777 NULL, xcalloc, xfree);
7778 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7779 NULL, xcalloc, xfree);
7780
7781 for (ix = 0;
7782 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7783 ix, per_cu_iter);
7784 ++ix)
7785 {
7786 recursively_compute_inclusions (&result_symtabs, all_children,
7787 all_type_symtabs, per_cu_iter,
7788 symtab);
7789 }
7790
7791 /* Now we have a transitive closure of all the included symtabs. */
7792 len = VEC_length (symtab_ptr, result_symtabs);
7793 symtab->includes
7794 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7795 (len + 1) * sizeof (struct symtab *));
7796 for (ix = 0;
7797 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7798 ++ix)
7799 symtab->includes[ix] = symtab_iter;
7800 symtab->includes[len] = NULL;
7801
7802 VEC_free (symtab_ptr, result_symtabs);
7803 htab_delete (all_children);
7804 htab_delete (all_type_symtabs);
7805 }
7806 }
7807
7808 /* Compute the 'includes' field for the symtabs of all the CUs we just
7809 read. */
7810
7811 static void
7812 process_cu_includes (void)
7813 {
7814 int ix;
7815 struct dwarf2_per_cu_data *iter;
7816
7817 for (ix = 0;
7818 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7819 ix, iter);
7820 ++ix)
7821 {
7822 if (! iter->is_debug_types)
7823 compute_symtab_includes (iter);
7824 }
7825
7826 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7827 }
7828
7829 /* Generate full symbol information for PER_CU, whose DIEs have
7830 already been loaded into memory. */
7831
7832 static void
7833 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7834 enum language pretend_language)
7835 {
7836 struct dwarf2_cu *cu = per_cu->cu;
7837 struct objfile *objfile = per_cu->objfile;
7838 CORE_ADDR lowpc, highpc;
7839 struct symtab *symtab;
7840 struct cleanup *back_to, *delayed_list_cleanup;
7841 CORE_ADDR baseaddr;
7842 struct block *static_block;
7843
7844 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7845
7846 buildsym_init ();
7847 back_to = make_cleanup (really_free_pendings, NULL);
7848 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7849
7850 cu->list_in_scope = &file_symbols;
7851
7852 cu->language = pretend_language;
7853 cu->language_defn = language_def (cu->language);
7854
7855 /* Do line number decoding in read_file_scope () */
7856 process_die (cu->dies, cu);
7857
7858 /* For now fudge the Go package. */
7859 if (cu->language == language_go)
7860 fixup_go_packaging (cu);
7861
7862 /* Now that we have processed all the DIEs in the CU, all the types
7863 should be complete, and it should now be safe to compute all of the
7864 physnames. */
7865 compute_delayed_physnames (cu);
7866 do_cleanups (delayed_list_cleanup);
7867
7868 /* Some compilers don't define a DW_AT_high_pc attribute for the
7869 compilation unit. If the DW_AT_high_pc is missing, synthesize
7870 it, by scanning the DIE's below the compilation unit. */
7871 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7872
7873 static_block
7874 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7875
7876 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7877 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7878 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7879 addrmap to help ensure it has an accurate map of pc values belonging to
7880 this comp unit. */
7881 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7882
7883 symtab = end_symtab_from_static_block (static_block, objfile,
7884 SECT_OFF_TEXT (objfile), 0);
7885
7886 if (symtab != NULL)
7887 {
7888 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7889
7890 /* Set symtab language to language from DW_AT_language. If the
7891 compilation is from a C file generated by language preprocessors, do
7892 not set the language if it was already deduced by start_subfile. */
7893 if (!(cu->language == language_c && symtab->language != language_c))
7894 symtab->language = cu->language;
7895
7896 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7897 produce DW_AT_location with location lists but it can be possibly
7898 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7899 there were bugs in prologue debug info, fixed later in GCC-4.5
7900 by "unwind info for epilogues" patch (which is not directly related).
7901
7902 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7903 needed, it would be wrong due to missing DW_AT_producer there.
7904
7905 Still one can confuse GDB by using non-standard GCC compilation
7906 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7907 */
7908 if (cu->has_loclist && gcc_4_minor >= 5)
7909 symtab->locations_valid = 1;
7910
7911 if (gcc_4_minor >= 5)
7912 symtab->epilogue_unwind_valid = 1;
7913
7914 symtab->call_site_htab = cu->call_site_htab;
7915 }
7916
7917 if (dwarf2_per_objfile->using_index)
7918 per_cu->v.quick->symtab = symtab;
7919 else
7920 {
7921 struct partial_symtab *pst = per_cu->v.psymtab;
7922 pst->symtab = symtab;
7923 pst->readin = 1;
7924 }
7925
7926 /* Push it for inclusion processing later. */
7927 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7928
7929 do_cleanups (back_to);
7930 }
7931
7932 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7933 already been loaded into memory. */
7934
7935 static void
7936 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7937 enum language pretend_language)
7938 {
7939 struct dwarf2_cu *cu = per_cu->cu;
7940 struct objfile *objfile = per_cu->objfile;
7941 struct symtab *symtab;
7942 struct cleanup *back_to, *delayed_list_cleanup;
7943 struct signatured_type *sig_type;
7944
7945 gdb_assert (per_cu->is_debug_types);
7946 sig_type = (struct signatured_type *) per_cu;
7947
7948 buildsym_init ();
7949 back_to = make_cleanup (really_free_pendings, NULL);
7950 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7951
7952 cu->list_in_scope = &file_symbols;
7953
7954 cu->language = pretend_language;
7955 cu->language_defn = language_def (cu->language);
7956
7957 /* The symbol tables are set up in read_type_unit_scope. */
7958 process_die (cu->dies, cu);
7959
7960 /* For now fudge the Go package. */
7961 if (cu->language == language_go)
7962 fixup_go_packaging (cu);
7963
7964 /* Now that we have processed all the DIEs in the CU, all the types
7965 should be complete, and it should now be safe to compute all of the
7966 physnames. */
7967 compute_delayed_physnames (cu);
7968 do_cleanups (delayed_list_cleanup);
7969
7970 /* TUs share symbol tables.
7971 If this is the first TU to use this symtab, complete the construction
7972 of it with end_expandable_symtab. Otherwise, complete the addition of
7973 this TU's symbols to the existing symtab. */
7974 if (sig_type->type_unit_group->primary_symtab == NULL)
7975 {
7976 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7977 sig_type->type_unit_group->primary_symtab = symtab;
7978
7979 if (symtab != NULL)
7980 {
7981 /* Set symtab language to language from DW_AT_language. If the
7982 compilation is from a C file generated by language preprocessors,
7983 do not set the language if it was already deduced by
7984 start_subfile. */
7985 if (!(cu->language == language_c && symtab->language != language_c))
7986 symtab->language = cu->language;
7987 }
7988 }
7989 else
7990 {
7991 augment_type_symtab (objfile,
7992 sig_type->type_unit_group->primary_symtab);
7993 symtab = sig_type->type_unit_group->primary_symtab;
7994 }
7995
7996 if (dwarf2_per_objfile->using_index)
7997 per_cu->v.quick->symtab = symtab;
7998 else
7999 {
8000 struct partial_symtab *pst = per_cu->v.psymtab;
8001 pst->symtab = symtab;
8002 pst->readin = 1;
8003 }
8004
8005 do_cleanups (back_to);
8006 }
8007
8008 /* Process an imported unit DIE. */
8009
8010 static void
8011 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8012 {
8013 struct attribute *attr;
8014
8015 /* For now we don't handle imported units in type units. */
8016 if (cu->per_cu->is_debug_types)
8017 {
8018 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8019 " supported in type units [in module %s]"),
8020 objfile_name (cu->objfile));
8021 }
8022
8023 attr = dwarf2_attr (die, DW_AT_import, cu);
8024 if (attr != NULL)
8025 {
8026 struct dwarf2_per_cu_data *per_cu;
8027 struct symtab *imported_symtab;
8028 sect_offset offset;
8029 int is_dwz;
8030
8031 offset = dwarf2_get_ref_die_offset (attr);
8032 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8033 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8034
8035 /* If necessary, add it to the queue and load its DIEs. */
8036 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8037 load_full_comp_unit (per_cu, cu->language);
8038
8039 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8040 per_cu);
8041 }
8042 }
8043
8044 /* Reset the in_process bit of a die. */
8045
8046 static void
8047 reset_die_in_process (void *arg)
8048 {
8049 struct die_info *die = arg;
8050
8051 die->in_process = 0;
8052 }
8053
8054 /* Process a die and its children. */
8055
8056 static void
8057 process_die (struct die_info *die, struct dwarf2_cu *cu)
8058 {
8059 struct cleanup *in_process;
8060
8061 /* We should only be processing those not already in process. */
8062 gdb_assert (!die->in_process);
8063
8064 die->in_process = 1;
8065 in_process = make_cleanup (reset_die_in_process,die);
8066
8067 switch (die->tag)
8068 {
8069 case DW_TAG_padding:
8070 break;
8071 case DW_TAG_compile_unit:
8072 case DW_TAG_partial_unit:
8073 read_file_scope (die, cu);
8074 break;
8075 case DW_TAG_type_unit:
8076 read_type_unit_scope (die, cu);
8077 break;
8078 case DW_TAG_subprogram:
8079 case DW_TAG_inlined_subroutine:
8080 read_func_scope (die, cu);
8081 break;
8082 case DW_TAG_lexical_block:
8083 case DW_TAG_try_block:
8084 case DW_TAG_catch_block:
8085 read_lexical_block_scope (die, cu);
8086 break;
8087 case DW_TAG_GNU_call_site:
8088 read_call_site_scope (die, cu);
8089 break;
8090 case DW_TAG_class_type:
8091 case DW_TAG_interface_type:
8092 case DW_TAG_structure_type:
8093 case DW_TAG_union_type:
8094 process_structure_scope (die, cu);
8095 break;
8096 case DW_TAG_enumeration_type:
8097 process_enumeration_scope (die, cu);
8098 break;
8099
8100 /* These dies have a type, but processing them does not create
8101 a symbol or recurse to process the children. Therefore we can
8102 read them on-demand through read_type_die. */
8103 case DW_TAG_subroutine_type:
8104 case DW_TAG_set_type:
8105 case DW_TAG_array_type:
8106 case DW_TAG_pointer_type:
8107 case DW_TAG_ptr_to_member_type:
8108 case DW_TAG_reference_type:
8109 case DW_TAG_string_type:
8110 break;
8111
8112 case DW_TAG_base_type:
8113 case DW_TAG_subrange_type:
8114 case DW_TAG_typedef:
8115 /* Add a typedef symbol for the type definition, if it has a
8116 DW_AT_name. */
8117 new_symbol (die, read_type_die (die, cu), cu);
8118 break;
8119 case DW_TAG_common_block:
8120 read_common_block (die, cu);
8121 break;
8122 case DW_TAG_common_inclusion:
8123 break;
8124 case DW_TAG_namespace:
8125 cu->processing_has_namespace_info = 1;
8126 read_namespace (die, cu);
8127 break;
8128 case DW_TAG_module:
8129 cu->processing_has_namespace_info = 1;
8130 read_module (die, cu);
8131 break;
8132 case DW_TAG_imported_declaration:
8133 cu->processing_has_namespace_info = 1;
8134 if (read_namespace_alias (die, cu))
8135 break;
8136 /* The declaration is not a global namespace alias: fall through. */
8137 case DW_TAG_imported_module:
8138 cu->processing_has_namespace_info = 1;
8139 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8140 || cu->language != language_fortran))
8141 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8142 dwarf_tag_name (die->tag));
8143 read_import_statement (die, cu);
8144 break;
8145
8146 case DW_TAG_imported_unit:
8147 process_imported_unit_die (die, cu);
8148 break;
8149
8150 default:
8151 new_symbol (die, NULL, cu);
8152 break;
8153 }
8154
8155 do_cleanups (in_process);
8156 }
8157 \f
8158 /* DWARF name computation. */
8159
8160 /* A helper function for dwarf2_compute_name which determines whether DIE
8161 needs to have the name of the scope prepended to the name listed in the
8162 die. */
8163
8164 static int
8165 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8166 {
8167 struct attribute *attr;
8168
8169 switch (die->tag)
8170 {
8171 case DW_TAG_namespace:
8172 case DW_TAG_typedef:
8173 case DW_TAG_class_type:
8174 case DW_TAG_interface_type:
8175 case DW_TAG_structure_type:
8176 case DW_TAG_union_type:
8177 case DW_TAG_enumeration_type:
8178 case DW_TAG_enumerator:
8179 case DW_TAG_subprogram:
8180 case DW_TAG_member:
8181 case DW_TAG_imported_declaration:
8182 return 1;
8183
8184 case DW_TAG_variable:
8185 case DW_TAG_constant:
8186 /* We only need to prefix "globally" visible variables. These include
8187 any variable marked with DW_AT_external or any variable that
8188 lives in a namespace. [Variables in anonymous namespaces
8189 require prefixing, but they are not DW_AT_external.] */
8190
8191 if (dwarf2_attr (die, DW_AT_specification, cu))
8192 {
8193 struct dwarf2_cu *spec_cu = cu;
8194
8195 return die_needs_namespace (die_specification (die, &spec_cu),
8196 spec_cu);
8197 }
8198
8199 attr = dwarf2_attr (die, DW_AT_external, cu);
8200 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8201 && die->parent->tag != DW_TAG_module)
8202 return 0;
8203 /* A variable in a lexical block of some kind does not need a
8204 namespace, even though in C++ such variables may be external
8205 and have a mangled name. */
8206 if (die->parent->tag == DW_TAG_lexical_block
8207 || die->parent->tag == DW_TAG_try_block
8208 || die->parent->tag == DW_TAG_catch_block
8209 || die->parent->tag == DW_TAG_subprogram)
8210 return 0;
8211 return 1;
8212
8213 default:
8214 return 0;
8215 }
8216 }
8217
8218 /* Retrieve the last character from a mem_file. */
8219
8220 static void
8221 do_ui_file_peek_last (void *object, const char *buffer, long length)
8222 {
8223 char *last_char_p = (char *) object;
8224
8225 if (length > 0)
8226 *last_char_p = buffer[length - 1];
8227 }
8228
8229 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8230 compute the physname for the object, which include a method's:
8231 - formal parameters (C++/Java),
8232 - receiver type (Go),
8233 - return type (Java).
8234
8235 The term "physname" is a bit confusing.
8236 For C++, for example, it is the demangled name.
8237 For Go, for example, it's the mangled name.
8238
8239 For Ada, return the DIE's linkage name rather than the fully qualified
8240 name. PHYSNAME is ignored..
8241
8242 The result is allocated on the objfile_obstack and canonicalized. */
8243
8244 static const char *
8245 dwarf2_compute_name (const char *name,
8246 struct die_info *die, struct dwarf2_cu *cu,
8247 int physname)
8248 {
8249 struct objfile *objfile = cu->objfile;
8250
8251 if (name == NULL)
8252 name = dwarf2_name (die, cu);
8253
8254 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8255 compute it by typename_concat inside GDB. */
8256 if (cu->language == language_ada
8257 || (cu->language == language_fortran && physname))
8258 {
8259 /* For Ada unit, we prefer the linkage name over the name, as
8260 the former contains the exported name, which the user expects
8261 to be able to reference. Ideally, we want the user to be able
8262 to reference this entity using either natural or linkage name,
8263 but we haven't started looking at this enhancement yet. */
8264 struct attribute *attr;
8265
8266 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8267 if (attr == NULL)
8268 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8269 if (attr && DW_STRING (attr))
8270 return DW_STRING (attr);
8271 }
8272
8273 /* These are the only languages we know how to qualify names in. */
8274 if (name != NULL
8275 && (cu->language == language_cplus || cu->language == language_java
8276 || cu->language == language_fortran))
8277 {
8278 if (die_needs_namespace (die, cu))
8279 {
8280 long length;
8281 const char *prefix;
8282 struct ui_file *buf;
8283
8284 prefix = determine_prefix (die, cu);
8285 buf = mem_fileopen ();
8286 if (*prefix != '\0')
8287 {
8288 char *prefixed_name = typename_concat (NULL, prefix, name,
8289 physname, cu);
8290
8291 fputs_unfiltered (prefixed_name, buf);
8292 xfree (prefixed_name);
8293 }
8294 else
8295 fputs_unfiltered (name, buf);
8296
8297 /* Template parameters may be specified in the DIE's DW_AT_name, or
8298 as children with DW_TAG_template_type_param or
8299 DW_TAG_value_type_param. If the latter, add them to the name
8300 here. If the name already has template parameters, then
8301 skip this step; some versions of GCC emit both, and
8302 it is more efficient to use the pre-computed name.
8303
8304 Something to keep in mind about this process: it is very
8305 unlikely, or in some cases downright impossible, to produce
8306 something that will match the mangled name of a function.
8307 If the definition of the function has the same debug info,
8308 we should be able to match up with it anyway. But fallbacks
8309 using the minimal symbol, for instance to find a method
8310 implemented in a stripped copy of libstdc++, will not work.
8311 If we do not have debug info for the definition, we will have to
8312 match them up some other way.
8313
8314 When we do name matching there is a related problem with function
8315 templates; two instantiated function templates are allowed to
8316 differ only by their return types, which we do not add here. */
8317
8318 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8319 {
8320 struct attribute *attr;
8321 struct die_info *child;
8322 int first = 1;
8323
8324 die->building_fullname = 1;
8325
8326 for (child = die->child; child != NULL; child = child->sibling)
8327 {
8328 struct type *type;
8329 LONGEST value;
8330 const gdb_byte *bytes;
8331 struct dwarf2_locexpr_baton *baton;
8332 struct value *v;
8333
8334 if (child->tag != DW_TAG_template_type_param
8335 && child->tag != DW_TAG_template_value_param)
8336 continue;
8337
8338 if (first)
8339 {
8340 fputs_unfiltered ("<", buf);
8341 first = 0;
8342 }
8343 else
8344 fputs_unfiltered (", ", buf);
8345
8346 attr = dwarf2_attr (child, DW_AT_type, cu);
8347 if (attr == NULL)
8348 {
8349 complaint (&symfile_complaints,
8350 _("template parameter missing DW_AT_type"));
8351 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8352 continue;
8353 }
8354 type = die_type (child, cu);
8355
8356 if (child->tag == DW_TAG_template_type_param)
8357 {
8358 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8359 continue;
8360 }
8361
8362 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8363 if (attr == NULL)
8364 {
8365 complaint (&symfile_complaints,
8366 _("template parameter missing "
8367 "DW_AT_const_value"));
8368 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8369 continue;
8370 }
8371
8372 dwarf2_const_value_attr (attr, type, name,
8373 &cu->comp_unit_obstack, cu,
8374 &value, &bytes, &baton);
8375
8376 if (TYPE_NOSIGN (type))
8377 /* GDB prints characters as NUMBER 'CHAR'. If that's
8378 changed, this can use value_print instead. */
8379 c_printchar (value, type, buf);
8380 else
8381 {
8382 struct value_print_options opts;
8383
8384 if (baton != NULL)
8385 v = dwarf2_evaluate_loc_desc (type, NULL,
8386 baton->data,
8387 baton->size,
8388 baton->per_cu);
8389 else if (bytes != NULL)
8390 {
8391 v = allocate_value (type);
8392 memcpy (value_contents_writeable (v), bytes,
8393 TYPE_LENGTH (type));
8394 }
8395 else
8396 v = value_from_longest (type, value);
8397
8398 /* Specify decimal so that we do not depend on
8399 the radix. */
8400 get_formatted_print_options (&opts, 'd');
8401 opts.raw = 1;
8402 value_print (v, buf, &opts);
8403 release_value (v);
8404 value_free (v);
8405 }
8406 }
8407
8408 die->building_fullname = 0;
8409
8410 if (!first)
8411 {
8412 /* Close the argument list, with a space if necessary
8413 (nested templates). */
8414 char last_char = '\0';
8415 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8416 if (last_char == '>')
8417 fputs_unfiltered (" >", buf);
8418 else
8419 fputs_unfiltered (">", buf);
8420 }
8421 }
8422
8423 /* For Java and C++ methods, append formal parameter type
8424 information, if PHYSNAME. */
8425
8426 if (physname && die->tag == DW_TAG_subprogram
8427 && (cu->language == language_cplus
8428 || cu->language == language_java))
8429 {
8430 struct type *type = read_type_die (die, cu);
8431
8432 c_type_print_args (type, buf, 1, cu->language,
8433 &type_print_raw_options);
8434
8435 if (cu->language == language_java)
8436 {
8437 /* For java, we must append the return type to method
8438 names. */
8439 if (die->tag == DW_TAG_subprogram)
8440 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8441 0, 0, &type_print_raw_options);
8442 }
8443 else if (cu->language == language_cplus)
8444 {
8445 /* Assume that an artificial first parameter is
8446 "this", but do not crash if it is not. RealView
8447 marks unnamed (and thus unused) parameters as
8448 artificial; there is no way to differentiate
8449 the two cases. */
8450 if (TYPE_NFIELDS (type) > 0
8451 && TYPE_FIELD_ARTIFICIAL (type, 0)
8452 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8453 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8454 0))))
8455 fputs_unfiltered (" const", buf);
8456 }
8457 }
8458
8459 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
8460 &length);
8461 ui_file_delete (buf);
8462
8463 if (cu->language == language_cplus)
8464 {
8465 const char *cname
8466 = dwarf2_canonicalize_name (name, cu,
8467 &objfile->objfile_obstack);
8468
8469 if (cname != NULL)
8470 name = cname;
8471 }
8472 }
8473 }
8474
8475 return name;
8476 }
8477
8478 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8479 If scope qualifiers are appropriate they will be added. The result
8480 will be allocated on the objfile_obstack, or NULL if the DIE does
8481 not have a name. NAME may either be from a previous call to
8482 dwarf2_name or NULL.
8483
8484 The output string will be canonicalized (if C++/Java). */
8485
8486 static const char *
8487 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8488 {
8489 return dwarf2_compute_name (name, die, cu, 0);
8490 }
8491
8492 /* Construct a physname for the given DIE in CU. NAME may either be
8493 from a previous call to dwarf2_name or NULL. The result will be
8494 allocated on the objfile_objstack or NULL if the DIE does not have a
8495 name.
8496
8497 The output string will be canonicalized (if C++/Java). */
8498
8499 static const char *
8500 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8501 {
8502 struct objfile *objfile = cu->objfile;
8503 struct attribute *attr;
8504 const char *retval, *mangled = NULL, *canon = NULL;
8505 struct cleanup *back_to;
8506 int need_copy = 1;
8507
8508 /* In this case dwarf2_compute_name is just a shortcut not building anything
8509 on its own. */
8510 if (!die_needs_namespace (die, cu))
8511 return dwarf2_compute_name (name, die, cu, 1);
8512
8513 back_to = make_cleanup (null_cleanup, NULL);
8514
8515 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8516 if (!attr)
8517 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8518
8519 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8520 has computed. */
8521 if (attr && DW_STRING (attr))
8522 {
8523 char *demangled;
8524
8525 mangled = DW_STRING (attr);
8526
8527 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8528 type. It is easier for GDB users to search for such functions as
8529 `name(params)' than `long name(params)'. In such case the minimal
8530 symbol names do not match the full symbol names but for template
8531 functions there is never a need to look up their definition from their
8532 declaration so the only disadvantage remains the minimal symbol
8533 variant `long name(params)' does not have the proper inferior type.
8534 */
8535
8536 if (cu->language == language_go)
8537 {
8538 /* This is a lie, but we already lie to the caller new_symbol_full.
8539 new_symbol_full assumes we return the mangled name.
8540 This just undoes that lie until things are cleaned up. */
8541 demangled = NULL;
8542 }
8543 else
8544 {
8545 demangled = gdb_demangle (mangled,
8546 (DMGL_PARAMS | DMGL_ANSI
8547 | (cu->language == language_java
8548 ? DMGL_JAVA | DMGL_RET_POSTFIX
8549 : DMGL_RET_DROP)));
8550 }
8551 if (demangled)
8552 {
8553 make_cleanup (xfree, demangled);
8554 canon = demangled;
8555 }
8556 else
8557 {
8558 canon = mangled;
8559 need_copy = 0;
8560 }
8561 }
8562
8563 if (canon == NULL || check_physname)
8564 {
8565 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8566
8567 if (canon != NULL && strcmp (physname, canon) != 0)
8568 {
8569 /* It may not mean a bug in GDB. The compiler could also
8570 compute DW_AT_linkage_name incorrectly. But in such case
8571 GDB would need to be bug-to-bug compatible. */
8572
8573 complaint (&symfile_complaints,
8574 _("Computed physname <%s> does not match demangled <%s> "
8575 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8576 physname, canon, mangled, die->offset.sect_off,
8577 objfile_name (objfile));
8578
8579 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8580 is available here - over computed PHYSNAME. It is safer
8581 against both buggy GDB and buggy compilers. */
8582
8583 retval = canon;
8584 }
8585 else
8586 {
8587 retval = physname;
8588 need_copy = 0;
8589 }
8590 }
8591 else
8592 retval = canon;
8593
8594 if (need_copy)
8595 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
8596
8597 do_cleanups (back_to);
8598 return retval;
8599 }
8600
8601 /* Inspect DIE in CU for a namespace alias. If one exists, record
8602 a new symbol for it.
8603
8604 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8605
8606 static int
8607 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8608 {
8609 struct attribute *attr;
8610
8611 /* If the die does not have a name, this is not a namespace
8612 alias. */
8613 attr = dwarf2_attr (die, DW_AT_name, cu);
8614 if (attr != NULL)
8615 {
8616 int num;
8617 struct die_info *d = die;
8618 struct dwarf2_cu *imported_cu = cu;
8619
8620 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8621 keep inspecting DIEs until we hit the underlying import. */
8622 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8623 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8624 {
8625 attr = dwarf2_attr (d, DW_AT_import, cu);
8626 if (attr == NULL)
8627 break;
8628
8629 d = follow_die_ref (d, attr, &imported_cu);
8630 if (d->tag != DW_TAG_imported_declaration)
8631 break;
8632 }
8633
8634 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8635 {
8636 complaint (&symfile_complaints,
8637 _("DIE at 0x%x has too many recursively imported "
8638 "declarations"), d->offset.sect_off);
8639 return 0;
8640 }
8641
8642 if (attr != NULL)
8643 {
8644 struct type *type;
8645 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8646
8647 type = get_die_type_at_offset (offset, cu->per_cu);
8648 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8649 {
8650 /* This declaration is a global namespace alias. Add
8651 a symbol for it whose type is the aliased namespace. */
8652 new_symbol (die, type, cu);
8653 return 1;
8654 }
8655 }
8656 }
8657
8658 return 0;
8659 }
8660
8661 /* Read the import statement specified by the given die and record it. */
8662
8663 static void
8664 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8665 {
8666 struct objfile *objfile = cu->objfile;
8667 struct attribute *import_attr;
8668 struct die_info *imported_die, *child_die;
8669 struct dwarf2_cu *imported_cu;
8670 const char *imported_name;
8671 const char *imported_name_prefix;
8672 const char *canonical_name;
8673 const char *import_alias;
8674 const char *imported_declaration = NULL;
8675 const char *import_prefix;
8676 VEC (const_char_ptr) *excludes = NULL;
8677 struct cleanup *cleanups;
8678
8679 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8680 if (import_attr == NULL)
8681 {
8682 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8683 dwarf_tag_name (die->tag));
8684 return;
8685 }
8686
8687 imported_cu = cu;
8688 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8689 imported_name = dwarf2_name (imported_die, imported_cu);
8690 if (imported_name == NULL)
8691 {
8692 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8693
8694 The import in the following code:
8695 namespace A
8696 {
8697 typedef int B;
8698 }
8699
8700 int main ()
8701 {
8702 using A::B;
8703 B b;
8704 return b;
8705 }
8706
8707 ...
8708 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8709 <52> DW_AT_decl_file : 1
8710 <53> DW_AT_decl_line : 6
8711 <54> DW_AT_import : <0x75>
8712 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8713 <59> DW_AT_name : B
8714 <5b> DW_AT_decl_file : 1
8715 <5c> DW_AT_decl_line : 2
8716 <5d> DW_AT_type : <0x6e>
8717 ...
8718 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8719 <76> DW_AT_byte_size : 4
8720 <77> DW_AT_encoding : 5 (signed)
8721
8722 imports the wrong die ( 0x75 instead of 0x58 ).
8723 This case will be ignored until the gcc bug is fixed. */
8724 return;
8725 }
8726
8727 /* Figure out the local name after import. */
8728 import_alias = dwarf2_name (die, cu);
8729
8730 /* Figure out where the statement is being imported to. */
8731 import_prefix = determine_prefix (die, cu);
8732
8733 /* Figure out what the scope of the imported die is and prepend it
8734 to the name of the imported die. */
8735 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8736
8737 if (imported_die->tag != DW_TAG_namespace
8738 && imported_die->tag != DW_TAG_module)
8739 {
8740 imported_declaration = imported_name;
8741 canonical_name = imported_name_prefix;
8742 }
8743 else if (strlen (imported_name_prefix) > 0)
8744 canonical_name = obconcat (&objfile->objfile_obstack,
8745 imported_name_prefix, "::", imported_name,
8746 (char *) NULL);
8747 else
8748 canonical_name = imported_name;
8749
8750 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8751
8752 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8753 for (child_die = die->child; child_die && child_die->tag;
8754 child_die = sibling_die (child_die))
8755 {
8756 /* DWARF-4: A Fortran use statement with a “rename list” may be
8757 represented by an imported module entry with an import attribute
8758 referring to the module and owned entries corresponding to those
8759 entities that are renamed as part of being imported. */
8760
8761 if (child_die->tag != DW_TAG_imported_declaration)
8762 {
8763 complaint (&symfile_complaints,
8764 _("child DW_TAG_imported_declaration expected "
8765 "- DIE at 0x%x [in module %s]"),
8766 child_die->offset.sect_off, objfile_name (objfile));
8767 continue;
8768 }
8769
8770 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8771 if (import_attr == NULL)
8772 {
8773 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8774 dwarf_tag_name (child_die->tag));
8775 continue;
8776 }
8777
8778 imported_cu = cu;
8779 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8780 &imported_cu);
8781 imported_name = dwarf2_name (imported_die, imported_cu);
8782 if (imported_name == NULL)
8783 {
8784 complaint (&symfile_complaints,
8785 _("child DW_TAG_imported_declaration has unknown "
8786 "imported name - DIE at 0x%x [in module %s]"),
8787 child_die->offset.sect_off, objfile_name (objfile));
8788 continue;
8789 }
8790
8791 VEC_safe_push (const_char_ptr, excludes, imported_name);
8792
8793 process_die (child_die, cu);
8794 }
8795
8796 cp_add_using_directive (import_prefix,
8797 canonical_name,
8798 import_alias,
8799 imported_declaration,
8800 excludes,
8801 0,
8802 &objfile->objfile_obstack);
8803
8804 do_cleanups (cleanups);
8805 }
8806
8807 /* Cleanup function for handle_DW_AT_stmt_list. */
8808
8809 static void
8810 free_cu_line_header (void *arg)
8811 {
8812 struct dwarf2_cu *cu = arg;
8813
8814 free_line_header (cu->line_header);
8815 cu->line_header = NULL;
8816 }
8817
8818 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8819 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8820 this, it was first present in GCC release 4.3.0. */
8821
8822 static int
8823 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8824 {
8825 if (!cu->checked_producer)
8826 check_producer (cu);
8827
8828 return cu->producer_is_gcc_lt_4_3;
8829 }
8830
8831 static void
8832 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8833 const char **name, const char **comp_dir)
8834 {
8835 struct attribute *attr;
8836
8837 *name = NULL;
8838 *comp_dir = NULL;
8839
8840 /* Find the filename. Do not use dwarf2_name here, since the filename
8841 is not a source language identifier. */
8842 attr = dwarf2_attr (die, DW_AT_name, cu);
8843 if (attr)
8844 {
8845 *name = DW_STRING (attr);
8846 }
8847
8848 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8849 if (attr)
8850 *comp_dir = DW_STRING (attr);
8851 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8852 && IS_ABSOLUTE_PATH (*name))
8853 {
8854 char *d = ldirname (*name);
8855
8856 *comp_dir = d;
8857 if (d != NULL)
8858 make_cleanup (xfree, d);
8859 }
8860 if (*comp_dir != NULL)
8861 {
8862 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8863 directory, get rid of it. */
8864 char *cp = strchr (*comp_dir, ':');
8865
8866 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8867 *comp_dir = cp + 1;
8868 }
8869
8870 if (*name == NULL)
8871 *name = "<unknown>";
8872 }
8873
8874 /* Handle DW_AT_stmt_list for a compilation unit.
8875 DIE is the DW_TAG_compile_unit die for CU.
8876 COMP_DIR is the compilation directory.
8877 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8878
8879 static void
8880 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8881 const char *comp_dir) /* ARI: editCase function */
8882 {
8883 struct attribute *attr;
8884
8885 gdb_assert (! cu->per_cu->is_debug_types);
8886
8887 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8888 if (attr)
8889 {
8890 unsigned int line_offset = DW_UNSND (attr);
8891 struct line_header *line_header
8892 = dwarf_decode_line_header (line_offset, cu);
8893
8894 if (line_header)
8895 {
8896 cu->line_header = line_header;
8897 make_cleanup (free_cu_line_header, cu);
8898 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8899 }
8900 }
8901 }
8902
8903 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8904
8905 static void
8906 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8907 {
8908 struct objfile *objfile = dwarf2_per_objfile->objfile;
8909 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8910 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8911 CORE_ADDR highpc = ((CORE_ADDR) 0);
8912 struct attribute *attr;
8913 const char *name = NULL;
8914 const char *comp_dir = NULL;
8915 struct die_info *child_die;
8916 bfd *abfd = objfile->obfd;
8917 CORE_ADDR baseaddr;
8918
8919 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8920
8921 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8922
8923 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8924 from finish_block. */
8925 if (lowpc == ((CORE_ADDR) -1))
8926 lowpc = highpc;
8927 lowpc += baseaddr;
8928 highpc += baseaddr;
8929
8930 find_file_and_directory (die, cu, &name, &comp_dir);
8931
8932 prepare_one_comp_unit (cu, die, cu->language);
8933
8934 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8935 standardised yet. As a workaround for the language detection we fall
8936 back to the DW_AT_producer string. */
8937 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8938 cu->language = language_opencl;
8939
8940 /* Similar hack for Go. */
8941 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8942 set_cu_language (DW_LANG_Go, cu);
8943
8944 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8945
8946 /* Decode line number information if present. We do this before
8947 processing child DIEs, so that the line header table is available
8948 for DW_AT_decl_file. */
8949 handle_DW_AT_stmt_list (die, cu, comp_dir);
8950
8951 /* Process all dies in compilation unit. */
8952 if (die->child != NULL)
8953 {
8954 child_die = die->child;
8955 while (child_die && child_die->tag)
8956 {
8957 process_die (child_die, cu);
8958 child_die = sibling_die (child_die);
8959 }
8960 }
8961
8962 /* Decode macro information, if present. Dwarf 2 macro information
8963 refers to information in the line number info statement program
8964 header, so we can only read it if we've read the header
8965 successfully. */
8966 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8967 if (attr && cu->line_header)
8968 {
8969 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8970 complaint (&symfile_complaints,
8971 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8972
8973 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8974 }
8975 else
8976 {
8977 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8978 if (attr && cu->line_header)
8979 {
8980 unsigned int macro_offset = DW_UNSND (attr);
8981
8982 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8983 }
8984 }
8985
8986 do_cleanups (back_to);
8987 }
8988
8989 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8990 Create the set of symtabs used by this TU, or if this TU is sharing
8991 symtabs with another TU and the symtabs have already been created
8992 then restore those symtabs in the line header.
8993 We don't need the pc/line-number mapping for type units. */
8994
8995 static void
8996 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8997 {
8998 struct objfile *objfile = dwarf2_per_objfile->objfile;
8999 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9000 struct type_unit_group *tu_group;
9001 int first_time;
9002 struct line_header *lh;
9003 struct attribute *attr;
9004 unsigned int i, line_offset;
9005 struct signatured_type *sig_type;
9006
9007 gdb_assert (per_cu->is_debug_types);
9008 sig_type = (struct signatured_type *) per_cu;
9009
9010 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9011
9012 /* If we're using .gdb_index (includes -readnow) then
9013 per_cu->type_unit_group may not have been set up yet. */
9014 if (sig_type->type_unit_group == NULL)
9015 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9016 tu_group = sig_type->type_unit_group;
9017
9018 /* If we've already processed this stmt_list there's no real need to
9019 do it again, we could fake it and just recreate the part we need
9020 (file name,index -> symtab mapping). If data shows this optimization
9021 is useful we can do it then. */
9022 first_time = tu_group->primary_symtab == NULL;
9023
9024 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9025 debug info. */
9026 lh = NULL;
9027 if (attr != NULL)
9028 {
9029 line_offset = DW_UNSND (attr);
9030 lh = dwarf_decode_line_header (line_offset, cu);
9031 }
9032 if (lh == NULL)
9033 {
9034 if (first_time)
9035 dwarf2_start_symtab (cu, "", NULL, 0);
9036 else
9037 {
9038 gdb_assert (tu_group->symtabs == NULL);
9039 restart_symtab (0);
9040 }
9041 /* Note: The primary symtab will get allocated at the end. */
9042 return;
9043 }
9044
9045 cu->line_header = lh;
9046 make_cleanup (free_cu_line_header, cu);
9047
9048 if (first_time)
9049 {
9050 dwarf2_start_symtab (cu, "", NULL, 0);
9051
9052 tu_group->num_symtabs = lh->num_file_names;
9053 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9054
9055 for (i = 0; i < lh->num_file_names; ++i)
9056 {
9057 const char *dir = NULL;
9058 struct file_entry *fe = &lh->file_names[i];
9059
9060 if (fe->dir_index)
9061 dir = lh->include_dirs[fe->dir_index - 1];
9062 dwarf2_start_subfile (fe->name, dir, NULL);
9063
9064 /* Note: We don't have to watch for the main subfile here, type units
9065 don't have DW_AT_name. */
9066
9067 if (current_subfile->symtab == NULL)
9068 {
9069 /* NOTE: start_subfile will recognize when it's been passed
9070 a file it has already seen. So we can't assume there's a
9071 simple mapping from lh->file_names to subfiles,
9072 lh->file_names may contain dups. */
9073 current_subfile->symtab = allocate_symtab (current_subfile->name,
9074 objfile);
9075 }
9076
9077 fe->symtab = current_subfile->symtab;
9078 tu_group->symtabs[i] = fe->symtab;
9079 }
9080 }
9081 else
9082 {
9083 restart_symtab (0);
9084
9085 for (i = 0; i < lh->num_file_names; ++i)
9086 {
9087 struct file_entry *fe = &lh->file_names[i];
9088
9089 fe->symtab = tu_group->symtabs[i];
9090 }
9091 }
9092
9093 /* The main symtab is allocated last. Type units don't have DW_AT_name
9094 so they don't have a "real" (so to speak) symtab anyway.
9095 There is later code that will assign the main symtab to all symbols
9096 that don't have one. We need to handle the case of a symbol with a
9097 missing symtab (DW_AT_decl_file) anyway. */
9098 }
9099
9100 /* Process DW_TAG_type_unit.
9101 For TUs we want to skip the first top level sibling if it's not the
9102 actual type being defined by this TU. In this case the first top
9103 level sibling is there to provide context only. */
9104
9105 static void
9106 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9107 {
9108 struct die_info *child_die;
9109
9110 prepare_one_comp_unit (cu, die, language_minimal);
9111
9112 /* Initialize (or reinitialize) the machinery for building symtabs.
9113 We do this before processing child DIEs, so that the line header table
9114 is available for DW_AT_decl_file. */
9115 setup_type_unit_groups (die, cu);
9116
9117 if (die->child != NULL)
9118 {
9119 child_die = die->child;
9120 while (child_die && child_die->tag)
9121 {
9122 process_die (child_die, cu);
9123 child_die = sibling_die (child_die);
9124 }
9125 }
9126 }
9127 \f
9128 /* DWO/DWP files.
9129
9130 http://gcc.gnu.org/wiki/DebugFission
9131 http://gcc.gnu.org/wiki/DebugFissionDWP
9132
9133 To simplify handling of both DWO files ("object" files with the DWARF info)
9134 and DWP files (a file with the DWOs packaged up into one file), we treat
9135 DWP files as having a collection of virtual DWO files. */
9136
9137 static hashval_t
9138 hash_dwo_file (const void *item)
9139 {
9140 const struct dwo_file *dwo_file = item;
9141 hashval_t hash;
9142
9143 hash = htab_hash_string (dwo_file->dwo_name);
9144 if (dwo_file->comp_dir != NULL)
9145 hash += htab_hash_string (dwo_file->comp_dir);
9146 return hash;
9147 }
9148
9149 static int
9150 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9151 {
9152 const struct dwo_file *lhs = item_lhs;
9153 const struct dwo_file *rhs = item_rhs;
9154
9155 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9156 return 0;
9157 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9158 return lhs->comp_dir == rhs->comp_dir;
9159 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9160 }
9161
9162 /* Allocate a hash table for DWO files. */
9163
9164 static htab_t
9165 allocate_dwo_file_hash_table (void)
9166 {
9167 struct objfile *objfile = dwarf2_per_objfile->objfile;
9168
9169 return htab_create_alloc_ex (41,
9170 hash_dwo_file,
9171 eq_dwo_file,
9172 NULL,
9173 &objfile->objfile_obstack,
9174 hashtab_obstack_allocate,
9175 dummy_obstack_deallocate);
9176 }
9177
9178 /* Lookup DWO file DWO_NAME. */
9179
9180 static void **
9181 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9182 {
9183 struct dwo_file find_entry;
9184 void **slot;
9185
9186 if (dwarf2_per_objfile->dwo_files == NULL)
9187 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9188
9189 memset (&find_entry, 0, sizeof (find_entry));
9190 find_entry.dwo_name = dwo_name;
9191 find_entry.comp_dir = comp_dir;
9192 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9193
9194 return slot;
9195 }
9196
9197 static hashval_t
9198 hash_dwo_unit (const void *item)
9199 {
9200 const struct dwo_unit *dwo_unit = item;
9201
9202 /* This drops the top 32 bits of the id, but is ok for a hash. */
9203 return dwo_unit->signature;
9204 }
9205
9206 static int
9207 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9208 {
9209 const struct dwo_unit *lhs = item_lhs;
9210 const struct dwo_unit *rhs = item_rhs;
9211
9212 /* The signature is assumed to be unique within the DWO file.
9213 So while object file CU dwo_id's always have the value zero,
9214 that's OK, assuming each object file DWO file has only one CU,
9215 and that's the rule for now. */
9216 return lhs->signature == rhs->signature;
9217 }
9218
9219 /* Allocate a hash table for DWO CUs,TUs.
9220 There is one of these tables for each of CUs,TUs for each DWO file. */
9221
9222 static htab_t
9223 allocate_dwo_unit_table (struct objfile *objfile)
9224 {
9225 /* Start out with a pretty small number.
9226 Generally DWO files contain only one CU and maybe some TUs. */
9227 return htab_create_alloc_ex (3,
9228 hash_dwo_unit,
9229 eq_dwo_unit,
9230 NULL,
9231 &objfile->objfile_obstack,
9232 hashtab_obstack_allocate,
9233 dummy_obstack_deallocate);
9234 }
9235
9236 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9237
9238 struct create_dwo_cu_data
9239 {
9240 struct dwo_file *dwo_file;
9241 struct dwo_unit dwo_unit;
9242 };
9243
9244 /* die_reader_func for create_dwo_cu. */
9245
9246 static void
9247 create_dwo_cu_reader (const struct die_reader_specs *reader,
9248 const gdb_byte *info_ptr,
9249 struct die_info *comp_unit_die,
9250 int has_children,
9251 void *datap)
9252 {
9253 struct dwarf2_cu *cu = reader->cu;
9254 struct objfile *objfile = dwarf2_per_objfile->objfile;
9255 sect_offset offset = cu->per_cu->offset;
9256 struct dwarf2_section_info *section = cu->per_cu->section;
9257 struct create_dwo_cu_data *data = datap;
9258 struct dwo_file *dwo_file = data->dwo_file;
9259 struct dwo_unit *dwo_unit = &data->dwo_unit;
9260 struct attribute *attr;
9261
9262 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9263 if (attr == NULL)
9264 {
9265 complaint (&symfile_complaints,
9266 _("Dwarf Error: debug entry at offset 0x%x is missing"
9267 " its dwo_id [in module %s]"),
9268 offset.sect_off, dwo_file->dwo_name);
9269 return;
9270 }
9271
9272 dwo_unit->dwo_file = dwo_file;
9273 dwo_unit->signature = DW_UNSND (attr);
9274 dwo_unit->section = section;
9275 dwo_unit->offset = offset;
9276 dwo_unit->length = cu->per_cu->length;
9277
9278 if (dwarf2_read_debug)
9279 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9280 offset.sect_off, hex_string (dwo_unit->signature));
9281 }
9282
9283 /* Create the dwo_unit for the lone CU in DWO_FILE.
9284 Note: This function processes DWO files only, not DWP files. */
9285
9286 static struct dwo_unit *
9287 create_dwo_cu (struct dwo_file *dwo_file)
9288 {
9289 struct objfile *objfile = dwarf2_per_objfile->objfile;
9290 struct dwarf2_section_info *section = &dwo_file->sections.info;
9291 bfd *abfd;
9292 htab_t cu_htab;
9293 const gdb_byte *info_ptr, *end_ptr;
9294 struct create_dwo_cu_data create_dwo_cu_data;
9295 struct dwo_unit *dwo_unit;
9296
9297 dwarf2_read_section (objfile, section);
9298 info_ptr = section->buffer;
9299
9300 if (info_ptr == NULL)
9301 return NULL;
9302
9303 /* We can't set abfd until now because the section may be empty or
9304 not present, in which case section->asection will be NULL. */
9305 abfd = get_section_bfd_owner (section);
9306
9307 if (dwarf2_read_debug)
9308 {
9309 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9310 get_section_name (section),
9311 get_section_file_name (section));
9312 }
9313
9314 create_dwo_cu_data.dwo_file = dwo_file;
9315 dwo_unit = NULL;
9316
9317 end_ptr = info_ptr + section->size;
9318 while (info_ptr < end_ptr)
9319 {
9320 struct dwarf2_per_cu_data per_cu;
9321
9322 memset (&create_dwo_cu_data.dwo_unit, 0,
9323 sizeof (create_dwo_cu_data.dwo_unit));
9324 memset (&per_cu, 0, sizeof (per_cu));
9325 per_cu.objfile = objfile;
9326 per_cu.is_debug_types = 0;
9327 per_cu.offset.sect_off = info_ptr - section->buffer;
9328 per_cu.section = section;
9329
9330 init_cutu_and_read_dies_no_follow (&per_cu,
9331 &dwo_file->sections.abbrev,
9332 dwo_file,
9333 create_dwo_cu_reader,
9334 &create_dwo_cu_data);
9335
9336 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9337 {
9338 /* If we've already found one, complain. We only support one
9339 because having more than one requires hacking the dwo_name of
9340 each to match, which is highly unlikely to happen. */
9341 if (dwo_unit != NULL)
9342 {
9343 complaint (&symfile_complaints,
9344 _("Multiple CUs in DWO file %s [in module %s]"),
9345 dwo_file->dwo_name, objfile_name (objfile));
9346 break;
9347 }
9348
9349 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9350 *dwo_unit = create_dwo_cu_data.dwo_unit;
9351 }
9352
9353 info_ptr += per_cu.length;
9354 }
9355
9356 return dwo_unit;
9357 }
9358
9359 /* DWP file .debug_{cu,tu}_index section format:
9360 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9361
9362 DWP Version 1:
9363
9364 Both index sections have the same format, and serve to map a 64-bit
9365 signature to a set of section numbers. Each section begins with a header,
9366 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9367 indexes, and a pool of 32-bit section numbers. The index sections will be
9368 aligned at 8-byte boundaries in the file.
9369
9370 The index section header consists of:
9371
9372 V, 32 bit version number
9373 -, 32 bits unused
9374 N, 32 bit number of compilation units or type units in the index
9375 M, 32 bit number of slots in the hash table
9376
9377 Numbers are recorded using the byte order of the application binary.
9378
9379 The hash table begins at offset 16 in the section, and consists of an array
9380 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9381 order of the application binary). Unused slots in the hash table are 0.
9382 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9383
9384 The parallel table begins immediately after the hash table
9385 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9386 array of 32-bit indexes (using the byte order of the application binary),
9387 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9388 table contains a 32-bit index into the pool of section numbers. For unused
9389 hash table slots, the corresponding entry in the parallel table will be 0.
9390
9391 The pool of section numbers begins immediately following the hash table
9392 (at offset 16 + 12 * M from the beginning of the section). The pool of
9393 section numbers consists of an array of 32-bit words (using the byte order
9394 of the application binary). Each item in the array is indexed starting
9395 from 0. The hash table entry provides the index of the first section
9396 number in the set. Additional section numbers in the set follow, and the
9397 set is terminated by a 0 entry (section number 0 is not used in ELF).
9398
9399 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9400 section must be the first entry in the set, and the .debug_abbrev.dwo must
9401 be the second entry. Other members of the set may follow in any order.
9402
9403 ---
9404
9405 DWP Version 2:
9406
9407 DWP Version 2 combines all the .debug_info, etc. sections into one,
9408 and the entries in the index tables are now offsets into these sections.
9409 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9410 section.
9411
9412 Index Section Contents:
9413 Header
9414 Hash Table of Signatures dwp_hash_table.hash_table
9415 Parallel Table of Indices dwp_hash_table.unit_table
9416 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9417 Table of Section Sizes dwp_hash_table.v2.sizes
9418
9419 The index section header consists of:
9420
9421 V, 32 bit version number
9422 L, 32 bit number of columns in the table of section offsets
9423 N, 32 bit number of compilation units or type units in the index
9424 M, 32 bit number of slots in the hash table
9425
9426 Numbers are recorded using the byte order of the application binary.
9427
9428 The hash table has the same format as version 1.
9429 The parallel table of indices has the same format as version 1,
9430 except that the entries are origin-1 indices into the table of sections
9431 offsets and the table of section sizes.
9432
9433 The table of offsets begins immediately following the parallel table
9434 (at offset 16 + 12 * M from the beginning of the section). The table is
9435 a two-dimensional array of 32-bit words (using the byte order of the
9436 application binary), with L columns and N+1 rows, in row-major order.
9437 Each row in the array is indexed starting from 0. The first row provides
9438 a key to the remaining rows: each column in this row provides an identifier
9439 for a debug section, and the offsets in the same column of subsequent rows
9440 refer to that section. The section identifiers are:
9441
9442 DW_SECT_INFO 1 .debug_info.dwo
9443 DW_SECT_TYPES 2 .debug_types.dwo
9444 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9445 DW_SECT_LINE 4 .debug_line.dwo
9446 DW_SECT_LOC 5 .debug_loc.dwo
9447 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9448 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9449 DW_SECT_MACRO 8 .debug_macro.dwo
9450
9451 The offsets provided by the CU and TU index sections are the base offsets
9452 for the contributions made by each CU or TU to the corresponding section
9453 in the package file. Each CU and TU header contains an abbrev_offset
9454 field, used to find the abbreviations table for that CU or TU within the
9455 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9456 be interpreted as relative to the base offset given in the index section.
9457 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9458 should be interpreted as relative to the base offset for .debug_line.dwo,
9459 and offsets into other debug sections obtained from DWARF attributes should
9460 also be interpreted as relative to the corresponding base offset.
9461
9462 The table of sizes begins immediately following the table of offsets.
9463 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9464 with L columns and N rows, in row-major order. Each row in the array is
9465 indexed starting from 1 (row 0 is shared by the two tables).
9466
9467 ---
9468
9469 Hash table lookup is handled the same in version 1 and 2:
9470
9471 We assume that N and M will not exceed 2^32 - 1.
9472 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9473
9474 Given a 64-bit compilation unit signature or a type signature S, an entry
9475 in the hash table is located as follows:
9476
9477 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9478 the low-order k bits all set to 1.
9479
9480 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9481
9482 3) If the hash table entry at index H matches the signature, use that
9483 entry. If the hash table entry at index H is unused (all zeroes),
9484 terminate the search: the signature is not present in the table.
9485
9486 4) Let H = (H + H') modulo M. Repeat at Step 3.
9487
9488 Because M > N and H' and M are relatively prime, the search is guaranteed
9489 to stop at an unused slot or find the match. */
9490
9491 /* Create a hash table to map DWO IDs to their CU/TU entry in
9492 .debug_{info,types}.dwo in DWP_FILE.
9493 Returns NULL if there isn't one.
9494 Note: This function processes DWP files only, not DWO files. */
9495
9496 static struct dwp_hash_table *
9497 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9498 {
9499 struct objfile *objfile = dwarf2_per_objfile->objfile;
9500 bfd *dbfd = dwp_file->dbfd;
9501 const gdb_byte *index_ptr, *index_end;
9502 struct dwarf2_section_info *index;
9503 uint32_t version, nr_columns, nr_units, nr_slots;
9504 struct dwp_hash_table *htab;
9505
9506 if (is_debug_types)
9507 index = &dwp_file->sections.tu_index;
9508 else
9509 index = &dwp_file->sections.cu_index;
9510
9511 if (dwarf2_section_empty_p (index))
9512 return NULL;
9513 dwarf2_read_section (objfile, index);
9514
9515 index_ptr = index->buffer;
9516 index_end = index_ptr + index->size;
9517
9518 version = read_4_bytes (dbfd, index_ptr);
9519 index_ptr += 4;
9520 if (version == 2)
9521 nr_columns = read_4_bytes (dbfd, index_ptr);
9522 else
9523 nr_columns = 0;
9524 index_ptr += 4;
9525 nr_units = read_4_bytes (dbfd, index_ptr);
9526 index_ptr += 4;
9527 nr_slots = read_4_bytes (dbfd, index_ptr);
9528 index_ptr += 4;
9529
9530 if (version != 1 && version != 2)
9531 {
9532 error (_("Dwarf Error: unsupported DWP file version (%s)"
9533 " [in module %s]"),
9534 pulongest (version), dwp_file->name);
9535 }
9536 if (nr_slots != (nr_slots & -nr_slots))
9537 {
9538 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9539 " is not power of 2 [in module %s]"),
9540 pulongest (nr_slots), dwp_file->name);
9541 }
9542
9543 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9544 htab->version = version;
9545 htab->nr_columns = nr_columns;
9546 htab->nr_units = nr_units;
9547 htab->nr_slots = nr_slots;
9548 htab->hash_table = index_ptr;
9549 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9550
9551 /* Exit early if the table is empty. */
9552 if (nr_slots == 0 || nr_units == 0
9553 || (version == 2 && nr_columns == 0))
9554 {
9555 /* All must be zero. */
9556 if (nr_slots != 0 || nr_units != 0
9557 || (version == 2 && nr_columns != 0))
9558 {
9559 complaint (&symfile_complaints,
9560 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9561 " all zero [in modules %s]"),
9562 dwp_file->name);
9563 }
9564 return htab;
9565 }
9566
9567 if (version == 1)
9568 {
9569 htab->section_pool.v1.indices =
9570 htab->unit_table + sizeof (uint32_t) * nr_slots;
9571 /* It's harder to decide whether the section is too small in v1.
9572 V1 is deprecated anyway so we punt. */
9573 }
9574 else
9575 {
9576 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9577 int *ids = htab->section_pool.v2.section_ids;
9578 /* Reverse map for error checking. */
9579 int ids_seen[DW_SECT_MAX + 1];
9580 int i;
9581
9582 if (nr_columns < 2)
9583 {
9584 error (_("Dwarf Error: bad DWP hash table, too few columns"
9585 " in section table [in module %s]"),
9586 dwp_file->name);
9587 }
9588 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9589 {
9590 error (_("Dwarf Error: bad DWP hash table, too many columns"
9591 " in section table [in module %s]"),
9592 dwp_file->name);
9593 }
9594 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9595 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9596 for (i = 0; i < nr_columns; ++i)
9597 {
9598 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9599
9600 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9601 {
9602 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9603 " in section table [in module %s]"),
9604 id, dwp_file->name);
9605 }
9606 if (ids_seen[id] != -1)
9607 {
9608 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9609 " id %d in section table [in module %s]"),
9610 id, dwp_file->name);
9611 }
9612 ids_seen[id] = i;
9613 ids[i] = id;
9614 }
9615 /* Must have exactly one info or types section. */
9616 if (((ids_seen[DW_SECT_INFO] != -1)
9617 + (ids_seen[DW_SECT_TYPES] != -1))
9618 != 1)
9619 {
9620 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9621 " DWO info/types section [in module %s]"),
9622 dwp_file->name);
9623 }
9624 /* Must have an abbrev section. */
9625 if (ids_seen[DW_SECT_ABBREV] == -1)
9626 {
9627 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9628 " section [in module %s]"),
9629 dwp_file->name);
9630 }
9631 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9632 htab->section_pool.v2.sizes =
9633 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9634 * nr_units * nr_columns);
9635 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9636 * nr_units * nr_columns))
9637 > index_end)
9638 {
9639 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9640 " [in module %s]"),
9641 dwp_file->name);
9642 }
9643 }
9644
9645 return htab;
9646 }
9647
9648 /* Update SECTIONS with the data from SECTP.
