Optimize .gdb_index symbol name searching
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73 #include "common/function-view.h"
74 #include "common/gdb_optional.h"
75 #include "common/underlying.h"
76 #include "common/byte-vector.h"
77 #include "filename-seen-cache.h"
78 #include "producer.h"
79 #include <fcntl.h>
80 #include <sys/types.h>
81 #include <algorithm>
82 #include <unordered_set>
83 #include <unordered_map>
84
85 typedef struct symbol *symbolp;
86 DEF_VEC_P (symbolp);
87
88 /* When == 1, print basic high level tracing messages.
89 When > 1, be more verbose.
90 This is in contrast to the low level DIE reading of dwarf_die_debug. */
91 static unsigned int dwarf_read_debug = 0;
92
93 /* When non-zero, dump DIEs after they are read in. */
94 static unsigned int dwarf_die_debug = 0;
95
96 /* When non-zero, dump line number entries as they are read in. */
97 static unsigned int dwarf_line_debug = 0;
98
99 /* When non-zero, cross-check physname against demangler. */
100 static int check_physname = 0;
101
102 /* When non-zero, do not reject deprecated .gdb_index sections. */
103 static int use_deprecated_index_sections = 0;
104
105 static const struct objfile_data *dwarf2_objfile_data_key;
106
107 /* The "aclass" indices for various kinds of computed DWARF symbols. */
108
109 static int dwarf2_locexpr_index;
110 static int dwarf2_loclist_index;
111 static int dwarf2_locexpr_block_index;
112 static int dwarf2_loclist_block_index;
113
114 /* A descriptor for dwarf sections.
115
116 S.ASECTION, SIZE are typically initialized when the objfile is first
117 scanned. BUFFER, READIN are filled in later when the section is read.
118 If the section contained compressed data then SIZE is updated to record
119 the uncompressed size of the section.
120
121 DWP file format V2 introduces a wrinkle that is easiest to handle by
122 creating the concept of virtual sections contained within a real section.
123 In DWP V2 the sections of the input DWO files are concatenated together
124 into one section, but section offsets are kept relative to the original
125 input section.
126 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
127 the real section this "virtual" section is contained in, and BUFFER,SIZE
128 describe the virtual section. */
129
130 struct dwarf2_section_info
131 {
132 union
133 {
134 /* If this is a real section, the bfd section. */
135 asection *section;
136 /* If this is a virtual section, pointer to the containing ("real")
137 section. */
138 struct dwarf2_section_info *containing_section;
139 } s;
140 /* Pointer to section data, only valid if readin. */
141 const gdb_byte *buffer;
142 /* The size of the section, real or virtual. */
143 bfd_size_type size;
144 /* If this is a virtual section, the offset in the real section.
145 Only valid if is_virtual. */
146 bfd_size_type virtual_offset;
147 /* True if we have tried to read this section. */
148 char readin;
149 /* True if this is a virtual section, False otherwise.
150 This specifies which of s.section and s.containing_section to use. */
151 char is_virtual;
152 };
153
154 typedef struct dwarf2_section_info dwarf2_section_info_def;
155 DEF_VEC_O (dwarf2_section_info_def);
156
157 /* All offsets in the index are of this type. It must be
158 architecture-independent. */
159 typedef uint32_t offset_type;
160
161 DEF_VEC_I (offset_type);
162
163 /* Ensure only legit values are used. */
164 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
165 do { \
166 gdb_assert ((unsigned int) (value) <= 1); \
167 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170 /* Ensure only legit values are used. */
171 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
174 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
175 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
176 } while (0)
177
178 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
179 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
180 do { \
181 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
182 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
183 } while (0)
184
185 #if WORDS_BIGENDIAN
186
187 /* Convert VALUE between big- and little-endian. */
188
189 static offset_type
190 byte_swap (offset_type value)
191 {
192 offset_type result;
193
194 result = (value & 0xff) << 24;
195 result |= (value & 0xff00) << 8;
196 result |= (value & 0xff0000) >> 8;
197 result |= (value & 0xff000000) >> 24;
198 return result;
199 }
200
201 #define MAYBE_SWAP(V) byte_swap (V)
202
203 #else
204 #define MAYBE_SWAP(V) static_cast<offset_type> (V)
205 #endif /* WORDS_BIGENDIAN */
206
207 /* An index into a (C++) symbol name component in a symbol name as
208 recorded in the mapped_index's symbol table. For each C++ symbol
209 in the symbol table, we record one entry for the start of each
210 component in the symbol in a table of name components, and then
211 sort the table, in order to be able to binary search symbol names,
212 ignoring leading namespaces, both completion and regular look up.
213 For example, for symbol "A::B::C", we'll have an entry that points
214 to "A::B::C", another that points to "B::C", and another for "C".
215 Note that function symbols in GDB index have no parameter
216 information, just the function/method names. You can convert a
217 name_component to a "const char *" using the
218 'mapped_index::symbol_name_at(offset_type)' method. */
219
220 struct name_component
221 {
222 /* Offset in the symbol name where the component starts. Stored as
223 a (32-bit) offset instead of a pointer to save memory and improve
224 locality on 64-bit architectures. */
225 offset_type name_offset;
226
227 /* The symbol's index in the symbol and constant pool tables of a
228 mapped_index. */
229 offset_type idx;
230 };
231
232 /* A description of the mapped index. The file format is described in
233 a comment by the code that writes the index. */
234 struct mapped_index
235 {
236 /* Index data format version. */
237 int version;
238
239 /* The total length of the buffer. */
240 off_t total_size;
241
242 /* A pointer to the address table data. */
243 const gdb_byte *address_table;
244
245 /* Size of the address table data in bytes. */
246 offset_type address_table_size;
247
248 /* The symbol table, implemented as a hash table. */
249 const offset_type *symbol_table;
250
251 /* Size in slots, each slot is 2 offset_types. */
252 offset_type symbol_table_slots;
253
254 /* A pointer to the constant pool. */
255 const char *constant_pool;
256
257 /* The name_component table (a sorted vector). See name_component's
258 description above. */
259 std::vector<name_component> name_components;
260
261 /* Convenience method to get at the name of the symbol at IDX in the
262 symbol table. */
263 const char *symbol_name_at (offset_type idx) const
264 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx]); }
265 };
266
267 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
268 DEF_VEC_P (dwarf2_per_cu_ptr);
269
270 struct tu_stats
271 {
272 int nr_uniq_abbrev_tables;
273 int nr_symtabs;
274 int nr_symtab_sharers;
275 int nr_stmt_less_type_units;
276 int nr_all_type_units_reallocs;
277 };
278
279 /* Collection of data recorded per objfile.
280 This hangs off of dwarf2_objfile_data_key. */
281
282 struct dwarf2_per_objfile
283 {
284 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
285 dwarf2 section names, or is NULL if the standard ELF names are
286 used. */
287 dwarf2_per_objfile (struct objfile *objfile,
288 const dwarf2_debug_sections *names);
289
290 ~dwarf2_per_objfile ();
291
292 DISABLE_COPY_AND_ASSIGN (dwarf2_per_objfile);
293
294 /* Free all cached compilation units. */
295 void free_cached_comp_units ();
296 private:
297 /* This function is mapped across the sections and remembers the
298 offset and size of each of the debugging sections we are
299 interested in. */
300 void locate_sections (bfd *abfd, asection *sectp,
301 const dwarf2_debug_sections &names);
302
303 public:
304 dwarf2_section_info info {};
305 dwarf2_section_info abbrev {};
306 dwarf2_section_info line {};
307 dwarf2_section_info loc {};
308 dwarf2_section_info loclists {};
309 dwarf2_section_info macinfo {};
310 dwarf2_section_info macro {};
311 dwarf2_section_info str {};
312 dwarf2_section_info line_str {};
313 dwarf2_section_info ranges {};
314 dwarf2_section_info rnglists {};
315 dwarf2_section_info addr {};
316 dwarf2_section_info frame {};
317 dwarf2_section_info eh_frame {};
318 dwarf2_section_info gdb_index {};
319
320 VEC (dwarf2_section_info_def) *types = NULL;
321
322 /* Back link. */
323 struct objfile *objfile = NULL;
324
325 /* Table of all the compilation units. This is used to locate
326 the target compilation unit of a particular reference. */
327 struct dwarf2_per_cu_data **all_comp_units = NULL;
328
329 /* The number of compilation units in ALL_COMP_UNITS. */
330 int n_comp_units = 0;
331
332 /* The number of .debug_types-related CUs. */
333 int n_type_units = 0;
334
335 /* The number of elements allocated in all_type_units.
336 If there are skeleton-less TUs, we add them to all_type_units lazily. */
337 int n_allocated_type_units = 0;
338
339 /* The .debug_types-related CUs (TUs).
340 This is stored in malloc space because we may realloc it. */
341 struct signatured_type **all_type_units = NULL;
342
343 /* Table of struct type_unit_group objects.
344 The hash key is the DW_AT_stmt_list value. */
345 htab_t type_unit_groups {};
346
347 /* A table mapping .debug_types signatures to its signatured_type entry.
348 This is NULL if the .debug_types section hasn't been read in yet. */
349 htab_t signatured_types {};
350
351 /* Type unit statistics, to see how well the scaling improvements
352 are doing. */
353 struct tu_stats tu_stats {};
354
355 /* A chain of compilation units that are currently read in, so that
356 they can be freed later. */
357 dwarf2_per_cu_data *read_in_chain = NULL;
358
359 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
360 This is NULL if the table hasn't been allocated yet. */
361 htab_t dwo_files {};
362
363 /* True if we've checked for whether there is a DWP file. */
364 bool dwp_checked = false;
365
366 /* The DWP file if there is one, or NULL. */
367 struct dwp_file *dwp_file = NULL;
368
369 /* The shared '.dwz' file, if one exists. This is used when the
370 original data was compressed using 'dwz -m'. */
371 struct dwz_file *dwz_file = NULL;
372
373 /* A flag indicating whether this objfile has a section loaded at a
374 VMA of 0. */
375 bool has_section_at_zero = false;
376
377 /* True if we are using the mapped index,
378 or we are faking it for OBJF_READNOW's sake. */
379 bool using_index = false;
380
381 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
382 mapped_index *index_table = NULL;
383
384 /* When using index_table, this keeps track of all quick_file_names entries.
385 TUs typically share line table entries with a CU, so we maintain a
386 separate table of all line table entries to support the sharing.
387 Note that while there can be way more TUs than CUs, we've already
388 sorted all the TUs into "type unit groups", grouped by their
389 DW_AT_stmt_list value. Therefore the only sharing done here is with a
390 CU and its associated TU group if there is one. */
391 htab_t quick_file_names_table {};
392
393 /* Set during partial symbol reading, to prevent queueing of full
394 symbols. */
395 bool reading_partial_symbols = false;
396
397 /* Table mapping type DIEs to their struct type *.
398 This is NULL if not allocated yet.
399 The mapping is done via (CU/TU + DIE offset) -> type. */
400 htab_t die_type_hash {};
401
402 /* The CUs we recently read. */
403 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
404
405 /* Table containing line_header indexed by offset and offset_in_dwz. */
406 htab_t line_header_hash {};
407
408 /* Table containing all filenames. This is an optional because the
409 table is lazily constructed on first access. */
410 gdb::optional<filename_seen_cache> filenames_cache;
411 };
412
413 static struct dwarf2_per_objfile *dwarf2_per_objfile;
414
415 /* Default names of the debugging sections. */
416
417 /* Note that if the debugging section has been compressed, it might
418 have a name like .zdebug_info. */
419
420 static const struct dwarf2_debug_sections dwarf2_elf_names =
421 {
422 { ".debug_info", ".zdebug_info" },
423 { ".debug_abbrev", ".zdebug_abbrev" },
424 { ".debug_line", ".zdebug_line" },
425 { ".debug_loc", ".zdebug_loc" },
426 { ".debug_loclists", ".zdebug_loclists" },
427 { ".debug_macinfo", ".zdebug_macinfo" },
428 { ".debug_macro", ".zdebug_macro" },
429 { ".debug_str", ".zdebug_str" },
430 { ".debug_line_str", ".zdebug_line_str" },
431 { ".debug_ranges", ".zdebug_ranges" },
432 { ".debug_rnglists", ".zdebug_rnglists" },
433 { ".debug_types", ".zdebug_types" },
434 { ".debug_addr", ".zdebug_addr" },
435 { ".debug_frame", ".zdebug_frame" },
436 { ".eh_frame", NULL },
437 { ".gdb_index", ".zgdb_index" },
438 23
439 };
440
441 /* List of DWO/DWP sections. */
442
443 static const struct dwop_section_names
444 {
445 struct dwarf2_section_names abbrev_dwo;
446 struct dwarf2_section_names info_dwo;
447 struct dwarf2_section_names line_dwo;
448 struct dwarf2_section_names loc_dwo;
449 struct dwarf2_section_names loclists_dwo;
450 struct dwarf2_section_names macinfo_dwo;
451 struct dwarf2_section_names macro_dwo;
452 struct dwarf2_section_names str_dwo;
453 struct dwarf2_section_names str_offsets_dwo;
454 struct dwarf2_section_names types_dwo;
455 struct dwarf2_section_names cu_index;
456 struct dwarf2_section_names tu_index;
457 }
458 dwop_section_names =
459 {
460 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
461 { ".debug_info.dwo", ".zdebug_info.dwo" },
462 { ".debug_line.dwo", ".zdebug_line.dwo" },
463 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
464 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
465 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
466 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
467 { ".debug_str.dwo", ".zdebug_str.dwo" },
468 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
469 { ".debug_types.dwo", ".zdebug_types.dwo" },
470 { ".debug_cu_index", ".zdebug_cu_index" },
471 { ".debug_tu_index", ".zdebug_tu_index" },
472 };
473
474 /* local data types */
475
476 /* The data in a compilation unit header, after target2host
477 translation, looks like this. */
478 struct comp_unit_head
479 {
480 unsigned int length;
481 short version;
482 unsigned char addr_size;
483 unsigned char signed_addr_p;
484 sect_offset abbrev_sect_off;
485
486 /* Size of file offsets; either 4 or 8. */
487 unsigned int offset_size;
488
489 /* Size of the length field; either 4 or 12. */
490 unsigned int initial_length_size;
491
492 enum dwarf_unit_type unit_type;
493
494 /* Offset to the first byte of this compilation unit header in the
495 .debug_info section, for resolving relative reference dies. */
496 sect_offset sect_off;
497
498 /* Offset to first die in this cu from the start of the cu.
499 This will be the first byte following the compilation unit header. */
500 cu_offset first_die_cu_offset;
501
502 /* 64-bit signature of this type unit - it is valid only for
503 UNIT_TYPE DW_UT_type. */
504 ULONGEST signature;
505
506 /* For types, offset in the type's DIE of the type defined by this TU. */
507 cu_offset type_cu_offset_in_tu;
508 };
509
510 /* Type used for delaying computation of method physnames.
511 See comments for compute_delayed_physnames. */
512 struct delayed_method_info
513 {
514 /* The type to which the method is attached, i.e., its parent class. */
515 struct type *type;
516
517 /* The index of the method in the type's function fieldlists. */
518 int fnfield_index;
519
520 /* The index of the method in the fieldlist. */
521 int index;
522
523 /* The name of the DIE. */
524 const char *name;
525
526 /* The DIE associated with this method. */
527 struct die_info *die;
528 };
529
530 typedef struct delayed_method_info delayed_method_info;
531 DEF_VEC_O (delayed_method_info);
532
533 /* Internal state when decoding a particular compilation unit. */
534 struct dwarf2_cu
535 {
536 /* The objfile containing this compilation unit. */
537 struct objfile *objfile;
538
539 /* The header of the compilation unit. */
540 struct comp_unit_head header;
541
542 /* Base address of this compilation unit. */
543 CORE_ADDR base_address;
544
545 /* Non-zero if base_address has been set. */
546 int base_known;
547
548 /* The language we are debugging. */
549 enum language language;
550 const struct language_defn *language_defn;
551
552 const char *producer;
553
554 /* The generic symbol table building routines have separate lists for
555 file scope symbols and all all other scopes (local scopes). So
556 we need to select the right one to pass to add_symbol_to_list().
557 We do it by keeping a pointer to the correct list in list_in_scope.
558
559 FIXME: The original dwarf code just treated the file scope as the
560 first local scope, and all other local scopes as nested local
561 scopes, and worked fine. Check to see if we really need to
562 distinguish these in buildsym.c. */
563 struct pending **list_in_scope;
564
565 /* The abbrev table for this CU.
566 Normally this points to the abbrev table in the objfile.
567 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
568 struct abbrev_table *abbrev_table;
569
570 /* Hash table holding all the loaded partial DIEs
571 with partial_die->offset.SECT_OFF as hash. */
572 htab_t partial_dies;
573
574 /* Storage for things with the same lifetime as this read-in compilation
575 unit, including partial DIEs. */
576 struct obstack comp_unit_obstack;
577
578 /* When multiple dwarf2_cu structures are living in memory, this field
579 chains them all together, so that they can be released efficiently.
580 We will probably also want a generation counter so that most-recently-used
581 compilation units are cached... */
582 struct dwarf2_per_cu_data *read_in_chain;
583
584 /* Backlink to our per_cu entry. */
585 struct dwarf2_per_cu_data *per_cu;
586
587 /* How many compilation units ago was this CU last referenced? */
588 int last_used;
589
590 /* A hash table of DIE cu_offset for following references with
591 die_info->offset.sect_off as hash. */
592 htab_t die_hash;
593
594 /* Full DIEs if read in. */
595 struct die_info *dies;
596
597 /* A set of pointers to dwarf2_per_cu_data objects for compilation
598 units referenced by this one. Only set during full symbol processing;
599 partial symbol tables do not have dependencies. */
600 htab_t dependencies;
601
602 /* Header data from the line table, during full symbol processing. */
603 struct line_header *line_header;
604 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
605 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
606 this is the DW_TAG_compile_unit die for this CU. We'll hold on
607 to the line header as long as this DIE is being processed. See
608 process_die_scope. */
609 die_info *line_header_die_owner;
610
611 /* A list of methods which need to have physnames computed
612 after all type information has been read. */
613 VEC (delayed_method_info) *method_list;
614
615 /* To be copied to symtab->call_site_htab. */
616 htab_t call_site_htab;
617
618 /* Non-NULL if this CU came from a DWO file.
619 There is an invariant here that is important to remember:
620 Except for attributes copied from the top level DIE in the "main"
621 (or "stub") file in preparation for reading the DWO file
622 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
623 Either there isn't a DWO file (in which case this is NULL and the point
624 is moot), or there is and either we're not going to read it (in which
625 case this is NULL) or there is and we are reading it (in which case this
626 is non-NULL). */
627 struct dwo_unit *dwo_unit;
628
629 /* The DW_AT_addr_base attribute if present, zero otherwise
630 (zero is a valid value though).
631 Note this value comes from the Fission stub CU/TU's DIE. */
632 ULONGEST addr_base;
633
634 /* The DW_AT_ranges_base attribute if present, zero otherwise
635 (zero is a valid value though).
636 Note this value comes from the Fission stub CU/TU's DIE.
637 Also note that the value is zero in the non-DWO case so this value can
638 be used without needing to know whether DWO files are in use or not.
639 N.B. This does not apply to DW_AT_ranges appearing in
640 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
641 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
642 DW_AT_ranges_base *would* have to be applied, and we'd have to care
643 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
644 ULONGEST ranges_base;
645
646 /* Mark used when releasing cached dies. */
647 unsigned int mark : 1;
648
649 /* This CU references .debug_loc. See the symtab->locations_valid field.
650 This test is imperfect as there may exist optimized debug code not using
651 any location list and still facing inlining issues if handled as
652 unoptimized code. For a future better test see GCC PR other/32998. */
653 unsigned int has_loclist : 1;
654
655 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
656 if all the producer_is_* fields are valid. This information is cached
657 because profiling CU expansion showed excessive time spent in
658 producer_is_gxx_lt_4_6. */
659 unsigned int checked_producer : 1;
660 unsigned int producer_is_gxx_lt_4_6 : 1;
661 unsigned int producer_is_gcc_lt_4_3 : 1;
662 unsigned int producer_is_icc_lt_14 : 1;
663
664 /* When set, the file that we're processing is known to have
665 debugging info for C++ namespaces. GCC 3.3.x did not produce
666 this information, but later versions do. */
667
668 unsigned int processing_has_namespace_info : 1;
669 };
670
671 /* Persistent data held for a compilation unit, even when not
672 processing it. We put a pointer to this structure in the
673 read_symtab_private field of the psymtab. */
674
675 struct dwarf2_per_cu_data
676 {
677 /* The start offset and length of this compilation unit.
678 NOTE: Unlike comp_unit_head.length, this length includes
679 initial_length_size.
680 If the DIE refers to a DWO file, this is always of the original die,
681 not the DWO file. */
682 sect_offset sect_off;
683 unsigned int length;
684
685 /* DWARF standard version this data has been read from (such as 4 or 5). */
686 short dwarf_version;
687
688 /* Flag indicating this compilation unit will be read in before
689 any of the current compilation units are processed. */
690 unsigned int queued : 1;
691
692 /* This flag will be set when reading partial DIEs if we need to load
693 absolutely all DIEs for this compilation unit, instead of just the ones
694 we think are interesting. It gets set if we look for a DIE in the
695 hash table and don't find it. */
696 unsigned int load_all_dies : 1;
697
698 /* Non-zero if this CU is from .debug_types.
699 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
700 this is non-zero. */
701 unsigned int is_debug_types : 1;
702
703 /* Non-zero if this CU is from the .dwz file. */
704 unsigned int is_dwz : 1;
705
706 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
707 This flag is only valid if is_debug_types is true.
708 We can't read a CU directly from a DWO file: There are required
709 attributes in the stub. */
710 unsigned int reading_dwo_directly : 1;
711
712 /* Non-zero if the TU has been read.
713 This is used to assist the "Stay in DWO Optimization" for Fission:
714 When reading a DWO, it's faster to read TUs from the DWO instead of
715 fetching them from random other DWOs (due to comdat folding).
716 If the TU has already been read, the optimization is unnecessary
717 (and unwise - we don't want to change where gdb thinks the TU lives
718 "midflight").
719 This flag is only valid if is_debug_types is true. */
720 unsigned int tu_read : 1;
721
722 /* The section this CU/TU lives in.
723 If the DIE refers to a DWO file, this is always the original die,
724 not the DWO file. */
725 struct dwarf2_section_info *section;
726
727 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
728 of the CU cache it gets reset to NULL again. This is left as NULL for
729 dummy CUs (a CU header, but nothing else). */
730 struct dwarf2_cu *cu;
731
732 /* The corresponding objfile.
733 Normally we can get the objfile from dwarf2_per_objfile.
734 However we can enter this file with just a "per_cu" handle. */
735 struct objfile *objfile;
736
737 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
738 is active. Otherwise, the 'psymtab' field is active. */
739 union
740 {
741 /* The partial symbol table associated with this compilation unit,
742 or NULL for unread partial units. */
743 struct partial_symtab *psymtab;
744
745 /* Data needed by the "quick" functions. */
746 struct dwarf2_per_cu_quick_data *quick;
747 } v;
748
749 /* The CUs we import using DW_TAG_imported_unit. This is filled in
750 while reading psymtabs, used to compute the psymtab dependencies,
751 and then cleared. Then it is filled in again while reading full
752 symbols, and only deleted when the objfile is destroyed.
753
754 This is also used to work around a difference between the way gold
755 generates .gdb_index version <=7 and the way gdb does. Arguably this
756 is a gold bug. For symbols coming from TUs, gold records in the index
757 the CU that includes the TU instead of the TU itself. This breaks
758 dw2_lookup_symbol: It assumes that if the index says symbol X lives
759 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
760 will find X. Alas TUs live in their own symtab, so after expanding CU Y
761 we need to look in TU Z to find X. Fortunately, this is akin to
762 DW_TAG_imported_unit, so we just use the same mechanism: For
763 .gdb_index version <=7 this also records the TUs that the CU referred
764 to. Concurrently with this change gdb was modified to emit version 8
765 indices so we only pay a price for gold generated indices.
766 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
767 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
768 };
769
770 /* Entry in the signatured_types hash table. */
771
772 struct signatured_type
773 {
774 /* The "per_cu" object of this type.
775 This struct is used iff per_cu.is_debug_types.
776 N.B.: This is the first member so that it's easy to convert pointers
777 between them. */
778 struct dwarf2_per_cu_data per_cu;
779
780 /* The type's signature. */
781 ULONGEST signature;
782
783 /* Offset in the TU of the type's DIE, as read from the TU header.
784 If this TU is a DWO stub and the definition lives in a DWO file
785 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
786 cu_offset type_offset_in_tu;
787
788 /* Offset in the section of the type's DIE.
789 If the definition lives in a DWO file, this is the offset in the
790 .debug_types.dwo section.
791 The value is zero until the actual value is known.
792 Zero is otherwise not a valid section offset. */
793 sect_offset type_offset_in_section;
794
795 /* Type units are grouped by their DW_AT_stmt_list entry so that they
796 can share them. This points to the containing symtab. */
797 struct type_unit_group *type_unit_group;
798
799 /* The type.
800 The first time we encounter this type we fully read it in and install it
801 in the symbol tables. Subsequent times we only need the type. */
802 struct type *type;
803
804 /* Containing DWO unit.
805 This field is valid iff per_cu.reading_dwo_directly. */
806 struct dwo_unit *dwo_unit;
807 };
808
809 typedef struct signatured_type *sig_type_ptr;
810 DEF_VEC_P (sig_type_ptr);
811
812 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
813 This includes type_unit_group and quick_file_names. */
814
815 struct stmt_list_hash
816 {
817 /* The DWO unit this table is from or NULL if there is none. */
818 struct dwo_unit *dwo_unit;
819
820 /* Offset in .debug_line or .debug_line.dwo. */
821 sect_offset line_sect_off;
822 };
823
824 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
825 an object of this type. */
826
827 struct type_unit_group
828 {
829 /* dwarf2read.c's main "handle" on a TU symtab.
830 To simplify things we create an artificial CU that "includes" all the
831 type units using this stmt_list so that the rest of the code still has
832 a "per_cu" handle on the symtab.
833 This PER_CU is recognized by having no section. */
834 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
835 struct dwarf2_per_cu_data per_cu;
836
837 /* The TUs that share this DW_AT_stmt_list entry.
838 This is added to while parsing type units to build partial symtabs,
839 and is deleted afterwards and not used again. */
840 VEC (sig_type_ptr) *tus;
841
842 /* The compunit symtab.
843 Type units in a group needn't all be defined in the same source file,
844 so we create an essentially anonymous symtab as the compunit symtab. */
845 struct compunit_symtab *compunit_symtab;
846
847 /* The data used to construct the hash key. */
848 struct stmt_list_hash hash;
849
850 /* The number of symtabs from the line header.
851 The value here must match line_header.num_file_names. */
852 unsigned int num_symtabs;
853
854 /* The symbol tables for this TU (obtained from the files listed in
855 DW_AT_stmt_list).
856 WARNING: The order of entries here must match the order of entries
857 in the line header. After the first TU using this type_unit_group, the
858 line header for the subsequent TUs is recreated from this. This is done
859 because we need to use the same symtabs for each TU using the same
860 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
861 there's no guarantee the line header doesn't have duplicate entries. */
862 struct symtab **symtabs;
863 };
864
865 /* These sections are what may appear in a (real or virtual) DWO file. */
866
867 struct dwo_sections
868 {
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info loclists;
873 struct dwarf2_section_info macinfo;
874 struct dwarf2_section_info macro;
875 struct dwarf2_section_info str;
876 struct dwarf2_section_info str_offsets;
877 /* In the case of a virtual DWO file, these two are unused. */
878 struct dwarf2_section_info info;
879 VEC (dwarf2_section_info_def) *types;
880 };
881
882 /* CUs/TUs in DWP/DWO files. */
883
884 struct dwo_unit
885 {
886 /* Backlink to the containing struct dwo_file. */
887 struct dwo_file *dwo_file;
888
889 /* The "id" that distinguishes this CU/TU.
890 .debug_info calls this "dwo_id", .debug_types calls this "signature".
891 Since signatures came first, we stick with it for consistency. */
892 ULONGEST signature;
893
894 /* The section this CU/TU lives in, in the DWO file. */
895 struct dwarf2_section_info *section;
896
897 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
898 sect_offset sect_off;
899 unsigned int length;
900
901 /* For types, offset in the type's DIE of the type defined by this TU. */
902 cu_offset type_offset_in_tu;
903 };
904
905 /* include/dwarf2.h defines the DWP section codes.
906 It defines a max value but it doesn't define a min value, which we
907 use for error checking, so provide one. */
908
909 enum dwp_v2_section_ids
910 {
911 DW_SECT_MIN = 1
912 };
913
914 /* Data for one DWO file.
915
916 This includes virtual DWO files (a virtual DWO file is a DWO file as it
917 appears in a DWP file). DWP files don't really have DWO files per se -
918 comdat folding of types "loses" the DWO file they came from, and from
919 a high level view DWP files appear to contain a mass of random types.
920 However, to maintain consistency with the non-DWP case we pretend DWP
921 files contain virtual DWO files, and we assign each TU with one virtual
922 DWO file (generally based on the line and abbrev section offsets -
923 a heuristic that seems to work in practice). */
924
925 struct dwo_file
926 {
927 /* The DW_AT_GNU_dwo_name attribute.
928 For virtual DWO files the name is constructed from the section offsets
929 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
930 from related CU+TUs. */
931 const char *dwo_name;
932
933 /* The DW_AT_comp_dir attribute. */
934 const char *comp_dir;
935
936 /* The bfd, when the file is open. Otherwise this is NULL.
937 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
938 bfd *dbfd;
939
940 /* The sections that make up this DWO file.
941 Remember that for virtual DWO files in DWP V2, these are virtual
942 sections (for lack of a better name). */
943 struct dwo_sections sections;
944
945 /* The CUs in the file.
946 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
947 an extension to handle LLVM's Link Time Optimization output (where
948 multiple source files may be compiled into a single object/dwo pair). */
949 htab_t cus;
950
951 /* Table of TUs in the file.
952 Each element is a struct dwo_unit. */
953 htab_t tus;
954 };
955
956 /* These sections are what may appear in a DWP file. */
957
958 struct dwp_sections
959 {
960 /* These are used by both DWP version 1 and 2. */
961 struct dwarf2_section_info str;
962 struct dwarf2_section_info cu_index;
963 struct dwarf2_section_info tu_index;
964
965 /* These are only used by DWP version 2 files.
966 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
967 sections are referenced by section number, and are not recorded here.
968 In DWP version 2 there is at most one copy of all these sections, each
969 section being (effectively) comprised of the concatenation of all of the
970 individual sections that exist in the version 1 format.
971 To keep the code simple we treat each of these concatenated pieces as a
972 section itself (a virtual section?). */
973 struct dwarf2_section_info abbrev;
974 struct dwarf2_section_info info;
975 struct dwarf2_section_info line;
976 struct dwarf2_section_info loc;
977 struct dwarf2_section_info macinfo;
978 struct dwarf2_section_info macro;
979 struct dwarf2_section_info str_offsets;
980 struct dwarf2_section_info types;
981 };
982
983 /* These sections are what may appear in a virtual DWO file in DWP version 1.
984 A virtual DWO file is a DWO file as it appears in a DWP file. */
985
986 struct virtual_v1_dwo_sections
987 {
988 struct dwarf2_section_info abbrev;
989 struct dwarf2_section_info line;
990 struct dwarf2_section_info loc;
991 struct dwarf2_section_info macinfo;
992 struct dwarf2_section_info macro;
993 struct dwarf2_section_info str_offsets;
994 /* Each DWP hash table entry records one CU or one TU.
995 That is recorded here, and copied to dwo_unit.section. */
996 struct dwarf2_section_info info_or_types;
997 };
998
999 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
1000 In version 2, the sections of the DWO files are concatenated together
1001 and stored in one section of that name. Thus each ELF section contains
1002 several "virtual" sections. */
1003
1004 struct virtual_v2_dwo_sections
1005 {
1006 bfd_size_type abbrev_offset;
1007 bfd_size_type abbrev_size;
1008
1009 bfd_size_type line_offset;
1010 bfd_size_type line_size;
1011
1012 bfd_size_type loc_offset;
1013 bfd_size_type loc_size;
1014
1015 bfd_size_type macinfo_offset;
1016 bfd_size_type macinfo_size;
1017
1018 bfd_size_type macro_offset;
1019 bfd_size_type macro_size;
1020
1021 bfd_size_type str_offsets_offset;
1022 bfd_size_type str_offsets_size;
1023
1024 /* Each DWP hash table entry records one CU or one TU.
1025 That is recorded here, and copied to dwo_unit.section. */
1026 bfd_size_type info_or_types_offset;
1027 bfd_size_type info_or_types_size;
1028 };
1029
1030 /* Contents of DWP hash tables. */
1031
1032 struct dwp_hash_table
1033 {
1034 uint32_t version, nr_columns;
1035 uint32_t nr_units, nr_slots;
1036 const gdb_byte *hash_table, *unit_table;
1037 union
1038 {
1039 struct
1040 {
1041 const gdb_byte *indices;
1042 } v1;
1043 struct
1044 {
1045 /* This is indexed by column number and gives the id of the section
1046 in that column. */
1047 #define MAX_NR_V2_DWO_SECTIONS \
1048 (1 /* .debug_info or .debug_types */ \
1049 + 1 /* .debug_abbrev */ \
1050 + 1 /* .debug_line */ \
1051 + 1 /* .debug_loc */ \
1052 + 1 /* .debug_str_offsets */ \
1053 + 1 /* .debug_macro or .debug_macinfo */)
1054 int section_ids[MAX_NR_V2_DWO_SECTIONS];
1055 const gdb_byte *offsets;
1056 const gdb_byte *sizes;
1057 } v2;
1058 } section_pool;
1059 };
1060
1061 /* Data for one DWP file. */
1062
1063 struct dwp_file
1064 {
1065 /* Name of the file. */
1066 const char *name;
1067
1068 /* File format version. */
1069 int version;
1070
1071 /* The bfd. */
1072 bfd *dbfd;
1073
1074 /* Section info for this file. */
1075 struct dwp_sections sections;
1076
1077 /* Table of CUs in the file. */
1078 const struct dwp_hash_table *cus;
1079
1080 /* Table of TUs in the file. */
1081 const struct dwp_hash_table *tus;
1082
1083 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1084 htab_t loaded_cus;
1085 htab_t loaded_tus;
1086
1087 /* Table to map ELF section numbers to their sections.
1088 This is only needed for the DWP V1 file format. */
1089 unsigned int num_sections;
1090 asection **elf_sections;
1091 };
1092
1093 /* This represents a '.dwz' file. */
1094
1095 struct dwz_file
1096 {
1097 /* A dwz file can only contain a few sections. */
1098 struct dwarf2_section_info abbrev;
1099 struct dwarf2_section_info info;
1100 struct dwarf2_section_info str;
1101 struct dwarf2_section_info line;
1102 struct dwarf2_section_info macro;
1103 struct dwarf2_section_info gdb_index;
1104
1105 /* The dwz's BFD. */
1106 bfd *dwz_bfd;
1107 };
1108
1109 /* Struct used to pass misc. parameters to read_die_and_children, et
1110 al. which are used for both .debug_info and .debug_types dies.
1111 All parameters here are unchanging for the life of the call. This
1112 struct exists to abstract away the constant parameters of die reading. */
1113
1114 struct die_reader_specs
1115 {
1116 /* The bfd of die_section. */
1117 bfd* abfd;
1118
1119 /* The CU of the DIE we are parsing. */
1120 struct dwarf2_cu *cu;
1121
1122 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1123 struct dwo_file *dwo_file;
1124
1125 /* The section the die comes from.
1126 This is either .debug_info or .debug_types, or the .dwo variants. */
1127 struct dwarf2_section_info *die_section;
1128
1129 /* die_section->buffer. */
1130 const gdb_byte *buffer;
1131
1132 /* The end of the buffer. */
1133 const gdb_byte *buffer_end;
1134
1135 /* The value of the DW_AT_comp_dir attribute. */
1136 const char *comp_dir;
1137 };
1138
1139 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1140 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1141 const gdb_byte *info_ptr,
1142 struct die_info *comp_unit_die,
1143 int has_children,
1144 void *data);
1145
1146 /* A 1-based directory index. This is a strong typedef to prevent
1147 accidentally using a directory index as a 0-based index into an
1148 array/vector. */
1149 enum class dir_index : unsigned int {};
1150
1151 /* Likewise, a 1-based file name index. */
1152 enum class file_name_index : unsigned int {};
1153
1154 struct file_entry
1155 {
1156 file_entry () = default;
1157
1158 file_entry (const char *name_, dir_index d_index_,
1159 unsigned int mod_time_, unsigned int length_)
1160 : name (name_),
1161 d_index (d_index_),
1162 mod_time (mod_time_),
1163 length (length_)
1164 {}
1165
1166 /* Return the include directory at D_INDEX stored in LH. Returns
1167 NULL if D_INDEX is out of bounds. */
1168 const char *include_dir (const line_header *lh) const;
1169
1170 /* The file name. Note this is an observing pointer. The memory is
1171 owned by debug_line_buffer. */
1172 const char *name {};
1173
1174 /* The directory index (1-based). */
1175 dir_index d_index {};
1176
1177 unsigned int mod_time {};
1178
1179 unsigned int length {};
1180
1181 /* True if referenced by the Line Number Program. */
1182 bool included_p {};
1183
1184 /* The associated symbol table, if any. */
1185 struct symtab *symtab {};
1186 };
1187
1188 /* The line number information for a compilation unit (found in the
1189 .debug_line section) begins with a "statement program header",
1190 which contains the following information. */
1191 struct line_header
1192 {
1193 line_header ()
1194 : offset_in_dwz {}
1195 {}
1196
1197 /* Add an entry to the include directory table. */
1198 void add_include_dir (const char *include_dir);
1199
1200 /* Add an entry to the file name table. */
1201 void add_file_name (const char *name, dir_index d_index,
1202 unsigned int mod_time, unsigned int length);
1203
1204 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1205 is out of bounds. */
1206 const char *include_dir_at (dir_index index) const
1207 {
1208 /* Convert directory index number (1-based) to vector index
1209 (0-based). */
1210 size_t vec_index = to_underlying (index) - 1;
1211
1212 if (vec_index >= include_dirs.size ())
1213 return NULL;
1214 return include_dirs[vec_index];
1215 }
1216
1217 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1218 is out of bounds. */
1219 file_entry *file_name_at (file_name_index index)
1220 {
1221 /* Convert file name index number (1-based) to vector index
1222 (0-based). */
1223 size_t vec_index = to_underlying (index) - 1;
1224
1225 if (vec_index >= file_names.size ())
1226 return NULL;
1227 return &file_names[vec_index];
1228 }
1229
1230 /* Const version of the above. */
1231 const file_entry *file_name_at (unsigned int index) const
1232 {
1233 if (index >= file_names.size ())
1234 return NULL;
1235 return &file_names[index];
1236 }
1237
1238 /* Offset of line number information in .debug_line section. */
1239 sect_offset sect_off {};
1240
1241 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1242 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1243
1244 unsigned int total_length {};
1245 unsigned short version {};
1246 unsigned int header_length {};
1247 unsigned char minimum_instruction_length {};
1248 unsigned char maximum_ops_per_instruction {};
1249 unsigned char default_is_stmt {};
1250 int line_base {};
1251 unsigned char line_range {};
1252 unsigned char opcode_base {};
1253
1254 /* standard_opcode_lengths[i] is the number of operands for the
1255 standard opcode whose value is i. This means that
1256 standard_opcode_lengths[0] is unused, and the last meaningful
1257 element is standard_opcode_lengths[opcode_base - 1]. */
1258 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1259
1260 /* The include_directories table. Note these are observing
1261 pointers. The memory is owned by debug_line_buffer. */
1262 std::vector<const char *> include_dirs;
1263
1264 /* The file_names table. */
1265 std::vector<file_entry> file_names;
1266
1267 /* The start and end of the statement program following this
1268 header. These point into dwarf2_per_objfile->line_buffer. */
1269 const gdb_byte *statement_program_start {}, *statement_program_end {};
1270 };
1271
1272 typedef std::unique_ptr<line_header> line_header_up;
1273
1274 const char *
1275 file_entry::include_dir (const line_header *lh) const
1276 {
1277 return lh->include_dir_at (d_index);
1278 }
1279
1280 /* When we construct a partial symbol table entry we only
1281 need this much information. */
1282 struct partial_die_info
1283 {
1284 /* Offset of this DIE. */
1285 sect_offset sect_off;
1286
1287 /* DWARF-2 tag for this DIE. */
1288 ENUM_BITFIELD(dwarf_tag) tag : 16;
1289
1290 /* Assorted flags describing the data found in this DIE. */
1291 unsigned int has_children : 1;
1292 unsigned int is_external : 1;
1293 unsigned int is_declaration : 1;
1294 unsigned int has_type : 1;
1295 unsigned int has_specification : 1;
1296 unsigned int has_pc_info : 1;
1297 unsigned int may_be_inlined : 1;
1298
1299 /* This DIE has been marked DW_AT_main_subprogram. */
1300 unsigned int main_subprogram : 1;
1301
1302 /* Flag set if the SCOPE field of this structure has been
1303 computed. */
1304 unsigned int scope_set : 1;
1305
1306 /* Flag set if the DIE has a byte_size attribute. */
1307 unsigned int has_byte_size : 1;
1308
1309 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1310 unsigned int has_const_value : 1;
1311
1312 /* Flag set if any of the DIE's children are template arguments. */
1313 unsigned int has_template_arguments : 1;
1314
1315 /* Flag set if fixup_partial_die has been called on this die. */
1316 unsigned int fixup_called : 1;
1317
1318 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1319 unsigned int is_dwz : 1;
1320
1321 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1322 unsigned int spec_is_dwz : 1;
1323
1324 /* The name of this DIE. Normally the value of DW_AT_name, but
1325 sometimes a default name for unnamed DIEs. */
1326 const char *name;
1327
1328 /* The linkage name, if present. */
1329 const char *linkage_name;
1330
1331 /* The scope to prepend to our children. This is generally
1332 allocated on the comp_unit_obstack, so will disappear
1333 when this compilation unit leaves the cache. */
1334 const char *scope;
1335
1336 /* Some data associated with the partial DIE. The tag determines
1337 which field is live. */
1338 union
1339 {
1340 /* The location description associated with this DIE, if any. */
1341 struct dwarf_block *locdesc;
1342 /* The offset of an import, for DW_TAG_imported_unit. */
1343 sect_offset sect_off;
1344 } d;
1345
1346 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1347 CORE_ADDR lowpc;
1348 CORE_ADDR highpc;
1349
1350 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1351 DW_AT_sibling, if any. */
1352 /* NOTE: This member isn't strictly necessary, read_partial_die could
1353 return DW_AT_sibling values to its caller load_partial_dies. */
1354 const gdb_byte *sibling;
1355
1356 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1357 DW_AT_specification (or DW_AT_abstract_origin or
1358 DW_AT_extension). */
1359 sect_offset spec_offset;
1360
1361 /* Pointers to this DIE's parent, first child, and next sibling,
1362 if any. */
1363 struct partial_die_info *die_parent, *die_child, *die_sibling;
1364 };
1365
1366 /* This data structure holds the information of an abbrev. */
1367 struct abbrev_info
1368 {
1369 unsigned int number; /* number identifying abbrev */
1370 enum dwarf_tag tag; /* dwarf tag */
1371 unsigned short has_children; /* boolean */
1372 unsigned short num_attrs; /* number of attributes */
1373 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1374 struct abbrev_info *next; /* next in chain */
1375 };
1376
1377 struct attr_abbrev
1378 {
1379 ENUM_BITFIELD(dwarf_attribute) name : 16;
1380 ENUM_BITFIELD(dwarf_form) form : 16;
1381
1382 /* It is valid only if FORM is DW_FORM_implicit_const. */
1383 LONGEST implicit_const;
1384 };
1385
1386 /* Size of abbrev_table.abbrev_hash_table. */
1387 #define ABBREV_HASH_SIZE 121
1388
1389 /* Top level data structure to contain an abbreviation table. */
1390
1391 struct abbrev_table
1392 {
1393 /* Where the abbrev table came from.
1394 This is used as a sanity check when the table is used. */
1395 sect_offset sect_off;
1396
1397 /* Storage for the abbrev table. */
1398 struct obstack abbrev_obstack;
1399
1400 /* Hash table of abbrevs.
1401 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1402 It could be statically allocated, but the previous code didn't so we
1403 don't either. */
1404 struct abbrev_info **abbrevs;
1405 };
1406
1407 /* Attributes have a name and a value. */
1408 struct attribute
1409 {
1410 ENUM_BITFIELD(dwarf_attribute) name : 16;
1411 ENUM_BITFIELD(dwarf_form) form : 15;
1412
1413 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1414 field should be in u.str (existing only for DW_STRING) but it is kept
1415 here for better struct attribute alignment. */
1416 unsigned int string_is_canonical : 1;
1417
1418 union
1419 {
1420 const char *str;
1421 struct dwarf_block *blk;
1422 ULONGEST unsnd;
1423 LONGEST snd;
1424 CORE_ADDR addr;
1425 ULONGEST signature;
1426 }
1427 u;
1428 };
1429
1430 /* This data structure holds a complete die structure. */
1431 struct die_info
1432 {
1433 /* DWARF-2 tag for this DIE. */
1434 ENUM_BITFIELD(dwarf_tag) tag : 16;
1435
1436 /* Number of attributes */
1437 unsigned char num_attrs;
1438
1439 /* True if we're presently building the full type name for the
1440 type derived from this DIE. */
1441 unsigned char building_fullname : 1;
1442
1443 /* True if this die is in process. PR 16581. */
1444 unsigned char in_process : 1;
1445
1446 /* Abbrev number */
1447 unsigned int abbrev;
1448
1449 /* Offset in .debug_info or .debug_types section. */
1450 sect_offset sect_off;
1451
1452 /* The dies in a compilation unit form an n-ary tree. PARENT
1453 points to this die's parent; CHILD points to the first child of
1454 this node; and all the children of a given node are chained
1455 together via their SIBLING fields. */
1456 struct die_info *child; /* Its first child, if any. */
1457 struct die_info *sibling; /* Its next sibling, if any. */
1458 struct die_info *parent; /* Its parent, if any. */
1459
1460 /* An array of attributes, with NUM_ATTRS elements. There may be
1461 zero, but it's not common and zero-sized arrays are not
1462 sufficiently portable C. */
1463 struct attribute attrs[1];
1464 };
1465
1466 /* Get at parts of an attribute structure. */
1467
1468 #define DW_STRING(attr) ((attr)->u.str)
1469 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1470 #define DW_UNSND(attr) ((attr)->u.unsnd)
1471 #define DW_BLOCK(attr) ((attr)->u.blk)
1472 #define DW_SND(attr) ((attr)->u.snd)
1473 #define DW_ADDR(attr) ((attr)->u.addr)
1474 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1475
1476 /* Blocks are a bunch of untyped bytes. */
1477 struct dwarf_block
1478 {
1479 size_t size;
1480
1481 /* Valid only if SIZE is not zero. */
1482 const gdb_byte *data;
1483 };
1484
1485 #ifndef ATTR_ALLOC_CHUNK
1486 #define ATTR_ALLOC_CHUNK 4
1487 #endif
1488
1489 /* Allocate fields for structs, unions and enums in this size. */
1490 #ifndef DW_FIELD_ALLOC_CHUNK
1491 #define DW_FIELD_ALLOC_CHUNK 4
1492 #endif
1493
1494 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1495 but this would require a corresponding change in unpack_field_as_long
1496 and friends. */
1497 static int bits_per_byte = 8;
1498
1499 struct nextfield
1500 {
1501 struct nextfield *next;
1502 int accessibility;
1503 int virtuality;
1504 struct field field;
1505 };
1506
1507 struct nextfnfield
1508 {
1509 struct nextfnfield *next;
1510 struct fn_field fnfield;
1511 };
1512
1513 struct fnfieldlist
1514 {
1515 const char *name;
1516 int length;
1517 struct nextfnfield *head;
1518 };
1519
1520 struct typedef_field_list
1521 {
1522 struct typedef_field field;
1523 struct typedef_field_list *next;
1524 };
1525
1526 /* The routines that read and process dies for a C struct or C++ class
1527 pass lists of data member fields and lists of member function fields
1528 in an instance of a field_info structure, as defined below. */
1529 struct field_info
1530 {
1531 /* List of data member and baseclasses fields. */
1532 struct nextfield *fields, *baseclasses;
1533
1534 /* Number of fields (including baseclasses). */
1535 int nfields;
1536
1537 /* Number of baseclasses. */
1538 int nbaseclasses;
1539
1540 /* Set if the accesibility of one of the fields is not public. */
1541 int non_public_fields;
1542
1543 /* Member function fieldlist array, contains name of possibly overloaded
1544 member function, number of overloaded member functions and a pointer
1545 to the head of the member function field chain. */
1546 struct fnfieldlist *fnfieldlists;
1547
1548 /* Number of entries in the fnfieldlists array. */
1549 int nfnfields;
1550
1551 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1552 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1553 struct typedef_field_list *typedef_field_list;
1554 unsigned typedef_field_list_count;
1555 };
1556
1557 /* One item on the queue of compilation units to read in full symbols
1558 for. */
1559 struct dwarf2_queue_item
1560 {
1561 struct dwarf2_per_cu_data *per_cu;
1562 enum language pretend_language;
1563 struct dwarf2_queue_item *next;
1564 };
1565
1566 /* The current queue. */
1567 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1568
1569 /* Loaded secondary compilation units are kept in memory until they
1570 have not been referenced for the processing of this many
1571 compilation units. Set this to zero to disable caching. Cache
1572 sizes of up to at least twenty will improve startup time for
1573 typical inter-CU-reference binaries, at an obvious memory cost. */
1574 static int dwarf_max_cache_age = 5;
1575 static void
1576 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1577 struct cmd_list_element *c, const char *value)
1578 {
1579 fprintf_filtered (file, _("The upper bound on the age of cached "
1580 "DWARF compilation units is %s.\n"),
1581 value);
1582 }
1583 \f
1584 /* local function prototypes */
1585
1586 static const char *get_section_name (const struct dwarf2_section_info *);
1587
1588 static const char *get_section_file_name (const struct dwarf2_section_info *);
1589
1590 static void dwarf2_find_base_address (struct die_info *die,
1591 struct dwarf2_cu *cu);
1592
1593 static struct partial_symtab *create_partial_symtab
1594 (struct dwarf2_per_cu_data *per_cu, const char *name);
1595
1596 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1597 const gdb_byte *info_ptr,
1598 struct die_info *type_unit_die,
1599 int has_children, void *data);
1600
1601 static void dwarf2_build_psymtabs_hard (struct objfile *);
1602
1603 static void scan_partial_symbols (struct partial_die_info *,
1604 CORE_ADDR *, CORE_ADDR *,
1605 int, struct dwarf2_cu *);
1606
1607 static void add_partial_symbol (struct partial_die_info *,
1608 struct dwarf2_cu *);
1609
1610 static void add_partial_namespace (struct partial_die_info *pdi,
1611 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1612 int set_addrmap, struct dwarf2_cu *cu);
1613
1614 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1615 CORE_ADDR *highpc, int set_addrmap,
1616 struct dwarf2_cu *cu);
1617
1618 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1619 struct dwarf2_cu *cu);
1620
1621 static void add_partial_subprogram (struct partial_die_info *pdi,
1622 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1623 int need_pc, struct dwarf2_cu *cu);
1624
1625 static void dwarf2_read_symtab (struct partial_symtab *,
1626 struct objfile *);
1627
1628 static void psymtab_to_symtab_1 (struct partial_symtab *);
1629
1630 static struct abbrev_info *abbrev_table_lookup_abbrev
1631 (const struct abbrev_table *, unsigned int);
1632
1633 static struct abbrev_table *abbrev_table_read_table
1634 (struct dwarf2_section_info *, sect_offset);
1635
1636 static void abbrev_table_free (struct abbrev_table *);
1637
1638 static void abbrev_table_free_cleanup (void *);
1639
1640 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1641 struct dwarf2_section_info *);
1642
1643 static void dwarf2_free_abbrev_table (void *);
1644
1645 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1646
1647 static struct partial_die_info *load_partial_dies
1648 (const struct die_reader_specs *, const gdb_byte *, int);
1649
1650 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1651 struct partial_die_info *,
1652 struct abbrev_info *,
1653 unsigned int,
1654 const gdb_byte *);
1655
1656 static struct partial_die_info *find_partial_die (sect_offset, int,
1657 struct dwarf2_cu *);
1658
1659 static void fixup_partial_die (struct partial_die_info *,
1660 struct dwarf2_cu *);
1661
1662 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1663 struct attribute *, struct attr_abbrev *,
1664 const gdb_byte *);
1665
1666 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1667
1668 static int read_1_signed_byte (bfd *, const gdb_byte *);
1669
1670 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1671
1672 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1673
1674 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1675
1676 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1677 unsigned int *);
1678
1679 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1680
1681 static LONGEST read_checked_initial_length_and_offset
1682 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1683 unsigned int *, unsigned int *);
1684
1685 static LONGEST read_offset (bfd *, const gdb_byte *,
1686 const struct comp_unit_head *,
1687 unsigned int *);
1688
1689 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1690
1691 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1692 sect_offset);
1693
1694 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1695
1696 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1697
1698 static const char *read_indirect_string (bfd *, const gdb_byte *,
1699 const struct comp_unit_head *,
1700 unsigned int *);
1701
1702 static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1703 const struct comp_unit_head *,
1704 unsigned int *);
1705
1706 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1707
1708 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1709
1710 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1711 const gdb_byte *,
1712 unsigned int *);
1713
1714 static const char *read_str_index (const struct die_reader_specs *reader,
1715 ULONGEST str_index);
1716
1717 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1718
1719 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1720 struct dwarf2_cu *);
1721
1722 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1723 unsigned int);
1724
1725 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1726 struct dwarf2_cu *cu);
1727
1728 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1729 struct dwarf2_cu *cu);
1730
1731 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1732
1733 static struct die_info *die_specification (struct die_info *die,
1734 struct dwarf2_cu **);
1735
1736 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1737 struct dwarf2_cu *cu);
1738
1739 static void dwarf_decode_lines (struct line_header *, const char *,
1740 struct dwarf2_cu *, struct partial_symtab *,
1741 CORE_ADDR, int decode_mapping);
1742
1743 static void dwarf2_start_subfile (const char *, const char *);
1744
1745 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1746 const char *, const char *,
1747 CORE_ADDR);
1748
1749 static struct symbol *new_symbol (struct die_info *, struct type *,
1750 struct dwarf2_cu *);
1751
1752 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1753 struct dwarf2_cu *, struct symbol *);
1754
1755 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1756 struct dwarf2_cu *);
1757
1758 static void dwarf2_const_value_attr (const struct attribute *attr,
1759 struct type *type,
1760 const char *name,
1761 struct obstack *obstack,
1762 struct dwarf2_cu *cu, LONGEST *value,
1763 const gdb_byte **bytes,
1764 struct dwarf2_locexpr_baton **baton);
1765
1766 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1767
1768 static int need_gnat_info (struct dwarf2_cu *);
1769
1770 static struct type *die_descriptive_type (struct die_info *,
1771 struct dwarf2_cu *);
1772
1773 static void set_descriptive_type (struct type *, struct die_info *,
1774 struct dwarf2_cu *);
1775
1776 static struct type *die_containing_type (struct die_info *,
1777 struct dwarf2_cu *);
1778
1779 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1780 struct dwarf2_cu *);
1781
1782 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1783
1784 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1785
1786 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1787
1788 static char *typename_concat (struct obstack *obs, const char *prefix,
1789 const char *suffix, int physname,
1790 struct dwarf2_cu *cu);
1791
1792 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1793
1794 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1795
1796 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1797
1798 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1799
1800 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1801
1802 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1803 struct dwarf2_cu *, struct partial_symtab *);
1804
1805 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1806 values. Keep the items ordered with increasing constraints compliance. */
1807 enum pc_bounds_kind
1808 {
1809 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1810 PC_BOUNDS_NOT_PRESENT,
1811
1812 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1813 were present but they do not form a valid range of PC addresses. */
1814 PC_BOUNDS_INVALID,
1815
1816 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1817 PC_BOUNDS_RANGES,
1818
1819 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1820 PC_BOUNDS_HIGH_LOW,
1821 };
1822
1823 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1824 CORE_ADDR *, CORE_ADDR *,
1825 struct dwarf2_cu *,
1826 struct partial_symtab *);
1827
1828 static void get_scope_pc_bounds (struct die_info *,
1829 CORE_ADDR *, CORE_ADDR *,
1830 struct dwarf2_cu *);
1831
1832 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1833 CORE_ADDR, struct dwarf2_cu *);
1834
1835 static void dwarf2_add_field (struct field_info *, struct die_info *,
1836 struct dwarf2_cu *);
1837
1838 static void dwarf2_attach_fields_to_type (struct field_info *,
1839 struct type *, struct dwarf2_cu *);
1840
1841 static void dwarf2_add_member_fn (struct field_info *,
1842 struct die_info *, struct type *,
1843 struct dwarf2_cu *);
1844
1845 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1846 struct type *,
1847 struct dwarf2_cu *);
1848
1849 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1850
1851 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1852
1853 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1854
1855 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1856
1857 static struct using_direct **using_directives (enum language);
1858
1859 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1860
1861 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1862
1863 static struct type *read_module_type (struct die_info *die,
1864 struct dwarf2_cu *cu);
1865
1866 static const char *namespace_name (struct die_info *die,
1867 int *is_anonymous, struct dwarf2_cu *);
1868
1869 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1870
1871 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1872
1873 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1874 struct dwarf2_cu *);
1875
1876 static struct die_info *read_die_and_siblings_1
1877 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1878 struct die_info *);
1879
1880 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1881 const gdb_byte *info_ptr,
1882 const gdb_byte **new_info_ptr,
1883 struct die_info *parent);
1884
1885 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1886 struct die_info **, const gdb_byte *,
1887 int *, int);
1888
1889 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1890 struct die_info **, const gdb_byte *,
1891 int *);
1892
1893 static void process_die (struct die_info *, struct dwarf2_cu *);
1894
1895 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1896 struct obstack *);
1897
1898 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1899
1900 static const char *dwarf2_full_name (const char *name,
1901 struct die_info *die,
1902 struct dwarf2_cu *cu);
1903
1904 static const char *dwarf2_physname (const char *name, struct die_info *die,
1905 struct dwarf2_cu *cu);
1906
1907 static struct die_info *dwarf2_extension (struct die_info *die,
1908 struct dwarf2_cu **);
1909
1910 static const char *dwarf_tag_name (unsigned int);
1911
1912 static const char *dwarf_attr_name (unsigned int);
1913
1914 static const char *dwarf_form_name (unsigned int);
1915
1916 static const char *dwarf_bool_name (unsigned int);
1917
1918 static const char *dwarf_type_encoding_name (unsigned int);
1919
1920 static struct die_info *sibling_die (struct die_info *);
1921
1922 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1923
1924 static void dump_die_for_error (struct die_info *);
1925
1926 static void dump_die_1 (struct ui_file *, int level, int max_level,
1927 struct die_info *);
1928
1929 /*static*/ void dump_die (struct die_info *, int max_level);
1930
1931 static void store_in_ref_table (struct die_info *,
1932 struct dwarf2_cu *);
1933
1934 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1935
1936 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1937
1938 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1939 const struct attribute *,
1940 struct dwarf2_cu **);
1941
1942 static struct die_info *follow_die_ref (struct die_info *,
1943 const struct attribute *,
1944 struct dwarf2_cu **);
1945
1946 static struct die_info *follow_die_sig (struct die_info *,
1947 const struct attribute *,
1948 struct dwarf2_cu **);
1949
1950 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1951 struct dwarf2_cu *);
1952
1953 static struct type *get_DW_AT_signature_type (struct die_info *,
1954 const struct attribute *,
1955 struct dwarf2_cu *);
1956
1957 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1958
1959 static void read_signatured_type (struct signatured_type *);
1960
1961 static int attr_to_dynamic_prop (const struct attribute *attr,
1962 struct die_info *die, struct dwarf2_cu *cu,
1963 struct dynamic_prop *prop);
1964
1965 /* memory allocation interface */
1966
1967 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1968
1969 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1970
1971 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1972
1973 static int attr_form_is_block (const struct attribute *);
1974
1975 static int attr_form_is_section_offset (const struct attribute *);
1976
1977 static int attr_form_is_constant (const struct attribute *);
1978
1979 static int attr_form_is_ref (const struct attribute *);
1980
1981 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1982 struct dwarf2_loclist_baton *baton,
1983 const struct attribute *attr);
1984
1985 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1986 struct symbol *sym,
1987 struct dwarf2_cu *cu,
1988 int is_block);
1989
1990 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1991 const gdb_byte *info_ptr,
1992 struct abbrev_info *abbrev);
1993
1994 static void free_stack_comp_unit (void *);
1995
1996 static hashval_t partial_die_hash (const void *item);
1997
1998 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1999
2000 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
2001 (sect_offset sect_off, unsigned int offset_in_dwz, struct objfile *objfile);
2002
2003 static void init_one_comp_unit (struct dwarf2_cu *cu,
2004 struct dwarf2_per_cu_data *per_cu);
2005
2006 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
2007 struct die_info *comp_unit_die,
2008 enum language pretend_language);
2009
2010 static void free_heap_comp_unit (void *);
2011
2012 static void free_cached_comp_units (void *);
2013
2014 static void age_cached_comp_units (void);
2015
2016 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
2017
2018 static struct type *set_die_type (struct die_info *, struct type *,
2019 struct dwarf2_cu *);
2020
2021 static void create_all_comp_units (struct objfile *);
2022
2023 static int create_all_type_units (struct objfile *);
2024
2025 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
2026 enum language);
2027
2028 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
2029 enum language);
2030
2031 static void process_full_type_unit (struct dwarf2_per_cu_data *,
2032 enum language);
2033
2034 static void dwarf2_add_dependence (struct dwarf2_cu *,
2035 struct dwarf2_per_cu_data *);
2036
2037 static void dwarf2_mark (struct dwarf2_cu *);
2038
2039 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
2040
2041 static struct type *get_die_type_at_offset (sect_offset,
2042 struct dwarf2_per_cu_data *);
2043
2044 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
2045
2046 static void dwarf2_release_queue (void *dummy);
2047
2048 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
2049 enum language pretend_language);
2050
2051 static void process_queue (void);
2052
2053 /* The return type of find_file_and_directory. Note, the enclosed
2054 string pointers are only valid while this object is valid. */
2055
2056 struct file_and_directory
2057 {
2058 /* The filename. This is never NULL. */
2059 const char *name;
2060
2061 /* The compilation directory. NULL if not known. If we needed to
2062 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2063 points directly to the DW_AT_comp_dir string attribute owned by
2064 the obstack that owns the DIE. */
2065 const char *comp_dir;
2066
2067 /* If we needed to build a new string for comp_dir, this is what
2068 owns the storage. */
2069 std::string comp_dir_storage;
2070 };
2071
2072 static file_and_directory find_file_and_directory (struct die_info *die,
2073 struct dwarf2_cu *cu);
2074
2075 static char *file_full_name (int file, struct line_header *lh,
2076 const char *comp_dir);
2077
2078 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
2079 enum class rcuh_kind { COMPILE, TYPE };
2080
2081 static const gdb_byte *read_and_check_comp_unit_head
2082 (struct comp_unit_head *header,
2083 struct dwarf2_section_info *section,
2084 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
2085 rcuh_kind section_kind);
2086
2087 static void init_cutu_and_read_dies
2088 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2089 int use_existing_cu, int keep,
2090 die_reader_func_ftype *die_reader_func, void *data);
2091
2092 static void init_cutu_and_read_dies_simple
2093 (struct dwarf2_per_cu_data *this_cu,
2094 die_reader_func_ftype *die_reader_func, void *data);
2095
2096 static htab_t allocate_signatured_type_table (struct objfile *objfile);
2097
2098 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2099
2100 static struct dwo_unit *lookup_dwo_unit_in_dwp
2101 (struct dwp_file *dwp_file, const char *comp_dir,
2102 ULONGEST signature, int is_debug_types);
2103
2104 static struct dwp_file *get_dwp_file (void);
2105
2106 static struct dwo_unit *lookup_dwo_comp_unit
2107 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2108
2109 static struct dwo_unit *lookup_dwo_type_unit
2110 (struct signatured_type *, const char *, const char *);
2111
2112 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2113
2114 static void free_dwo_file_cleanup (void *);
2115
2116 static void process_cu_includes (void);
2117
2118 static void check_producer (struct dwarf2_cu *cu);
2119
2120 static void free_line_header_voidp (void *arg);
2121 \f
2122 /* Various complaints about symbol reading that don't abort the process. */
2123
2124 static void
2125 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2126 {
2127 complaint (&symfile_complaints,
2128 _("statement list doesn't fit in .debug_line section"));
2129 }
2130
2131 static void
2132 dwarf2_debug_line_missing_file_complaint (void)
2133 {
2134 complaint (&symfile_complaints,
2135 _(".debug_line section has line data without a file"));
2136 }
2137
2138 static void
2139 dwarf2_debug_line_missing_end_sequence_complaint (void)
2140 {
2141 complaint (&symfile_complaints,
2142 _(".debug_line section has line "
2143 "program sequence without an end"));
2144 }
2145
2146 static void
2147 dwarf2_complex_location_expr_complaint (void)
2148 {
2149 complaint (&symfile_complaints, _("location expression too complex"));
2150 }
2151
2152 static void
2153 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2154 int arg3)
2155 {
2156 complaint (&symfile_complaints,
2157 _("const value length mismatch for '%s', got %d, expected %d"),
2158 arg1, arg2, arg3);
2159 }
2160
2161 static void
2162 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2163 {
2164 complaint (&symfile_complaints,
2165 _("debug info runs off end of %s section"
2166 " [in module %s]"),
2167 get_section_name (section),
2168 get_section_file_name (section));
2169 }
2170
2171 static void
2172 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2173 {
2174 complaint (&symfile_complaints,
2175 _("macro debug info contains a "
2176 "malformed macro definition:\n`%s'"),
2177 arg1);
2178 }
2179
2180 static void
2181 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2182 {
2183 complaint (&symfile_complaints,
2184 _("invalid attribute class or form for '%s' in '%s'"),
2185 arg1, arg2);
2186 }
2187
2188 /* Hash function for line_header_hash. */
2189
2190 static hashval_t
2191 line_header_hash (const struct line_header *ofs)
2192 {
2193 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2194 }
2195
2196 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2197
2198 static hashval_t
2199 line_header_hash_voidp (const void *item)
2200 {
2201 const struct line_header *ofs = (const struct line_header *) item;
2202
2203 return line_header_hash (ofs);
2204 }
2205
2206 /* Equality function for line_header_hash. */
2207
2208 static int
2209 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2210 {
2211 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2212 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2213
2214 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2215 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2216 }
2217
2218 \f
2219
2220 /* Read the given attribute value as an address, taking the attribute's
2221 form into account. */
2222
2223 static CORE_ADDR
2224 attr_value_as_address (struct attribute *attr)
2225 {
2226 CORE_ADDR addr;
2227
2228 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2229 {
2230 /* Aside from a few clearly defined exceptions, attributes that
2231 contain an address must always be in DW_FORM_addr form.
2232 Unfortunately, some compilers happen to be violating this
2233 requirement by encoding addresses using other forms, such
2234 as DW_FORM_data4 for example. For those broken compilers,
2235 we try to do our best, without any guarantee of success,
2236 to interpret the address correctly. It would also be nice
2237 to generate a complaint, but that would require us to maintain
2238 a list of legitimate cases where a non-address form is allowed,
2239 as well as update callers to pass in at least the CU's DWARF
2240 version. This is more overhead than what we're willing to
2241 expand for a pretty rare case. */
2242 addr = DW_UNSND (attr);
2243 }
2244 else
2245 addr = DW_ADDR (attr);
2246
2247 return addr;
2248 }
2249
2250 /* The suffix for an index file. */
2251 #define INDEX_SUFFIX ".gdb-index"
2252
2253 /* See declaration. */
2254
2255 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2256 const dwarf2_debug_sections *names)
2257 : objfile (objfile_)
2258 {
2259 if (names == NULL)
2260 names = &dwarf2_elf_names;
2261
2262 bfd *obfd = objfile->obfd;
2263
2264 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2265 locate_sections (obfd, sec, *names);
2266 }
2267
2268 dwarf2_per_objfile::~dwarf2_per_objfile ()
2269 {
2270 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2271 free_cached_comp_units ();
2272
2273 if (quick_file_names_table)
2274 htab_delete (quick_file_names_table);
2275
2276 if (line_header_hash)
2277 htab_delete (line_header_hash);
2278
2279 /* Everything else should be on the objfile obstack. */
2280 }
2281
2282 /* See declaration. */
2283
2284 void
2285 dwarf2_per_objfile::free_cached_comp_units ()
2286 {
2287 dwarf2_per_cu_data *per_cu = read_in_chain;
2288 dwarf2_per_cu_data **last_chain = &read_in_chain;
2289 while (per_cu != NULL)
2290 {
2291 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2292
2293 free_heap_comp_unit (per_cu->cu);
2294 *last_chain = next_cu;
2295 per_cu = next_cu;
2296 }
2297 }
2298
2299 /* Try to locate the sections we need for DWARF 2 debugging
2300 information and return true if we have enough to do something.
2301 NAMES points to the dwarf2 section names, or is NULL if the standard
2302 ELF names are used. */
2303
2304 int
2305 dwarf2_has_info (struct objfile *objfile,
2306 const struct dwarf2_debug_sections *names)
2307 {
2308 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2309 objfile_data (objfile, dwarf2_objfile_data_key));
2310 if (!dwarf2_per_objfile)
2311 {
2312 /* Initialize per-objfile state. */
2313 struct dwarf2_per_objfile *data
2314 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2315
2316 dwarf2_per_objfile = new (data) struct dwarf2_per_objfile (objfile, names);
2317 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
2318 }
2319 return (!dwarf2_per_objfile->info.is_virtual
2320 && dwarf2_per_objfile->info.s.section != NULL
2321 && !dwarf2_per_objfile->abbrev.is_virtual
2322 && dwarf2_per_objfile->abbrev.s.section != NULL);
2323 }
2324
2325 /* Return the containing section of virtual section SECTION. */
2326
2327 static struct dwarf2_section_info *
2328 get_containing_section (const struct dwarf2_section_info *section)
2329 {
2330 gdb_assert (section->is_virtual);
2331 return section->s.containing_section;
2332 }
2333
2334 /* Return the bfd owner of SECTION. */
2335
2336 static struct bfd *
2337 get_section_bfd_owner (const struct dwarf2_section_info *section)
2338 {
2339 if (section->is_virtual)
2340 {
2341 section = get_containing_section (section);
2342 gdb_assert (!section->is_virtual);
2343 }
2344 return section->s.section->owner;
2345 }
2346
2347 /* Return the bfd section of SECTION.
2348 Returns NULL if the section is not present. */
2349
2350 static asection *
2351 get_section_bfd_section (const struct dwarf2_section_info *section)
2352 {
2353 if (section->is_virtual)
2354 {
2355 section = get_containing_section (section);
2356 gdb_assert (!section->is_virtual);
2357 }
2358 return section->s.section;
2359 }
2360
2361 /* Return the name of SECTION. */
2362
2363 static const char *
2364 get_section_name (const struct dwarf2_section_info *section)
2365 {
2366 asection *sectp = get_section_bfd_section (section);
2367
2368 gdb_assert (sectp != NULL);
2369 return bfd_section_name (get_section_bfd_owner (section), sectp);
2370 }
2371
2372 /* Return the name of the file SECTION is in. */
2373
2374 static const char *
2375 get_section_file_name (const struct dwarf2_section_info *section)
2376 {
2377 bfd *abfd = get_section_bfd_owner (section);
2378
2379 return bfd_get_filename (abfd);
2380 }
2381
2382 /* Return the id of SECTION.
2383 Returns 0 if SECTION doesn't exist. */
2384
2385 static int
2386 get_section_id (const struct dwarf2_section_info *section)
2387 {
2388 asection *sectp = get_section_bfd_section (section);
2389
2390 if (sectp == NULL)
2391 return 0;
2392 return sectp->id;
2393 }
2394
2395 /* Return the flags of SECTION.
2396 SECTION (or containing section if this is a virtual section) must exist. */
2397
2398 static int
2399 get_section_flags (const struct dwarf2_section_info *section)
2400 {
2401 asection *sectp = get_section_bfd_section (section);
2402
2403 gdb_assert (sectp != NULL);
2404 return bfd_get_section_flags (sectp->owner, sectp);
2405 }
2406
2407 /* When loading sections, we look either for uncompressed section or for
2408 compressed section names. */
2409
2410 static int
2411 section_is_p (const char *section_name,
2412 const struct dwarf2_section_names *names)
2413 {
2414 if (names->normal != NULL
2415 && strcmp (section_name, names->normal) == 0)
2416 return 1;
2417 if (names->compressed != NULL
2418 && strcmp (section_name, names->compressed) == 0)
2419 return 1;
2420 return 0;
2421 }
2422
2423 /* See declaration. */
2424
2425 void
2426 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2427 const dwarf2_debug_sections &names)
2428 {
2429 flagword aflag = bfd_get_section_flags (abfd, sectp);
2430
2431 if ((aflag & SEC_HAS_CONTENTS) == 0)
2432 {
2433 }
2434 else if (section_is_p (sectp->name, &names.info))
2435 {
2436 this->info.s.section = sectp;
2437 this->info.size = bfd_get_section_size (sectp);
2438 }
2439 else if (section_is_p (sectp->name, &names.abbrev))
2440 {
2441 this->abbrev.s.section = sectp;
2442 this->abbrev.size = bfd_get_section_size (sectp);
2443 }
2444 else if (section_is_p (sectp->name, &names.line))
2445 {
2446 this->line.s.section = sectp;
2447 this->line.size = bfd_get_section_size (sectp);
2448 }
2449 else if (section_is_p (sectp->name, &names.loc))
2450 {
2451 this->loc.s.section = sectp;
2452 this->loc.size = bfd_get_section_size (sectp);
2453 }
2454 else if (section_is_p (sectp->name, &names.loclists))
2455 {
2456 this->loclists.s.section = sectp;
2457 this->loclists.size = bfd_get_section_size (sectp);
2458 }
2459 else if (section_is_p (sectp->name, &names.macinfo))
2460 {
2461 this->macinfo.s.section = sectp;
2462 this->macinfo.size = bfd_get_section_size (sectp);
2463 }
2464 else if (section_is_p (sectp->name, &names.macro))
2465 {
2466 this->macro.s.section = sectp;
2467 this->macro.size = bfd_get_section_size (sectp);
2468 }
2469 else if (section_is_p (sectp->name, &names.str))
2470 {
2471 this->str.s.section = sectp;
2472 this->str.size = bfd_get_section_size (sectp);
2473 }
2474 else if (section_is_p (sectp->name, &names.line_str))
2475 {
2476 this->line_str.s.section = sectp;
2477 this->line_str.size = bfd_get_section_size (sectp);
2478 }
2479 else if (section_is_p (sectp->name, &names.addr))
2480 {
2481 this->addr.s.section = sectp;
2482 this->addr.size = bfd_get_section_size (sectp);
2483 }
2484 else if (section_is_p (sectp->name, &names.frame))
2485 {
2486 this->frame.s.section = sectp;
2487 this->frame.size = bfd_get_section_size (sectp);
2488 }
2489 else if (section_is_p (sectp->name, &names.eh_frame))
2490 {
2491 this->eh_frame.s.section = sectp;
2492 this->eh_frame.size = bfd_get_section_size (sectp);
2493 }
2494 else if (section_is_p (sectp->name, &names.ranges))
2495 {
2496 this->ranges.s.section = sectp;
2497 this->ranges.size = bfd_get_section_size (sectp);
2498 }
2499 else if (section_is_p (sectp->name, &names.rnglists))
2500 {
2501 this->rnglists.s.section = sectp;
2502 this->rnglists.size = bfd_get_section_size (sectp);
2503 }
2504 else if (section_is_p (sectp->name, &names.types))
2505 {
2506 struct dwarf2_section_info type_section;
2507
2508 memset (&type_section, 0, sizeof (type_section));
2509 type_section.s.section = sectp;
2510 type_section.size = bfd_get_section_size (sectp);
2511
2512 VEC_safe_push (dwarf2_section_info_def, this->types,
2513 &type_section);
2514 }
2515 else if (section_is_p (sectp->name, &names.gdb_index))
2516 {
2517 this->gdb_index.s.section = sectp;
2518 this->gdb_index.size = bfd_get_section_size (sectp);
2519 }
2520
2521 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2522 && bfd_section_vma (abfd, sectp) == 0)
2523 this->has_section_at_zero = true;
2524 }
2525
2526 /* A helper function that decides whether a section is empty,
2527 or not present. */
2528
2529 static int
2530 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2531 {
2532 if (section->is_virtual)
2533 return section->size == 0;
2534 return section->s.section == NULL || section->size == 0;
2535 }
2536
2537 /* Read the contents of the section INFO.
2538 OBJFILE is the main object file, but not necessarily the file where
2539 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2540 of the DWO file.
2541 If the section is compressed, uncompress it before returning. */
2542
2543 static void
2544 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2545 {
2546 asection *sectp;
2547 bfd *abfd;
2548 gdb_byte *buf, *retbuf;
2549
2550 if (info->readin)
2551 return;
2552 info->buffer = NULL;
2553 info->readin = 1;
2554
2555 if (dwarf2_section_empty_p (info))
2556 return;
2557
2558 sectp = get_section_bfd_section (info);
2559
2560 /* If this is a virtual section we need to read in the real one first. */
2561 if (info->is_virtual)
2562 {
2563 struct dwarf2_section_info *containing_section =
2564 get_containing_section (info);
2565
2566 gdb_assert (sectp != NULL);
2567 if ((sectp->flags & SEC_RELOC) != 0)
2568 {
2569 error (_("Dwarf Error: DWP format V2 with relocations is not"
2570 " supported in section %s [in module %s]"),
2571 get_section_name (info), get_section_file_name (info));
2572 }
2573 dwarf2_read_section (objfile, containing_section);
2574 /* Other code should have already caught virtual sections that don't
2575 fit. */
2576 gdb_assert (info->virtual_offset + info->size
2577 <= containing_section->size);
2578 /* If the real section is empty or there was a problem reading the
2579 section we shouldn't get here. */
2580 gdb_assert (containing_section->buffer != NULL);
2581 info->buffer = containing_section->buffer + info->virtual_offset;
2582 return;
2583 }
2584
2585 /* If the section has relocations, we must read it ourselves.
2586 Otherwise we attach it to the BFD. */
2587 if ((sectp->flags & SEC_RELOC) == 0)
2588 {
2589 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2590 return;
2591 }
2592
2593 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2594 info->buffer = buf;
2595
2596 /* When debugging .o files, we may need to apply relocations; see
2597 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2598 We never compress sections in .o files, so we only need to
2599 try this when the section is not compressed. */
2600 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2601 if (retbuf != NULL)
2602 {
2603 info->buffer = retbuf;
2604 return;
2605 }
2606
2607 abfd = get_section_bfd_owner (info);
2608 gdb_assert (abfd != NULL);
2609
2610 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2611 || bfd_bread (buf, info->size, abfd) != info->size)
2612 {
2613 error (_("Dwarf Error: Can't read DWARF data"
2614 " in section %s [in module %s]"),
2615 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2616 }
2617 }
2618
2619 /* A helper function that returns the size of a section in a safe way.
