PR gdb/12538:
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support.
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28
29 #include "defs.h"
30 #include "bfd.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "objfiles.h"
34 #include "dwarf2.h"
35 #include "buildsym.h"
36 #include "demangle.h"
37 #include "expression.h"
38 #include "filenames.h" /* for DOSish file names */
39 #include "macrotab.h"
40 #include "language.h"
41 #include "complaints.h"
42 #include "bcache.h"
43 #include "dwarf2expr.h"
44 #include "dwarf2loc.h"
45 #include "cp-support.h"
46 #include "hashtab.h"
47 #include "command.h"
48 #include "gdbcmd.h"
49 #include "block.h"
50 #include "addrmap.h"
51 #include "typeprint.h"
52 #include "jv-lang.h"
53 #include "psympriv.h"
54 #include "exceptions.h"
55 #include "gdb_stat.h"
56 #include "completer.h"
57 #include "vec.h"
58 #include "c-lang.h"
59 #include "valprint.h"
60
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_assert.h"
64 #include <sys/types.h>
65 #ifdef HAVE_ZLIB_H
66 #include <zlib.h>
67 #endif
68 #ifdef HAVE_MMAP
69 #include <sys/mman.h>
70 #ifndef MAP_FAILED
71 #define MAP_FAILED ((void *) -1)
72 #endif
73 #endif
74
75 typedef struct symbol *symbolp;
76 DEF_VEC_P (symbolp);
77
78 #if 0
79 /* .debug_info header for a compilation unit
80 Because of alignment constraints, this structure has padding and cannot
81 be mapped directly onto the beginning of the .debug_info section. */
82 typedef struct comp_unit_header
83 {
84 unsigned int length; /* length of the .debug_info
85 contribution */
86 unsigned short version; /* version number -- 2 for DWARF
87 version 2 */
88 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
89 unsigned char addr_size; /* byte size of an address -- 4 */
90 }
91 _COMP_UNIT_HEADER;
92 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
93 #endif
94
95 /* .debug_line statement program prologue
96 Because of alignment constraints, this structure has padding and cannot
97 be mapped directly onto the beginning of the .debug_info section. */
98 typedef struct statement_prologue
99 {
100 unsigned int total_length; /* byte length of the statement
101 information */
102 unsigned short version; /* version number -- 2 for DWARF
103 version 2 */
104 unsigned int prologue_length; /* # bytes between prologue &
105 stmt program */
106 unsigned char minimum_instruction_length; /* byte size of
107 smallest instr */
108 unsigned char default_is_stmt; /* initial value of is_stmt
109 register */
110 char line_base;
111 unsigned char line_range;
112 unsigned char opcode_base; /* number assigned to first special
113 opcode */
114 unsigned char *standard_opcode_lengths;
115 }
116 _STATEMENT_PROLOGUE;
117
118 /* When non-zero, dump DIEs after they are read in. */
119 static int dwarf2_die_debug = 0;
120
121 static int pagesize;
122
123 /* When set, the file that we're processing is known to have debugging
124 info for C++ namespaces. GCC 3.3.x did not produce this information,
125 but later versions do. */
126
127 static int processing_has_namespace_info;
128
129 static const struct objfile_data *dwarf2_objfile_data_key;
130
131 struct dwarf2_section_info
132 {
133 asection *asection;
134 gdb_byte *buffer;
135 bfd_size_type size;
136 int was_mmapped;
137 /* True if we have tried to read this section. */
138 int readin;
139 };
140
141 /* All offsets in the index are of this type. It must be
142 architecture-independent. */
143 typedef uint32_t offset_type;
144
145 DEF_VEC_I (offset_type);
146
147 /* A description of the mapped index. The file format is described in
148 a comment by the code that writes the index. */
149 struct mapped_index
150 {
151 /* The total length of the buffer. */
152 off_t total_size;
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155 /* Size of the address table data in bytes. */
156 offset_type address_table_size;
157 /* The symbol table, implemented as a hash table. */
158 const offset_type *symbol_table;
159 /* Size in slots, each slot is 2 offset_types. */
160 offset_type symbol_table_slots;
161 /* A pointer to the constant pool. */
162 const char *constant_pool;
163 };
164
165 struct dwarf2_per_objfile
166 {
167 struct dwarf2_section_info info;
168 struct dwarf2_section_info abbrev;
169 struct dwarf2_section_info line;
170 struct dwarf2_section_info loc;
171 struct dwarf2_section_info macinfo;
172 struct dwarf2_section_info str;
173 struct dwarf2_section_info ranges;
174 struct dwarf2_section_info types;
175 struct dwarf2_section_info frame;
176 struct dwarf2_section_info eh_frame;
177 struct dwarf2_section_info gdb_index;
178
179 /* Back link. */
180 struct objfile *objfile;
181
182 /* A list of all the compilation units. This is used to locate
183 the target compilation unit of a particular reference. */
184 struct dwarf2_per_cu_data **all_comp_units;
185
186 /* The number of compilation units in ALL_COMP_UNITS. */
187 int n_comp_units;
188
189 /* The number of .debug_types-related CUs. */
190 int n_type_comp_units;
191
192 /* The .debug_types-related CUs. */
193 struct dwarf2_per_cu_data **type_comp_units;
194
195 /* A chain of compilation units that are currently read in, so that
196 they can be freed later. */
197 struct dwarf2_per_cu_data *read_in_chain;
198
199 /* A table mapping .debug_types signatures to its signatured_type entry.
200 This is NULL if the .debug_types section hasn't been read in yet. */
201 htab_t signatured_types;
202
203 /* A flag indicating wether this objfile has a section loaded at a
204 VMA of 0. */
205 int has_section_at_zero;
206
207 /* True if we are using the mapped index,
208 or we are faking it for OBJF_READNOW's sake. */
209 unsigned char using_index;
210
211 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
212 struct mapped_index *index_table;
213
214 /* When using index_table, this keeps track of all quick_file_names entries.
215 TUs can share line table entries with CUs or other TUs, and there can be
216 a lot more TUs than unique line tables, so we maintain a separate table
217 of all line table entries to support the sharing. */
218 htab_t quick_file_names_table;
219
220 /* Set during partial symbol reading, to prevent queueing of full
221 symbols. */
222 int reading_partial_symbols;
223
224 /* Table mapping type .debug_info DIE offsets to types.
225 This is NULL if not allocated yet.
226 It (currently) makes sense to allocate debug_types_type_hash lazily.
227 To keep things simple we allocate both lazily. */
228 htab_t debug_info_type_hash;
229
230 /* Table mapping type .debug_types DIE offsets to types.
231 This is NULL if not allocated yet. */
232 htab_t debug_types_type_hash;
233 };
234
235 static struct dwarf2_per_objfile *dwarf2_per_objfile;
236
237 /* names of the debugging sections */
238
239 /* Note that if the debugging section has been compressed, it might
240 have a name like .zdebug_info. */
241
242 #define INFO_SECTION "debug_info"
243 #define ABBREV_SECTION "debug_abbrev"
244 #define LINE_SECTION "debug_line"
245 #define LOC_SECTION "debug_loc"
246 #define MACINFO_SECTION "debug_macinfo"
247 #define STR_SECTION "debug_str"
248 #define RANGES_SECTION "debug_ranges"
249 #define TYPES_SECTION "debug_types"
250 #define FRAME_SECTION "debug_frame"
251 #define EH_FRAME_SECTION "eh_frame"
252 #define GDB_INDEX_SECTION "gdb_index"
253
254 /* local data types */
255
256 /* We hold several abbreviation tables in memory at the same time. */
257 #ifndef ABBREV_HASH_SIZE
258 #define ABBREV_HASH_SIZE 121
259 #endif
260
261 /* The data in a compilation unit header, after target2host
262 translation, looks like this. */
263 struct comp_unit_head
264 {
265 unsigned int length;
266 short version;
267 unsigned char addr_size;
268 unsigned char signed_addr_p;
269 unsigned int abbrev_offset;
270
271 /* Size of file offsets; either 4 or 8. */
272 unsigned int offset_size;
273
274 /* Size of the length field; either 4 or 12. */
275 unsigned int initial_length_size;
276
277 /* Offset to the first byte of this compilation unit header in the
278 .debug_info section, for resolving relative reference dies. */
279 unsigned int offset;
280
281 /* Offset to first die in this cu from the start of the cu.
282 This will be the first byte following the compilation unit header. */
283 unsigned int first_die_offset;
284 };
285
286 /* Type used for delaying computation of method physnames.
287 See comments for compute_delayed_physnames. */
288 struct delayed_method_info
289 {
290 /* The type to which the method is attached, i.e., its parent class. */
291 struct type *type;
292
293 /* The index of the method in the type's function fieldlists. */
294 int fnfield_index;
295
296 /* The index of the method in the fieldlist. */
297 int index;
298
299 /* The name of the DIE. */
300 const char *name;
301
302 /* The DIE associated with this method. */
303 struct die_info *die;
304 };
305
306 typedef struct delayed_method_info delayed_method_info;
307 DEF_VEC_O (delayed_method_info);
308
309 /* Internal state when decoding a particular compilation unit. */
310 struct dwarf2_cu
311 {
312 /* The objfile containing this compilation unit. */
313 struct objfile *objfile;
314
315 /* The header of the compilation unit. */
316 struct comp_unit_head header;
317
318 /* Base address of this compilation unit. */
319 CORE_ADDR base_address;
320
321 /* Non-zero if base_address has been set. */
322 int base_known;
323
324 struct function_range *first_fn, *last_fn, *cached_fn;
325
326 /* The language we are debugging. */
327 enum language language;
328 const struct language_defn *language_defn;
329
330 const char *producer;
331
332 /* The generic symbol table building routines have separate lists for
333 file scope symbols and all all other scopes (local scopes). So
334 we need to select the right one to pass to add_symbol_to_list().
335 We do it by keeping a pointer to the correct list in list_in_scope.
336
337 FIXME: The original dwarf code just treated the file scope as the
338 first local scope, and all other local scopes as nested local
339 scopes, and worked fine. Check to see if we really need to
340 distinguish these in buildsym.c. */
341 struct pending **list_in_scope;
342
343 /* DWARF abbreviation table associated with this compilation unit. */
344 struct abbrev_info **dwarf2_abbrevs;
345
346 /* Storage for the abbrev table. */
347 struct obstack abbrev_obstack;
348
349 /* Hash table holding all the loaded partial DIEs. */
350 htab_t partial_dies;
351
352 /* Storage for things with the same lifetime as this read-in compilation
353 unit, including partial DIEs. */
354 struct obstack comp_unit_obstack;
355
356 /* When multiple dwarf2_cu structures are living in memory, this field
357 chains them all together, so that they can be released efficiently.
358 We will probably also want a generation counter so that most-recently-used
359 compilation units are cached... */
360 struct dwarf2_per_cu_data *read_in_chain;
361
362 /* Backchain to our per_cu entry if the tree has been built. */
363 struct dwarf2_per_cu_data *per_cu;
364
365 /* How many compilation units ago was this CU last referenced? */
366 int last_used;
367
368 /* A hash table of die offsets for following references. */
369 htab_t die_hash;
370
371 /* Full DIEs if read in. */
372 struct die_info *dies;
373
374 /* A set of pointers to dwarf2_per_cu_data objects for compilation
375 units referenced by this one. Only set during full symbol processing;
376 partial symbol tables do not have dependencies. */
377 htab_t dependencies;
378
379 /* Header data from the line table, during full symbol processing. */
380 struct line_header *line_header;
381
382 /* A list of methods which need to have physnames computed
383 after all type information has been read. */
384 VEC (delayed_method_info) *method_list;
385
386 /* Mark used when releasing cached dies. */
387 unsigned int mark : 1;
388
389 /* This flag will be set if this compilation unit might include
390 inter-compilation-unit references. */
391 unsigned int has_form_ref_addr : 1;
392
393 /* This flag will be set if this compilation unit includes any
394 DW_TAG_namespace DIEs. If we know that there are explicit
395 DIEs for namespaces, we don't need to try to infer them
396 from mangled names. */
397 unsigned int has_namespace_info : 1;
398 };
399
400 /* Persistent data held for a compilation unit, even when not
401 processing it. We put a pointer to this structure in the
402 read_symtab_private field of the psymtab. If we encounter
403 inter-compilation-unit references, we also maintain a sorted
404 list of all compilation units. */
405
406 struct dwarf2_per_cu_data
407 {
408 /* The start offset and length of this compilation unit. 2**29-1
409 bytes should suffice to store the length of any compilation unit
410 - if it doesn't, GDB will fall over anyway.
411 NOTE: Unlike comp_unit_head.length, this length includes
412 initial_length_size. */
413 unsigned int offset;
414 unsigned int length : 29;
415
416 /* Flag indicating this compilation unit will be read in before
417 any of the current compilation units are processed. */
418 unsigned int queued : 1;
419
420 /* This flag will be set if we need to load absolutely all DIEs
421 for this compilation unit, instead of just the ones we think
422 are interesting. It gets set if we look for a DIE in the
423 hash table and don't find it. */
424 unsigned int load_all_dies : 1;
425
426 /* Non-zero if this CU is from .debug_types.
427 Otherwise it's from .debug_info. */
428 unsigned int from_debug_types : 1;
429
430 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
431 of the CU cache it gets reset to NULL again. */
432 struct dwarf2_cu *cu;
433
434 /* The corresponding objfile. */
435 struct objfile *objfile;
436
437 /* When using partial symbol tables, the 'psymtab' field is active.
438 Otherwise the 'quick' field is active. */
439 union
440 {
441 /* The partial symbol table associated with this compilation unit,
442 or NULL for partial units (which do not have an associated
443 symtab). */
444 struct partial_symtab *psymtab;
445
446 /* Data needed by the "quick" functions. */
447 struct dwarf2_per_cu_quick_data *quick;
448 } v;
449 };
450
451 /* Entry in the signatured_types hash table. */
452
453 struct signatured_type
454 {
455 ULONGEST signature;
456
457 /* Offset in .debug_types of the TU (type_unit) for this type. */
458 unsigned int offset;
459
460 /* Offset in .debug_types of the type defined by this TU. */
461 unsigned int type_offset;
462
463 /* The CU(/TU) of this type. */
464 struct dwarf2_per_cu_data per_cu;
465 };
466
467 /* Struct used to pass misc. parameters to read_die_and_children, et
468 al. which are used for both .debug_info and .debug_types dies.
469 All parameters here are unchanging for the life of the call. This
470 struct exists to abstract away the constant parameters of die
471 reading. */
472
473 struct die_reader_specs
474 {
475 /* The bfd of this objfile. */
476 bfd* abfd;
477
478 /* The CU of the DIE we are parsing. */
479 struct dwarf2_cu *cu;
480
481 /* Pointer to start of section buffer.
482 This is either the start of .debug_info or .debug_types. */
483 const gdb_byte *buffer;
484 };
485
486 /* The line number information for a compilation unit (found in the
487 .debug_line section) begins with a "statement program header",
488 which contains the following information. */
489 struct line_header
490 {
491 unsigned int total_length;
492 unsigned short version;
493 unsigned int header_length;
494 unsigned char minimum_instruction_length;
495 unsigned char maximum_ops_per_instruction;
496 unsigned char default_is_stmt;
497 int line_base;
498 unsigned char line_range;
499 unsigned char opcode_base;
500
501 /* standard_opcode_lengths[i] is the number of operands for the
502 standard opcode whose value is i. This means that
503 standard_opcode_lengths[0] is unused, and the last meaningful
504 element is standard_opcode_lengths[opcode_base - 1]. */
505 unsigned char *standard_opcode_lengths;
506
507 /* The include_directories table. NOTE! These strings are not
508 allocated with xmalloc; instead, they are pointers into
509 debug_line_buffer. If you try to free them, `free' will get
510 indigestion. */
511 unsigned int num_include_dirs, include_dirs_size;
512 char **include_dirs;
513
514 /* The file_names table. NOTE! These strings are not allocated
515 with xmalloc; instead, they are pointers into debug_line_buffer.
516 Don't try to free them directly. */
517 unsigned int num_file_names, file_names_size;
518 struct file_entry
519 {
520 char *name;
521 unsigned int dir_index;
522 unsigned int mod_time;
523 unsigned int length;
524 int included_p; /* Non-zero if referenced by the Line Number Program. */
525 struct symtab *symtab; /* The associated symbol table, if any. */
526 } *file_names;
527
528 /* The start and end of the statement program following this
529 header. These point into dwarf2_per_objfile->line_buffer. */
530 gdb_byte *statement_program_start, *statement_program_end;
531 };
532
533 /* When we construct a partial symbol table entry we only
534 need this much information. */
535 struct partial_die_info
536 {
537 /* Offset of this DIE. */
538 unsigned int offset;
539
540 /* DWARF-2 tag for this DIE. */
541 ENUM_BITFIELD(dwarf_tag) tag : 16;
542
543 /* Assorted flags describing the data found in this DIE. */
544 unsigned int has_children : 1;
545 unsigned int is_external : 1;
546 unsigned int is_declaration : 1;
547 unsigned int has_type : 1;
548 unsigned int has_specification : 1;
549 unsigned int has_pc_info : 1;
550
551 /* Flag set if the SCOPE field of this structure has been
552 computed. */
553 unsigned int scope_set : 1;
554
555 /* Flag set if the DIE has a byte_size attribute. */
556 unsigned int has_byte_size : 1;
557
558 /* Flag set if any of the DIE's children are template arguments. */
559 unsigned int has_template_arguments : 1;
560
561 /* Flag set if fixup_partial_die has been called on this die. */
562 unsigned int fixup_called : 1;
563
564 /* The name of this DIE. Normally the value of DW_AT_name, but
565 sometimes a default name for unnamed DIEs. */
566 char *name;
567
568 /* The linkage name, if present. */
569 const char *linkage_name;
570
571 /* The scope to prepend to our children. This is generally
572 allocated on the comp_unit_obstack, so will disappear
573 when this compilation unit leaves the cache. */
574 char *scope;
575
576 /* The location description associated with this DIE, if any. */
577 struct dwarf_block *locdesc;
578
579 /* If HAS_PC_INFO, the PC range associated with this DIE. */
580 CORE_ADDR lowpc;
581 CORE_ADDR highpc;
582
583 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
584 DW_AT_sibling, if any. */
585 /* NOTE: This member isn't strictly necessary, read_partial_die could
586 return DW_AT_sibling values to its caller load_partial_dies. */
587 gdb_byte *sibling;
588
589 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
590 DW_AT_specification (or DW_AT_abstract_origin or
591 DW_AT_extension). */
592 unsigned int spec_offset;
593
594 /* Pointers to this DIE's parent, first child, and next sibling,
595 if any. */
596 struct partial_die_info *die_parent, *die_child, *die_sibling;
597 };
598
599 /* This data structure holds the information of an abbrev. */
600 struct abbrev_info
601 {
602 unsigned int number; /* number identifying abbrev */
603 enum dwarf_tag tag; /* dwarf tag */
604 unsigned short has_children; /* boolean */
605 unsigned short num_attrs; /* number of attributes */
606 struct attr_abbrev *attrs; /* an array of attribute descriptions */
607 struct abbrev_info *next; /* next in chain */
608 };
609
610 struct attr_abbrev
611 {
612 ENUM_BITFIELD(dwarf_attribute) name : 16;
613 ENUM_BITFIELD(dwarf_form) form : 16;
614 };
615
616 /* Attributes have a name and a value. */
617 struct attribute
618 {
619 ENUM_BITFIELD(dwarf_attribute) name : 16;
620 ENUM_BITFIELD(dwarf_form) form : 15;
621
622 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
623 field should be in u.str (existing only for DW_STRING) but it is kept
624 here for better struct attribute alignment. */
625 unsigned int string_is_canonical : 1;
626
627 union
628 {
629 char *str;
630 struct dwarf_block *blk;
631 ULONGEST unsnd;
632 LONGEST snd;
633 CORE_ADDR addr;
634 struct signatured_type *signatured_type;
635 }
636 u;
637 };
638
639 /* This data structure holds a complete die structure. */
640 struct die_info
641 {
642 /* DWARF-2 tag for this DIE. */
643 ENUM_BITFIELD(dwarf_tag) tag : 16;
644
645 /* Number of attributes */
646 unsigned char num_attrs;
647
648 /* True if we're presently building the full type name for the
649 type derived from this DIE. */
650 unsigned char building_fullname : 1;
651
652 /* Abbrev number */
653 unsigned int abbrev;
654
655 /* Offset in .debug_info or .debug_types section. */
656 unsigned int offset;
657
658 /* The dies in a compilation unit form an n-ary tree. PARENT
659 points to this die's parent; CHILD points to the first child of
660 this node; and all the children of a given node are chained
661 together via their SIBLING fields. */
662 struct die_info *child; /* Its first child, if any. */
663 struct die_info *sibling; /* Its next sibling, if any. */
664 struct die_info *parent; /* Its parent, if any. */
665
666 /* An array of attributes, with NUM_ATTRS elements. There may be
667 zero, but it's not common and zero-sized arrays are not
668 sufficiently portable C. */
669 struct attribute attrs[1];
670 };
671
672 struct function_range
673 {
674 const char *name;
675 CORE_ADDR lowpc, highpc;
676 int seen_line;
677 struct function_range *next;
678 };
679
680 /* Get at parts of an attribute structure. */
681
682 #define DW_STRING(attr) ((attr)->u.str)
683 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
684 #define DW_UNSND(attr) ((attr)->u.unsnd)
685 #define DW_BLOCK(attr) ((attr)->u.blk)
686 #define DW_SND(attr) ((attr)->u.snd)
687 #define DW_ADDR(attr) ((attr)->u.addr)
688 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
689
690 /* Blocks are a bunch of untyped bytes. */
691 struct dwarf_block
692 {
693 unsigned int size;
694 gdb_byte *data;
695 };
696
697 #ifndef ATTR_ALLOC_CHUNK
698 #define ATTR_ALLOC_CHUNK 4
699 #endif
700
701 /* Allocate fields for structs, unions and enums in this size. */
702 #ifndef DW_FIELD_ALLOC_CHUNK
703 #define DW_FIELD_ALLOC_CHUNK 4
704 #endif
705
706 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
707 but this would require a corresponding change in unpack_field_as_long
708 and friends. */
709 static int bits_per_byte = 8;
710
711 /* The routines that read and process dies for a C struct or C++ class
712 pass lists of data member fields and lists of member function fields
713 in an instance of a field_info structure, as defined below. */
714 struct field_info
715 {
716 /* List of data member and baseclasses fields. */
717 struct nextfield
718 {
719 struct nextfield *next;
720 int accessibility;
721 int virtuality;
722 struct field field;
723 }
724 *fields, *baseclasses;
725
726 /* Number of fields (including baseclasses). */
727 int nfields;
728
729 /* Number of baseclasses. */
730 int nbaseclasses;
731
732 /* Set if the accesibility of one of the fields is not public. */
733 int non_public_fields;
734
735 /* Member function fields array, entries are allocated in the order they
736 are encountered in the object file. */
737 struct nextfnfield
738 {
739 struct nextfnfield *next;
740 struct fn_field fnfield;
741 }
742 *fnfields;
743
744 /* Member function fieldlist array, contains name of possibly overloaded
745 member function, number of overloaded member functions and a pointer
746 to the head of the member function field chain. */
747 struct fnfieldlist
748 {
749 char *name;
750 int length;
751 struct nextfnfield *head;
752 }
753 *fnfieldlists;
754
755 /* Number of entries in the fnfieldlists array. */
756 int nfnfields;
757
758 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
759 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
760 struct typedef_field_list
761 {
762 struct typedef_field field;
763 struct typedef_field_list *next;
764 }
765 *typedef_field_list;
766 unsigned typedef_field_list_count;
767 };
768
769 /* One item on the queue of compilation units to read in full symbols
770 for. */
771 struct dwarf2_queue_item
772 {
773 struct dwarf2_per_cu_data *per_cu;
774 struct dwarf2_queue_item *next;
775 };
776
777 /* The current queue. */
778 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
779
780 /* Loaded secondary compilation units are kept in memory until they
781 have not been referenced for the processing of this many
782 compilation units. Set this to zero to disable caching. Cache
783 sizes of up to at least twenty will improve startup time for
784 typical inter-CU-reference binaries, at an obvious memory cost. */
785 static int dwarf2_max_cache_age = 5;
786 static void
787 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
788 struct cmd_list_element *c, const char *value)
789 {
790 fprintf_filtered (file, _("The upper bound on the age of cached "
791 "dwarf2 compilation units is %s.\n"),
792 value);
793 }
794
795
796 /* Various complaints about symbol reading that don't abort the process. */
797
798 static void
799 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
800 {
801 complaint (&symfile_complaints,
802 _("statement list doesn't fit in .debug_line section"));
803 }
804
805 static void
806 dwarf2_debug_line_missing_file_complaint (void)
807 {
808 complaint (&symfile_complaints,
809 _(".debug_line section has line data without a file"));
810 }
811
812 static void
813 dwarf2_debug_line_missing_end_sequence_complaint (void)
814 {
815 complaint (&symfile_complaints,
816 _(".debug_line section has line "
817 "program sequence without an end"));
818 }
819
820 static void
821 dwarf2_complex_location_expr_complaint (void)
822 {
823 complaint (&symfile_complaints, _("location expression too complex"));
824 }
825
826 static void
827 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
828 int arg3)
829 {
830 complaint (&symfile_complaints,
831 _("const value length mismatch for '%s', got %d, expected %d"),
832 arg1, arg2, arg3);
833 }
834
835 static void
836 dwarf2_macros_too_long_complaint (void)
837 {
838 complaint (&symfile_complaints,
839 _("macro info runs off end of `.debug_macinfo' section"));
840 }
841
842 static void
843 dwarf2_macro_malformed_definition_complaint (const char *arg1)
844 {
845 complaint (&symfile_complaints,
846 _("macro debug info contains a "
847 "malformed macro definition:\n`%s'"),
848 arg1);
849 }
850
851 static void
852 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
853 {
854 complaint (&symfile_complaints,
855 _("invalid attribute class or form for '%s' in '%s'"),
856 arg1, arg2);
857 }
858
859 /* local function prototypes */
860
861 static void dwarf2_locate_sections (bfd *, asection *, void *);
862
863 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
864 struct objfile *);
865
866 static void dwarf2_build_psymtabs_hard (struct objfile *);
867
868 static void scan_partial_symbols (struct partial_die_info *,
869 CORE_ADDR *, CORE_ADDR *,
870 int, struct dwarf2_cu *);
871
872 static void add_partial_symbol (struct partial_die_info *,
873 struct dwarf2_cu *);
874
875 static void add_partial_namespace (struct partial_die_info *pdi,
876 CORE_ADDR *lowpc, CORE_ADDR *highpc,
877 int need_pc, struct dwarf2_cu *cu);
878
879 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
880 CORE_ADDR *highpc, int need_pc,
881 struct dwarf2_cu *cu);
882
883 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
884 struct dwarf2_cu *cu);
885
886 static void add_partial_subprogram (struct partial_die_info *pdi,
887 CORE_ADDR *lowpc, CORE_ADDR *highpc,
888 int need_pc, struct dwarf2_cu *cu);
889
890 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
891 gdb_byte *buffer, gdb_byte *info_ptr,
892 bfd *abfd, struct dwarf2_cu *cu);
893
894 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
895
896 static void psymtab_to_symtab_1 (struct partial_symtab *);
897
898 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
899
900 static void dwarf2_free_abbrev_table (void *);
901
902 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
903 struct dwarf2_cu *);
904
905 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
906 struct dwarf2_cu *);
907
908 static struct partial_die_info *load_partial_dies (bfd *,
909 gdb_byte *, gdb_byte *,
910 int, struct dwarf2_cu *);
911
912 static gdb_byte *read_partial_die (struct partial_die_info *,
913 struct abbrev_info *abbrev,
914 unsigned int, bfd *,
915 gdb_byte *, gdb_byte *,
916 struct dwarf2_cu *);
917
918 static struct partial_die_info *find_partial_die (unsigned int,
919 struct dwarf2_cu *);
920
921 static void fixup_partial_die (struct partial_die_info *,
922 struct dwarf2_cu *);
923
924 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
925 bfd *, gdb_byte *, struct dwarf2_cu *);
926
927 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
928 bfd *, gdb_byte *, struct dwarf2_cu *);
929
930 static unsigned int read_1_byte (bfd *, gdb_byte *);
931
932 static int read_1_signed_byte (bfd *, gdb_byte *);
933
934 static unsigned int read_2_bytes (bfd *, gdb_byte *);
935
936 static unsigned int read_4_bytes (bfd *, gdb_byte *);
937
938 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
939
940 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
941 unsigned int *);
942
943 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
944
945 static LONGEST read_checked_initial_length_and_offset
946 (bfd *, gdb_byte *, const struct comp_unit_head *,
947 unsigned int *, unsigned int *);
948
949 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
950 unsigned int *);
951
952 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
953
954 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
955
956 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
957
958 static char *read_indirect_string (bfd *, gdb_byte *,
959 const struct comp_unit_head *,
960 unsigned int *);
961
962 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
963
964 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
965
966 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
967
968 static void set_cu_language (unsigned int, struct dwarf2_cu *);
969
970 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
971 struct dwarf2_cu *);
972
973 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
974 unsigned int,
975 struct dwarf2_cu *);
976
977 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
978 struct dwarf2_cu *cu);
979
980 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
981
982 static struct die_info *die_specification (struct die_info *die,
983 struct dwarf2_cu **);
984
985 static void free_line_header (struct line_header *lh);
986
987 static void add_file_name (struct line_header *, char *, unsigned int,
988 unsigned int, unsigned int);
989
990 static struct line_header *(dwarf_decode_line_header
991 (unsigned int offset,
992 bfd *abfd, struct dwarf2_cu *cu));
993
994 static void dwarf_decode_lines (struct line_header *, const char *, bfd *,
995 struct dwarf2_cu *, struct partial_symtab *);
996
997 static void dwarf2_start_subfile (char *, const char *, const char *);
998
999 static struct symbol *new_symbol (struct die_info *, struct type *,
1000 struct dwarf2_cu *);
1001
1002 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1003 struct dwarf2_cu *, struct symbol *);
1004
1005 static void dwarf2_const_value (struct attribute *, struct symbol *,
1006 struct dwarf2_cu *);
1007
1008 static void dwarf2_const_value_attr (struct attribute *attr,
1009 struct type *type,
1010 const char *name,
1011 struct obstack *obstack,
1012 struct dwarf2_cu *cu, long *value,
1013 gdb_byte **bytes,
1014 struct dwarf2_locexpr_baton **baton);
1015
1016 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1017
1018 static int need_gnat_info (struct dwarf2_cu *);
1019
1020 static struct type *die_descriptive_type (struct die_info *,
1021 struct dwarf2_cu *);
1022
1023 static void set_descriptive_type (struct type *, struct die_info *,
1024 struct dwarf2_cu *);
1025
1026 static struct type *die_containing_type (struct die_info *,
1027 struct dwarf2_cu *);
1028
1029 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1030 struct dwarf2_cu *);
1031
1032 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1033
1034 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1035
1036 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1037
1038 static char *typename_concat (struct obstack *obs, const char *prefix,
1039 const char *suffix, int physname,
1040 struct dwarf2_cu *cu);
1041
1042 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1043
1044 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1045
1046 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1047
1048 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1049
1050 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1051 struct dwarf2_cu *, struct partial_symtab *);
1052
1053 static int dwarf2_get_pc_bounds (struct die_info *,
1054 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1055 struct partial_symtab *);
1056
1057 static void get_scope_pc_bounds (struct die_info *,
1058 CORE_ADDR *, CORE_ADDR *,
1059 struct dwarf2_cu *);
1060
1061 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1062 CORE_ADDR, struct dwarf2_cu *);
1063
1064 static void dwarf2_add_field (struct field_info *, struct die_info *,
1065 struct dwarf2_cu *);
1066
1067 static void dwarf2_attach_fields_to_type (struct field_info *,
1068 struct type *, struct dwarf2_cu *);
1069
1070 static void dwarf2_add_member_fn (struct field_info *,
1071 struct die_info *, struct type *,
1072 struct dwarf2_cu *);
1073
1074 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1075 struct type *,
1076 struct dwarf2_cu *);
1077
1078 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1079
1080 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1081
1082 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1083
1084 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1085
1086 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1087
1088 static struct type *read_module_type (struct die_info *die,
1089 struct dwarf2_cu *cu);
1090
1091 static const char *namespace_name (struct die_info *die,
1092 int *is_anonymous, struct dwarf2_cu *);
1093
1094 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1095
1096 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1097
1098 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1099 struct dwarf2_cu *);
1100
1101 static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
1102
1103 static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1104 gdb_byte *info_ptr,
1105 gdb_byte **new_info_ptr,
1106 struct die_info *parent);
1107
1108 static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1109 gdb_byte *info_ptr,
1110 gdb_byte **new_info_ptr,
1111 struct die_info *parent);
1112
1113 static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1114 gdb_byte *info_ptr,
1115 gdb_byte **new_info_ptr,
1116 struct die_info *parent);
1117
1118 static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1119 struct die_info **, gdb_byte *,
1120 int *);
1121
1122 static void process_die (struct die_info *, struct dwarf2_cu *);
1123
1124 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1125 struct obstack *);
1126
1127 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1128
1129 static const char *dwarf2_full_name (char *name,
1130 struct die_info *die,
1131 struct dwarf2_cu *cu);
1132
1133 static struct die_info *dwarf2_extension (struct die_info *die,
1134 struct dwarf2_cu **);
1135
1136 static char *dwarf_tag_name (unsigned int);
1137
1138 static char *dwarf_attr_name (unsigned int);
1139
1140 static char *dwarf_form_name (unsigned int);
1141
1142 static char *dwarf_bool_name (unsigned int);
1143
1144 static char *dwarf_type_encoding_name (unsigned int);
1145
1146 #if 0
1147 static char *dwarf_cfi_name (unsigned int);
1148 #endif
1149
1150 static struct die_info *sibling_die (struct die_info *);
1151
1152 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1153
1154 static void dump_die_for_error (struct die_info *);
1155
1156 static void dump_die_1 (struct ui_file *, int level, int max_level,
1157 struct die_info *);
1158
1159 /*static*/ void dump_die (struct die_info *, int max_level);
1160
1161 static void store_in_ref_table (struct die_info *,
1162 struct dwarf2_cu *);
1163
1164 static int is_ref_attr (struct attribute *);
1165
1166 static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
1167
1168 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1169
1170 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1171 struct attribute *,
1172 struct dwarf2_cu **);
1173
1174 static struct die_info *follow_die_ref (struct die_info *,
1175 struct attribute *,
1176 struct dwarf2_cu **);
1177
1178 static struct die_info *follow_die_sig (struct die_info *,
1179 struct attribute *,
1180 struct dwarf2_cu **);
1181
1182 static void read_signatured_type_at_offset (struct objfile *objfile,
1183 unsigned int offset);
1184
1185 static void read_signatured_type (struct objfile *,
1186 struct signatured_type *type_sig);
1187
1188 /* memory allocation interface */
1189
1190 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1191
1192 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1193
1194 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1195
1196 static void initialize_cu_func_list (struct dwarf2_cu *);
1197
1198 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1199 struct dwarf2_cu *);
1200
1201 static void dwarf_decode_macros (struct line_header *, unsigned int,
1202 char *, bfd *, struct dwarf2_cu *);
1203
1204 static int attr_form_is_block (struct attribute *);
1205
1206 static int attr_form_is_section_offset (struct attribute *);
1207
1208 static int attr_form_is_constant (struct attribute *);
1209
1210 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1211 struct dwarf2_loclist_baton *baton,
1212 struct attribute *attr);
1213
1214 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1215 struct symbol *sym,
1216 struct dwarf2_cu *cu);
1217
1218 static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1219 struct abbrev_info *abbrev,
1220 struct dwarf2_cu *cu);
1221
1222 static void free_stack_comp_unit (void *);
1223
1224 static hashval_t partial_die_hash (const void *item);
1225
1226 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1227
1228 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1229 (unsigned int offset, struct objfile *objfile);
1230
1231 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1232 (unsigned int offset, struct objfile *objfile);
1233
1234 static void init_one_comp_unit (struct dwarf2_cu *cu,
1235 struct objfile *objfile);
1236
1237 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1238 struct die_info *comp_unit_die);
1239
1240 static void free_one_comp_unit (void *);
1241
1242 static void free_cached_comp_units (void *);
1243
1244 static void age_cached_comp_units (void);
1245
1246 static void free_one_cached_comp_unit (void *);
1247
1248 static struct type *set_die_type (struct die_info *, struct type *,
1249 struct dwarf2_cu *);
1250
1251 static void create_all_comp_units (struct objfile *);
1252
1253 static int create_debug_types_hash_table (struct objfile *objfile);
1254
1255 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1256 struct objfile *);
1257
1258 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1259
1260 static void dwarf2_add_dependence (struct dwarf2_cu *,
1261 struct dwarf2_per_cu_data *);
1262
1263 static void dwarf2_mark (struct dwarf2_cu *);
1264
1265 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1266
1267 static struct type *get_die_type_at_offset (unsigned int,
1268 struct dwarf2_per_cu_data *per_cu);
1269
1270 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1271
1272 static void dwarf2_release_queue (void *dummy);
1273
1274 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1275 struct objfile *objfile);
1276
1277 static void process_queue (struct objfile *objfile);
1278
1279 static void find_file_and_directory (struct die_info *die,
1280 struct dwarf2_cu *cu,
1281 char **name, char **comp_dir);
1282
1283 static char *file_full_name (int file, struct line_header *lh,
1284 const char *comp_dir);
1285
1286 static gdb_byte *partial_read_comp_unit_head (struct comp_unit_head *header,
1287 gdb_byte *info_ptr,
1288 gdb_byte *buffer,
1289 unsigned int buffer_size,
1290 bfd *abfd);
1291
1292 static void init_cu_die_reader (struct die_reader_specs *reader,
1293 struct dwarf2_cu *cu);
1294
1295 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1296
1297 #if WORDS_BIGENDIAN
1298
1299 /* Convert VALUE between big- and little-endian. */
1300 static offset_type
1301 byte_swap (offset_type value)
1302 {
1303 offset_type result;
1304
1305 result = (value & 0xff) << 24;
1306 result |= (value & 0xff00) << 8;
1307 result |= (value & 0xff0000) >> 8;
1308 result |= (value & 0xff000000) >> 24;
1309 return result;
1310 }
1311
1312 #define MAYBE_SWAP(V) byte_swap (V)
1313
1314 #else
1315 #define MAYBE_SWAP(V) (V)
1316 #endif /* WORDS_BIGENDIAN */
1317
1318 /* The suffix for an index file. */
1319 #define INDEX_SUFFIX ".gdb-index"
1320
1321 static const char *dwarf2_physname (char *name, struct die_info *die,
1322 struct dwarf2_cu *cu);
1323
1324 /* Try to locate the sections we need for DWARF 2 debugging
1325 information and return true if we have enough to do something. */
1326
1327 int
1328 dwarf2_has_info (struct objfile *objfile)
1329 {
1330 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1331 if (!dwarf2_per_objfile)
1332 {
1333 /* Initialize per-objfile state. */
1334 struct dwarf2_per_objfile *data
1335 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1336
1337 memset (data, 0, sizeof (*data));
1338 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1339 dwarf2_per_objfile = data;
1340
1341 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1342 dwarf2_per_objfile->objfile = objfile;
1343 }
1344 return (dwarf2_per_objfile->info.asection != NULL
1345 && dwarf2_per_objfile->abbrev.asection != NULL);
1346 }
1347
1348 /* When loading sections, we can either look for ".<name>", or for
1349 * ".z<name>", which indicates a compressed section. */
1350
1351 static int
1352 section_is_p (const char *section_name, const char *name)
1353 {
1354 return (section_name[0] == '.'
1355 && (strcmp (section_name + 1, name) == 0
1356 || (section_name[1] == 'z'
1357 && strcmp (section_name + 2, name) == 0)));
1358 }
1359
1360 /* This function is mapped across the sections and remembers the
1361 offset and size of each of the debugging sections we are interested
1362 in. */
1363
1364 static void
1365 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1366 {
1367 if (section_is_p (sectp->name, INFO_SECTION))
1368 {
1369 dwarf2_per_objfile->info.asection = sectp;
1370 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1371 }
1372 else if (section_is_p (sectp->name, ABBREV_SECTION))
1373 {
1374 dwarf2_per_objfile->abbrev.asection = sectp;
1375 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1376 }
1377 else if (section_is_p (sectp->name, LINE_SECTION))
1378 {
1379 dwarf2_per_objfile->line.asection = sectp;
1380 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1381 }
1382 else if (section_is_p (sectp->name, LOC_SECTION))
1383 {
1384 dwarf2_per_objfile->loc.asection = sectp;
1385 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1386 }
1387 else if (section_is_p (sectp->name, MACINFO_SECTION))
1388 {
1389 dwarf2_per_objfile->macinfo.asection = sectp;
1390 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1391 }
1392 else if (section_is_p (sectp->name, STR_SECTION))
1393 {
1394 dwarf2_per_objfile->str.asection = sectp;
1395 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1396 }
1397 else if (section_is_p (sectp->name, FRAME_SECTION))
1398 {
1399 dwarf2_per_objfile->frame.asection = sectp;
1400 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1401 }
1402 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
1403 {
1404 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1405
1406 if (aflag & SEC_HAS_CONTENTS)
1407 {
1408 dwarf2_per_objfile->eh_frame.asection = sectp;
1409 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1410 }
1411 }
1412 else if (section_is_p (sectp->name, RANGES_SECTION))
1413 {
1414 dwarf2_per_objfile->ranges.asection = sectp;
1415 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1416 }
1417 else if (section_is_p (sectp->name, TYPES_SECTION))
1418 {
1419 dwarf2_per_objfile->types.asection = sectp;
1420 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1421 }
1422 else if (section_is_p (sectp->name, GDB_INDEX_SECTION))
1423 {
1424 dwarf2_per_objfile->gdb_index.asection = sectp;
1425 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1426 }
1427
1428 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1429 && bfd_section_vma (abfd, sectp) == 0)
1430 dwarf2_per_objfile->has_section_at_zero = 1;
1431 }
1432
1433 /* Decompress a section that was compressed using zlib. Store the
1434 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1435
1436 static void
1437 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1438 gdb_byte **outbuf, bfd_size_type *outsize)
1439 {
1440 bfd *abfd = objfile->obfd;
1441 #ifndef HAVE_ZLIB_H
1442 error (_("Support for zlib-compressed DWARF data (from '%s') "
1443 "is disabled in this copy of GDB"),
1444 bfd_get_filename (abfd));
1445 #else
1446 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1447 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1448 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1449 bfd_size_type uncompressed_size;
1450 gdb_byte *uncompressed_buffer;
1451 z_stream strm;
1452 int rc;
1453 int header_size = 12;
1454
1455 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1456 || bfd_bread (compressed_buffer,
1457 compressed_size, abfd) != compressed_size)
1458 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1459 bfd_get_filename (abfd));
1460
1461 /* Read the zlib header. In this case, it should be "ZLIB" followed
1462 by the uncompressed section size, 8 bytes in big-endian order. */
1463 if (compressed_size < header_size
1464 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1465 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1466 bfd_get_filename (abfd));
1467 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1468 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1469 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1470 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1471 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1472 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1473 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1474 uncompressed_size += compressed_buffer[11];
1475
1476 /* It is possible the section consists of several compressed
1477 buffers concatenated together, so we uncompress in a loop. */
1478 strm.zalloc = NULL;
1479 strm.zfree = NULL;
1480 strm.opaque = NULL;
1481 strm.avail_in = compressed_size - header_size;
1482 strm.next_in = (Bytef*) compressed_buffer + header_size;
1483 strm.avail_out = uncompressed_size;
1484 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1485 uncompressed_size);
1486 rc = inflateInit (&strm);
1487 while (strm.avail_in > 0)
1488 {
1489 if (rc != Z_OK)
1490 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1491 bfd_get_filename (abfd), rc);
1492 strm.next_out = ((Bytef*) uncompressed_buffer
1493 + (uncompressed_size - strm.avail_out));
1494 rc = inflate (&strm, Z_FINISH);
1495 if (rc != Z_STREAM_END)
1496 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1497 bfd_get_filename (abfd), rc);
1498 rc = inflateReset (&strm);
1499 }
1500 rc = inflateEnd (&strm);
1501 if (rc != Z_OK
1502 || strm.avail_out != 0)
1503 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1504 bfd_get_filename (abfd), rc);
1505
1506 do_cleanups (cleanup);
1507 *outbuf = uncompressed_buffer;
1508 *outsize = uncompressed_size;
1509 #endif
1510 }
1511
1512 /* A helper function that decides whether a section is empty. */
1513
1514 static int
1515 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1516 {
1517 return info->asection == NULL || info->size == 0;
1518 }
1519
1520 /* Read the contents of the section SECTP from object file specified by
1521 OBJFILE, store info about the section into INFO.
1522 If the section is compressed, uncompress it before returning. */
1523
1524 static void
1525 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1526 {
1527 bfd *abfd = objfile->obfd;
1528 asection *sectp = info->asection;
1529 gdb_byte *buf, *retbuf;
1530 unsigned char header[4];
1531
1532 if (info->readin)
1533 return;
1534 info->buffer = NULL;
1535 info->was_mmapped = 0;
1536 info->readin = 1;
1537
1538 if (dwarf2_section_empty_p (info))
1539 return;
1540
1541 /* Check if the file has a 4-byte header indicating compression. */
1542 if (info->size > sizeof (header)
1543 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1544 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1545 {
1546 /* Upon decompression, update the buffer and its size. */
1547 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1548 {
1549 zlib_decompress_section (objfile, sectp, &info->buffer,
1550 &info->size);
1551 return;
1552 }
1553 }
1554
1555 #ifdef HAVE_MMAP
1556 if (pagesize == 0)
1557 pagesize = getpagesize ();
1558
1559 /* Only try to mmap sections which are large enough: we don't want to
1560 waste space due to fragmentation. Also, only try mmap for sections
1561 without relocations. */
1562
1563 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1564 {
1565 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1566 size_t map_length = info->size + sectp->filepos - pg_offset;
1567 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1568 MAP_PRIVATE, pg_offset);
1569
1570 if (retbuf != MAP_FAILED)
1571 {
1572 info->was_mmapped = 1;
1573 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
1574 #if HAVE_POSIX_MADVISE
1575 posix_madvise (retbuf, map_length, POSIX_MADV_WILLNEED);
1576 #endif
1577 return;
1578 }
1579 }
1580 #endif
1581
1582 /* If we get here, we are a normal, not-compressed section. */
1583 info->buffer = buf
1584 = obstack_alloc (&objfile->objfile_obstack, info->size);
1585
1586 /* When debugging .o files, we may need to apply relocations; see
1587 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1588 We never compress sections in .o files, so we only need to
1589 try this when the section is not compressed. */
1590 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1591 if (retbuf != NULL)
1592 {
1593 info->buffer = retbuf;
1594 return;
1595 }
1596
1597 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1598 || bfd_bread (buf, info->size, abfd) != info->size)
1599 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1600 bfd_get_filename (abfd));
1601 }
1602
1603 /* A helper function that returns the size of a section in a safe way.
1604 If you are positive that the section has been read before using the
1605 size, then it is safe to refer to the dwarf2_section_info object's
1606 "size" field directly. In other cases, you must call this
1607 function, because for compressed sections the size field is not set
1608 correctly until the section has been read. */
1609
1610 static bfd_size_type
1611 dwarf2_section_size (struct objfile *objfile,
1612 struct dwarf2_section_info *info)
1613 {
1614 if (!info->readin)
1615 dwarf2_read_section (objfile, info);
1616 return info->size;
1617 }
1618
1619 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1620 SECTION_NAME. */
1621
1622 void
1623 dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1624 asection **sectp, gdb_byte **bufp,
1625 bfd_size_type *sizep)
1626 {
1627 struct dwarf2_per_objfile *data
1628 = objfile_data (objfile, dwarf2_objfile_data_key);
1629 struct dwarf2_section_info *info;
1630
1631 /* We may see an objfile without any DWARF, in which case we just
1632 return nothing. */
1633 if (data == NULL)
1634 {
1635 *sectp = NULL;
1636 *bufp = NULL;
1637 *sizep = 0;
1638 return;
1639 }
1640 if (section_is_p (section_name, EH_FRAME_SECTION))
1641 info = &data->eh_frame;
1642 else if (section_is_p (section_name, FRAME_SECTION))
1643 info = &data->frame;
1644 else
1645 gdb_assert_not_reached ("unexpected section");
1646
1647 dwarf2_read_section (objfile, info);
1648
1649 *sectp = info->asection;
1650 *bufp = info->buffer;
1651 *sizep = info->size;
1652 }
1653
1654 \f
1655 /* DWARF quick_symbols_functions support. */
1656
1657 /* TUs can share .debug_line entries, and there can be a lot more TUs than
1658 unique line tables, so we maintain a separate table of all .debug_line
1659 derived entries to support the sharing.
1660 All the quick functions need is the list of file names. We discard the
1661 line_header when we're done and don't need to record it here. */
1662 struct quick_file_names
1663 {
1664 /* The offset in .debug_line of the line table. We hash on this. */
1665 unsigned int offset;
1666
1667 /* The number of entries in file_names, real_names. */
1668 unsigned int num_file_names;
1669
1670 /* The file names from the line table, after being run through
1671 file_full_name. */
1672 const char **file_names;
1673
1674 /* The file names from the line table after being run through
1675 gdb_realpath. These are computed lazily. */
1676 const char **real_names;
1677 };
1678
1679 /* When using the index (and thus not using psymtabs), each CU has an
1680 object of this type. This is used to hold information needed by
1681 the various "quick" methods. */
1682 struct dwarf2_per_cu_quick_data
1683 {
1684 /* The file table. This can be NULL if there was no file table
1685 or it's currently not read in.
1686 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
1687 struct quick_file_names *file_names;
1688
1689 /* The corresponding symbol table. This is NULL if symbols for this
1690 CU have not yet been read. */
1691 struct symtab *symtab;
1692
1693 /* A temporary mark bit used when iterating over all CUs in
1694 expand_symtabs_matching. */
1695 unsigned int mark : 1;
1696
1697 /* True if we've tried to read the file table and found there isn't one.
1698 There will be no point in trying to read it again next time. */
1699 unsigned int no_file_data : 1;
1700 };
1701
1702 /* Hash function for a quick_file_names. */
1703
1704 static hashval_t
1705 hash_file_name_entry (const void *e)
1706 {
1707 const struct quick_file_names *file_data = e;
1708
1709 return file_data->offset;
1710 }
1711
1712 /* Equality function for a quick_file_names. */
1713
1714 static int
1715 eq_file_name_entry (const void *a, const void *b)
1716 {
1717 const struct quick_file_names *ea = a;
1718 const struct quick_file_names *eb = b;
1719
1720 return ea->offset == eb->offset;
1721 }
1722
1723 /* Delete function for a quick_file_names. */
1724
1725 static void
1726 delete_file_name_entry (void *e)
1727 {
1728 struct quick_file_names *file_data = e;
1729 int i;
1730
1731 for (i = 0; i < file_data->num_file_names; ++i)
1732 {
1733 xfree ((void*) file_data->file_names[i]);
1734 if (file_data->real_names)
1735 xfree ((void*) file_data->real_names[i]);
1736 }
1737
1738 /* The space for the struct itself lives on objfile_obstack,
1739 so we don't free it here. */
1740 }
1741
1742 /* Create a quick_file_names hash table. */
1743
1744 static htab_t
1745 create_quick_file_names_table (unsigned int nr_initial_entries)
1746 {
1747 return htab_create_alloc (nr_initial_entries,
1748 hash_file_name_entry, eq_file_name_entry,
1749 delete_file_name_entry, xcalloc, xfree);
1750 }
1751
1752 /* Read in the symbols for PER_CU. OBJFILE is the objfile from which
1753 this CU came. */
1754
1755 static void
1756 dw2_do_instantiate_symtab (struct objfile *objfile,
1757 struct dwarf2_per_cu_data *per_cu)
1758 {
1759 struct cleanup *back_to;
1760
1761 back_to = make_cleanup (dwarf2_release_queue, NULL);
1762
1763 queue_comp_unit (per_cu, objfile);
1764
1765 if (per_cu->from_debug_types)
1766 read_signatured_type_at_offset (objfile, per_cu->offset);
1767 else
1768 load_full_comp_unit (per_cu, objfile);
1769
1770 process_queue (objfile);
1771
1772 /* Age the cache, releasing compilation units that have not
1773 been used recently. */
1774 age_cached_comp_units ();
1775
1776 do_cleanups (back_to);
1777 }
1778
1779 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1780 the objfile from which this CU came. Returns the resulting symbol
1781 table. */
1782
1783 static struct symtab *
1784 dw2_instantiate_symtab (struct objfile *objfile,
1785 struct dwarf2_per_cu_data *per_cu)
1786 {
1787 if (!per_cu->v.quick->symtab)
1788 {
1789 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1790 increment_reading_symtab ();
1791 dw2_do_instantiate_symtab (objfile, per_cu);
1792 do_cleanups (back_to);
1793 }
1794 return per_cu->v.quick->symtab;
1795 }
1796
1797 /* Return the CU given its index. */
1798
1799 static struct dwarf2_per_cu_data *
1800 dw2_get_cu (int index)
1801 {
1802 if (index >= dwarf2_per_objfile->n_comp_units)
1803 {
1804 index -= dwarf2_per_objfile->n_comp_units;
1805 return dwarf2_per_objfile->type_comp_units[index];
1806 }
1807 return dwarf2_per_objfile->all_comp_units[index];
1808 }
1809
1810 /* A helper function that knows how to read a 64-bit value in a way
1811 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1812 otherwise. */
1813
1814 static int
1815 extract_cu_value (const char *bytes, ULONGEST *result)
1816 {
1817 if (sizeof (ULONGEST) < 8)
1818 {
1819 int i;
1820
1821 /* Ignore the upper 4 bytes if they are all zero. */
1822 for (i = 0; i < 4; ++i)
1823 if (bytes[i + 4] != 0)
1824 return 0;
1825
1826 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1827 }
1828 else
1829 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1830 return 1;
1831 }
1832
1833 /* Read the CU list from the mapped index, and use it to create all
1834 the CU objects for this objfile. Return 0 if something went wrong,
1835 1 if everything went ok. */
1836
1837 static int
1838 create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1839 offset_type cu_list_elements)
1840 {
1841 offset_type i;
1842
1843 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1844 dwarf2_per_objfile->all_comp_units
1845 = obstack_alloc (&objfile->objfile_obstack,
1846 dwarf2_per_objfile->n_comp_units
1847 * sizeof (struct dwarf2_per_cu_data *));
1848
1849 for (i = 0; i < cu_list_elements; i += 2)
1850 {
1851 struct dwarf2_per_cu_data *the_cu;
1852 ULONGEST offset, length;
1853
1854 if (!extract_cu_value (cu_list, &offset)
1855 || !extract_cu_value (cu_list + 8, &length))
1856 return 0;
1857 cu_list += 2 * 8;
1858
1859 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1860 struct dwarf2_per_cu_data);
1861 the_cu->offset = offset;
1862 the_cu->length = length;
1863 the_cu->objfile = objfile;
1864 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1865 struct dwarf2_per_cu_quick_data);
1866 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1867 }
1868
1869 return 1;
1870 }
1871
1872 /* Create the signatured type hash table from the index. */
1873
1874 static int
1875 create_signatured_type_table_from_index (struct objfile *objfile,
1876 const gdb_byte *bytes,
1877 offset_type elements)
1878 {
1879 offset_type i;
1880 htab_t sig_types_hash;
1881
1882 dwarf2_per_objfile->n_type_comp_units = elements / 3;
1883 dwarf2_per_objfile->type_comp_units
1884 = obstack_alloc (&objfile->objfile_obstack,
1885 dwarf2_per_objfile->n_type_comp_units
1886 * sizeof (struct dwarf2_per_cu_data *));
1887
1888 sig_types_hash = allocate_signatured_type_table (objfile);
1889
1890 for (i = 0; i < elements; i += 3)
1891 {
1892 struct signatured_type *type_sig;
1893 ULONGEST offset, type_offset, signature;
1894 void **slot;
1895
1896 if (!extract_cu_value (bytes, &offset)
1897 || !extract_cu_value (bytes + 8, &type_offset))
1898 return 0;
1899 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1900 bytes += 3 * 8;
1901
1902 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1903 struct signatured_type);
1904 type_sig->signature = signature;
1905 type_sig->offset = offset;
1906 type_sig->type_offset = type_offset;
1907 type_sig->per_cu.from_debug_types = 1;
1908 type_sig->per_cu.offset = offset;
1909 type_sig->per_cu.objfile = objfile;
1910 type_sig->per_cu.v.quick
1911 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1912 struct dwarf2_per_cu_quick_data);
1913
1914 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
1915 *slot = type_sig;
1916
1917 dwarf2_per_objfile->type_comp_units[i / 3] = &type_sig->per_cu;
1918 }
1919
1920 dwarf2_per_objfile->signatured_types = sig_types_hash;
1921
1922 return 1;
1923 }
1924
1925 /* Read the address map data from the mapped index, and use it to
1926 populate the objfile's psymtabs_addrmap. */
1927
1928 static void
1929 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1930 {
1931 const gdb_byte *iter, *end;
1932 struct obstack temp_obstack;
1933 struct addrmap *mutable_map;
1934 struct cleanup *cleanup;
1935 CORE_ADDR baseaddr;
1936
1937 obstack_init (&temp_obstack);
1938 cleanup = make_cleanup_obstack_free (&temp_obstack);
1939 mutable_map = addrmap_create_mutable (&temp_obstack);
1940
1941 iter = index->address_table;
1942 end = iter + index->address_table_size;
1943
1944 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1945
1946 while (iter < end)
1947 {
1948 ULONGEST hi, lo, cu_index;
1949 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1950 iter += 8;
1951 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1952 iter += 8;
1953 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1954 iter += 4;
1955
1956 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1957 dw2_get_cu (cu_index));
1958 }
1959
1960 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1961 &objfile->objfile_obstack);
1962 do_cleanups (cleanup);
1963 }
1964
1965 /* The hash function for strings in the mapped index. This is the
1966 same as the hashtab.c hash function, but we keep a separate copy to
1967 maintain control over the implementation. This is necessary
1968 because the hash function is tied to the format of the mapped index
1969 file. */
1970
1971 static hashval_t
1972 mapped_index_string_hash (const void *p)
1973 {
1974 const unsigned char *str = (const unsigned char *) p;
1975 hashval_t r = 0;
1976 unsigned char c;
1977
1978 while ((c = *str++) != 0)
1979 r = r * 67 + c - 113;
1980
1981 return r;
1982 }
1983
1984 /* Find a slot in the mapped index INDEX for the object named NAME.
1985 If NAME is found, set *VEC_OUT to point to the CU vector in the
1986 constant pool and return 1. If NAME cannot be found, return 0. */
1987
1988 static int
1989 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
1990 offset_type **vec_out)
1991 {
1992 offset_type hash = mapped_index_string_hash (name);
1993 offset_type slot, step;
1994
1995 slot = hash & (index->symbol_table_slots - 1);
1996 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
1997
1998 for (;;)
1999 {
2000 /* Convert a slot number to an offset into the table. */
2001 offset_type i = 2 * slot;
2002 const char *str;
2003 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2004 return 0;
2005
2006 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2007 if (!strcmp (name, str))
2008 {
2009 *vec_out = (offset_type *) (index->constant_pool
2010 + MAYBE_SWAP (index->symbol_table[i + 1]));
2011 return 1;
2012 }
2013
2014 slot = (slot + step) & (index->symbol_table_slots - 1);
2015 }
2016 }
2017
2018 /* Read the index file. If everything went ok, initialize the "quick"
2019 elements of all the CUs and return 1. Otherwise, return 0. */
2020
2021 static int
2022 dwarf2_read_index (struct objfile *objfile)
2023 {
2024 char *addr;
2025 struct mapped_index *map;
2026 offset_type *metadata;
2027 const gdb_byte *cu_list;
2028 const gdb_byte *types_list = NULL;
2029 offset_type version, cu_list_elements;
2030 offset_type types_list_elements = 0;
2031 int i;
2032
2033 if (dwarf2_section_empty_p (&dwarf2_per_objfile->gdb_index))
2034 return 0;
2035
2036 /* Older elfutils strip versions could keep the section in the main
2037 executable while splitting it for the separate debug info file. */
2038 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
2039 & SEC_HAS_CONTENTS) == 0)
2040 return 0;
2041
2042 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
2043
2044 addr = dwarf2_per_objfile->gdb_index.buffer;
2045 /* Version check. */
2046 version = MAYBE_SWAP (*(offset_type *) addr);
2047 /* Versions earlier than 3 emitted every copy of a psymbol. This
2048 causes the index to behave very poorly for certain requests. Version 4
2049 contained incomplete addrmap. So, it seems better to just ignore such
2050 indices. */
2051 if (version < 4)
2052 return 0;
2053 /* Indexes with higher version than the one supported by GDB may be no
2054 longer backward compatible. */
2055 if (version > 4)
2056 return 0;
2057
2058 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
2059 map->total_size = dwarf2_per_objfile->gdb_index.size;
2060
2061 metadata = (offset_type *) (addr + sizeof (offset_type));
2062
2063 i = 0;
2064 cu_list = addr + MAYBE_SWAP (metadata[i]);
2065 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2066 / 8);
2067 ++i;
2068
2069 types_list = addr + MAYBE_SWAP (metadata[i]);
2070 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2071 - MAYBE_SWAP (metadata[i]))
2072 / 8);
2073 ++i;
2074
2075 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2076 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2077 - MAYBE_SWAP (metadata[i]));
2078 ++i;
2079
2080 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2081 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2082 - MAYBE_SWAP (metadata[i]))
2083 / (2 * sizeof (offset_type)));
2084 ++i;
2085
2086 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2087
2088 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
2089 return 0;
2090
2091 if (types_list_elements
2092 && !create_signatured_type_table_from_index (objfile, types_list,
2093 types_list_elements))
2094 return 0;
2095
2096 create_addrmap_from_index (objfile, map);
2097
2098 dwarf2_per_objfile->index_table = map;
2099 dwarf2_per_objfile->using_index = 1;
2100 dwarf2_per_objfile->quick_file_names_table =
2101 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2102
2103 return 1;
2104 }
2105
2106 /* A helper for the "quick" functions which sets the global
2107 dwarf2_per_objfile according to OBJFILE. */
2108
2109 static void
2110 dw2_setup (struct objfile *objfile)
2111 {
2112 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2113 gdb_assert (dwarf2_per_objfile);
2114 }
2115
2116 /* A helper for the "quick" functions which attempts to read the line
2117 table for THIS_CU. */
2118
2119 static struct quick_file_names *
2120 dw2_get_file_names (struct objfile *objfile,
2121 struct dwarf2_per_cu_data *this_cu)
2122 {
2123 bfd *abfd = objfile->obfd;
2124 struct line_header *lh;
2125 struct attribute *attr;
2126 struct cleanup *cleanups;
2127 struct die_info *comp_unit_die;
2128 struct dwarf2_section_info* sec;
2129 gdb_byte *beg_of_comp_unit, *info_ptr, *buffer;
2130 int has_children, i;
2131 struct dwarf2_cu cu;
2132 unsigned int bytes_read, buffer_size;
2133 struct die_reader_specs reader_specs;
2134 char *name, *comp_dir;
2135 void **slot;
2136 struct quick_file_names *qfn;
2137 unsigned int line_offset;
2138
2139 if (this_cu->v.quick->file_names != NULL)
2140 return this_cu->v.quick->file_names;
2141 /* If we know there is no line data, no point in looking again. */
2142 if (this_cu->v.quick->no_file_data)
2143 return NULL;
2144
2145 init_one_comp_unit (&cu, objfile);
2146 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2147
2148 if (this_cu->from_debug_types)
2149 sec = &dwarf2_per_objfile->types;
2150 else
2151 sec = &dwarf2_per_objfile->info;
2152 dwarf2_read_section (objfile, sec);
2153 buffer_size = sec->size;
2154 buffer = sec->buffer;
2155 info_ptr = buffer + this_cu->offset;
2156 beg_of_comp_unit = info_ptr;
2157
2158 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
2159 buffer, buffer_size,
2160 abfd);
2161
2162 /* Complete the cu_header. */
2163 cu.header.offset = beg_of_comp_unit - buffer;
2164 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
2165
2166 this_cu->cu = &cu;
2167 cu.per_cu = this_cu;
2168
2169 dwarf2_read_abbrevs (abfd, &cu);
2170 make_cleanup (dwarf2_free_abbrev_table, &cu);
2171
2172 if (this_cu->from_debug_types)
2173 info_ptr += 8 /*signature*/ + cu.header.offset_size;
2174 init_cu_die_reader (&reader_specs, &cu);
2175 read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2176 &has_children);
2177
2178 lh = NULL;
2179 slot = NULL;
2180 line_offset = 0;
2181 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2182 if (attr)
2183 {
2184 struct quick_file_names find_entry;
2185
2186 line_offset = DW_UNSND (attr);
2187
2188 /* We may have already read in this line header (TU line header sharing).