9649
9650 This function is like the other "locate" section routines that are
9651 passed to bfd_map_over_sections, but in this context the sections to
9652 read comes from the DWP V1 hash table, not the full ELF section table.
9653
9654 The result is non-zero for success, or zero if an error was found. */
9655
9656 static int
9657 locate_v1_virtual_dwo_sections (asection *sectp,
9658 struct virtual_v1_dwo_sections *sections)
9659 {
9660 const struct dwop_section_names *names = &dwop_section_names;
9661
9662 if (section_is_p (sectp->name, &names->abbrev_dwo))
9663 {
9664 /* There can be only one. */
9665 if (sections->abbrev.s.asection != NULL)
9666 return 0;
9667 sections->abbrev.s.asection = sectp;
9668 sections->abbrev.size = bfd_get_section_size (sectp);
9669 }
9670 else if (section_is_p (sectp->name, &names->info_dwo)
9671 || section_is_p (sectp->name, &names->types_dwo))
9672 {
9673 /* There can be only one. */
9674 if (sections->info_or_types.s.asection != NULL)
9675 return 0;
9676 sections->info_or_types.s.asection = sectp;
9677 sections->info_or_types.size = bfd_get_section_size (sectp);
9678 }
9679 else if (section_is_p (sectp->name, &names->line_dwo))
9680 {
9681 /* There can be only one. */
9682 if (sections->line.s.asection != NULL)
9683 return 0;
9684 sections->line.s.asection = sectp;
9685 sections->line.size = bfd_get_section_size (sectp);
9686 }
9687 else if (section_is_p (sectp->name, &names->loc_dwo))
9688 {
9689 /* There can be only one. */
9690 if (sections->loc.s.asection != NULL)
9691 return 0;
9692 sections->loc.s.asection = sectp;
9693 sections->loc.size = bfd_get_section_size (sectp);
9694 }
9695 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9696 {
9697 /* There can be only one. */
9698 if (sections->macinfo.s.asection != NULL)
9699 return 0;
9700 sections->macinfo.s.asection = sectp;
9701 sections->macinfo.size = bfd_get_section_size (sectp);
9702 }
9703 else if (section_is_p (sectp->name, &names->macro_dwo))
9704 {
9705 /* There can be only one. */
9706 if (sections->macro.s.asection != NULL)
9707 return 0;
9708 sections->macro.s.asection = sectp;
9709 sections->macro.size = bfd_get_section_size (sectp);
9710 }
9711 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9712 {
9713 /* There can be only one. */
9714 if (sections->str_offsets.s.asection != NULL)
9715 return 0;
9716 sections->str_offsets.s.asection = sectp;
9717 sections->str_offsets.size = bfd_get_section_size (sectp);
9718 }
9719 else
9720 {
9721 /* No other kind of section is valid. */
9722 return 0;
9723 }
9724
9725 return 1;
9726 }
9727
9728 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9729 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9730 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9731 This is for DWP version 1 files. */
9732
9733 static struct dwo_unit *
9734 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9735 uint32_t unit_index,
9736 const char *comp_dir,
9737 ULONGEST signature, int is_debug_types)
9738 {
9739 struct objfile *objfile = dwarf2_per_objfile->objfile;
9740 const struct dwp_hash_table *dwp_htab =
9741 is_debug_types ? dwp_file->tus : dwp_file->cus;
9742 bfd *dbfd = dwp_file->dbfd;
9743 const char *kind = is_debug_types ? "TU" : "CU";
9744 struct dwo_file *dwo_file;
9745 struct dwo_unit *dwo_unit;
9746 struct virtual_v1_dwo_sections sections;
9747 void **dwo_file_slot;
9748 char *virtual_dwo_name;
9749 struct dwarf2_section_info *cutu;
9750 struct cleanup *cleanups;
9751 int i;
9752
9753 gdb_assert (dwp_file->version == 1);
9754
9755 if (dwarf2_read_debug)
9756 {
9757 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9758 kind,
9759 pulongest (unit_index), hex_string (signature),
9760 dwp_file->name);
9761 }
9762
9763 /* Fetch the sections of this DWO unit.
9764 Put a limit on the number of sections we look for so that bad data
9765 doesn't cause us to loop forever. */
9766
9767 #define MAX_NR_V1_DWO_SECTIONS \
9768 (1 /* .debug_info or .debug_types */ \
9769 + 1 /* .debug_abbrev */ \
9770 + 1 /* .debug_line */ \
9771 + 1 /* .debug_loc */ \
9772 + 1 /* .debug_str_offsets */ \
9773 + 1 /* .debug_macro or .debug_macinfo */ \
9774 + 1 /* trailing zero */)
9775
9776 memset (&sections, 0, sizeof (sections));
9777 cleanups = make_cleanup (null_cleanup, 0);
9778
9779 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9780 {
9781 asection *sectp;
9782 uint32_t section_nr =
9783 read_4_bytes (dbfd,
9784 dwp_htab->section_pool.v1.indices
9785 + (unit_index + i) * sizeof (uint32_t));
9786
9787 if (section_nr == 0)
9788 break;
9789 if (section_nr >= dwp_file->num_sections)
9790 {
9791 error (_("Dwarf Error: bad DWP hash table, section number too large"
9792 " [in module %s]"),
9793 dwp_file->name);
9794 }
9795
9796 sectp = dwp_file->elf_sections[section_nr];
9797 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
9798 {
9799 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9800 " [in module %s]"),
9801 dwp_file->name);
9802 }
9803 }
9804
9805 if (i < 2
9806 || dwarf2_section_empty_p (&sections.info_or_types)
9807 || dwarf2_section_empty_p (&sections.abbrev))
9808 {
9809 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9810 " [in module %s]"),
9811 dwp_file->name);
9812 }
9813 if (i == MAX_NR_V1_DWO_SECTIONS)
9814 {
9815 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9816 " [in module %s]"),
9817 dwp_file->name);
9818 }
9819
9820 /* It's easier for the rest of the code if we fake a struct dwo_file and
9821 have dwo_unit "live" in that. At least for now.
9822
9823 The DWP file can be made up of a random collection of CUs and TUs.
9824 However, for each CU + set of TUs that came from the same original DWO
9825 file, we can combine them back into a virtual DWO file to save space
9826 (fewer struct dwo_file objects to allocate). Remember that for really
9827 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9828
9829 virtual_dwo_name =
9830 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9831 get_section_id (&sections.abbrev),
9832 get_section_id (&sections.line),
9833 get_section_id (&sections.loc),
9834 get_section_id (&sections.str_offsets));
9835 make_cleanup (xfree, virtual_dwo_name);
9836 /* Can we use an existing virtual DWO file? */
9837 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9838 /* Create one if necessary. */
9839 if (*dwo_file_slot == NULL)
9840 {
9841 if (dwarf2_read_debug)
9842 {
9843 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9844 virtual_dwo_name);
9845 }
9846 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9847 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9848 virtual_dwo_name,
9849 strlen (virtual_dwo_name));
9850 dwo_file->comp_dir = comp_dir;
9851 dwo_file->sections.abbrev = sections.abbrev;
9852 dwo_file->sections.line = sections.line;
9853 dwo_file->sections.loc = sections.loc;
9854 dwo_file->sections.macinfo = sections.macinfo;
9855 dwo_file->sections.macro = sections.macro;
9856 dwo_file->sections.str_offsets = sections.str_offsets;
9857 /* The "str" section is global to the entire DWP file. */
9858 dwo_file->sections.str = dwp_file->sections.str;
9859 /* The info or types section is assigned below to dwo_unit,
9860 there's no need to record it in dwo_file.
9861 Also, we can't simply record type sections in dwo_file because
9862 we record a pointer into the vector in dwo_unit. As we collect more
9863 types we'll grow the vector and eventually have to reallocate space
9864 for it, invalidating all copies of pointers into the previous
9865 contents. */
9866 *dwo_file_slot = dwo_file;
9867 }
9868 else
9869 {
9870 if (dwarf2_read_debug)
9871 {
9872 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9873 virtual_dwo_name);
9874 }
9875 dwo_file = *dwo_file_slot;
9876 }
9877 do_cleanups (cleanups);
9878
9879 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9880 dwo_unit->dwo_file = dwo_file;
9881 dwo_unit->signature = signature;
9882 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9883 sizeof (struct dwarf2_section_info));
9884 *dwo_unit->section = sections.info_or_types;
9885 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9886
9887 return dwo_unit;
9888 }
9889
9890 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9891 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9892 piece within that section used by a TU/CU, return a virtual section
9893 of just that piece. */
9894
9895 static struct dwarf2_section_info
9896 create_dwp_v2_section (struct dwarf2_section_info *section,
9897 bfd_size_type offset, bfd_size_type size)
9898 {
9899 struct dwarf2_section_info result;
9900 asection *sectp;
9901
9902 gdb_assert (section != NULL);
9903 gdb_assert (!section->is_virtual);
9904
9905 memset (&result, 0, sizeof (result));
9906 result.s.containing_section = section;
9907 result.is_virtual = 1;
9908
9909 if (size == 0)
9910 return result;
9911
9912 sectp = get_section_bfd_section (section);
9913
9914 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
9915 bounds of the real section. This is a pretty-rare event, so just
9916 flag an error (easier) instead of a warning and trying to cope. */
9917 if (sectp == NULL
9918 || offset + size > bfd_get_section_size (sectp))
9919 {
9920 bfd *abfd = sectp->owner;
9921
9922 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
9923 " in section %s [in module %s]"),
9924 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
9925 objfile_name (dwarf2_per_objfile->objfile));
9926 }
9927
9928 result.virtual_offset = offset;
9929 result.size = size;
9930 return result;
9931 }
9932
9933 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9934 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9935 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9936 This is for DWP version 2 files. */
9937
9938 static struct dwo_unit *
9939 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
9940 uint32_t unit_index,
9941 const char *comp_dir,
9942 ULONGEST signature, int is_debug_types)
9943 {
9944 struct objfile *objfile = dwarf2_per_objfile->objfile;
9945 const struct dwp_hash_table *dwp_htab =
9946 is_debug_types ? dwp_file->tus : dwp_file->cus;
9947 bfd *dbfd = dwp_file->dbfd;
9948 const char *kind = is_debug_types ? "TU" : "CU";
9949 struct dwo_file *dwo_file;
9950 struct dwo_unit *dwo_unit;
9951 struct virtual_v2_dwo_sections sections;
9952 void **dwo_file_slot;
9953 char *virtual_dwo_name;
9954 struct dwarf2_section_info *cutu;
9955 struct cleanup *cleanups;
9956 int i;
9957
9958 gdb_assert (dwp_file->version == 2);
9959
9960 if (dwarf2_read_debug)
9961 {
9962 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
9963 kind,
9964 pulongest (unit_index), hex_string (signature),
9965 dwp_file->name);
9966 }
9967
9968 /* Fetch the section offsets of this DWO unit. */
9969
9970 memset (&sections, 0, sizeof (sections));
9971 cleanups = make_cleanup (null_cleanup, 0);
9972
9973 for (i = 0; i < dwp_htab->nr_columns; ++i)
9974 {
9975 uint32_t offset = read_4_bytes (dbfd,
9976 dwp_htab->section_pool.v2.offsets
9977 + (((unit_index - 1) * dwp_htab->nr_columns
9978 + i)
9979 * sizeof (uint32_t)));
9980 uint32_t size = read_4_bytes (dbfd,
9981 dwp_htab->section_pool.v2.sizes
9982 + (((unit_index - 1) * dwp_htab->nr_columns
9983 + i)
9984 * sizeof (uint32_t)));
9985
9986 switch (dwp_htab->section_pool.v2.section_ids[i])
9987 {
9988 case DW_SECT_INFO:
9989 case DW_SECT_TYPES:
9990 sections.info_or_types_offset = offset;
9991 sections.info_or_types_size = size;
9992 break;
9993 case DW_SECT_ABBREV:
9994 sections.abbrev_offset = offset;
9995 sections.abbrev_size = size;
9996 break;
9997 case DW_SECT_LINE:
9998 sections.line_offset = offset;
9999 sections.line_size = size;
10000 break;
10001 case DW_SECT_LOC:
10002 sections.loc_offset = offset;
10003 sections.loc_size = size;
10004 break;
10005 case DW_SECT_STR_OFFSETS:
10006 sections.str_offsets_offset = offset;
10007 sections.str_offsets_size = size;
10008 break;
10009 case DW_SECT_MACINFO:
10010 sections.macinfo_offset = offset;
10011 sections.macinfo_size = size;
10012 break;
10013 case DW_SECT_MACRO:
10014 sections.macro_offset = offset;
10015 sections.macro_size = size;
10016 break;
10017 }
10018 }
10019
10020 /* It's easier for the rest of the code if we fake a struct dwo_file and
10021 have dwo_unit "live" in that. At least for now.
10022
10023 The DWP file can be made up of a random collection of CUs and TUs.
10024 However, for each CU + set of TUs that came from the same original DWO
10025 file, we can combine them back into a virtual DWO file to save space
10026 (fewer struct dwo_file objects to allocate). Remember that for really
10027 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10028
10029 virtual_dwo_name =
10030 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10031 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10032 (long) (sections.line_size ? sections.line_offset : 0),
10033 (long) (sections.loc_size ? sections.loc_offset : 0),
10034 (long) (sections.str_offsets_size
10035 ? sections.str_offsets_offset : 0));
10036 make_cleanup (xfree, virtual_dwo_name);
10037 /* Can we use an existing virtual DWO file? */
10038 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10039 /* Create one if necessary. */
10040 if (*dwo_file_slot == NULL)
10041 {
10042 if (dwarf2_read_debug)
10043 {
10044 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10045 virtual_dwo_name);
10046 }
10047 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10048 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10049 virtual_dwo_name,
10050 strlen (virtual_dwo_name));
10051 dwo_file->comp_dir = comp_dir;
10052 dwo_file->sections.abbrev =
10053 create_dwp_v2_section (&dwp_file->sections.abbrev,
10054 sections.abbrev_offset, sections.abbrev_size);
10055 dwo_file->sections.line =
10056 create_dwp_v2_section (&dwp_file->sections.line,
10057 sections.line_offset, sections.line_size);
10058 dwo_file->sections.loc =
10059 create_dwp_v2_section (&dwp_file->sections.loc,
10060 sections.loc_offset, sections.loc_size);
10061 dwo_file->sections.macinfo =
10062 create_dwp_v2_section (&dwp_file->sections.macinfo,
10063 sections.macinfo_offset, sections.macinfo_size);
10064 dwo_file->sections.macro =
10065 create_dwp_v2_section (&dwp_file->sections.macro,
10066 sections.macro_offset, sections.macro_size);
10067 dwo_file->sections.str_offsets =
10068 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10069 sections.str_offsets_offset,
10070 sections.str_offsets_size);
10071 /* The "str" section is global to the entire DWP file. */
10072 dwo_file->sections.str = dwp_file->sections.str;
10073 /* The info or types section is assigned below to dwo_unit,
10074 there's no need to record it in dwo_file.
10075 Also, we can't simply record type sections in dwo_file because
10076 we record a pointer into the vector in dwo_unit. As we collect more
10077 types we'll grow the vector and eventually have to reallocate space
10078 for it, invalidating all copies of pointers into the previous
10079 contents. */
10080 *dwo_file_slot = dwo_file;
10081 }
10082 else
10083 {
10084 if (dwarf2_read_debug)
10085 {
10086 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10087 virtual_dwo_name);
10088 }
10089 dwo_file = *dwo_file_slot;
10090 }
10091 do_cleanups (cleanups);
10092
10093 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10094 dwo_unit->dwo_file = dwo_file;
10095 dwo_unit->signature = signature;
10096 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10097 sizeof (struct dwarf2_section_info));
10098 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10099 ? &dwp_file->sections.types
10100 : &dwp_file->sections.info,
10101 sections.info_or_types_offset,
10102 sections.info_or_types_size);
10103 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10104
10105 return dwo_unit;
10106 }
10107
10108 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10109 Returns NULL if the signature isn't found. */
10110
10111 static struct dwo_unit *
10112 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10113 ULONGEST signature, int is_debug_types)
10114 {
10115 const struct dwp_hash_table *dwp_htab =
10116 is_debug_types ? dwp_file->tus : dwp_file->cus;
10117 bfd *dbfd = dwp_file->dbfd;
10118 uint32_t mask = dwp_htab->nr_slots - 1;
10119 uint32_t hash = signature & mask;
10120 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10121 unsigned int i;
10122 void **slot;
10123 struct dwo_unit find_dwo_cu, *dwo_cu;
10124
10125 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10126 find_dwo_cu.signature = signature;
10127 slot = htab_find_slot (is_debug_types
10128 ? dwp_file->loaded_tus
10129 : dwp_file->loaded_cus,
10130 &find_dwo_cu, INSERT);
10131
10132 if (*slot != NULL)
10133 return *slot;
10134
10135 /* Use a for loop so that we don't loop forever on bad debug info. */
10136 for (i = 0; i < dwp_htab->nr_slots; ++i)
10137 {
10138 ULONGEST signature_in_table;
10139
10140 signature_in_table =
10141 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10142 if (signature_in_table == signature)
10143 {
10144 uint32_t unit_index =
10145 read_4_bytes (dbfd,
10146 dwp_htab->unit_table + hash * sizeof (uint32_t));
10147
10148 if (dwp_file->version == 1)
10149 {
10150 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10151 comp_dir, signature,
10152 is_debug_types);
10153 }
10154 else
10155 {
10156 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10157 comp_dir, signature,
10158 is_debug_types);
10159 }
10160 return *slot;
10161 }
10162 if (signature_in_table == 0)
10163 return NULL;
10164 hash = (hash + hash2) & mask;
10165 }
10166
10167 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10168 " [in module %s]"),
10169 dwp_file->name);
10170 }
10171
10172 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10173 Open the file specified by FILE_NAME and hand it off to BFD for
10174 preliminary analysis. Return a newly initialized bfd *, which
10175 includes a canonicalized copy of FILE_NAME.
10176 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10177 SEARCH_CWD is true if the current directory is to be searched.
10178 It will be searched before debug-file-directory.
10179 If successful, the file is added to the bfd include table of the
10180 objfile's bfd (see gdb_bfd_record_inclusion).
10181 If unable to find/open the file, return NULL.
10182 NOTE: This function is derived from symfile_bfd_open. */
10183
10184 static bfd *
10185 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10186 {
10187 bfd *sym_bfd;
10188 int desc, flags;
10189 char *absolute_name;
10190 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10191 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10192 to debug_file_directory. */
10193 char *search_path;
10194 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10195
10196 if (search_cwd)
10197 {
10198 if (*debug_file_directory != '\0')
10199 search_path = concat (".", dirname_separator_string,
10200 debug_file_directory, NULL);
10201 else
10202 search_path = xstrdup (".");
10203 }
10204 else
10205 search_path = xstrdup (debug_file_directory);
10206
10207 flags = OPF_RETURN_REALPATH;
10208 if (is_dwp)
10209 flags |= OPF_SEARCH_IN_PATH;
10210 desc = openp (search_path, flags, file_name,
10211 O_RDONLY | O_BINARY, &absolute_name);
10212 xfree (search_path);
10213 if (desc < 0)
10214 return NULL;
10215
10216 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10217 xfree (absolute_name);
10218 if (sym_bfd == NULL)
10219 return NULL;
10220 bfd_set_cacheable (sym_bfd, 1);
10221
10222 if (!bfd_check_format (sym_bfd, bfd_object))
10223 {
10224 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10225 return NULL;
10226 }
10227
10228 /* Success. Record the bfd as having been included by the objfile's bfd.
10229 This is important because things like demangled_names_hash lives in the
10230 objfile's per_bfd space and may have references to things like symbol
10231 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10232 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10233
10234 return sym_bfd;
10235 }
10236
10237 /* Try to open DWO file FILE_NAME.
10238 COMP_DIR is the DW_AT_comp_dir attribute.
10239 The result is the bfd handle of the file.
10240 If there is a problem finding or opening the file, return NULL.
10241 Upon success, the canonicalized path of the file is stored in the bfd,
10242 same as symfile_bfd_open. */
10243
10244 static bfd *
10245 open_dwo_file (const char *file_name, const char *comp_dir)
10246 {
10247 bfd *abfd;
10248
10249 if (IS_ABSOLUTE_PATH (file_name))
10250 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10251
10252 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10253
10254 if (comp_dir != NULL)
10255 {
10256 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10257
10258 /* NOTE: If comp_dir is a relative path, this will also try the
10259 search path, which seems useful. */
10260 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10261 xfree (path_to_try);
10262 if (abfd != NULL)
10263 return abfd;
10264 }
10265
10266 /* That didn't work, try debug-file-directory, which, despite its name,
10267 is a list of paths. */
10268
10269 if (*debug_file_directory == '\0')
10270 return NULL;
10271
10272 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10273 }
10274
10275 /* This function is mapped across the sections and remembers the offset and
10276 size of each of the DWO debugging sections we are interested in. */
10277
10278 static void
10279 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10280 {
10281 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10282 const struct dwop_section_names *names = &dwop_section_names;
10283
10284 if (section_is_p (sectp->name, &names->abbrev_dwo))
10285 {
10286 dwo_sections->abbrev.s.asection = sectp;
10287 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10288 }
10289 else if (section_is_p (sectp->name, &names->info_dwo))
10290 {
10291 dwo_sections->info.s.asection = sectp;
10292 dwo_sections->info.size = bfd_get_section_size (sectp);
10293 }
10294 else if (section_is_p (sectp->name, &names->line_dwo))
10295 {
10296 dwo_sections->line.s.asection = sectp;
10297 dwo_sections->line.size = bfd_get_section_size (sectp);
10298 }
10299 else if (section_is_p (sectp->name, &names->loc_dwo))
10300 {
10301 dwo_sections->loc.s.asection = sectp;
10302 dwo_sections->loc.size = bfd_get_section_size (sectp);
10303 }
10304 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10305 {
10306 dwo_sections->macinfo.s.asection = sectp;
10307 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10308 }
10309 else if (section_is_p (sectp->name, &names->macro_dwo))
10310 {
10311 dwo_sections->macro.s.asection = sectp;
10312 dwo_sections->macro.size = bfd_get_section_size (sectp);
10313 }
10314 else if (section_is_p (sectp->name, &names->str_dwo))
10315 {
10316 dwo_sections->str.s.asection = sectp;
10317 dwo_sections->str.size = bfd_get_section_size (sectp);
10318 }
10319 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10320 {
10321 dwo_sections->str_offsets.s.asection = sectp;
10322 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10323 }
10324 else if (section_is_p (sectp->name, &names->types_dwo))
10325 {
10326 struct dwarf2_section_info type_section;
10327
10328 memset (&type_section, 0, sizeof (type_section));
10329 type_section.s.asection = sectp;
10330 type_section.size = bfd_get_section_size (sectp);
10331 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10332 &type_section);
10333 }
10334 }
10335
10336 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10337 by PER_CU. This is for the non-DWP case.
10338 The result is NULL if DWO_NAME can't be found. */
10339
10340 static struct dwo_file *
10341 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10342 const char *dwo_name, const char *comp_dir)
10343 {
10344 struct objfile *objfile = dwarf2_per_objfile->objfile;
10345 struct dwo_file *dwo_file;
10346 bfd *dbfd;
10347 struct cleanup *cleanups;
10348
10349 dbfd = open_dwo_file (dwo_name, comp_dir);
10350 if (dbfd == NULL)
10351 {
10352 if (dwarf2_read_debug)
10353 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10354 return NULL;
10355 }
10356 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10357 dwo_file->dwo_name = dwo_name;
10358 dwo_file->comp_dir = comp_dir;
10359 dwo_file->dbfd = dbfd;
10360
10361 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10362
10363 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10364
10365 dwo_file->cu = create_dwo_cu (dwo_file);
10366
10367 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10368 dwo_file->sections.types);
10369
10370 discard_cleanups (cleanups);
10371
10372 if (dwarf2_read_debug)
10373 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10374
10375 return dwo_file;
10376 }
10377
10378 /* This function is mapped across the sections and remembers the offset and
10379 size of each of the DWP debugging sections common to version 1 and 2 that
10380 we are interested in. */
10381
10382 static void
10383 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10384 void *dwp_file_ptr)
10385 {
10386 struct dwp_file *dwp_file = dwp_file_ptr;
10387 const struct dwop_section_names *names = &dwop_section_names;
10388 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10389
10390 /* Record the ELF section number for later lookup: this is what the
10391 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10392 gdb_assert (elf_section_nr < dwp_file->num_sections);
10393 dwp_file->elf_sections[elf_section_nr] = sectp;
10394
10395 /* Look for specific sections that we need. */
10396 if (section_is_p (sectp->name, &names->str_dwo))
10397 {
10398 dwp_file->sections.str.s.asection = sectp;
10399 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10400 }
10401 else if (section_is_p (sectp->name, &names->cu_index))
10402 {
10403 dwp_file->sections.cu_index.s.asection = sectp;
10404 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10405 }
10406 else if (section_is_p (sectp->name, &names->tu_index))
10407 {
10408 dwp_file->sections.tu_index.s.asection = sectp;
10409 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10410 }
10411 }
10412
10413 /* This function is mapped across the sections and remembers the offset and
10414 size of each of the DWP version 2 debugging sections that we are interested
10415 in. This is split into a separate function because we don't know if we
10416 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10417
10418 static void
10419 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10420 {
10421 struct dwp_file *dwp_file = dwp_file_ptr;
10422 const struct dwop_section_names *names = &dwop_section_names;
10423 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10424
10425 /* Record the ELF section number for later lookup: this is what the
10426 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10427 gdb_assert (elf_section_nr < dwp_file->num_sections);
10428 dwp_file->elf_sections[elf_section_nr] = sectp;
10429
10430 /* Look for specific sections that we need. */
10431 if (section_is_p (sectp->name, &names->abbrev_dwo))
10432 {
10433 dwp_file->sections.abbrev.s.asection = sectp;
10434 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10435 }
10436 else if (section_is_p (sectp->name, &names->info_dwo))
10437 {
10438 dwp_file->sections.info.s.asection = sectp;
10439 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10440 }
10441 else if (section_is_p (sectp->name, &names->line_dwo))
10442 {
10443 dwp_file->sections.line.s.asection = sectp;
10444 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10445 }
10446 else if (section_is_p (sectp->name, &names->loc_dwo))
10447 {
10448 dwp_file->sections.loc.s.asection = sectp;
10449 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10450 }
10451 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10452 {
10453 dwp_file->sections.macinfo.s.asection = sectp;
10454 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10455 }
10456 else if (section_is_p (sectp->name, &names->macro_dwo))
10457 {
10458 dwp_file->sections.macro.s.asection = sectp;
10459 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10460 }
10461 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10462 {
10463 dwp_file->sections.str_offsets.s.asection = sectp;
10464 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10465 }
10466 else if (section_is_p (sectp->name, &names->types_dwo))
10467 {
10468 dwp_file->sections.types.s.asection = sectp;
10469 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10470 }
10471 }
10472
10473 /* Hash function for dwp_file loaded CUs/TUs. */
10474
10475 static hashval_t
10476 hash_dwp_loaded_cutus (const void *item)
10477 {
10478 const struct dwo_unit *dwo_unit = item;
10479
10480 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10481 return dwo_unit->signature;
10482 }
10483
10484 /* Equality function for dwp_file loaded CUs/TUs. */
10485
10486 static int
10487 eq_dwp_loaded_cutus (const void *a, const void *b)
10488 {
10489 const struct dwo_unit *dua = a;
10490 const struct dwo_unit *dub = b;
10491
10492 return dua->signature == dub->signature;
10493 }
10494
10495 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10496
10497 static htab_t
10498 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10499 {
10500 return htab_create_alloc_ex (3,
10501 hash_dwp_loaded_cutus,
10502 eq_dwp_loaded_cutus,
10503 NULL,
10504 &objfile->objfile_obstack,
10505 hashtab_obstack_allocate,
10506 dummy_obstack_deallocate);
10507 }
10508
10509 /* Try to open DWP file FILE_NAME.
10510 The result is the bfd handle of the file.
10511 If there is a problem finding or opening the file, return NULL.
10512 Upon success, the canonicalized path of the file is stored in the bfd,
10513 same as symfile_bfd_open. */
10514
10515 static bfd *
10516 open_dwp_file (const char *file_name)
10517 {
10518 bfd *abfd;
10519
10520 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10521 if (abfd != NULL)
10522 return abfd;
10523
10524 /* Work around upstream bug 15652.
10525 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10526 [Whether that's a "bug" is debatable, but it is getting in our way.]
10527 We have no real idea where the dwp file is, because gdb's realpath-ing
10528 of the executable's path may have discarded the needed info.
10529 [IWBN if the dwp file name was recorded in the executable, akin to
10530 .gnu_debuglink, but that doesn't exist yet.]
10531 Strip the directory from FILE_NAME and search again. */
10532 if (*debug_file_directory != '\0')
10533 {
10534 /* Don't implicitly search the current directory here.
10535 If the user wants to search "." to handle this case,
10536 it must be added to debug-file-directory. */
10537 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10538 0 /*search_cwd*/);
10539 }
10540
10541 return NULL;
10542 }
10543
10544 /* Initialize the use of the DWP file for the current objfile.
10545 By convention the name of the DWP file is ${objfile}.dwp.
10546 The result is NULL if it can't be found. */
10547
10548 static struct dwp_file *
10549 open_and_init_dwp_file (void)
10550 {
10551 struct objfile *objfile = dwarf2_per_objfile->objfile;
10552 struct dwp_file *dwp_file;
10553 char *dwp_name;
10554 bfd *dbfd;
10555 struct cleanup *cleanups;
10556
10557 /* Try to find first .dwp for the binary file before any symbolic links
10558 resolving. */
10559 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10560 cleanups = make_cleanup (xfree, dwp_name);
10561
10562 dbfd = open_dwp_file (dwp_name);
10563 if (dbfd == NULL
10564 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10565 {
10566 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10567 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10568 make_cleanup (xfree, dwp_name);
10569 dbfd = open_dwp_file (dwp_name);
10570 }
10571
10572 if (dbfd == NULL)
10573 {
10574 if (dwarf2_read_debug)
10575 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10576 do_cleanups (cleanups);
10577 return NULL;
10578 }
10579 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10580 dwp_file->name = bfd_get_filename (dbfd);
10581 dwp_file->dbfd = dbfd;
10582 do_cleanups (cleanups);
10583
10584 /* +1: section 0 is unused */
10585 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10586 dwp_file->elf_sections =
10587 OBSTACK_CALLOC (&objfile->objfile_obstack,
10588 dwp_file->num_sections, asection *);
10589
10590 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10591
10592 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10593
10594 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10595
10596 /* The DWP file version is stored in the hash table. Oh well. */
10597 if (dwp_file->cus->version != dwp_file->tus->version)
10598 {
10599 /* Technically speaking, we should try to limp along, but this is
10600 pretty bizarre. We use pulongest here because that's the established
10601 portability solution (e.g, we cannot use %u for uint32_t). */
10602 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10603 " TU version %s [in DWP file %s]"),
10604 pulongest (dwp_file->cus->version),
10605 pulongest (dwp_file->tus->version), dwp_name);
10606 }
10607 dwp_file->version = dwp_file->cus->version;
10608
10609 if (dwp_file->version == 2)
10610 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10611
10612 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10613 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10614
10615 if (dwarf2_read_debug)
10616 {
10617 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10618 fprintf_unfiltered (gdb_stdlog,
10619 " %s CUs, %s TUs\n",
10620 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10621 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10622 }
10623
10624 return dwp_file;
10625 }
10626
10627 /* Wrapper around open_and_init_dwp_file, only open it once. */
10628
10629 static struct dwp_file *
10630 get_dwp_file (void)
10631 {
10632 if (! dwarf2_per_objfile->dwp_checked)
10633 {
10634 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10635 dwarf2_per_objfile->dwp_checked = 1;
10636 }
10637 return dwarf2_per_objfile->dwp_file;
10638 }
10639
10640 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10641 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10642 or in the DWP file for the objfile, referenced by THIS_UNIT.
10643 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10644 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10645
10646 This is called, for example, when wanting to read a variable with a
10647 complex location. Therefore we don't want to do file i/o for every call.
10648 Therefore we don't want to look for a DWO file on every call.
10649 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10650 then we check if we've already seen DWO_NAME, and only THEN do we check
10651 for a DWO file.
10652
10653 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10654 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10655
10656 static struct dwo_unit *
10657 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10658 const char *dwo_name, const char *comp_dir,
10659 ULONGEST signature, int is_debug_types)
10660 {
10661 struct objfile *objfile = dwarf2_per_objfile->objfile;
10662 const char *kind = is_debug_types ? "TU" : "CU";
10663 void **dwo_file_slot;
10664 struct dwo_file *dwo_file;
10665 struct dwp_file *dwp_file;
10666
10667 /* First see if there's a DWP file.
10668 If we have a DWP file but didn't find the DWO inside it, don't
10669 look for the original DWO file. It makes gdb behave differently
10670 depending on whether one is debugging in the build tree. */
10671
10672 dwp_file = get_dwp_file ();
10673 if (dwp_file != NULL)
10674 {
10675 const struct dwp_hash_table *dwp_htab =
10676 is_debug_types ? dwp_file->tus : dwp_file->cus;
10677
10678 if (dwp_htab != NULL)
10679 {
10680 struct dwo_unit *dwo_cutu =
10681 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10682 signature, is_debug_types);
10683
10684 if (dwo_cutu != NULL)
10685 {
10686 if (dwarf2_read_debug)
10687 {
10688 fprintf_unfiltered (gdb_stdlog,
10689 "Virtual DWO %s %s found: @%s\n",
10690 kind, hex_string (signature),
10691 host_address_to_string (dwo_cutu));
10692 }
10693 return dwo_cutu;
10694 }
10695 }
10696 }
10697 else
10698 {
10699 /* No DWP file, look for the DWO file. */
10700
10701 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10702 if (*dwo_file_slot == NULL)
10703 {
10704 /* Read in the file and build a table of the CUs/TUs it contains. */
10705 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10706 }
10707 /* NOTE: This will be NULL if unable to open the file. */
10708 dwo_file = *dwo_file_slot;
10709
10710 if (dwo_file != NULL)
10711 {
10712 struct dwo_unit *dwo_cutu = NULL;
10713
10714 if (is_debug_types && dwo_file->tus)
10715 {
10716 struct dwo_unit find_dwo_cutu;
10717
10718 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10719 find_dwo_cutu.signature = signature;
10720 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10721 }
10722 else if (!is_debug_types && dwo_file->cu)
10723 {
10724 if (signature == dwo_file->cu->signature)
10725 dwo_cutu = dwo_file->cu;
10726 }
10727
10728 if (dwo_cutu != NULL)
10729 {
10730 if (dwarf2_read_debug)
10731 {
10732 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10733 kind, dwo_name, hex_string (signature),
10734 host_address_to_string (dwo_cutu));
10735 }
10736 return dwo_cutu;
10737 }
10738 }
10739 }
10740
10741 /* We didn't find it. This could mean a dwo_id mismatch, or
10742 someone deleted the DWO/DWP file, or the search path isn't set up
10743 correctly to find the file. */
10744
10745 if (dwarf2_read_debug)
10746 {
10747 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10748 kind, dwo_name, hex_string (signature));
10749 }
10750
10751 /* This is a warning and not a complaint because it can be caused by
10752 pilot error (e.g., user accidentally deleting the DWO). */
10753 {
10754 /* Print the name of the DWP file if we looked there, helps the user
10755 better diagnose the problem. */
10756 char *dwp_text = NULL;
10757 struct cleanup *cleanups;
10758
10759 if (dwp_file != NULL)
10760 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10761 cleanups = make_cleanup (xfree, dwp_text);
10762
10763 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10764 " [in module %s]"),
10765 kind, dwo_name, hex_string (signature),
10766 dwp_text != NULL ? dwp_text : "",
10767 this_unit->is_debug_types ? "TU" : "CU",
10768 this_unit->offset.sect_off, objfile_name (objfile));
10769
10770 do_cleanups (cleanups);
10771 }
10772 return NULL;
10773 }
10774
10775 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10776 See lookup_dwo_cutu_unit for details. */
10777
10778 static struct dwo_unit *
10779 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10780 const char *dwo_name, const char *comp_dir,
10781 ULONGEST signature)
10782 {
10783 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10784 }
10785
10786 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10787 See lookup_dwo_cutu_unit for details. */
10788
10789 static struct dwo_unit *
10790 lookup_dwo_type_unit (struct signatured_type *this_tu,
10791 const char *dwo_name, const char *comp_dir)
10792 {
10793 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10794 }
10795
10796 /* Traversal function for queue_and_load_all_dwo_tus. */
10797
10798 static int
10799 queue_and_load_dwo_tu (void **slot, void *info)
10800 {
10801 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10802 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10803 ULONGEST signature = dwo_unit->signature;
10804 struct signatured_type *sig_type =
10805 lookup_dwo_signatured_type (per_cu->cu, signature);
10806
10807 if (sig_type != NULL)
10808 {
10809 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10810
10811 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10812 a real dependency of PER_CU on SIG_TYPE. That is detected later
10813 while processing PER_CU. */
10814 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10815 load_full_type_unit (sig_cu);
10816 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10817 }
10818
10819 return 1;
10820 }
10821
10822 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10823 The DWO may have the only definition of the type, though it may not be
10824 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10825 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10826
10827 static void
10828 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10829 {
10830 struct dwo_unit *dwo_unit;
10831 struct dwo_file *dwo_file;
10832
10833 gdb_assert (!per_cu->is_debug_types);
10834 gdb_assert (get_dwp_file () == NULL);
10835 gdb_assert (per_cu->cu != NULL);
10836
10837 dwo_unit = per_cu->cu->dwo_unit;
10838 gdb_assert (dwo_unit != NULL);
10839
10840 dwo_file = dwo_unit->dwo_file;
10841 if (dwo_file->tus != NULL)
10842 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10843 }
10844
10845 /* Free all resources associated with DWO_FILE.
10846 Close the DWO file and munmap the sections.
10847 All memory should be on the objfile obstack. */
10848
10849 static void
10850 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10851 {
10852 int ix;
10853 struct dwarf2_section_info *section;
10854
10855 /* Note: dbfd is NULL for virtual DWO files. */
10856 gdb_bfd_unref (dwo_file->dbfd);
10857
10858 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10859 }
10860
10861 /* Wrapper for free_dwo_file for use in cleanups. */
10862
10863 static void
10864 free_dwo_file_cleanup (void *arg)
10865 {
10866 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10867 struct objfile *objfile = dwarf2_per_objfile->objfile;
10868
10869 free_dwo_file (dwo_file, objfile);
10870 }
10871
10872 /* Traversal function for free_dwo_files. */
10873
10874 static int
10875 free_dwo_file_from_slot (void **slot, void *info)
10876 {
10877 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10878 struct objfile *objfile = (struct objfile *) info;
10879
10880 free_dwo_file (dwo_file, objfile);
10881
10882 return 1;
10883 }
10884
10885 /* Free all resources associated with DWO_FILES. */
10886
10887 static void
10888 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10889 {
10890 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10891 }
10892 \f
10893 /* Read in various DIEs. */
10894
10895 /* qsort helper for inherit_abstract_dies. */
10896
10897 static int
10898 unsigned_int_compar (const void *ap, const void *bp)
10899 {
10900 unsigned int a = *(unsigned int *) ap;
10901 unsigned int b = *(unsigned int *) bp;
10902
10903 return (a > b) - (b > a);
10904 }
10905
10906 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
10907 Inherit only the children of the DW_AT_abstract_origin DIE not being
10908 already referenced by DW_AT_abstract_origin from the children of the
10909 current DIE. */
10910
10911 static void
10912 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
10913 {
10914 struct die_info *child_die;
10915 unsigned die_children_count;
10916 /* CU offsets which were referenced by children of the current DIE. */
10917 sect_offset *offsets;
10918 sect_offset *offsets_end, *offsetp;
10919 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
10920 struct die_info *origin_die;
10921 /* Iterator of the ORIGIN_DIE children. */
10922 struct die_info *origin_child_die;
10923 struct cleanup *cleanups;
10924 struct attribute *attr;
10925 struct dwarf2_cu *origin_cu;
10926 struct pending **origin_previous_list_in_scope;
10927
10928 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10929 if (!attr)
10930 return;
10931
10932 /* Note that following die references may follow to a die in a
10933 different cu. */
10934
10935 origin_cu = cu;
10936 origin_die = follow_die_ref (die, attr, &origin_cu);
10937
10938 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
10939 symbols in. */
10940 origin_previous_list_in_scope = origin_cu->list_in_scope;
10941 origin_cu->list_in_scope = cu->list_in_scope;
10942
10943 if (die->tag != origin_die->tag
10944 && !(die->tag == DW_TAG_inlined_subroutine
10945 && origin_die->tag == DW_TAG_subprogram))
10946 complaint (&symfile_complaints,
10947 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
10948 die->offset.sect_off, origin_die->offset.sect_off);
10949
10950 child_die = die->child;
10951 die_children_count = 0;
10952 while (child_die && child_die->tag)
10953 {
10954 child_die = sibling_die (child_die);
10955 die_children_count++;
10956 }
10957 offsets = xmalloc (sizeof (*offsets) * die_children_count);
10958 cleanups = make_cleanup (xfree, offsets);
10959
10960 offsets_end = offsets;
10961 child_die = die->child;
10962 while (child_die && child_die->tag)
10963 {
10964 /* For each CHILD_DIE, find the corresponding child of
10965 ORIGIN_DIE. If there is more than one layer of
10966 DW_AT_abstract_origin, follow them all; there shouldn't be,
10967 but GCC versions at least through 4.4 generate this (GCC PR
10968 40573). */
10969 struct die_info *child_origin_die = child_die;
10970 struct dwarf2_cu *child_origin_cu = cu;
10971
10972 while (1)
10973 {
10974 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
10975 child_origin_cu);
10976 if (attr == NULL)
10977 break;
10978 child_origin_die = follow_die_ref (child_origin_die, attr,
10979 &child_origin_cu);
10980 }
10981
10982 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
10983 counterpart may exist. */
10984 if (child_origin_die != child_die)
10985 {
10986 if (child_die->tag != child_origin_die->tag
10987 && !(child_die->tag == DW_TAG_inlined_subroutine
10988 && child_origin_die->tag == DW_TAG_subprogram))
10989 complaint (&symfile_complaints,
10990 _("Child DIE 0x%x and its abstract origin 0x%x have "
10991 "different tags"), child_die->offset.sect_off,
10992 child_origin_die->offset.sect_off);
10993 if (child_origin_die->parent != origin_die)
10994 complaint (&symfile_complaints,
10995 _("Child DIE 0x%x and its abstract origin 0x%x have "
10996 "different parents"), child_die->offset.sect_off,
10997 child_origin_die->offset.sect_off);
10998 else
10999 *offsets_end++ = child_origin_die->offset;
11000 }
11001 child_die = sibling_die (child_die);
11002 }
11003 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11004 unsigned_int_compar);
11005 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11006 if (offsetp[-1].sect_off == offsetp->sect_off)
11007 complaint (&symfile_complaints,
11008 _("Multiple children of DIE 0x%x refer "
11009 "to DIE 0x%x as their abstract origin"),
11010 die->offset.sect_off, offsetp->sect_off);
11011
11012 offsetp = offsets;
11013 origin_child_die = origin_die->child;
11014 while (origin_child_die && origin_child_die->tag)
11015 {
11016 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11017 while (offsetp < offsets_end
11018 && offsetp->sect_off < origin_child_die->offset.sect_off)
11019 offsetp++;
11020 if (offsetp >= offsets_end
11021 || offsetp->sect_off > origin_child_die->offset.sect_off)
11022 {
11023 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11024 Check whether we're already processing ORIGIN_CHILD_DIE.
11025 This can happen with mutually referenced abstract_origins.
11026 PR 16581. */
11027 if (!origin_child_die->in_process)
11028 process_die (origin_child_die, origin_cu);
11029 }
11030 origin_child_die = sibling_die (origin_child_die);
11031 }
11032 origin_cu->list_in_scope = origin_previous_list_in_scope;
11033
11034 do_cleanups (cleanups);
11035 }
11036
11037 static void
11038 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11039 {
11040 struct objfile *objfile = cu->objfile;
11041 struct context_stack *new;
11042 CORE_ADDR lowpc;
11043 CORE_ADDR highpc;
11044 struct die_info *child_die;
11045 struct attribute *attr, *call_line, *call_file;
11046 const char *name;
11047 CORE_ADDR baseaddr;
11048 struct block *block;
11049 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11050 VEC (symbolp) *template_args = NULL;
11051 struct template_symbol *templ_func = NULL;
11052
11053 if (inlined_func)
11054 {
11055 /* If we do not have call site information, we can't show the
11056 caller of this inlined function. That's too confusing, so
11057 only use the scope for local variables. */
11058 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11059 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11060 if (call_line == NULL || call_file == NULL)
11061 {
11062 read_lexical_block_scope (die, cu);
11063 return;
11064 }
11065 }
11066
11067 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11068
11069 name = dwarf2_name (die, cu);
11070
11071 /* Ignore functions with missing or empty names. These are actually
11072 illegal according to the DWARF standard. */
11073 if (name == NULL)
11074 {
11075 complaint (&symfile_complaints,
11076 _("missing name for subprogram DIE at %d"),
11077 die->offset.sect_off);
11078 return;
11079 }
11080
11081 /* Ignore functions with missing or invalid low and high pc attributes. */
11082 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11083 {
11084 attr = dwarf2_attr (die, DW_AT_external, cu);
11085 if (!attr || !DW_UNSND (attr))
11086 complaint (&symfile_complaints,
11087 _("cannot get low and high bounds "
11088 "for subprogram DIE at %d"),
11089 die->offset.sect_off);
11090 return;
11091 }
11092
11093 lowpc += baseaddr;
11094 highpc += baseaddr;
11095
11096 /* If we have any template arguments, then we must allocate a
11097 different sort of symbol. */
11098 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11099 {
11100 if (child_die->tag == DW_TAG_template_type_param
11101 || child_die->tag == DW_TAG_template_value_param)
11102 {
11103 templ_func = allocate_template_symbol (objfile);
11104 templ_func->base.is_cplus_template_function = 1;
11105 break;
11106 }
11107 }
11108
11109 new = push_context (0, lowpc);
11110 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11111 (struct symbol *) templ_func);
11112
11113 /* If there is a location expression for DW_AT_frame_base, record
11114 it. */
11115 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11116 if (attr)
11117 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11118
11119 cu->list_in_scope = &local_symbols;
11120
11121 if (die->child != NULL)
11122 {
11123 child_die = die->child;
11124 while (child_die && child_die->tag)
11125 {
11126 if (child_die->tag == DW_TAG_template_type_param
11127 || child_die->tag == DW_TAG_template_value_param)
11128 {
11129 struct symbol *arg = new_symbol (child_die, NULL, cu);
11130
11131 if (arg != NULL)
11132 VEC_safe_push (symbolp, template_args, arg);
11133 }
11134 else
11135 process_die (child_die, cu);
11136 child_die = sibling_die (child_die);
11137 }
11138 }
11139
11140 inherit_abstract_dies (die, cu);
11141
11142 /* If we have a DW_AT_specification, we might need to import using
11143 directives from the context of the specification DIE. See the
11144 comment in determine_prefix. */
11145 if (cu->language == language_cplus
11146 && dwarf2_attr (die, DW_AT_specification, cu))
11147 {
11148 struct dwarf2_cu *spec_cu = cu;
11149 struct die_info *spec_die = die_specification (die, &spec_cu);
11150
11151 while (spec_die)
11152 {
11153 child_die = spec_die->child;
11154 while (child_die && child_die->tag)
11155 {
11156 if (child_die->tag == DW_TAG_imported_module)
11157 process_die (child_die, spec_cu);
11158 child_die = sibling_die (child_die);
11159 }
11160
11161 /* In some cases, GCC generates specification DIEs that
11162 themselves contain DW_AT_specification attributes. */
11163 spec_die = die_specification (spec_die, &spec_cu);
11164 }
11165 }
11166
11167 new = pop_context ();
11168 /* Make a block for the local symbols within. */
11169 block = finish_block (new->name, &local_symbols, new->old_blocks,
11170 lowpc, highpc, objfile);
11171
11172 /* For C++, set the block's scope. */
11173 if ((cu->language == language_cplus || cu->language == language_fortran)
11174 && cu->processing_has_namespace_info)
11175 block_set_scope (block, determine_prefix (die, cu),
11176 &objfile->objfile_obstack);
11177
11178 /* If we have address ranges, record them. */
11179 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11180
11181 /* Attach template arguments to function. */
11182 if (! VEC_empty (symbolp, template_args))
11183 {
11184 gdb_assert (templ_func != NULL);
11185
11186 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11187 templ_func->template_arguments
11188 = obstack_alloc (&objfile->objfile_obstack,
11189 (templ_func->n_template_arguments
11190 * sizeof (struct symbol *)));
11191 memcpy (templ_func->template_arguments,
11192 VEC_address (symbolp, template_args),
11193 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11194 VEC_free (symbolp, template_args);
11195 }
11196
11197 /* In C++, we can have functions nested inside functions (e.g., when
11198 a function declares a class that has methods). This means that
11199 when we finish processing a function scope, we may need to go
11200 back to building a containing block's symbol lists. */
11201 local_symbols = new->locals;
11202 using_directives = new->using_directives;
11203
11204 /* If we've finished processing a top-level function, subsequent
11205 symbols go in the file symbol list. */
11206 if (outermost_context_p ())
11207 cu->list_in_scope = &file_symbols;
11208 }
11209
11210 /* Process all the DIES contained within a lexical block scope. Start
11211 a new scope, process the dies, and then close the scope. */
11212
11213 static void
11214 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11215 {
11216 struct objfile *objfile = cu->objfile;
11217 struct context_stack *new;
11218 CORE_ADDR lowpc, highpc;
11219 struct die_info *child_die;
11220 CORE_ADDR baseaddr;
11221
11222 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11223
11224 /* Ignore blocks with missing or invalid low and high pc attributes. */
11225 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11226 as multiple lexical blocks? Handling children in a sane way would
11227 be nasty. Might be easier to properly extend generic blocks to
11228 describe ranges. */
11229 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11230 return;
11231 lowpc += baseaddr;
11232 highpc += baseaddr;
11233
11234 push_context (0, lowpc);
11235 if (die->child != NULL)
11236 {
11237 child_die = die->child;
11238 while (child_die && child_die->tag)
11239 {
11240 process_die (child_die, cu);
11241 child_die = sibling_die (child_die);
11242 }
11243 }
11244 new = pop_context ();
11245
11246 if (local_symbols != NULL || using_directives != NULL)
11247 {
11248 struct block *block
11249 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11250 highpc, objfile);
11251
11252 /* Note that recording ranges after traversing children, as we
11253 do here, means that recording a parent's ranges entails
11254 walking across all its children's ranges as they appear in
11255 the address map, which is quadratic behavior.
11256
11257 It would be nicer to record the parent's ranges before
11258 traversing its children, simply overriding whatever you find
11259 there. But since we don't even decide whether to create a
11260 block until after we've traversed its children, that's hard
11261 to do. */
11262 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11263 }
11264 local_symbols = new->locals;
11265 using_directives = new->using_directives;
11266 }
11267
11268 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11269
11270 static void
11271 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11272 {
11273 struct objfile *objfile = cu->objfile;
11274 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11275 CORE_ADDR pc, baseaddr;
11276 struct attribute *attr;
11277 struct call_site *call_site, call_site_local;
11278 void **slot;
11279 int nparams;
11280 struct die_info *child_die;
11281
11282 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11283
11284 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11285 if (!attr)
11286 {
11287 complaint (&symfile_complaints,
11288 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11289 "DIE 0x%x [in module %s]"),
11290 die->offset.sect_off, objfile_name (objfile));
11291 return;
11292 }
11293 pc = attr_value_as_address (attr) + baseaddr;
11294
11295 if (cu->call_site_htab == NULL)
11296 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11297 NULL, &objfile->objfile_obstack,
11298 hashtab_obstack_allocate, NULL);
11299 call_site_local.pc = pc;
11300 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11301 if (*slot != NULL)
11302 {
11303 complaint (&symfile_complaints,
11304 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11305 "DIE 0x%x [in module %s]"),
11306 paddress (gdbarch, pc), die->offset.sect_off,
11307 objfile_name (objfile));
11308 return;
11309 }
11310
11311 /* Count parameters at the caller. */
11312
11313 nparams = 0;
11314 for (child_die = die->child; child_die && child_die->tag;
11315 child_die = sibling_die (child_die))
11316 {
11317 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11318 {
11319 complaint (&symfile_complaints,
11320 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11321 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11322 child_die->tag, child_die->offset.sect_off,
11323 objfile_name (objfile));
11324 continue;
11325 }
11326
11327 nparams++;
11328 }
11329
11330 call_site = obstack_alloc (&objfile->objfile_obstack,
11331 (sizeof (*call_site)
11332 + (sizeof (*call_site->parameter)
11333 * (nparams - 1))));
11334 *slot = call_site;
11335 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11336 call_site->pc = pc;
11337
11338 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11339 {
11340 struct die_info *func_die;
11341
11342 /* Skip also over DW_TAG_inlined_subroutine. */
11343 for (func_die = die->parent;
11344 func_die && func_die->tag != DW_TAG_subprogram
11345 && func_die->tag != DW_TAG_subroutine_type;
11346 func_die = func_die->parent);
11347
11348 /* DW_AT_GNU_all_call_sites is a superset
11349 of DW_AT_GNU_all_tail_call_sites. */
11350 if (func_die
11351 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11352 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11353 {
11354 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11355 not complete. But keep CALL_SITE for look ups via call_site_htab,
11356 both the initial caller containing the real return address PC and
11357 the final callee containing the current PC of a chain of tail
11358 calls do not need to have the tail call list complete. But any
11359 function candidate for a virtual tail call frame searched via
11360 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11361 determined unambiguously. */
11362 }
11363 else
11364 {
11365 struct type *func_type = NULL;
11366
11367 if (func_die)
11368 func_type = get_die_type (func_die, cu);
11369 if (func_type != NULL)
11370 {
11371 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11372
11373 /* Enlist this call site to the function. */
11374 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11375 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11376 }
11377 else
11378 complaint (&symfile_complaints,
11379 _("Cannot find function owning DW_TAG_GNU_call_site "
11380 "DIE 0x%x [in module %s]"),
11381 die->offset.sect_off, objfile_name (objfile));
11382 }
11383 }
11384
11385 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11386 if (attr == NULL)
11387 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11388 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11389 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11390 /* Keep NULL DWARF_BLOCK. */;
11391 else if (attr_form_is_block (attr))
11392 {
11393 struct dwarf2_locexpr_baton *dlbaton;
11394
11395 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11396 dlbaton->data = DW_BLOCK (attr)->data;
11397 dlbaton->size = DW_BLOCK (attr)->size;
11398 dlbaton->per_cu = cu->per_cu;
11399
11400 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11401 }
11402 else if (attr_form_is_ref (attr))
11403 {
11404 struct dwarf2_cu *target_cu = cu;
11405 struct die_info *target_die;
11406
11407 target_die = follow_die_ref (die, attr, &target_cu);
11408 gdb_assert (target_cu->objfile == objfile);
11409 if (die_is_declaration (target_die, target_cu))
11410 {
11411 const char *target_physname = NULL;
11412 struct attribute *target_attr;
11413
11414 /* Prefer the mangled name; otherwise compute the demangled one. */
11415 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11416 if (target_attr == NULL)
11417 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11418 target_cu);
11419 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11420 target_physname = DW_STRING (target_attr);
11421 else
11422 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11423 if (target_physname == NULL)
11424 complaint (&symfile_complaints,
11425 _("DW_AT_GNU_call_site_target target DIE has invalid "
11426 "physname, for referencing DIE 0x%x [in module %s]"),
11427 die->offset.sect_off, objfile_name (objfile));
11428 else
11429 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11430 }
11431 else
11432 {
11433 CORE_ADDR lowpc;
11434
11435 /* DW_AT_entry_pc should be preferred. */
11436 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11437 complaint (&symfile_complaints,
11438 _("DW_AT_GNU_call_site_target target DIE has invalid "
11439 "low pc, for referencing DIE 0x%x [in module %s]"),
11440 die->offset.sect_off, objfile_name (objfile));
11441 else
11442 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11443 }
11444 }
11445 else
11446 complaint (&symfile_complaints,
11447 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11448 "block nor reference, for DIE 0x%x [in module %s]"),
11449 die->offset.sect_off, objfile_name (objfile));
11450
11451 call_site->per_cu = cu->per_cu;
11452
11453 for (child_die = die->child;
11454 child_die && child_die->tag;
11455 child_die = sibling_die (child_die))
11456 {
11457 struct call_site_parameter *parameter;
11458 struct attribute *loc, *origin;
11459
11460 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11461 {
11462 /* Already printed the complaint above. */
11463 continue;
11464 }
11465
11466 gdb_assert (call_site->parameter_count < nparams);
11467 parameter = &call_site->parameter[call_site->parameter_count];
11468
11469 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11470 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11471 register is contained in DW_AT_GNU_call_site_value. */
11472
11473 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11474 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11475 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11476 {
11477 sect_offset offset;
11478
11479 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11480 offset = dwarf2_get_ref_die_offset (origin);
11481 if (!offset_in_cu_p (&cu->header, offset))
11482 {
11483 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11484 binding can be done only inside one CU. Such referenced DIE
11485 therefore cannot be even moved to DW_TAG_partial_unit. */
11486 complaint (&symfile_complaints,
11487 _("DW_AT_abstract_origin offset is not in CU for "
11488 "DW_TAG_GNU_call_site child DIE 0x%x "
11489 "[in module %s]"),
11490 child_die->offset.sect_off, objfile_name (objfile));
11491 continue;
11492 }
11493 parameter->u.param_offset.cu_off = (offset.sect_off
11494 - cu->header.offset.sect_off);
11495 }
11496 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11497 {
11498 complaint (&symfile_complaints,
11499 _("No DW_FORM_block* DW_AT_location for "
11500 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11501 child_die->offset.sect_off, objfile_name (objfile));
11502 continue;
11503 }
11504 else
11505 {
11506 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11507 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11508 if (parameter->u.dwarf_reg != -1)
11509 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11510 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11511 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11512 &parameter->u.fb_offset))
11513 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11514 else
11515 {
11516 complaint (&symfile_complaints,
11517 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11518 "for DW_FORM_block* DW_AT_location is supported for "
11519 "DW_TAG_GNU_call_site child DIE 0x%x "
11520 "[in module %s]"),
11521 child_die->offset.sect_off, objfile_name (objfile));
11522 continue;
11523 }
11524 }
11525
11526 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11527 if (!attr_form_is_block (attr))
11528 {
11529 complaint (&symfile_complaints,
11530 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11531 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11532 child_die->offset.sect_off, objfile_name (objfile));
11533 continue;
11534 }
11535 parameter->value = DW_BLOCK (attr)->data;
11536 parameter->value_size = DW_BLOCK (attr)->size;
11537
11538 /* Parameters are not pre-cleared by memset above. */
11539 parameter->data_value = NULL;
11540 parameter->data_value_size = 0;
11541 call_site->parameter_count++;
11542
11543 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11544 if (attr)
11545 {
11546 if (!attr_form_is_block (attr))
11547 complaint (&symfile_complaints,
11548 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11549 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11550 child_die->offset.sect_off, objfile_name (objfile));
11551 else
11552 {
11553 parameter->data_value = DW_BLOCK (attr)->data;
11554 parameter->data_value_size = DW_BLOCK (attr)->size;
11555 }
11556 }
11557 }
11558 }
11559
11560 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11561 Return 1 if the attributes are present and valid, otherwise, return 0.