2620 If you are positive that the section has been read before using the
2621 size, then it is safe to refer to the dwarf2_section_info object's
2622 "size" field directly. In other cases, you must call this
2623 function, because for compressed sections the size field is not set
2624 correctly until the section has been read. */
2625
2626 static bfd_size_type
2627 dwarf2_section_size (struct objfile *objfile,
2628 struct dwarf2_section_info *info)
2629 {
2630 if (!info->readin)
2631 dwarf2_read_section (objfile, info);
2632 return info->size;
2633 }
2634
2635 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2636 SECTION_NAME. */
2637
2638 void
2639 dwarf2_get_section_info (struct objfile *objfile,
2640 enum dwarf2_section_enum sect,
2641 asection **sectp, const gdb_byte **bufp,
2642 bfd_size_type *sizep)
2643 {
2644 struct dwarf2_per_objfile *data
2645 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2646 dwarf2_objfile_data_key);
2647 struct dwarf2_section_info *info;
2648
2649 /* We may see an objfile without any DWARF, in which case we just
2650 return nothing. */
2651 if (data == NULL)
2652 {
2653 *sectp = NULL;
2654 *bufp = NULL;
2655 *sizep = 0;
2656 return;
2657 }
2658 switch (sect)
2659 {
2660 case DWARF2_DEBUG_FRAME:
2661 info = &data->frame;
2662 break;
2663 case DWARF2_EH_FRAME:
2664 info = &data->eh_frame;
2665 break;
2666 default:
2667 gdb_assert_not_reached ("unexpected section");
2668 }
2669
2670 dwarf2_read_section (objfile, info);
2671
2672 *sectp = get_section_bfd_section (info);
2673 *bufp = info->buffer;
2674 *sizep = info->size;
2675 }
2676
2677 /* A helper function to find the sections for a .dwz file. */
2678
2679 static void
2680 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2681 {
2682 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2683
2684 /* Note that we only support the standard ELF names, because .dwz
2685 is ELF-only (at the time of writing). */
2686 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2687 {
2688 dwz_file->abbrev.s.section = sectp;
2689 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2690 }
2691 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2692 {
2693 dwz_file->info.s.section = sectp;
2694 dwz_file->info.size = bfd_get_section_size (sectp);
2695 }
2696 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2697 {
2698 dwz_file->str.s.section = sectp;
2699 dwz_file->str.size = bfd_get_section_size (sectp);
2700 }
2701 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2702 {
2703 dwz_file->line.s.section = sectp;
2704 dwz_file->line.size = bfd_get_section_size (sectp);
2705 }
2706 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2707 {
2708 dwz_file->macro.s.section = sectp;
2709 dwz_file->macro.size = bfd_get_section_size (sectp);
2710 }
2711 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2712 {
2713 dwz_file->gdb_index.s.section = sectp;
2714 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2715 }
2716 }
2717
2718 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2719 there is no .gnu_debugaltlink section in the file. Error if there
2720 is such a section but the file cannot be found. */
2721
2722 static struct dwz_file *
2723 dwarf2_get_dwz_file (void)
2724 {
2725 const char *filename;
2726 struct dwz_file *result;
2727 bfd_size_type buildid_len_arg;
2728 size_t buildid_len;
2729 bfd_byte *buildid;
2730
2731 if (dwarf2_per_objfile->dwz_file != NULL)
2732 return dwarf2_per_objfile->dwz_file;
2733
2734 bfd_set_error (bfd_error_no_error);
2735 gdb::unique_xmalloc_ptr<char> data
2736 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2737 &buildid_len_arg, &buildid));
2738 if (data == NULL)
2739 {
2740 if (bfd_get_error () == bfd_error_no_error)
2741 return NULL;
2742 error (_("could not read '.gnu_debugaltlink' section: %s"),
2743 bfd_errmsg (bfd_get_error ()));
2744 }
2745
2746 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2747
2748 buildid_len = (size_t) buildid_len_arg;
2749
2750 filename = data.get ();
2751
2752 std::string abs_storage;
2753 if (!IS_ABSOLUTE_PATH (filename))
2754 {
2755 gdb::unique_xmalloc_ptr<char> abs
2756 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2757
2758 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2759 filename = abs_storage.c_str ();
2760 }
2761
2762 /* First try the file name given in the section. If that doesn't
2763 work, try to use the build-id instead. */
2764 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2765 if (dwz_bfd != NULL)
2766 {
2767 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2768 dwz_bfd.release ();
2769 }
2770
2771 if (dwz_bfd == NULL)
2772 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2773
2774 if (dwz_bfd == NULL)
2775 error (_("could not find '.gnu_debugaltlink' file for %s"),
2776 objfile_name (dwarf2_per_objfile->objfile));
2777
2778 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2779 struct dwz_file);
2780 result->dwz_bfd = dwz_bfd.release ();
2781
2782 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2783
2784 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2785 dwarf2_per_objfile->dwz_file = result;
2786 return result;
2787 }
2788 \f
2789 /* DWARF quick_symbols_functions support. */
2790
2791 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2792 unique line tables, so we maintain a separate table of all .debug_line
2793 derived entries to support the sharing.
2794 All the quick functions need is the list of file names. We discard the
2795 line_header when we're done and don't need to record it here. */
2796 struct quick_file_names
2797 {
2798 /* The data used to construct the hash key. */
2799 struct stmt_list_hash hash;
2800
2801 /* The number of entries in file_names, real_names. */
2802 unsigned int num_file_names;
2803
2804 /* The file names from the line table, after being run through
2805 file_full_name. */
2806 const char **file_names;
2807
2808 /* The file names from the line table after being run through
2809 gdb_realpath. These are computed lazily. */
2810 const char **real_names;
2811 };
2812
2813 /* When using the index (and thus not using psymtabs), each CU has an
2814 object of this type. This is used to hold information needed by
2815 the various "quick" methods. */
2816 struct dwarf2_per_cu_quick_data
2817 {
2818 /* The file table. This can be NULL if there was no file table
2819 or it's currently not read in.
2820 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2821 struct quick_file_names *file_names;
2822
2823 /* The corresponding symbol table. This is NULL if symbols for this
2824 CU have not yet been read. */
2825 struct compunit_symtab *compunit_symtab;
2826
2827 /* A temporary mark bit used when iterating over all CUs in
2828 expand_symtabs_matching. */
2829 unsigned int mark : 1;
2830
2831 /* True if we've tried to read the file table and found there isn't one.
2832 There will be no point in trying to read it again next time. */
2833 unsigned int no_file_data : 1;
2834 };
2835
2836 /* Utility hash function for a stmt_list_hash. */
2837
2838 static hashval_t
2839 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2840 {
2841 hashval_t v = 0;
2842
2843 if (stmt_list_hash->dwo_unit != NULL)
2844 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2845 v += to_underlying (stmt_list_hash->line_sect_off);
2846 return v;
2847 }
2848
2849 /* Utility equality function for a stmt_list_hash. */
2850
2851 static int
2852 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2853 const struct stmt_list_hash *rhs)
2854 {
2855 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2856 return 0;
2857 if (lhs->dwo_unit != NULL
2858 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2859 return 0;
2860
2861 return lhs->line_sect_off == rhs->line_sect_off;
2862 }
2863
2864 /* Hash function for a quick_file_names. */
2865
2866 static hashval_t
2867 hash_file_name_entry (const void *e)
2868 {
2869 const struct quick_file_names *file_data
2870 = (const struct quick_file_names *) e;
2871
2872 return hash_stmt_list_entry (&file_data->hash);
2873 }
2874
2875 /* Equality function for a quick_file_names. */
2876
2877 static int
2878 eq_file_name_entry (const void *a, const void *b)
2879 {
2880 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2881 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2882
2883 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2884 }
2885
2886 /* Delete function for a quick_file_names. */
2887
2888 static void
2889 delete_file_name_entry (void *e)
2890 {
2891 struct quick_file_names *file_data = (struct quick_file_names *) e;
2892 int i;
2893
2894 for (i = 0; i < file_data->num_file_names; ++i)
2895 {
2896 xfree ((void*) file_data->file_names[i]);
2897 if (file_data->real_names)
2898 xfree ((void*) file_data->real_names[i]);
2899 }
2900
2901 /* The space for the struct itself lives on objfile_obstack,
2902 so we don't free it here. */
2903 }
2904
2905 /* Create a quick_file_names hash table. */
2906
2907 static htab_t
2908 create_quick_file_names_table (unsigned int nr_initial_entries)
2909 {
2910 return htab_create_alloc (nr_initial_entries,
2911 hash_file_name_entry, eq_file_name_entry,
2912 delete_file_name_entry, xcalloc, xfree);
2913 }
2914
2915 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2916 have to be created afterwards. You should call age_cached_comp_units after
2917 processing PER_CU->CU. dw2_setup must have been already called. */
2918
2919 static void
2920 load_cu (struct dwarf2_per_cu_data *per_cu)
2921 {
2922 if (per_cu->is_debug_types)
2923 load_full_type_unit (per_cu);
2924 else
2925 load_full_comp_unit (per_cu, language_minimal);
2926
2927 if (per_cu->cu == NULL)
2928 return; /* Dummy CU. */
2929
2930 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2931 }
2932
2933 /* Read in the symbols for PER_CU. */
2934
2935 static void
2936 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2937 {
2938 struct cleanup *back_to;
2939
2940 /* Skip type_unit_groups, reading the type units they contain
2941 is handled elsewhere. */
2942 if (IS_TYPE_UNIT_GROUP (per_cu))
2943 return;
2944
2945 back_to = make_cleanup (dwarf2_release_queue, NULL);
2946
2947 if (dwarf2_per_objfile->using_index
2948 ? per_cu->v.quick->compunit_symtab == NULL
2949 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2950 {
2951 queue_comp_unit (per_cu, language_minimal);
2952 load_cu (per_cu);
2953
2954 /* If we just loaded a CU from a DWO, and we're working with an index
2955 that may badly handle TUs, load all the TUs in that DWO as well.
2956 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2957 if (!per_cu->is_debug_types
2958 && per_cu->cu != NULL
2959 && per_cu->cu->dwo_unit != NULL
2960 && dwarf2_per_objfile->index_table != NULL
2961 && dwarf2_per_objfile->index_table->version <= 7
2962 /* DWP files aren't supported yet. */
2963 && get_dwp_file () == NULL)
2964 queue_and_load_all_dwo_tus (per_cu);
2965 }
2966
2967 process_queue ();
2968
2969 /* Age the cache, releasing compilation units that have not
2970 been used recently. */
2971 age_cached_comp_units ();
2972
2973 do_cleanups (back_to);
2974 }
2975
2976 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2977 the objfile from which this CU came. Returns the resulting symbol
2978 table. */
2979
2980 static struct compunit_symtab *
2981 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2982 {
2983 gdb_assert (dwarf2_per_objfile->using_index);
2984 if (!per_cu->v.quick->compunit_symtab)
2985 {
2986 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2987 scoped_restore decrementer = increment_reading_symtab ();
2988 dw2_do_instantiate_symtab (per_cu);
2989 process_cu_includes ();
2990 do_cleanups (back_to);
2991 }
2992
2993 return per_cu->v.quick->compunit_symtab;
2994 }
2995
2996 /* Return the CU/TU given its index.
2997
2998 This is intended for loops like:
2999
3000 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3001 + dwarf2_per_objfile->n_type_units); ++i)
3002 {
3003 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3004
3005 ...;
3006 }
3007 */
3008
3009 static struct dwarf2_per_cu_data *
3010 dw2_get_cutu (int index)
3011 {
3012 if (index >= dwarf2_per_objfile->n_comp_units)
3013 {
3014 index -= dwarf2_per_objfile->n_comp_units;
3015 gdb_assert (index < dwarf2_per_objfile->n_type_units);
3016 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
3017 }
3018
3019 return dwarf2_per_objfile->all_comp_units[index];
3020 }
3021
3022 /* Return the CU given its index.
3023 This differs from dw2_get_cutu in that it's for when you know INDEX
3024 refers to a CU. */
3025
3026 static struct dwarf2_per_cu_data *
3027 dw2_get_cu (int index)
3028 {
3029 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
3030
3031 return dwarf2_per_objfile->all_comp_units[index];
3032 }
3033
3034 /* A helper for create_cus_from_index that handles a given list of
3035 CUs. */
3036
3037 static void
3038 create_cus_from_index_list (struct objfile *objfile,
3039 const gdb_byte *cu_list, offset_type n_elements,
3040 struct dwarf2_section_info *section,
3041 int is_dwz,
3042 int base_offset)
3043 {
3044 offset_type i;
3045
3046 for (i = 0; i < n_elements; i += 2)
3047 {
3048 gdb_static_assert (sizeof (ULONGEST) >= 8);
3049
3050 sect_offset sect_off
3051 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3052 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3053 cu_list += 2 * 8;
3054
3055 dwarf2_per_cu_data *the_cu
3056 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3057 struct dwarf2_per_cu_data);
3058 the_cu->sect_off = sect_off;
3059 the_cu->length = length;
3060 the_cu->objfile = objfile;
3061 the_cu->section = section;
3062 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3063 struct dwarf2_per_cu_quick_data);
3064 the_cu->is_dwz = is_dwz;
3065 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
3066 }
3067 }
3068
3069 /* Read the CU list from the mapped index, and use it to create all
3070 the CU objects for this objfile. */
3071
3072 static void
3073 create_cus_from_index (struct objfile *objfile,
3074 const gdb_byte *cu_list, offset_type cu_list_elements,
3075 const gdb_byte *dwz_list, offset_type dwz_elements)
3076 {
3077 struct dwz_file *dwz;
3078
3079 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
3080 dwarf2_per_objfile->all_comp_units =
3081 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3082 dwarf2_per_objfile->n_comp_units);
3083
3084 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3085 &dwarf2_per_objfile->info, 0, 0);
3086
3087 if (dwz_elements == 0)
3088 return;
3089
3090 dwz = dwarf2_get_dwz_file ();
3091 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3092 cu_list_elements / 2);
3093 }
3094
3095 /* Create the signatured type hash table from the index. */
3096
3097 static void
3098 create_signatured_type_table_from_index (struct objfile *objfile,
3099 struct dwarf2_section_info *section,
3100 const gdb_byte *bytes,
3101 offset_type elements)
3102 {
3103 offset_type i;
3104 htab_t sig_types_hash;
3105
3106 dwarf2_per_objfile->n_type_units
3107 = dwarf2_per_objfile->n_allocated_type_units
3108 = elements / 3;
3109 dwarf2_per_objfile->all_type_units =
3110 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3111
3112 sig_types_hash = allocate_signatured_type_table (objfile);
3113
3114 for (i = 0; i < elements; i += 3)
3115 {
3116 struct signatured_type *sig_type;
3117 ULONGEST signature;
3118 void **slot;
3119 cu_offset type_offset_in_tu;
3120
3121 gdb_static_assert (sizeof (ULONGEST) >= 8);
3122 sect_offset sect_off
3123 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3124 type_offset_in_tu
3125 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3126 BFD_ENDIAN_LITTLE);
3127 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3128 bytes += 3 * 8;
3129
3130 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3131 struct signatured_type);
3132 sig_type->signature = signature;
3133 sig_type->type_offset_in_tu = type_offset_in_tu;
3134 sig_type->per_cu.is_debug_types = 1;
3135 sig_type->per_cu.section = section;
3136 sig_type->per_cu.sect_off = sect_off;
3137 sig_type->per_cu.objfile = objfile;
3138 sig_type->per_cu.v.quick
3139 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3140 struct dwarf2_per_cu_quick_data);
3141
3142 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3143 *slot = sig_type;
3144
3145 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3146 }
3147
3148 dwarf2_per_objfile->signatured_types = sig_types_hash;
3149 }
3150
3151 /* Read the address map data from the mapped index, and use it to
3152 populate the objfile's psymtabs_addrmap. */
3153
3154 static void
3155 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
3156 {
3157 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3158 const gdb_byte *iter, *end;
3159 struct addrmap *mutable_map;
3160 CORE_ADDR baseaddr;
3161
3162 auto_obstack temp_obstack;
3163
3164 mutable_map = addrmap_create_mutable (&temp_obstack);
3165
3166 iter = index->address_table;
3167 end = iter + index->address_table_size;
3168
3169 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3170
3171 while (iter < end)
3172 {
3173 ULONGEST hi, lo, cu_index;
3174 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3175 iter += 8;
3176 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3177 iter += 8;
3178 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3179 iter += 4;
3180
3181 if (lo > hi)
3182 {
3183 complaint (&symfile_complaints,
3184 _(".gdb_index address table has invalid range (%s - %s)"),
3185 hex_string (lo), hex_string (hi));
3186 continue;
3187 }
3188
3189 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3190 {
3191 complaint (&symfile_complaints,
3192 _(".gdb_index address table has invalid CU number %u"),
3193 (unsigned) cu_index);
3194 continue;
3195 }
3196
3197 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3198 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3199 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
3200 }
3201
3202 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3203 &objfile->objfile_obstack);
3204 }
3205
3206 /* The hash function for strings in the mapped index. This is the same as
3207 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3208 implementation. This is necessary because the hash function is tied to the
3209 format of the mapped index file. The hash values do not have to match with
3210 SYMBOL_HASH_NEXT.
3211
3212 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3213
3214 static hashval_t
3215 mapped_index_string_hash (int index_version, const void *p)
3216 {
3217 const unsigned char *str = (const unsigned char *) p;
3218 hashval_t r = 0;
3219 unsigned char c;
3220
3221 while ((c = *str++) != 0)
3222 {
3223 if (index_version >= 5)
3224 c = tolower (c);
3225 r = r * 67 + c - 113;
3226 }
3227
3228 return r;
3229 }
3230
3231 /* Find a slot in the mapped index INDEX for the object named NAME.
3232 If NAME is found, set *VEC_OUT to point to the CU vector in the
3233 constant pool and return true. If NAME cannot be found, return
3234 false. */
3235
3236 static bool
3237 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3238 offset_type **vec_out)
3239 {
3240 offset_type hash;
3241 offset_type slot, step;
3242 int (*cmp) (const char *, const char *);
3243
3244 gdb::unique_xmalloc_ptr<char> without_params;
3245 if (current_language->la_language == language_cplus
3246 || current_language->la_language == language_fortran
3247 || current_language->la_language == language_d)
3248 {
3249 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3250 not contain any. */
3251
3252 if (strchr (name, '(') != NULL)
3253 {
3254 without_params = cp_remove_params (name);
3255
3256 if (without_params != NULL)
3257 name = without_params.get ();
3258 }
3259 }
3260
3261 /* Index version 4 did not support case insensitive searches. But the
3262 indices for case insensitive languages are built in lowercase, therefore
3263 simulate our NAME being searched is also lowercased. */
3264 hash = mapped_index_string_hash ((index->version == 4
3265 && case_sensitivity == case_sensitive_off
3266 ? 5 : index->version),
3267 name);
3268
3269 slot = hash & (index->symbol_table_slots - 1);
3270 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3271 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3272
3273 for (;;)
3274 {
3275 /* Convert a slot number to an offset into the table. */
3276 offset_type i = 2 * slot;
3277 const char *str;
3278 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3279 return false;
3280
3281 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3282 if (!cmp (name, str))
3283 {
3284 *vec_out = (offset_type *) (index->constant_pool
3285 + MAYBE_SWAP (index->symbol_table[i + 1]));
3286 return true;
3287 }
3288
3289 slot = (slot + step) & (index->symbol_table_slots - 1);
3290 }
3291 }
3292
3293 /* A helper function that reads the .gdb_index from SECTION and fills
3294 in MAP. FILENAME is the name of the file containing the section;
3295 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3296 ok to use deprecated sections.
3297
3298 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3299 out parameters that are filled in with information about the CU and
3300 TU lists in the section.
3301
3302 Returns 1 if all went well, 0 otherwise. */
3303
3304 static int
3305 read_index_from_section (struct objfile *objfile,
3306 const char *filename,
3307 int deprecated_ok,
3308 struct dwarf2_section_info *section,
3309 struct mapped_index *map,
3310 const gdb_byte **cu_list,
3311 offset_type *cu_list_elements,
3312 const gdb_byte **types_list,
3313 offset_type *types_list_elements)
3314 {
3315 const gdb_byte *addr;
3316 offset_type version;
3317 offset_type *metadata;
3318 int i;
3319
3320 if (dwarf2_section_empty_p (section))
3321 return 0;
3322
3323 /* Older elfutils strip versions could keep the section in the main
3324 executable while splitting it for the separate debug info file. */
3325 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3326 return 0;
3327
3328 dwarf2_read_section (objfile, section);
3329
3330 addr = section->buffer;
3331 /* Version check. */
3332 version = MAYBE_SWAP (*(offset_type *) addr);
3333 /* Versions earlier than 3 emitted every copy of a psymbol. This
3334 causes the index to behave very poorly for certain requests. Version 3
3335 contained incomplete addrmap. So, it seems better to just ignore such
3336 indices. */
3337 if (version < 4)
3338 {
3339 static int warning_printed = 0;
3340 if (!warning_printed)
3341 {
3342 warning (_("Skipping obsolete .gdb_index section in %s."),
3343 filename);
3344 warning_printed = 1;
3345 }
3346 return 0;
3347 }
3348 /* Index version 4 uses a different hash function than index version
3349 5 and later.
3350
3351 Versions earlier than 6 did not emit psymbols for inlined
3352 functions. Using these files will cause GDB not to be able to
3353 set breakpoints on inlined functions by name, so we ignore these
3354 indices unless the user has done
3355 "set use-deprecated-index-sections on". */
3356 if (version < 6 && !deprecated_ok)
3357 {
3358 static int warning_printed = 0;
3359 if (!warning_printed)
3360 {
3361 warning (_("\
3362 Skipping deprecated .gdb_index section in %s.\n\
3363 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3364 to use the section anyway."),
3365 filename);
3366 warning_printed = 1;
3367 }
3368 return 0;
3369 }
3370 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3371 of the TU (for symbols coming from TUs),
3372 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3373 Plus gold-generated indices can have duplicate entries for global symbols,
3374 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3375 These are just performance bugs, and we can't distinguish gdb-generated
3376 indices from gold-generated ones, so issue no warning here. */
3377
3378 /* Indexes with higher version than the one supported by GDB may be no
3379 longer backward compatible. */
3380 if (version > 8)
3381 return 0;
3382
3383 map->version = version;
3384 map->total_size = section->size;
3385
3386 metadata = (offset_type *) (addr + sizeof (offset_type));
3387
3388 i = 0;
3389 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3390 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3391 / 8);
3392 ++i;
3393
3394 *types_list = addr + MAYBE_SWAP (metadata[i]);
3395 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3396 - MAYBE_SWAP (metadata[i]))
3397 / 8);
3398 ++i;
3399
3400 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3401 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3402 - MAYBE_SWAP (metadata[i]));
3403 ++i;
3404
3405 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3406 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3407 - MAYBE_SWAP (metadata[i]))
3408 / (2 * sizeof (offset_type)));
3409 ++i;
3410
3411 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3412
3413 return 1;
3414 }
3415
3416
3417 /* Read the index file. If everything went ok, initialize the "quick"
3418 elements of all the CUs and return 1. Otherwise, return 0. */
3419
3420 static int
3421 dwarf2_read_index (struct objfile *objfile)
3422 {
3423 struct mapped_index local_map, *map;
3424 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3425 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3426 struct dwz_file *dwz;
3427
3428 if (!read_index_from_section (objfile, objfile_name (objfile),
3429 use_deprecated_index_sections,
3430 &dwarf2_per_objfile->gdb_index, &local_map,
3431 &cu_list, &cu_list_elements,
3432 &types_list, &types_list_elements))
3433 return 0;
3434
3435 /* Don't use the index if it's empty. */
3436 if (local_map.symbol_table_slots == 0)
3437 return 0;
3438
3439 /* If there is a .dwz file, read it so we can get its CU list as
3440 well. */
3441 dwz = dwarf2_get_dwz_file ();
3442 if (dwz != NULL)
3443 {
3444 struct mapped_index dwz_map;
3445 const gdb_byte *dwz_types_ignore;
3446 offset_type dwz_types_elements_ignore;
3447
3448 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3449 1,
3450 &dwz->gdb_index, &dwz_map,
3451 &dwz_list, &dwz_list_elements,
3452 &dwz_types_ignore,
3453 &dwz_types_elements_ignore))
3454 {
3455 warning (_("could not read '.gdb_index' section from %s; skipping"),
3456 bfd_get_filename (dwz->dwz_bfd));
3457 return 0;
3458 }
3459 }
3460
3461 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3462 dwz_list_elements);
3463
3464 if (types_list_elements)
3465 {
3466 struct dwarf2_section_info *section;
3467
3468 /* We can only handle a single .debug_types when we have an
3469 index. */
3470 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3471 return 0;
3472
3473 section = VEC_index (dwarf2_section_info_def,
3474 dwarf2_per_objfile->types, 0);
3475
3476 create_signatured_type_table_from_index (objfile, section, types_list,
3477 types_list_elements);
3478 }
3479
3480 create_addrmap_from_index (objfile, &local_map);
3481
3482 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3483 map = new (map) mapped_index ();
3484 *map = local_map;
3485
3486 dwarf2_per_objfile->index_table = map;
3487 dwarf2_per_objfile->using_index = 1;
3488 dwarf2_per_objfile->quick_file_names_table =
3489 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3490
3491 return 1;
3492 }
3493
3494 /* A helper for the "quick" functions which sets the global
3495 dwarf2_per_objfile according to OBJFILE. */
3496
3497 static void
3498 dw2_setup (struct objfile *objfile)
3499 {
3500 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3501 objfile_data (objfile, dwarf2_objfile_data_key));
3502 gdb_assert (dwarf2_per_objfile);
3503 }
3504
3505 /* die_reader_func for dw2_get_file_names. */
3506
3507 static void
3508 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3509 const gdb_byte *info_ptr,
3510 struct die_info *comp_unit_die,
3511 int has_children,
3512 void *data)
3513 {
3514 struct dwarf2_cu *cu = reader->cu;
3515 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3516 struct objfile *objfile = dwarf2_per_objfile->objfile;
3517 struct dwarf2_per_cu_data *lh_cu;
3518 struct attribute *attr;
3519 int i;
3520 void **slot;
3521 struct quick_file_names *qfn;
3522
3523 gdb_assert (! this_cu->is_debug_types);
3524
3525 /* Our callers never want to match partial units -- instead they
3526 will match the enclosing full CU. */
3527 if (comp_unit_die->tag == DW_TAG_partial_unit)
3528 {
3529 this_cu->v.quick->no_file_data = 1;
3530 return;
3531 }
3532
3533 lh_cu = this_cu;
3534 slot = NULL;
3535
3536 line_header_up lh;
3537 sect_offset line_offset {};
3538
3539 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3540 if (attr)
3541 {
3542 struct quick_file_names find_entry;
3543
3544 line_offset = (sect_offset) DW_UNSND (attr);
3545
3546 /* We may have already read in this line header (TU line header sharing).
3547 If we have we're done. */
3548 find_entry.hash.dwo_unit = cu->dwo_unit;
3549 find_entry.hash.line_sect_off = line_offset;
3550 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3551 &find_entry, INSERT);
3552 if (*slot != NULL)
3553 {
3554 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3555 return;
3556 }
3557
3558 lh = dwarf_decode_line_header (line_offset, cu);
3559 }
3560 if (lh == NULL)
3561 {
3562 lh_cu->v.quick->no_file_data = 1;
3563 return;
3564 }
3565
3566 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3567 qfn->hash.dwo_unit = cu->dwo_unit;
3568 qfn->hash.line_sect_off = line_offset;
3569 gdb_assert (slot != NULL);
3570 *slot = qfn;
3571
3572 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3573
3574 qfn->num_file_names = lh->file_names.size ();
3575 qfn->file_names =
3576 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3577 for (i = 0; i < lh->file_names.size (); ++i)
3578 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3579 qfn->real_names = NULL;
3580
3581 lh_cu->v.quick->file_names = qfn;
3582 }
3583
3584 /* A helper for the "quick" functions which attempts to read the line
3585 table for THIS_CU. */
3586
3587 static struct quick_file_names *
3588 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3589 {
3590 /* This should never be called for TUs. */
3591 gdb_assert (! this_cu->is_debug_types);
3592 /* Nor type unit groups. */
3593 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3594
3595 if (this_cu->v.quick->file_names != NULL)
3596 return this_cu->v.quick->file_names;
3597 /* If we know there is no line data, no point in looking again. */
3598 if (this_cu->v.quick->no_file_data)
3599 return NULL;
3600
3601 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3602
3603 if (this_cu->v.quick->no_file_data)
3604 return NULL;
3605 return this_cu->v.quick->file_names;
3606 }
3607
3608 /* A helper for the "quick" functions which computes and caches the
3609 real path for a given file name from the line table. */
3610
3611 static const char *
3612 dw2_get_real_path (struct objfile *objfile,
3613 struct quick_file_names *qfn, int index)
3614 {
3615 if (qfn->real_names == NULL)
3616 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3617 qfn->num_file_names, const char *);
3618
3619 if (qfn->real_names[index] == NULL)
3620 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3621
3622 return qfn->real_names[index];
3623 }
3624
3625 static struct symtab *
3626 dw2_find_last_source_symtab (struct objfile *objfile)
3627 {
3628 struct compunit_symtab *cust;
3629 int index;
3630
3631 dw2_setup (objfile);
3632 index = dwarf2_per_objfile->n_comp_units - 1;
3633 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3634 if (cust == NULL)
3635 return NULL;
3636 return compunit_primary_filetab (cust);
3637 }
3638
3639 /* Traversal function for dw2_forget_cached_source_info. */
3640
3641 static int
3642 dw2_free_cached_file_names (void **slot, void *info)
3643 {
3644 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3645
3646 if (file_data->real_names)
3647 {
3648 int i;
3649
3650 for (i = 0; i < file_data->num_file_names; ++i)
3651 {
3652 xfree ((void*) file_data->real_names[i]);
3653 file_data->real_names[i] = NULL;
3654 }
3655 }
3656
3657 return 1;
3658 }
3659
3660 static void
3661 dw2_forget_cached_source_info (struct objfile *objfile)
3662 {
3663 dw2_setup (objfile);
3664
3665 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3666 dw2_free_cached_file_names, NULL);
3667 }
3668
3669 /* Helper function for dw2_map_symtabs_matching_filename that expands
3670 the symtabs and calls the iterator. */
3671
3672 static int
3673 dw2_map_expand_apply (struct objfile *objfile,
3674 struct dwarf2_per_cu_data *per_cu,
3675 const char *name, const char *real_path,
3676 gdb::function_view<bool (symtab *)> callback)
3677 {
3678 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3679
3680 /* Don't visit already-expanded CUs. */
3681 if (per_cu->v.quick->compunit_symtab)
3682 return 0;
3683
3684 /* This may expand more than one symtab, and we want to iterate over
3685 all of them. */
3686 dw2_instantiate_symtab (per_cu);
3687
3688 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3689 last_made, callback);
3690 }
3691
3692 /* Implementation of the map_symtabs_matching_filename method. */
3693
3694 static bool
3695 dw2_map_symtabs_matching_filename
3696 (struct objfile *objfile, const char *name, const char *real_path,
3697 gdb::function_view<bool (symtab *)> callback)
3698 {
3699 int i;
3700 const char *name_basename = lbasename (name);
3701
3702 dw2_setup (objfile);
3703
3704 /* The rule is CUs specify all the files, including those used by
3705 any TU, so there's no need to scan TUs here. */
3706
3707 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3708 {
3709 int j;
3710 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3711 struct quick_file_names *file_data;
3712
3713 /* We only need to look at symtabs not already expanded. */
3714 if (per_cu->v.quick->compunit_symtab)
3715 continue;
3716
3717 file_data = dw2_get_file_names (per_cu);
3718 if (file_data == NULL)
3719 continue;
3720
3721 for (j = 0; j < file_data->num_file_names; ++j)
3722 {
3723 const char *this_name = file_data->file_names[j];
3724 const char *this_real_name;
3725
3726 if (compare_filenames_for_search (this_name, name))
3727 {
3728 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3729 callback))
3730 return true;
3731 continue;
3732 }
3733
3734 /* Before we invoke realpath, which can get expensive when many
3735 files are involved, do a quick comparison of the basenames. */
3736 if (! basenames_may_differ
3737 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3738 continue;
3739
3740 this_real_name = dw2_get_real_path (objfile, file_data, j);
3741 if (compare_filenames_for_search (this_real_name, name))
3742 {
3743 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3744 callback))
3745 return true;
3746 continue;
3747 }
3748
3749 if (real_path != NULL)
3750 {
3751 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3752 gdb_assert (IS_ABSOLUTE_PATH (name));
3753 if (this_real_name != NULL
3754 && FILENAME_CMP (real_path, this_real_name) == 0)
3755 {
3756 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3757 callback))
3758 return true;
3759 continue;
3760 }
3761 }
3762 }
3763 }
3764
3765 return false;
3766 }
3767
3768 /* Struct used to manage iterating over all CUs looking for a symbol. */
3769
3770 struct dw2_symtab_iterator
3771 {
3772 /* The internalized form of .gdb_index. */
3773 struct mapped_index *index;
3774 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3775 int want_specific_block;
3776 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3777 Unused if !WANT_SPECIFIC_BLOCK. */
3778 int block_index;
3779 /* The kind of symbol we're looking for. */
3780 domain_enum domain;
3781 /* The list of CUs from the index entry of the symbol,
3782 or NULL if not found. */
3783 offset_type *vec;
3784 /* The next element in VEC to look at. */
3785 int next;
3786 /* The number of elements in VEC, or zero if there is no match. */
3787 int length;
3788 /* Have we seen a global version of the symbol?
3789 If so we can ignore all further global instances.
3790 This is to work around gold/15646, inefficient gold-generated
3791 indices. */
3792 int global_seen;
3793 };
3794
3795 /* Initialize the index symtab iterator ITER.
3796 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3797 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3798
3799 static void
3800 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3801 struct mapped_index *index,
3802 int want_specific_block,
3803 int block_index,
3804 domain_enum domain,
3805 const char *name)
3806 {
3807 iter->index = index;
3808 iter->want_specific_block = want_specific_block;
3809 iter->block_index = block_index;
3810 iter->domain = domain;
3811 iter->next = 0;
3812 iter->global_seen = 0;
3813
3814 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3815 iter->length = MAYBE_SWAP (*iter->vec);
3816 else
3817 {
3818 iter->vec = NULL;
3819 iter->length = 0;
3820 }
3821 }
3822
3823 /* Return the next matching CU or NULL if there are no more. */
3824
3825 static struct dwarf2_per_cu_data *
3826 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3827 {
3828 for ( ; iter->next < iter->length; ++iter->next)
3829 {
3830 offset_type cu_index_and_attrs =
3831 MAYBE_SWAP (iter->vec[iter->next + 1]);
3832 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3833 struct dwarf2_per_cu_data *per_cu;
3834 int want_static = iter->block_index != GLOBAL_BLOCK;
3835 /* This value is only valid for index versions >= 7. */
3836 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3837 gdb_index_symbol_kind symbol_kind =
3838 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3839 /* Only check the symbol attributes if they're present.
3840 Indices prior to version 7 don't record them,
3841 and indices >= 7 may elide them for certain symbols
3842 (gold does this). */
3843 int attrs_valid =
3844 (iter->index->version >= 7
3845 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3846
3847 /* Don't crash on bad data. */
3848 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3849 + dwarf2_per_objfile->n_type_units))
3850 {
3851 complaint (&symfile_complaints,
3852 _(".gdb_index entry has bad CU index"
3853 " [in module %s]"),
3854 objfile_name (dwarf2_per_objfile->objfile));
3855 continue;
3856 }
3857
3858 per_cu = dw2_get_cutu (cu_index);
3859
3860 /* Skip if already read in. */
3861 if (per_cu->v.quick->compunit_symtab)
3862 continue;
3863
3864 /* Check static vs global. */
3865 if (attrs_valid)
3866 {
3867 if (iter->want_specific_block
3868 && want_static != is_static)
3869 continue;
3870 /* Work around gold/15646. */
3871 if (!is_static && iter->global_seen)
3872 continue;
3873 if (!is_static)
3874 iter->global_seen = 1;
3875 }
3876
3877 /* Only check the symbol's kind if it has one. */
3878 if (attrs_valid)
3879 {
3880 switch (iter->domain)
3881 {
3882 case VAR_DOMAIN:
3883 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3884 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3885 /* Some types are also in VAR_DOMAIN. */
3886 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3887 continue;
3888 break;
3889 case STRUCT_DOMAIN:
3890 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3891 continue;
3892 break;
3893 case LABEL_DOMAIN:
3894 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3895 continue;
3896 break;
3897 default:
3898 break;
3899 }
3900 }
3901
3902 ++iter->next;
3903 return per_cu;
3904 }
3905
3906 return NULL;
3907 }
3908
3909 static struct compunit_symtab *
3910 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3911 const char *name, domain_enum domain)
3912 {
3913 struct compunit_symtab *stab_best = NULL;
3914 struct mapped_index *index;
3915
3916 dw2_setup (objfile);
3917
3918 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3919
3920 index = dwarf2_per_objfile->index_table;
3921
3922 /* index is NULL if OBJF_READNOW. */
3923 if (index)
3924 {
3925 struct dw2_symtab_iterator iter;
3926 struct dwarf2_per_cu_data *per_cu;
3927
3928 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3929
3930 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3931 {
3932 struct symbol *sym, *with_opaque = NULL;
3933 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3934 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3935 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3936
3937 sym = block_find_symbol (block, name, domain,
3938 block_find_non_opaque_type_preferred,
3939 &with_opaque);
3940
3941 /* Some caution must be observed with overloaded functions
3942 and methods, since the index will not contain any overload
3943 information (but NAME might contain it). */
3944
3945 if (sym != NULL
3946 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3947 return stab;
3948 if (with_opaque != NULL
3949 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3950 stab_best = stab;
3951
3952 /* Keep looking through other CUs. */
3953 }
3954 }
3955
3956 return stab_best;
3957 }
3958
3959 static void
3960 dw2_print_stats (struct objfile *objfile)
3961 {
3962 int i, total, count;
3963
3964 dw2_setup (objfile);
3965 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3966 count = 0;
3967 for (i = 0; i < total; ++i)
3968 {
3969 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3970
3971 if (!per_cu->v.quick->compunit_symtab)
3972 ++count;
3973 }
3974 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3975 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3976 }
3977
3978 /* This dumps minimal information about the index.
3979 It is called via "mt print objfiles".
3980 One use is to verify .gdb_index has been loaded by the
3981 gdb.dwarf2/gdb-index.exp testcase. */
3982
3983 static void
3984 dw2_dump (struct objfile *objfile)
3985 {
3986 dw2_setup (objfile);
3987 gdb_assert (dwarf2_per_objfile->using_index);
3988 printf_filtered (".gdb_index:");
3989 if (dwarf2_per_objfile->index_table != NULL)
3990 {
3991 printf_filtered (" version %d\n",
3992 dwarf2_per_objfile->index_table->version);
3993 }
3994 else
3995 printf_filtered (" faked for \"readnow\"\n");
3996 printf_filtered ("\n");
3997 }
3998
3999 static void
4000 dw2_relocate (struct objfile *objfile,
4001 const struct section_offsets *new_offsets,
4002 const struct section_offsets *delta)
4003 {
4004 /* There's nothing to relocate here. */
4005 }
4006
4007 static void
4008 dw2_expand_symtabs_for_function (struct objfile *objfile,
4009 const char *func_name)
4010 {
4011 struct mapped_index *index;
4012
4013 dw2_setup (objfile);
4014
4015 index = dwarf2_per_objfile->index_table;
4016
4017 /* index is NULL if OBJF_READNOW. */
4018 if (index)
4019 {
4020 struct dw2_symtab_iterator iter;
4021 struct dwarf2_per_cu_data *per_cu;
4022
4023 /* Note: It doesn't matter what we pass for block_index here. */
4024 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4025 func_name);
4026
4027 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4028 dw2_instantiate_symtab (per_cu);
4029 }
4030 }
4031
4032 static void
4033 dw2_expand_all_symtabs (struct objfile *objfile)
4034 {
4035 int i;
4036
4037 dw2_setup (objfile);
4038
4039 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4040 + dwarf2_per_objfile->n_type_units); ++i)
4041 {
4042 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4043
4044 dw2_instantiate_symtab (per_cu);
4045 }
4046 }
4047
4048 static void
4049 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4050 const char *fullname)
4051 {
4052 int i;
4053
4054 dw2_setup (objfile);
4055
4056 /* We don't need to consider type units here.
4057 This is only called for examining code, e.g. expand_line_sal.
4058 There can be an order of magnitude (or more) more type units
4059 than comp units, and we avoid them if we can. */
4060
4061 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4062 {
4063 int j;
4064 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4065 struct quick_file_names *file_data;
4066
4067 /* We only need to look at symtabs not already expanded. */
4068 if (per_cu->v.quick->compunit_symtab)
4069 continue;
4070
4071 file_data = dw2_get_file_names (per_cu);
4072 if (file_data == NULL)
4073 continue;
4074
4075 for (j = 0; j < file_data->num_file_names; ++j)
4076 {
4077 const char *this_fullname = file_data->file_names[j];
4078
4079 if (filename_cmp (this_fullname, fullname) == 0)
4080 {
4081 dw2_instantiate_symtab (per_cu);
4082 break;
4083 }
4084 }
4085 }
4086 }
4087
4088 static void
4089 dw2_map_matching_symbols (struct objfile *objfile,
4090 const char * name, domain_enum domain,
4091 int global,
4092 int (*callback) (struct block *,
4093 struct symbol *, void *),
4094 void *data, symbol_name_match_type match,
4095 symbol_compare_ftype *ordered_compare)
4096 {
4097 /* Currently unimplemented; used for Ada. The function can be called if the
4098 current language is Ada for a non-Ada objfile using GNU index. As Ada
4099 does not look for non-Ada symbols this function should just return. */
4100 }
4101
4102 /* Symbol name matcher for .gdb_index names.
4103
4104 Symbol names in .gdb_index have a few particularities:
4105
4106 - There's no indication of which is the language of each symbol.
4107
4108 Since each language has its own symbol name matching algorithm,
4109 and we don't know which language is the right one, we must match
4110 each symbol against all languages. This would be a potential
4111 performance problem if it were not mitigated by the
4112 mapped_index::name_components lookup table, which significantly
4113 reduces the number of times we need to call into this matcher,
4114 making it a non-issue.
4115
4116 - Symbol names in the index have no overload (parameter)
4117 information. I.e., in C++, "foo(int)" and "foo(long)" both
4118 appear as "foo" in the index, for example.
4119
4120 This means that the lookup names passed to the symbol name
4121 matcher functions must have no parameter information either
4122 because (e.g.) symbol search name "foo" does not match
4123 lookup-name "foo(int)" [while swapping search name for lookup
4124 name would match].
4125 */
4126 class gdb_index_symbol_name_matcher
4127 {
4128 public:
4129 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4130 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4131
4132 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4133 Returns true if any matcher matches. */
4134 bool matches (const char *symbol_name);
4135
4136 private:
4137 /* A reference to the lookup name we're matching against. */
4138 const lookup_name_info &m_lookup_name;
4139
4140 /* A vector holding all the different symbol name matchers, for all
4141 languages. */
4142 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4143 };
4144
4145 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4146 (const lookup_name_info &lookup_name)
4147 : m_lookup_name (lookup_name)
4148 {
4149 /* Prepare the vector of comparison functions upfront, to avoid
4150 doing the same work for each symbol. Care is taken to avoid
4151 matching with the same matcher more than once if/when multiple
4152 languages use the same matcher function. */
4153 auto &matchers = m_symbol_name_matcher_funcs;
4154 matchers.reserve (nr_languages);
4155
4156 matchers.push_back (default_symbol_name_matcher);
4157
4158 for (int i = 0; i < nr_languages; i++)
4159 {
4160 const language_defn *lang = language_def ((enum language) i);
4161 if (lang->la_get_symbol_name_matcher != NULL)
4162 {
4163 symbol_name_matcher_ftype *name_matcher
4164 = lang->la_get_symbol_name_matcher (m_lookup_name);
4165
4166 /* Don't insert the same comparison routine more than once.
4167 Note that we do this linear walk instead of a cheaper
4168 sorted insert, or use a std::set or something like that,
4169 because relative order of function addresses is not
4170 stable. This is not a problem in practice because the
4171 number of supported languages is low, and the cost here
4172 is tiny compared to the number of searches we'll do
4173 afterwards using this object. */
4174 if (std::find (matchers.begin (), matchers.end (), name_matcher)
4175 == matchers.end ())
4176 matchers.push_back (name_matcher);
4177 }
4178 }
4179 }
4180
4181 bool
4182 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4183 {
4184 for (auto matches_name : m_symbol_name_matcher_funcs)
4185 if (matches_name (symbol_name, m_lookup_name, NULL))
4186 return true;
4187
4188 return false;
4189 }
4190
4191 static void
4192 dw2_expand_marked_cus
4193 (mapped_index &index, offset_type idx,
4194 struct objfile *objfile,
4195 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4196 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4197 search_domain kind);
4198
4199 static void
4200 dw2_expand_symtabs_matching_symbol
4201 (mapped_index &index,
4202 const lookup_name_info &lookup_name_in,
4203 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4204 enum search_domain kind,
4205 gdb::function_view<void (offset_type)> on_match);
4206
4207 static void
4208 dw2_expand_symtabs_matching
4209 (struct objfile *objfile,
4210 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4211 const lookup_name_info &lookup_name,
4212 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4213 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4214 enum search_domain kind)
4215 {
4216 int i;
4217 offset_type iter;
4218
4219 dw2_setup (objfile);
4220
4221 /* index_table is NULL if OBJF_READNOW. */
4222 if (!dwarf2_per_objfile->index_table)
4223 return;
4224
4225 if (file_matcher != NULL)
4226 {
4227 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4228 htab_eq_pointer,
4229 NULL, xcalloc, xfree));
4230 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4231 htab_eq_pointer,
4232 NULL, xcalloc, xfree));
4233
4234 /* The rule is CUs specify all the files, including those used by
4235 any TU, so there's no need to scan TUs here. */
4236
4237 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4238 {
4239 int j;
4240 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4241 struct quick_file_names *file_data;
4242 void **slot;
4243
4244 QUIT;
4245
4246 per_cu->v.quick->mark = 0;
4247
4248 /* We only need to look at symtabs not already expanded. */
4249 if (per_cu->v.quick->compunit_symtab)
4250 continue;
4251
4252 file_data = dw2_get_file_names (per_cu);
4253 if (file_data == NULL)
4254 continue;
4255
4256 if (htab_find (visited_not_found.get (), file_data) != NULL)
4257 continue;
4258 else if (htab_find (visited_found.get (), file_data) != NULL)
4259 {
4260 per_cu->v.quick->mark = 1;
4261 continue;
4262 }
4263
4264 for (j = 0; j < file_data->num_file_names; ++j)
4265 {
4266 const char *this_real_name;
4267
4268 if (file_matcher (file_data->file_names[j], false))
4269 {
4270 per_cu->v.quick->mark = 1;
4271 break;
4272 }
4273
4274 /* Before we invoke realpath, which can get expensive when many
4275 files are involved, do a quick comparison of the basenames. */
4276 if (!basenames_may_differ
4277 && !file_matcher (lbasename (file_data->file_names[j]),
4278 true))
4279 continue;
4280
4281 this_real_name = dw2_get_real_path (objfile, file_data, j);
4282 if (file_matcher (this_real_name, false))
4283 {
4284 per_cu->v.quick->mark = 1;
4285 break;
4286 }
4287 }
4288
4289 slot = htab_find_slot (per_cu->v.quick->mark
4290 ? visited_found.get ()
4291 : visited_not_found.get (),
4292 file_data, INSERT);
4293 *slot = file_data;
4294 }
4295 }
4296
4297 mapped_index &index = *dwarf2_per_objfile->index_table;
4298
4299 dw2_expand_symtabs_matching_symbol (index, lookup_name,
4300 symbol_matcher,
4301 kind, [&] (offset_type idx)
4302 {
4303 dw2_expand_marked_cus (index, idx, objfile, file_matcher,
4304 expansion_notify, kind);
4305 });
4306 }
4307
4308 /* Helper for dw2_expand_symtabs_matching that works with a
4309 mapped_index instead of the containing objfile. This is split to a
4310 separate function in order to be able to unit test the
4311 name_components matching using a mock mapped_index. For each
4312 symbol name that matches, calls MATCH_CALLBACK, passing it the
4313 symbol's index in the mapped_index symbol table. */
4314
4315 static void
4316 dw2_expand_symtabs_matching_symbol
4317 (mapped_index &index,
4318 const lookup_name_info &lookup_name,
4319 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4320 enum search_domain kind,
4321 gdb::function_view<void (offset_type)> match_callback)
4322 {
4323 gdb_index_symbol_name_matcher lookup_name_matcher
4324 (lookup_name);
4325
4326 auto *name_cmp = case_sensitivity == case_sensitive_on ? strcmp : strcasecmp;
4327
4328 /* Build the symbol name component sorted vector, if we haven't yet.
4329 The code below only knows how to break apart components of C++
4330 symbol names (and other languages that use '::' as
4331 namespace/module separator). If we add support for wild matching
4332 to some language that uses some other operator (E.g., Ada, Go and
4333 D use '.'), then we'll need to try splitting the symbol name
4334 according to that language too. Note that Ada does support wild
4335 matching, but doesn't currently support .gdb_index. */
4336 if (index.name_components.empty ())
4337 {
4338 for (size_t iter = 0; iter < index.symbol_table_slots; ++iter)
4339 {
4340 offset_type idx = 2 * iter;
4341
4342 if (index.symbol_table[idx] == 0
4343 && index.symbol_table[idx + 1] == 0)
4344 continue;
4345
4346 const char *name = index.symbol_name_at (idx);
4347
4348 /* Add each name component to the name component table. */
4349 unsigned int previous_len = 0;
4350 for (unsigned int current_len = cp_find_first_component (name);
4351 name[current_len] != '\0';
4352 current_len += cp_find_first_component (name + current_len))
4353 {
4354 gdb_assert (name[current_len] == ':');
4355 index.name_components.push_back ({previous_len, idx});
4356 /* Skip the '::'. */
4357 current_len += 2;
4358 previous_len = current_len;
4359 }
4360 index.name_components.push_back ({previous_len, idx});
4361 }
4362
4363 /* Sort name_components elements by name. */
4364 auto name_comp_compare = [&] (const name_component &left,
4365 const name_component &right)
4366 {
4367 const char *left_qualified = index.symbol_name_at (left.idx);
4368 const char *right_qualified = index.symbol_name_at (right.idx);
4369
4370 const char *left_name = left_qualified + left.name_offset;
4371 const char *right_name = right_qualified + right.name_offset;
4372
4373 return name_cmp (left_name, right_name) < 0;
4374 };
4375
4376 std::sort (index.name_components.begin (),
4377 index.name_components.end (),
4378 name_comp_compare);
4379 }
4380
4381 const char *cplus
4382 = lookup_name.cplus ().lookup_name ().c_str ();
4383
4384 /* Comparison function object for lower_bound that matches against a
4385 given symbol name. */
4386 auto lookup_compare_lower = [&] (const name_component &elem,
4387 const char *name)
4388 {
4389 const char *elem_qualified = index.symbol_name_at (elem.idx);
4390 const char *elem_name = elem_qualified + elem.name_offset;
4391 return name_cmp (elem_name, name) < 0;
4392 };
4393
4394 /* Comparison function object for upper_bound that matches against a
4395 given symbol name. */
4396 auto lookup_compare_upper = [&] (const char *name,
4397 const name_component &elem)
4398 {
4399 const char *elem_qualified = index.symbol_name_at (elem.idx);
4400 const char *elem_name = elem_qualified + elem.name_offset;
4401 return name_cmp (name, elem_name) < 0;
4402 };
4403
4404 auto begin = index.name_components.begin ();
4405 auto end = index.name_components.end ();
4406
4407 /* Find the lower bound. */
4408 auto lower = [&] ()
4409 {
4410 if (lookup_name.completion_mode () && cplus[0] == '\0')
4411 return begin;
4412 else
4413 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4414 } ();
4415
4416 /* Find the upper bound. */
4417 auto upper = [&] ()
4418 {
4419 if (lookup_name.completion_mode ())
4420 {
4421 /* The string frobbing below won't work if the string is
4422 empty. We don't need it then, anyway -- if we're
4423 completing an empty string, then we want to iterate over
4424 the whole range. */
4425 if (cplus[0] == '\0')
4426 return end;
4427
4428 /* In completion mode, increment the last character because
4429 we want UPPER to point past all symbols names that have
4430 the same prefix. */
4431 std::string after = cplus;
4432
4433 gdb_assert (after.back () != 0xff);
4434 after.back ()++;
4435
4436 return std::upper_bound (lower, end, after.c_str (),
4437 lookup_compare_upper);
4438 }
4439 else
4440 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4441 } ();
4442
4443 /* Now for each symbol name in range, check to see if we have a name
4444 match, and if so, call the MATCH_CALLBACK callback. */
4445
4446 /* The same symbol may appear more than once in the range though.
4447 E.g., if we're looking for symbols that complete "w", and we have
4448 a symbol named "w1::w2", we'll find the two name components for
4449 that same symbol in the range. To be sure we only call the
4450 callback once per symbol, we first collect the symbol name
4451 indexes that matched in a temporary vector and ignore
4452 duplicates. */
4453 std::vector<offset_type> matches;
4454 matches.reserve (std::distance (lower, upper));
4455
4456 for (;lower != upper; ++lower)
4457 {
4458 const char *qualified = index.symbol_name_at (lower->idx);
4459
4460 if (!lookup_name_matcher.matches (qualified)
4461 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4462 continue;
4463
4464 matches.push_back (lower->idx);
4465 }
4466
4467 std::sort (matches.begin (), matches.end ());
4468
4469 /* Finally call the callback, once per match. */
4470 ULONGEST prev = -1;
4471 for (offset_type idx : matches)
4472 {
4473 if (prev != idx)
4474 {
4475 match_callback (idx);
4476 prev = idx;
4477 }
4478 }
4479
4480 /* Above we use a type wider than idx's for 'prev', since 0 and
4481 (offset_type)-1 are both possible values. */
4482 static_assert (sizeof (prev) > sizeof (offset_type), "");
4483 }
4484
4485 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4486 matched, to expand corresponding CUs that were marked. IDX is the
4487 index of the symbol name that matched. */
4488
4489 static void
4490 dw2_expand_marked_cus
4491 (mapped_index &index, offset_type idx,
4492 struct objfile *objfile,
4493 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4494 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4495 search_domain kind)
4496 {
4497 const char *name;
4498 offset_type *vec, vec_len, vec_idx;
4499 bool global_seen = false;
4500
4501 vec = (offset_type *) (index.constant_pool
4502 + MAYBE_SWAP (index.symbol_table[idx + 1]));
4503 vec_len = MAYBE_SWAP (vec[0]);
4504 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4505 {
4506 struct dwarf2_per_cu_data *per_cu;
4507 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4508 /* This value is only valid for index versions >= 7. */
4509 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4510 gdb_index_symbol_kind symbol_kind =
4511 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4512 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4513 /* Only check the symbol attributes if they're present.
4514 Indices prior to version 7 don't record them,
4515 and indices >= 7 may elide them for certain symbols
4516 (gold does this). */
4517 int attrs_valid =
4518 (index.version >= 7
4519 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4520
4521 /* Work around gold/15646. */
4522 if (attrs_valid)
4523 {
4524 if (!is_static && global_seen)
4525 continue;
4526 if (!is_static)
4527 global_seen = true;
4528 }
4529
4530 /* Only check the symbol's kind if it has one. */
4531 if (attrs_valid)
4532 {
4533 switch (kind)
4534 {
4535 case VARIABLES_DOMAIN:
4536 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4537 continue;
4538 break;
4539 case FUNCTIONS_DOMAIN:
4540 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4541 continue;
4542 break;
4543 case TYPES_DOMAIN:
4544 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4545 continue;
4546 break;
4547 default:
4548 break;
4549 }
4550 }
4551
4552 /* Don't crash on bad data. */
4553 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4554 + dwarf2_per_objfile->n_type_units))
4555 {
4556 complaint (&symfile_complaints,
4557 _(".gdb_index entry has bad CU index"
4558 " [in module %s]"), objfile_name (objfile));
4559 continue;
4560 }
4561
4562 per_cu = dw2_get_cutu (cu_index);
4563 if (file_matcher == NULL || per_cu->v.quick->mark)
4564 {
4565 int symtab_was_null =
4566 (per_cu->v.quick->compunit_symtab == NULL);
4567
4568 dw2_instantiate_symtab (per_cu);
4569
4570 if (expansion_notify != NULL
4571 && symtab_was_null
4572 && per_cu->v.quick->compunit_symtab != NULL)
4573 {
4574 expansion_notify (per_cu->v.quick->compunit_symtab);
4575 }
4576 }
4577 }
4578 }
4579
4580 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4581 symtab. */
4582
4583 static struct compunit_symtab *
4584 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4585 CORE_ADDR pc)
4586 {
4587 int i;
4588
4589 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4590 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4591 return cust;
4592
4593 if (cust->includes == NULL)
4594 return NULL;
4595
4596 for (i = 0; cust->includes[i]; ++i)
4597 {
4598 struct compunit_symtab *s = cust->includes[i];
4599
4600 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4601 if (s != NULL)
4602 return s;
4603 }
4604
4605 return NULL;
4606 }
4607
4608 static struct compunit_symtab *
4609 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4610 struct bound_minimal_symbol msymbol,
4611 CORE_ADDR pc,
4612 struct obj_section *section,
4613 int warn_if_readin)
4614 {
4615 struct dwarf2_per_cu_data *data;
4616 struct compunit_symtab *result;
4617
4618 dw2_setup (objfile);
4619
4620 if (!objfile->psymtabs_addrmap)
4621 return NULL;
4622
4623 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4624 pc);
4625 if (!data)
4626 return NULL;
4627
4628 if (warn_if_readin && data->v.quick->compunit_symtab)
4629 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4630 paddress (get_objfile_arch (objfile), pc));
4631
4632 result
4633 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4634 pc);
4635 gdb_assert (result != NULL);
4636 return result;
4637 }
4638
4639 static void
4640 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4641 void *data, int need_fullname)
4642 {
4643 dw2_setup (objfile);
4644
4645 if (!dwarf2_per_objfile->filenames_cache)
4646 {
4647 dwarf2_per_objfile->filenames_cache.emplace ();
4648
4649 htab_up visited (htab_create_alloc (10,
4650 htab_hash_pointer, htab_eq_pointer,
4651 NULL, xcalloc, xfree));
4652
4653 /* The rule is CUs specify all the files, including those used
4654 by any TU, so there's no need to scan TUs here. We can
4655 ignore file names coming from already-expanded CUs. */
4656
4657 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4658 {
4659 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4660
4661 if (per_cu->v.quick->compunit_symtab)
4662 {
4663 void **slot = htab_find_slot (visited.get (),
4664 per_cu->v.quick->file_names,
4665 INSERT);
4666
4667 *slot = per_cu->v.quick->file_names;
4668 }
4669 }
4670
4671 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4672 {
4673 int j;
4674 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4675 struct quick_file_names *file_data;
4676 void **slot;
4677
4678 /* We only need to look at symtabs not already expanded. */
4679 if (per_cu->v.quick->compunit_symtab)
4680 continue;
4681
4682 file_data = dw2_get_file_names (per_cu);
4683 if (file_data == NULL)
4684 continue;
4685
4686 slot = htab_find_slot (visited.get (), file_data, INSERT);
4687 if (*slot)
4688 {
4689 /* Already visited. */
4690 continue;
4691 }
4692 *slot = file_data;
4693
4694 for (int j = 0; j < file_data->num_file_names; ++j)
4695 {
4696 const char *filename = file_data->file_names[j];
4697 dwarf2_per_objfile->filenames_cache->seen (filename);
4698 }
4699 }
4700 }
4701
4702 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4703 {
4704 gdb::unique_xmalloc_ptr<char> this_real_name;
4705
4706 if (need_fullname)
4707 this_real_name = gdb_realpath (filename);
4708 (*fun) (filename, this_real_name.get (), data);
4709 });
4710 }
4711
4712 static int
4713 dw2_has_symbols (struct objfile *objfile)
4714 {
4715 return 1;
4716 }
4717
4718 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4719 {
4720 dw2_has_symbols,
4721 dw2_find_last_source_symtab,
4722 dw2_forget_cached_source_info,
4723 dw2_map_symtabs_matching_filename,
4724 dw2_lookup_symbol,
4725 dw2_print_stats,
4726 dw2_dump,
4727 dw2_relocate,
4728 dw2_expand_symtabs_for_function,
4729 dw2_expand_all_symtabs,
4730 dw2_expand_symtabs_with_fullname,
4731 dw2_map_matching_symbols,
4732 dw2_expand_symtabs_matching,
4733 dw2_find_pc_sect_compunit_symtab,
4734 dw2_map_symbol_filenames
4735 };
4736
4737 /* Initialize for reading DWARF for this objfile. Return 0 if this
4738 file will use psymtabs, or 1 if using the GNU index. */
4739
4740 int
4741 dwarf2_initialize_objfile (struct objfile *objfile)
4742 {
4743 /* If we're about to read full symbols, don't bother with the
4744 indices. In this case we also don't care if some other debug
4745 format is making psymtabs, because they are all about to be
4746 expanded anyway. */
4747 if ((objfile->flags & OBJF_READNOW))
4748 {
4749 int i;
4750
4751 dwarf2_per_objfile->using_index = 1;
4752 create_all_comp_units (objfile);
4753 create_all_type_units (objfile);
4754 dwarf2_per_objfile->quick_file_names_table =
4755 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4756
4757 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4758 + dwarf2_per_objfile->n_type_units); ++i)
4759 {
4760 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4761
4762 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4763 struct dwarf2_per_cu_quick_data);
4764 }
4765
4766 /* Return 1 so that gdb sees the "quick" functions. However,
4767 these functions will be no-ops because we will have expanded
4768 all symtabs. */
4769 return 1;
4770 }
4771
4772 if (dwarf2_read_index (objfile))
4773 return 1;
4774
4775 return 0;
4776 }
4777
4778 \f
4779
4780 /* Build a partial symbol table. */
4781
4782 void
4783 dwarf2_build_psymtabs (struct objfile *objfile)
4784 {
4785
4786 if (objfile->global_psymbols.capacity () == 0
4787 && objfile->static_psymbols.capacity () == 0)
4788 init_psymbol_list (objfile, 1024);
4789
4790 TRY
4791 {
4792 /* This isn't really ideal: all the data we allocate on the
4793 objfile's obstack is still uselessly kept around. However,
4794 freeing it seems unsafe. */
4795 psymtab_discarder psymtabs (objfile);
4796 dwarf2_build_psymtabs_hard (objfile);
4797 psymtabs.keep ();
4798 }
4799 CATCH (except, RETURN_MASK_ERROR)
4800 {
4801 exception_print (gdb_stderr, except);
4802 }
4803 END_CATCH
4804 }
4805
4806 /* Return the total length of the CU described by HEADER. */
4807
4808 static unsigned int
4809 get_cu_length (const struct comp_unit_head *header)
4810 {
4811 return header->initial_length_size + header->length;
4812 }
4813
4814 /* Return TRUE if SECT_OFF is within CU_HEADER. */
4815
4816 static inline bool
4817 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
4818 {
4819 sect_offset bottom = cu_header->sect_off;
4820 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
4821
4822 return sect_off >= bottom && sect_off < top;
4823 }
4824
4825 /* Find the base address of the compilation unit for range lists and
4826 location lists. It will normally be specified by DW_AT_low_pc.
4827 In DWARF-3 draft 4, the base address could be overridden by
4828 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4829 compilation units with discontinuous ranges. */
4830
4831 static void
4832 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4833 {
4834 struct attribute *attr;
4835
4836 cu->base_known = 0;
4837 cu->base_address = 0;
4838
4839 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4840 if (attr)
4841 {
4842 cu->base_address = attr_value_as_address (attr);
4843 cu->base_known = 1;
4844 }
4845 else
4846 {
4847 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4848 if (attr)
4849 {
4850 cu->base_address = attr_value_as_address (attr);
4851 cu->base_known = 1;
4852 }
4853 }
4854 }
4855
4856 /* Read in the comp unit header information from the debug_info at info_ptr.
4857 Use rcuh_kind::COMPILE as the default type if not known by the caller.
4858 NOTE: This leaves members offset, first_die_offset to be filled in
4859 by the caller. */
4860
4861 static const gdb_byte *
4862 read_comp_unit_head (struct comp_unit_head *cu_header,
4863 const gdb_byte *info_ptr,
4864 struct dwarf2_section_info *section,
4865 rcuh_kind section_kind)
4866 {
4867 int signed_addr;
4868 unsigned int bytes_read;
4869 const char *filename = get_section_file_name (section);
4870 bfd *abfd = get_section_bfd_owner (section);
4871
4872 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4873 cu_header->initial_length_size = bytes_read;
4874 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4875 info_ptr += bytes_read;
4876 cu_header->version = read_2_bytes (abfd, info_ptr);
4877 info_ptr += 2;
4878 if (cu_header->version < 5)
4879 switch (section_kind)
4880 {
4881 case rcuh_kind::COMPILE:
4882 cu_header->unit_type = DW_UT_compile;
4883 break;
4884 case rcuh_kind::TYPE:
4885 cu_header->unit_type = DW_UT_type;
4886 break;
4887 default:
4888 internal_error (__FILE__, __LINE__,
4889 _("read_comp_unit_head: invalid section_kind"));
4890 }
4891 else
4892 {
4893 cu_header->unit_type = static_cast<enum dwarf_unit_type>
4894 (read_1_byte (abfd, info_ptr));
4895 info_ptr += 1;
4896 switch (cu_header->unit_type)
4897 {
4898 case DW_UT_compile:
4899 if (section_kind != rcuh_kind::COMPILE)
4900 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4901 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
4902 filename);
4903 break;
4904 case DW_UT_type:
4905 section_kind = rcuh_kind::TYPE;
4906 break;
4907 default:
4908 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4909 "(is %d, should be %d or %d) [in module %s]"),
4910 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
4911 }
4912
4913 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4914 info_ptr += 1;
4915 }
4916 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
4917 cu_header,
4918 &bytes_read);
4919 info_ptr += bytes_read;
4920 if (cu_header->version < 5)
4921 {
4922 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4923 info_ptr += 1;
4924 }
4925 signed_addr = bfd_get_sign_extend_vma (abfd);
4926 if (signed_addr < 0)
4927 internal_error (__FILE__, __LINE__,
4928 _("read_comp_unit_head: dwarf from non elf file"));
4929 cu_header->signed_addr_p = signed_addr;
4930
4931 if (section_kind == rcuh_kind::TYPE)
4932 {
4933 LONGEST type_offset;
4934
4935 cu_header->signature = read_8_bytes (abfd, info_ptr);
4936 info_ptr += 8;
4937
4938 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
4939 info_ptr += bytes_read;
4940 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
4941 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
4942 error (_("Dwarf Error: Too big type_offset in compilation unit "
4943 "header (is %s) [in module %s]"), plongest (type_offset),
4944 filename);
4945 }
4946
4947 return info_ptr;
4948 }
4949
4950 /* Helper function that returns the proper abbrev section for
4951 THIS_CU. */
4952
4953 static struct dwarf2_section_info *
4954 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4955 {
4956 struct dwarf2_section_info *abbrev;
4957
4958 if (this_cu->is_dwz)
4959 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4960 else
4961 abbrev = &dwarf2_per_objfile->abbrev;
4962
4963 return abbrev;
4964 }
4965
4966 /* Subroutine of read_and_check_comp_unit_head and
4967 read_and_check_type_unit_head to simplify them.
4968 Perform various error checking on the header. */
4969
4970 static void
4971 error_check_comp_unit_head (struct comp_unit_head *header,
4972 struct dwarf2_section_info *section,
4973 struct dwarf2_section_info *abbrev_section)
4974 {
4975 const char *filename = get_section_file_name (section);
4976
4977 if (header->version < 2 || header->version > 5)
4978 error (_("Dwarf Error: wrong version in compilation unit header "
4979 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
4980 filename);
4981
4982 if (to_underlying (header->abbrev_sect_off)
4983 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4984 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
4985 "(offset 0x%x + 6) [in module %s]"),
4986 to_underlying (header->abbrev_sect_off),
4987 to_underlying (header->sect_off),
4988 filename);
4989
4990 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
4991 avoid potential 32-bit overflow. */
4992 if (((ULONGEST) header->sect_off + get_cu_length (header))
4993 > section->size)
4994 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
4995 "(offset 0x%x + 0) [in module %s]"),
4996 header->length, to_underlying (header->sect_off),
4997 filename);
4998 }
4999
5000 /* Read in a CU/TU header and perform some basic error checking.
5001 The contents of the header are stored in HEADER.
5002 The result is a pointer to the start of the first DIE. */
5003
5004 static const gdb_byte *
5005 read_and_check_comp_unit_head (struct comp_unit_head *header,
5006 struct dwarf2_section_info *section,
5007 struct dwarf2_section_info *abbrev_section,
5008 const gdb_byte *info_ptr,
5009 rcuh_kind section_kind)
5010 {
5011 const gdb_byte *beg_of_comp_unit = info_ptr;
5012 bfd *abfd = get_section_bfd_owner (section);
5013
5014 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
5015
5016 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
5017
5018 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
5019
5020 error_check_comp_unit_head (header, section, abbrev_section);
5021
5022 return info_ptr;
5023 }
5024
5025 /* Fetch the abbreviation table offset from a comp or type unit header. */
5026
5027 static sect_offset
5028 read_abbrev_offset (struct dwarf2_section_info *section,
5029 sect_offset sect_off)
5030 {
5031 bfd *abfd = get_section_bfd_owner (section);
5032 const gdb_byte *info_ptr;
5033 unsigned int initial_length_size, offset_size;
5034 uint16_t version;
5035
5036 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
5037 info_ptr = section->buffer + to_underlying (sect_off);
5038 read_initial_length (abfd, info_ptr, &initial_length_size);
5039 offset_size = initial_length_size == 4 ? 4 : 8;
5040 info_ptr += initial_length_size;
5041
5042 version = read_2_bytes (abfd, info_ptr);
5043 info_ptr += 2;
5044 if (version >= 5)
5045 {
5046 /* Skip unit type and address size. */
5047 info_ptr += 2;
5048 }
5049
5050 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
5051 }
5052
5053 /* Allocate a new partial symtab for file named NAME and mark this new
5054 partial symtab as being an include of PST. */
5055
5056 static void
5057 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
5058 struct objfile *objfile)
5059 {
5060 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
5061
5062 if (!IS_ABSOLUTE_PATH (subpst->filename))
5063 {
5064 /* It shares objfile->objfile_obstack. */
5065 subpst->dirname = pst->dirname;
5066 }
5067
5068 subpst->textlow = 0;
5069 subpst->texthigh = 0;
5070
5071 subpst->dependencies
5072 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
5073 subpst->dependencies[0] = pst;
5074 subpst->number_of_dependencies = 1;
5075
5076 subpst->globals_offset = 0;
5077 subpst->n_global_syms = 0;
5078 subpst->statics_offset = 0;
5079 subpst->n_static_syms = 0;
5080 subpst->compunit_symtab = NULL;
5081 subpst->read_symtab = pst->read_symtab;
5082 subpst->readin = 0;
5083
5084 /* No private part is necessary for include psymtabs. This property
5085 can be used to differentiate between such include psymtabs and
5086 the regular ones. */
5087 subpst->read_symtab_private = NULL;
5088 }
5089
5090 /* Read the Line Number Program data and extract the list of files
5091 included by the source file represented by PST. Build an include
5092 partial symtab for each of these included files. */
5093
5094 static void
5095 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
5096 struct die_info *die,
5097 struct partial_symtab *pst)
5098 {
5099 line_header_up lh;
5100 struct attribute *attr;
5101
5102 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5103 if (attr)
5104 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
5105 if (lh == NULL)
5106 return; /* No linetable, so no includes. */
5107
5108 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
5109 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
5110 }
5111
5112 static hashval_t
5113 hash_signatured_type (const void *item)
5114 {
5115 const struct signatured_type *sig_type
5116 = (const struct signatured_type *) item;
5117
5118 /* This drops the top 32 bits of the signature, but is ok for a hash. */
5119 return sig_type->signature;
5120 }
5121
5122 static int
5123 eq_signatured_type (const void *item_lhs, const void *item_rhs)
5124 {
5125 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
5126 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
5127
5128 return lhs->signature == rhs->signature;
5129 }
5130
5131 /* Allocate a hash table for signatured types. */
5132
5133 static htab_t
5134 allocate_signatured_type_table (struct objfile *objfile)
5135 {
5136 return htab_create_alloc_ex (41,
5137 hash_signatured_type,
5138 eq_signatured_type,
5139 NULL,
5140 &objfile->objfile_obstack,
5141 hashtab_obstack_allocate,
5142 dummy_obstack_deallocate);
5143 }
5144
5145 /* A helper function to add a signatured type CU to a table. */
5146
5147 static int
5148 add_signatured_type_cu_to_table (void **slot, void *datum)
5149 {
5150 struct signatured_type *sigt = (struct signatured_type *) *slot;
5151 struct signatured_type ***datap = (struct signatured_type ***) datum;
5152
5153 **datap = sigt;
5154 ++*datap;
5155
5156 return 1;
5157 }
5158
5159 /* A helper for create_debug_types_hash_table. Read types from SECTION
5160 and fill them into TYPES_HTAB. It will process only type units,
5161 therefore DW_UT_type. */
5162
5163 static void
5164 create_debug_type_hash_table (struct dwo_file *dwo_file,
5165 dwarf2_section_info *section, htab_t &types_htab,
5166 rcuh_kind section_kind)
5167 {
5168 struct objfile *objfile = dwarf2_per_objfile->objfile;
5169 struct dwarf2_section_info *abbrev_section;
5170 bfd *abfd;
5171 const gdb_byte *info_ptr, *end_ptr;
5172
5173 abbrev_section = (dwo_file != NULL
5174 ? &dwo_file->sections.abbrev
5175 : &dwarf2_per_objfile->abbrev);
5176
5177 if (dwarf_read_debug)
5178 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
5179 get_section_name (section),
5180 get_section_file_name (abbrev_section));
5181
5182 dwarf2_read_section (objfile, section);
5183 info_ptr = section->buffer;
5184
5185 if (info_ptr == NULL)
5186 return;
5187
5188 /* We can't set abfd until now because the section may be empty or
5189 not present, in which case the bfd is unknown. */
5190 abfd = get_section_bfd_owner (section);
5191
5192 /* We don't use init_cutu_and_read_dies_simple, or some such, here
5193 because we don't need to read any dies: the signature is in the
5194 header. */
5195
5196 end_ptr = info_ptr + section->size;
5197 while (info_ptr < end_ptr)
5198 {
5199 struct signatured_type *sig_type;
5200 struct dwo_unit *dwo_tu;
5201 void **slot;
5202 const gdb_byte *ptr = info_ptr;
5203 struct comp_unit_head header;
5204 unsigned int length;
5205
5206 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
5207
5208 /* Initialize it due to a false compiler warning. */
5209 header.signature = -1;
5210 header.type_cu_offset_in_tu = (cu_offset) -1;
5211
5212 /* We need to read the type's signature in order to build the hash
5213 table, but we don't need anything else just yet. */
5214
5215 ptr = read_and_check_comp_unit_head (&header, section,
5216 abbrev_section, ptr, section_kind);
5217
5218 length = get_cu_length (&header);
5219
5220 /* Skip dummy type units. */
5221 if (ptr >= info_ptr + length
5222 || peek_abbrev_code (abfd, ptr) == 0
5223 || header.unit_type != DW_UT_type)
5224 {
5225 info_ptr += length;
5226 continue;
5227 }
5228
5229 if (types_htab == NULL)
5230 {
5231 if (dwo_file)
5232 types_htab = allocate_dwo_unit_table (objfile);
5233 else
5234 types_htab = allocate_signatured_type_table (objfile);
5235 }
5236
5237 if (dwo_file)
5238 {
5239 sig_type = NULL;
5240 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5241 struct dwo_unit);
5242 dwo_tu->dwo_file = dwo_file;
5243 dwo_tu->signature = header.signature;
5244 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
5245 dwo_tu->section = section;
5246 dwo_tu->sect_off = sect_off;
5247 dwo_tu->length = length;
5248 }
5249 else
5250 {
5251 /* N.B.: type_offset is not usable if this type uses a DWO file.
5252 The real type_offset is in the DWO file. */
5253 dwo_tu = NULL;
5254 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5255 struct signatured_type);
5256 sig_type->signature = header.signature;
5257 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
5258 sig_type->per_cu.objfile = objfile;
5259 sig_type->per_cu.is_debug_types = 1;
5260 sig_type->per_cu.section = section;
5261 sig_type->per_cu.sect_off = sect_off;
5262 sig_type->per_cu.length = length;
5263 }
5264
5265 slot = htab_find_slot (types_htab,
5266 dwo_file ? (void*) dwo_tu : (void *) sig_type,
5267 INSERT);
5268 gdb_assert (slot != NULL);
5269 if (*slot != NULL)
5270 {
5271 sect_offset dup_sect_off;
5272
5273 if (dwo_file)
5274 {
5275 const struct dwo_unit *dup_tu
5276 = (const struct dwo_unit *) *slot;
5277
5278 dup_sect_off = dup_tu->sect_off;
5279 }
5280 else
5281 {
5282 const struct signatured_type *dup_tu
5283 = (const struct signatured_type *) *slot;
5284
5285 dup_sect_off = dup_tu->per_cu.sect_off;
5286 }
5287
5288 complaint (&symfile_complaints,
5289 _("debug type entry at offset 0x%x is duplicate to"
5290 " the entry at offset 0x%x, signature %s"),
5291 to_underlying (sect_off), to_underlying (dup_sect_off),
5292 hex_string (header.signature));
5293 }
5294 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
5295
5296 if (dwarf_read_debug > 1)
5297 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
5298 to_underlying (sect_off),
5299 hex_string (header.signature));
5300
5301 info_ptr += length;
5302 }
5303 }
5304
5305 /* Create the hash table of all entries in the .debug_types
5306 (or .debug_types.dwo) section(s).
5307 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
5308 otherwise it is NULL.
5309
5310 The result is a pointer to the hash table or NULL if there are no types.
5311
5312 Note: This function processes DWO files only, not DWP files. */
5313
5314 static void
5315 create_debug_types_hash_table (struct dwo_file *dwo_file,
5316 VEC (dwarf2_section_info_def) *types,
5317 htab_t &types_htab)
5318 {
5319 int ix;
5320 struct dwarf2_section_info *section;
5321
5322 if (VEC_empty (dwarf2_section_info_def, types))
5323 return;
5324
5325 for (ix = 0;
5326 VEC_iterate (dwarf2_section_info_def, types, ix, section);
5327 ++ix)
5328 create_debug_type_hash_table (dwo_file, section, types_htab,
5329 rcuh_kind::TYPE);
5330 }
5331
5332 /* Create the hash table of all entries in the .debug_types section,
5333 and initialize all_type_units.
5334 The result is zero if there is an error (e.g. missing .debug_types section),
5335 otherwise non-zero. */
5336
5337 static int
5338 create_all_type_units (struct objfile *objfile)
5339 {
5340 htab_t types_htab = NULL;
5341 struct signatured_type **iter;
5342
5343 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
5344 rcuh_kind::COMPILE);
5345 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
5346 if (types_htab == NULL)
5347 {
5348 dwarf2_per_objfile->signatured_types = NULL;
5349 return 0;
5350 }
5351
5352 dwarf2_per_objfile->signatured_types = types_htab;
5353
5354 dwarf2_per_objfile->n_type_units
5355 = dwarf2_per_objfile->n_allocated_type_units
5356 = htab_elements (types_htab);
5357 dwarf2_per_objfile->all_type_units =
5358 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
5359 iter = &dwarf2_per_objfile->all_type_units[0];
5360 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
5361 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
5362 == dwarf2_per_objfile->n_type_units);
5363
5364 return 1;
5365 }
5366
5367 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
5368 If SLOT is non-NULL, it is the entry to use in the hash table.
5369 Otherwise we find one. */
5370
5371 static struct signatured_type *
5372 add_type_unit (ULONGEST sig, void **slot)
5373 {
5374 struct objfile *objfile = dwarf2_per_objfile->objfile;
5375 int n_type_units = dwarf2_per_objfile->n_type_units;
5376 struct signatured_type *sig_type;
5377
5378 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
5379 ++n_type_units;
5380 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
5381 {
5382 if (dwarf2_per_objfile->n_allocated_type_units == 0)
5383 dwarf2_per_objfile->n_allocated_type_units = 1;
5384 dwarf2_per_objfile->n_allocated_type_units *= 2;
5385 dwarf2_per_objfile->all_type_units
5386 = XRESIZEVEC (struct signatured_type *,
5387 dwarf2_per_objfile->all_type_units,
5388 dwarf2_per_objfile->n_allocated_type_units);
5389 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
5390 }
5391 dwarf2_per_objfile->n_type_units = n_type_units;
5392
5393 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5394 struct signatured_type);
5395 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
5396 sig_type->signature = sig;
5397 sig_type->per_cu.is_debug_types = 1;
5398 if (dwarf2_per_objfile->using_index)
5399 {
5400 sig_type->per_cu.v.quick =
5401 OBSTACK_ZALLOC (&objfile->objfile_obstack,
5402 struct dwarf2_per_cu_quick_data);
5403 }
5404
5405 if (slot == NULL)
5406 {
5407 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5408 sig_type, INSERT);
5409 }
5410 gdb_assert (*slot == NULL);
5411 *slot = sig_type;
5412 /* The rest of sig_type must be filled in by the caller. */
5413 return sig_type;
5414 }
5415
5416 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
5417 Fill in SIG_ENTRY with DWO_ENTRY. */
5418
5419 static void
5420 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
5421 struct signatured_type *sig_entry,
5422 struct dwo_unit *dwo_entry)
5423 {
5424 /* Make sure we're not clobbering something we don't expect to. */
5425 gdb_assert (! sig_entry->per_cu.queued);
5426 gdb_assert (sig_entry->per_cu.cu == NULL);
5427 if (dwarf2_per_objfile->using_index)
5428 {
5429 gdb_assert (sig_entry->per_cu.v.quick != NULL);
5430 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
5431 }
5432 else
5433 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
5434 gdb_assert (sig_entry->signature == dwo_entry->signature);
5435 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
5436 gdb_assert (sig_entry->type_unit_group == NULL);
5437 gdb_assert (sig_entry->dwo_unit == NULL);
5438
5439 sig_entry->per_cu.section = dwo_entry->section;
5440 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
5441 sig_entry->per_cu.length = dwo_entry->length;
5442 sig_entry->per_cu.reading_dwo_directly = 1;
5443 sig_entry->per_cu.objfile = objfile;
5444 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
5445 sig_entry->dwo_unit = dwo_entry;
5446 }
5447
5448 /* Subroutine of lookup_signatured_type.