2189 If we have we're done. */
2190 find_entry.offset = line_offset;
2191 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2192 &find_entry, INSERT);
2193 if (*slot != NULL)
2194 {
2195 do_cleanups (cleanups);
2196 this_cu->v.quick->file_names = *slot;
2197 return *slot;
2198 }
2199
2200 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2201 }
2202 if (lh == NULL)
2203 {
2204 do_cleanups (cleanups);
2205 this_cu->v.quick->no_file_data = 1;
2206 return NULL;
2207 }
2208
2209 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2210 qfn->offset = line_offset;
2211 gdb_assert (slot != NULL);
2212 *slot = qfn;
2213
2214 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
2215
2216 qfn->num_file_names = lh->num_file_names;
2217 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2218 lh->num_file_names * sizeof (char *));
2219 for (i = 0; i < lh->num_file_names; ++i)
2220 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2221 qfn->real_names = NULL;
2222
2223 free_line_header (lh);
2224 do_cleanups (cleanups);
2225
2226 this_cu->v.quick->file_names = qfn;
2227 return qfn;
2228 }
2229
2230 /* A helper for the "quick" functions which computes and caches the
2231 real path for a given file name from the line table. */
2232
2233 static const char *
2234 dw2_get_real_path (struct objfile *objfile,
2235 struct quick_file_names *qfn, int index)
2236 {
2237 if (qfn->real_names == NULL)
2238 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2239 qfn->num_file_names, sizeof (char *));
2240
2241 if (qfn->real_names[index] == NULL)
2242 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2243
2244 return qfn->real_names[index];
2245 }
2246
2247 static struct symtab *
2248 dw2_find_last_source_symtab (struct objfile *objfile)
2249 {
2250 int index;
2251
2252 dw2_setup (objfile);
2253 index = dwarf2_per_objfile->n_comp_units - 1;
2254 return dw2_instantiate_symtab (objfile, dw2_get_cu (index));
2255 }
2256
2257 /* Traversal function for dw2_forget_cached_source_info. */
2258
2259 static int
2260 dw2_free_cached_file_names (void **slot, void *info)
2261 {
2262 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2263
2264 if (file_data->real_names)
2265 {
2266 int i;
2267
2268 for (i = 0; i < file_data->num_file_names; ++i)
2269 {
2270 xfree ((void*) file_data->real_names[i]);
2271 file_data->real_names[i] = NULL;
2272 }
2273 }
2274
2275 return 1;
2276 }
2277
2278 static void
2279 dw2_forget_cached_source_info (struct objfile *objfile)
2280 {
2281 dw2_setup (objfile);
2282
2283 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2284 dw2_free_cached_file_names, NULL);
2285 }
2286
2287 static int
2288 dw2_lookup_symtab (struct objfile *objfile, const char *name,
2289 const char *full_path, const char *real_path,
2290 struct symtab **result)
2291 {
2292 int i;
2293 int check_basename = lbasename (name) == name;
2294 struct dwarf2_per_cu_data *base_cu = NULL;
2295
2296 dw2_setup (objfile);
2297
2298 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2299 + dwarf2_per_objfile->n_type_comp_units); ++i)
2300 {
2301 int j;
2302 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2303 struct quick_file_names *file_data;
2304
2305 if (per_cu->v.quick->symtab)
2306 continue;
2307
2308 file_data = dw2_get_file_names (objfile, per_cu);
2309 if (file_data == NULL)
2310 continue;
2311
2312 for (j = 0; j < file_data->num_file_names; ++j)
2313 {
2314 const char *this_name = file_data->file_names[j];
2315
2316 if (FILENAME_CMP (name, this_name) == 0)
2317 {
2318 *result = dw2_instantiate_symtab (objfile, per_cu);
2319 return 1;
2320 }
2321
2322 if (check_basename && ! base_cu
2323 && FILENAME_CMP (lbasename (this_name), name) == 0)
2324 base_cu = per_cu;
2325
2326 if (full_path != NULL)
2327 {
2328 const char *this_real_name = dw2_get_real_path (objfile,
2329 file_data, j);
2330
2331 if (this_real_name != NULL
2332 && FILENAME_CMP (full_path, this_real_name) == 0)
2333 {
2334 *result = dw2_instantiate_symtab (objfile, per_cu);
2335 return 1;
2336 }
2337 }
2338
2339 if (real_path != NULL)
2340 {
2341 const char *this_real_name = dw2_get_real_path (objfile,
2342 file_data, j);
2343
2344 if (this_real_name != NULL
2345 && FILENAME_CMP (real_path, this_real_name) == 0)
2346 {
2347 *result = dw2_instantiate_symtab (objfile, per_cu);
2348 return 1;
2349 }
2350 }
2351 }
2352 }
2353
2354 if (base_cu)
2355 {
2356 *result = dw2_instantiate_symtab (objfile, base_cu);
2357 return 1;
2358 }
2359
2360 return 0;
2361 }
2362
2363 static struct symtab *
2364 dw2_lookup_symbol (struct objfile *objfile, int block_index,
2365 const char *name, domain_enum domain)
2366 {
2367 /* We do all the work in the pre_expand_symtabs_matching hook
2368 instead. */
2369 return NULL;
2370 }
2371
2372 /* A helper function that expands all symtabs that hold an object
2373 named NAME. */
2374
2375 static void
2376 dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2377 {
2378 dw2_setup (objfile);
2379
2380 /* index_table is NULL if OBJF_READNOW. */
2381 if (dwarf2_per_objfile->index_table)
2382 {
2383 offset_type *vec;
2384
2385 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2386 name, &vec))
2387 {
2388 offset_type i, len = MAYBE_SWAP (*vec);
2389 for (i = 0; i < len; ++i)
2390 {
2391 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
2392 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
2393
2394 dw2_instantiate_symtab (objfile, per_cu);
2395 }
2396 }
2397 }
2398 }
2399
2400 static void
2401 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2402 int kind, const char *name,
2403 domain_enum domain)
2404 {
2405 dw2_do_expand_symtabs_matching (objfile, name);
2406 }
2407
2408 static void
2409 dw2_print_stats (struct objfile *objfile)
2410 {
2411 int i, count;
2412
2413 dw2_setup (objfile);
2414 count = 0;
2415 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2416 + dwarf2_per_objfile->n_type_comp_units); ++i)
2417 {
2418 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2419
2420 if (!per_cu->v.quick->symtab)
2421 ++count;
2422 }
2423 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2424 }
2425
2426 static void
2427 dw2_dump (struct objfile *objfile)
2428 {
2429 /* Nothing worth printing. */
2430 }
2431
2432 static void
2433 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2434 struct section_offsets *delta)
2435 {
2436 /* There's nothing to relocate here. */
2437 }
2438
2439 static void
2440 dw2_expand_symtabs_for_function (struct objfile *objfile,
2441 const char *func_name)
2442 {
2443 dw2_do_expand_symtabs_matching (objfile, func_name);
2444 }
2445
2446 static void
2447 dw2_expand_all_symtabs (struct objfile *objfile)
2448 {
2449 int i;
2450
2451 dw2_setup (objfile);
2452
2453 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2454 + dwarf2_per_objfile->n_type_comp_units); ++i)
2455 {
2456 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2457
2458 dw2_instantiate_symtab (objfile, per_cu);
2459 }
2460 }
2461
2462 static void
2463 dw2_expand_symtabs_with_filename (struct objfile *objfile,
2464 const char *filename)
2465 {
2466 int i;
2467
2468 dw2_setup (objfile);
2469
2470 /* We don't need to consider type units here.
2471 This is only called for examining code, e.g. expand_line_sal.
2472 There can be an order of magnitude (or more) more type units
2473 than comp units, and we avoid them if we can. */
2474
2475 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2476 {
2477 int j;
2478 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2479 struct quick_file_names *file_data;
2480
2481 if (per_cu->v.quick->symtab)
2482 continue;
2483
2484 file_data = dw2_get_file_names (objfile, per_cu);
2485 if (file_data == NULL)
2486 continue;
2487
2488 for (j = 0; j < file_data->num_file_names; ++j)
2489 {
2490 const char *this_name = file_data->file_names[j];
2491 if (FILENAME_CMP (this_name, filename) == 0)
2492 {
2493 dw2_instantiate_symtab (objfile, per_cu);
2494 break;
2495 }
2496 }
2497 }
2498 }
2499
2500 static const char *
2501 dw2_find_symbol_file (struct objfile *objfile, const char *name)
2502 {
2503 struct dwarf2_per_cu_data *per_cu;
2504 offset_type *vec;
2505 struct quick_file_names *file_data;
2506
2507 dw2_setup (objfile);
2508
2509 /* index_table is NULL if OBJF_READNOW. */
2510 if (!dwarf2_per_objfile->index_table)
2511 return NULL;
2512
2513 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2514 name, &vec))
2515 return NULL;
2516
2517 /* Note that this just looks at the very first one named NAME -- but
2518 actually we are looking for a function. find_main_filename
2519 should be rewritten so that it doesn't require a custom hook. It
2520 could just use the ordinary symbol tables. */
2521 /* vec[0] is the length, which must always be >0. */
2522 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
2523
2524 file_data = dw2_get_file_names (objfile, per_cu);
2525 if (file_data == NULL)
2526 return NULL;
2527
2528 return file_data->file_names[file_data->num_file_names - 1];
2529 }
2530
2531 static void
2532 dw2_map_matching_symbols (const char * name, domain_enum namespace,
2533 struct objfile *objfile, int global,
2534 int (*callback) (struct block *,
2535 struct symbol *, void *),
2536 void *data, symbol_compare_ftype *match,
2537 symbol_compare_ftype *ordered_compare)
2538 {
2539 /* Currently unimplemented; used for Ada. The function can be called if the
2540 current language is Ada for a non-Ada objfile using GNU index. As Ada
2541 does not look for non-Ada symbols this function should just return. */
2542 }
2543
2544 static void
2545 dw2_expand_symtabs_matching (struct objfile *objfile,
2546 int (*file_matcher) (const char *, void *),
2547 int (*name_matcher) (const char *, void *),
2548 domain_enum kind,
2549 void *data)
2550 {
2551 int i;
2552 offset_type iter;
2553 struct mapped_index *index;
2554
2555 dw2_setup (objfile);
2556
2557 /* index_table is NULL if OBJF_READNOW. */
2558 if (!dwarf2_per_objfile->index_table)
2559 return;
2560 index = dwarf2_per_objfile->index_table;
2561
2562 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2563 + dwarf2_per_objfile->n_type_comp_units); ++i)
2564 {
2565 int j;
2566 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2567 struct quick_file_names *file_data;
2568
2569 per_cu->v.quick->mark = 0;
2570 if (per_cu->v.quick->symtab)
2571 continue;
2572
2573 file_data = dw2_get_file_names (objfile, per_cu);
2574 if (file_data == NULL)
2575 continue;
2576
2577 for (j = 0; j < file_data->num_file_names; ++j)
2578 {
2579 if (file_matcher (file_data->file_names[j], data))
2580 {
2581 per_cu->v.quick->mark = 1;
2582 break;
2583 }
2584 }
2585 }
2586
2587 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2588 {
2589 offset_type idx = 2 * iter;
2590 const char *name;
2591 offset_type *vec, vec_len, vec_idx;
2592
2593 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2594 continue;
2595
2596 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
2597
2598 if (! (*name_matcher) (name, data))
2599 continue;
2600
2601 /* The name was matched, now expand corresponding CUs that were
2602 marked. */
2603 vec = (offset_type *) (index->constant_pool
2604 + MAYBE_SWAP (index->symbol_table[idx + 1]));
2605 vec_len = MAYBE_SWAP (vec[0]);
2606 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2607 {
2608 struct dwarf2_per_cu_data *per_cu;
2609
2610 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2611 if (per_cu->v.quick->mark)
2612 dw2_instantiate_symtab (objfile, per_cu);
2613 }
2614 }
2615 }
2616
2617 static struct symtab *
2618 dw2_find_pc_sect_symtab (struct objfile *objfile,
2619 struct minimal_symbol *msymbol,
2620 CORE_ADDR pc,
2621 struct obj_section *section,
2622 int warn_if_readin)
2623 {
2624 struct dwarf2_per_cu_data *data;
2625
2626 dw2_setup (objfile);
2627
2628 if (!objfile->psymtabs_addrmap)
2629 return NULL;
2630
2631 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2632 if (!data)
2633 return NULL;
2634
2635 if (warn_if_readin && data->v.quick->symtab)
2636 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
2637 paddress (get_objfile_arch (objfile), pc));
2638
2639 return dw2_instantiate_symtab (objfile, data);
2640 }
2641
2642 static void
2643 dw2_map_symbol_names (struct objfile *objfile,
2644 void (*fun) (const char *, void *),
2645 void *data)
2646 {
2647 offset_type iter;
2648 struct mapped_index *index;
2649
2650 dw2_setup (objfile);
2651
2652 /* index_table is NULL if OBJF_READNOW. */
2653 if (!dwarf2_per_objfile->index_table)
2654 return;
2655 index = dwarf2_per_objfile->index_table;
2656
2657 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2658 {
2659 offset_type idx = 2 * iter;
2660 const char *name;
2661 offset_type *vec, vec_len, vec_idx;
2662
2663 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2664 continue;
2665
2666 name = (index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]));
2667
2668 (*fun) (name, data);
2669 }
2670 }
2671
2672 static void
2673 dw2_map_symbol_filenames (struct objfile *objfile,
2674 void (*fun) (const char *, const char *, void *),
2675 void *data)
2676 {
2677 int i;
2678
2679 dw2_setup (objfile);
2680
2681 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2682 + dwarf2_per_objfile->n_type_comp_units); ++i)
2683 {
2684 int j;
2685 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2686 struct quick_file_names *file_data;
2687
2688 if (per_cu->v.quick->symtab)
2689 continue;
2690
2691 file_data = dw2_get_file_names (objfile, per_cu);
2692 if (file_data == NULL)
2693 continue;
2694
2695 for (j = 0; j < file_data->num_file_names; ++j)
2696 {
2697 const char *this_real_name = dw2_get_real_path (objfile, file_data,
2698 j);
2699 (*fun) (file_data->file_names[j], this_real_name, data);
2700 }
2701 }
2702 }
2703
2704 static int
2705 dw2_has_symbols (struct objfile *objfile)
2706 {
2707 return 1;
2708 }
2709
2710 const struct quick_symbol_functions dwarf2_gdb_index_functions =
2711 {
2712 dw2_has_symbols,
2713 dw2_find_last_source_symtab,
2714 dw2_forget_cached_source_info,
2715 dw2_lookup_symtab,
2716 dw2_lookup_symbol,
2717 dw2_pre_expand_symtabs_matching,
2718 dw2_print_stats,
2719 dw2_dump,
2720 dw2_relocate,
2721 dw2_expand_symtabs_for_function,
2722 dw2_expand_all_symtabs,
2723 dw2_expand_symtabs_with_filename,
2724 dw2_find_symbol_file,
2725 dw2_map_matching_symbols,
2726 dw2_expand_symtabs_matching,
2727 dw2_find_pc_sect_symtab,
2728 dw2_map_symbol_names,
2729 dw2_map_symbol_filenames
2730 };
2731
2732 /* Initialize for reading DWARF for this objfile. Return 0 if this
2733 file will use psymtabs, or 1 if using the GNU index. */
2734
2735 int
2736 dwarf2_initialize_objfile (struct objfile *objfile)
2737 {
2738 /* If we're about to read full symbols, don't bother with the
2739 indices. In this case we also don't care if some other debug
2740 format is making psymtabs, because they are all about to be
2741 expanded anyway. */
2742 if ((objfile->flags & OBJF_READNOW))
2743 {
2744 int i;
2745
2746 dwarf2_per_objfile->using_index = 1;
2747 create_all_comp_units (objfile);
2748 create_debug_types_hash_table (objfile);
2749 dwarf2_per_objfile->quick_file_names_table =
2750 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2751
2752 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2753 + dwarf2_per_objfile->n_type_comp_units); ++i)
2754 {
2755 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2756
2757 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2758 struct dwarf2_per_cu_quick_data);
2759 }
2760
2761 /* Return 1 so that gdb sees the "quick" functions. However,
2762 these functions will be no-ops because we will have expanded
2763 all symtabs. */
2764 return 1;
2765 }
2766
2767 if (dwarf2_read_index (objfile))
2768 return 1;
2769
2770 dwarf2_build_psymtabs (objfile);
2771 return 0;
2772 }
2773
2774 \f
2775
2776 /* Build a partial symbol table. */
2777
2778 void
2779 dwarf2_build_psymtabs (struct objfile *objfile)
2780 {
2781 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
2782 {
2783 init_psymbol_list (objfile, 1024);
2784 }
2785
2786 dwarf2_build_psymtabs_hard (objfile);
2787 }
2788
2789 /* Return TRUE if OFFSET is within CU_HEADER. */
2790
2791 static inline int
2792 offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2793 {
2794 unsigned int bottom = cu_header->offset;
2795 unsigned int top = (cu_header->offset
2796 + cu_header->length
2797 + cu_header->initial_length_size);
2798
2799 return (offset >= bottom && offset < top);
2800 }
2801
2802 /* Read in the comp unit header information from the debug_info at info_ptr.
2803 NOTE: This leaves members offset, first_die_offset to be filled in
2804 by the caller. */
2805
2806 static gdb_byte *
2807 read_comp_unit_head (struct comp_unit_head *cu_header,
2808 gdb_byte *info_ptr, bfd *abfd)
2809 {
2810 int signed_addr;
2811 unsigned int bytes_read;
2812
2813 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2814 cu_header->initial_length_size = bytes_read;
2815 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
2816 info_ptr += bytes_read;
2817 cu_header->version = read_2_bytes (abfd, info_ptr);
2818 info_ptr += 2;
2819 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
2820 &bytes_read);
2821 info_ptr += bytes_read;
2822 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2823 info_ptr += 1;
2824 signed_addr = bfd_get_sign_extend_vma (abfd);
2825 if (signed_addr < 0)
2826 internal_error (__FILE__, __LINE__,
2827 _("read_comp_unit_head: dwarf from non elf file"));
2828 cu_header->signed_addr_p = signed_addr;
2829
2830 return info_ptr;
2831 }
2832
2833 static gdb_byte *
2834 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
2835 gdb_byte *buffer, unsigned int buffer_size,
2836 bfd *abfd)
2837 {
2838 gdb_byte *beg_of_comp_unit = info_ptr;
2839
2840 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
2841
2842 if (header->version != 2 && header->version != 3 && header->version != 4)
2843 error (_("Dwarf Error: wrong version in compilation unit header "
2844 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
2845 bfd_get_filename (abfd));
2846
2847 if (header->abbrev_offset
2848 >= dwarf2_section_size (dwarf2_per_objfile->objfile,
2849 &dwarf2_per_objfile->abbrev))
2850 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
2851 "(offset 0x%lx + 6) [in module %s]"),
2852 (long) header->abbrev_offset,
2853 (long) (beg_of_comp_unit - buffer),
2854 bfd_get_filename (abfd));
2855
2856 if (beg_of_comp_unit + header->length + header->initial_length_size
2857 > buffer + buffer_size)
2858 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
2859 "(offset 0x%lx + 0) [in module %s]"),
2860 (long) header->length,
2861 (long) (beg_of_comp_unit - buffer),
2862 bfd_get_filename (abfd));
2863
2864 return info_ptr;
2865 }
2866
2867 /* Read in the types comp unit header information from .debug_types entry at
2868 types_ptr. The result is a pointer to one past the end of the header. */
2869
2870 static gdb_byte *
2871 read_type_comp_unit_head (struct comp_unit_head *cu_header,
2872 ULONGEST *signature,
2873 gdb_byte *types_ptr, bfd *abfd)
2874 {
2875 gdb_byte *initial_types_ptr = types_ptr;
2876
2877 dwarf2_read_section (dwarf2_per_objfile->objfile,
2878 &dwarf2_per_objfile->types);
2879 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
2880
2881 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
2882
2883 *signature = read_8_bytes (abfd, types_ptr);
2884 types_ptr += 8;
2885 types_ptr += cu_header->offset_size;
2886 cu_header->first_die_offset = types_ptr - initial_types_ptr;
2887
2888 return types_ptr;
2889 }
2890
2891 /* Allocate a new partial symtab for file named NAME and mark this new
2892 partial symtab as being an include of PST. */
2893
2894 static void
2895 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
2896 struct objfile *objfile)
2897 {
2898 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
2899
2900 subpst->section_offsets = pst->section_offsets;
2901 subpst->textlow = 0;
2902 subpst->texthigh = 0;
2903
2904 subpst->dependencies = (struct partial_symtab **)
2905 obstack_alloc (&objfile->objfile_obstack,
2906 sizeof (struct partial_symtab *));
2907 subpst->dependencies[0] = pst;
2908 subpst->number_of_dependencies = 1;
2909
2910 subpst->globals_offset = 0;
2911 subpst->n_global_syms = 0;
2912 subpst->statics_offset = 0;
2913 subpst->n_static_syms = 0;
2914 subpst->symtab = NULL;
2915 subpst->read_symtab = pst->read_symtab;
2916 subpst->readin = 0;
2917
2918 /* No private part is necessary for include psymtabs. This property
2919 can be used to differentiate between such include psymtabs and
2920 the regular ones. */
2921 subpst->read_symtab_private = NULL;
2922 }
2923
2924 /* Read the Line Number Program data and extract the list of files
2925 included by the source file represented by PST. Build an include
2926 partial symtab for each of these included files. */
2927
2928 static void
2929 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
2930 struct die_info *die,
2931 struct partial_symtab *pst)
2932 {
2933 struct objfile *objfile = cu->objfile;
2934 bfd *abfd = objfile->obfd;
2935 struct line_header *lh = NULL;
2936 struct attribute *attr;
2937
2938 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2939 if (attr)
2940 {
2941 unsigned int line_offset = DW_UNSND (attr);
2942
2943 lh = dwarf_decode_line_header (line_offset, abfd, cu);
2944 }
2945 if (lh == NULL)
2946 return; /* No linetable, so no includes. */
2947
2948 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
2949 dwarf_decode_lines (lh, pst->dirname, abfd, cu, pst);
2950
2951 free_line_header (lh);
2952 }
2953
2954 static hashval_t
2955 hash_type_signature (const void *item)
2956 {
2957 const struct signatured_type *type_sig = item;
2958
2959 /* This drops the top 32 bits of the signature, but is ok for a hash. */
2960 return type_sig->signature;
2961 }
2962
2963 static int
2964 eq_type_signature (const void *item_lhs, const void *item_rhs)
2965 {
2966 const struct signatured_type *lhs = item_lhs;
2967 const struct signatured_type *rhs = item_rhs;
2968
2969 return lhs->signature == rhs->signature;
2970 }
2971
2972 /* Allocate a hash table for signatured types. */
2973
2974 static htab_t
2975 allocate_signatured_type_table (struct objfile *objfile)
2976 {
2977 return htab_create_alloc_ex (41,
2978 hash_type_signature,
2979 eq_type_signature,
2980 NULL,
2981 &objfile->objfile_obstack,
2982 hashtab_obstack_allocate,
2983 dummy_obstack_deallocate);
2984 }
2985
2986 /* A helper function to add a signatured type CU to a list. */
2987
2988 static int
2989 add_signatured_type_cu_to_list (void **slot, void *datum)
2990 {
2991 struct signatured_type *sigt = *slot;
2992 struct dwarf2_per_cu_data ***datap = datum;
2993
2994 **datap = &sigt->per_cu;
2995 ++*datap;
2996
2997 return 1;
2998 }
2999
3000 /* Create the hash table of all entries in the .debug_types section.
3001 The result is zero if there is an error (e.g. missing .debug_types section),
3002 otherwise non-zero. */
3003
3004 static int
3005 create_debug_types_hash_table (struct objfile *objfile)
3006 {
3007 gdb_byte *info_ptr;
3008 htab_t types_htab;
3009 struct dwarf2_per_cu_data **iter;
3010
3011 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
3012 info_ptr = dwarf2_per_objfile->types.buffer;
3013
3014 if (info_ptr == NULL)
3015 {
3016 dwarf2_per_objfile->signatured_types = NULL;
3017 return 0;
3018 }
3019
3020 types_htab = allocate_signatured_type_table (objfile);
3021
3022 if (dwarf2_die_debug)
3023 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
3024
3025 while (info_ptr < dwarf2_per_objfile->types.buffer
3026 + dwarf2_per_objfile->types.size)
3027 {
3028 unsigned int offset;
3029 unsigned int offset_size;
3030 unsigned int type_offset;
3031 unsigned int length, initial_length_size;
3032 unsigned short version;
3033 ULONGEST signature;
3034 struct signatured_type *type_sig;
3035 void **slot;
3036 gdb_byte *ptr = info_ptr;
3037
3038 offset = ptr - dwarf2_per_objfile->types.buffer;
3039
3040 /* We need to read the type's signature in order to build the hash
3041 table, but we don't need to read anything else just yet. */
3042
3043 /* Sanity check to ensure entire cu is present. */
3044 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
3045 if (ptr + length + initial_length_size
3046 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
3047 {
3048 complaint (&symfile_complaints,
3049 _("debug type entry runs off end "
3050 "of `.debug_types' section, ignored"));
3051 break;
3052 }
3053
3054 offset_size = initial_length_size == 4 ? 4 : 8;
3055 ptr += initial_length_size;
3056 version = bfd_get_16 (objfile->obfd, ptr);
3057 ptr += 2;
3058 ptr += offset_size; /* abbrev offset */
3059 ptr += 1; /* address size */
3060 signature = bfd_get_64 (objfile->obfd, ptr);
3061 ptr += 8;
3062 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
3063
3064 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
3065 memset (type_sig, 0, sizeof (*type_sig));
3066 type_sig->signature = signature;
3067 type_sig->offset = offset;
3068 type_sig->type_offset = type_offset;
3069 type_sig->per_cu.objfile = objfile;
3070 type_sig->per_cu.from_debug_types = 1;
3071
3072 slot = htab_find_slot (types_htab, type_sig, INSERT);
3073 gdb_assert (slot != NULL);
3074 *slot = type_sig;
3075
3076 if (dwarf2_die_debug)
3077 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
3078 offset, phex (signature, sizeof (signature)));
3079
3080 info_ptr = info_ptr + initial_length_size + length;
3081 }
3082
3083 dwarf2_per_objfile->signatured_types = types_htab;
3084
3085 dwarf2_per_objfile->n_type_comp_units = htab_elements (types_htab);
3086 dwarf2_per_objfile->type_comp_units
3087 = obstack_alloc (&objfile->objfile_obstack,
3088 dwarf2_per_objfile->n_type_comp_units
3089 * sizeof (struct dwarf2_per_cu_data *));
3090 iter = &dwarf2_per_objfile->type_comp_units[0];
3091 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_list, &iter);
3092 gdb_assert (iter - &dwarf2_per_objfile->type_comp_units[0]
3093 == dwarf2_per_objfile->n_type_comp_units);
3094
3095 return 1;
3096 }
3097
3098 /* Lookup a signature based type.
3099 Returns NULL if SIG is not present in the table. */
3100
3101 static struct signatured_type *
3102 lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
3103 {
3104 struct signatured_type find_entry, *entry;
3105
3106 if (dwarf2_per_objfile->signatured_types == NULL)
3107 {
3108 complaint (&symfile_complaints,
3109 _("missing `.debug_types' section for DW_FORM_sig8 die"));
3110 return 0;
3111 }
3112
3113 find_entry.signature = sig;
3114 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
3115 return entry;
3116 }
3117
3118 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
3119
3120 static void
3121 init_cu_die_reader (struct die_reader_specs *reader,
3122 struct dwarf2_cu *cu)
3123 {
3124 reader->abfd = cu->objfile->obfd;
3125 reader->cu = cu;
3126 if (cu->per_cu->from_debug_types)
3127 {
3128 gdb_assert (dwarf2_per_objfile->types.readin);
3129 reader->buffer = dwarf2_per_objfile->types.buffer;
3130 }
3131 else
3132 {
3133 gdb_assert (dwarf2_per_objfile->info.readin);
3134 reader->buffer = dwarf2_per_objfile->info.buffer;
3135 }
3136 }
3137
3138 /* Find the base address of the compilation unit for range lists and
3139 location lists. It will normally be specified by DW_AT_low_pc.
3140 In DWARF-3 draft 4, the base address could be overridden by
3141 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3142 compilation units with discontinuous ranges. */
3143
3144 static void
3145 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3146 {
3147 struct attribute *attr;
3148
3149 cu->base_known = 0;
3150 cu->base_address = 0;
3151
3152 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3153 if (attr)
3154 {
3155 cu->base_address = DW_ADDR (attr);
3156 cu->base_known = 1;
3157 }
3158 else
3159 {
3160 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3161 if (attr)
3162 {
3163 cu->base_address = DW_ADDR (attr);
3164 cu->base_known = 1;
3165 }
3166 }
3167 }
3168
3169 /* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3170 to combine the common parts.
3171 Process a compilation unit for a psymtab.
3172 BUFFER is a pointer to the beginning of the dwarf section buffer,
3173 either .debug_info or debug_types.
3174 INFO_PTR is a pointer to the start of the CU.
3175 Returns a pointer to the next CU. */
3176
3177 static gdb_byte *
3178 process_psymtab_comp_unit (struct objfile *objfile,
3179 struct dwarf2_per_cu_data *this_cu,
3180 gdb_byte *buffer, gdb_byte *info_ptr,
3181 unsigned int buffer_size)
3182 {
3183 bfd *abfd = objfile->obfd;
3184 gdb_byte *beg_of_comp_unit = info_ptr;
3185 struct die_info *comp_unit_die;
3186 struct partial_symtab *pst;
3187 CORE_ADDR baseaddr;
3188 struct cleanup *back_to_inner;
3189 struct dwarf2_cu cu;
3190 int has_children, has_pc_info;
3191 struct attribute *attr;
3192 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3193 struct die_reader_specs reader_specs;
3194 const char *filename;
3195
3196 init_one_comp_unit (&cu, objfile);
3197 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
3198
3199 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
3200 buffer, buffer_size,
3201 abfd);
3202
3203 /* Complete the cu_header. */
3204 cu.header.offset = beg_of_comp_unit - buffer;
3205 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
3206
3207 cu.list_in_scope = &file_symbols;
3208
3209 /* If this compilation unit was already read in, free the
3210 cached copy in order to read it in again. This is
3211 necessary because we skipped some symbols when we first
3212 read in the compilation unit (see load_partial_dies).
3213 This problem could be avoided, but the benefit is
3214 unclear. */
3215 if (this_cu->cu != NULL)
3216 free_one_cached_comp_unit (this_cu->cu);
3217
3218 /* Note that this is a pointer to our stack frame, being
3219 added to a global data structure. It will be cleaned up
3220 in free_stack_comp_unit when we finish with this
3221 compilation unit. */
3222 this_cu->cu = &cu;
3223 cu.per_cu = this_cu;
3224
3225 /* Read the abbrevs for this compilation unit into a table. */
3226 dwarf2_read_abbrevs (abfd, &cu);
3227 make_cleanup (dwarf2_free_abbrev_table, &cu);
3228
3229 /* Read the compilation unit die. */
3230 if (this_cu->from_debug_types)
3231 info_ptr += 8 /*signature*/ + cu.header.offset_size;
3232 init_cu_die_reader (&reader_specs, &cu);
3233 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3234 &has_children);
3235
3236 if (this_cu->from_debug_types)
3237 {
3238 /* offset,length haven't been set yet for type units. */
3239 this_cu->offset = cu.header.offset;
3240 this_cu->length = cu.header.length + cu.header.initial_length_size;
3241 }
3242 else if (comp_unit_die->tag == DW_TAG_partial_unit)
3243 {
3244 info_ptr = (beg_of_comp_unit + cu.header.length
3245 + cu.header.initial_length_size);
3246 do_cleanups (back_to_inner);
3247 return info_ptr;
3248 }
3249
3250 prepare_one_comp_unit (&cu, comp_unit_die);
3251
3252 /* Allocate a new partial symbol table structure. */
3253 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3254 if (attr == NULL || !DW_STRING (attr))
3255 filename = "";
3256 else
3257 filename = DW_STRING (attr);
3258 pst = start_psymtab_common (objfile, objfile->section_offsets,
3259 filename,
3260 /* TEXTLOW and TEXTHIGH are set below. */
3261 0,
3262 objfile->global_psymbols.next,
3263 objfile->static_psymbols.next);
3264
3265 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3266 if (attr != NULL)
3267 pst->dirname = DW_STRING (attr);
3268
3269 pst->read_symtab_private = this_cu;
3270
3271 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3272
3273 /* Store the function that reads in the rest of the symbol table. */
3274 pst->read_symtab = dwarf2_psymtab_to_symtab;
3275
3276 this_cu->v.psymtab = pst;
3277
3278 dwarf2_find_base_address (comp_unit_die, &cu);
3279
3280 /* Possibly set the default values of LOWPC and HIGHPC from
3281 `DW_AT_ranges'. */
3282 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3283 &best_highpc, &cu, pst);
3284 if (has_pc_info == 1 && best_lowpc < best_highpc)
3285 /* Store the contiguous range if it is not empty; it can be empty for
3286 CUs with no code. */
3287 addrmap_set_empty (objfile->psymtabs_addrmap,
3288 best_lowpc + baseaddr,
3289 best_highpc + baseaddr - 1, pst);
3290
3291 /* Check if comp unit has_children.
3292 If so, read the rest of the partial symbols from this comp unit.
3293 If not, there's no more debug_info for this comp unit. */
3294 if (has_children)
3295 {
3296 struct partial_die_info *first_die;
3297 CORE_ADDR lowpc, highpc;
3298
3299 lowpc = ((CORE_ADDR) -1);
3300 highpc = ((CORE_ADDR) 0);
3301
3302 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
3303
3304 scan_partial_symbols (first_die, &lowpc, &highpc,
3305 ! has_pc_info, &cu);
3306
3307 /* If we didn't find a lowpc, set it to highpc to avoid
3308 complaints from `maint check'. */
3309 if (lowpc == ((CORE_ADDR) -1))
3310 lowpc = highpc;
3311
3312 /* If the compilation unit didn't have an explicit address range,
3313 then use the information extracted from its child dies. */
3314 if (! has_pc_info)
3315 {
3316 best_lowpc = lowpc;
3317 best_highpc = highpc;
3318 }
3319 }
3320 pst->textlow = best_lowpc + baseaddr;
3321 pst->texthigh = best_highpc + baseaddr;
3322
3323 pst->n_global_syms = objfile->global_psymbols.next -
3324 (objfile->global_psymbols.list + pst->globals_offset);
3325 pst->n_static_syms = objfile->static_psymbols.next -
3326 (objfile->static_psymbols.list + pst->statics_offset);
3327 sort_pst_symbols (pst);
3328
3329 info_ptr = (beg_of_comp_unit + cu.header.length
3330 + cu.header.initial_length_size);
3331
3332 if (this_cu->from_debug_types)
3333 {
3334 /* It's not clear we want to do anything with stmt lists here.
3335 Waiting to see what gcc ultimately does. */
3336 }
3337 else
3338 {
3339 /* Get the list of files included in the current compilation unit,
3340 and build a psymtab for each of them. */
3341 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
3342 }
3343
3344 do_cleanups (back_to_inner);
3345
3346 return info_ptr;
3347 }
3348
3349 /* Traversal function for htab_traverse_noresize.
3350 Process one .debug_types comp-unit. */
3351
3352 static int
3353 process_type_comp_unit (void **slot, void *info)
3354 {
3355 struct signatured_type *entry = (struct signatured_type *) *slot;
3356 struct objfile *objfile = (struct objfile *) info;
3357 struct dwarf2_per_cu_data *this_cu;
3358
3359 this_cu = &entry->per_cu;
3360
3361 gdb_assert (dwarf2_per_objfile->types.readin);
3362 process_psymtab_comp_unit (objfile, this_cu,
3363 dwarf2_per_objfile->types.buffer,
3364 dwarf2_per_objfile->types.buffer + entry->offset,
3365 dwarf2_per_objfile->types.size);
3366
3367 return 1;
3368 }
3369
3370 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3371 Build partial symbol tables for the .debug_types comp-units. */
3372
3373 static void
3374 build_type_psymtabs (struct objfile *objfile)
3375 {
3376 if (! create_debug_types_hash_table (objfile))
3377 return;
3378
3379 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3380 process_type_comp_unit, objfile);
3381 }
3382
3383 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
3384
3385 static void
3386 psymtabs_addrmap_cleanup (void *o)
3387 {
3388 struct objfile *objfile = o;
3389
3390 objfile->psymtabs_addrmap = NULL;
3391 }
3392
3393 /* Build the partial symbol table by doing a quick pass through the
3394 .debug_info and .debug_abbrev sections. */
3395
3396 static void
3397 dwarf2_build_psymtabs_hard (struct objfile *objfile)
3398 {
3399 gdb_byte *info_ptr;
3400 struct cleanup *back_to, *addrmap_cleanup;
3401 struct obstack temp_obstack;
3402
3403 dwarf2_per_objfile->reading_partial_symbols = 1;
3404
3405 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3406 info_ptr = dwarf2_per_objfile->info.buffer;
3407
3408 /* Any cached compilation units will be linked by the per-objfile
3409 read_in_chain. Make sure to free them when we're done. */
3410 back_to = make_cleanup (free_cached_comp_units, NULL);
3411
3412 build_type_psymtabs (objfile);
3413
3414 create_all_comp_units (objfile);
3415
3416 /* Create a temporary address map on a temporary obstack. We later
3417 copy this to the final obstack. */
3418 obstack_init (&temp_obstack);
3419 make_cleanup_obstack_free (&temp_obstack);
3420 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3421 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
3422
3423 /* Since the objects we're extracting from .debug_info vary in
3424 length, only the individual functions to extract them (like
3425 read_comp_unit_head and load_partial_die) can really know whether
3426 the buffer is large enough to hold another complete object.
3427
3428 At the moment, they don't actually check that. If .debug_info
3429 holds just one extra byte after the last compilation unit's dies,
3430 then read_comp_unit_head will happily read off the end of the
3431 buffer. read_partial_die is similarly casual. Those functions
3432 should be fixed.
3433
3434 For this loop condition, simply checking whether there's any data
3435 left at all should be sufficient. */
3436
3437 while (info_ptr < (dwarf2_per_objfile->info.buffer
3438 + dwarf2_per_objfile->info.size))
3439 {
3440 struct dwarf2_per_cu_data *this_cu;
3441
3442 this_cu = dwarf2_find_comp_unit (info_ptr
3443 - dwarf2_per_objfile->info.buffer,
3444 objfile);
3445
3446 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
3447 dwarf2_per_objfile->info.buffer,
3448 info_ptr,
3449 dwarf2_per_objfile->info.size);
3450 }
3451
3452 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3453 &objfile->objfile_obstack);
3454 discard_cleanups (addrmap_cleanup);
3455
3456 do_cleanups (back_to);
3457 }
3458
3459 /* Load the partial DIEs for a secondary CU into memory. */
3460
3461 static void
3462 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
3463 struct objfile *objfile)
3464 {
3465 bfd *abfd = objfile->obfd;
3466 gdb_byte *info_ptr, *beg_of_comp_unit;
3467 struct die_info *comp_unit_die;
3468 struct dwarf2_cu *cu;
3469 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
3470 int has_children;
3471 struct die_reader_specs reader_specs;
3472 int read_cu = 0;
3473
3474 gdb_assert (! this_cu->from_debug_types);
3475
3476 gdb_assert (dwarf2_per_objfile->info.readin);
3477 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
3478 beg_of_comp_unit = info_ptr;
3479
3480 if (this_cu->cu == NULL)
3481 {
3482 cu = xmalloc (sizeof (*cu));
3483 init_one_comp_unit (cu, objfile);
3484
3485 read_cu = 1;
3486
3487 /* If an error occurs while loading, release our storage. */
3488 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
3489
3490 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
3491 dwarf2_per_objfile->info.buffer,
3492 dwarf2_per_objfile->info.size,
3493 abfd);
3494
3495 /* Complete the cu_header. */
3496 cu->header.offset = this_cu->offset;
3497 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3498
3499 /* Link this compilation unit into the compilation unit tree. */
3500 this_cu->cu = cu;
3501 cu->per_cu = this_cu;
3502
3503 /* Link this CU into read_in_chain. */
3504 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3505 dwarf2_per_objfile->read_in_chain = this_cu;
3506 }
3507 else
3508 {
3509 cu = this_cu->cu;
3510 info_ptr += cu->header.first_die_offset;
3511 }
3512
3513 /* Read the abbrevs for this compilation unit into a table. */
3514 gdb_assert (cu->dwarf2_abbrevs == NULL);
3515 dwarf2_read_abbrevs (abfd, cu);
3516 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
3517
3518 /* Read the compilation unit die. */
3519 init_cu_die_reader (&reader_specs, cu);
3520 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3521 &has_children);
3522
3523 prepare_one_comp_unit (cu, comp_unit_die);
3524
3525 /* Check if comp unit has_children.
3526 If so, read the rest of the partial symbols from this comp unit.
3527 If not, there's no more debug_info for this comp unit. */
3528 if (has_children)
3529 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
3530
3531 do_cleanups (free_abbrevs_cleanup);
3532
3533 if (read_cu)
3534 {
3535 /* We've successfully allocated this compilation unit. Let our
3536 caller clean it up when finished with it. */
3537 discard_cleanups (free_cu_cleanup);
3538 }
3539 }
3540
3541 /* Create a list of all compilation units in OBJFILE. We do this only
3542 if an inter-comp-unit reference is found; presumably if there is one,
3543 there will be many, and one will occur early in the .debug_info section.
3544 So there's no point in building this list incrementally. */
3545
3546 static void
3547 create_all_comp_units (struct objfile *objfile)
3548 {
3549 int n_allocated;
3550 int n_comp_units;
3551 struct dwarf2_per_cu_data **all_comp_units;
3552 gdb_byte *info_ptr;
3553
3554 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3555 info_ptr = dwarf2_per_objfile->info.buffer;
3556
3557 n_comp_units = 0;
3558 n_allocated = 10;
3559 all_comp_units = xmalloc (n_allocated
3560 * sizeof (struct dwarf2_per_cu_data *));
3561
3562 while (info_ptr < dwarf2_per_objfile->info.buffer
3563 + dwarf2_per_objfile->info.size)
3564 {
3565 unsigned int length, initial_length_size;
3566 struct dwarf2_per_cu_data *this_cu;
3567 unsigned int offset;
3568
3569 offset = info_ptr - dwarf2_per_objfile->info.buffer;
3570
3571 /* Read just enough information to find out where the next
3572 compilation unit is. */
3573 length = read_initial_length (objfile->obfd, info_ptr,
3574 &initial_length_size);
3575
3576 /* Save the compilation unit for later lookup. */
3577 this_cu = obstack_alloc (&objfile->objfile_obstack,
3578 sizeof (struct dwarf2_per_cu_data));
3579 memset (this_cu, 0, sizeof (*this_cu));
3580 this_cu->offset = offset;
3581 this_cu->length = length + initial_length_size;
3582 this_cu->objfile = objfile;
3583
3584 if (n_comp_units == n_allocated)
3585 {
3586 n_allocated *= 2;
3587 all_comp_units = xrealloc (all_comp_units,
3588 n_allocated
3589 * sizeof (struct dwarf2_per_cu_data *));
3590 }
3591 all_comp_units[n_comp_units++] = this_cu;
3592
3593 info_ptr = info_ptr + this_cu->length;
3594 }
3595
3596 dwarf2_per_objfile->all_comp_units
3597 = obstack_alloc (&objfile->objfile_obstack,
3598 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3599 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3600 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3601 xfree (all_comp_units);
3602 dwarf2_per_objfile->n_comp_units = n_comp_units;
3603 }
3604
3605 /* Process all loaded DIEs for compilation unit CU, starting at
3606 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3607 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3608 DW_AT_ranges). If NEED_PC is set, then this function will set
3609 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3610 and record the covered ranges in the addrmap. */
3611
3612 static void
3613 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
3614 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3615 {
3616 struct partial_die_info *pdi;
3617
3618 /* Now, march along the PDI's, descending into ones which have
3619 interesting children but skipping the children of the other ones,
3620 until we reach the end of the compilation unit. */
3621
3622 pdi = first_die;
3623
3624 while (pdi != NULL)
3625 {
3626 fixup_partial_die (pdi, cu);
3627
3628 /* Anonymous namespaces or modules have no name but have interesting
3629 children, so we need to look at them. Ditto for anonymous
3630 enums. */
3631
3632 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
3633 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
3634 {
3635 switch (pdi->tag)
3636 {
3637 case DW_TAG_subprogram:
3638 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3639 break;
3640 case DW_TAG_constant:
3641 case DW_TAG_variable:
3642 case DW_TAG_typedef:
3643 case DW_TAG_union_type:
3644 if (!pdi->is_declaration)
3645 {
3646 add_partial_symbol (pdi, cu);
3647 }
3648 break;
3649 case DW_TAG_class_type:
3650 case DW_TAG_interface_type:
3651 case DW_TAG_structure_type:
3652 if (!pdi->is_declaration)
3653 {
3654 add_partial_symbol (pdi, cu);
3655 }
3656 break;
3657 case DW_TAG_enumeration_type:
3658 if (!pdi->is_declaration)
3659 add_partial_enumeration (pdi, cu);
3660 break;
3661 case DW_TAG_base_type:
3662 case DW_TAG_subrange_type:
3663 /* File scope base type definitions are added to the partial
3664 symbol table. */
3665 add_partial_symbol (pdi, cu);
3666 break;
3667 case DW_TAG_namespace:
3668 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
3669 break;
3670 case DW_TAG_module:
3671 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3672 break;
3673 default:
3674 break;
3675 }
3676 }
3677
3678 /* If the die has a sibling, skip to the sibling. */
3679
3680 pdi = pdi->die_sibling;
3681 }
3682 }
3683
3684 /* Functions used to compute the fully scoped name of a partial DIE.
3685
3686 Normally, this is simple. For C++, the parent DIE's fully scoped
3687 name is concatenated with "::" and the partial DIE's name. For
3688 Java, the same thing occurs except that "." is used instead of "::".
3689 Enumerators are an exception; they use the scope of their parent
3690 enumeration type, i.e. the name of the enumeration type is not
3691 prepended to the enumerator.
3692
3693 There are two complexities. One is DW_AT_specification; in this
3694 case "parent" means the parent of the target of the specification,
3695 instead of the direct parent of the DIE. The other is compilers
3696 which do not emit DW_TAG_namespace; in this case we try to guess
3697 the fully qualified name of structure types from their members'
3698 linkage names. This must be done using the DIE's children rather
3699 than the children of any DW_AT_specification target. We only need
3700 to do this for structures at the top level, i.e. if the target of
3701 any DW_AT_specification (if any; otherwise the DIE itself) does not
3702 have a parent. */
3703
3704 /* Compute the scope prefix associated with PDI's parent, in
3705 compilation unit CU. The result will be allocated on CU's
3706 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3707 field. NULL is returned if no prefix is necessary. */
3708 static char *
3709 partial_die_parent_scope (struct partial_die_info *pdi,
3710 struct dwarf2_cu *cu)
3711 {
3712 char *grandparent_scope;
3713 struct partial_die_info *parent, *real_pdi;
3714
3715 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3716 then this means the parent of the specification DIE. */
3717
3718 real_pdi = pdi;
3719 while (real_pdi->has_specification)
3720 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
3721
3722 parent = real_pdi->die_parent;
3723 if (parent == NULL)
3724 return NULL;
3725
3726 if (parent->scope_set)
3727 return parent->scope;
3728
3729 fixup_partial_die (parent, cu);
3730
3731 grandparent_scope = partial_die_parent_scope (parent, cu);
3732
3733 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3734 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3735 Work around this problem here. */
3736 if (cu->language == language_cplus
3737 && parent->tag == DW_TAG_namespace
3738 && strcmp (parent->name, "::") == 0
3739 && grandparent_scope == NULL)
3740 {
3741 parent->scope = NULL;
3742 parent->scope_set = 1;
3743 return NULL;
3744 }
3745
3746 if (parent->tag == DW_TAG_namespace
3747 || parent->tag == DW_TAG_module
3748 || parent->tag == DW_TAG_structure_type
3749 || parent->tag == DW_TAG_class_type
3750 || parent->tag == DW_TAG_interface_type
3751 || parent->tag == DW_TAG_union_type
3752 || parent->tag == DW_TAG_enumeration_type)
3753 {
3754 if (grandparent_scope == NULL)
3755 parent->scope = parent->name;
3756 else
3757 parent->scope = typename_concat (&cu->comp_unit_obstack,
3758 grandparent_scope,
3759 parent->name, 0, cu);
3760 }
3761 else if (parent->tag == DW_TAG_enumerator)
3762 /* Enumerators should not get the name of the enumeration as a prefix. */
3763 parent->scope = grandparent_scope;
3764 else
3765 {
3766 /* FIXME drow/2004-04-01: What should we be doing with
3767 function-local names? For partial symbols, we should probably be
3768 ignoring them. */
3769 complaint (&symfile_complaints,
3770 _("unhandled containing DIE tag %d for DIE at %d"),
3771 parent->tag, pdi->offset);
3772 parent->scope = grandparent_scope;
3773 }
3774
3775 parent->scope_set = 1;
3776 return parent->scope;
3777 }
3778
3779 /* Return the fully scoped name associated with PDI, from compilation unit
3780 CU. The result will be allocated with malloc. */
3781 static char *
3782 partial_die_full_name (struct partial_die_info *pdi,
3783 struct dwarf2_cu *cu)
3784 {
3785 char *parent_scope;
3786
3787 /* If this is a template instantiation, we can not work out the
3788 template arguments from partial DIEs. So, unfortunately, we have
3789 to go through the full DIEs. At least any work we do building
3790 types here will be reused if full symbols are loaded later. */
3791 if (pdi->has_template_arguments)
3792 {
3793 fixup_partial_die (pdi, cu);
3794
3795 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
3796 {
3797 struct die_info *die;
3798 struct attribute attr;
3799 struct dwarf2_cu *ref_cu = cu;
3800
3801 attr.name = 0;
3802 attr.form = DW_FORM_ref_addr;
3803 attr.u.addr = pdi->offset;
3804 die = follow_die_ref (NULL, &attr, &ref_cu);
3805
3806 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
3807 }
3808 }
3809
3810 parent_scope = partial_die_parent_scope (pdi, cu);
3811 if (parent_scope == NULL)
3812 return NULL;
3813 else
3814 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
3815 }
3816
3817 static void
3818 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
3819 {
3820 struct objfile *objfile = cu->objfile;
3821 CORE_ADDR addr = 0;
3822 char *actual_name = NULL;
3823 const struct partial_symbol *psym = NULL;
3824 CORE_ADDR baseaddr;
3825 int built_actual_name = 0;
3826
3827 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3828
3829 actual_name = partial_die_full_name (pdi, cu);
3830 if (actual_name)
3831 built_actual_name = 1;
3832
3833 if (actual_name == NULL)
3834 actual_name = pdi->name;
3835
3836 switch (pdi->tag)
3837 {
3838 case DW_TAG_subprogram:
3839 if (pdi->is_external || cu->language == language_ada)
3840 {
3841 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
3842 of the global scope. But in Ada, we want to be able to access
3843 nested procedures globally. So all Ada subprograms are stored
3844 in the global scope. */
3845 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3846 mst_text, objfile); */
3847 add_psymbol_to_list (actual_name, strlen (actual_name),
3848 built_actual_name,
3849 VAR_DOMAIN, LOC_BLOCK,
3850 &objfile->global_psymbols,
3851 0, pdi->lowpc + baseaddr,
3852 cu->language, objfile);
3853 }
3854 else
3855 {
3856 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3857 mst_file_text, objfile); */
3858 add_psymbol_to_list (actual_name, strlen (actual_name),
3859 built_actual_name,
3860 VAR_DOMAIN, LOC_BLOCK,
3861 &objfile->static_psymbols,
3862 0, pdi->lowpc + baseaddr,
3863 cu->language, objfile);
3864 }
3865 break;
3866 case DW_TAG_constant:
3867 {
3868 struct psymbol_allocation_list *list;
3869
3870 if (pdi->is_external)
3871 list = &objfile->global_psymbols;
3872 else
3873 list = &objfile->static_psymbols;
3874 add_psymbol_to_list (actual_name, strlen (actual_name),
3875 built_actual_name, VAR_DOMAIN, LOC_STATIC,
3876 list, 0, 0, cu->language, objfile);
3877 }
3878 break;
3879 case DW_TAG_variable:
3880 if (pdi->locdesc)
3881 addr = decode_locdesc (pdi->locdesc, cu);
3882
3883 if (pdi->locdesc
3884 && addr == 0
3885 && !dwarf2_per_objfile->has_section_at_zero)
3886 {
3887 /* A global or static variable may also have been stripped
3888 out by the linker if unused, in which case its address
3889 will be nullified; do not add such variables into partial
3890 symbol table then. */
3891 }
3892 else if (pdi->is_external)
3893 {
3894 /* Global Variable.
3895 Don't enter into the minimal symbol tables as there is
3896 a minimal symbol table entry from the ELF symbols already.
3897 Enter into partial symbol table if it has a location
3898 descriptor or a type.
3899 If the location descriptor is missing, new_symbol will create
3900 a LOC_UNRESOLVED symbol, the address of the variable will then
3901 be determined from the minimal symbol table whenever the variable
3902 is referenced.
3903 The address for the partial symbol table entry is not
3904 used by GDB, but it comes in handy for debugging partial symbol
3905 table building. */
3906
3907 if (pdi->locdesc || pdi->has_type)
3908 add_psymbol_to_list (actual_name, strlen (actual_name),
3909 built_actual_name,
3910 VAR_DOMAIN, LOC_STATIC,
3911 &objfile->global_psymbols,
3912 0, addr + baseaddr,
3913 cu->language, objfile);
3914 }
3915 else
3916 {
3917 /* Static Variable. Skip symbols without location descriptors. */
3918 if (pdi->locdesc == NULL)
3919 {
3920 if (built_actual_name)
3921 xfree (actual_name);
3922 return;
3923 }
3924 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
3925 mst_file_data, objfile); */
3926 add_psymbol_to_list (actual_name, strlen (actual_name),
3927 built_actual_name,
3928 VAR_DOMAIN, LOC_STATIC,
3929 &objfile->static_psymbols,
3930 0, addr + baseaddr,
3931 cu->language, objfile);
3932 }
3933 break;
3934 case DW_TAG_typedef:
3935 case DW_TAG_base_type:
3936 case DW_TAG_subrange_type:
3937 add_psymbol_to_list (actual_name, strlen (actual_name),
3938 built_actual_name,
3939 VAR_DOMAIN, LOC_TYPEDEF,
3940 &objfile->static_psymbols,
3941 0, (CORE_ADDR) 0, cu->language, objfile);
3942 break;
3943 case DW_TAG_namespace:
3944 add_psymbol_to_list (actual_name, strlen (actual_name),
3945 built_actual_name,
3946 VAR_DOMAIN, LOC_TYPEDEF,
3947 &objfile->global_psymbols,
3948 0, (CORE_ADDR) 0, cu->language, objfile);
3949 break;
3950 case DW_TAG_class_type:
3951 case DW_TAG_interface_type:
3952 case DW_TAG_structure_type:
3953 case DW_TAG_union_type:
3954 case DW_TAG_enumeration_type:
3955 /* Skip external references. The DWARF standard says in the section
3956 about "Structure, Union, and Class Type Entries": "An incomplete
3957 structure, union or class type is represented by a structure,
3958 union or class entry that does not have a byte size attribute
3959 and that has a DW_AT_declaration attribute." */
3960 if (!pdi->has_byte_size && pdi->is_declaration)
3961 {
3962 if (built_actual_name)
3963 xfree (actual_name);
3964 return;
3965 }
3966
3967 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
3968 static vs. global. */
3969 add_psymbol_to_list (actual_name, strlen (actual_name),
3970 built_actual_name,
3971 STRUCT_DOMAIN, LOC_TYPEDEF,
3972 (cu->language == language_cplus
3973 || cu->language == language_java)
3974 ? &objfile->global_psymbols
3975 : &objfile->static_psymbols,
3976 0, (CORE_ADDR) 0, cu->language, objfile);
3977
3978 break;
3979 case DW_TAG_enumerator:
3980 add_psymbol_to_list (actual_name, strlen (actual_name),
3981 built_actual_name,
3982 VAR_DOMAIN, LOC_CONST,
3983 (cu->language == language_cplus
3984 || cu->language == language_java)
3985 ? &objfile->global_psymbols
3986 : &objfile->static_psymbols,
3987 0, (CORE_ADDR) 0, cu->language, objfile);
3988 break;
3989 default:
3990 break;
3991 }
3992
3993 if (built_actual_name)
3994 xfree (actual_name);
3995 }
3996
3997 /* Read a partial die corresponding to a namespace; also, add a symbol
3998 corresponding to that namespace to the symbol table. NAMESPACE is
3999 the name of the enclosing namespace. */
4000
4001 static void
4002 add_partial_namespace (struct partial_die_info *pdi,
4003 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4004 int need_pc, struct dwarf2_cu *cu)
4005 {
4006 /* Add a symbol for the namespace. */
4007
4008 add_partial_symbol (pdi, cu);
4009
4010 /* Now scan partial symbols in that namespace. */
4011
4012 if (pdi->has_children)
4013 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4014 }
4015
4016 /* Read a partial die corresponding to a Fortran module. */
4017
4018 static void
4019 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
4020 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
4021 {
4022 /* Now scan partial symbols in that module. */
4023
4024 if (pdi->has_children)
4025 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4026 }
4027
4028 /* Read a partial die corresponding to a subprogram and create a partial
4029 symbol for that subprogram. When the CU language allows it, this
4030 routine also defines a partial symbol for each nested subprogram
4031 that this subprogram contains.
4032
4033 DIE my also be a lexical block, in which case we simply search
4034 recursively for suprograms defined inside that lexical block.