11562 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11563
11564 static int
11565 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11566 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11567 struct partial_symtab *ranges_pst)
11568 {
11569 struct objfile *objfile = cu->objfile;
11570 struct comp_unit_head *cu_header = &cu->header;
11571 bfd *obfd = objfile->obfd;
11572 unsigned int addr_size = cu_header->addr_size;
11573 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11574 /* Base address selection entry. */
11575 CORE_ADDR base;
11576 int found_base;
11577 unsigned int dummy;
11578 const gdb_byte *buffer;
11579 CORE_ADDR marker;
11580 int low_set;
11581 CORE_ADDR low = 0;
11582 CORE_ADDR high = 0;
11583 CORE_ADDR baseaddr;
11584
11585 found_base = cu->base_known;
11586 base = cu->base_address;
11587
11588 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11589 if (offset >= dwarf2_per_objfile->ranges.size)
11590 {
11591 complaint (&symfile_complaints,
11592 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11593 offset);
11594 return 0;
11595 }
11596 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11597
11598 /* Read in the largest possible address. */
11599 marker = read_address (obfd, buffer, cu, &dummy);
11600 if ((marker & mask) == mask)
11601 {
11602 /* If we found the largest possible address, then
11603 read the base address. */
11604 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11605 buffer += 2 * addr_size;
11606 offset += 2 * addr_size;
11607 found_base = 1;
11608 }
11609
11610 low_set = 0;
11611
11612 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11613
11614 while (1)
11615 {
11616 CORE_ADDR range_beginning, range_end;
11617
11618 range_beginning = read_address (obfd, buffer, cu, &dummy);
11619 buffer += addr_size;
11620 range_end = read_address (obfd, buffer, cu, &dummy);
11621 buffer += addr_size;
11622 offset += 2 * addr_size;
11623
11624 /* An end of list marker is a pair of zero addresses. */
11625 if (range_beginning == 0 && range_end == 0)
11626 /* Found the end of list entry. */
11627 break;
11628
11629 /* Each base address selection entry is a pair of 2 values.
11630 The first is the largest possible address, the second is
11631 the base address. Check for a base address here. */
11632 if ((range_beginning & mask) == mask)
11633 {
11634 /* If we found the largest possible address, then
11635 read the base address. */
11636 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11637 found_base = 1;
11638 continue;
11639 }
11640
11641 if (!found_base)
11642 {
11643 /* We have no valid base address for the ranges
11644 data. */
11645 complaint (&symfile_complaints,
11646 _("Invalid .debug_ranges data (no base address)"));
11647 return 0;
11648 }
11649
11650 if (range_beginning > range_end)
11651 {
11652 /* Inverted range entries are invalid. */
11653 complaint (&symfile_complaints,
11654 _("Invalid .debug_ranges data (inverted range)"));
11655 return 0;
11656 }
11657
11658 /* Empty range entries have no effect. */
11659 if (range_beginning == range_end)
11660 continue;
11661
11662 range_beginning += base;
11663 range_end += base;
11664
11665 /* A not-uncommon case of bad debug info.
11666 Don't pollute the addrmap with bad data. */
11667 if (range_beginning + baseaddr == 0
11668 && !dwarf2_per_objfile->has_section_at_zero)
11669 {
11670 complaint (&symfile_complaints,
11671 _(".debug_ranges entry has start address of zero"
11672 " [in module %s]"), objfile_name (objfile));
11673 continue;
11674 }
11675
11676 if (ranges_pst != NULL)
11677 addrmap_set_empty (objfile->psymtabs_addrmap,
11678 range_beginning + baseaddr,
11679 range_end - 1 + baseaddr,
11680 ranges_pst);
11681
11682 /* FIXME: This is recording everything as a low-high
11683 segment of consecutive addresses. We should have a
11684 data structure for discontiguous block ranges
11685 instead. */
11686 if (! low_set)
11687 {
11688 low = range_beginning;
11689 high = range_end;
11690 low_set = 1;
11691 }
11692 else
11693 {
11694 if (range_beginning < low)
11695 low = range_beginning;
11696 if (range_end > high)
11697 high = range_end;
11698 }
11699 }
11700
11701 if (! low_set)
11702 /* If the first entry is an end-of-list marker, the range
11703 describes an empty scope, i.e. no instructions. */
11704 return 0;
11705
11706 if (low_return)
11707 *low_return = low;
11708 if (high_return)
11709 *high_return = high;
11710 return 1;
11711 }
11712
11713 /* Get low and high pc attributes from a die. Return 1 if the attributes
11714 are present and valid, otherwise, return 0. Return -1 if the range is
11715 discontinuous, i.e. derived from DW_AT_ranges information. */
11716
11717 static int
11718 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11719 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11720 struct partial_symtab *pst)
11721 {
11722 struct attribute *attr;
11723 struct attribute *attr_high;
11724 CORE_ADDR low = 0;
11725 CORE_ADDR high = 0;
11726 int ret = 0;
11727
11728 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11729 if (attr_high)
11730 {
11731 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11732 if (attr)
11733 {
11734 low = attr_value_as_address (attr);
11735 high = attr_value_as_address (attr_high);
11736 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11737 high += low;
11738 }
11739 else
11740 /* Found high w/o low attribute. */
11741 return 0;
11742
11743 /* Found consecutive range of addresses. */
11744 ret = 1;
11745 }
11746 else
11747 {
11748 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11749 if (attr != NULL)
11750 {
11751 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11752 We take advantage of the fact that DW_AT_ranges does not appear
11753 in DW_TAG_compile_unit of DWO files. */
11754 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11755 unsigned int ranges_offset = (DW_UNSND (attr)
11756 + (need_ranges_base
11757 ? cu->ranges_base
11758 : 0));
11759
11760 /* Value of the DW_AT_ranges attribute is the offset in the
11761 .debug_ranges section. */
11762 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11763 return 0;
11764 /* Found discontinuous range of addresses. */
11765 ret = -1;
11766 }
11767 }
11768
11769 /* read_partial_die has also the strict LOW < HIGH requirement. */
11770 if (high <= low)
11771 return 0;
11772
11773 /* When using the GNU linker, .gnu.linkonce. sections are used to
11774 eliminate duplicate copies of functions and vtables and such.
11775 The linker will arbitrarily choose one and discard the others.
11776 The AT_*_pc values for such functions refer to local labels in
11777 these sections. If the section from that file was discarded, the
11778 labels are not in the output, so the relocs get a value of 0.
11779 If this is a discarded function, mark the pc bounds as invalid,
11780 so that GDB will ignore it. */
11781 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11782 return 0;
11783
11784 *lowpc = low;
11785 if (highpc)
11786 *highpc = high;
11787 return ret;
11788 }
11789
11790 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11791 its low and high PC addresses. Do nothing if these addresses could not
11792 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11793 and HIGHPC to the high address if greater than HIGHPC. */
11794
11795 static void
11796 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11797 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11798 struct dwarf2_cu *cu)
11799 {
11800 CORE_ADDR low, high;
11801 struct die_info *child = die->child;
11802
11803 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11804 {
11805 *lowpc = min (*lowpc, low);
11806 *highpc = max (*highpc, high);
11807 }
11808
11809 /* If the language does not allow nested subprograms (either inside
11810 subprograms or lexical blocks), we're done. */
11811 if (cu->language != language_ada)
11812 return;
11813
11814 /* Check all the children of the given DIE. If it contains nested
11815 subprograms, then check their pc bounds. Likewise, we need to
11816 check lexical blocks as well, as they may also contain subprogram
11817 definitions. */
11818 while (child && child->tag)
11819 {
11820 if (child->tag == DW_TAG_subprogram
11821 || child->tag == DW_TAG_lexical_block)
11822 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11823 child = sibling_die (child);
11824 }
11825 }
11826
11827 /* Get the low and high pc's represented by the scope DIE, and store
11828 them in *LOWPC and *HIGHPC. If the correct values can't be
11829 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11830
11831 static void
11832 get_scope_pc_bounds (struct die_info *die,
11833 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11834 struct dwarf2_cu *cu)
11835 {
11836 CORE_ADDR best_low = (CORE_ADDR) -1;
11837 CORE_ADDR best_high = (CORE_ADDR) 0;
11838 CORE_ADDR current_low, current_high;
11839
11840 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
11841 {
11842 best_low = current_low;
11843 best_high = current_high;
11844 }
11845 else
11846 {
11847 struct die_info *child = die->child;
11848
11849 while (child && child->tag)
11850 {
11851 switch (child->tag) {
11852 case DW_TAG_subprogram:
11853 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11854 break;
11855 case DW_TAG_namespace:
11856 case DW_TAG_module:
11857 /* FIXME: carlton/2004-01-16: Should we do this for
11858 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11859 that current GCC's always emit the DIEs corresponding
11860 to definitions of methods of classes as children of a
11861 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11862 the DIEs giving the declarations, which could be
11863 anywhere). But I don't see any reason why the
11864 standards says that they have to be there. */
11865 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11866
11867 if (current_low != ((CORE_ADDR) -1))
11868 {
11869 best_low = min (best_low, current_low);
11870 best_high = max (best_high, current_high);
11871 }
11872 break;
11873 default:
11874 /* Ignore. */
11875 break;
11876 }
11877
11878 child = sibling_die (child);
11879 }
11880 }
11881
11882 *lowpc = best_low;
11883 *highpc = best_high;
11884 }
11885
11886 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
11887 in DIE. */
11888
11889 static void
11890 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11891 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11892 {
11893 struct objfile *objfile = cu->objfile;
11894 struct attribute *attr;
11895 struct attribute *attr_high;
11896
11897 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11898 if (attr_high)
11899 {
11900 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11901 if (attr)
11902 {
11903 CORE_ADDR low = attr_value_as_address (attr);
11904 CORE_ADDR high = attr_value_as_address (attr_high);
11905
11906 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11907 high += low;
11908
11909 record_block_range (block, baseaddr + low, baseaddr + high - 1);
11910 }
11911 }
11912
11913 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11914 if (attr)
11915 {
11916 bfd *obfd = objfile->obfd;
11917 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11918 We take advantage of the fact that DW_AT_ranges does not appear
11919 in DW_TAG_compile_unit of DWO files. */
11920 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11921
11922 /* The value of the DW_AT_ranges attribute is the offset of the
11923 address range list in the .debug_ranges section. */
11924 unsigned long offset = (DW_UNSND (attr)
11925 + (need_ranges_base ? cu->ranges_base : 0));
11926 const gdb_byte *buffer;
11927
11928 /* For some target architectures, but not others, the
11929 read_address function sign-extends the addresses it returns.
11930 To recognize base address selection entries, we need a
11931 mask. */
11932 unsigned int addr_size = cu->header.addr_size;
11933 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11934
11935 /* The base address, to which the next pair is relative. Note
11936 that this 'base' is a DWARF concept: most entries in a range
11937 list are relative, to reduce the number of relocs against the
11938 debugging information. This is separate from this function's
11939 'baseaddr' argument, which GDB uses to relocate debugging
11940 information from a shared library based on the address at
11941 which the library was loaded. */
11942 CORE_ADDR base = cu->base_address;
11943 int base_known = cu->base_known;
11944
11945 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11946 if (offset >= dwarf2_per_objfile->ranges.size)
11947 {
11948 complaint (&symfile_complaints,
11949 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
11950 offset);
11951 return;
11952 }
11953 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11954
11955 for (;;)
11956 {
11957 unsigned int bytes_read;
11958 CORE_ADDR start, end;
11959
11960 start = read_address (obfd, buffer, cu, &bytes_read);
11961 buffer += bytes_read;
11962 end = read_address (obfd, buffer, cu, &bytes_read);
11963 buffer += bytes_read;
11964
11965 /* Did we find the end of the range list? */
11966 if (start == 0 && end == 0)
11967 break;
11968
11969 /* Did we find a base address selection entry? */
11970 else if ((start & base_select_mask) == base_select_mask)
11971 {
11972 base = end;
11973 base_known = 1;
11974 }
11975
11976 /* We found an ordinary address range. */
11977 else
11978 {
11979 if (!base_known)
11980 {
11981 complaint (&symfile_complaints,
11982 _("Invalid .debug_ranges data "
11983 "(no base address)"));
11984 return;
11985 }
11986
11987 if (start > end)
11988 {
11989 /* Inverted range entries are invalid. */
11990 complaint (&symfile_complaints,
11991 _("Invalid .debug_ranges data "
11992 "(inverted range)"));
11993 return;
11994 }
11995
11996 /* Empty range entries have no effect. */
11997 if (start == end)
11998 continue;
11999
12000 start += base + baseaddr;
12001 end += base + baseaddr;
12002
12003 /* A not-uncommon case of bad debug info.
12004 Don't pollute the addrmap with bad data. */
12005 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12006 {
12007 complaint (&symfile_complaints,
12008 _(".debug_ranges entry has start address of zero"
12009 " [in module %s]"), objfile_name (objfile));
12010 continue;
12011 }
12012
12013 record_block_range (block, start, end - 1);
12014 }
12015 }
12016 }
12017 }
12018
12019 /* Check whether the producer field indicates either of GCC < 4.6, or the
12020 Intel C/C++ compiler, and cache the result in CU. */
12021
12022 static void
12023 check_producer (struct dwarf2_cu *cu)
12024 {
12025 const char *cs;
12026 int major, minor, release;
12027
12028 if (cu->producer == NULL)
12029 {
12030 /* For unknown compilers expect their behavior is DWARF version
12031 compliant.
12032
12033 GCC started to support .debug_types sections by -gdwarf-4 since
12034 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12035 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12036 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12037 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12038 }
12039 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
12040 {
12041 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12042
12043 cs = &cu->producer[strlen ("GNU ")];
12044 while (*cs && !isdigit (*cs))
12045 cs++;
12046 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12047 {
12048 /* Not recognized as GCC. */
12049 }
12050 else
12051 {
12052 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12053 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12054 }
12055 }
12056 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12057 cu->producer_is_icc = 1;
12058 else
12059 {
12060 /* For other non-GCC compilers, expect their behavior is DWARF version
12061 compliant. */
12062 }
12063
12064 cu->checked_producer = 1;
12065 }
12066
12067 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12068 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12069 during 4.6.0 experimental. */
12070
12071 static int
12072 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12073 {
12074 if (!cu->checked_producer)
12075 check_producer (cu);
12076
12077 return cu->producer_is_gxx_lt_4_6;
12078 }
12079
12080 /* Return the default accessibility type if it is not overriden by
12081 DW_AT_accessibility. */
12082
12083 static enum dwarf_access_attribute
12084 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12085 {
12086 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12087 {
12088 /* The default DWARF 2 accessibility for members is public, the default
12089 accessibility for inheritance is private. */
12090
12091 if (die->tag != DW_TAG_inheritance)
12092 return DW_ACCESS_public;
12093 else
12094 return DW_ACCESS_private;
12095 }
12096 else
12097 {
12098 /* DWARF 3+ defines the default accessibility a different way. The same
12099 rules apply now for DW_TAG_inheritance as for the members and it only
12100 depends on the container kind. */
12101
12102 if (die->parent->tag == DW_TAG_class_type)
12103 return DW_ACCESS_private;
12104 else
12105 return DW_ACCESS_public;
12106 }
12107 }
12108
12109 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12110 offset. If the attribute was not found return 0, otherwise return
12111 1. If it was found but could not properly be handled, set *OFFSET
12112 to 0. */
12113
12114 static int
12115 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12116 LONGEST *offset)
12117 {
12118 struct attribute *attr;
12119
12120 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12121 if (attr != NULL)
12122 {
12123 *offset = 0;
12124
12125 /* Note that we do not check for a section offset first here.
12126 This is because DW_AT_data_member_location is new in DWARF 4,
12127 so if we see it, we can assume that a constant form is really
12128 a constant and not a section offset. */
12129 if (attr_form_is_constant (attr))
12130 *offset = dwarf2_get_attr_constant_value (attr, 0);
12131 else if (attr_form_is_section_offset (attr))
12132 dwarf2_complex_location_expr_complaint ();
12133 else if (attr_form_is_block (attr))
12134 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12135 else
12136 dwarf2_complex_location_expr_complaint ();
12137
12138 return 1;
12139 }
12140
12141 return 0;
12142 }
12143
12144 /* Add an aggregate field to the field list. */
12145
12146 static void
12147 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12148 struct dwarf2_cu *cu)
12149 {
12150 struct objfile *objfile = cu->objfile;
12151 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12152 struct nextfield *new_field;
12153 struct attribute *attr;
12154 struct field *fp;
12155 const char *fieldname = "";
12156
12157 /* Allocate a new field list entry and link it in. */
12158 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12159 make_cleanup (xfree, new_field);
12160 memset (new_field, 0, sizeof (struct nextfield));
12161
12162 if (die->tag == DW_TAG_inheritance)
12163 {
12164 new_field->next = fip->baseclasses;
12165 fip->baseclasses = new_field;
12166 }
12167 else
12168 {
12169 new_field->next = fip->fields;
12170 fip->fields = new_field;
12171 }
12172 fip->nfields++;
12173
12174 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12175 if (attr)
12176 new_field->accessibility = DW_UNSND (attr);
12177 else
12178 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12179 if (new_field->accessibility != DW_ACCESS_public)
12180 fip->non_public_fields = 1;
12181
12182 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12183 if (attr)
12184 new_field->virtuality = DW_UNSND (attr);
12185 else
12186 new_field->virtuality = DW_VIRTUALITY_none;
12187
12188 fp = &new_field->field;
12189
12190 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12191 {
12192 LONGEST offset;
12193
12194 /* Data member other than a C++ static data member. */
12195
12196 /* Get type of field. */
12197 fp->type = die_type (die, cu);
12198
12199 SET_FIELD_BITPOS (*fp, 0);
12200
12201 /* Get bit size of field (zero if none). */
12202 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12203 if (attr)
12204 {
12205 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12206 }
12207 else
12208 {
12209 FIELD_BITSIZE (*fp) = 0;
12210 }
12211
12212 /* Get bit offset of field. */
12213 if (handle_data_member_location (die, cu, &offset))
12214 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12215 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12216 if (attr)
12217 {
12218 if (gdbarch_bits_big_endian (gdbarch))
12219 {
12220 /* For big endian bits, the DW_AT_bit_offset gives the
12221 additional bit offset from the MSB of the containing
12222 anonymous object to the MSB of the field. We don't
12223 have to do anything special since we don't need to
12224 know the size of the anonymous object. */
12225 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12226 }
12227 else
12228 {
12229 /* For little endian bits, compute the bit offset to the
12230 MSB of the anonymous object, subtract off the number of
12231 bits from the MSB of the field to the MSB of the
12232 object, and then subtract off the number of bits of
12233 the field itself. The result is the bit offset of
12234 the LSB of the field. */
12235 int anonymous_size;
12236 int bit_offset = DW_UNSND (attr);
12237
12238 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12239 if (attr)
12240 {
12241 /* The size of the anonymous object containing
12242 the bit field is explicit, so use the
12243 indicated size (in bytes). */
12244 anonymous_size = DW_UNSND (attr);
12245 }
12246 else
12247 {
12248 /* The size of the anonymous object containing
12249 the bit field must be inferred from the type
12250 attribute of the data member containing the
12251 bit field. */
12252 anonymous_size = TYPE_LENGTH (fp->type);
12253 }
12254 SET_FIELD_BITPOS (*fp,
12255 (FIELD_BITPOS (*fp)
12256 + anonymous_size * bits_per_byte
12257 - bit_offset - FIELD_BITSIZE (*fp)));
12258 }
12259 }
12260
12261 /* Get name of field. */
12262 fieldname = dwarf2_name (die, cu);
12263 if (fieldname == NULL)
12264 fieldname = "";
12265
12266 /* The name is already allocated along with this objfile, so we don't
12267 need to duplicate it for the type. */
12268 fp->name = fieldname;
12269
12270 /* Change accessibility for artificial fields (e.g. virtual table
12271 pointer or virtual base class pointer) to private. */
12272 if (dwarf2_attr (die, DW_AT_artificial, cu))
12273 {
12274 FIELD_ARTIFICIAL (*fp) = 1;
12275 new_field->accessibility = DW_ACCESS_private;
12276 fip->non_public_fields = 1;
12277 }
12278 }
12279 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12280 {
12281 /* C++ static member. */
12282
12283 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12284 is a declaration, but all versions of G++ as of this writing
12285 (so through at least 3.2.1) incorrectly generate
12286 DW_TAG_variable tags. */
12287
12288 const char *physname;
12289
12290 /* Get name of field. */
12291 fieldname = dwarf2_name (die, cu);
12292 if (fieldname == NULL)
12293 return;
12294
12295 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12296 if (attr
12297 /* Only create a symbol if this is an external value.
12298 new_symbol checks this and puts the value in the global symbol
12299 table, which we want. If it is not external, new_symbol
12300 will try to put the value in cu->list_in_scope which is wrong. */
12301 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12302 {
12303 /* A static const member, not much different than an enum as far as
12304 we're concerned, except that we can support more types. */
12305 new_symbol (die, NULL, cu);
12306 }
12307
12308 /* Get physical name. */
12309 physname = dwarf2_physname (fieldname, die, cu);
12310
12311 /* The name is already allocated along with this objfile, so we don't
12312 need to duplicate it for the type. */
12313 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12314 FIELD_TYPE (*fp) = die_type (die, cu);
12315 FIELD_NAME (*fp) = fieldname;
12316 }
12317 else if (die->tag == DW_TAG_inheritance)
12318 {
12319 LONGEST offset;
12320
12321 /* C++ base class field. */
12322 if (handle_data_member_location (die, cu, &offset))
12323 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12324 FIELD_BITSIZE (*fp) = 0;
12325 FIELD_TYPE (*fp) = die_type (die, cu);
12326 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12327 fip->nbaseclasses++;
12328 }
12329 }
12330
12331 /* Add a typedef defined in the scope of the FIP's class. */
12332
12333 static void
12334 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12335 struct dwarf2_cu *cu)
12336 {
12337 struct objfile *objfile = cu->objfile;
12338 struct typedef_field_list *new_field;
12339 struct attribute *attr;
12340 struct typedef_field *fp;
12341 char *fieldname = "";
12342
12343 /* Allocate a new field list entry and link it in. */
12344 new_field = xzalloc (sizeof (*new_field));
12345 make_cleanup (xfree, new_field);
12346
12347 gdb_assert (die->tag == DW_TAG_typedef);
12348
12349 fp = &new_field->field;
12350
12351 /* Get name of field. */
12352 fp->name = dwarf2_name (die, cu);
12353 if (fp->name == NULL)
12354 return;
12355
12356 fp->type = read_type_die (die, cu);
12357
12358 new_field->next = fip->typedef_field_list;
12359 fip->typedef_field_list = new_field;
12360 fip->typedef_field_list_count++;
12361 }
12362
12363 /* Create the vector of fields, and attach it to the type. */
12364
12365 static void
12366 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12367 struct dwarf2_cu *cu)
12368 {
12369 int nfields = fip->nfields;
12370
12371 /* Record the field count, allocate space for the array of fields,
12372 and create blank accessibility bitfields if necessary. */
12373 TYPE_NFIELDS (type) = nfields;
12374 TYPE_FIELDS (type) = (struct field *)
12375 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12376 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12377
12378 if (fip->non_public_fields && cu->language != language_ada)
12379 {
12380 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12381
12382 TYPE_FIELD_PRIVATE_BITS (type) =
12383 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12384 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12385
12386 TYPE_FIELD_PROTECTED_BITS (type) =
12387 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12388 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12389
12390 TYPE_FIELD_IGNORE_BITS (type) =
12391 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12392 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12393 }
12394
12395 /* If the type has baseclasses, allocate and clear a bit vector for
12396 TYPE_FIELD_VIRTUAL_BITS. */
12397 if (fip->nbaseclasses && cu->language != language_ada)
12398 {
12399 int num_bytes = B_BYTES (fip->nbaseclasses);
12400 unsigned char *pointer;
12401
12402 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12403 pointer = TYPE_ALLOC (type, num_bytes);
12404 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12405 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12406 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12407 }
12408
12409 /* Copy the saved-up fields into the field vector. Start from the head of
12410 the list, adding to the tail of the field array, so that they end up in
12411 the same order in the array in which they were added to the list. */
12412 while (nfields-- > 0)
12413 {
12414 struct nextfield *fieldp;
12415
12416 if (fip->fields)
12417 {
12418 fieldp = fip->fields;
12419 fip->fields = fieldp->next;
12420 }
12421 else
12422 {
12423 fieldp = fip->baseclasses;
12424 fip->baseclasses = fieldp->next;
12425 }
12426
12427 TYPE_FIELD (type, nfields) = fieldp->field;
12428 switch (fieldp->accessibility)
12429 {
12430 case DW_ACCESS_private:
12431 if (cu->language != language_ada)
12432 SET_TYPE_FIELD_PRIVATE (type, nfields);
12433 break;
12434
12435 case DW_ACCESS_protected:
12436 if (cu->language != language_ada)
12437 SET_TYPE_FIELD_PROTECTED (type, nfields);
12438 break;
12439
12440 case DW_ACCESS_public:
12441 break;
12442
12443 default:
12444 /* Unknown accessibility. Complain and treat it as public. */
12445 {
12446 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12447 fieldp->accessibility);
12448 }
12449 break;
12450 }
12451 if (nfields < fip->nbaseclasses)
12452 {
12453 switch (fieldp->virtuality)
12454 {
12455 case DW_VIRTUALITY_virtual:
12456 case DW_VIRTUALITY_pure_virtual:
12457 if (cu->language == language_ada)
12458 error (_("unexpected virtuality in component of Ada type"));
12459 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12460 break;
12461 }
12462 }
12463 }
12464 }
12465
12466 /* Return true if this member function is a constructor, false
12467 otherwise. */
12468
12469 static int
12470 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12471 {
12472 const char *fieldname;
12473 const char *typename;
12474 int len;
12475
12476 if (die->parent == NULL)
12477 return 0;
12478
12479 if (die->parent->tag != DW_TAG_structure_type
12480 && die->parent->tag != DW_TAG_union_type
12481 && die->parent->tag != DW_TAG_class_type)
12482 return 0;
12483
12484 fieldname = dwarf2_name (die, cu);
12485 typename = dwarf2_name (die->parent, cu);
12486 if (fieldname == NULL || typename == NULL)
12487 return 0;
12488
12489 len = strlen (fieldname);
12490 return (strncmp (fieldname, typename, len) == 0
12491 && (typename[len] == '\0' || typename[len] == '<'));
12492 }
12493
12494 /* Add a member function to the proper fieldlist. */
12495
12496 static void
12497 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12498 struct type *type, struct dwarf2_cu *cu)
12499 {
12500 struct objfile *objfile = cu->objfile;
12501 struct attribute *attr;
12502 struct fnfieldlist *flp;
12503 int i;
12504 struct fn_field *fnp;
12505 const char *fieldname;
12506 struct nextfnfield *new_fnfield;
12507 struct type *this_type;
12508 enum dwarf_access_attribute accessibility;
12509
12510 if (cu->language == language_ada)
12511 error (_("unexpected member function in Ada type"));
12512
12513 /* Get name of member function. */
12514 fieldname = dwarf2_name (die, cu);
12515 if (fieldname == NULL)
12516 return;
12517
12518 /* Look up member function name in fieldlist. */
12519 for (i = 0; i < fip->nfnfields; i++)
12520 {
12521 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12522 break;
12523 }
12524
12525 /* Create new list element if necessary. */
12526 if (i < fip->nfnfields)
12527 flp = &fip->fnfieldlists[i];
12528 else
12529 {
12530 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12531 {
12532 fip->fnfieldlists = (struct fnfieldlist *)
12533 xrealloc (fip->fnfieldlists,
12534 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12535 * sizeof (struct fnfieldlist));
12536 if (fip->nfnfields == 0)
12537 make_cleanup (free_current_contents, &fip->fnfieldlists);
12538 }
12539 flp = &fip->fnfieldlists[fip->nfnfields];
12540 flp->name = fieldname;
12541 flp->length = 0;
12542 flp->head = NULL;
12543 i = fip->nfnfields++;
12544 }
12545
12546 /* Create a new member function field and chain it to the field list
12547 entry. */
12548 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12549 make_cleanup (xfree, new_fnfield);
12550 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12551 new_fnfield->next = flp->head;
12552 flp->head = new_fnfield;
12553 flp->length++;
12554
12555 /* Fill in the member function field info. */
12556 fnp = &new_fnfield->fnfield;
12557
12558 /* Delay processing of the physname until later. */
12559 if (cu->language == language_cplus || cu->language == language_java)
12560 {
12561 add_to_method_list (type, i, flp->length - 1, fieldname,
12562 die, cu);
12563 }
12564 else
12565 {
12566 const char *physname = dwarf2_physname (fieldname, die, cu);
12567 fnp->physname = physname ? physname : "";
12568 }
12569
12570 fnp->type = alloc_type (objfile);
12571 this_type = read_type_die (die, cu);
12572 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12573 {
12574 int nparams = TYPE_NFIELDS (this_type);
12575
12576 /* TYPE is the domain of this method, and THIS_TYPE is the type
12577 of the method itself (TYPE_CODE_METHOD). */
12578 smash_to_method_type (fnp->type, type,
12579 TYPE_TARGET_TYPE (this_type),
12580 TYPE_FIELDS (this_type),
12581 TYPE_NFIELDS (this_type),
12582 TYPE_VARARGS (this_type));
12583
12584 /* Handle static member functions.
12585 Dwarf2 has no clean way to discern C++ static and non-static
12586 member functions. G++ helps GDB by marking the first
12587 parameter for non-static member functions (which is the this
12588 pointer) as artificial. We obtain this information from
12589 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12590 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12591 fnp->voffset = VOFFSET_STATIC;
12592 }
12593 else
12594 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12595 dwarf2_full_name (fieldname, die, cu));
12596
12597 /* Get fcontext from DW_AT_containing_type if present. */
12598 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12599 fnp->fcontext = die_containing_type (die, cu);
12600
12601 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12602 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12603
12604 /* Get accessibility. */
12605 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12606 if (attr)
12607 accessibility = DW_UNSND (attr);
12608 else
12609 accessibility = dwarf2_default_access_attribute (die, cu);
12610 switch (accessibility)
12611 {
12612 case DW_ACCESS_private:
12613 fnp->is_private = 1;
12614 break;
12615 case DW_ACCESS_protected:
12616 fnp->is_protected = 1;
12617 break;
12618 }
12619
12620 /* Check for artificial methods. */
12621 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12622 if (attr && DW_UNSND (attr) != 0)
12623 fnp->is_artificial = 1;
12624
12625 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12626
12627 /* Get index in virtual function table if it is a virtual member
12628 function. For older versions of GCC, this is an offset in the
12629 appropriate virtual table, as specified by DW_AT_containing_type.
12630 For everyone else, it is an expression to be evaluated relative
12631 to the object address. */
12632
12633 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12634 if (attr)
12635 {
12636 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12637 {
12638 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12639 {
12640 /* Old-style GCC. */
12641 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12642 }
12643 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12644 || (DW_BLOCK (attr)->size > 1
12645 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12646 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12647 {
12648 struct dwarf_block blk;
12649 int offset;
12650
12651 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12652 ? 1 : 2);
12653 blk.size = DW_BLOCK (attr)->size - offset;
12654 blk.data = DW_BLOCK (attr)->data + offset;
12655 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12656 if ((fnp->voffset % cu->header.addr_size) != 0)
12657 dwarf2_complex_location_expr_complaint ();
12658 else
12659 fnp->voffset /= cu->header.addr_size;
12660 fnp->voffset += 2;
12661 }
12662 else
12663 dwarf2_complex_location_expr_complaint ();
12664
12665 if (!fnp->fcontext)
12666 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12667 }
12668 else if (attr_form_is_section_offset (attr))
12669 {
12670 dwarf2_complex_location_expr_complaint ();
12671 }
12672 else
12673 {
12674 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12675 fieldname);
12676 }
12677 }
12678 else
12679 {
12680 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12681 if (attr && DW_UNSND (attr))
12682 {
12683 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12684 complaint (&symfile_complaints,
12685 _("Member function \"%s\" (offset %d) is virtual "
12686 "but the vtable offset is not specified"),
12687 fieldname, die->offset.sect_off);
12688 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12689 TYPE_CPLUS_DYNAMIC (type) = 1;
12690 }
12691 }
12692 }
12693
12694 /* Create the vector of member function fields, and attach it to the type. */
12695
12696 static void
12697 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12698 struct dwarf2_cu *cu)
12699 {
12700 struct fnfieldlist *flp;
12701 int i;
12702
12703 if (cu->language == language_ada)
12704 error (_("unexpected member functions in Ada type"));
12705
12706 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12707 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12708 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12709
12710 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12711 {
12712 struct nextfnfield *nfp = flp->head;
12713 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12714 int k;
12715
12716 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12717 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12718 fn_flp->fn_fields = (struct fn_field *)
12719 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12720 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12721 fn_flp->fn_fields[k] = nfp->fnfield;
12722 }
12723
12724 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12725 }
12726
12727 /* Returns non-zero if NAME is the name of a vtable member in CU's
12728 language, zero otherwise. */
12729 static int
12730 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12731 {
12732 static const char vptr[] = "_vptr";
12733 static const char vtable[] = "vtable";
12734
12735 /* Look for the C++ and Java forms of the vtable. */
12736 if ((cu->language == language_java
12737 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12738 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12739 && is_cplus_marker (name[sizeof (vptr) - 1])))
12740 return 1;
12741
12742 return 0;
12743 }
12744
12745 /* GCC outputs unnamed structures that are really pointers to member
12746 functions, with the ABI-specified layout. If TYPE describes
12747 such a structure, smash it into a member function type.
12748
12749 GCC shouldn't do this; it should just output pointer to member DIEs.
12750 This is GCC PR debug/28767. */
12751
12752 static void
12753 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12754 {
12755 struct type *pfn_type, *domain_type, *new_type;
12756
12757 /* Check for a structure with no name and two children. */
12758 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12759 return;
12760
12761 /* Check for __pfn and __delta members. */
12762 if (TYPE_FIELD_NAME (type, 0) == NULL
12763 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12764 || TYPE_FIELD_NAME (type, 1) == NULL
12765 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12766 return;
12767
12768 /* Find the type of the method. */
12769 pfn_type = TYPE_FIELD_TYPE (type, 0);
12770 if (pfn_type == NULL
12771 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12772 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12773 return;
12774
12775 /* Look for the "this" argument. */
12776 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12777 if (TYPE_NFIELDS (pfn_type) == 0
12778 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12779 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12780 return;
12781
12782 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12783 new_type = alloc_type (objfile);
12784 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12785 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12786 TYPE_VARARGS (pfn_type));
12787 smash_to_methodptr_type (type, new_type);
12788 }
12789
12790 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12791 (icc). */
12792
12793 static int
12794 producer_is_icc (struct dwarf2_cu *cu)
12795 {
12796 if (!cu->checked_producer)
12797 check_producer (cu);
12798
12799 return cu->producer_is_icc;
12800 }
12801
12802 /* Called when we find the DIE that starts a structure or union scope
12803 (definition) to create a type for the structure or union. Fill in
12804 the type's name and general properties; the members will not be
12805 processed until process_structure_scope.
12806
12807 NOTE: we need to call these functions regardless of whether or not the
12808 DIE has a DW_AT_name attribute, since it might be an anonymous
12809 structure or union. This gets the type entered into our set of
12810 user defined types.
12811
12812 However, if the structure is incomplete (an opaque struct/union)
12813 then suppress creating a symbol table entry for it since gdb only
12814 wants to find the one with the complete definition. Note that if
12815 it is complete, we just call new_symbol, which does it's own
12816 checking about whether the struct/union is anonymous or not (and
12817 suppresses creating a symbol table entry itself). */
12818
12819 static struct type *
12820 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12821 {
12822 struct objfile *objfile = cu->objfile;
12823 struct type *type;
12824 struct attribute *attr;
12825 const char *name;
12826
12827 /* If the definition of this type lives in .debug_types, read that type.
12828 Don't follow DW_AT_specification though, that will take us back up
12829 the chain and we want to go down. */
12830 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12831 if (attr)
12832 {
12833 type = get_DW_AT_signature_type (die, attr, cu);
12834
12835 /* The type's CU may not be the same as CU.
12836 Ensure TYPE is recorded with CU in die_type_hash. */
12837 return set_die_type (die, type, cu);
12838 }
12839
12840 type = alloc_type (objfile);
12841 INIT_CPLUS_SPECIFIC (type);
12842
12843 name = dwarf2_name (die, cu);
12844 if (name != NULL)
12845 {
12846 if (cu->language == language_cplus
12847 || cu->language == language_java)
12848 {
12849 const char *full_name = dwarf2_full_name (name, die, cu);
12850
12851 /* dwarf2_full_name might have already finished building the DIE's
12852 type. If so, there is no need to continue. */
12853 if (get_die_type (die, cu) != NULL)
12854 return get_die_type (die, cu);
12855
12856 TYPE_TAG_NAME (type) = full_name;
12857 if (die->tag == DW_TAG_structure_type
12858 || die->tag == DW_TAG_class_type)
12859 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12860 }
12861 else
12862 {
12863 /* The name is already allocated along with this objfile, so
12864 we don't need to duplicate it for the type. */
12865 TYPE_TAG_NAME (type) = name;
12866 if (die->tag == DW_TAG_class_type)
12867 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12868 }
12869 }
12870
12871 if (die->tag == DW_TAG_structure_type)
12872 {
12873 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12874 }
12875 else if (die->tag == DW_TAG_union_type)
12876 {
12877 TYPE_CODE (type) = TYPE_CODE_UNION;
12878 }
12879 else
12880 {
12881 TYPE_CODE (type) = TYPE_CODE_CLASS;
12882 }
12883
12884 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12885 TYPE_DECLARED_CLASS (type) = 1;
12886
12887 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12888 if (attr)
12889 {
12890 TYPE_LENGTH (type) = DW_UNSND (attr);
12891 }
12892 else
12893 {
12894 TYPE_LENGTH (type) = 0;
12895 }
12896
12897 if (producer_is_icc (cu))
12898 {
12899 /* ICC does not output the required DW_AT_declaration
12900 on incomplete types, but gives them a size of zero. */
12901 }
12902 else
12903 TYPE_STUB_SUPPORTED (type) = 1;
12904
12905 if (die_is_declaration (die, cu))
12906 TYPE_STUB (type) = 1;
12907 else if (attr == NULL && die->child == NULL
12908 && producer_is_realview (cu->producer))
12909 /* RealView does not output the required DW_AT_declaration
12910 on incomplete types. */
12911 TYPE_STUB (type) = 1;
12912
12913 /* We need to add the type field to the die immediately so we don't
12914 infinitely recurse when dealing with pointers to the structure
12915 type within the structure itself. */
12916 set_die_type (die, type, cu);
12917
12918 /* set_die_type should be already done. */
12919 set_descriptive_type (type, die, cu);
12920
12921 return type;
12922 }
12923
12924 /* Finish creating a structure or union type, including filling in
12925 its members and creating a symbol for it. */
12926
12927 static void
12928 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
12929 {
12930 struct objfile *objfile = cu->objfile;
12931 struct die_info *child_die = die->child;
12932 struct type *type;
12933
12934 type = get_die_type (die, cu);
12935 if (type == NULL)
12936 type = read_structure_type (die, cu);
12937
12938 if (die->child != NULL && ! die_is_declaration (die, cu))
12939 {
12940 struct field_info fi;
12941 struct die_info *child_die;
12942 VEC (symbolp) *template_args = NULL;
12943 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
12944
12945 memset (&fi, 0, sizeof (struct field_info));
12946
12947 child_die = die->child;
12948
12949 while (child_die && child_die->tag)
12950 {
12951 if (child_die->tag == DW_TAG_member
12952 || child_die->tag == DW_TAG_variable)
12953 {
12954 /* NOTE: carlton/2002-11-05: A C++ static data member
12955 should be a DW_TAG_member that is a declaration, but
12956 all versions of G++ as of this writing (so through at
12957 least 3.2.1) incorrectly generate DW_TAG_variable
12958 tags for them instead. */
12959 dwarf2_add_field (&fi, child_die, cu);
12960 }
12961 else if (child_die->tag == DW_TAG_subprogram)
12962 {
12963 /* C++ member function. */
12964 dwarf2_add_member_fn (&fi, child_die, type, cu);
12965 }
12966 else if (child_die->tag == DW_TAG_inheritance)
12967 {
12968 /* C++ base class field. */
12969 dwarf2_add_field (&fi, child_die, cu);
12970 }
12971 else if (child_die->tag == DW_TAG_typedef)
12972 dwarf2_add_typedef (&fi, child_die, cu);
12973 else if (child_die->tag == DW_TAG_template_type_param
12974 || child_die->tag == DW_TAG_template_value_param)
12975 {
12976 struct symbol *arg = new_symbol (child_die, NULL, cu);
12977
12978 if (arg != NULL)
12979 VEC_safe_push (symbolp, template_args, arg);
12980 }
12981
12982 child_die = sibling_die (child_die);
12983 }
12984
12985 /* Attach template arguments to type. */
12986 if (! VEC_empty (symbolp, template_args))
12987 {
12988 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12989 TYPE_N_TEMPLATE_ARGUMENTS (type)
12990 = VEC_length (symbolp, template_args);
12991 TYPE_TEMPLATE_ARGUMENTS (type)
12992 = obstack_alloc (&objfile->objfile_obstack,
12993 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12994 * sizeof (struct symbol *)));
12995 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
12996 VEC_address (symbolp, template_args),
12997 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12998 * sizeof (struct symbol *)));
12999 VEC_free (symbolp, template_args);
13000 }
13001
13002 /* Attach fields and member functions to the type. */
13003 if (fi.nfields)
13004 dwarf2_attach_fields_to_type (&fi, type, cu);
13005 if (fi.nfnfields)
13006 {
13007 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13008
13009 /* Get the type which refers to the base class (possibly this
13010 class itself) which contains the vtable pointer for the current
13011 class from the DW_AT_containing_type attribute. This use of
13012 DW_AT_containing_type is a GNU extension. */
13013
13014 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13015 {
13016 struct type *t = die_containing_type (die, cu);
13017
13018 TYPE_VPTR_BASETYPE (type) = t;
13019 if (type == t)
13020 {
13021 int i;
13022
13023 /* Our own class provides vtbl ptr. */
13024 for (i = TYPE_NFIELDS (t) - 1;
13025 i >= TYPE_N_BASECLASSES (t);
13026 --i)
13027 {
13028 const char *fieldname = TYPE_FIELD_NAME (t, i);
13029
13030 if (is_vtable_name (fieldname, cu))
13031 {
13032 TYPE_VPTR_FIELDNO (type) = i;
13033 break;
13034 }
13035 }
13036
13037 /* Complain if virtual function table field not found. */
13038 if (i < TYPE_N_BASECLASSES (t))
13039 complaint (&symfile_complaints,
13040 _("virtual function table pointer "
13041 "not found when defining class '%s'"),
13042 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13043 "");
13044 }
13045 else
13046 {
13047 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13048 }
13049 }
13050 else if (cu->producer
13051 && strncmp (cu->producer,
13052 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13053 {
13054 /* The IBM XLC compiler does not provide direct indication
13055 of the containing type, but the vtable pointer is
13056 always named __vfp. */
13057
13058 int i;
13059
13060 for (i = TYPE_NFIELDS (type) - 1;
13061 i >= TYPE_N_BASECLASSES (type);
13062 --i)
13063 {
13064 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13065 {
13066 TYPE_VPTR_FIELDNO (type) = i;
13067 TYPE_VPTR_BASETYPE (type) = type;
13068 break;
13069 }
13070 }
13071 }
13072 }
13073
13074 /* Copy fi.typedef_field_list linked list elements content into the
13075 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13076 if (fi.typedef_field_list)
13077 {
13078 int i = fi.typedef_field_list_count;
13079
13080 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13081 TYPE_TYPEDEF_FIELD_ARRAY (type)
13082 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13083 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13084
13085 /* Reverse the list order to keep the debug info elements order. */
13086 while (--i >= 0)
13087 {
13088 struct typedef_field *dest, *src;
13089
13090 dest = &TYPE_TYPEDEF_FIELD (type, i);
13091 src = &fi.typedef_field_list->field;
13092 fi.typedef_field_list = fi.typedef_field_list->next;
13093 *dest = *src;
13094 }
13095 }
13096
13097 do_cleanups (back_to);
13098
13099 if (HAVE_CPLUS_STRUCT (type))
13100 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13101 }
13102
13103 quirk_gcc_member_function_pointer (type, objfile);
13104
13105 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13106 snapshots) has been known to create a die giving a declaration
13107 for a class that has, as a child, a die giving a definition for a
13108 nested class. So we have to process our children even if the
13109 current die is a declaration. Normally, of course, a declaration
13110 won't have any children at all. */
13111
13112 while (child_die != NULL && child_die->tag)
13113 {
13114 if (child_die->tag == DW_TAG_member
13115 || child_die->tag == DW_TAG_variable
13116 || child_die->tag == DW_TAG_inheritance
13117 || child_die->tag == DW_TAG_template_value_param
13118 || child_die->tag == DW_TAG_template_type_param)
13119 {
13120 /* Do nothing. */
13121 }
13122 else
13123 process_die (child_die, cu);
13124
13125 child_die = sibling_die (child_die);
13126 }
13127
13128 /* Do not consider external references. According to the DWARF standard,
13129 these DIEs are identified by the fact that they have no byte_size
13130 attribute, and a declaration attribute. */
13131 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13132 || !die_is_declaration (die, cu))
13133 new_symbol (die, type, cu);
13134 }
13135
13136 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13137 update TYPE using some information only available in DIE's children. */
13138
13139 static void
13140 update_enumeration_type_from_children (struct die_info *die,
13141 struct type *type,
13142 struct dwarf2_cu *cu)
13143 {
13144 struct obstack obstack;
13145 struct die_info *child_die = die->child;
13146 int unsigned_enum = 1;
13147 int flag_enum = 1;
13148 ULONGEST mask = 0;
13149 struct cleanup *old_chain;
13150
13151 obstack_init (&obstack);
13152 old_chain = make_cleanup_obstack_free (&obstack);
13153
13154 while (child_die != NULL && child_die->tag)
13155 {
13156 struct attribute *attr;
13157 LONGEST value;
13158 const gdb_byte *bytes;
13159 struct dwarf2_locexpr_baton *baton;
13160 const char *name;
13161 if (child_die->tag != DW_TAG_enumerator)
13162 continue;
13163
13164 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13165 if (attr == NULL)
13166 continue;
13167
13168 name = dwarf2_name (child_die, cu);
13169 if (name == NULL)
13170 name = "<anonymous enumerator>";
13171
13172 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13173 &value, &bytes, &baton);
13174 if (value < 0)
13175 {
13176 unsigned_enum = 0;
13177 flag_enum = 0;
13178 }
13179 else if ((mask & value) != 0)
13180 flag_enum = 0;
13181 else
13182 mask |= value;
13183
13184 /* If we already know that the enum type is neither unsigned, nor
13185 a flag type, no need to look at the rest of the enumerates. */
13186 if (!unsigned_enum && !flag_enum)
13187 break;
13188 child_die = sibling_die (child_die);
13189 }
13190
13191 if (unsigned_enum)
13192 TYPE_UNSIGNED (type) = 1;
13193 if (flag_enum)
13194 TYPE_FLAG_ENUM (type) = 1;
13195
13196 do_cleanups (old_chain);
13197 }
13198
13199 /* Given a DW_AT_enumeration_type die, set its type. We do not
13200 complete the type's fields yet, or create any symbols. */
13201
13202 static struct type *
13203 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13204 {
13205 struct objfile *objfile = cu->objfile;
13206 struct type *type;
13207 struct attribute *attr;
13208 const char *name;
13209
13210 /* If the definition of this type lives in .debug_types, read that type.
13211 Don't follow DW_AT_specification though, that will take us back up
13212 the chain and we want to go down. */
13213 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13214 if (attr)
13215 {
13216 type = get_DW_AT_signature_type (die, attr, cu);
13217
13218 /* The type's CU may not be the same as CU.
13219 Ensure TYPE is recorded with CU in die_type_hash. */
13220 return set_die_type (die, type, cu);
13221 }
13222
13223 type = alloc_type (objfile);
13224
13225 TYPE_CODE (type) = TYPE_CODE_ENUM;
13226 name = dwarf2_full_name (NULL, die, cu);
13227 if (name != NULL)
13228 TYPE_TAG_NAME (type) = name;
13229
13230 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13231 if (attr)
13232 {
13233 TYPE_LENGTH (type) = DW_UNSND (attr);
13234 }
13235 else
13236 {
13237 TYPE_LENGTH (type) = 0;
13238 }
13239
13240 /* The enumeration DIE can be incomplete. In Ada, any type can be
13241 declared as private in the package spec, and then defined only
13242 inside the package body. Such types are known as Taft Amendment
13243 Types. When another package uses such a type, an incomplete DIE
13244 may be generated by the compiler. */
13245 if (die_is_declaration (die, cu))
13246 TYPE_STUB (type) = 1;
13247
13248 /* Finish the creation of this type by using the enum's children. */
13249 update_enumeration_type_from_children (die, type, cu);
13250
13251 return set_die_type (die, type, cu);
13252 }
13253
13254 /* Given a pointer to a die which begins an enumeration, process all
13255 the dies that define the members of the enumeration, and create the
13256 symbol for the enumeration type.
13257
13258 NOTE: We reverse the order of the element list. */
13259
13260 static void
13261 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13262 {
13263 struct type *this_type;
13264
13265 this_type = get_die_type (die, cu);
13266 if (this_type == NULL)
13267 this_type = read_enumeration_type (die, cu);
13268
13269 if (die->child != NULL)
13270 {
13271 struct die_info *child_die;
13272 struct symbol *sym;
13273 struct field *fields = NULL;
13274 int num_fields = 0;
13275 const char *name;
13276
13277 child_die = die->child;
13278 while (child_die && child_die->tag)
13279 {
13280 if (child_die->tag != DW_TAG_enumerator)
13281 {
13282 process_die (child_die, cu);
13283 }
13284 else
13285 {
13286 name = dwarf2_name (child_die, cu);
13287 if (name)
13288 {
13289 sym = new_symbol (child_die, this_type, cu);
13290
13291 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13292 {
13293 fields = (struct field *)
13294 xrealloc (fields,
13295 (num_fields + DW_FIELD_ALLOC_CHUNK)
13296 * sizeof (struct field));
13297 }
13298
13299 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13300 FIELD_TYPE (fields[num_fields]) = NULL;
13301 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13302 FIELD_BITSIZE (fields[num_fields]) = 0;
13303
13304 num_fields++;
13305 }
13306 }
13307
13308 child_die = sibling_die (child_die);
13309 }
13310
13311 if (num_fields)
13312 {
13313 TYPE_NFIELDS (this_type) = num_fields;
13314 TYPE_FIELDS (this_type) = (struct field *)
13315 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13316 memcpy (TYPE_FIELDS (this_type), fields,
13317 sizeof (struct field) * num_fields);
13318 xfree (fields);
13319 }
13320 }
13321
13322 /* If we are reading an enum from a .debug_types unit, and the enum
13323 is a declaration, and the enum is not the signatured type in the
13324 unit, then we do not want to add a symbol for it. Adding a
13325 symbol would in some cases obscure the true definition of the
13326 enum, giving users an incomplete type when the definition is
13327 actually available. Note that we do not want to do this for all
13328 enums which are just declarations, because C++0x allows forward
13329 enum declarations. */
13330 if (cu->per_cu->is_debug_types
13331 && die_is_declaration (die, cu))
13332 {
13333 struct signatured_type *sig_type;
13334
13335 sig_type = (struct signatured_type *) cu->per_cu;
13336 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13337 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13338 return;
13339 }
13340
13341 new_symbol (die, this_type, cu);
13342 }
13343
13344 /* Extract all information from a DW_TAG_array_type DIE and put it in
13345 the DIE's type field. For now, this only handles one dimensional
13346 arrays. */
13347
13348 static struct type *
13349 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13350 {
13351 struct objfile *objfile = cu->objfile;
13352 struct die_info *child_die;
13353 struct type *type;
13354 struct type *element_type, *range_type, *index_type;
13355 struct type **range_types = NULL;
13356 struct attribute *attr;
13357 int ndim = 0;
13358 struct cleanup *back_to;
13359 const char *name;
13360 unsigned int bit_stride = 0;
13361
13362 element_type = die_type (die, cu);
13363
13364 /* The die_type call above may have already set the type for this DIE. */
13365 type = get_die_type (die, cu);
13366 if (type)
13367 return type;
13368
13369 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13370 if (attr != NULL)
13371 bit_stride = DW_UNSND (attr) * 8;
13372
13373 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13374 if (attr != NULL)
13375 bit_stride = DW_UNSND (attr);
13376
13377 /* Irix 6.2 native cc creates array types without children for
13378 arrays with unspecified length. */
13379 if (die->child == NULL)
13380 {
13381 index_type = objfile_type (objfile)->builtin_int;
13382 range_type = create_range_type (NULL, index_type, 0, -1);
13383 type = create_array_type_with_stride (NULL, element_type, range_type,
13384 bit_stride);
13385 return set_die_type (die, type, cu);
13386 }
13387
13388 back_to = make_cleanup (null_cleanup, NULL);
13389 child_die = die->child;
13390 while (child_die && child_die->tag)
13391 {
13392 if (child_die->tag == DW_TAG_subrange_type)
13393 {
13394 struct type *child_type = read_type_die (child_die, cu);
13395
13396 if (child_type != NULL)
13397 {
13398 /* The range type was succesfully read. Save it for the
13399 array type creation. */
13400 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13401 {
13402 range_types = (struct type **)
13403 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13404 * sizeof (struct type *));
13405 if (ndim == 0)
13406 make_cleanup (free_current_contents, &range_types);
13407 }
13408 range_types[ndim++] = child_type;
13409 }
13410 }
13411 child_die = sibling_die (child_die);
13412 }
13413
13414 /* Dwarf2 dimensions are output from left to right, create the
13415 necessary array types in backwards order. */
13416
13417 type = element_type;
13418
13419 if (read_array_order (die, cu) == DW_ORD_col_major)
13420 {
13421 int i = 0;
13422
13423 while (i < ndim)
13424 type = create_array_type_with_stride (NULL, type, range_types[i++],
13425 bit_stride);
13426 }
13427 else
13428 {
13429 while (ndim-- > 0)
13430 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13431 bit_stride);
13432 }
13433
13434 /* Understand Dwarf2 support for vector types (like they occur on
13435 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13436 array type. This is not part of the Dwarf2/3 standard yet, but a
13437 custom vendor extension. The main difference between a regular
13438 array and the vector variant is that vectors are passed by value
13439 to functions. */
13440 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13441 if (attr)
13442 make_vector_type (type);
13443
13444 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13445 implementation may choose to implement triple vectors using this
13446 attribute. */
13447 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13448 if (attr)
13449 {
13450 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13451 TYPE_LENGTH (type) = DW_UNSND (attr);
13452 else
13453 complaint (&symfile_complaints,
13454 _("DW_AT_byte_size for array type smaller "
13455 "than the total size of elements"));
13456 }
13457
13458 name = dwarf2_name (die, cu);
13459 if (name)
13460 TYPE_NAME (type) = name;
13461
13462 /* Install the type in the die. */
13463 set_die_type (die, type, cu);
13464
13465 /* set_die_type should be already done. */
13466 set_descriptive_type (type, die, cu);
13467
13468 do_cleanups (back_to);
13469
13470 return type;
13471 }
13472
13473 static enum dwarf_array_dim_ordering
13474 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13475 {
13476 struct attribute *attr;
13477
13478 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13479
13480 if (attr) return DW_SND (attr);
13481
13482 /* GNU F77 is a special case, as at 08/2004 array type info is the
13483 opposite order to the dwarf2 specification, but data is still
13484 laid out as per normal fortran.