5449 If we haven't read the TU yet, create the signatured_type data structure
5450 for a TU to be read in directly from a DWO file, bypassing the stub.
5451 This is the "Stay in DWO Optimization": When there is no DWP file and we're
5452 using .gdb_index, then when reading a CU we want to stay in the DWO file
5453 containing that CU. Otherwise we could end up reading several other DWO
5454 files (due to comdat folding) to process the transitive closure of all the
5455 mentioned TUs, and that can be slow. The current DWO file will have every
5456 type signature that it needs.
5457 We only do this for .gdb_index because in the psymtab case we already have
5458 to read all the DWOs to build the type unit groups. */
5459
5460 static struct signatured_type *
5461 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5462 {
5463 struct objfile *objfile = dwarf2_per_objfile->objfile;
5464 struct dwo_file *dwo_file;
5465 struct dwo_unit find_dwo_entry, *dwo_entry;
5466 struct signatured_type find_sig_entry, *sig_entry;
5467 void **slot;
5468
5469 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5470
5471 /* If TU skeletons have been removed then we may not have read in any
5472 TUs yet. */
5473 if (dwarf2_per_objfile->signatured_types == NULL)
5474 {
5475 dwarf2_per_objfile->signatured_types
5476 = allocate_signatured_type_table (objfile);
5477 }
5478
5479 /* We only ever need to read in one copy of a signatured type.
5480 Use the global signatured_types array to do our own comdat-folding
5481 of types. If this is the first time we're reading this TU, and
5482 the TU has an entry in .gdb_index, replace the recorded data from
5483 .gdb_index with this TU. */
5484
5485 find_sig_entry.signature = sig;
5486 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5487 &find_sig_entry, INSERT);
5488 sig_entry = (struct signatured_type *) *slot;
5489
5490 /* We can get here with the TU already read, *or* in the process of being
5491 read. Don't reassign the global entry to point to this DWO if that's
5492 the case. Also note that if the TU is already being read, it may not
5493 have come from a DWO, the program may be a mix of Fission-compiled
5494 code and non-Fission-compiled code. */
5495
5496 /* Have we already tried to read this TU?
5497 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5498 needn't exist in the global table yet). */
5499 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
5500 return sig_entry;
5501
5502 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5503 dwo_unit of the TU itself. */
5504 dwo_file = cu->dwo_unit->dwo_file;
5505
5506 /* Ok, this is the first time we're reading this TU. */
5507 if (dwo_file->tus == NULL)
5508 return NULL;
5509 find_dwo_entry.signature = sig;
5510 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
5511 if (dwo_entry == NULL)
5512 return NULL;
5513
5514 /* If the global table doesn't have an entry for this TU, add one. */
5515 if (sig_entry == NULL)
5516 sig_entry = add_type_unit (sig, slot);
5517
5518 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5519 sig_entry->per_cu.tu_read = 1;
5520 return sig_entry;
5521 }
5522
5523 /* Subroutine of lookup_signatured_type.
5524 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
5525 then try the DWP file. If the TU stub (skeleton) has been removed then
5526 it won't be in .gdb_index. */
5527
5528 static struct signatured_type *
5529 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5530 {
5531 struct objfile *objfile = dwarf2_per_objfile->objfile;
5532 struct dwp_file *dwp_file = get_dwp_file ();
5533 struct dwo_unit *dwo_entry;
5534 struct signatured_type find_sig_entry, *sig_entry;
5535 void **slot;
5536
5537 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5538 gdb_assert (dwp_file != NULL);
5539
5540 /* If TU skeletons have been removed then we may not have read in any
5541 TUs yet. */
5542 if (dwarf2_per_objfile->signatured_types == NULL)
5543 {
5544 dwarf2_per_objfile->signatured_types
5545 = allocate_signatured_type_table (objfile);
5546 }
5547
5548 find_sig_entry.signature = sig;
5549 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5550 &find_sig_entry, INSERT);
5551 sig_entry = (struct signatured_type *) *slot;
5552
5553 /* Have we already tried to read this TU?
5554 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5555 needn't exist in the global table yet). */
5556 if (sig_entry != NULL)
5557 return sig_entry;
5558
5559 if (dwp_file->tus == NULL)
5560 return NULL;
5561 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5562 sig, 1 /* is_debug_types */);
5563 if (dwo_entry == NULL)
5564 return NULL;
5565
5566 sig_entry = add_type_unit (sig, slot);
5567 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5568
5569 return sig_entry;
5570 }
5571
5572 /* Lookup a signature based type for DW_FORM_ref_sig8.
5573 Returns NULL if signature SIG is not present in the table.
5574 It is up to the caller to complain about this. */
5575
5576 static struct signatured_type *
5577 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5578 {
5579 if (cu->dwo_unit
5580 && dwarf2_per_objfile->using_index)
5581 {
5582 /* We're in a DWO/DWP file, and we're using .gdb_index.
5583 These cases require special processing. */
5584 if (get_dwp_file () == NULL)
5585 return lookup_dwo_signatured_type (cu, sig);
5586 else
5587 return lookup_dwp_signatured_type (cu, sig);
5588 }
5589 else
5590 {
5591 struct signatured_type find_entry, *entry;
5592
5593 if (dwarf2_per_objfile->signatured_types == NULL)
5594 return NULL;
5595 find_entry.signature = sig;
5596 entry = ((struct signatured_type *)
5597 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5598 return entry;
5599 }
5600 }
5601 \f
5602 /* Low level DIE reading support. */
5603
5604 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5605
5606 static void
5607 init_cu_die_reader (struct die_reader_specs *reader,
5608 struct dwarf2_cu *cu,
5609 struct dwarf2_section_info *section,
5610 struct dwo_file *dwo_file)
5611 {
5612 gdb_assert (section->readin && section->buffer != NULL);
5613 reader->abfd = get_section_bfd_owner (section);
5614 reader->cu = cu;
5615 reader->dwo_file = dwo_file;
5616 reader->die_section = section;
5617 reader->buffer = section->buffer;
5618 reader->buffer_end = section->buffer + section->size;
5619 reader->comp_dir = NULL;
5620 }
5621
5622 /* Subroutine of init_cutu_and_read_dies to simplify it.
5623 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5624 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5625 already.
5626
5627 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5628 from it to the DIE in the DWO. If NULL we are skipping the stub.
5629 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5630 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5631 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5632 STUB_COMP_DIR may be non-NULL.
5633 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5634 are filled in with the info of the DIE from the DWO file.
5635 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5636 provided an abbrev table to use.
5637 The result is non-zero if a valid (non-dummy) DIE was found. */
5638
5639 static int
5640 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5641 struct dwo_unit *dwo_unit,
5642 int abbrev_table_provided,
5643 struct die_info *stub_comp_unit_die,
5644 const char *stub_comp_dir,
5645 struct die_reader_specs *result_reader,
5646 const gdb_byte **result_info_ptr,
5647 struct die_info **result_comp_unit_die,
5648 int *result_has_children)
5649 {
5650 struct objfile *objfile = dwarf2_per_objfile->objfile;
5651 struct dwarf2_cu *cu = this_cu->cu;
5652 struct dwarf2_section_info *section;
5653 bfd *abfd;
5654 const gdb_byte *begin_info_ptr, *info_ptr;
5655 ULONGEST signature; /* Or dwo_id. */
5656 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5657 int i,num_extra_attrs;
5658 struct dwarf2_section_info *dwo_abbrev_section;
5659 struct attribute *attr;
5660 struct die_info *comp_unit_die;
5661
5662 /* At most one of these may be provided. */
5663 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5664
5665 /* These attributes aren't processed until later:
5666 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5667 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5668 referenced later. However, these attributes are found in the stub
5669 which we won't have later. In order to not impose this complication
5670 on the rest of the code, we read them here and copy them to the
5671 DWO CU/TU die. */
5672
5673 stmt_list = NULL;
5674 low_pc = NULL;
5675 high_pc = NULL;
5676 ranges = NULL;
5677 comp_dir = NULL;
5678
5679 if (stub_comp_unit_die != NULL)
5680 {
5681 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5682 DWO file. */
5683 if (! this_cu->is_debug_types)
5684 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5685 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5686 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5687 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5688 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5689
5690 /* There should be a DW_AT_addr_base attribute here (if needed).
5691 We need the value before we can process DW_FORM_GNU_addr_index. */
5692 cu->addr_base = 0;
5693 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5694 if (attr)
5695 cu->addr_base = DW_UNSND (attr);
5696
5697 /* There should be a DW_AT_ranges_base attribute here (if needed).
5698 We need the value before we can process DW_AT_ranges. */
5699 cu->ranges_base = 0;
5700 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5701 if (attr)
5702 cu->ranges_base = DW_UNSND (attr);
5703 }
5704 else if (stub_comp_dir != NULL)
5705 {
5706 /* Reconstruct the comp_dir attribute to simplify the code below. */
5707 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5708 comp_dir->name = DW_AT_comp_dir;
5709 comp_dir->form = DW_FORM_string;
5710 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5711 DW_STRING (comp_dir) = stub_comp_dir;
5712 }
5713
5714 /* Set up for reading the DWO CU/TU. */
5715 cu->dwo_unit = dwo_unit;
5716 section = dwo_unit->section;
5717 dwarf2_read_section (objfile, section);
5718 abfd = get_section_bfd_owner (section);
5719 begin_info_ptr = info_ptr = (section->buffer
5720 + to_underlying (dwo_unit->sect_off));
5721 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5722 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5723
5724 if (this_cu->is_debug_types)
5725 {
5726 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5727
5728 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5729 dwo_abbrev_section,
5730 info_ptr, rcuh_kind::TYPE);
5731 /* This is not an assert because it can be caused by bad debug info. */
5732 if (sig_type->signature != cu->header.signature)
5733 {
5734 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5735 " TU at offset 0x%x [in module %s]"),
5736 hex_string (sig_type->signature),
5737 hex_string (cu->header.signature),
5738 to_underlying (dwo_unit->sect_off),
5739 bfd_get_filename (abfd));
5740 }
5741 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
5742 /* For DWOs coming from DWP files, we don't know the CU length
5743 nor the type's offset in the TU until now. */
5744 dwo_unit->length = get_cu_length (&cu->header);
5745 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
5746
5747 /* Establish the type offset that can be used to lookup the type.
5748 For DWO files, we don't know it until now. */
5749 sig_type->type_offset_in_section
5750 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
5751 }
5752 else
5753 {
5754 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5755 dwo_abbrev_section,
5756 info_ptr, rcuh_kind::COMPILE);
5757 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
5758 /* For DWOs coming from DWP files, we don't know the CU length
5759 until now. */
5760 dwo_unit->length = get_cu_length (&cu->header);
5761 }
5762
5763 /* Replace the CU's original abbrev table with the DWO's.
5764 Reminder: We can't read the abbrev table until we've read the header. */
5765 if (abbrev_table_provided)
5766 {
5767 /* Don't free the provided abbrev table, the caller of
5768 init_cutu_and_read_dies owns it. */
5769 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5770 /* Ensure the DWO abbrev table gets freed. */
5771 make_cleanup (dwarf2_free_abbrev_table, cu);
5772 }
5773 else
5774 {
5775 dwarf2_free_abbrev_table (cu);
5776 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5777 /* Leave any existing abbrev table cleanup as is. */
5778 }
5779
5780 /* Read in the die, but leave space to copy over the attributes
5781 from the stub. This has the benefit of simplifying the rest of
5782 the code - all the work to maintain the illusion of a single
5783 DW_TAG_{compile,type}_unit DIE is done here. */
5784 num_extra_attrs = ((stmt_list != NULL)
5785 + (low_pc != NULL)
5786 + (high_pc != NULL)
5787 + (ranges != NULL)
5788 + (comp_dir != NULL));
5789 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5790 result_has_children, num_extra_attrs);
5791
5792 /* Copy over the attributes from the stub to the DIE we just read in. */
5793 comp_unit_die = *result_comp_unit_die;
5794 i = comp_unit_die->num_attrs;
5795 if (stmt_list != NULL)
5796 comp_unit_die->attrs[i++] = *stmt_list;
5797 if (low_pc != NULL)
5798 comp_unit_die->attrs[i++] = *low_pc;
5799 if (high_pc != NULL)
5800 comp_unit_die->attrs[i++] = *high_pc;
5801 if (ranges != NULL)
5802 comp_unit_die->attrs[i++] = *ranges;
5803 if (comp_dir != NULL)
5804 comp_unit_die->attrs[i++] = *comp_dir;
5805 comp_unit_die->num_attrs += num_extra_attrs;
5806
5807 if (dwarf_die_debug)
5808 {
5809 fprintf_unfiltered (gdb_stdlog,
5810 "Read die from %s@0x%x of %s:\n",
5811 get_section_name (section),
5812 (unsigned) (begin_info_ptr - section->buffer),
5813 bfd_get_filename (abfd));
5814 dump_die (comp_unit_die, dwarf_die_debug);
5815 }
5816
5817 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5818 TUs by skipping the stub and going directly to the entry in the DWO file.
5819 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5820 to get it via circuitous means. Blech. */
5821 if (comp_dir != NULL)
5822 result_reader->comp_dir = DW_STRING (comp_dir);
5823
5824 /* Skip dummy compilation units. */
5825 if (info_ptr >= begin_info_ptr + dwo_unit->length
5826 || peek_abbrev_code (abfd, info_ptr) == 0)
5827 return 0;
5828
5829 *result_info_ptr = info_ptr;
5830 return 1;
5831 }
5832
5833 /* Subroutine of init_cutu_and_read_dies to simplify it.
5834 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5835 Returns NULL if the specified DWO unit cannot be found. */
5836
5837 static struct dwo_unit *
5838 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5839 struct die_info *comp_unit_die)
5840 {
5841 struct dwarf2_cu *cu = this_cu->cu;
5842 struct attribute *attr;
5843 ULONGEST signature;
5844 struct dwo_unit *dwo_unit;
5845 const char *comp_dir, *dwo_name;
5846
5847 gdb_assert (cu != NULL);
5848
5849 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5850 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5851 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5852
5853 if (this_cu->is_debug_types)
5854 {
5855 struct signatured_type *sig_type;
5856
5857 /* Since this_cu is the first member of struct signatured_type,
5858 we can go from a pointer to one to a pointer to the other. */
5859 sig_type = (struct signatured_type *) this_cu;
5860 signature = sig_type->signature;
5861 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5862 }
5863 else
5864 {
5865 struct attribute *attr;
5866
5867 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5868 if (! attr)
5869 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5870 " [in module %s]"),
5871 dwo_name, objfile_name (this_cu->objfile));
5872 signature = DW_UNSND (attr);
5873 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5874 signature);
5875 }
5876
5877 return dwo_unit;
5878 }
5879
5880 /* Subroutine of init_cutu_and_read_dies to simplify it.
5881 See it for a description of the parameters.
5882 Read a TU directly from a DWO file, bypassing the stub.
5883
5884 Note: This function could be a little bit simpler if we shared cleanups
5885 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5886 to do, so we keep this function self-contained. Or we could move this
5887 into our caller, but it's complex enough already. */
5888
5889 static void
5890 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5891 int use_existing_cu, int keep,
5892 die_reader_func_ftype *die_reader_func,
5893 void *data)
5894 {
5895 struct dwarf2_cu *cu;
5896 struct signatured_type *sig_type;
5897 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5898 struct die_reader_specs reader;
5899 const gdb_byte *info_ptr;
5900 struct die_info *comp_unit_die;
5901 int has_children;
5902
5903 /* Verify we can do the following downcast, and that we have the
5904 data we need. */
5905 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5906 sig_type = (struct signatured_type *) this_cu;
5907 gdb_assert (sig_type->dwo_unit != NULL);
5908
5909 cleanups = make_cleanup (null_cleanup, NULL);
5910
5911 if (use_existing_cu && this_cu->cu != NULL)
5912 {
5913 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5914 cu = this_cu->cu;
5915 /* There's no need to do the rereading_dwo_cu handling that
5916 init_cutu_and_read_dies does since we don't read the stub. */
5917 }
5918 else
5919 {
5920 /* If !use_existing_cu, this_cu->cu must be NULL. */
5921 gdb_assert (this_cu->cu == NULL);
5922 cu = XNEW (struct dwarf2_cu);
5923 init_one_comp_unit (cu, this_cu);
5924 /* If an error occurs while loading, release our storage. */
5925 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5926 }
5927
5928 /* A future optimization, if needed, would be to use an existing
5929 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5930 could share abbrev tables. */
5931
5932 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5933 0 /* abbrev_table_provided */,
5934 NULL /* stub_comp_unit_die */,
5935 sig_type->dwo_unit->dwo_file->comp_dir,
5936 &reader, &info_ptr,
5937 &comp_unit_die, &has_children) == 0)
5938 {
5939 /* Dummy die. */
5940 do_cleanups (cleanups);
5941 return;
5942 }
5943
5944 /* All the "real" work is done here. */
5945 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5946
5947 /* This duplicates the code in init_cutu_and_read_dies,
5948 but the alternative is making the latter more complex.
5949 This function is only for the special case of using DWO files directly:
5950 no point in overly complicating the general case just to handle this. */
5951 if (free_cu_cleanup != NULL)
5952 {
5953 if (keep)
5954 {
5955 /* We've successfully allocated this compilation unit. Let our
5956 caller clean it up when finished with it. */
5957 discard_cleanups (free_cu_cleanup);
5958
5959 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5960 So we have to manually free the abbrev table. */
5961 dwarf2_free_abbrev_table (cu);
5962
5963 /* Link this CU into read_in_chain. */
5964 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5965 dwarf2_per_objfile->read_in_chain = this_cu;
5966 }
5967 else
5968 do_cleanups (free_cu_cleanup);
5969 }
5970
5971 do_cleanups (cleanups);
5972 }
5973
5974 /* Initialize a CU (or TU) and read its DIEs.
5975 If the CU defers to a DWO file, read the DWO file as well.
5976
5977 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5978 Otherwise the table specified in the comp unit header is read in and used.
5979 This is an optimization for when we already have the abbrev table.
5980
5981 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5982 Otherwise, a new CU is allocated with xmalloc.
5983
5984 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5985 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5986
5987 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5988 linker) then DIE_READER_FUNC will not get called. */
5989
5990 static void
5991 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5992 struct abbrev_table *abbrev_table,
5993 int use_existing_cu, int keep,
5994 die_reader_func_ftype *die_reader_func,
5995 void *data)
5996 {
5997 struct objfile *objfile = dwarf2_per_objfile->objfile;
5998 struct dwarf2_section_info *section = this_cu->section;
5999 bfd *abfd = get_section_bfd_owner (section);
6000 struct dwarf2_cu *cu;
6001 const gdb_byte *begin_info_ptr, *info_ptr;
6002 struct die_reader_specs reader;
6003 struct die_info *comp_unit_die;
6004 int has_children;
6005 struct attribute *attr;
6006 struct cleanup *cleanups, *free_cu_cleanup = NULL;
6007 struct signatured_type *sig_type = NULL;
6008 struct dwarf2_section_info *abbrev_section;
6009 /* Non-zero if CU currently points to a DWO file and we need to
6010 reread it. When this happens we need to reread the skeleton die
6011 before we can reread the DWO file (this only applies to CUs, not TUs). */
6012 int rereading_dwo_cu = 0;
6013
6014 if (dwarf_die_debug)
6015 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
6016 this_cu->is_debug_types ? "type" : "comp",
6017 to_underlying (this_cu->sect_off));
6018
6019 if (use_existing_cu)
6020 gdb_assert (keep);
6021
6022 /* If we're reading a TU directly from a DWO file, including a virtual DWO
6023 file (instead of going through the stub), short-circuit all of this. */
6024 if (this_cu->reading_dwo_directly)
6025 {
6026 /* Narrow down the scope of possibilities to have to understand. */
6027 gdb_assert (this_cu->is_debug_types);
6028 gdb_assert (abbrev_table == NULL);
6029 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
6030 die_reader_func, data);
6031 return;
6032 }
6033
6034 cleanups = make_cleanup (null_cleanup, NULL);
6035
6036 /* This is cheap if the section is already read in. */
6037 dwarf2_read_section (objfile, section);
6038
6039 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6040
6041 abbrev_section = get_abbrev_section_for_cu (this_cu);
6042
6043 if (use_existing_cu && this_cu->cu != NULL)
6044 {
6045 cu = this_cu->cu;
6046 /* If this CU is from a DWO file we need to start over, we need to
6047 refetch the attributes from the skeleton CU.
6048 This could be optimized by retrieving those attributes from when we
6049 were here the first time: the previous comp_unit_die was stored in
6050 comp_unit_obstack. But there's no data yet that we need this
6051 optimization. */
6052 if (cu->dwo_unit != NULL)
6053 rereading_dwo_cu = 1;
6054 }
6055 else
6056 {
6057 /* If !use_existing_cu, this_cu->cu must be NULL. */
6058 gdb_assert (this_cu->cu == NULL);
6059 cu = XNEW (struct dwarf2_cu);
6060 init_one_comp_unit (cu, this_cu);
6061 /* If an error occurs while loading, release our storage. */
6062 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
6063 }
6064
6065 /* Get the header. */
6066 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
6067 {
6068 /* We already have the header, there's no need to read it in again. */
6069 info_ptr += to_underlying (cu->header.first_die_cu_offset);
6070 }
6071 else
6072 {
6073 if (this_cu->is_debug_types)
6074 {
6075 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
6076 abbrev_section, info_ptr,
6077 rcuh_kind::TYPE);
6078
6079 /* Since per_cu is the first member of struct signatured_type,
6080 we can go from a pointer to one to a pointer to the other. */
6081 sig_type = (struct signatured_type *) this_cu;
6082 gdb_assert (sig_type->signature == cu->header.signature);
6083 gdb_assert (sig_type->type_offset_in_tu
6084 == cu->header.type_cu_offset_in_tu);
6085 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6086
6087 /* LENGTH has not been set yet for type units if we're
6088 using .gdb_index. */
6089 this_cu->length = get_cu_length (&cu->header);
6090
6091 /* Establish the type offset that can be used to lookup the type. */
6092 sig_type->type_offset_in_section =
6093 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
6094
6095 this_cu->dwarf_version = cu->header.version;
6096 }
6097 else
6098 {
6099 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
6100 abbrev_section,
6101 info_ptr,
6102 rcuh_kind::COMPILE);
6103
6104 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6105 gdb_assert (this_cu->length == get_cu_length (&cu->header));
6106 this_cu->dwarf_version = cu->header.version;
6107 }
6108 }
6109
6110 /* Skip dummy compilation units. */
6111 if (info_ptr >= begin_info_ptr + this_cu->length
6112 || peek_abbrev_code (abfd, info_ptr) == 0)
6113 {
6114 do_cleanups (cleanups);
6115 return;
6116 }
6117
6118 /* If we don't have them yet, read the abbrevs for this compilation unit.
6119 And if we need to read them now, make sure they're freed when we're
6120 done. Note that it's important that if the CU had an abbrev table
6121 on entry we don't free it when we're done: Somewhere up the call stack
6122 it may be in use. */
6123 if (abbrev_table != NULL)
6124 {
6125 gdb_assert (cu->abbrev_table == NULL);
6126 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
6127 cu->abbrev_table = abbrev_table;
6128 }
6129 else if (cu->abbrev_table == NULL)
6130 {
6131 dwarf2_read_abbrevs (cu, abbrev_section);
6132 make_cleanup (dwarf2_free_abbrev_table, cu);
6133 }
6134 else if (rereading_dwo_cu)
6135 {
6136 dwarf2_free_abbrev_table (cu);
6137 dwarf2_read_abbrevs (cu, abbrev_section);
6138 }
6139
6140 /* Read the top level CU/TU die. */
6141 init_cu_die_reader (&reader, cu, section, NULL);
6142 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
6143
6144 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
6145 from the DWO file.
6146 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
6147 DWO CU, that this test will fail (the attribute will not be present). */
6148 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
6149 if (attr)
6150 {
6151 struct dwo_unit *dwo_unit;
6152 struct die_info *dwo_comp_unit_die;
6153
6154 if (has_children)
6155 {
6156 complaint (&symfile_complaints,
6157 _("compilation unit with DW_AT_GNU_dwo_name"
6158 " has children (offset 0x%x) [in module %s]"),
6159 to_underlying (this_cu->sect_off), bfd_get_filename (abfd));
6160 }
6161 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6162 if (dwo_unit != NULL)
6163 {
6164 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
6165 abbrev_table != NULL,
6166 comp_unit_die, NULL,
6167 &reader, &info_ptr,
6168 &dwo_comp_unit_die, &has_children) == 0)
6169 {
6170 /* Dummy die. */
6171 do_cleanups (cleanups);
6172 return;
6173 }
6174 comp_unit_die = dwo_comp_unit_die;
6175 }
6176 else
6177 {
6178 /* Yikes, we couldn't find the rest of the DIE, we only have
6179 the stub. A complaint has already been logged. There's
6180 not much more we can do except pass on the stub DIE to
6181 die_reader_func. We don't want to throw an error on bad
6182 debug info. */
6183 }
6184 }
6185
6186 /* All of the above is setup for this call. Yikes. */
6187 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
6188
6189 /* Done, clean up. */
6190 if (free_cu_cleanup != NULL)
6191 {
6192 if (keep)
6193 {
6194 /* We've successfully allocated this compilation unit. Let our
6195 caller clean it up when finished with it. */
6196 discard_cleanups (free_cu_cleanup);
6197
6198 /* We can only discard free_cu_cleanup and all subsequent cleanups.
6199 So we have to manually free the abbrev table. */
6200 dwarf2_free_abbrev_table (cu);
6201
6202 /* Link this CU into read_in_chain. */
6203 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
6204 dwarf2_per_objfile->read_in_chain = this_cu;
6205 }
6206 else
6207 do_cleanups (free_cu_cleanup);
6208 }
6209
6210 do_cleanups (cleanups);
6211 }
6212
6213 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
6214 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
6215 to have already done the lookup to find the DWO file).
6216
6217 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
6218 THIS_CU->is_debug_types, but nothing else.
6219
6220 We fill in THIS_CU->length.
6221
6222 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
6223 linker) then DIE_READER_FUNC will not get called.
6224
6225 THIS_CU->cu is always freed when done.
6226 This is done in order to not leave THIS_CU->cu in a state where we have
6227 to care whether it refers to the "main" CU or the DWO CU. */
6228
6229 static void
6230 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
6231 struct dwo_file *dwo_file,
6232 die_reader_func_ftype *die_reader_func,
6233 void *data)
6234 {
6235 struct objfile *objfile = dwarf2_per_objfile->objfile;
6236 struct dwarf2_section_info *section = this_cu->section;
6237 bfd *abfd = get_section_bfd_owner (section);
6238 struct dwarf2_section_info *abbrev_section;
6239 struct dwarf2_cu cu;
6240 const gdb_byte *begin_info_ptr, *info_ptr;
6241 struct die_reader_specs reader;
6242 struct cleanup *cleanups;
6243 struct die_info *comp_unit_die;
6244 int has_children;
6245
6246 if (dwarf_die_debug)
6247 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
6248 this_cu->is_debug_types ? "type" : "comp",
6249 to_underlying (this_cu->sect_off));
6250
6251 gdb_assert (this_cu->cu == NULL);
6252
6253 abbrev_section = (dwo_file != NULL
6254 ? &dwo_file->sections.abbrev
6255 : get_abbrev_section_for_cu (this_cu));
6256
6257 /* This is cheap if the section is already read in. */
6258 dwarf2_read_section (objfile, section);
6259
6260 init_one_comp_unit (&cu, this_cu);
6261
6262 cleanups = make_cleanup (free_stack_comp_unit, &cu);
6263
6264 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6265 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
6266 abbrev_section, info_ptr,
6267 (this_cu->is_debug_types
6268 ? rcuh_kind::TYPE
6269 : rcuh_kind::COMPILE));
6270
6271 this_cu->length = get_cu_length (&cu.header);
6272
6273 /* Skip dummy compilation units. */
6274 if (info_ptr >= begin_info_ptr + this_cu->length
6275 || peek_abbrev_code (abfd, info_ptr) == 0)
6276 {
6277 do_cleanups (cleanups);
6278 return;
6279 }
6280
6281 dwarf2_read_abbrevs (&cu, abbrev_section);
6282 make_cleanup (dwarf2_free_abbrev_table, &cu);
6283
6284 init_cu_die_reader (&reader, &cu, section, dwo_file);
6285 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
6286
6287 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
6288
6289 do_cleanups (cleanups);
6290 }
6291
6292 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
6293 does not lookup the specified DWO file.
6294 This cannot be used to read DWO files.
6295
6296 THIS_CU->cu is always freed when done.
6297 This is done in order to not leave THIS_CU->cu in a state where we have
6298 to care whether it refers to the "main" CU or the DWO CU.
6299 We can revisit this if the data shows there's a performance issue. */
6300
6301 static void
6302 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
6303 die_reader_func_ftype *die_reader_func,
6304 void *data)
6305 {
6306 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
6307 }
6308 \f
6309 /* Type Unit Groups.
6310
6311 Type Unit Groups are a way to collapse the set of all TUs (type units) into
6312 a more manageable set. The grouping is done by DW_AT_stmt_list entry
6313 so that all types coming from the same compilation (.o file) are grouped
6314 together. A future step could be to put the types in the same symtab as
6315 the CU the types ultimately came from. */
6316
6317 static hashval_t
6318 hash_type_unit_group (const void *item)
6319 {
6320 const struct type_unit_group *tu_group
6321 = (const struct type_unit_group *) item;
6322
6323 return hash_stmt_list_entry (&tu_group->hash);
6324 }
6325
6326 static int
6327 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
6328 {
6329 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
6330 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
6331
6332 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
6333 }
6334
6335 /* Allocate a hash table for type unit groups. */
6336
6337 static htab_t
6338 allocate_type_unit_groups_table (void)
6339 {
6340 return htab_create_alloc_ex (3,
6341 hash_type_unit_group,
6342 eq_type_unit_group,
6343 NULL,
6344 &dwarf2_per_objfile->objfile->objfile_obstack,
6345 hashtab_obstack_allocate,
6346 dummy_obstack_deallocate);
6347 }
6348
6349 /* Type units that don't have DW_AT_stmt_list are grouped into their own
6350 partial symtabs. We combine several TUs per psymtab to not let the size
6351 of any one psymtab grow too big. */
6352 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
6353 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
6354
6355 /* Helper routine for get_type_unit_group.
6356 Create the type_unit_group object used to hold one or more TUs. */
6357
6358 static struct type_unit_group *
6359 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
6360 {
6361 struct objfile *objfile = dwarf2_per_objfile->objfile;
6362 struct dwarf2_per_cu_data *per_cu;
6363 struct type_unit_group *tu_group;
6364
6365 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6366 struct type_unit_group);
6367 per_cu = &tu_group->per_cu;
6368 per_cu->objfile = objfile;
6369
6370 if (dwarf2_per_objfile->using_index)
6371 {
6372 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6373 struct dwarf2_per_cu_quick_data);
6374 }
6375 else
6376 {
6377 unsigned int line_offset = to_underlying (line_offset_struct);
6378 struct partial_symtab *pst;
6379 char *name;
6380
6381 /* Give the symtab a useful name for debug purposes. */
6382 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
6383 name = xstrprintf ("<type_units_%d>",
6384 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
6385 else
6386 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
6387
6388 pst = create_partial_symtab (per_cu, name);
6389 pst->anonymous = 1;
6390
6391 xfree (name);
6392 }
6393
6394 tu_group->hash.dwo_unit = cu->dwo_unit;
6395 tu_group->hash.line_sect_off = line_offset_struct;
6396
6397 return tu_group;
6398 }
6399
6400 /* Look up the type_unit_group for type unit CU, and create it if necessary.
6401 STMT_LIST is a DW_AT_stmt_list attribute. */
6402
6403 static struct type_unit_group *
6404 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
6405 {
6406 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6407 struct type_unit_group *tu_group;
6408 void **slot;
6409 unsigned int line_offset;
6410 struct type_unit_group type_unit_group_for_lookup;
6411
6412 if (dwarf2_per_objfile->type_unit_groups == NULL)
6413 {
6414 dwarf2_per_objfile->type_unit_groups =
6415 allocate_type_unit_groups_table ();
6416 }
6417
6418 /* Do we need to create a new group, or can we use an existing one? */
6419
6420 if (stmt_list)
6421 {
6422 line_offset = DW_UNSND (stmt_list);
6423 ++tu_stats->nr_symtab_sharers;
6424 }
6425 else
6426 {
6427 /* Ugh, no stmt_list. Rare, but we have to handle it.
6428 We can do various things here like create one group per TU or
6429 spread them over multiple groups to split up the expansion work.
6430 To avoid worst case scenarios (too many groups or too large groups)
6431 we, umm, group them in bunches. */
6432 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
6433 | (tu_stats->nr_stmt_less_type_units
6434 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
6435 ++tu_stats->nr_stmt_less_type_units;
6436 }
6437
6438 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
6439 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
6440 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
6441 &type_unit_group_for_lookup, INSERT);
6442 if (*slot != NULL)
6443 {
6444 tu_group = (struct type_unit_group *) *slot;
6445 gdb_assert (tu_group != NULL);
6446 }
6447 else
6448 {
6449 sect_offset line_offset_struct = (sect_offset) line_offset;
6450 tu_group = create_type_unit_group (cu, line_offset_struct);
6451 *slot = tu_group;
6452 ++tu_stats->nr_symtabs;
6453 }
6454
6455 return tu_group;
6456 }
6457 \f
6458 /* Partial symbol tables. */
6459
6460 /* Create a psymtab named NAME and assign it to PER_CU.
6461
6462 The caller must fill in the following details:
6463 dirname, textlow, texthigh. */
6464
6465 static struct partial_symtab *
6466 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
6467 {
6468 struct objfile *objfile = per_cu->objfile;
6469 struct partial_symtab *pst;
6470
6471 pst = start_psymtab_common (objfile, name, 0,
6472 objfile->global_psymbols,
6473 objfile->static_psymbols);
6474
6475 pst->psymtabs_addrmap_supported = 1;
6476
6477 /* This is the glue that links PST into GDB's symbol API. */
6478 pst->read_symtab_private = per_cu;
6479 pst->read_symtab = dwarf2_read_symtab;
6480 per_cu->v.psymtab = pst;
6481
6482 return pst;
6483 }
6484
6485 /* The DATA object passed to process_psymtab_comp_unit_reader has this
6486 type. */
6487
6488 struct process_psymtab_comp_unit_data
6489 {
6490 /* True if we are reading a DW_TAG_partial_unit. */
6491
6492 int want_partial_unit;
6493
6494 /* The "pretend" language that is used if the CU doesn't declare a
6495 language. */
6496
6497 enum language pretend_language;
6498 };
6499
6500 /* die_reader_func for process_psymtab_comp_unit. */
6501
6502 static void
6503 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
6504 const gdb_byte *info_ptr,
6505 struct die_info *comp_unit_die,
6506 int has_children,
6507 void *data)
6508 {
6509 struct dwarf2_cu *cu = reader->cu;
6510 struct objfile *objfile = cu->objfile;
6511 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6512 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6513 CORE_ADDR baseaddr;
6514 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6515 struct partial_symtab *pst;
6516 enum pc_bounds_kind cu_bounds_kind;
6517 const char *filename;
6518 struct process_psymtab_comp_unit_data *info
6519 = (struct process_psymtab_comp_unit_data *) data;
6520
6521 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
6522 return;
6523
6524 gdb_assert (! per_cu->is_debug_types);
6525
6526 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
6527
6528 cu->list_in_scope = &file_symbols;
6529
6530 /* Allocate a new partial symbol table structure. */
6531 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6532 if (filename == NULL)
6533 filename = "";
6534
6535 pst = create_partial_symtab (per_cu, filename);
6536
6537 /* This must be done before calling dwarf2_build_include_psymtabs. */
6538 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6539
6540 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6541
6542 dwarf2_find_base_address (comp_unit_die, cu);
6543
6544 /* Possibly set the default values of LOWPC and HIGHPC from
6545 `DW_AT_ranges'. */
6546 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6547 &best_highpc, cu, pst);
6548 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
6549 /* Store the contiguous range if it is not empty; it can be empty for
6550 CUs with no code. */
6551 addrmap_set_empty (objfile->psymtabs_addrmap,
6552 gdbarch_adjust_dwarf2_addr (gdbarch,
6553 best_lowpc + baseaddr),
6554 gdbarch_adjust_dwarf2_addr (gdbarch,
6555 best_highpc + baseaddr) - 1,
6556 pst);
6557
6558 /* Check if comp unit has_children.
6559 If so, read the rest of the partial symbols from this comp unit.
6560 If not, there's no more debug_info for this comp unit. */
6561 if (has_children)
6562 {
6563 struct partial_die_info *first_die;
6564 CORE_ADDR lowpc, highpc;
6565
6566 lowpc = ((CORE_ADDR) -1);
6567 highpc = ((CORE_ADDR) 0);
6568
6569 first_die = load_partial_dies (reader, info_ptr, 1);
6570
6571 scan_partial_symbols (first_die, &lowpc, &highpc,
6572 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6573
6574 /* If we didn't find a lowpc, set it to highpc to avoid
6575 complaints from `maint check'. */
6576 if (lowpc == ((CORE_ADDR) -1))
6577 lowpc = highpc;
6578
6579 /* If the compilation unit didn't have an explicit address range,
6580 then use the information extracted from its child dies. */
6581 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6582 {
6583 best_lowpc = lowpc;
6584 best_highpc = highpc;
6585 }
6586 }
6587 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6588 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6589
6590 end_psymtab_common (objfile, pst);
6591
6592 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6593 {
6594 int i;
6595 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6596 struct dwarf2_per_cu_data *iter;
6597
6598 /* Fill in 'dependencies' here; we fill in 'users' in a
6599 post-pass. */
6600 pst->number_of_dependencies = len;
6601 pst->dependencies =
6602 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6603 for (i = 0;
6604 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6605 i, iter);
6606 ++i)
6607 pst->dependencies[i] = iter->v.psymtab;
6608
6609 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6610 }
6611
6612 /* Get the list of files included in the current compilation unit,
6613 and build a psymtab for each of them. */
6614 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6615
6616 if (dwarf_read_debug)
6617 {
6618 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6619
6620 fprintf_unfiltered (gdb_stdlog,
6621 "Psymtab for %s unit @0x%x: %s - %s"
6622 ", %d global, %d static syms\n",
6623 per_cu->is_debug_types ? "type" : "comp",
6624 to_underlying (per_cu->sect_off),
6625 paddress (gdbarch, pst->textlow),
6626 paddress (gdbarch, pst->texthigh),
6627 pst->n_global_syms, pst->n_static_syms);
6628 }
6629 }
6630
6631 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6632 Process compilation unit THIS_CU for a psymtab. */
6633
6634 static void
6635 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6636 int want_partial_unit,
6637 enum language pretend_language)
6638 {
6639 /* If this compilation unit was already read in, free the
6640 cached copy in order to read it in again. This is
6641 necessary because we skipped some symbols when we first
6642 read in the compilation unit (see load_partial_dies).
6643 This problem could be avoided, but the benefit is unclear. */
6644 if (this_cu->cu != NULL)
6645 free_one_cached_comp_unit (this_cu);
6646
6647 if (this_cu->is_debug_types)
6648 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
6649 NULL);
6650 else
6651 {
6652 process_psymtab_comp_unit_data info;
6653 info.want_partial_unit = want_partial_unit;
6654 info.pretend_language = pretend_language;
6655 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6656 process_psymtab_comp_unit_reader, &info);
6657 }
6658
6659 /* Age out any secondary CUs. */
6660 age_cached_comp_units ();
6661 }
6662
6663 /* Reader function for build_type_psymtabs. */
6664
6665 static void
6666 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6667 const gdb_byte *info_ptr,
6668 struct die_info *type_unit_die,
6669 int has_children,
6670 void *data)
6671 {
6672 struct objfile *objfile = dwarf2_per_objfile->objfile;
6673 struct dwarf2_cu *cu = reader->cu;
6674 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6675 struct signatured_type *sig_type;
6676 struct type_unit_group *tu_group;
6677 struct attribute *attr;
6678 struct partial_die_info *first_die;
6679 CORE_ADDR lowpc, highpc;
6680 struct partial_symtab *pst;
6681
6682 gdb_assert (data == NULL);
6683 gdb_assert (per_cu->is_debug_types);
6684 sig_type = (struct signatured_type *) per_cu;
6685
6686 if (! has_children)
6687 return;
6688
6689 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6690 tu_group = get_type_unit_group (cu, attr);
6691
6692 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6693
6694 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6695 cu->list_in_scope = &file_symbols;
6696 pst = create_partial_symtab (per_cu, "");
6697 pst->anonymous = 1;
6698
6699 first_die = load_partial_dies (reader, info_ptr, 1);
6700
6701 lowpc = (CORE_ADDR) -1;
6702 highpc = (CORE_ADDR) 0;
6703 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6704
6705 end_psymtab_common (objfile, pst);
6706 }
6707
6708 /* Struct used to sort TUs by their abbreviation table offset. */
6709
6710 struct tu_abbrev_offset
6711 {
6712 struct signatured_type *sig_type;
6713 sect_offset abbrev_offset;
6714 };
6715
6716 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6717
6718 static int
6719 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6720 {
6721 const struct tu_abbrev_offset * const *a
6722 = (const struct tu_abbrev_offset * const*) ap;
6723 const struct tu_abbrev_offset * const *b
6724 = (const struct tu_abbrev_offset * const*) bp;
6725 sect_offset aoff = (*a)->abbrev_offset;
6726 sect_offset boff = (*b)->abbrev_offset;
6727
6728 return (aoff > boff) - (aoff < boff);
6729 }
6730
6731 /* Efficiently read all the type units.
6732 This does the bulk of the work for build_type_psymtabs.
6733
6734 The efficiency is because we sort TUs by the abbrev table they use and
6735 only read each abbrev table once. In one program there are 200K TUs
6736 sharing 8K abbrev tables.
6737
6738 The main purpose of this function is to support building the
6739 dwarf2_per_objfile->type_unit_groups table.
6740 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6741 can collapse the search space by grouping them by stmt_list.
6742 The savings can be significant, in the same program from above the 200K TUs
6743 share 8K stmt_list tables.
6744
6745 FUNC is expected to call get_type_unit_group, which will create the
6746 struct type_unit_group if necessary and add it to
6747 dwarf2_per_objfile->type_unit_groups. */
6748
6749 static void
6750 build_type_psymtabs_1 (void)
6751 {
6752 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6753 struct cleanup *cleanups;
6754 struct abbrev_table *abbrev_table;
6755 sect_offset abbrev_offset;
6756 struct tu_abbrev_offset *sorted_by_abbrev;
6757 int i;
6758
6759 /* It's up to the caller to not call us multiple times. */
6760 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6761
6762 if (dwarf2_per_objfile->n_type_units == 0)
6763 return;
6764
6765 /* TUs typically share abbrev tables, and there can be way more TUs than
6766 abbrev tables. Sort by abbrev table to reduce the number of times we
6767 read each abbrev table in.
6768 Alternatives are to punt or to maintain a cache of abbrev tables.
6769 This is simpler and efficient enough for now.
6770
6771 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6772 symtab to use). Typically TUs with the same abbrev offset have the same
6773 stmt_list value too so in practice this should work well.
6774
6775 The basic algorithm here is:
6776
6777 sort TUs by abbrev table
6778 for each TU with same abbrev table:
6779 read abbrev table if first user
6780 read TU top level DIE
6781 [IWBN if DWO skeletons had DW_AT_stmt_list]
6782 call FUNC */
6783
6784 if (dwarf_read_debug)
6785 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6786
6787 /* Sort in a separate table to maintain the order of all_type_units
6788 for .gdb_index: TU indices directly index all_type_units. */
6789 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6790 dwarf2_per_objfile->n_type_units);
6791 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6792 {
6793 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6794
6795 sorted_by_abbrev[i].sig_type = sig_type;
6796 sorted_by_abbrev[i].abbrev_offset =
6797 read_abbrev_offset (sig_type->per_cu.section,
6798 sig_type->per_cu.sect_off);
6799 }
6800 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6801 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6802 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6803
6804 abbrev_offset = (sect_offset) ~(unsigned) 0;
6805 abbrev_table = NULL;
6806 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6807
6808 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6809 {
6810 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6811
6812 /* Switch to the next abbrev table if necessary. */
6813 if (abbrev_table == NULL
6814 || tu->abbrev_offset != abbrev_offset)
6815 {
6816 if (abbrev_table != NULL)
6817 {
6818 abbrev_table_free (abbrev_table);
6819 /* Reset to NULL in case abbrev_table_read_table throws
6820 an error: abbrev_table_free_cleanup will get called. */
6821 abbrev_table = NULL;
6822 }
6823 abbrev_offset = tu->abbrev_offset;
6824 abbrev_table =
6825 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6826 abbrev_offset);
6827 ++tu_stats->nr_uniq_abbrev_tables;
6828 }
6829
6830 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6831 build_type_psymtabs_reader, NULL);
6832 }
6833
6834 do_cleanups (cleanups);
6835 }
6836
6837 /* Print collected type unit statistics. */
6838
6839 static void
6840 print_tu_stats (void)
6841 {
6842 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6843
6844 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6845 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6846 dwarf2_per_objfile->n_type_units);
6847 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6848 tu_stats->nr_uniq_abbrev_tables);
6849 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6850 tu_stats->nr_symtabs);
6851 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6852 tu_stats->nr_symtab_sharers);
6853 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6854 tu_stats->nr_stmt_less_type_units);
6855 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6856 tu_stats->nr_all_type_units_reallocs);
6857 }
6858
6859 /* Traversal function for build_type_psymtabs. */
6860
6861 static int
6862 build_type_psymtab_dependencies (void **slot, void *info)
6863 {
6864 struct objfile *objfile = dwarf2_per_objfile->objfile;
6865 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6866 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6867 struct partial_symtab *pst = per_cu->v.psymtab;
6868 int len = VEC_length (sig_type_ptr, tu_group->tus);
6869 struct signatured_type *iter;
6870 int i;
6871
6872 gdb_assert (len > 0);
6873 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6874
6875 pst->number_of_dependencies = len;
6876 pst->dependencies =
6877 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6878 for (i = 0;
6879 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6880 ++i)
6881 {
6882 gdb_assert (iter->per_cu.is_debug_types);
6883 pst->dependencies[i] = iter->per_cu.v.psymtab;
6884 iter->type_unit_group = tu_group;
6885 }
6886
6887 VEC_free (sig_type_ptr, tu_group->tus);
6888
6889 return 1;
6890 }
6891
6892 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6893 Build partial symbol tables for the .debug_types comp-units. */
6894
6895 static void
6896 build_type_psymtabs (struct objfile *objfile)
6897 {
6898 if (! create_all_type_units (objfile))
6899 return;
6900
6901 build_type_psymtabs_1 ();
6902 }
6903
6904 /* Traversal function for process_skeletonless_type_unit.
6905 Read a TU in a DWO file and build partial symbols for it. */
6906
6907 static int
6908 process_skeletonless_type_unit (void **slot, void *info)
6909 {
6910 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6911 struct objfile *objfile = (struct objfile *) info;
6912 struct signatured_type find_entry, *entry;
6913
6914 /* If this TU doesn't exist in the global table, add it and read it in. */
6915
6916 if (dwarf2_per_objfile->signatured_types == NULL)
6917 {
6918 dwarf2_per_objfile->signatured_types
6919 = allocate_signatured_type_table (objfile);
6920 }
6921
6922 find_entry.signature = dwo_unit->signature;
6923 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6924 INSERT);
6925 /* If we've already seen this type there's nothing to do. What's happening
6926 is we're doing our own version of comdat-folding here. */
6927 if (*slot != NULL)
6928 return 1;
6929
6930 /* This does the job that create_all_type_units would have done for
6931 this TU. */
6932 entry = add_type_unit (dwo_unit->signature, slot);
6933 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6934 *slot = entry;
6935
6936 /* This does the job that build_type_psymtabs_1 would have done. */
6937 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6938 build_type_psymtabs_reader, NULL);
6939
6940 return 1;
6941 }
6942
6943 /* Traversal function for process_skeletonless_type_units. */
6944
6945 static int
6946 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6947 {
6948 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6949
6950 if (dwo_file->tus != NULL)
6951 {
6952 htab_traverse_noresize (dwo_file->tus,
6953 process_skeletonless_type_unit, info);
6954 }
6955
6956 return 1;
6957 }
6958
6959 /* Scan all TUs of DWO files, verifying we've processed them.
6960 This is needed in case a TU was emitted without its skeleton.
6961 Note: This can't be done until we know what all the DWO files are. */
6962
6963 static void
6964 process_skeletonless_type_units (struct objfile *objfile)
6965 {
6966 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6967 if (get_dwp_file () == NULL
6968 && dwarf2_per_objfile->dwo_files != NULL)
6969 {
6970 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6971 process_dwo_file_for_skeletonless_type_units,
6972 objfile);
6973 }
6974 }
6975
6976 /* Compute the 'user' field for each psymtab in OBJFILE. */
6977
6978 static void
6979 set_partial_user (struct objfile *objfile)
6980 {
6981 int i;
6982
6983 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6984 {
6985 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6986 struct partial_symtab *pst = per_cu->v.psymtab;
6987 int j;
6988
6989 if (pst == NULL)
6990 continue;
6991
6992 for (j = 0; j < pst->number_of_dependencies; ++j)
6993 {
6994 /* Set the 'user' field only if it is not already set. */
6995 if (pst->dependencies[j]->user == NULL)
6996 pst->dependencies[j]->user = pst;
6997 }
6998 }
6999 }
7000
7001 /* Build the partial symbol table by doing a quick pass through the
7002 .debug_info and .debug_abbrev sections. */
7003
7004 static void
7005 dwarf2_build_psymtabs_hard (struct objfile *objfile)
7006 {
7007 struct cleanup *back_to;
7008 int i;
7009
7010 if (dwarf_read_debug)
7011 {
7012 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
7013 objfile_name (objfile));
7014 }
7015
7016 dwarf2_per_objfile->reading_partial_symbols = 1;
7017
7018 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
7019
7020 /* Any cached compilation units will be linked by the per-objfile
7021 read_in_chain. Make sure to free them when we're done. */
7022 back_to = make_cleanup (free_cached_comp_units, NULL);
7023
7024 build_type_psymtabs (objfile);
7025
7026 create_all_comp_units (objfile);
7027
7028 /* Create a temporary address map on a temporary obstack. We later
7029 copy this to the final obstack. */
7030 auto_obstack temp_obstack;
7031
7032 scoped_restore save_psymtabs_addrmap
7033 = make_scoped_restore (&objfile->psymtabs_addrmap,
7034 addrmap_create_mutable (&temp_obstack));
7035
7036 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
7037 {
7038 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7039
7040 process_psymtab_comp_unit (per_cu, 0, language_minimal);
7041 }
7042
7043 /* This has to wait until we read the CUs, we need the list of DWOs. */
7044 process_skeletonless_type_units (objfile);
7045
7046 /* Now that all TUs have been processed we can fill in the dependencies. */
7047 if (dwarf2_per_objfile->type_unit_groups != NULL)
7048 {
7049 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
7050 build_type_psymtab_dependencies, NULL);
7051 }
7052
7053 if (dwarf_read_debug)
7054 print_tu_stats ();
7055
7056 set_partial_user (objfile);
7057
7058 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
7059 &objfile->objfile_obstack);
7060 /* At this point we want to keep the address map. */
7061 save_psymtabs_addrmap.release ();
7062
7063 do_cleanups (back_to);
7064
7065 if (dwarf_read_debug)
7066 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
7067 objfile_name (objfile));
7068 }
7069
7070 /* die_reader_func for load_partial_comp_unit. */
7071
7072 static void
7073 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
7074 const gdb_byte *info_ptr,
7075 struct die_info *comp_unit_die,
7076 int has_children,
7077 void *data)
7078 {
7079 struct dwarf2_cu *cu = reader->cu;
7080
7081 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
7082
7083 /* Check if comp unit has_children.
7084 If so, read the rest of the partial symbols from this comp unit.
7085 If not, there's no more debug_info for this comp unit. */
7086 if (has_children)
7087 load_partial_dies (reader, info_ptr, 0);
7088 }
7089
7090 /* Load the partial DIEs for a secondary CU into memory.
7091 This is also used when rereading a primary CU with load_all_dies. */
7092
7093 static void
7094 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
7095 {
7096 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7097 load_partial_comp_unit_reader, NULL);
7098 }
7099
7100 static void
7101 read_comp_units_from_section (struct objfile *objfile,
7102 struct dwarf2_section_info *section,
7103 struct dwarf2_section_info *abbrev_section,
7104 unsigned int is_dwz,
7105 int *n_allocated,
7106 int *n_comp_units,
7107 struct dwarf2_per_cu_data ***all_comp_units)
7108 {
7109 const gdb_byte *info_ptr;
7110 bfd *abfd = get_section_bfd_owner (section);
7111
7112 if (dwarf_read_debug)
7113 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
7114 get_section_name (section),
7115 get_section_file_name (section));
7116
7117 dwarf2_read_section (objfile, section);
7118
7119 info_ptr = section->buffer;
7120
7121 while (info_ptr < section->buffer + section->size)
7122 {
7123 struct dwarf2_per_cu_data *this_cu;
7124
7125 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
7126
7127 comp_unit_head cu_header;
7128 read_and_check_comp_unit_head (&cu_header, section, abbrev_section,
7129 info_ptr, rcuh_kind::COMPILE);
7130
7131 /* Save the compilation unit for later lookup. */
7132 if (cu_header.unit_type != DW_UT_type)
7133 {
7134 this_cu = XOBNEW (&objfile->objfile_obstack,
7135 struct dwarf2_per_cu_data);
7136 memset (this_cu, 0, sizeof (*this_cu));
7137 }
7138 else
7139 {
7140 auto sig_type = XOBNEW (&objfile->objfile_obstack,
7141 struct signatured_type);
7142 memset (sig_type, 0, sizeof (*sig_type));
7143 sig_type->signature = cu_header.signature;
7144 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
7145 this_cu = &sig_type->per_cu;
7146 }
7147 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
7148 this_cu->sect_off = sect_off;
7149 this_cu->length = cu_header.length + cu_header.initial_length_size;
7150 this_cu->is_dwz = is_dwz;
7151 this_cu->objfile = objfile;
7152 this_cu->section = section;
7153
7154 if (*n_comp_units == *n_allocated)
7155 {
7156 *n_allocated *= 2;
7157 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
7158 *all_comp_units, *n_allocated);
7159 }
7160 (*all_comp_units)[*n_comp_units] = this_cu;
7161 ++*n_comp_units;
7162
7163 info_ptr = info_ptr + this_cu->length;
7164 }
7165 }
7166
7167 /* Create a list of all compilation units in OBJFILE.
7168 This is only done for -readnow and building partial symtabs. */
7169
7170 static void
7171 create_all_comp_units (struct objfile *objfile)
7172 {
7173 int n_allocated;
7174 int n_comp_units;
7175 struct dwarf2_per_cu_data **all_comp_units;
7176 struct dwz_file *dwz;
7177
7178 n_comp_units = 0;
7179 n_allocated = 10;
7180 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
7181
7182 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info,
7183 &dwarf2_per_objfile->abbrev, 0,
7184 &n_allocated, &n_comp_units, &all_comp_units);
7185
7186 dwz = dwarf2_get_dwz_file ();
7187 if (dwz != NULL)
7188 read_comp_units_from_section (objfile, &dwz->info, &dwz->abbrev, 1,
7189 &n_allocated, &n_comp_units,
7190 &all_comp_units);
7191
7192 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
7193 struct dwarf2_per_cu_data *,
7194 n_comp_units);
7195 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
7196 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
7197 xfree (all_comp_units);
7198 dwarf2_per_objfile->n_comp_units = n_comp_units;
7199 }
7200
7201 /* Process all loaded DIEs for compilation unit CU, starting at
7202 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
7203 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
7204 DW_AT_ranges). See the comments of add_partial_subprogram on how
7205 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
7206
7207 static void
7208 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
7209 CORE_ADDR *highpc, int set_addrmap,
7210 struct dwarf2_cu *cu)
7211 {
7212 struct partial_die_info *pdi;
7213
7214 /* Now, march along the PDI's, descending into ones which have
7215 interesting children but skipping the children of the other ones,
7216 until we reach the end of the compilation unit. */
7217
7218 pdi = first_die;
7219
7220 while (pdi != NULL)
7221 {
7222 fixup_partial_die (pdi, cu);
7223
7224 /* Anonymous namespaces or modules have no name but have interesting
7225 children, so we need to look at them. Ditto for anonymous
7226 enums. */
7227
7228 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
7229 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
7230 || pdi->tag == DW_TAG_imported_unit)
7231 {
7232 switch (pdi->tag)
7233 {
7234 case DW_TAG_subprogram:
7235 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7236 break;
7237 case DW_TAG_constant:
7238 case DW_TAG_variable:
7239 case DW_TAG_typedef:
7240 case DW_TAG_union_type:
7241 if (!pdi->is_declaration)
7242 {
7243 add_partial_symbol (pdi, cu);
7244 }
7245 break;
7246 case DW_TAG_class_type:
7247 case DW_TAG_interface_type:
7248 case DW_TAG_structure_type:
7249 if (!pdi->is_declaration)
7250 {
7251 add_partial_symbol (pdi, cu);
7252 }
7253 if (cu->language == language_rust && pdi->has_children)
7254 scan_partial_symbols (pdi->die_child, lowpc, highpc,
7255 set_addrmap, cu);
7256 break;
7257 case DW_TAG_enumeration_type:
7258 if (!pdi->is_declaration)
7259 add_partial_enumeration (pdi, cu);
7260 break;
7261 case DW_TAG_base_type:
7262 case DW_TAG_subrange_type:
7263 /* File scope base type definitions are added to the partial
7264 symbol table. */
7265 add_partial_symbol (pdi, cu);
7266 break;
7267 case DW_TAG_namespace:
7268 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
7269 break;
7270 case DW_TAG_module:
7271 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
7272 break;
7273 case DW_TAG_imported_unit:
7274 {
7275 struct dwarf2_per_cu_data *per_cu;
7276
7277 /* For now we don't handle imported units in type units. */
7278 if (cu->per_cu->is_debug_types)
7279 {
7280 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7281 " supported in type units [in module %s]"),
7282 objfile_name (cu->objfile));
7283 }
7284
7285 per_cu = dwarf2_find_containing_comp_unit (pdi->d.sect_off,
7286 pdi->is_dwz,
7287 cu->objfile);
7288
7289 /* Go read the partial unit, if needed. */
7290 if (per_cu->v.psymtab == NULL)
7291 process_psymtab_comp_unit (per_cu, 1, cu->language);
7292
7293 VEC_safe_push (dwarf2_per_cu_ptr,
7294 cu->per_cu->imported_symtabs, per_cu);
7295 }
7296 break;
7297 case DW_TAG_imported_declaration:
7298 add_partial_symbol (pdi, cu);
7299 break;
7300 default:
7301 break;
7302 }
7303 }
7304
7305 /* If the die has a sibling, skip to the sibling. */
7306
7307 pdi = pdi->die_sibling;
7308 }
7309 }
7310
7311 /* Functions used to compute the fully scoped name of a partial DIE.
7312
7313 Normally, this is simple. For C++, the parent DIE's fully scoped
7314 name is concatenated with "::" and the partial DIE's name.
7315 Enumerators are an exception; they use the scope of their parent
7316 enumeration type, i.e. the name of the enumeration type is not
7317 prepended to the enumerator.
7318
7319 There are two complexities. One is DW_AT_specification; in this
7320 case "parent" means the parent of the target of the specification,
7321 instead of the direct parent of the DIE. The other is compilers
7322 which do not emit DW_TAG_namespace; in this case we try to guess
7323 the fully qualified name of structure types from their members'
7324 linkage names. This must be done using the DIE's children rather
7325 than the children of any DW_AT_specification target. We only need
7326 to do this for structures at the top level, i.e. if the target of
7327 any DW_AT_specification (if any; otherwise the DIE itself) does not
7328 have a parent. */
7329
7330 /* Compute the scope prefix associated with PDI's parent, in
7331 compilation unit CU. The result will be allocated on CU's
7332 comp_unit_obstack, or a copy of the already allocated PDI->NAME
7333 field. NULL is returned if no prefix is necessary. */
7334 static const char *
7335 partial_die_parent_scope (struct partial_die_info *pdi,
7336 struct dwarf2_cu *cu)
7337 {
7338 const char *grandparent_scope;
7339 struct partial_die_info *parent, *real_pdi;
7340
7341 /* We need to look at our parent DIE; if we have a DW_AT_specification,
7342 then this means the parent of the specification DIE. */
7343
7344 real_pdi = pdi;
7345 while (real_pdi->has_specification)
7346 real_pdi = find_partial_die (real_pdi->spec_offset,
7347 real_pdi->spec_is_dwz, cu);
7348
7349 parent = real_pdi->die_parent;
7350 if (parent == NULL)
7351 return NULL;
7352
7353 if (parent->scope_set)
7354 return parent->scope;
7355
7356 fixup_partial_die (parent, cu);
7357
7358 grandparent_scope = partial_die_parent_scope (parent, cu);
7359
7360 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
7361 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
7362 Work around this problem here. */
7363 if (cu->language == language_cplus
7364 && parent->tag == DW_TAG_namespace
7365 && strcmp (parent->name, "::") == 0
7366 && grandparent_scope == NULL)
7367 {
7368 parent->scope = NULL;
7369 parent->scope_set = 1;
7370 return NULL;
7371 }
7372
7373 if (pdi->tag == DW_TAG_enumerator)
7374 /* Enumerators should not get the name of the enumeration as a prefix. */
7375 parent->scope = grandparent_scope;
7376 else if (parent->tag == DW_TAG_namespace
7377 || parent->tag == DW_TAG_module
7378 || parent->tag == DW_TAG_structure_type
7379 || parent->tag == DW_TAG_class_type
7380 || parent->tag == DW_TAG_interface_type
7381 || parent->tag == DW_TAG_union_type
7382 || parent->tag == DW_TAG_enumeration_type)
7383 {
7384 if (grandparent_scope == NULL)
7385 parent->scope = parent->name;
7386 else
7387 parent->scope = typename_concat (&cu->comp_unit_obstack,
7388 grandparent_scope,
7389 parent->name, 0, cu);
7390 }
7391 else
7392 {
7393 /* FIXME drow/2004-04-01: What should we be doing with
7394 function-local names? For partial symbols, we should probably be
7395 ignoring them. */
7396 complaint (&symfile_complaints,
7397 _("unhandled containing DIE tag %d for DIE at %d"),
7398 parent->tag, to_underlying (pdi->sect_off));
7399 parent->scope = grandparent_scope;
7400 }
7401
7402 parent->scope_set = 1;
7403 return parent->scope;
7404 }
7405
7406 /* Return the fully scoped name associated with PDI, from compilation unit
7407 CU. The result will be allocated with malloc. */
7408
7409 static char *
7410 partial_die_full_name (struct partial_die_info *pdi,
7411 struct dwarf2_cu *cu)
7412 {
7413 const char *parent_scope;
7414
7415 /* If this is a template instantiation, we can not work out the
7416 template arguments from partial DIEs. So, unfortunately, we have
7417 to go through the full DIEs. At least any work we do building
7418 types here will be reused if full symbols are loaded later. */
7419 if (pdi->has_template_arguments)
7420 {
7421 fixup_partial_die (pdi, cu);
7422
7423 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
7424 {
7425 struct die_info *die;
7426 struct attribute attr;
7427 struct dwarf2_cu *ref_cu = cu;
7428
7429 /* DW_FORM_ref_addr is using section offset. */
7430 attr.name = (enum dwarf_attribute) 0;
7431 attr.form = DW_FORM_ref_addr;
7432 attr.u.unsnd = to_underlying (pdi->sect_off);
7433 die = follow_die_ref (NULL, &attr, &ref_cu);
7434
7435 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
7436 }
7437 }
7438
7439 parent_scope = partial_die_parent_scope (pdi, cu);
7440 if (parent_scope == NULL)
7441 return NULL;
7442 else
7443 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
7444 }
7445
7446 static void
7447 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
7448 {
7449 struct objfile *objfile = cu->objfile;
7450 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7451 CORE_ADDR addr = 0;
7452 const char *actual_name = NULL;
7453 CORE_ADDR baseaddr;
7454 char *built_actual_name;
7455
7456 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7457
7458 built_actual_name = partial_die_full_name (pdi, cu);
7459 if (built_actual_name != NULL)
7460 actual_name = built_actual_name;
7461
7462 if (actual_name == NULL)
7463 actual_name = pdi->name;
7464
7465 switch (pdi->tag)
7466 {
7467 case DW_TAG_subprogram:
7468 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
7469 if (pdi->is_external || cu->language == language_ada)
7470 {
7471 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
7472 of the global scope. But in Ada, we want to be able to access
7473 nested procedures globally. So all Ada subprograms are stored
7474 in the global scope. */
7475 add_psymbol_to_list (actual_name, strlen (actual_name),
7476 built_actual_name != NULL,
7477 VAR_DOMAIN, LOC_BLOCK,
7478 &objfile->global_psymbols,
7479 addr, cu->language, objfile);
7480 }
7481 else
7482 {
7483 add_psymbol_to_list (actual_name, strlen (actual_name),
7484 built_actual_name != NULL,
7485 VAR_DOMAIN, LOC_BLOCK,
7486 &objfile->static_psymbols,
7487 addr, cu->language, objfile);
7488 }
7489
7490 if (pdi->main_subprogram && actual_name != NULL)
7491 set_objfile_main_name (objfile, actual_name, cu->language);
7492 break;
7493 case DW_TAG_constant:
7494 {
7495 std::vector<partial_symbol *> *list;
7496
7497 if (pdi->is_external)
7498 list = &objfile->global_psymbols;
7499 else
7500 list = &objfile->static_psymbols;
7501 add_psymbol_to_list (actual_name, strlen (actual_name),
7502 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
7503 list, 0, cu->language, objfile);
7504 }
7505 break;
7506 case DW_TAG_variable:
7507 if (pdi->d.locdesc)
7508 addr = decode_locdesc (pdi->d.locdesc, cu);
7509
7510 if (pdi->d.locdesc
7511 && addr == 0
7512 && !dwarf2_per_objfile->has_section_at_zero)
7513 {
7514 /* A global or static variable may also have been stripped
7515 out by the linker if unused, in which case its address
7516 will be nullified; do not add such variables into partial
7517 symbol table then. */
7518 }
7519 else if (pdi->is_external)
7520 {
7521 /* Global Variable.
7522 Don't enter into the minimal symbol tables as there is
7523 a minimal symbol table entry from the ELF symbols already.
7524 Enter into partial symbol table if it has a location
7525 descriptor or a type.
7526 If the location descriptor is missing, new_symbol will create
7527 a LOC_UNRESOLVED symbol, the address of the variable will then
7528 be determined from the minimal symbol table whenever the variable
7529 is referenced.
7530 The address for the partial symbol table entry is not
7531 used by GDB, but it comes in handy for debugging partial symbol
7532 table building. */
7533
7534 if (pdi->d.locdesc || pdi->has_type)
7535 add_psymbol_to_list (actual_name, strlen (actual_name),
7536 built_actual_name != NULL,
7537 VAR_DOMAIN, LOC_STATIC,
7538 &objfile->global_psymbols,
7539 addr + baseaddr,
7540 cu->language, objfile);
7541 }
7542 else
7543 {
7544 int has_loc = pdi->d.locdesc != NULL;
7545
7546 /* Static Variable. Skip symbols whose value we cannot know (those
7547 without location descriptors or constant values). */
7548 if (!has_loc && !pdi->has_const_value)
7549 {
7550 xfree (built_actual_name);
7551 return;
7552 }
7553
7554 add_psymbol_to_list (actual_name, strlen (actual_name),
7555 built_actual_name != NULL,
7556 VAR_DOMAIN, LOC_STATIC,
7557 &objfile->static_psymbols,
7558 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
7559 cu->language, objfile);
7560 }
7561 break;
7562 case DW_TAG_typedef:
7563 case DW_TAG_base_type:
7564 case DW_TAG_subrange_type:
7565 add_psymbol_to_list (actual_name, strlen (actual_name),
7566 built_actual_name != NULL,
7567 VAR_DOMAIN, LOC_TYPEDEF,
7568 &objfile->static_psymbols,
7569 0, cu->language, objfile);
7570 break;
7571 case DW_TAG_imported_declaration:
7572 case DW_TAG_namespace:
7573 add_psymbol_to_list (actual_name, strlen (actual_name),
7574 built_actual_name != NULL,
7575 VAR_DOMAIN, LOC_TYPEDEF,
7576 &objfile->global_psymbols,
7577 0, cu->language, objfile);
7578 break;
7579 case DW_TAG_module:
7580 add_psymbol_to_list (actual_name, strlen (actual_name),
7581 built_actual_name != NULL,
7582 MODULE_DOMAIN, LOC_TYPEDEF,
7583 &objfile->global_psymbols,
7584 0, cu->language, objfile);
7585 break;
7586 case DW_TAG_class_type:
7587 case DW_TAG_interface_type:
7588 case DW_TAG_structure_type:
7589 case DW_TAG_union_type:
7590 case DW_TAG_enumeration_type:
7591 /* Skip external references. The DWARF standard says in the section
7592 about "Structure, Union, and Class Type Entries": "An incomplete
7593 structure, union or class type is represented by a structure,
7594 union or class entry that does not have a byte size attribute
7595 and that has a DW_AT_declaration attribute." */
7596 if (!pdi->has_byte_size && pdi->is_declaration)
7597 {
7598 xfree (built_actual_name);
7599 return;
7600 }
7601
7602 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7603 static vs. global. */
7604 add_psymbol_to_list (actual_name, strlen (actual_name),
7605 built_actual_name != NULL,
7606 STRUCT_DOMAIN, LOC_TYPEDEF,
7607 cu->language == language_cplus
7608 ? &objfile->global_psymbols
7609 : &objfile->static_psymbols,
7610 0, cu->language, objfile);
7611
7612 break;
7613 case DW_TAG_enumerator:
7614 add_psymbol_to_list (actual_name, strlen (actual_name),
7615 built_actual_name != NULL,
7616 VAR_DOMAIN, LOC_CONST,
7617 cu->language == language_cplus
7618 ? &objfile->global_psymbols
7619 : &objfile->static_psymbols,
7620 0, cu->language, objfile);
7621 break;
7622 default:
7623 break;
7624 }
7625
7626 xfree (built_actual_name);
7627 }
7628
7629 /* Read a partial die corresponding to a namespace; also, add a symbol
7630 corresponding to that namespace to the symbol table. NAMESPACE is
7631 the name of the enclosing namespace. */
7632
7633 static void
7634 add_partial_namespace (struct partial_die_info *pdi,
7635 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7636 int set_addrmap, struct dwarf2_cu *cu)
7637 {
7638 /* Add a symbol for the namespace. */
7639
7640 add_partial_symbol (pdi, cu);
7641
7642 /* Now scan partial symbols in that namespace. */
7643
7644 if (pdi->has_children)
7645 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7646 }
7647
7648 /* Read a partial die corresponding to a Fortran module. */
7649
7650 static void
7651 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7652 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7653 {
7654 /* Add a symbol for the namespace. */
7655
7656 add_partial_symbol (pdi, cu);
7657
7658 /* Now scan partial symbols in that module. */
7659
7660 if (pdi->has_children)
7661 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7662 }
7663
7664 /* Read a partial die corresponding to a subprogram and create a partial
7665 symbol for that subprogram. When the CU language allows it, this
7666 routine also defines a partial symbol for each nested subprogram
7667 that this subprogram contains. If SET_ADDRMAP is true, record the
7668 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7669 and highest PC values found in PDI.
7670
7671 PDI may also be a lexical block, in which case we simply search
7672 recursively for subprograms defined inside that lexical block.
7673 Again, this is only performed when the CU language allows this
7674 type of definitions. */
7675
7676 static void
7677 add_partial_subprogram (struct partial_die_info *pdi,
7678 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7679 int set_addrmap, struct dwarf2_cu *cu)
7680 {
7681 if (pdi->tag == DW_TAG_subprogram)
7682 {
7683 if (pdi->has_pc_info)
7684 {
7685 if (pdi->lowpc < *lowpc)
7686 *lowpc = pdi->lowpc;
7687 if (pdi->highpc > *highpc)
7688 *highpc = pdi->highpc;
7689 if (set_addrmap)
7690 {
7691 struct objfile *objfile = cu->objfile;
7692 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7693 CORE_ADDR baseaddr;
7694 CORE_ADDR highpc;
7695 CORE_ADDR lowpc;
7696
7697 baseaddr = ANOFFSET (objfile->section_offsets,
7698 SECT_OFF_TEXT (objfile));
7699 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7700 pdi->lowpc + baseaddr);
7701 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7702 pdi->highpc + baseaddr);
7703 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7704 cu->per_cu->v.psymtab);
7705 }
7706 }
7707
7708 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7709 {
7710 if (!pdi->is_declaration)
7711 /* Ignore subprogram DIEs that do not have a name, they are
7712 illegal. Do not emit a complaint at this point, we will
7713 do so when we convert this psymtab into a symtab. */
7714 if (pdi->name)
7715 add_partial_symbol (pdi, cu);
7716 }
7717 }
7718
7719 if (! pdi->has_children)
7720 return;
7721
7722 if (cu->language == language_ada)
7723 {
7724 pdi = pdi->die_child;
7725 while (pdi != NULL)
7726 {
7727 fixup_partial_die (pdi, cu);
7728 if (pdi->tag == DW_TAG_subprogram
7729 || pdi->tag == DW_TAG_lexical_block)
7730 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7731 pdi = pdi->die_sibling;
7732 }
7733 }
7734 }
7735
7736 /* Read a partial die corresponding to an enumeration type. */
7737
7738 static void
7739 add_partial_enumeration (struct partial_die_info *enum_pdi,
7740 struct dwarf2_cu *cu)
7741 {
7742 struct partial_die_info *pdi;
7743
7744 if (enum_pdi->name != NULL)
7745 add_partial_symbol (enum_pdi, cu);
7746
7747 pdi = enum_pdi->die_child;
7748 while (pdi)
7749 {
7750 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7751 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7752 else
7753 add_partial_symbol (pdi, cu);
7754 pdi = pdi->die_sibling;
7755 }
7756 }
7757
7758 /* Return the initial uleb128 in the die at INFO_PTR. */
7759
7760 static unsigned int
7761 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7762 {
7763 unsigned int bytes_read;
7764
7765 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7766 }
7767
7768 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7769 Return the corresponding abbrev, or NULL if the number is zero (indicating
7770 an empty DIE). In either case *BYTES_READ will be set to the length of
7771 the initial number. */
7772
7773 static struct abbrev_info *
7774 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7775 struct dwarf2_cu *cu)
7776 {
7777 bfd *abfd = cu->objfile->obfd;
7778 unsigned int abbrev_number;
7779 struct abbrev_info *abbrev;
7780
7781 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7782
7783 if (abbrev_number == 0)
7784 return NULL;
7785
7786 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7787 if (!abbrev)
7788 {
7789 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7790 " at offset 0x%x [in module %s]"),
7791 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7792 to_underlying (cu->header.sect_off), bfd_get_filename (abfd));
7793 }
7794
7795 return abbrev;
7796 }
7797
7798 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7799 Returns a pointer to the end of a series of DIEs, terminated by an empty
7800 DIE. Any children of the skipped DIEs will also be skipped. */
7801
7802 static const gdb_byte *
7803 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7804 {
7805 struct dwarf2_cu *cu = reader->cu;
7806 struct abbrev_info *abbrev;
7807 unsigned int bytes_read;
7808
7809 while (1)
7810 {
7811 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7812 if (abbrev == NULL)
7813 return info_ptr + bytes_read;
7814 else
7815 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7816 }
7817 }
7818
7819 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7820 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7821 abbrev corresponding to that skipped uleb128 should be passed in
7822 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7823 children. */
7824
7825 static const gdb_byte *
7826 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7827 struct abbrev_info *abbrev)
7828 {
7829 unsigned int bytes_read;
7830 struct attribute attr;
7831 bfd *abfd = reader->abfd;
7832 struct dwarf2_cu *cu = reader->cu;
7833 const gdb_byte *buffer = reader->buffer;
7834 const gdb_byte *buffer_end = reader->buffer_end;
7835 unsigned int form, i;
7836
7837 for (i = 0; i < abbrev->num_attrs; i++)
7838 {
7839 /* The only abbrev we care about is DW_AT_sibling. */
7840 if (abbrev->attrs[i].name == DW_AT_sibling)
7841 {
7842 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7843 if (attr.form == DW_FORM_ref_addr)
7844 complaint (&symfile_complaints,
7845 _("ignoring absolute DW_AT_sibling"));
7846 else
7847 {
7848 sect_offset off = dwarf2_get_ref_die_offset (&attr);
7849 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
7850
7851 if (sibling_ptr < info_ptr)
7852 complaint (&symfile_complaints,
7853 _("DW_AT_sibling points backwards"));
7854 else if (sibling_ptr > reader->buffer_end)
7855 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7856 else
7857 return sibling_ptr;
7858 }
7859 }
7860
7861 /* If it isn't DW_AT_sibling, skip this attribute. */
7862 form = abbrev->attrs[i].form;
7863 skip_attribute:
7864 switch (form)
7865 {
7866 case DW_FORM_ref_addr:
7867 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7868 and later it is offset sized. */
7869 if (cu->header.version == 2)
7870 info_ptr += cu->header.addr_size;
7871 else
7872 info_ptr += cu->header.offset_size;
7873 break;
7874 case DW_FORM_GNU_ref_alt:
7875 info_ptr += cu->header.offset_size;
7876 break;
7877 case DW_FORM_addr:
7878 info_ptr += cu->header.addr_size;
7879 break;
7880 case DW_FORM_data1:
7881 case DW_FORM_ref1:
7882 case DW_FORM_flag:
7883 info_ptr += 1;
7884 break;
7885 case DW_FORM_flag_present:
7886 case DW_FORM_implicit_const:
7887 break;
7888 case DW_FORM_data2:
7889 case DW_FORM_ref2:
7890 info_ptr += 2;
7891 break;
7892 case DW_FORM_data4:
7893 case DW_FORM_ref4:
7894 info_ptr += 4;
7895 break;
7896 case DW_FORM_data8:
7897 case DW_FORM_ref8:
7898 case DW_FORM_ref_sig8:
7899 info_ptr += 8;
7900 break;
7901 case DW_FORM_data16:
7902 info_ptr += 16;
7903 break;
7904 case DW_FORM_string:
7905 read_direct_string (abfd, info_ptr, &bytes_read);
7906 info_ptr += bytes_read;
7907 break;
7908 case DW_FORM_sec_offset:
7909 case DW_FORM_strp:
7910 case DW_FORM_GNU_strp_alt:
7911 info_ptr += cu->header.offset_size;
7912 break;
7913 case DW_FORM_exprloc:
7914 case DW_FORM_block:
7915 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7916 info_ptr += bytes_read;
7917 break;
7918 case DW_FORM_block1:
7919 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7920 break;
7921 case DW_FORM_block2:
7922 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7923 break;
7924 case DW_FORM_block4:
7925 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7926 break;
7927 case DW_FORM_sdata:
7928 case DW_FORM_udata:
7929 case DW_FORM_ref_udata:
7930 case DW_FORM_GNU_addr_index:
7931 case DW_FORM_GNU_str_index:
7932 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7933 break;
7934 case DW_FORM_indirect:
7935 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7936 info_ptr += bytes_read;
7937 /* We need to continue parsing from here, so just go back to
7938 the top. */
7939 goto skip_attribute;
7940
7941 default:
7942 error (_("Dwarf Error: Cannot handle %s "
7943 "in DWARF reader [in module %s]"),
7944 dwarf_form_name (form),
7945 bfd_get_filename (abfd));
7946 }
7947 }
7948
7949 if (abbrev->has_children)
7950 return skip_children (reader, info_ptr);
7951 else
7952 return info_ptr;
7953 }
7954
7955 /* Locate ORIG_PDI's sibling.