4035 Again, this is only performed when the CU language allows this
4036 type of definitions. */
4037
4038 static void
4039 add_partial_subprogram (struct partial_die_info *pdi,
4040 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4041 int need_pc, struct dwarf2_cu *cu)
4042 {
4043 if (pdi->tag == DW_TAG_subprogram)
4044 {
4045 if (pdi->has_pc_info)
4046 {
4047 if (pdi->lowpc < *lowpc)
4048 *lowpc = pdi->lowpc;
4049 if (pdi->highpc > *highpc)
4050 *highpc = pdi->highpc;
4051 if (need_pc)
4052 {
4053 CORE_ADDR baseaddr;
4054 struct objfile *objfile = cu->objfile;
4055
4056 baseaddr = ANOFFSET (objfile->section_offsets,
4057 SECT_OFF_TEXT (objfile));
4058 addrmap_set_empty (objfile->psymtabs_addrmap,
4059 pdi->lowpc + baseaddr,
4060 pdi->highpc - 1 + baseaddr,
4061 cu->per_cu->v.psymtab);
4062 }
4063 if (!pdi->is_declaration)
4064 /* Ignore subprogram DIEs that do not have a name, they are
4065 illegal. Do not emit a complaint at this point, we will
4066 do so when we convert this psymtab into a symtab. */
4067 if (pdi->name)
4068 add_partial_symbol (pdi, cu);
4069 }
4070 }
4071
4072 if (! pdi->has_children)
4073 return;
4074
4075 if (cu->language == language_ada)
4076 {
4077 pdi = pdi->die_child;
4078 while (pdi != NULL)
4079 {
4080 fixup_partial_die (pdi, cu);
4081 if (pdi->tag == DW_TAG_subprogram
4082 || pdi->tag == DW_TAG_lexical_block)
4083 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
4084 pdi = pdi->die_sibling;
4085 }
4086 }
4087 }
4088
4089 /* Read a partial die corresponding to an enumeration type. */
4090
4091 static void
4092 add_partial_enumeration (struct partial_die_info *enum_pdi,
4093 struct dwarf2_cu *cu)
4094 {
4095 struct partial_die_info *pdi;
4096
4097 if (enum_pdi->name != NULL)
4098 add_partial_symbol (enum_pdi, cu);
4099
4100 pdi = enum_pdi->die_child;
4101 while (pdi)
4102 {
4103 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
4104 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
4105 else
4106 add_partial_symbol (pdi, cu);
4107 pdi = pdi->die_sibling;
4108 }
4109 }
4110
4111 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
4112 Return the corresponding abbrev, or NULL if the number is zero (indicating
4113 an empty DIE). In either case *BYTES_READ will be set to the length of
4114 the initial number. */
4115
4116 static struct abbrev_info *
4117 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
4118 struct dwarf2_cu *cu)
4119 {
4120 bfd *abfd = cu->objfile->obfd;
4121 unsigned int abbrev_number;
4122 struct abbrev_info *abbrev;
4123
4124 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4125
4126 if (abbrev_number == 0)
4127 return NULL;
4128
4129 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
4130 if (!abbrev)
4131 {
4132 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
4133 abbrev_number, bfd_get_filename (abfd));
4134 }
4135
4136 return abbrev;
4137 }
4138
4139 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4140 Returns a pointer to the end of a series of DIEs, terminated by an empty
4141 DIE. Any children of the skipped DIEs will also be skipped. */
4142
4143 static gdb_byte *
4144 skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4145 {
4146 struct abbrev_info *abbrev;
4147 unsigned int bytes_read;
4148
4149 while (1)
4150 {
4151 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
4152 if (abbrev == NULL)
4153 return info_ptr + bytes_read;
4154 else
4155 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4156 }
4157 }
4158
4159 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4160 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4161 abbrev corresponding to that skipped uleb128 should be passed in
4162 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4163 children. */
4164
4165 static gdb_byte *
4166 skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4167 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4168 {
4169 unsigned int bytes_read;
4170 struct attribute attr;
4171 bfd *abfd = cu->objfile->obfd;
4172 unsigned int form, i;
4173
4174 for (i = 0; i < abbrev->num_attrs; i++)
4175 {
4176 /* The only abbrev we care about is DW_AT_sibling. */
4177 if (abbrev->attrs[i].name == DW_AT_sibling)
4178 {
4179 read_attribute (&attr, &abbrev->attrs[i],
4180 abfd, info_ptr, cu);
4181 if (attr.form == DW_FORM_ref_addr)
4182 complaint (&symfile_complaints,
4183 _("ignoring absolute DW_AT_sibling"));
4184 else
4185 return buffer + dwarf2_get_ref_die_offset (&attr);
4186 }
4187
4188 /* If it isn't DW_AT_sibling, skip this attribute. */
4189 form = abbrev->attrs[i].form;
4190 skip_attribute:
4191 switch (form)
4192 {
4193 case DW_FORM_ref_addr:
4194 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4195 and later it is offset sized. */
4196 if (cu->header.version == 2)
4197 info_ptr += cu->header.addr_size;
4198 else
4199 info_ptr += cu->header.offset_size;
4200 break;
4201 case DW_FORM_addr:
4202 info_ptr += cu->header.addr_size;
4203 break;
4204 case DW_FORM_data1:
4205 case DW_FORM_ref1:
4206 case DW_FORM_flag:
4207 info_ptr += 1;
4208 break;
4209 case DW_FORM_flag_present:
4210 break;
4211 case DW_FORM_data2:
4212 case DW_FORM_ref2:
4213 info_ptr += 2;
4214 break;
4215 case DW_FORM_data4:
4216 case DW_FORM_ref4:
4217 info_ptr += 4;
4218 break;
4219 case DW_FORM_data8:
4220 case DW_FORM_ref8:
4221 case DW_FORM_sig8:
4222 info_ptr += 8;
4223 break;
4224 case DW_FORM_string:
4225 read_direct_string (abfd, info_ptr, &bytes_read);
4226 info_ptr += bytes_read;
4227 break;
4228 case DW_FORM_sec_offset:
4229 case DW_FORM_strp:
4230 info_ptr += cu->header.offset_size;
4231 break;
4232 case DW_FORM_exprloc:
4233 case DW_FORM_block:
4234 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4235 info_ptr += bytes_read;
4236 break;
4237 case DW_FORM_block1:
4238 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4239 break;
4240 case DW_FORM_block2:
4241 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4242 break;
4243 case DW_FORM_block4:
4244 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4245 break;
4246 case DW_FORM_sdata:
4247 case DW_FORM_udata:
4248 case DW_FORM_ref_udata:
4249 info_ptr = skip_leb128 (abfd, info_ptr);
4250 break;
4251 case DW_FORM_indirect:
4252 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4253 info_ptr += bytes_read;
4254 /* We need to continue parsing from here, so just go back to
4255 the top. */
4256 goto skip_attribute;
4257
4258 default:
4259 error (_("Dwarf Error: Cannot handle %s "
4260 "in DWARF reader [in module %s]"),
4261 dwarf_form_name (form),
4262 bfd_get_filename (abfd));
4263 }
4264 }
4265
4266 if (abbrev->has_children)
4267 return skip_children (buffer, info_ptr, cu);
4268 else
4269 return info_ptr;
4270 }
4271
4272 /* Locate ORIG_PDI's sibling.
4273 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4274 in BUFFER. */
4275
4276 static gdb_byte *
4277 locate_pdi_sibling (struct partial_die_info *orig_pdi,
4278 gdb_byte *buffer, gdb_byte *info_ptr,
4279 bfd *abfd, struct dwarf2_cu *cu)
4280 {
4281 /* Do we know the sibling already? */
4282
4283 if (orig_pdi->sibling)
4284 return orig_pdi->sibling;
4285
4286 /* Are there any children to deal with? */
4287
4288 if (!orig_pdi->has_children)
4289 return info_ptr;
4290
4291 /* Skip the children the long way. */
4292
4293 return skip_children (buffer, info_ptr, cu);
4294 }
4295
4296 /* Expand this partial symbol table into a full symbol table. */
4297
4298 static void
4299 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
4300 {
4301 if (pst != NULL)
4302 {
4303 if (pst->readin)
4304 {
4305 warning (_("bug: psymtab for %s is already read in."),
4306 pst->filename);
4307 }
4308 else
4309 {
4310 if (info_verbose)
4311 {
4312 printf_filtered (_("Reading in symbols for %s..."),
4313 pst->filename);
4314 gdb_flush (gdb_stdout);
4315 }
4316
4317 /* Restore our global data. */
4318 dwarf2_per_objfile = objfile_data (pst->objfile,
4319 dwarf2_objfile_data_key);
4320
4321 /* If this psymtab is constructed from a debug-only objfile, the
4322 has_section_at_zero flag will not necessarily be correct. We
4323 can get the correct value for this flag by looking at the data
4324 associated with the (presumably stripped) associated objfile. */
4325 if (pst->objfile->separate_debug_objfile_backlink)
4326 {
4327 struct dwarf2_per_objfile *dpo_backlink
4328 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4329 dwarf2_objfile_data_key);
4330
4331 dwarf2_per_objfile->has_section_at_zero
4332 = dpo_backlink->has_section_at_zero;
4333 }
4334
4335 dwarf2_per_objfile->reading_partial_symbols = 0;
4336
4337 psymtab_to_symtab_1 (pst);
4338
4339 /* Finish up the debug error message. */
4340 if (info_verbose)
4341 printf_filtered (_("done.\n"));
4342 }
4343 }
4344 }
4345
4346 /* Add PER_CU to the queue. */
4347
4348 static void
4349 queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
4350 {
4351 struct dwarf2_queue_item *item;
4352
4353 per_cu->queued = 1;
4354 item = xmalloc (sizeof (*item));
4355 item->per_cu = per_cu;
4356 item->next = NULL;
4357
4358 if (dwarf2_queue == NULL)
4359 dwarf2_queue = item;
4360 else
4361 dwarf2_queue_tail->next = item;
4362
4363 dwarf2_queue_tail = item;
4364 }
4365
4366 /* Process the queue. */
4367
4368 static void
4369 process_queue (struct objfile *objfile)
4370 {
4371 struct dwarf2_queue_item *item, *next_item;
4372
4373 /* The queue starts out with one item, but following a DIE reference
4374 may load a new CU, adding it to the end of the queue. */
4375 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4376 {
4377 if (dwarf2_per_objfile->using_index
4378 ? !item->per_cu->v.quick->symtab
4379 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
4380 process_full_comp_unit (item->per_cu);
4381
4382 item->per_cu->queued = 0;
4383 next_item = item->next;
4384 xfree (item);
4385 }
4386
4387 dwarf2_queue_tail = NULL;
4388 }
4389
4390 /* Free all allocated queue entries. This function only releases anything if
4391 an error was thrown; if the queue was processed then it would have been
4392 freed as we went along. */
4393
4394 static void
4395 dwarf2_release_queue (void *dummy)
4396 {
4397 struct dwarf2_queue_item *item, *last;
4398
4399 item = dwarf2_queue;
4400 while (item)
4401 {
4402 /* Anything still marked queued is likely to be in an
4403 inconsistent state, so discard it. */
4404 if (item->per_cu->queued)
4405 {
4406 if (item->per_cu->cu != NULL)
4407 free_one_cached_comp_unit (item->per_cu->cu);
4408 item->per_cu->queued = 0;
4409 }
4410
4411 last = item;
4412 item = item->next;
4413 xfree (last);
4414 }
4415
4416 dwarf2_queue = dwarf2_queue_tail = NULL;
4417 }
4418
4419 /* Read in full symbols for PST, and anything it depends on. */
4420
4421 static void
4422 psymtab_to_symtab_1 (struct partial_symtab *pst)
4423 {
4424 struct dwarf2_per_cu_data *per_cu;
4425 struct cleanup *back_to;
4426 int i;
4427
4428 for (i = 0; i < pst->number_of_dependencies; i++)
4429 if (!pst->dependencies[i]->readin)
4430 {
4431 /* Inform about additional files that need to be read in. */
4432 if (info_verbose)
4433 {
4434 /* FIXME: i18n: Need to make this a single string. */
4435 fputs_filtered (" ", gdb_stdout);
4436 wrap_here ("");
4437 fputs_filtered ("and ", gdb_stdout);
4438 wrap_here ("");
4439 printf_filtered ("%s...", pst->dependencies[i]->filename);
4440 wrap_here (""); /* Flush output. */
4441 gdb_flush (gdb_stdout);
4442 }
4443 psymtab_to_symtab_1 (pst->dependencies[i]);
4444 }
4445
4446 per_cu = pst->read_symtab_private;
4447
4448 if (per_cu == NULL)
4449 {
4450 /* It's an include file, no symbols to read for it.
4451 Everything is in the parent symtab. */
4452 pst->readin = 1;
4453 return;
4454 }
4455
4456 dw2_do_instantiate_symtab (pst->objfile, per_cu);
4457 }
4458
4459 /* Load the DIEs associated with PER_CU into memory. */
4460
4461 static void
4462 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
4463 struct objfile *objfile)
4464 {
4465 bfd *abfd = objfile->obfd;
4466 struct dwarf2_cu *cu;
4467 unsigned int offset;
4468 gdb_byte *info_ptr, *beg_of_comp_unit;
4469 struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
4470 struct attribute *attr;
4471 int read_cu = 0;
4472
4473 gdb_assert (! per_cu->from_debug_types);
4474
4475 /* Set local variables from the partial symbol table info. */
4476 offset = per_cu->offset;
4477
4478 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
4479 info_ptr = dwarf2_per_objfile->info.buffer + offset;
4480 beg_of_comp_unit = info_ptr;
4481
4482 if (per_cu->cu == NULL)
4483 {
4484 cu = xmalloc (sizeof (*cu));
4485 init_one_comp_unit (cu, objfile);
4486
4487 read_cu = 1;
4488
4489 /* If an error occurs while loading, release our storage. */
4490 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
4491
4492 /* Read in the comp_unit header. */
4493 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
4494
4495 /* Complete the cu_header. */
4496 cu->header.offset = offset;
4497 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
4498
4499 /* Read the abbrevs for this compilation unit. */
4500 dwarf2_read_abbrevs (abfd, cu);
4501 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
4502
4503 /* Link this compilation unit into the compilation unit tree. */
4504 per_cu->cu = cu;
4505 cu->per_cu = per_cu;
4506
4507 /* Link this CU into read_in_chain. */
4508 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4509 dwarf2_per_objfile->read_in_chain = per_cu;
4510 }
4511 else
4512 {
4513 cu = per_cu->cu;
4514 info_ptr += cu->header.first_die_offset;
4515 }
4516
4517 cu->dies = read_comp_unit (info_ptr, cu);
4518
4519 /* We try not to read any attributes in this function, because not
4520 all objfiles needed for references have been loaded yet, and symbol
4521 table processing isn't initialized. But we have to set the CU language,
4522 or we won't be able to build types correctly. */
4523 prepare_one_comp_unit (cu, cu->dies);
4524
4525 /* Similarly, if we do not read the producer, we can not apply
4526 producer-specific interpretation. */
4527 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4528 if (attr)
4529 cu->producer = DW_STRING (attr);
4530
4531 if (read_cu)
4532 {
4533 do_cleanups (free_abbrevs_cleanup);
4534
4535 /* We've successfully allocated this compilation unit. Let our
4536 caller clean it up when finished with it. */
4537 discard_cleanups (free_cu_cleanup);
4538 }
4539 }
4540
4541 /* Add a DIE to the delayed physname list. */
4542
4543 static void
4544 add_to_method_list (struct type *type, int fnfield_index, int index,
4545 const char *name, struct die_info *die,
4546 struct dwarf2_cu *cu)
4547 {
4548 struct delayed_method_info mi;
4549 mi.type = type;
4550 mi.fnfield_index = fnfield_index;
4551 mi.index = index;
4552 mi.name = name;
4553 mi.die = die;
4554 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4555 }
4556
4557 /* A cleanup for freeing the delayed method list. */
4558
4559 static void
4560 free_delayed_list (void *ptr)
4561 {
4562 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4563 if (cu->method_list != NULL)
4564 {
4565 VEC_free (delayed_method_info, cu->method_list);
4566 cu->method_list = NULL;
4567 }
4568 }
4569
4570 /* Compute the physnames of any methods on the CU's method list.
4571
4572 The computation of method physnames is delayed in order to avoid the
4573 (bad) condition that one of the method's formal parameters is of an as yet
4574 incomplete type. */
4575
4576 static void
4577 compute_delayed_physnames (struct dwarf2_cu *cu)
4578 {
4579 int i;
4580 struct delayed_method_info *mi;
4581 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4582 {
4583 char *physname;
4584 struct fn_fieldlist *fn_flp
4585 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4586 physname = (char *) dwarf2_physname ((char *) mi->name, mi->die, cu);
4587 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4588 }
4589 }
4590
4591 /* Generate full symbol information for PST and CU, whose DIEs have
4592 already been loaded into memory. */
4593
4594 static void
4595 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4596 {
4597 struct dwarf2_cu *cu = per_cu->cu;
4598 struct objfile *objfile = per_cu->objfile;
4599 CORE_ADDR lowpc, highpc;
4600 struct symtab *symtab;
4601 struct cleanup *back_to, *delayed_list_cleanup;
4602 CORE_ADDR baseaddr;
4603
4604 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4605
4606 buildsym_init ();
4607 back_to = make_cleanup (really_free_pendings, NULL);
4608 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
4609
4610 cu->list_in_scope = &file_symbols;
4611
4612 dwarf2_find_base_address (cu->dies, cu);
4613
4614 /* Do line number decoding in read_file_scope () */
4615 process_die (cu->dies, cu);
4616
4617 /* Now that we have processed all the DIEs in the CU, all the types
4618 should be complete, and it should now be safe to compute all of the
4619 physnames. */
4620 compute_delayed_physnames (cu);
4621 do_cleanups (delayed_list_cleanup);
4622
4623 /* Some compilers don't define a DW_AT_high_pc attribute for the
4624 compilation unit. If the DW_AT_high_pc is missing, synthesize
4625 it, by scanning the DIE's below the compilation unit. */
4626 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
4627
4628 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
4629
4630 /* Set symtab language to language from DW_AT_language.
4631 If the compilation is from a C file generated by language preprocessors,
4632 do not set the language if it was already deduced by start_subfile. */
4633 if (symtab != NULL
4634 && !(cu->language == language_c && symtab->language != language_c))
4635 {
4636 symtab->language = cu->language;
4637 }
4638
4639 if (dwarf2_per_objfile->using_index)
4640 per_cu->v.quick->symtab = symtab;
4641 else
4642 {
4643 struct partial_symtab *pst = per_cu->v.psymtab;
4644 pst->symtab = symtab;
4645 pst->readin = 1;
4646 }
4647
4648 do_cleanups (back_to);
4649 }
4650
4651 /* Process a die and its children. */
4652
4653 static void
4654 process_die (struct die_info *die, struct dwarf2_cu *cu)
4655 {
4656 switch (die->tag)
4657 {
4658 case DW_TAG_padding:
4659 break;
4660 case DW_TAG_compile_unit:
4661 read_file_scope (die, cu);
4662 break;
4663 case DW_TAG_type_unit:
4664 read_type_unit_scope (die, cu);
4665 break;
4666 case DW_TAG_subprogram:
4667 case DW_TAG_inlined_subroutine:
4668 read_func_scope (die, cu);
4669 break;
4670 case DW_TAG_lexical_block:
4671 case DW_TAG_try_block:
4672 case DW_TAG_catch_block:
4673 read_lexical_block_scope (die, cu);
4674 break;
4675 case DW_TAG_class_type:
4676 case DW_TAG_interface_type:
4677 case DW_TAG_structure_type:
4678 case DW_TAG_union_type:
4679 process_structure_scope (die, cu);
4680 break;
4681 case DW_TAG_enumeration_type:
4682 process_enumeration_scope (die, cu);
4683 break;
4684
4685 /* These dies have a type, but processing them does not create
4686 a symbol or recurse to process the children. Therefore we can
4687 read them on-demand through read_type_die. */
4688 case DW_TAG_subroutine_type:
4689 case DW_TAG_set_type:
4690 case DW_TAG_array_type:
4691 case DW_TAG_pointer_type:
4692 case DW_TAG_ptr_to_member_type:
4693 case DW_TAG_reference_type:
4694 case DW_TAG_string_type:
4695 break;
4696
4697 case DW_TAG_base_type:
4698 case DW_TAG_subrange_type:
4699 case DW_TAG_typedef:
4700 /* Add a typedef symbol for the type definition, if it has a
4701 DW_AT_name. */
4702 new_symbol (die, read_type_die (die, cu), cu);
4703 break;
4704 case DW_TAG_common_block:
4705 read_common_block (die, cu);
4706 break;
4707 case DW_TAG_common_inclusion:
4708 break;
4709 case DW_TAG_namespace:
4710 processing_has_namespace_info = 1;
4711 read_namespace (die, cu);
4712 break;
4713 case DW_TAG_module:
4714 processing_has_namespace_info = 1;
4715 read_module (die, cu);
4716 break;
4717 case DW_TAG_imported_declaration:
4718 case DW_TAG_imported_module:
4719 processing_has_namespace_info = 1;
4720 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4721 || cu->language != language_fortran))
4722 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4723 dwarf_tag_name (die->tag));
4724 read_import_statement (die, cu);
4725 break;
4726 default:
4727 new_symbol (die, NULL, cu);
4728 break;
4729 }
4730 }
4731
4732 /* A helper function for dwarf2_compute_name which determines whether DIE
4733 needs to have the name of the scope prepended to the name listed in the
4734 die. */
4735
4736 static int
4737 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4738 {
4739 struct attribute *attr;
4740
4741 switch (die->tag)
4742 {
4743 case DW_TAG_namespace:
4744 case DW_TAG_typedef:
4745 case DW_TAG_class_type:
4746 case DW_TAG_interface_type:
4747 case DW_TAG_structure_type:
4748 case DW_TAG_union_type:
4749 case DW_TAG_enumeration_type:
4750 case DW_TAG_enumerator:
4751 case DW_TAG_subprogram:
4752 case DW_TAG_member:
4753 return 1;
4754
4755 case DW_TAG_variable:
4756 case DW_TAG_constant:
4757 /* We only need to prefix "globally" visible variables. These include
4758 any variable marked with DW_AT_external or any variable that
4759 lives in a namespace. [Variables in anonymous namespaces
4760 require prefixing, but they are not DW_AT_external.] */
4761
4762 if (dwarf2_attr (die, DW_AT_specification, cu))
4763 {
4764 struct dwarf2_cu *spec_cu = cu;
4765
4766 return die_needs_namespace (die_specification (die, &spec_cu),
4767 spec_cu);
4768 }
4769
4770 attr = dwarf2_attr (die, DW_AT_external, cu);
4771 if (attr == NULL && die->parent->tag != DW_TAG_namespace
4772 && die->parent->tag != DW_TAG_module)
4773 return 0;
4774 /* A variable in a lexical block of some kind does not need a
4775 namespace, even though in C++ such variables may be external
4776 and have a mangled name. */
4777 if (die->parent->tag == DW_TAG_lexical_block
4778 || die->parent->tag == DW_TAG_try_block
4779 || die->parent->tag == DW_TAG_catch_block
4780 || die->parent->tag == DW_TAG_subprogram)
4781 return 0;
4782 return 1;
4783
4784 default:
4785 return 0;
4786 }
4787 }
4788
4789 /* Retrieve the last character from a mem_file. */
4790
4791 static void
4792 do_ui_file_peek_last (void *object, const char *buffer, long length)
4793 {
4794 char *last_char_p = (char *) object;
4795
4796 if (length > 0)
4797 *last_char_p = buffer[length - 1];
4798 }
4799
4800 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
4801 compute the physname for the object, which include a method's
4802 formal parameters (C++/Java) and return type (Java).
4803
4804 For Ada, return the DIE's linkage name rather than the fully qualified
4805 name. PHYSNAME is ignored..
4806
4807 The result is allocated on the objfile_obstack and canonicalized. */
4808
4809 static const char *
4810 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
4811 int physname)
4812 {
4813 if (name == NULL)
4814 name = dwarf2_name (die, cu);
4815
4816 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
4817 compute it by typename_concat inside GDB. */
4818 if (cu->language == language_ada
4819 || (cu->language == language_fortran && physname))
4820 {
4821 /* For Ada unit, we prefer the linkage name over the name, as
4822 the former contains the exported name, which the user expects
4823 to be able to reference. Ideally, we want the user to be able
4824 to reference this entity using either natural or linkage name,
4825 but we haven't started looking at this enhancement yet. */
4826 struct attribute *attr;
4827
4828 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
4829 if (attr == NULL)
4830 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
4831 if (attr && DW_STRING (attr))
4832 return DW_STRING (attr);
4833 }
4834
4835 /* These are the only languages we know how to qualify names in. */
4836 if (name != NULL
4837 && (cu->language == language_cplus || cu->language == language_java
4838 || cu->language == language_fortran))
4839 {
4840 if (die_needs_namespace (die, cu))
4841 {
4842 long length;
4843 char *prefix;
4844 struct ui_file *buf;
4845
4846 prefix = determine_prefix (die, cu);
4847 buf = mem_fileopen ();
4848 if (*prefix != '\0')
4849 {
4850 char *prefixed_name = typename_concat (NULL, prefix, name,
4851 physname, cu);
4852
4853 fputs_unfiltered (prefixed_name, buf);
4854 xfree (prefixed_name);
4855 }
4856 else
4857 fputs_unfiltered (name, buf);
4858
4859 /* Template parameters may be specified in the DIE's DW_AT_name, or
4860 as children with DW_TAG_template_type_param or
4861 DW_TAG_value_type_param. If the latter, add them to the name
4862 here. If the name already has template parameters, then
4863 skip this step; some versions of GCC emit both, and
4864 it is more efficient to use the pre-computed name.
4865
4866 Something to keep in mind about this process: it is very
4867 unlikely, or in some cases downright impossible, to produce
4868 something that will match the mangled name of a function.
4869 If the definition of the function has the same debug info,
4870 we should be able to match up with it anyway. But fallbacks
4871 using the minimal symbol, for instance to find a method
4872 implemented in a stripped copy of libstdc++, will not work.
4873 If we do not have debug info for the definition, we will have to
4874 match them up some other way.
4875
4876 When we do name matching there is a related problem with function
4877 templates; two instantiated function templates are allowed to
4878 differ only by their return types, which we do not add here. */
4879
4880 if (cu->language == language_cplus && strchr (name, '<') == NULL)
4881 {
4882 struct attribute *attr;
4883 struct die_info *child;
4884 int first = 1;
4885
4886 die->building_fullname = 1;
4887
4888 for (child = die->child; child != NULL; child = child->sibling)
4889 {
4890 struct type *type;
4891 long value;
4892 gdb_byte *bytes;
4893 struct dwarf2_locexpr_baton *baton;
4894 struct value *v;
4895
4896 if (child->tag != DW_TAG_template_type_param
4897 && child->tag != DW_TAG_template_value_param)
4898 continue;
4899
4900 if (first)
4901 {
4902 fputs_unfiltered ("<", buf);
4903 first = 0;
4904 }
4905 else
4906 fputs_unfiltered (", ", buf);
4907
4908 attr = dwarf2_attr (child, DW_AT_type, cu);
4909 if (attr == NULL)
4910 {
4911 complaint (&symfile_complaints,
4912 _("template parameter missing DW_AT_type"));
4913 fputs_unfiltered ("UNKNOWN_TYPE", buf);
4914 continue;
4915 }
4916 type = die_type (child, cu);
4917
4918 if (child->tag == DW_TAG_template_type_param)
4919 {
4920 c_print_type (type, "", buf, -1, 0);
4921 continue;
4922 }
4923
4924 attr = dwarf2_attr (child, DW_AT_const_value, cu);
4925 if (attr == NULL)
4926 {
4927 complaint (&symfile_complaints,
4928 _("template parameter missing "
4929 "DW_AT_const_value"));
4930 fputs_unfiltered ("UNKNOWN_VALUE", buf);
4931 continue;
4932 }
4933
4934 dwarf2_const_value_attr (attr, type, name,
4935 &cu->comp_unit_obstack, cu,
4936 &value, &bytes, &baton);
4937
4938 if (TYPE_NOSIGN (type))
4939 /* GDB prints characters as NUMBER 'CHAR'. If that's
4940 changed, this can use value_print instead. */
4941 c_printchar (value, type, buf);
4942 else
4943 {
4944 struct value_print_options opts;
4945
4946 if (baton != NULL)
4947 v = dwarf2_evaluate_loc_desc (type, NULL,
4948 baton->data,
4949 baton->size,
4950 baton->per_cu);
4951 else if (bytes != NULL)
4952 {
4953 v = allocate_value (type);
4954 memcpy (value_contents_writeable (v), bytes,
4955 TYPE_LENGTH (type));
4956 }
4957 else
4958 v = value_from_longest (type, value);
4959
4960 /* Specify decimal so that we do not depend on
4961 the radix. */
4962 get_formatted_print_options (&opts, 'd');
4963 opts.raw = 1;
4964 value_print (v, buf, &opts);
4965 release_value (v);
4966 value_free (v);
4967 }
4968 }
4969
4970 die->building_fullname = 0;
4971
4972 if (!first)
4973 {
4974 /* Close the argument list, with a space if necessary
4975 (nested templates). */
4976 char last_char = '\0';
4977 ui_file_put (buf, do_ui_file_peek_last, &last_char);
4978 if (last_char == '>')
4979 fputs_unfiltered (" >", buf);
4980 else
4981 fputs_unfiltered (">", buf);
4982 }
4983 }
4984
4985 /* For Java and C++ methods, append formal parameter type
4986 information, if PHYSNAME. */
4987
4988 if (physname && die->tag == DW_TAG_subprogram
4989 && (cu->language == language_cplus
4990 || cu->language == language_java))
4991 {
4992 struct type *type = read_type_die (die, cu);
4993
4994 c_type_print_args (type, buf, 0, cu->language);
4995
4996 if (cu->language == language_java)
4997 {
4998 /* For java, we must append the return type to method
4999 names. */
5000 if (die->tag == DW_TAG_subprogram)
5001 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
5002 0, 0);
5003 }
5004 else if (cu->language == language_cplus)
5005 {
5006 /* Assume that an artificial first parameter is
5007 "this", but do not crash if it is not. RealView
5008 marks unnamed (and thus unused) parameters as
5009 artificial; there is no way to differentiate
5010 the two cases. */
5011 if (TYPE_NFIELDS (type) > 0
5012 && TYPE_FIELD_ARTIFICIAL (type, 0)
5013 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
5014 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
5015 0))))
5016 fputs_unfiltered (" const", buf);
5017 }
5018 }
5019
5020 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
5021 &length);
5022 ui_file_delete (buf);
5023
5024 if (cu->language == language_cplus)
5025 {
5026 char *cname
5027 = dwarf2_canonicalize_name (name, cu,
5028 &cu->objfile->objfile_obstack);
5029
5030 if (cname != NULL)
5031 name = cname;
5032 }
5033 }
5034 }
5035
5036 return name;
5037 }
5038
5039 /* Return the fully qualified name of DIE, based on its DW_AT_name.
5040 If scope qualifiers are appropriate they will be added. The result
5041 will be allocated on the objfile_obstack, or NULL if the DIE does
5042 not have a name. NAME may either be from a previous call to
5043 dwarf2_name or NULL.
5044
5045 The output string will be canonicalized (if C++/Java). */
5046
5047 static const char *
5048 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
5049 {
5050 return dwarf2_compute_name (name, die, cu, 0);
5051 }
5052
5053 /* Construct a physname for the given DIE in CU. NAME may either be
5054 from a previous call to dwarf2_name or NULL. The result will be
5055 allocated on the objfile_objstack or NULL if the DIE does not have a
5056 name.
5057
5058 The output string will be canonicalized (if C++/Java). */
5059
5060 static const char *
5061 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
5062 {
5063 return dwarf2_compute_name (name, die, cu, 1);
5064 }
5065
5066 /* Read the import statement specified by the given die and record it. */
5067
5068 static void
5069 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
5070 {
5071 struct attribute *import_attr;
5072 struct die_info *imported_die;
5073 struct dwarf2_cu *imported_cu;
5074 const char *imported_name;
5075 const char *imported_name_prefix;
5076 const char *canonical_name;
5077 const char *import_alias;
5078 const char *imported_declaration = NULL;
5079 const char *import_prefix;
5080
5081 char *temp;
5082
5083 import_attr = dwarf2_attr (die, DW_AT_import, cu);
5084 if (import_attr == NULL)
5085 {
5086 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5087 dwarf_tag_name (die->tag));
5088 return;
5089 }
5090
5091 imported_cu = cu;
5092 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
5093 imported_name = dwarf2_name (imported_die, imported_cu);
5094 if (imported_name == NULL)
5095 {
5096 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
5097
5098 The import in the following code:
5099 namespace A
5100 {
5101 typedef int B;
5102 }
5103
5104 int main ()
5105 {
5106 using A::B;
5107 B b;
5108 return b;
5109 }
5110
5111 ...
5112 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
5113 <52> DW_AT_decl_file : 1
5114 <53> DW_AT_decl_line : 6
5115 <54> DW_AT_import : <0x75>
5116 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
5117 <59> DW_AT_name : B
5118 <5b> DW_AT_decl_file : 1
5119 <5c> DW_AT_decl_line : 2
5120 <5d> DW_AT_type : <0x6e>
5121 ...
5122 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
5123 <76> DW_AT_byte_size : 4
5124 <77> DW_AT_encoding : 5 (signed)
5125
5126 imports the wrong die ( 0x75 instead of 0x58 ).
5127 This case will be ignored until the gcc bug is fixed. */
5128 return;
5129 }
5130
5131 /* Figure out the local name after import. */
5132 import_alias = dwarf2_name (die, cu);
5133
5134 /* Figure out where the statement is being imported to. */
5135 import_prefix = determine_prefix (die, cu);
5136
5137 /* Figure out what the scope of the imported die is and prepend it
5138 to the name of the imported die. */
5139 imported_name_prefix = determine_prefix (imported_die, imported_cu);
5140
5141 if (imported_die->tag != DW_TAG_namespace
5142 && imported_die->tag != DW_TAG_module)
5143 {
5144 imported_declaration = imported_name;
5145 canonical_name = imported_name_prefix;
5146 }
5147 else if (strlen (imported_name_prefix) > 0)
5148 {
5149 temp = alloca (strlen (imported_name_prefix)
5150 + 2 + strlen (imported_name) + 1);
5151 strcpy (temp, imported_name_prefix);
5152 strcat (temp, "::");
5153 strcat (temp, imported_name);
5154 canonical_name = temp;
5155 }
5156 else
5157 canonical_name = imported_name;
5158
5159 cp_add_using_directive (import_prefix,
5160 canonical_name,
5161 import_alias,
5162 imported_declaration,
5163 &cu->objfile->objfile_obstack);
5164 }
5165
5166 static void
5167 initialize_cu_func_list (struct dwarf2_cu *cu)
5168 {
5169 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5170 }
5171
5172 /* Cleanup function for read_file_scope. */
5173
5174 static void
5175 free_cu_line_header (void *arg)
5176 {
5177 struct dwarf2_cu *cu = arg;
5178
5179 free_line_header (cu->line_header);
5180 cu->line_header = NULL;
5181 }
5182
5183 static void
5184 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5185 char **name, char **comp_dir)
5186 {
5187 struct attribute *attr;
5188
5189 *name = NULL;
5190 *comp_dir = NULL;
5191
5192 /* Find the filename. Do not use dwarf2_name here, since the filename
5193 is not a source language identifier. */
5194 attr = dwarf2_attr (die, DW_AT_name, cu);
5195 if (attr)
5196 {
5197 *name = DW_STRING (attr);
5198 }
5199
5200 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5201 if (attr)
5202 *comp_dir = DW_STRING (attr);
5203 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5204 {
5205 *comp_dir = ldirname (*name);
5206 if (*comp_dir != NULL)
5207 make_cleanup (xfree, *comp_dir);
5208 }
5209 if (*comp_dir != NULL)
5210 {
5211 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5212 directory, get rid of it. */
5213 char *cp = strchr (*comp_dir, ':');
5214
5215 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5216 *comp_dir = cp + 1;
5217 }
5218
5219 if (*name == NULL)
5220 *name = "<unknown>";
5221 }
5222
5223 /* Process DW_TAG_compile_unit. */
5224
5225 static void
5226 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
5227 {
5228 struct objfile *objfile = cu->objfile;
5229 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5230 CORE_ADDR lowpc = ((CORE_ADDR) -1);
5231 CORE_ADDR highpc = ((CORE_ADDR) 0);
5232 struct attribute *attr;
5233 char *name = NULL;
5234 char *comp_dir = NULL;
5235 struct die_info *child_die;
5236 bfd *abfd = objfile->obfd;
5237 struct line_header *line_header = 0;
5238 CORE_ADDR baseaddr;
5239
5240 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5241
5242 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
5243
5244 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5245 from finish_block. */
5246 if (lowpc == ((CORE_ADDR) -1))
5247 lowpc = highpc;
5248 lowpc += baseaddr;
5249 highpc += baseaddr;
5250
5251 find_file_and_directory (die, cu, &name, &comp_dir);
5252
5253 attr = dwarf2_attr (die, DW_AT_language, cu);
5254 if (attr)
5255 {
5256 set_cu_language (DW_UNSND (attr), cu);
5257 }
5258
5259 attr = dwarf2_attr (die, DW_AT_producer, cu);
5260 if (attr)
5261 cu->producer = DW_STRING (attr);
5262
5263 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
5264 standardised yet. As a workaround for the language detection we fall
5265 back to the DW_AT_producer string. */
5266 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
5267 cu->language = language_opencl;
5268
5269 /* We assume that we're processing GCC output. */
5270 processing_gcc_compilation = 2;
5271
5272 processing_has_namespace_info = 0;
5273
5274 start_symtab (name, comp_dir, lowpc);
5275 record_debugformat ("DWARF 2");
5276 record_producer (cu->producer);
5277
5278 initialize_cu_func_list (cu);
5279
5280 /* Decode line number information if present. We do this before
5281 processing child DIEs, so that the line header table is available
5282 for DW_AT_decl_file. */
5283 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5284 if (attr)
5285 {
5286 unsigned int line_offset = DW_UNSND (attr);
5287 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
5288 if (line_header)
5289 {
5290 cu->line_header = line_header;
5291 make_cleanup (free_cu_line_header, cu);
5292 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
5293 }
5294 }
5295
5296 /* Process all dies in compilation unit. */
5297 if (die->child != NULL)
5298 {
5299 child_die = die->child;
5300 while (child_die && child_die->tag)
5301 {
5302 process_die (child_die, cu);
5303 child_die = sibling_die (child_die);
5304 }
5305 }
5306
5307 /* Decode macro information, if present. Dwarf 2 macro information
5308 refers to information in the line number info statement program
5309 header, so we can only read it if we've read the header
5310 successfully. */
5311 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
5312 if (attr && line_header)
5313 {
5314 unsigned int macro_offset = DW_UNSND (attr);
5315
5316 dwarf_decode_macros (line_header, macro_offset,
5317 comp_dir, abfd, cu);
5318 }
5319 do_cleanups (back_to);
5320 }
5321
5322 /* Process DW_TAG_type_unit.
5323 For TUs we want to skip the first top level sibling if it's not the
5324 actual type being defined by this TU. In this case the first top
5325 level sibling is there to provide context only. */
5326
5327 static void
5328 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5329 {
5330 struct objfile *objfile = cu->objfile;
5331 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5332 CORE_ADDR lowpc;
5333 struct attribute *attr;
5334 char *name = NULL;
5335 char *comp_dir = NULL;
5336 struct die_info *child_die;
5337 bfd *abfd = objfile->obfd;
5338
5339 /* start_symtab needs a low pc, but we don't really have one.
5340 Do what read_file_scope would do in the absence of such info. */
5341 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5342
5343 /* Find the filename. Do not use dwarf2_name here, since the filename
5344 is not a source language identifier. */
5345 attr = dwarf2_attr (die, DW_AT_name, cu);
5346 if (attr)
5347 name = DW_STRING (attr);
5348
5349 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5350 if (attr)
5351 comp_dir = DW_STRING (attr);
5352 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5353 {
5354 comp_dir = ldirname (name);
5355 if (comp_dir != NULL)
5356 make_cleanup (xfree, comp_dir);
5357 }
5358
5359 if (name == NULL)
5360 name = "<unknown>";
5361
5362 attr = dwarf2_attr (die, DW_AT_language, cu);
5363 if (attr)
5364 set_cu_language (DW_UNSND (attr), cu);
5365
5366 /* This isn't technically needed today. It is done for symmetry
5367 with read_file_scope. */
5368 attr = dwarf2_attr (die, DW_AT_producer, cu);
5369 if (attr)
5370 cu->producer = DW_STRING (attr);
5371
5372 /* We assume that we're processing GCC output. */
5373 processing_gcc_compilation = 2;
5374
5375 processing_has_namespace_info = 0;
5376
5377 start_symtab (name, comp_dir, lowpc);
5378 record_debugformat ("DWARF 2");
5379 record_producer (cu->producer);
5380
5381 /* Process the dies in the type unit. */
5382 if (die->child == NULL)
5383 {
5384 dump_die_for_error (die);
5385 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5386 bfd_get_filename (abfd));
5387 }
5388
5389 child_die = die->child;
5390
5391 while (child_die && child_die->tag)
5392 {
5393 process_die (child_die, cu);
5394
5395 child_die = sibling_die (child_die);
5396 }
5397
5398 do_cleanups (back_to);
5399 }
5400
5401 static void
5402 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
5403 struct dwarf2_cu *cu)
5404 {
5405 struct function_range *thisfn;
5406
5407 thisfn = (struct function_range *)
5408 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5409 thisfn->name = name;
5410 thisfn->lowpc = lowpc;
5411 thisfn->highpc = highpc;
5412 thisfn->seen_line = 0;
5413 thisfn->next = NULL;
5414
5415 if (cu->last_fn == NULL)
5416 cu->first_fn = thisfn;
5417 else
5418 cu->last_fn->next = thisfn;
5419
5420 cu->last_fn = thisfn;
5421 }
5422
5423 /* qsort helper for inherit_abstract_dies. */
5424
5425 static int
5426 unsigned_int_compar (const void *ap, const void *bp)
5427 {
5428 unsigned int a = *(unsigned int *) ap;
5429 unsigned int b = *(unsigned int *) bp;
5430
5431 return (a > b) - (b > a);
5432 }
5433
5434 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
5435 Inherit only the children of the DW_AT_abstract_origin DIE not being
5436 already referenced by DW_AT_abstract_origin from the children of the
5437 current DIE. */
5438
5439 static void
5440 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5441 {
5442 struct die_info *child_die;
5443 unsigned die_children_count;
5444 /* CU offsets which were referenced by children of the current DIE. */
5445 unsigned *offsets;
5446 unsigned *offsets_end, *offsetp;
5447 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5448 struct die_info *origin_die;
5449 /* Iterator of the ORIGIN_DIE children. */
5450 struct die_info *origin_child_die;
5451 struct cleanup *cleanups;
5452 struct attribute *attr;
5453 struct dwarf2_cu *origin_cu;
5454 struct pending **origin_previous_list_in_scope;
5455
5456 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5457 if (!attr)
5458 return;
5459
5460 /* Note that following die references may follow to a die in a
5461 different cu. */
5462
5463 origin_cu = cu;
5464 origin_die = follow_die_ref (die, attr, &origin_cu);
5465
5466 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5467 symbols in. */
5468 origin_previous_list_in_scope = origin_cu->list_in_scope;
5469 origin_cu->list_in_scope = cu->list_in_scope;
5470
5471 if (die->tag != origin_die->tag
5472 && !(die->tag == DW_TAG_inlined_subroutine
5473 && origin_die->tag == DW_TAG_subprogram))
5474 complaint (&symfile_complaints,
5475 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5476 die->offset, origin_die->offset);
5477
5478 child_die = die->child;
5479 die_children_count = 0;
5480 while (child_die && child_die->tag)
5481 {
5482 child_die = sibling_die (child_die);
5483 die_children_count++;
5484 }
5485 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5486 cleanups = make_cleanup (xfree, offsets);
5487
5488 offsets_end = offsets;
5489 child_die = die->child;
5490 while (child_die && child_die->tag)
5491 {
5492 /* For each CHILD_DIE, find the corresponding child of
5493 ORIGIN_DIE. If there is more than one layer of
5494 DW_AT_abstract_origin, follow them all; there shouldn't be,
5495 but GCC versions at least through 4.4 generate this (GCC PR
5496 40573). */
5497 struct die_info *child_origin_die = child_die;
5498 struct dwarf2_cu *child_origin_cu = cu;
5499
5500 while (1)
5501 {
5502 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5503 child_origin_cu);
5504 if (attr == NULL)
5505 break;
5506 child_origin_die = follow_die_ref (child_origin_die, attr,
5507 &child_origin_cu);
5508 }
5509
5510 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5511 counterpart may exist. */
5512 if (child_origin_die != child_die)
5513 {
5514 if (child_die->tag != child_origin_die->tag
5515 && !(child_die->tag == DW_TAG_inlined_subroutine
5516 && child_origin_die->tag == DW_TAG_subprogram))
5517 complaint (&symfile_complaints,
5518 _("Child DIE 0x%x and its abstract origin 0x%x have "
5519 "different tags"), child_die->offset,
5520 child_origin_die->offset);
5521 if (child_origin_die->parent != origin_die)
5522 complaint (&symfile_complaints,
5523 _("Child DIE 0x%x and its abstract origin 0x%x have "
5524 "different parents"), child_die->offset,
5525 child_origin_die->offset);
5526 else
5527 *offsets_end++ = child_origin_die->offset;
5528 }
5529 child_die = sibling_die (child_die);
5530 }
5531 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5532 unsigned_int_compar);
5533 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5534 if (offsetp[-1] == *offsetp)
5535 complaint (&symfile_complaints,
5536 _("Multiple children of DIE 0x%x refer "
5537 "to DIE 0x%x as their abstract origin"),
5538 die->offset, *offsetp);
5539
5540 offsetp = offsets;
5541 origin_child_die = origin_die->child;
5542 while (origin_child_die && origin_child_die->tag)
5543 {
5544 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5545 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
5546 offsetp++;
5547 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
5548 {
5549 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
5550 process_die (origin_child_die, origin_cu);
5551 }
5552 origin_child_die = sibling_die (origin_child_die);
5553 }
5554 origin_cu->list_in_scope = origin_previous_list_in_scope;
5555
5556 do_cleanups (cleanups);
5557 }
5558
5559 static void
5560 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
5561 {
5562 struct objfile *objfile = cu->objfile;
5563 struct context_stack *new;
5564 CORE_ADDR lowpc;
5565 CORE_ADDR highpc;
5566 struct die_info *child_die;
5567 struct attribute *attr, *call_line, *call_file;
5568 char *name;
5569 CORE_ADDR baseaddr;
5570 struct block *block;
5571 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
5572 VEC (symbolp) *template_args = NULL;
5573 struct template_symbol *templ_func = NULL;
5574
5575 if (inlined_func)
5576 {
5577 /* If we do not have call site information, we can't show the
5578 caller of this inlined function. That's too confusing, so
5579 only use the scope for local variables. */
5580 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5581 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5582 if (call_line == NULL || call_file == NULL)
5583 {
5584 read_lexical_block_scope (die, cu);
5585 return;
5586 }
5587 }
5588
5589 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5590
5591 name = dwarf2_name (die, cu);
5592
5593 /* Ignore functions with missing or empty names. These are actually
5594 illegal according to the DWARF standard. */
5595 if (name == NULL)
5596 {
5597 complaint (&symfile_complaints,
5598 _("missing name for subprogram DIE at %d"), die->offset);
5599 return;
5600 }
5601
5602 /* Ignore functions with missing or invalid low and high pc attributes. */
5603 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5604 {
5605 attr = dwarf2_attr (die, DW_AT_external, cu);
5606 if (!attr || !DW_UNSND (attr))
5607 complaint (&symfile_complaints,
5608 _("cannot get low and high bounds "
5609 "for subprogram DIE at %d"),
5610 die->offset);
5611 return;
5612 }
5613
5614 lowpc += baseaddr;
5615 highpc += baseaddr;
5616
5617 /* Record the function range for dwarf_decode_lines. */
5618 add_to_cu_func_list (name, lowpc, highpc, cu);
5619
5620 /* If we have any template arguments, then we must allocate a
5621 different sort of symbol. */
5622 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
5623 {
5624 if (child_die->tag == DW_TAG_template_type_param
5625 || child_die->tag == DW_TAG_template_value_param)
5626 {
5627 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5628 struct template_symbol);
5629 templ_func->base.is_cplus_template_function = 1;
5630 break;
5631 }
5632 }
5633
5634 new = push_context (0, lowpc);
5635 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
5636 (struct symbol *) templ_func);
5637
5638 /* If there is a location expression for DW_AT_frame_base, record
5639 it. */
5640 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
5641 if (attr)
5642 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
5643 expression is being recorded directly in the function's symbol
5644 and not in a separate frame-base object. I guess this hack is
5645 to avoid adding some sort of frame-base adjunct/annex to the
5646 function's symbol :-(. The problem with doing this is that it
5647 results in a function symbol with a location expression that
5648 has nothing to do with the location of the function, ouch! The
5649 relationship should be: a function's symbol has-a frame base; a
5650 frame-base has-a location expression. */
5651 dwarf2_symbol_mark_computed (attr, new->name, cu);
5652
5653 cu->list_in_scope = &local_symbols;
5654
5655 if (die->child != NULL)
5656 {
5657 child_die = die->child;
5658 while (child_die && child_die->tag)
5659 {
5660 if (child_die->tag == DW_TAG_template_type_param
5661 || child_die->tag == DW_TAG_template_value_param)
5662 {
5663 struct symbol *arg = new_symbol (child_die, NULL, cu);
5664
5665 if (arg != NULL)
5666 VEC_safe_push (symbolp, template_args, arg);
5667 }
5668 else
5669 process_die (child_die, cu);
5670 child_die = sibling_die (child_die);
5671 }
5672 }
5673
5674 inherit_abstract_dies (die, cu);
5675
5676 /* If we have a DW_AT_specification, we might need to import using
5677 directives from the context of the specification DIE. See the
5678 comment in determine_prefix. */
5679 if (cu->language == language_cplus
5680 && dwarf2_attr (die, DW_AT_specification, cu))
5681 {
5682 struct dwarf2_cu *spec_cu = cu;
5683 struct die_info *spec_die = die_specification (die, &spec_cu);
5684
5685 while (spec_die)
5686 {
5687 child_die = spec_die->child;
5688 while (child_die && child_die->tag)
5689 {
5690 if (child_die->tag == DW_TAG_imported_module)
5691 process_die (child_die, spec_cu);
5692 child_die = sibling_die (child_die);
5693 }
5694
5695 /* In some cases, GCC generates specification DIEs that
5696 themselves contain DW_AT_specification attributes. */
5697 spec_die = die_specification (spec_die, &spec_cu);
5698 }
5699 }
5700
5701 new = pop_context ();
5702 /* Make a block for the local symbols within. */
5703 block = finish_block (new->name, &local_symbols, new->old_blocks,
5704 lowpc, highpc, objfile);
5705
5706 /* For C++, set the block's scope. */
5707 if (cu->language == language_cplus || cu->language == language_fortran)
5708 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
5709 determine_prefix (die, cu),
5710 processing_has_namespace_info);
5711
5712 /* If we have address ranges, record them. */
5713 dwarf2_record_block_ranges (die, block, baseaddr, cu);
5714
5715 /* Attach template arguments to function. */
5716 if (! VEC_empty (symbolp, template_args))
5717 {
5718 gdb_assert (templ_func != NULL);
5719
5720 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
5721 templ_func->template_arguments
5722 = obstack_alloc (&objfile->objfile_obstack,
5723 (templ_func->n_template_arguments
5724 * sizeof (struct symbol *)));
5725 memcpy (templ_func->template_arguments,
5726 VEC_address (symbolp, template_args),
5727 (templ_func->n_template_arguments * sizeof (struct symbol *)));
5728 VEC_free (symbolp, template_args);
5729 }
5730
5731 /* In C++, we can have functions nested inside functions (e.g., when
5732 a function declares a class that has methods). This means that
5733 when we finish processing a function scope, we may need to go
5734 back to building a containing block's symbol lists. */
5735 local_symbols = new->locals;
5736 param_symbols = new->params;
5737 using_directives = new->using_directives;
5738
5739 /* If we've finished processing a top-level function, subsequent
5740 symbols go in the file symbol list. */
5741 if (outermost_context_p ())
5742 cu->list_in_scope = &file_symbols;
5743 }
5744
5745 /* Process all the DIES contained within a lexical block scope. Start
5746 a new scope, process the dies, and then close the scope. */
5747
5748 static void
5749 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
5750 {
5751 struct objfile *objfile = cu->objfile;
5752 struct context_stack *new;
5753 CORE_ADDR lowpc, highpc;
5754 struct die_info *child_die;
5755 CORE_ADDR baseaddr;
5756
5757 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5758
5759 /* Ignore blocks with missing or invalid low and high pc attributes. */
5760 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
5761 as multiple lexical blocks? Handling children in a sane way would
5762 be nasty. Might be easier to properly extend generic blocks to
5763 describe ranges. */
5764 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5765 return;
5766 lowpc += baseaddr;
5767 highpc += baseaddr;
5768
5769 push_context (0, lowpc);
5770 if (die->child != NULL)
5771 {
5772 child_die = die->child;
5773 while (child_die && child_die->tag)
5774 {
5775 process_die (child_die, cu);
5776 child_die = sibling_die (child_die);
5777 }
5778 }
5779 new = pop_context ();
5780
5781 if (local_symbols != NULL || using_directives != NULL)
5782 {
5783 struct block *block
5784 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
5785 highpc, objfile);
5786
5787 /* Note that recording ranges after traversing children, as we
5788 do here, means that recording a parent's ranges entails
5789 walking across all its children's ranges as they appear in
5790 the address map, which is quadratic behavior.
5791
5792 It would be nicer to record the parent's ranges before
5793 traversing its children, simply overriding whatever you find
5794 there. But since we don't even decide whether to create a
5795 block until after we've traversed its children, that's hard
5796 to do. */
5797 dwarf2_record_block_ranges (die, block, baseaddr, cu);
5798 }
5799 local_symbols = new->locals;
5800 using_directives = new->using_directives;
5801 }
5802
5803 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
5804 Return 1 if the attributes are present and valid, otherwise, return 0.
5805 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
5806
5807 static int
5808 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
5809 CORE_ADDR *high_return, struct dwarf2_cu *cu,
5810 struct partial_symtab *ranges_pst)
5811 {
5812 struct objfile *objfile = cu->objfile;
5813 struct comp_unit_head *cu_header = &cu->header;
5814 bfd *obfd = objfile->obfd;
5815 unsigned int addr_size = cu_header->addr_size;
5816 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5817 /* Base address selection entry. */
5818 CORE_ADDR base;
5819 int found_base;
5820 unsigned int dummy;
5821 gdb_byte *buffer;
5822 CORE_ADDR marker;
5823 int low_set;
5824 CORE_ADDR low = 0;
5825 CORE_ADDR high = 0;
5826 CORE_ADDR baseaddr;
5827
5828 found_base = cu->base_known;
5829 base = cu->base_address;
5830
5831 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
5832 if (offset >= dwarf2_per_objfile->ranges.size)
5833 {
5834 complaint (&symfile_complaints,
5835 _("Offset %d out of bounds for DW_AT_ranges attribute"),
5836 offset);
5837 return 0;
5838 }
5839 buffer = dwarf2_per_objfile->ranges.buffer + offset;
5840
5841 /* Read in the largest possible address. */
5842 marker = read_address (obfd, buffer, cu, &dummy);
5843 if ((marker & mask) == mask)
5844 {
5845 /* If we found the largest possible address, then
5846 read the base address. */
5847 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5848 buffer += 2 * addr_size;
5849 offset += 2 * addr_size;
5850 found_base = 1;
5851 }
5852
5853 low_set = 0;
5854
5855 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5856
5857 while (1)
5858 {
5859 CORE_ADDR range_beginning, range_end;
5860
5861 range_beginning = read_address (obfd, buffer, cu, &dummy);
5862 buffer += addr_size;
5863 range_end = read_address (obfd, buffer, cu, &dummy);
5864 buffer += addr_size;
5865 offset += 2 * addr_size;
5866
5867 /* An end of list marker is a pair of zero addresses. */
5868 if (range_beginning == 0 && range_end == 0)
5869 /* Found the end of list entry. */
5870 break;
5871
5872 /* Each base address selection entry is a pair of 2 values.
5873 The first is the largest possible address, the second is
5874 the base address. Check for a base address here. */
5875 if ((range_beginning & mask) == mask)
5876 {
5877 /* If we found the largest possible address, then
5878 read the base address. */
5879 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5880 found_base = 1;
5881 continue;
5882 }
5883
5884 if (!found_base)
5885 {
5886 /* We have no valid base address for the ranges
5887 data. */
5888 complaint (&symfile_complaints,
5889 _("Invalid .debug_ranges data (no base address)"));
5890 return 0;
5891 }
5892
5893 if (range_beginning > range_end)
5894 {
5895 /* Inverted range entries are invalid. */
5896 complaint (&symfile_complaints,
5897 _("Invalid .debug_ranges data (inverted range)"));
5898 return 0;
5899 }
5900
5901 /* Empty range entries have no effect. */
5902 if (range_beginning == range_end)
5903 continue;
5904
5905 range_beginning += base;
5906 range_end += base;
5907
5908 if (ranges_pst != NULL)
5909 addrmap_set_empty (objfile->psymtabs_addrmap,
5910 range_beginning + baseaddr,
5911 range_end - 1 + baseaddr,
5912 ranges_pst);
5913
5914 /* FIXME: This is recording everything as a low-high
5915 segment of consecutive addresses. We should have a
5916 data structure for discontiguous block ranges
5917 instead. */
5918 if (! low_set)
5919 {
5920 low = range_beginning;
5921 high = range_end;
5922 low_set = 1;
5923 }
5924 else
5925 {
5926 if (range_beginning < low)
5927 low = range_beginning;
5928 if (range_end > high)
5929 high = range_end;
5930 }
5931 }
5932
5933 if (! low_set)
5934 /* If the first entry is an end-of-list marker, the range
5935 describes an empty scope, i.e. no instructions. */
5936 return 0;
5937
5938 if (low_return)
5939 *low_return = low;
5940 if (high_return)
5941 *high_return = high;
5942 return 1;
5943 }
5944
5945 /* Get low and high pc attributes from a die. Return 1 if the attributes
5946 are present and valid, otherwise, return 0. Return -1 if the range is
5947 discontinuous, i.e. derived from DW_AT_ranges information. */
5948 static int
5949 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
5950 CORE_ADDR *highpc, struct dwarf2_cu *cu,
5951 struct partial_symtab *pst)
5952 {
5953 struct attribute *attr;
5954 CORE_ADDR low = 0;
5955 CORE_ADDR high = 0;
5956 int ret = 0;
5957
5958 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
5959 if (attr)
5960 {
5961 high = DW_ADDR (attr);
5962 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5963 if (attr)
5964 low = DW_ADDR (attr);
5965 else
5966 /* Found high w/o low attribute. */
5967 return 0;
5968
5969 /* Found consecutive range of addresses. */
5970 ret = 1;
5971 }
5972 else
5973 {
5974 attr = dwarf2_attr (die, DW_AT_ranges, cu);
5975 if (attr != NULL)
5976 {
5977 /* Value of the DW_AT_ranges attribute is the offset in the
5978 .debug_ranges section. */
5979 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
5980 return 0;
5981 /* Found discontinuous range of addresses. */
5982 ret = -1;
5983 }
5984 }
5985
5986 if (high < low)
5987 return 0;
5988
5989 /* When using the GNU linker, .gnu.linkonce. sections are used to
5990 eliminate duplicate copies of functions and vtables and such.
5991 The linker will arbitrarily choose one and discard the others.
5992 The AT_*_pc values for such functions refer to local labels in
5993 these sections. If the section from that file was discarded, the
5994 labels are not in the output, so the relocs get a value of 0.
5995 If this is a discarded function, mark the pc bounds as invalid,
5996 so that GDB will ignore it. */
5997 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
5998 return 0;
5999
6000 *lowpc = low;
6001 *highpc = high;
6002 return ret;
6003 }
6004
6005 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
6006 its low and high PC addresses. Do nothing if these addresses could not
6007 be determined. Otherwise, set LOWPC to the low address if it is smaller,
6008 and HIGHPC to the high address if greater than HIGHPC. */
6009
6010 static void
6011 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
6012 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6013 struct dwarf2_cu *cu)
6014 {
6015 CORE_ADDR low, high;
6016 struct die_info *child = die->child;
6017
6018 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
6019 {
6020 *lowpc = min (*lowpc, low);
6021 *highpc = max (*highpc, high);
6022 }
6023
6024 /* If the language does not allow nested subprograms (either inside
6025 subprograms or lexical blocks), we're done. */
6026 if (cu->language != language_ada)
6027 return;
6028
6029 /* Check all the children of the given DIE. If it contains nested
6030 subprograms, then check their pc bounds. Likewise, we need to
6031 check lexical blocks as well, as they may also contain subprogram
6032 definitions. */
6033 while (child && child->tag)
6034 {
6035 if (child->tag == DW_TAG_subprogram
6036 || child->tag == DW_TAG_lexical_block)
6037 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
6038 child = sibling_die (child);
6039 }
6040 }
6041
6042 /* Get the low and high pc's represented by the scope DIE, and store
6043 them in *LOWPC and *HIGHPC. If the correct values can't be
6044 determined, set *LOWPC to -1 and *HIGHPC to 0. */
6045
6046 static void
6047 get_scope_pc_bounds (struct die_info *die,
6048 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6049 struct dwarf2_cu *cu)
6050 {
6051 CORE_ADDR best_low = (CORE_ADDR) -1;
6052 CORE_ADDR best_high = (CORE_ADDR) 0;
6053 CORE_ADDR current_low, current_high;
6054
6055 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
6056 {
6057 best_low = current_low;
6058 best_high = current_high;
6059 }
6060 else
6061 {
6062 struct die_info *child = die->child;
6063
6064 while (child && child->tag)
6065 {
6066 switch (child->tag) {
6067 case DW_TAG_subprogram:
6068 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
6069 break;
6070 case DW_TAG_namespace:
6071 case DW_TAG_module:
6072 /* FIXME: carlton/2004-01-16: Should we do this for
6073 DW_TAG_class_type/DW_TAG_structure_type, too? I think
6074 that current GCC's always emit the DIEs corresponding
6075 to definitions of methods of classes as children of a
6076 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
6077 the DIEs giving the declarations, which could be
6078 anywhere). But I don't see any reason why the
6079 standards says that they have to be there. */
6080 get_scope_pc_bounds (child, &current_low, &current_high, cu);
6081
6082 if (current_low != ((CORE_ADDR) -1))
6083 {
6084 best_low = min (best_low, current_low);
6085 best_high = max (best_high, current_high);
6086 }
6087 break;
6088 default:
6089 /* Ignore. */
6090 break;
6091 }
6092
6093 child = sibling_die (child);
6094 }
6095 }
6096
6097 *lowpc = best_low;
6098 *highpc = best_high;
6099 }
6100
6101 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
6102 in DIE. */
6103 static void
6104 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
6105 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
6106 {
6107 struct attribute *attr;
6108
6109 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6110 if (attr)
6111 {
6112 CORE_ADDR high = DW_ADDR (attr);
6113
6114 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6115 if (attr)
6116 {
6117 CORE_ADDR low = DW_ADDR (attr);
6118
6119 record_block_range (block, baseaddr + low, baseaddr + high - 1);
6120 }
6121 }
6122
6123 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6124 if (attr)
6125 {
6126 bfd *obfd = cu->objfile->obfd;
6127
6128 /* The value of the DW_AT_ranges attribute is the offset of the
6129 address range list in the .debug_ranges section. */
6130 unsigned long offset = DW_UNSND (attr);
6131 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
6132
6133 /* For some target architectures, but not others, the
6134 read_address function sign-extends the addresses it returns.