13485
13486 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13487 version checking. */
13488
13489 if (cu->language == language_fortran
13490 && cu->producer && strstr (cu->producer, "GNU F77"))
13491 {
13492 return DW_ORD_row_major;
13493 }
13494
13495 switch (cu->language_defn->la_array_ordering)
13496 {
13497 case array_column_major:
13498 return DW_ORD_col_major;
13499 case array_row_major:
13500 default:
13501 return DW_ORD_row_major;
13502 };
13503 }
13504
13505 /* Extract all information from a DW_TAG_set_type DIE and put it in
13506 the DIE's type field. */
13507
13508 static struct type *
13509 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13510 {
13511 struct type *domain_type, *set_type;
13512 struct attribute *attr;
13513
13514 domain_type = die_type (die, cu);
13515
13516 /* The die_type call above may have already set the type for this DIE. */
13517 set_type = get_die_type (die, cu);
13518 if (set_type)
13519 return set_type;
13520
13521 set_type = create_set_type (NULL, domain_type);
13522
13523 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13524 if (attr)
13525 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13526
13527 return set_die_type (die, set_type, cu);
13528 }
13529
13530 /* A helper for read_common_block that creates a locexpr baton.
13531 SYM is the symbol which we are marking as computed.
13532 COMMON_DIE is the DIE for the common block.
13533 COMMON_LOC is the location expression attribute for the common
13534 block itself.
13535 MEMBER_LOC is the location expression attribute for the particular
13536 member of the common block that we are processing.
13537 CU is the CU from which the above come. */
13538
13539 static void
13540 mark_common_block_symbol_computed (struct symbol *sym,
13541 struct die_info *common_die,
13542 struct attribute *common_loc,
13543 struct attribute *member_loc,
13544 struct dwarf2_cu *cu)
13545 {
13546 struct objfile *objfile = dwarf2_per_objfile->objfile;
13547 struct dwarf2_locexpr_baton *baton;
13548 gdb_byte *ptr;
13549 unsigned int cu_off;
13550 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13551 LONGEST offset = 0;
13552
13553 gdb_assert (common_loc && member_loc);
13554 gdb_assert (attr_form_is_block (common_loc));
13555 gdb_assert (attr_form_is_block (member_loc)
13556 || attr_form_is_constant (member_loc));
13557
13558 baton = obstack_alloc (&objfile->objfile_obstack,
13559 sizeof (struct dwarf2_locexpr_baton));
13560 baton->per_cu = cu->per_cu;
13561 gdb_assert (baton->per_cu);
13562
13563 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13564
13565 if (attr_form_is_constant (member_loc))
13566 {
13567 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13568 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13569 }
13570 else
13571 baton->size += DW_BLOCK (member_loc)->size;
13572
13573 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13574 baton->data = ptr;
13575
13576 *ptr++ = DW_OP_call4;
13577 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13578 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13579 ptr += 4;
13580
13581 if (attr_form_is_constant (member_loc))
13582 {
13583 *ptr++ = DW_OP_addr;
13584 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13585 ptr += cu->header.addr_size;
13586 }
13587 else
13588 {
13589 /* We have to copy the data here, because DW_OP_call4 will only
13590 use a DW_AT_location attribute. */
13591 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13592 ptr += DW_BLOCK (member_loc)->size;
13593 }
13594
13595 *ptr++ = DW_OP_plus;
13596 gdb_assert (ptr - baton->data == baton->size);
13597
13598 SYMBOL_LOCATION_BATON (sym) = baton;
13599 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13600 }
13601
13602 /* Create appropriate locally-scoped variables for all the
13603 DW_TAG_common_block entries. Also create a struct common_block
13604 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13605 is used to sepate the common blocks name namespace from regular
13606 variable names. */
13607
13608 static void
13609 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13610 {
13611 struct attribute *attr;
13612
13613 attr = dwarf2_attr (die, DW_AT_location, cu);
13614 if (attr)
13615 {
13616 /* Support the .debug_loc offsets. */
13617 if (attr_form_is_block (attr))
13618 {
13619 /* Ok. */
13620 }
13621 else if (attr_form_is_section_offset (attr))
13622 {
13623 dwarf2_complex_location_expr_complaint ();
13624 attr = NULL;
13625 }
13626 else
13627 {
13628 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13629 "common block member");
13630 attr = NULL;
13631 }
13632 }
13633
13634 if (die->child != NULL)
13635 {
13636 struct objfile *objfile = cu->objfile;
13637 struct die_info *child_die;
13638 size_t n_entries = 0, size;
13639 struct common_block *common_block;
13640 struct symbol *sym;
13641
13642 for (child_die = die->child;
13643 child_die && child_die->tag;
13644 child_die = sibling_die (child_die))
13645 ++n_entries;
13646
13647 size = (sizeof (struct common_block)
13648 + (n_entries - 1) * sizeof (struct symbol *));
13649 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13650 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13651 common_block->n_entries = 0;
13652
13653 for (child_die = die->child;
13654 child_die && child_die->tag;
13655 child_die = sibling_die (child_die))
13656 {
13657 /* Create the symbol in the DW_TAG_common_block block in the current
13658 symbol scope. */
13659 sym = new_symbol (child_die, NULL, cu);
13660 if (sym != NULL)
13661 {
13662 struct attribute *member_loc;
13663
13664 common_block->contents[common_block->n_entries++] = sym;
13665
13666 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13667 cu);
13668 if (member_loc)
13669 {
13670 /* GDB has handled this for a long time, but it is
13671 not specified by DWARF. It seems to have been
13672 emitted by gfortran at least as recently as:
13673 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13674 complaint (&symfile_complaints,
13675 _("Variable in common block has "
13676 "DW_AT_data_member_location "
13677 "- DIE at 0x%x [in module %s]"),
13678 child_die->offset.sect_off,
13679 objfile_name (cu->objfile));
13680
13681 if (attr_form_is_section_offset (member_loc))
13682 dwarf2_complex_location_expr_complaint ();
13683 else if (attr_form_is_constant (member_loc)
13684 || attr_form_is_block (member_loc))
13685 {
13686 if (attr)
13687 mark_common_block_symbol_computed (sym, die, attr,
13688 member_loc, cu);
13689 }
13690 else
13691 dwarf2_complex_location_expr_complaint ();
13692 }
13693 }
13694 }
13695
13696 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13697 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13698 }
13699 }
13700
13701 /* Create a type for a C++ namespace. */
13702
13703 static struct type *
13704 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13705 {
13706 struct objfile *objfile = cu->objfile;
13707 const char *previous_prefix, *name;
13708 int is_anonymous;
13709 struct type *type;
13710
13711 /* For extensions, reuse the type of the original namespace. */
13712 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13713 {
13714 struct die_info *ext_die;
13715 struct dwarf2_cu *ext_cu = cu;
13716
13717 ext_die = dwarf2_extension (die, &ext_cu);
13718 type = read_type_die (ext_die, ext_cu);
13719
13720 /* EXT_CU may not be the same as CU.
13721 Ensure TYPE is recorded with CU in die_type_hash. */
13722 return set_die_type (die, type, cu);
13723 }
13724
13725 name = namespace_name (die, &is_anonymous, cu);
13726
13727 /* Now build the name of the current namespace. */
13728
13729 previous_prefix = determine_prefix (die, cu);
13730 if (previous_prefix[0] != '\0')
13731 name = typename_concat (&objfile->objfile_obstack,
13732 previous_prefix, name, 0, cu);
13733
13734 /* Create the type. */
13735 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13736 objfile);
13737 TYPE_NAME (type) = name;
13738 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13739
13740 return set_die_type (die, type, cu);
13741 }
13742
13743 /* Read a C++ namespace. */
13744
13745 static void
13746 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13747 {
13748 struct objfile *objfile = cu->objfile;
13749 int is_anonymous;
13750
13751 /* Add a symbol associated to this if we haven't seen the namespace
13752 before. Also, add a using directive if it's an anonymous
13753 namespace. */
13754
13755 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13756 {
13757 struct type *type;
13758
13759 type = read_type_die (die, cu);
13760 new_symbol (die, type, cu);
13761
13762 namespace_name (die, &is_anonymous, cu);
13763 if (is_anonymous)
13764 {
13765 const char *previous_prefix = determine_prefix (die, cu);
13766
13767 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13768 NULL, NULL, 0, &objfile->objfile_obstack);
13769 }
13770 }
13771
13772 if (die->child != NULL)
13773 {
13774 struct die_info *child_die = die->child;
13775
13776 while (child_die && child_die->tag)
13777 {
13778 process_die (child_die, cu);
13779 child_die = sibling_die (child_die);
13780 }
13781 }
13782 }
13783
13784 /* Read a Fortran module as type. This DIE can be only a declaration used for
13785 imported module. Still we need that type as local Fortran "use ... only"
13786 declaration imports depend on the created type in determine_prefix. */
13787
13788 static struct type *
13789 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13790 {
13791 struct objfile *objfile = cu->objfile;
13792 const char *module_name;
13793 struct type *type;
13794
13795 module_name = dwarf2_name (die, cu);
13796 if (!module_name)
13797 complaint (&symfile_complaints,
13798 _("DW_TAG_module has no name, offset 0x%x"),
13799 die->offset.sect_off);
13800 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13801
13802 /* determine_prefix uses TYPE_TAG_NAME. */
13803 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13804
13805 return set_die_type (die, type, cu);
13806 }
13807
13808 /* Read a Fortran module. */
13809
13810 static void
13811 read_module (struct die_info *die, struct dwarf2_cu *cu)
13812 {
13813 struct die_info *child_die = die->child;
13814 struct type *type;
13815
13816 type = read_type_die (die, cu);
13817 new_symbol (die, type, cu);
13818
13819 while (child_die && child_die->tag)
13820 {
13821 process_die (child_die, cu);
13822 child_die = sibling_die (child_die);
13823 }
13824 }
13825
13826 /* Return the name of the namespace represented by DIE. Set
13827 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13828 namespace. */
13829
13830 static const char *
13831 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13832 {
13833 struct die_info *current_die;
13834 const char *name = NULL;
13835
13836 /* Loop through the extensions until we find a name. */
13837
13838 for (current_die = die;
13839 current_die != NULL;
13840 current_die = dwarf2_extension (die, &cu))
13841 {
13842 name = dwarf2_name (current_die, cu);
13843 if (name != NULL)
13844 break;
13845 }
13846
13847 /* Is it an anonymous namespace? */
13848
13849 *is_anonymous = (name == NULL);
13850 if (*is_anonymous)
13851 name = CP_ANONYMOUS_NAMESPACE_STR;
13852
13853 return name;
13854 }
13855
13856 /* Extract all information from a DW_TAG_pointer_type DIE and add to
13857 the user defined type vector. */
13858
13859 static struct type *
13860 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
13861 {
13862 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
13863 struct comp_unit_head *cu_header = &cu->header;
13864 struct type *type;
13865 struct attribute *attr_byte_size;
13866 struct attribute *attr_address_class;
13867 int byte_size, addr_class;
13868 struct type *target_type;
13869
13870 target_type = die_type (die, cu);
13871
13872 /* The die_type call above may have already set the type for this DIE. */
13873 type = get_die_type (die, cu);
13874 if (type)
13875 return type;
13876
13877 type = lookup_pointer_type (target_type);
13878
13879 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
13880 if (attr_byte_size)
13881 byte_size = DW_UNSND (attr_byte_size);
13882 else
13883 byte_size = cu_header->addr_size;
13884
13885 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
13886 if (attr_address_class)
13887 addr_class = DW_UNSND (attr_address_class);
13888 else
13889 addr_class = DW_ADDR_none;
13890
13891 /* If the pointer size or address class is different than the
13892 default, create a type variant marked as such and set the
13893 length accordingly. */
13894 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
13895 {
13896 if (gdbarch_address_class_type_flags_p (gdbarch))
13897 {
13898 int type_flags;
13899
13900 type_flags = gdbarch_address_class_type_flags
13901 (gdbarch, byte_size, addr_class);
13902 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
13903 == 0);
13904 type = make_type_with_address_space (type, type_flags);
13905 }
13906 else if (TYPE_LENGTH (type) != byte_size)
13907 {
13908 complaint (&symfile_complaints,
13909 _("invalid pointer size %d"), byte_size);
13910 }
13911 else
13912 {
13913 /* Should we also complain about unhandled address classes? */
13914 }
13915 }
13916
13917 TYPE_LENGTH (type) = byte_size;
13918 return set_die_type (die, type, cu);
13919 }
13920
13921 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
13922 the user defined type vector. */
13923
13924 static struct type *
13925 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
13926 {
13927 struct type *type;
13928 struct type *to_type;
13929 struct type *domain;
13930
13931 to_type = die_type (die, cu);
13932 domain = die_containing_type (die, cu);
13933
13934 /* The calls above may have already set the type for this DIE. */
13935 type = get_die_type (die, cu);
13936 if (type)
13937 return type;
13938
13939 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
13940 type = lookup_methodptr_type (to_type);
13941 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
13942 {
13943 struct type *new_type = alloc_type (cu->objfile);
13944
13945 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
13946 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
13947 TYPE_VARARGS (to_type));
13948 type = lookup_methodptr_type (new_type);
13949 }
13950 else
13951 type = lookup_memberptr_type (to_type, domain);
13952
13953 return set_die_type (die, type, cu);
13954 }
13955
13956 /* Extract all information from a DW_TAG_reference_type DIE and add to
13957 the user defined type vector. */
13958
13959 static struct type *
13960 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
13961 {
13962 struct comp_unit_head *cu_header = &cu->header;
13963 struct type *type, *target_type;
13964 struct attribute *attr;
13965
13966 target_type = die_type (die, cu);
13967
13968 /* The die_type call above may have already set the type for this DIE. */
13969 type = get_die_type (die, cu);
13970 if (type)
13971 return type;
13972
13973 type = lookup_reference_type (target_type);
13974 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13975 if (attr)
13976 {
13977 TYPE_LENGTH (type) = DW_UNSND (attr);
13978 }
13979 else
13980 {
13981 TYPE_LENGTH (type) = cu_header->addr_size;
13982 }
13983 return set_die_type (die, type, cu);
13984 }
13985
13986 static struct type *
13987 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
13988 {
13989 struct type *base_type, *cv_type;
13990
13991 base_type = die_type (die, cu);
13992
13993 /* The die_type call above may have already set the type for this DIE. */
13994 cv_type = get_die_type (die, cu);
13995 if (cv_type)
13996 return cv_type;
13997
13998 /* In case the const qualifier is applied to an array type, the element type
13999 is so qualified, not the array type (section 6.7.3 of C99). */
14000 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14001 {
14002 struct type *el_type, *inner_array;
14003
14004 base_type = copy_type (base_type);
14005 inner_array = base_type;
14006
14007 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14008 {
14009 TYPE_TARGET_TYPE (inner_array) =
14010 copy_type (TYPE_TARGET_TYPE (inner_array));
14011 inner_array = TYPE_TARGET_TYPE (inner_array);
14012 }
14013
14014 el_type = TYPE_TARGET_TYPE (inner_array);
14015 TYPE_TARGET_TYPE (inner_array) =
14016 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
14017
14018 return set_die_type (die, base_type, cu);
14019 }
14020
14021 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14022 return set_die_type (die, cv_type, cu);
14023 }
14024
14025 static struct type *
14026 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14027 {
14028 struct type *base_type, *cv_type;
14029
14030 base_type = die_type (die, cu);
14031
14032 /* The die_type call above may have already set the type for this DIE. */
14033 cv_type = get_die_type (die, cu);
14034 if (cv_type)
14035 return cv_type;
14036
14037 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14038 return set_die_type (die, cv_type, cu);
14039 }
14040
14041 /* Handle DW_TAG_restrict_type. */
14042
14043 static struct type *
14044 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14045 {
14046 struct type *base_type, *cv_type;
14047
14048 base_type = die_type (die, cu);
14049
14050 /* The die_type call above may have already set the type for this DIE. */
14051 cv_type = get_die_type (die, cu);
14052 if (cv_type)
14053 return cv_type;
14054
14055 cv_type = make_restrict_type (base_type);
14056 return set_die_type (die, cv_type, cu);
14057 }
14058
14059 /* Extract all information from a DW_TAG_string_type DIE and add to
14060 the user defined type vector. It isn't really a user defined type,
14061 but it behaves like one, with other DIE's using an AT_user_def_type
14062 attribute to reference it. */
14063
14064 static struct type *
14065 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14066 {
14067 struct objfile *objfile = cu->objfile;
14068 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14069 struct type *type, *range_type, *index_type, *char_type;
14070 struct attribute *attr;
14071 unsigned int length;
14072
14073 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14074 if (attr)
14075 {
14076 length = DW_UNSND (attr);
14077 }
14078 else
14079 {
14080 /* Check for the DW_AT_byte_size attribute. */
14081 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14082 if (attr)
14083 {
14084 length = DW_UNSND (attr);
14085 }
14086 else
14087 {
14088 length = 1;
14089 }
14090 }
14091
14092 index_type = objfile_type (objfile)->builtin_int;
14093 range_type = create_range_type (NULL, index_type, 1, length);
14094 char_type = language_string_char_type (cu->language_defn, gdbarch);
14095 type = create_string_type (NULL, char_type, range_type);
14096
14097 return set_die_type (die, type, cu);
14098 }
14099
14100 /* Assuming that DIE corresponds to a function, returns nonzero
14101 if the function is prototyped. */
14102
14103 static int
14104 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14105 {
14106 struct attribute *attr;
14107
14108 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14109 if (attr && (DW_UNSND (attr) != 0))
14110 return 1;
14111
14112 /* The DWARF standard implies that the DW_AT_prototyped attribute
14113 is only meaninful for C, but the concept also extends to other
14114 languages that allow unprototyped functions (Eg: Objective C).
14115 For all other languages, assume that functions are always
14116 prototyped. */
14117 if (cu->language != language_c
14118 && cu->language != language_objc
14119 && cu->language != language_opencl)
14120 return 1;
14121
14122 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14123 prototyped and unprototyped functions; default to prototyped,
14124 since that is more common in modern code (and RealView warns
14125 about unprototyped functions). */
14126 if (producer_is_realview (cu->producer))
14127 return 1;
14128
14129 return 0;
14130 }
14131
14132 /* Handle DIES due to C code like:
14133
14134 struct foo
14135 {
14136 int (*funcp)(int a, long l);
14137 int b;
14138 };
14139
14140 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14141
14142 static struct type *
14143 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14144 {
14145 struct objfile *objfile = cu->objfile;
14146 struct type *type; /* Type that this function returns. */
14147 struct type *ftype; /* Function that returns above type. */
14148 struct attribute *attr;
14149
14150 type = die_type (die, cu);
14151
14152 /* The die_type call above may have already set the type for this DIE. */
14153 ftype = get_die_type (die, cu);
14154 if (ftype)
14155 return ftype;
14156
14157 ftype = lookup_function_type (type);
14158
14159 if (prototyped_function_p (die, cu))
14160 TYPE_PROTOTYPED (ftype) = 1;
14161
14162 /* Store the calling convention in the type if it's available in
14163 the subroutine die. Otherwise set the calling convention to
14164 the default value DW_CC_normal. */
14165 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14166 if (attr)
14167 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14168 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14169 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14170 else
14171 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14172
14173 /* We need to add the subroutine type to the die immediately so
14174 we don't infinitely recurse when dealing with parameters
14175 declared as the same subroutine type. */
14176 set_die_type (die, ftype, cu);
14177
14178 if (die->child != NULL)
14179 {
14180 struct type *void_type = objfile_type (objfile)->builtin_void;
14181 struct die_info *child_die;
14182 int nparams, iparams;
14183
14184 /* Count the number of parameters.
14185 FIXME: GDB currently ignores vararg functions, but knows about
14186 vararg member functions. */
14187 nparams = 0;
14188 child_die = die->child;
14189 while (child_die && child_die->tag)
14190 {
14191 if (child_die->tag == DW_TAG_formal_parameter)
14192 nparams++;
14193 else if (child_die->tag == DW_TAG_unspecified_parameters)
14194 TYPE_VARARGS (ftype) = 1;
14195 child_die = sibling_die (child_die);
14196 }
14197
14198 /* Allocate storage for parameters and fill them in. */
14199 TYPE_NFIELDS (ftype) = nparams;
14200 TYPE_FIELDS (ftype) = (struct field *)
14201 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14202
14203 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14204 even if we error out during the parameters reading below. */
14205 for (iparams = 0; iparams < nparams; iparams++)
14206 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14207
14208 iparams = 0;
14209 child_die = die->child;
14210 while (child_die && child_die->tag)
14211 {
14212 if (child_die->tag == DW_TAG_formal_parameter)
14213 {
14214 struct type *arg_type;
14215
14216 /* DWARF version 2 has no clean way to discern C++
14217 static and non-static member functions. G++ helps
14218 GDB by marking the first parameter for non-static
14219 member functions (which is the this pointer) as
14220 artificial. We pass this information to
14221 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14222
14223 DWARF version 3 added DW_AT_object_pointer, which GCC
14224 4.5 does not yet generate. */
14225 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14226 if (attr)
14227 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14228 else
14229 {
14230 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14231
14232 /* GCC/43521: In java, the formal parameter
14233 "this" is sometimes not marked with DW_AT_artificial. */
14234 if (cu->language == language_java)
14235 {
14236 const char *name = dwarf2_name (child_die, cu);
14237
14238 if (name && !strcmp (name, "this"))
14239 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14240 }
14241 }
14242 arg_type = die_type (child_die, cu);
14243
14244 /* RealView does not mark THIS as const, which the testsuite
14245 expects. GCC marks THIS as const in method definitions,
14246 but not in the class specifications (GCC PR 43053). */
14247 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14248 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14249 {
14250 int is_this = 0;
14251 struct dwarf2_cu *arg_cu = cu;
14252 const char *name = dwarf2_name (child_die, cu);
14253
14254 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14255 if (attr)
14256 {
14257 /* If the compiler emits this, use it. */
14258 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14259 is_this = 1;
14260 }
14261 else if (name && strcmp (name, "this") == 0)
14262 /* Function definitions will have the argument names. */
14263 is_this = 1;
14264 else if (name == NULL && iparams == 0)
14265 /* Declarations may not have the names, so like
14266 elsewhere in GDB, assume an artificial first
14267 argument is "this". */
14268 is_this = 1;
14269
14270 if (is_this)
14271 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14272 arg_type, 0);
14273 }
14274
14275 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14276 iparams++;
14277 }
14278 child_die = sibling_die (child_die);
14279 }
14280 }
14281
14282 return ftype;
14283 }
14284
14285 static struct type *
14286 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14287 {
14288 struct objfile *objfile = cu->objfile;
14289 const char *name = NULL;
14290 struct type *this_type, *target_type;
14291
14292 name = dwarf2_full_name (NULL, die, cu);
14293 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14294 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14295 TYPE_NAME (this_type) = name;
14296 set_die_type (die, this_type, cu);
14297 target_type = die_type (die, cu);
14298 if (target_type != this_type)
14299 TYPE_TARGET_TYPE (this_type) = target_type;
14300 else
14301 {
14302 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14303 spec and cause infinite loops in GDB. */
14304 complaint (&symfile_complaints,
14305 _("Self-referential DW_TAG_typedef "
14306 "- DIE at 0x%x [in module %s]"),
14307 die->offset.sect_off, objfile_name (objfile));
14308 TYPE_TARGET_TYPE (this_type) = NULL;
14309 }
14310 return this_type;
14311 }
14312
14313 /* Find a representation of a given base type and install
14314 it in the TYPE field of the die. */
14315
14316 static struct type *
14317 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14318 {
14319 struct objfile *objfile = cu->objfile;
14320 struct type *type;
14321 struct attribute *attr;
14322 int encoding = 0, size = 0;
14323 const char *name;
14324 enum type_code code = TYPE_CODE_INT;
14325 int type_flags = 0;
14326 struct type *target_type = NULL;
14327
14328 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14329 if (attr)
14330 {
14331 encoding = DW_UNSND (attr);
14332 }
14333 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14334 if (attr)
14335 {
14336 size = DW_UNSND (attr);
14337 }
14338 name = dwarf2_name (die, cu);
14339 if (!name)
14340 {
14341 complaint (&symfile_complaints,
14342 _("DW_AT_name missing from DW_TAG_base_type"));
14343 }
14344
14345 switch (encoding)
14346 {
14347 case DW_ATE_address:
14348 /* Turn DW_ATE_address into a void * pointer. */
14349 code = TYPE_CODE_PTR;
14350 type_flags |= TYPE_FLAG_UNSIGNED;
14351 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14352 break;
14353 case DW_ATE_boolean:
14354 code = TYPE_CODE_BOOL;
14355 type_flags |= TYPE_FLAG_UNSIGNED;
14356 break;
14357 case DW_ATE_complex_float:
14358 code = TYPE_CODE_COMPLEX;
14359 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14360 break;
14361 case DW_ATE_decimal_float:
14362 code = TYPE_CODE_DECFLOAT;
14363 break;
14364 case DW_ATE_float:
14365 code = TYPE_CODE_FLT;
14366 break;
14367 case DW_ATE_signed:
14368 break;
14369 case DW_ATE_unsigned:
14370 type_flags |= TYPE_FLAG_UNSIGNED;
14371 if (cu->language == language_fortran
14372 && name
14373 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14374 code = TYPE_CODE_CHAR;
14375 break;
14376 case DW_ATE_signed_char:
14377 if (cu->language == language_ada || cu->language == language_m2
14378 || cu->language == language_pascal
14379 || cu->language == language_fortran)
14380 code = TYPE_CODE_CHAR;
14381 break;
14382 case DW_ATE_unsigned_char:
14383 if (cu->language == language_ada || cu->language == language_m2
14384 || cu->language == language_pascal
14385 || cu->language == language_fortran)
14386 code = TYPE_CODE_CHAR;
14387 type_flags |= TYPE_FLAG_UNSIGNED;
14388 break;
14389 case DW_ATE_UTF:
14390 /* We just treat this as an integer and then recognize the
14391 type by name elsewhere. */
14392 break;
14393
14394 default:
14395 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14396 dwarf_type_encoding_name (encoding));
14397 break;
14398 }
14399
14400 type = init_type (code, size, type_flags, NULL, objfile);
14401 TYPE_NAME (type) = name;
14402 TYPE_TARGET_TYPE (type) = target_type;
14403
14404 if (name && strcmp (name, "char") == 0)
14405 TYPE_NOSIGN (type) = 1;
14406
14407 return set_die_type (die, type, cu);
14408 }
14409
14410 /* Read the given DW_AT_subrange DIE. */
14411
14412 static struct type *
14413 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14414 {
14415 struct type *base_type, *orig_base_type;
14416 struct type *range_type;
14417 struct attribute *attr;
14418 LONGEST low, high;
14419 int low_default_is_valid;
14420 const char *name;
14421 LONGEST negative_mask;
14422
14423 orig_base_type = die_type (die, cu);
14424 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14425 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14426 creating the range type, but we use the result of check_typedef
14427 when examining properties of the type. */
14428 base_type = check_typedef (orig_base_type);
14429
14430 /* The die_type call above may have already set the type for this DIE. */
14431 range_type = get_die_type (die, cu);
14432 if (range_type)
14433 return range_type;
14434
14435 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14436 omitting DW_AT_lower_bound. */
14437 switch (cu->language)
14438 {
14439 case language_c:
14440 case language_cplus:
14441 low = 0;
14442 low_default_is_valid = 1;
14443 break;
14444 case language_fortran:
14445 low = 1;
14446 low_default_is_valid = 1;
14447 break;
14448 case language_d:
14449 case language_java:
14450 case language_objc:
14451 low = 0;
14452 low_default_is_valid = (cu->header.version >= 4);
14453 break;
14454 case language_ada:
14455 case language_m2:
14456 case language_pascal:
14457 low = 1;
14458 low_default_is_valid = (cu->header.version >= 4);
14459 break;
14460 default:
14461 low = 0;
14462 low_default_is_valid = 0;
14463 break;
14464 }
14465
14466 /* FIXME: For variable sized arrays either of these could be
14467 a variable rather than a constant value. We'll allow it,
14468 but we don't know how to handle it. */
14469 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14470 if (attr)
14471 low = dwarf2_get_attr_constant_value (attr, low);
14472 else if (!low_default_is_valid)
14473 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14474 "- DIE at 0x%x [in module %s]"),
14475 die->offset.sect_off, objfile_name (cu->objfile));
14476
14477 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14478 if (attr)
14479 {
14480 if (attr_form_is_block (attr) || attr_form_is_ref (attr))
14481 {
14482 /* GCC encodes arrays with unspecified or dynamic length
14483 with a DW_FORM_block1 attribute or a reference attribute.
14484 FIXME: GDB does not yet know how to handle dynamic
14485 arrays properly, treat them as arrays with unspecified
14486 length for now.
14487
14488 FIXME: jimb/2003-09-22: GDB does not really know
14489 how to handle arrays of unspecified length
14490 either; we just represent them as zero-length
14491 arrays. Choose an appropriate upper bound given
14492 the lower bound we've computed above. */
14493 high = low - 1;
14494 }
14495 else
14496 high = dwarf2_get_attr_constant_value (attr, 1);
14497 }
14498 else
14499 {
14500 attr = dwarf2_attr (die, DW_AT_count, cu);
14501 if (attr)
14502 {
14503 int count = dwarf2_get_attr_constant_value (attr, 1);
14504 high = low + count - 1;
14505 }
14506 else
14507 {
14508 /* Unspecified array length. */
14509 high = low - 1;
14510 }
14511 }
14512
14513 /* Dwarf-2 specifications explicitly allows to create subrange types
14514 without specifying a base type.
14515 In that case, the base type must be set to the type of
14516 the lower bound, upper bound or count, in that order, if any of these
14517 three attributes references an object that has a type.
14518 If no base type is found, the Dwarf-2 specifications say that
14519 a signed integer type of size equal to the size of an address should
14520 be used.
14521 For the following C code: `extern char gdb_int [];'
14522 GCC produces an empty range DIE.
14523 FIXME: muller/2010-05-28: Possible references to object for low bound,
14524 high bound or count are not yet handled by this code. */
14525 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14526 {
14527 struct objfile *objfile = cu->objfile;
14528 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14529 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14530 struct type *int_type = objfile_type (objfile)->builtin_int;
14531
14532 /* Test "int", "long int", and "long long int" objfile types,
14533 and select the first one having a size above or equal to the
14534 architecture address size. */
14535 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14536 base_type = int_type;
14537 else
14538 {
14539 int_type = objfile_type (objfile)->builtin_long;
14540 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14541 base_type = int_type;
14542 else
14543 {
14544 int_type = objfile_type (objfile)->builtin_long_long;
14545 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14546 base_type = int_type;
14547 }
14548 }
14549 }
14550
14551 /* Normally, the DWARF producers are expected to use a signed
14552 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14553 But this is unfortunately not always the case, as witnessed
14554 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14555 is used instead. To work around that ambiguity, we treat
14556 the bounds as signed, and thus sign-extend their values, when
14557 the base type is signed. */
14558 negative_mask =
14559 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14560 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
14561 low |= negative_mask;
14562 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
14563 high |= negative_mask;
14564
14565 range_type = create_range_type (NULL, orig_base_type, low, high);
14566
14567 /* Mark arrays with dynamic length at least as an array of unspecified
14568 length. GDB could check the boundary but before it gets implemented at
14569 least allow accessing the array elements. */
14570 if (attr && attr_form_is_block (attr))
14571 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14572
14573 /* Ada expects an empty array on no boundary attributes. */
14574 if (attr == NULL && cu->language != language_ada)
14575 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14576
14577 name = dwarf2_name (die, cu);
14578 if (name)
14579 TYPE_NAME (range_type) = name;
14580
14581 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14582 if (attr)
14583 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14584
14585 set_die_type (die, range_type, cu);
14586
14587 /* set_die_type should be already done. */
14588 set_descriptive_type (range_type, die, cu);
14589
14590 return range_type;
14591 }
14592
14593 static struct type *
14594 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14595 {
14596 struct type *type;
14597
14598 /* For now, we only support the C meaning of an unspecified type: void. */
14599
14600 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14601 TYPE_NAME (type) = dwarf2_name (die, cu);
14602
14603 return set_die_type (die, type, cu);
14604 }
14605
14606 /* Read a single die and all its descendents. Set the die's sibling
14607 field to NULL; set other fields in the die correctly, and set all
14608 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14609 location of the info_ptr after reading all of those dies. PARENT
14610 is the parent of the die in question. */
14611
14612 static struct die_info *
14613 read_die_and_children (const struct die_reader_specs *reader,
14614 const gdb_byte *info_ptr,
14615 const gdb_byte **new_info_ptr,
14616 struct die_info *parent)
14617 {
14618 struct die_info *die;
14619 const gdb_byte *cur_ptr;
14620 int has_children;
14621
14622 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14623 if (die == NULL)
14624 {
14625 *new_info_ptr = cur_ptr;
14626 return NULL;
14627 }
14628 store_in_ref_table (die, reader->cu);
14629
14630 if (has_children)
14631 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14632 else
14633 {
14634 die->child = NULL;
14635 *new_info_ptr = cur_ptr;
14636 }
14637
14638 die->sibling = NULL;
14639 die->parent = parent;
14640 return die;
14641 }
14642
14643 /* Read a die, all of its descendents, and all of its siblings; set
14644 all of the fields of all of the dies correctly. Arguments are as
14645 in read_die_and_children. */
14646
14647 static struct die_info *
14648 read_die_and_siblings_1 (const struct die_reader_specs *reader,
14649 const gdb_byte *info_ptr,
14650 const gdb_byte **new_info_ptr,
14651 struct die_info *parent)
14652 {
14653 struct die_info *first_die, *last_sibling;
14654 const gdb_byte *cur_ptr;
14655
14656 cur_ptr = info_ptr;
14657 first_die = last_sibling = NULL;
14658
14659 while (1)
14660 {
14661 struct die_info *die
14662 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14663
14664 if (die == NULL)
14665 {
14666 *new_info_ptr = cur_ptr;
14667 return first_die;
14668 }
14669
14670 if (!first_die)
14671 first_die = die;
14672 else
14673 last_sibling->sibling = die;
14674
14675 last_sibling = die;
14676 }
14677 }
14678
14679 /* Read a die, all of its descendents, and all of its siblings; set
14680 all of the fields of all of the dies correctly. Arguments are as
14681 in read_die_and_children.
14682 This the main entry point for reading a DIE and all its children. */
14683
14684 static struct die_info *
14685 read_die_and_siblings (const struct die_reader_specs *reader,
14686 const gdb_byte *info_ptr,
14687 const gdb_byte **new_info_ptr,
14688 struct die_info *parent)
14689 {
14690 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14691 new_info_ptr, parent);
14692
14693 if (dwarf2_die_debug)
14694 {
14695 fprintf_unfiltered (gdb_stdlog,
14696 "Read die from %s@0x%x of %s:\n",
14697 get_section_name (reader->die_section),
14698 (unsigned) (info_ptr - reader->die_section->buffer),
14699 bfd_get_filename (reader->abfd));
14700 dump_die (die, dwarf2_die_debug);
14701 }
14702
14703 return die;
14704 }
14705
14706 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14707 attributes.
14708 The caller is responsible for filling in the extra attributes
14709 and updating (*DIEP)->num_attrs.
14710 Set DIEP to point to a newly allocated die with its information,
14711 except for its child, sibling, and parent fields.
14712 Set HAS_CHILDREN to tell whether the die has children or not. */
14713
14714 static const gdb_byte *
14715 read_full_die_1 (const struct die_reader_specs *reader,
14716 struct die_info **diep, const gdb_byte *info_ptr,
14717 int *has_children, int num_extra_attrs)
14718 {
14719 unsigned int abbrev_number, bytes_read, i;
14720 sect_offset offset;
14721 struct abbrev_info *abbrev;
14722 struct die_info *die;
14723 struct dwarf2_cu *cu = reader->cu;
14724 bfd *abfd = reader->abfd;
14725
14726 offset.sect_off = info_ptr - reader->buffer;
14727 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14728 info_ptr += bytes_read;
14729 if (!abbrev_number)
14730 {
14731 *diep = NULL;
14732 *has_children = 0;
14733 return info_ptr;
14734 }
14735
14736 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14737 if (!abbrev)
14738 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14739 abbrev_number,
14740 bfd_get_filename (abfd));
14741
14742 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14743 die->offset = offset;
14744 die->tag = abbrev->tag;
14745 die->abbrev = abbrev_number;
14746
14747 /* Make the result usable.
14748 The caller needs to update num_attrs after adding the extra
14749 attributes. */
14750 die->num_attrs = abbrev->num_attrs;
14751
14752 for (i = 0; i < abbrev->num_attrs; ++i)
14753 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14754 info_ptr);
14755
14756 *diep = die;
14757 *has_children = abbrev->has_children;
14758 return info_ptr;
14759 }
14760
14761 /* Read a die and all its attributes.
14762 Set DIEP to point to a newly allocated die with its information,
14763 except for its child, sibling, and parent fields.
14764 Set HAS_CHILDREN to tell whether the die has children or not. */
14765
14766 static const gdb_byte *
14767 read_full_die (const struct die_reader_specs *reader,
14768 struct die_info **diep, const gdb_byte *info_ptr,
14769 int *has_children)
14770 {
14771 const gdb_byte *result;
14772
14773 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14774
14775 if (dwarf2_die_debug)
14776 {
14777 fprintf_unfiltered (gdb_stdlog,
14778 "Read die from %s@0x%x of %s:\n",
14779 get_section_name (reader->die_section),
14780 (unsigned) (info_ptr - reader->die_section->buffer),
14781 bfd_get_filename (reader->abfd));
14782 dump_die (*diep, dwarf2_die_debug);
14783 }
14784
14785 return result;
14786 }
14787 \f
14788 /* Abbreviation tables.
14789
14790 In DWARF version 2, the description of the debugging information is
14791 stored in a separate .debug_abbrev section. Before we read any
14792 dies from a section we read in all abbreviations and install them
14793 in a hash table. */
14794
14795 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14796
14797 static struct abbrev_info *
14798 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14799 {
14800 struct abbrev_info *abbrev;
14801
14802 abbrev = (struct abbrev_info *)
14803 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14804 memset (abbrev, 0, sizeof (struct abbrev_info));
14805 return abbrev;
14806 }
14807
14808 /* Add an abbreviation to the table. */
14809
14810 static void
14811 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
14812 unsigned int abbrev_number,
14813 struct abbrev_info *abbrev)
14814 {
14815 unsigned int hash_number;
14816
14817 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14818 abbrev->next = abbrev_table->abbrevs[hash_number];
14819 abbrev_table->abbrevs[hash_number] = abbrev;
14820 }
14821
14822 /* Look up an abbrev in the table.
14823 Returns NULL if the abbrev is not found. */
14824
14825 static struct abbrev_info *
14826 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
14827 unsigned int abbrev_number)
14828 {
14829 unsigned int hash_number;
14830 struct abbrev_info *abbrev;
14831
14832 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14833 abbrev = abbrev_table->abbrevs[hash_number];
14834
14835 while (abbrev)
14836 {
14837 if (abbrev->number == abbrev_number)
14838 return abbrev;
14839 abbrev = abbrev->next;
14840 }
14841 return NULL;
14842 }
14843
14844 /* Read in an abbrev table. */
14845
14846 static struct abbrev_table *
14847 abbrev_table_read_table (struct dwarf2_section_info *section,
14848 sect_offset offset)
14849 {
14850 struct objfile *objfile = dwarf2_per_objfile->objfile;
14851 bfd *abfd = get_section_bfd_owner (section);
14852 struct abbrev_table *abbrev_table;
14853 const gdb_byte *abbrev_ptr;
14854 struct abbrev_info *cur_abbrev;
14855 unsigned int abbrev_number, bytes_read, abbrev_name;
14856 unsigned int abbrev_form;
14857 struct attr_abbrev *cur_attrs;
14858 unsigned int allocated_attrs;
14859
14860 abbrev_table = XNEW (struct abbrev_table);
14861 abbrev_table->offset = offset;
14862 obstack_init (&abbrev_table->abbrev_obstack);
14863 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
14864 (ABBREV_HASH_SIZE
14865 * sizeof (struct abbrev_info *)));
14866 memset (abbrev_table->abbrevs, 0,
14867 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
14868
14869 dwarf2_read_section (objfile, section);
14870 abbrev_ptr = section->buffer + offset.sect_off;
14871 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14872 abbrev_ptr += bytes_read;
14873
14874 allocated_attrs = ATTR_ALLOC_CHUNK;
14875 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
14876
14877 /* Loop until we reach an abbrev number of 0. */
14878 while (abbrev_number)
14879 {
14880 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
14881
14882 /* read in abbrev header */
14883 cur_abbrev->number = abbrev_number;
14884 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14885 abbrev_ptr += bytes_read;
14886 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
14887 abbrev_ptr += 1;
14888
14889 /* now read in declarations */
14890 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14891 abbrev_ptr += bytes_read;
14892 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14893 abbrev_ptr += bytes_read;
14894 while (abbrev_name)
14895 {
14896 if (cur_abbrev->num_attrs == allocated_attrs)
14897 {
14898 allocated_attrs += ATTR_ALLOC_CHUNK;
14899 cur_attrs
14900 = xrealloc (cur_attrs, (allocated_attrs
14901 * sizeof (struct attr_abbrev)));
14902 }
14903
14904 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
14905 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
14906 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14907 abbrev_ptr += bytes_read;
14908 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14909 abbrev_ptr += bytes_read;
14910 }
14911
14912 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
14913 (cur_abbrev->num_attrs
14914 * sizeof (struct attr_abbrev)));
14915 memcpy (cur_abbrev->attrs, cur_attrs,
14916 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
14917
14918 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
14919
14920 /* Get next abbreviation.
14921 Under Irix6 the abbreviations for a compilation unit are not
14922 always properly terminated with an abbrev number of 0.
14923 Exit loop if we encounter an abbreviation which we have
14924 already read (which means we are about to read the abbreviations
14925 for the next compile unit) or if the end of the abbreviation
14926 table is reached. */
14927 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
14928 break;
14929 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14930 abbrev_ptr += bytes_read;
14931 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
14932 break;
14933 }
14934
14935 xfree (cur_attrs);
14936 return abbrev_table;
14937 }
14938
14939 /* Free the resources held by ABBREV_TABLE. */
14940
14941 static void
14942 abbrev_table_free (struct abbrev_table *abbrev_table)
14943 {
14944 obstack_free (&abbrev_table->abbrev_obstack, NULL);
14945 xfree (abbrev_table);
14946 }
14947
14948 /* Same as abbrev_table_free but as a cleanup.
14949 We pass in a pointer to the pointer to the table so that we can
14950 set the pointer to NULL when we're done. It also simplifies
14951 build_type_unit_groups. */
14952
14953 static void
14954 abbrev_table_free_cleanup (void *table_ptr)
14955 {
14956 struct abbrev_table **abbrev_table_ptr = table_ptr;
14957
14958 if (*abbrev_table_ptr != NULL)
14959 abbrev_table_free (*abbrev_table_ptr);
14960 *abbrev_table_ptr = NULL;
14961 }
14962
14963 /* Read the abbrev table for CU from ABBREV_SECTION. */
14964
14965 static void
14966 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
14967 struct dwarf2_section_info *abbrev_section)
14968 {
14969 cu->abbrev_table =
14970 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
14971 }
14972
14973 /* Release the memory used by the abbrev table for a compilation unit. */
14974
14975 static void
14976 dwarf2_free_abbrev_table (void *ptr_to_cu)
14977 {
14978 struct dwarf2_cu *cu = ptr_to_cu;
14979
14980 if (cu->abbrev_table != NULL)
14981 abbrev_table_free (cu->abbrev_table);
14982 /* Set this to NULL so that we SEGV if we try to read it later,
14983 and also because free_comp_unit verifies this is NULL. */
14984 cu->abbrev_table = NULL;
14985 }
14986 \f
14987 /* Returns nonzero if TAG represents a type that we might generate a partial
14988 symbol for. */
14989
14990 static int
14991 is_type_tag_for_partial (int tag)
14992 {
14993 switch (tag)
14994 {
14995 #if 0
14996 /* Some types that would be reasonable to generate partial symbols for,
14997 that we don't at present. */
14998 case DW_TAG_array_type:
14999 case DW_TAG_file_type:
15000 case DW_TAG_ptr_to_member_type:
15001 case DW_TAG_set_type:
15002 case DW_TAG_string_type:
15003 case DW_TAG_subroutine_type:
15004 #endif
15005 case DW_TAG_base_type:
15006 case DW_TAG_class_type:
15007 case DW_TAG_interface_type:
15008 case DW_TAG_enumeration_type:
15009 case DW_TAG_structure_type:
15010 case DW_TAG_subrange_type:
15011 case DW_TAG_typedef:
15012 case DW_TAG_union_type:
15013 return 1;
15014 default:
15015 return 0;
15016 }
15017 }
15018
15019 /* Load all DIEs that are interesting for partial symbols into memory. */
15020
15021 static struct partial_die_info *
15022 load_partial_dies (const struct die_reader_specs *reader,
15023 const gdb_byte *info_ptr, int building_psymtab)
15024 {
15025 struct dwarf2_cu *cu = reader->cu;
15026 struct objfile *objfile = cu->objfile;
15027 struct partial_die_info *part_die;
15028 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15029 struct abbrev_info *abbrev;
15030 unsigned int bytes_read;
15031 unsigned int load_all = 0;
15032 int nesting_level = 1;
15033
15034 parent_die = NULL;
15035 last_die = NULL;
15036
15037 gdb_assert (cu->per_cu != NULL);
15038 if (cu->per_cu->load_all_dies)
15039 load_all = 1;
15040
15041 cu->partial_dies
15042 = htab_create_alloc_ex (cu->header.length / 12,
15043 partial_die_hash,
15044 partial_die_eq,
15045 NULL,
15046 &cu->comp_unit_obstack,
15047 hashtab_obstack_allocate,
15048 dummy_obstack_deallocate);
15049
15050 part_die = obstack_alloc (&cu->comp_unit_obstack,
15051 sizeof (struct partial_die_info));
15052
15053 while (1)
15054 {
15055 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15056
15057 /* A NULL abbrev means the end of a series of children. */
15058 if (abbrev == NULL)
15059 {
15060 if (--nesting_level == 0)
15061 {
15062 /* PART_DIE was probably the last thing allocated on the
15063 comp_unit_obstack, so we could call obstack_free
15064 here. We don't do that because the waste is small,
15065 and will be cleaned up when we're done with this
15066 compilation unit. This way, we're also more robust
15067 against other users of the comp_unit_obstack. */
15068 return first_die;
15069 }
15070 info_ptr += bytes_read;
15071 last_die = parent_die;
15072 parent_die = parent_die->die_parent;
15073 continue;
15074 }
15075
15076 /* Check for template arguments. We never save these; if
15077 they're seen, we just mark the parent, and go on our way. */
15078 if (parent_die != NULL
15079 && cu->language == language_cplus
15080 && (abbrev->tag == DW_TAG_template_type_param
15081 || abbrev->tag == DW_TAG_template_value_param))
15082 {
15083 parent_die->has_template_arguments = 1;
15084
15085 if (!load_all)
15086 {
15087 /* We don't need a partial DIE for the template argument. */
15088 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15089 continue;
15090 }
15091 }
15092
15093 /* We only recurse into c++ subprograms looking for template arguments.
15094 Skip their other children. */
15095 if (!load_all
15096 && cu->language == language_cplus
15097 && parent_die != NULL
15098 && parent_die->tag == DW_TAG_subprogram)
15099 {
15100 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15101 continue;
15102 }
15103
15104 /* Check whether this DIE is interesting enough to save. Normally
15105 we would not be interested in members here, but there may be
15106 later variables referencing them via DW_AT_specification (for
15107 static members). */
15108 if (!load_all
15109 && !is_type_tag_for_partial (abbrev->tag)
15110 && abbrev->tag != DW_TAG_constant
15111 && abbrev->tag != DW_TAG_enumerator
15112 && abbrev->tag != DW_TAG_subprogram
15113 && abbrev->tag != DW_TAG_lexical_block
15114 && abbrev->tag != DW_TAG_variable
15115 && abbrev->tag != DW_TAG_namespace
15116 && abbrev->tag != DW_TAG_module
15117 && abbrev->tag != DW_TAG_member
15118 && abbrev->tag != DW_TAG_imported_unit
15119 && abbrev->tag != DW_TAG_imported_declaration)
15120 {
15121 /* Otherwise we skip to the next sibling, if any. */
15122 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15123 continue;
15124 }
15125
15126 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15127 info_ptr);
15128
15129 /* This two-pass algorithm for processing partial symbols has a
15130 high cost in cache pressure. Thus, handle some simple cases
15131 here which cover the majority of C partial symbols. DIEs
15132 which neither have specification tags in them, nor could have
15133 specification tags elsewhere pointing at them, can simply be
15134 processed and discarded.
15135
15136 This segment is also optional; scan_partial_symbols and
15137 add_partial_symbol will handle these DIEs if we chain
15138 them in normally. When compilers which do not emit large
15139 quantities of duplicate debug information are more common,
15140 this code can probably be removed. */
15141
15142 /* Any complete simple types at the top level (pretty much all
15143 of them, for a language without namespaces), can be processed
15144 directly. */
15145 if (parent_die == NULL
15146 && part_die->has_specification == 0
15147 && part_die->is_declaration == 0
15148 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15149 || part_die->tag == DW_TAG_base_type
15150 || part_die->tag == DW_TAG_subrange_type))
15151 {
15152 if (building_psymtab && part_die->name != NULL)
15153 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15154 VAR_DOMAIN, LOC_TYPEDEF,
15155 &objfile->static_psymbols,
15156 0, (CORE_ADDR) 0, cu->language, objfile);
15157 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15158 continue;
15159 }
15160
15161 /* The exception for DW_TAG_typedef with has_children above is
15162 a workaround of GCC PR debug/47510. In the case of this complaint
15163 type_name_no_tag_or_error will error on such types later.
15164
15165 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15166 it could not find the child DIEs referenced later, this is checked
15167 above. In correct DWARF DW_TAG_typedef should have no children. */
15168
15169 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15170 complaint (&symfile_complaints,
15171 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15172 "- DIE at 0x%x [in module %s]"),
15173 part_die->offset.sect_off, objfile_name (objfile));
15174
15175 /* If we're at the second level, and we're an enumerator, and
15176 our parent has no specification (meaning possibly lives in a
15177 namespace elsewhere), then we can add the partial symbol now
15178 instead of queueing it. */
15179 if (part_die->tag == DW_TAG_enumerator
15180 && parent_die != NULL
15181 && parent_die->die_parent == NULL
15182 && parent_die->tag == DW_TAG_enumeration_type
15183 && parent_die->has_specification == 0)
15184 {
15185 if (part_die->name == NULL)
15186 complaint (&symfile_complaints,
15187 _("malformed enumerator DIE ignored"));
15188 else if (building_psymtab)
15189 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15190 VAR_DOMAIN, LOC_CONST,
15191 (cu->language == language_cplus
15192 || cu->language == language_java)
15193 ? &objfile->global_psymbols
15194 : &objfile->static_psymbols,
15195 0, (CORE_ADDR) 0, cu->language, objfile);
15196
15197 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15198 continue;
15199 }
15200
15201 /* We'll save this DIE so link it in. */
15202 part_die->die_parent = parent_die;
15203 part_die->die_sibling = NULL;
15204 part_die->die_child = NULL;
15205
15206 if (last_die && last_die == parent_die)
15207 last_die->die_child = part_die;
15208 else if (last_die)
15209 last_die->die_sibling = part_die;
15210
15211 last_die = part_die;
15212
15213 if (first_die == NULL)
15214 first_die = part_die;
15215
15216 /* Maybe add the DIE to the hash table. Not all DIEs that we
15217 find interesting need to be in the hash table, because we
15218 also have the parent/sibling/child chains; only those that we
15219 might refer to by offset later during partial symbol reading.
15220
15221 For now this means things that might have be the target of a
15222 DW_AT_specification, DW_AT_abstract_origin, or
15223 DW_AT_extension. DW_AT_extension will refer only to
15224 namespaces; DW_AT_abstract_origin refers to functions (and
15225 many things under the function DIE, but we do not recurse
15226 into function DIEs during partial symbol reading) and
15227 possibly variables as well; DW_AT_specification refers to
15228 declarations. Declarations ought to have the DW_AT_declaration
15229 flag. It happens that GCC forgets to put it in sometimes, but
15230 only for functions, not for types.
15231
15232 Adding more things than necessary to the hash table is harmless
15233 except for the performance cost. Adding too few will result in
15234 wasted time in find_partial_die, when we reread the compilation
15235 unit with load_all_dies set. */
15236
15237 if (load_all
15238 || abbrev->tag == DW_TAG_constant
15239 || abbrev->tag == DW_TAG_subprogram
15240 || abbrev->tag == DW_TAG_variable
15241 || abbrev->tag == DW_TAG_namespace
15242 || part_die->is_declaration)
15243 {
15244 void **slot;
15245
15246 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15247 part_die->offset.sect_off, INSERT);
15248 *slot = part_die;
15249 }
15250
15251 part_die = obstack_alloc (&cu->comp_unit_obstack,
15252 sizeof (struct partial_die_info));
15253
15254 /* For some DIEs we want to follow their children (if any). For C
15255 we have no reason to follow the children of structures; for other
15256 languages we have to, so that we can get at method physnames
15257 to infer fully qualified class names, for DW_AT_specification,
15258 and for C++ template arguments. For C++, we also look one level
15259 inside functions to find template arguments (if the name of the
15260 function does not already contain the template arguments).