7956 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7957
7958 static const gdb_byte *
7959 locate_pdi_sibling (const struct die_reader_specs *reader,
7960 struct partial_die_info *orig_pdi,
7961 const gdb_byte *info_ptr)
7962 {
7963 /* Do we know the sibling already? */
7964
7965 if (orig_pdi->sibling)
7966 return orig_pdi->sibling;
7967
7968 /* Are there any children to deal with? */
7969
7970 if (!orig_pdi->has_children)
7971 return info_ptr;
7972
7973 /* Skip the children the long way. */
7974
7975 return skip_children (reader, info_ptr);
7976 }
7977
7978 /* Expand this partial symbol table into a full symbol table. SELF is
7979 not NULL. */
7980
7981 static void
7982 dwarf2_read_symtab (struct partial_symtab *self,
7983 struct objfile *objfile)
7984 {
7985 if (self->readin)
7986 {
7987 warning (_("bug: psymtab for %s is already read in."),
7988 self->filename);
7989 }
7990 else
7991 {
7992 if (info_verbose)
7993 {
7994 printf_filtered (_("Reading in symbols for %s..."),
7995 self->filename);
7996 gdb_flush (gdb_stdout);
7997 }
7998
7999 /* Restore our global data. */
8000 dwarf2_per_objfile
8001 = (struct dwarf2_per_objfile *) objfile_data (objfile,
8002 dwarf2_objfile_data_key);
8003
8004 /* If this psymtab is constructed from a debug-only objfile, the
8005 has_section_at_zero flag will not necessarily be correct. We
8006 can get the correct value for this flag by looking at the data
8007 associated with the (presumably stripped) associated objfile. */
8008 if (objfile->separate_debug_objfile_backlink)
8009 {
8010 struct dwarf2_per_objfile *dpo_backlink
8011 = ((struct dwarf2_per_objfile *)
8012 objfile_data (objfile->separate_debug_objfile_backlink,
8013 dwarf2_objfile_data_key));
8014
8015 dwarf2_per_objfile->has_section_at_zero
8016 = dpo_backlink->has_section_at_zero;
8017 }
8018
8019 dwarf2_per_objfile->reading_partial_symbols = 0;
8020
8021 psymtab_to_symtab_1 (self);
8022
8023 /* Finish up the debug error message. */
8024 if (info_verbose)
8025 printf_filtered (_("done.\n"));
8026 }
8027
8028 process_cu_includes ();
8029 }
8030 \f
8031 /* Reading in full CUs. */
8032
8033 /* Add PER_CU to the queue. */
8034
8035 static void
8036 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
8037 enum language pretend_language)
8038 {
8039 struct dwarf2_queue_item *item;
8040
8041 per_cu->queued = 1;
8042 item = XNEW (struct dwarf2_queue_item);
8043 item->per_cu = per_cu;
8044 item->pretend_language = pretend_language;
8045 item->next = NULL;
8046
8047 if (dwarf2_queue == NULL)
8048 dwarf2_queue = item;
8049 else
8050 dwarf2_queue_tail->next = item;
8051
8052 dwarf2_queue_tail = item;
8053 }
8054
8055 /* If PER_CU is not yet queued, add it to the queue.
8056 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
8057 dependency.
8058 The result is non-zero if PER_CU was queued, otherwise the result is zero
8059 meaning either PER_CU is already queued or it is already loaded.
8060
8061 N.B. There is an invariant here that if a CU is queued then it is loaded.
8062 The caller is required to load PER_CU if we return non-zero. */
8063
8064 static int
8065 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
8066 struct dwarf2_per_cu_data *per_cu,
8067 enum language pretend_language)
8068 {
8069 /* We may arrive here during partial symbol reading, if we need full
8070 DIEs to process an unusual case (e.g. template arguments). Do
8071 not queue PER_CU, just tell our caller to load its DIEs. */
8072 if (dwarf2_per_objfile->reading_partial_symbols)
8073 {
8074 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
8075 return 1;
8076 return 0;
8077 }
8078
8079 /* Mark the dependence relation so that we don't flush PER_CU
8080 too early. */
8081 if (dependent_cu != NULL)
8082 dwarf2_add_dependence (dependent_cu, per_cu);
8083
8084 /* If it's already on the queue, we have nothing to do. */
8085 if (per_cu->queued)
8086 return 0;
8087
8088 /* If the compilation unit is already loaded, just mark it as
8089 used. */
8090 if (per_cu->cu != NULL)
8091 {
8092 per_cu->cu->last_used = 0;
8093 return 0;
8094 }
8095
8096 /* Add it to the queue. */
8097 queue_comp_unit (per_cu, pretend_language);
8098
8099 return 1;
8100 }
8101
8102 /* Process the queue. */
8103
8104 static void
8105 process_queue (void)
8106 {
8107 struct dwarf2_queue_item *item, *next_item;
8108
8109 if (dwarf_read_debug)
8110 {
8111 fprintf_unfiltered (gdb_stdlog,
8112 "Expanding one or more symtabs of objfile %s ...\n",
8113 objfile_name (dwarf2_per_objfile->objfile));
8114 }
8115
8116 /* The queue starts out with one item, but following a DIE reference
8117 may load a new CU, adding it to the end of the queue. */
8118 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
8119 {
8120 if ((dwarf2_per_objfile->using_index
8121 ? !item->per_cu->v.quick->compunit_symtab
8122 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
8123 /* Skip dummy CUs. */
8124 && item->per_cu->cu != NULL)
8125 {
8126 struct dwarf2_per_cu_data *per_cu = item->per_cu;
8127 unsigned int debug_print_threshold;
8128 char buf[100];
8129
8130 if (per_cu->is_debug_types)
8131 {
8132 struct signatured_type *sig_type =
8133 (struct signatured_type *) per_cu;
8134
8135 sprintf (buf, "TU %s at offset 0x%x",
8136 hex_string (sig_type->signature),
8137 to_underlying (per_cu->sect_off));
8138 /* There can be 100s of TUs.
8139 Only print them in verbose mode. */
8140 debug_print_threshold = 2;
8141 }
8142 else
8143 {
8144 sprintf (buf, "CU at offset 0x%x",
8145 to_underlying (per_cu->sect_off));
8146 debug_print_threshold = 1;
8147 }
8148
8149 if (dwarf_read_debug >= debug_print_threshold)
8150 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
8151
8152 if (per_cu->is_debug_types)
8153 process_full_type_unit (per_cu, item->pretend_language);
8154 else
8155 process_full_comp_unit (per_cu, item->pretend_language);
8156
8157 if (dwarf_read_debug >= debug_print_threshold)
8158 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
8159 }
8160
8161 item->per_cu->queued = 0;
8162 next_item = item->next;
8163 xfree (item);
8164 }
8165
8166 dwarf2_queue_tail = NULL;
8167
8168 if (dwarf_read_debug)
8169 {
8170 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
8171 objfile_name (dwarf2_per_objfile->objfile));
8172 }
8173 }
8174
8175 /* Free all allocated queue entries. This function only releases anything if
8176 an error was thrown; if the queue was processed then it would have been
8177 freed as we went along. */
8178
8179 static void
8180 dwarf2_release_queue (void *dummy)
8181 {
8182 struct dwarf2_queue_item *item, *last;
8183
8184 item = dwarf2_queue;
8185 while (item)
8186 {
8187 /* Anything still marked queued is likely to be in an
8188 inconsistent state, so discard it. */
8189 if (item->per_cu->queued)
8190 {
8191 if (item->per_cu->cu != NULL)
8192 free_one_cached_comp_unit (item->per_cu);
8193 item->per_cu->queued = 0;
8194 }
8195
8196 last = item;
8197 item = item->next;
8198 xfree (last);
8199 }
8200
8201 dwarf2_queue = dwarf2_queue_tail = NULL;
8202 }
8203
8204 /* Read in full symbols for PST, and anything it depends on. */
8205
8206 static void
8207 psymtab_to_symtab_1 (struct partial_symtab *pst)
8208 {
8209 struct dwarf2_per_cu_data *per_cu;
8210 int i;
8211
8212 if (pst->readin)
8213 return;
8214
8215 for (i = 0; i < pst->number_of_dependencies; i++)
8216 if (!pst->dependencies[i]->readin
8217 && pst->dependencies[i]->user == NULL)
8218 {
8219 /* Inform about additional files that need to be read in. */
8220 if (info_verbose)
8221 {
8222 /* FIXME: i18n: Need to make this a single string. */
8223 fputs_filtered (" ", gdb_stdout);
8224 wrap_here ("");
8225 fputs_filtered ("and ", gdb_stdout);
8226 wrap_here ("");
8227 printf_filtered ("%s...", pst->dependencies[i]->filename);
8228 wrap_here (""); /* Flush output. */
8229 gdb_flush (gdb_stdout);
8230 }
8231 psymtab_to_symtab_1 (pst->dependencies[i]);
8232 }
8233
8234 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
8235
8236 if (per_cu == NULL)
8237 {
8238 /* It's an include file, no symbols to read for it.
8239 Everything is in the parent symtab. */
8240 pst->readin = 1;
8241 return;
8242 }
8243
8244 dw2_do_instantiate_symtab (per_cu);
8245 }
8246
8247 /* Trivial hash function for die_info: the hash value of a DIE
8248 is its offset in .debug_info for this objfile. */
8249
8250 static hashval_t
8251 die_hash (const void *item)
8252 {
8253 const struct die_info *die = (const struct die_info *) item;
8254
8255 return to_underlying (die->sect_off);
8256 }
8257
8258 /* Trivial comparison function for die_info structures: two DIEs
8259 are equal if they have the same offset. */
8260
8261 static int
8262 die_eq (const void *item_lhs, const void *item_rhs)
8263 {
8264 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
8265 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
8266
8267 return die_lhs->sect_off == die_rhs->sect_off;
8268 }
8269
8270 /* die_reader_func for load_full_comp_unit.
8271 This is identical to read_signatured_type_reader,
8272 but is kept separate for now. */
8273
8274 static void
8275 load_full_comp_unit_reader (const struct die_reader_specs *reader,
8276 const gdb_byte *info_ptr,
8277 struct die_info *comp_unit_die,
8278 int has_children,
8279 void *data)
8280 {
8281 struct dwarf2_cu *cu = reader->cu;
8282 enum language *language_ptr = (enum language *) data;
8283
8284 gdb_assert (cu->die_hash == NULL);
8285 cu->die_hash =
8286 htab_create_alloc_ex (cu->header.length / 12,
8287 die_hash,
8288 die_eq,
8289 NULL,
8290 &cu->comp_unit_obstack,
8291 hashtab_obstack_allocate,
8292 dummy_obstack_deallocate);
8293
8294 if (has_children)
8295 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
8296 &info_ptr, comp_unit_die);
8297 cu->dies = comp_unit_die;
8298 /* comp_unit_die is not stored in die_hash, no need. */
8299
8300 /* We try not to read any attributes in this function, because not
8301 all CUs needed for references have been loaded yet, and symbol
8302 table processing isn't initialized. But we have to set the CU language,
8303 or we won't be able to build types correctly.
8304 Similarly, if we do not read the producer, we can not apply
8305 producer-specific interpretation. */
8306 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
8307 }
8308
8309 /* Load the DIEs associated with PER_CU into memory. */
8310
8311 static void
8312 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
8313 enum language pretend_language)
8314 {
8315 gdb_assert (! this_cu->is_debug_types);
8316
8317 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8318 load_full_comp_unit_reader, &pretend_language);
8319 }
8320
8321 /* Add a DIE to the delayed physname list. */
8322
8323 static void
8324 add_to_method_list (struct type *type, int fnfield_index, int index,
8325 const char *name, struct die_info *die,
8326 struct dwarf2_cu *cu)
8327 {
8328 struct delayed_method_info mi;
8329 mi.type = type;
8330 mi.fnfield_index = fnfield_index;
8331 mi.index = index;
8332 mi.name = name;
8333 mi.die = die;
8334 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
8335 }
8336
8337 /* A cleanup for freeing the delayed method list. */
8338
8339 static void
8340 free_delayed_list (void *ptr)
8341 {
8342 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
8343 if (cu->method_list != NULL)
8344 {
8345 VEC_free (delayed_method_info, cu->method_list);
8346 cu->method_list = NULL;
8347 }
8348 }
8349
8350 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
8351 "const" / "volatile". If so, decrements LEN by the length of the
8352 modifier and return true. Otherwise return false. */
8353
8354 template<size_t N>
8355 static bool
8356 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
8357 {
8358 size_t mod_len = sizeof (mod) - 1;
8359 if (len > mod_len && startswith (physname + (len - mod_len), mod))
8360 {
8361 len -= mod_len;
8362 return true;
8363 }
8364 return false;
8365 }
8366
8367 /* Compute the physnames of any methods on the CU's method list.
8368
8369 The computation of method physnames is delayed in order to avoid the
8370 (bad) condition that one of the method's formal parameters is of an as yet
8371 incomplete type. */
8372
8373 static void
8374 compute_delayed_physnames (struct dwarf2_cu *cu)
8375 {
8376 int i;
8377 struct delayed_method_info *mi;
8378
8379 /* Only C++ delays computing physnames. */
8380 if (VEC_empty (delayed_method_info, cu->method_list))
8381 return;
8382 gdb_assert (cu->language == language_cplus);
8383
8384 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
8385 {
8386 const char *physname;
8387 struct fn_fieldlist *fn_flp
8388 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
8389 physname = dwarf2_physname (mi->name, mi->die, cu);
8390 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
8391 = physname ? physname : "";
8392
8393 /* Since there's no tag to indicate whether a method is a
8394 const/volatile overload, extract that information out of the
8395 demangled name. */
8396 if (physname != NULL)
8397 {
8398 size_t len = strlen (physname);
8399
8400 while (1)
8401 {
8402 if (physname[len] == ')') /* shortcut */
8403 break;
8404 else if (check_modifier (physname, len, " const"))
8405 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi->index) = 1;
8406 else if (check_modifier (physname, len, " volatile"))
8407 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi->index) = 1;
8408 else
8409 break;
8410 }
8411 }
8412 }
8413 }
8414
8415 /* Go objects should be embedded in a DW_TAG_module DIE,
8416 and it's not clear if/how imported objects will appear.
8417 To keep Go support simple until that's worked out,
8418 go back through what we've read and create something usable.
8419 We could do this while processing each DIE, and feels kinda cleaner,
8420 but that way is more invasive.
8421 This is to, for example, allow the user to type "p var" or "b main"
8422 without having to specify the package name, and allow lookups
8423 of module.object to work in contexts that use the expression
8424 parser. */
8425
8426 static void
8427 fixup_go_packaging (struct dwarf2_cu *cu)
8428 {
8429 char *package_name = NULL;
8430 struct pending *list;
8431 int i;
8432
8433 for (list = global_symbols; list != NULL; list = list->next)
8434 {
8435 for (i = 0; i < list->nsyms; ++i)
8436 {
8437 struct symbol *sym = list->symbol[i];
8438
8439 if (SYMBOL_LANGUAGE (sym) == language_go
8440 && SYMBOL_CLASS (sym) == LOC_BLOCK)
8441 {
8442 char *this_package_name = go_symbol_package_name (sym);
8443
8444 if (this_package_name == NULL)
8445 continue;
8446 if (package_name == NULL)
8447 package_name = this_package_name;
8448 else
8449 {
8450 if (strcmp (package_name, this_package_name) != 0)
8451 complaint (&symfile_complaints,
8452 _("Symtab %s has objects from two different Go packages: %s and %s"),
8453 (symbol_symtab (sym) != NULL
8454 ? symtab_to_filename_for_display
8455 (symbol_symtab (sym))
8456 : objfile_name (cu->objfile)),
8457 this_package_name, package_name);
8458 xfree (this_package_name);
8459 }
8460 }
8461 }
8462 }
8463
8464 if (package_name != NULL)
8465 {
8466 struct objfile *objfile = cu->objfile;
8467 const char *saved_package_name
8468 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
8469 package_name,
8470 strlen (package_name));
8471 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
8472 saved_package_name);
8473 struct symbol *sym;
8474
8475 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8476
8477 sym = allocate_symbol (objfile);
8478 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
8479 SYMBOL_SET_NAMES (sym, saved_package_name,
8480 strlen (saved_package_name), 0, objfile);
8481 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
8482 e.g., "main" finds the "main" module and not C's main(). */
8483 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
8484 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
8485 SYMBOL_TYPE (sym) = type;
8486
8487 add_symbol_to_list (sym, &global_symbols);
8488
8489 xfree (package_name);
8490 }
8491 }
8492
8493 /* Return the symtab for PER_CU. This works properly regardless of
8494 whether we're using the index or psymtabs. */
8495
8496 static struct compunit_symtab *
8497 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
8498 {
8499 return (dwarf2_per_objfile->using_index
8500 ? per_cu->v.quick->compunit_symtab
8501 : per_cu->v.psymtab->compunit_symtab);
8502 }
8503
8504 /* A helper function for computing the list of all symbol tables
8505 included by PER_CU. */
8506
8507 static void
8508 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
8509 htab_t all_children, htab_t all_type_symtabs,
8510 struct dwarf2_per_cu_data *per_cu,
8511 struct compunit_symtab *immediate_parent)
8512 {
8513 void **slot;
8514 int ix;
8515 struct compunit_symtab *cust;
8516 struct dwarf2_per_cu_data *iter;
8517
8518 slot = htab_find_slot (all_children, per_cu, INSERT);
8519 if (*slot != NULL)
8520 {
8521 /* This inclusion and its children have been processed. */
8522 return;
8523 }
8524
8525 *slot = per_cu;
8526 /* Only add a CU if it has a symbol table. */
8527 cust = get_compunit_symtab (per_cu);
8528 if (cust != NULL)
8529 {
8530 /* If this is a type unit only add its symbol table if we haven't
8531 seen it yet (type unit per_cu's can share symtabs). */
8532 if (per_cu->is_debug_types)
8533 {
8534 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
8535 if (*slot == NULL)
8536 {
8537 *slot = cust;
8538 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8539 if (cust->user == NULL)
8540 cust->user = immediate_parent;
8541 }
8542 }
8543 else
8544 {
8545 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8546 if (cust->user == NULL)
8547 cust->user = immediate_parent;
8548 }
8549 }
8550
8551 for (ix = 0;
8552 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
8553 ++ix)
8554 {
8555 recursively_compute_inclusions (result, all_children,
8556 all_type_symtabs, iter, cust);
8557 }
8558 }
8559
8560 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
8561 PER_CU. */
8562
8563 static void
8564 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
8565 {
8566 gdb_assert (! per_cu->is_debug_types);
8567
8568 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
8569 {
8570 int ix, len;
8571 struct dwarf2_per_cu_data *per_cu_iter;
8572 struct compunit_symtab *compunit_symtab_iter;
8573 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
8574 htab_t all_children, all_type_symtabs;
8575 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
8576
8577 /* If we don't have a symtab, we can just skip this case. */
8578 if (cust == NULL)
8579 return;
8580
8581 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8582 NULL, xcalloc, xfree);
8583 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8584 NULL, xcalloc, xfree);
8585
8586 for (ix = 0;
8587 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
8588 ix, per_cu_iter);
8589 ++ix)
8590 {
8591 recursively_compute_inclusions (&result_symtabs, all_children,
8592 all_type_symtabs, per_cu_iter,
8593 cust);
8594 }
8595
8596 /* Now we have a transitive closure of all the included symtabs. */
8597 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8598 cust->includes
8599 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8600 struct compunit_symtab *, len + 1);
8601 for (ix = 0;
8602 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8603 compunit_symtab_iter);
8604 ++ix)
8605 cust->includes[ix] = compunit_symtab_iter;
8606 cust->includes[len] = NULL;
8607
8608 VEC_free (compunit_symtab_ptr, result_symtabs);
8609 htab_delete (all_children);
8610 htab_delete (all_type_symtabs);
8611 }
8612 }
8613
8614 /* Compute the 'includes' field for the symtabs of all the CUs we just
8615 read. */
8616
8617 static void
8618 process_cu_includes (void)
8619 {
8620 int ix;
8621 struct dwarf2_per_cu_data *iter;
8622
8623 for (ix = 0;
8624 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8625 ix, iter);
8626 ++ix)
8627 {
8628 if (! iter->is_debug_types)
8629 compute_compunit_symtab_includes (iter);
8630 }
8631
8632 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8633 }
8634
8635 /* Generate full symbol information for PER_CU, whose DIEs have
8636 already been loaded into memory. */
8637
8638 static void
8639 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8640 enum language pretend_language)
8641 {
8642 struct dwarf2_cu *cu = per_cu->cu;
8643 struct objfile *objfile = per_cu->objfile;
8644 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8645 CORE_ADDR lowpc, highpc;
8646 struct compunit_symtab *cust;
8647 struct cleanup *delayed_list_cleanup;
8648 CORE_ADDR baseaddr;
8649 struct block *static_block;
8650 CORE_ADDR addr;
8651
8652 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8653
8654 buildsym_init ();
8655 scoped_free_pendings free_pending;
8656 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8657
8658 cu->list_in_scope = &file_symbols;
8659
8660 cu->language = pretend_language;
8661 cu->language_defn = language_def (cu->language);
8662
8663 /* Do line number decoding in read_file_scope () */
8664 process_die (cu->dies, cu);
8665
8666 /* For now fudge the Go package. */
8667 if (cu->language == language_go)
8668 fixup_go_packaging (cu);
8669
8670 /* Now that we have processed all the DIEs in the CU, all the types
8671 should be complete, and it should now be safe to compute all of the
8672 physnames. */
8673 compute_delayed_physnames (cu);
8674 do_cleanups (delayed_list_cleanup);
8675
8676 /* Some compilers don't define a DW_AT_high_pc attribute for the
8677 compilation unit. If the DW_AT_high_pc is missing, synthesize
8678 it, by scanning the DIE's below the compilation unit. */
8679 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8680
8681 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8682 static_block = end_symtab_get_static_block (addr, 0, 1);
8683
8684 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8685 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8686 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8687 addrmap to help ensure it has an accurate map of pc values belonging to
8688 this comp unit. */
8689 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8690
8691 cust = end_symtab_from_static_block (static_block,
8692 SECT_OFF_TEXT (objfile), 0);
8693
8694 if (cust != NULL)
8695 {
8696 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8697
8698 /* Set symtab language to language from DW_AT_language. If the
8699 compilation is from a C file generated by language preprocessors, do
8700 not set the language if it was already deduced by start_subfile. */
8701 if (!(cu->language == language_c
8702 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8703 COMPUNIT_FILETABS (cust)->language = cu->language;
8704
8705 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8706 produce DW_AT_location with location lists but it can be possibly
8707 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8708 there were bugs in prologue debug info, fixed later in GCC-4.5
8709 by "unwind info for epilogues" patch (which is not directly related).
8710
8711 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8712 needed, it would be wrong due to missing DW_AT_producer there.
8713
8714 Still one can confuse GDB by using non-standard GCC compilation
8715 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8716 */
8717 if (cu->has_loclist && gcc_4_minor >= 5)
8718 cust->locations_valid = 1;
8719
8720 if (gcc_4_minor >= 5)
8721 cust->epilogue_unwind_valid = 1;
8722
8723 cust->call_site_htab = cu->call_site_htab;
8724 }
8725
8726 if (dwarf2_per_objfile->using_index)
8727 per_cu->v.quick->compunit_symtab = cust;
8728 else
8729 {
8730 struct partial_symtab *pst = per_cu->v.psymtab;
8731 pst->compunit_symtab = cust;
8732 pst->readin = 1;
8733 }
8734
8735 /* Push it for inclusion processing later. */
8736 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8737 }
8738
8739 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8740 already been loaded into memory. */
8741
8742 static void
8743 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8744 enum language pretend_language)
8745 {
8746 struct dwarf2_cu *cu = per_cu->cu;
8747 struct objfile *objfile = per_cu->objfile;
8748 struct compunit_symtab *cust;
8749 struct cleanup *delayed_list_cleanup;
8750 struct signatured_type *sig_type;
8751
8752 gdb_assert (per_cu->is_debug_types);
8753 sig_type = (struct signatured_type *) per_cu;
8754
8755 buildsym_init ();
8756 scoped_free_pendings free_pending;
8757 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8758
8759 cu->list_in_scope = &file_symbols;
8760
8761 cu->language = pretend_language;
8762 cu->language_defn = language_def (cu->language);
8763
8764 /* The symbol tables are set up in read_type_unit_scope. */
8765 process_die (cu->dies, cu);
8766
8767 /* For now fudge the Go package. */
8768 if (cu->language == language_go)
8769 fixup_go_packaging (cu);
8770
8771 /* Now that we have processed all the DIEs in the CU, all the types
8772 should be complete, and it should now be safe to compute all of the
8773 physnames. */
8774 compute_delayed_physnames (cu);
8775 do_cleanups (delayed_list_cleanup);
8776
8777 /* TUs share symbol tables.
8778 If this is the first TU to use this symtab, complete the construction
8779 of it with end_expandable_symtab. Otherwise, complete the addition of
8780 this TU's symbols to the existing symtab. */
8781 if (sig_type->type_unit_group->compunit_symtab == NULL)
8782 {
8783 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8784 sig_type->type_unit_group->compunit_symtab = cust;
8785
8786 if (cust != NULL)
8787 {
8788 /* Set symtab language to language from DW_AT_language. If the
8789 compilation is from a C file generated by language preprocessors,
8790 do not set the language if it was already deduced by
8791 start_subfile. */
8792 if (!(cu->language == language_c
8793 && COMPUNIT_FILETABS (cust)->language != language_c))
8794 COMPUNIT_FILETABS (cust)->language = cu->language;
8795 }
8796 }
8797 else
8798 {
8799 augment_type_symtab ();
8800 cust = sig_type->type_unit_group->compunit_symtab;
8801 }
8802
8803 if (dwarf2_per_objfile->using_index)
8804 per_cu->v.quick->compunit_symtab = cust;
8805 else
8806 {
8807 struct partial_symtab *pst = per_cu->v.psymtab;
8808 pst->compunit_symtab = cust;
8809 pst->readin = 1;
8810 }
8811 }
8812
8813 /* Process an imported unit DIE. */
8814
8815 static void
8816 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8817 {
8818 struct attribute *attr;
8819
8820 /* For now we don't handle imported units in type units. */
8821 if (cu->per_cu->is_debug_types)
8822 {
8823 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8824 " supported in type units [in module %s]"),
8825 objfile_name (cu->objfile));
8826 }
8827
8828 attr = dwarf2_attr (die, DW_AT_import, cu);
8829 if (attr != NULL)
8830 {
8831 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
8832 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8833 dwarf2_per_cu_data *per_cu
8834 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, cu->objfile);
8835
8836 /* If necessary, add it to the queue and load its DIEs. */
8837 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8838 load_full_comp_unit (per_cu, cu->language);
8839
8840 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8841 per_cu);
8842 }
8843 }
8844
8845 /* RAII object that represents a process_die scope: i.e.,
8846 starts/finishes processing a DIE. */
8847 class process_die_scope
8848 {
8849 public:
8850 process_die_scope (die_info *die, dwarf2_cu *cu)
8851 : m_die (die), m_cu (cu)
8852 {
8853 /* We should only be processing DIEs not already in process. */
8854 gdb_assert (!m_die->in_process);
8855 m_die->in_process = true;
8856 }
8857
8858 ~process_die_scope ()
8859 {
8860 m_die->in_process = false;
8861
8862 /* If we're done processing the DIE for the CU that owns the line
8863 header, we don't need the line header anymore. */
8864 if (m_cu->line_header_die_owner == m_die)
8865 {
8866 delete m_cu->line_header;
8867 m_cu->line_header = NULL;
8868 m_cu->line_header_die_owner = NULL;
8869 }
8870 }
8871
8872 private:
8873 die_info *m_die;
8874 dwarf2_cu *m_cu;
8875 };
8876
8877 /* Process a die and its children. */
8878
8879 static void
8880 process_die (struct die_info *die, struct dwarf2_cu *cu)
8881 {
8882 process_die_scope scope (die, cu);
8883
8884 switch (die->tag)
8885 {
8886 case DW_TAG_padding:
8887 break;
8888 case DW_TAG_compile_unit:
8889 case DW_TAG_partial_unit:
8890 read_file_scope (die, cu);
8891 break;
8892 case DW_TAG_type_unit:
8893 read_type_unit_scope (die, cu);
8894 break;
8895 case DW_TAG_subprogram:
8896 case DW_TAG_inlined_subroutine:
8897 read_func_scope (die, cu);
8898 break;
8899 case DW_TAG_lexical_block:
8900 case DW_TAG_try_block:
8901 case DW_TAG_catch_block:
8902 read_lexical_block_scope (die, cu);
8903 break;
8904 case DW_TAG_call_site:
8905 case DW_TAG_GNU_call_site:
8906 read_call_site_scope (die, cu);
8907 break;
8908 case DW_TAG_class_type:
8909 case DW_TAG_interface_type:
8910 case DW_TAG_structure_type:
8911 case DW_TAG_union_type:
8912 process_structure_scope (die, cu);
8913 break;
8914 case DW_TAG_enumeration_type:
8915 process_enumeration_scope (die, cu);
8916 break;
8917
8918 /* These dies have a type, but processing them does not create
8919 a symbol or recurse to process the children. Therefore we can
8920 read them on-demand through read_type_die. */
8921 case DW_TAG_subroutine_type:
8922 case DW_TAG_set_type:
8923 case DW_TAG_array_type:
8924 case DW_TAG_pointer_type:
8925 case DW_TAG_ptr_to_member_type:
8926 case DW_TAG_reference_type:
8927 case DW_TAG_rvalue_reference_type:
8928 case DW_TAG_string_type:
8929 break;
8930
8931 case DW_TAG_base_type:
8932 case DW_TAG_subrange_type:
8933 case DW_TAG_typedef:
8934 /* Add a typedef symbol for the type definition, if it has a
8935 DW_AT_name. */
8936 new_symbol (die, read_type_die (die, cu), cu);
8937 break;
8938 case DW_TAG_common_block:
8939 read_common_block (die, cu);
8940 break;
8941 case DW_TAG_common_inclusion:
8942 break;
8943 case DW_TAG_namespace:
8944 cu->processing_has_namespace_info = 1;
8945 read_namespace (die, cu);
8946 break;
8947 case DW_TAG_module:
8948 cu->processing_has_namespace_info = 1;
8949 read_module (die, cu);
8950 break;
8951 case DW_TAG_imported_declaration:
8952 cu->processing_has_namespace_info = 1;
8953 if (read_namespace_alias (die, cu))
8954 break;
8955 /* The declaration is not a global namespace alias: fall through. */
8956 case DW_TAG_imported_module:
8957 cu->processing_has_namespace_info = 1;
8958 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8959 || cu->language != language_fortran))
8960 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8961 dwarf_tag_name (die->tag));
8962 read_import_statement (die, cu);
8963 break;
8964
8965 case DW_TAG_imported_unit:
8966 process_imported_unit_die (die, cu);
8967 break;
8968
8969 default:
8970 new_symbol (die, NULL, cu);
8971 break;
8972 }
8973 }
8974 \f
8975 /* DWARF name computation. */
8976
8977 /* A helper function for dwarf2_compute_name which determines whether DIE
8978 needs to have the name of the scope prepended to the name listed in the
8979 die. */
8980
8981 static int
8982 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8983 {
8984 struct attribute *attr;
8985
8986 switch (die->tag)
8987 {
8988 case DW_TAG_namespace:
8989 case DW_TAG_typedef:
8990 case DW_TAG_class_type:
8991 case DW_TAG_interface_type:
8992 case DW_TAG_structure_type:
8993 case DW_TAG_union_type:
8994 case DW_TAG_enumeration_type:
8995 case DW_TAG_enumerator:
8996 case DW_TAG_subprogram:
8997 case DW_TAG_inlined_subroutine:
8998 case DW_TAG_member:
8999 case DW_TAG_imported_declaration:
9000 return 1;
9001
9002 case DW_TAG_variable:
9003 case DW_TAG_constant:
9004 /* We only need to prefix "globally" visible variables. These include
9005 any variable marked with DW_AT_external or any variable that
9006 lives in a namespace. [Variables in anonymous namespaces
9007 require prefixing, but they are not DW_AT_external.] */
9008
9009 if (dwarf2_attr (die, DW_AT_specification, cu))
9010 {
9011 struct dwarf2_cu *spec_cu = cu;
9012
9013 return die_needs_namespace (die_specification (die, &spec_cu),
9014 spec_cu);
9015 }
9016
9017 attr = dwarf2_attr (die, DW_AT_external, cu);
9018 if (attr == NULL && die->parent->tag != DW_TAG_namespace
9019 && die->parent->tag != DW_TAG_module)
9020 return 0;
9021 /* A variable in a lexical block of some kind does not need a
9022 namespace, even though in C++ such variables may be external
9023 and have a mangled name. */
9024 if (die->parent->tag == DW_TAG_lexical_block
9025 || die->parent->tag == DW_TAG_try_block
9026 || die->parent->tag == DW_TAG_catch_block
9027 || die->parent->tag == DW_TAG_subprogram)
9028 return 0;
9029 return 1;
9030
9031 default:
9032 return 0;
9033 }
9034 }
9035
9036 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
9037 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9038 defined for the given DIE. */
9039
9040 static struct attribute *
9041 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
9042 {
9043 struct attribute *attr;
9044
9045 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
9046 if (attr == NULL)
9047 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
9048
9049 return attr;
9050 }
9051
9052 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
9053 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9054 defined for the given DIE. */
9055
9056 static const char *
9057 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
9058 {
9059 const char *linkage_name;
9060
9061 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
9062 if (linkage_name == NULL)
9063 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
9064
9065 return linkage_name;
9066 }
9067
9068 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
9069 compute the physname for the object, which include a method's:
9070 - formal parameters (C++),
9071 - receiver type (Go),
9072
9073 The term "physname" is a bit confusing.
9074 For C++, for example, it is the demangled name.
9075 For Go, for example, it's the mangled name.
9076
9077 For Ada, return the DIE's linkage name rather than the fully qualified
9078 name. PHYSNAME is ignored..
9079
9080 The result is allocated on the objfile_obstack and canonicalized. */
9081
9082 static const char *
9083 dwarf2_compute_name (const char *name,
9084 struct die_info *die, struct dwarf2_cu *cu,
9085 int physname)
9086 {
9087 struct objfile *objfile = cu->objfile;
9088
9089 if (name == NULL)
9090 name = dwarf2_name (die, cu);
9091
9092 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
9093 but otherwise compute it by typename_concat inside GDB.
9094 FIXME: Actually this is not really true, or at least not always true.
9095 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
9096 Fortran names because there is no mangling standard. So new_symbol_full
9097 will set the demangled name to the result of dwarf2_full_name, and it is
9098 the demangled name that GDB uses if it exists. */
9099 if (cu->language == language_ada
9100 || (cu->language == language_fortran && physname))
9101 {
9102 /* For Ada unit, we prefer the linkage name over the name, as
9103 the former contains the exported name, which the user expects
9104 to be able to reference. Ideally, we want the user to be able
9105 to reference this entity using either natural or linkage name,
9106 but we haven't started looking at this enhancement yet. */
9107 const char *linkage_name = dw2_linkage_name (die, cu);
9108
9109 if (linkage_name != NULL)
9110 return linkage_name;
9111 }
9112
9113 /* These are the only languages we know how to qualify names in. */
9114 if (name != NULL
9115 && (cu->language == language_cplus
9116 || cu->language == language_fortran || cu->language == language_d
9117 || cu->language == language_rust))
9118 {
9119 if (die_needs_namespace (die, cu))
9120 {
9121 long length;
9122 const char *prefix;
9123 const char *canonical_name = NULL;
9124
9125 string_file buf;
9126
9127 prefix = determine_prefix (die, cu);
9128 if (*prefix != '\0')
9129 {
9130 char *prefixed_name = typename_concat (NULL, prefix, name,
9131 physname, cu);
9132
9133 buf.puts (prefixed_name);
9134 xfree (prefixed_name);
9135 }
9136 else
9137 buf.puts (name);
9138
9139 /* Template parameters may be specified in the DIE's DW_AT_name, or
9140 as children with DW_TAG_template_type_param or
9141 DW_TAG_value_type_param. If the latter, add them to the name
9142 here. If the name already has template parameters, then
9143 skip this step; some versions of GCC emit both, and
9144 it is more efficient to use the pre-computed name.
9145
9146 Something to keep in mind about this process: it is very
9147 unlikely, or in some cases downright impossible, to produce
9148 something that will match the mangled name of a function.
9149 If the definition of the function has the same debug info,
9150 we should be able to match up with it anyway. But fallbacks
9151 using the minimal symbol, for instance to find a method
9152 implemented in a stripped copy of libstdc++, will not work.
9153 If we do not have debug info for the definition, we will have to
9154 match them up some other way.
9155
9156 When we do name matching there is a related problem with function
9157 templates; two instantiated function templates are allowed to
9158 differ only by their return types, which we do not add here. */
9159
9160 if (cu->language == language_cplus && strchr (name, '<') == NULL)
9161 {
9162 struct attribute *attr;
9163 struct die_info *child;
9164 int first = 1;
9165
9166 die->building_fullname = 1;
9167
9168 for (child = die->child; child != NULL; child = child->sibling)
9169 {
9170 struct type *type;
9171 LONGEST value;
9172 const gdb_byte *bytes;
9173 struct dwarf2_locexpr_baton *baton;
9174 struct value *v;
9175
9176 if (child->tag != DW_TAG_template_type_param
9177 && child->tag != DW_TAG_template_value_param)
9178 continue;
9179
9180 if (first)
9181 {
9182 buf.puts ("<");
9183 first = 0;
9184 }
9185 else
9186 buf.puts (", ");
9187
9188 attr = dwarf2_attr (child, DW_AT_type, cu);
9189 if (attr == NULL)
9190 {
9191 complaint (&symfile_complaints,
9192 _("template parameter missing DW_AT_type"));
9193 buf.puts ("UNKNOWN_TYPE");
9194 continue;
9195 }
9196 type = die_type (child, cu);
9197
9198 if (child->tag == DW_TAG_template_type_param)
9199 {
9200 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
9201 continue;
9202 }
9203
9204 attr = dwarf2_attr (child, DW_AT_const_value, cu);
9205 if (attr == NULL)
9206 {
9207 complaint (&symfile_complaints,
9208 _("template parameter missing "
9209 "DW_AT_const_value"));
9210 buf.puts ("UNKNOWN_VALUE");
9211 continue;
9212 }
9213
9214 dwarf2_const_value_attr (attr, type, name,
9215 &cu->comp_unit_obstack, cu,
9216 &value, &bytes, &baton);
9217
9218 if (TYPE_NOSIGN (type))
9219 /* GDB prints characters as NUMBER 'CHAR'. If that's
9220 changed, this can use value_print instead. */
9221 c_printchar (value, type, &buf);
9222 else
9223 {
9224 struct value_print_options opts;
9225
9226 if (baton != NULL)
9227 v = dwarf2_evaluate_loc_desc (type, NULL,
9228 baton->data,
9229 baton->size,
9230 baton->per_cu);
9231 else if (bytes != NULL)
9232 {
9233 v = allocate_value (type);
9234 memcpy (value_contents_writeable (v), bytes,
9235 TYPE_LENGTH (type));
9236 }
9237 else
9238 v = value_from_longest (type, value);
9239
9240 /* Specify decimal so that we do not depend on
9241 the radix. */
9242 get_formatted_print_options (&opts, 'd');
9243 opts.raw = 1;
9244 value_print (v, &buf, &opts);
9245 release_value (v);
9246 value_free (v);
9247 }
9248 }
9249
9250 die->building_fullname = 0;
9251
9252 if (!first)
9253 {
9254 /* Close the argument list, with a space if necessary
9255 (nested templates). */
9256 if (!buf.empty () && buf.string ().back () == '>')
9257 buf.puts (" >");
9258 else
9259 buf.puts (">");
9260 }
9261 }
9262
9263 /* For C++ methods, append formal parameter type
9264 information, if PHYSNAME. */
9265
9266 if (physname && die->tag == DW_TAG_subprogram
9267 && cu->language == language_cplus)
9268 {
9269 struct type *type = read_type_die (die, cu);
9270
9271 c_type_print_args (type, &buf, 1, cu->language,
9272 &type_print_raw_options);
9273
9274 if (cu->language == language_cplus)
9275 {
9276 /* Assume that an artificial first parameter is
9277 "this", but do not crash if it is not. RealView
9278 marks unnamed (and thus unused) parameters as
9279 artificial; there is no way to differentiate
9280 the two cases. */
9281 if (TYPE_NFIELDS (type) > 0
9282 && TYPE_FIELD_ARTIFICIAL (type, 0)
9283 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
9284 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
9285 0))))
9286 buf.puts (" const");
9287 }
9288 }
9289
9290 const std::string &intermediate_name = buf.string ();
9291
9292 if (cu->language == language_cplus)
9293 canonical_name
9294 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
9295 &objfile->per_bfd->storage_obstack);
9296
9297 /* If we only computed INTERMEDIATE_NAME, or if
9298 INTERMEDIATE_NAME is already canonical, then we need to
9299 copy it to the appropriate obstack. */
9300 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
9301 name = ((const char *)
9302 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9303 intermediate_name.c_str (),
9304 intermediate_name.length ()));
9305 else
9306 name = canonical_name;
9307 }
9308 }
9309
9310 return name;
9311 }
9312
9313 /* Return the fully qualified name of DIE, based on its DW_AT_name.
9314 If scope qualifiers are appropriate they will be added. The result
9315 will be allocated on the storage_obstack, or NULL if the DIE does
9316 not have a name. NAME may either be from a previous call to
9317 dwarf2_name or NULL.
9318
9319 The output string will be canonicalized (if C++). */
9320
9321 static const char *
9322 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
9323 {
9324 return dwarf2_compute_name (name, die, cu, 0);
9325 }
9326
9327 /* Construct a physname for the given DIE in CU. NAME may either be
9328 from a previous call to dwarf2_name or NULL. The result will be
9329 allocated on the objfile_objstack or NULL if the DIE does not have a
9330 name.
9331
9332 The output string will be canonicalized (if C++). */
9333
9334 static const char *
9335 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
9336 {
9337 struct objfile *objfile = cu->objfile;
9338 const char *retval, *mangled = NULL, *canon = NULL;
9339 int need_copy = 1;
9340
9341 /* In this case dwarf2_compute_name is just a shortcut not building anything
9342 on its own. */
9343 if (!die_needs_namespace (die, cu))
9344 return dwarf2_compute_name (name, die, cu, 1);
9345
9346 mangled = dw2_linkage_name (die, cu);
9347
9348 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
9349 See https://github.com/rust-lang/rust/issues/32925. */
9350 if (cu->language == language_rust && mangled != NULL
9351 && strchr (mangled, '{') != NULL)
9352 mangled = NULL;
9353
9354 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
9355 has computed. */
9356 gdb::unique_xmalloc_ptr<char> demangled;
9357 if (mangled != NULL)
9358 {
9359 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
9360 type. It is easier for GDB users to search for such functions as
9361 `name(params)' than `long name(params)'. In such case the minimal
9362 symbol names do not match the full symbol names but for template
9363 functions there is never a need to look up their definition from their
9364 declaration so the only disadvantage remains the minimal symbol
9365 variant `long name(params)' does not have the proper inferior type.
9366 */
9367
9368 if (cu->language == language_go)
9369 {
9370 /* This is a lie, but we already lie to the caller new_symbol_full.
9371 new_symbol_full assumes we return the mangled name.
9372 This just undoes that lie until things are cleaned up. */
9373 }
9374 else
9375 {
9376 demangled.reset (gdb_demangle (mangled,
9377 (DMGL_PARAMS | DMGL_ANSI
9378 | DMGL_RET_DROP)));
9379 }
9380 if (demangled)
9381 canon = demangled.get ();
9382 else
9383 {
9384 canon = mangled;
9385 need_copy = 0;
9386 }
9387 }
9388
9389 if (canon == NULL || check_physname)
9390 {
9391 const char *physname = dwarf2_compute_name (name, die, cu, 1);
9392
9393 if (canon != NULL && strcmp (physname, canon) != 0)
9394 {
9395 /* It may not mean a bug in GDB. The compiler could also
9396 compute DW_AT_linkage_name incorrectly. But in such case
9397 GDB would need to be bug-to-bug compatible. */
9398
9399 complaint (&symfile_complaints,
9400 _("Computed physname <%s> does not match demangled <%s> "
9401 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
9402 physname, canon, mangled, to_underlying (die->sect_off),
9403 objfile_name (objfile));
9404
9405 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
9406 is available here - over computed PHYSNAME. It is safer
9407 against both buggy GDB and buggy compilers. */
9408
9409 retval = canon;
9410 }
9411 else
9412 {
9413 retval = physname;
9414 need_copy = 0;
9415 }
9416 }
9417 else
9418 retval = canon;
9419
9420 if (need_copy)
9421 retval = ((const char *)
9422 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9423 retval, strlen (retval)));
9424
9425 return retval;
9426 }
9427
9428 /* Inspect DIE in CU for a namespace alias. If one exists, record
9429 a new symbol for it.
9430
9431 Returns 1 if a namespace alias was recorded, 0 otherwise. */
9432
9433 static int
9434 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
9435 {
9436 struct attribute *attr;
9437
9438 /* If the die does not have a name, this is not a namespace
9439 alias. */
9440 attr = dwarf2_attr (die, DW_AT_name, cu);
9441 if (attr != NULL)
9442 {
9443 int num;
9444 struct die_info *d = die;
9445 struct dwarf2_cu *imported_cu = cu;
9446
9447 /* If the compiler has nested DW_AT_imported_declaration DIEs,
9448 keep inspecting DIEs until we hit the underlying import. */
9449 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
9450 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
9451 {
9452 attr = dwarf2_attr (d, DW_AT_import, cu);
9453 if (attr == NULL)
9454 break;
9455
9456 d = follow_die_ref (d, attr, &imported_cu);
9457 if (d->tag != DW_TAG_imported_declaration)
9458 break;
9459 }
9460
9461 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
9462 {
9463 complaint (&symfile_complaints,
9464 _("DIE at 0x%x has too many recursively imported "
9465 "declarations"), to_underlying (d->sect_off));
9466 return 0;
9467 }
9468
9469 if (attr != NULL)
9470 {
9471 struct type *type;
9472 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
9473
9474 type = get_die_type_at_offset (sect_off, cu->per_cu);
9475 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
9476 {
9477 /* This declaration is a global namespace alias. Add
9478 a symbol for it whose type is the aliased namespace. */
9479 new_symbol (die, type, cu);
9480 return 1;
9481 }
9482 }
9483 }
9484
9485 return 0;
9486 }
9487
9488 /* Return the using directives repository (global or local?) to use in the
9489 current context for LANGUAGE.
9490
9491 For Ada, imported declarations can materialize renamings, which *may* be
9492 global. However it is impossible (for now?) in DWARF to distinguish
9493 "external" imported declarations and "static" ones. As all imported
9494 declarations seem to be static in all other languages, make them all CU-wide
9495 global only in Ada. */
9496
9497 static struct using_direct **
9498 using_directives (enum language language)
9499 {
9500 if (language == language_ada && context_stack_depth == 0)
9501 return &global_using_directives;
9502 else
9503 return &local_using_directives;
9504 }
9505
9506 /* Read the import statement specified by the given die and record it. */
9507
9508 static void
9509 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
9510 {
9511 struct objfile *objfile = cu->objfile;
9512 struct attribute *import_attr;
9513 struct die_info *imported_die, *child_die;
9514 struct dwarf2_cu *imported_cu;
9515 const char *imported_name;
9516 const char *imported_name_prefix;
9517 const char *canonical_name;
9518 const char *import_alias;
9519 const char *imported_declaration = NULL;
9520 const char *import_prefix;
9521 std::vector<const char *> excludes;
9522
9523 import_attr = dwarf2_attr (die, DW_AT_import, cu);
9524 if (import_attr == NULL)
9525 {
9526 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9527 dwarf_tag_name (die->tag));
9528 return;
9529 }
9530
9531 imported_cu = cu;
9532 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
9533 imported_name = dwarf2_name (imported_die, imported_cu);
9534 if (imported_name == NULL)
9535 {
9536 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
9537
9538 The import in the following code:
9539 namespace A
9540 {
9541 typedef int B;
9542 }
9543
9544 int main ()
9545 {
9546 using A::B;
9547 B b;
9548 return b;
9549 }
9550
9551 ...
9552 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
9553 <52> DW_AT_decl_file : 1
9554 <53> DW_AT_decl_line : 6
9555 <54> DW_AT_import : <0x75>
9556 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
9557 <59> DW_AT_name : B
9558 <5b> DW_AT_decl_file : 1
9559 <5c> DW_AT_decl_line : 2
9560 <5d> DW_AT_type : <0x6e>
9561 ...
9562 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9563 <76> DW_AT_byte_size : 4
9564 <77> DW_AT_encoding : 5 (signed)
9565
9566 imports the wrong die ( 0x75 instead of 0x58 ).
9567 This case will be ignored until the gcc bug is fixed. */
9568 return;
9569 }
9570
9571 /* Figure out the local name after import. */
9572 import_alias = dwarf2_name (die, cu);
9573
9574 /* Figure out where the statement is being imported to. */
9575 import_prefix = determine_prefix (die, cu);
9576
9577 /* Figure out what the scope of the imported die is and prepend it
9578 to the name of the imported die. */
9579 imported_name_prefix = determine_prefix (imported_die, imported_cu);
9580
9581 if (imported_die->tag != DW_TAG_namespace
9582 && imported_die->tag != DW_TAG_module)
9583 {
9584 imported_declaration = imported_name;
9585 canonical_name = imported_name_prefix;
9586 }
9587 else if (strlen (imported_name_prefix) > 0)
9588 canonical_name = obconcat (&objfile->objfile_obstack,
9589 imported_name_prefix,
9590 (cu->language == language_d ? "." : "::"),
9591 imported_name, (char *) NULL);
9592 else
9593 canonical_name = imported_name;
9594
9595 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9596 for (child_die = die->child; child_die && child_die->tag;
9597 child_die = sibling_die (child_die))
9598 {
9599 /* DWARF-4: A Fortran use statement with a “rename list” may be
9600 represented by an imported module entry with an import attribute
9601 referring to the module and owned entries corresponding to those
9602 entities that are renamed as part of being imported. */
9603
9604 if (child_die->tag != DW_TAG_imported_declaration)
9605 {
9606 complaint (&symfile_complaints,
9607 _("child DW_TAG_imported_declaration expected "
9608 "- DIE at 0x%x [in module %s]"),
9609 to_underlying (child_die->sect_off), objfile_name (objfile));
9610 continue;
9611 }
9612
9613 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9614 if (import_attr == NULL)
9615 {
9616 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9617 dwarf_tag_name (child_die->tag));
9618 continue;
9619 }
9620
9621 imported_cu = cu;
9622 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9623 &imported_cu);
9624 imported_name = dwarf2_name (imported_die, imported_cu);
9625 if (imported_name == NULL)
9626 {
9627 complaint (&symfile_complaints,
9628 _("child DW_TAG_imported_declaration has unknown "
9629 "imported name - DIE at 0x%x [in module %s]"),
9630 to_underlying (child_die->sect_off), objfile_name (objfile));
9631 continue;
9632 }
9633
9634 excludes.push_back (imported_name);
9635
9636 process_die (child_die, cu);
9637 }
9638
9639 add_using_directive (using_directives (cu->language),
9640 import_prefix,
9641 canonical_name,
9642 import_alias,
9643 imported_declaration,
9644 excludes,
9645 0,
9646 &objfile->objfile_obstack);
9647 }
9648
9649 /* ICC<14 does not output the required DW_AT_declaration on incomplete
9650 types, but gives them a size of zero. Starting with version 14,
9651 ICC is compatible with GCC. */
9652
9653 static int
9654 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
9655 {
9656 if (!cu->checked_producer)
9657 check_producer (cu);
9658
9659 return cu->producer_is_icc_lt_14;
9660 }
9661
9662 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9663 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9664 this, it was first present in GCC release 4.3.0. */
9665
9666 static int
9667 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9668 {
9669 if (!cu->checked_producer)
9670 check_producer (cu);
9671
9672 return cu->producer_is_gcc_lt_4_3;
9673 }
9674
9675 static file_and_directory
9676 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9677 {
9678 file_and_directory res;
9679
9680 /* Find the filename. Do not use dwarf2_name here, since the filename
9681 is not a source language identifier. */
9682 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
9683 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9684
9685 if (res.comp_dir == NULL
9686 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
9687 && IS_ABSOLUTE_PATH (res.name))
9688 {
9689 res.comp_dir_storage = ldirname (res.name);
9690 if (!res.comp_dir_storage.empty ())
9691 res.comp_dir = res.comp_dir_storage.c_str ();
9692 }
9693 if (res.comp_dir != NULL)
9694 {
9695 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9696 directory, get rid of it. */
9697 const char *cp = strchr (res.comp_dir, ':');
9698
9699 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
9700 res.comp_dir = cp + 1;
9701 }
9702
9703 if (res.name == NULL)
9704 res.name = "<unknown>";
9705
9706 return res;
9707 }
9708
9709 /* Handle DW_AT_stmt_list for a compilation unit.
9710 DIE is the DW_TAG_compile_unit die for CU.
9711 COMP_DIR is the compilation directory. LOWPC is passed to
9712 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9713
9714 static void
9715 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9716 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9717 {
9718 struct objfile *objfile = dwarf2_per_objfile->objfile;
9719 struct attribute *attr;
9720 struct line_header line_header_local;
9721 hashval_t line_header_local_hash;
9722 unsigned u;
9723 void **slot;
9724 int decode_mapping;
9725
9726 gdb_assert (! cu->per_cu->is_debug_types);
9727
9728 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9729 if (attr == NULL)
9730 return;
9731
9732 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9733
9734 /* The line header hash table is only created if needed (it exists to
9735 prevent redundant reading of the line table for partial_units).
9736 If we're given a partial_unit, we'll need it. If we're given a
9737 compile_unit, then use the line header hash table if it's already
9738 created, but don't create one just yet. */
9739
9740 if (dwarf2_per_objfile->line_header_hash == NULL
9741 && die->tag == DW_TAG_partial_unit)
9742 {
9743 dwarf2_per_objfile->line_header_hash
9744 = htab_create_alloc_ex (127, line_header_hash_voidp,
9745 line_header_eq_voidp,
9746 free_line_header_voidp,
9747 &objfile->objfile_obstack,
9748 hashtab_obstack_allocate,
9749 dummy_obstack_deallocate);
9750 }
9751
9752 line_header_local.sect_off = line_offset;
9753 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9754 line_header_local_hash = line_header_hash (&line_header_local);
9755 if (dwarf2_per_objfile->line_header_hash != NULL)
9756 {
9757 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9758 &line_header_local,
9759 line_header_local_hash, NO_INSERT);
9760
9761 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9762 is not present in *SLOT (since if there is something in *SLOT then
9763 it will be for a partial_unit). */
9764 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9765 {
9766 gdb_assert (*slot != NULL);
9767 cu->line_header = (struct line_header *) *slot;
9768 return;
9769 }
9770 }
9771
9772 /* dwarf_decode_line_header does not yet provide sufficient information.
9773 We always have to call also dwarf_decode_lines for it. */
9774 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
9775 if (lh == NULL)
9776 return;
9777
9778 cu->line_header = lh.release ();
9779 cu->line_header_die_owner = die;
9780
9781 if (dwarf2_per_objfile->line_header_hash == NULL)
9782 slot = NULL;
9783 else
9784 {
9785 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9786 &line_header_local,
9787 line_header_local_hash, INSERT);
9788 gdb_assert (slot != NULL);
9789 }
9790 if (slot != NULL && *slot == NULL)
9791 {
9792 /* This newly decoded line number information unit will be owned
9793 by line_header_hash hash table. */
9794 *slot = cu->line_header;
9795 cu->line_header_die_owner = NULL;
9796 }
9797 else
9798 {
9799 /* We cannot free any current entry in (*slot) as that struct line_header
9800 may be already used by multiple CUs. Create only temporary decoded
9801 line_header for this CU - it may happen at most once for each line
9802 number information unit. And if we're not using line_header_hash
9803 then this is what we want as well. */
9804 gdb_assert (die->tag != DW_TAG_partial_unit);
9805 }
9806 decode_mapping = (die->tag != DW_TAG_partial_unit);
9807 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9808 decode_mapping);
9809
9810 }
9811
9812 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9813
9814 static void
9815 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9816 {
9817 struct objfile *objfile = dwarf2_per_objfile->objfile;
9818 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9819 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9820 CORE_ADDR highpc = ((CORE_ADDR) 0);
9821 struct attribute *attr;
9822 struct die_info *child_die;
9823 CORE_ADDR baseaddr;
9824
9825 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9826
9827 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9828
9829 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9830 from finish_block. */
9831 if (lowpc == ((CORE_ADDR) -1))
9832 lowpc = highpc;
9833 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9834
9835 file_and_directory fnd = find_file_and_directory (die, cu);
9836
9837 prepare_one_comp_unit (cu, die, cu->language);
9838
9839 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9840 standardised yet. As a workaround for the language detection we fall
9841 back to the DW_AT_producer string. */
9842 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9843 cu->language = language_opencl;
9844
9845 /* Similar hack for Go. */
9846 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9847 set_cu_language (DW_LANG_Go, cu);
9848
9849 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
9850
9851 /* Decode line number information if present. We do this before
9852 processing child DIEs, so that the line header table is available
9853 for DW_AT_decl_file. */
9854 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
9855
9856 /* Process all dies in compilation unit. */
9857 if (die->child != NULL)
9858 {
9859 child_die = die->child;
9860 while (child_die && child_die->tag)
9861 {
9862 process_die (child_die, cu);
9863 child_die = sibling_die (child_die);
9864 }
9865 }
9866
9867 /* Decode macro information, if present. Dwarf 2 macro information
9868 refers to information in the line number info statement program
9869 header, so we can only read it if we've read the header
9870 successfully. */
9871 attr = dwarf2_attr (die, DW_AT_macros, cu);
9872 if (attr == NULL)
9873 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9874 if (attr && cu->line_header)
9875 {
9876 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9877 complaint (&symfile_complaints,
9878 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
9879
9880 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9881 }
9882 else
9883 {
9884 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9885 if (attr && cu->line_header)
9886 {
9887 unsigned int macro_offset = DW_UNSND (attr);
9888
9889 dwarf_decode_macros (cu, macro_offset, 0);
9890 }
9891 }
9892 }
9893
9894 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9895 Create the set of symtabs used by this TU, or if this TU is sharing
9896 symtabs with another TU and the symtabs have already been created
9897 then restore those symtabs in the line header.
9898 We don't need the pc/line-number mapping for type units. */
9899
9900 static void
9901 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9902 {
9903 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9904 struct type_unit_group *tu_group;
9905 int first_time;
9906 struct attribute *attr;
9907 unsigned int i;
9908 struct signatured_type *sig_type;
9909
9910 gdb_assert (per_cu->is_debug_types);
9911 sig_type = (struct signatured_type *) per_cu;
9912
9913 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9914
9915 /* If we're using .gdb_index (includes -readnow) then
9916 per_cu->type_unit_group may not have been set up yet. */
9917 if (sig_type->type_unit_group == NULL)
9918 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9919 tu_group = sig_type->type_unit_group;
9920
9921 /* If we've already processed this stmt_list there's no real need to
9922 do it again, we could fake it and just recreate the part we need
9923 (file name,index -> symtab mapping). If data shows this optimization
9924 is useful we can do it then. */
9925 first_time = tu_group->compunit_symtab == NULL;
9926
9927 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9928 debug info. */
9929 line_header_up lh;
9930 if (attr != NULL)
9931 {
9932 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9933 lh = dwarf_decode_line_header (line_offset, cu);
9934 }
9935 if (lh == NULL)
9936 {
9937 if (first_time)
9938 dwarf2_start_symtab (cu, "", NULL, 0);
9939 else
9940 {
9941 gdb_assert (tu_group->symtabs == NULL);
9942 restart_symtab (tu_group->compunit_symtab, "", 0);
9943 }
9944 return;
9945 }
9946
9947 cu->line_header = lh.release ();
9948 cu->line_header_die_owner = die;
9949
9950 if (first_time)
9951 {
9952 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9953
9954 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9955 still initializing it, and our caller (a few levels up)
9956 process_full_type_unit still needs to know if this is the first
9957 time. */
9958
9959 tu_group->num_symtabs = cu->line_header->file_names.size ();
9960 tu_group->symtabs = XNEWVEC (struct symtab *,
9961 cu->line_header->file_names.size ());
9962
9963 for (i = 0; i < cu->line_header->file_names.size (); ++i)
9964 {
9965 file_entry &fe = cu->line_header->file_names[i];
9966
9967 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
9968
9969 if (current_subfile->symtab == NULL)
9970 {
9971 /* NOTE: start_subfile will recognize when it's been
9972 passed a file it has already seen. So we can't
9973 assume there's a simple mapping from
9974 cu->line_header->file_names to subfiles, plus
9975 cu->line_header->file_names may contain dups. */
9976 current_subfile->symtab
9977 = allocate_symtab (cust, current_subfile->name);
9978 }
9979
9980 fe.symtab = current_subfile->symtab;
9981 tu_group->symtabs[i] = fe.symtab;
9982 }
9983 }
9984 else
9985 {
9986 restart_symtab (tu_group->compunit_symtab, "", 0);
9987
9988 for (i = 0; i < cu->line_header->file_names.size (); ++i)
9989 {
9990 file_entry &fe = cu->line_header->file_names[i];
9991
9992 fe.symtab = tu_group->symtabs[i];
9993 }
9994 }
9995
9996 /* The main symtab is allocated last. Type units don't have DW_AT_name
9997 so they don't have a "real" (so to speak) symtab anyway.
9998 There is later code that will assign the main symtab to all symbols
9999 that don't have one. We need to handle the case of a symbol with a
10000 missing symtab (DW_AT_decl_file) anyway. */
10001 }
10002
10003 /* Process DW_TAG_type_unit.
10004 For TUs we want to skip the first top level sibling if it's not the
10005 actual type being defined by this TU. In this case the first top
10006 level sibling is there to provide context only. */
10007
10008 static void
10009 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
10010 {
10011 struct die_info *child_die;
10012
10013 prepare_one_comp_unit (cu, die, language_minimal);
10014
10015 /* Initialize (or reinitialize) the machinery for building symtabs.
10016 We do this before processing child DIEs, so that the line header table
10017 is available for DW_AT_decl_file. */
10018 setup_type_unit_groups (die, cu);
10019
10020 if (die->child != NULL)
10021 {
10022 child_die = die->child;
10023 while (child_die && child_die->tag)
10024 {
10025 process_die (child_die, cu);
10026 child_die = sibling_die (child_die);
10027 }
10028 }
10029 }
10030 \f
10031 /* DWO/DWP files.
10032
10033 http://gcc.gnu.org/wiki/DebugFission
10034 http://gcc.gnu.org/wiki/DebugFissionDWP
10035
10036 To simplify handling of both DWO files ("object" files with the DWARF info)
10037 and DWP files (a file with the DWOs packaged up into one file), we treat
10038 DWP files as having a collection of virtual DWO files. */
10039
10040 static hashval_t
10041 hash_dwo_file (const void *item)
10042 {
10043 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
10044 hashval_t hash;
10045
10046 hash = htab_hash_string (dwo_file->dwo_name);
10047 if (dwo_file->comp_dir != NULL)
10048 hash += htab_hash_string (dwo_file->comp_dir);
10049 return hash;
10050 }
10051
10052 static int
10053 eq_dwo_file (const void *item_lhs, const void *item_rhs)
10054 {
10055 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
10056 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
10057
10058 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
10059 return 0;
10060 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
10061 return lhs->comp_dir == rhs->comp_dir;
10062 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
10063 }
10064
10065 /* Allocate a hash table for DWO files. */
10066
10067 static htab_t
10068 allocate_dwo_file_hash_table (void)
10069 {
10070 struct objfile *objfile = dwarf2_per_objfile->objfile;
10071
10072 return htab_create_alloc_ex (41,
10073 hash_dwo_file,
10074 eq_dwo_file,
10075 NULL,
10076 &objfile->objfile_obstack,
10077 hashtab_obstack_allocate,
10078 dummy_obstack_deallocate);
10079 }
10080
10081 /* Lookup DWO file DWO_NAME. */
10082
10083 static void **
10084 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
10085 {
10086 struct dwo_file find_entry;
10087 void **slot;
10088
10089 if (dwarf2_per_objfile->dwo_files == NULL)
10090 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
10091
10092 memset (&find_entry, 0, sizeof (find_entry));
10093 find_entry.dwo_name = dwo_name;
10094 find_entry.comp_dir = comp_dir;
10095 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
10096
10097 return slot;
10098 }
10099
10100 static hashval_t
10101 hash_dwo_unit (const void *item)
10102 {
10103 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10104
10105 /* This drops the top 32 bits of the id, but is ok for a hash. */
10106 return dwo_unit->signature;
10107 }
10108
10109 static int
10110 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
10111 {
10112 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
10113 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
10114
10115 /* The signature is assumed to be unique within the DWO file.
10116 So while object file CU dwo_id's always have the value zero,
10117 that's OK, assuming each object file DWO file has only one CU,
10118 and that's the rule for now. */
10119 return lhs->signature == rhs->signature;
10120 }
10121
10122 /* Allocate a hash table for DWO CUs,TUs.
10123 There is one of these tables for each of CUs,TUs for each DWO file. */
10124
10125 static htab_t
10126 allocate_dwo_unit_table (struct objfile *objfile)
10127 {
10128 /* Start out with a pretty small number.
10129 Generally DWO files contain only one CU and maybe some TUs. */
10130 return htab_create_alloc_ex (3,
10131 hash_dwo_unit,
10132 eq_dwo_unit,
10133 NULL,
10134 &objfile->objfile_obstack,
10135 hashtab_obstack_allocate,
10136 dummy_obstack_deallocate);
10137 }
10138
10139 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
10140
10141 struct create_dwo_cu_data
10142 {
10143 struct dwo_file *dwo_file;
10144 struct dwo_unit dwo_unit;
10145 };
10146
10147 /* die_reader_func for create_dwo_cu. */
10148
10149 static void
10150 create_dwo_cu_reader (const struct die_reader_specs *reader,
10151 const gdb_byte *info_ptr,
10152 struct die_info *comp_unit_die,
10153 int has_children,
10154 void *datap)
10155 {
10156 struct dwarf2_cu *cu = reader->cu;
10157 sect_offset sect_off = cu->per_cu->sect_off;
10158 struct dwarf2_section_info *section = cu->per_cu->section;
10159 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
10160 struct dwo_file *dwo_file = data->dwo_file;
10161 struct dwo_unit *dwo_unit = &data->dwo_unit;
10162 struct attribute *attr;
10163
10164 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
10165 if (attr == NULL)
10166 {
10167 complaint (&symfile_complaints,
10168 _("Dwarf Error: debug entry at offset 0x%x is missing"
10169 " its dwo_id [in module %s]"),
10170 to_underlying (sect_off), dwo_file->dwo_name);
10171 return;
10172 }
10173
10174 dwo_unit->dwo_file = dwo_file;
10175 dwo_unit->signature = DW_UNSND (attr);
10176 dwo_unit->section = section;
10177 dwo_unit->sect_off = sect_off;
10178 dwo_unit->length = cu->per_cu->length;
10179
10180 if (dwarf_read_debug)
10181 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
10182 to_underlying (sect_off),
10183 hex_string (dwo_unit->signature));
10184 }
10185
10186 /* Create the dwo_units for the CUs in a DWO_FILE.
10187 Note: This function processes DWO files only, not DWP files. */
10188
10189 static void
10190 create_cus_hash_table (struct dwo_file &dwo_file, dwarf2_section_info &section,
10191 htab_t &cus_htab)
10192 {
10193 struct objfile *objfile = dwarf2_per_objfile->objfile;
10194 const struct dwarf2_section_info *abbrev_section = &dwo_file.sections.abbrev;
10195 const gdb_byte *info_ptr, *end_ptr;
10196
10197 dwarf2_read_section (objfile, &section);
10198 info_ptr = section.buffer;
10199
10200 if (info_ptr == NULL)
10201 return;
10202
10203 if (dwarf_read_debug)
10204 {
10205 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
10206 get_section_name (&section),
10207 get_section_file_name (&section));
10208 }
10209
10210 end_ptr = info_ptr + section.size;
10211 while (info_ptr < end_ptr)
10212 {
10213 struct dwarf2_per_cu_data per_cu;
10214 struct create_dwo_cu_data create_dwo_cu_data;
10215 struct dwo_unit *dwo_unit;
10216 void **slot;
10217 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
10218
10219 memset (&create_dwo_cu_data.dwo_unit, 0,
10220 sizeof (create_dwo_cu_data.dwo_unit));
10221 memset (&per_cu, 0, sizeof (per_cu));
10222 per_cu.objfile = objfile;
10223 per_cu.is_debug_types = 0;
10224 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
10225 per_cu.section = &section;
10226 create_dwo_cu_data.dwo_file = &dwo_file;
10227
10228 init_cutu_and_read_dies_no_follow (
10229 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
10230 info_ptr += per_cu.length;
10231
10232 // If the unit could not be parsed, skip it.
10233 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
10234 continue;
10235
10236 if (cus_htab == NULL)
10237 cus_htab = allocate_dwo_unit_table (objfile);
10238
10239 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10240 *dwo_unit = create_dwo_cu_data.dwo_unit;
10241 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
10242 gdb_assert (slot != NULL);
10243 if (*slot != NULL)
10244 {
10245 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
10246 sect_offset dup_sect_off = dup_cu->sect_off;
10247
10248 complaint (&symfile_complaints,
10249 _("debug cu entry at offset 0x%x is duplicate to"
10250 " the entry at offset 0x%x, signature %s"),
10251 to_underlying (sect_off), to_underlying (dup_sect_off),
10252 hex_string (dwo_unit->signature));
10253 }
10254 *slot = (void *)dwo_unit;
10255 }
10256 }
10257
10258 /* DWP file .debug_{cu,tu}_index section format:
10259 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
10260
10261 DWP Version 1:
10262
10263 Both index sections have the same format, and serve to map a 64-bit
10264 signature to a set of section numbers. Each section begins with a header,
10265 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
10266 indexes, and a pool of 32-bit section numbers. The index sections will be
10267 aligned at 8-byte boundaries in the file.
10268
10269 The index section header consists of:
10270
10271 V, 32 bit version number
10272 -, 32 bits unused
10273 N, 32 bit number of compilation units or type units in the index
10274 M, 32 bit number of slots in the hash table
10275
10276 Numbers are recorded using the byte order of the application binary.
10277
10278 The hash table begins at offset 16 in the section, and consists of an array
10279 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
10280 order of the application binary). Unused slots in the hash table are 0.
10281 (We rely on the extreme unlikeliness of a signature being exactly 0.)
10282
10283 The parallel table begins immediately after the hash table
10284 (at offset 16 + 8 * M from the beginning of the section), and consists of an
10285 array of 32-bit indexes (using the byte order of the application binary),
10286 corresponding 1-1 with slots in the hash table. Each entry in the parallel
10287 table contains a 32-bit index into the pool of section numbers. For unused
10288 hash table slots, the corresponding entry in the parallel table will be 0.
10289
10290 The pool of section numbers begins immediately following the hash table
10291 (at offset 16 + 12 * M from the beginning of the section). The pool of
10292 section numbers consists of an array of 32-bit words (using the byte order
10293 of the application binary). Each item in the array is indexed starting
10294 from 0. The hash table entry provides the index of the first section
10295 number in the set. Additional section numbers in the set follow, and the
10296 set is terminated by a 0 entry (section number 0 is not used in ELF).
10297
10298 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
10299 section must be the first entry in the set, and the .debug_abbrev.dwo must
10300 be the second entry. Other members of the set may follow in any order.
10301
10302 ---
10303
10304 DWP Version 2:
10305
10306 DWP Version 2 combines all the .debug_info, etc. sections into one,
10307 and the entries in the index tables are now offsets into these sections.
10308 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
10309 section.
10310
10311 Index Section Contents:
10312 Header
10313 Hash Table of Signatures dwp_hash_table.hash_table
10314 Parallel Table of Indices dwp_hash_table.unit_table
10315 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
10316 Table of Section Sizes dwp_hash_table.v2.sizes
10317
10318 The index section header consists of:
10319
10320 V, 32 bit version number
10321 L, 32 bit number of columns in the table of section offsets
10322 N, 32 bit number of compilation units or type units in the index
10323 M, 32 bit number of slots in the hash table
10324
10325 Numbers are recorded using the byte order of the application binary.
10326
10327 The hash table has the same format as version 1.
10328 The parallel table of indices has the same format as version 1,
10329 except that the entries are origin-1 indices into the table of sections
10330 offsets and the table of section sizes.
10331
10332 The table of offsets begins immediately following the parallel table
10333 (at offset 16 + 12 * M from the beginning of the section). The table is
10334 a two-dimensional array of 32-bit words (using the byte order of the
10335 application binary), with L columns and N+1 rows, in row-major order.
10336 Each row in the array is indexed starting from 0. The first row provides
10337 a key to the remaining rows: each column in this row provides an identifier
10338 for a debug section, and the offsets in the same column of subsequent rows
10339 refer to that section. The section identifiers are:
10340
10341 DW_SECT_INFO 1 .debug_info.dwo
10342 DW_SECT_TYPES 2 .debug_types.dwo
10343 DW_SECT_ABBREV 3 .debug_abbrev.dwo
10344 DW_SECT_LINE 4 .debug_line.dwo
10345 DW_SECT_LOC 5 .debug_loc.dwo
10346 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
10347 DW_SECT_MACINFO 7 .debug_macinfo.dwo
10348 DW_SECT_MACRO 8 .debug_macro.dwo
10349
10350 The offsets provided by the CU and TU index sections are the base offsets
10351 for the contributions made by each CU or TU to the corresponding section
10352 in the package file. Each CU and TU header contains an abbrev_offset
10353 field, used to find the abbreviations table for that CU or TU within the
10354 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
10355 be interpreted as relative to the base offset given in the index section.
10356 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
10357 should be interpreted as relative to the base offset for .debug_line.dwo,
10358 and offsets into other debug sections obtained from DWARF attributes should
10359 also be interpreted as relative to the corresponding base offset.
10360
10361 The table of sizes begins immediately following the table of offsets.
10362 Like the table of offsets, it is a two-dimensional array of 32-bit words,
10363 with L columns and N rows, in row-major order. Each row in the array is
10364 indexed starting from 1 (row 0 is shared by the two tables).
10365
10366 ---
10367
10368 Hash table lookup is handled the same in version 1 and 2:
10369
10370 We assume that N and M will not exceed 2^32 - 1.
10371 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
10372
10373 Given a 64-bit compilation unit signature or a type signature S, an entry
10374 in the hash table is located as follows:
10375
10376 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
10377 the low-order k bits all set to 1.
10378
10379 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
10380
10381 3) If the hash table entry at index H matches the signature, use that
10382 entry. If the hash table entry at index H is unused (all zeroes),
10383 terminate the search: the signature is not present in the table.
10384
10385 4) Let H = (H + H') modulo M. Repeat at Step 3.
10386
10387 Because M > N and H' and M are relatively prime, the search is guaranteed
10388 to stop at an unused slot or find the match. */
10389
10390 /* Create a hash table to map DWO IDs to their CU/TU entry in
10391 .debug_{info,types}.dwo in DWP_FILE.
10392 Returns NULL if there isn't one.
10393 Note: This function processes DWP files only, not DWO files. */
10394
10395 static struct dwp_hash_table *
10396 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
10397 {
10398 struct objfile *objfile = dwarf2_per_objfile->objfile;
10399 bfd *dbfd = dwp_file->dbfd;
10400 const gdb_byte *index_ptr, *index_end;
10401 struct dwarf2_section_info *index;
10402 uint32_t version, nr_columns, nr_units, nr_slots;
10403 struct dwp_hash_table *htab;
10404
10405 if (is_debug_types)
10406 index = &dwp_file->sections.tu_index;
10407 else
10408 index = &dwp_file->sections.cu_index;
10409
10410 if (dwarf2_section_empty_p (index))
10411 return NULL;
10412 dwarf2_read_section (objfile, index);
10413
10414 index_ptr = index->buffer;
10415 index_end = index_ptr + index->size;
10416
10417 version = read_4_bytes (dbfd, index_ptr);
10418 index_ptr += 4;
10419 if (version == 2)
10420 nr_columns = read_4_bytes (dbfd, index_ptr);
10421 else
10422 nr_columns = 0;
10423 index_ptr += 4;
10424 nr_units = read_4_bytes (dbfd, index_ptr);
10425 index_ptr += 4;
10426 nr_slots = read_4_bytes (dbfd, index_ptr);
10427 index_ptr += 4;
10428
10429 if (version != 1 && version != 2)
10430 {
10431 error (_("Dwarf Error: unsupported DWP file version (%s)"
10432 " [in module %s]"),
10433 pulongest (version), dwp_file->name);
10434 }
10435 if (nr_slots != (nr_slots & -nr_slots))
10436 {
10437 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
10438 " is not power of 2 [in module %s]"),
10439 pulongest (nr_slots), dwp_file->name);
10440 }
10441
10442 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
10443 htab->version = version;
10444 htab->nr_columns = nr_columns;
10445 htab->nr_units = nr_units;
10446 htab->nr_slots = nr_slots;
10447 htab->hash_table = index_ptr;
10448 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
10449
10450 /* Exit early if the table is empty. */
10451 if (nr_slots == 0 || nr_units == 0
10452 || (version == 2 && nr_columns == 0))
10453 {
10454 /* All must be zero. */
10455 if (nr_slots != 0 || nr_units != 0
10456 || (version == 2 && nr_columns != 0))
10457 {
10458 complaint (&symfile_complaints,
10459 _("Empty DWP but nr_slots,nr_units,nr_columns not"
10460 " all zero [in modules %s]"),
10461 dwp_file->name);
10462 }
10463 return htab;
10464 }
10465
10466 if (version == 1)
10467 {
10468 htab->section_pool.v1.indices =
10469 htab->unit_table + sizeof (uint32_t) * nr_slots;
10470 /* It's harder to decide whether the section is too small in v1.
10471 V1 is deprecated anyway so we punt. */
10472 }
10473 else
10474 {
10475 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
10476 int *ids = htab->section_pool.v2.section_ids;
10477 /* Reverse map for error checking. */
10478 int ids_seen[DW_SECT_MAX + 1];
10479 int i;
10480
10481 if (nr_columns < 2)
10482 {
10483 error (_("Dwarf Error: bad DWP hash table, too few columns"
10484 " in section table [in module %s]"),
10485 dwp_file->name);
10486 }
10487 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
10488 {
10489 error (_("Dwarf Error: bad DWP hash table, too many columns"
10490 " in section table [in module %s]"),
10491 dwp_file->name);
10492 }
10493 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10494 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10495 for (i = 0; i < nr_columns; ++i)
10496 {
10497 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
10498
10499 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
10500 {
10501 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
10502 " in section table [in module %s]"),
10503 id, dwp_file->name);
10504 }
10505 if (ids_seen[id] != -1)
10506 {
10507 error (_("Dwarf Error: bad DWP hash table, duplicate section"
10508 " id %d in section table [in module %s]"),
10509 id, dwp_file->name);
10510 }
10511 ids_seen[id] = i;
10512 ids[i] = id;
10513 }
10514 /* Must have exactly one info or types section. */
10515 if (((ids_seen[DW_SECT_INFO] != -1)
10516 + (ids_seen[DW_SECT_TYPES] != -1))
10517 != 1)
10518 {
10519 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
10520 " DWO info/types section [in module %s]"),
10521 dwp_file->name);
10522 }
10523 /* Must have an abbrev section. */
10524 if (ids_seen[DW_SECT_ABBREV] == -1)
10525 {
10526 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
10527 " section [in module %s]"),
10528 dwp_file->name);
10529 }
10530 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
10531 htab->section_pool.v2.sizes =
10532 htab->section_pool.v2.offsets + (sizeof (uint32_t)
10533 * nr_units * nr_columns);
10534 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
10535 * nr_units * nr_columns))
10536 > index_end)
10537 {
10538 error (_("Dwarf Error: DWP index section is corrupt (too small)"
10539 " [in module %s]"),
10540 dwp_file->name);
10541 }
10542 }
10543
10544 return htab;
10545 }
10546
10547 /* Update SECTIONS with the data from SECTP.
10548
10549 This function is like the other "locate" section routines that are
10550 passed to bfd_map_over_sections, but in this context the sections to
10551 read comes from the DWP V1 hash table, not the full ELF section table.