6135 To recognize base address selection entries, we need a
6136 mask. */
6137 unsigned int addr_size = cu->header.addr_size;
6138 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6139
6140 /* The base address, to which the next pair is relative. Note
6141 that this 'base' is a DWARF concept: most entries in a range
6142 list are relative, to reduce the number of relocs against the
6143 debugging information. This is separate from this function's
6144 'baseaddr' argument, which GDB uses to relocate debugging
6145 information from a shared library based on the address at
6146 which the library was loaded. */
6147 CORE_ADDR base = cu->base_address;
6148 int base_known = cu->base_known;
6149
6150 gdb_assert (dwarf2_per_objfile->ranges.readin);
6151 if (offset >= dwarf2_per_objfile->ranges.size)
6152 {
6153 complaint (&symfile_complaints,
6154 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
6155 offset);
6156 return;
6157 }
6158
6159 for (;;)
6160 {
6161 unsigned int bytes_read;
6162 CORE_ADDR start, end;
6163
6164 start = read_address (obfd, buffer, cu, &bytes_read);
6165 buffer += bytes_read;
6166 end = read_address (obfd, buffer, cu, &bytes_read);
6167 buffer += bytes_read;
6168
6169 /* Did we find the end of the range list? */
6170 if (start == 0 && end == 0)
6171 break;
6172
6173 /* Did we find a base address selection entry? */
6174 else if ((start & base_select_mask) == base_select_mask)
6175 {
6176 base = end;
6177 base_known = 1;
6178 }
6179
6180 /* We found an ordinary address range. */
6181 else
6182 {
6183 if (!base_known)
6184 {
6185 complaint (&symfile_complaints,
6186 _("Invalid .debug_ranges data "
6187 "(no base address)"));
6188 return;
6189 }
6190
6191 if (start > end)
6192 {
6193 /* Inverted range entries are invalid. */
6194 complaint (&symfile_complaints,
6195 _("Invalid .debug_ranges data "
6196 "(inverted range)"));
6197 return;
6198 }
6199
6200 /* Empty range entries have no effect. */
6201 if (start == end)
6202 continue;
6203
6204 record_block_range (block,
6205 baseaddr + base + start,
6206 baseaddr + base + end - 1);
6207 }
6208 }
6209 }
6210 }
6211
6212 /* Add an aggregate field to the field list. */
6213
6214 static void
6215 dwarf2_add_field (struct field_info *fip, struct die_info *die,
6216 struct dwarf2_cu *cu)
6217 {
6218 struct objfile *objfile = cu->objfile;
6219 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6220 struct nextfield *new_field;
6221 struct attribute *attr;
6222 struct field *fp;
6223 char *fieldname = "";
6224
6225 /* Allocate a new field list entry and link it in. */
6226 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
6227 make_cleanup (xfree, new_field);
6228 memset (new_field, 0, sizeof (struct nextfield));
6229
6230 if (die->tag == DW_TAG_inheritance)
6231 {
6232 new_field->next = fip->baseclasses;
6233 fip->baseclasses = new_field;
6234 }
6235 else
6236 {
6237 new_field->next = fip->fields;
6238 fip->fields = new_field;
6239 }
6240 fip->nfields++;
6241
6242 /* Handle accessibility and virtuality of field.
6243 The default accessibility for members is public, the default
6244 accessibility for inheritance is private. */
6245 if (die->tag != DW_TAG_inheritance)
6246 new_field->accessibility = DW_ACCESS_public;
6247 else
6248 new_field->accessibility = DW_ACCESS_private;
6249 new_field->virtuality = DW_VIRTUALITY_none;
6250
6251 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6252 if (attr)
6253 new_field->accessibility = DW_UNSND (attr);
6254 if (new_field->accessibility != DW_ACCESS_public)
6255 fip->non_public_fields = 1;
6256 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6257 if (attr)
6258 new_field->virtuality = DW_UNSND (attr);
6259
6260 fp = &new_field->field;
6261
6262 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
6263 {
6264 /* Data member other than a C++ static data member. */
6265
6266 /* Get type of field. */
6267 fp->type = die_type (die, cu);
6268
6269 SET_FIELD_BITPOS (*fp, 0);
6270
6271 /* Get bit size of field (zero if none). */
6272 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
6273 if (attr)
6274 {
6275 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
6276 }
6277 else
6278 {
6279 FIELD_BITSIZE (*fp) = 0;
6280 }
6281
6282 /* Get bit offset of field. */
6283 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6284 if (attr)
6285 {
6286 int byte_offset = 0;
6287
6288 if (attr_form_is_section_offset (attr))
6289 dwarf2_complex_location_expr_complaint ();
6290 else if (attr_form_is_constant (attr))
6291 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6292 else if (attr_form_is_block (attr))
6293 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6294 else
6295 dwarf2_complex_location_expr_complaint ();
6296
6297 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6298 }
6299 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
6300 if (attr)
6301 {
6302 if (gdbarch_bits_big_endian (gdbarch))
6303 {
6304 /* For big endian bits, the DW_AT_bit_offset gives the
6305 additional bit offset from the MSB of the containing
6306 anonymous object to the MSB of the field. We don't
6307 have to do anything special since we don't need to
6308 know the size of the anonymous object. */
6309 FIELD_BITPOS (*fp) += DW_UNSND (attr);
6310 }
6311 else
6312 {
6313 /* For little endian bits, compute the bit offset to the
6314 MSB of the anonymous object, subtract off the number of
6315 bits from the MSB of the field to the MSB of the
6316 object, and then subtract off the number of bits of
6317 the field itself. The result is the bit offset of
6318 the LSB of the field. */
6319 int anonymous_size;
6320 int bit_offset = DW_UNSND (attr);
6321
6322 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6323 if (attr)
6324 {
6325 /* The size of the anonymous object containing
6326 the bit field is explicit, so use the
6327 indicated size (in bytes). */
6328 anonymous_size = DW_UNSND (attr);
6329 }
6330 else
6331 {
6332 /* The size of the anonymous object containing
6333 the bit field must be inferred from the type
6334 attribute of the data member containing the
6335 bit field. */
6336 anonymous_size = TYPE_LENGTH (fp->type);
6337 }
6338 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
6339 - bit_offset - FIELD_BITSIZE (*fp);
6340 }
6341 }
6342
6343 /* Get name of field. */
6344 fieldname = dwarf2_name (die, cu);
6345 if (fieldname == NULL)
6346 fieldname = "";
6347
6348 /* The name is already allocated along with this objfile, so we don't
6349 need to duplicate it for the type. */
6350 fp->name = fieldname;
6351
6352 /* Change accessibility for artificial fields (e.g. virtual table
6353 pointer or virtual base class pointer) to private. */
6354 if (dwarf2_attr (die, DW_AT_artificial, cu))
6355 {
6356 FIELD_ARTIFICIAL (*fp) = 1;
6357 new_field->accessibility = DW_ACCESS_private;
6358 fip->non_public_fields = 1;
6359 }
6360 }
6361 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
6362 {
6363 /* C++ static member. */
6364
6365 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
6366 is a declaration, but all versions of G++ as of this writing
6367 (so through at least 3.2.1) incorrectly generate
6368 DW_TAG_variable tags. */
6369
6370 char *physname;
6371
6372 /* Get name of field. */
6373 fieldname = dwarf2_name (die, cu);
6374 if (fieldname == NULL)
6375 return;
6376
6377 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6378 if (attr
6379 /* Only create a symbol if this is an external value.
6380 new_symbol checks this and puts the value in the global symbol
6381 table, which we want. If it is not external, new_symbol
6382 will try to put the value in cu->list_in_scope which is wrong. */
6383 && dwarf2_flag_true_p (die, DW_AT_external, cu))
6384 {
6385 /* A static const member, not much different than an enum as far as
6386 we're concerned, except that we can support more types. */
6387 new_symbol (die, NULL, cu);
6388 }
6389
6390 /* Get physical name. */
6391 physname = (char *) dwarf2_physname (fieldname, die, cu);
6392
6393 /* The name is already allocated along with this objfile, so we don't
6394 need to duplicate it for the type. */
6395 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
6396 FIELD_TYPE (*fp) = die_type (die, cu);
6397 FIELD_NAME (*fp) = fieldname;
6398 }
6399 else if (die->tag == DW_TAG_inheritance)
6400 {
6401 /* C++ base class field. */
6402 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6403 if (attr)
6404 {
6405 int byte_offset = 0;
6406
6407 if (attr_form_is_section_offset (attr))
6408 dwarf2_complex_location_expr_complaint ();
6409 else if (attr_form_is_constant (attr))
6410 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6411 else if (attr_form_is_block (attr))
6412 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6413 else
6414 dwarf2_complex_location_expr_complaint ();
6415
6416 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6417 }
6418 FIELD_BITSIZE (*fp) = 0;
6419 FIELD_TYPE (*fp) = die_type (die, cu);
6420 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
6421 fip->nbaseclasses++;
6422 }
6423 }
6424
6425 /* Add a typedef defined in the scope of the FIP's class. */
6426
6427 static void
6428 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
6429 struct dwarf2_cu *cu)
6430 {
6431 struct objfile *objfile = cu->objfile;
6432 struct typedef_field_list *new_field;
6433 struct attribute *attr;
6434 struct typedef_field *fp;
6435 char *fieldname = "";
6436
6437 /* Allocate a new field list entry and link it in. */
6438 new_field = xzalloc (sizeof (*new_field));
6439 make_cleanup (xfree, new_field);
6440
6441 gdb_assert (die->tag == DW_TAG_typedef);
6442
6443 fp = &new_field->field;
6444
6445 /* Get name of field. */
6446 fp->name = dwarf2_name (die, cu);
6447 if (fp->name == NULL)
6448 return;
6449
6450 fp->type = read_type_die (die, cu);
6451
6452 new_field->next = fip->typedef_field_list;
6453 fip->typedef_field_list = new_field;
6454 fip->typedef_field_list_count++;
6455 }
6456
6457 /* Create the vector of fields, and attach it to the type. */
6458
6459 static void
6460 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
6461 struct dwarf2_cu *cu)
6462 {
6463 int nfields = fip->nfields;
6464
6465 /* Record the field count, allocate space for the array of fields,
6466 and create blank accessibility bitfields if necessary. */
6467 TYPE_NFIELDS (type) = nfields;
6468 TYPE_FIELDS (type) = (struct field *)
6469 TYPE_ALLOC (type, sizeof (struct field) * nfields);
6470 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
6471
6472 if (fip->non_public_fields && cu->language != language_ada)
6473 {
6474 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6475
6476 TYPE_FIELD_PRIVATE_BITS (type) =
6477 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6478 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
6479
6480 TYPE_FIELD_PROTECTED_BITS (type) =
6481 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6482 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
6483
6484 TYPE_FIELD_IGNORE_BITS (type) =
6485 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6486 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
6487 }
6488
6489 /* If the type has baseclasses, allocate and clear a bit vector for
6490 TYPE_FIELD_VIRTUAL_BITS. */
6491 if (fip->nbaseclasses && cu->language != language_ada)
6492 {
6493 int num_bytes = B_BYTES (fip->nbaseclasses);
6494 unsigned char *pointer;
6495
6496 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6497 pointer = TYPE_ALLOC (type, num_bytes);
6498 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
6499 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
6500 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
6501 }
6502
6503 /* Copy the saved-up fields into the field vector. Start from the head of
6504 the list, adding to the tail of the field array, so that they end up in
6505 the same order in the array in which they were added to the list. */
6506 while (nfields-- > 0)
6507 {
6508 struct nextfield *fieldp;
6509
6510 if (fip->fields)
6511 {
6512 fieldp = fip->fields;
6513 fip->fields = fieldp->next;
6514 }
6515 else
6516 {
6517 fieldp = fip->baseclasses;
6518 fip->baseclasses = fieldp->next;
6519 }
6520
6521 TYPE_FIELD (type, nfields) = fieldp->field;
6522 switch (fieldp->accessibility)
6523 {
6524 case DW_ACCESS_private:
6525 if (cu->language != language_ada)
6526 SET_TYPE_FIELD_PRIVATE (type, nfields);
6527 break;
6528
6529 case DW_ACCESS_protected:
6530 if (cu->language != language_ada)
6531 SET_TYPE_FIELD_PROTECTED (type, nfields);
6532 break;
6533
6534 case DW_ACCESS_public:
6535 break;
6536
6537 default:
6538 /* Unknown accessibility. Complain and treat it as public. */
6539 {
6540 complaint (&symfile_complaints, _("unsupported accessibility %d"),
6541 fieldp->accessibility);
6542 }
6543 break;
6544 }
6545 if (nfields < fip->nbaseclasses)
6546 {
6547 switch (fieldp->virtuality)
6548 {
6549 case DW_VIRTUALITY_virtual:
6550 case DW_VIRTUALITY_pure_virtual:
6551 if (cu->language == language_ada)
6552 error (_("unexpected virtuality in component of Ada type"));
6553 SET_TYPE_FIELD_VIRTUAL (type, nfields);
6554 break;
6555 }
6556 }
6557 }
6558 }
6559
6560 /* Add a member function to the proper fieldlist. */
6561
6562 static void
6563 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
6564 struct type *type, struct dwarf2_cu *cu)
6565 {
6566 struct objfile *objfile = cu->objfile;
6567 struct attribute *attr;
6568 struct fnfieldlist *flp;
6569 int i;
6570 struct fn_field *fnp;
6571 char *fieldname;
6572 struct nextfnfield *new_fnfield;
6573 struct type *this_type;
6574
6575 if (cu->language == language_ada)
6576 error (_("unexpected member function in Ada type"));
6577
6578 /* Get name of member function. */
6579 fieldname = dwarf2_name (die, cu);
6580 if (fieldname == NULL)
6581 return;
6582
6583 /* Look up member function name in fieldlist. */
6584 for (i = 0; i < fip->nfnfields; i++)
6585 {
6586 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
6587 break;
6588 }
6589
6590 /* Create new list element if necessary. */
6591 if (i < fip->nfnfields)
6592 flp = &fip->fnfieldlists[i];
6593 else
6594 {
6595 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
6596 {
6597 fip->fnfieldlists = (struct fnfieldlist *)
6598 xrealloc (fip->fnfieldlists,
6599 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
6600 * sizeof (struct fnfieldlist));
6601 if (fip->nfnfields == 0)
6602 make_cleanup (free_current_contents, &fip->fnfieldlists);
6603 }
6604 flp = &fip->fnfieldlists[fip->nfnfields];
6605 flp->name = fieldname;
6606 flp->length = 0;
6607 flp->head = NULL;
6608 i = fip->nfnfields++;
6609 }
6610
6611 /* Create a new member function field and chain it to the field list
6612 entry. */
6613 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
6614 make_cleanup (xfree, new_fnfield);
6615 memset (new_fnfield, 0, sizeof (struct nextfnfield));
6616 new_fnfield->next = flp->head;
6617 flp->head = new_fnfield;
6618 flp->length++;
6619
6620 /* Fill in the member function field info. */
6621 fnp = &new_fnfield->fnfield;
6622
6623 /* Delay processing of the physname until later. */
6624 if (cu->language == language_cplus || cu->language == language_java)
6625 {
6626 add_to_method_list (type, i, flp->length - 1, fieldname,
6627 die, cu);
6628 }
6629 else
6630 {
6631 char *physname = (char *) dwarf2_physname (fieldname, die, cu);
6632 fnp->physname = physname ? physname : "";
6633 }
6634
6635 fnp->type = alloc_type (objfile);
6636 this_type = read_type_die (die, cu);
6637 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
6638 {
6639 int nparams = TYPE_NFIELDS (this_type);
6640
6641 /* TYPE is the domain of this method, and THIS_TYPE is the type
6642 of the method itself (TYPE_CODE_METHOD). */
6643 smash_to_method_type (fnp->type, type,
6644 TYPE_TARGET_TYPE (this_type),
6645 TYPE_FIELDS (this_type),
6646 TYPE_NFIELDS (this_type),
6647 TYPE_VARARGS (this_type));
6648
6649 /* Handle static member functions.
6650 Dwarf2 has no clean way to discern C++ static and non-static
6651 member functions. G++ helps GDB by marking the first
6652 parameter for non-static member functions (which is the this
6653 pointer) as artificial. We obtain this information from
6654 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
6655 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
6656 fnp->voffset = VOFFSET_STATIC;
6657 }
6658 else
6659 complaint (&symfile_complaints, _("member function type missing for '%s'"),
6660 dwarf2_full_name (fieldname, die, cu));
6661
6662 /* Get fcontext from DW_AT_containing_type if present. */
6663 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
6664 fnp->fcontext = die_containing_type (die, cu);
6665
6666 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
6667 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
6668
6669 /* Get accessibility. */
6670 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6671 if (attr)
6672 {
6673 switch (DW_UNSND (attr))
6674 {
6675 case DW_ACCESS_private:
6676 fnp->is_private = 1;
6677 break;
6678 case DW_ACCESS_protected:
6679 fnp->is_protected = 1;
6680 break;
6681 }
6682 }
6683
6684 /* Check for artificial methods. */
6685 attr = dwarf2_attr (die, DW_AT_artificial, cu);
6686 if (attr && DW_UNSND (attr) != 0)
6687 fnp->is_artificial = 1;
6688
6689 /* Get index in virtual function table if it is a virtual member
6690 function. For older versions of GCC, this is an offset in the
6691 appropriate virtual table, as specified by DW_AT_containing_type.
6692 For everyone else, it is an expression to be evaluated relative
6693 to the object address. */
6694
6695 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
6696 if (attr)
6697 {
6698 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
6699 {
6700 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
6701 {
6702 /* Old-style GCC. */
6703 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
6704 }
6705 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
6706 || (DW_BLOCK (attr)->size > 1
6707 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
6708 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
6709 {
6710 struct dwarf_block blk;
6711 int offset;
6712
6713 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
6714 ? 1 : 2);
6715 blk.size = DW_BLOCK (attr)->size - offset;
6716 blk.data = DW_BLOCK (attr)->data + offset;
6717 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
6718 if ((fnp->voffset % cu->header.addr_size) != 0)
6719 dwarf2_complex_location_expr_complaint ();
6720 else
6721 fnp->voffset /= cu->header.addr_size;
6722 fnp->voffset += 2;
6723 }
6724 else
6725 dwarf2_complex_location_expr_complaint ();
6726
6727 if (!fnp->fcontext)
6728 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
6729 }
6730 else if (attr_form_is_section_offset (attr))
6731 {
6732 dwarf2_complex_location_expr_complaint ();
6733 }
6734 else
6735 {
6736 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
6737 fieldname);
6738 }
6739 }
6740 else
6741 {
6742 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6743 if (attr && DW_UNSND (attr))
6744 {
6745 /* GCC does this, as of 2008-08-25; PR debug/37237. */
6746 complaint (&symfile_complaints,
6747 _("Member function \"%s\" (offset %d) is virtual "
6748 "but the vtable offset is not specified"),
6749 fieldname, die->offset);
6750 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6751 TYPE_CPLUS_DYNAMIC (type) = 1;
6752 }
6753 }
6754 }
6755
6756 /* Create the vector of member function fields, and attach it to the type. */
6757
6758 static void
6759 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
6760 struct dwarf2_cu *cu)
6761 {
6762 struct fnfieldlist *flp;
6763 int total_length = 0;
6764 int i;
6765
6766 if (cu->language == language_ada)
6767 error (_("unexpected member functions in Ada type"));
6768
6769 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6770 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
6771 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
6772
6773 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
6774 {
6775 struct nextfnfield *nfp = flp->head;
6776 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
6777 int k;
6778
6779 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
6780 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
6781 fn_flp->fn_fields = (struct fn_field *)
6782 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
6783 for (k = flp->length; (k--, nfp); nfp = nfp->next)
6784 fn_flp->fn_fields[k] = nfp->fnfield;
6785
6786 total_length += flp->length;
6787 }
6788
6789 TYPE_NFN_FIELDS (type) = fip->nfnfields;
6790 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
6791 }
6792
6793 /* Returns non-zero if NAME is the name of a vtable member in CU's
6794 language, zero otherwise. */
6795 static int
6796 is_vtable_name (const char *name, struct dwarf2_cu *cu)
6797 {
6798 static const char vptr[] = "_vptr";
6799 static const char vtable[] = "vtable";
6800
6801 /* Look for the C++ and Java forms of the vtable. */
6802 if ((cu->language == language_java
6803 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
6804 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
6805 && is_cplus_marker (name[sizeof (vptr) - 1])))
6806 return 1;
6807
6808 return 0;
6809 }
6810
6811 /* GCC outputs unnamed structures that are really pointers to member
6812 functions, with the ABI-specified layout. If TYPE describes
6813 such a structure, smash it into a member function type.
6814
6815 GCC shouldn't do this; it should just output pointer to member DIEs.
6816 This is GCC PR debug/28767. */
6817
6818 static void
6819 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
6820 {
6821 struct type *pfn_type, *domain_type, *new_type;
6822
6823 /* Check for a structure with no name and two children. */
6824 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
6825 return;
6826
6827 /* Check for __pfn and __delta members. */
6828 if (TYPE_FIELD_NAME (type, 0) == NULL
6829 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
6830 || TYPE_FIELD_NAME (type, 1) == NULL
6831 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
6832 return;
6833
6834 /* Find the type of the method. */
6835 pfn_type = TYPE_FIELD_TYPE (type, 0);
6836 if (pfn_type == NULL
6837 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
6838 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
6839 return;
6840
6841 /* Look for the "this" argument. */
6842 pfn_type = TYPE_TARGET_TYPE (pfn_type);
6843 if (TYPE_NFIELDS (pfn_type) == 0
6844 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
6845 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
6846 return;
6847
6848 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
6849 new_type = alloc_type (objfile);
6850 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
6851 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
6852 TYPE_VARARGS (pfn_type));
6853 smash_to_methodptr_type (type, new_type);
6854 }
6855
6856 /* Called when we find the DIE that starts a structure or union scope
6857 (definition) to create a type for the structure or union. Fill in
6858 the type's name and general properties; the members will not be
6859 processed until process_structure_type.
6860
6861 NOTE: we need to call these functions regardless of whether or not the
6862 DIE has a DW_AT_name attribute, since it might be an anonymous
6863 structure or union. This gets the type entered into our set of
6864 user defined types.
6865
6866 However, if the structure is incomplete (an opaque struct/union)
6867 then suppress creating a symbol table entry for it since gdb only
6868 wants to find the one with the complete definition. Note that if
6869 it is complete, we just call new_symbol, which does it's own
6870 checking about whether the struct/union is anonymous or not (and
6871 suppresses creating a symbol table entry itself). */
6872
6873 static struct type *
6874 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
6875 {
6876 struct objfile *objfile = cu->objfile;
6877 struct type *type;
6878 struct attribute *attr;
6879 char *name;
6880
6881 /* If the definition of this type lives in .debug_types, read that type.
6882 Don't follow DW_AT_specification though, that will take us back up
6883 the chain and we want to go down. */
6884 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6885 if (attr)
6886 {
6887 struct dwarf2_cu *type_cu = cu;
6888 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
6889
6890 /* We could just recurse on read_structure_type, but we need to call
6891 get_die_type to ensure only one type for this DIE is created.
6892 This is important, for example, because for c++ classes we need
6893 TYPE_NAME set which is only done by new_symbol. Blech. */
6894 type = read_type_die (type_die, type_cu);
6895
6896 /* TYPE_CU may not be the same as CU.
6897 Ensure TYPE is recorded in CU's type_hash table. */
6898 return set_die_type (die, type, cu);
6899 }
6900
6901 type = alloc_type (objfile);
6902 INIT_CPLUS_SPECIFIC (type);
6903
6904 name = dwarf2_name (die, cu);
6905 if (name != NULL)
6906 {
6907 if (cu->language == language_cplus
6908 || cu->language == language_java)
6909 {
6910 char *full_name = (char *) dwarf2_full_name (name, die, cu);
6911
6912 /* dwarf2_full_name might have already finished building the DIE's
6913 type. If so, there is no need to continue. */
6914 if (get_die_type (die, cu) != NULL)
6915 return get_die_type (die, cu);
6916
6917 TYPE_TAG_NAME (type) = full_name;
6918 if (die->tag == DW_TAG_structure_type
6919 || die->tag == DW_TAG_class_type)
6920 TYPE_NAME (type) = TYPE_TAG_NAME (type);
6921 }
6922 else
6923 {
6924 /* The name is already allocated along with this objfile, so
6925 we don't need to duplicate it for the type. */
6926 TYPE_TAG_NAME (type) = (char *) name;
6927 if (die->tag == DW_TAG_class_type)
6928 TYPE_NAME (type) = TYPE_TAG_NAME (type);
6929 }
6930 }
6931
6932 if (die->tag == DW_TAG_structure_type)
6933 {
6934 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6935 }
6936 else if (die->tag == DW_TAG_union_type)
6937 {
6938 TYPE_CODE (type) = TYPE_CODE_UNION;
6939 }
6940 else
6941 {
6942 TYPE_CODE (type) = TYPE_CODE_CLASS;
6943 }
6944
6945 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
6946 TYPE_DECLARED_CLASS (type) = 1;
6947
6948 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6949 if (attr)
6950 {
6951 TYPE_LENGTH (type) = DW_UNSND (attr);
6952 }
6953 else
6954 {
6955 TYPE_LENGTH (type) = 0;
6956 }
6957
6958 TYPE_STUB_SUPPORTED (type) = 1;
6959 if (die_is_declaration (die, cu))
6960 TYPE_STUB (type) = 1;
6961 else if (attr == NULL && die->child == NULL
6962 && producer_is_realview (cu->producer))
6963 /* RealView does not output the required DW_AT_declaration
6964 on incomplete types. */
6965 TYPE_STUB (type) = 1;
6966
6967 /* We need to add the type field to the die immediately so we don't
6968 infinitely recurse when dealing with pointers to the structure
6969 type within the structure itself. */
6970 set_die_type (die, type, cu);
6971
6972 /* set_die_type should be already done. */
6973 set_descriptive_type (type, die, cu);
6974
6975 return type;
6976 }
6977
6978 /* Finish creating a structure or union type, including filling in
6979 its members and creating a symbol for it. */
6980
6981 static void
6982 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
6983 {
6984 struct objfile *objfile = cu->objfile;
6985 struct die_info *child_die = die->child;
6986 struct type *type;
6987
6988 type = get_die_type (die, cu);
6989 if (type == NULL)
6990 type = read_structure_type (die, cu);
6991
6992 if (die->child != NULL && ! die_is_declaration (die, cu))
6993 {
6994 struct field_info fi;
6995 struct die_info *child_die;
6996 VEC (symbolp) *template_args = NULL;
6997 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
6998
6999 memset (&fi, 0, sizeof (struct field_info));
7000
7001 child_die = die->child;
7002
7003 while (child_die && child_die->tag)
7004 {
7005 if (child_die->tag == DW_TAG_member
7006 || child_die->tag == DW_TAG_variable)
7007 {
7008 /* NOTE: carlton/2002-11-05: A C++ static data member
7009 should be a DW_TAG_member that is a declaration, but
7010 all versions of G++ as of this writing (so through at
7011 least 3.2.1) incorrectly generate DW_TAG_variable
7012 tags for them instead. */
7013 dwarf2_add_field (&fi, child_die, cu);
7014 }
7015 else if (child_die->tag == DW_TAG_subprogram)
7016 {
7017 /* C++ member function. */
7018 dwarf2_add_member_fn (&fi, child_die, type, cu);
7019 }
7020 else if (child_die->tag == DW_TAG_inheritance)
7021 {
7022 /* C++ base class field. */
7023 dwarf2_add_field (&fi, child_die, cu);
7024 }
7025 else if (child_die->tag == DW_TAG_typedef)
7026 dwarf2_add_typedef (&fi, child_die, cu);
7027 else if (child_die->tag == DW_TAG_template_type_param
7028 || child_die->tag == DW_TAG_template_value_param)
7029 {
7030 struct symbol *arg = new_symbol (child_die, NULL, cu);
7031
7032 if (arg != NULL)
7033 VEC_safe_push (symbolp, template_args, arg);
7034 }
7035
7036 child_die = sibling_die (child_die);
7037 }
7038
7039 /* Attach template arguments to type. */
7040 if (! VEC_empty (symbolp, template_args))
7041 {
7042 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7043 TYPE_N_TEMPLATE_ARGUMENTS (type)
7044 = VEC_length (symbolp, template_args);
7045 TYPE_TEMPLATE_ARGUMENTS (type)
7046 = obstack_alloc (&objfile->objfile_obstack,
7047 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7048 * sizeof (struct symbol *)));
7049 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
7050 VEC_address (symbolp, template_args),
7051 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7052 * sizeof (struct symbol *)));
7053 VEC_free (symbolp, template_args);
7054 }
7055
7056 /* Attach fields and member functions to the type. */
7057 if (fi.nfields)
7058 dwarf2_attach_fields_to_type (&fi, type, cu);
7059 if (fi.nfnfields)
7060 {
7061 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
7062
7063 /* Get the type which refers to the base class (possibly this
7064 class itself) which contains the vtable pointer for the current
7065 class from the DW_AT_containing_type attribute. This use of
7066 DW_AT_containing_type is a GNU extension. */
7067
7068 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7069 {
7070 struct type *t = die_containing_type (die, cu);
7071
7072 TYPE_VPTR_BASETYPE (type) = t;
7073 if (type == t)
7074 {
7075 int i;
7076
7077 /* Our own class provides vtbl ptr. */
7078 for (i = TYPE_NFIELDS (t) - 1;
7079 i >= TYPE_N_BASECLASSES (t);
7080 --i)
7081 {
7082 char *fieldname = TYPE_FIELD_NAME (t, i);
7083
7084 if (is_vtable_name (fieldname, cu))
7085 {
7086 TYPE_VPTR_FIELDNO (type) = i;
7087 break;
7088 }
7089 }
7090
7091 /* Complain if virtual function table field not found. */
7092 if (i < TYPE_N_BASECLASSES (t))
7093 complaint (&symfile_complaints,
7094 _("virtual function table pointer "
7095 "not found when defining class '%s'"),
7096 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
7097 "");
7098 }
7099 else
7100 {
7101 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
7102 }
7103 }
7104 else if (cu->producer
7105 && strncmp (cu->producer,
7106 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
7107 {
7108 /* The IBM XLC compiler does not provide direct indication
7109 of the containing type, but the vtable pointer is
7110 always named __vfp. */
7111
7112 int i;
7113
7114 for (i = TYPE_NFIELDS (type) - 1;
7115 i >= TYPE_N_BASECLASSES (type);
7116 --i)
7117 {
7118 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
7119 {
7120 TYPE_VPTR_FIELDNO (type) = i;
7121 TYPE_VPTR_BASETYPE (type) = type;
7122 break;
7123 }
7124 }
7125 }
7126 }
7127
7128 /* Copy fi.typedef_field_list linked list elements content into the
7129 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
7130 if (fi.typedef_field_list)
7131 {
7132 int i = fi.typedef_field_list_count;
7133
7134 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7135 TYPE_TYPEDEF_FIELD_ARRAY (type)
7136 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
7137 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
7138
7139 /* Reverse the list order to keep the debug info elements order. */
7140 while (--i >= 0)
7141 {
7142 struct typedef_field *dest, *src;
7143
7144 dest = &TYPE_TYPEDEF_FIELD (type, i);
7145 src = &fi.typedef_field_list->field;
7146 fi.typedef_field_list = fi.typedef_field_list->next;
7147 *dest = *src;
7148 }
7149 }
7150
7151 do_cleanups (back_to);
7152 }
7153
7154 quirk_gcc_member_function_pointer (type, cu->objfile);
7155
7156 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
7157 snapshots) has been known to create a die giving a declaration
7158 for a class that has, as a child, a die giving a definition for a
7159 nested class. So we have to process our children even if the
7160 current die is a declaration. Normally, of course, a declaration
7161 won't have any children at all. */
7162
7163 while (child_die != NULL && child_die->tag)
7164 {
7165 if (child_die->tag == DW_TAG_member
7166 || child_die->tag == DW_TAG_variable
7167 || child_die->tag == DW_TAG_inheritance
7168 || child_die->tag == DW_TAG_template_value_param
7169 || child_die->tag == DW_TAG_template_type_param)
7170 {
7171 /* Do nothing. */
7172 }
7173 else
7174 process_die (child_die, cu);
7175
7176 child_die = sibling_die (child_die);
7177 }
7178
7179 /* Do not consider external references. According to the DWARF standard,
7180 these DIEs are identified by the fact that they have no byte_size
7181 attribute, and a declaration attribute. */
7182 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
7183 || !die_is_declaration (die, cu))
7184 new_symbol (die, type, cu);
7185 }
7186
7187 /* Given a DW_AT_enumeration_type die, set its type. We do not
7188 complete the type's fields yet, or create any symbols. */
7189
7190 static struct type *
7191 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
7192 {
7193 struct objfile *objfile = cu->objfile;
7194 struct type *type;
7195 struct attribute *attr;
7196 const char *name;
7197
7198 /* If the definition of this type lives in .debug_types, read that type.
7199 Don't follow DW_AT_specification though, that will take us back up
7200 the chain and we want to go down. */
7201 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7202 if (attr)
7203 {
7204 struct dwarf2_cu *type_cu = cu;
7205 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7206
7207 type = read_type_die (type_die, type_cu);
7208
7209 /* TYPE_CU may not be the same as CU.
7210 Ensure TYPE is recorded in CU's type_hash table. */
7211 return set_die_type (die, type, cu);
7212 }
7213
7214 type = alloc_type (objfile);
7215
7216 TYPE_CODE (type) = TYPE_CODE_ENUM;
7217 name = dwarf2_full_name (NULL, die, cu);
7218 if (name != NULL)
7219 TYPE_TAG_NAME (type) = (char *) name;
7220
7221 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7222 if (attr)
7223 {
7224 TYPE_LENGTH (type) = DW_UNSND (attr);
7225 }
7226 else
7227 {
7228 TYPE_LENGTH (type) = 0;
7229 }
7230
7231 /* The enumeration DIE can be incomplete. In Ada, any type can be
7232 declared as private in the package spec, and then defined only
7233 inside the package body. Such types are known as Taft Amendment
7234 Types. When another package uses such a type, an incomplete DIE
7235 may be generated by the compiler. */
7236 if (die_is_declaration (die, cu))
7237 TYPE_STUB (type) = 1;
7238
7239 return set_die_type (die, type, cu);
7240 }
7241
7242 /* Given a pointer to a die which begins an enumeration, process all
7243 the dies that define the members of the enumeration, and create the
7244 symbol for the enumeration type.
7245
7246 NOTE: We reverse the order of the element list. */
7247
7248 static void
7249 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7250 {
7251 struct type *this_type;
7252
7253 this_type = get_die_type (die, cu);
7254 if (this_type == NULL)
7255 this_type = read_enumeration_type (die, cu);
7256
7257 if (die->child != NULL)
7258 {
7259 struct die_info *child_die;
7260 struct symbol *sym;
7261 struct field *fields = NULL;
7262 int num_fields = 0;
7263 int unsigned_enum = 1;
7264 char *name;
7265
7266 child_die = die->child;
7267 while (child_die && child_die->tag)
7268 {
7269 if (child_die->tag != DW_TAG_enumerator)
7270 {
7271 process_die (child_die, cu);
7272 }
7273 else
7274 {
7275 name = dwarf2_name (child_die, cu);
7276 if (name)
7277 {
7278 sym = new_symbol (child_die, this_type, cu);
7279 if (SYMBOL_VALUE (sym) < 0)
7280 unsigned_enum = 0;
7281
7282 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
7283 {
7284 fields = (struct field *)
7285 xrealloc (fields,
7286 (num_fields + DW_FIELD_ALLOC_CHUNK)
7287 * sizeof (struct field));
7288 }
7289
7290 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
7291 FIELD_TYPE (fields[num_fields]) = NULL;
7292 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
7293 FIELD_BITSIZE (fields[num_fields]) = 0;
7294
7295 num_fields++;
7296 }
7297 }
7298
7299 child_die = sibling_die (child_die);
7300 }
7301
7302 if (num_fields)
7303 {
7304 TYPE_NFIELDS (this_type) = num_fields;
7305 TYPE_FIELDS (this_type) = (struct field *)
7306 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
7307 memcpy (TYPE_FIELDS (this_type), fields,
7308 sizeof (struct field) * num_fields);
7309 xfree (fields);
7310 }
7311 if (unsigned_enum)
7312 TYPE_UNSIGNED (this_type) = 1;
7313 }
7314
7315 new_symbol (die, this_type, cu);
7316 }
7317
7318 /* Extract all information from a DW_TAG_array_type DIE and put it in
7319 the DIE's type field. For now, this only handles one dimensional
7320 arrays. */
7321
7322 static struct type *
7323 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
7324 {
7325 struct objfile *objfile = cu->objfile;
7326 struct die_info *child_die;
7327 struct type *type;
7328 struct type *element_type, *range_type, *index_type;
7329 struct type **range_types = NULL;
7330 struct attribute *attr;
7331 int ndim = 0;
7332 struct cleanup *back_to;
7333 char *name;
7334
7335 element_type = die_type (die, cu);
7336
7337 /* The die_type call above may have already set the type for this DIE. */
7338 type = get_die_type (die, cu);
7339 if (type)
7340 return type;
7341
7342 /* Irix 6.2 native cc creates array types without children for
7343 arrays with unspecified length. */
7344 if (die->child == NULL)
7345 {
7346 index_type = objfile_type (objfile)->builtin_int;
7347 range_type = create_range_type (NULL, index_type, 0, -1);
7348 type = create_array_type (NULL, element_type, range_type);
7349 return set_die_type (die, type, cu);
7350 }
7351
7352 back_to = make_cleanup (null_cleanup, NULL);
7353 child_die = die->child;
7354 while (child_die && child_die->tag)
7355 {
7356 if (child_die->tag == DW_TAG_subrange_type)
7357 {
7358 struct type *child_type = read_type_die (child_die, cu);
7359
7360 if (child_type != NULL)
7361 {
7362 /* The range type was succesfully read. Save it for the
7363 array type creation. */
7364 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
7365 {
7366 range_types = (struct type **)
7367 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
7368 * sizeof (struct type *));
7369 if (ndim == 0)
7370 make_cleanup (free_current_contents, &range_types);
7371 }
7372 range_types[ndim++] = child_type;
7373 }
7374 }
7375 child_die = sibling_die (child_die);
7376 }
7377
7378 /* Dwarf2 dimensions are output from left to right, create the
7379 necessary array types in backwards order. */
7380
7381 type = element_type;
7382
7383 if (read_array_order (die, cu) == DW_ORD_col_major)
7384 {
7385 int i = 0;
7386
7387 while (i < ndim)
7388 type = create_array_type (NULL, type, range_types[i++]);
7389 }
7390 else
7391 {
7392 while (ndim-- > 0)
7393 type = create_array_type (NULL, type, range_types[ndim]);
7394 }
7395
7396 /* Understand Dwarf2 support for vector types (like they occur on
7397 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
7398 array type. This is not part of the Dwarf2/3 standard yet, but a
7399 custom vendor extension. The main difference between a regular
7400 array and the vector variant is that vectors are passed by value
7401 to functions. */
7402 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
7403 if (attr)
7404 make_vector_type (type);
7405
7406 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
7407 implementation may choose to implement triple vectors using this
7408 attribute. */
7409 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7410 if (attr)
7411 {
7412 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
7413 TYPE_LENGTH (type) = DW_UNSND (attr);
7414 else
7415 complaint (&symfile_complaints,
7416 _("DW_AT_byte_size for array type smaller "
7417 "than the total size of elements"));
7418 }
7419
7420 name = dwarf2_name (die, cu);
7421 if (name)
7422 TYPE_NAME (type) = name;
7423
7424 /* Install the type in the die. */
7425 set_die_type (die, type, cu);
7426
7427 /* set_die_type should be already done. */
7428 set_descriptive_type (type, die, cu);
7429
7430 do_cleanups (back_to);
7431
7432 return type;
7433 }
7434
7435 static enum dwarf_array_dim_ordering
7436 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7437 {
7438 struct attribute *attr;
7439
7440 attr = dwarf2_attr (die, DW_AT_ordering, cu);
7441
7442 if (attr) return DW_SND (attr);
7443
7444 /* GNU F77 is a special case, as at 08/2004 array type info is the
7445 opposite order to the dwarf2 specification, but data is still
7446 laid out as per normal fortran.
7447
7448 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
7449 version checking. */
7450
7451 if (cu->language == language_fortran
7452 && cu->producer && strstr (cu->producer, "GNU F77"))
7453 {
7454 return DW_ORD_row_major;
7455 }
7456
7457 switch (cu->language_defn->la_array_ordering)
7458 {
7459 case array_column_major:
7460 return DW_ORD_col_major;
7461 case array_row_major:
7462 default:
7463 return DW_ORD_row_major;
7464 };
7465 }
7466
7467 /* Extract all information from a DW_TAG_set_type DIE and put it in
7468 the DIE's type field. */
7469
7470 static struct type *
7471 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
7472 {
7473 struct type *domain_type, *set_type;
7474 struct attribute *attr;
7475
7476 domain_type = die_type (die, cu);
7477
7478 /* The die_type call above may have already set the type for this DIE. */
7479 set_type = get_die_type (die, cu);
7480 if (set_type)
7481 return set_type;
7482
7483 set_type = create_set_type (NULL, domain_type);
7484
7485 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7486 if (attr)
7487 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7488
7489 return set_die_type (die, set_type, cu);
7490 }
7491
7492 /* First cut: install each common block member as a global variable. */
7493
7494 static void
7495 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
7496 {
7497 struct die_info *child_die;
7498 struct attribute *attr;
7499 struct symbol *sym;
7500 CORE_ADDR base = (CORE_ADDR) 0;
7501
7502 attr = dwarf2_attr (die, DW_AT_location, cu);
7503 if (attr)
7504 {
7505 /* Support the .debug_loc offsets. */
7506 if (attr_form_is_block (attr))
7507 {
7508 base = decode_locdesc (DW_BLOCK (attr), cu);
7509 }
7510 else if (attr_form_is_section_offset (attr))
7511 {
7512 dwarf2_complex_location_expr_complaint ();
7513 }
7514 else
7515 {
7516 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
7517 "common block member");
7518 }
7519 }
7520 if (die->child != NULL)
7521 {
7522 child_die = die->child;
7523 while (child_die && child_die->tag)
7524 {
7525 sym = new_symbol (child_die, NULL, cu);
7526 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
7527 if (sym != NULL && attr != NULL)
7528 {
7529 CORE_ADDR byte_offset = 0;
7530
7531 if (attr_form_is_section_offset (attr))
7532 dwarf2_complex_location_expr_complaint ();
7533 else if (attr_form_is_constant (attr))
7534 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
7535 else if (attr_form_is_block (attr))
7536 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
7537 else
7538 dwarf2_complex_location_expr_complaint ();
7539
7540 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
7541 add_symbol_to_list (sym, &global_symbols);
7542 }
7543 child_die = sibling_die (child_die);
7544 }
7545 }
7546 }
7547
7548 /* Create a type for a C++ namespace. */
7549
7550 static struct type *
7551 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
7552 {
7553 struct objfile *objfile = cu->objfile;
7554 const char *previous_prefix, *name;
7555 int is_anonymous;
7556 struct type *type;
7557
7558 /* For extensions, reuse the type of the original namespace. */
7559 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
7560 {
7561 struct die_info *ext_die;
7562 struct dwarf2_cu *ext_cu = cu;
7563
7564 ext_die = dwarf2_extension (die, &ext_cu);
7565 type = read_type_die (ext_die, ext_cu);
7566
7567 /* EXT_CU may not be the same as CU.
7568 Ensure TYPE is recorded in CU's type_hash table. */
7569 return set_die_type (die, type, cu);
7570 }
7571
7572 name = namespace_name (die, &is_anonymous, cu);
7573
7574 /* Now build the name of the current namespace. */
7575
7576 previous_prefix = determine_prefix (die, cu);
7577 if (previous_prefix[0] != '\0')
7578 name = typename_concat (&objfile->objfile_obstack,
7579 previous_prefix, name, 0, cu);
7580
7581 /* Create the type. */
7582 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
7583 objfile);
7584 TYPE_NAME (type) = (char *) name;
7585 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7586
7587 return set_die_type (die, type, cu);
7588 }
7589
7590 /* Read a C++ namespace. */
7591
7592 static void
7593 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
7594 {
7595 struct objfile *objfile = cu->objfile;
7596 int is_anonymous;
7597
7598 /* Add a symbol associated to this if we haven't seen the namespace
7599 before. Also, add a using directive if it's an anonymous
7600 namespace. */
7601
7602 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
7603 {
7604 struct type *type;
7605
7606 type = read_type_die (die, cu);
7607 new_symbol (die, type, cu);
7608
7609 namespace_name (die, &is_anonymous, cu);
7610 if (is_anonymous)
7611 {
7612 const char *previous_prefix = determine_prefix (die, cu);
7613
7614 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
7615 NULL, &objfile->objfile_obstack);
7616 }
7617 }
7618
7619 if (die->child != NULL)
7620 {
7621 struct die_info *child_die = die->child;
7622
7623 while (child_die && child_die->tag)
7624 {
7625 process_die (child_die, cu);
7626 child_die = sibling_die (child_die);
7627 }
7628 }
7629 }
7630
7631 /* Read a Fortran module as type. This DIE can be only a declaration used for
7632 imported module. Still we need that type as local Fortran "use ... only"
7633 declaration imports depend on the created type in determine_prefix. */
7634
7635 static struct type *
7636 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
7637 {
7638 struct objfile *objfile = cu->objfile;
7639 char *module_name;
7640 struct type *type;
7641
7642 module_name = dwarf2_name (die, cu);
7643 if (!module_name)
7644 complaint (&symfile_complaints,
7645 _("DW_TAG_module has no name, offset 0x%x"),
7646 die->offset);
7647 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
7648
7649 /* determine_prefix uses TYPE_TAG_NAME. */
7650 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7651
7652 return set_die_type (die, type, cu);
7653 }
7654
7655 /* Read a Fortran module. */
7656
7657 static void
7658 read_module (struct die_info *die, struct dwarf2_cu *cu)
7659 {
7660 struct die_info *child_die = die->child;
7661
7662 while (child_die && child_die->tag)
7663 {
7664 process_die (child_die, cu);
7665 child_die = sibling_die (child_die);
7666 }
7667 }
7668
7669 /* Return the name of the namespace represented by DIE. Set
7670 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
7671 namespace. */
7672
7673 static const char *
7674 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
7675 {
7676 struct die_info *current_die;
7677 const char *name = NULL;
7678
7679 /* Loop through the extensions until we find a name. */
7680
7681 for (current_die = die;
7682 current_die != NULL;
7683 current_die = dwarf2_extension (die, &cu))
7684 {
7685 name = dwarf2_name (current_die, cu);
7686 if (name != NULL)
7687 break;
7688 }
7689
7690 /* Is it an anonymous namespace? */
7691
7692 *is_anonymous = (name == NULL);
7693 if (*is_anonymous)
7694 name = "(anonymous namespace)";
7695
7696 return name;
7697 }
7698
7699 /* Extract all information from a DW_TAG_pointer_type DIE and add to
7700 the user defined type vector. */
7701
7702 static struct type *
7703 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
7704 {
7705 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
7706 struct comp_unit_head *cu_header = &cu->header;
7707 struct type *type;
7708 struct attribute *attr_byte_size;
7709 struct attribute *attr_address_class;
7710 int byte_size, addr_class;
7711 struct type *target_type;
7712
7713 target_type = die_type (die, cu);
7714
7715 /* The die_type call above may have already set the type for this DIE. */
7716 type = get_die_type (die, cu);
7717 if (type)
7718 return type;
7719
7720 type = lookup_pointer_type (target_type);
7721
7722 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
7723 if (attr_byte_size)
7724 byte_size = DW_UNSND (attr_byte_size);
7725 else
7726 byte_size = cu_header->addr_size;
7727
7728 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
7729 if (attr_address_class)
7730 addr_class = DW_UNSND (attr_address_class);
7731 else
7732 addr_class = DW_ADDR_none;
7733
7734 /* If the pointer size or address class is different than the
7735 default, create a type variant marked as such and set the
7736 length accordingly. */
7737 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
7738 {
7739 if (gdbarch_address_class_type_flags_p (gdbarch))
7740 {
7741 int type_flags;
7742
7743 type_flags = gdbarch_address_class_type_flags
7744 (gdbarch, byte_size, addr_class);
7745 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
7746 == 0);
7747 type = make_type_with_address_space (type, type_flags);
7748 }
7749 else if (TYPE_LENGTH (type) != byte_size)
7750 {
7751 complaint (&symfile_complaints,
7752 _("invalid pointer size %d"), byte_size);
7753 }
7754 else
7755 {
7756 /* Should we also complain about unhandled address classes? */
7757 }
7758 }
7759
7760 TYPE_LENGTH (type) = byte_size;
7761 return set_die_type (die, type, cu);
7762 }
7763
7764 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
7765 the user defined type vector. */
7766
7767 static struct type *
7768 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
7769 {
7770 struct type *type;
7771 struct type *to_type;
7772 struct type *domain;
7773
7774 to_type = die_type (die, cu);
7775 domain = die_containing_type (die, cu);
7776
7777 /* The calls above may have already set the type for this DIE. */
7778 type = get_die_type (die, cu);
7779 if (type)
7780 return type;
7781
7782 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
7783 type = lookup_methodptr_type (to_type);
7784 else
7785 type = lookup_memberptr_type (to_type, domain);
7786
7787 return set_die_type (die, type, cu);
7788 }
7789
7790 /* Extract all information from a DW_TAG_reference_type DIE and add to
7791 the user defined type vector. */
7792
7793 static struct type *
7794 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
7795 {
7796 struct comp_unit_head *cu_header = &cu->header;
7797 struct type *type, *target_type;
7798 struct attribute *attr;
7799
7800 target_type = die_type (die, cu);
7801
7802 /* The die_type call above may have already set the type for this DIE. */
7803 type = get_die_type (die, cu);
7804 if (type)
7805 return type;
7806
7807 type = lookup_reference_type (target_type);
7808 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7809 if (attr)
7810 {
7811 TYPE_LENGTH (type) = DW_UNSND (attr);
7812 }
7813 else
7814 {
7815 TYPE_LENGTH (type) = cu_header->addr_size;
7816 }
7817 return set_die_type (die, type, cu);
7818 }
7819
7820 static struct type *
7821 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
7822 {
7823 struct type *base_type, *cv_type;
7824
7825 base_type = die_type (die, cu);
7826
7827 /* The die_type call above may have already set the type for this DIE. */
7828 cv_type = get_die_type (die, cu);
7829 if (cv_type)
7830 return cv_type;
7831
7832 /* In case the const qualifier is applied to an array type, the element type
7833 is so qualified, not the array type (section 6.7.3 of C99). */
7834 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
7835 {
7836 struct type *el_type, *inner_array;
7837
7838 base_type = copy_type (base_type);
7839 inner_array = base_type;
7840
7841 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
7842 {
7843 TYPE_TARGET_TYPE (inner_array) =
7844 copy_type (TYPE_TARGET_TYPE (inner_array));
7845 inner_array = TYPE_TARGET_TYPE (inner_array);
7846 }
7847
7848 el_type = TYPE_TARGET_TYPE (inner_array);
7849 TYPE_TARGET_TYPE (inner_array) =
7850 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
7851
7852 return set_die_type (die, base_type, cu);
7853 }
7854
7855 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
7856 return set_die_type (die, cv_type, cu);
7857 }
7858
7859 static struct type *
7860 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
7861 {
7862 struct type *base_type, *cv_type;
7863
7864 base_type = die_type (die, cu);
7865
7866 /* The die_type call above may have already set the type for this DIE. */
7867 cv_type = get_die_type (die, cu);
7868 if (cv_type)
7869 return cv_type;
7870
7871 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
7872 return set_die_type (die, cv_type, cu);
7873 }
7874
7875 /* Extract all information from a DW_TAG_string_type DIE and add to
7876 the user defined type vector. It isn't really a user defined type,
7877 but it behaves like one, with other DIE's using an AT_user_def_type
7878 attribute to reference it. */
7879
7880 static struct type *
7881 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
7882 {
7883 struct objfile *objfile = cu->objfile;
7884 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7885 struct type *type, *range_type, *index_type, *char_type;
7886 struct attribute *attr;
7887 unsigned int length;
7888
7889 attr = dwarf2_attr (die, DW_AT_string_length, cu);
7890 if (attr)
7891 {
7892 length = DW_UNSND (attr);
7893 }
7894 else
7895 {
7896 /* Check for the DW_AT_byte_size attribute. */
7897 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7898 if (attr)
7899 {
7900 length = DW_UNSND (attr);
7901 }
7902 else
7903 {
7904 length = 1;
7905 }
7906 }
7907
7908 index_type = objfile_type (objfile)->builtin_int;
7909 range_type = create_range_type (NULL, index_type, 1, length);
7910 char_type = language_string_char_type (cu->language_defn, gdbarch);
7911 type = create_string_type (NULL, char_type, range_type);
7912
7913 return set_die_type (die, type, cu);
7914 }
7915
7916 /* Handle DIES due to C code like:
7917
7918 struct foo
7919 {
7920 int (*funcp)(int a, long l);
7921 int b;
7922 };
7923
7924 ('funcp' generates a DW_TAG_subroutine_type DIE). */
7925
7926 static struct type *
7927 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
7928 {
7929 struct type *type; /* Type that this function returns. */
7930 struct type *ftype; /* Function that returns above type. */
7931 struct attribute *attr;
7932
7933 type = die_type (die, cu);
7934
7935 /* The die_type call above may have already set the type for this DIE. */
7936 ftype = get_die_type (die, cu);
7937 if (ftype)
7938 return ftype;
7939
7940 ftype = lookup_function_type (type);
7941
7942 /* All functions in C++, Pascal and Java have prototypes. */
7943 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
7944 if ((attr && (DW_UNSND (attr) != 0))
7945 || cu->language == language_cplus
7946 || cu->language == language_java
7947 || cu->language == language_pascal)
7948 TYPE_PROTOTYPED (ftype) = 1;
7949 else if (producer_is_realview (cu->producer))
7950 /* RealView does not emit DW_AT_prototyped. We can not
7951 distinguish prototyped and unprototyped functions; default to
7952 prototyped, since that is more common in modern code (and
7953 RealView warns about unprototyped functions). */
7954 TYPE_PROTOTYPED (ftype) = 1;
7955
7956 /* Store the calling convention in the type if it's available in
7957 the subroutine die. Otherwise set the calling convention to
7958 the default value DW_CC_normal. */
7959 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
7960 if (attr)
7961 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
7962 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
7963 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
7964 else
7965 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
7966
7967 /* We need to add the subroutine type to the die immediately so
7968 we don't infinitely recurse when dealing with parameters
7969 declared as the same subroutine type. */
7970 set_die_type (die, ftype, cu);
7971
7972 if (die->child != NULL)
7973 {
7974 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
7975 struct die_info *child_die;
7976 int nparams, iparams;
7977
7978 /* Count the number of parameters.
7979 FIXME: GDB currently ignores vararg functions, but knows about
7980 vararg member functions. */
7981 nparams = 0;
7982 child_die = die->child;
7983 while (child_die && child_die->tag)
7984 {
7985 if (child_die->tag == DW_TAG_formal_parameter)
7986 nparams++;
7987 else if (child_die->tag == DW_TAG_unspecified_parameters)
7988 TYPE_VARARGS (ftype) = 1;
7989 child_die = sibling_die (child_die);
7990 }
7991
7992 /* Allocate storage for parameters and fill them in. */
7993 TYPE_NFIELDS (ftype) = nparams;
7994 TYPE_FIELDS (ftype) = (struct field *)
7995 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
7996
7997 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
7998 even if we error out during the parameters reading below. */
7999 for (iparams = 0; iparams < nparams; iparams++)
8000 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
8001
8002 iparams = 0;
8003 child_die = die->child;
8004 while (child_die && child_die->tag)
8005 {
8006 if (child_die->tag == DW_TAG_formal_parameter)
8007 {
8008 struct type *arg_type;
8009
8010 /* DWARF version 2 has no clean way to discern C++
8011 static and non-static member functions. G++ helps
8012 GDB by marking the first parameter for non-static
8013 member functions (which is the this pointer) as
8014 artificial. We pass this information to
8015 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
8016
8017 DWARF version 3 added DW_AT_object_pointer, which GCC
8018 4.5 does not yet generate. */
8019 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
8020 if (attr)
8021 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
8022 else
8023 {
8024 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
8025
8026 /* GCC/43521: In java, the formal parameter
8027 "this" is sometimes not marked with DW_AT_artificial. */
8028 if (cu->language == language_java)
8029 {
8030 const char *name = dwarf2_name (child_die, cu);
8031
8032 if (name && !strcmp (name, "this"))
8033 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
8034 }
8035 }
8036 arg_type = die_type (child_die, cu);
8037
8038 /* RealView does not mark THIS as const, which the testsuite
8039 expects. GCC marks THIS as const in method definitions,
8040 but not in the class specifications (GCC PR 43053). */
8041 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
8042 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
8043 {
8044 int is_this = 0;
8045 struct dwarf2_cu *arg_cu = cu;
8046 const char *name = dwarf2_name (child_die, cu);
8047
8048 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
8049 if (attr)
8050 {
8051 /* If the compiler emits this, use it. */
8052 if (follow_die_ref (die, attr, &arg_cu) == child_die)
8053 is_this = 1;
8054 }
8055 else if (name && strcmp (name, "this") == 0)
8056 /* Function definitions will have the argument names. */
8057 is_this = 1;
8058 else if (name == NULL && iparams == 0)
8059 /* Declarations may not have the names, so like
8060 elsewhere in GDB, assume an artificial first
8061 argument is "this". */
8062 is_this = 1;
8063
8064 if (is_this)
8065 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
8066 arg_type, 0);
8067 }
8068
8069 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
8070 iparams++;
8071 }
8072 child_die = sibling_die (child_die);
8073 }
8074 }
8075
8076 return ftype;
8077 }
8078
8079 static struct type *
8080 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
8081 {
8082 struct objfile *objfile = cu->objfile;
8083 const char *name = NULL;
8084 struct type *this_type;
8085
8086 name = dwarf2_full_name (NULL, die, cu);
8087 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
8088 TYPE_FLAG_TARGET_STUB, NULL, objfile);
8089 TYPE_NAME (this_type) = (char *) name;
8090 set_die_type (die, this_type, cu);
8091 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
8092 return this_type;
8093 }
8094
8095 /* Find a representation of a given base type and install
8096 it in the TYPE field of the die. */
8097
8098 static struct type *
8099 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
8100 {
8101 struct objfile *objfile = cu->objfile;
8102 struct type *type;
8103 struct attribute *attr;
8104 int encoding = 0, size = 0;
8105 char *name;
8106 enum type_code code = TYPE_CODE_INT;
8107 int type_flags = 0;
8108 struct type *target_type = NULL;
8109
8110 attr = dwarf2_attr (die, DW_AT_encoding, cu);
8111 if (attr)
8112 {
8113 encoding = DW_UNSND (attr);
8114 }
8115 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8116 if (attr)
8117 {
8118 size = DW_UNSND (attr);
8119 }
8120 name = dwarf2_name (die, cu);
8121 if (!name)
8122 {
8123 complaint (&symfile_complaints,
8124 _("DW_AT_name missing from DW_TAG_base_type"));
8125 }
8126
8127 switch (encoding)
8128 {
8129 case DW_ATE_address:
8130 /* Turn DW_ATE_address into a void * pointer. */
8131 code = TYPE_CODE_PTR;
8132 type_flags |= TYPE_FLAG_UNSIGNED;
8133 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
8134 break;
8135 case DW_ATE_boolean:
8136 code = TYPE_CODE_BOOL;
8137 type_flags |= TYPE_FLAG_UNSIGNED;
8138 break;
8139 case DW_ATE_complex_float:
8140 code = TYPE_CODE_COMPLEX;
8141 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
8142 break;
8143 case DW_ATE_decimal_float:
8144 code = TYPE_CODE_DECFLOAT;
8145 break;
8146 case DW_ATE_float:
8147 code = TYPE_CODE_FLT;
8148 break;
8149 case DW_ATE_signed:
8150 break;
8151 case DW_ATE_unsigned:
8152 type_flags |= TYPE_FLAG_UNSIGNED;
8153 break;
8154 case DW_ATE_signed_char:
8155 if (cu->language == language_ada || cu->language == language_m2
8156 || cu->language == language_pascal)
8157 code = TYPE_CODE_CHAR;
8158 break;
8159 case DW_ATE_unsigned_char:
8160 if (cu->language == language_ada || cu->language == language_m2
8161 || cu->language == language_pascal)
8162 code = TYPE_CODE_CHAR;
8163 type_flags |= TYPE_FLAG_UNSIGNED;
8164 break;
8165 case DW_ATE_UTF:
8166 /* We just treat this as an integer and then recognize the
8167 type by name elsewhere. */
8168 break;
8169
8170 default:
8171 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
8172 dwarf_type_encoding_name (encoding));
8173 break;
8174 }
8175
8176 type = init_type (code, size, type_flags, NULL, objfile);
8177 TYPE_NAME (type) = name;
8178 TYPE_TARGET_TYPE (type) = target_type;
8179
8180 if (name && strcmp (name, "char") == 0)
8181 TYPE_NOSIGN (type) = 1;
8182
8183 return set_die_type (die, type, cu);
8184 }
8185
8186 /* Read the given DW_AT_subrange DIE. */
8187
8188 static struct type *
8189 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
8190 {
8191 struct type *base_type;
8192 struct type *range_type;
8193 struct attribute *attr;
8194 LONGEST low = 0;
8195 LONGEST high = -1;
8196 char *name;
8197 LONGEST negative_mask;
8198
8199 base_type = die_type (die, cu);
8200 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
8201 check_typedef (base_type);
8202
8203 /* The die_type call above may have already set the type for this DIE. */
8204 range_type = get_die_type (die, cu);
8205 if (range_type)
8206 return range_type;
8207
8208 if (cu->language == language_fortran)
8209 {
8210 /* FORTRAN implies a lower bound of 1, if not given. */
8211 low = 1;
8212 }
8213
8214 /* FIXME: For variable sized arrays either of these could be
8215 a variable rather than a constant value. We'll allow it,
8216 but we don't know how to handle it. */
8217 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
8218 if (attr)
8219 low = dwarf2_get_attr_constant_value (attr, 0);
8220
8221 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
8222 if (attr)
8223 {
8224 if (attr->form == DW_FORM_block1 || is_ref_attr (attr))
8225 {
8226 /* GCC encodes arrays with unspecified or dynamic length
8227 with a DW_FORM_block1 attribute or a reference attribute.
8228 FIXME: GDB does not yet know how to handle dynamic
8229 arrays properly, treat them as arrays with unspecified
8230 length for now.
8231
8232 FIXME: jimb/2003-09-22: GDB does not really know
8233 how to handle arrays of unspecified length
8234 either; we just represent them as zero-length
8235 arrays. Choose an appropriate upper bound given
8236 the lower bound we've computed above. */
8237 high = low - 1;
8238 }
8239 else
8240 high = dwarf2_get_attr_constant_value (attr, 1);
8241 }
8242 else
8243 {
8244 attr = dwarf2_attr (die, DW_AT_count, cu);
8245 if (attr)
8246 {
8247 int count = dwarf2_get_attr_constant_value (attr, 1);
8248 high = low + count - 1;
8249 }
8250 else
8251 {
8252 /* Unspecified array length. */
8253 high = low - 1;
8254 }
8255 }
8256
8257 /* Dwarf-2 specifications explicitly allows to create subrange types
8258 without specifying a base type.