15261
15262 For Ada, we need to scan the children of subprograms and lexical
15263 blocks as well because Ada allows the definition of nested
15264 entities that could be interesting for the debugger, such as
15265 nested subprograms for instance. */
15266 if (last_die->has_children
15267 && (load_all
15268 || last_die->tag == DW_TAG_namespace
15269 || last_die->tag == DW_TAG_module
15270 || last_die->tag == DW_TAG_enumeration_type
15271 || (cu->language == language_cplus
15272 && last_die->tag == DW_TAG_subprogram
15273 && (last_die->name == NULL
15274 || strchr (last_die->name, '<') == NULL))
15275 || (cu->language != language_c
15276 && (last_die->tag == DW_TAG_class_type
15277 || last_die->tag == DW_TAG_interface_type
15278 || last_die->tag == DW_TAG_structure_type
15279 || last_die->tag == DW_TAG_union_type))
15280 || (cu->language == language_ada
15281 && (last_die->tag == DW_TAG_subprogram
15282 || last_die->tag == DW_TAG_lexical_block))))
15283 {
15284 nesting_level++;
15285 parent_die = last_die;
15286 continue;
15287 }
15288
15289 /* Otherwise we skip to the next sibling, if any. */
15290 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15291
15292 /* Back to the top, do it again. */
15293 }
15294 }
15295
15296 /* Read a minimal amount of information into the minimal die structure. */
15297
15298 static const gdb_byte *
15299 read_partial_die (const struct die_reader_specs *reader,
15300 struct partial_die_info *part_die,
15301 struct abbrev_info *abbrev, unsigned int abbrev_len,
15302 const gdb_byte *info_ptr)
15303 {
15304 struct dwarf2_cu *cu = reader->cu;
15305 struct objfile *objfile = cu->objfile;
15306 const gdb_byte *buffer = reader->buffer;
15307 unsigned int i;
15308 struct attribute attr;
15309 int has_low_pc_attr = 0;
15310 int has_high_pc_attr = 0;
15311 int high_pc_relative = 0;
15312
15313 memset (part_die, 0, sizeof (struct partial_die_info));
15314
15315 part_die->offset.sect_off = info_ptr - buffer;
15316
15317 info_ptr += abbrev_len;
15318
15319 if (abbrev == NULL)
15320 return info_ptr;
15321
15322 part_die->tag = abbrev->tag;
15323 part_die->has_children = abbrev->has_children;
15324
15325 for (i = 0; i < abbrev->num_attrs; ++i)
15326 {
15327 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15328
15329 /* Store the data if it is of an attribute we want to keep in a
15330 partial symbol table. */
15331 switch (attr.name)
15332 {
15333 case DW_AT_name:
15334 switch (part_die->tag)
15335 {
15336 case DW_TAG_compile_unit:
15337 case DW_TAG_partial_unit:
15338 case DW_TAG_type_unit:
15339 /* Compilation units have a DW_AT_name that is a filename, not
15340 a source language identifier. */
15341 case DW_TAG_enumeration_type:
15342 case DW_TAG_enumerator:
15343 /* These tags always have simple identifiers already; no need
15344 to canonicalize them. */
15345 part_die->name = DW_STRING (&attr);
15346 break;
15347 default:
15348 part_die->name
15349 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15350 &objfile->objfile_obstack);
15351 break;
15352 }
15353 break;
15354 case DW_AT_linkage_name:
15355 case DW_AT_MIPS_linkage_name:
15356 /* Note that both forms of linkage name might appear. We
15357 assume they will be the same, and we only store the last
15358 one we see. */
15359 if (cu->language == language_ada)
15360 part_die->name = DW_STRING (&attr);
15361 part_die->linkage_name = DW_STRING (&attr);
15362 break;
15363 case DW_AT_low_pc:
15364 has_low_pc_attr = 1;
15365 part_die->lowpc = attr_value_as_address (&attr);
15366 break;
15367 case DW_AT_high_pc:
15368 has_high_pc_attr = 1;
15369 part_die->highpc = attr_value_as_address (&attr);
15370 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15371 high_pc_relative = 1;
15372 break;
15373 case DW_AT_location:
15374 /* Support the .debug_loc offsets. */
15375 if (attr_form_is_block (&attr))
15376 {
15377 part_die->d.locdesc = DW_BLOCK (&attr);
15378 }
15379 else if (attr_form_is_section_offset (&attr))
15380 {
15381 dwarf2_complex_location_expr_complaint ();
15382 }
15383 else
15384 {
15385 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15386 "partial symbol information");
15387 }
15388 break;
15389 case DW_AT_external:
15390 part_die->is_external = DW_UNSND (&attr);
15391 break;
15392 case DW_AT_declaration:
15393 part_die->is_declaration = DW_UNSND (&attr);
15394 break;
15395 case DW_AT_type:
15396 part_die->has_type = 1;
15397 break;
15398 case DW_AT_abstract_origin:
15399 case DW_AT_specification:
15400 case DW_AT_extension:
15401 part_die->has_specification = 1;
15402 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15403 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15404 || cu->per_cu->is_dwz);
15405 break;
15406 case DW_AT_sibling:
15407 /* Ignore absolute siblings, they might point outside of
15408 the current compile unit. */
15409 if (attr.form == DW_FORM_ref_addr)
15410 complaint (&symfile_complaints,
15411 _("ignoring absolute DW_AT_sibling"));
15412 else
15413 {
15414 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15415 const gdb_byte *sibling_ptr = buffer + off;
15416
15417 if (sibling_ptr < info_ptr)
15418 complaint (&symfile_complaints,
15419 _("DW_AT_sibling points backwards"));
15420 else
15421 part_die->sibling = sibling_ptr;
15422 }
15423 break;
15424 case DW_AT_byte_size:
15425 part_die->has_byte_size = 1;
15426 break;
15427 case DW_AT_calling_convention:
15428 /* DWARF doesn't provide a way to identify a program's source-level
15429 entry point. DW_AT_calling_convention attributes are only meant
15430 to describe functions' calling conventions.
15431
15432 However, because it's a necessary piece of information in
15433 Fortran, and because DW_CC_program is the only piece of debugging
15434 information whose definition refers to a 'main program' at all,
15435 several compilers have begun marking Fortran main programs with
15436 DW_CC_program --- even when those functions use the standard
15437 calling conventions.
15438
15439 So until DWARF specifies a way to provide this information and
15440 compilers pick up the new representation, we'll support this
15441 practice. */
15442 if (DW_UNSND (&attr) == DW_CC_program
15443 && cu->language == language_fortran)
15444 set_objfile_main_name (objfile, part_die->name, language_fortran);
15445 break;
15446 case DW_AT_inline:
15447 if (DW_UNSND (&attr) == DW_INL_inlined
15448 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15449 part_die->may_be_inlined = 1;
15450 break;
15451
15452 case DW_AT_import:
15453 if (part_die->tag == DW_TAG_imported_unit)
15454 {
15455 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15456 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15457 || cu->per_cu->is_dwz);
15458 }
15459 break;
15460
15461 default:
15462 break;
15463 }
15464 }
15465
15466 if (high_pc_relative)
15467 part_die->highpc += part_die->lowpc;
15468
15469 if (has_low_pc_attr && has_high_pc_attr)
15470 {
15471 /* When using the GNU linker, .gnu.linkonce. sections are used to
15472 eliminate duplicate copies of functions and vtables and such.
15473 The linker will arbitrarily choose one and discard the others.
15474 The AT_*_pc values for such functions refer to local labels in
15475 these sections. If the section from that file was discarded, the
15476 labels are not in the output, so the relocs get a value of 0.
15477 If this is a discarded function, mark the pc bounds as invalid,
15478 so that GDB will ignore it. */
15479 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15480 {
15481 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15482
15483 complaint (&symfile_complaints,
15484 _("DW_AT_low_pc %s is zero "
15485 "for DIE at 0x%x [in module %s]"),
15486 paddress (gdbarch, part_die->lowpc),
15487 part_die->offset.sect_off, objfile_name (objfile));
15488 }
15489 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15490 else if (part_die->lowpc >= part_die->highpc)
15491 {
15492 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15493
15494 complaint (&symfile_complaints,
15495 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15496 "for DIE at 0x%x [in module %s]"),
15497 paddress (gdbarch, part_die->lowpc),
15498 paddress (gdbarch, part_die->highpc),
15499 part_die->offset.sect_off, objfile_name (objfile));
15500 }
15501 else
15502 part_die->has_pc_info = 1;
15503 }
15504
15505 return info_ptr;
15506 }
15507
15508 /* Find a cached partial DIE at OFFSET in CU. */
15509
15510 static struct partial_die_info *
15511 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15512 {
15513 struct partial_die_info *lookup_die = NULL;
15514 struct partial_die_info part_die;
15515
15516 part_die.offset = offset;
15517 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15518 offset.sect_off);
15519
15520 return lookup_die;
15521 }
15522
15523 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15524 except in the case of .debug_types DIEs which do not reference
15525 outside their CU (they do however referencing other types via
15526 DW_FORM_ref_sig8). */
15527
15528 static struct partial_die_info *
15529 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15530 {
15531 struct objfile *objfile = cu->objfile;
15532 struct dwarf2_per_cu_data *per_cu = NULL;
15533 struct partial_die_info *pd = NULL;
15534
15535 if (offset_in_dwz == cu->per_cu->is_dwz
15536 && offset_in_cu_p (&cu->header, offset))
15537 {
15538 pd = find_partial_die_in_comp_unit (offset, cu);
15539 if (pd != NULL)
15540 return pd;
15541 /* We missed recording what we needed.
15542 Load all dies and try again. */
15543 per_cu = cu->per_cu;
15544 }
15545 else
15546 {
15547 /* TUs don't reference other CUs/TUs (except via type signatures). */
15548 if (cu->per_cu->is_debug_types)
15549 {
15550 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15551 " external reference to offset 0x%lx [in module %s].\n"),
15552 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15553 bfd_get_filename (objfile->obfd));
15554 }
15555 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15556 objfile);
15557
15558 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15559 load_partial_comp_unit (per_cu);
15560
15561 per_cu->cu->last_used = 0;
15562 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15563 }
15564
15565 /* If we didn't find it, and not all dies have been loaded,
15566 load them all and try again. */
15567
15568 if (pd == NULL && per_cu->load_all_dies == 0)
15569 {
15570 per_cu->load_all_dies = 1;
15571
15572 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15573 THIS_CU->cu may already be in use. So we can't just free it and
15574 replace its DIEs with the ones we read in. Instead, we leave those
15575 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15576 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15577 set. */
15578 load_partial_comp_unit (per_cu);
15579
15580 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15581 }
15582
15583 if (pd == NULL)
15584 internal_error (__FILE__, __LINE__,
15585 _("could not find partial DIE 0x%x "
15586 "in cache [from module %s]\n"),
15587 offset.sect_off, bfd_get_filename (objfile->obfd));
15588 return pd;
15589 }
15590
15591 /* See if we can figure out if the class lives in a namespace. We do
15592 this by looking for a member function; its demangled name will
15593 contain namespace info, if there is any. */
15594
15595 static void
15596 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15597 struct dwarf2_cu *cu)
15598 {
15599 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15600 what template types look like, because the demangler
15601 frequently doesn't give the same name as the debug info. We
15602 could fix this by only using the demangled name to get the
15603 prefix (but see comment in read_structure_type). */
15604
15605 struct partial_die_info *real_pdi;
15606 struct partial_die_info *child_pdi;
15607
15608 /* If this DIE (this DIE's specification, if any) has a parent, then
15609 we should not do this. We'll prepend the parent's fully qualified
15610 name when we create the partial symbol. */
15611
15612 real_pdi = struct_pdi;
15613 while (real_pdi->has_specification)
15614 real_pdi = find_partial_die (real_pdi->spec_offset,
15615 real_pdi->spec_is_dwz, cu);
15616
15617 if (real_pdi->die_parent != NULL)
15618 return;
15619
15620 for (child_pdi = struct_pdi->die_child;
15621 child_pdi != NULL;
15622 child_pdi = child_pdi->die_sibling)
15623 {
15624 if (child_pdi->tag == DW_TAG_subprogram
15625 && child_pdi->linkage_name != NULL)
15626 {
15627 char *actual_class_name
15628 = language_class_name_from_physname (cu->language_defn,
15629 child_pdi->linkage_name);
15630 if (actual_class_name != NULL)
15631 {
15632 struct_pdi->name
15633 = obstack_copy0 (&cu->objfile->objfile_obstack,
15634 actual_class_name,
15635 strlen (actual_class_name));
15636 xfree (actual_class_name);
15637 }
15638 break;
15639 }
15640 }
15641 }
15642
15643 /* Adjust PART_DIE before generating a symbol for it. This function
15644 may set the is_external flag or change the DIE's name. */
15645
15646 static void
15647 fixup_partial_die (struct partial_die_info *part_die,
15648 struct dwarf2_cu *cu)
15649 {
15650 /* Once we've fixed up a die, there's no point in doing so again.
15651 This also avoids a memory leak if we were to call
15652 guess_partial_die_structure_name multiple times. */
15653 if (part_die->fixup_called)
15654 return;
15655
15656 /* If we found a reference attribute and the DIE has no name, try
15657 to find a name in the referred to DIE. */
15658
15659 if (part_die->name == NULL && part_die->has_specification)
15660 {
15661 struct partial_die_info *spec_die;
15662
15663 spec_die = find_partial_die (part_die->spec_offset,
15664 part_die->spec_is_dwz, cu);
15665
15666 fixup_partial_die (spec_die, cu);
15667
15668 if (spec_die->name)
15669 {
15670 part_die->name = spec_die->name;
15671
15672 /* Copy DW_AT_external attribute if it is set. */
15673 if (spec_die->is_external)
15674 part_die->is_external = spec_die->is_external;
15675 }
15676 }
15677
15678 /* Set default names for some unnamed DIEs. */
15679
15680 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15681 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15682
15683 /* If there is no parent die to provide a namespace, and there are
15684 children, see if we can determine the namespace from their linkage
15685 name. */
15686 if (cu->language == language_cplus
15687 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15688 && part_die->die_parent == NULL
15689 && part_die->has_children
15690 && (part_die->tag == DW_TAG_class_type
15691 || part_die->tag == DW_TAG_structure_type
15692 || part_die->tag == DW_TAG_union_type))
15693 guess_partial_die_structure_name (part_die, cu);
15694
15695 /* GCC might emit a nameless struct or union that has a linkage
15696 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15697 if (part_die->name == NULL
15698 && (part_die->tag == DW_TAG_class_type
15699 || part_die->tag == DW_TAG_interface_type
15700 || part_die->tag == DW_TAG_structure_type
15701 || part_die->tag == DW_TAG_union_type)
15702 && part_die->linkage_name != NULL)
15703 {
15704 char *demangled;
15705
15706 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15707 if (demangled)
15708 {
15709 const char *base;
15710
15711 /* Strip any leading namespaces/classes, keep only the base name.
15712 DW_AT_name for named DIEs does not contain the prefixes. */
15713 base = strrchr (demangled, ':');
15714 if (base && base > demangled && base[-1] == ':')
15715 base++;
15716 else
15717 base = demangled;
15718
15719 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
15720 base, strlen (base));
15721 xfree (demangled);
15722 }
15723 }
15724
15725 part_die->fixup_called = 1;
15726 }
15727
15728 /* Read an attribute value described by an attribute form. */
15729
15730 static const gdb_byte *
15731 read_attribute_value (const struct die_reader_specs *reader,
15732 struct attribute *attr, unsigned form,
15733 const gdb_byte *info_ptr)
15734 {
15735 struct dwarf2_cu *cu = reader->cu;
15736 bfd *abfd = reader->abfd;
15737 struct comp_unit_head *cu_header = &cu->header;
15738 unsigned int bytes_read;
15739 struct dwarf_block *blk;
15740
15741 attr->form = form;
15742 switch (form)
15743 {
15744 case DW_FORM_ref_addr:
15745 if (cu->header.version == 2)
15746 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15747 else
15748 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15749 &cu->header, &bytes_read);
15750 info_ptr += bytes_read;
15751 break;
15752 case DW_FORM_GNU_ref_alt:
15753 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15754 info_ptr += bytes_read;
15755 break;
15756 case DW_FORM_addr:
15757 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15758 info_ptr += bytes_read;
15759 break;
15760 case DW_FORM_block2:
15761 blk = dwarf_alloc_block (cu);
15762 blk->size = read_2_bytes (abfd, info_ptr);
15763 info_ptr += 2;
15764 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15765 info_ptr += blk->size;
15766 DW_BLOCK (attr) = blk;
15767 break;
15768 case DW_FORM_block4:
15769 blk = dwarf_alloc_block (cu);
15770 blk->size = read_4_bytes (abfd, info_ptr);
15771 info_ptr += 4;
15772 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15773 info_ptr += blk->size;
15774 DW_BLOCK (attr) = blk;
15775 break;
15776 case DW_FORM_data2:
15777 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15778 info_ptr += 2;
15779 break;
15780 case DW_FORM_data4:
15781 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15782 info_ptr += 4;
15783 break;
15784 case DW_FORM_data8:
15785 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15786 info_ptr += 8;
15787 break;
15788 case DW_FORM_sec_offset:
15789 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15790 info_ptr += bytes_read;
15791 break;
15792 case DW_FORM_string:
15793 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
15794 DW_STRING_IS_CANONICAL (attr) = 0;
15795 info_ptr += bytes_read;
15796 break;
15797 case DW_FORM_strp:
15798 if (!cu->per_cu->is_dwz)
15799 {
15800 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15801 &bytes_read);
15802 DW_STRING_IS_CANONICAL (attr) = 0;
15803 info_ptr += bytes_read;
15804 break;
15805 }
15806 /* FALLTHROUGH */
15807 case DW_FORM_GNU_strp_alt:
15808 {
15809 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15810 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
15811 &bytes_read);
15812
15813 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
15814 DW_STRING_IS_CANONICAL (attr) = 0;
15815 info_ptr += bytes_read;
15816 }
15817 break;
15818 case DW_FORM_exprloc:
15819 case DW_FORM_block:
15820 blk = dwarf_alloc_block (cu);
15821 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15822 info_ptr += bytes_read;
15823 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15824 info_ptr += blk->size;
15825 DW_BLOCK (attr) = blk;
15826 break;
15827 case DW_FORM_block1:
15828 blk = dwarf_alloc_block (cu);
15829 blk->size = read_1_byte (abfd, info_ptr);
15830 info_ptr += 1;
15831 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15832 info_ptr += blk->size;
15833 DW_BLOCK (attr) = blk;
15834 break;
15835 case DW_FORM_data1:
15836 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15837 info_ptr += 1;
15838 break;
15839 case DW_FORM_flag:
15840 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15841 info_ptr += 1;
15842 break;
15843 case DW_FORM_flag_present:
15844 DW_UNSND (attr) = 1;
15845 break;
15846 case DW_FORM_sdata:
15847 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
15848 info_ptr += bytes_read;
15849 break;
15850 case DW_FORM_udata:
15851 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15852 info_ptr += bytes_read;
15853 break;
15854 case DW_FORM_ref1:
15855 DW_UNSND (attr) = (cu->header.offset.sect_off
15856 + read_1_byte (abfd, info_ptr));
15857 info_ptr += 1;
15858 break;
15859 case DW_FORM_ref2:
15860 DW_UNSND (attr) = (cu->header.offset.sect_off
15861 + read_2_bytes (abfd, info_ptr));
15862 info_ptr += 2;
15863 break;
15864 case DW_FORM_ref4:
15865 DW_UNSND (attr) = (cu->header.offset.sect_off
15866 + read_4_bytes (abfd, info_ptr));
15867 info_ptr += 4;
15868 break;
15869 case DW_FORM_ref8:
15870 DW_UNSND (attr) = (cu->header.offset.sect_off
15871 + read_8_bytes (abfd, info_ptr));
15872 info_ptr += 8;
15873 break;
15874 case DW_FORM_ref_sig8:
15875 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
15876 info_ptr += 8;
15877 break;
15878 case DW_FORM_ref_udata:
15879 DW_UNSND (attr) = (cu->header.offset.sect_off
15880 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
15881 info_ptr += bytes_read;
15882 break;
15883 case DW_FORM_indirect:
15884 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15885 info_ptr += bytes_read;
15886 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
15887 break;
15888 case DW_FORM_GNU_addr_index:
15889 if (reader->dwo_file == NULL)
15890 {
15891 /* For now flag a hard error.
15892 Later we can turn this into a complaint. */
15893 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15894 dwarf_form_name (form),
15895 bfd_get_filename (abfd));
15896 }
15897 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
15898 info_ptr += bytes_read;
15899 break;
15900 case DW_FORM_GNU_str_index:
15901 if (reader->dwo_file == NULL)
15902 {
15903 /* For now flag a hard error.
15904 Later we can turn this into a complaint if warranted. */
15905 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15906 dwarf_form_name (form),
15907 bfd_get_filename (abfd));
15908 }
15909 {
15910 ULONGEST str_index =
15911 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15912
15913 DW_STRING (attr) = read_str_index (reader, cu, str_index);
15914 DW_STRING_IS_CANONICAL (attr) = 0;
15915 info_ptr += bytes_read;
15916 }
15917 break;
15918 default:
15919 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
15920 dwarf_form_name (form),
15921 bfd_get_filename (abfd));
15922 }
15923
15924 /* Super hack. */
15925 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
15926 attr->form = DW_FORM_GNU_ref_alt;
15927
15928 /* We have seen instances where the compiler tried to emit a byte
15929 size attribute of -1 which ended up being encoded as an unsigned
15930 0xffffffff. Although 0xffffffff is technically a valid size value,
15931 an object of this size seems pretty unlikely so we can relatively
15932 safely treat these cases as if the size attribute was invalid and
15933 treat them as zero by default. */
15934 if (attr->name == DW_AT_byte_size
15935 && form == DW_FORM_data4
15936 && DW_UNSND (attr) >= 0xffffffff)
15937 {
15938 complaint
15939 (&symfile_complaints,
15940 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
15941 hex_string (DW_UNSND (attr)));
15942 DW_UNSND (attr) = 0;
15943 }
15944
15945 return info_ptr;
15946 }
15947
15948 /* Read an attribute described by an abbreviated attribute. */
15949
15950 static const gdb_byte *
15951 read_attribute (const struct die_reader_specs *reader,
15952 struct attribute *attr, struct attr_abbrev *abbrev,
15953 const gdb_byte *info_ptr)
15954 {
15955 attr->name = abbrev->name;
15956 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
15957 }
15958
15959 /* Read dwarf information from a buffer. */
15960
15961 static unsigned int
15962 read_1_byte (bfd *abfd, const gdb_byte *buf)
15963 {
15964 return bfd_get_8 (abfd, buf);
15965 }
15966
15967 static int
15968 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
15969 {
15970 return bfd_get_signed_8 (abfd, buf);
15971 }
15972
15973 static unsigned int
15974 read_2_bytes (bfd *abfd, const gdb_byte *buf)
15975 {
15976 return bfd_get_16 (abfd, buf);
15977 }
15978
15979 static int
15980 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
15981 {
15982 return bfd_get_signed_16 (abfd, buf);
15983 }
15984
15985 static unsigned int
15986 read_4_bytes (bfd *abfd, const gdb_byte *buf)
15987 {
15988 return bfd_get_32 (abfd, buf);
15989 }
15990
15991 static int
15992 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
15993 {
15994 return bfd_get_signed_32 (abfd, buf);
15995 }
15996
15997 static ULONGEST
15998 read_8_bytes (bfd *abfd, const gdb_byte *buf)
15999 {
16000 return bfd_get_64 (abfd, buf);
16001 }
16002
16003 static CORE_ADDR
16004 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16005 unsigned int *bytes_read)
16006 {
16007 struct comp_unit_head *cu_header = &cu->header;
16008 CORE_ADDR retval = 0;
16009
16010 if (cu_header->signed_addr_p)
16011 {
16012 switch (cu_header->addr_size)
16013 {
16014 case 2:
16015 retval = bfd_get_signed_16 (abfd, buf);
16016 break;
16017 case 4:
16018 retval = bfd_get_signed_32 (abfd, buf);
16019 break;
16020 case 8:
16021 retval = bfd_get_signed_64 (abfd, buf);
16022 break;
16023 default:
16024 internal_error (__FILE__, __LINE__,
16025 _("read_address: bad switch, signed [in module %s]"),
16026 bfd_get_filename (abfd));
16027 }
16028 }
16029 else
16030 {
16031 switch (cu_header->addr_size)
16032 {
16033 case 2:
16034 retval = bfd_get_16 (abfd, buf);
16035 break;
16036 case 4:
16037 retval = bfd_get_32 (abfd, buf);
16038 break;
16039 case 8:
16040 retval = bfd_get_64 (abfd, buf);
16041 break;
16042 default:
16043 internal_error (__FILE__, __LINE__,
16044 _("read_address: bad switch, "
16045 "unsigned [in module %s]"),
16046 bfd_get_filename (abfd));
16047 }
16048 }
16049
16050 *bytes_read = cu_header->addr_size;
16051 return retval;
16052 }
16053
16054 /* Read the initial length from a section. The (draft) DWARF 3
16055 specification allows the initial length to take up either 4 bytes
16056 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16057 bytes describe the length and all offsets will be 8 bytes in length
16058 instead of 4.
16059
16060 An older, non-standard 64-bit format is also handled by this
16061 function. The older format in question stores the initial length
16062 as an 8-byte quantity without an escape value. Lengths greater
16063 than 2^32 aren't very common which means that the initial 4 bytes
16064 is almost always zero. Since a length value of zero doesn't make
16065 sense for the 32-bit format, this initial zero can be considered to
16066 be an escape value which indicates the presence of the older 64-bit
16067 format. As written, the code can't detect (old format) lengths
16068 greater than 4GB. If it becomes necessary to handle lengths
16069 somewhat larger than 4GB, we could allow other small values (such
16070 as the non-sensical values of 1, 2, and 3) to also be used as
16071 escape values indicating the presence of the old format.
16072
16073 The value returned via bytes_read should be used to increment the
16074 relevant pointer after calling read_initial_length().
16075
16076 [ Note: read_initial_length() and read_offset() are based on the
16077 document entitled "DWARF Debugging Information Format", revision
16078 3, draft 8, dated November 19, 2001. This document was obtained
16079 from:
16080
16081 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16082
16083 This document is only a draft and is subject to change. (So beware.)
16084
16085 Details regarding the older, non-standard 64-bit format were
16086 determined empirically by examining 64-bit ELF files produced by
16087 the SGI toolchain on an IRIX 6.5 machine.
16088
16089 - Kevin, July 16, 2002
16090 ] */
16091
16092 static LONGEST
16093 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16094 {
16095 LONGEST length = bfd_get_32 (abfd, buf);
16096
16097 if (length == 0xffffffff)
16098 {
16099 length = bfd_get_64 (abfd, buf + 4);
16100 *bytes_read = 12;
16101 }
16102 else if (length == 0)
16103 {
16104 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16105 length = bfd_get_64 (abfd, buf);
16106 *bytes_read = 8;
16107 }
16108 else
16109 {
16110 *bytes_read = 4;
16111 }
16112
16113 return length;
16114 }
16115
16116 /* Cover function for read_initial_length.
16117 Returns the length of the object at BUF, and stores the size of the
16118 initial length in *BYTES_READ and stores the size that offsets will be in
16119 *OFFSET_SIZE.
16120 If the initial length size is not equivalent to that specified in
16121 CU_HEADER then issue a complaint.
16122 This is useful when reading non-comp-unit headers. */
16123
16124 static LONGEST
16125 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16126 const struct comp_unit_head *cu_header,
16127 unsigned int *bytes_read,
16128 unsigned int *offset_size)
16129 {
16130 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16131
16132 gdb_assert (cu_header->initial_length_size == 4
16133 || cu_header->initial_length_size == 8
16134 || cu_header->initial_length_size == 12);
16135
16136 if (cu_header->initial_length_size != *bytes_read)
16137 complaint (&symfile_complaints,
16138 _("intermixed 32-bit and 64-bit DWARF sections"));
16139
16140 *offset_size = (*bytes_read == 4) ? 4 : 8;
16141 return length;
16142 }
16143
16144 /* Read an offset from the data stream. The size of the offset is
16145 given by cu_header->offset_size. */
16146
16147 static LONGEST
16148 read_offset (bfd *abfd, const gdb_byte *buf,
16149 const struct comp_unit_head *cu_header,
16150 unsigned int *bytes_read)
16151 {
16152 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16153
16154 *bytes_read = cu_header->offset_size;
16155 return offset;
16156 }
16157
16158 /* Read an offset from the data stream. */
16159
16160 static LONGEST
16161 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16162 {
16163 LONGEST retval = 0;
16164
16165 switch (offset_size)
16166 {
16167 case 4:
16168 retval = bfd_get_32 (abfd, buf);
16169 break;
16170 case 8:
16171 retval = bfd_get_64 (abfd, buf);
16172 break;
16173 default:
16174 internal_error (__FILE__, __LINE__,
16175 _("read_offset_1: bad switch [in module %s]"),
16176 bfd_get_filename (abfd));
16177 }
16178
16179 return retval;
16180 }
16181
16182 static const gdb_byte *
16183 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16184 {
16185 /* If the size of a host char is 8 bits, we can return a pointer
16186 to the buffer, otherwise we have to copy the data to a buffer
16187 allocated on the temporary obstack. */
16188 gdb_assert (HOST_CHAR_BIT == 8);
16189 return buf;
16190 }
16191
16192 static const char *
16193 read_direct_string (bfd *abfd, const gdb_byte *buf,
16194 unsigned int *bytes_read_ptr)
16195 {
16196 /* If the size of a host char is 8 bits, we can return a pointer
16197 to the string, otherwise we have to copy the string to a buffer
16198 allocated on the temporary obstack. */
16199 gdb_assert (HOST_CHAR_BIT == 8);
16200 if (*buf == '\0')
16201 {
16202 *bytes_read_ptr = 1;
16203 return NULL;
16204 }
16205 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16206 return (const char *) buf;
16207 }
16208
16209 static const char *
16210 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16211 {
16212 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16213 if (dwarf2_per_objfile->str.buffer == NULL)
16214 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16215 bfd_get_filename (abfd));
16216 if (str_offset >= dwarf2_per_objfile->str.size)
16217 error (_("DW_FORM_strp pointing outside of "
16218 ".debug_str section [in module %s]"),
16219 bfd_get_filename (abfd));
16220 gdb_assert (HOST_CHAR_BIT == 8);
16221 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16222 return NULL;
16223 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16224 }
16225
16226 /* Read a string at offset STR_OFFSET in the .debug_str section from
16227 the .dwz file DWZ. Throw an error if the offset is too large. If
16228 the string consists of a single NUL byte, return NULL; otherwise
16229 return a pointer to the string. */
16230
16231 static const char *
16232 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16233 {
16234 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16235
16236 if (dwz->str.buffer == NULL)
16237 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16238 "section [in module %s]"),
16239 bfd_get_filename (dwz->dwz_bfd));
16240 if (str_offset >= dwz->str.size)
16241 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16242 ".debug_str section [in module %s]"),
16243 bfd_get_filename (dwz->dwz_bfd));
16244 gdb_assert (HOST_CHAR_BIT == 8);
16245 if (dwz->str.buffer[str_offset] == '\0')
16246 return NULL;
16247 return (const char *) (dwz->str.buffer + str_offset);
16248 }
16249
16250 static const char *
16251 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16252 const struct comp_unit_head *cu_header,
16253 unsigned int *bytes_read_ptr)
16254 {
16255 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16256
16257 return read_indirect_string_at_offset (abfd, str_offset);
16258 }
16259
16260 static ULONGEST
16261 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16262 unsigned int *bytes_read_ptr)
16263 {
16264 ULONGEST result;
16265 unsigned int num_read;
16266 int i, shift;
16267 unsigned char byte;
16268
16269 result = 0;
16270 shift = 0;
16271 num_read = 0;
16272 i = 0;
16273 while (1)
16274 {
16275 byte = bfd_get_8 (abfd, buf);
16276 buf++;
16277 num_read++;
16278 result |= ((ULONGEST) (byte & 127) << shift);
16279 if ((byte & 128) == 0)
16280 {
16281 break;
16282 }
16283 shift += 7;
16284 }
16285 *bytes_read_ptr = num_read;
16286 return result;
16287 }
16288
16289 static LONGEST
16290 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16291 unsigned int *bytes_read_ptr)
16292 {
16293 LONGEST result;
16294 int i, shift, num_read;
16295 unsigned char byte;
16296
16297 result = 0;
16298 shift = 0;
16299 num_read = 0;
16300 i = 0;
16301 while (1)
16302 {
16303 byte = bfd_get_8 (abfd, buf);
16304 buf++;
16305 num_read++;
16306 result |= ((LONGEST) (byte & 127) << shift);
16307 shift += 7;
16308 if ((byte & 128) == 0)
16309 {
16310 break;
16311 }
16312 }
16313 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16314 result |= -(((LONGEST) 1) << shift);
16315 *bytes_read_ptr = num_read;
16316 return result;
16317 }
16318
16319 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16320 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16321 ADDR_SIZE is the size of addresses from the CU header. */
16322
16323 static CORE_ADDR
16324 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16325 {
16326 struct objfile *objfile = dwarf2_per_objfile->objfile;
16327 bfd *abfd = objfile->obfd;
16328 const gdb_byte *info_ptr;
16329
16330 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16331 if (dwarf2_per_objfile->addr.buffer == NULL)
16332 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16333 objfile_name (objfile));
16334 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16335 error (_("DW_FORM_addr_index pointing outside of "
16336 ".debug_addr section [in module %s]"),
16337 objfile_name (objfile));
16338 info_ptr = (dwarf2_per_objfile->addr.buffer
16339 + addr_base + addr_index * addr_size);
16340 if (addr_size == 4)
16341 return bfd_get_32 (abfd, info_ptr);
16342 else
16343 return bfd_get_64 (abfd, info_ptr);
16344 }
16345
16346 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16347
16348 static CORE_ADDR
16349 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16350 {
16351 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16352 }
16353
16354 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16355
16356 static CORE_ADDR
16357 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16358 unsigned int *bytes_read)
16359 {
16360 bfd *abfd = cu->objfile->obfd;
16361 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16362
16363 return read_addr_index (cu, addr_index);
16364 }
16365
16366 /* Data structure to pass results from dwarf2_read_addr_index_reader
16367 back to dwarf2_read_addr_index. */
16368
16369 struct dwarf2_read_addr_index_data
16370 {
16371 ULONGEST addr_base;
16372 int addr_size;
16373 };
16374
16375 /* die_reader_func for dwarf2_read_addr_index. */
16376
16377 static void
16378 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16379 const gdb_byte *info_ptr,
16380 struct die_info *comp_unit_die,
16381 int has_children,
16382 void *data)
16383 {
16384 struct dwarf2_cu *cu = reader->cu;
16385 struct dwarf2_read_addr_index_data *aidata =
16386 (struct dwarf2_read_addr_index_data *) data;
16387
16388 aidata->addr_base = cu->addr_base;
16389 aidata->addr_size = cu->header.addr_size;
16390 }
16391
16392 /* Given an index in .debug_addr, fetch the value.
16393 NOTE: This can be called during dwarf expression evaluation,
16394 long after the debug information has been read, and thus per_cu->cu
16395 may no longer exist. */
16396
16397 CORE_ADDR
16398 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16399 unsigned int addr_index)
16400 {
16401 struct objfile *objfile = per_cu->objfile;
16402 struct dwarf2_cu *cu = per_cu->cu;
16403 ULONGEST addr_base;
16404 int addr_size;
16405
16406 /* This is intended to be called from outside this file. */
16407 dw2_setup (objfile);
16408
16409 /* We need addr_base and addr_size.
16410 If we don't have PER_CU->cu, we have to get it.
16411 Nasty, but the alternative is storing the needed info in PER_CU,
16412 which at this point doesn't seem justified: it's not clear how frequently
16413 it would get used and it would increase the size of every PER_CU.
16414 Entry points like dwarf2_per_cu_addr_size do a similar thing
16415 so we're not in uncharted territory here.
16416 Alas we need to be a bit more complicated as addr_base is contained
16417 in the DIE.
16418
16419 We don't need to read the entire CU(/TU).
16420 We just need the header and top level die.
16421
16422 IWBN to use the aging mechanism to let us lazily later discard the CU.
16423 For now we skip this optimization. */
16424
16425 if (cu != NULL)
16426 {
16427 addr_base = cu->addr_base;
16428 addr_size = cu->header.addr_size;
16429 }
16430 else
16431 {
16432 struct dwarf2_read_addr_index_data aidata;
16433
16434 /* Note: We can't use init_cutu_and_read_dies_simple here,
16435 we need addr_base. */
16436 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16437 dwarf2_read_addr_index_reader, &aidata);
16438 addr_base = aidata.addr_base;
16439 addr_size = aidata.addr_size;
16440 }
16441
16442 return read_addr_index_1 (addr_index, addr_base, addr_size);
16443 }
16444
16445 /* Given a DW_FORM_GNU_str_index, fetch the string.
16446 This is only used by the Fission support. */
16447
16448 static const char *
16449 read_str_index (const struct die_reader_specs *reader,
16450 struct dwarf2_cu *cu, ULONGEST str_index)
16451 {
16452 struct objfile *objfile = dwarf2_per_objfile->objfile;
16453 const char *dwo_name = objfile_name (objfile);
16454 bfd *abfd = objfile->obfd;
16455 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16456 struct dwarf2_section_info *str_offsets_section =
16457 &reader->dwo_file->sections.str_offsets;
16458 const gdb_byte *info_ptr;
16459 ULONGEST str_offset;
16460 static const char form_name[] = "DW_FORM_GNU_str_index";
16461
16462 dwarf2_read_section (objfile, str_section);
16463 dwarf2_read_section (objfile, str_offsets_section);
16464 if (str_section->buffer == NULL)
16465 error (_("%s used without .debug_str.dwo section"
16466 " in CU at offset 0x%lx [in module %s]"),
16467 form_name, (long) cu->header.offset.sect_off, dwo_name);
16468 if (str_offsets_section->buffer == NULL)
16469 error (_("%s used without .debug_str_offsets.dwo section"
16470 " in CU at offset 0x%lx [in module %s]"),
16471 form_name, (long) cu->header.offset.sect_off, dwo_name);
16472 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16473 error (_("%s pointing outside of .debug_str_offsets.dwo"
16474 " section in CU at offset 0x%lx [in module %s]"),
16475 form_name, (long) cu->header.offset.sect_off, dwo_name);
16476 info_ptr = (str_offsets_section->buffer
16477 + str_index * cu->header.offset_size);
16478 if (cu->header.offset_size == 4)
16479 str_offset = bfd_get_32 (abfd, info_ptr);
16480 else
16481 str_offset = bfd_get_64 (abfd, info_ptr);
16482 if (str_offset >= str_section->size)
16483 error (_("Offset from %s pointing outside of"
16484 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16485 form_name, (long) cu->header.offset.sect_off, dwo_name);
16486 return (const char *) (str_section->buffer + str_offset);
16487 }
16488
16489 /* Return the length of an LEB128 number in BUF. */
16490
16491 static int
16492 leb128_size (const gdb_byte *buf)
16493 {
16494 const gdb_byte *begin = buf;
16495 gdb_byte byte;
16496
16497 while (1)
16498 {
16499 byte = *buf++;
16500 if ((byte & 128) == 0)
16501 return buf - begin;
16502 }
16503 }
16504
16505 static void
16506 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16507 {
16508 switch (lang)
16509 {
16510 case DW_LANG_C89:
16511 case DW_LANG_C99:
16512 case DW_LANG_C:
16513 case DW_LANG_UPC:
16514 cu->language = language_c;
16515 break;
16516 case DW_LANG_C_plus_plus:
16517 cu->language = language_cplus;
16518 break;
16519 case DW_LANG_D:
16520 cu->language = language_d;
16521 break;
16522 case DW_LANG_Fortran77:
16523 case DW_LANG_Fortran90:
16524 case DW_LANG_Fortran95:
16525 cu->language = language_fortran;
16526 break;
16527 case DW_LANG_Go:
16528 cu->language = language_go;
16529 break;
16530 case DW_LANG_Mips_Assembler:
16531 cu->language = language_asm;
16532 break;
16533 case DW_LANG_Java:
16534 cu->language = language_java;
16535 break;
16536 case DW_LANG_Ada83:
16537 case DW_LANG_Ada95:
16538 cu->language = language_ada;
16539 break;
16540 case DW_LANG_Modula2:
16541 cu->language = language_m2;
16542 break;
16543 case DW_LANG_Pascal83:
16544 cu->language = language_pascal;
16545 break;
16546 case DW_LANG_ObjC:
16547 cu->language = language_objc;
16548 break;
16549 case DW_LANG_Cobol74:
16550 case DW_LANG_Cobol85:
16551 default:
16552 cu->language = language_minimal;
16553 break;
16554 }
16555 cu->language_defn = language_def (cu->language);
16556 }
16557
16558 /* Return the named attribute or NULL if not there. */
16559
16560 static struct attribute *
16561 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16562 {
16563 for (;;)
16564 {
16565 unsigned int i;
16566 struct attribute *spec = NULL;
16567
16568 for (i = 0; i < die->num_attrs; ++i)
16569 {
16570 if (die->attrs[i].name == name)
16571 return &die->attrs[i];
16572 if (die->attrs[i].name == DW_AT_specification
16573 || die->attrs[i].name == DW_AT_abstract_origin)
16574 spec = &die->attrs[i];
16575 }
16576
16577 if (!spec)
16578 break;
16579
16580 die = follow_die_ref (die, spec, &cu);
16581 }
16582
16583 return NULL;
16584 }
16585
16586 /* Return the named attribute or NULL if not there,
16587 but do not follow DW_AT_specification, etc.
16588 This is for use in contexts where we're reading .debug_types dies.
16589 Following DW_AT_specification, DW_AT_abstract_origin will take us
16590 back up the chain, and we want to go down. */
16591
16592 static struct attribute *
16593 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16594 {
16595 unsigned int i;
16596
16597 for (i = 0; i < die->num_attrs; ++i)
16598 if (die->attrs[i].name == name)
16599 return &die->attrs[i];
16600
16601 return NULL;
16602 }
16603
16604 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16605 and holds a non-zero value. This function should only be used for
16606 DW_FORM_flag or DW_FORM_flag_present attributes. */
16607
16608 static int
16609 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16610 {
16611 struct attribute *attr = dwarf2_attr (die, name, cu);
16612
16613 return (attr && DW_UNSND (attr));
16614 }
16615
16616 static int
16617 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16618 {
16619 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16620 which value is non-zero. However, we have to be careful with
16621 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16622 (via dwarf2_flag_true_p) follows this attribute. So we may
16623 end up accidently finding a declaration attribute that belongs
16624 to a different DIE referenced by the specification attribute,
16625 even though the given DIE does not have a declaration attribute. */
16626 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16627 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16628 }
16629
16630 /* Return the die giving the specification for DIE, if there is
16631 one. *SPEC_CU is the CU containing DIE on input, and the CU
16632 containing the return value on output. If there is no
16633 specification, but there is an abstract origin, that is
16634 returned. */
16635
16636 static struct die_info *
16637 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16638 {
16639 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16640 *spec_cu);
16641
16642 if (spec_attr == NULL)
16643 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16644
16645 if (spec_attr == NULL)
16646 return NULL;
16647 else
16648 return follow_die_ref (die, spec_attr, spec_cu);
16649 }
16650
16651 /* Free the line_header structure *LH, and any arrays and strings it
16652 refers to.
16653 NOTE: This is also used as a "cleanup" function. */
16654
16655 static void
16656 free_line_header (struct line_header *lh)
16657 {
16658 if (lh->standard_opcode_lengths)
16659 xfree (lh->standard_opcode_lengths);
16660
16661 /* Remember that all the lh->file_names[i].name pointers are
16662 pointers into debug_line_buffer, and don't need to be freed. */
16663 if (lh->file_names)
16664 xfree (lh->file_names);
16665
16666 /* Similarly for the include directory names. */
16667 if (lh->include_dirs)
16668 xfree (lh->include_dirs);
16669
16670 xfree (lh);
16671 }
16672
16673 /* Add an entry to LH's include directory table. */
16674
16675 static void
16676 add_include_dir (struct line_header *lh, const char *include_dir)
16677 {
16678 /* Grow the array if necessary. */
16679 if (lh->include_dirs_size == 0)
16680 {
16681 lh->include_dirs_size = 1; /* for testing */
16682 lh->include_dirs = xmalloc (lh->include_dirs_size
16683 * sizeof (*lh->include_dirs));
16684 }
16685 else if (lh->num_include_dirs >= lh->include_dirs_size)
16686 {
16687 lh->include_dirs_size *= 2;
16688 lh->include_dirs = xrealloc (lh->include_dirs,
16689 (lh->include_dirs_size
16690 * sizeof (*lh->include_dirs)));
16691 }
16692
16693 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16694 }
16695
16696 /* Add an entry to LH's file name table. */
16697
16698 static void
16699 add_file_name (struct line_header *lh,
16700 const char *name,
16701 unsigned int dir_index,
16702 unsigned int mod_time,
16703 unsigned int length)
16704 {
16705 struct file_entry *fe;
16706
16707 /* Grow the array if necessary. */
16708 if (lh->file_names_size == 0)
16709 {
16710 lh->file_names_size = 1; /* for testing */
16711 lh->file_names = xmalloc (lh->file_names_size
16712 * sizeof (*lh->file_names));
16713 }
16714 else if (lh->num_file_names >= lh->file_names_size)
16715 {
16716 lh->file_names_size *= 2;
16717 lh->file_names = xrealloc (lh->file_names,
16718 (lh->file_names_size
16719 * sizeof (*lh->file_names)));
16720 }
16721
16722 fe = &lh->file_names[lh->num_file_names++];
16723 fe->name = name;
16724 fe->dir_index = dir_index;
16725 fe->mod_time = mod_time;
16726 fe->length = length;
16727 fe->included_p = 0;
16728 fe->symtab = NULL;
16729 }
16730
16731 /* A convenience function to find the proper .debug_line section for a
16732 CU. */
16733
16734 static struct dwarf2_section_info *
16735 get_debug_line_section (struct dwarf2_cu *cu)
16736 {
16737 struct dwarf2_section_info *section;
16738
16739 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16740 DWO file. */
16741 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16742 section = &cu->dwo_unit->dwo_file->sections.line;
16743 else if (cu->per_cu->is_dwz)
16744 {
16745 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16746
16747 section = &dwz->line;
16748 }
16749 else
16750 section = &dwarf2_per_objfile->line;
16751
16752 return section;
16753 }
16754
16755 /* Read the statement program header starting at OFFSET in
16756 .debug_line, or .debug_line.dwo. Return a pointer
16757 to a struct line_header, allocated using xmalloc.
16758
16759 NOTE: the strings in the include directory and file name tables of
16760 the returned object point into the dwarf line section buffer,
16761 and must not be freed. */
16762
16763 static struct line_header *
16764 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
16765 {
16766 struct cleanup *back_to;
16767 struct line_header *lh;
16768 const gdb_byte *line_ptr;
16769 unsigned int bytes_read, offset_size;
16770 int i;
16771 const char *cur_dir, *cur_file;
16772 struct dwarf2_section_info *section;
16773 bfd *abfd;
16774
16775 section = get_debug_line_section (cu);
16776 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16777 if (section->buffer == NULL)
16778 {
16779 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16780 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16781 else
16782 complaint (&symfile_complaints, _("missing .debug_line section"));
16783 return 0;
16784 }
16785
16786 /* We can't do this until we know the section is non-empty.
16787 Only then do we know we have such a section. */
16788 abfd = get_section_bfd_owner (section);
16789
16790 /* Make sure that at least there's room for the total_length field.
16791 That could be 12 bytes long, but we're just going to fudge that. */
16792 if (offset + 4 >= section->size)
16793 {
16794 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16795 return 0;
16796 }
16797
16798 lh = xmalloc (sizeof (*lh));
16799 memset (lh, 0, sizeof (*lh));
16800 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16801 (void *) lh);
16802
16803 line_ptr = section->buffer + offset;
16804
16805 /* Read in the header. */
16806 lh->total_length =
16807 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
16808 &bytes_read, &offset_size);
16809 line_ptr += bytes_read;
16810 if (line_ptr + lh->total_length > (section->buffer + section->size))
16811 {
16812 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16813 do_cleanups (back_to);
16814 return 0;
16815 }
16816 lh->statement_program_end = line_ptr + lh->total_length;
16817 lh->version = read_2_bytes (abfd, line_ptr);
16818 line_ptr += 2;
16819 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
16820 line_ptr += offset_size;
16821 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
16822 line_ptr += 1;
16823 if (lh->version >= 4)
16824 {
16825 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
16826 line_ptr += 1;
16827 }
16828 else
16829 lh->maximum_ops_per_instruction = 1;
16830
16831 if (lh->maximum_ops_per_instruction == 0)
16832 {
16833 lh->maximum_ops_per_instruction = 1;
16834 complaint (&symfile_complaints,
16835 _("invalid maximum_ops_per_instruction "
16836 "in `.debug_line' section"));
16837 }
16838
16839 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
16840 line_ptr += 1;
16841 lh->line_base = read_1_signed_byte (abfd, line_ptr);
16842 line_ptr += 1;
16843 lh->line_range = read_1_byte (abfd, line_ptr);
16844 line_ptr += 1;
16845 lh->opcode_base = read_1_byte (abfd, line_ptr);
16846 line_ptr += 1;
16847 lh->standard_opcode_lengths
16848 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
16849
16850 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
16851 for (i = 1; i < lh->opcode_base; ++i)
16852 {
16853 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
16854 line_ptr += 1;
16855 }
16856
16857 /* Read directory table. */
16858 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
16859 {
16860 line_ptr += bytes_read;
16861 add_include_dir (lh, cur_dir);
16862 }
16863 line_ptr += bytes_read;
16864
16865 /* Read file name table. */
16866 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
16867 {
16868 unsigned int dir_index, mod_time, length;
16869
16870 line_ptr += bytes_read;
16871 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16872 line_ptr += bytes_read;
16873 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16874 line_ptr += bytes_read;
16875 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16876 line_ptr += bytes_read;
16877
16878 add_file_name (lh, cur_file, dir_index, mod_time, length);
16879 }
16880 line_ptr += bytes_read;
16881 lh->statement_program_start = line_ptr;
16882
16883 if (line_ptr > (section->buffer + section->size))
16884 complaint (&symfile_complaints,
16885 _("line number info header doesn't "
16886 "fit in `.debug_line' section"));
16887
16888 discard_cleanups (back_to);
16889 return lh;
16890 }
16891
16892 /* Subroutine of dwarf_decode_lines to simplify it.
16893 Return the file name of the psymtab for included file FILE_INDEX
16894 in line header LH of PST.
16895 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16896 If space for the result is malloc'd, it will be freed by a cleanup.
16897 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
16898
16899 The function creates dangling cleanup registration. */
16900
16901 static const char *
16902 psymtab_include_file_name (const struct line_header *lh, int file_index,
16903 const struct partial_symtab *pst,
16904 const char *comp_dir)
16905 {
16906 const struct file_entry fe = lh->file_names [file_index];
16907 const char *include_name = fe.name;
16908 const char *include_name_to_compare = include_name;
16909 const char *dir_name = NULL;
16910 const char *pst_filename;
16911 char *copied_name = NULL;
16912 int file_is_pst;
16913
16914 if (fe.dir_index)
16915 dir_name = lh->include_dirs[fe.dir_index - 1];
16916
16917 if (!IS_ABSOLUTE_PATH (include_name)
16918 && (dir_name != NULL || comp_dir != NULL))
16919 {
16920 /* Avoid creating a duplicate psymtab for PST.
16921 We do this by comparing INCLUDE_NAME and PST_FILENAME.
16922 Before we do the comparison, however, we need to account
16923 for DIR_NAME and COMP_DIR.
16924 First prepend dir_name (if non-NULL). If we still don't
16925 have an absolute path prepend comp_dir (if non-NULL).
16926 However, the directory we record in the include-file's
16927 psymtab does not contain COMP_DIR (to match the
16928 corresponding symtab(s)).
16929
16930 Example:
16931
16932 bash$ cd /tmp
16933 bash$ gcc -g ./hello.c
16934 include_name = "hello.c"
16935 dir_name = "."
16936 DW_AT_comp_dir = comp_dir = "/tmp"
16937 DW_AT_name = "./hello.c" */
16938
16939 if (dir_name != NULL)
16940 {
16941 char *tem = concat (dir_name, SLASH_STRING,
16942 include_name, (char *)NULL);
16943
16944 make_cleanup (xfree, tem);
16945 include_name = tem;
16946 include_name_to_compare = include_name;
16947 }
16948 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
16949 {
16950 char *tem = concat (comp_dir, SLASH_STRING,
16951 include_name, (char *)NULL);
16952
16953 make_cleanup (xfree, tem);
16954 include_name_to_compare = tem;
16955 }
16956 }
16957
16958 pst_filename = pst->filename;
16959 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
16960 {
16961 copied_name = concat (pst->dirname, SLASH_STRING,
16962 pst_filename, (char *)NULL);
16963 pst_filename = copied_name;
16964 }
16965
16966 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
16967
16968 if (copied_name != NULL)
16969 xfree (copied_name);
16970
16971 if (file_is_pst)
16972 return NULL;
16973 return include_name;
16974 }
16975
16976 /* Ignore this record_line request. */
16977
16978 static void
16979 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
16980 {
16981 return;
16982 }
16983
16984 /* Subroutine of dwarf_decode_lines to simplify it.
16985 Process the line number information in LH. */
16986
16987 static void
16988 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
16989 struct dwarf2_cu *cu, struct partial_symtab *pst)
16990 {
16991 const gdb_byte *line_ptr, *extended_end;
16992 const gdb_byte *line_end;
16993 unsigned int bytes_read, extended_len;
16994 unsigned char op_code, extended_op, adj_opcode;
16995 CORE_ADDR baseaddr;
16996 struct objfile *objfile = cu->objfile;
16997 bfd *abfd = objfile->obfd;
16998 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16999 const int decode_for_pst_p = (pst != NULL);
17000 struct subfile *last_subfile = NULL;
17001 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17002 = record_line;
17003
17004 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17005
17006 line_ptr = lh->statement_program_start;
17007 line_end = lh->statement_program_end;
17008
17009 /* Read the statement sequences until there's nothing left. */
17010 while (line_ptr < line_end)
17011 {
17012 /* state machine registers */
17013 CORE_ADDR address = 0;
17014 unsigned int file = 1;
17015 unsigned int line = 1;
17016 unsigned int column = 0;
17017 int is_stmt = lh->default_is_stmt;
17018 int basic_block = 0;
17019 int end_sequence = 0;
17020 CORE_ADDR addr;
17021 unsigned char op_index = 0;
17022
17023 if (!decode_for_pst_p && lh->num_file_names >= file)
17024 {
17025 /* Start a subfile for the current file of the state machine. */
17026 /* lh->include_dirs and lh->file_names are 0-based, but the
17027 directory and file name numbers in the statement program
17028 are 1-based. */
17029 struct file_entry *fe = &lh->file_names[file - 1];
17030 const char *dir = NULL;
17031
17032 if (fe->dir_index)
17033 dir = lh->include_dirs[fe->dir_index - 1];
17034
17035 dwarf2_start_subfile (fe->name, dir, comp_dir);
17036 }
17037
17038 /* Decode the table. */
17039 while (!end_sequence)
17040 {
17041 op_code = read_1_byte (abfd, line_ptr);
17042 line_ptr += 1;
17043 if (line_ptr > line_end)
17044 {
17045 dwarf2_debug_line_missing_end_sequence_complaint ();
17046 break;
17047 }
17048
17049 if (op_code >= lh->opcode_base)
17050 {
17051 /* Special operand. */
17052 adj_opcode = op_code - lh->opcode_base;
17053 address += (((op_index + (adj_opcode / lh->line_range))
17054 / lh->maximum_ops_per_instruction)
17055 * lh->minimum_instruction_length);
17056 op_index = ((op_index + (adj_opcode / lh->line_range))
17057 % lh->maximum_ops_per_instruction);
17058 line += lh->line_base + (adj_opcode % lh->line_range);
17059 if (lh->num_file_names < file || file == 0)
17060 dwarf2_debug_line_missing_file_complaint ();
17061 /* For now we ignore lines not starting on an
17062 instruction boundary. */
17063 else if (op_index == 0)
17064 {
17065 lh->file_names[file - 1].included_p = 1;
17066 if (!decode_for_pst_p && is_stmt)
17067 {
17068 if (last_subfile != current_subfile)
17069 {
17070 addr = gdbarch_addr_bits_remove (gdbarch, address);
17071 if (last_subfile)
17072 (*p_record_line) (last_subfile, 0, addr);
17073 last_subfile = current_subfile;
17074 }
17075 /* Append row to matrix using current values. */
17076 addr = gdbarch_addr_bits_remove (gdbarch, address);
17077 (*p_record_line) (current_subfile, line, addr);
17078 }
17079 }
17080 basic_block = 0;
17081 }
17082 else switch (op_code)
17083 {
17084 case DW_LNS_extended_op:
17085 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17086 &bytes_read);
17087 line_ptr += bytes_read;
17088 extended_end = line_ptr + extended_len;
17089 extended_op = read_1_byte (abfd, line_ptr);
17090 line_ptr += 1;
17091 switch (extended_op)
17092 {
17093 case DW_LNE_end_sequence:
17094 p_record_line = record_line;
17095 end_sequence = 1;
17096 break;
17097 case DW_LNE_set_address:
17098 address = read_address (abfd, line_ptr, cu, &bytes_read);
17099
17100 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
17101 {
17102 /* This line table is for a function which has been
17103 GCd by the linker. Ignore it. PR gdb/12528 */
17104
17105 long line_offset
17106 = line_ptr - get_debug_line_section (cu)->buffer;
17107
17108 complaint (&symfile_complaints,
17109 _(".debug_line address at offset 0x%lx is 0 "
17110 "[in module %s]"),
17111 line_offset, objfile_name (objfile));
17112 p_record_line = noop_record_line;
17113 }
17114
17115 op_index = 0;
17116 line_ptr += bytes_read;
17117 address += baseaddr;
17118 break;
17119 case DW_LNE_define_file:
17120 {
17121 const char *cur_file;
17122 unsigned int dir_index, mod_time, length;
17123
17124 cur_file = read_direct_string (abfd, line_ptr,
17125 &bytes_read);
17126 line_ptr += bytes_read;
17127 dir_index =
17128 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17129 line_ptr += bytes_read;
17130 mod_time =
17131 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17132 line_ptr += bytes_read;
17133 length =
17134 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17135 line_ptr += bytes_read;
17136 add_file_name (lh, cur_file, dir_index, mod_time, length);
17137 }
17138 break;
17139 case DW_LNE_set_discriminator:
17140 /* The discriminator is not interesting to the debugger;
17141 just ignore it. */
17142 line_ptr = extended_end;
17143 break;
17144 default:
17145 complaint (&symfile_complaints,
17146 _("mangled .debug_line section"));
17147 return;
17148 }
17149 /* Make sure that we parsed the extended op correctly. If e.g.