10552
10553 The result is non-zero for success, or zero if an error was found. */
10554
10555 static int
10556 locate_v1_virtual_dwo_sections (asection *sectp,
10557 struct virtual_v1_dwo_sections *sections)
10558 {
10559 const struct dwop_section_names *names = &dwop_section_names;
10560
10561 if (section_is_p (sectp->name, &names->abbrev_dwo))
10562 {
10563 /* There can be only one. */
10564 if (sections->abbrev.s.section != NULL)
10565 return 0;
10566 sections->abbrev.s.section = sectp;
10567 sections->abbrev.size = bfd_get_section_size (sectp);
10568 }
10569 else if (section_is_p (sectp->name, &names->info_dwo)
10570 || section_is_p (sectp->name, &names->types_dwo))
10571 {
10572 /* There can be only one. */
10573 if (sections->info_or_types.s.section != NULL)
10574 return 0;
10575 sections->info_or_types.s.section = sectp;
10576 sections->info_or_types.size = bfd_get_section_size (sectp);
10577 }
10578 else if (section_is_p (sectp->name, &names->line_dwo))
10579 {
10580 /* There can be only one. */
10581 if (sections->line.s.section != NULL)
10582 return 0;
10583 sections->line.s.section = sectp;
10584 sections->line.size = bfd_get_section_size (sectp);
10585 }
10586 else if (section_is_p (sectp->name, &names->loc_dwo))
10587 {
10588 /* There can be only one. */
10589 if (sections->loc.s.section != NULL)
10590 return 0;
10591 sections->loc.s.section = sectp;
10592 sections->loc.size = bfd_get_section_size (sectp);
10593 }
10594 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10595 {
10596 /* There can be only one. */
10597 if (sections->macinfo.s.section != NULL)
10598 return 0;
10599 sections->macinfo.s.section = sectp;
10600 sections->macinfo.size = bfd_get_section_size (sectp);
10601 }
10602 else if (section_is_p (sectp->name, &names->macro_dwo))
10603 {
10604 /* There can be only one. */
10605 if (sections->macro.s.section != NULL)
10606 return 0;
10607 sections->macro.s.section = sectp;
10608 sections->macro.size = bfd_get_section_size (sectp);
10609 }
10610 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10611 {
10612 /* There can be only one. */
10613 if (sections->str_offsets.s.section != NULL)
10614 return 0;
10615 sections->str_offsets.s.section = sectp;
10616 sections->str_offsets.size = bfd_get_section_size (sectp);
10617 }
10618 else
10619 {
10620 /* No other kind of section is valid. */
10621 return 0;
10622 }
10623
10624 return 1;
10625 }
10626
10627 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10628 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10629 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10630 This is for DWP version 1 files. */
10631
10632 static struct dwo_unit *
10633 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10634 uint32_t unit_index,
10635 const char *comp_dir,
10636 ULONGEST signature, int is_debug_types)
10637 {
10638 struct objfile *objfile = dwarf2_per_objfile->objfile;
10639 const struct dwp_hash_table *dwp_htab =
10640 is_debug_types ? dwp_file->tus : dwp_file->cus;
10641 bfd *dbfd = dwp_file->dbfd;
10642 const char *kind = is_debug_types ? "TU" : "CU";
10643 struct dwo_file *dwo_file;
10644 struct dwo_unit *dwo_unit;
10645 struct virtual_v1_dwo_sections sections;
10646 void **dwo_file_slot;
10647 int i;
10648
10649 gdb_assert (dwp_file->version == 1);
10650
10651 if (dwarf_read_debug)
10652 {
10653 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10654 kind,
10655 pulongest (unit_index), hex_string (signature),
10656 dwp_file->name);
10657 }
10658
10659 /* Fetch the sections of this DWO unit.
10660 Put a limit on the number of sections we look for so that bad data
10661 doesn't cause us to loop forever. */
10662
10663 #define MAX_NR_V1_DWO_SECTIONS \
10664 (1 /* .debug_info or .debug_types */ \
10665 + 1 /* .debug_abbrev */ \
10666 + 1 /* .debug_line */ \
10667 + 1 /* .debug_loc */ \
10668 + 1 /* .debug_str_offsets */ \
10669 + 1 /* .debug_macro or .debug_macinfo */ \
10670 + 1 /* trailing zero */)
10671
10672 memset (&sections, 0, sizeof (sections));
10673
10674 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10675 {
10676 asection *sectp;
10677 uint32_t section_nr =
10678 read_4_bytes (dbfd,
10679 dwp_htab->section_pool.v1.indices
10680 + (unit_index + i) * sizeof (uint32_t));
10681
10682 if (section_nr == 0)
10683 break;
10684 if (section_nr >= dwp_file->num_sections)
10685 {
10686 error (_("Dwarf Error: bad DWP hash table, section number too large"
10687 " [in module %s]"),
10688 dwp_file->name);
10689 }
10690
10691 sectp = dwp_file->elf_sections[section_nr];
10692 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10693 {
10694 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10695 " [in module %s]"),
10696 dwp_file->name);
10697 }
10698 }
10699
10700 if (i < 2
10701 || dwarf2_section_empty_p (&sections.info_or_types)
10702 || dwarf2_section_empty_p (&sections.abbrev))
10703 {
10704 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10705 " [in module %s]"),
10706 dwp_file->name);
10707 }
10708 if (i == MAX_NR_V1_DWO_SECTIONS)
10709 {
10710 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10711 " [in module %s]"),
10712 dwp_file->name);
10713 }
10714
10715 /* It's easier for the rest of the code if we fake a struct dwo_file and
10716 have dwo_unit "live" in that. At least for now.
10717
10718 The DWP file can be made up of a random collection of CUs and TUs.
10719 However, for each CU + set of TUs that came from the same original DWO
10720 file, we can combine them back into a virtual DWO file to save space
10721 (fewer struct dwo_file objects to allocate). Remember that for really
10722 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10723
10724 std::string virtual_dwo_name =
10725 string_printf ("virtual-dwo/%d-%d-%d-%d",
10726 get_section_id (&sections.abbrev),
10727 get_section_id (&sections.line),
10728 get_section_id (&sections.loc),
10729 get_section_id (&sections.str_offsets));
10730 /* Can we use an existing virtual DWO file? */
10731 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name.c_str (), comp_dir);
10732 /* Create one if necessary. */
10733 if (*dwo_file_slot == NULL)
10734 {
10735 if (dwarf_read_debug)
10736 {
10737 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10738 virtual_dwo_name.c_str ());
10739 }
10740 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10741 dwo_file->dwo_name
10742 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10743 virtual_dwo_name.c_str (),
10744 virtual_dwo_name.size ());
10745 dwo_file->comp_dir = comp_dir;
10746 dwo_file->sections.abbrev = sections.abbrev;
10747 dwo_file->sections.line = sections.line;
10748 dwo_file->sections.loc = sections.loc;
10749 dwo_file->sections.macinfo = sections.macinfo;
10750 dwo_file->sections.macro = sections.macro;
10751 dwo_file->sections.str_offsets = sections.str_offsets;
10752 /* The "str" section is global to the entire DWP file. */
10753 dwo_file->sections.str = dwp_file->sections.str;
10754 /* The info or types section is assigned below to dwo_unit,
10755 there's no need to record it in dwo_file.
10756 Also, we can't simply record type sections in dwo_file because
10757 we record a pointer into the vector in dwo_unit. As we collect more
10758 types we'll grow the vector and eventually have to reallocate space
10759 for it, invalidating all copies of pointers into the previous
10760 contents. */
10761 *dwo_file_slot = dwo_file;
10762 }
10763 else
10764 {
10765 if (dwarf_read_debug)
10766 {
10767 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10768 virtual_dwo_name.c_str ());
10769 }
10770 dwo_file = (struct dwo_file *) *dwo_file_slot;
10771 }
10772
10773 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10774 dwo_unit->dwo_file = dwo_file;
10775 dwo_unit->signature = signature;
10776 dwo_unit->section =
10777 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10778 *dwo_unit->section = sections.info_or_types;
10779 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10780
10781 return dwo_unit;
10782 }
10783
10784 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10785 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10786 piece within that section used by a TU/CU, return a virtual section
10787 of just that piece. */
10788
10789 static struct dwarf2_section_info
10790 create_dwp_v2_section (struct dwarf2_section_info *section,
10791 bfd_size_type offset, bfd_size_type size)
10792 {
10793 struct dwarf2_section_info result;
10794 asection *sectp;
10795
10796 gdb_assert (section != NULL);
10797 gdb_assert (!section->is_virtual);
10798
10799 memset (&result, 0, sizeof (result));
10800 result.s.containing_section = section;
10801 result.is_virtual = 1;
10802
10803 if (size == 0)
10804 return result;
10805
10806 sectp = get_section_bfd_section (section);
10807
10808 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10809 bounds of the real section. This is a pretty-rare event, so just
10810 flag an error (easier) instead of a warning and trying to cope. */
10811 if (sectp == NULL
10812 || offset + size > bfd_get_section_size (sectp))
10813 {
10814 bfd *abfd = sectp->owner;
10815
10816 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10817 " in section %s [in module %s]"),
10818 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10819 objfile_name (dwarf2_per_objfile->objfile));
10820 }
10821
10822 result.virtual_offset = offset;
10823 result.size = size;
10824 return result;
10825 }
10826
10827 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10828 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10829 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10830 This is for DWP version 2 files. */
10831
10832 static struct dwo_unit *
10833 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10834 uint32_t unit_index,
10835 const char *comp_dir,
10836 ULONGEST signature, int is_debug_types)
10837 {
10838 struct objfile *objfile = dwarf2_per_objfile->objfile;
10839 const struct dwp_hash_table *dwp_htab =
10840 is_debug_types ? dwp_file->tus : dwp_file->cus;
10841 bfd *dbfd = dwp_file->dbfd;
10842 const char *kind = is_debug_types ? "TU" : "CU";
10843 struct dwo_file *dwo_file;
10844 struct dwo_unit *dwo_unit;
10845 struct virtual_v2_dwo_sections sections;
10846 void **dwo_file_slot;
10847 int i;
10848
10849 gdb_assert (dwp_file->version == 2);
10850
10851 if (dwarf_read_debug)
10852 {
10853 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10854 kind,
10855 pulongest (unit_index), hex_string (signature),
10856 dwp_file->name);
10857 }
10858
10859 /* Fetch the section offsets of this DWO unit. */
10860
10861 memset (&sections, 0, sizeof (sections));
10862
10863 for (i = 0; i < dwp_htab->nr_columns; ++i)
10864 {
10865 uint32_t offset = read_4_bytes (dbfd,
10866 dwp_htab->section_pool.v2.offsets
10867 + (((unit_index - 1) * dwp_htab->nr_columns
10868 + i)
10869 * sizeof (uint32_t)));
10870 uint32_t size = read_4_bytes (dbfd,
10871 dwp_htab->section_pool.v2.sizes
10872 + (((unit_index - 1) * dwp_htab->nr_columns
10873 + i)
10874 * sizeof (uint32_t)));
10875
10876 switch (dwp_htab->section_pool.v2.section_ids[i])
10877 {
10878 case DW_SECT_INFO:
10879 case DW_SECT_TYPES:
10880 sections.info_or_types_offset = offset;
10881 sections.info_or_types_size = size;
10882 break;
10883 case DW_SECT_ABBREV:
10884 sections.abbrev_offset = offset;
10885 sections.abbrev_size = size;
10886 break;
10887 case DW_SECT_LINE:
10888 sections.line_offset = offset;
10889 sections.line_size = size;
10890 break;
10891 case DW_SECT_LOC:
10892 sections.loc_offset = offset;
10893 sections.loc_size = size;
10894 break;
10895 case DW_SECT_STR_OFFSETS:
10896 sections.str_offsets_offset = offset;
10897 sections.str_offsets_size = size;
10898 break;
10899 case DW_SECT_MACINFO:
10900 sections.macinfo_offset = offset;
10901 sections.macinfo_size = size;
10902 break;
10903 case DW_SECT_MACRO:
10904 sections.macro_offset = offset;
10905 sections.macro_size = size;
10906 break;
10907 }
10908 }
10909
10910 /* It's easier for the rest of the code if we fake a struct dwo_file and
10911 have dwo_unit "live" in that. At least for now.
10912
10913 The DWP file can be made up of a random collection of CUs and TUs.
10914 However, for each CU + set of TUs that came from the same original DWO
10915 file, we can combine them back into a virtual DWO file to save space
10916 (fewer struct dwo_file objects to allocate). Remember that for really
10917 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10918
10919 std::string virtual_dwo_name =
10920 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
10921 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10922 (long) (sections.line_size ? sections.line_offset : 0),
10923 (long) (sections.loc_size ? sections.loc_offset : 0),
10924 (long) (sections.str_offsets_size
10925 ? sections.str_offsets_offset : 0));
10926 /* Can we use an existing virtual DWO file? */
10927 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name.c_str (), comp_dir);
10928 /* Create one if necessary. */
10929 if (*dwo_file_slot == NULL)
10930 {
10931 if (dwarf_read_debug)
10932 {
10933 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10934 virtual_dwo_name.c_str ());
10935 }
10936 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10937 dwo_file->dwo_name
10938 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10939 virtual_dwo_name.c_str (),
10940 virtual_dwo_name.size ());
10941 dwo_file->comp_dir = comp_dir;
10942 dwo_file->sections.abbrev =
10943 create_dwp_v2_section (&dwp_file->sections.abbrev,
10944 sections.abbrev_offset, sections.abbrev_size);
10945 dwo_file->sections.line =
10946 create_dwp_v2_section (&dwp_file->sections.line,
10947 sections.line_offset, sections.line_size);
10948 dwo_file->sections.loc =
10949 create_dwp_v2_section (&dwp_file->sections.loc,
10950 sections.loc_offset, sections.loc_size);
10951 dwo_file->sections.macinfo =
10952 create_dwp_v2_section (&dwp_file->sections.macinfo,
10953 sections.macinfo_offset, sections.macinfo_size);
10954 dwo_file->sections.macro =
10955 create_dwp_v2_section (&dwp_file->sections.macro,
10956 sections.macro_offset, sections.macro_size);
10957 dwo_file->sections.str_offsets =
10958 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10959 sections.str_offsets_offset,
10960 sections.str_offsets_size);
10961 /* The "str" section is global to the entire DWP file. */
10962 dwo_file->sections.str = dwp_file->sections.str;
10963 /* The info or types section is assigned below to dwo_unit,
10964 there's no need to record it in dwo_file.
10965 Also, we can't simply record type sections in dwo_file because
10966 we record a pointer into the vector in dwo_unit. As we collect more
10967 types we'll grow the vector and eventually have to reallocate space
10968 for it, invalidating all copies of pointers into the previous
10969 contents. */
10970 *dwo_file_slot = dwo_file;
10971 }
10972 else
10973 {
10974 if (dwarf_read_debug)
10975 {
10976 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10977 virtual_dwo_name.c_str ());
10978 }
10979 dwo_file = (struct dwo_file *) *dwo_file_slot;
10980 }
10981
10982 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10983 dwo_unit->dwo_file = dwo_file;
10984 dwo_unit->signature = signature;
10985 dwo_unit->section =
10986 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10987 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10988 ? &dwp_file->sections.types
10989 : &dwp_file->sections.info,
10990 sections.info_or_types_offset,
10991 sections.info_or_types_size);
10992 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10993
10994 return dwo_unit;
10995 }
10996
10997 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10998 Returns NULL if the signature isn't found. */
10999
11000 static struct dwo_unit *
11001 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
11002 ULONGEST signature, int is_debug_types)
11003 {
11004 const struct dwp_hash_table *dwp_htab =
11005 is_debug_types ? dwp_file->tus : dwp_file->cus;
11006 bfd *dbfd = dwp_file->dbfd;
11007 uint32_t mask = dwp_htab->nr_slots - 1;
11008 uint32_t hash = signature & mask;
11009 uint32_t hash2 = ((signature >> 32) & mask) | 1;
11010 unsigned int i;
11011 void **slot;
11012 struct dwo_unit find_dwo_cu;
11013
11014 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
11015 find_dwo_cu.signature = signature;
11016 slot = htab_find_slot (is_debug_types
11017 ? dwp_file->loaded_tus
11018 : dwp_file->loaded_cus,
11019 &find_dwo_cu, INSERT);
11020
11021 if (*slot != NULL)
11022 return (struct dwo_unit *) *slot;
11023
11024 /* Use a for loop so that we don't loop forever on bad debug info. */
11025 for (i = 0; i < dwp_htab->nr_slots; ++i)
11026 {
11027 ULONGEST signature_in_table;
11028
11029 signature_in_table =
11030 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
11031 if (signature_in_table == signature)
11032 {
11033 uint32_t unit_index =
11034 read_4_bytes (dbfd,
11035 dwp_htab->unit_table + hash * sizeof (uint32_t));
11036
11037 if (dwp_file->version == 1)
11038 {
11039 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
11040 comp_dir, signature,
11041 is_debug_types);
11042 }
11043 else
11044 {
11045 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
11046 comp_dir, signature,
11047 is_debug_types);
11048 }
11049 return (struct dwo_unit *) *slot;
11050 }
11051 if (signature_in_table == 0)
11052 return NULL;
11053 hash = (hash + hash2) & mask;
11054 }
11055
11056 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
11057 " [in module %s]"),
11058 dwp_file->name);
11059 }
11060
11061 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
11062 Open the file specified by FILE_NAME and hand it off to BFD for
11063 preliminary analysis. Return a newly initialized bfd *, which
11064 includes a canonicalized copy of FILE_NAME.
11065 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
11066 SEARCH_CWD is true if the current directory is to be searched.
11067 It will be searched before debug-file-directory.
11068 If successful, the file is added to the bfd include table of the
11069 objfile's bfd (see gdb_bfd_record_inclusion).
11070 If unable to find/open the file, return NULL.
11071 NOTE: This function is derived from symfile_bfd_open. */
11072
11073 static gdb_bfd_ref_ptr
11074 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
11075 {
11076 int desc, flags;
11077 char *absolute_name;
11078 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
11079 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
11080 to debug_file_directory. */
11081 char *search_path;
11082 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
11083
11084 if (search_cwd)
11085 {
11086 if (*debug_file_directory != '\0')
11087 search_path = concat (".", dirname_separator_string,
11088 debug_file_directory, (char *) NULL);
11089 else
11090 search_path = xstrdup (".");
11091 }
11092 else
11093 search_path = xstrdup (debug_file_directory);
11094
11095 flags = OPF_RETURN_REALPATH;
11096 if (is_dwp)
11097 flags |= OPF_SEARCH_IN_PATH;
11098 desc = openp (search_path, flags, file_name,
11099 O_RDONLY | O_BINARY, &absolute_name);
11100 xfree (search_path);
11101 if (desc < 0)
11102 return NULL;
11103
11104 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
11105 xfree (absolute_name);
11106 if (sym_bfd == NULL)
11107 return NULL;
11108 bfd_set_cacheable (sym_bfd.get (), 1);
11109
11110 if (!bfd_check_format (sym_bfd.get (), bfd_object))
11111 return NULL;
11112
11113 /* Success. Record the bfd as having been included by the objfile's bfd.
11114 This is important because things like demangled_names_hash lives in the
11115 objfile's per_bfd space and may have references to things like symbol
11116 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
11117 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
11118
11119 return sym_bfd;
11120 }
11121
11122 /* Try to open DWO file FILE_NAME.
11123 COMP_DIR is the DW_AT_comp_dir attribute.
11124 The result is the bfd handle of the file.
11125 If there is a problem finding or opening the file, return NULL.
11126 Upon success, the canonicalized path of the file is stored in the bfd,
11127 same as symfile_bfd_open. */
11128
11129 static gdb_bfd_ref_ptr
11130 open_dwo_file (const char *file_name, const char *comp_dir)
11131 {
11132 if (IS_ABSOLUTE_PATH (file_name))
11133 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
11134
11135 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
11136
11137 if (comp_dir != NULL)
11138 {
11139 char *path_to_try = concat (comp_dir, SLASH_STRING,
11140 file_name, (char *) NULL);
11141
11142 /* NOTE: If comp_dir is a relative path, this will also try the
11143 search path, which seems useful. */
11144 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
11145 1 /*search_cwd*/));
11146 xfree (path_to_try);
11147 if (abfd != NULL)
11148 return abfd;
11149 }
11150
11151 /* That didn't work, try debug-file-directory, which, despite its name,
11152 is a list of paths. */
11153
11154 if (*debug_file_directory == '\0')
11155 return NULL;
11156
11157 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
11158 }
11159
11160 /* This function is mapped across the sections and remembers the offset and
11161 size of each of the DWO debugging sections we are interested in. */
11162
11163 static void
11164 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
11165 {
11166 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
11167 const struct dwop_section_names *names = &dwop_section_names;
11168
11169 if (section_is_p (sectp->name, &names->abbrev_dwo))
11170 {
11171 dwo_sections->abbrev.s.section = sectp;
11172 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
11173 }
11174 else if (section_is_p (sectp->name, &names->info_dwo))
11175 {
11176 dwo_sections->info.s.section = sectp;
11177 dwo_sections->info.size = bfd_get_section_size (sectp);
11178 }
11179 else if (section_is_p (sectp->name, &names->line_dwo))
11180 {
11181 dwo_sections->line.s.section = sectp;
11182 dwo_sections->line.size = bfd_get_section_size (sectp);
11183 }
11184 else if (section_is_p (sectp->name, &names->loc_dwo))
11185 {
11186 dwo_sections->loc.s.section = sectp;
11187 dwo_sections->loc.size = bfd_get_section_size (sectp);
11188 }
11189 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11190 {
11191 dwo_sections->macinfo.s.section = sectp;
11192 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
11193 }
11194 else if (section_is_p (sectp->name, &names->macro_dwo))
11195 {
11196 dwo_sections->macro.s.section = sectp;
11197 dwo_sections->macro.size = bfd_get_section_size (sectp);
11198 }
11199 else if (section_is_p (sectp->name, &names->str_dwo))
11200 {
11201 dwo_sections->str.s.section = sectp;
11202 dwo_sections->str.size = bfd_get_section_size (sectp);
11203 }
11204 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11205 {
11206 dwo_sections->str_offsets.s.section = sectp;
11207 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
11208 }
11209 else if (section_is_p (sectp->name, &names->types_dwo))
11210 {
11211 struct dwarf2_section_info type_section;
11212
11213 memset (&type_section, 0, sizeof (type_section));
11214 type_section.s.section = sectp;
11215 type_section.size = bfd_get_section_size (sectp);
11216 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
11217 &type_section);
11218 }
11219 }
11220
11221 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
11222 by PER_CU. This is for the non-DWP case.
11223 The result is NULL if DWO_NAME can't be found. */
11224
11225 static struct dwo_file *
11226 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
11227 const char *dwo_name, const char *comp_dir)
11228 {
11229 struct objfile *objfile = dwarf2_per_objfile->objfile;
11230 struct dwo_file *dwo_file;
11231 struct cleanup *cleanups;
11232
11233 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
11234 if (dbfd == NULL)
11235 {
11236 if (dwarf_read_debug)
11237 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
11238 return NULL;
11239 }
11240 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
11241 dwo_file->dwo_name = dwo_name;
11242 dwo_file->comp_dir = comp_dir;
11243 dwo_file->dbfd = dbfd.release ();
11244
11245 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
11246
11247 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
11248 &dwo_file->sections);
11249
11250 create_cus_hash_table (*dwo_file, dwo_file->sections.info, dwo_file->cus);
11251
11252 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
11253 dwo_file->tus);
11254
11255 discard_cleanups (cleanups);
11256
11257 if (dwarf_read_debug)
11258 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
11259
11260 return dwo_file;
11261 }
11262
11263 /* This function is mapped across the sections and remembers the offset and
11264 size of each of the DWP debugging sections common to version 1 and 2 that
11265 we are interested in. */
11266
11267 static void
11268 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
11269 void *dwp_file_ptr)
11270 {
11271 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
11272 const struct dwop_section_names *names = &dwop_section_names;
11273 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
11274
11275 /* Record the ELF section number for later lookup: this is what the
11276 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
11277 gdb_assert (elf_section_nr < dwp_file->num_sections);
11278 dwp_file->elf_sections[elf_section_nr] = sectp;
11279
11280 /* Look for specific sections that we need. */
11281 if (section_is_p (sectp->name, &names->str_dwo))
11282 {
11283 dwp_file->sections.str.s.section = sectp;
11284 dwp_file->sections.str.size = bfd_get_section_size (sectp);
11285 }
11286 else if (section_is_p (sectp->name, &names->cu_index))
11287 {
11288 dwp_file->sections.cu_index.s.section = sectp;
11289 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
11290 }
11291 else if (section_is_p (sectp->name, &names->tu_index))
11292 {
11293 dwp_file->sections.tu_index.s.section = sectp;
11294 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
11295 }
11296 }
11297
11298 /* This function is mapped across the sections and remembers the offset and
11299 size of each of the DWP version 2 debugging sections that we are interested
11300 in. This is split into a separate function because we don't know if we
11301 have version 1 or 2 until we parse the cu_index/tu_index sections. */
11302
11303 static void
11304 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
11305 {
11306 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
11307 const struct dwop_section_names *names = &dwop_section_names;
11308 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
11309
11310 /* Record the ELF section number for later lookup: this is what the
11311 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
11312 gdb_assert (elf_section_nr < dwp_file->num_sections);
11313 dwp_file->elf_sections[elf_section_nr] = sectp;
11314
11315 /* Look for specific sections that we need. */
11316 if (section_is_p (sectp->name, &names->abbrev_dwo))
11317 {
11318 dwp_file->sections.abbrev.s.section = sectp;
11319 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
11320 }
11321 else if (section_is_p (sectp->name, &names->info_dwo))
11322 {
11323 dwp_file->sections.info.s.section = sectp;
11324 dwp_file->sections.info.size = bfd_get_section_size (sectp);
11325 }
11326 else if (section_is_p (sectp->name, &names->line_dwo))
11327 {
11328 dwp_file->sections.line.s.section = sectp;
11329 dwp_file->sections.line.size = bfd_get_section_size (sectp);
11330 }
11331 else if (section_is_p (sectp->name, &names->loc_dwo))
11332 {
11333 dwp_file->sections.loc.s.section = sectp;
11334 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
11335 }
11336 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11337 {
11338 dwp_file->sections.macinfo.s.section = sectp;
11339 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
11340 }
11341 else if (section_is_p (sectp->name, &names->macro_dwo))
11342 {
11343 dwp_file->sections.macro.s.section = sectp;
11344 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
11345 }
11346 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11347 {
11348 dwp_file->sections.str_offsets.s.section = sectp;
11349 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
11350 }
11351 else if (section_is_p (sectp->name, &names->types_dwo))
11352 {
11353 dwp_file->sections.types.s.section = sectp;
11354 dwp_file->sections.types.size = bfd_get_section_size (sectp);
11355 }
11356 }
11357
11358 /* Hash function for dwp_file loaded CUs/TUs. */
11359
11360 static hashval_t
11361 hash_dwp_loaded_cutus (const void *item)
11362 {
11363 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11364
11365 /* This drops the top 32 bits of the signature, but is ok for a hash. */
11366 return dwo_unit->signature;
11367 }
11368
11369 /* Equality function for dwp_file loaded CUs/TUs. */
11370
11371 static int
11372 eq_dwp_loaded_cutus (const void *a, const void *b)
11373 {
11374 const struct dwo_unit *dua = (const struct dwo_unit *) a;
11375 const struct dwo_unit *dub = (const struct dwo_unit *) b;
11376
11377 return dua->signature == dub->signature;
11378 }
11379
11380 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
11381
11382 static htab_t
11383 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
11384 {
11385 return htab_create_alloc_ex (3,
11386 hash_dwp_loaded_cutus,
11387 eq_dwp_loaded_cutus,
11388 NULL,
11389 &objfile->objfile_obstack,
11390 hashtab_obstack_allocate,
11391 dummy_obstack_deallocate);
11392 }
11393
11394 /* Try to open DWP file FILE_NAME.
11395 The result is the bfd handle of the file.
11396 If there is a problem finding or opening the file, return NULL.
11397 Upon success, the canonicalized path of the file is stored in the bfd,
11398 same as symfile_bfd_open. */
11399
11400 static gdb_bfd_ref_ptr
11401 open_dwp_file (const char *file_name)
11402 {
11403 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
11404 1 /*search_cwd*/));
11405 if (abfd != NULL)
11406 return abfd;
11407
11408 /* Work around upstream bug 15652.
11409 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
11410 [Whether that's a "bug" is debatable, but it is getting in our way.]
11411 We have no real idea where the dwp file is, because gdb's realpath-ing
11412 of the executable's path may have discarded the needed info.
11413 [IWBN if the dwp file name was recorded in the executable, akin to
11414 .gnu_debuglink, but that doesn't exist yet.]
11415 Strip the directory from FILE_NAME and search again. */
11416 if (*debug_file_directory != '\0')
11417 {
11418 /* Don't implicitly search the current directory here.
11419 If the user wants to search "." to handle this case,
11420 it must be added to debug-file-directory. */
11421 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
11422 0 /*search_cwd*/);
11423 }
11424
11425 return NULL;
11426 }
11427
11428 /* Initialize the use of the DWP file for the current objfile.
11429 By convention the name of the DWP file is ${objfile}.dwp.
11430 The result is NULL if it can't be found. */
11431
11432 static struct dwp_file *
11433 open_and_init_dwp_file (void)
11434 {
11435 struct objfile *objfile = dwarf2_per_objfile->objfile;
11436 struct dwp_file *dwp_file;
11437
11438 /* Try to find first .dwp for the binary file before any symbolic links
11439 resolving. */
11440
11441 /* If the objfile is a debug file, find the name of the real binary
11442 file and get the name of dwp file from there. */
11443 std::string dwp_name;
11444 if (objfile->separate_debug_objfile_backlink != NULL)
11445 {
11446 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
11447 const char *backlink_basename = lbasename (backlink->original_name);
11448
11449 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
11450 }
11451 else
11452 dwp_name = objfile->original_name;
11453
11454 dwp_name += ".dwp";
11455
11456 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name.c_str ()));
11457 if (dbfd == NULL
11458 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
11459 {
11460 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
11461 dwp_name = objfile_name (objfile);
11462 dwp_name += ".dwp";
11463 dbfd = open_dwp_file (dwp_name.c_str ());
11464 }
11465
11466 if (dbfd == NULL)
11467 {
11468 if (dwarf_read_debug)
11469 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
11470 return NULL;
11471 }
11472 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
11473 dwp_file->name = bfd_get_filename (dbfd.get ());
11474 dwp_file->dbfd = dbfd.release ();
11475
11476 /* +1: section 0 is unused */
11477 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
11478 dwp_file->elf_sections =
11479 OBSTACK_CALLOC (&objfile->objfile_obstack,
11480 dwp_file->num_sections, asection *);
11481
11482 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
11483 dwp_file);
11484
11485 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
11486
11487 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
11488
11489 /* The DWP file version is stored in the hash table. Oh well. */
11490 if (dwp_file->cus && dwp_file->tus
11491 && dwp_file->cus->version != dwp_file->tus->version)
11492 {
11493 /* Technically speaking, we should try to limp along, but this is
11494 pretty bizarre. We use pulongest here because that's the established
11495 portability solution (e.g, we cannot use %u for uint32_t). */
11496 error (_("Dwarf Error: DWP file CU version %s doesn't match"
11497 " TU version %s [in DWP file %s]"),
11498 pulongest (dwp_file->cus->version),
11499 pulongest (dwp_file->tus->version), dwp_name.c_str ());
11500 }
11501
11502 if (dwp_file->cus)
11503 dwp_file->version = dwp_file->cus->version;
11504 else if (dwp_file->tus)
11505 dwp_file->version = dwp_file->tus->version;
11506 else
11507 dwp_file->version = 2;
11508
11509 if (dwp_file->version == 2)
11510 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
11511 dwp_file);
11512
11513 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
11514 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
11515
11516 if (dwarf_read_debug)
11517 {
11518 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
11519 fprintf_unfiltered (gdb_stdlog,
11520 " %s CUs, %s TUs\n",
11521 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
11522 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
11523 }
11524
11525 return dwp_file;
11526 }
11527
11528 /* Wrapper around open_and_init_dwp_file, only open it once. */
11529
11530 static struct dwp_file *
11531 get_dwp_file (void)
11532 {
11533 if (! dwarf2_per_objfile->dwp_checked)
11534 {
11535 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
11536 dwarf2_per_objfile->dwp_checked = 1;
11537 }
11538 return dwarf2_per_objfile->dwp_file;
11539 }
11540
11541 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
11542 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
11543 or in the DWP file for the objfile, referenced by THIS_UNIT.
11544 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
11545 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
11546
11547 This is called, for example, when wanting to read a variable with a
11548 complex location. Therefore we don't want to do file i/o for every call.
11549 Therefore we don't want to look for a DWO file on every call.
11550 Therefore we first see if we've already seen SIGNATURE in a DWP file,
11551 then we check if we've already seen DWO_NAME, and only THEN do we check
11552 for a DWO file.
11553
11554 The result is a pointer to the dwo_unit object or NULL if we didn't find it
11555 (dwo_id mismatch or couldn't find the DWO/DWP file). */
11556
11557 static struct dwo_unit *
11558 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11559 const char *dwo_name, const char *comp_dir,
11560 ULONGEST signature, int is_debug_types)
11561 {
11562 struct objfile *objfile = dwarf2_per_objfile->objfile;
11563 const char *kind = is_debug_types ? "TU" : "CU";
11564 void **dwo_file_slot;
11565 struct dwo_file *dwo_file;
11566 struct dwp_file *dwp_file;
11567
11568 /* First see if there's a DWP file.
11569 If we have a DWP file but didn't find the DWO inside it, don't
11570 look for the original DWO file. It makes gdb behave differently
11571 depending on whether one is debugging in the build tree. */
11572
11573 dwp_file = get_dwp_file ();
11574 if (dwp_file != NULL)
11575 {
11576 const struct dwp_hash_table *dwp_htab =
11577 is_debug_types ? dwp_file->tus : dwp_file->cus;
11578
11579 if (dwp_htab != NULL)
11580 {
11581 struct dwo_unit *dwo_cutu =
11582 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11583 signature, is_debug_types);
11584
11585 if (dwo_cutu != NULL)
11586 {
11587 if (dwarf_read_debug)
11588 {
11589 fprintf_unfiltered (gdb_stdlog,
11590 "Virtual DWO %s %s found: @%s\n",
11591 kind, hex_string (signature),
11592 host_address_to_string (dwo_cutu));
11593 }
11594 return dwo_cutu;
11595 }
11596 }
11597 }
11598 else
11599 {
11600 /* No DWP file, look for the DWO file. */
11601
11602 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11603 if (*dwo_file_slot == NULL)
11604 {
11605 /* Read in the file and build a table of the CUs/TUs it contains. */
11606 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
11607 }
11608 /* NOTE: This will be NULL if unable to open the file. */
11609 dwo_file = (struct dwo_file *) *dwo_file_slot;
11610
11611 if (dwo_file != NULL)
11612 {
11613 struct dwo_unit *dwo_cutu = NULL;
11614
11615 if (is_debug_types && dwo_file->tus)
11616 {
11617 struct dwo_unit find_dwo_cutu;
11618
11619 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11620 find_dwo_cutu.signature = signature;
11621 dwo_cutu
11622 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11623 }
11624 else if (!is_debug_types && dwo_file->cus)
11625 {
11626 struct dwo_unit find_dwo_cutu;
11627
11628 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11629 find_dwo_cutu.signature = signature;
11630 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
11631 &find_dwo_cutu);
11632 }
11633
11634 if (dwo_cutu != NULL)
11635 {
11636 if (dwarf_read_debug)
11637 {
11638 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11639 kind, dwo_name, hex_string (signature),
11640 host_address_to_string (dwo_cutu));
11641 }
11642 return dwo_cutu;
11643 }
11644 }
11645 }
11646
11647 /* We didn't find it. This could mean a dwo_id mismatch, or
11648 someone deleted the DWO/DWP file, or the search path isn't set up
11649 correctly to find the file. */
11650
11651 if (dwarf_read_debug)
11652 {
11653 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11654 kind, dwo_name, hex_string (signature));
11655 }
11656
11657 /* This is a warning and not a complaint because it can be caused by
11658 pilot error (e.g., user accidentally deleting the DWO). */
11659 {
11660 /* Print the name of the DWP file if we looked there, helps the user
11661 better diagnose the problem. */
11662 std::string dwp_text;
11663
11664 if (dwp_file != NULL)
11665 dwp_text = string_printf (" [in DWP file %s]",
11666 lbasename (dwp_file->name));
11667
11668 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11669 " [in module %s]"),
11670 kind, dwo_name, hex_string (signature),
11671 dwp_text.c_str (),
11672 this_unit->is_debug_types ? "TU" : "CU",
11673 to_underlying (this_unit->sect_off), objfile_name (objfile));
11674 }
11675 return NULL;
11676 }
11677
11678 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11679 See lookup_dwo_cutu_unit for details. */
11680
11681 static struct dwo_unit *
11682 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11683 const char *dwo_name, const char *comp_dir,
11684 ULONGEST signature)
11685 {
11686 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11687 }
11688
11689 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11690 See lookup_dwo_cutu_unit for details. */
11691
11692 static struct dwo_unit *
11693 lookup_dwo_type_unit (struct signatured_type *this_tu,
11694 const char *dwo_name, const char *comp_dir)
11695 {
11696 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11697 }
11698
11699 /* Traversal function for queue_and_load_all_dwo_tus. */
11700
11701 static int
11702 queue_and_load_dwo_tu (void **slot, void *info)
11703 {
11704 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11705 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11706 ULONGEST signature = dwo_unit->signature;
11707 struct signatured_type *sig_type =
11708 lookup_dwo_signatured_type (per_cu->cu, signature);
11709
11710 if (sig_type != NULL)
11711 {
11712 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11713
11714 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11715 a real dependency of PER_CU on SIG_TYPE. That is detected later
11716 while processing PER_CU. */
11717 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11718 load_full_type_unit (sig_cu);
11719 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11720 }
11721
11722 return 1;
11723 }
11724
11725 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11726 The DWO may have the only definition of the type, though it may not be
11727 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11728 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11729
11730 static void
11731 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11732 {
11733 struct dwo_unit *dwo_unit;
11734 struct dwo_file *dwo_file;
11735
11736 gdb_assert (!per_cu->is_debug_types);
11737 gdb_assert (get_dwp_file () == NULL);
11738 gdb_assert (per_cu->cu != NULL);
11739
11740 dwo_unit = per_cu->cu->dwo_unit;
11741 gdb_assert (dwo_unit != NULL);
11742
11743 dwo_file = dwo_unit->dwo_file;
11744 if (dwo_file->tus != NULL)
11745 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11746 }
11747
11748 /* Free all resources associated with DWO_FILE.
11749 Close the DWO file and munmap the sections.
11750 All memory should be on the objfile obstack. */
11751
11752 static void
11753 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11754 {
11755
11756 /* Note: dbfd is NULL for virtual DWO files. */
11757 gdb_bfd_unref (dwo_file->dbfd);
11758
11759 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11760 }
11761
11762 /* Wrapper for free_dwo_file for use in cleanups. */
11763
11764 static void
11765 free_dwo_file_cleanup (void *arg)
11766 {
11767 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11768 struct objfile *objfile = dwarf2_per_objfile->objfile;
11769
11770 free_dwo_file (dwo_file, objfile);
11771 }
11772
11773 /* Traversal function for free_dwo_files. */
11774
11775 static int
11776 free_dwo_file_from_slot (void **slot, void *info)
11777 {
11778 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11779 struct objfile *objfile = (struct objfile *) info;
11780
11781 free_dwo_file (dwo_file, objfile);
11782
11783 return 1;
11784 }
11785
11786 /* Free all resources associated with DWO_FILES. */
11787
11788 static void
11789 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11790 {
11791 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11792 }
11793 \f
11794 /* Read in various DIEs. */
11795
11796 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11797 Inherit only the children of the DW_AT_abstract_origin DIE not being
11798 already referenced by DW_AT_abstract_origin from the children of the
11799 current DIE. */
11800
11801 static void
11802 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11803 {
11804 struct die_info *child_die;
11805 sect_offset *offsetp;
11806 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11807 struct die_info *origin_die;
11808 /* Iterator of the ORIGIN_DIE children. */
11809 struct die_info *origin_child_die;
11810 struct attribute *attr;
11811 struct dwarf2_cu *origin_cu;
11812 struct pending **origin_previous_list_in_scope;
11813
11814 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11815 if (!attr)
11816 return;
11817
11818 /* Note that following die references may follow to a die in a
11819 different cu. */
11820
11821 origin_cu = cu;
11822 origin_die = follow_die_ref (die, attr, &origin_cu);
11823
11824 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11825 symbols in. */
11826 origin_previous_list_in_scope = origin_cu->list_in_scope;
11827 origin_cu->list_in_scope = cu->list_in_scope;
11828
11829 if (die->tag != origin_die->tag
11830 && !(die->tag == DW_TAG_inlined_subroutine
11831 && origin_die->tag == DW_TAG_subprogram))
11832 complaint (&symfile_complaints,
11833 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11834 to_underlying (die->sect_off),
11835 to_underlying (origin_die->sect_off));
11836
11837 std::vector<sect_offset> offsets;
11838
11839 for (child_die = die->child;
11840 child_die && child_die->tag;
11841 child_die = sibling_die (child_die))
11842 {
11843 struct die_info *child_origin_die;
11844 struct dwarf2_cu *child_origin_cu;
11845
11846 /* We are trying to process concrete instance entries:
11847 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11848 it's not relevant to our analysis here. i.e. detecting DIEs that are
11849 present in the abstract instance but not referenced in the concrete
11850 one. */
11851 if (child_die->tag == DW_TAG_call_site
11852 || child_die->tag == DW_TAG_GNU_call_site)
11853 continue;
11854
11855 /* For each CHILD_DIE, find the corresponding child of
11856 ORIGIN_DIE. If there is more than one layer of
11857 DW_AT_abstract_origin, follow them all; there shouldn't be,
11858 but GCC versions at least through 4.4 generate this (GCC PR
11859 40573). */
11860 child_origin_die = child_die;
11861 child_origin_cu = cu;
11862 while (1)
11863 {
11864 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11865 child_origin_cu);
11866 if (attr == NULL)
11867 break;
11868 child_origin_die = follow_die_ref (child_origin_die, attr,
11869 &child_origin_cu);
11870 }
11871
11872 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11873 counterpart may exist. */
11874 if (child_origin_die != child_die)
11875 {
11876 if (child_die->tag != child_origin_die->tag
11877 && !(child_die->tag == DW_TAG_inlined_subroutine
11878 && child_origin_die->tag == DW_TAG_subprogram))
11879 complaint (&symfile_complaints,
11880 _("Child DIE 0x%x and its abstract origin 0x%x have "
11881 "different tags"),
11882 to_underlying (child_die->sect_off),
11883 to_underlying (child_origin_die->sect_off));
11884 if (child_origin_die->parent != origin_die)
11885 complaint (&symfile_complaints,
11886 _("Child DIE 0x%x and its abstract origin 0x%x have "
11887 "different parents"),
11888 to_underlying (child_die->sect_off),
11889 to_underlying (child_origin_die->sect_off));
11890 else
11891 offsets.push_back (child_origin_die->sect_off);
11892 }
11893 }
11894 std::sort (offsets.begin (), offsets.end ());
11895 sect_offset *offsets_end = offsets.data () + offsets.size ();
11896 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
11897 if (offsetp[-1] == *offsetp)
11898 complaint (&symfile_complaints,
11899 _("Multiple children of DIE 0x%x refer "
11900 "to DIE 0x%x as their abstract origin"),
11901 to_underlying (die->sect_off), to_underlying (*offsetp));
11902
11903 offsetp = offsets.data ();
11904 origin_child_die = origin_die->child;
11905 while (origin_child_die && origin_child_die->tag)
11906 {
11907 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11908 while (offsetp < offsets_end
11909 && *offsetp < origin_child_die->sect_off)
11910 offsetp++;
11911 if (offsetp >= offsets_end
11912 || *offsetp > origin_child_die->sect_off)
11913 {
11914 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11915 Check whether we're already processing ORIGIN_CHILD_DIE.
11916 This can happen with mutually referenced abstract_origins.
11917 PR 16581. */
11918 if (!origin_child_die->in_process)
11919 process_die (origin_child_die, origin_cu);
11920 }
11921 origin_child_die = sibling_die (origin_child_die);
11922 }
11923 origin_cu->list_in_scope = origin_previous_list_in_scope;
11924 }
11925
11926 static void
11927 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11928 {
11929 struct objfile *objfile = cu->objfile;
11930 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11931 struct context_stack *newobj;
11932 CORE_ADDR lowpc;
11933 CORE_ADDR highpc;
11934 struct die_info *child_die;
11935 struct attribute *attr, *call_line, *call_file;
11936 const char *name;
11937 CORE_ADDR baseaddr;
11938 struct block *block;
11939 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11940 VEC (symbolp) *template_args = NULL;
11941 struct template_symbol *templ_func = NULL;
11942
11943 if (inlined_func)
11944 {
11945 /* If we do not have call site information, we can't show the
11946 caller of this inlined function. That's too confusing, so
11947 only use the scope for local variables. */
11948 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11949 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11950 if (call_line == NULL || call_file == NULL)
11951 {
11952 read_lexical_block_scope (die, cu);
11953 return;
11954 }
11955 }
11956
11957 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11958
11959 name = dwarf2_name (die, cu);
11960
11961 /* Ignore functions with missing or empty names. These are actually
11962 illegal according to the DWARF standard. */
11963 if (name == NULL)
11964 {
11965 complaint (&symfile_complaints,
11966 _("missing name for subprogram DIE at %d"),
11967 to_underlying (die->sect_off));
11968 return;
11969 }
11970
11971 /* Ignore functions with missing or invalid low and high pc attributes. */
11972 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
11973 <= PC_BOUNDS_INVALID)
11974 {
11975 attr = dwarf2_attr (die, DW_AT_external, cu);
11976 if (!attr || !DW_UNSND (attr))
11977 complaint (&symfile_complaints,
11978 _("cannot get low and high bounds "
11979 "for subprogram DIE at %d"),
11980 to_underlying (die->sect_off));
11981 return;
11982 }
11983
11984 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11985 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11986
11987 /* If we have any template arguments, then we must allocate a
11988 different sort of symbol. */
11989 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11990 {
11991 if (child_die->tag == DW_TAG_template_type_param
11992 || child_die->tag == DW_TAG_template_value_param)
11993 {
11994 templ_func = allocate_template_symbol (objfile);
11995 templ_func->base.is_cplus_template_function = 1;
11996 break;
11997 }
11998 }
11999
12000 newobj = push_context (0, lowpc);
12001 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
12002 (struct symbol *) templ_func);
12003
12004 /* If there is a location expression for DW_AT_frame_base, record
12005 it. */
12006 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
12007 if (attr)
12008 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
12009
12010 /* If there is a location for the static link, record it. */
12011 newobj->static_link = NULL;
12012 attr = dwarf2_attr (die, DW_AT_static_link, cu);
12013 if (attr)
12014 {
12015 newobj->static_link
12016 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
12017 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
12018 }
12019
12020 cu->list_in_scope = &local_symbols;
12021
12022 if (die->child != NULL)
12023 {
12024 child_die = die->child;
12025 while (child_die && child_die->tag)
12026 {
12027 if (child_die->tag == DW_TAG_template_type_param
12028 || child_die->tag == DW_TAG_template_value_param)
12029 {
12030 struct symbol *arg = new_symbol (child_die, NULL, cu);
12031
12032 if (arg != NULL)
12033 VEC_safe_push (symbolp, template_args, arg);
12034 }
12035 else
12036 process_die (child_die, cu);
12037 child_die = sibling_die (child_die);
12038 }
12039 }
12040
12041 inherit_abstract_dies (die, cu);
12042
12043 /* If we have a DW_AT_specification, we might need to import using
12044 directives from the context of the specification DIE. See the
12045 comment in determine_prefix. */
12046 if (cu->language == language_cplus
12047 && dwarf2_attr (die, DW_AT_specification, cu))
12048 {
12049 struct dwarf2_cu *spec_cu = cu;
12050 struct die_info *spec_die = die_specification (die, &spec_cu);
12051
12052 while (spec_die)
12053 {
12054 child_die = spec_die->child;
12055 while (child_die && child_die->tag)
12056 {
12057 if (child_die->tag == DW_TAG_imported_module)
12058 process_die (child_die, spec_cu);
12059 child_die = sibling_die (child_die);
12060 }
12061
12062 /* In some cases, GCC generates specification DIEs that
12063 themselves contain DW_AT_specification attributes. */
12064 spec_die = die_specification (spec_die, &spec_cu);
12065 }
12066 }
12067
12068 newobj = pop_context ();
12069 /* Make a block for the local symbols within. */
12070 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
12071 newobj->static_link, lowpc, highpc);
12072
12073 /* For C++, set the block's scope. */
12074 if ((cu->language == language_cplus
12075 || cu->language == language_fortran
12076 || cu->language == language_d
12077 || cu->language == language_rust)
12078 && cu->processing_has_namespace_info)
12079 block_set_scope (block, determine_prefix (die, cu),
12080 &objfile->objfile_obstack);
12081
12082 /* If we have address ranges, record them. */
12083 dwarf2_record_block_ranges (die, block, baseaddr, cu);
12084
12085 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
12086
12087 /* Attach template arguments to function. */
12088 if (! VEC_empty (symbolp, template_args))
12089 {
12090 gdb_assert (templ_func != NULL);
12091
12092 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
12093 templ_func->template_arguments
12094 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
12095 templ_func->n_template_arguments);
12096 memcpy (templ_func->template_arguments,
12097 VEC_address (symbolp, template_args),
12098 (templ_func->n_template_arguments * sizeof (struct symbol *)));
12099 VEC_free (symbolp, template_args);
12100 }
12101
12102 /* In C++, we can have functions nested inside functions (e.g., when
12103 a function declares a class that has methods). This means that
12104 when we finish processing a function scope, we may need to go
12105 back to building a containing block's symbol lists. */
12106 local_symbols = newobj->locals;
12107 local_using_directives = newobj->local_using_directives;
12108
12109 /* If we've finished processing a top-level function, subsequent
12110 symbols go in the file symbol list. */
12111 if (outermost_context_p ())
12112 cu->list_in_scope = &file_symbols;
12113 }
12114
12115 /* Process all the DIES contained within a lexical block scope. Start
12116 a new scope, process the dies, and then close the scope. */
12117
12118 static void
12119 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
12120 {
12121 struct objfile *objfile = cu->objfile;
12122 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12123 struct context_stack *newobj;
12124 CORE_ADDR lowpc, highpc;
12125 struct die_info *child_die;
12126 CORE_ADDR baseaddr;
12127
12128 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12129
12130 /* Ignore blocks with missing or invalid low and high pc attributes. */
12131 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
12132 as multiple lexical blocks? Handling children in a sane way would
12133 be nasty. Might be easier to properly extend generic blocks to
12134 describe ranges. */
12135 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
12136 {
12137 case PC_BOUNDS_NOT_PRESENT:
12138 /* DW_TAG_lexical_block has no attributes, process its children as if
12139 there was no wrapping by that DW_TAG_lexical_block.
12140 GCC does no longer produces such DWARF since GCC r224161. */
12141 for (child_die = die->child;
12142 child_die != NULL && child_die->tag;
12143 child_die = sibling_die (child_die))
12144 process_die (child_die, cu);
12145 return;
12146 case PC_BOUNDS_INVALID:
12147 return;
12148 }
12149 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12150 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
12151
12152 push_context (0, lowpc);
12153 if (die->child != NULL)
12154 {
12155 child_die = die->child;
12156 while (child_die && child_die->tag)
12157 {
12158 process_die (child_die, cu);
12159 child_die = sibling_die (child_die);
12160 }
12161 }
12162 inherit_abstract_dies (die, cu);
12163 newobj = pop_context ();
12164
12165 if (local_symbols != NULL || local_using_directives != NULL)
12166 {
12167 struct block *block
12168 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
12169 newobj->start_addr, highpc);
12170
12171 /* Note that recording ranges after traversing children, as we
12172 do here, means that recording a parent's ranges entails
12173 walking across all its children's ranges as they appear in
12174 the address map, which is quadratic behavior.
12175
12176 It would be nicer to record the parent's ranges before
12177 traversing its children, simply overriding whatever you find
12178 there. But since we don't even decide whether to create a
12179 block until after we've traversed its children, that's hard
12180 to do. */
12181 dwarf2_record_block_ranges (die, block, baseaddr, cu);
12182 }
12183 local_symbols = newobj->locals;
12184 local_using_directives = newobj->local_using_directives;
12185 }
12186
12187 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
12188
12189 static void
12190 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
12191 {
12192 struct objfile *objfile = cu->objfile;
12193 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12194 CORE_ADDR pc, baseaddr;
12195 struct attribute *attr;
12196 struct call_site *call_site, call_site_local;
12197 void **slot;
12198 int nparams;
12199 struct die_info *child_die;
12200
12201 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12202
12203 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
12204 if (attr == NULL)
12205 {
12206 /* This was a pre-DWARF-5 GNU extension alias
12207 for DW_AT_call_return_pc. */
12208 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12209 }
12210 if (!attr)
12211 {
12212 complaint (&symfile_complaints,
12213 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
12214 "DIE 0x%x [in module %s]"),
12215 to_underlying (die->sect_off), objfile_name (objfile));
12216 return;
12217 }
12218 pc = attr_value_as_address (attr) + baseaddr;
12219 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
12220
12221 if (cu->call_site_htab == NULL)
12222 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
12223 NULL, &objfile->objfile_obstack,
12224 hashtab_obstack_allocate, NULL);
12225 call_site_local.pc = pc;
12226 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
12227 if (*slot != NULL)
12228 {
12229 complaint (&symfile_complaints,
12230 _("Duplicate PC %s for DW_TAG_call_site "
12231 "DIE 0x%x [in module %s]"),
12232 paddress (gdbarch, pc), to_underlying (die->sect_off),
12233 objfile_name (objfile));
12234 return;
12235 }
12236
12237 /* Count parameters at the caller. */
12238
12239 nparams = 0;
12240 for (child_die = die->child; child_die && child_die->tag;
12241 child_die = sibling_die (child_die))
12242 {
12243 if (child_die->tag != DW_TAG_call_site_parameter
12244 && child_die->tag != DW_TAG_GNU_call_site_parameter)
12245 {
12246 complaint (&symfile_complaints,
12247 _("Tag %d is not DW_TAG_call_site_parameter in "
12248 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12249 child_die->tag, to_underlying (child_die->sect_off),
12250 objfile_name (objfile));
12251 continue;
12252 }
12253
12254 nparams++;
12255 }
12256
12257 call_site
12258 = ((struct call_site *)
12259 obstack_alloc (&objfile->objfile_obstack,
12260 sizeof (*call_site)
12261 + (sizeof (*call_site->parameter) * (nparams - 1))));
12262 *slot = call_site;
12263 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
12264 call_site->pc = pc;
12265
12266 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
12267 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
12268 {
12269 struct die_info *func_die;
12270
12271 /* Skip also over DW_TAG_inlined_subroutine. */
12272 for (func_die = die->parent;
12273 func_die && func_die->tag != DW_TAG_subprogram
12274 && func_die->tag != DW_TAG_subroutine_type;
12275 func_die = func_die->parent);
12276
12277 /* DW_AT_call_all_calls is a superset
12278 of DW_AT_call_all_tail_calls. */
12279 if (func_die
12280 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
12281 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
12282 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
12283 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
12284 {
12285 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
12286 not complete. But keep CALL_SITE for look ups via call_site_htab,
12287 both the initial caller containing the real return address PC and
12288 the final callee containing the current PC of a chain of tail
12289 calls do not need to have the tail call list complete. But any
12290 function candidate for a virtual tail call frame searched via
12291 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
12292 determined unambiguously. */
12293 }
12294 else
12295 {
12296 struct type *func_type = NULL;
12297
12298 if (func_die)
12299 func_type = get_die_type (func_die, cu);
12300 if (func_type != NULL)
12301 {
12302 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
12303
12304 /* Enlist this call site to the function. */
12305 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
12306 TYPE_TAIL_CALL_LIST (func_type) = call_site;
12307 }
12308 else
12309 complaint (&symfile_complaints,
12310 _("Cannot find function owning DW_TAG_call_site "
12311 "DIE 0x%x [in module %s]"),
12312 to_underlying (die->sect_off), objfile_name (objfile));
12313 }
12314 }
12315
12316 attr = dwarf2_attr (die, DW_AT_call_target, cu);
12317 if (attr == NULL)
12318 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
12319 if (attr == NULL)
12320 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
12321 if (attr == NULL)
12322 {
12323 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
12324 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12325 }
12326 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
12327 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
12328 /* Keep NULL DWARF_BLOCK. */;
12329 else if (attr_form_is_block (attr))
12330 {
12331 struct dwarf2_locexpr_baton *dlbaton;
12332
12333 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
12334 dlbaton->data = DW_BLOCK (attr)->data;
12335 dlbaton->size = DW_BLOCK (attr)->size;
12336 dlbaton->per_cu = cu->per_cu;
12337
12338 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
12339 }
12340 else if (attr_form_is_ref (attr))
12341 {
12342 struct dwarf2_cu *target_cu = cu;
12343 struct die_info *target_die;
12344
12345 target_die = follow_die_ref (die, attr, &target_cu);
12346 gdb_assert (target_cu->objfile == objfile);
12347 if (die_is_declaration (target_die, target_cu))
12348 {
12349 const char *target_physname;
12350
12351 /* Prefer the mangled name; otherwise compute the demangled one. */
12352 target_physname = dw2_linkage_name (target_die, target_cu);
12353 if (target_physname == NULL)
12354 target_physname = dwarf2_physname (NULL, target_die, target_cu);
12355 if (target_physname == NULL)
12356 complaint (&symfile_complaints,
12357 _("DW_AT_call_target target DIE has invalid "
12358 "physname, for referencing DIE 0x%x [in module %s]"),
12359 to_underlying (die->sect_off), objfile_name (objfile));
12360 else
12361 SET_FIELD_PHYSNAME (call_site->target, target_physname);
12362 }
12363 else
12364 {
12365 CORE_ADDR lowpc;
12366
12367 /* DW_AT_entry_pc should be preferred. */
12368 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
12369 <= PC_BOUNDS_INVALID)
12370 complaint (&symfile_complaints,
12371 _("DW_AT_call_target target DIE has invalid "
12372 "low pc, for referencing DIE 0x%x [in module %s]"),
12373 to_underlying (die->sect_off), objfile_name (objfile));
12374 else
12375 {
12376 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12377 SET_FIELD_PHYSADDR (call_site->target, lowpc);
12378 }
12379 }
12380 }
12381 else
12382 complaint (&symfile_complaints,
12383 _("DW_TAG_call_site DW_AT_call_target is neither "
12384 "block nor reference, for DIE 0x%x [in module %s]"),
12385 to_underlying (die->sect_off), objfile_name (objfile));
12386
12387 call_site->per_cu = cu->per_cu;
12388
12389 for (child_die = die->child;
12390 child_die && child_die->tag;
12391 child_die = sibling_die (child_die))
12392 {
12393 struct call_site_parameter *parameter;
12394 struct attribute *loc, *origin;
12395
12396 if (child_die->tag != DW_TAG_call_site_parameter
12397 && child_die->tag != DW_TAG_GNU_call_site_parameter)
12398 {
12399 /* Already printed the complaint above. */
12400 continue;
12401 }
12402
12403 gdb_assert (call_site->parameter_count < nparams);
12404 parameter = &call_site->parameter[call_site->parameter_count];
12405
12406 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
12407 specifies DW_TAG_formal_parameter. Value of the data assumed for the
12408 register is contained in DW_AT_call_value. */
12409
12410 loc = dwarf2_attr (child_die, DW_AT_location, cu);
12411 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
12412 if (origin == NULL)
12413 {
12414 /* This was a pre-DWARF-5 GNU extension alias
12415 for DW_AT_call_parameter. */
12416 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
12417 }
12418 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
12419 {
12420 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
12421
12422 sect_offset sect_off
12423 = (sect_offset) dwarf2_get_ref_die_offset (origin);
12424 if (!offset_in_cu_p (&cu->header, sect_off))
12425 {
12426 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
12427 binding can be done only inside one CU. Such referenced DIE
12428 therefore cannot be even moved to DW_TAG_partial_unit. */
12429 complaint (&symfile_complaints,
12430 _("DW_AT_call_parameter offset is not in CU for "
12431 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12432 to_underlying (child_die->sect_off),
12433 objfile_name (objfile));
12434 continue;
12435 }
12436 parameter->u.param_cu_off
12437 = (cu_offset) (sect_off - cu->header.sect_off);
12438 }
12439 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
12440 {
12441 complaint (&symfile_complaints,
12442 _("No DW_FORM_block* DW_AT_location for "
12443 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12444 to_underlying (child_die->sect_off), objfile_name (objfile));
12445 continue;
12446 }
12447 else
12448 {
12449 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
12450 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
12451 if (parameter->u.dwarf_reg != -1)
12452 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
12453 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
12454 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
12455 &parameter->u.fb_offset))
12456 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
12457 else
12458 {
12459 complaint (&symfile_complaints,
12460 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
12461 "for DW_FORM_block* DW_AT_location is supported for "
12462 "DW_TAG_call_site child DIE 0x%x "
12463 "[in module %s]"),
12464 to_underlying (child_die->sect_off),
12465 objfile_name (objfile));
12466 continue;
12467 }
12468 }
12469
12470 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
12471 if (attr == NULL)
12472 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
12473 if (!attr_form_is_block (attr))
12474 {
12475 complaint (&symfile_complaints,
12476 _("No DW_FORM_block* DW_AT_call_value for "
12477 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12478 to_underlying (child_die->sect_off),
12479 objfile_name (objfile));
12480 continue;
12481 }
12482 parameter->value = DW_BLOCK (attr)->data;
12483 parameter->value_size = DW_BLOCK (attr)->size;
12484
12485 /* Parameters are not pre-cleared by memset above. */
12486 parameter->data_value = NULL;
12487 parameter->data_value_size = 0;
12488 call_site->parameter_count++;
12489
12490 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
12491 if (attr == NULL)
12492 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
12493 if (attr)
12494 {
12495 if (!attr_form_is_block (attr))
12496 complaint (&symfile_complaints,
12497 _("No DW_FORM_block* DW_AT_call_data_value for "
12498 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12499 to_underlying (child_die->sect_off),
12500 objfile_name (objfile));
12501 else
12502 {
12503 parameter->data_value = DW_BLOCK (attr)->data;
12504 parameter->data_value_size = DW_BLOCK (attr)->size;
12505 }
12506 }
12507 }
12508 }
12509
12510 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
12511 reading .debug_rnglists.
12512 Callback's type should be:
12513 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12514 Return true if the attributes are present and valid, otherwise,
12515 return false. */
12516
12517 template <typename Callback>
12518 static bool
12519 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
12520 Callback &&callback)
12521 {
12522 struct objfile *objfile = cu->objfile;
12523 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12524 struct comp_unit_head *cu_header = &cu->header;
12525 bfd *obfd = objfile->obfd;
12526 unsigned int addr_size = cu_header->addr_size;
12527 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12528 /* Base address selection entry. */
12529 CORE_ADDR base;
12530 int found_base;
12531 unsigned int dummy;
12532 const gdb_byte *buffer;
12533 CORE_ADDR low = 0;
12534 CORE_ADDR high = 0;
12535 CORE_ADDR baseaddr;
12536 bool overflow = false;
12537
12538 found_base = cu->base_known;
12539 base = cu->base_address;
12540
12541 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
12542 if (offset >= dwarf2_per_objfile->rnglists.size)
12543 {
12544 complaint (&symfile_complaints,
12545 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12546 offset);
12547 return false;
12548 }
12549 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
12550
12551 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12552
12553 while (1)
12554 {
12555 /* Initialize it due to a false compiler warning. */
12556 CORE_ADDR range_beginning = 0, range_end = 0;
12557 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12558 + dwarf2_per_objfile->rnglists.size);
12559 unsigned int bytes_read;
12560
12561 if (buffer == buf_end)
12562 {
12563 overflow = true;
12564 break;
12565 }
12566 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12567 switch (rlet)
12568 {
12569 case DW_RLE_end_of_list:
12570 break;
12571 case DW_RLE_base_address:
12572 if (buffer + cu->header.addr_size > buf_end)
12573 {
12574 overflow = true;
12575 break;
12576 }
12577 base = read_address (obfd, buffer, cu, &bytes_read);
12578 found_base = 1;
12579 buffer += bytes_read;
12580 break;
12581 case DW_RLE_start_length:
12582 if (buffer + cu->header.addr_size > buf_end)
12583 {
12584 overflow = true;
12585 break;
12586 }
12587 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12588 buffer += bytes_read;
12589 range_end = (range_beginning
12590 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12591 buffer += bytes_read;
12592 if (buffer > buf_end)
12593 {
12594 overflow = true;
12595 break;
12596 }
12597 break;
12598 case DW_RLE_offset_pair:
12599 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12600 buffer += bytes_read;
12601 if (buffer > buf_end)
12602 {
12603 overflow = true;
12604 break;
12605 }
12606 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12607 buffer += bytes_read;
12608 if (buffer > buf_end)
12609 {
12610 overflow = true;
12611 break;
12612 }
12613 break;
12614 case DW_RLE_start_end:
12615 if (buffer + 2 * cu->header.addr_size > buf_end)
12616 {
12617 overflow = true;
12618 break;
12619 }
12620 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12621 buffer += bytes_read;
12622 range_end = read_address (obfd, buffer, cu, &bytes_read);
12623 buffer += bytes_read;
12624 break;
12625 default:
12626 complaint (&symfile_complaints,
12627 _("Invalid .debug_rnglists data (no base address)"));
12628 return false;
12629 }
12630 if (rlet == DW_RLE_end_of_list || overflow)
12631 break;
12632 if (rlet == DW_RLE_base_address)
12633 continue;
12634
12635 if (!found_base)
12636 {
12637 /* We have no valid base address for the ranges
12638 data. */
12639 complaint (&symfile_complaints,
12640 _("Invalid .debug_rnglists data (no base address)"));
12641 return false;
12642 }
12643
12644 if (range_beginning > range_end)
12645 {
12646 /* Inverted range entries are invalid. */
12647 complaint (&symfile_complaints,
12648 _("Invalid .debug_rnglists data (inverted range)"));
12649 return false;
12650 }
12651
12652 /* Empty range entries have no effect. */
12653 if (range_beginning == range_end)
12654 continue;
12655
12656 range_beginning += base;
12657 range_end += base;
12658
12659 /* A not-uncommon case of bad debug info.
12660 Don't pollute the addrmap with bad data. */
12661 if (range_beginning + baseaddr == 0
12662 && !dwarf2_per_objfile->has_section_at_zero)
12663 {
12664 complaint (&symfile_complaints,
12665 _(".debug_rnglists entry has start address of zero"
12666 " [in module %s]"), objfile_name (objfile));
12667 continue;
12668 }
12669
12670 callback (range_beginning, range_end);
12671 }
12672
12673 if (overflow)
12674 {
12675 complaint (&symfile_complaints,
12676 _("Offset %d is not terminated "
12677 "for DW_AT_ranges attribute"),
12678 offset);
12679 return false;
12680 }
12681
12682 return true;
12683 }
12684
12685 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
12686 Callback's type should be:
12687 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12688 Return 1 if the attributes are present and valid, otherwise, return 0. */
12689
12690 template <typename Callback>
12691 static int
12692 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
12693 Callback &&callback)
12694 {
12695 struct objfile *objfile = cu->objfile;
12696 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12697 struct comp_unit_head *cu_header = &cu->header;
12698 bfd *obfd = objfile->obfd;
12699 unsigned int addr_size = cu_header->addr_size;
12700 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12701 /* Base address selection entry. */
12702 CORE_ADDR base;
12703 int found_base;
12704 unsigned int dummy;
12705 const gdb_byte *buffer;
12706 CORE_ADDR baseaddr;
12707
12708 if (cu_header->version >= 5)
12709 return dwarf2_rnglists_process (offset, cu, callback);
12710
12711 found_base = cu->base_known;
12712 base = cu->base_address;
12713
12714 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12715 if (offset >= dwarf2_per_objfile->ranges.size)
12716 {
12717 complaint (&symfile_complaints,
12718 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12719 offset);
12720 return 0;
12721 }
12722 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12723
12724 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12725
12726 while (1)
12727 {
12728 CORE_ADDR range_beginning, range_end;
12729
12730 range_beginning = read_address (obfd, buffer, cu, &dummy);
12731 buffer += addr_size;
12732 range_end = read_address (obfd, buffer, cu, &dummy);
12733 buffer += addr_size;
12734 offset += 2 * addr_size;
12735
12736 /* An end of list marker is a pair of zero addresses. */
12737 if (range_beginning == 0 && range_end == 0)
12738 /* Found the end of list entry. */
12739 break;
12740
12741 /* Each base address selection entry is a pair of 2 values.
12742 The first is the largest possible address, the second is
12743 the base address. Check for a base address here. */
12744 if ((range_beginning & mask) == mask)
12745 {
12746 /* If we found the largest possible address, then we already
12747 have the base address in range_end. */
12748 base = range_end;
12749 found_base = 1;
12750 continue;
12751 }
12752
12753 if (!found_base)
12754 {
12755 /* We have no valid base address for the ranges
12756 data. */
12757 complaint (&symfile_complaints,
12758 _("Invalid .debug_ranges data (no base address)"));
12759 return 0;
12760 }
12761
12762 if (range_beginning > range_end)
12763 {
12764 /* Inverted range entries are invalid. */
12765 complaint (&symfile_complaints,
12766 _("Invalid .debug_ranges data (inverted range)"));
12767 return 0;
12768 }
12769
12770 /* Empty range entries have no effect. */
12771 if (range_beginning == range_end)
12772 continue;
12773
12774 range_beginning += base;
12775 range_end += base;
12776
12777 /* A not-uncommon case of bad debug info.
12778 Don't pollute the addrmap with bad data. */
12779 if (range_beginning + baseaddr == 0
12780 && !dwarf2_per_objfile->has_section_at_zero)
12781 {
12782 complaint (&symfile_complaints,
12783 _(".debug_ranges entry has start address of zero"
12784 " [in module %s]"), objfile_name (objfile));
12785 continue;
12786 }
12787
12788 callback (range_beginning, range_end);
12789 }
12790
12791 return 1;
12792 }
12793
12794 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
12795 Return 1 if the attributes are present and valid, otherwise, return 0.
12796 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
12797
12798 static int
12799 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
12800 CORE_ADDR *high_return, struct dwarf2_cu *cu,
12801 struct partial_symtab *ranges_pst)
12802 {
12803 struct objfile *objfile = cu->objfile;
12804 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12805 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
12806 SECT_OFF_TEXT (objfile));
12807 int low_set = 0;
12808 CORE_ADDR low = 0;
12809 CORE_ADDR high = 0;
12810 int retval;
12811
12812 retval = dwarf2_ranges_process (offset, cu,
12813 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12814 {
12815 if (ranges_pst != NULL)
12816 {
12817 CORE_ADDR lowpc;
12818 CORE_ADDR highpc;
12819
12820 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12821 range_beginning + baseaddr);
12822 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12823 range_end + baseaddr);
12824 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12825 ranges_pst);
12826 }
12827
12828 /* FIXME: This is recording everything as a low-high
12829 segment of consecutive addresses. We should have a
12830 data structure for discontiguous block ranges
12831 instead. */
12832 if (! low_set)
12833 {
12834 low = range_beginning;
12835 high = range_end;
12836 low_set = 1;
12837 }
12838 else
12839 {
12840 if (range_beginning < low)
12841 low = range_beginning;
12842 if (range_end > high)
12843 high = range_end;
12844 }
12845 });
12846 if (!retval)
12847 return 0;
12848
12849 if (! low_set)
12850 /* If the first entry is an end-of-list marker, the range
12851 describes an empty scope, i.e. no instructions. */
12852 return 0;
12853
12854 if (low_return)
12855 *low_return = low;
12856 if (high_return)
12857 *high_return = high;
12858 return 1;
12859 }
12860
12861 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
12862 definition for the return value. *LOWPC and *HIGHPC are set iff
12863 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
12864
12865 static enum pc_bounds_kind
12866 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12867 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12868 struct partial_symtab *pst)
12869 {
12870 struct attribute *attr;
12871 struct attribute *attr_high;
12872 CORE_ADDR low = 0;
12873 CORE_ADDR high = 0;
12874 enum pc_bounds_kind ret;
12875
12876 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12877 if (attr_high)
12878 {
12879 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12880 if (attr)
12881 {
12882 low = attr_value_as_address (attr);
12883 high = attr_value_as_address (attr_high);
12884 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12885 high += low;
12886 }
12887 else
12888 /* Found high w/o low attribute. */
12889 return PC_BOUNDS_INVALID;
12890
12891 /* Found consecutive range of addresses. */
12892 ret = PC_BOUNDS_HIGH_LOW;
12893 }
12894 else
12895 {
12896 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12897 if (attr != NULL)
12898 {
12899 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12900 We take advantage of the fact that DW_AT_ranges does not appear
12901 in DW_TAG_compile_unit of DWO files. */
12902 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12903 unsigned int ranges_offset = (DW_UNSND (attr)
12904 + (need_ranges_base
12905 ? cu->ranges_base
12906 : 0));
12907
12908 /* Value of the DW_AT_ranges attribute is the offset in the
12909 .debug_ranges section. */
12910 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12911 return PC_BOUNDS_INVALID;
12912 /* Found discontinuous range of addresses. */
12913 ret = PC_BOUNDS_RANGES;
12914 }
12915 else
12916 return PC_BOUNDS_NOT_PRESENT;
12917 }
12918
12919 /* read_partial_die has also the strict LOW < HIGH requirement. */
12920 if (high <= low)
12921 return PC_BOUNDS_INVALID;
12922
12923 /* When using the GNU linker, .gnu.linkonce. sections are used to
12924 eliminate duplicate copies of functions and vtables and such.
12925 The linker will arbitrarily choose one and discard the others.
12926 The AT_*_pc values for such functions refer to local labels in
12927 these sections. If the section from that file was discarded, the
12928 labels are not in the output, so the relocs get a value of 0.
12929 If this is a discarded function, mark the pc bounds as invalid,
12930 so that GDB will ignore it. */
12931 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12932 return PC_BOUNDS_INVALID;
12933
12934 *lowpc = low;
12935 if (highpc)
12936 *highpc = high;
12937 return ret;
12938 }
12939
12940 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12941 its low and high PC addresses. Do nothing if these addresses could not
12942 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12943 and HIGHPC to the high address if greater than HIGHPC. */
12944
12945 static void
12946 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12947 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12948 struct dwarf2_cu *cu)
12949 {
12950 CORE_ADDR low, high;
12951 struct die_info *child = die->child;
12952
12953 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
12954 {
12955 *lowpc = std::min (*lowpc, low);
12956 *highpc = std::max (*highpc, high);
12957 }
12958
12959 /* If the language does not allow nested subprograms (either inside
12960 subprograms or lexical blocks), we're done. */
12961 if (cu->language != language_ada)
12962 return;
12963
12964 /* Check all the children of the given DIE. If it contains nested
12965 subprograms, then check their pc bounds. Likewise, we need to
12966 check lexical blocks as well, as they may also contain subprogram
12967 definitions. */
12968 while (child && child->tag)
12969 {
12970 if (child->tag == DW_TAG_subprogram
12971 || child->tag == DW_TAG_lexical_block)
12972 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12973 child = sibling_die (child);
12974 }
12975 }
12976
12977 /* Get the low and high pc's represented by the scope DIE, and store
12978 them in *LOWPC and *HIGHPC. If the correct values can't be
12979 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12980
12981 static void
12982 get_scope_pc_bounds (struct die_info *die,
12983 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12984 struct dwarf2_cu *cu)
12985 {
12986 CORE_ADDR best_low = (CORE_ADDR) -1;
12987 CORE_ADDR best_high = (CORE_ADDR) 0;
12988 CORE_ADDR current_low, current_high;
12989
12990 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
12991 >= PC_BOUNDS_RANGES)
12992 {
12993 best_low = current_low;
12994 best_high = current_high;
12995 }
12996 else
12997 {
12998 struct die_info *child = die->child;
12999
13000 while (child && child->tag)
13001 {
13002 switch (child->tag) {
13003 case DW_TAG_subprogram:
13004 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
13005 break;
13006 case DW_TAG_namespace:
13007 case DW_TAG_module:
13008 /* FIXME: carlton/2004-01-16: Should we do this for
13009 DW_TAG_class_type/DW_TAG_structure_type, too? I think
13010 that current GCC's always emit the DIEs corresponding
13011 to definitions of methods of classes as children of a
13012 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
13013 the DIEs giving the declarations, which could be
13014 anywhere). But I don't see any reason why the
13015 standards says that they have to be there. */
13016 get_scope_pc_bounds (child, &current_low, &current_high, cu);
13017
13018 if (current_low != ((CORE_ADDR) -1))
13019 {
13020 best_low = std::min (best_low, current_low);
13021 best_high = std::max (best_high, current_high);
13022 }
13023 break;
13024 default:
13025 /* Ignore. */
13026 break;
13027 }
13028
13029 child = sibling_die (child);
13030 }
13031 }
13032
13033 *lowpc = best_low;
13034 *highpc = best_high;
13035 }
13036
13037 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
13038 in DIE. */
13039
13040 static void
13041 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
13042 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
13043 {
13044 struct objfile *objfile = cu->objfile;
13045 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13046 struct attribute *attr;
13047 struct attribute *attr_high;
13048
13049 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13050 if (attr_high)
13051 {
13052 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13053 if (attr)
13054 {
13055 CORE_ADDR low = attr_value_as_address (attr);
13056 CORE_ADDR high = attr_value_as_address (attr_high);
13057
13058 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
13059 high += low;
13060
13061 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
13062 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
13063 record_block_range (block, low, high - 1);
13064 }
13065 }
13066
13067 attr = dwarf2_attr (die, DW_AT_ranges, cu);
13068 if (attr)
13069 {
13070 bfd *obfd = objfile->obfd;
13071 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
13072 We take advantage of the fact that DW_AT_ranges does not appear
13073 in DW_TAG_compile_unit of DWO files. */
13074 int need_ranges_base = die->tag != DW_TAG_compile_unit;
13075
13076 /* The value of the DW_AT_ranges attribute is the offset of the
13077 address range list in the .debug_ranges section. */
13078 unsigned long offset = (DW_UNSND (attr)
13079 + (need_ranges_base ? cu->ranges_base : 0));
13080 const gdb_byte *buffer;
13081
13082 /* For some target architectures, but not others, the
13083 read_address function sign-extends the addresses it returns.
13084 To recognize base address selection entries, we need a
13085 mask. */
13086 unsigned int addr_size = cu->header.addr_size;
13087 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13088
13089 /* The base address, to which the next pair is relative. Note
13090 that this 'base' is a DWARF concept: most entries in a range
13091 list are relative, to reduce the number of relocs against the
13092 debugging information. This is separate from this function's
13093 'baseaddr' argument, which GDB uses to relocate debugging
13094 information from a shared library based on the address at
13095 which the library was loaded. */
13096 CORE_ADDR base = cu->base_address;
13097 int base_known = cu->base_known;
13098
13099 dwarf2_ranges_process (offset, cu,
13100 [&] (CORE_ADDR start, CORE_ADDR end)
13101 {
13102 start += baseaddr;
13103 end += baseaddr;
13104 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
13105 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
13106 record_block_range (block, start, end - 1);
13107 });
13108 }
13109 }
13110
13111 /* Check whether the producer field indicates either of GCC < 4.6, or the
13112 Intel C/C++ compiler, and cache the result in CU. */
13113
13114 static void
13115 check_producer (struct dwarf2_cu *cu)
13116 {
13117 int major, minor;
13118
13119 if (cu->producer == NULL)
13120 {
13121 /* For unknown compilers expect their behavior is DWARF version
13122 compliant.
13123
13124 GCC started to support .debug_types sections by -gdwarf-4 since
13125 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
13126 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
13127 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
13128 interpreted incorrectly by GDB now - GCC PR debug/48229. */
13129 }
13130 else if (producer_is_gcc (cu->producer, &major, &minor))
13131 {
13132 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
13133 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
13134 }
13135 else if (producer_is_icc (cu->producer, &major, &minor))
13136 cu->producer_is_icc_lt_14 = major < 14;
13137 else
13138 {
13139 /* For other non-GCC compilers, expect their behavior is DWARF version
13140 compliant. */
13141 }
13142
13143 cu->checked_producer = 1;
13144 }
13145
13146 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
13147 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
13148 during 4.6.0 experimental. */
13149
13150 static int
13151 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
13152 {
13153 if (!cu->checked_producer)
13154 check_producer (cu);
13155
13156 return cu->producer_is_gxx_lt_4_6;
13157 }
13158
13159 /* Return the default accessibility type if it is not overriden by
13160 DW_AT_accessibility. */
13161
13162 static enum dwarf_access_attribute
13163 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
13164 {
13165 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
13166 {
13167 /* The default DWARF 2 accessibility for members is public, the default
13168 accessibility for inheritance is private. */
13169
13170 if (die->tag != DW_TAG_inheritance)
13171 return DW_ACCESS_public;
13172 else
13173 return DW_ACCESS_private;
13174 }
13175 else
13176 {
13177 /* DWARF 3+ defines the default accessibility a different way. The same
13178 rules apply now for DW_TAG_inheritance as for the members and it only
13179 depends on the container kind. */
13180
13181 if (die->parent->tag == DW_TAG_class_type)
13182 return DW_ACCESS_private;
13183 else
13184 return DW_ACCESS_public;
13185 }
13186 }
13187
13188 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
13189 offset. If the attribute was not found return 0, otherwise return
13190 1. If it was found but could not properly be handled, set *OFFSET
13191 to 0. */
13192
13193 static int
13194 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
13195 LONGEST *offset)
13196 {
13197 struct attribute *attr;
13198
13199 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
13200 if (attr != NULL)
13201 {
13202 *offset = 0;
13203
13204 /* Note that we do not check for a section offset first here.