8259 In that case, the base type must be set to the type of
8260 the lower bound, upper bound or count, in that order, if any of these
8261 three attributes references an object that has a type.
8262 If no base type is found, the Dwarf-2 specifications say that
8263 a signed integer type of size equal to the size of an address should
8264 be used.
8265 For the following C code: `extern char gdb_int [];'
8266 GCC produces an empty range DIE.
8267 FIXME: muller/2010-05-28: Possible references to object for low bound,
8268 high bound or count are not yet handled by this code. */
8269 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
8270 {
8271 struct objfile *objfile = cu->objfile;
8272 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8273 int addr_size = gdbarch_addr_bit (gdbarch) /8;
8274 struct type *int_type = objfile_type (objfile)->builtin_int;
8275
8276 /* Test "int", "long int", and "long long int" objfile types,
8277 and select the first one having a size above or equal to the
8278 architecture address size. */
8279 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8280 base_type = int_type;
8281 else
8282 {
8283 int_type = objfile_type (objfile)->builtin_long;
8284 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8285 base_type = int_type;
8286 else
8287 {
8288 int_type = objfile_type (objfile)->builtin_long_long;
8289 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8290 base_type = int_type;
8291 }
8292 }
8293 }
8294
8295 negative_mask =
8296 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
8297 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
8298 low |= negative_mask;
8299 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
8300 high |= negative_mask;
8301
8302 range_type = create_range_type (NULL, base_type, low, high);
8303
8304 /* Mark arrays with dynamic length at least as an array of unspecified
8305 length. GDB could check the boundary but before it gets implemented at
8306 least allow accessing the array elements. */
8307 if (attr && attr->form == DW_FORM_block1)
8308 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8309
8310 /* Ada expects an empty array on no boundary attributes. */
8311 if (attr == NULL && cu->language != language_ada)
8312 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8313
8314 name = dwarf2_name (die, cu);
8315 if (name)
8316 TYPE_NAME (range_type) = name;
8317
8318 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8319 if (attr)
8320 TYPE_LENGTH (range_type) = DW_UNSND (attr);
8321
8322 set_die_type (die, range_type, cu);
8323
8324 /* set_die_type should be already done. */
8325 set_descriptive_type (range_type, die, cu);
8326
8327 return range_type;
8328 }
8329
8330 static struct type *
8331 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
8332 {
8333 struct type *type;
8334
8335 /* For now, we only support the C meaning of an unspecified type: void. */
8336
8337 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
8338 TYPE_NAME (type) = dwarf2_name (die, cu);
8339
8340 return set_die_type (die, type, cu);
8341 }
8342
8343 /* Trivial hash function for die_info: the hash value of a DIE
8344 is its offset in .debug_info for this objfile. */
8345
8346 static hashval_t
8347 die_hash (const void *item)
8348 {
8349 const struct die_info *die = item;
8350
8351 return die->offset;
8352 }
8353
8354 /* Trivial comparison function for die_info structures: two DIEs
8355 are equal if they have the same offset. */
8356
8357 static int
8358 die_eq (const void *item_lhs, const void *item_rhs)
8359 {
8360 const struct die_info *die_lhs = item_lhs;
8361 const struct die_info *die_rhs = item_rhs;
8362
8363 return die_lhs->offset == die_rhs->offset;
8364 }
8365
8366 /* Read a whole compilation unit into a linked list of dies. */
8367
8368 static struct die_info *
8369 read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
8370 {
8371 struct die_reader_specs reader_specs;
8372 int read_abbrevs = 0;
8373 struct cleanup *back_to = NULL;
8374 struct die_info *die;
8375
8376 if (cu->dwarf2_abbrevs == NULL)
8377 {
8378 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
8379 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
8380 read_abbrevs = 1;
8381 }
8382
8383 gdb_assert (cu->die_hash == NULL);
8384 cu->die_hash
8385 = htab_create_alloc_ex (cu->header.length / 12,
8386 die_hash,
8387 die_eq,
8388 NULL,
8389 &cu->comp_unit_obstack,
8390 hashtab_obstack_allocate,
8391 dummy_obstack_deallocate);
8392
8393 init_cu_die_reader (&reader_specs, cu);
8394
8395 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
8396
8397 if (read_abbrevs)
8398 do_cleanups (back_to);
8399
8400 return die;
8401 }
8402
8403 /* Main entry point for reading a DIE and all children.
8404 Read the DIE and dump it if requested. */
8405
8406 static struct die_info *
8407 read_die_and_children (const struct die_reader_specs *reader,
8408 gdb_byte *info_ptr,
8409 gdb_byte **new_info_ptr,
8410 struct die_info *parent)
8411 {
8412 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
8413 new_info_ptr, parent);
8414
8415 if (dwarf2_die_debug)
8416 {
8417 fprintf_unfiltered (gdb_stdlog,
8418 "\nRead die from %s of %s:\n",
8419 reader->buffer == dwarf2_per_objfile->info.buffer
8420 ? ".debug_info"
8421 : reader->buffer == dwarf2_per_objfile->types.buffer
8422 ? ".debug_types"
8423 : "unknown section",
8424 reader->abfd->filename);
8425 dump_die (result, dwarf2_die_debug);
8426 }
8427
8428 return result;
8429 }
8430
8431 /* Read a single die and all its descendents. Set the die's sibling
8432 field to NULL; set other fields in the die correctly, and set all
8433 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
8434 location of the info_ptr after reading all of those dies. PARENT
8435 is the parent of the die in question. */
8436
8437 static struct die_info *
8438 read_die_and_children_1 (const struct die_reader_specs *reader,
8439 gdb_byte *info_ptr,
8440 gdb_byte **new_info_ptr,
8441 struct die_info *parent)
8442 {
8443 struct die_info *die;
8444 gdb_byte *cur_ptr;
8445 int has_children;
8446
8447 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
8448 if (die == NULL)
8449 {
8450 *new_info_ptr = cur_ptr;
8451 return NULL;
8452 }
8453 store_in_ref_table (die, reader->cu);
8454
8455 if (has_children)
8456 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
8457 else
8458 {
8459 die->child = NULL;
8460 *new_info_ptr = cur_ptr;
8461 }
8462
8463 die->sibling = NULL;
8464 die->parent = parent;
8465 return die;
8466 }
8467
8468 /* Read a die, all of its descendents, and all of its siblings; set
8469 all of the fields of all of the dies correctly. Arguments are as
8470 in read_die_and_children. */
8471
8472 static struct die_info *
8473 read_die_and_siblings (const struct die_reader_specs *reader,
8474 gdb_byte *info_ptr,
8475 gdb_byte **new_info_ptr,
8476 struct die_info *parent)
8477 {
8478 struct die_info *first_die, *last_sibling;
8479 gdb_byte *cur_ptr;
8480
8481 cur_ptr = info_ptr;
8482 first_die = last_sibling = NULL;
8483
8484 while (1)
8485 {
8486 struct die_info *die
8487 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
8488
8489 if (die == NULL)
8490 {
8491 *new_info_ptr = cur_ptr;
8492 return first_die;
8493 }
8494
8495 if (!first_die)
8496 first_die = die;
8497 else
8498 last_sibling->sibling = die;
8499
8500 last_sibling = die;
8501 }
8502 }
8503
8504 /* Read the die from the .debug_info section buffer. Set DIEP to
8505 point to a newly allocated die with its information, except for its
8506 child, sibling, and parent fields. Set HAS_CHILDREN to tell
8507 whether the die has children or not. */
8508
8509 static gdb_byte *
8510 read_full_die (const struct die_reader_specs *reader,
8511 struct die_info **diep, gdb_byte *info_ptr,
8512 int *has_children)
8513 {
8514 unsigned int abbrev_number, bytes_read, i, offset;
8515 struct abbrev_info *abbrev;
8516 struct die_info *die;
8517 struct dwarf2_cu *cu = reader->cu;
8518 bfd *abfd = reader->abfd;
8519
8520 offset = info_ptr - reader->buffer;
8521 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8522 info_ptr += bytes_read;
8523 if (!abbrev_number)
8524 {
8525 *diep = NULL;
8526 *has_children = 0;
8527 return info_ptr;
8528 }
8529
8530 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
8531 if (!abbrev)
8532 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
8533 abbrev_number,
8534 bfd_get_filename (abfd));
8535
8536 die = dwarf_alloc_die (cu, abbrev->num_attrs);
8537 die->offset = offset;
8538 die->tag = abbrev->tag;
8539 die->abbrev = abbrev_number;
8540
8541 die->num_attrs = abbrev->num_attrs;
8542
8543 for (i = 0; i < abbrev->num_attrs; ++i)
8544 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
8545 abfd, info_ptr, cu);
8546
8547 *diep = die;
8548 *has_children = abbrev->has_children;
8549 return info_ptr;
8550 }
8551
8552 /* In DWARF version 2, the description of the debugging information is
8553 stored in a separate .debug_abbrev section. Before we read any
8554 dies from a section we read in all abbreviations and install them
8555 in a hash table. This function also sets flags in CU describing
8556 the data found in the abbrev table. */
8557
8558 static void
8559 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
8560 {
8561 struct comp_unit_head *cu_header = &cu->header;
8562 gdb_byte *abbrev_ptr;
8563 struct abbrev_info *cur_abbrev;
8564 unsigned int abbrev_number, bytes_read, abbrev_name;
8565 unsigned int abbrev_form, hash_number;
8566 struct attr_abbrev *cur_attrs;
8567 unsigned int allocated_attrs;
8568
8569 /* Initialize dwarf2 abbrevs. */
8570 obstack_init (&cu->abbrev_obstack);
8571 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
8572 (ABBREV_HASH_SIZE
8573 * sizeof (struct abbrev_info *)));
8574 memset (cu->dwarf2_abbrevs, 0,
8575 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
8576
8577 dwarf2_read_section (dwarf2_per_objfile->objfile,
8578 &dwarf2_per_objfile->abbrev);
8579 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
8580 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8581 abbrev_ptr += bytes_read;
8582
8583 allocated_attrs = ATTR_ALLOC_CHUNK;
8584 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
8585
8586 /* Loop until we reach an abbrev number of 0. */
8587 while (abbrev_number)
8588 {
8589 cur_abbrev = dwarf_alloc_abbrev (cu);
8590
8591 /* read in abbrev header */
8592 cur_abbrev->number = abbrev_number;
8593 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8594 abbrev_ptr += bytes_read;
8595 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
8596 abbrev_ptr += 1;
8597
8598 if (cur_abbrev->tag == DW_TAG_namespace)
8599 cu->has_namespace_info = 1;
8600
8601 /* now read in declarations */
8602 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8603 abbrev_ptr += bytes_read;
8604 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8605 abbrev_ptr += bytes_read;
8606 while (abbrev_name)
8607 {
8608 if (cur_abbrev->num_attrs == allocated_attrs)
8609 {
8610 allocated_attrs += ATTR_ALLOC_CHUNK;
8611 cur_attrs
8612 = xrealloc (cur_attrs, (allocated_attrs
8613 * sizeof (struct attr_abbrev)));
8614 }
8615
8616 /* Record whether this compilation unit might have
8617 inter-compilation-unit references. If we don't know what form
8618 this attribute will have, then it might potentially be a
8619 DW_FORM_ref_addr, so we conservatively expect inter-CU
8620 references. */
8621
8622 if (abbrev_form == DW_FORM_ref_addr
8623 || abbrev_form == DW_FORM_indirect)
8624 cu->has_form_ref_addr = 1;
8625
8626 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
8627 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
8628 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8629 abbrev_ptr += bytes_read;
8630 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8631 abbrev_ptr += bytes_read;
8632 }
8633
8634 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
8635 (cur_abbrev->num_attrs
8636 * sizeof (struct attr_abbrev)));
8637 memcpy (cur_abbrev->attrs, cur_attrs,
8638 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
8639
8640 hash_number = abbrev_number % ABBREV_HASH_SIZE;
8641 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
8642 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
8643
8644 /* Get next abbreviation.
8645 Under Irix6 the abbreviations for a compilation unit are not
8646 always properly terminated with an abbrev number of 0.
8647 Exit loop if we encounter an abbreviation which we have
8648 already read (which means we are about to read the abbreviations
8649 for the next compile unit) or if the end of the abbreviation
8650 table is reached. */
8651 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
8652 >= dwarf2_per_objfile->abbrev.size)
8653 break;
8654 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8655 abbrev_ptr += bytes_read;
8656 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
8657 break;
8658 }
8659
8660 xfree (cur_attrs);
8661 }
8662
8663 /* Release the memory used by the abbrev table for a compilation unit. */
8664
8665 static void
8666 dwarf2_free_abbrev_table (void *ptr_to_cu)
8667 {
8668 struct dwarf2_cu *cu = ptr_to_cu;
8669
8670 obstack_free (&cu->abbrev_obstack, NULL);
8671 cu->dwarf2_abbrevs = NULL;
8672 }
8673
8674 /* Lookup an abbrev_info structure in the abbrev hash table. */
8675
8676 static struct abbrev_info *
8677 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
8678 {
8679 unsigned int hash_number;
8680 struct abbrev_info *abbrev;
8681
8682 hash_number = number % ABBREV_HASH_SIZE;
8683 abbrev = cu->dwarf2_abbrevs[hash_number];
8684
8685 while (abbrev)
8686 {
8687 if (abbrev->number == number)
8688 return abbrev;
8689 else
8690 abbrev = abbrev->next;
8691 }
8692 return NULL;
8693 }
8694
8695 /* Returns nonzero if TAG represents a type that we might generate a partial
8696 symbol for. */
8697
8698 static int
8699 is_type_tag_for_partial (int tag)
8700 {
8701 switch (tag)
8702 {
8703 #if 0
8704 /* Some types that would be reasonable to generate partial symbols for,
8705 that we don't at present. */
8706 case DW_TAG_array_type:
8707 case DW_TAG_file_type:
8708 case DW_TAG_ptr_to_member_type:
8709 case DW_TAG_set_type:
8710 case DW_TAG_string_type:
8711 case DW_TAG_subroutine_type:
8712 #endif
8713 case DW_TAG_base_type:
8714 case DW_TAG_class_type:
8715 case DW_TAG_interface_type:
8716 case DW_TAG_enumeration_type:
8717 case DW_TAG_structure_type:
8718 case DW_TAG_subrange_type:
8719 case DW_TAG_typedef:
8720 case DW_TAG_union_type:
8721 return 1;
8722 default:
8723 return 0;
8724 }
8725 }
8726
8727 /* Load all DIEs that are interesting for partial symbols into memory. */
8728
8729 static struct partial_die_info *
8730 load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
8731 int building_psymtab, struct dwarf2_cu *cu)
8732 {
8733 struct partial_die_info *part_die;
8734 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
8735 struct abbrev_info *abbrev;
8736 unsigned int bytes_read;
8737 unsigned int load_all = 0;
8738
8739 int nesting_level = 1;
8740
8741 parent_die = NULL;
8742 last_die = NULL;
8743
8744 if (cu->per_cu && cu->per_cu->load_all_dies)
8745 load_all = 1;
8746
8747 cu->partial_dies
8748 = htab_create_alloc_ex (cu->header.length / 12,
8749 partial_die_hash,
8750 partial_die_eq,
8751 NULL,
8752 &cu->comp_unit_obstack,
8753 hashtab_obstack_allocate,
8754 dummy_obstack_deallocate);
8755
8756 part_die = obstack_alloc (&cu->comp_unit_obstack,
8757 sizeof (struct partial_die_info));
8758
8759 while (1)
8760 {
8761 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
8762
8763 /* A NULL abbrev means the end of a series of children. */
8764 if (abbrev == NULL)
8765 {
8766 if (--nesting_level == 0)
8767 {
8768 /* PART_DIE was probably the last thing allocated on the
8769 comp_unit_obstack, so we could call obstack_free
8770 here. We don't do that because the waste is small,
8771 and will be cleaned up when we're done with this
8772 compilation unit. This way, we're also more robust
8773 against other users of the comp_unit_obstack. */
8774 return first_die;
8775 }
8776 info_ptr += bytes_read;
8777 last_die = parent_die;
8778 parent_die = parent_die->die_parent;
8779 continue;
8780 }
8781
8782 /* Check for template arguments. We never save these; if
8783 they're seen, we just mark the parent, and go on our way. */
8784 if (parent_die != NULL
8785 && cu->language == language_cplus
8786 && (abbrev->tag == DW_TAG_template_type_param
8787 || abbrev->tag == DW_TAG_template_value_param))
8788 {
8789 parent_die->has_template_arguments = 1;
8790
8791 if (!load_all)
8792 {
8793 /* We don't need a partial DIE for the template argument. */
8794 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
8795 cu);
8796 continue;
8797 }
8798 }
8799
8800 /* We only recurse into subprograms looking for template arguments.
8801 Skip their other children. */
8802 if (!load_all
8803 && cu->language == language_cplus
8804 && parent_die != NULL
8805 && parent_die->tag == DW_TAG_subprogram)
8806 {
8807 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8808 continue;
8809 }
8810
8811 /* Check whether this DIE is interesting enough to save. Normally
8812 we would not be interested in members here, but there may be
8813 later variables referencing them via DW_AT_specification (for
8814 static members). */
8815 if (!load_all
8816 && !is_type_tag_for_partial (abbrev->tag)
8817 && abbrev->tag != DW_TAG_constant
8818 && abbrev->tag != DW_TAG_enumerator
8819 && abbrev->tag != DW_TAG_subprogram
8820 && abbrev->tag != DW_TAG_lexical_block
8821 && abbrev->tag != DW_TAG_variable
8822 && abbrev->tag != DW_TAG_namespace
8823 && abbrev->tag != DW_TAG_module
8824 && abbrev->tag != DW_TAG_member)
8825 {
8826 /* Otherwise we skip to the next sibling, if any. */
8827 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8828 continue;
8829 }
8830
8831 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
8832 buffer, info_ptr, cu);
8833
8834 /* This two-pass algorithm for processing partial symbols has a
8835 high cost in cache pressure. Thus, handle some simple cases
8836 here which cover the majority of C partial symbols. DIEs
8837 which neither have specification tags in them, nor could have
8838 specification tags elsewhere pointing at them, can simply be
8839 processed and discarded.
8840
8841 This segment is also optional; scan_partial_symbols and
8842 add_partial_symbol will handle these DIEs if we chain
8843 them in normally. When compilers which do not emit large
8844 quantities of duplicate debug information are more common,
8845 this code can probably be removed. */
8846
8847 /* Any complete simple types at the top level (pretty much all
8848 of them, for a language without namespaces), can be processed
8849 directly. */
8850 if (parent_die == NULL
8851 && part_die->has_specification == 0
8852 && part_die->is_declaration == 0
8853 && (part_die->tag == DW_TAG_typedef
8854 || part_die->tag == DW_TAG_base_type
8855 || part_die->tag == DW_TAG_subrange_type))
8856 {
8857 if (building_psymtab && part_die->name != NULL)
8858 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
8859 VAR_DOMAIN, LOC_TYPEDEF,
8860 &cu->objfile->static_psymbols,
8861 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8862 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
8863 continue;
8864 }
8865
8866 /* If we're at the second level, and we're an enumerator, and
8867 our parent has no specification (meaning possibly lives in a
8868 namespace elsewhere), then we can add the partial symbol now
8869 instead of queueing it. */
8870 if (part_die->tag == DW_TAG_enumerator
8871 && parent_die != NULL
8872 && parent_die->die_parent == NULL
8873 && parent_die->tag == DW_TAG_enumeration_type
8874 && parent_die->has_specification == 0)
8875 {
8876 if (part_die->name == NULL)
8877 complaint (&symfile_complaints,
8878 _("malformed enumerator DIE ignored"));
8879 else if (building_psymtab)
8880 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
8881 VAR_DOMAIN, LOC_CONST,
8882 (cu->language == language_cplus
8883 || cu->language == language_java)
8884 ? &cu->objfile->global_psymbols
8885 : &cu->objfile->static_psymbols,
8886 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8887
8888 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
8889 continue;
8890 }
8891
8892 /* We'll save this DIE so link it in. */
8893 part_die->die_parent = parent_die;
8894 part_die->die_sibling = NULL;
8895 part_die->die_child = NULL;
8896
8897 if (last_die && last_die == parent_die)
8898 last_die->die_child = part_die;
8899 else if (last_die)
8900 last_die->die_sibling = part_die;
8901
8902 last_die = part_die;
8903
8904 if (first_die == NULL)
8905 first_die = part_die;
8906
8907 /* Maybe add the DIE to the hash table. Not all DIEs that we
8908 find interesting need to be in the hash table, because we
8909 also have the parent/sibling/child chains; only those that we
8910 might refer to by offset later during partial symbol reading.
8911
8912 For now this means things that might have be the target of a
8913 DW_AT_specification, DW_AT_abstract_origin, or
8914 DW_AT_extension. DW_AT_extension will refer only to
8915 namespaces; DW_AT_abstract_origin refers to functions (and
8916 many things under the function DIE, but we do not recurse
8917 into function DIEs during partial symbol reading) and
8918 possibly variables as well; DW_AT_specification refers to
8919 declarations. Declarations ought to have the DW_AT_declaration
8920 flag. It happens that GCC forgets to put it in sometimes, but
8921 only for functions, not for types.
8922
8923 Adding more things than necessary to the hash table is harmless
8924 except for the performance cost. Adding too few will result in
8925 wasted time in find_partial_die, when we reread the compilation
8926 unit with load_all_dies set. */
8927
8928 if (load_all
8929 || abbrev->tag == DW_TAG_constant
8930 || abbrev->tag == DW_TAG_subprogram
8931 || abbrev->tag == DW_TAG_variable
8932 || abbrev->tag == DW_TAG_namespace
8933 || part_die->is_declaration)
8934 {
8935 void **slot;
8936
8937 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
8938 part_die->offset, INSERT);
8939 *slot = part_die;
8940 }
8941
8942 part_die = obstack_alloc (&cu->comp_unit_obstack,
8943 sizeof (struct partial_die_info));
8944
8945 /* For some DIEs we want to follow their children (if any). For C
8946 we have no reason to follow the children of structures; for other
8947 languages we have to, so that we can get at method physnames
8948 to infer fully qualified class names, for DW_AT_specification,
8949 and for C++ template arguments. For C++, we also look one level
8950 inside functions to find template arguments (if the name of the
8951 function does not already contain the template arguments).
8952
8953 For Ada, we need to scan the children of subprograms and lexical
8954 blocks as well because Ada allows the definition of nested
8955 entities that could be interesting for the debugger, such as
8956 nested subprograms for instance. */
8957 if (last_die->has_children
8958 && (load_all
8959 || last_die->tag == DW_TAG_namespace
8960 || last_die->tag == DW_TAG_module
8961 || last_die->tag == DW_TAG_enumeration_type
8962 || (cu->language == language_cplus
8963 && last_die->tag == DW_TAG_subprogram
8964 && (last_die->name == NULL
8965 || strchr (last_die->name, '<') == NULL))
8966 || (cu->language != language_c
8967 && (last_die->tag == DW_TAG_class_type
8968 || last_die->tag == DW_TAG_interface_type
8969 || last_die->tag == DW_TAG_structure_type
8970 || last_die->tag == DW_TAG_union_type))
8971 || (cu->language == language_ada
8972 && (last_die->tag == DW_TAG_subprogram
8973 || last_die->tag == DW_TAG_lexical_block))))
8974 {
8975 nesting_level++;
8976 parent_die = last_die;
8977 continue;
8978 }
8979
8980 /* Otherwise we skip to the next sibling, if any. */
8981 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
8982
8983 /* Back to the top, do it again. */
8984 }
8985 }
8986
8987 /* Read a minimal amount of information into the minimal die structure. */
8988
8989 static gdb_byte *
8990 read_partial_die (struct partial_die_info *part_die,
8991 struct abbrev_info *abbrev,
8992 unsigned int abbrev_len, bfd *abfd,
8993 gdb_byte *buffer, gdb_byte *info_ptr,
8994 struct dwarf2_cu *cu)
8995 {
8996 unsigned int i;
8997 struct attribute attr;
8998 int has_low_pc_attr = 0;
8999 int has_high_pc_attr = 0;
9000
9001 memset (part_die, 0, sizeof (struct partial_die_info));
9002
9003 part_die->offset = info_ptr - buffer;
9004
9005 info_ptr += abbrev_len;
9006
9007 if (abbrev == NULL)
9008 return info_ptr;
9009
9010 part_die->tag = abbrev->tag;
9011 part_die->has_children = abbrev->has_children;
9012
9013 for (i = 0; i < abbrev->num_attrs; ++i)
9014 {
9015 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
9016
9017 /* Store the data if it is of an attribute we want to keep in a
9018 partial symbol table. */
9019 switch (attr.name)
9020 {
9021 case DW_AT_name:
9022 switch (part_die->tag)
9023 {
9024 case DW_TAG_compile_unit:
9025 case DW_TAG_type_unit:
9026 /* Compilation units have a DW_AT_name that is a filename, not
9027 a source language identifier. */
9028 case DW_TAG_enumeration_type:
9029 case DW_TAG_enumerator:
9030 /* These tags always have simple identifiers already; no need
9031 to canonicalize them. */
9032 part_die->name = DW_STRING (&attr);
9033 break;
9034 default:
9035 part_die->name
9036 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
9037 &cu->objfile->objfile_obstack);
9038 break;
9039 }
9040 break;
9041 case DW_AT_linkage_name:
9042 case DW_AT_MIPS_linkage_name:
9043 /* Note that both forms of linkage name might appear. We
9044 assume they will be the same, and we only store the last
9045 one we see. */
9046 if (cu->language == language_ada)
9047 part_die->name = DW_STRING (&attr);
9048 part_die->linkage_name = DW_STRING (&attr);
9049 break;
9050 case DW_AT_low_pc:
9051 has_low_pc_attr = 1;
9052 part_die->lowpc = DW_ADDR (&attr);
9053 break;
9054 case DW_AT_high_pc:
9055 has_high_pc_attr = 1;
9056 part_die->highpc = DW_ADDR (&attr);
9057 break;
9058 case DW_AT_location:
9059 /* Support the .debug_loc offsets. */
9060 if (attr_form_is_block (&attr))
9061 {
9062 part_die->locdesc = DW_BLOCK (&attr);
9063 }
9064 else if (attr_form_is_section_offset (&attr))
9065 {
9066 dwarf2_complex_location_expr_complaint ();
9067 }
9068 else
9069 {
9070 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
9071 "partial symbol information");
9072 }
9073 break;
9074 case DW_AT_external:
9075 part_die->is_external = DW_UNSND (&attr);
9076 break;
9077 case DW_AT_declaration:
9078 part_die->is_declaration = DW_UNSND (&attr);
9079 break;
9080 case DW_AT_type:
9081 part_die->has_type = 1;
9082 break;
9083 case DW_AT_abstract_origin:
9084 case DW_AT_specification:
9085 case DW_AT_extension:
9086 part_die->has_specification = 1;
9087 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
9088 break;
9089 case DW_AT_sibling:
9090 /* Ignore absolute siblings, they might point outside of
9091 the current compile unit. */
9092 if (attr.form == DW_FORM_ref_addr)
9093 complaint (&symfile_complaints,
9094 _("ignoring absolute DW_AT_sibling"));
9095 else
9096 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
9097 break;
9098 case DW_AT_byte_size:
9099 part_die->has_byte_size = 1;
9100 break;
9101 case DW_AT_calling_convention:
9102 /* DWARF doesn't provide a way to identify a program's source-level
9103 entry point. DW_AT_calling_convention attributes are only meant
9104 to describe functions' calling conventions.
9105
9106 However, because it's a necessary piece of information in
9107 Fortran, and because DW_CC_program is the only piece of debugging
9108 information whose definition refers to a 'main program' at all,
9109 several compilers have begun marking Fortran main programs with
9110 DW_CC_program --- even when those functions use the standard
9111 calling conventions.
9112
9113 So until DWARF specifies a way to provide this information and
9114 compilers pick up the new representation, we'll support this
9115 practice. */
9116 if (DW_UNSND (&attr) == DW_CC_program
9117 && cu->language == language_fortran)
9118 {
9119 set_main_name (part_die->name);
9120
9121 /* As this DIE has a static linkage the name would be difficult
9122 to look up later. */
9123 language_of_main = language_fortran;
9124 }
9125 break;
9126 default:
9127 break;
9128 }
9129 }
9130
9131 /* When using the GNU linker, .gnu.linkonce. sections are used to
9132 eliminate duplicate copies of functions and vtables and such.
9133 The linker will arbitrarily choose one and discard the others.
9134 The AT_*_pc values for such functions refer to local labels in
9135 these sections. If the section from that file was discarded, the
9136 labels are not in the output, so the relocs get a value of 0.
9137 If this is a discarded function, mark the pc bounds as invalid,
9138 so that GDB will ignore it. */
9139 if (has_low_pc_attr && has_high_pc_attr
9140 && part_die->lowpc < part_die->highpc
9141 && (part_die->lowpc != 0
9142 || dwarf2_per_objfile->has_section_at_zero))
9143 part_die->has_pc_info = 1;
9144
9145 return info_ptr;
9146 }
9147
9148 /* Find a cached partial DIE at OFFSET in CU. */
9149
9150 static struct partial_die_info *
9151 find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
9152 {
9153 struct partial_die_info *lookup_die = NULL;
9154 struct partial_die_info part_die;
9155
9156 part_die.offset = offset;
9157 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
9158
9159 return lookup_die;
9160 }
9161
9162 /* Find a partial DIE at OFFSET, which may or may not be in CU,
9163 except in the case of .debug_types DIEs which do not reference
9164 outside their CU (they do however referencing other types via
9165 DW_FORM_sig8). */
9166
9167 static struct partial_die_info *
9168 find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
9169 {
9170 struct dwarf2_per_cu_data *per_cu = NULL;
9171 struct partial_die_info *pd = NULL;
9172
9173 if (cu->per_cu->from_debug_types)
9174 {
9175 pd = find_partial_die_in_comp_unit (offset, cu);
9176 if (pd != NULL)
9177 return pd;
9178 goto not_found;
9179 }
9180
9181 if (offset_in_cu_p (&cu->header, offset))
9182 {
9183 pd = find_partial_die_in_comp_unit (offset, cu);
9184 if (pd != NULL)
9185 return pd;
9186 }
9187
9188 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
9189
9190 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
9191 load_partial_comp_unit (per_cu, cu->objfile);
9192
9193 per_cu->cu->last_used = 0;
9194 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9195
9196 if (pd == NULL && per_cu->load_all_dies == 0)
9197 {
9198 struct cleanup *back_to;
9199 struct partial_die_info comp_unit_die;
9200 struct abbrev_info *abbrev;
9201 unsigned int bytes_read;
9202 char *info_ptr;
9203
9204 per_cu->load_all_dies = 1;
9205
9206 /* Re-read the DIEs. */
9207 back_to = make_cleanup (null_cleanup, 0);
9208 if (per_cu->cu->dwarf2_abbrevs == NULL)
9209 {
9210 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
9211 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
9212 }
9213 info_ptr = (dwarf2_per_objfile->info.buffer
9214 + per_cu->cu->header.offset
9215 + per_cu->cu->header.first_die_offset);
9216 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
9217 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
9218 per_cu->cu->objfile->obfd,
9219 dwarf2_per_objfile->info.buffer, info_ptr,
9220 per_cu->cu);
9221 if (comp_unit_die.has_children)
9222 load_partial_dies (per_cu->cu->objfile->obfd,
9223 dwarf2_per_objfile->info.buffer, info_ptr,
9224 0, per_cu->cu);
9225 do_cleanups (back_to);
9226
9227 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9228 }
9229
9230 not_found:
9231
9232 if (pd == NULL)
9233 internal_error (__FILE__, __LINE__,
9234 _("could not find partial DIE 0x%x "
9235 "in cache [from module %s]\n"),
9236 offset, bfd_get_filename (cu->objfile->obfd));
9237 return pd;
9238 }
9239
9240 /* See if we can figure out if the class lives in a namespace. We do
9241 this by looking for a member function; its demangled name will
9242 contain namespace info, if there is any. */
9243
9244 static void
9245 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
9246 struct dwarf2_cu *cu)
9247 {
9248 /* NOTE: carlton/2003-10-07: Getting the info this way changes
9249 what template types look like, because the demangler
9250 frequently doesn't give the same name as the debug info. We
9251 could fix this by only using the demangled name to get the
9252 prefix (but see comment in read_structure_type). */
9253
9254 struct partial_die_info *real_pdi;
9255 struct partial_die_info *child_pdi;
9256
9257 /* If this DIE (this DIE's specification, if any) has a parent, then
9258 we should not do this. We'll prepend the parent's fully qualified
9259 name when we create the partial symbol. */
9260
9261 real_pdi = struct_pdi;
9262 while (real_pdi->has_specification)
9263 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
9264
9265 if (real_pdi->die_parent != NULL)
9266 return;
9267
9268 for (child_pdi = struct_pdi->die_child;
9269 child_pdi != NULL;
9270 child_pdi = child_pdi->die_sibling)
9271 {
9272 if (child_pdi->tag == DW_TAG_subprogram
9273 && child_pdi->linkage_name != NULL)
9274 {
9275 char *actual_class_name
9276 = language_class_name_from_physname (cu->language_defn,
9277 child_pdi->linkage_name);
9278 if (actual_class_name != NULL)
9279 {
9280 struct_pdi->name
9281 = obsavestring (actual_class_name,
9282 strlen (actual_class_name),
9283 &cu->objfile->objfile_obstack);
9284 xfree (actual_class_name);
9285 }
9286 break;
9287 }
9288 }
9289 }
9290
9291 /* Adjust PART_DIE before generating a symbol for it. This function
9292 may set the is_external flag or change the DIE's name. */
9293
9294 static void
9295 fixup_partial_die (struct partial_die_info *part_die,
9296 struct dwarf2_cu *cu)
9297 {
9298 /* Once we've fixed up a die, there's no point in doing so again.
9299 This also avoids a memory leak if we were to call
9300 guess_partial_die_structure_name multiple times. */
9301 if (part_die->fixup_called)
9302 return;
9303
9304 /* If we found a reference attribute and the DIE has no name, try
9305 to find a name in the referred to DIE. */
9306
9307 if (part_die->name == NULL && part_die->has_specification)
9308 {
9309 struct partial_die_info *spec_die;
9310
9311 spec_die = find_partial_die (part_die->spec_offset, cu);
9312
9313 fixup_partial_die (spec_die, cu);
9314
9315 if (spec_die->name)
9316 {
9317 part_die->name = spec_die->name;
9318
9319 /* Copy DW_AT_external attribute if it is set. */
9320 if (spec_die->is_external)
9321 part_die->is_external = spec_die->is_external;
9322 }
9323 }
9324
9325 /* Set default names for some unnamed DIEs. */
9326
9327 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
9328 part_die->name = "(anonymous namespace)";
9329
9330 /* If there is no parent die to provide a namespace, and there are
9331 children, see if we can determine the namespace from their linkage
9332 name.
9333 NOTE: We need to do this even if cu->has_namespace_info != 0.
9334 gcc-4.5 -gdwarf-4 can drop the enclosing namespace. */
9335 if (cu->language == language_cplus
9336 && dwarf2_per_objfile->types.asection != NULL
9337 && part_die->die_parent == NULL
9338 && part_die->has_children
9339 && (part_die->tag == DW_TAG_class_type
9340 || part_die->tag == DW_TAG_structure_type
9341 || part_die->tag == DW_TAG_union_type))
9342 guess_partial_die_structure_name (part_die, cu);
9343
9344 part_die->fixup_called = 1;
9345 }
9346
9347 /* Read an attribute value described by an attribute form. */
9348
9349 static gdb_byte *
9350 read_attribute_value (struct attribute *attr, unsigned form,
9351 bfd *abfd, gdb_byte *info_ptr,
9352 struct dwarf2_cu *cu)
9353 {
9354 struct comp_unit_head *cu_header = &cu->header;
9355 unsigned int bytes_read;
9356 struct dwarf_block *blk;
9357
9358 attr->form = form;
9359 switch (form)
9360 {
9361 case DW_FORM_ref_addr:
9362 if (cu->header.version == 2)
9363 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9364 else
9365 DW_ADDR (attr) = read_offset (abfd, info_ptr,
9366 &cu->header, &bytes_read);
9367 info_ptr += bytes_read;
9368 break;
9369 case DW_FORM_addr:
9370 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9371 info_ptr += bytes_read;
9372 break;
9373 case DW_FORM_block2:
9374 blk = dwarf_alloc_block (cu);
9375 blk->size = read_2_bytes (abfd, info_ptr);
9376 info_ptr += 2;
9377 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9378 info_ptr += blk->size;
9379 DW_BLOCK (attr) = blk;
9380 break;
9381 case DW_FORM_block4:
9382 blk = dwarf_alloc_block (cu);
9383 blk->size = read_4_bytes (abfd, info_ptr);
9384 info_ptr += 4;
9385 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9386 info_ptr += blk->size;
9387 DW_BLOCK (attr) = blk;
9388 break;
9389 case DW_FORM_data2:
9390 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
9391 info_ptr += 2;
9392 break;
9393 case DW_FORM_data4:
9394 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
9395 info_ptr += 4;
9396 break;
9397 case DW_FORM_data8:
9398 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
9399 info_ptr += 8;
9400 break;
9401 case DW_FORM_sec_offset:
9402 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
9403 info_ptr += bytes_read;
9404 break;
9405 case DW_FORM_string:
9406 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
9407 DW_STRING_IS_CANONICAL (attr) = 0;
9408 info_ptr += bytes_read;
9409 break;
9410 case DW_FORM_strp:
9411 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
9412 &bytes_read);
9413 DW_STRING_IS_CANONICAL (attr) = 0;
9414 info_ptr += bytes_read;
9415 break;
9416 case DW_FORM_exprloc:
9417 case DW_FORM_block:
9418 blk = dwarf_alloc_block (cu);
9419 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9420 info_ptr += bytes_read;
9421 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9422 info_ptr += blk->size;
9423 DW_BLOCK (attr) = blk;
9424 break;
9425 case DW_FORM_block1:
9426 blk = dwarf_alloc_block (cu);
9427 blk->size = read_1_byte (abfd, info_ptr);
9428 info_ptr += 1;
9429 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9430 info_ptr += blk->size;
9431 DW_BLOCK (attr) = blk;
9432 break;
9433 case DW_FORM_data1:
9434 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9435 info_ptr += 1;
9436 break;
9437 case DW_FORM_flag:
9438 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9439 info_ptr += 1;
9440 break;
9441 case DW_FORM_flag_present:
9442 DW_UNSND (attr) = 1;
9443 break;
9444 case DW_FORM_sdata:
9445 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
9446 info_ptr += bytes_read;
9447 break;
9448 case DW_FORM_udata:
9449 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9450 info_ptr += bytes_read;
9451 break;
9452 case DW_FORM_ref1:
9453 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
9454 info_ptr += 1;
9455 break;
9456 case DW_FORM_ref2:
9457 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
9458 info_ptr += 2;
9459 break;
9460 case DW_FORM_ref4:
9461 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
9462 info_ptr += 4;
9463 break;
9464 case DW_FORM_ref8:
9465 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
9466 info_ptr += 8;
9467 break;
9468 case DW_FORM_sig8:
9469 /* Convert the signature to something we can record in DW_UNSND
9470 for later lookup.
9471 NOTE: This is NULL if the type wasn't found. */
9472 DW_SIGNATURED_TYPE (attr) =
9473 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
9474 info_ptr += 8;
9475 break;
9476 case DW_FORM_ref_udata:
9477 DW_ADDR (attr) = (cu->header.offset
9478 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
9479 info_ptr += bytes_read;
9480 break;
9481 case DW_FORM_indirect:
9482 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9483 info_ptr += bytes_read;
9484 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
9485 break;
9486 default:
9487 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
9488 dwarf_form_name (form),
9489 bfd_get_filename (abfd));
9490 }
9491
9492 /* We have seen instances where the compiler tried to emit a byte
9493 size attribute of -1 which ended up being encoded as an unsigned
9494 0xffffffff. Although 0xffffffff is technically a valid size value,
9495 an object of this size seems pretty unlikely so we can relatively
9496 safely treat these cases as if the size attribute was invalid and
9497 treat them as zero by default. */
9498 if (attr->name == DW_AT_byte_size
9499 && form == DW_FORM_data4
9500 && DW_UNSND (attr) >= 0xffffffff)
9501 {
9502 complaint
9503 (&symfile_complaints,
9504 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
9505 hex_string (DW_UNSND (attr)));
9506 DW_UNSND (attr) = 0;
9507 }
9508
9509 return info_ptr;
9510 }
9511
9512 /* Read an attribute described by an abbreviated attribute. */
9513
9514 static gdb_byte *
9515 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
9516 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
9517 {
9518 attr->name = abbrev->name;
9519 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
9520 }
9521
9522 /* Read dwarf information from a buffer. */
9523
9524 static unsigned int
9525 read_1_byte (bfd *abfd, gdb_byte *buf)
9526 {
9527 return bfd_get_8 (abfd, buf);
9528 }
9529
9530 static int
9531 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
9532 {
9533 return bfd_get_signed_8 (abfd, buf);
9534 }
9535
9536 static unsigned int
9537 read_2_bytes (bfd *abfd, gdb_byte *buf)
9538 {
9539 return bfd_get_16 (abfd, buf);
9540 }
9541
9542 static int
9543 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
9544 {
9545 return bfd_get_signed_16 (abfd, buf);
9546 }
9547
9548 static unsigned int
9549 read_4_bytes (bfd *abfd, gdb_byte *buf)
9550 {
9551 return bfd_get_32 (abfd, buf);
9552 }
9553
9554 static int
9555 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
9556 {
9557 return bfd_get_signed_32 (abfd, buf);
9558 }
9559
9560 static ULONGEST
9561 read_8_bytes (bfd *abfd, gdb_byte *buf)
9562 {
9563 return bfd_get_64 (abfd, buf);
9564 }
9565
9566 static CORE_ADDR
9567 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
9568 unsigned int *bytes_read)
9569 {
9570 struct comp_unit_head *cu_header = &cu->header;
9571 CORE_ADDR retval = 0;
9572
9573 if (cu_header->signed_addr_p)
9574 {
9575 switch (cu_header->addr_size)
9576 {
9577 case 2:
9578 retval = bfd_get_signed_16 (abfd, buf);
9579 break;
9580 case 4:
9581 retval = bfd_get_signed_32 (abfd, buf);
9582 break;
9583 case 8:
9584 retval = bfd_get_signed_64 (abfd, buf);
9585 break;
9586 default:
9587 internal_error (__FILE__, __LINE__,
9588 _("read_address: bad switch, signed [in module %s]"),
9589 bfd_get_filename (abfd));
9590 }
9591 }
9592 else
9593 {
9594 switch (cu_header->addr_size)
9595 {
9596 case 2:
9597 retval = bfd_get_16 (abfd, buf);
9598 break;
9599 case 4:
9600 retval = bfd_get_32 (abfd, buf);
9601 break;
9602 case 8:
9603 retval = bfd_get_64 (abfd, buf);
9604 break;
9605 default:
9606 internal_error (__FILE__, __LINE__,
9607 _("read_address: bad switch, "
9608 "unsigned [in module %s]"),
9609 bfd_get_filename (abfd));
9610 }
9611 }
9612
9613 *bytes_read = cu_header->addr_size;
9614 return retval;
9615 }
9616
9617 /* Read the initial length from a section. The (draft) DWARF 3
9618 specification allows the initial length to take up either 4 bytes
9619 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
9620 bytes describe the length and all offsets will be 8 bytes in length
9621 instead of 4.
9622
9623 An older, non-standard 64-bit format is also handled by this
9624 function. The older format in question stores the initial length
9625 as an 8-byte quantity without an escape value. Lengths greater
9626 than 2^32 aren't very common which means that the initial 4 bytes
9627 is almost always zero. Since a length value of zero doesn't make
9628 sense for the 32-bit format, this initial zero can be considered to
9629 be an escape value which indicates the presence of the older 64-bit
9630 format. As written, the code can't detect (old format) lengths
9631 greater than 4GB. If it becomes necessary to handle lengths
9632 somewhat larger than 4GB, we could allow other small values (such
9633 as the non-sensical values of 1, 2, and 3) to also be used as
9634 escape values indicating the presence of the old format.
9635
9636 The value returned via bytes_read should be used to increment the
9637 relevant pointer after calling read_initial_length().
9638
9639 [ Note: read_initial_length() and read_offset() are based on the
9640 document entitled "DWARF Debugging Information Format", revision
9641 3, draft 8, dated November 19, 2001. This document was obtained
9642 from:
9643
9644 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
9645
9646 This document is only a draft and is subject to change. (So beware.)
9647
9648 Details regarding the older, non-standard 64-bit format were
9649 determined empirically by examining 64-bit ELF files produced by
9650 the SGI toolchain on an IRIX 6.5 machine.
9651
9652 - Kevin, July 16, 2002
9653 ] */
9654
9655 static LONGEST
9656 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
9657 {
9658 LONGEST length = bfd_get_32 (abfd, buf);
9659
9660 if (length == 0xffffffff)
9661 {
9662 length = bfd_get_64 (abfd, buf + 4);
9663 *bytes_read = 12;
9664 }
9665 else if (length == 0)
9666 {
9667 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
9668 length = bfd_get_64 (abfd, buf);
9669 *bytes_read = 8;
9670 }
9671 else
9672 {
9673 *bytes_read = 4;
9674 }
9675
9676 return length;
9677 }
9678
9679 /* Cover function for read_initial_length.
9680 Returns the length of the object at BUF, and stores the size of the
9681 initial length in *BYTES_READ and stores the size that offsets will be in
9682 *OFFSET_SIZE.
9683 If the initial length size is not equivalent to that specified in
9684 CU_HEADER then issue a complaint.
9685 This is useful when reading non-comp-unit headers. */
9686
9687 static LONGEST
9688 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
9689 const struct comp_unit_head *cu_header,
9690 unsigned int *bytes_read,
9691 unsigned int *offset_size)
9692 {
9693 LONGEST length = read_initial_length (abfd, buf, bytes_read);
9694
9695 gdb_assert (cu_header->initial_length_size == 4
9696 || cu_header->initial_length_size == 8
9697 || cu_header->initial_length_size == 12);
9698
9699 if (cu_header->initial_length_size != *bytes_read)
9700 complaint (&symfile_complaints,
9701 _("intermixed 32-bit and 64-bit DWARF sections"));
9702
9703 *offset_size = (*bytes_read == 4) ? 4 : 8;
9704 return length;
9705 }
9706
9707 /* Read an offset from the data stream. The size of the offset is
9708 given by cu_header->offset_size. */
9709
9710 static LONGEST
9711 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
9712 unsigned int *bytes_read)
9713 {
9714 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9715
9716 *bytes_read = cu_header->offset_size;
9717 return offset;
9718 }
9719
9720 /* Read an offset from the data stream. */
9721
9722 static LONGEST
9723 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
9724 {
9725 LONGEST retval = 0;
9726
9727 switch (offset_size)
9728 {
9729 case 4:
9730 retval = bfd_get_32 (abfd, buf);
9731 break;
9732 case 8:
9733 retval = bfd_get_64 (abfd, buf);
9734 break;
9735 default:
9736 internal_error (__FILE__, __LINE__,
9737 _("read_offset_1: bad switch [in module %s]"),
9738 bfd_get_filename (abfd));
9739 }
9740
9741 return retval;
9742 }
9743
9744 static gdb_byte *
9745 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
9746 {
9747 /* If the size of a host char is 8 bits, we can return a pointer
9748 to the buffer, otherwise we have to copy the data to a buffer
9749 allocated on the temporary obstack. */
9750 gdb_assert (HOST_CHAR_BIT == 8);
9751 return buf;
9752 }
9753
9754 static char *
9755 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9756 {
9757 /* If the size of a host char is 8 bits, we can return a pointer
9758 to the string, otherwise we have to copy the string to a buffer
9759 allocated on the temporary obstack. */
9760 gdb_assert (HOST_CHAR_BIT == 8);
9761 if (*buf == '\0')
9762 {
9763 *bytes_read_ptr = 1;
9764 return NULL;
9765 }
9766 *bytes_read_ptr = strlen ((char *) buf) + 1;
9767 return (char *) buf;
9768 }
9769
9770 static char *
9771 read_indirect_string (bfd *abfd, gdb_byte *buf,
9772 const struct comp_unit_head *cu_header,
9773 unsigned int *bytes_read_ptr)
9774 {
9775 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
9776
9777 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
9778 if (dwarf2_per_objfile->str.buffer == NULL)
9779 {
9780 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
9781 bfd_get_filename (abfd));
9782 return NULL;
9783 }
9784 if (str_offset >= dwarf2_per_objfile->str.size)
9785 {
9786 error (_("DW_FORM_strp pointing outside of "
9787 ".debug_str section [in module %s]"),
9788 bfd_get_filename (abfd));
9789 return NULL;
9790 }
9791 gdb_assert (HOST_CHAR_BIT == 8);
9792 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
9793 return NULL;
9794 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
9795 }
9796
9797 static unsigned long
9798 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9799 {
9800 unsigned long result;
9801 unsigned int num_read;
9802 int i, shift;
9803 unsigned char byte;
9804
9805 result = 0;
9806 shift = 0;
9807 num_read = 0;
9808 i = 0;
9809 while (1)
9810 {
9811 byte = bfd_get_8 (abfd, buf);
9812 buf++;
9813 num_read++;
9814 result |= ((unsigned long)(byte & 127) << shift);
9815 if ((byte & 128) == 0)
9816 {
9817 break;
9818 }
9819 shift += 7;
9820 }
9821 *bytes_read_ptr = num_read;
9822 return result;
9823 }
9824
9825 static long
9826 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9827 {
9828 long result;
9829 int i, shift, num_read;
9830 unsigned char byte;
9831
9832 result = 0;
9833 shift = 0;
9834 num_read = 0;
9835 i = 0;
9836 while (1)
9837 {
9838 byte = bfd_get_8 (abfd, buf);
9839 buf++;
9840 num_read++;
9841 result |= ((long)(byte & 127) << shift);
9842 shift += 7;
9843 if ((byte & 128) == 0)
9844 {
9845 break;
9846 }
9847 }
9848 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
9849 result |= -(((long)1) << shift);
9850 *bytes_read_ptr = num_read;
9851 return result;
9852 }
9853
9854 /* Return a pointer to just past the end of an LEB128 number in BUF. */
9855
9856 static gdb_byte *
9857 skip_leb128 (bfd *abfd, gdb_byte *buf)
9858 {
9859 int byte;
9860
9861 while (1)
9862 {
9863 byte = bfd_get_8 (abfd, buf);
9864 buf++;
9865 if ((byte & 128) == 0)
9866 return buf;
9867 }
9868 }
9869
9870 static void
9871 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
9872 {
9873 switch (lang)
9874 {
9875 case DW_LANG_C89:
9876 case DW_LANG_C99:
9877 case DW_LANG_C:
9878 cu->language = language_c;
9879 break;
9880 case DW_LANG_C_plus_plus:
9881 cu->language = language_cplus;
9882 break;
9883 case DW_LANG_D:
9884 cu->language = language_d;
9885 break;
9886 case DW_LANG_Fortran77:
9887 case DW_LANG_Fortran90:
9888 case DW_LANG_Fortran95:
9889 cu->language = language_fortran;
9890 break;
9891 case DW_LANG_Mips_Assembler:
9892 cu->language = language_asm;
9893 break;
9894 case DW_LANG_Java:
9895 cu->language = language_java;
9896 break;
9897 case DW_LANG_Ada83:
9898 case DW_LANG_Ada95:
9899 cu->language = language_ada;
9900 break;
9901 case DW_LANG_Modula2:
9902 cu->language = language_m2;
9903 break;
9904 case DW_LANG_Pascal83:
9905 cu->language = language_pascal;
9906 break;
9907 case DW_LANG_ObjC:
9908 cu->language = language_objc;
9909 break;
9910 case DW_LANG_Cobol74:
9911 case DW_LANG_Cobol85:
9912 default:
9913 cu->language = language_minimal;
9914 break;
9915 }
9916 cu->language_defn = language_def (cu->language);
9917 }
9918
9919 /* Return the named attribute or NULL if not there. */
9920
9921 static struct attribute *
9922 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
9923 {
9924 unsigned int i;
9925 struct attribute *spec = NULL;
9926
9927 for (i = 0; i < die->num_attrs; ++i)
9928 {
9929 if (die->attrs[i].name == name)
9930 return &die->attrs[i];
9931 if (die->attrs[i].name == DW_AT_specification
9932 || die->attrs[i].name == DW_AT_abstract_origin)
9933 spec = &die->attrs[i];
9934 }
9935
9936 if (spec)
9937 {
9938 die = follow_die_ref (die, spec, &cu);
9939 return dwarf2_attr (die, name, cu);
9940 }
9941
9942 return NULL;
9943 }
9944
9945 /* Return the named attribute or NULL if not there,
9946 but do not follow DW_AT_specification, etc.
9947 This is for use in contexts where we're reading .debug_types dies.
9948 Following DW_AT_specification, DW_AT_abstract_origin will take us
9949 back up the chain, and we want to go down. */
9950
9951 static struct attribute *
9952 dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
9953 struct dwarf2_cu *cu)
9954 {
9955 unsigned int i;
9956
9957 for (i = 0; i < die->num_attrs; ++i)
9958 if (die->attrs[i].name == name)
9959 return &die->attrs[i];
9960
9961 return NULL;
9962 }
9963
9964 /* Return non-zero iff the attribute NAME is defined for the given DIE,
9965 and holds a non-zero value. This function should only be used for
9966 DW_FORM_flag or DW_FORM_flag_present attributes. */
9967
9968 static int
9969 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
9970 {
9971 struct attribute *attr = dwarf2_attr (die, name, cu);
9972
9973 return (attr && DW_UNSND (attr));
9974 }
9975
9976 static int
9977 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
9978 {
9979 /* A DIE is a declaration if it has a DW_AT_declaration attribute
9980 which value is non-zero. However, we have to be careful with
9981 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
9982 (via dwarf2_flag_true_p) follows this attribute. So we may
9983 end up accidently finding a declaration attribute that belongs
9984 to a different DIE referenced by the specification attribute,
9985 even though the given DIE does not have a declaration attribute. */
9986 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
9987 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
9988 }
9989
9990 /* Return the die giving the specification for DIE, if there is
9991 one. *SPEC_CU is the CU containing DIE on input, and the CU
9992 containing the return value on output. If there is no
9993 specification, but there is an abstract origin, that is
9994 returned. */
9995
9996 static struct die_info *
9997 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
9998 {
9999 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
10000 *spec_cu);
10001
10002 if (spec_attr == NULL)
10003 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
10004
10005 if (spec_attr == NULL)
10006 return NULL;
10007 else
10008 return follow_die_ref (die, spec_attr, spec_cu);
10009 }
10010
10011 /* Free the line_header structure *LH, and any arrays and strings it
10012 refers to.
10013 NOTE: This is also used as a "cleanup" function. */
10014
10015 static void
10016 free_line_header (struct line_header *lh)
10017 {
10018 if (lh->standard_opcode_lengths)
10019 xfree (lh->standard_opcode_lengths);
10020
10021 /* Remember that all the lh->file_names[i].name pointers are
10022 pointers into debug_line_buffer, and don't need to be freed. */
10023 if (lh->file_names)
10024 xfree (lh->file_names);
10025
10026 /* Similarly for the include directory names. */
10027 if (lh->include_dirs)
10028 xfree (lh->include_dirs);
10029
10030 xfree (lh);
10031 }
10032
10033 /* Add an entry to LH's include directory table. */
10034
10035 static void
10036 add_include_dir (struct line_header *lh, char *include_dir)
10037 {
10038 /* Grow the array if necessary. */
10039 if (lh->include_dirs_size == 0)
10040 {
10041 lh->include_dirs_size = 1; /* for testing */
10042 lh->include_dirs = xmalloc (lh->include_dirs_size
10043 * sizeof (*lh->include_dirs));
10044 }
10045 else if (lh->num_include_dirs >= lh->include_dirs_size)
10046 {
10047 lh->include_dirs_size *= 2;
10048 lh->include_dirs = xrealloc (lh->include_dirs,
10049 (lh->include_dirs_size
10050 * sizeof (*lh->include_dirs)));
10051 }
10052
10053 lh->include_dirs[lh->num_include_dirs++] = include_dir;
10054 }
10055
10056 /* Add an entry to LH's file name table. */
10057
10058 static void
10059 add_file_name (struct line_header *lh,
10060 char *name,
10061 unsigned int dir_index,
10062 unsigned int mod_time,
10063 unsigned int length)
10064 {
10065 struct file_entry *fe;
10066
10067 /* Grow the array if necessary. */
10068 if (lh->file_names_size == 0)
10069 {
10070 lh->file_names_size = 1; /* for testing */
10071 lh->file_names = xmalloc (lh->file_names_size
10072 * sizeof (*lh->file_names));
10073 }
10074 else if (lh->num_file_names >= lh->file_names_size)
10075 {
10076 lh->file_names_size *= 2;
10077 lh->file_names = xrealloc (lh->file_names,
10078 (lh->file_names_size
10079 * sizeof (*lh->file_names)));
10080 }
10081
10082 fe = &lh->file_names[lh->num_file_names++];
10083 fe->name = name;
10084 fe->dir_index = dir_index;
10085 fe->mod_time = mod_time;
10086 fe->length = length;
10087 fe->included_p = 0;
10088 fe->symtab = NULL;
10089 }
10090
10091 /* Read the statement program header starting at OFFSET in
10092 .debug_line, according to the endianness of ABFD. Return a pointer
10093 to a struct line_header, allocated using xmalloc.
10094
10095 NOTE: the strings in the include directory and file name tables of
10096 the returned object point into debug_line_buffer, and must not be
10097 freed. */
10098
10099 static struct line_header *
10100 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
10101 struct dwarf2_cu *cu)
10102 {
10103 struct cleanup *back_to;
10104 struct line_header *lh;
10105 gdb_byte *line_ptr;
10106 unsigned int bytes_read, offset_size;
10107 int i;
10108 char *cur_dir, *cur_file;
10109
10110 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
10111 if (dwarf2_per_objfile->line.buffer == NULL)
10112 {
10113 complaint (&symfile_complaints, _("missing .debug_line section"));
10114 return 0;
10115 }
10116
10117 /* Make sure that at least there's room for the total_length field.
10118 That could be 12 bytes long, but we're just going to fudge that. */
10119 if (offset + 4 >= dwarf2_per_objfile->line.size)
10120 {
10121 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10122 return 0;
10123 }
10124
10125 lh = xmalloc (sizeof (*lh));
10126 memset (lh, 0, sizeof (*lh));
10127 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
10128 (void *) lh);
10129
10130 line_ptr = dwarf2_per_objfile->line.buffer + offset;
10131
10132 /* Read in the header. */
10133 lh->total_length =
10134 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
10135 &bytes_read, &offset_size);
10136 line_ptr += bytes_read;
10137 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
10138 + dwarf2_per_objfile->line.size))
10139 {
10140 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10141 return 0;
10142 }
10143 lh->statement_program_end = line_ptr + lh->total_length;
10144 lh->version = read_2_bytes (abfd, line_ptr);
10145 line_ptr += 2;
10146 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
10147 line_ptr += offset_size;
10148 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
10149 line_ptr += 1;
10150 if (lh->version >= 4)
10151 {
10152 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
10153 line_ptr += 1;
10154 }
10155 else
10156 lh->maximum_ops_per_instruction = 1;
10157
10158 if (lh->maximum_ops_per_instruction == 0)
10159 {
10160 lh->maximum_ops_per_instruction = 1;
10161 complaint (&symfile_complaints,
10162 _("invalid maximum_ops_per_instruction "
10163 "in `.debug_line' section"));
10164 }
10165
10166 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
10167 line_ptr += 1;
10168 lh->line_base = read_1_signed_byte (abfd, line_ptr);
10169 line_ptr += 1;
10170 lh->line_range = read_1_byte (abfd, line_ptr);
10171 line_ptr += 1;
10172 lh->opcode_base = read_1_byte (abfd, line_ptr);
10173 line_ptr += 1;
10174 lh->standard_opcode_lengths
10175 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
10176
10177 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
10178 for (i = 1; i < lh->opcode_base; ++i)
10179 {
10180 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
10181 line_ptr += 1;
10182 }
10183
10184 /* Read directory table. */
10185 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
10186 {
10187 line_ptr += bytes_read;
10188 add_include_dir (lh, cur_dir);
10189 }
10190 line_ptr += bytes_read;
10191
10192 /* Read file name table. */
10193 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
10194 {
10195 unsigned int dir_index, mod_time, length;
10196
10197 line_ptr += bytes_read;
10198 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10199 line_ptr += bytes_read;
10200 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10201 line_ptr += bytes_read;
10202 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10203 line_ptr += bytes_read;
10204
10205 add_file_name (lh, cur_file, dir_index, mod_time, length);
10206 }
10207 line_ptr += bytes_read;
10208 lh->statement_program_start = line_ptr;
10209
10210 if (line_ptr > (dwarf2_per_objfile->line.buffer
10211 + dwarf2_per_objfile->line.size))
10212 complaint (&symfile_complaints,
10213 _("line number info header doesn't "
10214 "fit in `.debug_line' section"));
10215
10216 discard_cleanups (back_to);
10217 return lh;
10218 }
10219
10220 /* This function exists to work around a bug in certain compilers
10221 (particularly GCC 2.95), in which the first line number marker of a
10222 function does not show up until after the prologue, right before
10223 the second line number marker. This function shifts ADDRESS down
10224 to the beginning of the function if necessary, and is called on
10225 addresses passed to record_line. */
10226
10227 static CORE_ADDR
10228 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
10229 {
10230 struct function_range *fn;
10231
10232 /* Find the function_range containing address. */
10233 if (!cu->first_fn)
10234 return address;
10235
10236 if (!cu->cached_fn)
10237 cu->cached_fn = cu->first_fn;
10238
10239 fn = cu->cached_fn;
10240 while (fn)
10241 if (fn->lowpc <= address && fn->highpc > address)
10242 goto found;
10243 else
10244 fn = fn->next;
10245
10246 fn = cu->first_fn;
10247 while (fn && fn != cu->cached_fn)
10248 if (fn->lowpc <= address && fn->highpc > address)
10249 goto found;
10250 else
10251 fn = fn->next;
10252
10253 return address;
10254
10255 found:
10256 if (fn->seen_line)
10257 return address;
10258 if (address != fn->lowpc)
10259 complaint (&symfile_complaints,
10260 _("misplaced first line number at 0x%lx for '%s'"),
10261 (unsigned long) address, fn->name);
10262 fn->seen_line = 1;
10263 return fn->lowpc;
10264 }
10265
10266 /* Subroutine of dwarf_decode_lines to simplify it.