17150 we expected a different address size than the producer used,
17151 we may have read the wrong number of bytes. */
17152 if (line_ptr != extended_end)
17153 {
17154 complaint (&symfile_complaints,
17155 _("mangled .debug_line section"));
17156 return;
17157 }
17158 break;
17159 case DW_LNS_copy:
17160 if (lh->num_file_names < file || file == 0)
17161 dwarf2_debug_line_missing_file_complaint ();
17162 else
17163 {
17164 lh->file_names[file - 1].included_p = 1;
17165 if (!decode_for_pst_p && is_stmt)
17166 {
17167 if (last_subfile != current_subfile)
17168 {
17169 addr = gdbarch_addr_bits_remove (gdbarch, address);
17170 if (last_subfile)
17171 (*p_record_line) (last_subfile, 0, addr);
17172 last_subfile = current_subfile;
17173 }
17174 addr = gdbarch_addr_bits_remove (gdbarch, address);
17175 (*p_record_line) (current_subfile, line, addr);
17176 }
17177 }
17178 basic_block = 0;
17179 break;
17180 case DW_LNS_advance_pc:
17181 {
17182 CORE_ADDR adjust
17183 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17184
17185 address += (((op_index + adjust)
17186 / lh->maximum_ops_per_instruction)
17187 * lh->minimum_instruction_length);
17188 op_index = ((op_index + adjust)
17189 % lh->maximum_ops_per_instruction);
17190 line_ptr += bytes_read;
17191 }
17192 break;
17193 case DW_LNS_advance_line:
17194 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
17195 line_ptr += bytes_read;
17196 break;
17197 case DW_LNS_set_file:
17198 {
17199 /* The arrays lh->include_dirs and lh->file_names are
17200 0-based, but the directory and file name numbers in
17201 the statement program are 1-based. */
17202 struct file_entry *fe;
17203 const char *dir = NULL;
17204
17205 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17206 line_ptr += bytes_read;
17207 if (lh->num_file_names < file || file == 0)
17208 dwarf2_debug_line_missing_file_complaint ();
17209 else
17210 {
17211 fe = &lh->file_names[file - 1];
17212 if (fe->dir_index)
17213 dir = lh->include_dirs[fe->dir_index - 1];
17214 if (!decode_for_pst_p)
17215 {
17216 last_subfile = current_subfile;
17217 dwarf2_start_subfile (fe->name, dir, comp_dir);
17218 }
17219 }
17220 }
17221 break;
17222 case DW_LNS_set_column:
17223 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17224 line_ptr += bytes_read;
17225 break;
17226 case DW_LNS_negate_stmt:
17227 is_stmt = (!is_stmt);
17228 break;
17229 case DW_LNS_set_basic_block:
17230 basic_block = 1;
17231 break;
17232 /* Add to the address register of the state machine the
17233 address increment value corresponding to special opcode
17234 255. I.e., this value is scaled by the minimum
17235 instruction length since special opcode 255 would have
17236 scaled the increment. */
17237 case DW_LNS_const_add_pc:
17238 {
17239 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17240
17241 address += (((op_index + adjust)
17242 / lh->maximum_ops_per_instruction)
17243 * lh->minimum_instruction_length);
17244 op_index = ((op_index + adjust)
17245 % lh->maximum_ops_per_instruction);
17246 }
17247 break;
17248 case DW_LNS_fixed_advance_pc:
17249 address += read_2_bytes (abfd, line_ptr);
17250 op_index = 0;
17251 line_ptr += 2;
17252 break;
17253 default:
17254 {
17255 /* Unknown standard opcode, ignore it. */
17256 int i;
17257
17258 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17259 {
17260 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17261 line_ptr += bytes_read;
17262 }
17263 }
17264 }
17265 }
17266 if (lh->num_file_names < file || file == 0)
17267 dwarf2_debug_line_missing_file_complaint ();
17268 else
17269 {
17270 lh->file_names[file - 1].included_p = 1;
17271 if (!decode_for_pst_p)
17272 {
17273 addr = gdbarch_addr_bits_remove (gdbarch, address);
17274 (*p_record_line) (current_subfile, 0, addr);
17275 }
17276 }
17277 }
17278 }
17279
17280 /* Decode the Line Number Program (LNP) for the given line_header
17281 structure and CU. The actual information extracted and the type
17282 of structures created from the LNP depends on the value of PST.
17283
17284 1. If PST is NULL, then this procedure uses the data from the program
17285 to create all necessary symbol tables, and their linetables.
17286
17287 2. If PST is not NULL, this procedure reads the program to determine
17288 the list of files included by the unit represented by PST, and
17289 builds all the associated partial symbol tables.
17290
17291 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17292 It is used for relative paths in the line table.
17293 NOTE: When processing partial symtabs (pst != NULL),
17294 comp_dir == pst->dirname.
17295
17296 NOTE: It is important that psymtabs have the same file name (via strcmp)
17297 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17298 symtab we don't use it in the name of the psymtabs we create.
17299 E.g. expand_line_sal requires this when finding psymtabs to expand.
17300 A good testcase for this is mb-inline.exp. */
17301
17302 static void
17303 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17304 struct dwarf2_cu *cu, struct partial_symtab *pst,
17305 int want_line_info)
17306 {
17307 struct objfile *objfile = cu->objfile;
17308 const int decode_for_pst_p = (pst != NULL);
17309 struct subfile *first_subfile = current_subfile;
17310
17311 if (want_line_info)
17312 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
17313
17314 if (decode_for_pst_p)
17315 {
17316 int file_index;
17317
17318 /* Now that we're done scanning the Line Header Program, we can
17319 create the psymtab of each included file. */
17320 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17321 if (lh->file_names[file_index].included_p == 1)
17322 {
17323 const char *include_name =
17324 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17325 if (include_name != NULL)
17326 dwarf2_create_include_psymtab (include_name, pst, objfile);
17327 }
17328 }
17329 else
17330 {
17331 /* Make sure a symtab is created for every file, even files
17332 which contain only variables (i.e. no code with associated
17333 line numbers). */
17334 int i;
17335
17336 for (i = 0; i < lh->num_file_names; i++)
17337 {
17338 const char *dir = NULL;
17339 struct file_entry *fe;
17340
17341 fe = &lh->file_names[i];
17342 if (fe->dir_index)
17343 dir = lh->include_dirs[fe->dir_index - 1];
17344 dwarf2_start_subfile (fe->name, dir, comp_dir);
17345
17346 /* Skip the main file; we don't need it, and it must be
17347 allocated last, so that it will show up before the
17348 non-primary symtabs in the objfile's symtab list. */
17349 if (current_subfile == first_subfile)
17350 continue;
17351
17352 if (current_subfile->symtab == NULL)
17353 current_subfile->symtab = allocate_symtab (current_subfile->name,
17354 objfile);
17355 fe->symtab = current_subfile->symtab;
17356 }
17357 }
17358 }
17359
17360 /* Start a subfile for DWARF. FILENAME is the name of the file and
17361 DIRNAME the name of the source directory which contains FILENAME
17362 or NULL if not known. COMP_DIR is the compilation directory for the
17363 linetable's compilation unit or NULL if not known.
17364 This routine tries to keep line numbers from identical absolute and
17365 relative file names in a common subfile.
17366
17367 Using the `list' example from the GDB testsuite, which resides in
17368 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17369 of /srcdir/list0.c yields the following debugging information for list0.c:
17370
17371 DW_AT_name: /srcdir/list0.c
17372 DW_AT_comp_dir: /compdir
17373 files.files[0].name: list0.h
17374 files.files[0].dir: /srcdir
17375 files.files[1].name: list0.c
17376 files.files[1].dir: /srcdir
17377
17378 The line number information for list0.c has to end up in a single
17379 subfile, so that `break /srcdir/list0.c:1' works as expected.
17380 start_subfile will ensure that this happens provided that we pass the
17381 concatenation of files.files[1].dir and files.files[1].name as the
17382 subfile's name. */
17383
17384 static void
17385 dwarf2_start_subfile (const char *filename, const char *dirname,
17386 const char *comp_dir)
17387 {
17388 char *copy = NULL;
17389
17390 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17391 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17392 second argument to start_subfile. To be consistent, we do the
17393 same here. In order not to lose the line information directory,
17394 we concatenate it to the filename when it makes sense.
17395 Note that the Dwarf3 standard says (speaking of filenames in line
17396 information): ``The directory index is ignored for file names
17397 that represent full path names''. Thus ignoring dirname in the
17398 `else' branch below isn't an issue. */
17399
17400 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17401 {
17402 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17403 filename = copy;
17404 }
17405
17406 start_subfile (filename, comp_dir);
17407
17408 if (copy != NULL)
17409 xfree (copy);
17410 }
17411
17412 /* Start a symtab for DWARF.
17413 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17414
17415 static void
17416 dwarf2_start_symtab (struct dwarf2_cu *cu,
17417 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17418 {
17419 start_symtab (name, comp_dir, low_pc);
17420 record_debugformat ("DWARF 2");
17421 record_producer (cu->producer);
17422
17423 /* We assume that we're processing GCC output. */
17424 processing_gcc_compilation = 2;
17425
17426 cu->processing_has_namespace_info = 0;
17427 }
17428
17429 static void
17430 var_decode_location (struct attribute *attr, struct symbol *sym,
17431 struct dwarf2_cu *cu)
17432 {
17433 struct objfile *objfile = cu->objfile;
17434 struct comp_unit_head *cu_header = &cu->header;
17435
17436 /* NOTE drow/2003-01-30: There used to be a comment and some special
17437 code here to turn a symbol with DW_AT_external and a
17438 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17439 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17440 with some versions of binutils) where shared libraries could have
17441 relocations against symbols in their debug information - the
17442 minimal symbol would have the right address, but the debug info
17443 would not. It's no longer necessary, because we will explicitly
17444 apply relocations when we read in the debug information now. */
17445
17446 /* A DW_AT_location attribute with no contents indicates that a
17447 variable has been optimized away. */
17448 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17449 {
17450 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17451 return;
17452 }
17453
17454 /* Handle one degenerate form of location expression specially, to
17455 preserve GDB's previous behavior when section offsets are
17456 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17457 then mark this symbol as LOC_STATIC. */
17458
17459 if (attr_form_is_block (attr)
17460 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17461 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17462 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17463 && (DW_BLOCK (attr)->size
17464 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17465 {
17466 unsigned int dummy;
17467
17468 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17469 SYMBOL_VALUE_ADDRESS (sym) =
17470 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17471 else
17472 SYMBOL_VALUE_ADDRESS (sym) =
17473 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17474 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17475 fixup_symbol_section (sym, objfile);
17476 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17477 SYMBOL_SECTION (sym));
17478 return;
17479 }
17480
17481 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17482 expression evaluator, and use LOC_COMPUTED only when necessary
17483 (i.e. when the value of a register or memory location is
17484 referenced, or a thread-local block, etc.). Then again, it might
17485 not be worthwhile. I'm assuming that it isn't unless performance
17486 or memory numbers show me otherwise. */
17487
17488 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17489
17490 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17491 cu->has_loclist = 1;
17492 }
17493
17494 /* Given a pointer to a DWARF information entry, figure out if we need
17495 to make a symbol table entry for it, and if so, create a new entry
17496 and return a pointer to it.
17497 If TYPE is NULL, determine symbol type from the die, otherwise
17498 used the passed type.
17499 If SPACE is not NULL, use it to hold the new symbol. If it is
17500 NULL, allocate a new symbol on the objfile's obstack. */
17501
17502 static struct symbol *
17503 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17504 struct symbol *space)
17505 {
17506 struct objfile *objfile = cu->objfile;
17507 struct symbol *sym = NULL;
17508 const char *name;
17509 struct attribute *attr = NULL;
17510 struct attribute *attr2 = NULL;
17511 CORE_ADDR baseaddr;
17512 struct pending **list_to_add = NULL;
17513
17514 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17515
17516 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17517
17518 name = dwarf2_name (die, cu);
17519 if (name)
17520 {
17521 const char *linkagename;
17522 int suppress_add = 0;
17523
17524 if (space)
17525 sym = space;
17526 else
17527 sym = allocate_symbol (objfile);
17528 OBJSTAT (objfile, n_syms++);
17529
17530 /* Cache this symbol's name and the name's demangled form (if any). */
17531 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17532 linkagename = dwarf2_physname (name, die, cu);
17533 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17534
17535 /* Fortran does not have mangling standard and the mangling does differ
17536 between gfortran, iFort etc. */
17537 if (cu->language == language_fortran
17538 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17539 symbol_set_demangled_name (&(sym->ginfo),
17540 dwarf2_full_name (name, die, cu),
17541 NULL);
17542
17543 /* Default assumptions.
17544 Use the passed type or decode it from the die. */
17545 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17546 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17547 if (type != NULL)
17548 SYMBOL_TYPE (sym) = type;
17549 else
17550 SYMBOL_TYPE (sym) = die_type (die, cu);
17551 attr = dwarf2_attr (die,
17552 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17553 cu);
17554 if (attr)
17555 {
17556 SYMBOL_LINE (sym) = DW_UNSND (attr);
17557 }
17558
17559 attr = dwarf2_attr (die,
17560 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17561 cu);
17562 if (attr)
17563 {
17564 int file_index = DW_UNSND (attr);
17565
17566 if (cu->line_header == NULL
17567 || file_index > cu->line_header->num_file_names)
17568 complaint (&symfile_complaints,
17569 _("file index out of range"));
17570 else if (file_index > 0)
17571 {
17572 struct file_entry *fe;
17573
17574 fe = &cu->line_header->file_names[file_index - 1];
17575 SYMBOL_SYMTAB (sym) = fe->symtab;
17576 }
17577 }
17578
17579 switch (die->tag)
17580 {
17581 case DW_TAG_label:
17582 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17583 if (attr)
17584 SYMBOL_VALUE_ADDRESS (sym)
17585 = attr_value_as_address (attr) + baseaddr;
17586 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17587 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17588 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17589 add_symbol_to_list (sym, cu->list_in_scope);
17590 break;
17591 case DW_TAG_subprogram:
17592 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17593 finish_block. */
17594 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17595 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17596 if ((attr2 && (DW_UNSND (attr2) != 0))
17597 || cu->language == language_ada)
17598 {
17599 /* Subprograms marked external are stored as a global symbol.
17600 Ada subprograms, whether marked external or not, are always
17601 stored as a global symbol, because we want to be able to
17602 access them globally. For instance, we want to be able
17603 to break on a nested subprogram without having to
17604 specify the context. */
17605 list_to_add = &global_symbols;
17606 }
17607 else
17608 {
17609 list_to_add = cu->list_in_scope;
17610 }
17611 break;
17612 case DW_TAG_inlined_subroutine:
17613 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17614 finish_block. */
17615 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17616 SYMBOL_INLINED (sym) = 1;
17617 list_to_add = cu->list_in_scope;
17618 break;
17619 case DW_TAG_template_value_param:
17620 suppress_add = 1;
17621 /* Fall through. */
17622 case DW_TAG_constant:
17623 case DW_TAG_variable:
17624 case DW_TAG_member:
17625 /* Compilation with minimal debug info may result in
17626 variables with missing type entries. Change the
17627 misleading `void' type to something sensible. */
17628 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17629 SYMBOL_TYPE (sym)
17630 = objfile_type (objfile)->nodebug_data_symbol;
17631
17632 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17633 /* In the case of DW_TAG_member, we should only be called for
17634 static const members. */
17635 if (die->tag == DW_TAG_member)
17636 {
17637 /* dwarf2_add_field uses die_is_declaration,
17638 so we do the same. */
17639 gdb_assert (die_is_declaration (die, cu));
17640 gdb_assert (attr);
17641 }
17642 if (attr)
17643 {
17644 dwarf2_const_value (attr, sym, cu);
17645 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17646 if (!suppress_add)
17647 {
17648 if (attr2 && (DW_UNSND (attr2) != 0))
17649 list_to_add = &global_symbols;
17650 else
17651 list_to_add = cu->list_in_scope;
17652 }
17653 break;
17654 }
17655 attr = dwarf2_attr (die, DW_AT_location, cu);
17656 if (attr)
17657 {
17658 var_decode_location (attr, sym, cu);
17659 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17660
17661 /* Fortran explicitly imports any global symbols to the local
17662 scope by DW_TAG_common_block. */
17663 if (cu->language == language_fortran && die->parent
17664 && die->parent->tag == DW_TAG_common_block)
17665 attr2 = NULL;
17666
17667 if (SYMBOL_CLASS (sym) == LOC_STATIC
17668 && SYMBOL_VALUE_ADDRESS (sym) == 0
17669 && !dwarf2_per_objfile->has_section_at_zero)
17670 {
17671 /* When a static variable is eliminated by the linker,
17672 the corresponding debug information is not stripped
17673 out, but the variable address is set to null;
17674 do not add such variables into symbol table. */
17675 }
17676 else if (attr2 && (DW_UNSND (attr2) != 0))
17677 {
17678 /* Workaround gfortran PR debug/40040 - it uses
17679 DW_AT_location for variables in -fPIC libraries which may
17680 get overriden by other libraries/executable and get
17681 a different address. Resolve it by the minimal symbol
17682 which may come from inferior's executable using copy
17683 relocation. Make this workaround only for gfortran as for
17684 other compilers GDB cannot guess the minimal symbol
17685 Fortran mangling kind. */
17686 if (cu->language == language_fortran && die->parent
17687 && die->parent->tag == DW_TAG_module
17688 && cu->producer
17689 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
17690 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17691
17692 /* A variable with DW_AT_external is never static,
17693 but it may be block-scoped. */
17694 list_to_add = (cu->list_in_scope == &file_symbols
17695 ? &global_symbols : cu->list_in_scope);
17696 }
17697 else
17698 list_to_add = cu->list_in_scope;
17699 }
17700 else
17701 {
17702 /* We do not know the address of this symbol.
17703 If it is an external symbol and we have type information
17704 for it, enter the symbol as a LOC_UNRESOLVED symbol.
17705 The address of the variable will then be determined from
17706 the minimal symbol table whenever the variable is
17707 referenced. */
17708 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17709
17710 /* Fortran explicitly imports any global symbols to the local
17711 scope by DW_TAG_common_block. */
17712 if (cu->language == language_fortran && die->parent
17713 && die->parent->tag == DW_TAG_common_block)
17714 {
17715 /* SYMBOL_CLASS doesn't matter here because
17716 read_common_block is going to reset it. */
17717 if (!suppress_add)
17718 list_to_add = cu->list_in_scope;
17719 }
17720 else if (attr2 && (DW_UNSND (attr2) != 0)
17721 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
17722 {
17723 /* A variable with DW_AT_external is never static, but it
17724 may be block-scoped. */
17725 list_to_add = (cu->list_in_scope == &file_symbols
17726 ? &global_symbols : cu->list_in_scope);
17727
17728 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17729 }
17730 else if (!die_is_declaration (die, cu))
17731 {
17732 /* Use the default LOC_OPTIMIZED_OUT class. */
17733 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
17734 if (!suppress_add)
17735 list_to_add = cu->list_in_scope;
17736 }
17737 }
17738 break;
17739 case DW_TAG_formal_parameter:
17740 /* If we are inside a function, mark this as an argument. If
17741 not, we might be looking at an argument to an inlined function
17742 when we do not have enough information to show inlined frames;
17743 pretend it's a local variable in that case so that the user can
17744 still see it. */
17745 if (context_stack_depth > 0
17746 && context_stack[context_stack_depth - 1].name != NULL)
17747 SYMBOL_IS_ARGUMENT (sym) = 1;
17748 attr = dwarf2_attr (die, DW_AT_location, cu);
17749 if (attr)
17750 {
17751 var_decode_location (attr, sym, cu);
17752 }
17753 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17754 if (attr)
17755 {
17756 dwarf2_const_value (attr, sym, cu);
17757 }
17758
17759 list_to_add = cu->list_in_scope;
17760 break;
17761 case DW_TAG_unspecified_parameters:
17762 /* From varargs functions; gdb doesn't seem to have any
17763 interest in this information, so just ignore it for now.
17764 (FIXME?) */
17765 break;
17766 case DW_TAG_template_type_param:
17767 suppress_add = 1;
17768 /* Fall through. */
17769 case DW_TAG_class_type:
17770 case DW_TAG_interface_type:
17771 case DW_TAG_structure_type:
17772 case DW_TAG_union_type:
17773 case DW_TAG_set_type:
17774 case DW_TAG_enumeration_type:
17775 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17776 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
17777
17778 {
17779 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
17780 really ever be static objects: otherwise, if you try
17781 to, say, break of a class's method and you're in a file
17782 which doesn't mention that class, it won't work unless
17783 the check for all static symbols in lookup_symbol_aux
17784 saves you. See the OtherFileClass tests in
17785 gdb.c++/namespace.exp. */
17786
17787 if (!suppress_add)
17788 {
17789 list_to_add = (cu->list_in_scope == &file_symbols
17790 && (cu->language == language_cplus
17791 || cu->language == language_java)
17792 ? &global_symbols : cu->list_in_scope);
17793
17794 /* The semantics of C++ state that "struct foo {
17795 ... }" also defines a typedef for "foo". A Java
17796 class declaration also defines a typedef for the
17797 class. */
17798 if (cu->language == language_cplus
17799 || cu->language == language_java
17800 || cu->language == language_ada)
17801 {
17802 /* The symbol's name is already allocated along
17803 with this objfile, so we don't need to
17804 duplicate it for the type. */
17805 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
17806 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
17807 }
17808 }
17809 }
17810 break;
17811 case DW_TAG_typedef:
17812 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17813 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17814 list_to_add = cu->list_in_scope;
17815 break;
17816 case DW_TAG_base_type:
17817 case DW_TAG_subrange_type:
17818 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17819 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17820 list_to_add = cu->list_in_scope;
17821 break;
17822 case DW_TAG_enumerator:
17823 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17824 if (attr)
17825 {
17826 dwarf2_const_value (attr, sym, cu);
17827 }
17828 {
17829 /* NOTE: carlton/2003-11-10: See comment above in the
17830 DW_TAG_class_type, etc. block. */
17831
17832 list_to_add = (cu->list_in_scope == &file_symbols
17833 && (cu->language == language_cplus
17834 || cu->language == language_java)
17835 ? &global_symbols : cu->list_in_scope);
17836 }
17837 break;
17838 case DW_TAG_imported_declaration:
17839 case DW_TAG_namespace:
17840 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17841 list_to_add = &global_symbols;
17842 break;
17843 case DW_TAG_module:
17844 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17845 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
17846 list_to_add = &global_symbols;
17847 break;
17848 case DW_TAG_common_block:
17849 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
17850 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
17851 add_symbol_to_list (sym, cu->list_in_scope);
17852 break;
17853 default:
17854 /* Not a tag we recognize. Hopefully we aren't processing
17855 trash data, but since we must specifically ignore things
17856 we don't recognize, there is nothing else we should do at
17857 this point. */
17858 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
17859 dwarf_tag_name (die->tag));
17860 break;
17861 }
17862
17863 if (suppress_add)
17864 {
17865 sym->hash_next = objfile->template_symbols;
17866 objfile->template_symbols = sym;
17867 list_to_add = NULL;
17868 }
17869
17870 if (list_to_add != NULL)
17871 add_symbol_to_list (sym, list_to_add);
17872
17873 /* For the benefit of old versions of GCC, check for anonymous
17874 namespaces based on the demangled name. */
17875 if (!cu->processing_has_namespace_info
17876 && cu->language == language_cplus)
17877 cp_scan_for_anonymous_namespaces (sym, objfile);
17878 }
17879 return (sym);
17880 }
17881
17882 /* A wrapper for new_symbol_full that always allocates a new symbol. */
17883
17884 static struct symbol *
17885 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
17886 {
17887 return new_symbol_full (die, type, cu, NULL);
17888 }
17889
17890 /* Given an attr with a DW_FORM_dataN value in host byte order,
17891 zero-extend it as appropriate for the symbol's type. The DWARF
17892 standard (v4) is not entirely clear about the meaning of using
17893 DW_FORM_dataN for a constant with a signed type, where the type is
17894 wider than the data. The conclusion of a discussion on the DWARF
17895 list was that this is unspecified. We choose to always zero-extend
17896 because that is the interpretation long in use by GCC. */
17897
17898 static gdb_byte *
17899 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
17900 struct dwarf2_cu *cu, LONGEST *value, int bits)
17901 {
17902 struct objfile *objfile = cu->objfile;
17903 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
17904 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
17905 LONGEST l = DW_UNSND (attr);
17906
17907 if (bits < sizeof (*value) * 8)
17908 {
17909 l &= ((LONGEST) 1 << bits) - 1;
17910 *value = l;
17911 }
17912 else if (bits == sizeof (*value) * 8)
17913 *value = l;
17914 else
17915 {
17916 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
17917 store_unsigned_integer (bytes, bits / 8, byte_order, l);
17918 return bytes;
17919 }
17920
17921 return NULL;
17922 }
17923
17924 /* Read a constant value from an attribute. Either set *VALUE, or if
17925 the value does not fit in *VALUE, set *BYTES - either already
17926 allocated on the objfile obstack, or newly allocated on OBSTACK,
17927 or, set *BATON, if we translated the constant to a location
17928 expression. */
17929
17930 static void
17931 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
17932 const char *name, struct obstack *obstack,
17933 struct dwarf2_cu *cu,
17934 LONGEST *value, const gdb_byte **bytes,
17935 struct dwarf2_locexpr_baton **baton)
17936 {
17937 struct objfile *objfile = cu->objfile;
17938 struct comp_unit_head *cu_header = &cu->header;
17939 struct dwarf_block *blk;
17940 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
17941 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
17942
17943 *value = 0;
17944 *bytes = NULL;
17945 *baton = NULL;
17946
17947 switch (attr->form)
17948 {
17949 case DW_FORM_addr:
17950 case DW_FORM_GNU_addr_index:
17951 {
17952 gdb_byte *data;
17953
17954 if (TYPE_LENGTH (type) != cu_header->addr_size)
17955 dwarf2_const_value_length_mismatch_complaint (name,
17956 cu_header->addr_size,
17957 TYPE_LENGTH (type));
17958 /* Symbols of this form are reasonably rare, so we just
17959 piggyback on the existing location code rather than writing
17960 a new implementation of symbol_computed_ops. */
17961 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
17962 (*baton)->per_cu = cu->per_cu;
17963 gdb_assert ((*baton)->per_cu);
17964
17965 (*baton)->size = 2 + cu_header->addr_size;
17966 data = obstack_alloc (obstack, (*baton)->size);
17967 (*baton)->data = data;
17968
17969 data[0] = DW_OP_addr;
17970 store_unsigned_integer (&data[1], cu_header->addr_size,
17971 byte_order, DW_ADDR (attr));
17972 data[cu_header->addr_size + 1] = DW_OP_stack_value;
17973 }
17974 break;
17975 case DW_FORM_string:
17976 case DW_FORM_strp:
17977 case DW_FORM_GNU_str_index:
17978 case DW_FORM_GNU_strp_alt:
17979 /* DW_STRING is already allocated on the objfile obstack, point
17980 directly to it. */
17981 *bytes = (const gdb_byte *) DW_STRING (attr);
17982 break;
17983 case DW_FORM_block1:
17984 case DW_FORM_block2:
17985 case DW_FORM_block4:
17986 case DW_FORM_block:
17987 case DW_FORM_exprloc:
17988 blk = DW_BLOCK (attr);
17989 if (TYPE_LENGTH (type) != blk->size)
17990 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
17991 TYPE_LENGTH (type));
17992 *bytes = blk->data;
17993 break;
17994
17995 /* The DW_AT_const_value attributes are supposed to carry the
17996 symbol's value "represented as it would be on the target
17997 architecture." By the time we get here, it's already been
17998 converted to host endianness, so we just need to sign- or
17999 zero-extend it as appropriate. */
18000 case DW_FORM_data1:
18001 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18002 break;
18003 case DW_FORM_data2:
18004 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18005 break;
18006 case DW_FORM_data4:
18007 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18008 break;
18009 case DW_FORM_data8:
18010 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18011 break;
18012
18013 case DW_FORM_sdata:
18014 *value = DW_SND (attr);
18015 break;
18016
18017 case DW_FORM_udata:
18018 *value = DW_UNSND (attr);
18019 break;
18020
18021 default:
18022 complaint (&symfile_complaints,
18023 _("unsupported const value attribute form: '%s'"),
18024 dwarf_form_name (attr->form));
18025 *value = 0;
18026 break;
18027 }
18028 }
18029
18030
18031 /* Copy constant value from an attribute to a symbol. */
18032
18033 static void
18034 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18035 struct dwarf2_cu *cu)
18036 {
18037 struct objfile *objfile = cu->objfile;
18038 struct comp_unit_head *cu_header = &cu->header;
18039 LONGEST value;
18040 const gdb_byte *bytes;
18041 struct dwarf2_locexpr_baton *baton;
18042
18043 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18044 SYMBOL_PRINT_NAME (sym),
18045 &objfile->objfile_obstack, cu,
18046 &value, &bytes, &baton);
18047
18048 if (baton != NULL)
18049 {
18050 SYMBOL_LOCATION_BATON (sym) = baton;
18051 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18052 }
18053 else if (bytes != NULL)
18054 {
18055 SYMBOL_VALUE_BYTES (sym) = bytes;
18056 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18057 }
18058 else
18059 {
18060 SYMBOL_VALUE (sym) = value;
18061 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18062 }
18063 }
18064
18065 /* Return the type of the die in question using its DW_AT_type attribute. */
18066
18067 static struct type *
18068 die_type (struct die_info *die, struct dwarf2_cu *cu)
18069 {
18070 struct attribute *type_attr;
18071
18072 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18073 if (!type_attr)
18074 {
18075 /* A missing DW_AT_type represents a void type. */
18076 return objfile_type (cu->objfile)->builtin_void;
18077 }
18078
18079 return lookup_die_type (die, type_attr, cu);
18080 }
18081
18082 /* True iff CU's producer generates GNAT Ada auxiliary information
18083 that allows to find parallel types through that information instead
18084 of having to do expensive parallel lookups by type name. */
18085
18086 static int
18087 need_gnat_info (struct dwarf2_cu *cu)
18088 {
18089 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18090 of GNAT produces this auxiliary information, without any indication
18091 that it is produced. Part of enhancing the FSF version of GNAT
18092 to produce that information will be to put in place an indicator
18093 that we can use in order to determine whether the descriptive type
18094 info is available or not. One suggestion that has been made is
18095 to use a new attribute, attached to the CU die. For now, assume
18096 that the descriptive type info is not available. */
18097 return 0;
18098 }
18099
18100 /* Return the auxiliary type of the die in question using its
18101 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18102 attribute is not present. */
18103
18104 static struct type *
18105 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18106 {
18107 struct attribute *type_attr;
18108
18109 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18110 if (!type_attr)
18111 return NULL;
18112
18113 return lookup_die_type (die, type_attr, cu);
18114 }
18115
18116 /* If DIE has a descriptive_type attribute, then set the TYPE's
18117 descriptive type accordingly. */
18118
18119 static void
18120 set_descriptive_type (struct type *type, struct die_info *die,
18121 struct dwarf2_cu *cu)
18122 {
18123 struct type *descriptive_type = die_descriptive_type (die, cu);
18124
18125 if (descriptive_type)
18126 {
18127 ALLOCATE_GNAT_AUX_TYPE (type);
18128 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18129 }
18130 }
18131
18132 /* Return the containing type of the die in question using its
18133 DW_AT_containing_type attribute. */
18134
18135 static struct type *
18136 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18137 {
18138 struct attribute *type_attr;
18139
18140 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18141 if (!type_attr)
18142 error (_("Dwarf Error: Problem turning containing type into gdb type "
18143 "[in module %s]"), objfile_name (cu->objfile));
18144
18145 return lookup_die_type (die, type_attr, cu);
18146 }
18147
18148 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18149
18150 static struct type *
18151 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18152 {
18153 struct objfile *objfile = dwarf2_per_objfile->objfile;
18154 char *message, *saved;
18155
18156 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18157 objfile_name (objfile),
18158 cu->header.offset.sect_off,
18159 die->offset.sect_off);
18160 saved = obstack_copy0 (&objfile->objfile_obstack,
18161 message, strlen (message));
18162 xfree (message);
18163
18164 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18165 }
18166
18167 /* Look up the type of DIE in CU using its type attribute ATTR.
18168 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18169 DW_AT_containing_type.
18170 If there is no type substitute an error marker. */
18171
18172 static struct type *
18173 lookup_die_type (struct die_info *die, const struct attribute *attr,
18174 struct dwarf2_cu *cu)
18175 {
18176 struct objfile *objfile = cu->objfile;
18177 struct type *this_type;
18178
18179 gdb_assert (attr->name == DW_AT_type
18180 || attr->name == DW_AT_GNAT_descriptive_type
18181 || attr->name == DW_AT_containing_type);
18182
18183 /* First see if we have it cached. */
18184
18185 if (attr->form == DW_FORM_GNU_ref_alt)
18186 {
18187 struct dwarf2_per_cu_data *per_cu;
18188 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18189
18190 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18191 this_type = get_die_type_at_offset (offset, per_cu);
18192 }
18193 else if (attr_form_is_ref (attr))
18194 {
18195 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18196
18197 this_type = get_die_type_at_offset (offset, cu->per_cu);
18198 }
18199 else if (attr->form == DW_FORM_ref_sig8)
18200 {
18201 ULONGEST signature = DW_SIGNATURE (attr);
18202
18203 return get_signatured_type (die, signature, cu);
18204 }
18205 else
18206 {
18207 complaint (&symfile_complaints,
18208 _("Dwarf Error: Bad type attribute %s in DIE"
18209 " at 0x%x [in module %s]"),
18210 dwarf_attr_name (attr->name), die->offset.sect_off,
18211 objfile_name (objfile));
18212 return build_error_marker_type (cu, die);
18213 }
18214
18215 /* If not cached we need to read it in. */
18216
18217 if (this_type == NULL)
18218 {
18219 struct die_info *type_die = NULL;
18220 struct dwarf2_cu *type_cu = cu;
18221
18222 if (attr_form_is_ref (attr))
18223 type_die = follow_die_ref (die, attr, &type_cu);
18224 if (type_die == NULL)
18225 return build_error_marker_type (cu, die);
18226 /* If we find the type now, it's probably because the type came
18227 from an inter-CU reference and the type's CU got expanded before
18228 ours. */
18229 this_type = read_type_die (type_die, type_cu);
18230 }
18231
18232 /* If we still don't have a type use an error marker. */
18233
18234 if (this_type == NULL)
18235 return build_error_marker_type (cu, die);
18236
18237 return this_type;
18238 }
18239
18240 /* Return the type in DIE, CU.
18241 Returns NULL for invalid types.
18242
18243 This first does a lookup in die_type_hash,
18244 and only reads the die in if necessary.
18245
18246 NOTE: This can be called when reading in partial or full symbols. */
18247
18248 static struct type *
18249 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18250 {
18251 struct type *this_type;
18252
18253 this_type = get_die_type (die, cu);
18254 if (this_type)
18255 return this_type;
18256
18257 return read_type_die_1 (die, cu);
18258 }
18259
18260 /* Read the type in DIE, CU.
18261 Returns NULL for invalid types. */
18262
18263 static struct type *
18264 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18265 {
18266 struct type *this_type = NULL;
18267
18268 switch (die->tag)
18269 {
18270 case DW_TAG_class_type:
18271 case DW_TAG_interface_type:
18272 case DW_TAG_structure_type:
18273 case DW_TAG_union_type:
18274 this_type = read_structure_type (die, cu);
18275 break;
18276 case DW_TAG_enumeration_type:
18277 this_type = read_enumeration_type (die, cu);
18278 break;
18279 case DW_TAG_subprogram:
18280 case DW_TAG_subroutine_type:
18281 case DW_TAG_inlined_subroutine:
18282 this_type = read_subroutine_type (die, cu);
18283 break;
18284 case DW_TAG_array_type:
18285 this_type = read_array_type (die, cu);
18286 break;
18287 case DW_TAG_set_type:
18288 this_type = read_set_type (die, cu);
18289 break;
18290 case DW_TAG_pointer_type:
18291 this_type = read_tag_pointer_type (die, cu);
18292 break;
18293 case DW_TAG_ptr_to_member_type:
18294 this_type = read_tag_ptr_to_member_type (die, cu);
18295 break;
18296 case DW_TAG_reference_type:
18297 this_type = read_tag_reference_type (die, cu);
18298 break;
18299 case DW_TAG_const_type:
18300 this_type = read_tag_const_type (die, cu);
18301 break;
18302 case DW_TAG_volatile_type:
18303 this_type = read_tag_volatile_type (die, cu);
18304 break;
18305 case DW_TAG_restrict_type:
18306 this_type = read_tag_restrict_type (die, cu);
18307 break;
18308 case DW_TAG_string_type:
18309 this_type = read_tag_string_type (die, cu);
18310 break;
18311 case DW_TAG_typedef:
18312 this_type = read_typedef (die, cu);
18313 break;
18314 case DW_TAG_subrange_type:
18315 this_type = read_subrange_type (die, cu);
18316 break;
18317 case DW_TAG_base_type:
18318 this_type = read_base_type (die, cu);
18319 break;
18320 case DW_TAG_unspecified_type:
18321 this_type = read_unspecified_type (die, cu);
18322 break;
18323 case DW_TAG_namespace:
18324 this_type = read_namespace_type (die, cu);
18325 break;
18326 case DW_TAG_module:
18327 this_type = read_module_type (die, cu);
18328 break;
18329 default:
18330 complaint (&symfile_complaints,
18331 _("unexpected tag in read_type_die: '%s'"),
18332 dwarf_tag_name (die->tag));
18333 break;
18334 }
18335
18336 return this_type;
18337 }
18338
18339 /* See if we can figure out if the class lives in a namespace. We do
18340 this by looking for a member function; its demangled name will
18341 contain namespace info, if there is any.
18342 Return the computed name or NULL.
18343 Space for the result is allocated on the objfile's obstack.
18344 This is the full-die version of guess_partial_die_structure_name.
18345 In this case we know DIE has no useful parent. */
18346
18347 static char *
18348 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18349 {
18350 struct die_info *spec_die;
18351 struct dwarf2_cu *spec_cu;
18352 struct die_info *child;
18353
18354 spec_cu = cu;
18355 spec_die = die_specification (die, &spec_cu);
18356 if (spec_die != NULL)
18357 {
18358 die = spec_die;
18359 cu = spec_cu;
18360 }
18361
18362 for (child = die->child;
18363 child != NULL;
18364 child = child->sibling)
18365 {
18366 if (child->tag == DW_TAG_subprogram)
18367 {
18368 struct attribute *attr;
18369
18370 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18371 if (attr == NULL)
18372 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18373 if (attr != NULL)
18374 {
18375 char *actual_name
18376 = language_class_name_from_physname (cu->language_defn,
18377 DW_STRING (attr));
18378 char *name = NULL;
18379
18380 if (actual_name != NULL)
18381 {
18382 const char *die_name = dwarf2_name (die, cu);
18383
18384 if (die_name != NULL
18385 && strcmp (die_name, actual_name) != 0)
18386 {
18387 /* Strip off the class name from the full name.
18388 We want the prefix. */
18389 int die_name_len = strlen (die_name);
18390 int actual_name_len = strlen (actual_name);
18391
18392 /* Test for '::' as a sanity check. */
18393 if (actual_name_len > die_name_len + 2
18394 && actual_name[actual_name_len
18395 - die_name_len - 1] == ':')
18396 name =
18397 obstack_copy0 (&cu->objfile->objfile_obstack,
18398 actual_name,
18399 actual_name_len - die_name_len - 2);
18400 }
18401 }
18402 xfree (actual_name);
18403 return name;
18404 }
18405 }
18406 }
18407
18408 return NULL;
18409 }
18410
18411 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18412 prefix part in such case. See
18413 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18414
18415 static char *
18416 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18417 {
18418 struct attribute *attr;
18419 char *base;
18420
18421 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18422 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18423 return NULL;
18424
18425 attr = dwarf2_attr (die, DW_AT_name, cu);
18426 if (attr != NULL && DW_STRING (attr) != NULL)
18427 return NULL;
18428
18429 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18430 if (attr == NULL)
18431 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18432 if (attr == NULL || DW_STRING (attr) == NULL)
18433 return NULL;
18434
18435 /* dwarf2_name had to be already called. */
18436 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18437
18438 /* Strip the base name, keep any leading namespaces/classes. */
18439 base = strrchr (DW_STRING (attr), ':');
18440 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18441 return "";
18442
18443 return obstack_copy0 (&cu->objfile->objfile_obstack,
18444 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18445 }
18446
18447 /* Return the name of the namespace/class that DIE is defined within,
18448 or "" if we can't tell. The caller should not xfree the result.
18449
18450 For example, if we're within the method foo() in the following
18451 code:
18452
18453 namespace N {
18454 class C {
18455 void foo () {
18456 }
18457 };
18458 }
18459
18460 then determine_prefix on foo's die will return "N::C". */
18461
18462 static const char *
18463 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18464 {
18465 struct die_info *parent, *spec_die;
18466 struct dwarf2_cu *spec_cu;
18467 struct type *parent_type;
18468 char *retval;
18469
18470 if (cu->language != language_cplus && cu->language != language_java
18471 && cu->language != language_fortran)
18472 return "";
18473
18474 retval = anonymous_struct_prefix (die, cu);
18475 if (retval)
18476 return retval;
18477
18478 /* We have to be careful in the presence of DW_AT_specification.
18479 For example, with GCC 3.4, given the code
18480
18481 namespace N {
18482 void foo() {
18483 // Definition of N::foo.
18484 }
18485 }
18486
18487 then we'll have a tree of DIEs like this:
18488
18489 1: DW_TAG_compile_unit
18490 2: DW_TAG_namespace // N
18491 3: DW_TAG_subprogram // declaration of N::foo
18492 4: DW_TAG_subprogram // definition of N::foo
18493 DW_AT_specification // refers to die #3
18494
18495 Thus, when processing die #4, we have to pretend that we're in
18496 the context of its DW_AT_specification, namely the contex of die
18497 #3. */
18498 spec_cu = cu;
18499 spec_die = die_specification (die, &spec_cu);
18500 if (spec_die == NULL)
18501 parent = die->parent;
18502 else
18503 {
18504 parent = spec_die->parent;
18505 cu = spec_cu;
18506 }
18507
18508 if (parent == NULL)
18509 return "";
18510 else if (parent->building_fullname)
18511 {
18512 const char *name;
18513 const char *parent_name;
18514
18515 /* It has been seen on RealView 2.2 built binaries,
18516 DW_TAG_template_type_param types actually _defined_ as
18517 children of the parent class:
18518
18519 enum E {};
18520 template class <class Enum> Class{};
18521 Class<enum E> class_e;
18522
18523 1: DW_TAG_class_type (Class)
18524 2: DW_TAG_enumeration_type (E)
18525 3: DW_TAG_enumerator (enum1:0)
18526 3: DW_TAG_enumerator (enum2:1)
18527 ...
18528 2: DW_TAG_template_type_param
18529 DW_AT_type DW_FORM_ref_udata (E)
18530
18531 Besides being broken debug info, it can put GDB into an
18532 infinite loop. Consider:
18533
18534 When we're building the full name for Class<E>, we'll start
18535 at Class, and go look over its template type parameters,
18536 finding E. We'll then try to build the full name of E, and
18537 reach here. We're now trying to build the full name of E,
18538 and look over the parent DIE for containing scope. In the
18539 broken case, if we followed the parent DIE of E, we'd again
18540 find Class, and once again go look at its template type
18541 arguments, etc., etc. Simply don't consider such parent die
18542 as source-level parent of this die (it can't be, the language
18543 doesn't allow it), and break the loop here. */
18544 name = dwarf2_name (die, cu);
18545 parent_name = dwarf2_name (parent, cu);
18546 complaint (&symfile_complaints,
18547 _("template param type '%s' defined within parent '%s'"),
18548 name ? name : "<unknown>",
18549 parent_name ? parent_name : "<unknown>");
18550 return "";
18551 }
18552 else
18553 switch (parent->tag)
18554 {
18555 case DW_TAG_namespace:
18556 parent_type = read_type_die (parent, cu);
18557 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18558 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18559 Work around this problem here. */
18560 if (cu->language == language_cplus
18561 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18562 return "";
18563 /* We give a name to even anonymous namespaces. */
18564 return TYPE_TAG_NAME (parent_type);
18565 case DW_TAG_class_type:
18566 case DW_TAG_interface_type:
18567 case DW_TAG_structure_type:
18568 case DW_TAG_union_type:
18569 case DW_TAG_module:
18570 parent_type = read_type_die (parent, cu);
18571 if (TYPE_TAG_NAME (parent_type) != NULL)
18572 return TYPE_TAG_NAME (parent_type);
18573 else
18574 /* An anonymous structure is only allowed non-static data
18575 members; no typedefs, no member functions, et cetera.
18576 So it does not need a prefix. */
18577 return "";
18578 case DW_TAG_compile_unit:
18579 case DW_TAG_partial_unit:
18580 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18581 if (cu->language == language_cplus
18582 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18583 && die->child != NULL
18584 && (die->tag == DW_TAG_class_type
18585 || die->tag == DW_TAG_structure_type
18586 || die->tag == DW_TAG_union_type))
18587 {
18588 char *name = guess_full_die_structure_name (die, cu);
18589 if (name != NULL)
18590 return name;
18591 }
18592 return "";
18593 default:
18594 return determine_prefix (parent, cu);
18595 }
18596 }
18597
18598 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18599 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18600 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18601 an obconcat, otherwise allocate storage for the result. The CU argument is
18602 used to determine the language and hence, the appropriate separator. */
18603
18604 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18605
18606 static char *
18607 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18608 int physname, struct dwarf2_cu *cu)
18609 {
18610 const char *lead = "";
18611 const char *sep;
18612
18613 if (suffix == NULL || suffix[0] == '\0'
18614 || prefix == NULL || prefix[0] == '\0')
18615 sep = "";
18616 else if (cu->language == language_java)
18617 sep = ".";
18618 else if (cu->language == language_fortran && physname)
18619 {
18620 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18621 DW_AT_MIPS_linkage_name is preferred and used instead. */
18622
18623 lead = "__";
18624 sep = "_MOD_";
18625 }
18626 else
18627 sep = "::";
18628
18629 if (prefix == NULL)
18630 prefix = "";
18631 if (suffix == NULL)
18632 suffix = "";
18633
18634 if (obs == NULL)
18635 {
18636 char *retval
18637 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
18638
18639 strcpy (retval, lead);
18640 strcat (retval, prefix);
18641 strcat (retval, sep);
18642 strcat (retval, suffix);
18643 return retval;
18644 }
18645 else
18646 {
18647 /* We have an obstack. */
18648 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
18649 }
18650 }
18651
18652 /* Return sibling of die, NULL if no sibling. */
18653
18654 static struct die_info *
18655 sibling_die (struct die_info *die)
18656 {
18657 return die->sibling;
18658 }
18659
18660 /* Get name of a die, return NULL if not found. */
18661
18662 static const char *
18663 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
18664 struct obstack *obstack)
18665 {
18666 if (name && cu->language == language_cplus)
18667 {
18668 char *canon_name = cp_canonicalize_string (name);
18669
18670 if (canon_name != NULL)
18671 {
18672 if (strcmp (canon_name, name) != 0)
18673 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
18674 xfree (canon_name);
18675 }
18676 }
18677
18678 return name;
18679 }
18680
18681 /* Get name of a die, return NULL if not found. */
18682
18683 static const char *
18684 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
18685 {
18686 struct attribute *attr;
18687
18688 attr = dwarf2_attr (die, DW_AT_name, cu);
18689 if ((!attr || !DW_STRING (attr))
18690 && die->tag != DW_TAG_class_type
18691 && die->tag != DW_TAG_interface_type
18692 && die->tag != DW_TAG_structure_type
18693 && die->tag != DW_TAG_union_type)
18694 return NULL;
18695
18696 switch (die->tag)
18697 {
18698 case DW_TAG_compile_unit:
18699 case DW_TAG_partial_unit:
18700 /* Compilation units have a DW_AT_name that is a filename, not
18701 a source language identifier. */
18702 case DW_TAG_enumeration_type:
18703 case DW_TAG_enumerator:
18704 /* These tags always have simple identifiers already; no need
18705 to canonicalize them. */
18706 return DW_STRING (attr);
18707
18708 case DW_TAG_subprogram:
18709 /* Java constructors will all be named "<init>", so return
18710 the class name when we see this special case. */
18711 if (cu->language == language_java
18712 && DW_STRING (attr) != NULL
18713 && strcmp (DW_STRING (attr), "<init>") == 0)
18714 {
18715 struct dwarf2_cu *spec_cu = cu;
18716 struct die_info *spec_die;
18717
18718 /* GCJ will output '<init>' for Java constructor names.
18719 For this special case, return the name of the parent class. */
18720
18721 /* GCJ may output suprogram DIEs with AT_specification set.
18722 If so, use the name of the specified DIE. */
18723 spec_die = die_specification (die, &spec_cu);
18724 if (spec_die != NULL)
18725 return dwarf2_name (spec_die, spec_cu);
18726
18727 do
18728 {
18729 die = die->parent;
18730 if (die->tag == DW_TAG_class_type)
18731 return dwarf2_name (die, cu);
18732 }
18733 while (die->tag != DW_TAG_compile_unit
18734 && die->tag != DW_TAG_partial_unit);
18735 }
18736 break;
18737
18738 case DW_TAG_class_type:
18739 case DW_TAG_interface_type:
18740 case DW_TAG_structure_type:
18741 case DW_TAG_union_type:
18742 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
18743 structures or unions. These were of the form "._%d" in GCC 4.1,
18744 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
18745 and GCC 4.4. We work around this problem by ignoring these. */
18746 if (attr && DW_STRING (attr)
18747 && (strncmp (DW_STRING (attr), "._", 2) == 0
18748 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
18749 return NULL;
18750
18751 /* GCC might emit a nameless typedef that has a linkage name. See
18752 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18753 if (!attr || DW_STRING (attr) == NULL)
18754 {
18755 char *demangled = NULL;
18756
18757 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18758 if (attr == NULL)
18759 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18760
18761 if (attr == NULL || DW_STRING (attr) == NULL)
18762 return NULL;
18763
18764 /* Avoid demangling DW_STRING (attr) the second time on a second
18765 call for the same DIE. */
18766 if (!DW_STRING_IS_CANONICAL (attr))
18767 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
18768
18769 if (demangled)
18770 {
18771 char *base;
18772
18773 /* FIXME: we already did this for the partial symbol... */
18774 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
18775 demangled, strlen (demangled));
18776 DW_STRING_IS_CANONICAL (attr) = 1;
18777 xfree (demangled);
18778
18779 /* Strip any leading namespaces/classes, keep only the base name.
18780 DW_AT_name for named DIEs does not contain the prefixes. */
18781 base = strrchr (DW_STRING (attr), ':');
18782 if (base && base > DW_STRING (attr) && base[-1] == ':')
18783 return &base[1];
18784 else
18785 return DW_STRING (attr);
18786 }
18787 }
18788 break;
18789
18790 default:
18791 break;
18792 }
18793
18794 if (!DW_STRING_IS_CANONICAL (attr))
18795 {
18796 DW_STRING (attr)
18797 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
18798 &cu->objfile->objfile_obstack);
18799 DW_STRING_IS_CANONICAL (attr) = 1;
18800 }
18801 return DW_STRING (attr);
18802 }
18803
18804 /* Return the die that this die in an extension of, or NULL if there
18805 is none. *EXT_CU is the CU containing DIE on input, and the CU
18806 containing the return value on output. */
18807
18808 static struct die_info *
18809 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
18810 {
18811 struct attribute *attr;
18812
18813 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
18814 if (attr == NULL)
18815 return NULL;
18816
18817 return follow_die_ref (die, attr, ext_cu);
18818 }
18819
18820 /* Convert a DIE tag into its string name. */
18821
18822 static const char *
18823 dwarf_tag_name (unsigned tag)
18824 {
18825 const char *name = get_DW_TAG_name (tag);
18826
18827 if (name == NULL)
18828 return "DW_TAG_<unknown>";
18829
18830 return name;
18831 }
18832
18833 /* Convert a DWARF attribute code into its string name. */
18834
18835 static const char *
18836 dwarf_attr_name (unsigned attr)
18837 {
18838 const char *name;
18839
18840 #ifdef MIPS /* collides with DW_AT_HP_block_index */
18841 if (attr == DW_AT_MIPS_fde)
18842 return "DW_AT_MIPS_fde";
18843 #else
18844 if (attr == DW_AT_HP_block_index)
18845 return "DW_AT_HP_block_index";
18846 #endif
18847
18848 name = get_DW_AT_name (attr);
18849
18850 if (name == NULL)
18851 return "DW_AT_<unknown>";
18852
18853 return name;
18854 }
18855
18856 /* Convert a DWARF value form code into its string name. */
18857
18858 static const char *
18859 dwarf_form_name (unsigned form)
18860 {
18861 const char *name = get_DW_FORM_name (form);
18862
18863 if (name == NULL)
18864 return "DW_FORM_<unknown>";
18865
18866 return name;
18867 }
18868
18869 static char *
18870 dwarf_bool_name (unsigned mybool)
18871 {
18872 if (mybool)
18873 return "TRUE";
18874 else
18875 return "FALSE";
18876 }
18877
18878 /* Convert a DWARF type code into its string name. */
18879
18880 static const char *
18881 dwarf_type_encoding_name (unsigned enc)
18882 {
18883 const char *name = get_DW_ATE_name (enc);
18884
18885 if (name == NULL)
18886 return "DW_ATE_<unknown>";
18887
18888 return name;
18889 }
18890
18891 static void
18892 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
18893 {
18894 unsigned int i;
18895
18896 print_spaces (indent, f);
18897 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
18898 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
18899
18900 if (die->parent != NULL)
18901 {
18902 print_spaces (indent, f);
18903 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
18904 die->parent->offset.sect_off);
18905 }
18906
18907 print_spaces (indent, f);
18908 fprintf_unfiltered (f, " has children: %s\n",
18909 dwarf_bool_name (die->child != NULL));
18910
18911 print_spaces (indent, f);
18912 fprintf_unfiltered (f, " attributes:\n");
18913
18914 for (i = 0; i < die->num_attrs; ++i)
18915 {
18916 print_spaces (indent, f);
18917 fprintf_unfiltered (f, " %s (%s) ",
18918 dwarf_attr_name (die->attrs[i].name),
18919 dwarf_form_name (die->attrs[i].form));
18920
18921 switch (die->attrs[i].form)
18922 {
18923 case DW_FORM_addr:
18924 case DW_FORM_GNU_addr_index:
18925 fprintf_unfiltered (f, "address: ");
18926 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
18927 break;
18928 case DW_FORM_block2:
18929 case DW_FORM_block4:
18930 case DW_FORM_block:
18931 case DW_FORM_block1:
18932 fprintf_unfiltered (f, "block: size %s",
18933 pulongest (DW_BLOCK (&die->attrs[i])->size));
18934 break;
18935 case DW_FORM_exprloc:
18936 fprintf_unfiltered (f, "expression: size %s",
18937 pulongest (DW_BLOCK (&die->attrs[i])->size));
18938 break;
18939 case DW_FORM_ref_addr:
18940 fprintf_unfiltered (f, "ref address: ");
18941 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18942 break;
18943 case DW_FORM_GNU_ref_alt:
18944 fprintf_unfiltered (f, "alt ref address: ");
18945 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18946 break;
18947 case DW_FORM_ref1:
18948 case DW_FORM_ref2:
18949 case DW_FORM_ref4:
18950 case DW_FORM_ref8:
18951 case DW_FORM_ref_udata:
18952 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
18953 (long) (DW_UNSND (&die->attrs[i])));
18954 break;
18955 case DW_FORM_data1:
18956 case DW_FORM_data2:
18957 case DW_FORM_data4:
18958 case DW_FORM_data8:
18959 case DW_FORM_udata:
18960 case DW_FORM_sdata:
18961 fprintf_unfiltered (f, "constant: %s",
18962 pulongest (DW_UNSND (&die->attrs[i])));
18963 break;
18964 case DW_FORM_sec_offset:
18965 fprintf_unfiltered (f, "section offset: %s",
18966 pulongest (DW_UNSND (&die->attrs[i])));
18967 break;
18968 case DW_FORM_ref_sig8:
18969 fprintf_unfiltered (f, "signature: %s",
18970 hex_string (DW_SIGNATURE (&die->attrs[i])));
18971 break;
18972 case DW_FORM_string:
18973 case DW_FORM_strp:
18974 case DW_FORM_GNU_str_index:
18975 case DW_FORM_GNU_strp_alt:
18976 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
18977 DW_STRING (&die->attrs[i])
18978 ? DW_STRING (&die->attrs[i]) : "",
18979 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
18980 break;
18981 case DW_FORM_flag:
18982 if (DW_UNSND (&die->attrs[i]))
18983 fprintf_unfiltered (f, "flag: TRUE");
18984 else
18985 fprintf_unfiltered (f, "flag: FALSE");
18986 break;
18987 case DW_FORM_flag_present:
18988 fprintf_unfiltered (f, "flag: TRUE");
18989 break;
18990 case DW_FORM_indirect:
18991 /* The reader will have reduced the indirect form to
18992 the "base form" so this form should not occur. */
18993 fprintf_unfiltered (f,
18994 "unexpected attribute form: DW_FORM_indirect");
18995 break;
18996 default:
18997 fprintf_unfiltered (f, "unsupported attribute form: %d.",
18998 die->attrs[i].form);
18999 break;
19000 }
19001 fprintf_unfiltered (f, "\n");
19002 }
19003 }
19004
19005 static void
19006 dump_die_for_error (struct die_info *die)
19007 {
19008 dump_die_shallow (gdb_stderr, 0, die);
19009 }
19010
19011 static void
19012 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19013 {
19014 int indent = level * 4;
19015
19016 gdb_assert (die != NULL);
19017
19018 if (level >= max_level)
19019 return;
19020
19021 dump_die_shallow (f, indent, die);
19022
19023 if (die->child != NULL)
19024 {
19025 print_spaces (indent, f);
19026 fprintf_unfiltered (f, " Children:");
19027 if (level + 1 < max_level)
19028 {
19029 fprintf_unfiltered (f, "\n");
19030 dump_die_1 (f, level + 1, max_level, die->child);
19031 }
19032 else
19033 {
19034 fprintf_unfiltered (f,
19035 " [not printed, max nesting level reached]\n");
19036 }
19037 }
19038
19039 if (die->sibling != NULL && level > 0)
19040 {
19041 dump_die_1 (f, level, max_level, die->sibling);
19042 }
19043 }
19044
19045 /* This is called from the pdie macro in gdbinit.in.