13205 This is because DW_AT_data_member_location is new in DWARF 4,
13206 so if we see it, we can assume that a constant form is really
13207 a constant and not a section offset. */
13208 if (attr_form_is_constant (attr))
13209 *offset = dwarf2_get_attr_constant_value (attr, 0);
13210 else if (attr_form_is_section_offset (attr))
13211 dwarf2_complex_location_expr_complaint ();
13212 else if (attr_form_is_block (attr))
13213 *offset = decode_locdesc (DW_BLOCK (attr), cu);
13214 else
13215 dwarf2_complex_location_expr_complaint ();
13216
13217 return 1;
13218 }
13219
13220 return 0;
13221 }
13222
13223 /* Add an aggregate field to the field list. */
13224
13225 static void
13226 dwarf2_add_field (struct field_info *fip, struct die_info *die,
13227 struct dwarf2_cu *cu)
13228 {
13229 struct objfile *objfile = cu->objfile;
13230 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13231 struct nextfield *new_field;
13232 struct attribute *attr;
13233 struct field *fp;
13234 const char *fieldname = "";
13235
13236 /* Allocate a new field list entry and link it in. */
13237 new_field = XNEW (struct nextfield);
13238 make_cleanup (xfree, new_field);
13239 memset (new_field, 0, sizeof (struct nextfield));
13240
13241 if (die->tag == DW_TAG_inheritance)
13242 {
13243 new_field->next = fip->baseclasses;
13244 fip->baseclasses = new_field;
13245 }
13246 else
13247 {
13248 new_field->next = fip->fields;
13249 fip->fields = new_field;
13250 }
13251 fip->nfields++;
13252
13253 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13254 if (attr)
13255 new_field->accessibility = DW_UNSND (attr);
13256 else
13257 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
13258 if (new_field->accessibility != DW_ACCESS_public)
13259 fip->non_public_fields = 1;
13260
13261 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13262 if (attr)
13263 new_field->virtuality = DW_UNSND (attr);
13264 else
13265 new_field->virtuality = DW_VIRTUALITY_none;
13266
13267 fp = &new_field->field;
13268
13269 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
13270 {
13271 LONGEST offset;
13272
13273 /* Data member other than a C++ static data member. */
13274
13275 /* Get type of field. */
13276 fp->type = die_type (die, cu);
13277
13278 SET_FIELD_BITPOS (*fp, 0);
13279
13280 /* Get bit size of field (zero if none). */
13281 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
13282 if (attr)
13283 {
13284 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
13285 }
13286 else
13287 {
13288 FIELD_BITSIZE (*fp) = 0;
13289 }
13290
13291 /* Get bit offset of field. */
13292 if (handle_data_member_location (die, cu, &offset))
13293 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
13294 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
13295 if (attr)
13296 {
13297 if (gdbarch_bits_big_endian (gdbarch))
13298 {
13299 /* For big endian bits, the DW_AT_bit_offset gives the
13300 additional bit offset from the MSB of the containing
13301 anonymous object to the MSB of the field. We don't
13302 have to do anything special since we don't need to
13303 know the size of the anonymous object. */
13304 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
13305 }
13306 else
13307 {
13308 /* For little endian bits, compute the bit offset to the
13309 MSB of the anonymous object, subtract off the number of
13310 bits from the MSB of the field to the MSB of the
13311 object, and then subtract off the number of bits of
13312 the field itself. The result is the bit offset of
13313 the LSB of the field. */
13314 int anonymous_size;
13315 int bit_offset = DW_UNSND (attr);
13316
13317 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13318 if (attr)
13319 {
13320 /* The size of the anonymous object containing
13321 the bit field is explicit, so use the
13322 indicated size (in bytes). */
13323 anonymous_size = DW_UNSND (attr);
13324 }
13325 else
13326 {
13327 /* The size of the anonymous object containing
13328 the bit field must be inferred from the type
13329 attribute of the data member containing the
13330 bit field. */
13331 anonymous_size = TYPE_LENGTH (fp->type);
13332 }
13333 SET_FIELD_BITPOS (*fp,
13334 (FIELD_BITPOS (*fp)
13335 + anonymous_size * bits_per_byte
13336 - bit_offset - FIELD_BITSIZE (*fp)));
13337 }
13338 }
13339 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
13340 if (attr != NULL)
13341 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
13342 + dwarf2_get_attr_constant_value (attr, 0)));
13343
13344 /* Get name of field. */
13345 fieldname = dwarf2_name (die, cu);
13346 if (fieldname == NULL)
13347 fieldname = "";
13348
13349 /* The name is already allocated along with this objfile, so we don't
13350 need to duplicate it for the type. */
13351 fp->name = fieldname;
13352
13353 /* Change accessibility for artificial fields (e.g. virtual table
13354 pointer or virtual base class pointer) to private. */
13355 if (dwarf2_attr (die, DW_AT_artificial, cu))
13356 {
13357 FIELD_ARTIFICIAL (*fp) = 1;
13358 new_field->accessibility = DW_ACCESS_private;
13359 fip->non_public_fields = 1;
13360 }
13361 }
13362 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
13363 {
13364 /* C++ static member. */
13365
13366 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
13367 is a declaration, but all versions of G++ as of this writing
13368 (so through at least 3.2.1) incorrectly generate
13369 DW_TAG_variable tags. */
13370
13371 const char *physname;
13372
13373 /* Get name of field. */
13374 fieldname = dwarf2_name (die, cu);
13375 if (fieldname == NULL)
13376 return;
13377
13378 attr = dwarf2_attr (die, DW_AT_const_value, cu);
13379 if (attr
13380 /* Only create a symbol if this is an external value.
13381 new_symbol checks this and puts the value in the global symbol
13382 table, which we want. If it is not external, new_symbol
13383 will try to put the value in cu->list_in_scope which is wrong. */
13384 && dwarf2_flag_true_p (die, DW_AT_external, cu))
13385 {
13386 /* A static const member, not much different than an enum as far as
13387 we're concerned, except that we can support more types. */
13388 new_symbol (die, NULL, cu);
13389 }
13390
13391 /* Get physical name. */
13392 physname = dwarf2_physname (fieldname, die, cu);
13393
13394 /* The name is already allocated along with this objfile, so we don't
13395 need to duplicate it for the type. */
13396 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
13397 FIELD_TYPE (*fp) = die_type (die, cu);
13398 FIELD_NAME (*fp) = fieldname;
13399 }
13400 else if (die->tag == DW_TAG_inheritance)
13401 {
13402 LONGEST offset;
13403
13404 /* C++ base class field. */
13405 if (handle_data_member_location (die, cu, &offset))
13406 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
13407 FIELD_BITSIZE (*fp) = 0;
13408 FIELD_TYPE (*fp) = die_type (die, cu);
13409 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
13410 fip->nbaseclasses++;
13411 }
13412 }
13413
13414 /* Add a typedef defined in the scope of the FIP's class. */
13415
13416 static void
13417 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
13418 struct dwarf2_cu *cu)
13419 {
13420 struct typedef_field_list *new_field;
13421 struct typedef_field *fp;
13422
13423 /* Allocate a new field list entry and link it in. */
13424 new_field = XCNEW (struct typedef_field_list);
13425 make_cleanup (xfree, new_field);
13426
13427 gdb_assert (die->tag == DW_TAG_typedef);
13428
13429 fp = &new_field->field;
13430
13431 /* Get name of field. */
13432 fp->name = dwarf2_name (die, cu);
13433 if (fp->name == NULL)
13434 return;
13435
13436 fp->type = read_type_die (die, cu);
13437
13438 /* Save accessibility. */
13439 enum dwarf_access_attribute accessibility;
13440 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13441 if (attr != NULL)
13442 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
13443 else
13444 accessibility = dwarf2_default_access_attribute (die, cu);
13445 switch (accessibility)
13446 {
13447 case DW_ACCESS_public:
13448 /* The assumed value if neither private nor protected. */
13449 break;
13450 case DW_ACCESS_private:
13451 fp->is_private = 1;
13452 break;
13453 case DW_ACCESS_protected:
13454 fp->is_protected = 1;
13455 break;
13456 default:
13457 complaint (&symfile_complaints,
13458 _("Unhandled DW_AT_accessibility value (%x)"), accessibility);
13459 }
13460
13461 new_field->next = fip->typedef_field_list;
13462 fip->typedef_field_list = new_field;
13463 fip->typedef_field_list_count++;
13464 }
13465
13466 /* Create the vector of fields, and attach it to the type. */
13467
13468 static void
13469 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
13470 struct dwarf2_cu *cu)
13471 {
13472 int nfields = fip->nfields;
13473
13474 /* Record the field count, allocate space for the array of fields,
13475 and create blank accessibility bitfields if necessary. */
13476 TYPE_NFIELDS (type) = nfields;
13477 TYPE_FIELDS (type) = (struct field *)
13478 TYPE_ALLOC (type, sizeof (struct field) * nfields);
13479 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
13480
13481 if (fip->non_public_fields && cu->language != language_ada)
13482 {
13483 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13484
13485 TYPE_FIELD_PRIVATE_BITS (type) =
13486 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13487 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
13488
13489 TYPE_FIELD_PROTECTED_BITS (type) =
13490 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13491 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
13492
13493 TYPE_FIELD_IGNORE_BITS (type) =
13494 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13495 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
13496 }
13497
13498 /* If the type has baseclasses, allocate and clear a bit vector for
13499 TYPE_FIELD_VIRTUAL_BITS. */
13500 if (fip->nbaseclasses && cu->language != language_ada)
13501 {
13502 int num_bytes = B_BYTES (fip->nbaseclasses);
13503 unsigned char *pointer;
13504
13505 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13506 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
13507 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
13508 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
13509 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
13510 }
13511
13512 /* Copy the saved-up fields into the field vector. Start from the head of
13513 the list, adding to the tail of the field array, so that they end up in
13514 the same order in the array in which they were added to the list. */
13515 while (nfields-- > 0)
13516 {
13517 struct nextfield *fieldp;
13518
13519 if (fip->fields)
13520 {
13521 fieldp = fip->fields;
13522 fip->fields = fieldp->next;
13523 }
13524 else
13525 {
13526 fieldp = fip->baseclasses;
13527 fip->baseclasses = fieldp->next;
13528 }
13529
13530 TYPE_FIELD (type, nfields) = fieldp->field;
13531 switch (fieldp->accessibility)
13532 {
13533 case DW_ACCESS_private:
13534 if (cu->language != language_ada)
13535 SET_TYPE_FIELD_PRIVATE (type, nfields);
13536 break;
13537
13538 case DW_ACCESS_protected:
13539 if (cu->language != language_ada)
13540 SET_TYPE_FIELD_PROTECTED (type, nfields);
13541 break;
13542
13543 case DW_ACCESS_public:
13544 break;
13545
13546 default:
13547 /* Unknown accessibility. Complain and treat it as public. */
13548 {
13549 complaint (&symfile_complaints, _("unsupported accessibility %d"),
13550 fieldp->accessibility);
13551 }
13552 break;
13553 }
13554 if (nfields < fip->nbaseclasses)
13555 {
13556 switch (fieldp->virtuality)
13557 {
13558 case DW_VIRTUALITY_virtual:
13559 case DW_VIRTUALITY_pure_virtual:
13560 if (cu->language == language_ada)
13561 error (_("unexpected virtuality in component of Ada type"));
13562 SET_TYPE_FIELD_VIRTUAL (type, nfields);
13563 break;
13564 }
13565 }
13566 }
13567 }
13568
13569 /* Return true if this member function is a constructor, false
13570 otherwise. */
13571
13572 static int
13573 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
13574 {
13575 const char *fieldname;
13576 const char *type_name;
13577 int len;
13578
13579 if (die->parent == NULL)
13580 return 0;
13581
13582 if (die->parent->tag != DW_TAG_structure_type
13583 && die->parent->tag != DW_TAG_union_type
13584 && die->parent->tag != DW_TAG_class_type)
13585 return 0;
13586
13587 fieldname = dwarf2_name (die, cu);
13588 type_name = dwarf2_name (die->parent, cu);
13589 if (fieldname == NULL || type_name == NULL)
13590 return 0;
13591
13592 len = strlen (fieldname);
13593 return (strncmp (fieldname, type_name, len) == 0
13594 && (type_name[len] == '\0' || type_name[len] == '<'));
13595 }
13596
13597 /* Add a member function to the proper fieldlist. */
13598
13599 static void
13600 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
13601 struct type *type, struct dwarf2_cu *cu)
13602 {
13603 struct objfile *objfile = cu->objfile;
13604 struct attribute *attr;
13605 struct fnfieldlist *flp;
13606 int i;
13607 struct fn_field *fnp;
13608 const char *fieldname;
13609 struct nextfnfield *new_fnfield;
13610 struct type *this_type;
13611 enum dwarf_access_attribute accessibility;
13612
13613 if (cu->language == language_ada)
13614 error (_("unexpected member function in Ada type"));
13615
13616 /* Get name of member function. */
13617 fieldname = dwarf2_name (die, cu);
13618 if (fieldname == NULL)
13619 return;
13620
13621 /* Look up member function name in fieldlist. */
13622 for (i = 0; i < fip->nfnfields; i++)
13623 {
13624 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
13625 break;
13626 }
13627
13628 /* Create new list element if necessary. */
13629 if (i < fip->nfnfields)
13630 flp = &fip->fnfieldlists[i];
13631 else
13632 {
13633 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13634 {
13635 fip->fnfieldlists = (struct fnfieldlist *)
13636 xrealloc (fip->fnfieldlists,
13637 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
13638 * sizeof (struct fnfieldlist));
13639 if (fip->nfnfields == 0)
13640 make_cleanup (free_current_contents, &fip->fnfieldlists);
13641 }
13642 flp = &fip->fnfieldlists[fip->nfnfields];
13643 flp->name = fieldname;
13644 flp->length = 0;
13645 flp->head = NULL;
13646 i = fip->nfnfields++;
13647 }
13648
13649 /* Create a new member function field and chain it to the field list
13650 entry. */
13651 new_fnfield = XNEW (struct nextfnfield);
13652 make_cleanup (xfree, new_fnfield);
13653 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13654 new_fnfield->next = flp->head;
13655 flp->head = new_fnfield;
13656 flp->length++;
13657
13658 /* Fill in the member function field info. */
13659 fnp = &new_fnfield->fnfield;
13660
13661 /* Delay processing of the physname until later. */
13662 if (cu->language == language_cplus)
13663 {
13664 add_to_method_list (type, i, flp->length - 1, fieldname,
13665 die, cu);
13666 }
13667 else
13668 {
13669 const char *physname = dwarf2_physname (fieldname, die, cu);
13670 fnp->physname = physname ? physname : "";
13671 }
13672
13673 fnp->type = alloc_type (objfile);
13674 this_type = read_type_die (die, cu);
13675 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
13676 {
13677 int nparams = TYPE_NFIELDS (this_type);
13678
13679 /* TYPE is the domain of this method, and THIS_TYPE is the type
13680 of the method itself (TYPE_CODE_METHOD). */
13681 smash_to_method_type (fnp->type, type,
13682 TYPE_TARGET_TYPE (this_type),
13683 TYPE_FIELDS (this_type),
13684 TYPE_NFIELDS (this_type),
13685 TYPE_VARARGS (this_type));
13686
13687 /* Handle static member functions.
13688 Dwarf2 has no clean way to discern C++ static and non-static
13689 member functions. G++ helps GDB by marking the first
13690 parameter for non-static member functions (which is the this
13691 pointer) as artificial. We obtain this information from
13692 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
13693 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
13694 fnp->voffset = VOFFSET_STATIC;
13695 }
13696 else
13697 complaint (&symfile_complaints, _("member function type missing for '%s'"),
13698 dwarf2_full_name (fieldname, die, cu));
13699
13700 /* Get fcontext from DW_AT_containing_type if present. */
13701 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13702 fnp->fcontext = die_containing_type (die, cu);
13703
13704 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
13705 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
13706
13707 /* Get accessibility. */
13708 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13709 if (attr)
13710 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
13711 else
13712 accessibility = dwarf2_default_access_attribute (die, cu);
13713 switch (accessibility)
13714 {
13715 case DW_ACCESS_private:
13716 fnp->is_private = 1;
13717 break;
13718 case DW_ACCESS_protected:
13719 fnp->is_protected = 1;
13720 break;
13721 }
13722
13723 /* Check for artificial methods. */
13724 attr = dwarf2_attr (die, DW_AT_artificial, cu);
13725 if (attr && DW_UNSND (attr) != 0)
13726 fnp->is_artificial = 1;
13727
13728 fnp->is_constructor = dwarf2_is_constructor (die, cu);
13729
13730 /* Get index in virtual function table if it is a virtual member
13731 function. For older versions of GCC, this is an offset in the
13732 appropriate virtual table, as specified by DW_AT_containing_type.
13733 For everyone else, it is an expression to be evaluated relative
13734 to the object address. */
13735
13736 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
13737 if (attr)
13738 {
13739 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
13740 {
13741 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
13742 {
13743 /* Old-style GCC. */
13744 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
13745 }
13746 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
13747 || (DW_BLOCK (attr)->size > 1
13748 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
13749 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
13750 {
13751 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
13752 if ((fnp->voffset % cu->header.addr_size) != 0)
13753 dwarf2_complex_location_expr_complaint ();
13754 else
13755 fnp->voffset /= cu->header.addr_size;
13756 fnp->voffset += 2;
13757 }
13758 else
13759 dwarf2_complex_location_expr_complaint ();
13760
13761 if (!fnp->fcontext)
13762 {
13763 /* If there is no `this' field and no DW_AT_containing_type,
13764 we cannot actually find a base class context for the
13765 vtable! */
13766 if (TYPE_NFIELDS (this_type) == 0
13767 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13768 {
13769 complaint (&symfile_complaints,
13770 _("cannot determine context for virtual member "
13771 "function \"%s\" (offset %d)"),
13772 fieldname, to_underlying (die->sect_off));
13773 }
13774 else
13775 {
13776 fnp->fcontext
13777 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13778 }
13779 }
13780 }
13781 else if (attr_form_is_section_offset (attr))
13782 {
13783 dwarf2_complex_location_expr_complaint ();
13784 }
13785 else
13786 {
13787 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13788 fieldname);
13789 }
13790 }
13791 else
13792 {
13793 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13794 if (attr && DW_UNSND (attr))
13795 {
13796 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13797 complaint (&symfile_complaints,
13798 _("Member function \"%s\" (offset %d) is virtual "
13799 "but the vtable offset is not specified"),
13800 fieldname, to_underlying (die->sect_off));
13801 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13802 TYPE_CPLUS_DYNAMIC (type) = 1;
13803 }
13804 }
13805 }
13806
13807 /* Create the vector of member function fields, and attach it to the type. */
13808
13809 static void
13810 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13811 struct dwarf2_cu *cu)
13812 {
13813 struct fnfieldlist *flp;
13814 int i;
13815
13816 if (cu->language == language_ada)
13817 error (_("unexpected member functions in Ada type"));
13818
13819 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13820 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13821 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13822
13823 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13824 {
13825 struct nextfnfield *nfp = flp->head;
13826 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13827 int k;
13828
13829 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13830 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13831 fn_flp->fn_fields = (struct fn_field *)
13832 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13833 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13834 fn_flp->fn_fields[k] = nfp->fnfield;
13835 }
13836
13837 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13838 }
13839
13840 /* Returns non-zero if NAME is the name of a vtable member in CU's
13841 language, zero otherwise. */
13842 static int
13843 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13844 {
13845 static const char vptr[] = "_vptr";
13846 static const char vtable[] = "vtable";
13847
13848 /* Look for the C++ form of the vtable. */
13849 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
13850 return 1;
13851
13852 return 0;
13853 }
13854
13855 /* GCC outputs unnamed structures that are really pointers to member
13856 functions, with the ABI-specified layout. If TYPE describes
13857 such a structure, smash it into a member function type.
13858
13859 GCC shouldn't do this; it should just output pointer to member DIEs.
13860 This is GCC PR debug/28767. */
13861
13862 static void
13863 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13864 {
13865 struct type *pfn_type, *self_type, *new_type;
13866
13867 /* Check for a structure with no name and two children. */
13868 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13869 return;
13870
13871 /* Check for __pfn and __delta members. */
13872 if (TYPE_FIELD_NAME (type, 0) == NULL
13873 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13874 || TYPE_FIELD_NAME (type, 1) == NULL
13875 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13876 return;
13877
13878 /* Find the type of the method. */
13879 pfn_type = TYPE_FIELD_TYPE (type, 0);
13880 if (pfn_type == NULL
13881 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13882 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13883 return;
13884
13885 /* Look for the "this" argument. */
13886 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13887 if (TYPE_NFIELDS (pfn_type) == 0
13888 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13889 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13890 return;
13891
13892 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13893 new_type = alloc_type (objfile);
13894 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13895 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13896 TYPE_VARARGS (pfn_type));
13897 smash_to_methodptr_type (type, new_type);
13898 }
13899
13900
13901 /* Called when we find the DIE that starts a structure or union scope
13902 (definition) to create a type for the structure or union. Fill in
13903 the type's name and general properties; the members will not be
13904 processed until process_structure_scope. A symbol table entry for
13905 the type will also not be done until process_structure_scope (assuming
13906 the type has a name).
13907
13908 NOTE: we need to call these functions regardless of whether or not the
13909 DIE has a DW_AT_name attribute, since it might be an anonymous
13910 structure or union. This gets the type entered into our set of
13911 user defined types. */
13912
13913 static struct type *
13914 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13915 {
13916 struct objfile *objfile = cu->objfile;
13917 struct type *type;
13918 struct attribute *attr;
13919 const char *name;
13920
13921 /* If the definition of this type lives in .debug_types, read that type.
13922 Don't follow DW_AT_specification though, that will take us back up
13923 the chain and we want to go down. */
13924 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13925 if (attr)
13926 {
13927 type = get_DW_AT_signature_type (die, attr, cu);
13928
13929 /* The type's CU may not be the same as CU.
13930 Ensure TYPE is recorded with CU in die_type_hash. */
13931 return set_die_type (die, type, cu);
13932 }
13933
13934 type = alloc_type (objfile);
13935 INIT_CPLUS_SPECIFIC (type);
13936
13937 name = dwarf2_name (die, cu);
13938 if (name != NULL)
13939 {
13940 if (cu->language == language_cplus
13941 || cu->language == language_d
13942 || cu->language == language_rust)
13943 {
13944 const char *full_name = dwarf2_full_name (name, die, cu);
13945
13946 /* dwarf2_full_name might have already finished building the DIE's
13947 type. If so, there is no need to continue. */
13948 if (get_die_type (die, cu) != NULL)
13949 return get_die_type (die, cu);
13950
13951 TYPE_TAG_NAME (type) = full_name;
13952 if (die->tag == DW_TAG_structure_type
13953 || die->tag == DW_TAG_class_type)
13954 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13955 }
13956 else
13957 {
13958 /* The name is already allocated along with this objfile, so
13959 we don't need to duplicate it for the type. */
13960 TYPE_TAG_NAME (type) = name;
13961 if (die->tag == DW_TAG_class_type)
13962 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13963 }
13964 }
13965
13966 if (die->tag == DW_TAG_structure_type)
13967 {
13968 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13969 }
13970 else if (die->tag == DW_TAG_union_type)
13971 {
13972 TYPE_CODE (type) = TYPE_CODE_UNION;
13973 }
13974 else
13975 {
13976 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13977 }
13978
13979 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13980 TYPE_DECLARED_CLASS (type) = 1;
13981
13982 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13983 if (attr)
13984 {
13985 if (attr_form_is_constant (attr))
13986 TYPE_LENGTH (type) = DW_UNSND (attr);
13987 else
13988 {
13989 /* For the moment, dynamic type sizes are not supported
13990 by GDB's struct type. The actual size is determined
13991 on-demand when resolving the type of a given object,
13992 so set the type's length to zero for now. Otherwise,
13993 we record an expression as the length, and that expression
13994 could lead to a very large value, which could eventually
13995 lead to us trying to allocate that much memory when creating
13996 a value of that type. */
13997 TYPE_LENGTH (type) = 0;
13998 }
13999 }
14000 else
14001 {
14002 TYPE_LENGTH (type) = 0;
14003 }
14004
14005 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
14006 {
14007 /* ICC<14 does not output the required DW_AT_declaration on
14008 incomplete types, but gives them a size of zero. */
14009 TYPE_STUB (type) = 1;
14010 }
14011 else
14012 TYPE_STUB_SUPPORTED (type) = 1;
14013
14014 if (die_is_declaration (die, cu))
14015 TYPE_STUB (type) = 1;
14016 else if (attr == NULL && die->child == NULL
14017 && producer_is_realview (cu->producer))
14018 /* RealView does not output the required DW_AT_declaration
14019 on incomplete types. */
14020 TYPE_STUB (type) = 1;
14021
14022 /* We need to add the type field to the die immediately so we don't
14023 infinitely recurse when dealing with pointers to the structure
14024 type within the structure itself. */
14025 set_die_type (die, type, cu);
14026
14027 /* set_die_type should be already done. */
14028 set_descriptive_type (type, die, cu);
14029
14030 return type;
14031 }
14032
14033 /* Finish creating a structure or union type, including filling in
14034 its members and creating a symbol for it. */
14035
14036 static void
14037 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
14038 {
14039 struct objfile *objfile = cu->objfile;
14040 struct die_info *child_die;
14041 struct type *type;
14042
14043 type = get_die_type (die, cu);
14044 if (type == NULL)
14045 type = read_structure_type (die, cu);
14046
14047 if (die->child != NULL && ! die_is_declaration (die, cu))
14048 {
14049 struct field_info fi;
14050 VEC (symbolp) *template_args = NULL;
14051 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
14052
14053 memset (&fi, 0, sizeof (struct field_info));
14054
14055 child_die = die->child;
14056
14057 while (child_die && child_die->tag)
14058 {
14059 if (child_die->tag == DW_TAG_member
14060 || child_die->tag == DW_TAG_variable)
14061 {
14062 /* NOTE: carlton/2002-11-05: A C++ static data member
14063 should be a DW_TAG_member that is a declaration, but
14064 all versions of G++ as of this writing (so through at
14065 least 3.2.1) incorrectly generate DW_TAG_variable
14066 tags for them instead. */
14067 dwarf2_add_field (&fi, child_die, cu);
14068 }
14069 else if (child_die->tag == DW_TAG_subprogram)
14070 {
14071 /* Rust doesn't have member functions in the C++ sense.
14072 However, it does emit ordinary functions as children
14073 of a struct DIE. */
14074 if (cu->language == language_rust)
14075 read_func_scope (child_die, cu);
14076 else
14077 {
14078 /* C++ member function. */
14079 dwarf2_add_member_fn (&fi, child_die, type, cu);
14080 }
14081 }
14082 else if (child_die->tag == DW_TAG_inheritance)
14083 {
14084 /* C++ base class field. */
14085 dwarf2_add_field (&fi, child_die, cu);
14086 }
14087 else if (child_die->tag == DW_TAG_typedef)
14088 dwarf2_add_typedef (&fi, child_die, cu);
14089 else if (child_die->tag == DW_TAG_template_type_param
14090 || child_die->tag == DW_TAG_template_value_param)
14091 {
14092 struct symbol *arg = new_symbol (child_die, NULL, cu);
14093
14094 if (arg != NULL)
14095 VEC_safe_push (symbolp, template_args, arg);
14096 }
14097
14098 child_die = sibling_die (child_die);
14099 }
14100
14101 /* Attach template arguments to type. */
14102 if (! VEC_empty (symbolp, template_args))
14103 {
14104 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14105 TYPE_N_TEMPLATE_ARGUMENTS (type)
14106 = VEC_length (symbolp, template_args);
14107 TYPE_TEMPLATE_ARGUMENTS (type)
14108 = XOBNEWVEC (&objfile->objfile_obstack,
14109 struct symbol *,
14110 TYPE_N_TEMPLATE_ARGUMENTS (type));
14111 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
14112 VEC_address (symbolp, template_args),
14113 (TYPE_N_TEMPLATE_ARGUMENTS (type)
14114 * sizeof (struct symbol *)));
14115 VEC_free (symbolp, template_args);
14116 }
14117
14118 /* Attach fields and member functions to the type. */
14119 if (fi.nfields)
14120 dwarf2_attach_fields_to_type (&fi, type, cu);
14121 if (fi.nfnfields)
14122 {
14123 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
14124
14125 /* Get the type which refers to the base class (possibly this
14126 class itself) which contains the vtable pointer for the current
14127 class from the DW_AT_containing_type attribute. This use of
14128 DW_AT_containing_type is a GNU extension. */
14129
14130 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
14131 {
14132 struct type *t = die_containing_type (die, cu);
14133
14134 set_type_vptr_basetype (type, t);
14135 if (type == t)
14136 {
14137 int i;
14138
14139 /* Our own class provides vtbl ptr. */
14140 for (i = TYPE_NFIELDS (t) - 1;
14141 i >= TYPE_N_BASECLASSES (t);
14142 --i)
14143 {
14144 const char *fieldname = TYPE_FIELD_NAME (t, i);
14145
14146 if (is_vtable_name (fieldname, cu))
14147 {
14148 set_type_vptr_fieldno (type, i);
14149 break;
14150 }
14151 }
14152
14153 /* Complain if virtual function table field not found. */
14154 if (i < TYPE_N_BASECLASSES (t))
14155 complaint (&symfile_complaints,
14156 _("virtual function table pointer "
14157 "not found when defining class '%s'"),
14158 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
14159 "");
14160 }
14161 else
14162 {
14163 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
14164 }
14165 }
14166 else if (cu->producer
14167 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
14168 {
14169 /* The IBM XLC compiler does not provide direct indication
14170 of the containing type, but the vtable pointer is
14171 always named __vfp. */
14172
14173 int i;
14174
14175 for (i = TYPE_NFIELDS (type) - 1;
14176 i >= TYPE_N_BASECLASSES (type);
14177 --i)
14178 {
14179 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
14180 {
14181 set_type_vptr_fieldno (type, i);
14182 set_type_vptr_basetype (type, type);
14183 break;
14184 }
14185 }
14186 }
14187 }
14188
14189 /* Copy fi.typedef_field_list linked list elements content into the
14190 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
14191 if (fi.typedef_field_list)
14192 {
14193 int i = fi.typedef_field_list_count;
14194
14195 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14196 TYPE_TYPEDEF_FIELD_ARRAY (type)
14197 = ((struct typedef_field *)
14198 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
14199 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
14200
14201 /* Reverse the list order to keep the debug info elements order. */
14202 while (--i >= 0)
14203 {
14204 struct typedef_field *dest, *src;
14205
14206 dest = &TYPE_TYPEDEF_FIELD (type, i);
14207 src = &fi.typedef_field_list->field;
14208 fi.typedef_field_list = fi.typedef_field_list->next;
14209 *dest = *src;
14210 }
14211 }
14212
14213 do_cleanups (back_to);
14214 }
14215
14216 quirk_gcc_member_function_pointer (type, objfile);
14217
14218 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
14219 snapshots) has been known to create a die giving a declaration
14220 for a class that has, as a child, a die giving a definition for a
14221 nested class. So we have to process our children even if the
14222 current die is a declaration. Normally, of course, a declaration
14223 won't have any children at all. */
14224
14225 child_die = die->child;
14226
14227 while (child_die != NULL && child_die->tag)
14228 {
14229 if (child_die->tag == DW_TAG_member
14230 || child_die->tag == DW_TAG_variable
14231 || child_die->tag == DW_TAG_inheritance
14232 || child_die->tag == DW_TAG_template_value_param
14233 || child_die->tag == DW_TAG_template_type_param)
14234 {
14235 /* Do nothing. */
14236 }
14237 else
14238 process_die (child_die, cu);
14239
14240 child_die = sibling_die (child_die);
14241 }
14242
14243 /* Do not consider external references. According to the DWARF standard,
14244 these DIEs are identified by the fact that they have no byte_size
14245 attribute, and a declaration attribute. */
14246 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
14247 || !die_is_declaration (die, cu))
14248 new_symbol (die, type, cu);
14249 }
14250
14251 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
14252 update TYPE using some information only available in DIE's children. */
14253
14254 static void
14255 update_enumeration_type_from_children (struct die_info *die,
14256 struct type *type,
14257 struct dwarf2_cu *cu)
14258 {
14259 struct die_info *child_die;
14260 int unsigned_enum = 1;
14261 int flag_enum = 1;
14262 ULONGEST mask = 0;
14263
14264 auto_obstack obstack;
14265
14266 for (child_die = die->child;
14267 child_die != NULL && child_die->tag;
14268 child_die = sibling_die (child_die))
14269 {
14270 struct attribute *attr;
14271 LONGEST value;
14272 const gdb_byte *bytes;
14273 struct dwarf2_locexpr_baton *baton;
14274 const char *name;
14275
14276 if (child_die->tag != DW_TAG_enumerator)
14277 continue;
14278
14279 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
14280 if (attr == NULL)
14281 continue;
14282
14283 name = dwarf2_name (child_die, cu);
14284 if (name == NULL)
14285 name = "<anonymous enumerator>";
14286
14287 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
14288 &value, &bytes, &baton);
14289 if (value < 0)
14290 {
14291 unsigned_enum = 0;
14292 flag_enum = 0;
14293 }
14294 else if ((mask & value) != 0)
14295 flag_enum = 0;
14296 else
14297 mask |= value;
14298
14299 /* If we already know that the enum type is neither unsigned, nor
14300 a flag type, no need to look at the rest of the enumerates. */
14301 if (!unsigned_enum && !flag_enum)
14302 break;
14303 }
14304
14305 if (unsigned_enum)
14306 TYPE_UNSIGNED (type) = 1;
14307 if (flag_enum)
14308 TYPE_FLAG_ENUM (type) = 1;
14309 }
14310
14311 /* Given a DW_AT_enumeration_type die, set its type. We do not
14312 complete the type's fields yet, or create any symbols. */
14313
14314 static struct type *
14315 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
14316 {
14317 struct objfile *objfile = cu->objfile;
14318 struct type *type;
14319 struct attribute *attr;
14320 const char *name;
14321
14322 /* If the definition of this type lives in .debug_types, read that type.
14323 Don't follow DW_AT_specification though, that will take us back up
14324 the chain and we want to go down. */
14325 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
14326 if (attr)
14327 {
14328 type = get_DW_AT_signature_type (die, attr, cu);
14329
14330 /* The type's CU may not be the same as CU.
14331 Ensure TYPE is recorded with CU in die_type_hash. */
14332 return set_die_type (die, type, cu);
14333 }
14334
14335 type = alloc_type (objfile);
14336
14337 TYPE_CODE (type) = TYPE_CODE_ENUM;
14338 name = dwarf2_full_name (NULL, die, cu);
14339 if (name != NULL)
14340 TYPE_TAG_NAME (type) = name;
14341
14342 attr = dwarf2_attr (die, DW_AT_type, cu);
14343 if (attr != NULL)
14344 {
14345 struct type *underlying_type = die_type (die, cu);
14346
14347 TYPE_TARGET_TYPE (type) = underlying_type;
14348 }
14349
14350 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14351 if (attr)
14352 {
14353 TYPE_LENGTH (type) = DW_UNSND (attr);
14354 }
14355 else
14356 {
14357 TYPE_LENGTH (type) = 0;
14358 }
14359
14360 /* The enumeration DIE can be incomplete. In Ada, any type can be
14361 declared as private in the package spec, and then defined only
14362 inside the package body. Such types are known as Taft Amendment
14363 Types. When another package uses such a type, an incomplete DIE
14364 may be generated by the compiler. */
14365 if (die_is_declaration (die, cu))
14366 TYPE_STUB (type) = 1;
14367
14368 /* Finish the creation of this type by using the enum's children.
14369 We must call this even when the underlying type has been provided
14370 so that we can determine if we're looking at a "flag" enum. */
14371 update_enumeration_type_from_children (die, type, cu);
14372
14373 /* If this type has an underlying type that is not a stub, then we
14374 may use its attributes. We always use the "unsigned" attribute
14375 in this situation, because ordinarily we guess whether the type
14376 is unsigned -- but the guess can be wrong and the underlying type
14377 can tell us the reality. However, we defer to a local size
14378 attribute if one exists, because this lets the compiler override
14379 the underlying type if needed. */
14380 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
14381 {
14382 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
14383 if (TYPE_LENGTH (type) == 0)
14384 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
14385 }
14386
14387 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
14388
14389 return set_die_type (die, type, cu);
14390 }
14391
14392 /* Given a pointer to a die which begins an enumeration, process all
14393 the dies that define the members of the enumeration, and create the
14394 symbol for the enumeration type.
14395
14396 NOTE: We reverse the order of the element list. */
14397
14398 static void
14399 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
14400 {
14401 struct type *this_type;
14402
14403 this_type = get_die_type (die, cu);
14404 if (this_type == NULL)
14405 this_type = read_enumeration_type (die, cu);
14406
14407 if (die->child != NULL)
14408 {
14409 struct die_info *child_die;
14410 struct symbol *sym;
14411 struct field *fields = NULL;
14412 int num_fields = 0;
14413 const char *name;
14414
14415 child_die = die->child;
14416 while (child_die && child_die->tag)
14417 {
14418 if (child_die->tag != DW_TAG_enumerator)
14419 {
14420 process_die (child_die, cu);
14421 }
14422 else
14423 {
14424 name = dwarf2_name (child_die, cu);
14425 if (name)
14426 {
14427 sym = new_symbol (child_die, this_type, cu);
14428
14429 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
14430 {
14431 fields = (struct field *)
14432 xrealloc (fields,
14433 (num_fields + DW_FIELD_ALLOC_CHUNK)
14434 * sizeof (struct field));
14435 }
14436
14437 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
14438 FIELD_TYPE (fields[num_fields]) = NULL;
14439 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
14440 FIELD_BITSIZE (fields[num_fields]) = 0;
14441
14442 num_fields++;
14443 }
14444 }
14445
14446 child_die = sibling_die (child_die);
14447 }
14448
14449 if (num_fields)
14450 {
14451 TYPE_NFIELDS (this_type) = num_fields;
14452 TYPE_FIELDS (this_type) = (struct field *)
14453 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
14454 memcpy (TYPE_FIELDS (this_type), fields,
14455 sizeof (struct field) * num_fields);
14456 xfree (fields);
14457 }
14458 }
14459
14460 /* If we are reading an enum from a .debug_types unit, and the enum
14461 is a declaration, and the enum is not the signatured type in the
14462 unit, then we do not want to add a symbol for it. Adding a
14463 symbol would in some cases obscure the true definition of the
14464 enum, giving users an incomplete type when the definition is
14465 actually available. Note that we do not want to do this for all
14466 enums which are just declarations, because C++0x allows forward
14467 enum declarations. */
14468 if (cu->per_cu->is_debug_types
14469 && die_is_declaration (die, cu))
14470 {
14471 struct signatured_type *sig_type;
14472
14473 sig_type = (struct signatured_type *) cu->per_cu;
14474 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
14475 if (sig_type->type_offset_in_section != die->sect_off)
14476 return;
14477 }
14478
14479 new_symbol (die, this_type, cu);
14480 }
14481
14482 /* Extract all information from a DW_TAG_array_type DIE and put it in
14483 the DIE's type field. For now, this only handles one dimensional
14484 arrays. */
14485
14486 static struct type *
14487 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
14488 {
14489 struct objfile *objfile = cu->objfile;
14490 struct die_info *child_die;
14491 struct type *type;
14492 struct type *element_type, *range_type, *index_type;
14493 struct attribute *attr;
14494 const char *name;
14495 unsigned int bit_stride = 0;
14496
14497 element_type = die_type (die, cu);
14498
14499 /* The die_type call above may have already set the type for this DIE. */
14500 type = get_die_type (die, cu);
14501 if (type)
14502 return type;
14503
14504 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
14505 if (attr != NULL)
14506 bit_stride = DW_UNSND (attr) * 8;
14507
14508 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
14509 if (attr != NULL)
14510 bit_stride = DW_UNSND (attr);
14511
14512 /* Irix 6.2 native cc creates array types without children for
14513 arrays with unspecified length. */
14514 if (die->child == NULL)
14515 {
14516 index_type = objfile_type (objfile)->builtin_int;
14517 range_type = create_static_range_type (NULL, index_type, 0, -1);
14518 type = create_array_type_with_stride (NULL, element_type, range_type,
14519 bit_stride);
14520 return set_die_type (die, type, cu);
14521 }
14522
14523 std::vector<struct type *> range_types;
14524 child_die = die->child;
14525 while (child_die && child_die->tag)
14526 {
14527 if (child_die->tag == DW_TAG_subrange_type)
14528 {
14529 struct type *child_type = read_type_die (child_die, cu);
14530
14531 if (child_type != NULL)
14532 {
14533 /* The range type was succesfully read. Save it for the
14534 array type creation. */
14535 range_types.push_back (child_type);
14536 }
14537 }
14538 child_die = sibling_die (child_die);
14539 }
14540
14541 /* Dwarf2 dimensions are output from left to right, create the
14542 necessary array types in backwards order. */
14543
14544 type = element_type;
14545
14546 if (read_array_order (die, cu) == DW_ORD_col_major)
14547 {
14548 int i = 0;
14549
14550 while (i < range_types.size ())
14551 type = create_array_type_with_stride (NULL, type, range_types[i++],
14552 bit_stride);
14553 }
14554 else
14555 {
14556 size_t ndim = range_types.size ();
14557 while (ndim-- > 0)
14558 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14559 bit_stride);
14560 }
14561
14562 /* Understand Dwarf2 support for vector types (like they occur on
14563 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14564 array type. This is not part of the Dwarf2/3 standard yet, but a
14565 custom vendor extension. The main difference between a regular
14566 array and the vector variant is that vectors are passed by value
14567 to functions. */
14568 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
14569 if (attr)
14570 make_vector_type (type);
14571
14572 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14573 implementation may choose to implement triple vectors using this
14574 attribute. */
14575 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14576 if (attr)
14577 {
14578 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14579 TYPE_LENGTH (type) = DW_UNSND (attr);
14580 else
14581 complaint (&symfile_complaints,
14582 _("DW_AT_byte_size for array type smaller "
14583 "than the total size of elements"));
14584 }
14585
14586 name = dwarf2_name (die, cu);
14587 if (name)
14588 TYPE_NAME (type) = name;
14589
14590 /* Install the type in the die. */
14591 set_die_type (die, type, cu);
14592
14593 /* set_die_type should be already done. */
14594 set_descriptive_type (type, die, cu);
14595
14596 return type;
14597 }
14598
14599 static enum dwarf_array_dim_ordering
14600 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
14601 {
14602 struct attribute *attr;
14603
14604 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14605
14606 if (attr)
14607 return (enum dwarf_array_dim_ordering) DW_SND (attr);
14608
14609 /* GNU F77 is a special case, as at 08/2004 array type info is the
14610 opposite order to the dwarf2 specification, but data is still
14611 laid out as per normal fortran.
14612
14613 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14614 version checking. */
14615
14616 if (cu->language == language_fortran
14617 && cu->producer && strstr (cu->producer, "GNU F77"))
14618 {
14619 return DW_ORD_row_major;
14620 }
14621
14622 switch (cu->language_defn->la_array_ordering)
14623 {
14624 case array_column_major:
14625 return DW_ORD_col_major;
14626 case array_row_major:
14627 default:
14628 return DW_ORD_row_major;
14629 };
14630 }
14631
14632 /* Extract all information from a DW_TAG_set_type DIE and put it in
14633 the DIE's type field. */
14634
14635 static struct type *
14636 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14637 {
14638 struct type *domain_type, *set_type;
14639 struct attribute *attr;
14640
14641 domain_type = die_type (die, cu);
14642
14643 /* The die_type call above may have already set the type for this DIE. */
14644 set_type = get_die_type (die, cu);
14645 if (set_type)
14646 return set_type;
14647
14648 set_type = create_set_type (NULL, domain_type);
14649
14650 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14651 if (attr)
14652 TYPE_LENGTH (set_type) = DW_UNSND (attr);
14653
14654 return set_die_type (die, set_type, cu);
14655 }
14656
14657 /* A helper for read_common_block that creates a locexpr baton.
14658 SYM is the symbol which we are marking as computed.
14659 COMMON_DIE is the DIE for the common block.
14660 COMMON_LOC is the location expression attribute for the common
14661 block itself.
14662 MEMBER_LOC is the location expression attribute for the particular
14663 member of the common block that we are processing.
14664 CU is the CU from which the above come. */
14665
14666 static void
14667 mark_common_block_symbol_computed (struct symbol *sym,
14668 struct die_info *common_die,
14669 struct attribute *common_loc,
14670 struct attribute *member_loc,
14671 struct dwarf2_cu *cu)
14672 {
14673 struct objfile *objfile = dwarf2_per_objfile->objfile;
14674 struct dwarf2_locexpr_baton *baton;
14675 gdb_byte *ptr;
14676 unsigned int cu_off;
14677 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14678 LONGEST offset = 0;
14679
14680 gdb_assert (common_loc && member_loc);
14681 gdb_assert (attr_form_is_block (common_loc));
14682 gdb_assert (attr_form_is_block (member_loc)
14683 || attr_form_is_constant (member_loc));
14684
14685 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14686 baton->per_cu = cu->per_cu;
14687 gdb_assert (baton->per_cu);
14688
14689 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
14690
14691 if (attr_form_is_constant (member_loc))
14692 {
14693 offset = dwarf2_get_attr_constant_value (member_loc, 0);
14694 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
14695 }
14696 else
14697 baton->size += DW_BLOCK (member_loc)->size;
14698
14699 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
14700 baton->data = ptr;
14701
14702 *ptr++ = DW_OP_call4;
14703 cu_off = common_die->sect_off - cu->per_cu->sect_off;
14704 store_unsigned_integer (ptr, 4, byte_order, cu_off);
14705 ptr += 4;
14706
14707 if (attr_form_is_constant (member_loc))
14708 {
14709 *ptr++ = DW_OP_addr;
14710 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
14711 ptr += cu->header.addr_size;
14712 }
14713 else
14714 {
14715 /* We have to copy the data here, because DW_OP_call4 will only
14716 use a DW_AT_location attribute. */
14717 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
14718 ptr += DW_BLOCK (member_loc)->size;
14719 }
14720
14721 *ptr++ = DW_OP_plus;
14722 gdb_assert (ptr - baton->data == baton->size);
14723
14724 SYMBOL_LOCATION_BATON (sym) = baton;
14725 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
14726 }
14727
14728 /* Create appropriate locally-scoped variables for all the
14729 DW_TAG_common_block entries. Also create a struct common_block
14730 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14731 is used to sepate the common blocks name namespace from regular
14732 variable names. */
14733
14734 static void
14735 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
14736 {
14737 struct attribute *attr;
14738
14739 attr = dwarf2_attr (die, DW_AT_location, cu);
14740 if (attr)
14741 {
14742 /* Support the .debug_loc offsets. */
14743 if (attr_form_is_block (attr))
14744 {
14745 /* Ok. */
14746 }
14747 else if (attr_form_is_section_offset (attr))
14748 {
14749 dwarf2_complex_location_expr_complaint ();
14750 attr = NULL;
14751 }
14752 else
14753 {
14754 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14755 "common block member");
14756 attr = NULL;
14757 }
14758 }
14759
14760 if (die->child != NULL)
14761 {
14762 struct objfile *objfile = cu->objfile;
14763 struct die_info *child_die;
14764 size_t n_entries = 0, size;
14765 struct common_block *common_block;
14766 struct symbol *sym;
14767
14768 for (child_die = die->child;
14769 child_die && child_die->tag;
14770 child_die = sibling_die (child_die))
14771 ++n_entries;
14772
14773 size = (sizeof (struct common_block)
14774 + (n_entries - 1) * sizeof (struct symbol *));
14775 common_block
14776 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14777 size);
14778 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14779 common_block->n_entries = 0;
14780
14781 for (child_die = die->child;
14782 child_die && child_die->tag;
14783 child_die = sibling_die (child_die))
14784 {
14785 /* Create the symbol in the DW_TAG_common_block block in the current
14786 symbol scope. */
14787 sym = new_symbol (child_die, NULL, cu);
14788 if (sym != NULL)
14789 {
14790 struct attribute *member_loc;
14791
14792 common_block->contents[common_block->n_entries++] = sym;
14793
14794 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14795 cu);
14796 if (member_loc)
14797 {
14798 /* GDB has handled this for a long time, but it is
14799 not specified by DWARF. It seems to have been
14800 emitted by gfortran at least as recently as:
14801 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14802 complaint (&symfile_complaints,
14803 _("Variable in common block has "
14804 "DW_AT_data_member_location "
14805 "- DIE at 0x%x [in module %s]"),
14806 to_underlying (child_die->sect_off),
14807 objfile_name (cu->objfile));
14808
14809 if (attr_form_is_section_offset (member_loc))
14810 dwarf2_complex_location_expr_complaint ();
14811 else if (attr_form_is_constant (member_loc)
14812 || attr_form_is_block (member_loc))
14813 {
14814 if (attr)
14815 mark_common_block_symbol_computed (sym, die, attr,
14816 member_loc, cu);
14817 }
14818 else
14819 dwarf2_complex_location_expr_complaint ();
14820 }
14821 }
14822 }
14823
14824 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14825 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14826 }
14827 }
14828
14829 /* Create a type for a C++ namespace. */
14830
14831 static struct type *
14832 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14833 {
14834 struct objfile *objfile = cu->objfile;
14835 const char *previous_prefix, *name;
14836 int is_anonymous;
14837 struct type *type;
14838
14839 /* For extensions, reuse the type of the original namespace. */
14840 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14841 {
14842 struct die_info *ext_die;
14843 struct dwarf2_cu *ext_cu = cu;
14844
14845 ext_die = dwarf2_extension (die, &ext_cu);
14846 type = read_type_die (ext_die, ext_cu);
14847
14848 /* EXT_CU may not be the same as CU.
14849 Ensure TYPE is recorded with CU in die_type_hash. */
14850 return set_die_type (die, type, cu);
14851 }
14852
14853 name = namespace_name (die, &is_anonymous, cu);
14854
14855 /* Now build the name of the current namespace. */
14856
14857 previous_prefix = determine_prefix (die, cu);
14858 if (previous_prefix[0] != '\0')
14859 name = typename_concat (&objfile->objfile_obstack,
14860 previous_prefix, name, 0, cu);
14861
14862 /* Create the type. */
14863 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
14864 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14865
14866 return set_die_type (die, type, cu);
14867 }
14868
14869 /* Read a namespace scope. */
14870
14871 static void
14872 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14873 {
14874 struct objfile *objfile = cu->objfile;
14875 int is_anonymous;
14876
14877 /* Add a symbol associated to this if we haven't seen the namespace
14878 before. Also, add a using directive if it's an anonymous
14879 namespace. */
14880
14881 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14882 {
14883 struct type *type;
14884
14885 type = read_type_die (die, cu);
14886 new_symbol (die, type, cu);
14887
14888 namespace_name (die, &is_anonymous, cu);
14889 if (is_anonymous)
14890 {
14891 const char *previous_prefix = determine_prefix (die, cu);
14892
14893 std::vector<const char *> excludes;
14894 add_using_directive (using_directives (cu->language),
14895 previous_prefix, TYPE_NAME (type), NULL,
14896 NULL, excludes, 0, &objfile->objfile_obstack);
14897 }
14898 }
14899
14900 if (die->child != NULL)
14901 {
14902 struct die_info *child_die = die->child;
14903
14904 while (child_die && child_die->tag)
14905 {
14906 process_die (child_die, cu);
14907 child_die = sibling_die (child_die);
14908 }
14909 }
14910 }
14911
14912 /* Read a Fortran module as type. This DIE can be only a declaration used for
14913 imported module. Still we need that type as local Fortran "use ... only"
14914 declaration imports depend on the created type in determine_prefix. */
14915
14916 static struct type *
14917 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14918 {
14919 struct objfile *objfile = cu->objfile;
14920 const char *module_name;
14921 struct type *type;
14922
14923 module_name = dwarf2_name (die, cu);
14924 if (!module_name)
14925 complaint (&symfile_complaints,
14926 _("DW_TAG_module has no name, offset 0x%x"),
14927 to_underlying (die->sect_off));
14928 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
14929
14930 /* determine_prefix uses TYPE_TAG_NAME. */
14931 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14932
14933 return set_die_type (die, type, cu);
14934 }
14935
14936 /* Read a Fortran module. */
14937
14938 static void
14939 read_module (struct die_info *die, struct dwarf2_cu *cu)
14940 {
14941 struct die_info *child_die = die->child;
14942 struct type *type;
14943
14944 type = read_type_die (die, cu);
14945 new_symbol (die, type, cu);
14946
14947 while (child_die && child_die->tag)
14948 {
14949 process_die (child_die, cu);
14950 child_die = sibling_die (child_die);
14951 }
14952 }
14953
14954 /* Return the name of the namespace represented by DIE. Set
14955 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14956 namespace. */
14957
14958 static const char *
14959 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14960 {
14961 struct die_info *current_die;
14962 const char *name = NULL;
14963
14964 /* Loop through the extensions until we find a name. */
14965
14966 for (current_die = die;
14967 current_die != NULL;
14968 current_die = dwarf2_extension (die, &cu))
14969 {
14970 /* We don't use dwarf2_name here so that we can detect the absence
14971 of a name -> anonymous namespace. */
14972 name = dwarf2_string_attr (die, DW_AT_name, cu);
14973
14974 if (name != NULL)
14975 break;
14976 }
14977
14978 /* Is it an anonymous namespace? */
14979
14980 *is_anonymous = (name == NULL);
14981 if (*is_anonymous)
14982 name = CP_ANONYMOUS_NAMESPACE_STR;
14983
14984 return name;
14985 }
14986
14987 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14988 the user defined type vector. */
14989
14990 static struct type *
14991 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14992 {
14993 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14994 struct comp_unit_head *cu_header = &cu->header;
14995 struct type *type;
14996 struct attribute *attr_byte_size;
14997 struct attribute *attr_address_class;
14998 int byte_size, addr_class;
14999 struct type *target_type;
15000
15001 target_type = die_type (die, cu);
15002
15003 /* The die_type call above may have already set the type for this DIE. */
15004 type = get_die_type (die, cu);
15005 if (type)
15006 return type;
15007
15008 type = lookup_pointer_type (target_type);
15009
15010 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
15011 if (attr_byte_size)
15012 byte_size = DW_UNSND (attr_byte_size);
15013 else
15014 byte_size = cu_header->addr_size;
15015
15016 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
15017 if (attr_address_class)
15018 addr_class = DW_UNSND (attr_address_class);
15019 else
15020 addr_class = DW_ADDR_none;
15021
15022 /* If the pointer size or address class is different than the
15023 default, create a type variant marked as such and set the
15024 length accordingly. */
15025 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
15026 {
15027 if (gdbarch_address_class_type_flags_p (gdbarch))
15028 {
15029 int type_flags;
15030
15031 type_flags = gdbarch_address_class_type_flags
15032 (gdbarch, byte_size, addr_class);
15033 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
15034 == 0);
15035 type = make_type_with_address_space (type, type_flags);
15036 }
15037 else if (TYPE_LENGTH (type) != byte_size)
15038 {
15039 complaint (&symfile_complaints,
15040 _("invalid pointer size %d"), byte_size);
15041 }
15042 else
15043 {
15044 /* Should we also complain about unhandled address classes? */
15045 }
15046 }
15047
15048 TYPE_LENGTH (type) = byte_size;
15049 return set_die_type (die, type, cu);
15050 }
15051
15052 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
15053 the user defined type vector. */
15054
15055 static struct type *
15056 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
15057 {
15058 struct type *type;
15059 struct type *to_type;
15060 struct type *domain;
15061
15062 to_type = die_type (die, cu);
15063 domain = die_containing_type (die, cu);
15064
15065 /* The calls above may have already set the type for this DIE. */
15066 type = get_die_type (die, cu);
15067 if (type)
15068 return type;
15069
15070 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
15071 type = lookup_methodptr_type (to_type);
15072 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
15073 {
15074 struct type *new_type = alloc_type (cu->objfile);
15075
15076 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
15077 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
15078 TYPE_VARARGS (to_type));
15079 type = lookup_methodptr_type (new_type);
15080 }
15081 else
15082 type = lookup_memberptr_type (to_type, domain);
15083
15084 return set_die_type (die, type, cu);
15085 }
15086
15087 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
15088 the user defined type vector. */
15089
15090 static struct type *
15091 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
15092 enum type_code refcode)
15093 {
15094 struct comp_unit_head *cu_header = &cu->header;
15095 struct type *type, *target_type;
15096 struct attribute *attr;
15097
15098 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
15099
15100 target_type = die_type (die, cu);
15101
15102 /* The die_type call above may have already set the type for this DIE. */
15103 type = get_die_type (die, cu);
15104 if (type)
15105 return type;
15106
15107 type = lookup_reference_type (target_type, refcode);
15108 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15109 if (attr)
15110 {
15111 TYPE_LENGTH (type) = DW_UNSND (attr);
15112 }
15113 else
15114 {
15115 TYPE_LENGTH (type) = cu_header->addr_size;
15116 }
15117 return set_die_type (die, type, cu);
15118 }
15119
15120 /* Add the given cv-qualifiers to the element type of the array. GCC
15121 outputs DWARF type qualifiers that apply to an array, not the
15122 element type. But GDB relies on the array element type to carry
15123 the cv-qualifiers. This mimics section 6.7.3 of the C99
15124 specification. */
15125
15126 static struct type *
15127 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
15128 struct type *base_type, int cnst, int voltl)
15129 {
15130 struct type *el_type, *inner_array;
15131
15132 base_type = copy_type (base_type);
15133 inner_array = base_type;
15134
15135 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
15136 {
15137 TYPE_TARGET_TYPE (inner_array) =
15138 copy_type (TYPE_TARGET_TYPE (inner_array));
15139 inner_array = TYPE_TARGET_TYPE (inner_array);
15140 }
15141
15142 el_type = TYPE_TARGET_TYPE (inner_array);
15143 cnst |= TYPE_CONST (el_type);
15144 voltl |= TYPE_VOLATILE (el_type);
15145 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
15146
15147 return set_die_type (die, base_type, cu);
15148 }
15149
15150 static struct type *
15151 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
15152 {
15153 struct type *base_type, *cv_type;
15154
15155 base_type = die_type (die, cu);
15156
15157 /* The die_type call above may have already set the type for this DIE. */
15158 cv_type = get_die_type (die, cu);
15159 if (cv_type)
15160 return cv_type;
15161
15162 /* In case the const qualifier is applied to an array type, the element type
15163 is so qualified, not the array type (section 6.7.3 of C99). */
15164 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
15165 return add_array_cv_type (die, cu, base_type, 1, 0);
15166
15167 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
15168 return set_die_type (die, cv_type, cu);
15169 }
15170
15171 static struct type *
15172 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
15173 {
15174 struct type *base_type, *cv_type;
15175
15176 base_type = die_type (die, cu);
15177
15178 /* The die_type call above may have already set the type for this DIE. */
15179 cv_type = get_die_type (die, cu);
15180 if (cv_type)
15181 return cv_type;
15182
15183 /* In case the volatile qualifier is applied to an array type, the
15184 element type is so qualified, not the array type (section 6.7.3
15185 of C99). */
15186 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
15187 return add_array_cv_type (die, cu, base_type, 0, 1);
15188
15189 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
15190 return set_die_type (die, cv_type, cu);
15191 }
15192
15193 /* Handle DW_TAG_restrict_type. */
15194
15195 static struct type *
15196 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
15197 {
15198 struct type *base_type, *cv_type;
15199
15200 base_type = die_type (die, cu);
15201
15202 /* The die_type call above may have already set the type for this DIE. */
15203 cv_type = get_die_type (die, cu);
15204 if (cv_type)
15205 return cv_type;
15206
15207 cv_type = make_restrict_type (base_type);
15208 return set_die_type (die, cv_type, cu);
15209 }
15210
15211 /* Handle DW_TAG_atomic_type. */
15212
15213 static struct type *
15214 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
15215 {
15216 struct type *base_type, *cv_type;
15217
15218 base_type = die_type (die, cu);
15219
15220 /* The die_type call above may have already set the type for this DIE. */
15221 cv_type = get_die_type (die, cu);
15222 if (cv_type)
15223 return cv_type;
15224
15225 cv_type = make_atomic_type (base_type);
15226 return set_die_type (die, cv_type, cu);
15227 }
15228
15229 /* Extract all information from a DW_TAG_string_type DIE and add to
15230 the user defined type vector. It isn't really a user defined type,
15231 but it behaves like one, with other DIE's using an AT_user_def_type
15232 attribute to reference it. */
15233
15234 static struct type *
15235 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
15236 {
15237 struct objfile *objfile = cu->objfile;
15238 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15239 struct type *type, *range_type, *index_type, *char_type;
15240 struct attribute *attr;
15241 unsigned int length;
15242
15243 attr = dwarf2_attr (die, DW_AT_string_length, cu);
15244 if (attr)
15245 {
15246 length = DW_UNSND (attr);
15247 }
15248 else
15249 {
15250 /* Check for the DW_AT_byte_size attribute. */
15251 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15252 if (attr)
15253 {
15254 length = DW_UNSND (attr);
15255 }
15256 else
15257 {
15258 length = 1;
15259 }
15260 }
15261
15262 index_type = objfile_type (objfile)->builtin_int;
15263 range_type = create_static_range_type (NULL, index_type, 1, length);
15264 char_type = language_string_char_type (cu->language_defn, gdbarch);
15265 type = create_string_type (NULL, char_type, range_type);
15266
15267 return set_die_type (die, type, cu);
15268 }
15269
15270 /* Assuming that DIE corresponds to a function, returns nonzero
15271 if the function is prototyped. */
15272
15273 static int
15274 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
15275 {
15276 struct attribute *attr;
15277
15278 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
15279 if (attr && (DW_UNSND (attr) != 0))
15280 return 1;
15281
15282 /* The DWARF standard implies that the DW_AT_prototyped attribute
15283 is only meaninful for C, but the concept also extends to other
15284 languages that allow unprototyped functions (Eg: Objective C).
15285 For all other languages, assume that functions are always
15286 prototyped. */
15287 if (cu->language != language_c
15288 && cu->language != language_objc
15289 && cu->language != language_opencl)
15290 return 1;
15291
15292 /* RealView does not emit DW_AT_prototyped. We can not distinguish
15293 prototyped and unprototyped functions; default to prototyped,
15294 since that is more common in modern code (and RealView warns
15295 about unprototyped functions). */
15296 if (producer_is_realview (cu->producer))
15297 return 1;
15298
15299 return 0;
15300 }
15301
15302 /* Handle DIES due to C code like:
15303
15304 struct foo
15305 {
15306 int (*funcp)(int a, long l);
15307 int b;
15308 };
15309
15310 ('funcp' generates a DW_TAG_subroutine_type DIE). */
15311
15312 static struct type *
15313 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
15314 {
15315 struct objfile *objfile = cu->objfile;
15316 struct type *type; /* Type that this function returns. */
15317 struct type *ftype; /* Function that returns above type. */
15318 struct attribute *attr;
15319
15320 type = die_type (die, cu);
15321
15322 /* The die_type call above may have already set the type for this DIE. */
15323 ftype = get_die_type (die, cu);
15324 if (ftype)
15325 return ftype;
15326
15327 ftype = lookup_function_type (type);
15328
15329 if (prototyped_function_p (die, cu))
15330 TYPE_PROTOTYPED (ftype) = 1;
15331
15332 /* Store the calling convention in the type if it's available in
15333 the subroutine die. Otherwise set the calling convention to
15334 the default value DW_CC_normal. */
15335 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15336 if (attr)
15337 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
15338 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
15339 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
15340 else
15341 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
15342
15343 /* Record whether the function returns normally to its caller or not
15344 if the DWARF producer set that information. */
15345 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
15346 if (attr && (DW_UNSND (attr) != 0))
15347 TYPE_NO_RETURN (ftype) = 1;
15348
15349 /* We need to add the subroutine type to the die immediately so
15350 we don't infinitely recurse when dealing with parameters
15351 declared as the same subroutine type. */
15352 set_die_type (die, ftype, cu);
15353
15354 if (die->child != NULL)
15355 {
15356 struct type *void_type = objfile_type (objfile)->builtin_void;
15357 struct die_info *child_die;
15358 int nparams, iparams;
15359
15360 /* Count the number of parameters.
15361 FIXME: GDB currently ignores vararg functions, but knows about
15362 vararg member functions. */
15363 nparams = 0;
15364 child_die = die->child;
15365 while (child_die && child_die->tag)
15366 {
15367 if (child_die->tag == DW_TAG_formal_parameter)
15368 nparams++;
15369 else if (child_die->tag == DW_TAG_unspecified_parameters)
15370 TYPE_VARARGS (ftype) = 1;
15371 child_die = sibling_die (child_die);
15372 }
15373
15374 /* Allocate storage for parameters and fill them in. */
15375 TYPE_NFIELDS (ftype) = nparams;
15376 TYPE_FIELDS (ftype) = (struct field *)
15377 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
15378
15379 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
15380 even if we error out during the parameters reading below. */
15381 for (iparams = 0; iparams < nparams; iparams++)
15382 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
15383
15384 iparams = 0;
15385 child_die = die->child;
15386 while (child_die && child_die->tag)
15387 {
15388 if (child_die->tag == DW_TAG_formal_parameter)
15389 {
15390 struct type *arg_type;
15391
15392 /* DWARF version 2 has no clean way to discern C++
15393 static and non-static member functions. G++ helps
15394 GDB by marking the first parameter for non-static
15395 member functions (which is the this pointer) as
15396 artificial. We pass this information to
15397 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
15398
15399 DWARF version 3 added DW_AT_object_pointer, which GCC
15400 4.5 does not yet generate. */
15401 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
15402 if (attr)
15403 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
15404 else
15405 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
15406 arg_type = die_type (child_die, cu);
15407
15408 /* RealView does not mark THIS as const, which the testsuite
15409 expects. GCC marks THIS as const in method definitions,
15410 but not in the class specifications (GCC PR 43053). */
15411 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
15412 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
15413 {
15414 int is_this = 0;
15415 struct dwarf2_cu *arg_cu = cu;
15416 const char *name = dwarf2_name (child_die, cu);
15417
15418 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
15419 if (attr)
15420 {
15421 /* If the compiler emits this, use it. */
15422 if (follow_die_ref (die, attr, &arg_cu) == child_die)
15423 is_this = 1;
15424 }
15425 else if (name && strcmp (name, "this") == 0)
15426 /* Function definitions will have the argument names. */
15427 is_this = 1;
15428 else if (name == NULL && iparams == 0)
15429 /* Declarations may not have the names, so like
15430 elsewhere in GDB, assume an artificial first
15431 argument is "this". */
15432 is_this = 1;
15433
15434 if (is_this)
15435 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
15436 arg_type, 0);
15437 }
15438
15439 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
15440 iparams++;
15441 }
15442 child_die = sibling_die (child_die);
15443 }
15444 }
15445
15446 return ftype;
15447 }
15448
15449 static struct type *
15450 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
15451 {
15452 struct objfile *objfile = cu->objfile;
15453 const char *name = NULL;
15454 struct type *this_type, *target_type;
15455
15456 name = dwarf2_full_name (NULL, die, cu);
15457 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
15458 TYPE_TARGET_STUB (this_type) = 1;
15459 set_die_type (die, this_type, cu);
15460 target_type = die_type (die, cu);
15461 if (target_type != this_type)
15462 TYPE_TARGET_TYPE (this_type) = target_type;
15463 else
15464 {
15465 /* Self-referential typedefs are, it seems, not allowed by the DWARF
15466 spec and cause infinite loops in GDB. */
15467 complaint (&symfile_complaints,
15468 _("Self-referential DW_TAG_typedef "
15469 "- DIE at 0x%x [in module %s]"),
15470 to_underlying (die->sect_off), objfile_name (objfile));
15471 TYPE_TARGET_TYPE (this_type) = NULL;
15472 }
15473 return this_type;
15474 }
15475
15476 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
15477 (which may be different from NAME) to the architecture back-end to allow
15478 it to guess the correct format if necessary. */
15479
15480 static struct type *
15481 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
15482 const char *name_hint)
15483 {
15484 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15485 const struct floatformat **format;
15486 struct type *type;
15487
15488 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
15489 if (format)
15490 type = init_float_type (objfile, bits, name, format);
15491 else
15492 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
15493
15494 return type;
15495 }
15496
15497 /* Find a representation of a given base type and install
15498 it in the TYPE field of the die. */
15499
15500 static struct type *
15501 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
15502 {
15503 struct objfile *objfile = cu->objfile;
15504 struct type *type;
15505 struct attribute *attr;
15506 int encoding = 0, bits = 0;
15507 const char *name;
15508
15509 attr = dwarf2_attr (die, DW_AT_encoding, cu);
15510 if (attr)
15511 {
15512 encoding = DW_UNSND (attr);
15513 }
15514 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15515 if (attr)
15516 {
15517 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
15518 }
15519 name = dwarf2_name (die, cu);
15520 if (!name)
15521 {
15522 complaint (&symfile_complaints,
15523 _("DW_AT_name missing from DW_TAG_base_type"));
15524 }
15525
15526 switch (encoding)
15527 {
15528 case DW_ATE_address:
15529 /* Turn DW_ATE_address into a void * pointer. */
15530 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
15531 type = init_pointer_type (objfile, bits, name, type);
15532 break;
15533 case DW_ATE_boolean:
15534 type = init_boolean_type (objfile, bits, 1, name);
15535 break;
15536 case DW_ATE_complex_float:
15537 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
15538 type = init_complex_type (objfile, name, type);
15539 break;
15540 case DW_ATE_decimal_float:
15541 type = init_decfloat_type (objfile, bits, name);
15542 break;
15543 case DW_ATE_float:
15544 type = dwarf2_init_float_type (objfile, bits, name, name);
15545 break;
15546 case DW_ATE_signed:
15547 type = init_integer_type (objfile, bits, 0, name);
15548 break;
15549 case DW_ATE_unsigned:
15550 if (cu->language == language_fortran
15551 && name
15552 && startswith (name, "character("))
15553 type = init_character_type (objfile, bits, 1, name);
15554 else
15555 type = init_integer_type (objfile, bits, 1, name);
15556 break;
15557 case DW_ATE_signed_char:
15558 if (cu->language == language_ada || cu->language == language_m2
15559 || cu->language == language_pascal
15560 || cu->language == language_fortran)
15561 type = init_character_type (objfile, bits, 0, name);
15562 else
15563 type = init_integer_type (objfile, bits, 0, name);
15564 break;
15565 case DW_ATE_unsigned_char:
15566 if (cu->language == language_ada || cu->language == language_m2
15567 || cu->language == language_pascal
15568 || cu->language == language_fortran
15569 || cu->language == language_rust)
15570 type = init_character_type (objfile, bits, 1, name);
15571 else
15572 type = init_integer_type (objfile, bits, 1, name);
15573 break;
15574 case DW_ATE_UTF:
15575 {
15576 gdbarch *arch = get_objfile_arch (objfile);
15577
15578 if (bits == 16)
15579 type = builtin_type (arch)->builtin_char16;
15580 else if (bits == 32)
15581 type = builtin_type (arch)->builtin_char32;
15582 else
15583 {
15584 complaint (&symfile_complaints,
15585 _("unsupported DW_ATE_UTF bit size: '%d'"),
15586 bits);
15587 type = init_integer_type (objfile, bits, 1, name);
15588 }
15589 return set_die_type (die, type, cu);
15590 }
15591 break;
15592
15593 default:
15594 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15595 dwarf_type_encoding_name (encoding));
15596 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
15597 break;
15598 }
15599
15600 if (name && strcmp (name, "char") == 0)
15601 TYPE_NOSIGN (type) = 1;
15602
15603 return set_die_type (die, type, cu);
15604 }
15605
15606 /* Parse dwarf attribute if it's a block, reference or constant and put the
15607 resulting value of the attribute into struct bound_prop.
15608 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15609
15610 static int
15611 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15612 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15613 {
15614 struct dwarf2_property_baton *baton;
15615 struct obstack *obstack = &cu->objfile->objfile_obstack;
15616
15617 if (attr == NULL || prop == NULL)
15618 return 0;
15619
15620 if (attr_form_is_block (attr))
15621 {
15622 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15623 baton->referenced_type = NULL;
15624 baton->locexpr.per_cu = cu->per_cu;
15625 baton->locexpr.size = DW_BLOCK (attr)->size;
15626 baton->locexpr.data = DW_BLOCK (attr)->data;
15627 prop->data.baton = baton;
15628 prop->kind = PROP_LOCEXPR;
15629 gdb_assert (prop->data.baton != NULL);
15630 }
15631 else if (attr_form_is_ref (attr))
15632 {
15633 struct dwarf2_cu *target_cu = cu;
15634 struct die_info *target_die;
15635 struct attribute *target_attr;
15636
15637 target_die = follow_die_ref (die, attr, &target_cu);
15638 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
15639 if (target_attr == NULL)
15640 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15641 target_cu);
15642 if (target_attr == NULL)
15643 return 0;
15644
15645 switch (target_attr->name)
15646 {
15647 case DW_AT_location:
15648 if (attr_form_is_section_offset (target_attr))
15649 {
15650 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15651 baton->referenced_type = die_type (target_die, target_cu);
15652 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15653 prop->data.baton = baton;
15654 prop->kind = PROP_LOCLIST;
15655 gdb_assert (prop->data.baton != NULL);
15656 }
15657 else if (attr_form_is_block (target_attr))
15658 {
15659 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15660 baton->referenced_type = die_type (target_die, target_cu);
15661 baton->locexpr.per_cu = cu->per_cu;
15662 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15663 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15664 prop->data.baton = baton;
15665 prop->kind = PROP_LOCEXPR;
15666 gdb_assert (prop->data.baton != NULL);
15667 }
15668 else
15669 {
15670 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15671 "dynamic property");
15672 return 0;
15673 }
15674 break;
15675 case DW_AT_data_member_location:
15676 {
15677 LONGEST offset;
15678
15679 if (!handle_data_member_location (target_die, target_cu,
15680 &offset))
15681 return 0;
15682
15683 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15684 baton->referenced_type = read_type_die (target_die->parent,
15685 target_cu);
15686 baton->offset_info.offset = offset;
15687 baton->offset_info.type = die_type (target_die, target_cu);
15688 prop->data.baton = baton;
15689 prop->kind = PROP_ADDR_OFFSET;
15690 break;
15691 }
15692 }
15693 }
15694 else if (attr_form_is_constant (attr))
15695 {
15696 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
15697 prop->kind = PROP_CONST;
15698 }
15699 else
15700 {
15701 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
15702 dwarf2_name (die, cu));
15703 return 0;
15704 }
15705
15706 return 1;
15707 }
15708
15709 /* Read the given DW_AT_subrange DIE. */
15710
15711 static struct type *
15712 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
15713 {
15714 struct type *base_type, *orig_base_type;
15715 struct type *range_type;
15716 struct attribute *attr;
15717 struct dynamic_prop low, high;
15718 int low_default_is_valid;
15719 int high_bound_is_count = 0;
15720 const char *name;
15721 LONGEST negative_mask;
15722
15723 orig_base_type = die_type (die, cu);
15724 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
15725 whereas the real type might be. So, we use ORIG_BASE_TYPE when
15726 creating the range type, but we use the result of check_typedef
15727 when examining properties of the type. */
15728 base_type = check_typedef (orig_base_type);
15729
15730 /* The die_type call above may have already set the type for this DIE. */
15731 range_type = get_die_type (die, cu);
15732 if (range_type)
15733 return range_type;
15734
15735 low.kind = PROP_CONST;
15736 high.kind = PROP_CONST;
15737 high.data.const_val = 0;
15738
15739 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15740 omitting DW_AT_lower_bound. */
15741 switch (cu->language)
15742 {
15743 case language_c:
15744 case language_cplus:
15745 low.data.const_val = 0;
15746 low_default_is_valid = 1;
15747 break;
15748 case language_fortran:
15749 low.data.const_val = 1;
15750 low_default_is_valid = 1;
15751 break;
15752 case language_d:
15753 case language_objc:
15754 case language_rust:
15755 low.data.const_val = 0;
15756 low_default_is_valid = (cu->header.version >= 4);
15757 break;
15758 case language_ada:
15759 case language_m2:
15760 case language_pascal:
15761 low.data.const_val = 1;
15762 low_default_is_valid = (cu->header.version >= 4);
15763 break;
15764 default:
15765 low.data.const_val = 0;
15766 low_default_is_valid = 0;
15767 break;
15768 }
15769
15770 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
15771 if (attr)
15772 attr_to_dynamic_prop (attr, die, cu, &low);
15773 else if (!low_default_is_valid)
15774 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15775 "- DIE at 0x%x [in module %s]"),
15776 to_underlying (die->sect_off), objfile_name (cu->objfile));
15777
15778 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
15779 if (!attr_to_dynamic_prop (attr, die, cu, &high))
15780 {
15781 attr = dwarf2_attr (die, DW_AT_count, cu);
15782 if (attr_to_dynamic_prop (attr, die, cu, &high))
15783 {
15784 /* If bounds are constant do the final calculation here. */
15785 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15786 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15787 else
15788 high_bound_is_count = 1;
15789 }
15790 }
15791
15792 /* Dwarf-2 specifications explicitly allows to create subrange types
15793 without specifying a base type.
15794 In that case, the base type must be set to the type of
15795 the lower bound, upper bound or count, in that order, if any of these
15796 three attributes references an object that has a type.
15797 If no base type is found, the Dwarf-2 specifications say that
15798 a signed integer type of size equal to the size of an address should
15799 be used.
15800 For the following C code: `extern char gdb_int [];'
15801 GCC produces an empty range DIE.
15802 FIXME: muller/2010-05-28: Possible references to object for low bound,
15803 high bound or count are not yet handled by this code. */
15804 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15805 {
15806 struct objfile *objfile = cu->objfile;
15807 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15808 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15809 struct type *int_type = objfile_type (objfile)->builtin_int;
15810
15811 /* Test "int", "long int", and "long long int" objfile types,
15812 and select the first one having a size above or equal to the
15813 architecture address size. */
15814 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15815 base_type = int_type;
15816 else
15817 {
15818 int_type = objfile_type (objfile)->builtin_long;
15819 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15820 base_type = int_type;
15821 else
15822 {
15823 int_type = objfile_type (objfile)->builtin_long_long;
15824 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15825 base_type = int_type;
15826 }
15827 }
15828 }
15829
15830 /* Normally, the DWARF producers are expected to use a signed
15831 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15832 But this is unfortunately not always the case, as witnessed
15833 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15834 is used instead. To work around that ambiguity, we treat
15835 the bounds as signed, and thus sign-extend their values, when
15836 the base type is signed. */
15837 negative_mask =
15838 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15839 if (low.kind == PROP_CONST
15840 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15841 low.data.const_val |= negative_mask;
15842 if (high.kind == PROP_CONST
15843 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15844 high.data.const_val |= negative_mask;
15845
15846 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15847
15848 if (high_bound_is_count)
15849 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15850
15851 /* Ada expects an empty array on no boundary attributes. */
15852 if (attr == NULL && cu->language != language_ada)
15853 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15854
15855 name = dwarf2_name (die, cu);
15856 if (name)
15857 TYPE_NAME (range_type) = name;
15858
15859 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15860 if (attr)
15861 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15862
15863 set_die_type (die, range_type, cu);
15864
15865 /* set_die_type should be already done. */
15866 set_descriptive_type (range_type, die, cu);
15867
15868 return range_type;
15869 }
15870
15871 static struct type *
15872 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15873 {
15874 struct type *type;
15875
15876 /* For now, we only support the C meaning of an unspecified type: void. */
15877
15878 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
15879 TYPE_NAME (type) = dwarf2_name (die, cu);
15880
15881 return set_die_type (die, type, cu);
15882 }
15883
15884 /* Read a single die and all its descendents. Set the die's sibling
15885 field to NULL; set other fields in the die correctly, and set all
15886 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15887 location of the info_ptr after reading all of those dies. PARENT
15888 is the parent of the die in question. */
15889
15890 static struct die_info *
15891 read_die_and_children (const struct die_reader_specs *reader,
15892 const gdb_byte *info_ptr,
15893 const gdb_byte **new_info_ptr,
15894 struct die_info *parent)
15895 {
15896 struct die_info *die;
15897 const gdb_byte *cur_ptr;
15898 int has_children;
15899
15900 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15901 if (die == NULL)
15902 {
15903 *new_info_ptr = cur_ptr;
15904 return NULL;
15905 }
15906 store_in_ref_table (die, reader->cu);
15907
15908 if (has_children)
15909 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15910 else
15911 {
15912 die->child = NULL;
15913 *new_info_ptr = cur_ptr;
15914 }
15915
15916 die->sibling = NULL;
15917 die->parent = parent;
15918 return die;
15919 }
15920
15921 /* Read a die, all of its descendents, and all of its siblings; set
15922 all of the fields of all of the dies correctly. Arguments are as
15923 in read_die_and_children. */
15924
15925 static struct die_info *
15926 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15927 const gdb_byte *info_ptr,
15928 const gdb_byte **new_info_ptr,
15929 struct die_info *parent)
15930 {
15931 struct die_info *first_die, *last_sibling;
15932 const gdb_byte *cur_ptr;
15933
15934 cur_ptr = info_ptr;
15935 first_die = last_sibling = NULL;
15936
15937 while (1)
15938 {
15939 struct die_info *die
15940 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15941
15942 if (die == NULL)
15943 {
15944 *new_info_ptr = cur_ptr;
15945 return first_die;
15946 }
15947
15948 if (!first_die)
15949 first_die = die;
15950 else
15951 last_sibling->sibling = die;
15952
15953 last_sibling = die;
15954 }
15955 }
15956
15957 /* Read a die, all of its descendents, and all of its siblings; set
15958 all of the fields of all of the dies correctly. Arguments are as
15959 in read_die_and_children.