10267 Return the file name of the psymtab for included file FILE_INDEX
10268 in line header LH of PST.
10269 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10270 If space for the result is malloc'd, it will be freed by a cleanup.
10271 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
10272
10273 static char *
10274 psymtab_include_file_name (const struct line_header *lh, int file_index,
10275 const struct partial_symtab *pst,
10276 const char *comp_dir)
10277 {
10278 const struct file_entry fe = lh->file_names [file_index];
10279 char *include_name = fe.name;
10280 char *include_name_to_compare = include_name;
10281 char *dir_name = NULL;
10282 const char *pst_filename;
10283 char *copied_name = NULL;
10284 int file_is_pst;
10285
10286 if (fe.dir_index)
10287 dir_name = lh->include_dirs[fe.dir_index - 1];
10288
10289 if (!IS_ABSOLUTE_PATH (include_name)
10290 && (dir_name != NULL || comp_dir != NULL))
10291 {
10292 /* Avoid creating a duplicate psymtab for PST.
10293 We do this by comparing INCLUDE_NAME and PST_FILENAME.
10294 Before we do the comparison, however, we need to account
10295 for DIR_NAME and COMP_DIR.
10296 First prepend dir_name (if non-NULL). If we still don't
10297 have an absolute path prepend comp_dir (if non-NULL).
10298 However, the directory we record in the include-file's
10299 psymtab does not contain COMP_DIR (to match the
10300 corresponding symtab(s)).
10301
10302 Example:
10303
10304 bash$ cd /tmp
10305 bash$ gcc -g ./hello.c
10306 include_name = "hello.c"
10307 dir_name = "."
10308 DW_AT_comp_dir = comp_dir = "/tmp"
10309 DW_AT_name = "./hello.c" */
10310
10311 if (dir_name != NULL)
10312 {
10313 include_name = concat (dir_name, SLASH_STRING,
10314 include_name, (char *)NULL);
10315 include_name_to_compare = include_name;
10316 make_cleanup (xfree, include_name);
10317 }
10318 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
10319 {
10320 include_name_to_compare = concat (comp_dir, SLASH_STRING,
10321 include_name, (char *)NULL);
10322 }
10323 }
10324
10325 pst_filename = pst->filename;
10326 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
10327 {
10328 copied_name = concat (pst->dirname, SLASH_STRING,
10329 pst_filename, (char *)NULL);
10330 pst_filename = copied_name;
10331 }
10332
10333 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
10334
10335 if (include_name_to_compare != include_name)
10336 xfree (include_name_to_compare);
10337 if (copied_name != NULL)
10338 xfree (copied_name);
10339
10340 if (file_is_pst)
10341 return NULL;
10342 return include_name;
10343 }
10344
10345 /* Decode the Line Number Program (LNP) for the given line_header
10346 structure and CU. The actual information extracted and the type
10347 of structures created from the LNP depends on the value of PST.
10348
10349 1. If PST is NULL, then this procedure uses the data from the program
10350 to create all necessary symbol tables, and their linetables.
10351
10352 2. If PST is not NULL, this procedure reads the program to determine
10353 the list of files included by the unit represented by PST, and
10354 builds all the associated partial symbol tables.
10355
10356 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10357 It is used for relative paths in the line table.
10358 NOTE: When processing partial symtabs (pst != NULL),
10359 comp_dir == pst->dirname.
10360
10361 NOTE: It is important that psymtabs have the same file name (via strcmp)
10362 as the corresponding symtab. Since COMP_DIR is not used in the name of the
10363 symtab we don't use it in the name of the psymtabs we create.
10364 E.g. expand_line_sal requires this when finding psymtabs to expand.
10365 A good testcase for this is mb-inline.exp. */
10366
10367 static void
10368 dwarf_decode_lines (struct line_header *lh, const char *comp_dir, bfd *abfd,
10369 struct dwarf2_cu *cu, struct partial_symtab *pst)
10370 {
10371 gdb_byte *line_ptr, *extended_end;
10372 gdb_byte *line_end;
10373 unsigned int bytes_read, extended_len;
10374 unsigned char op_code, extended_op, adj_opcode;
10375 CORE_ADDR baseaddr;
10376 struct objfile *objfile = cu->objfile;
10377 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10378 const int decode_for_pst_p = (pst != NULL);
10379 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
10380
10381 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10382
10383 line_ptr = lh->statement_program_start;
10384 line_end = lh->statement_program_end;
10385
10386 /* Read the statement sequences until there's nothing left. */
10387 while (line_ptr < line_end)
10388 {
10389 /* state machine registers */
10390 CORE_ADDR address = 0;
10391 unsigned int file = 1;
10392 unsigned int line = 1;
10393 unsigned int column = 0;
10394 int is_stmt = lh->default_is_stmt;
10395 int basic_block = 0;
10396 int end_sequence = 0;
10397 CORE_ADDR addr;
10398 unsigned char op_index = 0;
10399
10400 if (!decode_for_pst_p && lh->num_file_names >= file)
10401 {
10402 /* Start a subfile for the current file of the state machine. */
10403 /* lh->include_dirs and lh->file_names are 0-based, but the
10404 directory and file name numbers in the statement program
10405 are 1-based. */
10406 struct file_entry *fe = &lh->file_names[file - 1];
10407 char *dir = NULL;
10408
10409 if (fe->dir_index)
10410 dir = lh->include_dirs[fe->dir_index - 1];
10411
10412 dwarf2_start_subfile (fe->name, dir, comp_dir);
10413 }
10414
10415 /* Decode the table. */
10416 while (!end_sequence)
10417 {
10418 op_code = read_1_byte (abfd, line_ptr);
10419 line_ptr += 1;
10420 if (line_ptr > line_end)
10421 {
10422 dwarf2_debug_line_missing_end_sequence_complaint ();
10423 break;
10424 }
10425
10426 if (op_code >= lh->opcode_base)
10427 {
10428 /* Special operand. */
10429 adj_opcode = op_code - lh->opcode_base;
10430 address += (((op_index + (adj_opcode / lh->line_range))
10431 / lh->maximum_ops_per_instruction)
10432 * lh->minimum_instruction_length);
10433 op_index = ((op_index + (adj_opcode / lh->line_range))
10434 % lh->maximum_ops_per_instruction);
10435 line += lh->line_base + (adj_opcode % lh->line_range);
10436 if (lh->num_file_names < file || file == 0)
10437 dwarf2_debug_line_missing_file_complaint ();
10438 /* For now we ignore lines not starting on an
10439 instruction boundary. */
10440 else if (op_index == 0)
10441 {
10442 lh->file_names[file - 1].included_p = 1;
10443 if (!decode_for_pst_p && is_stmt)
10444 {
10445 if (last_subfile != current_subfile)
10446 {
10447 addr = gdbarch_addr_bits_remove (gdbarch, address);
10448 if (last_subfile)
10449 record_line (last_subfile, 0, addr);
10450 last_subfile = current_subfile;
10451 }
10452 /* Append row to matrix using current values. */
10453 addr = check_cu_functions (address, cu);
10454 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10455 record_line (current_subfile, line, addr);
10456 }
10457 }
10458 basic_block = 0;
10459 }
10460 else switch (op_code)
10461 {
10462 case DW_LNS_extended_op:
10463 extended_len = read_unsigned_leb128 (abfd, line_ptr,
10464 &bytes_read);
10465 line_ptr += bytes_read;
10466 extended_end = line_ptr + extended_len;
10467 extended_op = read_1_byte (abfd, line_ptr);
10468 line_ptr += 1;
10469 switch (extended_op)
10470 {
10471 case DW_LNE_end_sequence:
10472 end_sequence = 1;
10473 break;
10474 case DW_LNE_set_address:
10475 address = read_address (abfd, line_ptr, cu, &bytes_read);
10476 op_index = 0;
10477 line_ptr += bytes_read;
10478 address += baseaddr;
10479 break;
10480 case DW_LNE_define_file:
10481 {
10482 char *cur_file;
10483 unsigned int dir_index, mod_time, length;
10484
10485 cur_file = read_direct_string (abfd, line_ptr,
10486 &bytes_read);
10487 line_ptr += bytes_read;
10488 dir_index =
10489 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10490 line_ptr += bytes_read;
10491 mod_time =
10492 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10493 line_ptr += bytes_read;
10494 length =
10495 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10496 line_ptr += bytes_read;
10497 add_file_name (lh, cur_file, dir_index, mod_time, length);
10498 }
10499 break;
10500 case DW_LNE_set_discriminator:
10501 /* The discriminator is not interesting to the debugger;
10502 just ignore it. */
10503 line_ptr = extended_end;
10504 break;
10505 default:
10506 complaint (&symfile_complaints,
10507 _("mangled .debug_line section"));
10508 return;
10509 }
10510 /* Make sure that we parsed the extended op correctly. If e.g.
10511 we expected a different address size than the producer used,
10512 we may have read the wrong number of bytes. */
10513 if (line_ptr != extended_end)
10514 {
10515 complaint (&symfile_complaints,
10516 _("mangled .debug_line section"));
10517 return;
10518 }
10519 break;
10520 case DW_LNS_copy:
10521 if (lh->num_file_names < file || file == 0)
10522 dwarf2_debug_line_missing_file_complaint ();
10523 else
10524 {
10525 lh->file_names[file - 1].included_p = 1;
10526 if (!decode_for_pst_p && is_stmt)
10527 {
10528 if (last_subfile != current_subfile)
10529 {
10530 addr = gdbarch_addr_bits_remove (gdbarch, address);
10531 if (last_subfile)
10532 record_line (last_subfile, 0, addr);
10533 last_subfile = current_subfile;
10534 }
10535 addr = check_cu_functions (address, cu);
10536 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10537 record_line (current_subfile, line, addr);
10538 }
10539 }
10540 basic_block = 0;
10541 break;
10542 case DW_LNS_advance_pc:
10543 {
10544 CORE_ADDR adjust
10545 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10546
10547 address += (((op_index + adjust)
10548 / lh->maximum_ops_per_instruction)
10549 * lh->minimum_instruction_length);
10550 op_index = ((op_index + adjust)
10551 % lh->maximum_ops_per_instruction);
10552 line_ptr += bytes_read;
10553 }
10554 break;
10555 case DW_LNS_advance_line:
10556 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
10557 line_ptr += bytes_read;
10558 break;
10559 case DW_LNS_set_file:
10560 {
10561 /* The arrays lh->include_dirs and lh->file_names are
10562 0-based, but the directory and file name numbers in
10563 the statement program are 1-based. */
10564 struct file_entry *fe;
10565 char *dir = NULL;
10566
10567 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10568 line_ptr += bytes_read;
10569 if (lh->num_file_names < file || file == 0)
10570 dwarf2_debug_line_missing_file_complaint ();
10571 else
10572 {
10573 fe = &lh->file_names[file - 1];
10574 if (fe->dir_index)
10575 dir = lh->include_dirs[fe->dir_index - 1];
10576 if (!decode_for_pst_p)
10577 {
10578 last_subfile = current_subfile;
10579 dwarf2_start_subfile (fe->name, dir, comp_dir);
10580 }
10581 }
10582 }
10583 break;
10584 case DW_LNS_set_column:
10585 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10586 line_ptr += bytes_read;
10587 break;
10588 case DW_LNS_negate_stmt:
10589 is_stmt = (!is_stmt);
10590 break;
10591 case DW_LNS_set_basic_block:
10592 basic_block = 1;
10593 break;
10594 /* Add to the address register of the state machine the
10595 address increment value corresponding to special opcode
10596 255. I.e., this value is scaled by the minimum
10597 instruction length since special opcode 255 would have
10598 scaled the increment. */
10599 case DW_LNS_const_add_pc:
10600 {
10601 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
10602
10603 address += (((op_index + adjust)
10604 / lh->maximum_ops_per_instruction)
10605 * lh->minimum_instruction_length);
10606 op_index = ((op_index + adjust)
10607 % lh->maximum_ops_per_instruction);
10608 }
10609 break;
10610 case DW_LNS_fixed_advance_pc:
10611 address += read_2_bytes (abfd, line_ptr);
10612 op_index = 0;
10613 line_ptr += 2;
10614 break;
10615 default:
10616 {
10617 /* Unknown standard opcode, ignore it. */
10618 int i;
10619
10620 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
10621 {
10622 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10623 line_ptr += bytes_read;
10624 }
10625 }
10626 }
10627 }
10628 if (lh->num_file_names < file || file == 0)
10629 dwarf2_debug_line_missing_file_complaint ();
10630 else
10631 {
10632 lh->file_names[file - 1].included_p = 1;
10633 if (!decode_for_pst_p)
10634 {
10635 addr = gdbarch_addr_bits_remove (gdbarch, address);
10636 record_line (current_subfile, 0, addr);
10637 }
10638 }
10639 }
10640
10641 if (decode_for_pst_p)
10642 {
10643 int file_index;
10644
10645 /* Now that we're done scanning the Line Header Program, we can
10646 create the psymtab of each included file. */
10647 for (file_index = 0; file_index < lh->num_file_names; file_index++)
10648 if (lh->file_names[file_index].included_p == 1)
10649 {
10650 char *include_name =
10651 psymtab_include_file_name (lh, file_index, pst, comp_dir);
10652 if (include_name != NULL)
10653 dwarf2_create_include_psymtab (include_name, pst, objfile);
10654 }
10655 }
10656 else
10657 {
10658 /* Make sure a symtab is created for every file, even files
10659 which contain only variables (i.e. no code with associated
10660 line numbers). */
10661
10662 int i;
10663 struct file_entry *fe;
10664
10665 for (i = 0; i < lh->num_file_names; i++)
10666 {
10667 char *dir = NULL;
10668
10669 fe = &lh->file_names[i];
10670 if (fe->dir_index)
10671 dir = lh->include_dirs[fe->dir_index - 1];
10672 dwarf2_start_subfile (fe->name, dir, comp_dir);
10673
10674 /* Skip the main file; we don't need it, and it must be
10675 allocated last, so that it will show up before the
10676 non-primary symtabs in the objfile's symtab list. */
10677 if (current_subfile == first_subfile)
10678 continue;
10679
10680 if (current_subfile->symtab == NULL)
10681 current_subfile->symtab = allocate_symtab (current_subfile->name,
10682 cu->objfile);
10683 fe->symtab = current_subfile->symtab;
10684 }
10685 }
10686 }
10687
10688 /* Start a subfile for DWARF. FILENAME is the name of the file and
10689 DIRNAME the name of the source directory which contains FILENAME
10690 or NULL if not known. COMP_DIR is the compilation directory for the
10691 linetable's compilation unit or NULL if not known.
10692 This routine tries to keep line numbers from identical absolute and
10693 relative file names in a common subfile.
10694
10695 Using the `list' example from the GDB testsuite, which resides in
10696 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
10697 of /srcdir/list0.c yields the following debugging information for list0.c:
10698
10699 DW_AT_name: /srcdir/list0.c
10700 DW_AT_comp_dir: /compdir
10701 files.files[0].name: list0.h
10702 files.files[0].dir: /srcdir
10703 files.files[1].name: list0.c
10704 files.files[1].dir: /srcdir
10705
10706 The line number information for list0.c has to end up in a single
10707 subfile, so that `break /srcdir/list0.c:1' works as expected.
10708 start_subfile will ensure that this happens provided that we pass the
10709 concatenation of files.files[1].dir and files.files[1].name as the
10710 subfile's name. */
10711
10712 static void
10713 dwarf2_start_subfile (char *filename, const char *dirname,
10714 const char *comp_dir)
10715 {
10716 char *fullname;
10717
10718 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
10719 `start_symtab' will always pass the contents of DW_AT_comp_dir as
10720 second argument to start_subfile. To be consistent, we do the
10721 same here. In order not to lose the line information directory,
10722 we concatenate it to the filename when it makes sense.
10723 Note that the Dwarf3 standard says (speaking of filenames in line
10724 information): ``The directory index is ignored for file names
10725 that represent full path names''. Thus ignoring dirname in the
10726 `else' branch below isn't an issue. */
10727
10728 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
10729 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
10730 else
10731 fullname = filename;
10732
10733 start_subfile (fullname, comp_dir);
10734
10735 if (fullname != filename)
10736 xfree (fullname);
10737 }
10738
10739 static void
10740 var_decode_location (struct attribute *attr, struct symbol *sym,
10741 struct dwarf2_cu *cu)
10742 {
10743 struct objfile *objfile = cu->objfile;
10744 struct comp_unit_head *cu_header = &cu->header;
10745
10746 /* NOTE drow/2003-01-30: There used to be a comment and some special
10747 code here to turn a symbol with DW_AT_external and a
10748 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
10749 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
10750 with some versions of binutils) where shared libraries could have
10751 relocations against symbols in their debug information - the
10752 minimal symbol would have the right address, but the debug info
10753 would not. It's no longer necessary, because we will explicitly
10754 apply relocations when we read in the debug information now. */
10755
10756 /* A DW_AT_location attribute with no contents indicates that a
10757 variable has been optimized away. */
10758 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
10759 {
10760 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10761 return;
10762 }
10763
10764 /* Handle one degenerate form of location expression specially, to
10765 preserve GDB's previous behavior when section offsets are
10766 specified. If this is just a DW_OP_addr then mark this symbol
10767 as LOC_STATIC. */
10768
10769 if (attr_form_is_block (attr)
10770 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
10771 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
10772 {
10773 unsigned int dummy;
10774
10775 SYMBOL_VALUE_ADDRESS (sym) =
10776 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
10777 SYMBOL_CLASS (sym) = LOC_STATIC;
10778 fixup_symbol_section (sym, objfile);
10779 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
10780 SYMBOL_SECTION (sym));
10781 return;
10782 }
10783
10784 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
10785 expression evaluator, and use LOC_COMPUTED only when necessary
10786 (i.e. when the value of a register or memory location is
10787 referenced, or a thread-local block, etc.). Then again, it might
10788 not be worthwhile. I'm assuming that it isn't unless performance
10789 or memory numbers show me otherwise. */
10790
10791 dwarf2_symbol_mark_computed (attr, sym, cu);
10792 SYMBOL_CLASS (sym) = LOC_COMPUTED;
10793 }
10794
10795 /* Given a pointer to a DWARF information entry, figure out if we need
10796 to make a symbol table entry for it, and if so, create a new entry
10797 and return a pointer to it.
10798 If TYPE is NULL, determine symbol type from the die, otherwise
10799 used the passed type.
10800 If SPACE is not NULL, use it to hold the new symbol. If it is
10801 NULL, allocate a new symbol on the objfile's obstack. */
10802
10803 static struct symbol *
10804 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
10805 struct symbol *space)
10806 {
10807 struct objfile *objfile = cu->objfile;
10808 struct symbol *sym = NULL;
10809 char *name;
10810 struct attribute *attr = NULL;
10811 struct attribute *attr2 = NULL;
10812 CORE_ADDR baseaddr;
10813 struct pending **list_to_add = NULL;
10814
10815 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
10816
10817 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10818
10819 name = dwarf2_name (die, cu);
10820 if (name)
10821 {
10822 const char *linkagename;
10823 int suppress_add = 0;
10824
10825 if (space)
10826 sym = space;
10827 else
10828 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
10829 OBJSTAT (objfile, n_syms++);
10830
10831 /* Cache this symbol's name and the name's demangled form (if any). */
10832 SYMBOL_SET_LANGUAGE (sym, cu->language);
10833 linkagename = dwarf2_physname (name, die, cu);
10834 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
10835
10836 /* Fortran does not have mangling standard and the mangling does differ
10837 between gfortran, iFort etc. */
10838 if (cu->language == language_fortran
10839 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
10840 symbol_set_demangled_name (&(sym->ginfo),
10841 (char *) dwarf2_full_name (name, die, cu),
10842 NULL);
10843
10844 /* Default assumptions.
10845 Use the passed type or decode it from the die. */
10846 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
10847 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10848 if (type != NULL)
10849 SYMBOL_TYPE (sym) = type;
10850 else
10851 SYMBOL_TYPE (sym) = die_type (die, cu);
10852 attr = dwarf2_attr (die,
10853 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
10854 cu);
10855 if (attr)
10856 {
10857 SYMBOL_LINE (sym) = DW_UNSND (attr);
10858 }
10859
10860 attr = dwarf2_attr (die,
10861 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
10862 cu);
10863 if (attr)
10864 {
10865 int file_index = DW_UNSND (attr);
10866
10867 if (cu->line_header == NULL
10868 || file_index > cu->line_header->num_file_names)
10869 complaint (&symfile_complaints,
10870 _("file index out of range"));
10871 else if (file_index > 0)
10872 {
10873 struct file_entry *fe;
10874
10875 fe = &cu->line_header->file_names[file_index - 1];
10876 SYMBOL_SYMTAB (sym) = fe->symtab;
10877 }
10878 }
10879
10880 switch (die->tag)
10881 {
10882 case DW_TAG_label:
10883 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10884 if (attr)
10885 {
10886 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
10887 }
10888 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
10889 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
10890 SYMBOL_CLASS (sym) = LOC_LABEL;
10891 add_symbol_to_list (sym, cu->list_in_scope);
10892 break;
10893 case DW_TAG_subprogram:
10894 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10895 finish_block. */
10896 SYMBOL_CLASS (sym) = LOC_BLOCK;
10897 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10898 if ((attr2 && (DW_UNSND (attr2) != 0))
10899 || cu->language == language_ada)
10900 {
10901 /* Subprograms marked external are stored as a global symbol.
10902 Ada subprograms, whether marked external or not, are always
10903 stored as a global symbol, because we want to be able to
10904 access them globally. For instance, we want to be able
10905 to break on a nested subprogram without having to
10906 specify the context. */
10907 list_to_add = &global_symbols;
10908 }
10909 else
10910 {
10911 list_to_add = cu->list_in_scope;
10912 }
10913 break;
10914 case DW_TAG_inlined_subroutine:
10915 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10916 finish_block. */
10917 SYMBOL_CLASS (sym) = LOC_BLOCK;
10918 SYMBOL_INLINED (sym) = 1;
10919 /* Do not add the symbol to any lists. It will be found via
10920 BLOCK_FUNCTION from the blockvector. */
10921 break;
10922 case DW_TAG_template_value_param:
10923 suppress_add = 1;
10924 /* Fall through. */
10925 case DW_TAG_constant:
10926 case DW_TAG_variable:
10927 case DW_TAG_member:
10928 /* Compilation with minimal debug info may result in
10929 variables with missing type entries. Change the
10930 misleading `void' type to something sensible. */
10931 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
10932 SYMBOL_TYPE (sym)
10933 = objfile_type (objfile)->nodebug_data_symbol;
10934
10935 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10936 /* In the case of DW_TAG_member, we should only be called for
10937 static const members. */
10938 if (die->tag == DW_TAG_member)
10939 {
10940 /* dwarf2_add_field uses die_is_declaration,
10941 so we do the same. */
10942 gdb_assert (die_is_declaration (die, cu));
10943 gdb_assert (attr);
10944 }
10945 if (attr)
10946 {
10947 dwarf2_const_value (attr, sym, cu);
10948 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10949 if (!suppress_add)
10950 {
10951 if (attr2 && (DW_UNSND (attr2) != 0))
10952 list_to_add = &global_symbols;
10953 else
10954 list_to_add = cu->list_in_scope;
10955 }
10956 break;
10957 }
10958 attr = dwarf2_attr (die, DW_AT_location, cu);
10959 if (attr)
10960 {
10961 var_decode_location (attr, sym, cu);
10962 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10963 if (SYMBOL_CLASS (sym) == LOC_STATIC
10964 && SYMBOL_VALUE_ADDRESS (sym) == 0
10965 && !dwarf2_per_objfile->has_section_at_zero)
10966 {
10967 /* When a static variable is eliminated by the linker,
10968 the corresponding debug information is not stripped
10969 out, but the variable address is set to null;
10970 do not add such variables into symbol table. */
10971 }
10972 else if (attr2 && (DW_UNSND (attr2) != 0))
10973 {
10974 /* Workaround gfortran PR debug/40040 - it uses
10975 DW_AT_location for variables in -fPIC libraries which may
10976 get overriden by other libraries/executable and get
10977 a different address. Resolve it by the minimal symbol
10978 which may come from inferior's executable using copy
10979 relocation. Make this workaround only for gfortran as for
10980 other compilers GDB cannot guess the minimal symbol
10981 Fortran mangling kind. */
10982 if (cu->language == language_fortran && die->parent
10983 && die->parent->tag == DW_TAG_module
10984 && cu->producer
10985 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
10986 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
10987
10988 /* A variable with DW_AT_external is never static,
10989 but it may be block-scoped. */
10990 list_to_add = (cu->list_in_scope == &file_symbols
10991 ? &global_symbols : cu->list_in_scope);
10992 }
10993 else
10994 list_to_add = cu->list_in_scope;
10995 }
10996 else
10997 {
10998 /* We do not know the address of this symbol.
10999 If it is an external symbol and we have type information
11000 for it, enter the symbol as a LOC_UNRESOLVED symbol.
11001 The address of the variable will then be determined from
11002 the minimal symbol table whenever the variable is
11003 referenced. */
11004 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11005 if (attr2 && (DW_UNSND (attr2) != 0)
11006 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
11007 {
11008 /* A variable with DW_AT_external is never static, but it
11009 may be block-scoped. */
11010 list_to_add = (cu->list_in_scope == &file_symbols
11011 ? &global_symbols : cu->list_in_scope);
11012
11013 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11014 }
11015 else if (!die_is_declaration (die, cu))
11016 {
11017 /* Use the default LOC_OPTIMIZED_OUT class. */
11018 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
11019 if (!suppress_add)
11020 list_to_add = cu->list_in_scope;
11021 }
11022 }
11023 break;
11024 case DW_TAG_formal_parameter:
11025 /* If we are inside a function, mark this as an argument. If
11026 not, we might be looking at an argument to an inlined function
11027 when we do not have enough information to show inlined frames;
11028 pretend it's a local variable in that case so that the user can
11029 still see it. */
11030 if (context_stack_depth > 0
11031 && context_stack[context_stack_depth - 1].name != NULL)
11032 SYMBOL_IS_ARGUMENT (sym) = 1;
11033 attr = dwarf2_attr (die, DW_AT_location, cu);
11034 if (attr)
11035 {
11036 var_decode_location (attr, sym, cu);
11037 }
11038 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11039 if (attr)
11040 {
11041 dwarf2_const_value (attr, sym, cu);
11042 }
11043 attr = dwarf2_attr (die, DW_AT_variable_parameter, cu);
11044 if (attr && DW_UNSND (attr))
11045 {
11046 struct type *ref_type;
11047
11048 ref_type = lookup_reference_type (SYMBOL_TYPE (sym));
11049 SYMBOL_TYPE (sym) = ref_type;
11050 }
11051
11052 list_to_add = cu->list_in_scope;
11053 break;
11054 case DW_TAG_unspecified_parameters:
11055 /* From varargs functions; gdb doesn't seem to have any
11056 interest in this information, so just ignore it for now.
11057 (FIXME?) */
11058 break;
11059 case DW_TAG_template_type_param:
11060 suppress_add = 1;
11061 /* Fall through. */
11062 case DW_TAG_class_type:
11063 case DW_TAG_interface_type:
11064 case DW_TAG_structure_type:
11065 case DW_TAG_union_type:
11066 case DW_TAG_set_type:
11067 case DW_TAG_enumeration_type:
11068 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11069 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
11070
11071 {
11072 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
11073 really ever be static objects: otherwise, if you try
11074 to, say, break of a class's method and you're in a file
11075 which doesn't mention that class, it won't work unless
11076 the check for all static symbols in lookup_symbol_aux
11077 saves you. See the OtherFileClass tests in
11078 gdb.c++/namespace.exp. */
11079
11080 if (!suppress_add)
11081 {
11082 list_to_add = (cu->list_in_scope == &file_symbols
11083 && (cu->language == language_cplus
11084 || cu->language == language_java)
11085 ? &global_symbols : cu->list_in_scope);
11086
11087 /* The semantics of C++ state that "struct foo {
11088 ... }" also defines a typedef for "foo". A Java
11089 class declaration also defines a typedef for the
11090 class. */
11091 if (cu->language == language_cplus
11092 || cu->language == language_java
11093 || cu->language == language_ada)
11094 {
11095 /* The symbol's name is already allocated along
11096 with this objfile, so we don't need to
11097 duplicate it for the type. */
11098 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
11099 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
11100 }
11101 }
11102 }
11103 break;
11104 case DW_TAG_typedef:
11105 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11106 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11107 list_to_add = cu->list_in_scope;
11108 break;
11109 case DW_TAG_base_type:
11110 case DW_TAG_subrange_type:
11111 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11112 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11113 list_to_add = cu->list_in_scope;
11114 break;
11115 case DW_TAG_enumerator:
11116 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11117 if (attr)
11118 {
11119 dwarf2_const_value (attr, sym, cu);
11120 }
11121 {
11122 /* NOTE: carlton/2003-11-10: See comment above in the
11123 DW_TAG_class_type, etc. block. */
11124
11125 list_to_add = (cu->list_in_scope == &file_symbols
11126 && (cu->language == language_cplus
11127 || cu->language == language_java)
11128 ? &global_symbols : cu->list_in_scope);
11129 }
11130 break;
11131 case DW_TAG_namespace:
11132 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11133 list_to_add = &global_symbols;
11134 break;
11135 default:
11136 /* Not a tag we recognize. Hopefully we aren't processing
11137 trash data, but since we must specifically ignore things
11138 we don't recognize, there is nothing else we should do at
11139 this point. */
11140 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
11141 dwarf_tag_name (die->tag));
11142 break;
11143 }
11144
11145 if (suppress_add)
11146 {
11147 sym->hash_next = objfile->template_symbols;
11148 objfile->template_symbols = sym;
11149 list_to_add = NULL;
11150 }
11151
11152 if (list_to_add != NULL)
11153 add_symbol_to_list (sym, list_to_add);
11154
11155 /* For the benefit of old versions of GCC, check for anonymous
11156 namespaces based on the demangled name. */
11157 if (!processing_has_namespace_info
11158 && cu->language == language_cplus)
11159 cp_scan_for_anonymous_namespaces (sym);
11160 }
11161 return (sym);
11162 }
11163
11164 /* A wrapper for new_symbol_full that always allocates a new symbol. */
11165
11166 static struct symbol *
11167 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
11168 {
11169 return new_symbol_full (die, type, cu, NULL);
11170 }
11171
11172 /* Given an attr with a DW_FORM_dataN value in host byte order,
11173 zero-extend it as appropriate for the symbol's type. The DWARF
11174 standard (v4) is not entirely clear about the meaning of using
11175 DW_FORM_dataN for a constant with a signed type, where the type is
11176 wider than the data. The conclusion of a discussion on the DWARF
11177 list was that this is unspecified. We choose to always zero-extend
11178 because that is the interpretation long in use by GCC. */
11179
11180 static gdb_byte *
11181 dwarf2_const_value_data (struct attribute *attr, struct type *type,
11182 const char *name, struct obstack *obstack,
11183 struct dwarf2_cu *cu, long *value, int bits)
11184 {
11185 struct objfile *objfile = cu->objfile;
11186 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
11187 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
11188 LONGEST l = DW_UNSND (attr);
11189
11190 if (bits < sizeof (*value) * 8)
11191 {
11192 l &= ((LONGEST) 1 << bits) - 1;
11193 *value = l;
11194 }
11195 else if (bits == sizeof (*value) * 8)
11196 *value = l;
11197 else
11198 {
11199 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
11200 store_unsigned_integer (bytes, bits / 8, byte_order, l);
11201 return bytes;
11202 }
11203
11204 return NULL;
11205 }
11206
11207 /* Read a constant value from an attribute. Either set *VALUE, or if
11208 the value does not fit in *VALUE, set *BYTES - either already
11209 allocated on the objfile obstack, or newly allocated on OBSTACK,
11210 or, set *BATON, if we translated the constant to a location
11211 expression. */
11212
11213 static void
11214 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
11215 const char *name, struct obstack *obstack,
11216 struct dwarf2_cu *cu,
11217 long *value, gdb_byte **bytes,
11218 struct dwarf2_locexpr_baton **baton)
11219 {
11220 struct objfile *objfile = cu->objfile;
11221 struct comp_unit_head *cu_header = &cu->header;
11222 struct dwarf_block *blk;
11223 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
11224 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
11225
11226 *value = 0;
11227 *bytes = NULL;
11228 *baton = NULL;
11229
11230 switch (attr->form)
11231 {
11232 case DW_FORM_addr:
11233 {
11234 gdb_byte *data;
11235
11236 if (TYPE_LENGTH (type) != cu_header->addr_size)
11237 dwarf2_const_value_length_mismatch_complaint (name,
11238 cu_header->addr_size,
11239 TYPE_LENGTH (type));
11240 /* Symbols of this form are reasonably rare, so we just
11241 piggyback on the existing location code rather than writing
11242 a new implementation of symbol_computed_ops. */
11243 *baton = obstack_alloc (&objfile->objfile_obstack,
11244 sizeof (struct dwarf2_locexpr_baton));
11245 (*baton)->per_cu = cu->per_cu;
11246 gdb_assert ((*baton)->per_cu);
11247
11248 (*baton)->size = 2 + cu_header->addr_size;
11249 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
11250 (*baton)->data = data;
11251
11252 data[0] = DW_OP_addr;
11253 store_unsigned_integer (&data[1], cu_header->addr_size,
11254 byte_order, DW_ADDR (attr));
11255 data[cu_header->addr_size + 1] = DW_OP_stack_value;
11256 }
11257 break;
11258 case DW_FORM_string:
11259 case DW_FORM_strp:
11260 /* DW_STRING is already allocated on the objfile obstack, point
11261 directly to it. */
11262 *bytes = (gdb_byte *) DW_STRING (attr);
11263 break;
11264 case DW_FORM_block1:
11265 case DW_FORM_block2:
11266 case DW_FORM_block4:
11267 case DW_FORM_block:
11268 case DW_FORM_exprloc:
11269 blk = DW_BLOCK (attr);
11270 if (TYPE_LENGTH (type) != blk->size)
11271 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
11272 TYPE_LENGTH (type));
11273 *bytes = blk->data;
11274 break;
11275
11276 /* The DW_AT_const_value attributes are supposed to carry the
11277 symbol's value "represented as it would be on the target
11278 architecture." By the time we get here, it's already been
11279 converted to host endianness, so we just need to sign- or
11280 zero-extend it as appropriate. */
11281 case DW_FORM_data1:
11282 *bytes = dwarf2_const_value_data (attr, type, name,
11283 obstack, cu, value, 8);
11284 break;
11285 case DW_FORM_data2:
11286 *bytes = dwarf2_const_value_data (attr, type, name,
11287 obstack, cu, value, 16);
11288 break;
11289 case DW_FORM_data4:
11290 *bytes = dwarf2_const_value_data (attr, type, name,
11291 obstack, cu, value, 32);
11292 break;
11293 case DW_FORM_data8:
11294 *bytes = dwarf2_const_value_data (attr, type, name,
11295 obstack, cu, value, 64);
11296 break;
11297
11298 case DW_FORM_sdata:
11299 *value = DW_SND (attr);
11300 break;
11301
11302 case DW_FORM_udata:
11303 *value = DW_UNSND (attr);
11304 break;
11305
11306 default:
11307 complaint (&symfile_complaints,
11308 _("unsupported const value attribute form: '%s'"),
11309 dwarf_form_name (attr->form));
11310 *value = 0;
11311 break;
11312 }
11313 }
11314
11315
11316 /* Copy constant value from an attribute to a symbol. */
11317
11318 static void
11319 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
11320 struct dwarf2_cu *cu)
11321 {
11322 struct objfile *objfile = cu->objfile;
11323 struct comp_unit_head *cu_header = &cu->header;
11324 long value;
11325 gdb_byte *bytes;
11326 struct dwarf2_locexpr_baton *baton;
11327
11328 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
11329 SYMBOL_PRINT_NAME (sym),
11330 &objfile->objfile_obstack, cu,
11331 &value, &bytes, &baton);
11332
11333 if (baton != NULL)
11334 {
11335 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11336 SYMBOL_LOCATION_BATON (sym) = baton;
11337 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11338 }
11339 else if (bytes != NULL)
11340 {
11341 SYMBOL_VALUE_BYTES (sym) = bytes;
11342 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
11343 }
11344 else
11345 {
11346 SYMBOL_VALUE (sym) = value;
11347 SYMBOL_CLASS (sym) = LOC_CONST;
11348 }
11349 }
11350
11351 /* Return the type of the die in question using its DW_AT_type attribute. */
11352
11353 static struct type *
11354 die_type (struct die_info *die, struct dwarf2_cu *cu)
11355 {
11356 struct attribute *type_attr;
11357
11358 type_attr = dwarf2_attr (die, DW_AT_type, cu);
11359 if (!type_attr)
11360 {
11361 /* A missing DW_AT_type represents a void type. */
11362 return objfile_type (cu->objfile)->builtin_void;
11363 }
11364
11365 return lookup_die_type (die, type_attr, cu);
11366 }
11367
11368 /* True iff CU's producer generates GNAT Ada auxiliary information
11369 that allows to find parallel types through that information instead
11370 of having to do expensive parallel lookups by type name. */
11371
11372 static int
11373 need_gnat_info (struct dwarf2_cu *cu)
11374 {
11375 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
11376 of GNAT produces this auxiliary information, without any indication
11377 that it is produced. Part of enhancing the FSF version of GNAT
11378 to produce that information will be to put in place an indicator
11379 that we can use in order to determine whether the descriptive type
11380 info is available or not. One suggestion that has been made is
11381 to use a new attribute, attached to the CU die. For now, assume
11382 that the descriptive type info is not available. */
11383 return 0;
11384 }
11385
11386 /* Return the auxiliary type of the die in question using its
11387 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
11388 attribute is not present. */
11389
11390 static struct type *
11391 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
11392 {
11393 struct attribute *type_attr;
11394
11395 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
11396 if (!type_attr)
11397 return NULL;
11398
11399 return lookup_die_type (die, type_attr, cu);
11400 }
11401
11402 /* If DIE has a descriptive_type attribute, then set the TYPE's
11403 descriptive type accordingly. */
11404
11405 static void
11406 set_descriptive_type (struct type *type, struct die_info *die,
11407 struct dwarf2_cu *cu)
11408 {
11409 struct type *descriptive_type = die_descriptive_type (die, cu);
11410
11411 if (descriptive_type)
11412 {
11413 ALLOCATE_GNAT_AUX_TYPE (type);
11414 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
11415 }
11416 }
11417
11418 /* Return the containing type of the die in question using its
11419 DW_AT_containing_type attribute. */
11420
11421 static struct type *
11422 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
11423 {
11424 struct attribute *type_attr;
11425
11426 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
11427 if (!type_attr)
11428 error (_("Dwarf Error: Problem turning containing type into gdb type "
11429 "[in module %s]"), cu->objfile->name);
11430
11431 return lookup_die_type (die, type_attr, cu);
11432 }
11433
11434 /* Look up the type of DIE in CU using its type attribute ATTR.
11435 If there is no type substitute an error marker. */
11436
11437 static struct type *
11438 lookup_die_type (struct die_info *die, struct attribute *attr,
11439 struct dwarf2_cu *cu)
11440 {
11441 struct type *this_type;
11442
11443 /* First see if we have it cached. */
11444
11445 if (is_ref_attr (attr))
11446 {
11447 unsigned int offset = dwarf2_get_ref_die_offset (attr);
11448
11449 this_type = get_die_type_at_offset (offset, cu->per_cu);
11450 }
11451 else if (attr->form == DW_FORM_sig8)
11452 {
11453 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
11454 struct dwarf2_cu *sig_cu;
11455 unsigned int offset;
11456
11457 /* sig_type will be NULL if the signatured type is missing from
11458 the debug info. */
11459 if (sig_type == NULL)
11460 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
11461 "at 0x%x [in module %s]"),
11462 die->offset, cu->objfile->name);
11463
11464 gdb_assert (sig_type->per_cu.from_debug_types);
11465 offset = sig_type->offset + sig_type->type_offset;
11466 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
11467 }
11468 else
11469 {
11470 dump_die_for_error (die);
11471 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
11472 dwarf_attr_name (attr->name), cu->objfile->name);
11473 }
11474
11475 /* If not cached we need to read it in. */
11476
11477 if (this_type == NULL)
11478 {
11479 struct die_info *type_die;
11480 struct dwarf2_cu *type_cu = cu;
11481
11482 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11483 /* If the type is cached, we should have found it above. */
11484 gdb_assert (get_die_type (type_die, type_cu) == NULL);
11485 this_type = read_type_die_1 (type_die, type_cu);
11486 }
11487
11488 /* If we still don't have a type use an error marker. */
11489
11490 if (this_type == NULL)
11491 {
11492 char *message, *saved;
11493
11494 /* read_type_die already issued a complaint. */
11495 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
11496 cu->objfile->name,
11497 cu->header.offset,
11498 die->offset);
11499 saved = obstack_copy0 (&cu->objfile->objfile_obstack,
11500 message, strlen (message));
11501 xfree (message);
11502
11503 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
11504 }
11505
11506 return this_type;
11507 }
11508
11509 /* Return the type in DIE, CU.
11510 Returns NULL for invalid types.
11511
11512 This first does a lookup in the appropriate type_hash table,
11513 and only reads the die in if necessary.
11514
11515 NOTE: This can be called when reading in partial or full symbols. */
11516
11517 static struct type *
11518 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
11519 {
11520 struct type *this_type;
11521
11522 this_type = get_die_type (die, cu);
11523 if (this_type)
11524 return this_type;
11525
11526 return read_type_die_1 (die, cu);
11527 }
11528
11529 /* Read the type in DIE, CU.
11530 Returns NULL for invalid types. */
11531
11532 static struct type *
11533 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
11534 {
11535 struct type *this_type = NULL;
11536
11537 switch (die->tag)
11538 {
11539 case DW_TAG_class_type:
11540 case DW_TAG_interface_type:
11541 case DW_TAG_structure_type:
11542 case DW_TAG_union_type:
11543 this_type = read_structure_type (die, cu);
11544 break;
11545 case DW_TAG_enumeration_type:
11546 this_type = read_enumeration_type (die, cu);
11547 break;
11548 case DW_TAG_subprogram:
11549 case DW_TAG_subroutine_type:
11550 case DW_TAG_inlined_subroutine:
11551 this_type = read_subroutine_type (die, cu);
11552 break;
11553 case DW_TAG_array_type:
11554 this_type = read_array_type (die, cu);
11555 break;
11556 case DW_TAG_set_type:
11557 this_type = read_set_type (die, cu);
11558 break;
11559 case DW_TAG_pointer_type:
11560 this_type = read_tag_pointer_type (die, cu);
11561 break;
11562 case DW_TAG_ptr_to_member_type:
11563 this_type = read_tag_ptr_to_member_type (die, cu);
11564 break;
11565 case DW_TAG_reference_type:
11566 this_type = read_tag_reference_type (die, cu);
11567 break;
11568 case DW_TAG_const_type:
11569 this_type = read_tag_const_type (die, cu);
11570 break;
11571 case DW_TAG_volatile_type:
11572 this_type = read_tag_volatile_type (die, cu);
11573 break;
11574 case DW_TAG_string_type:
11575 this_type = read_tag_string_type (die, cu);
11576 break;
11577 case DW_TAG_typedef:
11578 this_type = read_typedef (die, cu);
11579 break;
11580 case DW_TAG_subrange_type:
11581 this_type = read_subrange_type (die, cu);
11582 break;
11583 case DW_TAG_base_type:
11584 this_type = read_base_type (die, cu);
11585 break;
11586 case DW_TAG_unspecified_type:
11587 this_type = read_unspecified_type (die, cu);
11588 break;
11589 case DW_TAG_namespace:
11590 this_type = read_namespace_type (die, cu);
11591 break;
11592 case DW_TAG_module:
11593 this_type = read_module_type (die, cu);
11594 break;
11595 default:
11596 complaint (&symfile_complaints,
11597 _("unexpected tag in read_type_die: '%s'"),
11598 dwarf_tag_name (die->tag));
11599 break;
11600 }
11601
11602 return this_type;
11603 }
11604
11605 /* See if we can figure out if the class lives in a namespace. We do
11606 this by looking for a member function; its demangled name will
11607 contain namespace info, if there is any.
11608 Return the computed name or NULL.
11609 Space for the result is allocated on the objfile's obstack.
11610 This is the full-die version of guess_partial_die_structure_name.
11611 In this case we know DIE has no useful parent. */
11612
11613 static char *
11614 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
11615 {
11616 struct die_info *spec_die;
11617 struct dwarf2_cu *spec_cu;
11618 struct die_info *child;
11619
11620 spec_cu = cu;
11621 spec_die = die_specification (die, &spec_cu);
11622 if (spec_die != NULL)
11623 {
11624 die = spec_die;
11625 cu = spec_cu;
11626 }
11627
11628 for (child = die->child;
11629 child != NULL;
11630 child = child->sibling)
11631 {
11632 if (child->tag == DW_TAG_subprogram)
11633 {
11634 struct attribute *attr;
11635
11636 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
11637 if (attr == NULL)
11638 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
11639 if (attr != NULL)
11640 {
11641 char *actual_name
11642 = language_class_name_from_physname (cu->language_defn,
11643 DW_STRING (attr));
11644 char *name = NULL;
11645
11646 if (actual_name != NULL)
11647 {
11648 char *die_name = dwarf2_name (die, cu);
11649
11650 if (die_name != NULL
11651 && strcmp (die_name, actual_name) != 0)
11652 {
11653 /* Strip off the class name from the full name.
11654 We want the prefix. */
11655 int die_name_len = strlen (die_name);
11656 int actual_name_len = strlen (actual_name);
11657
11658 /* Test for '::' as a sanity check. */
11659 if (actual_name_len > die_name_len + 2
11660 && actual_name[actual_name_len
11661 - die_name_len - 1] == ':')
11662 name =
11663 obsavestring (actual_name,
11664 actual_name_len - die_name_len - 2,
11665 &cu->objfile->objfile_obstack);
11666 }
11667 }
11668 xfree (actual_name);
11669 return name;
11670 }
11671 }
11672 }
11673
11674 return NULL;
11675 }
11676
11677 /* Return the name of the namespace/class that DIE is defined within,
11678 or "" if we can't tell. The caller should not xfree the result.
11679
11680 For example, if we're within the method foo() in the following
11681 code:
11682
11683 namespace N {
11684 class C {
11685 void foo () {
11686 }
11687 };
11688 }
11689
11690 then determine_prefix on foo's die will return "N::C". */
11691
11692 static char *
11693 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
11694 {
11695 struct die_info *parent, *spec_die;
11696 struct dwarf2_cu *spec_cu;
11697 struct type *parent_type;
11698
11699 if (cu->language != language_cplus && cu->language != language_java
11700 && cu->language != language_fortran)
11701 return "";
11702
11703 /* We have to be careful in the presence of DW_AT_specification.
11704 For example, with GCC 3.4, given the code
11705
11706 namespace N {
11707 void foo() {
11708 // Definition of N::foo.
11709 }
11710 }
11711
11712 then we'll have a tree of DIEs like this:
11713
11714 1: DW_TAG_compile_unit
11715 2: DW_TAG_namespace // N
11716 3: DW_TAG_subprogram // declaration of N::foo
11717 4: DW_TAG_subprogram // definition of N::foo
11718 DW_AT_specification // refers to die #3
11719
11720 Thus, when processing die #4, we have to pretend that we're in
11721 the context of its DW_AT_specification, namely the contex of die
11722 #3. */
11723 spec_cu = cu;
11724 spec_die = die_specification (die, &spec_cu);
11725 if (spec_die == NULL)
11726 parent = die->parent;
11727 else
11728 {
11729 parent = spec_die->parent;
11730 cu = spec_cu;
11731 }
11732
11733 if (parent == NULL)
11734 return "";
11735 else if (parent->building_fullname)
11736 {
11737 const char *name;
11738 const char *parent_name;
11739
11740 /* It has been seen on RealView 2.2 built binaries,
11741 DW_TAG_template_type_param types actually _defined_ as
11742 children of the parent class:
11743
11744 enum E {};
11745 template class <class Enum> Class{};
11746 Class<enum E> class_e;
11747
11748 1: DW_TAG_class_type (Class)
11749 2: DW_TAG_enumeration_type (E)
11750 3: DW_TAG_enumerator (enum1:0)
11751 3: DW_TAG_enumerator (enum2:1)
11752 ...
11753 2: DW_TAG_template_type_param
11754 DW_AT_type DW_FORM_ref_udata (E)
11755
11756 Besides being broken debug info, it can put GDB into an
11757 infinite loop. Consider:
11758
11759 When we're building the full name for Class<E>, we'll start
11760 at Class, and go look over its template type parameters,
11761 finding E. We'll then try to build the full name of E, and
11762 reach here. We're now trying to build the full name of E,
11763 and look over the parent DIE for containing scope. In the
11764 broken case, if we followed the parent DIE of E, we'd again
11765 find Class, and once again go look at its template type
11766 arguments, etc., etc. Simply don't consider such parent die
11767 as source-level parent of this die (it can't be, the language
11768 doesn't allow it), and break the loop here. */
11769 name = dwarf2_name (die, cu);
11770 parent_name = dwarf2_name (parent, cu);
11771 complaint (&symfile_complaints,
11772 _("template param type '%s' defined within parent '%s'"),
11773 name ? name : "<unknown>",
11774 parent_name ? parent_name : "<unknown>");
11775 return "";
11776 }
11777 else
11778 switch (parent->tag)
11779 {
11780 case DW_TAG_namespace:
11781 parent_type = read_type_die (parent, cu);
11782 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
11783 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
11784 Work around this problem here. */
11785 if (cu->language == language_cplus
11786 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
11787 return "";
11788 /* We give a name to even anonymous namespaces. */
11789 return TYPE_TAG_NAME (parent_type);
11790 case DW_TAG_class_type:
11791 case DW_TAG_interface_type:
11792 case DW_TAG_structure_type:
11793 case DW_TAG_union_type:
11794 case DW_TAG_module:
11795 parent_type = read_type_die (parent, cu);
11796 if (TYPE_TAG_NAME (parent_type) != NULL)
11797 return TYPE_TAG_NAME (parent_type);
11798 else
11799 /* An anonymous structure is only allowed non-static data
11800 members; no typedefs, no member functions, et cetera.
11801 So it does not need a prefix. */
11802 return "";
11803 case DW_TAG_compile_unit:
11804 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
11805 if (cu->language == language_cplus
11806 && dwarf2_per_objfile->types.asection != NULL
11807 && die->child != NULL
11808 && (die->tag == DW_TAG_class_type
11809 || die->tag == DW_TAG_structure_type
11810 || die->tag == DW_TAG_union_type))
11811 {
11812 char *name = guess_full_die_structure_name (die, cu);
11813 if (name != NULL)
11814 return name;
11815 }
11816 return "";
11817 default:
11818 return determine_prefix (parent, cu);
11819 }
11820 }
11821
11822 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
11823 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
11824 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
11825 an obconcat, otherwise allocate storage for the result. The CU argument is
11826 used to determine the language and hence, the appropriate separator. */
11827
11828 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
11829
11830 static char *
11831 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
11832 int physname, struct dwarf2_cu *cu)
11833 {
11834 const char *lead = "";
11835 const char *sep;
11836
11837 if (suffix == NULL || suffix[0] == '\0'
11838 || prefix == NULL || prefix[0] == '\0')
11839 sep = "";
11840 else if (cu->language == language_java)
11841 sep = ".";
11842 else if (cu->language == language_fortran && physname)
11843 {
11844 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
11845 DW_AT_MIPS_linkage_name is preferred and used instead. */
11846
11847 lead = "__";
11848 sep = "_MOD_";
11849 }
11850 else
11851 sep = "::";
11852
11853 if (prefix == NULL)
11854 prefix = "";
11855 if (suffix == NULL)
11856 suffix = "";
11857
11858 if (obs == NULL)
11859 {
11860 char *retval
11861 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
11862
11863 strcpy (retval, lead);
11864 strcat (retval, prefix);
11865 strcat (retval, sep);
11866 strcat (retval, suffix);
11867 return retval;
11868 }
11869 else
11870 {
11871 /* We have an obstack. */
11872 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
11873 }
11874 }
11875
11876 /* Return sibling of die, NULL if no sibling. */
11877
11878 static struct die_info *
11879 sibling_die (struct die_info *die)
11880 {
11881 return die->sibling;
11882 }
11883
11884 /* Get name of a die, return NULL if not found. */
11885
11886 static char *
11887 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
11888 struct obstack *obstack)
11889 {
11890 if (name && cu->language == language_cplus)
11891 {
11892 char *canon_name = cp_canonicalize_string (name);
11893
11894 if (canon_name != NULL)
11895 {
11896 if (strcmp (canon_name, name) != 0)
11897 name = obsavestring (canon_name, strlen (canon_name),
11898 obstack);
11899 xfree (canon_name);
11900 }
11901 }
11902
11903 return name;
11904 }
11905
11906 /* Get name of a die, return NULL if not found. */
11907
11908 static char *
11909 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
11910 {
11911 struct attribute *attr;
11912
11913 attr = dwarf2_attr (die, DW_AT_name, cu);
11914 if (!attr || !DW_STRING (attr))
11915 return NULL;
11916
11917 switch (die->tag)
11918 {
11919 case DW_TAG_compile_unit:
11920 /* Compilation units have a DW_AT_name that is a filename, not
11921 a source language identifier. */
11922 case DW_TAG_enumeration_type:
11923 case DW_TAG_enumerator:
11924 /* These tags always have simple identifiers already; no need
11925 to canonicalize them. */
11926 return DW_STRING (attr);
11927
11928 case DW_TAG_subprogram:
11929 /* Java constructors will all be named "<init>", so return
11930 the class name when we see this special case. */
11931 if (cu->language == language_java
11932 && DW_STRING (attr) != NULL
11933 && strcmp (DW_STRING (attr), "<init>") == 0)
11934 {
11935 struct dwarf2_cu *spec_cu = cu;
11936 struct die_info *spec_die;
11937
11938 /* GCJ will output '<init>' for Java constructor names.
11939 For this special case, return the name of the parent class. */
11940
11941 /* GCJ may output suprogram DIEs with AT_specification set.