19046 It's not static so gcc will keep a copy callable from gdb. */
19047
19048 void
19049 dump_die (struct die_info *die, int max_level)
19050 {
19051 dump_die_1 (gdb_stdlog, 0, max_level, die);
19052 }
19053
19054 static void
19055 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19056 {
19057 void **slot;
19058
19059 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19060 INSERT);
19061
19062 *slot = die;
19063 }
19064
19065 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19066 required kind. */
19067
19068 static sect_offset
19069 dwarf2_get_ref_die_offset (const struct attribute *attr)
19070 {
19071 sect_offset retval = { DW_UNSND (attr) };
19072
19073 if (attr_form_is_ref (attr))
19074 return retval;
19075
19076 retval.sect_off = 0;
19077 complaint (&symfile_complaints,
19078 _("unsupported die ref attribute form: '%s'"),
19079 dwarf_form_name (attr->form));
19080 return retval;
19081 }
19082
19083 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19084 * the value held by the attribute is not constant. */
19085
19086 static LONGEST
19087 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19088 {
19089 if (attr->form == DW_FORM_sdata)
19090 return DW_SND (attr);
19091 else if (attr->form == DW_FORM_udata
19092 || attr->form == DW_FORM_data1
19093 || attr->form == DW_FORM_data2
19094 || attr->form == DW_FORM_data4
19095 || attr->form == DW_FORM_data8)
19096 return DW_UNSND (attr);
19097 else
19098 {
19099 complaint (&symfile_complaints,
19100 _("Attribute value is not a constant (%s)"),
19101 dwarf_form_name (attr->form));
19102 return default_value;
19103 }
19104 }
19105
19106 /* Follow reference or signature attribute ATTR of SRC_DIE.
19107 On entry *REF_CU is the CU of SRC_DIE.
19108 On exit *REF_CU is the CU of the result. */
19109
19110 static struct die_info *
19111 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19112 struct dwarf2_cu **ref_cu)
19113 {
19114 struct die_info *die;
19115
19116 if (attr_form_is_ref (attr))
19117 die = follow_die_ref (src_die, attr, ref_cu);
19118 else if (attr->form == DW_FORM_ref_sig8)
19119 die = follow_die_sig (src_die, attr, ref_cu);
19120 else
19121 {
19122 dump_die_for_error (src_die);
19123 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19124 objfile_name ((*ref_cu)->objfile));
19125 }
19126
19127 return die;
19128 }
19129
19130 /* Follow reference OFFSET.
19131 On entry *REF_CU is the CU of the source die referencing OFFSET.
19132 On exit *REF_CU is the CU of the result.
19133 Returns NULL if OFFSET is invalid. */
19134
19135 static struct die_info *
19136 follow_die_offset (sect_offset offset, int offset_in_dwz,
19137 struct dwarf2_cu **ref_cu)
19138 {
19139 struct die_info temp_die;
19140 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19141
19142 gdb_assert (cu->per_cu != NULL);
19143
19144 target_cu = cu;
19145
19146 if (cu->per_cu->is_debug_types)
19147 {
19148 /* .debug_types CUs cannot reference anything outside their CU.
19149 If they need to, they have to reference a signatured type via
19150 DW_FORM_ref_sig8. */
19151 if (! offset_in_cu_p (&cu->header, offset))
19152 return NULL;
19153 }
19154 else if (offset_in_dwz != cu->per_cu->is_dwz
19155 || ! offset_in_cu_p (&cu->header, offset))
19156 {
19157 struct dwarf2_per_cu_data *per_cu;
19158
19159 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19160 cu->objfile);
19161
19162 /* If necessary, add it to the queue and load its DIEs. */
19163 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19164 load_full_comp_unit (per_cu, cu->language);
19165
19166 target_cu = per_cu->cu;
19167 }
19168 else if (cu->dies == NULL)
19169 {
19170 /* We're loading full DIEs during partial symbol reading. */
19171 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19172 load_full_comp_unit (cu->per_cu, language_minimal);
19173 }
19174
19175 *ref_cu = target_cu;
19176 temp_die.offset = offset;
19177 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19178 }
19179
19180 /* Follow reference attribute ATTR of SRC_DIE.
19181 On entry *REF_CU is the CU of SRC_DIE.
19182 On exit *REF_CU is the CU of the result. */
19183
19184 static struct die_info *
19185 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19186 struct dwarf2_cu **ref_cu)
19187 {
19188 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19189 struct dwarf2_cu *cu = *ref_cu;
19190 struct die_info *die;
19191
19192 die = follow_die_offset (offset,
19193 (attr->form == DW_FORM_GNU_ref_alt
19194 || cu->per_cu->is_dwz),
19195 ref_cu);
19196 if (!die)
19197 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19198 "at 0x%x [in module %s]"),
19199 offset.sect_off, src_die->offset.sect_off,
19200 objfile_name (cu->objfile));
19201
19202 return die;
19203 }
19204
19205 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19206 Returned value is intended for DW_OP_call*. Returned
19207 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19208
19209 struct dwarf2_locexpr_baton
19210 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19211 struct dwarf2_per_cu_data *per_cu,
19212 CORE_ADDR (*get_frame_pc) (void *baton),
19213 void *baton)
19214 {
19215 struct dwarf2_cu *cu;
19216 struct die_info *die;
19217 struct attribute *attr;
19218 struct dwarf2_locexpr_baton retval;
19219
19220 dw2_setup (per_cu->objfile);
19221
19222 if (per_cu->cu == NULL)
19223 load_cu (per_cu);
19224 cu = per_cu->cu;
19225
19226 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19227 if (!die)
19228 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19229 offset.sect_off, objfile_name (per_cu->objfile));
19230
19231 attr = dwarf2_attr (die, DW_AT_location, cu);
19232 if (!attr)
19233 {
19234 /* DWARF: "If there is no such attribute, then there is no effect.".
19235 DATA is ignored if SIZE is 0. */
19236
19237 retval.data = NULL;
19238 retval.size = 0;
19239 }
19240 else if (attr_form_is_section_offset (attr))
19241 {
19242 struct dwarf2_loclist_baton loclist_baton;
19243 CORE_ADDR pc = (*get_frame_pc) (baton);
19244 size_t size;
19245
19246 fill_in_loclist_baton (cu, &loclist_baton, attr);
19247
19248 retval.data = dwarf2_find_location_expression (&loclist_baton,
19249 &size, pc);
19250 retval.size = size;
19251 }
19252 else
19253 {
19254 if (!attr_form_is_block (attr))
19255 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19256 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19257 offset.sect_off, objfile_name (per_cu->objfile));
19258
19259 retval.data = DW_BLOCK (attr)->data;
19260 retval.size = DW_BLOCK (attr)->size;
19261 }
19262 retval.per_cu = cu->per_cu;
19263
19264 age_cached_comp_units ();
19265
19266 return retval;
19267 }
19268
19269 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19270 offset. */
19271
19272 struct dwarf2_locexpr_baton
19273 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19274 struct dwarf2_per_cu_data *per_cu,
19275 CORE_ADDR (*get_frame_pc) (void *baton),
19276 void *baton)
19277 {
19278 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19279
19280 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19281 }
19282
19283 /* Write a constant of a given type as target-ordered bytes into
19284 OBSTACK. */
19285
19286 static const gdb_byte *
19287 write_constant_as_bytes (struct obstack *obstack,
19288 enum bfd_endian byte_order,
19289 struct type *type,
19290 ULONGEST value,
19291 LONGEST *len)
19292 {
19293 gdb_byte *result;
19294
19295 *len = TYPE_LENGTH (type);
19296 result = obstack_alloc (obstack, *len);
19297 store_unsigned_integer (result, *len, byte_order, value);
19298
19299 return result;
19300 }
19301
19302 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19303 pointer to the constant bytes and set LEN to the length of the
19304 data. If memory is needed, allocate it on OBSTACK. If the DIE
19305 does not have a DW_AT_const_value, return NULL. */
19306
19307 const gdb_byte *
19308 dwarf2_fetch_constant_bytes (sect_offset offset,
19309 struct dwarf2_per_cu_data *per_cu,
19310 struct obstack *obstack,
19311 LONGEST *len)
19312 {
19313 struct dwarf2_cu *cu;
19314 struct die_info *die;
19315 struct attribute *attr;
19316 const gdb_byte *result = NULL;
19317 struct type *type;
19318 LONGEST value;
19319 enum bfd_endian byte_order;
19320
19321 dw2_setup (per_cu->objfile);
19322
19323 if (per_cu->cu == NULL)
19324 load_cu (per_cu);
19325 cu = per_cu->cu;
19326
19327 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19328 if (!die)
19329 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19330 offset.sect_off, objfile_name (per_cu->objfile));
19331
19332
19333 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19334 if (attr == NULL)
19335 return NULL;
19336
19337 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19338 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19339
19340 switch (attr->form)
19341 {
19342 case DW_FORM_addr:
19343 case DW_FORM_GNU_addr_index:
19344 {
19345 gdb_byte *tem;
19346
19347 *len = cu->header.addr_size;
19348 tem = obstack_alloc (obstack, *len);
19349 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19350 result = tem;
19351 }
19352 break;
19353 case DW_FORM_string:
19354 case DW_FORM_strp:
19355 case DW_FORM_GNU_str_index:
19356 case DW_FORM_GNU_strp_alt:
19357 /* DW_STRING is already allocated on the objfile obstack, point
19358 directly to it. */
19359 result = (const gdb_byte *) DW_STRING (attr);
19360 *len = strlen (DW_STRING (attr));
19361 break;
19362 case DW_FORM_block1:
19363 case DW_FORM_block2:
19364 case DW_FORM_block4:
19365 case DW_FORM_block:
19366 case DW_FORM_exprloc:
19367 result = DW_BLOCK (attr)->data;
19368 *len = DW_BLOCK (attr)->size;
19369 break;
19370
19371 /* The DW_AT_const_value attributes are supposed to carry the
19372 symbol's value "represented as it would be on the target
19373 architecture." By the time we get here, it's already been
19374 converted to host endianness, so we just need to sign- or
19375 zero-extend it as appropriate. */
19376 case DW_FORM_data1:
19377 type = die_type (die, cu);
19378 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19379 if (result == NULL)
19380 result = write_constant_as_bytes (obstack, byte_order,
19381 type, value, len);
19382 break;
19383 case DW_FORM_data2:
19384 type = die_type (die, cu);
19385 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19386 if (result == NULL)
19387 result = write_constant_as_bytes (obstack, byte_order,
19388 type, value, len);
19389 break;
19390 case DW_FORM_data4:
19391 type = die_type (die, cu);
19392 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19393 if (result == NULL)
19394 result = write_constant_as_bytes (obstack, byte_order,
19395 type, value, len);
19396 break;
19397 case DW_FORM_data8:
19398 type = die_type (die, cu);
19399 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19400 if (result == NULL)
19401 result = write_constant_as_bytes (obstack, byte_order,
19402 type, value, len);
19403 break;
19404
19405 case DW_FORM_sdata:
19406 type = die_type (die, cu);
19407 result = write_constant_as_bytes (obstack, byte_order,
19408 type, DW_SND (attr), len);
19409 break;
19410
19411 case DW_FORM_udata:
19412 type = die_type (die, cu);
19413 result = write_constant_as_bytes (obstack, byte_order,
19414 type, DW_UNSND (attr), len);
19415 break;
19416
19417 default:
19418 complaint (&symfile_complaints,
19419 _("unsupported const value attribute form: '%s'"),
19420 dwarf_form_name (attr->form));
19421 break;
19422 }
19423
19424 return result;
19425 }
19426
19427 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19428 PER_CU. */
19429
19430 struct type *
19431 dwarf2_get_die_type (cu_offset die_offset,
19432 struct dwarf2_per_cu_data *per_cu)
19433 {
19434 sect_offset die_offset_sect;
19435
19436 dw2_setup (per_cu->objfile);
19437
19438 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19439 return get_die_type_at_offset (die_offset_sect, per_cu);
19440 }
19441
19442 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19443 On entry *REF_CU is the CU of SRC_DIE.
19444 On exit *REF_CU is the CU of the result.
19445 Returns NULL if the referenced DIE isn't found. */
19446
19447 static struct die_info *
19448 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19449 struct dwarf2_cu **ref_cu)
19450 {
19451 struct objfile *objfile = (*ref_cu)->objfile;
19452 struct die_info temp_die;
19453 struct dwarf2_cu *sig_cu;
19454 struct die_info *die;
19455
19456 /* While it might be nice to assert sig_type->type == NULL here,
19457 we can get here for DW_AT_imported_declaration where we need
19458 the DIE not the type. */
19459
19460 /* If necessary, add it to the queue and load its DIEs. */
19461
19462 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19463 read_signatured_type (sig_type);
19464
19465 sig_cu = sig_type->per_cu.cu;
19466 gdb_assert (sig_cu != NULL);
19467 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19468 temp_die.offset = sig_type->type_offset_in_section;
19469 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19470 temp_die.offset.sect_off);
19471 if (die)
19472 {
19473 /* For .gdb_index version 7 keep track of included TUs.
19474 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19475 if (dwarf2_per_objfile->index_table != NULL
19476 && dwarf2_per_objfile->index_table->version <= 7)
19477 {
19478 VEC_safe_push (dwarf2_per_cu_ptr,
19479 (*ref_cu)->per_cu->imported_symtabs,
19480 sig_cu->per_cu);
19481 }
19482
19483 *ref_cu = sig_cu;
19484 return die;
19485 }
19486
19487 return NULL;
19488 }
19489
19490 /* Follow signatured type referenced by ATTR in SRC_DIE.
19491 On entry *REF_CU is the CU of SRC_DIE.
19492 On exit *REF_CU is the CU of the result.
19493 The result is the DIE of the type.
19494 If the referenced type cannot be found an error is thrown. */
19495
19496 static struct die_info *
19497 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19498 struct dwarf2_cu **ref_cu)
19499 {
19500 ULONGEST signature = DW_SIGNATURE (attr);
19501 struct signatured_type *sig_type;
19502 struct die_info *die;
19503
19504 gdb_assert (attr->form == DW_FORM_ref_sig8);
19505
19506 sig_type = lookup_signatured_type (*ref_cu, signature);
19507 /* sig_type will be NULL if the signatured type is missing from
19508 the debug info. */
19509 if (sig_type == NULL)
19510 {
19511 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19512 " from DIE at 0x%x [in module %s]"),
19513 hex_string (signature), src_die->offset.sect_off,
19514 objfile_name ((*ref_cu)->objfile));
19515 }
19516
19517 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19518 if (die == NULL)
19519 {
19520 dump_die_for_error (src_die);
19521 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19522 " from DIE at 0x%x [in module %s]"),
19523 hex_string (signature), src_die->offset.sect_off,
19524 objfile_name ((*ref_cu)->objfile));
19525 }
19526
19527 return die;
19528 }
19529
19530 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19531 reading in and processing the type unit if necessary. */
19532
19533 static struct type *
19534 get_signatured_type (struct die_info *die, ULONGEST signature,
19535 struct dwarf2_cu *cu)
19536 {
19537 struct signatured_type *sig_type;
19538 struct dwarf2_cu *type_cu;
19539 struct die_info *type_die;
19540 struct type *type;
19541
19542 sig_type = lookup_signatured_type (cu, signature);
19543 /* sig_type will be NULL if the signatured type is missing from
19544 the debug info. */
19545 if (sig_type == NULL)
19546 {
19547 complaint (&symfile_complaints,
19548 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19549 " from DIE at 0x%x [in module %s]"),
19550 hex_string (signature), die->offset.sect_off,
19551 objfile_name (dwarf2_per_objfile->objfile));
19552 return build_error_marker_type (cu, die);
19553 }
19554
19555 /* If we already know the type we're done. */
19556 if (sig_type->type != NULL)
19557 return sig_type->type;
19558
19559 type_cu = cu;
19560 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19561 if (type_die != NULL)
19562 {
19563 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19564 is created. This is important, for example, because for c++ classes
19565 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19566 type = read_type_die (type_die, type_cu);
19567 if (type == NULL)
19568 {
19569 complaint (&symfile_complaints,
19570 _("Dwarf Error: Cannot build signatured type %s"
19571 " referenced from DIE at 0x%x [in module %s]"),
19572 hex_string (signature), die->offset.sect_off,
19573 objfile_name (dwarf2_per_objfile->objfile));
19574 type = build_error_marker_type (cu, die);
19575 }
19576 }
19577 else
19578 {
19579 complaint (&symfile_complaints,
19580 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19581 " from DIE at 0x%x [in module %s]"),
19582 hex_string (signature), die->offset.sect_off,
19583 objfile_name (dwarf2_per_objfile->objfile));
19584 type = build_error_marker_type (cu, die);
19585 }
19586 sig_type->type = type;
19587
19588 return type;
19589 }
19590
19591 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19592 reading in and processing the type unit if necessary. */
19593
19594 static struct type *
19595 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19596 struct dwarf2_cu *cu) /* ARI: editCase function */
19597 {
19598 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19599 if (attr_form_is_ref (attr))
19600 {
19601 struct dwarf2_cu *type_cu = cu;
19602 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19603
19604 return read_type_die (type_die, type_cu);
19605 }
19606 else if (attr->form == DW_FORM_ref_sig8)
19607 {
19608 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19609 }
19610 else
19611 {
19612 complaint (&symfile_complaints,
19613 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19614 " at 0x%x [in module %s]"),
19615 dwarf_form_name (attr->form), die->offset.sect_off,
19616 objfile_name (dwarf2_per_objfile->objfile));
19617 return build_error_marker_type (cu, die);
19618 }
19619 }
19620
19621 /* Load the DIEs associated with type unit PER_CU into memory. */
19622
19623 static void
19624 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
19625 {
19626 struct signatured_type *sig_type;
19627
19628 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19629 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19630
19631 /* We have the per_cu, but we need the signatured_type.
19632 Fortunately this is an easy translation. */
19633 gdb_assert (per_cu->is_debug_types);
19634 sig_type = (struct signatured_type *) per_cu;
19635
19636 gdb_assert (per_cu->cu == NULL);
19637
19638 read_signatured_type (sig_type);
19639
19640 gdb_assert (per_cu->cu != NULL);
19641 }
19642
19643 /* die_reader_func for read_signatured_type.
19644 This is identical to load_full_comp_unit_reader,
19645 but is kept separate for now. */
19646
19647 static void
19648 read_signatured_type_reader (const struct die_reader_specs *reader,
19649 const gdb_byte *info_ptr,
19650 struct die_info *comp_unit_die,
19651 int has_children,
19652 void *data)
19653 {
19654 struct dwarf2_cu *cu = reader->cu;
19655
19656 gdb_assert (cu->die_hash == NULL);
19657 cu->die_hash =
19658 htab_create_alloc_ex (cu->header.length / 12,
19659 die_hash,
19660 die_eq,
19661 NULL,
19662 &cu->comp_unit_obstack,
19663 hashtab_obstack_allocate,
19664 dummy_obstack_deallocate);
19665
19666 if (has_children)
19667 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19668 &info_ptr, comp_unit_die);
19669 cu->dies = comp_unit_die;
19670 /* comp_unit_die is not stored in die_hash, no need. */
19671
19672 /* We try not to read any attributes in this function, because not
19673 all CUs needed for references have been loaded yet, and symbol
19674 table processing isn't initialized. But we have to set the CU language,
19675 or we won't be able to build types correctly.
19676 Similarly, if we do not read the producer, we can not apply
19677 producer-specific interpretation. */
19678 prepare_one_comp_unit (cu, cu->dies, language_minimal);
19679 }
19680
19681 /* Read in a signatured type and build its CU and DIEs.
19682 If the type is a stub for the real type in a DWO file,
19683 read in the real type from the DWO file as well. */
19684
19685 static void
19686 read_signatured_type (struct signatured_type *sig_type)
19687 {
19688 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
19689
19690 gdb_assert (per_cu->is_debug_types);
19691 gdb_assert (per_cu->cu == NULL);
19692
19693 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
19694 read_signatured_type_reader, NULL);
19695 sig_type->per_cu.tu_read = 1;
19696 }
19697
19698 /* Decode simple location descriptions.
19699 Given a pointer to a dwarf block that defines a location, compute
19700 the location and return the value.
19701
19702 NOTE drow/2003-11-18: This function is called in two situations
19703 now: for the address of static or global variables (partial symbols
19704 only) and for offsets into structures which are expected to be
19705 (more or less) constant. The partial symbol case should go away,
19706 and only the constant case should remain. That will let this
19707 function complain more accurately. A few special modes are allowed
19708 without complaint for global variables (for instance, global
19709 register values and thread-local values).
19710
19711 A location description containing no operations indicates that the
19712 object is optimized out. The return value is 0 for that case.
19713 FIXME drow/2003-11-16: No callers check for this case any more; soon all
19714 callers will only want a very basic result and this can become a
19715 complaint.
19716
19717 Note that stack[0] is unused except as a default error return. */
19718
19719 static CORE_ADDR
19720 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
19721 {
19722 struct objfile *objfile = cu->objfile;
19723 size_t i;
19724 size_t size = blk->size;
19725 const gdb_byte *data = blk->data;
19726 CORE_ADDR stack[64];
19727 int stacki;
19728 unsigned int bytes_read, unsnd;
19729 gdb_byte op;
19730
19731 i = 0;
19732 stacki = 0;
19733 stack[stacki] = 0;
19734 stack[++stacki] = 0;
19735
19736 while (i < size)
19737 {
19738 op = data[i++];
19739 switch (op)
19740 {
19741 case DW_OP_lit0:
19742 case DW_OP_lit1:
19743 case DW_OP_lit2:
19744 case DW_OP_lit3:
19745 case DW_OP_lit4:
19746 case DW_OP_lit5:
19747 case DW_OP_lit6:
19748 case DW_OP_lit7:
19749 case DW_OP_lit8:
19750 case DW_OP_lit9:
19751 case DW_OP_lit10:
19752 case DW_OP_lit11:
19753 case DW_OP_lit12:
19754 case DW_OP_lit13:
19755 case DW_OP_lit14:
19756 case DW_OP_lit15:
19757 case DW_OP_lit16:
19758 case DW_OP_lit17:
19759 case DW_OP_lit18:
19760 case DW_OP_lit19:
19761 case DW_OP_lit20:
19762 case DW_OP_lit21:
19763 case DW_OP_lit22:
19764 case DW_OP_lit23:
19765 case DW_OP_lit24:
19766 case DW_OP_lit25:
19767 case DW_OP_lit26:
19768 case DW_OP_lit27:
19769 case DW_OP_lit28:
19770 case DW_OP_lit29:
19771 case DW_OP_lit30:
19772 case DW_OP_lit31:
19773 stack[++stacki] = op - DW_OP_lit0;
19774 break;
19775
19776 case DW_OP_reg0:
19777 case DW_OP_reg1:
19778 case DW_OP_reg2:
19779 case DW_OP_reg3:
19780 case DW_OP_reg4:
19781 case DW_OP_reg5:
19782 case DW_OP_reg6:
19783 case DW_OP_reg7:
19784 case DW_OP_reg8:
19785 case DW_OP_reg9:
19786 case DW_OP_reg10:
19787 case DW_OP_reg11:
19788 case DW_OP_reg12:
19789 case DW_OP_reg13:
19790 case DW_OP_reg14:
19791 case DW_OP_reg15:
19792 case DW_OP_reg16:
19793 case DW_OP_reg17:
19794 case DW_OP_reg18:
19795 case DW_OP_reg19:
19796 case DW_OP_reg20:
19797 case DW_OP_reg21:
19798 case DW_OP_reg22:
19799 case DW_OP_reg23:
19800 case DW_OP_reg24:
19801 case DW_OP_reg25:
19802 case DW_OP_reg26:
19803 case DW_OP_reg27:
19804 case DW_OP_reg28:
19805 case DW_OP_reg29:
19806 case DW_OP_reg30:
19807 case DW_OP_reg31:
19808 stack[++stacki] = op - DW_OP_reg0;
19809 if (i < size)
19810 dwarf2_complex_location_expr_complaint ();
19811 break;
19812
19813 case DW_OP_regx:
19814 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
19815 i += bytes_read;
19816 stack[++stacki] = unsnd;
19817 if (i < size)
19818 dwarf2_complex_location_expr_complaint ();
19819 break;
19820
19821 case DW_OP_addr:
19822 stack[++stacki] = read_address (objfile->obfd, &data[i],
19823 cu, &bytes_read);
19824 i += bytes_read;
19825 break;
19826
19827 case DW_OP_const1u:
19828 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
19829 i += 1;
19830 break;
19831
19832 case DW_OP_const1s:
19833 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
19834 i += 1;
19835 break;
19836
19837 case DW_OP_const2u:
19838 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
19839 i += 2;
19840 break;
19841
19842 case DW_OP_const2s:
19843 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
19844 i += 2;
19845 break;
19846
19847 case DW_OP_const4u:
19848 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
19849 i += 4;
19850 break;
19851
19852 case DW_OP_const4s:
19853 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
19854 i += 4;
19855 break;
19856
19857 case DW_OP_const8u:
19858 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
19859 i += 8;
19860 break;
19861
19862 case DW_OP_constu:
19863 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
19864 &bytes_read);
19865 i += bytes_read;
19866 break;
19867
19868 case DW_OP_consts:
19869 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
19870 i += bytes_read;
19871 break;
19872
19873 case DW_OP_dup:
19874 stack[stacki + 1] = stack[stacki];
19875 stacki++;
19876 break;
19877
19878 case DW_OP_plus:
19879 stack[stacki - 1] += stack[stacki];
19880 stacki--;
19881 break;
19882
19883 case DW_OP_plus_uconst:
19884 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
19885 &bytes_read);
19886 i += bytes_read;
19887 break;
19888
19889 case DW_OP_minus:
19890 stack[stacki - 1] -= stack[stacki];
19891 stacki--;
19892 break;
19893
19894 case DW_OP_deref:
19895 /* If we're not the last op, then we definitely can't encode
19896 this using GDB's address_class enum. This is valid for partial
19897 global symbols, although the variable's address will be bogus
19898 in the psymtab. */
19899 if (i < size)
19900 dwarf2_complex_location_expr_complaint ();
19901 break;
19902
19903 case DW_OP_GNU_push_tls_address:
19904 /* The top of the stack has the offset from the beginning
19905 of the thread control block at which the variable is located. */
19906 /* Nothing should follow this operator, so the top of stack would
19907 be returned. */
19908 /* This is valid for partial global symbols, but the variable's
19909 address will be bogus in the psymtab. Make it always at least
19910 non-zero to not look as a variable garbage collected by linker
19911 which have DW_OP_addr 0. */
19912 if (i < size)
19913 dwarf2_complex_location_expr_complaint ();
19914 stack[stacki]++;
19915 break;
19916
19917 case DW_OP_GNU_uninit:
19918 break;
19919
19920 case DW_OP_GNU_addr_index:
19921 case DW_OP_GNU_const_index:
19922 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
19923 &bytes_read);
19924 i += bytes_read;
19925 break;
19926
19927 default:
19928 {
19929 const char *name = get_DW_OP_name (op);
19930
19931 if (name)
19932 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
19933 name);
19934 else
19935 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
19936 op);
19937 }
19938
19939 return (stack[stacki]);
19940 }
19941
19942 /* Enforce maximum stack depth of SIZE-1 to avoid writing
19943 outside of the allocated space. Also enforce minimum>0. */
19944 if (stacki >= ARRAY_SIZE (stack) - 1)
19945 {
19946 complaint (&symfile_complaints,
19947 _("location description stack overflow"));
19948 return 0;
19949 }
19950
19951 if (stacki <= 0)
19952 {
19953 complaint (&symfile_complaints,
19954 _("location description stack underflow"));
19955 return 0;
19956 }
19957 }
19958 return (stack[stacki]);
19959 }
19960
19961 /* memory allocation interface */
19962
19963 static struct dwarf_block *
19964 dwarf_alloc_block (struct dwarf2_cu *cu)
19965 {
19966 struct dwarf_block *blk;
19967
19968 blk = (struct dwarf_block *)
19969 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
19970 return (blk);
19971 }
19972
19973 static struct die_info *
19974 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
19975 {
19976 struct die_info *die;
19977 size_t size = sizeof (struct die_info);
19978
19979 if (num_attrs > 1)
19980 size += (num_attrs - 1) * sizeof (struct attribute);
19981
19982 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
19983 memset (die, 0, sizeof (struct die_info));
19984 return (die);
19985 }
19986
19987 \f
19988 /* Macro support. */
19989
19990 /* Return file name relative to the compilation directory of file number I in
19991 *LH's file name table. The result is allocated using xmalloc; the caller is
19992 responsible for freeing it. */
19993
19994 static char *
19995 file_file_name (int file, struct line_header *lh)
19996 {
19997 /* Is the file number a valid index into the line header's file name
19998 table? Remember that file numbers start with one, not zero. */
19999 if (1 <= file && file <= lh->num_file_names)
20000 {
20001 struct file_entry *fe = &lh->file_names[file - 1];
20002
20003 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20004 return xstrdup (fe->name);
20005 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20006 fe->name, NULL);
20007 }
20008 else
20009 {
20010 /* The compiler produced a bogus file number. We can at least
20011 record the macro definitions made in the file, even if we
20012 won't be able to find the file by name. */
20013 char fake_name[80];
20014
20015 xsnprintf (fake_name, sizeof (fake_name),
20016 "<bad macro file number %d>", file);
20017
20018 complaint (&symfile_complaints,
20019 _("bad file number in macro information (%d)"),
20020 file);
20021
20022 return xstrdup (fake_name);
20023 }
20024 }
20025
20026 /* Return the full name of file number I in *LH's file name table.
20027 Use COMP_DIR as the name of the current directory of the
20028 compilation. The result is allocated using xmalloc; the caller is
20029 responsible for freeing it. */
20030 static char *
20031 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20032 {
20033 /* Is the file number a valid index into the line header's file name
20034 table? Remember that file numbers start with one, not zero. */
20035 if (1 <= file && file <= lh->num_file_names)
20036 {
20037 char *relative = file_file_name (file, lh);
20038
20039 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20040 return relative;
20041 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20042 }
20043 else
20044 return file_file_name (file, lh);
20045 }
20046
20047
20048 static struct macro_source_file *
20049 macro_start_file (int file, int line,
20050 struct macro_source_file *current_file,
20051 const char *comp_dir,
20052 struct line_header *lh, struct objfile *objfile)
20053 {
20054 /* File name relative to the compilation directory of this source file. */
20055 char *file_name = file_file_name (file, lh);
20056
20057 if (! current_file)
20058 {
20059 /* Note: We don't create a macro table for this compilation unit
20060 at all until we actually get a filename. */
20061 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
20062
20063 /* If we have no current file, then this must be the start_file
20064 directive for the compilation unit's main source file. */
20065 current_file = macro_set_main (macro_table, file_name);
20066 macro_define_special (macro_table);
20067 }
20068 else
20069 current_file = macro_include (current_file, line, file_name);
20070
20071 xfree (file_name);
20072
20073 return current_file;
20074 }
20075
20076
20077 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20078 followed by a null byte. */
20079 static char *
20080 copy_string (const char *buf, int len)
20081 {
20082 char *s = xmalloc (len + 1);
20083
20084 memcpy (s, buf, len);
20085 s[len] = '\0';
20086 return s;
20087 }
20088
20089
20090 static const char *
20091 consume_improper_spaces (const char *p, const char *body)
20092 {
20093 if (*p == ' ')
20094 {
20095 complaint (&symfile_complaints,
20096 _("macro definition contains spaces "
20097 "in formal argument list:\n`%s'"),
20098 body);
20099
20100 while (*p == ' ')
20101 p++;
20102 }
20103
20104 return p;
20105 }
20106
20107
20108 static void
20109 parse_macro_definition (struct macro_source_file *file, int line,
20110 const char *body)
20111 {
20112 const char *p;
20113
20114 /* The body string takes one of two forms. For object-like macro
20115 definitions, it should be:
20116
20117 <macro name> " " <definition>
20118
20119 For function-like macro definitions, it should be:
20120
20121 <macro name> "() " <definition>
20122 or
20123 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20124
20125 Spaces may appear only where explicitly indicated, and in the
20126 <definition>.
20127
20128 The Dwarf 2 spec says that an object-like macro's name is always
20129 followed by a space, but versions of GCC around March 2002 omit
20130 the space when the macro's definition is the empty string.
20131
20132 The Dwarf 2 spec says that there should be no spaces between the
20133 formal arguments in a function-like macro's formal argument list,
20134 but versions of GCC around March 2002 include spaces after the
20135 commas. */
20136
20137
20138 /* Find the extent of the macro name. The macro name is terminated
20139 by either a space or null character (for an object-like macro) or
20140 an opening paren (for a function-like macro). */
20141 for (p = body; *p; p++)
20142 if (*p == ' ' || *p == '(')
20143 break;
20144
20145 if (*p == ' ' || *p == '\0')
20146 {
20147 /* It's an object-like macro. */
20148 int name_len = p - body;
20149 char *name = copy_string (body, name_len);
20150 const char *replacement;
20151
20152 if (*p == ' ')
20153 replacement = body + name_len + 1;
20154 else
20155 {
20156 dwarf2_macro_malformed_definition_complaint (body);
20157 replacement = body + name_len;
20158 }
20159
20160 macro_define_object (file, line, name, replacement);
20161
20162 xfree (name);
20163 }
20164 else if (*p == '(')
20165 {
20166 /* It's a function-like macro. */
20167 char *name = copy_string (body, p - body);
20168 int argc = 0;
20169 int argv_size = 1;
20170 char **argv = xmalloc (argv_size * sizeof (*argv));
20171
20172 p++;
20173
20174 p = consume_improper_spaces (p, body);
20175
20176 /* Parse the formal argument list. */
20177 while (*p && *p != ')')
20178 {
20179 /* Find the extent of the current argument name. */
20180 const char *arg_start = p;
20181
20182 while (*p && *p != ',' && *p != ')' && *p != ' ')
20183 p++;
20184
20185 if (! *p || p == arg_start)
20186 dwarf2_macro_malformed_definition_complaint (body);
20187 else
20188 {
20189 /* Make sure argv has room for the new argument. */
20190 if (argc >= argv_size)
20191 {
20192 argv_size *= 2;
20193 argv = xrealloc (argv, argv_size * sizeof (*argv));
20194 }
20195
20196 argv[argc++] = copy_string (arg_start, p - arg_start);
20197 }
20198
20199 p = consume_improper_spaces (p, body);
20200
20201 /* Consume the comma, if present. */
20202 if (*p == ',')
20203 {
20204 p++;
20205
20206 p = consume_improper_spaces (p, body);
20207 }
20208 }
20209
20210 if (*p == ')')
20211 {
20212 p++;
20213
20214 if (*p == ' ')
20215 /* Perfectly formed definition, no complaints. */
20216 macro_define_function (file, line, name,
20217 argc, (const char **) argv,
20218 p + 1);
20219 else if (*p == '\0')
20220 {
20221 /* Complain, but do define it. */
20222 dwarf2_macro_malformed_definition_complaint (body);
20223 macro_define_function (file, line, name,
20224 argc, (const char **) argv,
20225 p);
20226 }
20227 else
20228 /* Just complain. */
20229 dwarf2_macro_malformed_definition_complaint (body);
20230 }
20231 else
20232 /* Just complain. */
20233 dwarf2_macro_malformed_definition_complaint (body);
20234
20235 xfree (name);
20236 {
20237 int i;
20238
20239 for (i = 0; i < argc; i++)
20240 xfree (argv[i]);
20241 }
20242 xfree (argv);
20243 }
20244 else
20245 dwarf2_macro_malformed_definition_complaint (body);
20246 }
20247
20248 /* Skip some bytes from BYTES according to the form given in FORM.
20249 Returns the new pointer. */
20250
20251 static const gdb_byte *
20252 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20253 enum dwarf_form form,
20254 unsigned int offset_size,
20255 struct dwarf2_section_info *section)
20256 {
20257 unsigned int bytes_read;
20258
20259 switch (form)
20260 {
20261 case DW_FORM_data1:
20262 case DW_FORM_flag:
20263 ++bytes;
20264 break;
20265
20266 case DW_FORM_data2:
20267 bytes += 2;
20268 break;
20269
20270 case DW_FORM_data4:
20271 bytes += 4;
20272 break;
20273
20274 case DW_FORM_data8:
20275 bytes += 8;
20276 break;
20277
20278 case DW_FORM_string:
20279 read_direct_string (abfd, bytes, &bytes_read);
20280 bytes += bytes_read;
20281 break;
20282
20283 case DW_FORM_sec_offset:
20284 case DW_FORM_strp:
20285 case DW_FORM_GNU_strp_alt:
20286 bytes += offset_size;
20287 break;
20288
20289 case DW_FORM_block:
20290 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20291 bytes += bytes_read;
20292 break;
20293
20294 case DW_FORM_block1:
20295 bytes += 1 + read_1_byte (abfd, bytes);
20296 break;
20297 case DW_FORM_block2:
20298 bytes += 2 + read_2_bytes (abfd, bytes);
20299 break;
20300 case DW_FORM_block4:
20301 bytes += 4 + read_4_bytes (abfd, bytes);
20302 break;
20303
20304 case DW_FORM_sdata:
20305 case DW_FORM_udata:
20306 case DW_FORM_GNU_addr_index:
20307 case DW_FORM_GNU_str_index:
20308 bytes = gdb_skip_leb128 (bytes, buffer_end);
20309 if (bytes == NULL)
20310 {
20311 dwarf2_section_buffer_overflow_complaint (section);
20312 return NULL;
20313 }
20314 break;
20315
20316 default:
20317 {
20318 complain:
20319 complaint (&symfile_complaints,
20320 _("invalid form 0x%x in `%s'"),
20321 form, get_section_name (section));
20322 return NULL;
20323 }
20324 }
20325
20326 return bytes;
20327 }
20328
20329 /* A helper for dwarf_decode_macros that handles skipping an unknown
20330 opcode. Returns an updated pointer to the macro data buffer; or,
20331 on error, issues a complaint and returns NULL. */
20332
20333 static const gdb_byte *
20334 skip_unknown_opcode (unsigned int opcode,
20335 const gdb_byte **opcode_definitions,
20336 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20337 bfd *abfd,
20338 unsigned int offset_size,
20339 struct dwarf2_section_info *section)
20340 {
20341 unsigned int bytes_read, i;
20342 unsigned long arg;
20343 const gdb_byte *defn;
20344
20345 if (opcode_definitions[opcode] == NULL)
20346 {
20347 complaint (&symfile_complaints,
20348 _("unrecognized DW_MACFINO opcode 0x%x"),
20349 opcode);
20350 return NULL;
20351 }
20352
20353 defn = opcode_definitions[opcode];
20354 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20355 defn += bytes_read;
20356
20357 for (i = 0; i < arg; ++i)
20358 {
20359 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20360 section);
20361 if (mac_ptr == NULL)
20362 {
20363 /* skip_form_bytes already issued the complaint. */
20364 return NULL;
20365 }
20366 }
20367
20368 return mac_ptr;
20369 }
20370
20371 /* A helper function which parses the header of a macro section.
20372 If the macro section is the extended (for now called "GNU") type,
20373 then this updates *OFFSET_SIZE. Returns a pointer to just after
20374 the header, or issues a complaint and returns NULL on error. */
20375
20376 static const gdb_byte *
20377 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20378 bfd *abfd,
20379 const gdb_byte *mac_ptr,
20380 unsigned int *offset_size,
20381 int section_is_gnu)
20382 {
20383 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20384
20385 if (section_is_gnu)
20386 {
20387 unsigned int version, flags;
20388
20389 version = read_2_bytes (abfd, mac_ptr);
20390 if (version != 4)
20391 {
20392 complaint (&symfile_complaints,
20393 _("unrecognized version `%d' in .debug_macro section"),
20394 version);
20395 return NULL;
20396 }
20397 mac_ptr += 2;
20398
20399 flags = read_1_byte (abfd, mac_ptr);
20400 ++mac_ptr;
20401 *offset_size = (flags & 1) ? 8 : 4;
20402
20403 if ((flags & 2) != 0)
20404 /* We don't need the line table offset. */
20405 mac_ptr += *offset_size;
20406
20407 /* Vendor opcode descriptions. */
20408 if ((flags & 4) != 0)
20409 {
20410 unsigned int i, count;
20411
20412 count = read_1_byte (abfd, mac_ptr);
20413 ++mac_ptr;
20414 for (i = 0; i < count; ++i)
20415 {
20416 unsigned int opcode, bytes_read;
20417 unsigned long arg;
20418
20419 opcode = read_1_byte (abfd, mac_ptr);
20420 ++mac_ptr;
20421 opcode_definitions[opcode] = mac_ptr;
20422 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20423 mac_ptr += bytes_read;
20424 mac_ptr += arg;
20425 }
20426 }
20427 }
20428
20429 return mac_ptr;
20430 }
20431
20432 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20433 including DW_MACRO_GNU_transparent_include. */
20434
20435 static void
20436 dwarf_decode_macro_bytes (bfd *abfd,
20437 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20438 struct macro_source_file *current_file,
20439 struct line_header *lh, const char *comp_dir,
20440 struct dwarf2_section_info *section,
20441 int section_is_gnu, int section_is_dwz,
20442 unsigned int offset_size,
20443 struct objfile *objfile,
20444 htab_t include_hash)
20445 {
20446 enum dwarf_macro_record_type macinfo_type;
20447 int at_commandline;
20448 const gdb_byte *opcode_definitions[256];
20449
20450 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20451 &offset_size, section_is_gnu);
20452 if (mac_ptr == NULL)
20453 {
20454 /* We already issued a complaint. */
20455 return;
20456 }
20457
20458 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20459 GDB is still reading the definitions from command line. First
20460 DW_MACINFO_start_file will need to be ignored as it was already executed
20461 to create CURRENT_FILE for the main source holding also the command line
20462 definitions. On first met DW_MACINFO_start_file this flag is reset to
20463 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20464
20465 at_commandline = 1;
20466
20467 do
20468 {
20469 /* Do we at least have room for a macinfo type byte? */
20470 if (mac_ptr >= mac_end)
20471 {
20472 dwarf2_section_buffer_overflow_complaint (section);
20473 break;
20474 }
20475
20476 macinfo_type = read_1_byte (abfd, mac_ptr);
20477 mac_ptr++;
20478
20479 /* Note that we rely on the fact that the corresponding GNU and
20480 DWARF constants are the same. */
20481 switch (macinfo_type)
20482 {
20483 /* A zero macinfo type indicates the end of the macro
20484 information. */
20485 case 0:
20486 break;
20487
20488 case DW_MACRO_GNU_define:
20489 case DW_MACRO_GNU_undef:
20490 case DW_MACRO_GNU_define_indirect:
20491 case DW_MACRO_GNU_undef_indirect:
20492 case DW_MACRO_GNU_define_indirect_alt:
20493 case DW_MACRO_GNU_undef_indirect_alt:
20494 {
20495 unsigned int bytes_read;
20496 int line;
20497 const char *body;
20498 int is_define;
20499
20500 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20501 mac_ptr += bytes_read;
20502
20503 if (macinfo_type == DW_MACRO_GNU_define
20504 || macinfo_type == DW_MACRO_GNU_undef)
20505 {
20506 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20507 mac_ptr += bytes_read;
20508 }
20509 else
20510 {
20511 LONGEST str_offset;
20512
20513 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20514 mac_ptr += offset_size;
20515
20516 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20517 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20518 || section_is_dwz)
20519 {
20520 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20521
20522 body = read_indirect_string_from_dwz (dwz, str_offset);
20523 }
20524 else
20525 body = read_indirect_string_at_offset (abfd, str_offset);
20526 }
20527
20528 is_define = (macinfo_type == DW_MACRO_GNU_define
20529 || macinfo_type == DW_MACRO_GNU_define_indirect
20530 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20531 if (! current_file)
20532 {
20533 /* DWARF violation as no main source is present. */
20534 complaint (&symfile_complaints,
20535 _("debug info with no main source gives macro %s "
20536 "on line %d: %s"),
20537 is_define ? _("definition") : _("undefinition"),
20538 line, body);
20539 break;
20540 }
20541 if ((line == 0 && !at_commandline)
20542 || (line != 0 && at_commandline))
20543 complaint (&symfile_complaints,
20544 _("debug info gives %s macro %s with %s line %d: %s"),
20545 at_commandline ? _("command-line") : _("in-file"),
20546 is_define ? _("definition") : _("undefinition"),
20547 line == 0 ? _("zero") : _("non-zero"), line, body);
20548
20549 if (is_define)
20550 parse_macro_definition (current_file, line, body);
20551 else
20552 {
20553 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20554 || macinfo_type == DW_MACRO_GNU_undef_indirect
20555 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20556 macro_undef (current_file, line, body);
20557 }
20558 }
20559 break;
20560
20561 case DW_MACRO_GNU_start_file:
20562 {
20563 unsigned int bytes_read;
20564 int line, file;
20565
20566 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20567 mac_ptr += bytes_read;
20568 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20569 mac_ptr += bytes_read;
20570
20571 if ((line == 0 && !at_commandline)
20572 || (line != 0 && at_commandline))
20573 complaint (&symfile_complaints,
20574 _("debug info gives source %d included "
20575 "from %s at %s line %d"),
20576 file, at_commandline ? _("command-line") : _("file"),
20577 line == 0 ? _("zero") : _("non-zero"), line);
20578
20579 if (at_commandline)
20580 {
20581 /* This DW_MACRO_GNU_start_file was executed in the
20582 pass one. */
20583 at_commandline = 0;
20584 }
20585 else
20586 current_file = macro_start_file (file, line,
20587 current_file, comp_dir,
20588 lh, objfile);
20589 }
20590 break;
20591
20592 case DW_MACRO_GNU_end_file:
20593 if (! current_file)
20594 complaint (&symfile_complaints,
20595 _("macro debug info has an unmatched "
20596 "`close_file' directive"));
20597 else
20598 {
20599 current_file = current_file->included_by;
20600 if (! current_file)
20601 {
20602 enum dwarf_macro_record_type next_type;
20603
20604 /* GCC circa March 2002 doesn't produce the zero
20605 type byte marking the end of the compilation
20606 unit. Complain if it's not there, but exit no
20607 matter what. */
20608
20609 /* Do we at least have room for a macinfo type byte? */
20610 if (mac_ptr >= mac_end)
20611 {
20612 dwarf2_section_buffer_overflow_complaint (section);
20613 return;
20614 }
20615
20616 /* We don't increment mac_ptr here, so this is just
20617 a look-ahead. */
20618 next_type = read_1_byte (abfd, mac_ptr);
20619 if (next_type != 0)
20620 complaint (&symfile_complaints,
20621 _("no terminating 0-type entry for "
20622 "macros in `.debug_macinfo' section"));
20623
20624 return;
20625 }
20626 }
20627 break;
20628
20629 case DW_MACRO_GNU_transparent_include:
20630 case DW_MACRO_GNU_transparent_include_alt:
20631 {
20632 LONGEST offset;
20633 void **slot;
20634 bfd *include_bfd = abfd;
20635 struct dwarf2_section_info *include_section = section;
20636 struct dwarf2_section_info alt_section;
20637 const gdb_byte *include_mac_end = mac_end;
20638 int is_dwz = section_is_dwz;
20639 const gdb_byte *new_mac_ptr;
20640
20641 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20642 mac_ptr += offset_size;
20643
20644 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20645 {
20646 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20647
20648 dwarf2_read_section (dwarf2_per_objfile->objfile,
20649 &dwz->macro);
20650
20651 include_section = &dwz->macro;
20652 include_bfd = get_section_bfd_owner (include_section);
20653 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20654 is_dwz = 1;
20655 }
20656
20657 new_mac_ptr = include_section->buffer + offset;
20658 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20659
20660 if (*slot != NULL)
20661 {
20662 /* This has actually happened; see
20663 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20664 complaint (&symfile_complaints,
20665 _("recursive DW_MACRO_GNU_transparent_include in "
20666 ".debug_macro section"));
20667 }
20668 else
20669 {
20670 *slot = (void *) new_mac_ptr;
20671
20672 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
20673 include_mac_end, current_file,
20674 lh, comp_dir,
20675 section, section_is_gnu, is_dwz,
20676 offset_size, objfile, include_hash);
20677
20678 htab_remove_elt (include_hash, (void *) new_mac_ptr);
20679 }
20680 }
20681 break;
20682
20683 case DW_MACINFO_vendor_ext:
20684 if (!section_is_gnu)
20685 {
20686 unsigned int bytes_read;
20687 int constant;
20688
20689 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20690 mac_ptr += bytes_read;
20691 read_direct_string (abfd, mac_ptr, &bytes_read);
20692 mac_ptr += bytes_read;
20693
20694 /* We don't recognize any vendor extensions. */
20695 break;
20696 }
20697 /* FALLTHROUGH */
20698
20699 default:
20700 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20701 mac_ptr, mac_end, abfd, offset_size,
20702 section);
20703 if (mac_ptr == NULL)
20704 return;
20705 break;
20706 }
20707 } while (macinfo_type != 0);
20708 }
20709
20710 static void
20711 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
20712 const char *comp_dir, int section_is_gnu)
20713 {
20714 struct objfile *objfile = dwarf2_per_objfile->objfile;
20715 struct line_header *lh = cu->line_header;
20716 bfd *abfd;
20717 const gdb_byte *mac_ptr, *mac_end;
20718 struct macro_source_file *current_file = 0;
20719 enum dwarf_macro_record_type macinfo_type;
20720 unsigned int offset_size = cu->header.offset_size;
20721 const gdb_byte *opcode_definitions[256];
20722 struct cleanup *cleanup;
20723 htab_t include_hash;
20724 void **slot;
20725 struct dwarf2_section_info *section;
20726 const char *section_name;
20727
20728 if (cu->dwo_unit != NULL)
20729 {
20730 if (section_is_gnu)
20731 {
20732 section = &cu->dwo_unit->dwo_file->sections.macro;
20733 section_name = ".debug_macro.dwo";
20734 }
20735 else
20736 {
20737 section = &cu->dwo_unit->dwo_file->sections.macinfo;
20738 section_name = ".debug_macinfo.dwo";
20739 }
20740 }
20741 else
20742 {
20743 if (section_is_gnu)
20744 {
20745 section = &dwarf2_per_objfile->macro;
20746 section_name = ".debug_macro";
20747 }
20748 else
20749 {
20750 section = &dwarf2_per_objfile->macinfo;
20751 section_name = ".debug_macinfo";
20752 }
20753 }
20754
20755 dwarf2_read_section (objfile, section);
20756 if (section->buffer == NULL)
20757 {
20758 complaint (&symfile_complaints, _("missing %s section"), section_name);
20759 return;
20760 }
20761 abfd = get_section_bfd_owner (section);
20762
20763 /* First pass: Find the name of the base filename.
20764 This filename is needed in order to process all macros whose definition
20765 (or undefinition) comes from the command line. These macros are defined
20766 before the first DW_MACINFO_start_file entry, and yet still need to be
20767 associated to the base file.
20768
20769 To determine the base file name, we scan the macro definitions until we
20770 reach the first DW_MACINFO_start_file entry. We then initialize
20771 CURRENT_FILE accordingly so that any macro definition found before the
20772 first DW_MACINFO_start_file can still be associated to the base file. */
20773
20774 mac_ptr = section->buffer + offset;
20775 mac_end = section->buffer + section->size;
20776
20777 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20778 &offset_size, section_is_gnu);
20779 if (mac_ptr == NULL)
20780 {
20781 /* We already issued a complaint. */
20782 return;
20783 }
20784
20785 do
20786 {
20787 /* Do we at least have room for a macinfo type byte? */
20788 if (mac_ptr >= mac_end)
20789 {
20790 /* Complaint is printed during the second pass as GDB will probably
20791 stop the first pass earlier upon finding
20792 DW_MACINFO_start_file. */
20793 break;
20794 }
20795
20796 macinfo_type = read_1_byte (abfd, mac_ptr);
20797 mac_ptr++;
20798
20799 /* Note that we rely on the fact that the corresponding GNU and
20800 DWARF constants are the same. */
20801 switch (macinfo_type)
20802 {
20803 /* A zero macinfo type indicates the end of the macro
20804 information. */
20805 case 0:
20806 break;
20807
20808 case DW_MACRO_GNU_define:
20809 case DW_MACRO_GNU_undef:
20810 /* Only skip the data by MAC_PTR. */
20811 {
20812 unsigned int bytes_read;
20813
20814 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20815 mac_ptr += bytes_read;
20816 read_direct_string (abfd, mac_ptr, &bytes_read);
20817 mac_ptr += bytes_read;
20818 }
20819 break;
20820
20821 case DW_MACRO_GNU_start_file:
20822 {
20823 unsigned int bytes_read;
20824 int line, file;
20825
20826 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20827 mac_ptr += bytes_read;
20828 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20829 mac_ptr += bytes_read;
20830
20831 current_file = macro_start_file (file, line, current_file,
20832 comp_dir, lh, objfile);
20833 }
20834 break;
20835
20836 case DW_MACRO_GNU_end_file:
20837 /* No data to skip by MAC_PTR. */
20838 break;
20839
20840 case DW_MACRO_GNU_define_indirect:
20841 case DW_MACRO_GNU_undef_indirect:
20842 case DW_MACRO_GNU_define_indirect_alt:
20843 case DW_MACRO_GNU_undef_indirect_alt:
20844 {
20845 unsigned int bytes_read;
20846
20847 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20848 mac_ptr += bytes_read;
20849 mac_ptr += offset_size;
20850 }
20851 break;
20852
20853 case DW_MACRO_GNU_transparent_include:
20854 case DW_MACRO_GNU_transparent_include_alt:
20855 /* Note that, according to the spec, a transparent include
20856 chain cannot call DW_MACRO_GNU_start_file. So, we can just
20857 skip this opcode. */
20858 mac_ptr += offset_size;
20859 break;
20860
20861 case DW_MACINFO_vendor_ext:
20862 /* Only skip the data by MAC_PTR. */
20863 if (!section_is_gnu)
20864 {
20865 unsigned int bytes_read;
20866
20867 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20868 mac_ptr += bytes_read;
20869 read_direct_string (abfd, mac_ptr, &bytes_read);
20870 mac_ptr += bytes_read;
20871 }
20872 /* FALLTHROUGH */
20873
20874 default:
20875 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20876 mac_ptr, mac_end, abfd, offset_size,
20877 section);
20878 if (mac_ptr == NULL)
20879 return;
20880 break;
20881 }
20882 } while (macinfo_type != 0 && current_file == NULL);
20883
20884 /* Second pass: Process all entries.