15960 This the main entry point for reading a DIE and all its children. */
15961
15962 static struct die_info *
15963 read_die_and_siblings (const struct die_reader_specs *reader,
15964 const gdb_byte *info_ptr,
15965 const gdb_byte **new_info_ptr,
15966 struct die_info *parent)
15967 {
15968 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15969 new_info_ptr, parent);
15970
15971 if (dwarf_die_debug)
15972 {
15973 fprintf_unfiltered (gdb_stdlog,
15974 "Read die from %s@0x%x of %s:\n",
15975 get_section_name (reader->die_section),
15976 (unsigned) (info_ptr - reader->die_section->buffer),
15977 bfd_get_filename (reader->abfd));
15978 dump_die (die, dwarf_die_debug);
15979 }
15980
15981 return die;
15982 }
15983
15984 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15985 attributes.
15986 The caller is responsible for filling in the extra attributes
15987 and updating (*DIEP)->num_attrs.
15988 Set DIEP to point to a newly allocated die with its information,
15989 except for its child, sibling, and parent fields.
15990 Set HAS_CHILDREN to tell whether the die has children or not. */
15991
15992 static const gdb_byte *
15993 read_full_die_1 (const struct die_reader_specs *reader,
15994 struct die_info **diep, const gdb_byte *info_ptr,
15995 int *has_children, int num_extra_attrs)
15996 {
15997 unsigned int abbrev_number, bytes_read, i;
15998 struct abbrev_info *abbrev;
15999 struct die_info *die;
16000 struct dwarf2_cu *cu = reader->cu;
16001 bfd *abfd = reader->abfd;
16002
16003 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
16004 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16005 info_ptr += bytes_read;
16006 if (!abbrev_number)
16007 {
16008 *diep = NULL;
16009 *has_children = 0;
16010 return info_ptr;
16011 }
16012
16013 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
16014 if (!abbrev)
16015 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
16016 abbrev_number,
16017 bfd_get_filename (abfd));
16018
16019 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
16020 die->sect_off = sect_off;
16021 die->tag = abbrev->tag;
16022 die->abbrev = abbrev_number;
16023
16024 /* Make the result usable.
16025 The caller needs to update num_attrs after adding the extra
16026 attributes. */
16027 die->num_attrs = abbrev->num_attrs;
16028
16029 for (i = 0; i < abbrev->num_attrs; ++i)
16030 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
16031 info_ptr);
16032
16033 *diep = die;
16034 *has_children = abbrev->has_children;
16035 return info_ptr;
16036 }
16037
16038 /* Read a die and all its attributes.
16039 Set DIEP to point to a newly allocated die with its information,
16040 except for its child, sibling, and parent fields.
16041 Set HAS_CHILDREN to tell whether the die has children or not. */
16042
16043 static const gdb_byte *
16044 read_full_die (const struct die_reader_specs *reader,
16045 struct die_info **diep, const gdb_byte *info_ptr,
16046 int *has_children)
16047 {
16048 const gdb_byte *result;
16049
16050 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
16051
16052 if (dwarf_die_debug)
16053 {
16054 fprintf_unfiltered (gdb_stdlog,
16055 "Read die from %s@0x%x of %s:\n",
16056 get_section_name (reader->die_section),
16057 (unsigned) (info_ptr - reader->die_section->buffer),
16058 bfd_get_filename (reader->abfd));
16059 dump_die (*diep, dwarf_die_debug);
16060 }
16061
16062 return result;
16063 }
16064 \f
16065 /* Abbreviation tables.
16066
16067 In DWARF version 2, the description of the debugging information is
16068 stored in a separate .debug_abbrev section. Before we read any
16069 dies from a section we read in all abbreviations and install them
16070 in a hash table. */
16071
16072 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
16073
16074 static struct abbrev_info *
16075 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
16076 {
16077 struct abbrev_info *abbrev;
16078
16079 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
16080 memset (abbrev, 0, sizeof (struct abbrev_info));
16081
16082 return abbrev;
16083 }
16084
16085 /* Add an abbreviation to the table. */
16086
16087 static void
16088 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
16089 unsigned int abbrev_number,
16090 struct abbrev_info *abbrev)
16091 {
16092 unsigned int hash_number;
16093
16094 hash_number = abbrev_number % ABBREV_HASH_SIZE;
16095 abbrev->next = abbrev_table->abbrevs[hash_number];
16096 abbrev_table->abbrevs[hash_number] = abbrev;
16097 }
16098
16099 /* Look up an abbrev in the table.
16100 Returns NULL if the abbrev is not found. */
16101
16102 static struct abbrev_info *
16103 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
16104 unsigned int abbrev_number)
16105 {
16106 unsigned int hash_number;
16107 struct abbrev_info *abbrev;
16108
16109 hash_number = abbrev_number % ABBREV_HASH_SIZE;
16110 abbrev = abbrev_table->abbrevs[hash_number];
16111
16112 while (abbrev)
16113 {
16114 if (abbrev->number == abbrev_number)
16115 return abbrev;
16116 abbrev = abbrev->next;
16117 }
16118 return NULL;
16119 }
16120
16121 /* Read in an abbrev table. */
16122
16123 static struct abbrev_table *
16124 abbrev_table_read_table (struct dwarf2_section_info *section,
16125 sect_offset sect_off)
16126 {
16127 struct objfile *objfile = dwarf2_per_objfile->objfile;
16128 bfd *abfd = get_section_bfd_owner (section);
16129 struct abbrev_table *abbrev_table;
16130 const gdb_byte *abbrev_ptr;
16131 struct abbrev_info *cur_abbrev;
16132 unsigned int abbrev_number, bytes_read, abbrev_name;
16133 unsigned int abbrev_form;
16134 struct attr_abbrev *cur_attrs;
16135 unsigned int allocated_attrs;
16136
16137 abbrev_table = XNEW (struct abbrev_table);
16138 abbrev_table->sect_off = sect_off;
16139 obstack_init (&abbrev_table->abbrev_obstack);
16140 abbrev_table->abbrevs =
16141 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
16142 ABBREV_HASH_SIZE);
16143 memset (abbrev_table->abbrevs, 0,
16144 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
16145
16146 dwarf2_read_section (objfile, section);
16147 abbrev_ptr = section->buffer + to_underlying (sect_off);
16148 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16149 abbrev_ptr += bytes_read;
16150
16151 allocated_attrs = ATTR_ALLOC_CHUNK;
16152 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
16153
16154 /* Loop until we reach an abbrev number of 0. */
16155 while (abbrev_number)
16156 {
16157 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
16158
16159 /* read in abbrev header */
16160 cur_abbrev->number = abbrev_number;
16161 cur_abbrev->tag
16162 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16163 abbrev_ptr += bytes_read;
16164 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
16165 abbrev_ptr += 1;
16166
16167 /* now read in declarations */
16168 for (;;)
16169 {
16170 LONGEST implicit_const;
16171
16172 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16173 abbrev_ptr += bytes_read;
16174 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16175 abbrev_ptr += bytes_read;
16176 if (abbrev_form == DW_FORM_implicit_const)
16177 {
16178 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
16179 &bytes_read);
16180 abbrev_ptr += bytes_read;
16181 }
16182 else
16183 {
16184 /* Initialize it due to a false compiler warning. */
16185 implicit_const = -1;
16186 }
16187
16188 if (abbrev_name == 0)
16189 break;
16190
16191 if (cur_abbrev->num_attrs == allocated_attrs)
16192 {
16193 allocated_attrs += ATTR_ALLOC_CHUNK;
16194 cur_attrs
16195 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
16196 }
16197
16198 cur_attrs[cur_abbrev->num_attrs].name
16199 = (enum dwarf_attribute) abbrev_name;
16200 cur_attrs[cur_abbrev->num_attrs].form
16201 = (enum dwarf_form) abbrev_form;
16202 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
16203 ++cur_abbrev->num_attrs;
16204 }
16205
16206 cur_abbrev->attrs =
16207 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
16208 cur_abbrev->num_attrs);
16209 memcpy (cur_abbrev->attrs, cur_attrs,
16210 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
16211
16212 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
16213
16214 /* Get next abbreviation.
16215 Under Irix6 the abbreviations for a compilation unit are not
16216 always properly terminated with an abbrev number of 0.
16217 Exit loop if we encounter an abbreviation which we have
16218 already read (which means we are about to read the abbreviations
16219 for the next compile unit) or if the end of the abbreviation
16220 table is reached. */
16221 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
16222 break;
16223 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16224 abbrev_ptr += bytes_read;
16225 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
16226 break;
16227 }
16228
16229 xfree (cur_attrs);
16230 return abbrev_table;
16231 }
16232
16233 /* Free the resources held by ABBREV_TABLE. */
16234
16235 static void
16236 abbrev_table_free (struct abbrev_table *abbrev_table)
16237 {
16238 obstack_free (&abbrev_table->abbrev_obstack, NULL);
16239 xfree (abbrev_table);
16240 }
16241
16242 /* Same as abbrev_table_free but as a cleanup.
16243 We pass in a pointer to the pointer to the table so that we can
16244 set the pointer to NULL when we're done. It also simplifies
16245 build_type_psymtabs_1. */
16246
16247 static void
16248 abbrev_table_free_cleanup (void *table_ptr)
16249 {
16250 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
16251
16252 if (*abbrev_table_ptr != NULL)
16253 abbrev_table_free (*abbrev_table_ptr);
16254 *abbrev_table_ptr = NULL;
16255 }
16256
16257 /* Read the abbrev table for CU from ABBREV_SECTION. */
16258
16259 static void
16260 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
16261 struct dwarf2_section_info *abbrev_section)
16262 {
16263 cu->abbrev_table =
16264 abbrev_table_read_table (abbrev_section, cu->header.abbrev_sect_off);
16265 }
16266
16267 /* Release the memory used by the abbrev table for a compilation unit. */
16268
16269 static void
16270 dwarf2_free_abbrev_table (void *ptr_to_cu)
16271 {
16272 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
16273
16274 if (cu->abbrev_table != NULL)
16275 abbrev_table_free (cu->abbrev_table);
16276 /* Set this to NULL so that we SEGV if we try to read it later,
16277 and also because free_comp_unit verifies this is NULL. */
16278 cu->abbrev_table = NULL;
16279 }
16280 \f
16281 /* Returns nonzero if TAG represents a type that we might generate a partial
16282 symbol for. */
16283
16284 static int
16285 is_type_tag_for_partial (int tag)
16286 {
16287 switch (tag)
16288 {
16289 #if 0
16290 /* Some types that would be reasonable to generate partial symbols for,
16291 that we don't at present. */
16292 case DW_TAG_array_type:
16293 case DW_TAG_file_type:
16294 case DW_TAG_ptr_to_member_type:
16295 case DW_TAG_set_type:
16296 case DW_TAG_string_type:
16297 case DW_TAG_subroutine_type:
16298 #endif
16299 case DW_TAG_base_type:
16300 case DW_TAG_class_type:
16301 case DW_TAG_interface_type:
16302 case DW_TAG_enumeration_type:
16303 case DW_TAG_structure_type:
16304 case DW_TAG_subrange_type:
16305 case DW_TAG_typedef:
16306 case DW_TAG_union_type:
16307 return 1;
16308 default:
16309 return 0;
16310 }
16311 }
16312
16313 /* Load all DIEs that are interesting for partial symbols into memory. */
16314
16315 static struct partial_die_info *
16316 load_partial_dies (const struct die_reader_specs *reader,
16317 const gdb_byte *info_ptr, int building_psymtab)
16318 {
16319 struct dwarf2_cu *cu = reader->cu;
16320 struct objfile *objfile = cu->objfile;
16321 struct partial_die_info *part_die;
16322 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
16323 struct abbrev_info *abbrev;
16324 unsigned int bytes_read;
16325 unsigned int load_all = 0;
16326 int nesting_level = 1;
16327
16328 parent_die = NULL;
16329 last_die = NULL;
16330
16331 gdb_assert (cu->per_cu != NULL);
16332 if (cu->per_cu->load_all_dies)
16333 load_all = 1;
16334
16335 cu->partial_dies
16336 = htab_create_alloc_ex (cu->header.length / 12,
16337 partial_die_hash,
16338 partial_die_eq,
16339 NULL,
16340 &cu->comp_unit_obstack,
16341 hashtab_obstack_allocate,
16342 dummy_obstack_deallocate);
16343
16344 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16345
16346 while (1)
16347 {
16348 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
16349
16350 /* A NULL abbrev means the end of a series of children. */
16351 if (abbrev == NULL)
16352 {
16353 if (--nesting_level == 0)
16354 {
16355 /* PART_DIE was probably the last thing allocated on the
16356 comp_unit_obstack, so we could call obstack_free
16357 here. We don't do that because the waste is small,
16358 and will be cleaned up when we're done with this
16359 compilation unit. This way, we're also more robust
16360 against other users of the comp_unit_obstack. */
16361 return first_die;
16362 }
16363 info_ptr += bytes_read;
16364 last_die = parent_die;
16365 parent_die = parent_die->die_parent;
16366 continue;
16367 }
16368
16369 /* Check for template arguments. We never save these; if
16370 they're seen, we just mark the parent, and go on our way. */
16371 if (parent_die != NULL
16372 && cu->language == language_cplus
16373 && (abbrev->tag == DW_TAG_template_type_param
16374 || abbrev->tag == DW_TAG_template_value_param))
16375 {
16376 parent_die->has_template_arguments = 1;
16377
16378 if (!load_all)
16379 {
16380 /* We don't need a partial DIE for the template argument. */
16381 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16382 continue;
16383 }
16384 }
16385
16386 /* We only recurse into c++ subprograms looking for template arguments.
16387 Skip their other children. */
16388 if (!load_all
16389 && cu->language == language_cplus
16390 && parent_die != NULL
16391 && parent_die->tag == DW_TAG_subprogram)
16392 {
16393 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16394 continue;
16395 }
16396
16397 /* Check whether this DIE is interesting enough to save. Normally
16398 we would not be interested in members here, but there may be
16399 later variables referencing them via DW_AT_specification (for
16400 static members). */
16401 if (!load_all
16402 && !is_type_tag_for_partial (abbrev->tag)
16403 && abbrev->tag != DW_TAG_constant
16404 && abbrev->tag != DW_TAG_enumerator
16405 && abbrev->tag != DW_TAG_subprogram
16406 && abbrev->tag != DW_TAG_lexical_block
16407 && abbrev->tag != DW_TAG_variable
16408 && abbrev->tag != DW_TAG_namespace
16409 && abbrev->tag != DW_TAG_module
16410 && abbrev->tag != DW_TAG_member
16411 && abbrev->tag != DW_TAG_imported_unit
16412 && abbrev->tag != DW_TAG_imported_declaration)
16413 {
16414 /* Otherwise we skip to the next sibling, if any. */
16415 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16416 continue;
16417 }
16418
16419 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
16420 info_ptr);
16421
16422 /* This two-pass algorithm for processing partial symbols has a
16423 high cost in cache pressure. Thus, handle some simple cases
16424 here which cover the majority of C partial symbols. DIEs
16425 which neither have specification tags in them, nor could have
16426 specification tags elsewhere pointing at them, can simply be
16427 processed and discarded.
16428
16429 This segment is also optional; scan_partial_symbols and
16430 add_partial_symbol will handle these DIEs if we chain
16431 them in normally. When compilers which do not emit large
16432 quantities of duplicate debug information are more common,
16433 this code can probably be removed. */
16434
16435 /* Any complete simple types at the top level (pretty much all
16436 of them, for a language without namespaces), can be processed
16437 directly. */
16438 if (parent_die == NULL
16439 && part_die->has_specification == 0
16440 && part_die->is_declaration == 0
16441 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
16442 || part_die->tag == DW_TAG_base_type
16443 || part_die->tag == DW_TAG_subrange_type))
16444 {
16445 if (building_psymtab && part_die->name != NULL)
16446 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16447 VAR_DOMAIN, LOC_TYPEDEF,
16448 &objfile->static_psymbols,
16449 0, cu->language, objfile);
16450 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16451 continue;
16452 }
16453
16454 /* The exception for DW_TAG_typedef with has_children above is
16455 a workaround of GCC PR debug/47510. In the case of this complaint
16456 type_name_no_tag_or_error will error on such types later.
16457
16458 GDB skipped children of DW_TAG_typedef by the shortcut above and then
16459 it could not find the child DIEs referenced later, this is checked
16460 above. In correct DWARF DW_TAG_typedef should have no children. */
16461
16462 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
16463 complaint (&symfile_complaints,
16464 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
16465 "- DIE at 0x%x [in module %s]"),
16466 to_underlying (part_die->sect_off), objfile_name (objfile));
16467
16468 /* If we're at the second level, and we're an enumerator, and
16469 our parent has no specification (meaning possibly lives in a
16470 namespace elsewhere), then we can add the partial symbol now
16471 instead of queueing it. */
16472 if (part_die->tag == DW_TAG_enumerator
16473 && parent_die != NULL
16474 && parent_die->die_parent == NULL
16475 && parent_die->tag == DW_TAG_enumeration_type
16476 && parent_die->has_specification == 0)
16477 {
16478 if (part_die->name == NULL)
16479 complaint (&symfile_complaints,
16480 _("malformed enumerator DIE ignored"));
16481 else if (building_psymtab)
16482 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16483 VAR_DOMAIN, LOC_CONST,
16484 cu->language == language_cplus
16485 ? &objfile->global_psymbols
16486 : &objfile->static_psymbols,
16487 0, cu->language, objfile);
16488
16489 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16490 continue;
16491 }
16492
16493 /* We'll save this DIE so link it in. */
16494 part_die->die_parent = parent_die;
16495 part_die->die_sibling = NULL;
16496 part_die->die_child = NULL;
16497
16498 if (last_die && last_die == parent_die)
16499 last_die->die_child = part_die;
16500 else if (last_die)
16501 last_die->die_sibling = part_die;
16502
16503 last_die = part_die;
16504
16505 if (first_die == NULL)
16506 first_die = part_die;
16507
16508 /* Maybe add the DIE to the hash table. Not all DIEs that we
16509 find interesting need to be in the hash table, because we
16510 also have the parent/sibling/child chains; only those that we
16511 might refer to by offset later during partial symbol reading.
16512
16513 For now this means things that might have be the target of a
16514 DW_AT_specification, DW_AT_abstract_origin, or
16515 DW_AT_extension. DW_AT_extension will refer only to
16516 namespaces; DW_AT_abstract_origin refers to functions (and
16517 many things under the function DIE, but we do not recurse
16518 into function DIEs during partial symbol reading) and
16519 possibly variables as well; DW_AT_specification refers to
16520 declarations. Declarations ought to have the DW_AT_declaration
16521 flag. It happens that GCC forgets to put it in sometimes, but
16522 only for functions, not for types.
16523
16524 Adding more things than necessary to the hash table is harmless
16525 except for the performance cost. Adding too few will result in
16526 wasted time in find_partial_die, when we reread the compilation
16527 unit with load_all_dies set. */
16528
16529 if (load_all
16530 || abbrev->tag == DW_TAG_constant
16531 || abbrev->tag == DW_TAG_subprogram
16532 || abbrev->tag == DW_TAG_variable
16533 || abbrev->tag == DW_TAG_namespace
16534 || part_die->is_declaration)
16535 {
16536 void **slot;
16537
16538 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
16539 to_underlying (part_die->sect_off),
16540 INSERT);
16541 *slot = part_die;
16542 }
16543
16544 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16545
16546 /* For some DIEs we want to follow their children (if any). For C
16547 we have no reason to follow the children of structures; for other
16548 languages we have to, so that we can get at method physnames
16549 to infer fully qualified class names, for DW_AT_specification,
16550 and for C++ template arguments. For C++, we also look one level
16551 inside functions to find template arguments (if the name of the
16552 function does not already contain the template arguments).
16553
16554 For Ada, we need to scan the children of subprograms and lexical
16555 blocks as well because Ada allows the definition of nested
16556 entities that could be interesting for the debugger, such as
16557 nested subprograms for instance. */
16558 if (last_die->has_children
16559 && (load_all
16560 || last_die->tag == DW_TAG_namespace
16561 || last_die->tag == DW_TAG_module
16562 || last_die->tag == DW_TAG_enumeration_type
16563 || (cu->language == language_cplus
16564 && last_die->tag == DW_TAG_subprogram
16565 && (last_die->name == NULL
16566 || strchr (last_die->name, '<') == NULL))
16567 || (cu->language != language_c
16568 && (last_die->tag == DW_TAG_class_type
16569 || last_die->tag == DW_TAG_interface_type
16570 || last_die->tag == DW_TAG_structure_type
16571 || last_die->tag == DW_TAG_union_type))
16572 || (cu->language == language_ada
16573 && (last_die->tag == DW_TAG_subprogram
16574 || last_die->tag == DW_TAG_lexical_block))))
16575 {
16576 nesting_level++;
16577 parent_die = last_die;
16578 continue;
16579 }
16580
16581 /* Otherwise we skip to the next sibling, if any. */
16582 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
16583
16584 /* Back to the top, do it again. */
16585 }
16586 }
16587
16588 /* Read a minimal amount of information into the minimal die structure. */
16589
16590 static const gdb_byte *
16591 read_partial_die (const struct die_reader_specs *reader,
16592 struct partial_die_info *part_die,
16593 struct abbrev_info *abbrev, unsigned int abbrev_len,
16594 const gdb_byte *info_ptr)
16595 {
16596 struct dwarf2_cu *cu = reader->cu;
16597 struct objfile *objfile = cu->objfile;
16598 const gdb_byte *buffer = reader->buffer;
16599 unsigned int i;
16600 struct attribute attr;
16601 int has_low_pc_attr = 0;
16602 int has_high_pc_attr = 0;
16603 int high_pc_relative = 0;
16604
16605 memset (part_die, 0, sizeof (struct partial_die_info));
16606
16607 part_die->sect_off = (sect_offset) (info_ptr - buffer);
16608
16609 info_ptr += abbrev_len;
16610
16611 if (abbrev == NULL)
16612 return info_ptr;
16613
16614 part_die->tag = abbrev->tag;
16615 part_die->has_children = abbrev->has_children;
16616
16617 for (i = 0; i < abbrev->num_attrs; ++i)
16618 {
16619 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
16620
16621 /* Store the data if it is of an attribute we want to keep in a
16622 partial symbol table. */
16623 switch (attr.name)
16624 {
16625 case DW_AT_name:
16626 switch (part_die->tag)
16627 {
16628 case DW_TAG_compile_unit:
16629 case DW_TAG_partial_unit:
16630 case DW_TAG_type_unit:
16631 /* Compilation units have a DW_AT_name that is a filename, not
16632 a source language identifier. */
16633 case DW_TAG_enumeration_type:
16634 case DW_TAG_enumerator:
16635 /* These tags always have simple identifiers already; no need
16636 to canonicalize them. */
16637 part_die->name = DW_STRING (&attr);
16638 break;
16639 default:
16640 part_die->name
16641 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
16642 &objfile->per_bfd->storage_obstack);
16643 break;
16644 }
16645 break;
16646 case DW_AT_linkage_name:
16647 case DW_AT_MIPS_linkage_name:
16648 /* Note that both forms of linkage name might appear. We
16649 assume they will be the same, and we only store the last
16650 one we see. */
16651 if (cu->language == language_ada)
16652 part_die->name = DW_STRING (&attr);
16653 part_die->linkage_name = DW_STRING (&attr);
16654 break;
16655 case DW_AT_low_pc:
16656 has_low_pc_attr = 1;
16657 part_die->lowpc = attr_value_as_address (&attr);
16658 break;
16659 case DW_AT_high_pc:
16660 has_high_pc_attr = 1;
16661 part_die->highpc = attr_value_as_address (&attr);
16662 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16663 high_pc_relative = 1;
16664 break;
16665 case DW_AT_location:
16666 /* Support the .debug_loc offsets. */
16667 if (attr_form_is_block (&attr))
16668 {
16669 part_die->d.locdesc = DW_BLOCK (&attr);
16670 }
16671 else if (attr_form_is_section_offset (&attr))
16672 {
16673 dwarf2_complex_location_expr_complaint ();
16674 }
16675 else
16676 {
16677 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16678 "partial symbol information");
16679 }
16680 break;
16681 case DW_AT_external:
16682 part_die->is_external = DW_UNSND (&attr);
16683 break;
16684 case DW_AT_declaration:
16685 part_die->is_declaration = DW_UNSND (&attr);
16686 break;
16687 case DW_AT_type:
16688 part_die->has_type = 1;
16689 break;
16690 case DW_AT_abstract_origin:
16691 case DW_AT_specification:
16692 case DW_AT_extension:
16693 part_die->has_specification = 1;
16694 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
16695 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16696 || cu->per_cu->is_dwz);
16697 break;
16698 case DW_AT_sibling:
16699 /* Ignore absolute siblings, they might point outside of
16700 the current compile unit. */
16701 if (attr.form == DW_FORM_ref_addr)
16702 complaint (&symfile_complaints,
16703 _("ignoring absolute DW_AT_sibling"));
16704 else
16705 {
16706 sect_offset off = dwarf2_get_ref_die_offset (&attr);
16707 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
16708
16709 if (sibling_ptr < info_ptr)
16710 complaint (&symfile_complaints,
16711 _("DW_AT_sibling points backwards"));
16712 else if (sibling_ptr > reader->buffer_end)
16713 dwarf2_section_buffer_overflow_complaint (reader->die_section);
16714 else
16715 part_die->sibling = sibling_ptr;
16716 }
16717 break;
16718 case DW_AT_byte_size:
16719 part_die->has_byte_size = 1;
16720 break;
16721 case DW_AT_const_value:
16722 part_die->has_const_value = 1;
16723 break;
16724 case DW_AT_calling_convention:
16725 /* DWARF doesn't provide a way to identify a program's source-level
16726 entry point. DW_AT_calling_convention attributes are only meant
16727 to describe functions' calling conventions.
16728
16729 However, because it's a necessary piece of information in
16730 Fortran, and before DWARF 4 DW_CC_program was the only
16731 piece of debugging information whose definition refers to
16732 a 'main program' at all, several compilers marked Fortran
16733 main programs with DW_CC_program --- even when those
16734 functions use the standard calling conventions.
16735
16736 Although DWARF now specifies a way to provide this
16737 information, we support this practice for backward
16738 compatibility. */
16739 if (DW_UNSND (&attr) == DW_CC_program
16740 && cu->language == language_fortran)
16741 part_die->main_subprogram = 1;
16742 break;
16743 case DW_AT_inline:
16744 if (DW_UNSND (&attr) == DW_INL_inlined
16745 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16746 part_die->may_be_inlined = 1;
16747 break;
16748
16749 case DW_AT_import:
16750 if (part_die->tag == DW_TAG_imported_unit)
16751 {
16752 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
16753 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16754 || cu->per_cu->is_dwz);
16755 }
16756 break;
16757
16758 case DW_AT_main_subprogram:
16759 part_die->main_subprogram = DW_UNSND (&attr);
16760 break;
16761
16762 default:
16763 break;
16764 }
16765 }
16766
16767 if (high_pc_relative)
16768 part_die->highpc += part_die->lowpc;
16769
16770 if (has_low_pc_attr && has_high_pc_attr)
16771 {
16772 /* When using the GNU linker, .gnu.linkonce. sections are used to
16773 eliminate duplicate copies of functions and vtables and such.
16774 The linker will arbitrarily choose one and discard the others.
16775 The AT_*_pc values for such functions refer to local labels in
16776 these sections. If the section from that file was discarded, the
16777 labels are not in the output, so the relocs get a value of 0.
16778 If this is a discarded function, mark the pc bounds as invalid,
16779 so that GDB will ignore it. */
16780 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16781 {
16782 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16783
16784 complaint (&symfile_complaints,
16785 _("DW_AT_low_pc %s is zero "
16786 "for DIE at 0x%x [in module %s]"),
16787 paddress (gdbarch, part_die->lowpc),
16788 to_underlying (part_die->sect_off), objfile_name (objfile));
16789 }
16790 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16791 else if (part_die->lowpc >= part_die->highpc)
16792 {
16793 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16794
16795 complaint (&symfile_complaints,
16796 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16797 "for DIE at 0x%x [in module %s]"),
16798 paddress (gdbarch, part_die->lowpc),
16799 paddress (gdbarch, part_die->highpc),
16800 to_underlying (part_die->sect_off),
16801 objfile_name (objfile));
16802 }
16803 else
16804 part_die->has_pc_info = 1;
16805 }
16806
16807 return info_ptr;
16808 }
16809
16810 /* Find a cached partial DIE at OFFSET in CU. */
16811
16812 static struct partial_die_info *
16813 find_partial_die_in_comp_unit (sect_offset sect_off, struct dwarf2_cu *cu)
16814 {
16815 struct partial_die_info *lookup_die = NULL;
16816 struct partial_die_info part_die;
16817
16818 part_die.sect_off = sect_off;
16819 lookup_die = ((struct partial_die_info *)
16820 htab_find_with_hash (cu->partial_dies, &part_die,
16821 to_underlying (sect_off)));
16822
16823 return lookup_die;
16824 }
16825
16826 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16827 except in the case of .debug_types DIEs which do not reference
16828 outside their CU (they do however referencing other types via
16829 DW_FORM_ref_sig8). */
16830
16831 static struct partial_die_info *
16832 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
16833 {
16834 struct objfile *objfile = cu->objfile;
16835 struct dwarf2_per_cu_data *per_cu = NULL;
16836 struct partial_die_info *pd = NULL;
16837
16838 if (offset_in_dwz == cu->per_cu->is_dwz
16839 && offset_in_cu_p (&cu->header, sect_off))
16840 {
16841 pd = find_partial_die_in_comp_unit (sect_off, cu);
16842 if (pd != NULL)
16843 return pd;
16844 /* We missed recording what we needed.
16845 Load all dies and try again. */
16846 per_cu = cu->per_cu;
16847 }
16848 else
16849 {
16850 /* TUs don't reference other CUs/TUs (except via type signatures). */
16851 if (cu->per_cu->is_debug_types)
16852 {
16853 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
16854 " external reference to offset 0x%x [in module %s].\n"),
16855 to_underlying (cu->header.sect_off), to_underlying (sect_off),
16856 bfd_get_filename (objfile->obfd));
16857 }
16858 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
16859 objfile);
16860
16861 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16862 load_partial_comp_unit (per_cu);
16863
16864 per_cu->cu->last_used = 0;
16865 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
16866 }
16867
16868 /* If we didn't find it, and not all dies have been loaded,
16869 load them all and try again. */
16870
16871 if (pd == NULL && per_cu->load_all_dies == 0)
16872 {
16873 per_cu->load_all_dies = 1;
16874
16875 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16876 THIS_CU->cu may already be in use. So we can't just free it and
16877 replace its DIEs with the ones we read in. Instead, we leave those
16878 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16879 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16880 set. */
16881 load_partial_comp_unit (per_cu);
16882
16883 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
16884 }
16885
16886 if (pd == NULL)
16887 internal_error (__FILE__, __LINE__,
16888 _("could not find partial DIE 0x%x "
16889 "in cache [from module %s]\n"),
16890 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
16891 return pd;
16892 }
16893
16894 /* See if we can figure out if the class lives in a namespace. We do
16895 this by looking for a member function; its demangled name will
16896 contain namespace info, if there is any. */
16897
16898 static void
16899 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16900 struct dwarf2_cu *cu)
16901 {
16902 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16903 what template types look like, because the demangler
16904 frequently doesn't give the same name as the debug info. We
16905 could fix this by only using the demangled name to get the
16906 prefix (but see comment in read_structure_type). */
16907
16908 struct partial_die_info *real_pdi;
16909 struct partial_die_info *child_pdi;
16910
16911 /* If this DIE (this DIE's specification, if any) has a parent, then
16912 we should not do this. We'll prepend the parent's fully qualified
16913 name when we create the partial symbol. */
16914
16915 real_pdi = struct_pdi;
16916 while (real_pdi->has_specification)
16917 real_pdi = find_partial_die (real_pdi->spec_offset,
16918 real_pdi->spec_is_dwz, cu);
16919
16920 if (real_pdi->die_parent != NULL)
16921 return;
16922
16923 for (child_pdi = struct_pdi->die_child;
16924 child_pdi != NULL;
16925 child_pdi = child_pdi->die_sibling)
16926 {
16927 if (child_pdi->tag == DW_TAG_subprogram
16928 && child_pdi->linkage_name != NULL)
16929 {
16930 char *actual_class_name
16931 = language_class_name_from_physname (cu->language_defn,
16932 child_pdi->linkage_name);
16933 if (actual_class_name != NULL)
16934 {
16935 struct_pdi->name
16936 = ((const char *)
16937 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16938 actual_class_name,
16939 strlen (actual_class_name)));
16940 xfree (actual_class_name);
16941 }
16942 break;
16943 }
16944 }
16945 }
16946
16947 /* Adjust PART_DIE before generating a symbol for it. This function
16948 may set the is_external flag or change the DIE's name. */
16949
16950 static void
16951 fixup_partial_die (struct partial_die_info *part_die,
16952 struct dwarf2_cu *cu)
16953 {
16954 /* Once we've fixed up a die, there's no point in doing so again.
16955 This also avoids a memory leak if we were to call
16956 guess_partial_die_structure_name multiple times. */
16957 if (part_die->fixup_called)
16958 return;
16959
16960 /* If we found a reference attribute and the DIE has no name, try
16961 to find a name in the referred to DIE. */
16962
16963 if (part_die->name == NULL && part_die->has_specification)
16964 {
16965 struct partial_die_info *spec_die;
16966
16967 spec_die = find_partial_die (part_die->spec_offset,
16968 part_die->spec_is_dwz, cu);
16969
16970 fixup_partial_die (spec_die, cu);
16971
16972 if (spec_die->name)
16973 {
16974 part_die->name = spec_die->name;
16975
16976 /* Copy DW_AT_external attribute if it is set. */
16977 if (spec_die->is_external)
16978 part_die->is_external = spec_die->is_external;
16979 }
16980 }
16981
16982 /* Set default names for some unnamed DIEs. */
16983
16984 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16985 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16986
16987 /* If there is no parent die to provide a namespace, and there are
16988 children, see if we can determine the namespace from their linkage
16989 name. */
16990 if (cu->language == language_cplus
16991 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16992 && part_die->die_parent == NULL
16993 && part_die->has_children
16994 && (part_die->tag == DW_TAG_class_type
16995 || part_die->tag == DW_TAG_structure_type
16996 || part_die->tag == DW_TAG_union_type))
16997 guess_partial_die_structure_name (part_die, cu);
16998
16999 /* GCC might emit a nameless struct or union that has a linkage
17000 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17001 if (part_die->name == NULL
17002 && (part_die->tag == DW_TAG_class_type
17003 || part_die->tag == DW_TAG_interface_type
17004 || part_die->tag == DW_TAG_structure_type
17005 || part_die->tag == DW_TAG_union_type)
17006 && part_die->linkage_name != NULL)
17007 {
17008 char *demangled;
17009
17010 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
17011 if (demangled)
17012 {
17013 const char *base;
17014
17015 /* Strip any leading namespaces/classes, keep only the base name.
17016 DW_AT_name for named DIEs does not contain the prefixes. */
17017 base = strrchr (demangled, ':');
17018 if (base && base > demangled && base[-1] == ':')
17019 base++;
17020 else
17021 base = demangled;
17022
17023 part_die->name
17024 = ((const char *)
17025 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
17026 base, strlen (base)));
17027 xfree (demangled);
17028 }
17029 }
17030
17031 part_die->fixup_called = 1;
17032 }
17033
17034 /* Read an attribute value described by an attribute form. */
17035
17036 static const gdb_byte *
17037 read_attribute_value (const struct die_reader_specs *reader,
17038 struct attribute *attr, unsigned form,
17039 LONGEST implicit_const, const gdb_byte *info_ptr)
17040 {
17041 struct dwarf2_cu *cu = reader->cu;
17042 struct objfile *objfile = cu->objfile;
17043 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17044 bfd *abfd = reader->abfd;
17045 struct comp_unit_head *cu_header = &cu->header;
17046 unsigned int bytes_read;
17047 struct dwarf_block *blk;
17048
17049 attr->form = (enum dwarf_form) form;
17050 switch (form)
17051 {
17052 case DW_FORM_ref_addr:
17053 if (cu->header.version == 2)
17054 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
17055 else
17056 DW_UNSND (attr) = read_offset (abfd, info_ptr,
17057 &cu->header, &bytes_read);
17058 info_ptr += bytes_read;
17059 break;
17060 case DW_FORM_GNU_ref_alt:
17061 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
17062 info_ptr += bytes_read;
17063 break;
17064 case DW_FORM_addr:
17065 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
17066 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
17067 info_ptr += bytes_read;
17068 break;
17069 case DW_FORM_block2:
17070 blk = dwarf_alloc_block (cu);
17071 blk->size = read_2_bytes (abfd, info_ptr);
17072 info_ptr += 2;
17073 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
17074 info_ptr += blk->size;
17075 DW_BLOCK (attr) = blk;
17076 break;
17077 case DW_FORM_block4:
17078 blk = dwarf_alloc_block (cu);
17079 blk->size = read_4_bytes (abfd, info_ptr);
17080 info_ptr += 4;
17081 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
17082 info_ptr += blk->size;
17083 DW_BLOCK (attr) = blk;
17084 break;
17085 case DW_FORM_data2:
17086 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
17087 info_ptr += 2;
17088 break;
17089 case DW_FORM_data4:
17090 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
17091 info_ptr += 4;
17092 break;
17093 case DW_FORM_data8:
17094 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
17095 info_ptr += 8;
17096 break;
17097 case DW_FORM_data16:
17098 blk = dwarf_alloc_block (cu);
17099 blk->size = 16;
17100 blk->data = read_n_bytes (abfd, info_ptr, 16);
17101 info_ptr += 16;
17102 DW_BLOCK (attr) = blk;
17103 break;
17104 case DW_FORM_sec_offset:
17105 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
17106 info_ptr += bytes_read;
17107 break;
17108 case DW_FORM_string:
17109 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
17110 DW_STRING_IS_CANONICAL (attr) = 0;
17111 info_ptr += bytes_read;
17112 break;
17113 case DW_FORM_strp:
17114 if (!cu->per_cu->is_dwz)
17115 {
17116 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
17117 &bytes_read);
17118 DW_STRING_IS_CANONICAL (attr) = 0;
17119 info_ptr += bytes_read;
17120 break;
17121 }
17122 /* FALLTHROUGH */
17123 case DW_FORM_line_strp:
17124 if (!cu->per_cu->is_dwz)
17125 {
17126 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
17127 cu_header, &bytes_read);
17128 DW_STRING_IS_CANONICAL (attr) = 0;
17129 info_ptr += bytes_read;
17130 break;
17131 }
17132 /* FALLTHROUGH */
17133 case DW_FORM_GNU_strp_alt:
17134 {
17135 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17136 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
17137 &bytes_read);
17138
17139 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
17140 DW_STRING_IS_CANONICAL (attr) = 0;
17141 info_ptr += bytes_read;
17142 }
17143 break;
17144 case DW_FORM_exprloc:
17145 case DW_FORM_block:
17146 blk = dwarf_alloc_block (cu);
17147 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17148 info_ptr += bytes_read;
17149 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
17150 info_ptr += blk->size;
17151 DW_BLOCK (attr) = blk;
17152 break;
17153 case DW_FORM_block1:
17154 blk = dwarf_alloc_block (cu);
17155 blk->size = read_1_byte (abfd, info_ptr);
17156 info_ptr += 1;
17157 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
17158 info_ptr += blk->size;
17159 DW_BLOCK (attr) = blk;
17160 break;
17161 case DW_FORM_data1:
17162 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
17163 info_ptr += 1;
17164 break;
17165 case DW_FORM_flag:
17166 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
17167 info_ptr += 1;
17168 break;
17169 case DW_FORM_flag_present:
17170 DW_UNSND (attr) = 1;
17171 break;
17172 case DW_FORM_sdata:
17173 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
17174 info_ptr += bytes_read;
17175 break;
17176 case DW_FORM_udata:
17177 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17178 info_ptr += bytes_read;
17179 break;
17180 case DW_FORM_ref1:
17181 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17182 + read_1_byte (abfd, info_ptr));
17183 info_ptr += 1;
17184 break;
17185 case DW_FORM_ref2:
17186 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17187 + read_2_bytes (abfd, info_ptr));
17188 info_ptr += 2;
17189 break;
17190 case DW_FORM_ref4:
17191 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17192 + read_4_bytes (abfd, info_ptr));
17193 info_ptr += 4;
17194 break;
17195 case DW_FORM_ref8:
17196 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17197 + read_8_bytes (abfd, info_ptr));
17198 info_ptr += 8;
17199 break;
17200 case DW_FORM_ref_sig8:
17201 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
17202 info_ptr += 8;
17203 break;
17204 case DW_FORM_ref_udata:
17205 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17206 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
17207 info_ptr += bytes_read;
17208 break;
17209 case DW_FORM_indirect:
17210 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17211 info_ptr += bytes_read;
17212 if (form == DW_FORM_implicit_const)
17213 {
17214 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
17215 info_ptr += bytes_read;
17216 }
17217 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
17218 info_ptr);
17219 break;
17220 case DW_FORM_implicit_const:
17221 DW_SND (attr) = implicit_const;
17222 break;
17223 case DW_FORM_GNU_addr_index:
17224 if (reader->dwo_file == NULL)
17225 {
17226 /* For now flag a hard error.
17227 Later we can turn this into a complaint. */
17228 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
17229 dwarf_form_name (form),
17230 bfd_get_filename (abfd));
17231 }
17232 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
17233 info_ptr += bytes_read;
17234 break;
17235 case DW_FORM_GNU_str_index:
17236 if (reader->dwo_file == NULL)
17237 {
17238 /* For now flag a hard error.
17239 Later we can turn this into a complaint if warranted. */
17240 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
17241 dwarf_form_name (form),
17242 bfd_get_filename (abfd));
17243 }
17244 {
17245 ULONGEST str_index =
17246 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17247
17248 DW_STRING (attr) = read_str_index (reader, str_index);
17249 DW_STRING_IS_CANONICAL (attr) = 0;
17250 info_ptr += bytes_read;
17251 }
17252 break;
17253 default:
17254 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
17255 dwarf_form_name (form),
17256 bfd_get_filename (abfd));
17257 }
17258
17259 /* Super hack. */
17260 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
17261 attr->form = DW_FORM_GNU_ref_alt;
17262
17263 /* We have seen instances where the compiler tried to emit a byte
17264 size attribute of -1 which ended up being encoded as an unsigned
17265 0xffffffff. Although 0xffffffff is technically a valid size value,
17266 an object of this size seems pretty unlikely so we can relatively
17267 safely treat these cases as if the size attribute was invalid and
17268 treat them as zero by default. */
17269 if (attr->name == DW_AT_byte_size
17270 && form == DW_FORM_data4
17271 && DW_UNSND (attr) >= 0xffffffff)
17272 {
17273 complaint
17274 (&symfile_complaints,
17275 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
17276 hex_string (DW_UNSND (attr)));
17277 DW_UNSND (attr) = 0;
17278 }
17279
17280 return info_ptr;
17281 }
17282
17283 /* Read an attribute described by an abbreviated attribute. */
17284
17285 static const gdb_byte *
17286 read_attribute (const struct die_reader_specs *reader,
17287 struct attribute *attr, struct attr_abbrev *abbrev,
17288 const gdb_byte *info_ptr)
17289 {
17290 attr->name = abbrev->name;
17291 return read_attribute_value (reader, attr, abbrev->form,
17292 abbrev->implicit_const, info_ptr);
17293 }
17294
17295 /* Read dwarf information from a buffer. */
17296
17297 static unsigned int
17298 read_1_byte (bfd *abfd, const gdb_byte *buf)
17299 {
17300 return bfd_get_8 (abfd, buf);
17301 }
17302
17303 static int
17304 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
17305 {
17306 return bfd_get_signed_8 (abfd, buf);
17307 }
17308
17309 static unsigned int
17310 read_2_bytes (bfd *abfd, const gdb_byte *buf)
17311 {
17312 return bfd_get_16 (abfd, buf);
17313 }
17314
17315 static int
17316 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
17317 {
17318 return bfd_get_signed_16 (abfd, buf);
17319 }
17320
17321 static unsigned int
17322 read_4_bytes (bfd *abfd, const gdb_byte *buf)
17323 {
17324 return bfd_get_32 (abfd, buf);
17325 }
17326
17327 static int
17328 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
17329 {
17330 return bfd_get_signed_32 (abfd, buf);
17331 }
17332
17333 static ULONGEST
17334 read_8_bytes (bfd *abfd, const gdb_byte *buf)
17335 {
17336 return bfd_get_64 (abfd, buf);
17337 }
17338
17339 static CORE_ADDR
17340 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
17341 unsigned int *bytes_read)
17342 {
17343 struct comp_unit_head *cu_header = &cu->header;
17344 CORE_ADDR retval = 0;
17345
17346 if (cu_header->signed_addr_p)
17347 {
17348 switch (cu_header->addr_size)
17349 {
17350 case 2:
17351 retval = bfd_get_signed_16 (abfd, buf);
17352 break;
17353 case 4:
17354 retval = bfd_get_signed_32 (abfd, buf);
17355 break;
17356 case 8:
17357 retval = bfd_get_signed_64 (abfd, buf);
17358 break;
17359 default:
17360 internal_error (__FILE__, __LINE__,
17361 _("read_address: bad switch, signed [in module %s]"),
17362 bfd_get_filename (abfd));
17363 }
17364 }
17365 else
17366 {
17367 switch (cu_header->addr_size)
17368 {
17369 case 2:
17370 retval = bfd_get_16 (abfd, buf);
17371 break;
17372 case 4:
17373 retval = bfd_get_32 (abfd, buf);
17374 break;
17375 case 8:
17376 retval = bfd_get_64 (abfd, buf);
17377 break;
17378 default:
17379 internal_error (__FILE__, __LINE__,
17380 _("read_address: bad switch, "
17381 "unsigned [in module %s]"),
17382 bfd_get_filename (abfd));
17383 }
17384 }
17385
17386 *bytes_read = cu_header->addr_size;
17387 return retval;
17388 }
17389
17390 /* Read the initial length from a section. The (draft) DWARF 3
17391 specification allows the initial length to take up either 4 bytes
17392 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
17393 bytes describe the length and all offsets will be 8 bytes in length
17394 instead of 4.
17395
17396 An older, non-standard 64-bit format is also handled by this
17397 function. The older format in question stores the initial length
17398 as an 8-byte quantity without an escape value. Lengths greater
17399 than 2^32 aren't very common which means that the initial 4 bytes
17400 is almost always zero. Since a length value of zero doesn't make
17401 sense for the 32-bit format, this initial zero can be considered to
17402 be an escape value which indicates the presence of the older 64-bit
17403 format. As written, the code can't detect (old format) lengths
17404 greater than 4GB. If it becomes necessary to handle lengths
17405 somewhat larger than 4GB, we could allow other small values (such
17406 as the non-sensical values of 1, 2, and 3) to also be used as
17407 escape values indicating the presence of the old format.
17408
17409 The value returned via bytes_read should be used to increment the
17410 relevant pointer after calling read_initial_length().
17411
17412 [ Note: read_initial_length() and read_offset() are based on the
17413 document entitled "DWARF Debugging Information Format", revision
17414 3, draft 8, dated November 19, 2001. This document was obtained
17415 from:
17416
17417 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
17418
17419 This document is only a draft and is subject to change. (So beware.)
17420
17421 Details regarding the older, non-standard 64-bit format were
17422 determined empirically by examining 64-bit ELF files produced by
17423 the SGI toolchain on an IRIX 6.5 machine.
17424
17425 - Kevin, July 16, 2002
17426 ] */
17427
17428 static LONGEST
17429 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
17430 {
17431 LONGEST length = bfd_get_32 (abfd, buf);
17432
17433 if (length == 0xffffffff)
17434 {
17435 length = bfd_get_64 (abfd, buf + 4);
17436 *bytes_read = 12;
17437 }
17438 else if (length == 0)
17439 {
17440 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
17441 length = bfd_get_64 (abfd, buf);
17442 *bytes_read = 8;
17443 }
17444 else
17445 {
17446 *bytes_read = 4;
17447 }
17448
17449 return length;
17450 }
17451
17452 /* Cover function for read_initial_length.
17453 Returns the length of the object at BUF, and stores the size of the
17454 initial length in *BYTES_READ and stores the size that offsets will be in
17455 *OFFSET_SIZE.
17456 If the initial length size is not equivalent to that specified in
17457 CU_HEADER then issue a complaint.
17458 This is useful when reading non-comp-unit headers. */
17459
17460 static LONGEST
17461 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
17462 const struct comp_unit_head *cu_header,
17463 unsigned int *bytes_read,
17464 unsigned int *offset_size)
17465 {
17466 LONGEST length = read_initial_length (abfd, buf, bytes_read);
17467
17468 gdb_assert (cu_header->initial_length_size == 4
17469 || cu_header->initial_length_size == 8
17470 || cu_header->initial_length_size == 12);
17471
17472 if (cu_header->initial_length_size != *bytes_read)
17473 complaint (&symfile_complaints,
17474 _("intermixed 32-bit and 64-bit DWARF sections"));
17475
17476 *offset_size = (*bytes_read == 4) ? 4 : 8;
17477 return length;
17478 }
17479
17480 /* Read an offset from the data stream. The size of the offset is
17481 given by cu_header->offset_size. */
17482
17483 static LONGEST
17484 read_offset (bfd *abfd, const gdb_byte *buf,
17485 const struct comp_unit_head *cu_header,
17486 unsigned int *bytes_read)
17487 {
17488 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
17489
17490 *bytes_read = cu_header->offset_size;
17491 return offset;
17492 }
17493
17494 /* Read an offset from the data stream. */
17495
17496 static LONGEST
17497 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
17498 {
17499 LONGEST retval = 0;
17500
17501 switch (offset_size)
17502 {
17503 case 4:
17504 retval = bfd_get_32 (abfd, buf);
17505 break;
17506 case 8:
17507 retval = bfd_get_64 (abfd, buf);
17508 break;
17509 default:
17510 internal_error (__FILE__, __LINE__,
17511 _("read_offset_1: bad switch [in module %s]"),
17512 bfd_get_filename (abfd));
17513 }
17514
17515 return retval;
17516 }
17517
17518 static const gdb_byte *
17519 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
17520 {
17521 /* If the size of a host char is 8 bits, we can return a pointer
17522 to the buffer, otherwise we have to copy the data to a buffer
17523 allocated on the temporary obstack. */
17524 gdb_assert (HOST_CHAR_BIT == 8);
17525 return buf;
17526 }
17527
17528 static const char *
17529 read_direct_string (bfd *abfd, const gdb_byte *buf,
17530 unsigned int *bytes_read_ptr)
17531 {
17532 /* If the size of a host char is 8 bits, we can return a pointer
17533 to the string, otherwise we have to copy the string to a buffer
17534 allocated on the temporary obstack. */
17535 gdb_assert (HOST_CHAR_BIT == 8);
17536 if (*buf == '\0')
17537 {
17538 *bytes_read_ptr = 1;
17539 return NULL;
17540 }
17541 *bytes_read_ptr = strlen ((const char *) buf) + 1;
17542 return (const char *) buf;
17543 }
17544
17545 /* Return pointer to string at section SECT offset STR_OFFSET with error
17546 reporting strings FORM_NAME and SECT_NAME. */
17547
17548 static const char *
17549 read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
17550 struct dwarf2_section_info *sect,
17551 const char *form_name,
17552 const char *sect_name)
17553 {
17554 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
17555 if (sect->buffer == NULL)
17556 error (_("%s used without %s section [in module %s]"),
17557 form_name, sect_name, bfd_get_filename (abfd));
17558 if (str_offset >= sect->size)
17559 error (_("%s pointing outside of %s section [in module %s]"),
17560 form_name, sect_name, bfd_get_filename (abfd));
17561 gdb_assert (HOST_CHAR_BIT == 8);
17562 if (sect->buffer[str_offset] == '\0')
17563 return NULL;
17564 return (const char *) (sect->buffer + str_offset);
17565 }
17566
17567 /* Return pointer to string at .debug_str offset STR_OFFSET. */
17568
17569 static const char *
17570 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
17571 {
17572 return read_indirect_string_at_offset_from (abfd, str_offset,
17573 &dwarf2_per_objfile->str,
17574 "DW_FORM_strp", ".debug_str");
17575 }
17576
17577 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17578
17579 static const char *
17580 read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17581 {
17582 return read_indirect_string_at_offset_from (abfd, str_offset,
17583 &dwarf2_per_objfile->line_str,
17584 "DW_FORM_line_strp",
17585 ".debug_line_str");
17586 }
17587
17588 /* Read a string at offset STR_OFFSET in the .debug_str section from
17589 the .dwz file DWZ. Throw an error if the offset is too large. If
17590 the string consists of a single NUL byte, return NULL; otherwise
17591 return a pointer to the string. */
17592
17593 static const char *
17594 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17595 {
17596 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17597
17598 if (dwz->str.buffer == NULL)
17599 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17600 "section [in module %s]"),
17601 bfd_get_filename (dwz->dwz_bfd));
17602 if (str_offset >= dwz->str.size)
17603 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17604 ".debug_str section [in module %s]"),
17605 bfd_get_filename (dwz->dwz_bfd));
17606 gdb_assert (HOST_CHAR_BIT == 8);
17607 if (dwz->str.buffer[str_offset] == '\0')
17608 return NULL;
17609 return (const char *) (dwz->str.buffer + str_offset);
17610 }
17611
17612 /* Return pointer to string at .debug_str offset as read from BUF.
17613 BUF is assumed to be in a compilation unit described by CU_HEADER.
17614 Return *BYTES_READ_PTR count of bytes read from BUF. */
17615
17616 static const char *
17617 read_indirect_string (bfd *abfd, const gdb_byte *buf,
17618 const struct comp_unit_head *cu_header,
17619 unsigned int *bytes_read_ptr)
17620 {
17621 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17622
17623 return read_indirect_string_at_offset (abfd, str_offset);
17624 }
17625
17626 /* Return pointer to string at .debug_line_str offset as read from BUF.
17627 BUF is assumed to be in a compilation unit described by CU_HEADER.
17628 Return *BYTES_READ_PTR count of bytes read from BUF. */
17629
17630 static const char *
17631 read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17632 const struct comp_unit_head *cu_header,
17633 unsigned int *bytes_read_ptr)
17634 {
17635 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17636
17637 return read_indirect_line_string_at_offset (abfd, str_offset);
17638 }
17639
17640 ULONGEST
17641 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
17642 unsigned int *bytes_read_ptr)
17643 {
17644 ULONGEST result;
17645 unsigned int num_read;
17646 int shift;
17647 unsigned char byte;
17648
17649 result = 0;
17650 shift = 0;
17651 num_read = 0;
17652 while (1)
17653 {
17654 byte = bfd_get_8 (abfd, buf);
17655 buf++;
17656 num_read++;
17657 result |= ((ULONGEST) (byte & 127) << shift);
17658 if ((byte & 128) == 0)
17659 {
17660 break;
17661 }
17662 shift += 7;
17663 }
17664 *bytes_read_ptr = num_read;
17665 return result;
17666 }
17667
17668 static LONGEST
17669 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17670 unsigned int *bytes_read_ptr)
17671 {
17672 LONGEST result;
17673 int shift, num_read;
17674 unsigned char byte;
17675
17676 result = 0;
17677 shift = 0;
17678 num_read = 0;
17679 while (1)
17680 {
17681 byte = bfd_get_8 (abfd, buf);
17682 buf++;
17683 num_read++;
17684 result |= ((LONGEST) (byte & 127) << shift);
17685 shift += 7;
17686 if ((byte & 128) == 0)
17687 {
17688 break;
17689 }
17690 }
17691 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
17692 result |= -(((LONGEST) 1) << shift);
17693 *bytes_read_ptr = num_read;
17694 return result;
17695 }
17696
17697 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
17698 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
17699 ADDR_SIZE is the size of addresses from the CU header. */
17700
17701 static CORE_ADDR
17702 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
17703 {
17704 struct objfile *objfile = dwarf2_per_objfile->objfile;
17705 bfd *abfd = objfile->obfd;
17706 const gdb_byte *info_ptr;
17707
17708 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
17709 if (dwarf2_per_objfile->addr.buffer == NULL)
17710 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
17711 objfile_name (objfile));
17712 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
17713 error (_("DW_FORM_addr_index pointing outside of "
17714 ".debug_addr section [in module %s]"),
17715 objfile_name (objfile));
17716 info_ptr = (dwarf2_per_objfile->addr.buffer
17717 + addr_base + addr_index * addr_size);
17718 if (addr_size == 4)
17719 return bfd_get_32 (abfd, info_ptr);
17720 else
17721 return bfd_get_64 (abfd, info_ptr);
17722 }
17723
17724 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
17725
17726 static CORE_ADDR
17727 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
17728 {
17729 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
17730 }
17731
17732 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
17733
17734 static CORE_ADDR
17735 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
17736 unsigned int *bytes_read)
17737 {
17738 bfd *abfd = cu->objfile->obfd;
17739 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
17740
17741 return read_addr_index (cu, addr_index);
17742 }
17743
17744 /* Data structure to pass results from dwarf2_read_addr_index_reader
17745 back to dwarf2_read_addr_index. */
17746
17747 struct dwarf2_read_addr_index_data
17748 {
17749 ULONGEST addr_base;
17750 int addr_size;
17751 };
17752
17753 /* die_reader_func for dwarf2_read_addr_index. */
17754
17755 static void
17756 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
17757 const gdb_byte *info_ptr,
17758 struct die_info *comp_unit_die,
17759 int has_children,
17760 void *data)
17761 {
17762 struct dwarf2_cu *cu = reader->cu;
17763 struct dwarf2_read_addr_index_data *aidata =
17764 (struct dwarf2_read_addr_index_data *) data;
17765
17766 aidata->addr_base = cu->addr_base;
17767 aidata->addr_size = cu->header.addr_size;
17768 }
17769
17770 /* Given an index in .debug_addr, fetch the value.
17771 NOTE: This can be called during dwarf expression evaluation,
17772 long after the debug information has been read, and thus per_cu->cu
17773 may no longer exist. */
17774
17775 CORE_ADDR
17776 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
17777 unsigned int addr_index)
17778 {
17779 struct objfile *objfile = per_cu->objfile;
17780 struct dwarf2_cu *cu = per_cu->cu;
17781 ULONGEST addr_base;
17782 int addr_size;
17783
17784 /* This is intended to be called from outside this file. */
17785 dw2_setup (objfile);
17786
17787 /* We need addr_base and addr_size.
17788 If we don't have PER_CU->cu, we have to get it.
17789 Nasty, but the alternative is storing the needed info in PER_CU,
17790 which at this point doesn't seem justified: it's not clear how frequently
17791 it would get used and it would increase the size of every PER_CU.
17792 Entry points like dwarf2_per_cu_addr_size do a similar thing
17793 so we're not in uncharted territory here.
17794 Alas we need to be a bit more complicated as addr_base is contained
17795 in the DIE.
17796
17797 We don't need to read the entire CU(/TU).
17798 We just need the header and top level die.
17799
17800 IWBN to use the aging mechanism to let us lazily later discard the CU.
17801 For now we skip this optimization. */
17802
17803 if (cu != NULL)
17804 {
17805 addr_base = cu->addr_base;
17806 addr_size = cu->header.addr_size;
17807 }
17808 else
17809 {
17810 struct dwarf2_read_addr_index_data aidata;
17811
17812 /* Note: We can't use init_cutu_and_read_dies_simple here,
17813 we need addr_base. */
17814 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
17815 dwarf2_read_addr_index_reader, &aidata);
17816 addr_base = aidata.addr_base;
17817 addr_size = aidata.addr_size;
17818 }
17819
17820 return read_addr_index_1 (addr_index, addr_base, addr_size);
17821 }
17822
17823 /* Given a DW_FORM_GNU_str_index, fetch the string.
17824 This is only used by the Fission support. */
17825
17826 static const char *
17827 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
17828 {
17829 struct objfile *objfile = dwarf2_per_objfile->objfile;
17830 const char *objf_name = objfile_name (objfile);
17831 bfd *abfd = objfile->obfd;
17832 struct dwarf2_cu *cu = reader->cu;
17833 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17834 struct dwarf2_section_info *str_offsets_section =
17835 &reader->dwo_file->sections.str_offsets;
17836 const gdb_byte *info_ptr;
17837 ULONGEST str_offset;
17838 static const char form_name[] = "DW_FORM_GNU_str_index";
17839
17840 dwarf2_read_section (objfile, str_section);
17841 dwarf2_read_section (objfile, str_offsets_section);
17842 if (str_section->buffer == NULL)
17843 error (_("%s used without .debug_str.dwo section"
17844 " in CU at offset 0x%x [in module %s]"),
17845 form_name, to_underlying (cu->header.sect_off), objf_name);
17846 if (str_offsets_section->buffer == NULL)
17847 error (_("%s used without .debug_str_offsets.dwo section"
17848 " in CU at offset 0x%x [in module %s]"),
17849 form_name, to_underlying (cu->header.sect_off), objf_name);
17850 if (str_index * cu->header.offset_size >= str_offsets_section->size)
17851 error (_("%s pointing outside of .debug_str_offsets.dwo"
17852 " section in CU at offset 0x%x [in module %s]"),
17853 form_name, to_underlying (cu->header.sect_off), objf_name);
17854 info_ptr = (str_offsets_section->buffer
17855 + str_index * cu->header.offset_size);
17856 if (cu->header.offset_size == 4)
17857 str_offset = bfd_get_32 (abfd, info_ptr);
17858 else
17859 str_offset = bfd_get_64 (abfd, info_ptr);
17860 if (str_offset >= str_section->size)
17861 error (_("Offset from %s pointing outside of"
17862 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
17863 form_name, to_underlying (cu->header.sect_off), objf_name);
17864 return (const char *) (str_section->buffer + str_offset);
17865 }
17866
17867 /* Return the length of an LEB128 number in BUF. */
17868
17869 static int
17870 leb128_size (const gdb_byte *buf)
17871 {
17872 const gdb_byte *begin = buf;
17873 gdb_byte byte;
17874
17875 while (1)
17876 {
17877 byte = *buf++;
17878 if ((byte & 128) == 0)
17879 return buf - begin;
17880 }
17881 }
17882
17883 static void
17884 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17885 {
17886 switch (lang)
17887 {
17888 case DW_LANG_C89:
17889 case DW_LANG_C99:
17890 case DW_LANG_C11:
17891 case DW_LANG_C:
17892 case DW_LANG_UPC:
17893 cu->language = language_c;
17894 break;
17895 case DW_LANG_Java:
17896 case DW_LANG_C_plus_plus:
17897 case DW_LANG_C_plus_plus_11:
17898 case DW_LANG_C_plus_plus_14:
17899 cu->language = language_cplus;
17900 break;
17901 case DW_LANG_D:
17902 cu->language = language_d;
17903 break;
17904 case DW_LANG_Fortran77:
17905 case DW_LANG_Fortran90:
17906 case DW_LANG_Fortran95:
17907 case DW_LANG_Fortran03:
17908 case DW_LANG_Fortran08:
17909 cu->language = language_fortran;
17910 break;
17911 case DW_LANG_Go:
17912 cu->language = language_go;
17913 break;
17914 case DW_LANG_Mips_Assembler:
17915 cu->language = language_asm;
17916 break;
17917 case DW_LANG_Ada83:
17918 case DW_LANG_Ada95:
17919 cu->language = language_ada;
17920 break;
17921 case DW_LANG_Modula2:
17922 cu->language = language_m2;
17923 break;
17924 case DW_LANG_Pascal83:
17925 cu->language = language_pascal;
17926 break;
17927 case DW_LANG_ObjC:
17928 cu->language = language_objc;
17929 break;
17930 case DW_LANG_Rust:
17931 case DW_LANG_Rust_old:
17932 cu->language = language_rust;
17933 break;
17934 case DW_LANG_Cobol74:
17935 case DW_LANG_Cobol85:
17936 default:
17937 cu->language = language_minimal;
17938 break;
17939 }
17940 cu->language_defn = language_def (cu->language);
17941 }
17942
17943 /* Return the named attribute or NULL if not there. */
17944
17945 static struct attribute *
17946 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17947 {
17948 for (;;)
17949 {
17950 unsigned int i;
17951 struct attribute *spec = NULL;
17952
17953 for (i = 0; i < die->num_attrs; ++i)
17954 {
17955 if (die->attrs[i].name == name)
17956 return &die->attrs[i];
17957 if (die->attrs[i].name == DW_AT_specification
17958 || die->attrs[i].name == DW_AT_abstract_origin)
17959 spec = &die->attrs[i];
17960 }
17961
17962 if (!spec)
17963 break;
17964
17965 die = follow_die_ref (die, spec, &cu);
17966 }
17967
17968 return NULL;
17969 }
17970
17971 /* Return the named attribute or NULL if not there,
17972 but do not follow DW_AT_specification, etc.
17973 This is for use in contexts where we're reading .debug_types dies.
17974 Following DW_AT_specification, DW_AT_abstract_origin will take us
17975 back up the chain, and we want to go down. */
17976
17977 static struct attribute *
17978 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17979 {
17980 unsigned int i;
17981
17982 for (i = 0; i < die->num_attrs; ++i)
17983 if (die->attrs[i].name == name)
17984 return &die->attrs[i];
17985
17986 return NULL;
17987 }
17988
17989 /* Return the string associated with a string-typed attribute, or NULL if it
17990 is either not found or is of an incorrect type. */
17991
17992 static const char *
17993 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17994 {
17995 struct attribute *attr;
17996 const char *str = NULL;
17997
17998 attr = dwarf2_attr (die, name, cu);
17999
18000 if (attr != NULL)
18001 {
18002 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
18003 || attr->form == DW_FORM_string
18004 || attr->form == DW_FORM_GNU_str_index
18005 || attr->form == DW_FORM_GNU_strp_alt)
18006 str = DW_STRING (attr);
18007 else
18008 complaint (&symfile_complaints,
18009 _("string type expected for attribute %s for "
18010 "DIE at 0x%x in module %s"),
18011 dwarf_attr_name (name), to_underlying (die->sect_off),
18012 objfile_name (cu->objfile));
18013 }
18014
18015 return str;
18016 }
18017
18018 /* Return non-zero iff the attribute NAME is defined for the given DIE,
18019 and holds a non-zero value. This function should only be used for
18020 DW_FORM_flag or DW_FORM_flag_present attributes. */
18021
18022 static int
18023 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
18024 {
18025 struct attribute *attr = dwarf2_attr (die, name, cu);
18026
18027 return (attr && DW_UNSND (attr));
18028 }
18029
18030 static int
18031 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
18032 {
18033 /* A DIE is a declaration if it has a DW_AT_declaration attribute
18034 which value is non-zero. However, we have to be careful with
18035 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
18036 (via dwarf2_flag_true_p) follows this attribute. So we may
18037 end up accidently finding a declaration attribute that belongs
18038 to a different DIE referenced by the specification attribute,
18039 even though the given DIE does not have a declaration attribute. */
18040 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
18041 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
18042 }
18043
18044 /* Return the die giving the specification for DIE, if there is
18045 one. *SPEC_CU is the CU containing DIE on input, and the CU
18046 containing the return value on output. If there is no
18047 specification, but there is an abstract origin, that is
18048 returned. */
18049
18050 static struct die_info *
18051 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
18052 {
18053 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
18054 *spec_cu);
18055
18056 if (spec_attr == NULL)
18057 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
18058
18059 if (spec_attr == NULL)
18060 return NULL;
18061 else
18062 return follow_die_ref (die, spec_attr, spec_cu);
18063 }
18064
18065 /* Stub for free_line_header to match void * callback types. */
18066
18067 static void
18068 free_line_header_voidp (void *arg)
18069 {
18070 struct line_header *lh = (struct line_header *) arg;
18071
18072 delete lh;
18073 }
18074
18075 void
18076 line_header::add_include_dir (const char *include_dir)
18077 {
18078 if (dwarf_line_debug >= 2)
18079 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
18080 include_dirs.size () + 1, include_dir);
18081
18082 include_dirs.push_back (include_dir);
18083 }
18084
18085 void
18086 line_header::add_file_name (const char *name,
18087 dir_index d_index,
18088 unsigned int mod_time,
18089 unsigned int length)
18090 {
18091 if (dwarf_line_debug >= 2)
18092 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
18093 (unsigned) file_names.size () + 1, name);
18094
18095 file_names.emplace_back (name, d_index, mod_time, length);
18096 }
18097
18098 /* A convenience function to find the proper .debug_line section for a CU. */
18099
18100 static struct dwarf2_section_info *
18101 get_debug_line_section (struct dwarf2_cu *cu)
18102 {
18103 struct dwarf2_section_info *section;
18104
18105 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
18106 DWO file. */
18107 if (cu->dwo_unit && cu->per_cu->is_debug_types)
18108 section = &cu->dwo_unit->dwo_file->sections.line;
18109 else if (cu->per_cu->is_dwz)
18110 {
18111 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18112
18113 section = &dwz->line;
18114 }
18115 else
18116 section = &dwarf2_per_objfile->line;
18117
18118 return section;
18119 }
18120
18121 /* Read directory or file name entry format, starting with byte of
18122 format count entries, ULEB128 pairs of entry formats, ULEB128 of
18123 entries count and the entries themselves in the described entry
18124 format. */
18125
18126 static void
18127 read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
18128 struct line_header *lh,
18129 const struct comp_unit_head *cu_header,
18130 void (*callback) (struct line_header *lh,
18131 const char *name,
18132 dir_index d_index,
18133 unsigned int mod_time,
18134 unsigned int length))
18135 {
18136 gdb_byte format_count, formati;
18137 ULONGEST data_count, datai;
18138 const gdb_byte *buf = *bufp;
18139 const gdb_byte *format_header_data;
18140 int i;
18141 unsigned int bytes_read;
18142
18143 format_count = read_1_byte (abfd, buf);
18144 buf += 1;
18145 format_header_data = buf;
18146 for (formati = 0; formati < format_count; formati++)
18147 {
18148 read_unsigned_leb128 (abfd, buf, &bytes_read);
18149 buf += bytes_read;
18150 read_unsigned_leb128 (abfd, buf, &bytes_read);
18151 buf += bytes_read;
18152 }
18153
18154 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
18155 buf += bytes_read;
18156 for (datai = 0; datai < data_count; datai++)
18157 {
18158 const gdb_byte *format = format_header_data;
18159 struct file_entry fe;
18160
18161 for (formati = 0; formati < format_count; formati++)
18162 {
18163 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
18164 format += bytes_read;
18165
18166 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
18167 format += bytes_read;
18168
18169 gdb::optional<const char *> string;
18170 gdb::optional<unsigned int> uint;
18171
18172 switch (form)
18173 {
18174 case DW_FORM_string:
18175 string.emplace (read_direct_string (abfd, buf, &bytes_read));
18176 buf += bytes_read;
18177 break;
18178
18179 case DW_FORM_line_strp:
18180 string.emplace (read_indirect_line_string (abfd, buf,
18181 cu_header,
18182 &bytes_read));
18183 buf += bytes_read;
18184 break;
18185
18186 case DW_FORM_data1:
18187 uint.emplace (read_1_byte (abfd, buf));
18188 buf += 1;
18189 break;
18190
18191 case DW_FORM_data2:
18192 uint.emplace (read_2_bytes (abfd, buf));
18193 buf += 2;
18194 break;
18195
18196 case DW_FORM_data4:
18197 uint.emplace (read_4_bytes (abfd, buf));
18198 buf += 4;
18199 break;
18200
18201 case DW_FORM_data8:
18202 uint.emplace (read_8_bytes (abfd, buf));
18203 buf += 8;
18204 break;
18205
18206 case DW_FORM_udata:
18207 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
18208 buf += bytes_read;
18209 break;
18210
18211 case DW_FORM_block:
18212 /* It is valid only for DW_LNCT_timestamp which is ignored by
18213 current GDB. */
18214 break;
18215 }
18216
18217 switch (content_type)
18218 {
18219 case DW_LNCT_path:
18220 if (string.has_value ())
18221 fe.name = *string;
18222 break;
18223 case DW_LNCT_directory_index:
18224 if (uint.has_value ())
18225 fe.d_index = (dir_index) *uint;
18226 break;
18227 case DW_LNCT_timestamp:
18228 if (uint.has_value ())
18229 fe.mod_time = *uint;
18230 break;
18231 case DW_LNCT_size:
18232 if (uint.has_value ())
18233 fe.length = *uint;
18234 break;
18235 case DW_LNCT_MD5:
18236 break;
18237 default:
18238 complaint (&symfile_complaints,
18239 _("Unknown format content type %s"),
18240 pulongest (content_type));
18241 }
18242 }
18243
18244 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
18245 }
18246
18247 *bufp = buf;
18248 }
18249
18250 /* Read the statement program header starting at OFFSET in
18251 .debug_line, or .debug_line.dwo. Return a pointer
18252 to a struct line_header, allocated using xmalloc.
18253 Returns NULL if there is a problem reading the header, e.g., if it
18254 has a version we don't understand.
18255
18256 NOTE: the strings in the include directory and file name tables of
18257 the returned object point into the dwarf line section buffer,
18258 and must not be freed. */
18259
18260 static line_header_up
18261 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
18262 {
18263 const gdb_byte *line_ptr;
18264 unsigned int bytes_read, offset_size;
18265 int i;
18266 const char *cur_dir, *cur_file;
18267 struct dwarf2_section_info *section;
18268 bfd *abfd;
18269
18270 section = get_debug_line_section (cu);
18271 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
18272 if (section->buffer == NULL)
18273 {
18274 if (cu->dwo_unit && cu->per_cu->is_debug_types)
18275 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
18276 else
18277 complaint (&symfile_complaints, _("missing .debug_line section"));
18278 return 0;
18279 }
18280
18281 /* We can't do this until we know the section is non-empty.
18282 Only then do we know we have such a section. */
18283 abfd = get_section_bfd_owner (section);
18284
18285 /* Make sure that at least there's room for the total_length field.
18286 That could be 12 bytes long, but we're just going to fudge that. */
18287 if (to_underlying (sect_off) + 4 >= section->size)
18288 {
18289 dwarf2_statement_list_fits_in_line_number_section_complaint ();
18290 return 0;
18291 }
18292
18293 line_header_up lh (new line_header ());
18294
18295 lh->sect_off = sect_off;
18296 lh->offset_in_dwz = cu->per_cu->is_dwz;
18297
18298 line_ptr = section->buffer + to_underlying (sect_off);
18299
18300 /* Read in the header. */
18301 lh->total_length =
18302 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
18303 &bytes_read, &offset_size);
18304 line_ptr += bytes_read;
18305 if (line_ptr + lh->total_length > (section->buffer + section->size))
18306 {
18307 dwarf2_statement_list_fits_in_line_number_section_complaint ();
18308 return 0;
18309 }
18310 lh->statement_program_end = line_ptr + lh->total_length;
18311 lh->version = read_2_bytes (abfd, line_ptr);
18312 line_ptr += 2;
18313 if (lh->version > 5)
18314 {
18315 /* This is a version we don't understand. The format could have
18316 changed in ways we don't handle properly so just punt. */
18317 complaint (&symfile_complaints,
18318 _("unsupported version in .debug_line section"));
18319 return NULL;
18320 }
18321 if (lh->version >= 5)
18322 {
18323 gdb_byte segment_selector_size;
18324
18325 /* Skip address size. */
18326 read_1_byte (abfd, line_ptr);
18327 line_ptr += 1;
18328
18329 segment_selector_size = read_1_byte (abfd, line_ptr);
18330 line_ptr += 1;
18331 if (segment_selector_size != 0)
18332 {
18333 complaint (&symfile_complaints,
18334 _("unsupported segment selector size %u "
18335 "in .debug_line section"),
18336 segment_selector_size);
18337 return NULL;
18338 }
18339 }
18340 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
18341 line_ptr += offset_size;
18342 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
18343 line_ptr += 1;
18344 if (lh->version >= 4)
18345 {
18346 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
18347 line_ptr += 1;
18348 }
18349 else
18350 lh->maximum_ops_per_instruction = 1;
18351
18352 if (lh->maximum_ops_per_instruction == 0)
18353 {
18354 lh->maximum_ops_per_instruction = 1;
18355 complaint (&symfile_complaints,
18356 _("invalid maximum_ops_per_instruction "
18357 "in `.debug_line' section"));
18358 }
18359
18360 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
18361 line_ptr += 1;
18362 lh->line_base = read_1_signed_byte (abfd, line_ptr);
18363 line_ptr += 1;
18364 lh->line_range = read_1_byte (abfd, line_ptr);
18365 line_ptr += 1;
18366 lh->opcode_base = read_1_byte (abfd, line_ptr);
18367 line_ptr += 1;
18368 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
18369
18370 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
18371 for (i = 1; i < lh->opcode_base; ++i)
18372 {
18373 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
18374 line_ptr += 1;
18375 }
18376
18377 if (lh->version >= 5)
18378 {
18379 /* Read directory table. */
18380 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18381 [] (struct line_header *lh, const char *name,
18382 dir_index d_index, unsigned int mod_time,
18383 unsigned int length)
18384 {
18385 lh->add_include_dir (name);
18386 });
18387
18388 /* Read file name table. */
18389 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18390 [] (struct line_header *lh, const char *name,
18391 dir_index d_index, unsigned int mod_time,
18392 unsigned int length)
18393 {
18394 lh->add_file_name (name, d_index, mod_time, length);
18395 });
18396 }
18397 else
18398 {
18399 /* Read directory table. */
18400 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18401 {
18402 line_ptr += bytes_read;
18403 lh->add_include_dir (cur_dir);
18404 }
18405 line_ptr += bytes_read;
18406
18407 /* Read file name table. */
18408 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18409 {
18410 unsigned int mod_time, length;
18411 dir_index d_index;
18412
18413 line_ptr += bytes_read;
18414 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18415 line_ptr += bytes_read;
18416 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18417 line_ptr += bytes_read;
18418 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18419 line_ptr += bytes_read;
18420
18421 lh->add_file_name (cur_file, d_index, mod_time, length);
18422 }
18423 line_ptr += bytes_read;
18424 }
18425 lh->statement_program_start = line_ptr;
18426
18427 if (line_ptr > (section->buffer + section->size))
18428 complaint (&symfile_complaints,
18429 _("line number info header doesn't "
18430 "fit in `.debug_line' section"));
18431
18432 return lh;
18433 }
18434
18435 /* Subroutine of dwarf_decode_lines to simplify it.
18436 Return the file name of the psymtab for included file FILE_INDEX
18437 in line header LH of PST.
18438 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18439 If space for the result is malloc'd, it will be freed by a cleanup.
18440 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
18441
18442 The function creates dangling cleanup registration. */
18443
18444 static const char *
18445 psymtab_include_file_name (const struct line_header *lh, int file_index,
18446 const struct partial_symtab *pst,
18447 const char *comp_dir)
18448 {
18449 const file_entry &fe = lh->file_names[file_index];
18450 const char *include_name = fe.name;
18451 const char *include_name_to_compare = include_name;
18452 const char *pst_filename;
18453 char *copied_name = NULL;
18454 int file_is_pst;
18455
18456 const char *dir_name = fe.include_dir (lh);
18457
18458 if (!IS_ABSOLUTE_PATH (include_name)
18459 && (dir_name != NULL || comp_dir != NULL))
18460 {
18461 /* Avoid creating a duplicate psymtab for PST.