11942 If so, use the name of the specified DIE. */
11943 spec_die = die_specification (die, &spec_cu);
11944 if (spec_die != NULL)
11945 return dwarf2_name (spec_die, spec_cu);
11946
11947 do
11948 {
11949 die = die->parent;
11950 if (die->tag == DW_TAG_class_type)
11951 return dwarf2_name (die, cu);
11952 }
11953 while (die->tag != DW_TAG_compile_unit);
11954 }
11955 break;
11956
11957 case DW_TAG_class_type:
11958 case DW_TAG_interface_type:
11959 case DW_TAG_structure_type:
11960 case DW_TAG_union_type:
11961 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
11962 structures or unions. These were of the form "._%d" in GCC 4.1,
11963 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
11964 and GCC 4.4. We work around this problem by ignoring these. */
11965 if (strncmp (DW_STRING (attr), "._", 2) == 0
11966 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0)
11967 return NULL;
11968 break;
11969
11970 default:
11971 break;
11972 }
11973
11974 if (!DW_STRING_IS_CANONICAL (attr))
11975 {
11976 DW_STRING (attr)
11977 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
11978 &cu->objfile->objfile_obstack);
11979 DW_STRING_IS_CANONICAL (attr) = 1;
11980 }
11981 return DW_STRING (attr);
11982 }
11983
11984 /* Return the die that this die in an extension of, or NULL if there
11985 is none. *EXT_CU is the CU containing DIE on input, and the CU
11986 containing the return value on output. */
11987
11988 static struct die_info *
11989 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
11990 {
11991 struct attribute *attr;
11992
11993 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
11994 if (attr == NULL)
11995 return NULL;
11996
11997 return follow_die_ref (die, attr, ext_cu);
11998 }
11999
12000 /* Convert a DIE tag into its string name. */
12001
12002 static char *
12003 dwarf_tag_name (unsigned tag)
12004 {
12005 switch (tag)
12006 {
12007 case DW_TAG_padding:
12008 return "DW_TAG_padding";
12009 case DW_TAG_array_type:
12010 return "DW_TAG_array_type";
12011 case DW_TAG_class_type:
12012 return "DW_TAG_class_type";
12013 case DW_TAG_entry_point:
12014 return "DW_TAG_entry_point";
12015 case DW_TAG_enumeration_type:
12016 return "DW_TAG_enumeration_type";
12017 case DW_TAG_formal_parameter:
12018 return "DW_TAG_formal_parameter";
12019 case DW_TAG_imported_declaration:
12020 return "DW_TAG_imported_declaration";
12021 case DW_TAG_label:
12022 return "DW_TAG_label";
12023 case DW_TAG_lexical_block:
12024 return "DW_TAG_lexical_block";
12025 case DW_TAG_member:
12026 return "DW_TAG_member";
12027 case DW_TAG_pointer_type:
12028 return "DW_TAG_pointer_type";
12029 case DW_TAG_reference_type:
12030 return "DW_TAG_reference_type";
12031 case DW_TAG_compile_unit:
12032 return "DW_TAG_compile_unit";
12033 case DW_TAG_string_type:
12034 return "DW_TAG_string_type";
12035 case DW_TAG_structure_type:
12036 return "DW_TAG_structure_type";
12037 case DW_TAG_subroutine_type:
12038 return "DW_TAG_subroutine_type";
12039 case DW_TAG_typedef:
12040 return "DW_TAG_typedef";
12041 case DW_TAG_union_type:
12042 return "DW_TAG_union_type";
12043 case DW_TAG_unspecified_parameters:
12044 return "DW_TAG_unspecified_parameters";
12045 case DW_TAG_variant:
12046 return "DW_TAG_variant";
12047 case DW_TAG_common_block:
12048 return "DW_TAG_common_block";
12049 case DW_TAG_common_inclusion:
12050 return "DW_TAG_common_inclusion";
12051 case DW_TAG_inheritance:
12052 return "DW_TAG_inheritance";
12053 case DW_TAG_inlined_subroutine:
12054 return "DW_TAG_inlined_subroutine";
12055 case DW_TAG_module:
12056 return "DW_TAG_module";
12057 case DW_TAG_ptr_to_member_type:
12058 return "DW_TAG_ptr_to_member_type";
12059 case DW_TAG_set_type:
12060 return "DW_TAG_set_type";
12061 case DW_TAG_subrange_type:
12062 return "DW_TAG_subrange_type";
12063 case DW_TAG_with_stmt:
12064 return "DW_TAG_with_stmt";
12065 case DW_TAG_access_declaration:
12066 return "DW_TAG_access_declaration";
12067 case DW_TAG_base_type:
12068 return "DW_TAG_base_type";
12069 case DW_TAG_catch_block:
12070 return "DW_TAG_catch_block";
12071 case DW_TAG_const_type:
12072 return "DW_TAG_const_type";
12073 case DW_TAG_constant:
12074 return "DW_TAG_constant";
12075 case DW_TAG_enumerator:
12076 return "DW_TAG_enumerator";
12077 case DW_TAG_file_type:
12078 return "DW_TAG_file_type";
12079 case DW_TAG_friend:
12080 return "DW_TAG_friend";
12081 case DW_TAG_namelist:
12082 return "DW_TAG_namelist";
12083 case DW_TAG_namelist_item:
12084 return "DW_TAG_namelist_item";
12085 case DW_TAG_packed_type:
12086 return "DW_TAG_packed_type";
12087 case DW_TAG_subprogram:
12088 return "DW_TAG_subprogram";
12089 case DW_TAG_template_type_param:
12090 return "DW_TAG_template_type_param";
12091 case DW_TAG_template_value_param:
12092 return "DW_TAG_template_value_param";
12093 case DW_TAG_thrown_type:
12094 return "DW_TAG_thrown_type";
12095 case DW_TAG_try_block:
12096 return "DW_TAG_try_block";
12097 case DW_TAG_variant_part:
12098 return "DW_TAG_variant_part";
12099 case DW_TAG_variable:
12100 return "DW_TAG_variable";
12101 case DW_TAG_volatile_type:
12102 return "DW_TAG_volatile_type";
12103 case DW_TAG_dwarf_procedure:
12104 return "DW_TAG_dwarf_procedure";
12105 case DW_TAG_restrict_type:
12106 return "DW_TAG_restrict_type";
12107 case DW_TAG_interface_type:
12108 return "DW_TAG_interface_type";
12109 case DW_TAG_namespace:
12110 return "DW_TAG_namespace";
12111 case DW_TAG_imported_module:
12112 return "DW_TAG_imported_module";
12113 case DW_TAG_unspecified_type:
12114 return "DW_TAG_unspecified_type";
12115 case DW_TAG_partial_unit:
12116 return "DW_TAG_partial_unit";
12117 case DW_TAG_imported_unit:
12118 return "DW_TAG_imported_unit";
12119 case DW_TAG_condition:
12120 return "DW_TAG_condition";
12121 case DW_TAG_shared_type:
12122 return "DW_TAG_shared_type";
12123 case DW_TAG_type_unit:
12124 return "DW_TAG_type_unit";
12125 case DW_TAG_MIPS_loop:
12126 return "DW_TAG_MIPS_loop";
12127 case DW_TAG_HP_array_descriptor:
12128 return "DW_TAG_HP_array_descriptor";
12129 case DW_TAG_format_label:
12130 return "DW_TAG_format_label";
12131 case DW_TAG_function_template:
12132 return "DW_TAG_function_template";
12133 case DW_TAG_class_template:
12134 return "DW_TAG_class_template";
12135 case DW_TAG_GNU_BINCL:
12136 return "DW_TAG_GNU_BINCL";
12137 case DW_TAG_GNU_EINCL:
12138 return "DW_TAG_GNU_EINCL";
12139 case DW_TAG_upc_shared_type:
12140 return "DW_TAG_upc_shared_type";
12141 case DW_TAG_upc_strict_type:
12142 return "DW_TAG_upc_strict_type";
12143 case DW_TAG_upc_relaxed_type:
12144 return "DW_TAG_upc_relaxed_type";
12145 case DW_TAG_PGI_kanji_type:
12146 return "DW_TAG_PGI_kanji_type";
12147 case DW_TAG_PGI_interface_block:
12148 return "DW_TAG_PGI_interface_block";
12149 default:
12150 return "DW_TAG_<unknown>";
12151 }
12152 }
12153
12154 /* Convert a DWARF attribute code into its string name. */
12155
12156 static char *
12157 dwarf_attr_name (unsigned attr)
12158 {
12159 switch (attr)
12160 {
12161 case DW_AT_sibling:
12162 return "DW_AT_sibling";
12163 case DW_AT_location:
12164 return "DW_AT_location";
12165 case DW_AT_name:
12166 return "DW_AT_name";
12167 case DW_AT_ordering:
12168 return "DW_AT_ordering";
12169 case DW_AT_subscr_data:
12170 return "DW_AT_subscr_data";
12171 case DW_AT_byte_size:
12172 return "DW_AT_byte_size";
12173 case DW_AT_bit_offset:
12174 return "DW_AT_bit_offset";
12175 case DW_AT_bit_size:
12176 return "DW_AT_bit_size";
12177 case DW_AT_element_list:
12178 return "DW_AT_element_list";
12179 case DW_AT_stmt_list:
12180 return "DW_AT_stmt_list";
12181 case DW_AT_low_pc:
12182 return "DW_AT_low_pc";
12183 case DW_AT_high_pc:
12184 return "DW_AT_high_pc";
12185 case DW_AT_language:
12186 return "DW_AT_language";
12187 case DW_AT_member:
12188 return "DW_AT_member";
12189 case DW_AT_discr:
12190 return "DW_AT_discr";
12191 case DW_AT_discr_value:
12192 return "DW_AT_discr_value";
12193 case DW_AT_visibility:
12194 return "DW_AT_visibility";
12195 case DW_AT_import:
12196 return "DW_AT_import";
12197 case DW_AT_string_length:
12198 return "DW_AT_string_length";
12199 case DW_AT_common_reference:
12200 return "DW_AT_common_reference";
12201 case DW_AT_comp_dir:
12202 return "DW_AT_comp_dir";
12203 case DW_AT_const_value:
12204 return "DW_AT_const_value";
12205 case DW_AT_containing_type:
12206 return "DW_AT_containing_type";
12207 case DW_AT_default_value:
12208 return "DW_AT_default_value";
12209 case DW_AT_inline:
12210 return "DW_AT_inline";
12211 case DW_AT_is_optional:
12212 return "DW_AT_is_optional";
12213 case DW_AT_lower_bound:
12214 return "DW_AT_lower_bound";
12215 case DW_AT_producer:
12216 return "DW_AT_producer";
12217 case DW_AT_prototyped:
12218 return "DW_AT_prototyped";
12219 case DW_AT_return_addr:
12220 return "DW_AT_return_addr";
12221 case DW_AT_start_scope:
12222 return "DW_AT_start_scope";
12223 case DW_AT_bit_stride:
12224 return "DW_AT_bit_stride";
12225 case DW_AT_upper_bound:
12226 return "DW_AT_upper_bound";
12227 case DW_AT_abstract_origin:
12228 return "DW_AT_abstract_origin";
12229 case DW_AT_accessibility:
12230 return "DW_AT_accessibility";
12231 case DW_AT_address_class:
12232 return "DW_AT_address_class";
12233 case DW_AT_artificial:
12234 return "DW_AT_artificial";
12235 case DW_AT_base_types:
12236 return "DW_AT_base_types";
12237 case DW_AT_calling_convention:
12238 return "DW_AT_calling_convention";
12239 case DW_AT_count:
12240 return "DW_AT_count";
12241 case DW_AT_data_member_location:
12242 return "DW_AT_data_member_location";
12243 case DW_AT_decl_column:
12244 return "DW_AT_decl_column";
12245 case DW_AT_decl_file:
12246 return "DW_AT_decl_file";
12247 case DW_AT_decl_line:
12248 return "DW_AT_decl_line";
12249 case DW_AT_declaration:
12250 return "DW_AT_declaration";
12251 case DW_AT_discr_list:
12252 return "DW_AT_discr_list";
12253 case DW_AT_encoding:
12254 return "DW_AT_encoding";
12255 case DW_AT_external:
12256 return "DW_AT_external";
12257 case DW_AT_frame_base:
12258 return "DW_AT_frame_base";
12259 case DW_AT_friend:
12260 return "DW_AT_friend";
12261 case DW_AT_identifier_case:
12262 return "DW_AT_identifier_case";
12263 case DW_AT_macro_info:
12264 return "DW_AT_macro_info";
12265 case DW_AT_namelist_items:
12266 return "DW_AT_namelist_items";
12267 case DW_AT_priority:
12268 return "DW_AT_priority";
12269 case DW_AT_segment:
12270 return "DW_AT_segment";
12271 case DW_AT_specification:
12272 return "DW_AT_specification";
12273 case DW_AT_static_link:
12274 return "DW_AT_static_link";
12275 case DW_AT_type:
12276 return "DW_AT_type";
12277 case DW_AT_use_location:
12278 return "DW_AT_use_location";
12279 case DW_AT_variable_parameter:
12280 return "DW_AT_variable_parameter";
12281 case DW_AT_virtuality:
12282 return "DW_AT_virtuality";
12283 case DW_AT_vtable_elem_location:
12284 return "DW_AT_vtable_elem_location";
12285 /* DWARF 3 values. */
12286 case DW_AT_allocated:
12287 return "DW_AT_allocated";
12288 case DW_AT_associated:
12289 return "DW_AT_associated";
12290 case DW_AT_data_location:
12291 return "DW_AT_data_location";
12292 case DW_AT_byte_stride:
12293 return "DW_AT_byte_stride";
12294 case DW_AT_entry_pc:
12295 return "DW_AT_entry_pc";
12296 case DW_AT_use_UTF8:
12297 return "DW_AT_use_UTF8";
12298 case DW_AT_extension:
12299 return "DW_AT_extension";
12300 case DW_AT_ranges:
12301 return "DW_AT_ranges";
12302 case DW_AT_trampoline:
12303 return "DW_AT_trampoline";
12304 case DW_AT_call_column:
12305 return "DW_AT_call_column";
12306 case DW_AT_call_file:
12307 return "DW_AT_call_file";
12308 case DW_AT_call_line:
12309 return "DW_AT_call_line";
12310 case DW_AT_description:
12311 return "DW_AT_description";
12312 case DW_AT_binary_scale:
12313 return "DW_AT_binary_scale";
12314 case DW_AT_decimal_scale:
12315 return "DW_AT_decimal_scale";
12316 case DW_AT_small:
12317 return "DW_AT_small";
12318 case DW_AT_decimal_sign:
12319 return "DW_AT_decimal_sign";
12320 case DW_AT_digit_count:
12321 return "DW_AT_digit_count";
12322 case DW_AT_picture_string:
12323 return "DW_AT_picture_string";
12324 case DW_AT_mutable:
12325 return "DW_AT_mutable";
12326 case DW_AT_threads_scaled:
12327 return "DW_AT_threads_scaled";
12328 case DW_AT_explicit:
12329 return "DW_AT_explicit";
12330 case DW_AT_object_pointer:
12331 return "DW_AT_object_pointer";
12332 case DW_AT_endianity:
12333 return "DW_AT_endianity";
12334 case DW_AT_elemental:
12335 return "DW_AT_elemental";
12336 case DW_AT_pure:
12337 return "DW_AT_pure";
12338 case DW_AT_recursive:
12339 return "DW_AT_recursive";
12340 /* DWARF 4 values. */
12341 case DW_AT_signature:
12342 return "DW_AT_signature";
12343 case DW_AT_linkage_name:
12344 return "DW_AT_linkage_name";
12345 /* SGI/MIPS extensions. */
12346 #ifdef MIPS /* collides with DW_AT_HP_block_index */
12347 case DW_AT_MIPS_fde:
12348 return "DW_AT_MIPS_fde";
12349 #endif
12350 case DW_AT_MIPS_loop_begin:
12351 return "DW_AT_MIPS_loop_begin";
12352 case DW_AT_MIPS_tail_loop_begin:
12353 return "DW_AT_MIPS_tail_loop_begin";
12354 case DW_AT_MIPS_epilog_begin:
12355 return "DW_AT_MIPS_epilog_begin";
12356 case DW_AT_MIPS_loop_unroll_factor:
12357 return "DW_AT_MIPS_loop_unroll_factor";
12358 case DW_AT_MIPS_software_pipeline_depth:
12359 return "DW_AT_MIPS_software_pipeline_depth";
12360 case DW_AT_MIPS_linkage_name:
12361 return "DW_AT_MIPS_linkage_name";
12362 case DW_AT_MIPS_stride:
12363 return "DW_AT_MIPS_stride";
12364 case DW_AT_MIPS_abstract_name:
12365 return "DW_AT_MIPS_abstract_name";
12366 case DW_AT_MIPS_clone_origin:
12367 return "DW_AT_MIPS_clone_origin";
12368 case DW_AT_MIPS_has_inlines:
12369 return "DW_AT_MIPS_has_inlines";
12370 /* HP extensions. */
12371 #ifndef MIPS /* collides with DW_AT_MIPS_fde */
12372 case DW_AT_HP_block_index:
12373 return "DW_AT_HP_block_index";
12374 #endif
12375 case DW_AT_HP_unmodifiable:
12376 return "DW_AT_HP_unmodifiable";
12377 case DW_AT_HP_actuals_stmt_list:
12378 return "DW_AT_HP_actuals_stmt_list";
12379 case DW_AT_HP_proc_per_section:
12380 return "DW_AT_HP_proc_per_section";
12381 case DW_AT_HP_raw_data_ptr:
12382 return "DW_AT_HP_raw_data_ptr";
12383 case DW_AT_HP_pass_by_reference:
12384 return "DW_AT_HP_pass_by_reference";
12385 case DW_AT_HP_opt_level:
12386 return "DW_AT_HP_opt_level";
12387 case DW_AT_HP_prof_version_id:
12388 return "DW_AT_HP_prof_version_id";
12389 case DW_AT_HP_opt_flags:
12390 return "DW_AT_HP_opt_flags";
12391 case DW_AT_HP_cold_region_low_pc:
12392 return "DW_AT_HP_cold_region_low_pc";
12393 case DW_AT_HP_cold_region_high_pc:
12394 return "DW_AT_HP_cold_region_high_pc";
12395 case DW_AT_HP_all_variables_modifiable:
12396 return "DW_AT_HP_all_variables_modifiable";
12397 case DW_AT_HP_linkage_name:
12398 return "DW_AT_HP_linkage_name";
12399 case DW_AT_HP_prof_flags:
12400 return "DW_AT_HP_prof_flags";
12401 /* GNU extensions. */
12402 case DW_AT_sf_names:
12403 return "DW_AT_sf_names";
12404 case DW_AT_src_info:
12405 return "DW_AT_src_info";
12406 case DW_AT_mac_info:
12407 return "DW_AT_mac_info";
12408 case DW_AT_src_coords:
12409 return "DW_AT_src_coords";
12410 case DW_AT_body_begin:
12411 return "DW_AT_body_begin";
12412 case DW_AT_body_end:
12413 return "DW_AT_body_end";
12414 case DW_AT_GNU_vector:
12415 return "DW_AT_GNU_vector";
12416 case DW_AT_GNU_odr_signature:
12417 return "DW_AT_GNU_odr_signature";
12418 /* VMS extensions. */
12419 case DW_AT_VMS_rtnbeg_pd_address:
12420 return "DW_AT_VMS_rtnbeg_pd_address";
12421 /* UPC extension. */
12422 case DW_AT_upc_threads_scaled:
12423 return "DW_AT_upc_threads_scaled";
12424 /* PGI (STMicroelectronics) extensions. */
12425 case DW_AT_PGI_lbase:
12426 return "DW_AT_PGI_lbase";
12427 case DW_AT_PGI_soffset:
12428 return "DW_AT_PGI_soffset";
12429 case DW_AT_PGI_lstride:
12430 return "DW_AT_PGI_lstride";
12431 default:
12432 return "DW_AT_<unknown>";
12433 }
12434 }
12435
12436 /* Convert a DWARF value form code into its string name. */
12437
12438 static char *
12439 dwarf_form_name (unsigned form)
12440 {
12441 switch (form)
12442 {
12443 case DW_FORM_addr:
12444 return "DW_FORM_addr";
12445 case DW_FORM_block2:
12446 return "DW_FORM_block2";
12447 case DW_FORM_block4:
12448 return "DW_FORM_block4";
12449 case DW_FORM_data2:
12450 return "DW_FORM_data2";
12451 case DW_FORM_data4:
12452 return "DW_FORM_data4";
12453 case DW_FORM_data8:
12454 return "DW_FORM_data8";
12455 case DW_FORM_string:
12456 return "DW_FORM_string";
12457 case DW_FORM_block:
12458 return "DW_FORM_block";
12459 case DW_FORM_block1:
12460 return "DW_FORM_block1";
12461 case DW_FORM_data1:
12462 return "DW_FORM_data1";
12463 case DW_FORM_flag:
12464 return "DW_FORM_flag";
12465 case DW_FORM_sdata:
12466 return "DW_FORM_sdata";
12467 case DW_FORM_strp:
12468 return "DW_FORM_strp";
12469 case DW_FORM_udata:
12470 return "DW_FORM_udata";
12471 case DW_FORM_ref_addr:
12472 return "DW_FORM_ref_addr";
12473 case DW_FORM_ref1:
12474 return "DW_FORM_ref1";
12475 case DW_FORM_ref2:
12476 return "DW_FORM_ref2";
12477 case DW_FORM_ref4:
12478 return "DW_FORM_ref4";
12479 case DW_FORM_ref8:
12480 return "DW_FORM_ref8";
12481 case DW_FORM_ref_udata:
12482 return "DW_FORM_ref_udata";
12483 case DW_FORM_indirect:
12484 return "DW_FORM_indirect";
12485 case DW_FORM_sec_offset:
12486 return "DW_FORM_sec_offset";
12487 case DW_FORM_exprloc:
12488 return "DW_FORM_exprloc";
12489 case DW_FORM_flag_present:
12490 return "DW_FORM_flag_present";
12491 case DW_FORM_sig8:
12492 return "DW_FORM_sig8";
12493 default:
12494 return "DW_FORM_<unknown>";
12495 }
12496 }
12497
12498 /* Convert a DWARF stack opcode into its string name. */
12499
12500 const char *
12501 dwarf_stack_op_name (unsigned op)
12502 {
12503 switch (op)
12504 {
12505 case DW_OP_addr:
12506 return "DW_OP_addr";
12507 case DW_OP_deref:
12508 return "DW_OP_deref";
12509 case DW_OP_const1u:
12510 return "DW_OP_const1u";
12511 case DW_OP_const1s:
12512 return "DW_OP_const1s";
12513 case DW_OP_const2u:
12514 return "DW_OP_const2u";
12515 case DW_OP_const2s:
12516 return "DW_OP_const2s";
12517 case DW_OP_const4u:
12518 return "DW_OP_const4u";
12519 case DW_OP_const4s:
12520 return "DW_OP_const4s";
12521 case DW_OP_const8u:
12522 return "DW_OP_const8u";
12523 case DW_OP_const8s:
12524 return "DW_OP_const8s";
12525 case DW_OP_constu:
12526 return "DW_OP_constu";
12527 case DW_OP_consts:
12528 return "DW_OP_consts";
12529 case DW_OP_dup:
12530 return "DW_OP_dup";
12531 case DW_OP_drop:
12532 return "DW_OP_drop";
12533 case DW_OP_over:
12534 return "DW_OP_over";
12535 case DW_OP_pick:
12536 return "DW_OP_pick";
12537 case DW_OP_swap:
12538 return "DW_OP_swap";
12539 case DW_OP_rot:
12540 return "DW_OP_rot";
12541 case DW_OP_xderef:
12542 return "DW_OP_xderef";
12543 case DW_OP_abs:
12544 return "DW_OP_abs";
12545 case DW_OP_and:
12546 return "DW_OP_and";
12547 case DW_OP_div:
12548 return "DW_OP_div";
12549 case DW_OP_minus:
12550 return "DW_OP_minus";
12551 case DW_OP_mod:
12552 return "DW_OP_mod";
12553 case DW_OP_mul:
12554 return "DW_OP_mul";
12555 case DW_OP_neg:
12556 return "DW_OP_neg";
12557 case DW_OP_not:
12558 return "DW_OP_not";
12559 case DW_OP_or:
12560 return "DW_OP_or";
12561 case DW_OP_plus:
12562 return "DW_OP_plus";
12563 case DW_OP_plus_uconst:
12564 return "DW_OP_plus_uconst";
12565 case DW_OP_shl:
12566 return "DW_OP_shl";
12567 case DW_OP_shr:
12568 return "DW_OP_shr";
12569 case DW_OP_shra:
12570 return "DW_OP_shra";
12571 case DW_OP_xor:
12572 return "DW_OP_xor";
12573 case DW_OP_bra:
12574 return "DW_OP_bra";
12575 case DW_OP_eq:
12576 return "DW_OP_eq";
12577 case DW_OP_ge:
12578 return "DW_OP_ge";
12579 case DW_OP_gt:
12580 return "DW_OP_gt";
12581 case DW_OP_le:
12582 return "DW_OP_le";
12583 case DW_OP_lt:
12584 return "DW_OP_lt";
12585 case DW_OP_ne:
12586 return "DW_OP_ne";
12587 case DW_OP_skip:
12588 return "DW_OP_skip";
12589 case DW_OP_lit0:
12590 return "DW_OP_lit0";
12591 case DW_OP_lit1:
12592 return "DW_OP_lit1";
12593 case DW_OP_lit2:
12594 return "DW_OP_lit2";
12595 case DW_OP_lit3:
12596 return "DW_OP_lit3";
12597 case DW_OP_lit4:
12598 return "DW_OP_lit4";
12599 case DW_OP_lit5:
12600 return "DW_OP_lit5";
12601 case DW_OP_lit6:
12602 return "DW_OP_lit6";
12603 case DW_OP_lit7:
12604 return "DW_OP_lit7";
12605 case DW_OP_lit8:
12606 return "DW_OP_lit8";
12607 case DW_OP_lit9:
12608 return "DW_OP_lit9";
12609 case DW_OP_lit10:
12610 return "DW_OP_lit10";
12611 case DW_OP_lit11:
12612 return "DW_OP_lit11";
12613 case DW_OP_lit12:
12614 return "DW_OP_lit12";
12615 case DW_OP_lit13:
12616 return "DW_OP_lit13";
12617 case DW_OP_lit14:
12618 return "DW_OP_lit14";
12619 case DW_OP_lit15:
12620 return "DW_OP_lit15";
12621 case DW_OP_lit16:
12622 return "DW_OP_lit16";
12623 case DW_OP_lit17:
12624 return "DW_OP_lit17";
12625 case DW_OP_lit18:
12626 return "DW_OP_lit18";
12627 case DW_OP_lit19:
12628 return "DW_OP_lit19";
12629 case DW_OP_lit20:
12630 return "DW_OP_lit20";
12631 case DW_OP_lit21:
12632 return "DW_OP_lit21";
12633 case DW_OP_lit22:
12634 return "DW_OP_lit22";
12635 case DW_OP_lit23:
12636 return "DW_OP_lit23";
12637 case DW_OP_lit24:
12638 return "DW_OP_lit24";
12639 case DW_OP_lit25:
12640 return "DW_OP_lit25";
12641 case DW_OP_lit26:
12642 return "DW_OP_lit26";
12643 case DW_OP_lit27:
12644 return "DW_OP_lit27";
12645 case DW_OP_lit28:
12646 return "DW_OP_lit28";
12647 case DW_OP_lit29:
12648 return "DW_OP_lit29";
12649 case DW_OP_lit30:
12650 return "DW_OP_lit30";
12651 case DW_OP_lit31:
12652 return "DW_OP_lit31";
12653 case DW_OP_reg0:
12654 return "DW_OP_reg0";
12655 case DW_OP_reg1:
12656 return "DW_OP_reg1";
12657 case DW_OP_reg2:
12658 return "DW_OP_reg2";
12659 case DW_OP_reg3:
12660 return "DW_OP_reg3";
12661 case DW_OP_reg4:
12662 return "DW_OP_reg4";
12663 case DW_OP_reg5:
12664 return "DW_OP_reg5";
12665 case DW_OP_reg6:
12666 return "DW_OP_reg6";
12667 case DW_OP_reg7:
12668 return "DW_OP_reg7";
12669 case DW_OP_reg8:
12670 return "DW_OP_reg8";
12671 case DW_OP_reg9:
12672 return "DW_OP_reg9";
12673 case DW_OP_reg10:
12674 return "DW_OP_reg10";
12675 case DW_OP_reg11:
12676 return "DW_OP_reg11";
12677 case DW_OP_reg12:
12678 return "DW_OP_reg12";
12679 case DW_OP_reg13:
12680 return "DW_OP_reg13";
12681 case DW_OP_reg14:
12682 return "DW_OP_reg14";
12683 case DW_OP_reg15:
12684 return "DW_OP_reg15";
12685 case DW_OP_reg16:
12686 return "DW_OP_reg16";
12687 case DW_OP_reg17:
12688 return "DW_OP_reg17";
12689 case DW_OP_reg18:
12690 return "DW_OP_reg18";
12691 case DW_OP_reg19:
12692 return "DW_OP_reg19";
12693 case DW_OP_reg20:
12694 return "DW_OP_reg20";
12695 case DW_OP_reg21:
12696 return "DW_OP_reg21";
12697 case DW_OP_reg22:
12698 return "DW_OP_reg22";
12699 case DW_OP_reg23:
12700 return "DW_OP_reg23";
12701 case DW_OP_reg24:
12702 return "DW_OP_reg24";
12703 case DW_OP_reg25:
12704 return "DW_OP_reg25";
12705 case DW_OP_reg26:
12706 return "DW_OP_reg26";
12707 case DW_OP_reg27:
12708 return "DW_OP_reg27";
12709 case DW_OP_reg28:
12710 return "DW_OP_reg28";
12711 case DW_OP_reg29:
12712 return "DW_OP_reg29";
12713 case DW_OP_reg30:
12714 return "DW_OP_reg30";
12715 case DW_OP_reg31:
12716 return "DW_OP_reg31";
12717 case DW_OP_breg0:
12718 return "DW_OP_breg0";
12719 case DW_OP_breg1:
12720 return "DW_OP_breg1";
12721 case DW_OP_breg2:
12722 return "DW_OP_breg2";
12723 case DW_OP_breg3:
12724 return "DW_OP_breg3";
12725 case DW_OP_breg4:
12726 return "DW_OP_breg4";
12727 case DW_OP_breg5:
12728 return "DW_OP_breg5";
12729 case DW_OP_breg6:
12730 return "DW_OP_breg6";
12731 case DW_OP_breg7:
12732 return "DW_OP_breg7";
12733 case DW_OP_breg8:
12734 return "DW_OP_breg8";
12735 case DW_OP_breg9:
12736 return "DW_OP_breg9";
12737 case DW_OP_breg10:
12738 return "DW_OP_breg10";
12739 case DW_OP_breg11:
12740 return "DW_OP_breg11";
12741 case DW_OP_breg12:
12742 return "DW_OP_breg12";
12743 case DW_OP_breg13:
12744 return "DW_OP_breg13";
12745 case DW_OP_breg14:
12746 return "DW_OP_breg14";
12747 case DW_OP_breg15:
12748 return "DW_OP_breg15";
12749 case DW_OP_breg16:
12750 return "DW_OP_breg16";
12751 case DW_OP_breg17:
12752 return "DW_OP_breg17";
12753 case DW_OP_breg18:
12754 return "DW_OP_breg18";
12755 case DW_OP_breg19:
12756 return "DW_OP_breg19";
12757 case DW_OP_breg20:
12758 return "DW_OP_breg20";
12759 case DW_OP_breg21:
12760 return "DW_OP_breg21";
12761 case DW_OP_breg22:
12762 return "DW_OP_breg22";
12763 case DW_OP_breg23:
12764 return "DW_OP_breg23";
12765 case DW_OP_breg24:
12766 return "DW_OP_breg24";
12767 case DW_OP_breg25:
12768 return "DW_OP_breg25";
12769 case DW_OP_breg26:
12770 return "DW_OP_breg26";
12771 case DW_OP_breg27:
12772 return "DW_OP_breg27";
12773 case DW_OP_breg28:
12774 return "DW_OP_breg28";
12775 case DW_OP_breg29:
12776 return "DW_OP_breg29";
12777 case DW_OP_breg30:
12778 return "DW_OP_breg30";
12779 case DW_OP_breg31:
12780 return "DW_OP_breg31";
12781 case DW_OP_regx:
12782 return "DW_OP_regx";
12783 case DW_OP_fbreg:
12784 return "DW_OP_fbreg";
12785 case DW_OP_bregx:
12786 return "DW_OP_bregx";
12787 case DW_OP_piece:
12788 return "DW_OP_piece";
12789 case DW_OP_deref_size:
12790 return "DW_OP_deref_size";
12791 case DW_OP_xderef_size:
12792 return "DW_OP_xderef_size";
12793 case DW_OP_nop:
12794 return "DW_OP_nop";
12795 /* DWARF 3 extensions. */
12796 case DW_OP_push_object_address:
12797 return "DW_OP_push_object_address";
12798 case DW_OP_call2:
12799 return "DW_OP_call2";
12800 case DW_OP_call4:
12801 return "DW_OP_call4";
12802 case DW_OP_call_ref:
12803 return "DW_OP_call_ref";
12804 case DW_OP_form_tls_address:
12805 return "DW_OP_form_tls_address";
12806 case DW_OP_call_frame_cfa:
12807 return "DW_OP_call_frame_cfa";
12808 case DW_OP_bit_piece:
12809 return "DW_OP_bit_piece";
12810 /* DWARF 4 extensions. */
12811 case DW_OP_implicit_value:
12812 return "DW_OP_implicit_value";
12813 case DW_OP_stack_value:
12814 return "DW_OP_stack_value";
12815 /* GNU extensions. */
12816 case DW_OP_GNU_push_tls_address:
12817 return "DW_OP_GNU_push_tls_address";
12818 case DW_OP_GNU_uninit:
12819 return "DW_OP_GNU_uninit";
12820 case DW_OP_GNU_implicit_pointer:
12821 return "DW_OP_GNU_implicit_pointer";
12822 default:
12823 return NULL;
12824 }
12825 }
12826
12827 static char *
12828 dwarf_bool_name (unsigned mybool)
12829 {
12830 if (mybool)
12831 return "TRUE";
12832 else
12833 return "FALSE";
12834 }
12835
12836 /* Convert a DWARF type code into its string name. */
12837
12838 static char *
12839 dwarf_type_encoding_name (unsigned enc)
12840 {
12841 switch (enc)
12842 {
12843 case DW_ATE_void:
12844 return "DW_ATE_void";
12845 case DW_ATE_address:
12846 return "DW_ATE_address";
12847 case DW_ATE_boolean:
12848 return "DW_ATE_boolean";
12849 case DW_ATE_complex_float:
12850 return "DW_ATE_complex_float";
12851 case DW_ATE_float:
12852 return "DW_ATE_float";
12853 case DW_ATE_signed:
12854 return "DW_ATE_signed";
12855 case DW_ATE_signed_char:
12856 return "DW_ATE_signed_char";
12857 case DW_ATE_unsigned:
12858 return "DW_ATE_unsigned";
12859 case DW_ATE_unsigned_char:
12860 return "DW_ATE_unsigned_char";
12861 /* DWARF 3. */
12862 case DW_ATE_imaginary_float:
12863 return "DW_ATE_imaginary_float";
12864 case DW_ATE_packed_decimal:
12865 return "DW_ATE_packed_decimal";
12866 case DW_ATE_numeric_string:
12867 return "DW_ATE_numeric_string";
12868 case DW_ATE_edited:
12869 return "DW_ATE_edited";
12870 case DW_ATE_signed_fixed:
12871 return "DW_ATE_signed_fixed";
12872 case DW_ATE_unsigned_fixed:
12873 return "DW_ATE_unsigned_fixed";
12874 case DW_ATE_decimal_float:
12875 return "DW_ATE_decimal_float";
12876 /* DWARF 4. */
12877 case DW_ATE_UTF:
12878 return "DW_ATE_UTF";
12879 /* HP extensions. */
12880 case DW_ATE_HP_float80:
12881 return "DW_ATE_HP_float80";
12882 case DW_ATE_HP_complex_float80:
12883 return "DW_ATE_HP_complex_float80";
12884 case DW_ATE_HP_float128:
12885 return "DW_ATE_HP_float128";
12886 case DW_ATE_HP_complex_float128:
12887 return "DW_ATE_HP_complex_float128";
12888 case DW_ATE_HP_floathpintel:
12889 return "DW_ATE_HP_floathpintel";
12890 case DW_ATE_HP_imaginary_float80:
12891 return "DW_ATE_HP_imaginary_float80";
12892 case DW_ATE_HP_imaginary_float128:
12893 return "DW_ATE_HP_imaginary_float128";
12894 default:
12895 return "DW_ATE_<unknown>";
12896 }
12897 }
12898
12899 /* Convert a DWARF call frame info operation to its string name. */
12900
12901 #if 0
12902 static char *
12903 dwarf_cfi_name (unsigned cfi_opc)
12904 {
12905 switch (cfi_opc)
12906 {
12907 case DW_CFA_advance_loc:
12908 return "DW_CFA_advance_loc";
12909 case DW_CFA_offset:
12910 return "DW_CFA_offset";
12911 case DW_CFA_restore:
12912 return "DW_CFA_restore";
12913 case DW_CFA_nop:
12914 return "DW_CFA_nop";
12915 case DW_CFA_set_loc:
12916 return "DW_CFA_set_loc";
12917 case DW_CFA_advance_loc1:
12918 return "DW_CFA_advance_loc1";
12919 case DW_CFA_advance_loc2:
12920 return "DW_CFA_advance_loc2";
12921 case DW_CFA_advance_loc4:
12922 return "DW_CFA_advance_loc4";
12923 case DW_CFA_offset_extended:
12924 return "DW_CFA_offset_extended";
12925 case DW_CFA_restore_extended:
12926 return "DW_CFA_restore_extended";
12927 case DW_CFA_undefined:
12928 return "DW_CFA_undefined";
12929 case DW_CFA_same_value:
12930 return "DW_CFA_same_value";
12931 case DW_CFA_register:
12932 return "DW_CFA_register";
12933 case DW_CFA_remember_state:
12934 return "DW_CFA_remember_state";
12935 case DW_CFA_restore_state:
12936 return "DW_CFA_restore_state";
12937 case DW_CFA_def_cfa:
12938 return "DW_CFA_def_cfa";
12939 case DW_CFA_def_cfa_register:
12940 return "DW_CFA_def_cfa_register";
12941 case DW_CFA_def_cfa_offset:
12942 return "DW_CFA_def_cfa_offset";
12943 /* DWARF 3. */
12944 case DW_CFA_def_cfa_expression:
12945 return "DW_CFA_def_cfa_expression";
12946 case DW_CFA_expression:
12947 return "DW_CFA_expression";
12948 case DW_CFA_offset_extended_sf:
12949 return "DW_CFA_offset_extended_sf";
12950 case DW_CFA_def_cfa_sf:
12951 return "DW_CFA_def_cfa_sf";
12952 case DW_CFA_def_cfa_offset_sf:
12953 return "DW_CFA_def_cfa_offset_sf";
12954 case DW_CFA_val_offset:
12955 return "DW_CFA_val_offset";
12956 case DW_CFA_val_offset_sf:
12957 return "DW_CFA_val_offset_sf";
12958 case DW_CFA_val_expression:
12959 return "DW_CFA_val_expression";
12960 /* SGI/MIPS specific. */
12961 case DW_CFA_MIPS_advance_loc8:
12962 return "DW_CFA_MIPS_advance_loc8";
12963 /* GNU extensions. */
12964 case DW_CFA_GNU_window_save:
12965 return "DW_CFA_GNU_window_save";
12966 case DW_CFA_GNU_args_size:
12967 return "DW_CFA_GNU_args_size";
12968 case DW_CFA_GNU_negative_offset_extended:
12969 return "DW_CFA_GNU_negative_offset_extended";
12970 default:
12971 return "DW_CFA_<unknown>";
12972 }
12973 }
12974 #endif
12975
12976 static void
12977 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
12978 {
12979 unsigned int i;
12980
12981 print_spaces (indent, f);
12982 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
12983 dwarf_tag_name (die->tag), die->abbrev, die->offset);
12984
12985 if (die->parent != NULL)
12986 {
12987 print_spaces (indent, f);
12988 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
12989 die->parent->offset);
12990 }
12991
12992 print_spaces (indent, f);
12993 fprintf_unfiltered (f, " has children: %s\n",
12994 dwarf_bool_name (die->child != NULL));
12995
12996 print_spaces (indent, f);
12997 fprintf_unfiltered (f, " attributes:\n");
12998
12999 for (i = 0; i < die->num_attrs; ++i)
13000 {
13001 print_spaces (indent, f);
13002 fprintf_unfiltered (f, " %s (%s) ",
13003 dwarf_attr_name (die->attrs[i].name),
13004 dwarf_form_name (die->attrs[i].form));
13005
13006 switch (die->attrs[i].form)
13007 {
13008 case DW_FORM_ref_addr:
13009 case DW_FORM_addr:
13010 fprintf_unfiltered (f, "address: ");
13011 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
13012 break;
13013 case DW_FORM_block2:
13014 case DW_FORM_block4:
13015 case DW_FORM_block:
13016 case DW_FORM_block1:
13017 fprintf_unfiltered (f, "block: size %d",
13018 DW_BLOCK (&die->attrs[i])->size);
13019 break;
13020 case DW_FORM_exprloc:
13021 fprintf_unfiltered (f, "expression: size %u",
13022 DW_BLOCK (&die->attrs[i])->size);
13023 break;
13024 case DW_FORM_ref1:
13025 case DW_FORM_ref2:
13026 case DW_FORM_ref4:
13027 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
13028 (long) (DW_ADDR (&die->attrs[i])));
13029 break;
13030 case DW_FORM_data1:
13031 case DW_FORM_data2:
13032 case DW_FORM_data4:
13033 case DW_FORM_data8:
13034 case DW_FORM_udata:
13035 case DW_FORM_sdata:
13036 fprintf_unfiltered (f, "constant: %s",
13037 pulongest (DW_UNSND (&die->attrs[i])));
13038 break;
13039 case DW_FORM_sec_offset:
13040 fprintf_unfiltered (f, "section offset: %s",
13041 pulongest (DW_UNSND (&die->attrs[i])));
13042 break;
13043 case DW_FORM_sig8:
13044 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
13045 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
13046 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
13047 else
13048 fprintf_unfiltered (f, "signatured type, offset: unknown");
13049 break;
13050 case DW_FORM_string:
13051 case DW_FORM_strp:
13052 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
13053 DW_STRING (&die->attrs[i])
13054 ? DW_STRING (&die->attrs[i]) : "",
13055 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
13056 break;
13057 case DW_FORM_flag:
13058 if (DW_UNSND (&die->attrs[i]))
13059 fprintf_unfiltered (f, "flag: TRUE");
13060 else
13061 fprintf_unfiltered (f, "flag: FALSE");
13062 break;
13063 case DW_FORM_flag_present:
13064 fprintf_unfiltered (f, "flag: TRUE");
13065 break;
13066 case DW_FORM_indirect:
13067 /* The reader will have reduced the indirect form to
13068 the "base form" so this form should not occur. */
13069 fprintf_unfiltered (f,
13070 "unexpected attribute form: DW_FORM_indirect");
13071 break;
13072 default:
13073 fprintf_unfiltered (f, "unsupported attribute form: %d.",
13074 die->attrs[i].form);
13075 break;
13076 }
13077 fprintf_unfiltered (f, "\n");
13078 }
13079 }
13080
13081 static void
13082 dump_die_for_error (struct die_info *die)
13083 {
13084 dump_die_shallow (gdb_stderr, 0, die);
13085 }
13086
13087 static void
13088 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
13089 {
13090 int indent = level * 4;
13091
13092 gdb_assert (die != NULL);
13093
13094 if (level >= max_level)
13095 return;
13096
13097 dump_die_shallow (f, indent, die);
13098
13099 if (die->child != NULL)
13100 {
13101 print_spaces (indent, f);
13102 fprintf_unfiltered (f, " Children:");
13103 if (level + 1 < max_level)
13104 {
13105 fprintf_unfiltered (f, "\n");
13106 dump_die_1 (f, level + 1, max_level, die->child);
13107 }
13108 else
13109 {
13110 fprintf_unfiltered (f,
13111 " [not printed, max nesting level reached]\n");
13112 }
13113 }
13114
13115 if (die->sibling != NULL && level > 0)
13116 {
13117 dump_die_1 (f, level, max_level, die->sibling);
13118 }
13119 }
13120
13121 /* This is called from the pdie macro in gdbinit.in.
13122 It's not static so gcc will keep a copy callable from gdb. */
13123
13124 void
13125 dump_die (struct die_info *die, int max_level)
13126 {
13127 dump_die_1 (gdb_stdlog, 0, max_level, die);
13128 }
13129
13130 static void
13131 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
13132 {
13133 void **slot;
13134
13135 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
13136
13137 *slot = die;
13138 }
13139
13140 static int
13141 is_ref_attr (struct attribute *attr)
13142 {
13143 switch (attr->form)
13144 {
13145 case DW_FORM_ref_addr:
13146 case DW_FORM_ref1:
13147 case DW_FORM_ref2:
13148 case DW_FORM_ref4:
13149 case DW_FORM_ref8:
13150 case DW_FORM_ref_udata:
13151 return 1;
13152 default:
13153 return 0;
13154 }
13155 }
13156
13157 static unsigned int
13158 dwarf2_get_ref_die_offset (struct attribute *attr)
13159 {
13160 if (is_ref_attr (attr))
13161 return DW_ADDR (attr);
13162
13163 complaint (&symfile_complaints,
13164 _("unsupported die ref attribute form: '%s'"),
13165 dwarf_form_name (attr->form));
13166 return 0;
13167 }
13168
13169 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
13170 * the value held by the attribute is not constant. */
13171
13172 static LONGEST
13173 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
13174 {
13175 if (attr->form == DW_FORM_sdata)
13176 return DW_SND (attr);
13177 else if (attr->form == DW_FORM_udata
13178 || attr->form == DW_FORM_data1
13179 || attr->form == DW_FORM_data2
13180 || attr->form == DW_FORM_data4
13181 || attr->form == DW_FORM_data8)
13182 return DW_UNSND (attr);
13183 else
13184 {
13185 complaint (&symfile_complaints,
13186 _("Attribute value is not a constant (%s)"),
13187 dwarf_form_name (attr->form));
13188 return default_value;
13189 }
13190 }
13191
13192 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
13193 unit and add it to our queue.
13194 The result is non-zero if PER_CU was queued, otherwise the result is zero
13195 meaning either PER_CU is already queued or it is already loaded. */
13196
13197 static int
13198 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
13199 struct dwarf2_per_cu_data *per_cu)
13200 {
13201 /* We may arrive here during partial symbol reading, if we need full
13202 DIEs to process an unusual case (e.g. template arguments). Do
13203 not queue PER_CU, just tell our caller to load its DIEs. */
13204 if (dwarf2_per_objfile->reading_partial_symbols)
13205 {
13206 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
13207 return 1;
13208 return 0;
13209 }
13210
13211 /* Mark the dependence relation so that we don't flush PER_CU
13212 too early. */
13213 dwarf2_add_dependence (this_cu, per_cu);
13214
13215 /* If it's already on the queue, we have nothing to do. */
13216 if (per_cu->queued)
13217 return 0;
13218
13219 /* If the compilation unit is already loaded, just mark it as
13220 used. */
13221 if (per_cu->cu != NULL)
13222 {
13223 per_cu->cu->last_used = 0;
13224 return 0;
13225 }
13226
13227 /* Add it to the queue. */
13228 queue_comp_unit (per_cu, this_cu->objfile);
13229
13230 return 1;
13231 }
13232
13233 /* Follow reference or signature attribute ATTR of SRC_DIE.
13234 On entry *REF_CU is the CU of SRC_DIE.
13235 On exit *REF_CU is the CU of the result. */
13236
13237 static struct die_info *
13238 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
13239 struct dwarf2_cu **ref_cu)
13240 {
13241 struct die_info *die;
13242
13243 if (is_ref_attr (attr))
13244 die = follow_die_ref (src_die, attr, ref_cu);
13245 else if (attr->form == DW_FORM_sig8)
13246 die = follow_die_sig (src_die, attr, ref_cu);
13247 else
13248 {
13249 dump_die_for_error (src_die);
13250 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
13251 (*ref_cu)->objfile->name);
13252 }
13253
13254 return die;
13255 }
13256
13257 /* Follow reference OFFSET.
13258 On entry *REF_CU is the CU of the source die referencing OFFSET.
13259 On exit *REF_CU is the CU of the result.
13260 Returns NULL if OFFSET is invalid. */
13261
13262 static struct die_info *
13263 follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
13264 {
13265 struct die_info temp_die;
13266 struct dwarf2_cu *target_cu, *cu = *ref_cu;
13267
13268 gdb_assert (cu->per_cu != NULL);
13269
13270 target_cu = cu;
13271
13272 if (cu->per_cu->from_debug_types)
13273 {
13274 /* .debug_types CUs cannot reference anything outside their CU.
13275 If they need to, they have to reference a signatured type via
13276 DW_FORM_sig8. */
13277 if (! offset_in_cu_p (&cu->header, offset))
13278 return NULL;
13279 }
13280 else if (! offset_in_cu_p (&cu->header, offset))
13281 {
13282 struct dwarf2_per_cu_data *per_cu;
13283
13284 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
13285
13286 /* If necessary, add it to the queue and load its DIEs. */
13287 if (maybe_queue_comp_unit (cu, per_cu))
13288 load_full_comp_unit (per_cu, cu->objfile);
13289
13290 target_cu = per_cu->cu;
13291 }
13292 else if (cu->dies == NULL)
13293 {
13294 /* We're loading full DIEs during partial symbol reading. */
13295 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
13296 load_full_comp_unit (cu->per_cu, cu->objfile);
13297 }
13298
13299 *ref_cu = target_cu;
13300 temp_die.offset = offset;
13301 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
13302 }
13303
13304 /* Follow reference attribute ATTR of SRC_DIE.
13305 On entry *REF_CU is the CU of SRC_DIE.
13306 On exit *REF_CU is the CU of the result. */
13307
13308 static struct die_info *
13309 follow_die_ref (struct die_info *src_die, struct attribute *attr,
13310 struct dwarf2_cu **ref_cu)
13311 {
13312 unsigned int offset = dwarf2_get_ref_die_offset (attr);
13313 struct dwarf2_cu *cu = *ref_cu;
13314 struct die_info *die;
13315
13316 die = follow_die_offset (offset, ref_cu);
13317 if (!die)
13318 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
13319 "at 0x%x [in module %s]"),
13320 offset, src_die->offset, cu->objfile->name);
13321
13322 return die;
13323 }
13324
13325 /* Return DWARF block and its CU referenced by OFFSET at PER_CU. Returned
13326 value is intended for DW_OP_call*. */
13327
13328 struct dwarf2_locexpr_baton
13329 dwarf2_fetch_die_location_block (unsigned int offset,
13330 struct dwarf2_per_cu_data *per_cu,
13331 CORE_ADDR (*get_frame_pc) (void *baton),
13332 void *baton)
13333 {
13334 struct dwarf2_cu *cu = per_cu->cu;
13335 struct die_info *die;
13336 struct attribute *attr;
13337 struct dwarf2_locexpr_baton retval;
13338
13339 dw2_setup (per_cu->objfile);
13340
13341 die = follow_die_offset (offset, &cu);
13342 if (!die)
13343 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
13344 offset, per_cu->cu->objfile->name);
13345
13346 attr = dwarf2_attr (die, DW_AT_location, cu);
13347 if (!attr)
13348 {
13349 /* DWARF: "If there is no such attribute, then there is no effect.". */
13350
13351 retval.data = NULL;
13352 retval.size = 0;
13353 }
13354 else if (attr_form_is_section_offset (attr))
13355 {
13356 struct dwarf2_loclist_baton loclist_baton;
13357 CORE_ADDR pc = (*get_frame_pc) (baton);
13358 size_t size;
13359
13360 fill_in_loclist_baton (cu, &loclist_baton, attr);
13361
13362 retval.data = dwarf2_find_location_expression (&loclist_baton,
13363 &size, pc);
13364 retval.size = size;
13365 }
13366 else
13367 {
13368 if (!attr_form_is_block (attr))
13369 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
13370 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
13371 offset, per_cu->cu->objfile->name);
13372
13373 retval.data = DW_BLOCK (attr)->data;
13374 retval.size = DW_BLOCK (attr)->size;
13375 }
13376 retval.per_cu = cu->per_cu;
13377 return retval;
13378 }
13379
13380 /* Follow the signature attribute ATTR in SRC_DIE.
13381 On entry *REF_CU is the CU of SRC_DIE.
13382 On exit *REF_CU is the CU of the result. */
13383
13384 static struct die_info *
13385 follow_die_sig (struct die_info *src_die, struct attribute *attr,
13386 struct dwarf2_cu **ref_cu)
13387 {
13388 struct objfile *objfile = (*ref_cu)->objfile;
13389 struct die_info temp_die;
13390 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
13391 struct dwarf2_cu *sig_cu;
13392 struct die_info *die;
13393
13394 /* sig_type will be NULL if the signatured type is missing from
13395 the debug info. */
13396 if (sig_type == NULL)
13397 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
13398 "at 0x%x [in module %s]"),
13399 src_die->offset, objfile->name);
13400
13401 /* If necessary, add it to the queue and load its DIEs. */
13402
13403 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
13404 read_signatured_type (objfile, sig_type);
13405
13406 gdb_assert (sig_type->per_cu.cu != NULL);
13407
13408 sig_cu = sig_type->per_cu.cu;
13409 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
13410 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
13411 if (die)
13412 {
13413 *ref_cu = sig_cu;
13414 return die;
13415 }
13416
13417 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
13418 "from DIE at 0x%x [in module %s]"),
13419 sig_type->type_offset, src_die->offset, objfile->name);
13420 }
13421
13422 /* Given an offset of a signatured type, return its signatured_type. */
13423
13424 static struct signatured_type *
13425 lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
13426 {
13427 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
13428 unsigned int length, initial_length_size;
13429 unsigned int sig_offset;
13430 struct signatured_type find_entry, *type_sig;
13431
13432 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
13433 sig_offset = (initial_length_size
13434 + 2 /*version*/
13435 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
13436 + 1 /*address_size*/);
13437 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
13438 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
13439
13440 /* This is only used to lookup previously recorded types.
13441 If we didn't find it, it's our bug. */
13442 gdb_assert (type_sig != NULL);
13443 gdb_assert (offset == type_sig->offset);
13444
13445 return type_sig;
13446 }
13447
13448 /* Read in signatured type at OFFSET and build its CU and die(s). */
13449
13450 static void
13451 read_signatured_type_at_offset (struct objfile *objfile,
13452 unsigned int offset)
13453 {
13454 struct signatured_type *type_sig;
13455
13456 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13457
13458 /* We have the section offset, but we need the signature to do the
13459 hash table lookup. */
13460 type_sig = lookup_signatured_type_at_offset (objfile, offset);
13461
13462 gdb_assert (type_sig->per_cu.cu == NULL);
13463
13464 read_signatured_type (objfile, type_sig);
13465
13466 gdb_assert (type_sig->per_cu.cu != NULL);
13467 }
13468
13469 /* Read in a signatured type and build its CU and DIEs. */
13470
13471 static void
13472 read_signatured_type (struct objfile *objfile,
13473 struct signatured_type *type_sig)
13474 {
13475 gdb_byte *types_ptr;
13476 struct die_reader_specs reader_specs;
13477 struct dwarf2_cu *cu;
13478 ULONGEST signature;
13479 struct cleanup *back_to, *free_cu_cleanup;
13480
13481 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13482 types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
13483
13484 gdb_assert (type_sig->per_cu.cu == NULL);
13485
13486 cu = xmalloc (sizeof (*cu));
13487 init_one_comp_unit (cu, objfile);
13488
13489 type_sig->per_cu.cu = cu;
13490 cu->per_cu = &type_sig->per_cu;
13491
13492 /* If an error occurs while loading, release our storage. */
13493 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
13494
13495 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
13496 types_ptr, objfile->obfd);
13497 gdb_assert (signature == type_sig->signature);
13498
13499 cu->die_hash
13500 = htab_create_alloc_ex (cu->header.length / 12,
13501 die_hash,
13502 die_eq,
13503 NULL,
13504 &cu->comp_unit_obstack,
13505 hashtab_obstack_allocate,
13506 dummy_obstack_deallocate);
13507
13508 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
13509 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
13510
13511 init_cu_die_reader (&reader_specs, cu);
13512
13513 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
13514 NULL /*parent*/);
13515
13516 /* We try not to read any attributes in this function, because not
13517 all objfiles needed for references have been loaded yet, and symbol
13518 table processing isn't initialized. But we have to set the CU language,
13519 or we won't be able to build types correctly. */
13520 prepare_one_comp_unit (cu, cu->dies);
13521
13522 do_cleanups (back_to);
13523
13524 /* We've successfully allocated this compilation unit. Let our caller
13525 clean it up when finished with it. */
13526 discard_cleanups (free_cu_cleanup);
13527
13528 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
13529 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
13530 }
13531
13532 /* Decode simple location descriptions.
13533 Given a pointer to a dwarf block that defines a location, compute
13534 the location and return the value.
13535
13536 NOTE drow/2003-11-18: This function is called in two situations
13537 now: for the address of static or global variables (partial symbols
13538 only) and for offsets into structures which are expected to be
13539 (more or less) constant. The partial symbol case should go away,
13540 and only the constant case should remain. That will let this
13541 function complain more accurately. A few special modes are allowed
13542 without complaint for global variables (for instance, global
13543 register values and thread-local values).
13544
13545 A location description containing no operations indicates that the
13546 object is optimized out. The return value is 0 for that case.
13547 FIXME drow/2003-11-16: No callers check for this case any more; soon all
13548 callers will only want a very basic result and this can become a
13549 complaint.
13550
13551 Note that stack[0] is unused except as a default error return. */
13552
13553 static CORE_ADDR
13554 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
13555 {
13556 struct objfile *objfile = cu->objfile;
13557 int i;
13558 int size = blk->size;
13559 gdb_byte *data = blk->data;
13560 CORE_ADDR stack[64];
13561 int stacki;
13562 unsigned int bytes_read, unsnd;
13563 gdb_byte op;
13564
13565 i = 0;
13566 stacki = 0;
13567 stack[stacki] = 0;
13568 stack[++stacki] = 0;
13569
13570 while (i < size)
13571 {
13572 op = data[i++];
13573 switch (op)
13574 {
13575 case DW_OP_lit0:
13576 case DW_OP_lit1:
13577 case DW_OP_lit2:
13578 case DW_OP_lit3:
13579 case DW_OP_lit4:
13580 case DW_OP_lit5:
13581 case DW_OP_lit6:
13582 case DW_OP_lit7:
13583 case DW_OP_lit8:
13584 case DW_OP_lit9:
13585 case DW_OP_lit10:
13586 case DW_OP_lit11:
13587 case DW_OP_lit12:
13588 case DW_OP_lit13:
13589 case DW_OP_lit14:
13590 case DW_OP_lit15:
13591 case DW_OP_lit16:
13592 case DW_OP_lit17:
13593 case DW_OP_lit18:
13594 case DW_OP_lit19:
13595 case DW_OP_lit20:
13596 case DW_OP_lit21:
13597 case DW_OP_lit22:
13598 case DW_OP_lit23:
13599 case DW_OP_lit24:
13600 case DW_OP_lit25:
13601 case DW_OP_lit26:
13602 case DW_OP_lit27:
13603 case DW_OP_lit28:
13604 case DW_OP_lit29:
13605 case DW_OP_lit30:
13606 case DW_OP_lit31:
13607 stack[++stacki] = op - DW_OP_lit0;
13608 break;
13609
13610 case DW_OP_reg0:
13611 case DW_OP_reg1:
13612 case DW_OP_reg2:
13613 case DW_OP_reg3:
13614 case DW_OP_reg4:
13615 case DW_OP_reg5:
13616 case DW_OP_reg6:
13617 case DW_OP_reg7:
13618 case DW_OP_reg8:
13619 case DW_OP_reg9:
13620 case DW_OP_reg10:
13621 case DW_OP_reg11:
13622 case DW_OP_reg12:
13623 case DW_OP_reg13:
13624 case DW_OP_reg14:
13625 case DW_OP_reg15:
13626 case DW_OP_reg16:
13627 case DW_OP_reg17:
13628 case DW_OP_reg18:
13629 case DW_OP_reg19:
13630 case DW_OP_reg20:
13631 case DW_OP_reg21:
13632 case DW_OP_reg22:
13633 case DW_OP_reg23:
13634 case DW_OP_reg24:
13635 case DW_OP_reg25:
13636 case DW_OP_reg26:
13637 case DW_OP_reg27:
13638 case DW_OP_reg28:
13639 case DW_OP_reg29:
13640 case DW_OP_reg30:
13641 case DW_OP_reg31:
13642 stack[++stacki] = op - DW_OP_reg0;
13643 if (i < size)
13644 dwarf2_complex_location_expr_complaint ();
13645 break;
13646
13647 case DW_OP_regx:
13648 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
13649 i += bytes_read;
13650 stack[++stacki] = unsnd;
13651 if (i < size)
13652 dwarf2_complex_location_expr_complaint ();
13653 break;
13654
13655 case DW_OP_addr:
13656 stack[++stacki] = read_address (objfile->obfd, &data[i],
13657 cu, &bytes_read);
13658 i += bytes_read;
13659 break;
13660
13661 case DW_OP_const1u:
13662 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
13663 i += 1;
13664 break;
13665
13666 case DW_OP_const1s:
13667 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
13668 i += 1;
13669 break;
13670
13671 case DW_OP_const2u:
13672 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
13673 i += 2;
13674 break;
13675
13676 case DW_OP_const2s:
13677 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
13678 i += 2;
13679 break;
13680
13681 case DW_OP_const4u:
13682 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
13683 i += 4;
13684 break;
13685
13686 case DW_OP_const4s:
13687 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
13688 i += 4;
13689 break;
13690
13691 case DW_OP_constu:
13692 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
13693 &bytes_read);
13694 i += bytes_read;
13695 break;
13696
13697 case DW_OP_consts:
13698 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
13699 i += bytes_read;
13700 break;
13701
13702 case DW_OP_dup:
13703 stack[stacki + 1] = stack[stacki];
13704 stacki++;
13705 break;
13706
13707 case DW_OP_plus:
13708 stack[stacki - 1] += stack[stacki];
13709 stacki--;
13710 break;
13711
13712 case DW_OP_plus_uconst:
13713 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
13714 &bytes_read);
13715 i += bytes_read;
13716 break;
13717
13718 case DW_OP_minus:
13719 stack[stacki - 1] -= stack[stacki];
13720 stacki--;
13721 break;
13722
13723 case DW_OP_deref:
13724 /* If we're not the last op, then we definitely can't encode
13725 this using GDB's address_class enum. This is valid for partial
13726 global symbols, although the variable's address will be bogus
13727 in the psymtab. */
13728 if (i < size)
13729 dwarf2_complex_location_expr_complaint ();
13730 break;
13731
13732 case DW_OP_GNU_push_tls_address:
13733 /* The top of the stack has the offset from the beginning
13734 of the thread control block at which the variable is located. */
13735 /* Nothing should follow this operator, so the top of stack would
13736 be returned. */
13737 /* This is valid for partial global symbols, but the variable's
13738 address will be bogus in the psymtab. */
13739 if (i < size)
13740 dwarf2_complex_location_expr_complaint ();
13741 break;
13742
13743 case DW_OP_GNU_uninit:
13744 break;
13745
13746 default:
13747 {
13748 const char *name = dwarf_stack_op_name (op);
13749
13750 if (name)
13751 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
13752 name);
13753 else
13754 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
13755 op);
13756 }
13757
13758 return (stack[stacki]);
13759 }
13760
13761 /* Enforce maximum stack depth of SIZE-1 to avoid writing
13762 outside of the allocated space. Also enforce minimum>0. */
13763 if (stacki >= ARRAY_SIZE (stack) - 1)
13764 {
13765 complaint (&symfile_complaints,
13766 _("location description stack overflow"));
13767 return 0;
13768 }
13769
13770 if (stacki <= 0)
13771 {
13772 complaint (&symfile_complaints,
13773 _("location description stack underflow"));
13774 return 0;
13775 }
13776 }
13777 return (stack[stacki]);
13778 }
13779
13780 /* memory allocation interface */
13781
13782 static struct dwarf_block *
13783 dwarf_alloc_block (struct dwarf2_cu *cu)
13784 {
13785 struct dwarf_block *blk;
13786
13787 blk = (struct dwarf_block *)
13788 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
13789 return (blk);
13790 }
13791
13792 static struct abbrev_info *
13793 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
13794 {
13795 struct abbrev_info *abbrev;
13796
13797 abbrev = (struct abbrev_info *)
13798 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
13799 memset (abbrev, 0, sizeof (struct abbrev_info));
13800 return (abbrev);
13801 }
13802
13803 static struct die_info *
13804 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
13805 {
13806 struct die_info *die;
13807 size_t size = sizeof (struct die_info);
13808
13809 if (num_attrs > 1)
13810 size += (num_attrs - 1) * sizeof (struct attribute);
13811
13812 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
13813 memset (die, 0, sizeof (struct die_info));
13814 return (die);
13815 }
13816
13817 \f
13818 /* Macro support. */
13819
13820 /* Return the full name of file number I in *LH's file name table.
13821 Use COMP_DIR as the name of the current directory of the
13822 compilation. The result is allocated using xmalloc; the caller is
13823 responsible for freeing it. */
13824 static char *
13825 file_full_name (int file, struct line_header *lh, const char *comp_dir)
13826 {
13827 /* Is the file number a valid index into the line header's file name
13828 table? Remember that file numbers start with one, not zero. */
13829 if (1 <= file && file <= lh->num_file_names)
13830 {
13831 struct file_entry *fe = &lh->file_names[file - 1];
13832
13833 if (IS_ABSOLUTE_PATH (fe->name))
13834 return xstrdup (fe->name);
13835 else
13836 {
13837 const char *dir;
13838 int dir_len;
13839 char *full_name;
13840
13841 if (fe->dir_index)
13842 dir = lh->include_dirs[fe->dir_index - 1];
13843 else
13844 dir = comp_dir;
13845
13846 if (dir)
13847 {
13848 dir_len = strlen (dir);
13849 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
13850 strcpy (full_name, dir);
13851 full_name[dir_len] = '/';
13852 strcpy (full_name + dir_len + 1, fe->name);
13853 return full_name;
13854 }
13855 else
13856 return xstrdup (fe->name);
13857 }
13858 }
13859 else
13860 {
13861 /* The compiler produced a bogus file number. We can at least
13862 record the macro definitions made in the file, even if we
13863 won't be able to find the file by name. */
13864 char fake_name[80];
13865
13866 sprintf (fake_name, "<bad macro file number %d>", file);
13867
13868 complaint (&symfile_complaints,
13869 _("bad file number in macro information (%d)"),
13870 file);
13871
13872 return xstrdup (fake_name);
13873 }
13874 }
13875
13876
13877 static struct macro_source_file *
13878 macro_start_file (int file, int line,
13879 struct macro_source_file *current_file,
13880 const char *comp_dir,
13881 struct line_header *lh, struct objfile *objfile)
13882 {
13883 /* The full name of this source file. */
13884 char *full_name = file_full_name (file, lh, comp_dir);
13885
13886 /* We don't create a macro table for this compilation unit
13887 at all until we actually get a filename. */
13888 if (! pending_macros)
13889 pending_macros = new_macro_table (&objfile->objfile_obstack,
13890 objfile->macro_cache);
13891
13892 if (! current_file)
13893 /* If we have no current file, then this must be the start_file
13894 directive for the compilation unit's main source file. */
13895 current_file = macro_set_main (pending_macros, full_name);
13896 else
13897 current_file = macro_include (current_file, line, full_name);
13898
13899 xfree (full_name);
13900
13901 return current_file;
13902 }
13903
13904
13905 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
13906 followed by a null byte. */
13907 static char *
13908 copy_string (const char *buf, int len)
13909 {
13910 char *s = xmalloc (len + 1);
13911
13912 memcpy (s, buf, len);
13913 s[len] = '\0';
13914 return s;
13915 }
13916
13917
13918 static const char *
13919 consume_improper_spaces (const char *p, const char *body)
13920 {
13921 if (*p == ' ')
13922 {
13923 complaint (&symfile_complaints,
13924 _("macro definition contains spaces "
13925 "in formal argument list:\n`%s'"),
13926 body);
13927
13928 while (*p == ' ')
13929 p++;
13930 }
13931
13932 return p;
13933 }
13934
13935
13936 static void
13937 parse_macro_definition (struct macro_source_file *file, int line,
13938 const char *body)
13939 {
13940 const char *p;
13941
13942 /* The body string takes one of two forms. For object-like macro
13943 definitions, it should be:
13944
13945 <macro name> " " <definition>
13946
13947 For function-like macro definitions, it should be:
13948
13949 <macro name> "() " <definition>
13950 or
13951 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
13952
13953 Spaces may appear only where explicitly indicated, and in the
13954 <definition>.
13955
13956 The Dwarf 2 spec says that an object-like macro's name is always
13957 followed by a space, but versions of GCC around March 2002 omit
13958 the space when the macro's definition is the empty string.