20885
20886 Use the AT_COMMAND_LINE flag to determine whether we are still processing
20887 command-line macro definitions/undefinitions. This flag is unset when we
20888 reach the first DW_MACINFO_start_file entry. */
20889
20890 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
20891 NULL, xcalloc, xfree);
20892 cleanup = make_cleanup_htab_delete (include_hash);
20893 mac_ptr = section->buffer + offset;
20894 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
20895 *slot = (void *) mac_ptr;
20896 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
20897 current_file, lh, comp_dir, section,
20898 section_is_gnu, 0,
20899 offset_size, objfile, include_hash);
20900 do_cleanups (cleanup);
20901 }
20902
20903 /* Check if the attribute's form is a DW_FORM_block*
20904 if so return true else false. */
20905
20906 static int
20907 attr_form_is_block (const struct attribute *attr)
20908 {
20909 return (attr == NULL ? 0 :
20910 attr->form == DW_FORM_block1
20911 || attr->form == DW_FORM_block2
20912 || attr->form == DW_FORM_block4
20913 || attr->form == DW_FORM_block
20914 || attr->form == DW_FORM_exprloc);
20915 }
20916
20917 /* Return non-zero if ATTR's value is a section offset --- classes
20918 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
20919 You may use DW_UNSND (attr) to retrieve such offsets.
20920
20921 Section 7.5.4, "Attribute Encodings", explains that no attribute
20922 may have a value that belongs to more than one of these classes; it
20923 would be ambiguous if we did, because we use the same forms for all
20924 of them. */
20925
20926 static int
20927 attr_form_is_section_offset (const struct attribute *attr)
20928 {
20929 return (attr->form == DW_FORM_data4
20930 || attr->form == DW_FORM_data8
20931 || attr->form == DW_FORM_sec_offset);
20932 }
20933
20934 /* Return non-zero if ATTR's value falls in the 'constant' class, or
20935 zero otherwise. When this function returns true, you can apply
20936 dwarf2_get_attr_constant_value to it.
20937
20938 However, note that for some attributes you must check
20939 attr_form_is_section_offset before using this test. DW_FORM_data4
20940 and DW_FORM_data8 are members of both the constant class, and of
20941 the classes that contain offsets into other debug sections
20942 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
20943 that, if an attribute's can be either a constant or one of the
20944 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
20945 taken as section offsets, not constants. */
20946
20947 static int
20948 attr_form_is_constant (const struct attribute *attr)
20949 {
20950 switch (attr->form)
20951 {
20952 case DW_FORM_sdata:
20953 case DW_FORM_udata:
20954 case DW_FORM_data1:
20955 case DW_FORM_data2:
20956 case DW_FORM_data4:
20957 case DW_FORM_data8:
20958 return 1;
20959 default:
20960 return 0;
20961 }
20962 }
20963
20964
20965 /* DW_ADDR is always stored already as sect_offset; despite for the forms
20966 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
20967
20968 static int
20969 attr_form_is_ref (const struct attribute *attr)
20970 {
20971 switch (attr->form)
20972 {
20973 case DW_FORM_ref_addr:
20974 case DW_FORM_ref1:
20975 case DW_FORM_ref2:
20976 case DW_FORM_ref4:
20977 case DW_FORM_ref8:
20978 case DW_FORM_ref_udata:
20979 case DW_FORM_GNU_ref_alt:
20980 return 1;
20981 default:
20982 return 0;
20983 }
20984 }
20985
20986 /* Return the .debug_loc section to use for CU.
20987 For DWO files use .debug_loc.dwo. */
20988
20989 static struct dwarf2_section_info *
20990 cu_debug_loc_section (struct dwarf2_cu *cu)
20991 {
20992 if (cu->dwo_unit)
20993 return &cu->dwo_unit->dwo_file->sections.loc;
20994 return &dwarf2_per_objfile->loc;
20995 }
20996
20997 /* A helper function that fills in a dwarf2_loclist_baton. */
20998
20999 static void
21000 fill_in_loclist_baton (struct dwarf2_cu *cu,
21001 struct dwarf2_loclist_baton *baton,
21002 const struct attribute *attr)
21003 {
21004 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21005
21006 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21007
21008 baton->per_cu = cu->per_cu;
21009 gdb_assert (baton->per_cu);
21010 /* We don't know how long the location list is, but make sure we
21011 don't run off the edge of the section. */
21012 baton->size = section->size - DW_UNSND (attr);
21013 baton->data = section->buffer + DW_UNSND (attr);
21014 baton->base_address = cu->base_address;
21015 baton->from_dwo = cu->dwo_unit != NULL;
21016 }
21017
21018 static void
21019 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21020 struct dwarf2_cu *cu, int is_block)
21021 {
21022 struct objfile *objfile = dwarf2_per_objfile->objfile;
21023 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21024
21025 if (attr_form_is_section_offset (attr)
21026 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21027 the section. If so, fall through to the complaint in the
21028 other branch. */
21029 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21030 {
21031 struct dwarf2_loclist_baton *baton;
21032
21033 baton = obstack_alloc (&objfile->objfile_obstack,
21034 sizeof (struct dwarf2_loclist_baton));
21035
21036 fill_in_loclist_baton (cu, baton, attr);
21037
21038 if (cu->base_known == 0)
21039 complaint (&symfile_complaints,
21040 _("Location list used without "
21041 "specifying the CU base address."));
21042
21043 SYMBOL_ACLASS_INDEX (sym) = (is_block
21044 ? dwarf2_loclist_block_index
21045 : dwarf2_loclist_index);
21046 SYMBOL_LOCATION_BATON (sym) = baton;
21047 }
21048 else
21049 {
21050 struct dwarf2_locexpr_baton *baton;
21051
21052 baton = obstack_alloc (&objfile->objfile_obstack,
21053 sizeof (struct dwarf2_locexpr_baton));
21054 baton->per_cu = cu->per_cu;
21055 gdb_assert (baton->per_cu);
21056
21057 if (attr_form_is_block (attr))
21058 {
21059 /* Note that we're just copying the block's data pointer
21060 here, not the actual data. We're still pointing into the
21061 info_buffer for SYM's objfile; right now we never release
21062 that buffer, but when we do clean up properly this may
21063 need to change. */
21064 baton->size = DW_BLOCK (attr)->size;
21065 baton->data = DW_BLOCK (attr)->data;
21066 }
21067 else
21068 {
21069 dwarf2_invalid_attrib_class_complaint ("location description",
21070 SYMBOL_NATURAL_NAME (sym));
21071 baton->size = 0;
21072 }
21073
21074 SYMBOL_ACLASS_INDEX (sym) = (is_block
21075 ? dwarf2_locexpr_block_index
21076 : dwarf2_locexpr_index);
21077 SYMBOL_LOCATION_BATON (sym) = baton;
21078 }
21079 }
21080
21081 /* Return the OBJFILE associated with the compilation unit CU. If CU
21082 came from a separate debuginfo file, then the master objfile is
21083 returned. */
21084
21085 struct objfile *
21086 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21087 {
21088 struct objfile *objfile = per_cu->objfile;
21089
21090 /* Return the master objfile, so that we can report and look up the
21091 correct file containing this variable. */
21092 if (objfile->separate_debug_objfile_backlink)
21093 objfile = objfile->separate_debug_objfile_backlink;
21094
21095 return objfile;
21096 }
21097
21098 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21099 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21100 CU_HEADERP first. */
21101
21102 static const struct comp_unit_head *
21103 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21104 struct dwarf2_per_cu_data *per_cu)
21105 {
21106 const gdb_byte *info_ptr;
21107
21108 if (per_cu->cu)
21109 return &per_cu->cu->header;
21110
21111 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21112
21113 memset (cu_headerp, 0, sizeof (*cu_headerp));
21114 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21115
21116 return cu_headerp;
21117 }
21118
21119 /* Return the address size given in the compilation unit header for CU. */
21120
21121 int
21122 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21123 {
21124 struct comp_unit_head cu_header_local;
21125 const struct comp_unit_head *cu_headerp;
21126
21127 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21128
21129 return cu_headerp->addr_size;
21130 }
21131
21132 /* Return the offset size given in the compilation unit header for CU. */
21133
21134 int
21135 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21136 {
21137 struct comp_unit_head cu_header_local;
21138 const struct comp_unit_head *cu_headerp;
21139
21140 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21141
21142 return cu_headerp->offset_size;
21143 }
21144
21145 /* See its dwarf2loc.h declaration. */
21146
21147 int
21148 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21149 {
21150 struct comp_unit_head cu_header_local;
21151 const struct comp_unit_head *cu_headerp;
21152
21153 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21154
21155 if (cu_headerp->version == 2)
21156 return cu_headerp->addr_size;
21157 else
21158 return cu_headerp->offset_size;
21159 }
21160
21161 /* Return the text offset of the CU. The returned offset comes from
21162 this CU's objfile. If this objfile came from a separate debuginfo
21163 file, then the offset may be different from the corresponding
21164 offset in the parent objfile. */
21165
21166 CORE_ADDR
21167 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21168 {
21169 struct objfile *objfile = per_cu->objfile;
21170
21171 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21172 }
21173
21174 /* Locate the .debug_info compilation unit from CU's objfile which contains
21175 the DIE at OFFSET. Raises an error on failure. */
21176
21177 static struct dwarf2_per_cu_data *
21178 dwarf2_find_containing_comp_unit (sect_offset offset,
21179 unsigned int offset_in_dwz,
21180 struct objfile *objfile)
21181 {
21182 struct dwarf2_per_cu_data *this_cu;
21183 int low, high;
21184 const sect_offset *cu_off;
21185
21186 low = 0;
21187 high = dwarf2_per_objfile->n_comp_units - 1;
21188 while (high > low)
21189 {
21190 struct dwarf2_per_cu_data *mid_cu;
21191 int mid = low + (high - low) / 2;
21192
21193 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21194 cu_off = &mid_cu->offset;
21195 if (mid_cu->is_dwz > offset_in_dwz
21196 || (mid_cu->is_dwz == offset_in_dwz
21197 && cu_off->sect_off >= offset.sect_off))
21198 high = mid;
21199 else
21200 low = mid + 1;
21201 }
21202 gdb_assert (low == high);
21203 this_cu = dwarf2_per_objfile->all_comp_units[low];
21204 cu_off = &this_cu->offset;
21205 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21206 {
21207 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21208 error (_("Dwarf Error: could not find partial DIE containing "
21209 "offset 0x%lx [in module %s]"),
21210 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21211
21212 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21213 <= offset.sect_off);
21214 return dwarf2_per_objfile->all_comp_units[low-1];
21215 }
21216 else
21217 {
21218 this_cu = dwarf2_per_objfile->all_comp_units[low];
21219 if (low == dwarf2_per_objfile->n_comp_units - 1
21220 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21221 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21222 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21223 return this_cu;
21224 }
21225 }
21226
21227 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21228
21229 static void
21230 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21231 {
21232 memset (cu, 0, sizeof (*cu));
21233 per_cu->cu = cu;
21234 cu->per_cu = per_cu;
21235 cu->objfile = per_cu->objfile;
21236 obstack_init (&cu->comp_unit_obstack);
21237 }
21238
21239 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21240
21241 static void
21242 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21243 enum language pretend_language)
21244 {
21245 struct attribute *attr;
21246
21247 /* Set the language we're debugging. */
21248 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21249 if (attr)
21250 set_cu_language (DW_UNSND (attr), cu);
21251 else
21252 {
21253 cu->language = pretend_language;
21254 cu->language_defn = language_def (cu->language);
21255 }
21256
21257 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21258 if (attr)
21259 cu->producer = DW_STRING (attr);
21260 }
21261
21262 /* Release one cached compilation unit, CU. We unlink it from the tree
21263 of compilation units, but we don't remove it from the read_in_chain;
21264 the caller is responsible for that.
21265 NOTE: DATA is a void * because this function is also used as a
21266 cleanup routine. */
21267
21268 static void
21269 free_heap_comp_unit (void *data)
21270 {
21271 struct dwarf2_cu *cu = data;
21272
21273 gdb_assert (cu->per_cu != NULL);
21274 cu->per_cu->cu = NULL;
21275 cu->per_cu = NULL;
21276
21277 obstack_free (&cu->comp_unit_obstack, NULL);
21278
21279 xfree (cu);
21280 }
21281
21282 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21283 when we're finished with it. We can't free the pointer itself, but be
21284 sure to unlink it from the cache. Also release any associated storage. */
21285
21286 static void
21287 free_stack_comp_unit (void *data)
21288 {
21289 struct dwarf2_cu *cu = data;
21290
21291 gdb_assert (cu->per_cu != NULL);
21292 cu->per_cu->cu = NULL;
21293 cu->per_cu = NULL;
21294
21295 obstack_free (&cu->comp_unit_obstack, NULL);
21296 cu->partial_dies = NULL;
21297 }
21298
21299 /* Free all cached compilation units. */
21300
21301 static void
21302 free_cached_comp_units (void *data)
21303 {
21304 struct dwarf2_per_cu_data *per_cu, **last_chain;
21305
21306 per_cu = dwarf2_per_objfile->read_in_chain;
21307 last_chain = &dwarf2_per_objfile->read_in_chain;
21308 while (per_cu != NULL)
21309 {
21310 struct dwarf2_per_cu_data *next_cu;
21311
21312 next_cu = per_cu->cu->read_in_chain;
21313
21314 free_heap_comp_unit (per_cu->cu);
21315 *last_chain = next_cu;
21316
21317 per_cu = next_cu;
21318 }
21319 }
21320
21321 /* Increase the age counter on each cached compilation unit, and free
21322 any that are too old. */
21323
21324 static void
21325 age_cached_comp_units (void)
21326 {
21327 struct dwarf2_per_cu_data *per_cu, **last_chain;
21328
21329 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21330 per_cu = dwarf2_per_objfile->read_in_chain;
21331 while (per_cu != NULL)
21332 {
21333 per_cu->cu->last_used ++;
21334 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21335 dwarf2_mark (per_cu->cu);
21336 per_cu = per_cu->cu->read_in_chain;
21337 }
21338
21339 per_cu = dwarf2_per_objfile->read_in_chain;
21340 last_chain = &dwarf2_per_objfile->read_in_chain;
21341 while (per_cu != NULL)
21342 {
21343 struct dwarf2_per_cu_data *next_cu;
21344
21345 next_cu = per_cu->cu->read_in_chain;
21346
21347 if (!per_cu->cu->mark)
21348 {
21349 free_heap_comp_unit (per_cu->cu);
21350 *last_chain = next_cu;
21351 }
21352 else
21353 last_chain = &per_cu->cu->read_in_chain;
21354
21355 per_cu = next_cu;
21356 }
21357 }
21358
21359 /* Remove a single compilation unit from the cache. */
21360
21361 static void
21362 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21363 {
21364 struct dwarf2_per_cu_data *per_cu, **last_chain;
21365
21366 per_cu = dwarf2_per_objfile->read_in_chain;
21367 last_chain = &dwarf2_per_objfile->read_in_chain;
21368 while (per_cu != NULL)
21369 {
21370 struct dwarf2_per_cu_data *next_cu;
21371
21372 next_cu = per_cu->cu->read_in_chain;
21373
21374 if (per_cu == target_per_cu)
21375 {
21376 free_heap_comp_unit (per_cu->cu);
21377 per_cu->cu = NULL;
21378 *last_chain = next_cu;
21379 break;
21380 }
21381 else
21382 last_chain = &per_cu->cu->read_in_chain;
21383
21384 per_cu = next_cu;
21385 }
21386 }
21387
21388 /* Release all extra memory associated with OBJFILE. */
21389
21390 void
21391 dwarf2_free_objfile (struct objfile *objfile)
21392 {
21393 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21394
21395 if (dwarf2_per_objfile == NULL)
21396 return;
21397
21398 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21399 free_cached_comp_units (NULL);
21400
21401 if (dwarf2_per_objfile->quick_file_names_table)
21402 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21403
21404 /* Everything else should be on the objfile obstack. */
21405 }
21406
21407 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21408 We store these in a hash table separate from the DIEs, and preserve them
21409 when the DIEs are flushed out of cache.
21410
21411 The CU "per_cu" pointer is needed because offset alone is not enough to
21412 uniquely identify the type. A file may have multiple .debug_types sections,
21413 or the type may come from a DWO file. Furthermore, while it's more logical
21414 to use per_cu->section+offset, with Fission the section with the data is in
21415 the DWO file but we don't know that section at the point we need it.
21416 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21417 because we can enter the lookup routine, get_die_type_at_offset, from
21418 outside this file, and thus won't necessarily have PER_CU->cu.
21419 Fortunately, PER_CU is stable for the life of the objfile. */
21420
21421 struct dwarf2_per_cu_offset_and_type
21422 {
21423 const struct dwarf2_per_cu_data *per_cu;
21424 sect_offset offset;
21425 struct type *type;
21426 };
21427
21428 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21429
21430 static hashval_t
21431 per_cu_offset_and_type_hash (const void *item)
21432 {
21433 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21434
21435 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21436 }
21437
21438 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21439
21440 static int
21441 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21442 {
21443 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21444 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21445
21446 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21447 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21448 }
21449
21450 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21451 table if necessary. For convenience, return TYPE.
21452
21453 The DIEs reading must have careful ordering to:
21454 * Not cause infite loops trying to read in DIEs as a prerequisite for
21455 reading current DIE.
21456 * Not trying to dereference contents of still incompletely read in types
21457 while reading in other DIEs.
21458 * Enable referencing still incompletely read in types just by a pointer to
21459 the type without accessing its fields.
21460
21461 Therefore caller should follow these rules:
21462 * Try to fetch any prerequisite types we may need to build this DIE type
21463 before building the type and calling set_die_type.
21464 * After building type call set_die_type for current DIE as soon as
21465 possible before fetching more types to complete the current type.
21466 * Make the type as complete as possible before fetching more types. */
21467
21468 static struct type *
21469 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21470 {
21471 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21472 struct objfile *objfile = cu->objfile;
21473
21474 /* For Ada types, make sure that the gnat-specific data is always
21475 initialized (if not already set). There are a few types where
21476 we should not be doing so, because the type-specific area is
21477 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21478 where the type-specific area is used to store the floatformat).
21479 But this is not a problem, because the gnat-specific information
21480 is actually not needed for these types. */
21481 if (need_gnat_info (cu)
21482 && TYPE_CODE (type) != TYPE_CODE_FUNC
21483 && TYPE_CODE (type) != TYPE_CODE_FLT
21484 && !HAVE_GNAT_AUX_INFO (type))
21485 INIT_GNAT_SPECIFIC (type);
21486
21487 if (dwarf2_per_objfile->die_type_hash == NULL)
21488 {
21489 dwarf2_per_objfile->die_type_hash =
21490 htab_create_alloc_ex (127,
21491 per_cu_offset_and_type_hash,
21492 per_cu_offset_and_type_eq,
21493 NULL,
21494 &objfile->objfile_obstack,
21495 hashtab_obstack_allocate,
21496 dummy_obstack_deallocate);
21497 }
21498
21499 ofs.per_cu = cu->per_cu;
21500 ofs.offset = die->offset;
21501 ofs.type = type;
21502 slot = (struct dwarf2_per_cu_offset_and_type **)
21503 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21504 if (*slot)
21505 complaint (&symfile_complaints,
21506 _("A problem internal to GDB: DIE 0x%x has type already set"),
21507 die->offset.sect_off);
21508 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21509 **slot = ofs;
21510 return type;
21511 }
21512
21513 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21514 or return NULL if the die does not have a saved type. */
21515
21516 static struct type *
21517 get_die_type_at_offset (sect_offset offset,
21518 struct dwarf2_per_cu_data *per_cu)
21519 {
21520 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21521
21522 if (dwarf2_per_objfile->die_type_hash == NULL)
21523 return NULL;
21524
21525 ofs.per_cu = per_cu;
21526 ofs.offset = offset;
21527 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21528 if (slot)
21529 return slot->type;
21530 else
21531 return NULL;
21532 }
21533
21534 /* Look up the type for DIE in CU in die_type_hash,
21535 or return NULL if DIE does not have a saved type. */
21536
21537 static struct type *
21538 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21539 {
21540 return get_die_type_at_offset (die->offset, cu->per_cu);
21541 }
21542
21543 /* Add a dependence relationship from CU to REF_PER_CU. */
21544
21545 static void
21546 dwarf2_add_dependence (struct dwarf2_cu *cu,
21547 struct dwarf2_per_cu_data *ref_per_cu)
21548 {
21549 void **slot;
21550
21551 if (cu->dependencies == NULL)
21552 cu->dependencies
21553 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21554 NULL, &cu->comp_unit_obstack,
21555 hashtab_obstack_allocate,
21556 dummy_obstack_deallocate);
21557
21558 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21559 if (*slot == NULL)
21560 *slot = ref_per_cu;
21561 }
21562
21563 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21564 Set the mark field in every compilation unit in the
21565 cache that we must keep because we are keeping CU. */
21566
21567 static int
21568 dwarf2_mark_helper (void **slot, void *data)
21569 {
21570 struct dwarf2_per_cu_data *per_cu;
21571
21572 per_cu = (struct dwarf2_per_cu_data *) *slot;
21573
21574 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21575 reading of the chain. As such dependencies remain valid it is not much
21576 useful to track and undo them during QUIT cleanups. */
21577 if (per_cu->cu == NULL)
21578 return 1;
21579
21580 if (per_cu->cu->mark)
21581 return 1;
21582 per_cu->cu->mark = 1;
21583
21584 if (per_cu->cu->dependencies != NULL)
21585 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21586
21587 return 1;
21588 }
21589
21590 /* Set the mark field in CU and in every other compilation unit in the
21591 cache that we must keep because we are keeping CU. */
21592
21593 static void
21594 dwarf2_mark (struct dwarf2_cu *cu)
21595 {
21596 if (cu->mark)
21597 return;
21598 cu->mark = 1;
21599 if (cu->dependencies != NULL)
21600 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21601 }
21602
21603 static void
21604 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21605 {
21606 while (per_cu)
21607 {
21608 per_cu->cu->mark = 0;
21609 per_cu = per_cu->cu->read_in_chain;
21610 }
21611 }
21612
21613 /* Trivial hash function for partial_die_info: the hash value of a DIE
21614 is its offset in .debug_info for this objfile. */
21615
21616 static hashval_t
21617 partial_die_hash (const void *item)
21618 {
21619 const struct partial_die_info *part_die = item;
21620
21621 return part_die->offset.sect_off;
21622 }
21623
21624 /* Trivial comparison function for partial_die_info structures: two DIEs
21625 are equal if they have the same offset. */
21626
21627 static int
21628 partial_die_eq (const void *item_lhs, const void *item_rhs)
21629 {
21630 const struct partial_die_info *part_die_lhs = item_lhs;
21631 const struct partial_die_info *part_die_rhs = item_rhs;
21632
21633 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
21634 }
21635
21636 static struct cmd_list_element *set_dwarf2_cmdlist;
21637 static struct cmd_list_element *show_dwarf2_cmdlist;
21638
21639 static void
21640 set_dwarf2_cmd (char *args, int from_tty)
21641 {
21642 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
21643 }
21644
21645 static void
21646 show_dwarf2_cmd (char *args, int from_tty)
21647 {
21648 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21649 }
21650
21651 /* Free data associated with OBJFILE, if necessary. */
21652
21653 static void
21654 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
21655 {
21656 struct dwarf2_per_objfile *data = d;
21657 int ix;
21658
21659 /* Make sure we don't accidentally use dwarf2_per_objfile while
21660 cleaning up. */
21661 dwarf2_per_objfile = NULL;
21662
21663 for (ix = 0; ix < data->n_comp_units; ++ix)
21664 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
21665
21666 for (ix = 0; ix < data->n_type_units; ++ix)
21667 VEC_free (dwarf2_per_cu_ptr,
21668 data->all_type_units[ix]->per_cu.imported_symtabs);
21669 xfree (data->all_type_units);
21670
21671 VEC_free (dwarf2_section_info_def, data->types);
21672
21673 if (data->dwo_files)
21674 free_dwo_files (data->dwo_files, objfile);
21675 if (data->dwp_file)
21676 gdb_bfd_unref (data->dwp_file->dbfd);
21677
21678 if (data->dwz_file && data->dwz_file->dwz_bfd)
21679 gdb_bfd_unref (data->dwz_file->dwz_bfd);
21680 }
21681
21682 \f
21683 /* The "save gdb-index" command. */
21684
21685 /* The contents of the hash table we create when building the string
21686 table. */
21687 struct strtab_entry
21688 {
21689 offset_type offset;
21690 const char *str;
21691 };
21692
21693 /* Hash function for a strtab_entry.
21694
21695 Function is used only during write_hash_table so no index format backward
21696 compatibility is needed. */
21697
21698 static hashval_t
21699 hash_strtab_entry (const void *e)
21700 {
21701 const struct strtab_entry *entry = e;
21702 return mapped_index_string_hash (INT_MAX, entry->str);
21703 }
21704
21705 /* Equality function for a strtab_entry. */
21706
21707 static int
21708 eq_strtab_entry (const void *a, const void *b)
21709 {
21710 const struct strtab_entry *ea = a;
21711 const struct strtab_entry *eb = b;
21712 return !strcmp (ea->str, eb->str);
21713 }
21714
21715 /* Create a strtab_entry hash table. */
21716
21717 static htab_t
21718 create_strtab (void)
21719 {
21720 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
21721 xfree, xcalloc, xfree);
21722 }
21723
21724 /* Add a string to the constant pool. Return the string's offset in
21725 host order. */
21726
21727 static offset_type
21728 add_string (htab_t table, struct obstack *cpool, const char *str)
21729 {
21730 void **slot;
21731 struct strtab_entry entry;
21732 struct strtab_entry *result;
21733
21734 entry.str = str;
21735 slot = htab_find_slot (table, &entry, INSERT);
21736 if (*slot)
21737 result = *slot;
21738 else
21739 {
21740 result = XNEW (struct strtab_entry);
21741 result->offset = obstack_object_size (cpool);
21742 result->str = str;
21743 obstack_grow_str0 (cpool, str);
21744 *slot = result;
21745 }
21746 return result->offset;
21747 }
21748
21749 /* An entry in the symbol table. */
21750 struct symtab_index_entry
21751 {
21752 /* The name of the symbol. */
21753 const char *name;
21754 /* The offset of the name in the constant pool. */
21755 offset_type index_offset;
21756 /* A sorted vector of the indices of all the CUs that hold an object
21757 of this name. */
21758 VEC (offset_type) *cu_indices;
21759 };
21760
21761 /* The symbol table. This is a power-of-2-sized hash table. */
21762 struct mapped_symtab
21763 {
21764 offset_type n_elements;
21765 offset_type size;
21766 struct symtab_index_entry **data;
21767 };
21768
21769 /* Hash function for a symtab_index_entry. */
21770
21771 static hashval_t
21772 hash_symtab_entry (const void *e)
21773 {
21774 const struct symtab_index_entry *entry = e;
21775 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
21776 sizeof (offset_type) * VEC_length (offset_type,
21777 entry->cu_indices),
21778 0);
21779 }
21780
21781 /* Equality function for a symtab_index_entry. */
21782
21783 static int
21784 eq_symtab_entry (const void *a, const void *b)
21785 {
21786 const struct symtab_index_entry *ea = a;
21787 const struct symtab_index_entry *eb = b;
21788 int len = VEC_length (offset_type, ea->cu_indices);
21789 if (len != VEC_length (offset_type, eb->cu_indices))
21790 return 0;
21791 return !memcmp (VEC_address (offset_type, ea->cu_indices),
21792 VEC_address (offset_type, eb->cu_indices),
21793 sizeof (offset_type) * len);
21794 }
21795
21796 /* Destroy a symtab_index_entry. */
21797
21798 static void
21799 delete_symtab_entry (void *p)
21800 {
21801 struct symtab_index_entry *entry = p;
21802 VEC_free (offset_type, entry->cu_indices);
21803 xfree (entry);
21804 }
21805
21806 /* Create a hash table holding symtab_index_entry objects. */
21807
21808 static htab_t
21809 create_symbol_hash_table (void)
21810 {
21811 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
21812 delete_symtab_entry, xcalloc, xfree);
21813 }
21814
21815 /* Create a new mapped symtab object. */
21816
21817 static struct mapped_symtab *
21818 create_mapped_symtab (void)
21819 {
21820 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
21821 symtab->n_elements = 0;
21822 symtab->size = 1024;
21823 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21824 return symtab;
21825 }
21826
21827 /* Destroy a mapped_symtab. */
21828
21829 static void
21830 cleanup_mapped_symtab (void *p)
21831 {
21832 struct mapped_symtab *symtab = p;
21833 /* The contents of the array are freed when the other hash table is
21834 destroyed. */
21835 xfree (symtab->data);
21836 xfree (symtab);
21837 }
21838
21839 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
21840 the slot.
21841
21842 Function is used only during write_hash_table so no index format backward
21843 compatibility is needed. */
21844
21845 static struct symtab_index_entry **
21846 find_slot (struct mapped_symtab *symtab, const char *name)
21847 {
21848 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
21849
21850 index = hash & (symtab->size - 1);
21851 step = ((hash * 17) & (symtab->size - 1)) | 1;
21852
21853 for (;;)
21854 {
21855 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
21856 return &symtab->data[index];
21857 index = (index + step) & (symtab->size - 1);
21858 }
21859 }
21860
21861 /* Expand SYMTAB's hash table. */
21862
21863 static void
21864 hash_expand (struct mapped_symtab *symtab)
21865 {
21866 offset_type old_size = symtab->size;
21867 offset_type i;
21868 struct symtab_index_entry **old_entries = symtab->data;
21869
21870 symtab->size *= 2;
21871 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21872
21873 for (i = 0; i < old_size; ++i)
21874 {
21875 if (old_entries[i])
21876 {
21877 struct symtab_index_entry **slot = find_slot (symtab,
21878 old_entries[i]->name);
21879 *slot = old_entries[i];
21880 }
21881 }
21882
21883 xfree (old_entries);
21884 }
21885
21886 /* Add an entry to SYMTAB. NAME is the name of the symbol.
21887 CU_INDEX is the index of the CU in which the symbol appears.
21888 IS_STATIC is one if the symbol is static, otherwise zero (global). */
21889
21890 static void
21891 add_index_entry (struct mapped_symtab *symtab, const char *name,
21892 int is_static, gdb_index_symbol_kind kind,
21893 offset_type cu_index)
21894 {
21895 struct symtab_index_entry **slot;
21896 offset_type cu_index_and_attrs;
21897
21898 ++symtab->n_elements;
21899 if (4 * symtab->n_elements / 3 >= symtab->size)
21900 hash_expand (symtab);
21901
21902 slot = find_slot (symtab, name);
21903 if (!*slot)
21904 {
21905 *slot = XNEW (struct symtab_index_entry);
21906 (*slot)->name = name;
21907 /* index_offset is set later. */
21908 (*slot)->cu_indices = NULL;
21909 }
21910
21911 cu_index_and_attrs = 0;
21912 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
21913 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
21914 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
21915
21916 /* We don't want to record an index value twice as we want to avoid the
21917 duplication.
21918 We process all global symbols and then all static symbols
21919 (which would allow us to avoid the duplication by only having to check
21920 the last entry pushed), but a symbol could have multiple kinds in one CU.
21921 To keep things simple we don't worry about the duplication here and
21922 sort and uniqufy the list after we've processed all symbols. */
21923 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
21924 }
21925
21926 /* qsort helper routine for uniquify_cu_indices. */
21927
21928 static int
21929 offset_type_compare (const void *ap, const void *bp)
21930 {
21931 offset_type a = *(offset_type *) ap;
21932 offset_type b = *(offset_type *) bp;
21933
21934 return (a > b) - (b > a);
21935 }
21936
21937 /* Sort and remove duplicates of all symbols' cu_indices lists. */
21938
21939 static void
21940 uniquify_cu_indices (struct mapped_symtab *symtab)
21941 {
21942 int i;
21943
21944 for (i = 0; i < symtab->size; ++i)
21945 {
21946 struct symtab_index_entry *entry = symtab->data[i];
21947
21948 if (entry
21949 && entry->cu_indices != NULL)
21950 {
21951 unsigned int next_to_insert, next_to_check;
21952 offset_type last_value;
21953
21954 qsort (VEC_address (offset_type, entry->cu_indices),
21955 VEC_length (offset_type, entry->cu_indices),
21956 sizeof (offset_type), offset_type_compare);
21957
21958 last_value = VEC_index (offset_type, entry->cu_indices, 0);
21959 next_to_insert = 1;
21960 for (next_to_check = 1;
21961 next_to_check < VEC_length (offset_type, entry->cu_indices);
21962 ++next_to_check)
21963 {
21964 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
21965 != last_value)
21966 {
21967 last_value = VEC_index (offset_type, entry->cu_indices,
21968 next_to_check);
21969 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
21970 last_value);
21971 ++next_to_insert;
21972 }
21973 }
21974 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
21975 }
21976 }
21977 }
21978
21979 /* Add a vector of indices to the constant pool. */
21980
21981 static offset_type
21982 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
21983 struct symtab_index_entry *entry)
21984 {
21985 void **slot;
21986
21987 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
21988 if (!*slot)
21989 {
21990 offset_type len = VEC_length (offset_type, entry->cu_indices);
21991 offset_type val = MAYBE_SWAP (len);
21992 offset_type iter;
21993 int i;
21994
21995 *slot = entry;
21996 entry->index_offset = obstack_object_size (cpool);
21997
21998 obstack_grow (cpool, &val, sizeof (val));
21999 for (i = 0;
22000 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22001 ++i)
22002 {
22003 val = MAYBE_SWAP (iter);
22004 obstack_grow (cpool, &val, sizeof (val));
22005 }
22006 }
22007 else
22008 {
22009 struct symtab_index_entry *old_entry = *slot;
22010 entry->index_offset = old_entry->index_offset;
22011 entry = old_entry;
22012 }
22013 return entry->index_offset;
22014 }
22015
22016 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22017 constant pool entries going into the obstack CPOOL. */
22018
22019 static void
22020 write_hash_table (struct mapped_symtab *symtab,
22021 struct obstack *output, struct obstack *cpool)
22022 {
22023 offset_type i;
22024 htab_t symbol_hash_table;
22025 htab_t str_table;
22026
22027 symbol_hash_table = create_symbol_hash_table ();
22028 str_table = create_strtab ();
22029
22030 /* We add all the index vectors to the constant pool first, to
22031 ensure alignment is ok. */
22032 for (i = 0; i < symtab->size; ++i)
22033 {
22034 if (symtab->data[i])
22035 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22036 }
22037
22038 /* Now write out the hash table. */
22039 for (i = 0; i < symtab->size; ++i)
22040 {
22041 offset_type str_off, vec_off;
22042
22043 if (symtab->data[i])
22044 {
22045 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22046 vec_off = symtab->data[i]->index_offset;
22047 }
22048 else
22049 {
22050 /* While 0 is a valid constant pool index, it is not valid
22051 to have 0 for both offsets. */
22052 str_off = 0;
22053 vec_off = 0;
22054 }
22055
22056 str_off = MAYBE_SWAP (str_off);
22057 vec_off = MAYBE_SWAP (vec_off);
22058
22059 obstack_grow (output, &str_off, sizeof (str_off));
22060 obstack_grow (output, &vec_off, sizeof (vec_off));
22061 }
22062
22063 htab_delete (str_table);
22064 htab_delete (symbol_hash_table);
22065 }
22066
22067 /* Struct to map psymtab to CU index in the index file. */
22068 struct psymtab_cu_index_map
22069 {
22070 struct partial_symtab *psymtab;
22071 unsigned int cu_index;
22072 };
22073
22074 static hashval_t
22075 hash_psymtab_cu_index (const void *item)
22076 {
22077 const struct psymtab_cu_index_map *map = item;
22078
22079 return htab_hash_pointer (map->psymtab);
22080 }
22081
22082 static int
22083 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22084 {
22085 const struct psymtab_cu_index_map *lhs = item_lhs;
22086 const struct psymtab_cu_index_map *rhs = item_rhs;
22087
22088 return lhs->psymtab == rhs->psymtab;
22089 }
22090
22091 /* Helper struct for building the address table. */
22092 struct addrmap_index_data
22093 {
22094 struct objfile *objfile;
22095 struct obstack *addr_obstack;
22096 htab_t cu_index_htab;
22097
22098 /* Non-zero if the previous_* fields are valid.
22099 We can't write an entry until we see the next entry (since it is only then
22100 that we know the end of the entry). */
22101 int previous_valid;
22102 /* Index of the CU in the table of all CUs in the index file. */
22103 unsigned int previous_cu_index;
22104 /* Start address of the CU. */
22105 CORE_ADDR previous_cu_start;
22106 };
22107
22108 /* Write an address entry to OBSTACK. */
22109
22110 static void
22111 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22112 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22113 {
22114 offset_type cu_index_to_write;
22115 gdb_byte addr[8];
22116 CORE_ADDR baseaddr;
22117
22118 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22119
22120 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22121 obstack_grow (obstack, addr, 8);
22122 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22123 obstack_grow (obstack, addr, 8);
22124 cu_index_to_write = MAYBE_SWAP (cu_index);
22125 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22126 }
22127
22128 /* Worker function for traversing an addrmap to build the address table. */
22129
22130 static int
22131 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22132 {
22133 struct addrmap_index_data *data = datap;
22134 struct partial_symtab *pst = obj;
22135
22136 if (data->previous_valid)
22137 add_address_entry (data->objfile, data->addr_obstack,
22138 data->previous_cu_start, start_addr,
22139 data->previous_cu_index);
22140
22141 data->previous_cu_start = start_addr;
22142 if (pst != NULL)
22143 {
22144 struct psymtab_cu_index_map find_map, *map;
22145 find_map.psymtab = pst;
22146 map = htab_find (data->cu_index_htab, &find_map);
22147 gdb_assert (map != NULL);
22148 data->previous_cu_index = map->cu_index;
22149 data->previous_valid = 1;
22150 }
22151 else
22152 data->previous_valid = 0;
22153
22154 return 0;
22155 }
22156
22157 /* Write OBJFILE's address map to OBSTACK.
22158 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22159 in the index file. */
22160
22161 static void
22162 write_address_map (struct objfile *objfile, struct obstack *obstack,
22163 htab_t cu_index_htab)
22164 {
22165 struct addrmap_index_data addrmap_index_data;
22166
22167 /* When writing the address table, we have to cope with the fact that
22168 the addrmap iterator only provides the start of a region; we have to
22169 wait until the next invocation to get the start of the next region. */
22170
22171 addrmap_index_data.objfile = objfile;
22172 addrmap_index_data.addr_obstack = obstack;
22173 addrmap_index_data.cu_index_htab = cu_index_htab;
22174 addrmap_index_data.previous_valid = 0;
22175
22176 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22177 &addrmap_index_data);
22178
22179 /* It's highly unlikely the last entry (end address = 0xff...ff)
22180 is valid, but we should still handle it.
22181 The end address is recorded as the start of the next region, but that
22182 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22183 anyway. */
22184 if (addrmap_index_data.previous_valid)
22185 add_address_entry (objfile, obstack,
22186 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22187 addrmap_index_data.previous_cu_index);
22188 }
22189
22190 /* Return the symbol kind of PSYM. */
22191
22192 static gdb_index_symbol_kind
22193 symbol_kind (struct partial_symbol *psym)
22194 {
22195 domain_enum domain = PSYMBOL_DOMAIN (psym);
22196 enum address_class aclass = PSYMBOL_CLASS (psym);
22197
22198 switch (domain)
22199 {
22200 case VAR_DOMAIN:
22201 switch (aclass)
22202 {
22203 case LOC_BLOCK:
22204 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22205 case LOC_TYPEDEF:
22206 return GDB_INDEX_SYMBOL_KIND_TYPE;
22207 case LOC_COMPUTED:
22208 case LOC_CONST_BYTES:
22209 case LOC_OPTIMIZED_OUT:
22210 case LOC_STATIC:
22211 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22212 case LOC_CONST:
22213 /* Note: It's currently impossible to recognize psyms as enum values
22214 short of reading the type info. For now punt. */
22215 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22216 default:
22217 /* There are other LOC_FOO values that one might want to classify
22218 as variables, but dwarf2read.c doesn't currently use them. */
22219 return GDB_INDEX_SYMBOL_KIND_OTHER;
22220 }
22221 case STRUCT_DOMAIN:
22222 return GDB_INDEX_SYMBOL_KIND_TYPE;
22223 default:
22224 return GDB_INDEX_SYMBOL_KIND_OTHER;
22225 }
22226 }
22227
22228 /* Add a list of partial symbols to SYMTAB. */
22229
22230 static void
22231 write_psymbols (struct mapped_symtab *symtab,
22232 htab_t psyms_seen,
22233 struct partial_symbol **psymp,
22234 int count,
22235 offset_type cu_index,
22236 int is_static)
22237 {
22238 for (; count-- > 0; ++psymp)
22239 {
22240 struct partial_symbol *psym = *psymp;
22241 void **slot;
22242
22243 if (SYMBOL_LANGUAGE (psym) == language_ada)
22244 error (_("Ada is not currently supported by the index"));
22245
22246 /* Only add a given psymbol once. */
22247 slot = htab_find_slot (psyms_seen, psym, INSERT);
22248 if (!*slot)
22249 {
22250 gdb_index_symbol_kind kind = symbol_kind (psym);
22251
22252 *slot = psym;
22253 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22254 is_static, kind, cu_index);
22255 }
22256 }
22257 }
22258
22259 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22260 exception if there is an error. */
22261
22262 static void
22263 write_obstack (FILE *file, struct obstack *obstack)
22264 {
22265 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22266 file)
22267 != obstack_object_size (obstack))
22268 error (_("couldn't data write to file"));
22269 }
22270
22271 /* Unlink a file if the argument is not NULL. */
22272
22273 static void
22274 unlink_if_set (void *p)
22275 {
22276 char **filename = p;
22277 if (*filename)
22278 unlink (*filename);
22279 }
22280
22281 /* A helper struct used when iterating over debug_types. */
22282 struct signatured_type_index_data
22283 {
22284 struct objfile *objfile;
22285 struct mapped_symtab *symtab;
22286 struct obstack *types_list;
22287 htab_t psyms_seen;
22288 int cu_index;
22289 };
22290
22291 /* A helper function that writes a single signatured_type to an
22292 obstack. */
22293
22294 static int
22295 write_one_signatured_type (void **slot, void *d)
22296 {
22297 struct signatured_type_index_data *info = d;
22298 struct signatured_type *entry = (struct signatured_type *) *slot;
22299 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22300 gdb_byte val[8];
22301
22302 write_psymbols (info->symtab,
22303 info->psyms_seen,
22304 info->objfile->global_psymbols.list
22305 + psymtab->globals_offset,
22306 psymtab->n_global_syms, info->cu_index,
22307 0);
22308 write_psymbols (info->symtab,
22309 info->psyms_seen,
22310 info->objfile->static_psymbols.list
22311 + psymtab->statics_offset,
22312 psymtab->n_static_syms, info->cu_index,
22313 1);
22314
22315 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22316 entry->per_cu.offset.sect_off);
22317 obstack_grow (info->types_list, val, 8);
22318 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22319 entry->type_offset_in_tu.cu_off);
22320 obstack_grow (info->types_list, val, 8);
22321 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22322 obstack_grow (info->types_list, val, 8);
22323
22324 ++info->cu_index;
22325
22326 return 1;
22327 }
22328
22329 /* Recurse into all "included" dependencies and write their symbols as
22330 if they appeared in this psymtab. */
22331
22332 static void
22333 recursively_write_psymbols (struct objfile *objfile,
22334 struct partial_symtab *psymtab,
22335 struct mapped_symtab *symtab,
22336 htab_t psyms_seen,
22337 offset_type cu_index)
22338 {
22339 int i;
22340
22341 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22342 if (psymtab->dependencies[i]->user != NULL)
22343 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22344 symtab, psyms_seen, cu_index);
22345
22346 write_psymbols (symtab,
22347 psyms_seen,
22348 objfile->global_psymbols.list + psymtab->globals_offset,
22349 psymtab->n_global_syms, cu_index,
22350 0);
22351 write_psymbols (symtab,
22352 psyms_seen,
22353 objfile->static_psymbols.list + psymtab->statics_offset,
22354 psymtab->n_static_syms, cu_index,
22355 1);
22356 }
22357
22358 /* Create an index file for OBJFILE in the directory DIR. */
22359
22360 static void
22361 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22362 {
22363 struct cleanup *cleanup;
22364 char *filename, *cleanup_filename;
22365 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22366 struct obstack cu_list, types_cu_list;
22367 int i;
22368 FILE *out_file;
22369 struct mapped_symtab *symtab;
22370 offset_type val, size_of_contents, total_len;
22371 struct stat st;
22372 htab_t psyms_seen;
22373 htab_t cu_index_htab;
22374 struct psymtab_cu_index_map *psymtab_cu_index_map;
22375
22376 if (dwarf2_per_objfile->using_index)
22377 error (_("Cannot use an index to create the index"));
22378
22379 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22380 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22381
22382 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22383 return;
22384
22385 if (stat (objfile_name (objfile), &st) < 0)
22386 perror_with_name (objfile_name (objfile));
22387
22388 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22389 INDEX_SUFFIX, (char *) NULL);
22390 cleanup = make_cleanup (xfree, filename);
22391
22392 out_file = gdb_fopen_cloexec (filename, "wb");
22393 if (!out_file)
22394 error (_("Can't open `%s' for writing"), filename);
22395
22396 cleanup_filename = filename;
22397 make_cleanup (unlink_if_set, &cleanup_filename);
22398
22399 symtab = create_mapped_symtab ();
22400 make_cleanup (cleanup_mapped_symtab, symtab);
22401
22402 obstack_init (&addr_obstack);
22403 make_cleanup_obstack_free (&addr_obstack);
22404
22405 obstack_init (&cu_list);
22406 make_cleanup_obstack_free (&cu_list);
22407
22408 obstack_init (&types_cu_list);
22409 make_cleanup_obstack_free (&types_cu_list);
22410
22411 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22412 NULL, xcalloc, xfree);
22413 make_cleanup_htab_delete (psyms_seen);
22414
22415 /* While we're scanning CU's create a table that maps a psymtab pointer
22416 (which is what addrmap records) to its index (which is what is recorded
22417 in the index file). This will later be needed to write the address
22418 table. */
22419 cu_index_htab = htab_create_alloc (100,
22420 hash_psymtab_cu_index,
22421 eq_psymtab_cu_index,
22422 NULL, xcalloc, xfree);
22423 make_cleanup_htab_delete (cu_index_htab);
22424 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22425 xmalloc (sizeof (struct psymtab_cu_index_map)
22426 * dwarf2_per_objfile->n_comp_units);
22427 make_cleanup (xfree, psymtab_cu_index_map);
22428
22429 /* The CU list is already sorted, so we don't need to do additional
22430 work here. Also, the debug_types entries do not appear in
22431 all_comp_units, but only in their own hash table. */
22432 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22433 {
22434 struct dwarf2_per_cu_data *per_cu
22435 = dwarf2_per_objfile->all_comp_units[i];
22436 struct partial_symtab *psymtab = per_cu->v.psymtab;
22437 gdb_byte val[8];
22438 struct psymtab_cu_index_map *map;
22439 void **slot;
22440
22441 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22442 It may be referenced from a local scope but in such case it does not
22443 need to be present in .gdb_index. */
22444 if (psymtab == NULL)
22445 continue;
22446
22447 if (psymtab->user == NULL)
22448 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22449
22450 map = &psymtab_cu_index_map[i];
22451 map->psymtab = psymtab;
22452 map->cu_index = i;
22453 slot = htab_find_slot (cu_index_htab, map, INSERT);
22454 gdb_assert (slot != NULL);
22455 gdb_assert (*slot == NULL);
22456 *slot = map;
22457
22458 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22459 per_cu->offset.sect_off);
22460 obstack_grow (&cu_list, val, 8);
22461 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22462 obstack_grow (&cu_list, val, 8);
22463 }
22464
22465 /* Dump the address map. */
22466 write_address_map (objfile, &addr_obstack, cu_index_htab);
22467
22468 /* Write out the .debug_type entries, if any. */
22469 if (dwarf2_per_objfile->signatured_types)
22470 {
22471 struct signatured_type_index_data sig_data;
22472
22473 sig_data.objfile = objfile;
22474 sig_data.symtab = symtab;
22475 sig_data.types_list = &types_cu_list;
22476 sig_data.psyms_seen = psyms_seen;
22477 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22478 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22479 write_one_signatured_type, &sig_data);
22480 }
22481
22482 /* Now that we've processed all symbols we can shrink their cu_indices
22483 lists. */
22484 uniquify_cu_indices (symtab);
22485
22486 obstack_init (&constant_pool);
22487 make_cleanup_obstack_free (&constant_pool);
22488 obstack_init (&symtab_obstack);
22489 make_cleanup_obstack_free (&symtab_obstack);
22490 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22491
22492 obstack_init (&contents);
22493 make_cleanup_obstack_free (&contents);
22494 size_of_contents = 6 * sizeof (offset_type);
22495 total_len = size_of_contents;
22496
22497 /* The version number. */
22498 val = MAYBE_SWAP (8);
22499 obstack_grow (&contents, &val, sizeof (val));
22500
22501 /* The offset of the CU list from the start of the file. */
22502 val = MAYBE_SWAP (total_len);
22503 obstack_grow (&contents, &val, sizeof (val));
22504 total_len += obstack_object_size (&cu_list);
22505
22506 /* The offset of the types CU list from the start of the file. */
22507 val = MAYBE_SWAP (total_len);
22508 obstack_grow (&contents, &val, sizeof (val));
22509 total_len += obstack_object_size (&types_cu_list);
22510
22511 /* The offset of the address table from the start of the file. */
22512 val = MAYBE_SWAP (total_len);
22513 obstack_grow (&contents, &val, sizeof (val));
22514 total_len += obstack_object_size (&addr_obstack);
22515
22516 /* The offset of the symbol table from the start of the file. */
22517 val = MAYBE_SWAP (total_len);
22518 obstack_grow (&contents, &val, sizeof (val));
22519 total_len += obstack_object_size (&symtab_obstack);
22520
22521 /* The offset of the constant pool from the start of the file. */
22522 val = MAYBE_SWAP (total_len);
22523 obstack_grow (&contents, &val, sizeof (val));
22524 total_len += obstack_object_size (&constant_pool);
22525
22526 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22527
22528 write_obstack (out_file, &contents);
22529 write_obstack (out_file, &cu_list);
22530 write_obstack (out_file, &types_cu_list);
22531 write_obstack (out_file, &addr_obstack);
22532 write_obstack (out_file, &symtab_obstack);
22533 write_obstack (out_file, &constant_pool);
22534
22535 fclose (out_file);
22536
22537 /* We want to keep the file, so we set cleanup_filename to NULL
22538 here. See unlink_if_set. */
22539 cleanup_filename = NULL;
22540
22541 do_cleanups (cleanup);
22542 }
22543
22544 /* Implementation of the `save gdb-index' command.
22545
22546 Note that the file format used by this command is documented in the
22547 GDB manual. Any changes here must be documented there. */
22548
22549 static void
22550 save_gdb_index_command (char *arg, int from_tty)
22551 {
22552 struct objfile *objfile;
22553
22554 if (!arg || !*arg)
22555 error (_("usage: save gdb-index DIRECTORY"));
22556
22557 ALL_OBJFILES (objfile)
22558 {
22559 struct stat st;
22560
22561 /* If the objfile does not correspond to an actual file, skip it. */
22562 if (stat (objfile_name (objfile), &st) < 0)
22563 continue;
22564
22565 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22566 if (dwarf2_per_objfile)
22567 {
22568 volatile struct gdb_exception except;
22569
22570 TRY_CATCH (except, RETURN_MASK_ERROR)
22571 {
22572 write_psymtabs_to_index (objfile, arg);
22573 }
22574 if (except.reason < 0)
22575 exception_fprintf (gdb_stderr, except,
22576 _("Error while writing index for `%s': "),
22577 objfile_name (objfile));
22578 }
22579 }
22580 }
22581
22582 \f
22583
22584 int dwarf2_always_disassemble;
22585
22586 static void
22587 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22588 struct cmd_list_element *c, const char *value)
22589 {
22590 fprintf_filtered (file,
22591 _("Whether to always disassemble "
22592 "DWARF expressions is %s.\n"),
22593 value);
22594 }
22595
22596 static void
22597 show_check_physname (struct ui_file *file, int from_tty,
22598 struct cmd_list_element *c, const char *value)
22599 {
22600 fprintf_filtered (file,
22601 _("Whether to check \"physname\" is %s.\n"),
22602 value);
22603 }
22604
22605 void _initialize_dwarf2_read (void);
22606
22607 void
22608 _initialize_dwarf2_read (void)
22609 {
22610 struct cmd_list_element *c;
22611
22612 dwarf2_objfile_data_key
22613 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22614
22615 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22616 Set DWARF 2 specific variables.\n\
22617 Configure DWARF 2 variables such as the cache size"),
22618 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22619 0/*allow-unknown*/, &maintenance_set_cmdlist);
22620
22621 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22622 Show DWARF 2 specific variables\n\
22623 Show DWARF 2 variables such as the cache size"),
22624 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22625 0/*allow-unknown*/, &maintenance_show_cmdlist);
22626
22627 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
22628 &dwarf2_max_cache_age, _("\
22629 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22630 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22631 A higher limit means that cached compilation units will be stored\n\
22632 in memory longer, and more total memory will be used. Zero disables\n\
22633 caching, which can slow down startup."),
22634 NULL,
22635 show_dwarf2_max_cache_age,
22636 &set_dwarf2_cmdlist,
22637 &show_dwarf2_cmdlist);
22638
22639 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22640 &dwarf2_always_disassemble, _("\
22641 Set whether `info address' always disassembles DWARF expressions."), _("\
22642 Show whether `info address' always disassembles DWARF expressions."), _("\
22643 When enabled, DWARF expressions are always printed in an assembly-like\n\
22644 syntax. When disabled, expressions will be printed in a more\n\
22645 conversational style, when possible."),
22646 NULL,
22647 show_dwarf2_always_disassemble,
22648 &set_dwarf2_cmdlist,
22649 &show_dwarf2_cmdlist);
22650
22651 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
22652 Set debugging of the dwarf2 reader."), _("\
22653 Show debugging of the dwarf2 reader."), _("\
22654 When enabled (non-zero), debugging messages are printed during dwarf2\n\
22655 reading and symtab expansion. A value of 1 (one) provides basic\n\
22656 information. A value greater than 1 provides more verbose information."),
22657 NULL,
22658 NULL,
22659 &setdebuglist, &showdebuglist);
22660
22661 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
22662 Set debugging of the dwarf2 DIE reader."), _("\
22663 Show debugging of the dwarf2 DIE reader."), _("\
22664 When enabled (non-zero), DIEs are dumped after they are read in.\n\
22665 The value is the maximum depth to print."),
22666 NULL,
22667 NULL,
22668 &setdebuglist, &showdebuglist);
22669
22670 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22671 Set cross-checking of \"physname\" code against demangler."), _("\
22672 Show cross-checking of \"physname\" code against demangler."), _("\
22673 When enabled, GDB's internal \"physname\" code is checked against\n\
22674 the demangler."),
22675 NULL, show_check_physname,
22676 &setdebuglist, &showdebuglist);
22677
22678 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22679 no_class, &use_deprecated_index_sections, _("\
22680 Set whether to use deprecated gdb_index sections."), _("\
22681 Show whether to use deprecated gdb_index sections."), _("\
22682 When enabled, deprecated .gdb_index sections are used anyway.\n\
22683 Normally they are ignored either because of a missing feature or\n\
22684 performance issue.\n\
22685 Warning: This option must be enabled before gdb reads the file."),
22686 NULL,
22687 NULL,
22688 &setlist, &showlist);
22689
22690 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
22691 _("\
22692 Save a gdb-index file.\n\
22693 Usage: save gdb-index DIRECTORY"),
22694 &save_cmdlist);
22695 set_cmd_completer (c, filename_completer);
22696
22697 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
22698 &dwarf2_locexpr_funcs);
22699 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
22700 &dwarf2_loclist_funcs);
22701
22702 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
22703 &dwarf2_block_frame_base_locexpr_funcs);
22704 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
22705 &dwarf2_block_frame_base_loclist_funcs);
22706 }
This page took 0.587031 seconds and 5 git commands to generate.