13959
13960 The Dwarf 2 spec says that there should be no spaces between the
13961 formal arguments in a function-like macro's formal argument list,
13962 but versions of GCC around March 2002 include spaces after the
13963 commas. */
13964
13965
13966 /* Find the extent of the macro name. The macro name is terminated
13967 by either a space or null character (for an object-like macro) or
13968 an opening paren (for a function-like macro). */
13969 for (p = body; *p; p++)
13970 if (*p == ' ' || *p == '(')
13971 break;
13972
13973 if (*p == ' ' || *p == '\0')
13974 {
13975 /* It's an object-like macro. */
13976 int name_len = p - body;
13977 char *name = copy_string (body, name_len);
13978 const char *replacement;
13979
13980 if (*p == ' ')
13981 replacement = body + name_len + 1;
13982 else
13983 {
13984 dwarf2_macro_malformed_definition_complaint (body);
13985 replacement = body + name_len;
13986 }
13987
13988 macro_define_object (file, line, name, replacement);
13989
13990 xfree (name);
13991 }
13992 else if (*p == '(')
13993 {
13994 /* It's a function-like macro. */
13995 char *name = copy_string (body, p - body);
13996 int argc = 0;
13997 int argv_size = 1;
13998 char **argv = xmalloc (argv_size * sizeof (*argv));
13999
14000 p++;
14001
14002 p = consume_improper_spaces (p, body);
14003
14004 /* Parse the formal argument list. */
14005 while (*p && *p != ')')
14006 {
14007 /* Find the extent of the current argument name. */
14008 const char *arg_start = p;
14009
14010 while (*p && *p != ',' && *p != ')' && *p != ' ')
14011 p++;
14012
14013 if (! *p || p == arg_start)
14014 dwarf2_macro_malformed_definition_complaint (body);
14015 else
14016 {
14017 /* Make sure argv has room for the new argument. */
14018 if (argc >= argv_size)
14019 {
14020 argv_size *= 2;
14021 argv = xrealloc (argv, argv_size * sizeof (*argv));
14022 }
14023
14024 argv[argc++] = copy_string (arg_start, p - arg_start);
14025 }
14026
14027 p = consume_improper_spaces (p, body);
14028
14029 /* Consume the comma, if present. */
14030 if (*p == ',')
14031 {
14032 p++;
14033
14034 p = consume_improper_spaces (p, body);
14035 }
14036 }
14037
14038 if (*p == ')')
14039 {
14040 p++;
14041
14042 if (*p == ' ')
14043 /* Perfectly formed definition, no complaints. */
14044 macro_define_function (file, line, name,
14045 argc, (const char **) argv,
14046 p + 1);
14047 else if (*p == '\0')
14048 {
14049 /* Complain, but do define it. */
14050 dwarf2_macro_malformed_definition_complaint (body);
14051 macro_define_function (file, line, name,
14052 argc, (const char **) argv,
14053 p);
14054 }
14055 else
14056 /* Just complain. */
14057 dwarf2_macro_malformed_definition_complaint (body);
14058 }
14059 else
14060 /* Just complain. */
14061 dwarf2_macro_malformed_definition_complaint (body);
14062
14063 xfree (name);
14064 {
14065 int i;
14066
14067 for (i = 0; i < argc; i++)
14068 xfree (argv[i]);
14069 }
14070 xfree (argv);
14071 }
14072 else
14073 dwarf2_macro_malformed_definition_complaint (body);
14074 }
14075
14076
14077 static void
14078 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
14079 char *comp_dir, bfd *abfd,
14080 struct dwarf2_cu *cu)
14081 {
14082 gdb_byte *mac_ptr, *mac_end;
14083 struct macro_source_file *current_file = 0;
14084 enum dwarf_macinfo_record_type macinfo_type;
14085 int at_commandline;
14086
14087 dwarf2_read_section (dwarf2_per_objfile->objfile,
14088 &dwarf2_per_objfile->macinfo);
14089 if (dwarf2_per_objfile->macinfo.buffer == NULL)
14090 {
14091 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
14092 return;
14093 }
14094
14095 /* First pass: Find the name of the base filename.
14096 This filename is needed in order to process all macros whose definition
14097 (or undefinition) comes from the command line. These macros are defined
14098 before the first DW_MACINFO_start_file entry, and yet still need to be
14099 associated to the base file.
14100
14101 To determine the base file name, we scan the macro definitions until we
14102 reach the first DW_MACINFO_start_file entry. We then initialize
14103 CURRENT_FILE accordingly so that any macro definition found before the
14104 first DW_MACINFO_start_file can still be associated to the base file. */
14105
14106 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
14107 mac_end = dwarf2_per_objfile->macinfo.buffer
14108 + dwarf2_per_objfile->macinfo.size;
14109
14110 do
14111 {
14112 /* Do we at least have room for a macinfo type byte? */
14113 if (mac_ptr >= mac_end)
14114 {
14115 /* Complaint is printed during the second pass as GDB will probably
14116 stop the first pass earlier upon finding
14117 DW_MACINFO_start_file. */
14118 break;
14119 }
14120
14121 macinfo_type = read_1_byte (abfd, mac_ptr);
14122 mac_ptr++;
14123
14124 switch (macinfo_type)
14125 {
14126 /* A zero macinfo type indicates the end of the macro
14127 information. */
14128 case 0:
14129 break;
14130
14131 case DW_MACINFO_define:
14132 case DW_MACINFO_undef:
14133 /* Only skip the data by MAC_PTR. */
14134 {
14135 unsigned int bytes_read;
14136
14137 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14138 mac_ptr += bytes_read;
14139 read_direct_string (abfd, mac_ptr, &bytes_read);
14140 mac_ptr += bytes_read;
14141 }
14142 break;
14143
14144 case DW_MACINFO_start_file:
14145 {
14146 unsigned int bytes_read;
14147 int line, file;
14148
14149 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14150 mac_ptr += bytes_read;
14151 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14152 mac_ptr += bytes_read;
14153
14154 current_file = macro_start_file (file, line, current_file,
14155 comp_dir, lh, cu->objfile);
14156 }
14157 break;
14158
14159 case DW_MACINFO_end_file:
14160 /* No data to skip by MAC_PTR. */
14161 break;
14162
14163 case DW_MACINFO_vendor_ext:
14164 /* Only skip the data by MAC_PTR. */
14165 {
14166 unsigned int bytes_read;
14167
14168 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14169 mac_ptr += bytes_read;
14170 read_direct_string (abfd, mac_ptr, &bytes_read);
14171 mac_ptr += bytes_read;
14172 }
14173 break;
14174
14175 default:
14176 break;
14177 }
14178 } while (macinfo_type != 0 && current_file == NULL);
14179
14180 /* Second pass: Process all entries.
14181
14182 Use the AT_COMMAND_LINE flag to determine whether we are still processing
14183 command-line macro definitions/undefinitions. This flag is unset when we
14184 reach the first DW_MACINFO_start_file entry. */
14185
14186 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
14187
14188 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
14189 GDB is still reading the definitions from command line. First
14190 DW_MACINFO_start_file will need to be ignored as it was already executed
14191 to create CURRENT_FILE for the main source holding also the command line
14192 definitions. On first met DW_MACINFO_start_file this flag is reset to
14193 normally execute all the remaining DW_MACINFO_start_file macinfos. */
14194
14195 at_commandline = 1;
14196
14197 do
14198 {
14199 /* Do we at least have room for a macinfo type byte? */
14200 if (mac_ptr >= mac_end)
14201 {
14202 dwarf2_macros_too_long_complaint ();
14203 break;
14204 }
14205
14206 macinfo_type = read_1_byte (abfd, mac_ptr);
14207 mac_ptr++;
14208
14209 switch (macinfo_type)
14210 {
14211 /* A zero macinfo type indicates the end of the macro
14212 information. */
14213 case 0:
14214 break;
14215
14216 case DW_MACINFO_define:
14217 case DW_MACINFO_undef:
14218 {
14219 unsigned int bytes_read;
14220 int line;
14221 char *body;
14222
14223 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14224 mac_ptr += bytes_read;
14225 body = read_direct_string (abfd, mac_ptr, &bytes_read);
14226 mac_ptr += bytes_read;
14227
14228 if (! current_file)
14229 {
14230 /* DWARF violation as no main source is present. */
14231 complaint (&symfile_complaints,
14232 _("debug info with no main source gives macro %s "
14233 "on line %d: %s"),
14234 macinfo_type == DW_MACINFO_define ?
14235 _("definition") :
14236 macinfo_type == DW_MACINFO_undef ?
14237 _("undefinition") :
14238 _("something-or-other"), line, body);
14239 break;
14240 }
14241 if ((line == 0 && !at_commandline)
14242 || (line != 0 && at_commandline))
14243 complaint (&symfile_complaints,
14244 _("debug info gives %s macro %s with %s line %d: %s"),
14245 at_commandline ? _("command-line") : _("in-file"),
14246 macinfo_type == DW_MACINFO_define ?
14247 _("definition") :
14248 macinfo_type == DW_MACINFO_undef ?
14249 _("undefinition") :
14250 _("something-or-other"),
14251 line == 0 ? _("zero") : _("non-zero"), line, body);
14252
14253 if (macinfo_type == DW_MACINFO_define)
14254 parse_macro_definition (current_file, line, body);
14255 else if (macinfo_type == DW_MACINFO_undef)
14256 macro_undef (current_file, line, body);
14257 }
14258 break;
14259
14260 case DW_MACINFO_start_file:
14261 {
14262 unsigned int bytes_read;
14263 int line, file;
14264
14265 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14266 mac_ptr += bytes_read;
14267 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14268 mac_ptr += bytes_read;
14269
14270 if ((line == 0 && !at_commandline)
14271 || (line != 0 && at_commandline))
14272 complaint (&symfile_complaints,
14273 _("debug info gives source %d included "
14274 "from %s at %s line %d"),
14275 file, at_commandline ? _("command-line") : _("file"),
14276 line == 0 ? _("zero") : _("non-zero"), line);
14277
14278 if (at_commandline)
14279 {
14280 /* This DW_MACINFO_start_file was executed in the pass one. */
14281 at_commandline = 0;
14282 }
14283 else
14284 current_file = macro_start_file (file, line,
14285 current_file, comp_dir,
14286 lh, cu->objfile);
14287 }
14288 break;
14289
14290 case DW_MACINFO_end_file:
14291 if (! current_file)
14292 complaint (&symfile_complaints,
14293 _("macro debug info has an unmatched "
14294 "`close_file' directive"));
14295 else
14296 {
14297 current_file = current_file->included_by;
14298 if (! current_file)
14299 {
14300 enum dwarf_macinfo_record_type next_type;
14301
14302 /* GCC circa March 2002 doesn't produce the zero
14303 type byte marking the end of the compilation
14304 unit. Complain if it's not there, but exit no
14305 matter what. */
14306
14307 /* Do we at least have room for a macinfo type byte? */
14308 if (mac_ptr >= mac_end)
14309 {
14310 dwarf2_macros_too_long_complaint ();
14311 return;
14312 }
14313
14314 /* We don't increment mac_ptr here, so this is just
14315 a look-ahead. */
14316 next_type = read_1_byte (abfd, mac_ptr);
14317 if (next_type != 0)
14318 complaint (&symfile_complaints,
14319 _("no terminating 0-type entry for "
14320 "macros in `.debug_macinfo' section"));
14321
14322 return;
14323 }
14324 }
14325 break;
14326
14327 case DW_MACINFO_vendor_ext:
14328 {
14329 unsigned int bytes_read;
14330 int constant;
14331
14332 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14333 mac_ptr += bytes_read;
14334 read_direct_string (abfd, mac_ptr, &bytes_read);
14335 mac_ptr += bytes_read;
14336
14337 /* We don't recognize any vendor extensions. */
14338 }
14339 break;
14340 }
14341 } while (macinfo_type != 0);
14342 }
14343
14344 /* Check if the attribute's form is a DW_FORM_block*
14345 if so return true else false. */
14346 static int
14347 attr_form_is_block (struct attribute *attr)
14348 {
14349 return (attr == NULL ? 0 :
14350 attr->form == DW_FORM_block1
14351 || attr->form == DW_FORM_block2
14352 || attr->form == DW_FORM_block4
14353 || attr->form == DW_FORM_block
14354 || attr->form == DW_FORM_exprloc);
14355 }
14356
14357 /* Return non-zero if ATTR's value is a section offset --- classes
14358 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
14359 You may use DW_UNSND (attr) to retrieve such offsets.
14360
14361 Section 7.5.4, "Attribute Encodings", explains that no attribute
14362 may have a value that belongs to more than one of these classes; it
14363 would be ambiguous if we did, because we use the same forms for all
14364 of them. */
14365 static int
14366 attr_form_is_section_offset (struct attribute *attr)
14367 {
14368 return (attr->form == DW_FORM_data4
14369 || attr->form == DW_FORM_data8
14370 || attr->form == DW_FORM_sec_offset);
14371 }
14372
14373
14374 /* Return non-zero if ATTR's value falls in the 'constant' class, or
14375 zero otherwise. When this function returns true, you can apply
14376 dwarf2_get_attr_constant_value to it.
14377
14378 However, note that for some attributes you must check
14379 attr_form_is_section_offset before using this test. DW_FORM_data4
14380 and DW_FORM_data8 are members of both the constant class, and of
14381 the classes that contain offsets into other debug sections
14382 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
14383 that, if an attribute's can be either a constant or one of the
14384 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
14385 taken as section offsets, not constants. */
14386 static int
14387 attr_form_is_constant (struct attribute *attr)
14388 {
14389 switch (attr->form)
14390 {
14391 case DW_FORM_sdata:
14392 case DW_FORM_udata:
14393 case DW_FORM_data1:
14394 case DW_FORM_data2:
14395 case DW_FORM_data4:
14396 case DW_FORM_data8:
14397 return 1;
14398 default:
14399 return 0;
14400 }
14401 }
14402
14403 /* A helper function that fills in a dwarf2_loclist_baton. */
14404
14405 static void
14406 fill_in_loclist_baton (struct dwarf2_cu *cu,
14407 struct dwarf2_loclist_baton *baton,
14408 struct attribute *attr)
14409 {
14410 dwarf2_read_section (dwarf2_per_objfile->objfile,
14411 &dwarf2_per_objfile->loc);
14412
14413 baton->per_cu = cu->per_cu;
14414 gdb_assert (baton->per_cu);
14415 /* We don't know how long the location list is, but make sure we
14416 don't run off the edge of the section. */
14417 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
14418 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
14419 baton->base_address = cu->base_address;
14420 }
14421
14422 static void
14423 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
14424 struct dwarf2_cu *cu)
14425 {
14426 if (attr_form_is_section_offset (attr)
14427 /* ".debug_loc" may not exist at all, or the offset may be outside
14428 the section. If so, fall through to the complaint in the
14429 other branch. */
14430 && DW_UNSND (attr) < dwarf2_section_size (dwarf2_per_objfile->objfile,
14431 &dwarf2_per_objfile->loc))
14432 {
14433 struct dwarf2_loclist_baton *baton;
14434
14435 baton = obstack_alloc (&cu->objfile->objfile_obstack,
14436 sizeof (struct dwarf2_loclist_baton));
14437
14438 fill_in_loclist_baton (cu, baton, attr);
14439
14440 if (cu->base_known == 0)
14441 complaint (&symfile_complaints,
14442 _("Location list used without "
14443 "specifying the CU base address."));
14444
14445 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
14446 SYMBOL_LOCATION_BATON (sym) = baton;
14447 }
14448 else
14449 {
14450 struct dwarf2_locexpr_baton *baton;
14451
14452 baton = obstack_alloc (&cu->objfile->objfile_obstack,
14453 sizeof (struct dwarf2_locexpr_baton));
14454 baton->per_cu = cu->per_cu;
14455 gdb_assert (baton->per_cu);
14456
14457 if (attr_form_is_block (attr))
14458 {
14459 /* Note that we're just copying the block's data pointer
14460 here, not the actual data. We're still pointing into the
14461 info_buffer for SYM's objfile; right now we never release
14462 that buffer, but when we do clean up properly this may
14463 need to change. */
14464 baton->size = DW_BLOCK (attr)->size;
14465 baton->data = DW_BLOCK (attr)->data;
14466 }
14467 else
14468 {
14469 dwarf2_invalid_attrib_class_complaint ("location description",
14470 SYMBOL_NATURAL_NAME (sym));
14471 baton->size = 0;
14472 baton->data = NULL;
14473 }
14474
14475 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
14476 SYMBOL_LOCATION_BATON (sym) = baton;
14477 }
14478 }
14479
14480 /* Return the OBJFILE associated with the compilation unit CU. If CU
14481 came from a separate debuginfo file, then the master objfile is
14482 returned. */
14483
14484 struct objfile *
14485 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
14486 {
14487 struct objfile *objfile = per_cu->objfile;
14488
14489 /* Return the master objfile, so that we can report and look up the
14490 correct file containing this variable. */
14491 if (objfile->separate_debug_objfile_backlink)
14492 objfile = objfile->separate_debug_objfile_backlink;
14493
14494 return objfile;
14495 }
14496
14497 /* Return the address size given in the compilation unit header for CU. */
14498
14499 CORE_ADDR
14500 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
14501 {
14502 if (per_cu->cu)
14503 return per_cu->cu->header.addr_size;
14504 else
14505 {
14506 /* If the CU is not currently read in, we re-read its header. */
14507 struct objfile *objfile = per_cu->objfile;
14508 struct dwarf2_per_objfile *per_objfile
14509 = objfile_data (objfile, dwarf2_objfile_data_key);
14510 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14511 struct comp_unit_head cu_header;
14512
14513 memset (&cu_header, 0, sizeof cu_header);
14514 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14515 return cu_header.addr_size;
14516 }
14517 }
14518
14519 /* Return the offset size given in the compilation unit header for CU. */
14520
14521 int
14522 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
14523 {
14524 if (per_cu->cu)
14525 return per_cu->cu->header.offset_size;
14526 else
14527 {
14528 /* If the CU is not currently read in, we re-read its header. */
14529 struct objfile *objfile = per_cu->objfile;
14530 struct dwarf2_per_objfile *per_objfile
14531 = objfile_data (objfile, dwarf2_objfile_data_key);
14532 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14533 struct comp_unit_head cu_header;
14534
14535 memset (&cu_header, 0, sizeof cu_header);
14536 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14537 return cu_header.offset_size;
14538 }
14539 }
14540
14541 /* Return the text offset of the CU. The returned offset comes from
14542 this CU's objfile. If this objfile came from a separate debuginfo
14543 file, then the offset may be different from the corresponding
14544 offset in the parent objfile. */
14545
14546 CORE_ADDR
14547 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
14548 {
14549 struct objfile *objfile = per_cu->objfile;
14550
14551 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14552 }
14553
14554 /* Locate the .debug_info compilation unit from CU's objfile which contains
14555 the DIE at OFFSET. Raises an error on failure. */
14556
14557 static struct dwarf2_per_cu_data *
14558 dwarf2_find_containing_comp_unit (unsigned int offset,
14559 struct objfile *objfile)
14560 {
14561 struct dwarf2_per_cu_data *this_cu;
14562 int low, high;
14563
14564 low = 0;
14565 high = dwarf2_per_objfile->n_comp_units - 1;
14566 while (high > low)
14567 {
14568 int mid = low + (high - low) / 2;
14569
14570 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
14571 high = mid;
14572 else
14573 low = mid + 1;
14574 }
14575 gdb_assert (low == high);
14576 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
14577 {
14578 if (low == 0)
14579 error (_("Dwarf Error: could not find partial DIE containing "
14580 "offset 0x%lx [in module %s]"),
14581 (long) offset, bfd_get_filename (objfile->obfd));
14582
14583 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
14584 return dwarf2_per_objfile->all_comp_units[low-1];
14585 }
14586 else
14587 {
14588 this_cu = dwarf2_per_objfile->all_comp_units[low];
14589 if (low == dwarf2_per_objfile->n_comp_units - 1
14590 && offset >= this_cu->offset + this_cu->length)
14591 error (_("invalid dwarf2 offset %u"), offset);
14592 gdb_assert (offset < this_cu->offset + this_cu->length);
14593 return this_cu;
14594 }
14595 }
14596
14597 /* Locate the compilation unit from OBJFILE which is located at exactly
14598 OFFSET. Raises an error on failure. */
14599
14600 static struct dwarf2_per_cu_data *
14601 dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
14602 {
14603 struct dwarf2_per_cu_data *this_cu;
14604
14605 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
14606 if (this_cu->offset != offset)
14607 error (_("no compilation unit with offset %u."), offset);
14608 return this_cu;
14609 }
14610
14611 /* Initialize dwarf2_cu CU for OBJFILE in a pre-allocated space. */
14612
14613 static void
14614 init_one_comp_unit (struct dwarf2_cu *cu, struct objfile *objfile)
14615 {
14616 memset (cu, 0, sizeof (*cu));
14617 cu->objfile = objfile;
14618 obstack_init (&cu->comp_unit_obstack);
14619 }
14620
14621 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
14622
14623 static void
14624 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die)
14625 {
14626 struct attribute *attr;
14627
14628 /* Set the language we're debugging. */
14629 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
14630 if (attr)
14631 set_cu_language (DW_UNSND (attr), cu);
14632 else
14633 set_cu_language (language_minimal, cu);
14634 }
14635
14636 /* Release one cached compilation unit, CU. We unlink it from the tree
14637 of compilation units, but we don't remove it from the read_in_chain;
14638 the caller is responsible for that.
14639 NOTE: DATA is a void * because this function is also used as a
14640 cleanup routine. */
14641
14642 static void
14643 free_one_comp_unit (void *data)
14644 {
14645 struct dwarf2_cu *cu = data;
14646
14647 if (cu->per_cu != NULL)
14648 cu->per_cu->cu = NULL;
14649 cu->per_cu = NULL;
14650
14651 obstack_free (&cu->comp_unit_obstack, NULL);
14652
14653 xfree (cu);
14654 }
14655
14656 /* This cleanup function is passed the address of a dwarf2_cu on the stack
14657 when we're finished with it. We can't free the pointer itself, but be
14658 sure to unlink it from the cache. Also release any associated storage
14659 and perform cache maintenance.
14660
14661 Only used during partial symbol parsing. */
14662
14663 static void
14664 free_stack_comp_unit (void *data)
14665 {
14666 struct dwarf2_cu *cu = data;
14667
14668 obstack_free (&cu->comp_unit_obstack, NULL);
14669 cu->partial_dies = NULL;
14670
14671 if (cu->per_cu != NULL)
14672 {
14673 /* This compilation unit is on the stack in our caller, so we
14674 should not xfree it. Just unlink it. */
14675 cu->per_cu->cu = NULL;
14676 cu->per_cu = NULL;
14677
14678 /* If we had a per-cu pointer, then we may have other compilation
14679 units loaded, so age them now. */
14680 age_cached_comp_units ();
14681 }
14682 }
14683
14684 /* Free all cached compilation units. */
14685
14686 static void
14687 free_cached_comp_units (void *data)
14688 {
14689 struct dwarf2_per_cu_data *per_cu, **last_chain;
14690
14691 per_cu = dwarf2_per_objfile->read_in_chain;
14692 last_chain = &dwarf2_per_objfile->read_in_chain;
14693 while (per_cu != NULL)
14694 {
14695 struct dwarf2_per_cu_data *next_cu;
14696
14697 next_cu = per_cu->cu->read_in_chain;
14698
14699 free_one_comp_unit (per_cu->cu);
14700 *last_chain = next_cu;
14701
14702 per_cu = next_cu;
14703 }
14704 }
14705
14706 /* Increase the age counter on each cached compilation unit, and free
14707 any that are too old. */
14708
14709 static void
14710 age_cached_comp_units (void)
14711 {
14712 struct dwarf2_per_cu_data *per_cu, **last_chain;
14713
14714 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
14715 per_cu = dwarf2_per_objfile->read_in_chain;
14716 while (per_cu != NULL)
14717 {
14718 per_cu->cu->last_used ++;
14719 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
14720 dwarf2_mark (per_cu->cu);
14721 per_cu = per_cu->cu->read_in_chain;
14722 }
14723
14724 per_cu = dwarf2_per_objfile->read_in_chain;
14725 last_chain = &dwarf2_per_objfile->read_in_chain;
14726 while (per_cu != NULL)
14727 {
14728 struct dwarf2_per_cu_data *next_cu;
14729
14730 next_cu = per_cu->cu->read_in_chain;
14731
14732 if (!per_cu->cu->mark)
14733 {
14734 free_one_comp_unit (per_cu->cu);
14735 *last_chain = next_cu;
14736 }
14737 else
14738 last_chain = &per_cu->cu->read_in_chain;
14739
14740 per_cu = next_cu;
14741 }
14742 }
14743
14744 /* Remove a single compilation unit from the cache. */
14745
14746 static void
14747 free_one_cached_comp_unit (void *target_cu)
14748 {
14749 struct dwarf2_per_cu_data *per_cu, **last_chain;
14750
14751 per_cu = dwarf2_per_objfile->read_in_chain;
14752 last_chain = &dwarf2_per_objfile->read_in_chain;
14753 while (per_cu != NULL)
14754 {
14755 struct dwarf2_per_cu_data *next_cu;
14756
14757 next_cu = per_cu->cu->read_in_chain;
14758
14759 if (per_cu->cu == target_cu)
14760 {
14761 free_one_comp_unit (per_cu->cu);
14762 *last_chain = next_cu;
14763 break;
14764 }
14765 else
14766 last_chain = &per_cu->cu->read_in_chain;
14767
14768 per_cu = next_cu;
14769 }
14770 }
14771
14772 /* Release all extra memory associated with OBJFILE. */
14773
14774 void
14775 dwarf2_free_objfile (struct objfile *objfile)
14776 {
14777 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
14778
14779 if (dwarf2_per_objfile == NULL)
14780 return;
14781
14782 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
14783 free_cached_comp_units (NULL);
14784
14785 if (dwarf2_per_objfile->quick_file_names_table)
14786 htab_delete (dwarf2_per_objfile->quick_file_names_table);
14787
14788 /* Everything else should be on the objfile obstack. */
14789 }
14790
14791 /* A pair of DIE offset and GDB type pointer. We store these
14792 in a hash table separate from the DIEs, and preserve them
14793 when the DIEs are flushed out of cache. */
14794
14795 struct dwarf2_offset_and_type
14796 {
14797 unsigned int offset;
14798 struct type *type;
14799 };
14800
14801 /* Hash function for a dwarf2_offset_and_type. */
14802
14803 static hashval_t
14804 offset_and_type_hash (const void *item)
14805 {
14806 const struct dwarf2_offset_and_type *ofs = item;
14807
14808 return ofs->offset;
14809 }
14810
14811 /* Equality function for a dwarf2_offset_and_type. */
14812
14813 static int
14814 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
14815 {
14816 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
14817 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
14818
14819 return ofs_lhs->offset == ofs_rhs->offset;
14820 }
14821
14822 /* Set the type associated with DIE to TYPE. Save it in CU's hash
14823 table if necessary. For convenience, return TYPE.
14824
14825 The DIEs reading must have careful ordering to:
14826 * Not cause infite loops trying to read in DIEs as a prerequisite for
14827 reading current DIE.
14828 * Not trying to dereference contents of still incompletely read in types
14829 while reading in other DIEs.
14830 * Enable referencing still incompletely read in types just by a pointer to
14831 the type without accessing its fields.
14832
14833 Therefore caller should follow these rules:
14834 * Try to fetch any prerequisite types we may need to build this DIE type
14835 before building the type and calling set_die_type.
14836 * After building type call set_die_type for current DIE as soon as
14837 possible before fetching more types to complete the current type.
14838 * Make the type as complete as possible before fetching more types. */
14839
14840 static struct type *
14841 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
14842 {
14843 struct dwarf2_offset_and_type **slot, ofs;
14844 struct objfile *objfile = cu->objfile;
14845 htab_t *type_hash_ptr;
14846
14847 /* For Ada types, make sure that the gnat-specific data is always
14848 initialized (if not already set). There are a few types where
14849 we should not be doing so, because the type-specific area is
14850 already used to hold some other piece of info (eg: TYPE_CODE_FLT
14851 where the type-specific area is used to store the floatformat).
14852 But this is not a problem, because the gnat-specific information
14853 is actually not needed for these types. */
14854 if (need_gnat_info (cu)
14855 && TYPE_CODE (type) != TYPE_CODE_FUNC
14856 && TYPE_CODE (type) != TYPE_CODE_FLT
14857 && !HAVE_GNAT_AUX_INFO (type))
14858 INIT_GNAT_SPECIFIC (type);
14859
14860 if (cu->per_cu->from_debug_types)
14861 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
14862 else
14863 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
14864
14865 if (*type_hash_ptr == NULL)
14866 {
14867 *type_hash_ptr
14868 = htab_create_alloc_ex (127,
14869 offset_and_type_hash,
14870 offset_and_type_eq,
14871 NULL,
14872 &objfile->objfile_obstack,
14873 hashtab_obstack_allocate,
14874 dummy_obstack_deallocate);
14875 }
14876
14877 ofs.offset = die->offset;
14878 ofs.type = type;
14879 slot = (struct dwarf2_offset_and_type **)
14880 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
14881 if (*slot)
14882 complaint (&symfile_complaints,
14883 _("A problem internal to GDB: DIE 0x%x has type already set"),
14884 die->offset);
14885 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
14886 **slot = ofs;
14887 return type;
14888 }
14889
14890 /* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
14891 table, or return NULL if the die does not have a saved type. */
14892
14893 static struct type *
14894 get_die_type_at_offset (unsigned int offset,
14895 struct dwarf2_per_cu_data *per_cu)
14896 {
14897 struct dwarf2_offset_and_type *slot, ofs;
14898 htab_t type_hash;
14899
14900 if (per_cu->from_debug_types)
14901 type_hash = dwarf2_per_objfile->debug_types_type_hash;
14902 else
14903 type_hash = dwarf2_per_objfile->debug_info_type_hash;
14904 if (type_hash == NULL)
14905 return NULL;
14906
14907 ofs.offset = offset;
14908 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
14909 if (slot)
14910 return slot->type;
14911 else
14912 return NULL;
14913 }
14914
14915 /* Look up the type for DIE in the appropriate type_hash table,
14916 or return NULL if DIE does not have a saved type. */
14917
14918 static struct type *
14919 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
14920 {
14921 return get_die_type_at_offset (die->offset, cu->per_cu);
14922 }
14923
14924 /* Add a dependence relationship from CU to REF_PER_CU. */
14925
14926 static void
14927 dwarf2_add_dependence (struct dwarf2_cu *cu,
14928 struct dwarf2_per_cu_data *ref_per_cu)
14929 {
14930 void **slot;
14931
14932 if (cu->dependencies == NULL)
14933 cu->dependencies
14934 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
14935 NULL, &cu->comp_unit_obstack,
14936 hashtab_obstack_allocate,
14937 dummy_obstack_deallocate);
14938
14939 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
14940 if (*slot == NULL)
14941 *slot = ref_per_cu;
14942 }
14943
14944 /* Subroutine of dwarf2_mark to pass to htab_traverse.
14945 Set the mark field in every compilation unit in the
14946 cache that we must keep because we are keeping CU. */
14947
14948 static int
14949 dwarf2_mark_helper (void **slot, void *data)
14950 {
14951 struct dwarf2_per_cu_data *per_cu;
14952
14953 per_cu = (struct dwarf2_per_cu_data *) *slot;
14954 if (per_cu->cu->mark)
14955 return 1;
14956 per_cu->cu->mark = 1;
14957
14958 if (per_cu->cu->dependencies != NULL)
14959 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
14960
14961 return 1;
14962 }
14963
14964 /* Set the mark field in CU and in every other compilation unit in the
14965 cache that we must keep because we are keeping CU. */
14966
14967 static void
14968 dwarf2_mark (struct dwarf2_cu *cu)
14969 {
14970 if (cu->mark)
14971 return;
14972 cu->mark = 1;
14973 if (cu->dependencies != NULL)
14974 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
14975 }
14976
14977 static void
14978 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
14979 {
14980 while (per_cu)
14981 {
14982 per_cu->cu->mark = 0;
14983 per_cu = per_cu->cu->read_in_chain;
14984 }
14985 }
14986
14987 /* Trivial hash function for partial_die_info: the hash value of a DIE
14988 is its offset in .debug_info for this objfile. */
14989
14990 static hashval_t
14991 partial_die_hash (const void *item)
14992 {
14993 const struct partial_die_info *part_die = item;
14994
14995 return part_die->offset;
14996 }
14997
14998 /* Trivial comparison function for partial_die_info structures: two DIEs
14999 are equal if they have the same offset. */
15000
15001 static int
15002 partial_die_eq (const void *item_lhs, const void *item_rhs)
15003 {
15004 const struct partial_die_info *part_die_lhs = item_lhs;
15005 const struct partial_die_info *part_die_rhs = item_rhs;
15006
15007 return part_die_lhs->offset == part_die_rhs->offset;
15008 }
15009
15010 static struct cmd_list_element *set_dwarf2_cmdlist;
15011 static struct cmd_list_element *show_dwarf2_cmdlist;
15012
15013 static void
15014 set_dwarf2_cmd (char *args, int from_tty)
15015 {
15016 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
15017 }
15018
15019 static void
15020 show_dwarf2_cmd (char *args, int from_tty)
15021 {
15022 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
15023 }
15024
15025 /* If section described by INFO was mmapped, munmap it now. */
15026
15027 static void
15028 munmap_section_buffer (struct dwarf2_section_info *info)
15029 {
15030 if (info->was_mmapped)
15031 {
15032 #ifdef HAVE_MMAP
15033 intptr_t begin = (intptr_t) info->buffer;
15034 intptr_t map_begin = begin & ~(pagesize - 1);
15035 size_t map_length = info->size + begin - map_begin;
15036
15037 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
15038 #else
15039 /* Without HAVE_MMAP, we should never be here to begin with. */
15040 gdb_assert_not_reached ("no mmap support");
15041 #endif
15042 }
15043 }
15044
15045 /* munmap debug sections for OBJFILE, if necessary. */
15046
15047 static void
15048 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
15049 {
15050 struct dwarf2_per_objfile *data = d;
15051
15052 /* This is sorted according to the order they're defined in to make it easier
15053 to keep in sync. */
15054 munmap_section_buffer (&data->info);
15055 munmap_section_buffer (&data->abbrev);
15056 munmap_section_buffer (&data->line);
15057 munmap_section_buffer (&data->loc);
15058 munmap_section_buffer (&data->macinfo);
15059 munmap_section_buffer (&data->str);
15060 munmap_section_buffer (&data->ranges);
15061 munmap_section_buffer (&data->types);
15062 munmap_section_buffer (&data->frame);
15063 munmap_section_buffer (&data->eh_frame);
15064 munmap_section_buffer (&data->gdb_index);
15065 }
15066
15067 \f
15068 /* The "save gdb-index" command. */
15069
15070 /* The contents of the hash table we create when building the string
15071 table. */
15072 struct strtab_entry
15073 {
15074 offset_type offset;
15075 const char *str;
15076 };
15077
15078 /* Hash function for a strtab_entry. */
15079
15080 static hashval_t
15081 hash_strtab_entry (const void *e)
15082 {
15083 const struct strtab_entry *entry = e;
15084 return mapped_index_string_hash (entry->str);
15085 }
15086
15087 /* Equality function for a strtab_entry. */
15088
15089 static int
15090 eq_strtab_entry (const void *a, const void *b)
15091 {
15092 const struct strtab_entry *ea = a;
15093 const struct strtab_entry *eb = b;
15094 return !strcmp (ea->str, eb->str);
15095 }
15096
15097 /* Create a strtab_entry hash table. */
15098
15099 static htab_t
15100 create_strtab (void)
15101 {
15102 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
15103 xfree, xcalloc, xfree);
15104 }
15105
15106 /* Add a string to the constant pool. Return the string's offset in
15107 host order. */
15108
15109 static offset_type
15110 add_string (htab_t table, struct obstack *cpool, const char *str)
15111 {
15112 void **slot;
15113 struct strtab_entry entry;
15114 struct strtab_entry *result;
15115
15116 entry.str = str;
15117 slot = htab_find_slot (table, &entry, INSERT);
15118 if (*slot)
15119 result = *slot;
15120 else
15121 {
15122 result = XNEW (struct strtab_entry);
15123 result->offset = obstack_object_size (cpool);
15124 result->str = str;
15125 obstack_grow_str0 (cpool, str);
15126 *slot = result;
15127 }
15128 return result->offset;
15129 }
15130
15131 /* An entry in the symbol table. */
15132 struct symtab_index_entry
15133 {
15134 /* The name of the symbol. */
15135 const char *name;
15136 /* The offset of the name in the constant pool. */
15137 offset_type index_offset;
15138 /* A sorted vector of the indices of all the CUs that hold an object
15139 of this name. */
15140 VEC (offset_type) *cu_indices;
15141 };
15142
15143 /* The symbol table. This is a power-of-2-sized hash table. */
15144 struct mapped_symtab
15145 {
15146 offset_type n_elements;
15147 offset_type size;
15148 struct symtab_index_entry **data;
15149 };
15150
15151 /* Hash function for a symtab_index_entry. */
15152
15153 static hashval_t
15154 hash_symtab_entry (const void *e)
15155 {
15156 const struct symtab_index_entry *entry = e;
15157 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
15158 sizeof (offset_type) * VEC_length (offset_type,
15159 entry->cu_indices),
15160 0);
15161 }
15162
15163 /* Equality function for a symtab_index_entry. */
15164
15165 static int
15166 eq_symtab_entry (const void *a, const void *b)
15167 {
15168 const struct symtab_index_entry *ea = a;
15169 const struct symtab_index_entry *eb = b;
15170 int len = VEC_length (offset_type, ea->cu_indices);
15171 if (len != VEC_length (offset_type, eb->cu_indices))
15172 return 0;
15173 return !memcmp (VEC_address (offset_type, ea->cu_indices),
15174 VEC_address (offset_type, eb->cu_indices),
15175 sizeof (offset_type) * len);
15176 }
15177
15178 /* Destroy a symtab_index_entry. */
15179
15180 static void
15181 delete_symtab_entry (void *p)
15182 {
15183 struct symtab_index_entry *entry = p;
15184 VEC_free (offset_type, entry->cu_indices);
15185 xfree (entry);
15186 }
15187
15188 /* Create a hash table holding symtab_index_entry objects. */
15189
15190 static htab_t
15191 create_symbol_hash_table (void)
15192 {
15193 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
15194 delete_symtab_entry, xcalloc, xfree);
15195 }
15196
15197 /* Create a new mapped symtab object. */
15198
15199 static struct mapped_symtab *
15200 create_mapped_symtab (void)
15201 {
15202 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
15203 symtab->n_elements = 0;
15204 symtab->size = 1024;
15205 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
15206 return symtab;
15207 }
15208
15209 /* Destroy a mapped_symtab. */
15210
15211 static void
15212 cleanup_mapped_symtab (void *p)
15213 {
15214 struct mapped_symtab *symtab = p;
15215 /* The contents of the array are freed when the other hash table is
15216 destroyed. */
15217 xfree (symtab->data);
15218 xfree (symtab);
15219 }
15220
15221 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
15222 the slot. */
15223
15224 static struct symtab_index_entry **
15225 find_slot (struct mapped_symtab *symtab, const char *name)
15226 {
15227 offset_type index, step, hash = mapped_index_string_hash (name);
15228
15229 index = hash & (symtab->size - 1);
15230 step = ((hash * 17) & (symtab->size - 1)) | 1;
15231
15232 for (;;)
15233 {
15234 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
15235 return &symtab->data[index];
15236 index = (index + step) & (symtab->size - 1);
15237 }
15238 }
15239
15240 /* Expand SYMTAB's hash table. */
15241
15242 static void
15243 hash_expand (struct mapped_symtab *symtab)
15244 {
15245 offset_type old_size = symtab->size;
15246 offset_type i;
15247 struct symtab_index_entry **old_entries = symtab->data;
15248
15249 symtab->size *= 2;
15250 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
15251
15252 for (i = 0; i < old_size; ++i)
15253 {
15254 if (old_entries[i])
15255 {
15256 struct symtab_index_entry **slot = find_slot (symtab,
15257 old_entries[i]->name);
15258 *slot = old_entries[i];
15259 }
15260 }
15261
15262 xfree (old_entries);
15263 }
15264
15265 /* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
15266 is the index of the CU in which the symbol appears. */
15267
15268 static void
15269 add_index_entry (struct mapped_symtab *symtab, const char *name,
15270 offset_type cu_index)
15271 {
15272 struct symtab_index_entry **slot;
15273
15274 ++symtab->n_elements;
15275 if (4 * symtab->n_elements / 3 >= symtab->size)
15276 hash_expand (symtab);
15277
15278 slot = find_slot (symtab, name);
15279 if (!*slot)
15280 {
15281 *slot = XNEW (struct symtab_index_entry);
15282 (*slot)->name = name;
15283 (*slot)->cu_indices = NULL;
15284 }
15285 /* Don't push an index twice. Due to how we add entries we only
15286 have to check the last one. */
15287 if (VEC_empty (offset_type, (*slot)->cu_indices)
15288 || VEC_length (offset_type, (*slot)->cu_indices) != cu_index)
15289 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
15290 }
15291
15292 /* Add a vector of indices to the constant pool. */
15293
15294 static offset_type
15295 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
15296 struct symtab_index_entry *entry)
15297 {
15298 void **slot;
15299
15300 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
15301 if (!*slot)
15302 {
15303 offset_type len = VEC_length (offset_type, entry->cu_indices);
15304 offset_type val = MAYBE_SWAP (len);
15305 offset_type iter;
15306 int i;
15307
15308 *slot = entry;
15309 entry->index_offset = obstack_object_size (cpool);
15310
15311 obstack_grow (cpool, &val, sizeof (val));
15312 for (i = 0;
15313 VEC_iterate (offset_type, entry->cu_indices, i, iter);
15314 ++i)
15315 {
15316 val = MAYBE_SWAP (iter);
15317 obstack_grow (cpool, &val, sizeof (val));
15318 }
15319 }
15320 else
15321 {
15322 struct symtab_index_entry *old_entry = *slot;
15323 entry->index_offset = old_entry->index_offset;
15324 entry = old_entry;
15325 }
15326 return entry->index_offset;
15327 }
15328
15329 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
15330 constant pool entries going into the obstack CPOOL. */
15331
15332 static void
15333 write_hash_table (struct mapped_symtab *symtab,
15334 struct obstack *output, struct obstack *cpool)
15335 {
15336 offset_type i;
15337 htab_t symbol_hash_table;
15338 htab_t str_table;
15339
15340 symbol_hash_table = create_symbol_hash_table ();
15341 str_table = create_strtab ();
15342
15343 /* We add all the index vectors to the constant pool first, to
15344 ensure alignment is ok. */
15345 for (i = 0; i < symtab->size; ++i)
15346 {
15347 if (symtab->data[i])
15348 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
15349 }
15350
15351 /* Now write out the hash table. */
15352 for (i = 0; i < symtab->size; ++i)
15353 {
15354 offset_type str_off, vec_off;
15355
15356 if (symtab->data[i])
15357 {
15358 str_off = add_string (str_table, cpool, symtab->data[i]->name);
15359 vec_off = symtab->data[i]->index_offset;
15360 }
15361 else
15362 {
15363 /* While 0 is a valid constant pool index, it is not valid
15364 to have 0 for both offsets. */
15365 str_off = 0;
15366 vec_off = 0;
15367 }
15368
15369 str_off = MAYBE_SWAP (str_off);
15370 vec_off = MAYBE_SWAP (vec_off);
15371
15372 obstack_grow (output, &str_off, sizeof (str_off));
15373 obstack_grow (output, &vec_off, sizeof (vec_off));
15374 }
15375
15376 htab_delete (str_table);
15377 htab_delete (symbol_hash_table);
15378 }
15379
15380 /* Struct to map psymtab to CU index in the index file. */
15381 struct psymtab_cu_index_map
15382 {
15383 struct partial_symtab *psymtab;
15384 unsigned int cu_index;
15385 };
15386
15387 static hashval_t
15388 hash_psymtab_cu_index (const void *item)
15389 {
15390 const struct psymtab_cu_index_map *map = item;
15391
15392 return htab_hash_pointer (map->psymtab);
15393 }
15394
15395 static int
15396 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
15397 {
15398 const struct psymtab_cu_index_map *lhs = item_lhs;
15399 const struct psymtab_cu_index_map *rhs = item_rhs;
15400
15401 return lhs->psymtab == rhs->psymtab;
15402 }
15403
15404 /* Helper struct for building the address table. */
15405 struct addrmap_index_data
15406 {
15407 struct objfile *objfile;
15408 struct obstack *addr_obstack;
15409 htab_t cu_index_htab;
15410
15411 /* Non-zero if the previous_* fields are valid.
15412 We can't write an entry until we see the next entry (since it is only then
15413 that we know the end of the entry). */
15414 int previous_valid;
15415 /* Index of the CU in the table of all CUs in the index file. */
15416 unsigned int previous_cu_index;
15417 /* Start address of the CU. */
15418 CORE_ADDR previous_cu_start;
15419 };
15420
15421 /* Write an address entry to OBSTACK. */
15422
15423 static void
15424 add_address_entry (struct objfile *objfile, struct obstack *obstack,
15425 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
15426 {
15427 offset_type cu_index_to_write;
15428 char addr[8];
15429 CORE_ADDR baseaddr;
15430
15431 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15432
15433 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
15434 obstack_grow (obstack, addr, 8);
15435 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
15436 obstack_grow (obstack, addr, 8);
15437 cu_index_to_write = MAYBE_SWAP (cu_index);
15438 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
15439 }
15440
15441 /* Worker function for traversing an addrmap to build the address table. */
15442
15443 static int
15444 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
15445 {
15446 struct addrmap_index_data *data = datap;
15447 struct partial_symtab *pst = obj;
15448 offset_type cu_index;
15449 void **slot;
15450
15451 if (data->previous_valid)
15452 add_address_entry (data->objfile, data->addr_obstack,
15453 data->previous_cu_start, start_addr,
15454 data->previous_cu_index);
15455
15456 data->previous_cu_start = start_addr;
15457 if (pst != NULL)
15458 {
15459 struct psymtab_cu_index_map find_map, *map;
15460 find_map.psymtab = pst;
15461 map = htab_find (data->cu_index_htab, &find_map);
15462 gdb_assert (map != NULL);
15463 data->previous_cu_index = map->cu_index;
15464 data->previous_valid = 1;
15465 }
15466 else
15467 data->previous_valid = 0;
15468
15469 return 0;
15470 }
15471
15472 /* Write OBJFILE's address map to OBSTACK.
15473 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
15474 in the index file. */
15475
15476 static void
15477 write_address_map (struct objfile *objfile, struct obstack *obstack,
15478 htab_t cu_index_htab)
15479 {
15480 struct addrmap_index_data addrmap_index_data;
15481
15482 /* When writing the address table, we have to cope with the fact that
15483 the addrmap iterator only provides the start of a region; we have to
15484 wait until the next invocation to get the start of the next region. */
15485
15486 addrmap_index_data.objfile = objfile;
15487 addrmap_index_data.addr_obstack = obstack;
15488 addrmap_index_data.cu_index_htab = cu_index_htab;
15489 addrmap_index_data.previous_valid = 0;
15490
15491 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
15492 &addrmap_index_data);
15493
15494 /* It's highly unlikely the last entry (end address = 0xff...ff)
15495 is valid, but we should still handle it.
15496 The end address is recorded as the start of the next region, but that
15497 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
15498 anyway. */
15499 if (addrmap_index_data.previous_valid)
15500 add_address_entry (objfile, obstack,
15501 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
15502 addrmap_index_data.previous_cu_index);
15503 }
15504
15505 /* Add a list of partial symbols to SYMTAB. */
15506
15507 static void
15508 write_psymbols (struct mapped_symtab *symtab,
15509 htab_t psyms_seen,
15510 struct partial_symbol **psymp,
15511 int count,
15512 offset_type cu_index,
15513 int is_static)
15514 {
15515 for (; count-- > 0; ++psymp)
15516 {
15517 void **slot, *lookup;
15518
15519 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
15520 error (_("Ada is not currently supported by the index"));
15521
15522 /* We only want to add a given psymbol once. However, we also
15523 want to account for whether it is global or static. So, we
15524 may add it twice, using slightly different values. */
15525 if (is_static)
15526 {
15527 uintptr_t val = 1 | (uintptr_t) *psymp;
15528
15529 lookup = (void *) val;
15530 }
15531 else
15532 lookup = *psymp;
15533
15534 /* Only add a given psymbol once. */
15535 slot = htab_find_slot (psyms_seen, lookup, INSERT);
15536 if (!*slot)
15537 {
15538 *slot = lookup;
15539 add_index_entry (symtab, SYMBOL_NATURAL_NAME (*psymp), cu_index);
15540 }
15541 }
15542 }
15543
15544 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
15545 exception if there is an error. */
15546
15547 static void
15548 write_obstack (FILE *file, struct obstack *obstack)
15549 {
15550 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
15551 file)
15552 != obstack_object_size (obstack))
15553 error (_("couldn't data write to file"));
15554 }
15555
15556 /* Unlink a file if the argument is not NULL. */
15557
15558 static void
15559 unlink_if_set (void *p)
15560 {
15561 char **filename = p;
15562 if (*filename)
15563 unlink (*filename);
15564 }
15565
15566 /* A helper struct used when iterating over debug_types. */
15567 struct signatured_type_index_data
15568 {
15569 struct objfile *objfile;
15570 struct mapped_symtab *symtab;
15571 struct obstack *types_list;
15572 htab_t psyms_seen;
15573 int cu_index;
15574 };
15575
15576 /* A helper function that writes a single signatured_type to an
15577 obstack. */
15578
15579 static int
15580 write_one_signatured_type (void **slot, void *d)
15581 {
15582 struct signatured_type_index_data *info = d;
15583 struct signatured_type *entry = (struct signatured_type *) *slot;
15584 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
15585 struct partial_symtab *psymtab = per_cu->v.psymtab;
15586 gdb_byte val[8];
15587
15588 write_psymbols (info->symtab,
15589 info->psyms_seen,
15590 info->objfile->global_psymbols.list
15591 + psymtab->globals_offset,
15592 psymtab->n_global_syms, info->cu_index,
15593 0);
15594 write_psymbols (info->symtab,
15595 info->psyms_seen,
15596 info->objfile->static_psymbols.list
15597 + psymtab->statics_offset,
15598 psymtab->n_static_syms, info->cu_index,
15599 1);
15600
15601 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->offset);
15602 obstack_grow (info->types_list, val, 8);
15603 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
15604 obstack_grow (info->types_list, val, 8);
15605 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
15606 obstack_grow (info->types_list, val, 8);
15607
15608 ++info->cu_index;
15609
15610 return 1;
15611 }
15612
15613 /* A cleanup function for an htab_t. */
15614
15615 static void
15616 cleanup_htab (void *arg)
15617 {
15618 htab_delete (arg);
15619 }
15620
15621 /* Create an index file for OBJFILE in the directory DIR. */
15622
15623 static void
15624 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
15625 {
15626 struct cleanup *cleanup;
15627 char *filename, *cleanup_filename;
15628 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
15629 struct obstack cu_list, types_cu_list;
15630 int i;
15631 FILE *out_file;
15632 struct mapped_symtab *symtab;
15633 offset_type val, size_of_contents, total_len;
15634 struct stat st;
15635 char buf[8];
15636 htab_t psyms_seen;
15637 htab_t cu_index_htab;
15638 struct psymtab_cu_index_map *psymtab_cu_index_map;
15639
15640 if (!objfile->psymtabs)
15641 return;
15642 if (dwarf2_per_objfile->using_index)
15643 error (_("Cannot use an index to create the index"));
15644
15645 if (stat (objfile->name, &st) < 0)
15646 perror_with_name (objfile->name);
15647
15648 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
15649 INDEX_SUFFIX, (char *) NULL);
15650 cleanup = make_cleanup (xfree, filename);
15651
15652 out_file = fopen (filename, "wb");
15653 if (!out_file)
15654 error (_("Can't open `%s' for writing"), filename);
15655
15656 cleanup_filename = filename;
15657 make_cleanup (unlink_if_set, &cleanup_filename);
15658
15659 symtab = create_mapped_symtab ();
15660 make_cleanup (cleanup_mapped_symtab, symtab);
15661
15662 obstack_init (&addr_obstack);
15663 make_cleanup_obstack_free (&addr_obstack);
15664
15665 obstack_init (&cu_list);
15666 make_cleanup_obstack_free (&cu_list);
15667
15668 obstack_init (&types_cu_list);
15669 make_cleanup_obstack_free (&types_cu_list);
15670
15671 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
15672 NULL, xcalloc, xfree);
15673 make_cleanup (cleanup_htab, psyms_seen);
15674
15675 /* While we're scanning CU's create a table that maps a psymtab pointer
15676 (which is what addrmap records) to its index (which is what is recorded
15677 in the index file). This will later be needed to write the address
15678 table. */
15679 cu_index_htab = htab_create_alloc (100,
15680 hash_psymtab_cu_index,
15681 eq_psymtab_cu_index,
15682 NULL, xcalloc, xfree);
15683 make_cleanup (cleanup_htab, cu_index_htab);
15684 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
15685 xmalloc (sizeof (struct psymtab_cu_index_map)
15686 * dwarf2_per_objfile->n_comp_units);
15687 make_cleanup (xfree, psymtab_cu_index_map);
15688
15689 /* The CU list is already sorted, so we don't need to do additional
15690 work here. Also, the debug_types entries do not appear in
15691 all_comp_units, but only in their own hash table. */
15692 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
15693 {
15694 struct dwarf2_per_cu_data *per_cu
15695 = dwarf2_per_objfile->all_comp_units[i];
15696 struct partial_symtab *psymtab = per_cu->v.psymtab;
15697 gdb_byte val[8];
15698 struct psymtab_cu_index_map *map;
15699 void **slot;
15700
15701 write_psymbols (symtab,
15702 psyms_seen,
15703 objfile->global_psymbols.list + psymtab->globals_offset,
15704 psymtab->n_global_syms, i,
15705 0);
15706 write_psymbols (symtab,
15707 psyms_seen,
15708 objfile->static_psymbols.list + psymtab->statics_offset,
15709 psymtab->n_static_syms, i,
15710 1);
15711
15712 map = &psymtab_cu_index_map[i];
15713 map->psymtab = psymtab;
15714 map->cu_index = i;
15715 slot = htab_find_slot (cu_index_htab, map, INSERT);
15716 gdb_assert (slot != NULL);
15717 gdb_assert (*slot == NULL);
15718 *slot = map;
15719
15720 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
15721 obstack_grow (&cu_list, val, 8);
15722 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
15723 obstack_grow (&cu_list, val, 8);
15724 }
15725
15726 /* Dump the address map. */
15727 write_address_map (objfile, &addr_obstack, cu_index_htab);
15728
15729 /* Write out the .debug_type entries, if any. */
15730 if (dwarf2_per_objfile->signatured_types)
15731 {
15732 struct signatured_type_index_data sig_data;
15733
15734 sig_data.objfile = objfile;
15735 sig_data.symtab = symtab;
15736 sig_data.types_list = &types_cu_list;
15737 sig_data.psyms_seen = psyms_seen;
15738 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
15739 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
15740 write_one_signatured_type, &sig_data);
15741 }
15742
15743 obstack_init (&constant_pool);
15744 make_cleanup_obstack_free (&constant_pool);
15745 obstack_init (&symtab_obstack);
15746 make_cleanup_obstack_free (&symtab_obstack);
15747 write_hash_table (symtab, &symtab_obstack, &constant_pool);
15748
15749 obstack_init (&contents);
15750 make_cleanup_obstack_free (&contents);
15751 size_of_contents = 6 * sizeof (offset_type);
15752 total_len = size_of_contents;
15753
15754 /* The version number. */
15755 val = MAYBE_SWAP (4);
15756 obstack_grow (&contents, &val, sizeof (val));
15757
15758 /* The offset of the CU list from the start of the file. */
15759 val = MAYBE_SWAP (total_len);
15760 obstack_grow (&contents, &val, sizeof (val));
15761 total_len += obstack_object_size (&cu_list);
15762
15763 /* The offset of the types CU list from the start of the file. */
15764 val = MAYBE_SWAP (total_len);
15765 obstack_grow (&contents, &val, sizeof (val));
15766 total_len += obstack_object_size (&types_cu_list);
15767
15768 /* The offset of the address table from the start of the file. */
15769 val = MAYBE_SWAP (total_len);
15770 obstack_grow (&contents, &val, sizeof (val));
15771 total_len += obstack_object_size (&addr_obstack);
15772
15773 /* The offset of the symbol table from the start of the file. */
15774 val = MAYBE_SWAP (total_len);
15775 obstack_grow (&contents, &val, sizeof (val));
15776 total_len += obstack_object_size (&symtab_obstack);
15777
15778 /* The offset of the constant pool from the start of the file. */
15779 val = MAYBE_SWAP (total_len);
15780 obstack_grow (&contents, &val, sizeof (val));
15781 total_len += obstack_object_size (&constant_pool);
15782
15783 gdb_assert (obstack_object_size (&contents) == size_of_contents);
15784
15785 write_obstack (out_file, &contents);
15786 write_obstack (out_file, &cu_list);
15787 write_obstack (out_file, &types_cu_list);
15788 write_obstack (out_file, &addr_obstack);
15789 write_obstack (out_file, &symtab_obstack);
15790 write_obstack (out_file, &constant_pool);
15791
15792 fclose (out_file);
15793
15794 /* We want to keep the file, so we set cleanup_filename to NULL
15795 here. See unlink_if_set. */
15796 cleanup_filename = NULL;
15797
15798 do_cleanups (cleanup);
15799 }
15800
15801 /* The mapped index file format is designed to be directly mmap()able
15802 on any architecture. In most cases, a datum is represented using a
15803 little-endian 32-bit integer value, called an offset_type. Big
15804 endian machines must byte-swap the values before using them.
15805 Exceptions to this rule are noted. The data is laid out such that
15806 alignment is always respected.
15807
15808 A mapped index consists of several sections.
15809
15810 1. The file header. This is a sequence of values, of offset_type
15811 unless otherwise noted:
15812
15813 [0] The version number, currently 4. Versions 1, 2 and 3 are
15814 obsolete.
15815 [1] The offset, from the start of the file, of the CU list.
15816 [2] The offset, from the start of the file, of the types CU list.
15817 Note that this section can be empty, in which case this offset will
15818 be equal to the next offset.
15819 [3] The offset, from the start of the file, of the address section.
15820 [4] The offset, from the start of the file, of the symbol table.
15821 [5] The offset, from the start of the file, of the constant pool.
15822
15823 2. The CU list. This is a sequence of pairs of 64-bit
15824 little-endian values, sorted by the CU offset. The first element
15825 in each pair is the offset of a CU in the .debug_info section. The
15826 second element in each pair is the length of that CU. References
15827 to a CU elsewhere in the map are done using a CU index, which is
15828 just the 0-based index into this table. Note that if there are
15829 type CUs, then conceptually CUs and type CUs form a single list for
15830 the purposes of CU indices.
15831
15832 3. The types CU list. This is a sequence of triplets of 64-bit
15833 little-endian values. In a triplet, the first value is the CU
15834 offset, the second value is the type offset in the CU, and the
15835 third value is the type signature. The types CU list is not
15836 sorted.
15837
15838 4. The address section. The address section consists of a sequence
15839 of address entries. Each address entry has three elements.
15840 [0] The low address. This is a 64-bit little-endian value.
15841 [1] The high address. This is a 64-bit little-endian value.
15842 Like DW_AT_high_pc, the value is one byte beyond the end.
15843 [2] The CU index. This is an offset_type value.
15844
15845 5. The symbol table. This is a hash table. The size of the hash
15846 table is always a power of 2. The initial hash and the step are
15847 currently defined by the `find_slot' function.
15848
15849 Each slot in the hash table consists of a pair of offset_type
15850 values. The first value is the offset of the symbol's name in the
15851 constant pool. The second value is the offset of the CU vector in
15852 the constant pool.
15853
15854 If both values are 0, then this slot in the hash table is empty.
15855 This is ok because while 0 is a valid constant pool index, it
15856 cannot be a valid index for both a string and a CU vector.
15857
15858 A string in the constant pool is stored as a \0-terminated string,
15859 as you'd expect.
15860
15861 A CU vector in the constant pool is a sequence of offset_type
15862 values. The first value is the number of CU indices in the vector.
15863 Each subsequent value is the index of a CU in the CU list. This
15864 element in the hash table is used to indicate which CUs define the
15865 symbol.
15866
15867 6. The constant pool. This is simply a bunch of bytes. It is
15868 organized so that alignment is correct: CU vectors are stored
15869 first, followed by strings. */
15870
15871 static void
15872 save_gdb_index_command (char *arg, int from_tty)
15873 {
15874 struct objfile *objfile;
15875
15876 if (!arg || !*arg)
15877 error (_("usage: save gdb-index DIRECTORY"));
15878
15879 ALL_OBJFILES (objfile)
15880 {
15881 struct stat st;
15882
15883 /* If the objfile does not correspond to an actual file, skip it. */
15884 if (stat (objfile->name, &st) < 0)
15885 continue;
15886
15887 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15888 if (dwarf2_per_objfile)
15889 {
15890 volatile struct gdb_exception except;
15891
15892 TRY_CATCH (except, RETURN_MASK_ERROR)
15893 {
15894 write_psymtabs_to_index (objfile, arg);
15895 }
15896 if (except.reason < 0)
15897 exception_fprintf (gdb_stderr, except,
15898 _("Error while writing index for `%s': "),
15899 objfile->name);
15900 }
15901 }
15902 }
15903
15904 \f
15905
15906 int dwarf2_always_disassemble;
15907
15908 static void
15909 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
15910 struct cmd_list_element *c, const char *value)
15911 {
15912 fprintf_filtered (file,
15913 _("Whether to always disassemble "
15914 "DWARF expressions is %s.\n"),
15915 value);
15916 }
15917
15918 void _initialize_dwarf2_read (void);
15919
15920 void
15921 _initialize_dwarf2_read (void)
15922 {
15923 struct cmd_list_element *c;
15924
15925 dwarf2_objfile_data_key
15926 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
15927
15928 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
15929 Set DWARF 2 specific variables.\n\
15930 Configure DWARF 2 variables such as the cache size"),
15931 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
15932 0/*allow-unknown*/, &maintenance_set_cmdlist);
15933
15934 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
15935 Show DWARF 2 specific variables\n\
15936 Show DWARF 2 variables such as the cache size"),
15937 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
15938 0/*allow-unknown*/, &maintenance_show_cmdlist);
15939
15940 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
15941 &dwarf2_max_cache_age, _("\
15942 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
15943 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
15944 A higher limit means that cached compilation units will be stored\n\
15945 in memory longer, and more total memory will be used. Zero disables\n\
15946 caching, which can slow down startup."),
15947 NULL,
15948 show_dwarf2_max_cache_age,
15949 &set_dwarf2_cmdlist,
15950 &show_dwarf2_cmdlist);
15951
15952 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
15953 &dwarf2_always_disassemble, _("\
15954 Set whether `info address' always disassembles DWARF expressions."), _("\
15955 Show whether `info address' always disassembles DWARF expressions."), _("\
15956 When enabled, DWARF expressions are always printed in an assembly-like\n\
15957 syntax. When disabled, expressions will be printed in a more\n\
15958 conversational style, when possible."),
15959 NULL,
15960 show_dwarf2_always_disassemble,
15961 &set_dwarf2_cmdlist,
15962 &show_dwarf2_cmdlist);
15963
15964 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
15965 Set debugging of the dwarf2 DIE reader."), _("\
15966 Show debugging of the dwarf2 DIE reader."), _("\
15967 When enabled (non-zero), DIEs are dumped after they are read in.\n\
15968 The value is the maximum depth to print."),
15969 NULL,
15970 NULL,
15971 &setdebuglist, &showdebuglist);
15972
15973 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
15974 _("\
15975 Save a gdb-index file.\n\
15976 Usage: save gdb-index DIRECTORY"),
15977 &save_cmdlist);
15978 set_cmd_completer (c, filename_completer);
15979 }
This page took 0.449211 seconds and 5 git commands to generate.