18462 We do this by comparing INCLUDE_NAME and PST_FILENAME.
18463 Before we do the comparison, however, we need to account
18464 for DIR_NAME and COMP_DIR.
18465 First prepend dir_name (if non-NULL). If we still don't
18466 have an absolute path prepend comp_dir (if non-NULL).
18467 However, the directory we record in the include-file's
18468 psymtab does not contain COMP_DIR (to match the
18469 corresponding symtab(s)).
18470
18471 Example:
18472
18473 bash$ cd /tmp
18474 bash$ gcc -g ./hello.c
18475 include_name = "hello.c"
18476 dir_name = "."
18477 DW_AT_comp_dir = comp_dir = "/tmp"
18478 DW_AT_name = "./hello.c"
18479
18480 */
18481
18482 if (dir_name != NULL)
18483 {
18484 char *tem = concat (dir_name, SLASH_STRING,
18485 include_name, (char *)NULL);
18486
18487 make_cleanup (xfree, tem);
18488 include_name = tem;
18489 include_name_to_compare = include_name;
18490 }
18491 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
18492 {
18493 char *tem = concat (comp_dir, SLASH_STRING,
18494 include_name, (char *)NULL);
18495
18496 make_cleanup (xfree, tem);
18497 include_name_to_compare = tem;
18498 }
18499 }
18500
18501 pst_filename = pst->filename;
18502 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
18503 {
18504 copied_name = concat (pst->dirname, SLASH_STRING,
18505 pst_filename, (char *)NULL);
18506 pst_filename = copied_name;
18507 }
18508
18509 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
18510
18511 if (copied_name != NULL)
18512 xfree (copied_name);
18513
18514 if (file_is_pst)
18515 return NULL;
18516 return include_name;
18517 }
18518
18519 /* State machine to track the state of the line number program. */
18520
18521 class lnp_state_machine
18522 {
18523 public:
18524 /* Initialize a machine state for the start of a line number
18525 program. */
18526 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
18527
18528 file_entry *current_file ()
18529 {
18530 /* lh->file_names is 0-based, but the file name numbers in the
18531 statement program are 1-based. */
18532 return m_line_header->file_name_at (m_file);
18533 }
18534
18535 /* Record the line in the state machine. END_SEQUENCE is true if
18536 we're processing the end of a sequence. */
18537 void record_line (bool end_sequence);
18538
18539 /* Check address and if invalid nop-out the rest of the lines in this
18540 sequence. */
18541 void check_line_address (struct dwarf2_cu *cu,
18542 const gdb_byte *line_ptr,
18543 CORE_ADDR lowpc, CORE_ADDR address);
18544
18545 void handle_set_discriminator (unsigned int discriminator)
18546 {
18547 m_discriminator = discriminator;
18548 m_line_has_non_zero_discriminator |= discriminator != 0;
18549 }
18550
18551 /* Handle DW_LNE_set_address. */
18552 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
18553 {
18554 m_op_index = 0;
18555 address += baseaddr;
18556 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
18557 }
18558
18559 /* Handle DW_LNS_advance_pc. */
18560 void handle_advance_pc (CORE_ADDR adjust);
18561
18562 /* Handle a special opcode. */
18563 void handle_special_opcode (unsigned char op_code);
18564
18565 /* Handle DW_LNS_advance_line. */
18566 void handle_advance_line (int line_delta)
18567 {
18568 advance_line (line_delta);
18569 }
18570
18571 /* Handle DW_LNS_set_file. */
18572 void handle_set_file (file_name_index file);
18573
18574 /* Handle DW_LNS_negate_stmt. */
18575 void handle_negate_stmt ()
18576 {
18577 m_is_stmt = !m_is_stmt;
18578 }
18579
18580 /* Handle DW_LNS_const_add_pc. */
18581 void handle_const_add_pc ();
18582
18583 /* Handle DW_LNS_fixed_advance_pc. */
18584 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
18585 {
18586 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18587 m_op_index = 0;
18588 }
18589
18590 /* Handle DW_LNS_copy. */
18591 void handle_copy ()
18592 {
18593 record_line (false);
18594 m_discriminator = 0;
18595 }
18596
18597 /* Handle DW_LNE_end_sequence. */
18598 void handle_end_sequence ()
18599 {
18600 m_record_line_callback = ::record_line;
18601 }
18602
18603 private:
18604 /* Advance the line by LINE_DELTA. */
18605 void advance_line (int line_delta)
18606 {
18607 m_line += line_delta;
18608
18609 if (line_delta != 0)
18610 m_line_has_non_zero_discriminator = m_discriminator != 0;
18611 }
18612
18613 gdbarch *m_gdbarch;
18614
18615 /* True if we're recording lines.
18616 Otherwise we're building partial symtabs and are just interested in
18617 finding include files mentioned by the line number program. */
18618 bool m_record_lines_p;
18619
18620 /* The line number header. */
18621 line_header *m_line_header;
18622
18623 /* These are part of the standard DWARF line number state machine,
18624 and initialized according to the DWARF spec. */
18625
18626 unsigned char m_op_index = 0;
18627 /* The line table index (1-based) of the current file. */
18628 file_name_index m_file = (file_name_index) 1;
18629 unsigned int m_line = 1;
18630
18631 /* These are initialized in the constructor. */
18632
18633 CORE_ADDR m_address;
18634 bool m_is_stmt;
18635 unsigned int m_discriminator;
18636
18637 /* Additional bits of state we need to track. */
18638
18639 /* The last file that we called dwarf2_start_subfile for.
18640 This is only used for TLLs. */
18641 unsigned int m_last_file = 0;
18642 /* The last file a line number was recorded for. */
18643 struct subfile *m_last_subfile = NULL;
18644
18645 /* The function to call to record a line. */
18646 record_line_ftype *m_record_line_callback = NULL;
18647
18648 /* The last line number that was recorded, used to coalesce
18649 consecutive entries for the same line. This can happen, for
18650 example, when discriminators are present. PR 17276. */
18651 unsigned int m_last_line = 0;
18652 bool m_line_has_non_zero_discriminator = false;
18653 };
18654
18655 void
18656 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
18657 {
18658 CORE_ADDR addr_adj = (((m_op_index + adjust)
18659 / m_line_header->maximum_ops_per_instruction)
18660 * m_line_header->minimum_instruction_length);
18661 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18662 m_op_index = ((m_op_index + adjust)
18663 % m_line_header->maximum_ops_per_instruction);
18664 }
18665
18666 void
18667 lnp_state_machine::handle_special_opcode (unsigned char op_code)
18668 {
18669 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
18670 CORE_ADDR addr_adj = (((m_op_index
18671 + (adj_opcode / m_line_header->line_range))
18672 / m_line_header->maximum_ops_per_instruction)
18673 * m_line_header->minimum_instruction_length);
18674 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18675 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
18676 % m_line_header->maximum_ops_per_instruction);
18677
18678 int line_delta = (m_line_header->line_base
18679 + (adj_opcode % m_line_header->line_range));
18680 advance_line (line_delta);
18681 record_line (false);
18682 m_discriminator = 0;
18683 }
18684
18685 void
18686 lnp_state_machine::handle_set_file (file_name_index file)
18687 {
18688 m_file = file;
18689
18690 const file_entry *fe = current_file ();
18691 if (fe == NULL)
18692 dwarf2_debug_line_missing_file_complaint ();
18693 else if (m_record_lines_p)
18694 {
18695 const char *dir = fe->include_dir (m_line_header);
18696
18697 m_last_subfile = current_subfile;
18698 m_line_has_non_zero_discriminator = m_discriminator != 0;
18699 dwarf2_start_subfile (fe->name, dir);
18700 }
18701 }
18702
18703 void
18704 lnp_state_machine::handle_const_add_pc ()
18705 {
18706 CORE_ADDR adjust
18707 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
18708
18709 CORE_ADDR addr_adj
18710 = (((m_op_index + adjust)
18711 / m_line_header->maximum_ops_per_instruction)
18712 * m_line_header->minimum_instruction_length);
18713
18714 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18715 m_op_index = ((m_op_index + adjust)
18716 % m_line_header->maximum_ops_per_instruction);
18717 }
18718
18719 /* Ignore this record_line request. */
18720
18721 static void
18722 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
18723 {
18724 return;
18725 }
18726
18727 /* Return non-zero if we should add LINE to the line number table.
18728 LINE is the line to add, LAST_LINE is the last line that was added,
18729 LAST_SUBFILE is the subfile for LAST_LINE.
18730 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
18731 had a non-zero discriminator.
18732
18733 We have to be careful in the presence of discriminators.
18734 E.g., for this line:
18735
18736 for (i = 0; i < 100000; i++);
18737
18738 clang can emit four line number entries for that one line,
18739 each with a different discriminator.
18740 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
18741
18742 However, we want gdb to coalesce all four entries into one.
18743 Otherwise the user could stepi into the middle of the line and
18744 gdb would get confused about whether the pc really was in the
18745 middle of the line.
18746
18747 Things are further complicated by the fact that two consecutive
18748 line number entries for the same line is a heuristic used by gcc
18749 to denote the end of the prologue. So we can't just discard duplicate
18750 entries, we have to be selective about it. The heuristic we use is
18751 that we only collapse consecutive entries for the same line if at least
18752 one of those entries has a non-zero discriminator. PR 17276.
18753
18754 Note: Addresses in the line number state machine can never go backwards
18755 within one sequence, thus this coalescing is ok. */
18756
18757 static int
18758 dwarf_record_line_p (unsigned int line, unsigned int last_line,
18759 int line_has_non_zero_discriminator,
18760 struct subfile *last_subfile)
18761 {
18762 if (current_subfile != last_subfile)
18763 return 1;
18764 if (line != last_line)
18765 return 1;
18766 /* Same line for the same file that we've seen already.
18767 As a last check, for pr 17276, only record the line if the line
18768 has never had a non-zero discriminator. */
18769 if (!line_has_non_zero_discriminator)
18770 return 1;
18771 return 0;
18772 }
18773
18774 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
18775 in the line table of subfile SUBFILE. */
18776
18777 static void
18778 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
18779 unsigned int line, CORE_ADDR address,
18780 record_line_ftype p_record_line)
18781 {
18782 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
18783
18784 if (dwarf_line_debug)
18785 {
18786 fprintf_unfiltered (gdb_stdlog,
18787 "Recording line %u, file %s, address %s\n",
18788 line, lbasename (subfile->name),
18789 paddress (gdbarch, address));
18790 }
18791
18792 (*p_record_line) (subfile, line, addr);
18793 }
18794
18795 /* Subroutine of dwarf_decode_lines_1 to simplify it.
18796 Mark the end of a set of line number records.
18797 The arguments are the same as for dwarf_record_line_1.
18798 If SUBFILE is NULL the request is ignored. */
18799
18800 static void
18801 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
18802 CORE_ADDR address, record_line_ftype p_record_line)
18803 {
18804 if (subfile == NULL)
18805 return;
18806
18807 if (dwarf_line_debug)
18808 {
18809 fprintf_unfiltered (gdb_stdlog,
18810 "Finishing current line, file %s, address %s\n",
18811 lbasename (subfile->name),
18812 paddress (gdbarch, address));
18813 }
18814
18815 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
18816 }
18817
18818 void
18819 lnp_state_machine::record_line (bool end_sequence)
18820 {
18821 if (dwarf_line_debug)
18822 {
18823 fprintf_unfiltered (gdb_stdlog,
18824 "Processing actual line %u: file %u,"
18825 " address %s, is_stmt %u, discrim %u\n",
18826 m_line, to_underlying (m_file),
18827 paddress (m_gdbarch, m_address),
18828 m_is_stmt, m_discriminator);
18829 }
18830
18831 file_entry *fe = current_file ();
18832
18833 if (fe == NULL)
18834 dwarf2_debug_line_missing_file_complaint ();
18835 /* For now we ignore lines not starting on an instruction boundary.
18836 But not when processing end_sequence for compatibility with the
18837 previous version of the code. */
18838 else if (m_op_index == 0 || end_sequence)
18839 {
18840 fe->included_p = 1;
18841 if (m_record_lines_p && m_is_stmt)
18842 {
18843 if (m_last_subfile != current_subfile || end_sequence)
18844 {
18845 dwarf_finish_line (m_gdbarch, m_last_subfile,
18846 m_address, m_record_line_callback);
18847 }
18848
18849 if (!end_sequence)
18850 {
18851 if (dwarf_record_line_p (m_line, m_last_line,
18852 m_line_has_non_zero_discriminator,
18853 m_last_subfile))
18854 {
18855 dwarf_record_line_1 (m_gdbarch, current_subfile,
18856 m_line, m_address,
18857 m_record_line_callback);
18858 }
18859 m_last_subfile = current_subfile;
18860 m_last_line = m_line;
18861 }
18862 }
18863 }
18864 }
18865
18866 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
18867 bool record_lines_p)
18868 {
18869 m_gdbarch = arch;
18870 m_record_lines_p = record_lines_p;
18871 m_line_header = lh;
18872
18873 m_record_line_callback = ::record_line;
18874
18875 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
18876 was a line entry for it so that the backend has a chance to adjust it
18877 and also record it in case it needs it. This is currently used by MIPS
18878 code, cf. `mips_adjust_dwarf2_line'. */
18879 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
18880 m_is_stmt = lh->default_is_stmt;
18881 m_discriminator = 0;
18882 }
18883
18884 void
18885 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
18886 const gdb_byte *line_ptr,
18887 CORE_ADDR lowpc, CORE_ADDR address)
18888 {
18889 /* If address < lowpc then it's not a usable value, it's outside the
18890 pc range of the CU. However, we restrict the test to only address
18891 values of zero to preserve GDB's previous behaviour which is to
18892 handle the specific case of a function being GC'd by the linker. */
18893
18894 if (address == 0 && address < lowpc)
18895 {
18896 /* This line table is for a function which has been
18897 GCd by the linker. Ignore it. PR gdb/12528 */
18898
18899 struct objfile *objfile = cu->objfile;
18900 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
18901
18902 complaint (&symfile_complaints,
18903 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
18904 line_offset, objfile_name (objfile));
18905 m_record_line_callback = noop_record_line;
18906 /* Note: record_line_callback is left as noop_record_line until
18907 we see DW_LNE_end_sequence. */
18908 }
18909 }
18910
18911 /* Subroutine of dwarf_decode_lines to simplify it.
18912 Process the line number information in LH.
18913 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
18914 program in order to set included_p for every referenced header. */
18915
18916 static void
18917 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
18918 const int decode_for_pst_p, CORE_ADDR lowpc)
18919 {
18920 const gdb_byte *line_ptr, *extended_end;
18921 const gdb_byte *line_end;
18922 unsigned int bytes_read, extended_len;
18923 unsigned char op_code, extended_op;
18924 CORE_ADDR baseaddr;
18925 struct objfile *objfile = cu->objfile;
18926 bfd *abfd = objfile->obfd;
18927 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18928 /* True if we're recording line info (as opposed to building partial
18929 symtabs and just interested in finding include files mentioned by
18930 the line number program). */
18931 bool record_lines_p = !decode_for_pst_p;
18932
18933 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18934
18935 line_ptr = lh->statement_program_start;
18936 line_end = lh->statement_program_end;
18937
18938 /* Read the statement sequences until there's nothing left. */
18939 while (line_ptr < line_end)
18940 {
18941 /* The DWARF line number program state machine. Reset the state
18942 machine at the start of each sequence. */
18943 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
18944 bool end_sequence = false;
18945
18946 if (record_lines_p)
18947 {
18948 /* Start a subfile for the current file of the state
18949 machine. */
18950 const file_entry *fe = state_machine.current_file ();
18951
18952 if (fe != NULL)
18953 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
18954 }
18955
18956 /* Decode the table. */
18957 while (line_ptr < line_end && !end_sequence)
18958 {
18959 op_code = read_1_byte (abfd, line_ptr);
18960 line_ptr += 1;
18961
18962 if (op_code >= lh->opcode_base)
18963 {
18964 /* Special opcode. */
18965 state_machine.handle_special_opcode (op_code);
18966 }
18967 else switch (op_code)
18968 {
18969 case DW_LNS_extended_op:
18970 extended_len = read_unsigned_leb128 (abfd, line_ptr,
18971 &bytes_read);
18972 line_ptr += bytes_read;
18973 extended_end = line_ptr + extended_len;
18974 extended_op = read_1_byte (abfd, line_ptr);
18975 line_ptr += 1;
18976 switch (extended_op)
18977 {
18978 case DW_LNE_end_sequence:
18979 state_machine.handle_end_sequence ();
18980 end_sequence = true;
18981 break;
18982 case DW_LNE_set_address:
18983 {
18984 CORE_ADDR address
18985 = read_address (abfd, line_ptr, cu, &bytes_read);
18986 line_ptr += bytes_read;
18987
18988 state_machine.check_line_address (cu, line_ptr,
18989 lowpc, address);
18990 state_machine.handle_set_address (baseaddr, address);
18991 }
18992 break;
18993 case DW_LNE_define_file:
18994 {
18995 const char *cur_file;
18996 unsigned int mod_time, length;
18997 dir_index dindex;
18998
18999 cur_file = read_direct_string (abfd, line_ptr,
19000 &bytes_read);
19001 line_ptr += bytes_read;
19002 dindex = (dir_index)
19003 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19004 line_ptr += bytes_read;
19005 mod_time =
19006 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19007 line_ptr += bytes_read;
19008 length =
19009 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19010 line_ptr += bytes_read;
19011 lh->add_file_name (cur_file, dindex, mod_time, length);
19012 }
19013 break;
19014 case DW_LNE_set_discriminator:
19015 {
19016 /* The discriminator is not interesting to the
19017 debugger; just ignore it. We still need to
19018 check its value though:
19019 if there are consecutive entries for the same
19020 (non-prologue) line we want to coalesce them.
19021 PR 17276. */
19022 unsigned int discr
19023 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19024 line_ptr += bytes_read;
19025
19026 state_machine.handle_set_discriminator (discr);
19027 }
19028 break;
19029 default:
19030 complaint (&symfile_complaints,
19031 _("mangled .debug_line section"));
19032 return;
19033 }
19034 /* Make sure that we parsed the extended op correctly. If e.g.
19035 we expected a different address size than the producer used,
19036 we may have read the wrong number of bytes. */
19037 if (line_ptr != extended_end)
19038 {
19039 complaint (&symfile_complaints,
19040 _("mangled .debug_line section"));
19041 return;
19042 }
19043 break;
19044 case DW_LNS_copy:
19045 state_machine.handle_copy ();
19046 break;
19047 case DW_LNS_advance_pc:
19048 {
19049 CORE_ADDR adjust
19050 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19051 line_ptr += bytes_read;
19052
19053 state_machine.handle_advance_pc (adjust);
19054 }
19055 break;
19056 case DW_LNS_advance_line:
19057 {
19058 int line_delta
19059 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
19060 line_ptr += bytes_read;
19061
19062 state_machine.handle_advance_line (line_delta);
19063 }
19064 break;
19065 case DW_LNS_set_file:
19066 {
19067 file_name_index file
19068 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
19069 &bytes_read);
19070 line_ptr += bytes_read;
19071
19072 state_machine.handle_set_file (file);
19073 }
19074 break;
19075 case DW_LNS_set_column:
19076 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19077 line_ptr += bytes_read;
19078 break;
19079 case DW_LNS_negate_stmt:
19080 state_machine.handle_negate_stmt ();
19081 break;
19082 case DW_LNS_set_basic_block:
19083 break;
19084 /* Add to the address register of the state machine the
19085 address increment value corresponding to special opcode
19086 255. I.e., this value is scaled by the minimum
19087 instruction length since special opcode 255 would have
19088 scaled the increment. */
19089 case DW_LNS_const_add_pc:
19090 state_machine.handle_const_add_pc ();
19091 break;
19092 case DW_LNS_fixed_advance_pc:
19093 {
19094 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
19095 line_ptr += 2;
19096
19097 state_machine.handle_fixed_advance_pc (addr_adj);
19098 }
19099 break;
19100 default:
19101 {
19102 /* Unknown standard opcode, ignore it. */
19103 int i;
19104
19105 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
19106 {
19107 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19108 line_ptr += bytes_read;
19109 }
19110 }
19111 }
19112 }
19113
19114 if (!end_sequence)
19115 dwarf2_debug_line_missing_end_sequence_complaint ();
19116
19117 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
19118 in which case we still finish recording the last line). */
19119 state_machine.record_line (true);
19120 }
19121 }
19122
19123 /* Decode the Line Number Program (LNP) for the given line_header
19124 structure and CU. The actual information extracted and the type
19125 of structures created from the LNP depends on the value of PST.
19126
19127 1. If PST is NULL, then this procedure uses the data from the program
19128 to create all necessary symbol tables, and their linetables.
19129
19130 2. If PST is not NULL, this procedure reads the program to determine
19131 the list of files included by the unit represented by PST, and
19132 builds all the associated partial symbol tables.
19133
19134 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
19135 It is used for relative paths in the line table.
19136 NOTE: When processing partial symtabs (pst != NULL),
19137 comp_dir == pst->dirname.
19138
19139 NOTE: It is important that psymtabs have the same file name (via strcmp)
19140 as the corresponding symtab. Since COMP_DIR is not used in the name of the
19141 symtab we don't use it in the name of the psymtabs we create.
19142 E.g. expand_line_sal requires this when finding psymtabs to expand.
19143 A good testcase for this is mb-inline.exp.
19144
19145 LOWPC is the lowest address in CU (or 0 if not known).
19146
19147 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
19148 for its PC<->lines mapping information. Otherwise only the filename
19149 table is read in. */
19150
19151 static void
19152 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
19153 struct dwarf2_cu *cu, struct partial_symtab *pst,
19154 CORE_ADDR lowpc, int decode_mapping)
19155 {
19156 struct objfile *objfile = cu->objfile;
19157 const int decode_for_pst_p = (pst != NULL);
19158
19159 if (decode_mapping)
19160 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
19161
19162 if (decode_for_pst_p)
19163 {
19164 int file_index;
19165
19166 /* Now that we're done scanning the Line Header Program, we can
19167 create the psymtab of each included file. */
19168 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
19169 if (lh->file_names[file_index].included_p == 1)
19170 {
19171 const char *include_name =
19172 psymtab_include_file_name (lh, file_index, pst, comp_dir);
19173 if (include_name != NULL)
19174 dwarf2_create_include_psymtab (include_name, pst, objfile);
19175 }
19176 }
19177 else
19178 {
19179 /* Make sure a symtab is created for every file, even files
19180 which contain only variables (i.e. no code with associated
19181 line numbers). */
19182 struct compunit_symtab *cust = buildsym_compunit_symtab ();
19183 int i;
19184
19185 for (i = 0; i < lh->file_names.size (); i++)
19186 {
19187 file_entry &fe = lh->file_names[i];
19188
19189 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
19190
19191 if (current_subfile->symtab == NULL)
19192 {
19193 current_subfile->symtab
19194 = allocate_symtab (cust, current_subfile->name);
19195 }
19196 fe.symtab = current_subfile->symtab;
19197 }
19198 }
19199 }
19200
19201 /* Start a subfile for DWARF. FILENAME is the name of the file and
19202 DIRNAME the name of the source directory which contains FILENAME
19203 or NULL if not known.
19204 This routine tries to keep line numbers from identical absolute and
19205 relative file names in a common subfile.
19206
19207 Using the `list' example from the GDB testsuite, which resides in
19208 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
19209 of /srcdir/list0.c yields the following debugging information for list0.c:
19210
19211 DW_AT_name: /srcdir/list0.c
19212 DW_AT_comp_dir: /compdir
19213 files.files[0].name: list0.h
19214 files.files[0].dir: /srcdir
19215 files.files[1].name: list0.c
19216 files.files[1].dir: /srcdir
19217
19218 The line number information for list0.c has to end up in a single
19219 subfile, so that `break /srcdir/list0.c:1' works as expected.
19220 start_subfile will ensure that this happens provided that we pass the
19221 concatenation of files.files[1].dir and files.files[1].name as the
19222 subfile's name. */
19223
19224 static void
19225 dwarf2_start_subfile (const char *filename, const char *dirname)
19226 {
19227 char *copy = NULL;
19228
19229 /* In order not to lose the line information directory,
19230 we concatenate it to the filename when it makes sense.
19231 Note that the Dwarf3 standard says (speaking of filenames in line
19232 information): ``The directory index is ignored for file names
19233 that represent full path names''. Thus ignoring dirname in the
19234 `else' branch below isn't an issue. */
19235
19236 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
19237 {
19238 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
19239 filename = copy;
19240 }
19241
19242 start_subfile (filename);
19243
19244 if (copy != NULL)
19245 xfree (copy);
19246 }
19247
19248 /* Start a symtab for DWARF.
19249 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
19250
19251 static struct compunit_symtab *
19252 dwarf2_start_symtab (struct dwarf2_cu *cu,
19253 const char *name, const char *comp_dir, CORE_ADDR low_pc)
19254 {
19255 struct compunit_symtab *cust
19256 = start_symtab (cu->objfile, name, comp_dir, low_pc, cu->language);
19257
19258 record_debugformat ("DWARF 2");
19259 record_producer (cu->producer);
19260
19261 /* We assume that we're processing GCC output. */
19262 processing_gcc_compilation = 2;
19263
19264 cu->processing_has_namespace_info = 0;
19265
19266 return cust;
19267 }
19268
19269 static void
19270 var_decode_location (struct attribute *attr, struct symbol *sym,
19271 struct dwarf2_cu *cu)
19272 {
19273 struct objfile *objfile = cu->objfile;
19274 struct comp_unit_head *cu_header = &cu->header;
19275
19276 /* NOTE drow/2003-01-30: There used to be a comment and some special
19277 code here to turn a symbol with DW_AT_external and a
19278 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
19279 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
19280 with some versions of binutils) where shared libraries could have
19281 relocations against symbols in their debug information - the
19282 minimal symbol would have the right address, but the debug info
19283 would not. It's no longer necessary, because we will explicitly
19284 apply relocations when we read in the debug information now. */
19285
19286 /* A DW_AT_location attribute with no contents indicates that a
19287 variable has been optimized away. */
19288 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
19289 {
19290 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
19291 return;
19292 }
19293
19294 /* Handle one degenerate form of location expression specially, to
19295 preserve GDB's previous behavior when section offsets are
19296 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
19297 then mark this symbol as LOC_STATIC. */
19298
19299 if (attr_form_is_block (attr)
19300 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
19301 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
19302 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
19303 && (DW_BLOCK (attr)->size
19304 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
19305 {
19306 unsigned int dummy;
19307
19308 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
19309 SYMBOL_VALUE_ADDRESS (sym) =
19310 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
19311 else
19312 SYMBOL_VALUE_ADDRESS (sym) =
19313 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
19314 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
19315 fixup_symbol_section (sym, objfile);
19316 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
19317 SYMBOL_SECTION (sym));
19318 return;
19319 }
19320
19321 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
19322 expression evaluator, and use LOC_COMPUTED only when necessary
19323 (i.e. when the value of a register or memory location is
19324 referenced, or a thread-local block, etc.). Then again, it might
19325 not be worthwhile. I'm assuming that it isn't unless performance
19326 or memory numbers show me otherwise. */
19327
19328 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
19329
19330 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
19331 cu->has_loclist = 1;
19332 }
19333
19334 /* Given a pointer to a DWARF information entry, figure out if we need
19335 to make a symbol table entry for it, and if so, create a new entry
19336 and return a pointer to it.
19337 If TYPE is NULL, determine symbol type from the die, otherwise
19338 used the passed type.
19339 If SPACE is not NULL, use it to hold the new symbol. If it is
19340 NULL, allocate a new symbol on the objfile's obstack. */
19341
19342 static struct symbol *
19343 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
19344 struct symbol *space)
19345 {
19346 struct objfile *objfile = cu->objfile;
19347 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19348 struct symbol *sym = NULL;
19349 const char *name;
19350 struct attribute *attr = NULL;
19351 struct attribute *attr2 = NULL;
19352 CORE_ADDR baseaddr;
19353 struct pending **list_to_add = NULL;
19354
19355 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
19356
19357 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19358
19359 name = dwarf2_name (die, cu);
19360 if (name)
19361 {
19362 const char *linkagename;
19363 int suppress_add = 0;
19364
19365 if (space)
19366 sym = space;
19367 else
19368 sym = allocate_symbol (objfile);
19369 OBJSTAT (objfile, n_syms++);
19370
19371 /* Cache this symbol's name and the name's demangled form (if any). */
19372 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
19373 linkagename = dwarf2_physname (name, die, cu);
19374 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
19375
19376 /* Fortran does not have mangling standard and the mangling does differ
19377 between gfortran, iFort etc. */
19378 if (cu->language == language_fortran
19379 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
19380 symbol_set_demangled_name (&(sym->ginfo),
19381 dwarf2_full_name (name, die, cu),
19382 NULL);
19383
19384 /* Default assumptions.
19385 Use the passed type or decode it from the die. */
19386 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19387 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
19388 if (type != NULL)
19389 SYMBOL_TYPE (sym) = type;
19390 else
19391 SYMBOL_TYPE (sym) = die_type (die, cu);
19392 attr = dwarf2_attr (die,
19393 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
19394 cu);
19395 if (attr)
19396 {
19397 SYMBOL_LINE (sym) = DW_UNSND (attr);
19398 }
19399
19400 attr = dwarf2_attr (die,
19401 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
19402 cu);
19403 if (attr)
19404 {
19405 file_name_index file_index = (file_name_index) DW_UNSND (attr);
19406 struct file_entry *fe;
19407
19408 if (cu->line_header != NULL)
19409 fe = cu->line_header->file_name_at (file_index);
19410 else
19411 fe = NULL;
19412
19413 if (fe == NULL)
19414 complaint (&symfile_complaints,
19415 _("file index out of range"));
19416 else
19417 symbol_set_symtab (sym, fe->symtab);
19418 }
19419
19420 switch (die->tag)
19421 {
19422 case DW_TAG_label:
19423 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
19424 if (attr)
19425 {
19426 CORE_ADDR addr;
19427
19428 addr = attr_value_as_address (attr);
19429 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
19430 SYMBOL_VALUE_ADDRESS (sym) = addr;
19431 }
19432 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
19433 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
19434 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
19435 add_symbol_to_list (sym, cu->list_in_scope);
19436 break;
19437 case DW_TAG_subprogram:
19438 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19439 finish_block. */
19440 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19441 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19442 if ((attr2 && (DW_UNSND (attr2) != 0))
19443 || cu->language == language_ada)
19444 {
19445 /* Subprograms marked external are stored as a global symbol.
19446 Ada subprograms, whether marked external or not, are always
19447 stored as a global symbol, because we want to be able to
19448 access them globally. For instance, we want to be able
19449 to break on a nested subprogram without having to
19450 specify the context. */
19451 list_to_add = &global_symbols;
19452 }
19453 else
19454 {
19455 list_to_add = cu->list_in_scope;
19456 }
19457 break;
19458 case DW_TAG_inlined_subroutine:
19459 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19460 finish_block. */
19461 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19462 SYMBOL_INLINED (sym) = 1;
19463 list_to_add = cu->list_in_scope;
19464 break;
19465 case DW_TAG_template_value_param:
19466 suppress_add = 1;
19467 /* Fall through. */
19468 case DW_TAG_constant:
19469 case DW_TAG_variable:
19470 case DW_TAG_member:
19471 /* Compilation with minimal debug info may result in
19472 variables with missing type entries. Change the
19473 misleading `void' type to something sensible. */
19474 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
19475 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
19476
19477 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19478 /* In the case of DW_TAG_member, we should only be called for
19479 static const members. */
19480 if (die->tag == DW_TAG_member)
19481 {
19482 /* dwarf2_add_field uses die_is_declaration,
19483 so we do the same. */
19484 gdb_assert (die_is_declaration (die, cu));
19485 gdb_assert (attr);
19486 }
19487 if (attr)
19488 {
19489 dwarf2_const_value (attr, sym, cu);
19490 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19491 if (!suppress_add)
19492 {
19493 if (attr2 && (DW_UNSND (attr2) != 0))
19494 list_to_add = &global_symbols;
19495 else
19496 list_to_add = cu->list_in_scope;
19497 }
19498 break;
19499 }
19500 attr = dwarf2_attr (die, DW_AT_location, cu);
19501 if (attr)
19502 {
19503 var_decode_location (attr, sym, cu);
19504 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19505
19506 /* Fortran explicitly imports any global symbols to the local
19507 scope by DW_TAG_common_block. */
19508 if (cu->language == language_fortran && die->parent
19509 && die->parent->tag == DW_TAG_common_block)
19510 attr2 = NULL;
19511
19512 if (SYMBOL_CLASS (sym) == LOC_STATIC
19513 && SYMBOL_VALUE_ADDRESS (sym) == 0
19514 && !dwarf2_per_objfile->has_section_at_zero)
19515 {
19516 /* When a static variable is eliminated by the linker,
19517 the corresponding debug information is not stripped
19518 out, but the variable address is set to null;
19519 do not add such variables into symbol table. */
19520 }
19521 else if (attr2 && (DW_UNSND (attr2) != 0))
19522 {
19523 /* Workaround gfortran PR debug/40040 - it uses
19524 DW_AT_location for variables in -fPIC libraries which may
19525 get overriden by other libraries/executable and get
19526 a different address. Resolve it by the minimal symbol
19527 which may come from inferior's executable using copy
19528 relocation. Make this workaround only for gfortran as for
19529 other compilers GDB cannot guess the minimal symbol
19530 Fortran mangling kind. */
19531 if (cu->language == language_fortran && die->parent
19532 && die->parent->tag == DW_TAG_module
19533 && cu->producer
19534 && startswith (cu->producer, "GNU Fortran"))
19535 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19536
19537 /* A variable with DW_AT_external is never static,
19538 but it may be block-scoped. */
19539 list_to_add = (cu->list_in_scope == &file_symbols
19540 ? &global_symbols : cu->list_in_scope);
19541 }
19542 else
19543 list_to_add = cu->list_in_scope;
19544 }
19545 else
19546 {
19547 /* We do not know the address of this symbol.
19548 If it is an external symbol and we have type information
19549 for it, enter the symbol as a LOC_UNRESOLVED symbol.
19550 The address of the variable will then be determined from
19551 the minimal symbol table whenever the variable is
19552 referenced. */
19553 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19554
19555 /* Fortran explicitly imports any global symbols to the local
19556 scope by DW_TAG_common_block. */
19557 if (cu->language == language_fortran && die->parent
19558 && die->parent->tag == DW_TAG_common_block)
19559 {
19560 /* SYMBOL_CLASS doesn't matter here because
19561 read_common_block is going to reset it. */
19562 if (!suppress_add)
19563 list_to_add = cu->list_in_scope;
19564 }
19565 else if (attr2 && (DW_UNSND (attr2) != 0)
19566 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
19567 {
19568 /* A variable with DW_AT_external is never static, but it
19569 may be block-scoped. */
19570 list_to_add = (cu->list_in_scope == &file_symbols
19571 ? &global_symbols : cu->list_in_scope);
19572
19573 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19574 }
19575 else if (!die_is_declaration (die, cu))
19576 {
19577 /* Use the default LOC_OPTIMIZED_OUT class. */
19578 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
19579 if (!suppress_add)
19580 list_to_add = cu->list_in_scope;
19581 }
19582 }
19583 break;
19584 case DW_TAG_formal_parameter:
19585 /* If we are inside a function, mark this as an argument. If
19586 not, we might be looking at an argument to an inlined function
19587 when we do not have enough information to show inlined frames;
19588 pretend it's a local variable in that case so that the user can
19589 still see it. */
19590 if (context_stack_depth > 0
19591 && context_stack[context_stack_depth - 1].name != NULL)
19592 SYMBOL_IS_ARGUMENT (sym) = 1;
19593 attr = dwarf2_attr (die, DW_AT_location, cu);
19594 if (attr)
19595 {
19596 var_decode_location (attr, sym, cu);
19597 }
19598 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19599 if (attr)
19600 {
19601 dwarf2_const_value (attr, sym, cu);
19602 }
19603
19604 list_to_add = cu->list_in_scope;
19605 break;
19606 case DW_TAG_unspecified_parameters:
19607 /* From varargs functions; gdb doesn't seem to have any
19608 interest in this information, so just ignore it for now.
19609 (FIXME?) */
19610 break;
19611 case DW_TAG_template_type_param:
19612 suppress_add = 1;
19613 /* Fall through. */
19614 case DW_TAG_class_type:
19615 case DW_TAG_interface_type:
19616 case DW_TAG_structure_type:
19617 case DW_TAG_union_type:
19618 case DW_TAG_set_type:
19619 case DW_TAG_enumeration_type:
19620 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19621 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
19622
19623 {
19624 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
19625 really ever be static objects: otherwise, if you try
19626 to, say, break of a class's method and you're in a file
19627 which doesn't mention that class, it won't work unless
19628 the check for all static symbols in lookup_symbol_aux
19629 saves you. See the OtherFileClass tests in
19630 gdb.c++/namespace.exp. */
19631
19632 if (!suppress_add)
19633 {
19634 list_to_add = (cu->list_in_scope == &file_symbols
19635 && cu->language == language_cplus
19636 ? &global_symbols : cu->list_in_scope);
19637
19638 /* The semantics of C++ state that "struct foo {
19639 ... }" also defines a typedef for "foo". */
19640 if (cu->language == language_cplus
19641 || cu->language == language_ada
19642 || cu->language == language_d
19643 || cu->language == language_rust)
19644 {
19645 /* The symbol's name is already allocated along
19646 with this objfile, so we don't need to
19647 duplicate it for the type. */
19648 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19649 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19650 }
19651 }
19652 }
19653 break;
19654 case DW_TAG_typedef:
19655 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19656 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19657 list_to_add = cu->list_in_scope;
19658 break;
19659 case DW_TAG_base_type:
19660 case DW_TAG_subrange_type:
19661 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19662 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19663 list_to_add = cu->list_in_scope;
19664 break;
19665 case DW_TAG_enumerator:
19666 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19667 if (attr)
19668 {
19669 dwarf2_const_value (attr, sym, cu);
19670 }
19671 {
19672 /* NOTE: carlton/2003-11-10: See comment above in the
19673 DW_TAG_class_type, etc. block. */
19674
19675 list_to_add = (cu->list_in_scope == &file_symbols
19676 && cu->language == language_cplus
19677 ? &global_symbols : cu->list_in_scope);
19678 }
19679 break;
19680 case DW_TAG_imported_declaration:
19681 case DW_TAG_namespace:
19682 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19683 list_to_add = &global_symbols;
19684 break;
19685 case DW_TAG_module:
19686 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19687 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
19688 list_to_add = &global_symbols;
19689 break;
19690 case DW_TAG_common_block:
19691 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
19692 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
19693 add_symbol_to_list (sym, cu->list_in_scope);
19694 break;
19695 default:
19696 /* Not a tag we recognize. Hopefully we aren't processing
19697 trash data, but since we must specifically ignore things
19698 we don't recognize, there is nothing else we should do at
19699 this point. */
19700 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
19701 dwarf_tag_name (die->tag));
19702 break;
19703 }
19704
19705 if (suppress_add)
19706 {
19707 sym->hash_next = objfile->template_symbols;
19708 objfile->template_symbols = sym;
19709 list_to_add = NULL;
19710 }
19711
19712 if (list_to_add != NULL)
19713 add_symbol_to_list (sym, list_to_add);
19714
19715 /* For the benefit of old versions of GCC, check for anonymous
19716 namespaces based on the demangled name. */
19717 if (!cu->processing_has_namespace_info
19718 && cu->language == language_cplus)
19719 cp_scan_for_anonymous_namespaces (sym, objfile);
19720 }
19721 return (sym);
19722 }
19723
19724 /* A wrapper for new_symbol_full that always allocates a new symbol. */
19725
19726 static struct symbol *
19727 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19728 {
19729 return new_symbol_full (die, type, cu, NULL);
19730 }
19731
19732 /* Given an attr with a DW_FORM_dataN value in host byte order,
19733 zero-extend it as appropriate for the symbol's type. The DWARF
19734 standard (v4) is not entirely clear about the meaning of using
19735 DW_FORM_dataN for a constant with a signed type, where the type is
19736 wider than the data. The conclusion of a discussion on the DWARF
19737 list was that this is unspecified. We choose to always zero-extend
19738 because that is the interpretation long in use by GCC. */
19739
19740 static gdb_byte *
19741 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
19742 struct dwarf2_cu *cu, LONGEST *value, int bits)
19743 {
19744 struct objfile *objfile = cu->objfile;
19745 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
19746 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
19747 LONGEST l = DW_UNSND (attr);
19748
19749 if (bits < sizeof (*value) * 8)
19750 {
19751 l &= ((LONGEST) 1 << bits) - 1;
19752 *value = l;
19753 }
19754 else if (bits == sizeof (*value) * 8)
19755 *value = l;
19756 else
19757 {
19758 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
19759 store_unsigned_integer (bytes, bits / 8, byte_order, l);
19760 return bytes;
19761 }
19762
19763 return NULL;
19764 }
19765
19766 /* Read a constant value from an attribute. Either set *VALUE, or if
19767 the value does not fit in *VALUE, set *BYTES - either already
19768 allocated on the objfile obstack, or newly allocated on OBSTACK,
19769 or, set *BATON, if we translated the constant to a location
19770 expression. */
19771
19772 static void
19773 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
19774 const char *name, struct obstack *obstack,
19775 struct dwarf2_cu *cu,
19776 LONGEST *value, const gdb_byte **bytes,
19777 struct dwarf2_locexpr_baton **baton)
19778 {
19779 struct objfile *objfile = cu->objfile;
19780 struct comp_unit_head *cu_header = &cu->header;
19781 struct dwarf_block *blk;
19782 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
19783 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19784
19785 *value = 0;
19786 *bytes = NULL;
19787 *baton = NULL;
19788
19789 switch (attr->form)
19790 {
19791 case DW_FORM_addr:
19792 case DW_FORM_GNU_addr_index:
19793 {
19794 gdb_byte *data;
19795
19796 if (TYPE_LENGTH (type) != cu_header->addr_size)
19797 dwarf2_const_value_length_mismatch_complaint (name,
19798 cu_header->addr_size,
19799 TYPE_LENGTH (type));
19800 /* Symbols of this form are reasonably rare, so we just
19801 piggyback on the existing location code rather than writing
19802 a new implementation of symbol_computed_ops. */
19803 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
19804 (*baton)->per_cu = cu->per_cu;
19805 gdb_assert ((*baton)->per_cu);
19806
19807 (*baton)->size = 2 + cu_header->addr_size;
19808 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
19809 (*baton)->data = data;
19810
19811 data[0] = DW_OP_addr;
19812 store_unsigned_integer (&data[1], cu_header->addr_size,
19813 byte_order, DW_ADDR (attr));
19814 data[cu_header->addr_size + 1] = DW_OP_stack_value;
19815 }
19816 break;
19817 case DW_FORM_string:
19818 case DW_FORM_strp:
19819 case DW_FORM_GNU_str_index:
19820 case DW_FORM_GNU_strp_alt:
19821 /* DW_STRING is already allocated on the objfile obstack, point
19822 directly to it. */
19823 *bytes = (const gdb_byte *) DW_STRING (attr);
19824 break;
19825 case DW_FORM_block1:
19826 case DW_FORM_block2:
19827 case DW_FORM_block4:
19828 case DW_FORM_block:
19829 case DW_FORM_exprloc:
19830 case DW_FORM_data16:
19831 blk = DW_BLOCK (attr);
19832 if (TYPE_LENGTH (type) != blk->size)
19833 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
19834 TYPE_LENGTH (type));
19835 *bytes = blk->data;
19836 break;
19837
19838 /* The DW_AT_const_value attributes are supposed to carry the
19839 symbol's value "represented as it would be on the target
19840 architecture." By the time we get here, it's already been
19841 converted to host endianness, so we just need to sign- or
19842 zero-extend it as appropriate. */
19843 case DW_FORM_data1:
19844 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
19845 break;
19846 case DW_FORM_data2:
19847 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
19848 break;
19849 case DW_FORM_data4:
19850 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
19851 break;
19852 case DW_FORM_data8:
19853 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
19854 break;
19855
19856 case DW_FORM_sdata:
19857 case DW_FORM_implicit_const:
19858 *value = DW_SND (attr);
19859 break;
19860
19861 case DW_FORM_udata:
19862 *value = DW_UNSND (attr);
19863 break;
19864
19865 default:
19866 complaint (&symfile_complaints,
19867 _("unsupported const value attribute form: '%s'"),
19868 dwarf_form_name (attr->form));
19869 *value = 0;
19870 break;
19871 }
19872 }
19873
19874
19875 /* Copy constant value from an attribute to a symbol. */
19876
19877 static void
19878 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
19879 struct dwarf2_cu *cu)
19880 {
19881 struct objfile *objfile = cu->objfile;
19882 LONGEST value;
19883 const gdb_byte *bytes;
19884 struct dwarf2_locexpr_baton *baton;
19885
19886 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
19887 SYMBOL_PRINT_NAME (sym),
19888 &objfile->objfile_obstack, cu,
19889 &value, &bytes, &baton);
19890
19891 if (baton != NULL)
19892 {
19893 SYMBOL_LOCATION_BATON (sym) = baton;
19894 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
19895 }
19896 else if (bytes != NULL)
19897 {
19898 SYMBOL_VALUE_BYTES (sym) = bytes;
19899 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
19900 }
19901 else
19902 {
19903 SYMBOL_VALUE (sym) = value;
19904 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
19905 }
19906 }
19907
19908 /* Return the type of the die in question using its DW_AT_type attribute. */
19909
19910 static struct type *
19911 die_type (struct die_info *die, struct dwarf2_cu *cu)
19912 {
19913 struct attribute *type_attr;
19914
19915 type_attr = dwarf2_attr (die, DW_AT_type, cu);
19916 if (!type_attr)
19917 {
19918 /* A missing DW_AT_type represents a void type. */
19919 return objfile_type (cu->objfile)->builtin_void;
19920 }
19921
19922 return lookup_die_type (die, type_attr, cu);
19923 }
19924
19925 /* True iff CU's producer generates GNAT Ada auxiliary information
19926 that allows to find parallel types through that information instead
19927 of having to do expensive parallel lookups by type name. */
19928
19929 static int
19930 need_gnat_info (struct dwarf2_cu *cu)
19931 {
19932 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
19933 of GNAT produces this auxiliary information, without any indication
19934 that it is produced. Part of enhancing the FSF version of GNAT
19935 to produce that information will be to put in place an indicator
19936 that we can use in order to determine whether the descriptive type
19937 info is available or not. One suggestion that has been made is
19938 to use a new attribute, attached to the CU die. For now, assume
19939 that the descriptive type info is not available. */
19940 return 0;
19941 }
19942
19943 /* Return the auxiliary type of the die in question using its
19944 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
19945 attribute is not present. */
19946
19947 static struct type *
19948 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
19949 {
19950 struct attribute *type_attr;
19951
19952 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
19953 if (!type_attr)
19954 return NULL;
19955
19956 return lookup_die_type (die, type_attr, cu);
19957 }
19958
19959 /* If DIE has a descriptive_type attribute, then set the TYPE's
19960 descriptive type accordingly. */
19961
19962 static void
19963 set_descriptive_type (struct type *type, struct die_info *die,
19964 struct dwarf2_cu *cu)
19965 {
19966 struct type *descriptive_type = die_descriptive_type (die, cu);
19967
19968 if (descriptive_type)
19969 {
19970 ALLOCATE_GNAT_AUX_TYPE (type);
19971 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19972 }
19973 }
19974
19975 /* Return the containing type of the die in question using its
19976 DW_AT_containing_type attribute. */
19977
19978 static struct type *
19979 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
19980 {
19981 struct attribute *type_attr;
19982
19983 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
19984 if (!type_attr)
19985 error (_("Dwarf Error: Problem turning containing type into gdb type "
19986 "[in module %s]"), objfile_name (cu->objfile));
19987
19988 return lookup_die_type (die, type_attr, cu);
19989 }
19990
19991 /* Return an error marker type to use for the ill formed type in DIE/CU. */
19992
19993 static struct type *
19994 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19995 {
19996 struct objfile *objfile = dwarf2_per_objfile->objfile;
19997 char *message, *saved;
19998
19999 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
20000 objfile_name (objfile),
20001 to_underlying (cu->header.sect_off),
20002 to_underlying (die->sect_off));
20003 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
20004 message, strlen (message));
20005 xfree (message);
20006
20007 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
20008 }
20009
20010 /* Look up the type of DIE in CU using its type attribute ATTR.
20011 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
20012 DW_AT_containing_type.
20013 If there is no type substitute an error marker. */
20014
20015 static struct type *
20016 lookup_die_type (struct die_info *die, const struct attribute *attr,
20017 struct dwarf2_cu *cu)
20018 {
20019 struct objfile *objfile = cu->objfile;
20020 struct type *this_type;
20021
20022 gdb_assert (attr->name == DW_AT_type
20023 || attr->name == DW_AT_GNAT_descriptive_type
20024 || attr->name == DW_AT_containing_type);
20025
20026 /* First see if we have it cached. */
20027
20028 if (attr->form == DW_FORM_GNU_ref_alt)
20029 {
20030 struct dwarf2_per_cu_data *per_cu;
20031 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
20032
20033 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, cu->objfile);
20034 this_type = get_die_type_at_offset (sect_off, per_cu);
20035 }
20036 else if (attr_form_is_ref (attr))
20037 {
20038 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
20039
20040 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
20041 }
20042 else if (attr->form == DW_FORM_ref_sig8)
20043 {
20044 ULONGEST signature = DW_SIGNATURE (attr);
20045
20046 return get_signatured_type (die, signature, cu);
20047 }
20048 else
20049 {
20050 complaint (&symfile_complaints,
20051 _("Dwarf Error: Bad type attribute %s in DIE"
20052 " at 0x%x [in module %s]"),
20053 dwarf_attr_name (attr->name), to_underlying (die->sect_off),
20054 objfile_name (objfile));
20055 return build_error_marker_type (cu, die);
20056 }
20057
20058 /* If not cached we need to read it in. */
20059
20060 if (this_type == NULL)
20061 {
20062 struct die_info *type_die = NULL;
20063 struct dwarf2_cu *type_cu = cu;
20064
20065 if (attr_form_is_ref (attr))
20066 type_die = follow_die_ref (die, attr, &type_cu);
20067 if (type_die == NULL)
20068 return build_error_marker_type (cu, die);
20069 /* If we find the type now, it's probably because the type came
20070 from an inter-CU reference and the type's CU got expanded before
20071 ours. */
20072 this_type = read_type_die (type_die, type_cu);
20073 }
20074
20075 /* If we still don't have a type use an error marker. */
20076
20077 if (this_type == NULL)
20078 return build_error_marker_type (cu, die);
20079
20080 return this_type;
20081 }
20082
20083 /* Return the type in DIE, CU.
20084 Returns NULL for invalid types.
20085
20086 This first does a lookup in die_type_hash,
20087 and only reads the die in if necessary.
20088
20089 NOTE: This can be called when reading in partial or full symbols. */
20090
20091 static struct type *
20092 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
20093 {
20094 struct type *this_type;
20095
20096 this_type = get_die_type (die, cu);
20097 if (this_type)
20098 return this_type;
20099
20100 return read_type_die_1 (die, cu);
20101 }
20102
20103 /* Read the type in DIE, CU.
20104 Returns NULL for invalid types. */
20105
20106 static struct type *
20107 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
20108 {
20109 struct type *this_type = NULL;
20110
20111 switch (die->tag)
20112 {
20113 case DW_TAG_class_type:
20114 case DW_TAG_interface_type:
20115 case DW_TAG_structure_type:
20116 case DW_TAG_union_type:
20117 this_type = read_structure_type (die, cu);
20118 break;
20119 case DW_TAG_enumeration_type:
20120 this_type = read_enumeration_type (die, cu);
20121 break;
20122 case DW_TAG_subprogram:
20123 case DW_TAG_subroutine_type:
20124 case DW_TAG_inlined_subroutine:
20125 this_type = read_subroutine_type (die, cu);
20126 break;
20127 case DW_TAG_array_type:
20128 this_type = read_array_type (die, cu);
20129 break;
20130 case DW_TAG_set_type:
20131 this_type = read_set_type (die, cu);
20132 break;
20133 case DW_TAG_pointer_type:
20134 this_type = read_tag_pointer_type (die, cu);
20135 break;
20136 case DW_TAG_ptr_to_member_type:
20137 this_type = read_tag_ptr_to_member_type (die, cu);
20138 break;
20139 case DW_TAG_reference_type:
20140 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
20141 break;
20142 case DW_TAG_rvalue_reference_type:
20143 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
20144 break;
20145 case DW_TAG_const_type:
20146 this_type = read_tag_const_type (die, cu);
20147 break;
20148 case DW_TAG_volatile_type:
20149 this_type = read_tag_volatile_type (die, cu);
20150 break;
20151 case DW_TAG_restrict_type:
20152 this_type = read_tag_restrict_type (die, cu);
20153 break;
20154 case DW_TAG_string_type:
20155 this_type = read_tag_string_type (die, cu);
20156 break;
20157 case DW_TAG_typedef:
20158 this_type = read_typedef (die, cu);
20159 break;
20160 case DW_TAG_subrange_type:
20161 this_type = read_subrange_type (die, cu);
20162 break;
20163 case DW_TAG_base_type:
20164 this_type = read_base_type (die, cu);
20165 break;
20166 case DW_TAG_unspecified_type:
20167 this_type = read_unspecified_type (die, cu);
20168 break;
20169 case DW_TAG_namespace:
20170 this_type = read_namespace_type (die, cu);
20171 break;
20172 case DW_TAG_module:
20173 this_type = read_module_type (die, cu);
20174 break;
20175 case DW_TAG_atomic_type:
20176 this_type = read_tag_atomic_type (die, cu);
20177 break;
20178 default:
20179 complaint (&symfile_complaints,
20180 _("unexpected tag in read_type_die: '%s'"),
20181 dwarf_tag_name (die->tag));
20182 break;
20183 }
20184
20185 return this_type;
20186 }
20187
20188 /* See if we can figure out if the class lives in a namespace. We do
20189 this by looking for a member function; its demangled name will
20190 contain namespace info, if there is any.
20191 Return the computed name or NULL.
20192 Space for the result is allocated on the objfile's obstack.
20193 This is the full-die version of guess_partial_die_structure_name.
20194 In this case we know DIE has no useful parent. */
20195
20196 static char *
20197 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
20198 {
20199 struct die_info *spec_die;
20200 struct dwarf2_cu *spec_cu;
20201 struct die_info *child;
20202
20203 spec_cu = cu;
20204 spec_die = die_specification (die, &spec_cu);
20205 if (spec_die != NULL)
20206 {
20207 die = spec_die;
20208 cu = spec_cu;
20209 }
20210
20211 for (child = die->child;
20212 child != NULL;
20213 child = child->sibling)
20214 {
20215 if (child->tag == DW_TAG_subprogram)
20216 {
20217 const char *linkage_name = dw2_linkage_name (child, cu);
20218
20219 if (linkage_name != NULL)
20220 {
20221 char *actual_name
20222 = language_class_name_from_physname (cu->language_defn,
20223 linkage_name);
20224 char *name = NULL;
20225
20226 if (actual_name != NULL)
20227 {
20228 const char *die_name = dwarf2_name (die, cu);
20229
20230 if (die_name != NULL
20231 && strcmp (die_name, actual_name) != 0)
20232 {
20233 /* Strip off the class name from the full name.
20234 We want the prefix. */
20235 int die_name_len = strlen (die_name);
20236 int actual_name_len = strlen (actual_name);
20237
20238 /* Test for '::' as a sanity check. */
20239 if (actual_name_len > die_name_len + 2
20240 && actual_name[actual_name_len
20241 - die_name_len - 1] == ':')
20242 name = (char *) obstack_copy0 (
20243 &cu->objfile->per_bfd->storage_obstack,
20244 actual_name, actual_name_len - die_name_len - 2);
20245 }
20246 }
20247 xfree (actual_name);
20248 return name;
20249 }
20250 }
20251 }
20252
20253 return NULL;
20254 }
20255
20256 /* GCC might emit a nameless typedef that has a linkage name. Determine the
20257 prefix part in such case. See
20258 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20259
20260 static const char *
20261 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
20262 {
20263 struct attribute *attr;
20264 const char *base;
20265
20266 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
20267 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
20268 return NULL;
20269
20270 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
20271 return NULL;
20272
20273 attr = dw2_linkage_name_attr (die, cu);
20274 if (attr == NULL || DW_STRING (attr) == NULL)
20275 return NULL;
20276
20277 /* dwarf2_name had to be already called. */
20278 gdb_assert (DW_STRING_IS_CANONICAL (attr));
20279
20280 /* Strip the base name, keep any leading namespaces/classes. */
20281 base = strrchr (DW_STRING (attr), ':');
20282 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
20283 return "";
20284
20285 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20286 DW_STRING (attr),
20287 &base[-1] - DW_STRING (attr));
20288 }
20289
20290 /* Return the name of the namespace/class that DIE is defined within,
20291 or "" if we can't tell. The caller should not xfree the result.
20292
20293 For example, if we're within the method foo() in the following
20294 code:
20295
20296 namespace N {
20297 class C {
20298 void foo () {
20299 }
20300 };
20301 }
20302
20303 then determine_prefix on foo's die will return "N::C". */
20304
20305 static const char *
20306 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
20307 {
20308 struct die_info *parent, *spec_die;
20309 struct dwarf2_cu *spec_cu;
20310 struct type *parent_type;
20311 const char *retval;
20312
20313 if (cu->language != language_cplus
20314 && cu->language != language_fortran && cu->language != language_d
20315 && cu->language != language_rust)
20316 return "";
20317
20318 retval = anonymous_struct_prefix (die, cu);
20319 if (retval)
20320 return retval;
20321
20322 /* We have to be careful in the presence of DW_AT_specification.
20323 For example, with GCC 3.4, given the code
20324
20325 namespace N {
20326 void foo() {
20327 // Definition of N::foo.
20328 }
20329 }
20330
20331 then we'll have a tree of DIEs like this:
20332
20333 1: DW_TAG_compile_unit
20334 2: DW_TAG_namespace // N
20335 3: DW_TAG_subprogram // declaration of N::foo
20336 4: DW_TAG_subprogram // definition of N::foo
20337 DW_AT_specification // refers to die #3
20338
20339 Thus, when processing die #4, we have to pretend that we're in
20340 the context of its DW_AT_specification, namely the contex of die
20341 #3. */
20342 spec_cu = cu;
20343 spec_die = die_specification (die, &spec_cu);
20344 if (spec_die == NULL)
20345 parent = die->parent;
20346 else
20347 {
20348 parent = spec_die->parent;
20349 cu = spec_cu;
20350 }
20351
20352 if (parent == NULL)
20353 return "";
20354 else if (parent->building_fullname)
20355 {
20356 const char *name;
20357 const char *parent_name;
20358
20359 /* It has been seen on RealView 2.2 built binaries,
20360 DW_TAG_template_type_param types actually _defined_ as
20361 children of the parent class:
20362
20363 enum E {};
20364 template class <class Enum> Class{};
20365 Class<enum E> class_e;
20366
20367 1: DW_TAG_class_type (Class)
20368 2: DW_TAG_enumeration_type (E)
20369 3: DW_TAG_enumerator (enum1:0)
20370 3: DW_TAG_enumerator (enum2:1)
20371 ...
20372 2: DW_TAG_template_type_param
20373 DW_AT_type DW_FORM_ref_udata (E)
20374
20375 Besides being broken debug info, it can put GDB into an
20376 infinite loop. Consider:
20377
20378 When we're building the full name for Class<E>, we'll start
20379 at Class, and go look over its template type parameters,
20380 finding E. We'll then try to build the full name of E, and
20381 reach here. We're now trying to build the full name of E,
20382 and look over the parent DIE for containing scope. In the
20383 broken case, if we followed the parent DIE of E, we'd again
20384 find Class, and once again go look at its template type
20385 arguments, etc., etc. Simply don't consider such parent die
20386 as source-level parent of this die (it can't be, the language
20387 doesn't allow it), and break the loop here. */
20388 name = dwarf2_name (die, cu);
20389 parent_name = dwarf2_name (parent, cu);
20390 complaint (&symfile_complaints,
20391 _("template param type '%s' defined within parent '%s'"),
20392 name ? name : "<unknown>",
20393 parent_name ? parent_name : "<unknown>");
20394 return "";
20395 }
20396 else
20397 switch (parent->tag)
20398 {
20399 case DW_TAG_namespace:
20400 parent_type = read_type_die (parent, cu);
20401 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
20402 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
20403 Work around this problem here. */
20404 if (cu->language == language_cplus
20405 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
20406 return "";
20407 /* We give a name to even anonymous namespaces. */
20408 return TYPE_TAG_NAME (parent_type);
20409 case DW_TAG_class_type:
20410 case DW_TAG_interface_type:
20411 case DW_TAG_structure_type:
20412 case DW_TAG_union_type:
20413 case DW_TAG_module:
20414 parent_type = read_type_die (parent, cu);
20415 if (TYPE_TAG_NAME (parent_type) != NULL)
20416 return TYPE_TAG_NAME (parent_type);
20417 else
20418 /* An anonymous structure is only allowed non-static data
20419 members; no typedefs, no member functions, et cetera.
20420 So it does not need a prefix. */
20421 return "";
20422 case DW_TAG_compile_unit:
20423 case DW_TAG_partial_unit:
20424 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
20425 if (cu->language == language_cplus
20426 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
20427 && die->child != NULL
20428 && (die->tag == DW_TAG_class_type
20429 || die->tag == DW_TAG_structure_type
20430 || die->tag == DW_TAG_union_type))
20431 {
20432 char *name = guess_full_die_structure_name (die, cu);
20433 if (name != NULL)
20434 return name;
20435 }
20436 return "";
20437 case DW_TAG_enumeration_type:
20438 parent_type = read_type_die (parent, cu);
20439 if (TYPE_DECLARED_CLASS (parent_type))
20440 {
20441 if (TYPE_TAG_NAME (parent_type) != NULL)
20442 return TYPE_TAG_NAME (parent_type);
20443 return "";
20444 }
20445 /* Fall through. */
20446 default:
20447 return determine_prefix (parent, cu);
20448 }
20449 }
20450
20451 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
20452 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
20453 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
20454 an obconcat, otherwise allocate storage for the result. The CU argument is
20455 used to determine the language and hence, the appropriate separator. */
20456
20457 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
20458
20459 static char *
20460 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
20461 int physname, struct dwarf2_cu *cu)
20462 {
20463 const char *lead = "";
20464 const char *sep;
20465
20466 if (suffix == NULL || suffix[0] == '\0'
20467 || prefix == NULL || prefix[0] == '\0')
20468 sep = "";
20469 else if (cu->language == language_d)
20470 {
20471 /* For D, the 'main' function could be defined in any module, but it
20472 should never be prefixed. */
20473 if (strcmp (suffix, "D main") == 0)
20474 {
20475 prefix = "";
20476 sep = "";
20477 }
20478 else
20479 sep = ".";
20480 }
20481 else if (cu->language == language_fortran && physname)
20482 {
20483 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
20484 DW_AT_MIPS_linkage_name is preferred and used instead. */
20485
20486 lead = "__";
20487 sep = "_MOD_";
20488 }
20489 else
20490 sep = "::";
20491
20492 if (prefix == NULL)
20493 prefix = "";
20494 if (suffix == NULL)
20495 suffix = "";
20496
20497 if (obs == NULL)
20498 {
20499 char *retval
20500 = ((char *)
20501 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
20502
20503 strcpy (retval, lead);
20504 strcat (retval, prefix);
20505 strcat (retval, sep);
20506 strcat (retval, suffix);
20507 return retval;
20508 }
20509 else
20510 {
20511 /* We have an obstack. */
20512 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
20513 }
20514 }
20515
20516 /* Return sibling of die, NULL if no sibling. */
20517
20518 static struct die_info *
20519 sibling_die (struct die_info *die)
20520 {
20521 return die->sibling;
20522 }
20523
20524 /* Get name of a die, return NULL if not found. */
20525
20526 static const char *
20527 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
20528 struct obstack *obstack)
20529 {
20530 if (name && cu->language == language_cplus)
20531 {
20532 std::string canon_name = cp_canonicalize_string (name);
20533
20534 if (!canon_name.empty ())
20535 {
20536 if (canon_name != name)
20537 name = (const char *) obstack_copy0 (obstack,
20538 canon_name.c_str (),
20539 canon_name.length ());
20540 }
20541 }
20542
20543 return name;
20544 }
20545
20546 /* Get name of a die, return NULL if not found.
20547 Anonymous namespaces are converted to their magic string. */
20548
20549 static const char *
20550 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
20551 {
20552 struct attribute *attr;
20553
20554 attr = dwarf2_attr (die, DW_AT_name, cu);
20555 if ((!attr || !DW_STRING (attr))
20556 && die->tag != DW_TAG_namespace
20557 && die->tag != DW_TAG_class_type
20558 && die->tag != DW_TAG_interface_type
20559 && die->tag != DW_TAG_structure_type
20560 && die->tag != DW_TAG_union_type)
20561 return NULL;
20562
20563 switch (die->tag)
20564 {
20565 case DW_TAG_compile_unit:
20566 case DW_TAG_partial_unit:
20567 /* Compilation units have a DW_AT_name that is a filename, not
20568 a source language identifier. */
20569 case DW_TAG_enumeration_type:
20570 case DW_TAG_enumerator:
20571 /* These tags always have simple identifiers already; no need
20572 to canonicalize them. */
20573 return DW_STRING (attr);
20574
20575 case DW_TAG_namespace:
20576 if (attr != NULL && DW_STRING (attr) != NULL)
20577 return DW_STRING (attr);
20578 return CP_ANONYMOUS_NAMESPACE_STR;
20579
20580 case DW_TAG_class_type:
20581 case DW_TAG_interface_type:
20582 case DW_TAG_structure_type:
20583 case DW_TAG_union_type:
20584 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20585 structures or unions. These were of the form "._%d" in GCC 4.1,
20586 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20587 and GCC 4.4. We work around this problem by ignoring these. */
20588 if (attr && DW_STRING (attr)
20589 && (startswith (DW_STRING (attr), "._")
20590 || startswith (DW_STRING (attr), "<anonymous")))
20591 return NULL;
20592
20593 /* GCC might emit a nameless typedef that has a linkage name. See
20594 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20595 if (!attr || DW_STRING (attr) == NULL)
20596 {
20597 char *demangled = NULL;
20598
20599 attr = dw2_linkage_name_attr (die, cu);
20600 if (attr == NULL || DW_STRING (attr) == NULL)
20601 return NULL;
20602
20603 /* Avoid demangling DW_STRING (attr) the second time on a second
20604 call for the same DIE. */
20605 if (!DW_STRING_IS_CANONICAL (attr))
20606 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
20607
20608 if (demangled)
20609 {
20610 const char *base;
20611
20612 /* FIXME: we already did this for the partial symbol... */
20613 DW_STRING (attr)
20614 = ((const char *)
20615 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20616 demangled, strlen (demangled)));
20617 DW_STRING_IS_CANONICAL (attr) = 1;
20618 xfree (demangled);
20619
20620 /* Strip any leading namespaces/classes, keep only the base name.
20621 DW_AT_name for named DIEs does not contain the prefixes. */
20622 base = strrchr (DW_STRING (attr), ':');
20623 if (base && base > DW_STRING (attr) && base[-1] == ':')
20624 return &base[1];
20625 else
20626 return DW_STRING (attr);
20627 }
20628 }
20629 break;
20630
20631 default:
20632 break;
20633 }
20634
20635 if (!DW_STRING_IS_CANONICAL (attr))
20636 {
20637 DW_STRING (attr)
20638 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
20639 &cu->objfile->per_bfd->storage_obstack);
20640 DW_STRING_IS_CANONICAL (attr) = 1;
20641 }
20642 return DW_STRING (attr);
20643 }
20644
20645 /* Return the die that this die in an extension of, or NULL if there
20646 is none. *EXT_CU is the CU containing DIE on input, and the CU
20647 containing the return value on output. */
20648
20649 static struct die_info *
20650 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
20651 {
20652 struct attribute *attr;
20653
20654 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
20655 if (attr == NULL)
20656 return NULL;
20657
20658 return follow_die_ref (die, attr, ext_cu);
20659 }
20660
20661 /* Convert a DIE tag into its string name. */
20662
20663 static const char *
20664 dwarf_tag_name (unsigned tag)
20665 {
20666 const char *name = get_DW_TAG_name (tag);
20667
20668 if (name == NULL)
20669 return "DW_TAG_<unknown>";
20670
20671 return name;
20672 }
20673
20674 /* Convert a DWARF attribute code into its string name. */
20675
20676 static const char *
20677 dwarf_attr_name (unsigned attr)
20678 {
20679 const char *name;
20680
20681 #ifdef MIPS /* collides with DW_AT_HP_block_index */
20682 if (attr == DW_AT_MIPS_fde)
20683 return "DW_AT_MIPS_fde";
20684 #else
20685 if (attr == DW_AT_HP_block_index)
20686 return "DW_AT_HP_block_index";
20687 #endif
20688
20689 name = get_DW_AT_name (attr);
20690
20691 if (name == NULL)
20692 return "DW_AT_<unknown>";
20693
20694 return name;
20695 }
20696
20697 /* Convert a DWARF value form code into its string name. */
20698
20699 static const char *
20700 dwarf_form_name (unsigned form)
20701 {
20702 const char *name = get_DW_FORM_name (form);
20703
20704 if (name == NULL)
20705 return "DW_FORM_<unknown>";
20706
20707 return name;
20708 }
20709
20710 static const char *
20711 dwarf_bool_name (unsigned mybool)
20712 {
20713 if (mybool)
20714 return "TRUE";
20715 else
20716 return "FALSE";
20717 }
20718
20719 /* Convert a DWARF type code into its string name. */
20720
20721 static const char *
20722 dwarf_type_encoding_name (unsigned enc)
20723 {
20724 const char *name = get_DW_ATE_name (enc);
20725
20726 if (name == NULL)
20727 return "DW_ATE_<unknown>";
20728
20729 return name;
20730 }
20731
20732 static void
20733 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
20734 {
20735 unsigned int i;
20736
20737 print_spaces (indent, f);
20738 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
20739 dwarf_tag_name (die->tag), die->abbrev,
20740 to_underlying (die->sect_off));
20741
20742 if (die->parent != NULL)
20743 {
20744 print_spaces (indent, f);
20745 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
20746 to_underlying (die->parent->sect_off));
20747 }
20748
20749 print_spaces (indent, f);
20750 fprintf_unfiltered (f, " has children: %s\n",
20751 dwarf_bool_name (die->child != NULL));
20752
20753 print_spaces (indent, f);
20754 fprintf_unfiltered (f, " attributes:\n");
20755
20756 for (i = 0; i < die->num_attrs; ++i)
20757 {
20758 print_spaces (indent, f);
20759 fprintf_unfiltered (f, " %s (%s) ",
20760 dwarf_attr_name (die->attrs[i].name),
20761 dwarf_form_name (die->attrs[i].form));
20762
20763 switch (die->attrs[i].form)
20764 {
20765 case DW_FORM_addr:
20766 case DW_FORM_GNU_addr_index:
20767 fprintf_unfiltered (f, "address: ");
20768 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
20769 break;
20770 case DW_FORM_block2:
20771 case DW_FORM_block4:
20772 case DW_FORM_block:
20773 case DW_FORM_block1:
20774 fprintf_unfiltered (f, "block: size %s",
20775 pulongest (DW_BLOCK (&die->attrs[i])->size));
20776 break;
20777 case DW_FORM_exprloc:
20778 fprintf_unfiltered (f, "expression: size %s",
20779 pulongest (DW_BLOCK (&die->attrs[i])->size));
20780 break;
20781 case DW_FORM_data16:
20782 fprintf_unfiltered (f, "constant of 16 bytes");
20783 break;
20784 case DW_FORM_ref_addr:
20785 fprintf_unfiltered (f, "ref address: ");
20786 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20787 break;
20788 case DW_FORM_GNU_ref_alt:
20789 fprintf_unfiltered (f, "alt ref address: ");
20790 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20791 break;
20792 case DW_FORM_ref1:
20793 case DW_FORM_ref2:
20794 case DW_FORM_ref4:
20795 case DW_FORM_ref8:
20796 case DW_FORM_ref_udata:
20797 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
20798 (long) (DW_UNSND (&die->attrs[i])));
20799 break;
20800 case DW_FORM_data1:
20801 case DW_FORM_data2:
20802 case DW_FORM_data4:
20803 case DW_FORM_data8:
20804 case DW_FORM_udata:
20805 case DW_FORM_sdata:
20806 fprintf_unfiltered (f, "constant: %s",
20807 pulongest (DW_UNSND (&die->attrs[i])));
20808 break;
20809 case DW_FORM_sec_offset:
20810 fprintf_unfiltered (f, "section offset: %s",
20811 pulongest (DW_UNSND (&die->attrs[i])));
20812 break;
20813 case DW_FORM_ref_sig8:
20814 fprintf_unfiltered (f, "signature: %s",
20815 hex_string (DW_SIGNATURE (&die->attrs[i])));
20816 break;
20817 case DW_FORM_string:
20818 case DW_FORM_strp:
20819 case DW_FORM_line_strp:
20820 case DW_FORM_GNU_str_index:
20821 case DW_FORM_GNU_strp_alt:
20822 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
20823 DW_STRING (&die->attrs[i])
20824 ? DW_STRING (&die->attrs[i]) : "",
20825 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
20826 break;
20827 case DW_FORM_flag:
20828 if (DW_UNSND (&die->attrs[i]))
20829 fprintf_unfiltered (f, "flag: TRUE");
20830 else
20831 fprintf_unfiltered (f, "flag: FALSE");
20832 break;
20833 case DW_FORM_flag_present:
20834 fprintf_unfiltered (f, "flag: TRUE");
20835 break;
20836 case DW_FORM_indirect:
20837 /* The reader will have reduced the indirect form to
20838 the "base form" so this form should not occur. */
20839 fprintf_unfiltered (f,
20840 "unexpected attribute form: DW_FORM_indirect");
20841 break;
20842 case DW_FORM_implicit_const:
20843 fprintf_unfiltered (f, "constant: %s",
20844 plongest (DW_SND (&die->attrs[i])));
20845 break;
20846 default:
20847 fprintf_unfiltered (f, "unsupported attribute form: %d.",
20848 die->attrs[i].form);
20849 break;
20850 }
20851 fprintf_unfiltered (f, "\n");
20852 }
20853 }
20854
20855 static void
20856 dump_die_for_error (struct die_info *die)
20857 {
20858 dump_die_shallow (gdb_stderr, 0, die);
20859 }
20860
20861 static void
20862 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
20863 {
20864 int indent = level * 4;
20865
20866 gdb_assert (die != NULL);
20867
20868 if (level >= max_level)
20869 return;
20870
20871 dump_die_shallow (f, indent, die);
20872
20873 if (die->child != NULL)
20874 {
20875 print_spaces (indent, f);
20876 fprintf_unfiltered (f, " Children:");
20877 if (level + 1 < max_level)
20878 {
20879 fprintf_unfiltered (f, "\n");
20880 dump_die_1 (f, level + 1, max_level, die->child);
20881 }
20882 else
20883 {
20884 fprintf_unfiltered (f,
20885 " [not printed, max nesting level reached]\n");
20886 }
20887 }
20888
20889 if (die->sibling != NULL && level > 0)
20890 {
20891 dump_die_1 (f, level, max_level, die->sibling);
20892 }
20893 }
20894
20895 /* This is called from the pdie macro in gdbinit.in.
20896 It's not static so gcc will keep a copy callable from gdb. */
20897
20898 void
20899 dump_die (struct die_info *die, int max_level)
20900 {
20901 dump_die_1 (gdb_stdlog, 0, max_level, die);
20902 }
20903
20904 static void
20905 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
20906 {
20907 void **slot;
20908
20909 slot = htab_find_slot_with_hash (cu->die_hash, die,
20910 to_underlying (die->sect_off),
20911 INSERT);
20912
20913 *slot = die;
20914 }
20915
20916 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
20917 required kind. */
20918
20919 static sect_offset
20920 dwarf2_get_ref_die_offset (const struct attribute *attr)
20921 {
20922 if (attr_form_is_ref (attr))
20923 return (sect_offset) DW_UNSND (attr);
20924
20925 complaint (&symfile_complaints,
20926 _("unsupported die ref attribute form: '%s'"),
20927 dwarf_form_name (attr->form));
20928 return {};
20929 }
20930
20931 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20932 * the value held by the attribute is not constant. */
20933
20934 static LONGEST
20935 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
20936 {
20937 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
20938 return DW_SND (attr);
20939 else if (attr->form == DW_FORM_udata
20940 || attr->form == DW_FORM_data1
20941 || attr->form == DW_FORM_data2
20942 || attr->form == DW_FORM_data4
20943 || attr->form == DW_FORM_data8)
20944 return DW_UNSND (attr);
20945 else
20946 {
20947 /* For DW_FORM_data16 see attr_form_is_constant. */
20948 complaint (&symfile_complaints,
20949 _("Attribute value is not a constant (%s)"),
20950 dwarf_form_name (attr->form));
20951 return default_value;
20952 }
20953 }
20954
20955 /* Follow reference or signature attribute ATTR of SRC_DIE.
20956 On entry *REF_CU is the CU of SRC_DIE.
20957 On exit *REF_CU is the CU of the result. */
20958
20959 static struct die_info *
20960 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
20961 struct dwarf2_cu **ref_cu)
20962 {
20963 struct die_info *die;
20964
20965 if (attr_form_is_ref (attr))
20966 die = follow_die_ref (src_die, attr, ref_cu);
20967 else if (attr->form == DW_FORM_ref_sig8)
20968 die = follow_die_sig (src_die, attr, ref_cu);
20969 else
20970 {
20971 dump_die_for_error (src_die);
20972 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
20973 objfile_name ((*ref_cu)->objfile));
20974 }
20975
20976 return die;
20977 }
20978
20979 /* Follow reference OFFSET.
20980 On entry *REF_CU is the CU of the source die referencing OFFSET.
20981 On exit *REF_CU is the CU of the result.
20982 Returns NULL if OFFSET is invalid. */
20983
20984 static struct die_info *
20985 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
20986 struct dwarf2_cu **ref_cu)
20987 {
20988 struct die_info temp_die;
20989 struct dwarf2_cu *target_cu, *cu = *ref_cu;
20990
20991 gdb_assert (cu->per_cu != NULL);
20992
20993 target_cu = cu;
20994
20995 if (cu->per_cu->is_debug_types)
20996 {
20997 /* .debug_types CUs cannot reference anything outside their CU.
20998 If they need to, they have to reference a signatured type via
20999 DW_FORM_ref_sig8. */
21000 if (!offset_in_cu_p (&cu->header, sect_off))
21001 return NULL;
21002 }
21003 else if (offset_in_dwz != cu->per_cu->is_dwz
21004 || !offset_in_cu_p (&cu->header, sect_off))
21005 {
21006 struct dwarf2_per_cu_data *per_cu;
21007
21008 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
21009 cu->objfile);
21010
21011 /* If necessary, add it to the queue and load its DIEs. */
21012 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
21013 load_full_comp_unit (per_cu, cu->language);
21014
21015 target_cu = per_cu->cu;
21016 }
21017 else if (cu->dies == NULL)
21018 {
21019 /* We're loading full DIEs during partial symbol reading. */
21020 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
21021 load_full_comp_unit (cu->per_cu, language_minimal);
21022 }
21023
21024 *ref_cu = target_cu;
21025 temp_die.sect_off = sect_off;
21026 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
21027 &temp_die,
21028 to_underlying (sect_off));
21029 }
21030
21031 /* Follow reference attribute ATTR of SRC_DIE.
21032 On entry *REF_CU is the CU of SRC_DIE.
21033 On exit *REF_CU is the CU of the result. */
21034
21035 static struct die_info *
21036 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
21037 struct dwarf2_cu **ref_cu)
21038 {
21039 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21040 struct dwarf2_cu *cu = *ref_cu;
21041 struct die_info *die;
21042
21043 die = follow_die_offset (sect_off,
21044 (attr->form == DW_FORM_GNU_ref_alt
21045 || cu->per_cu->is_dwz),
21046 ref_cu);
21047 if (!die)
21048 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
21049 "at 0x%x [in module %s]"),
21050 to_underlying (sect_off), to_underlying (src_die->sect_off),
21051 objfile_name (cu->objfile));
21052
21053 return die;
21054 }
21055
21056 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
21057 Returned value is intended for DW_OP_call*. Returned
21058 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
21059
21060 struct dwarf2_locexpr_baton
21061 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
21062 struct dwarf2_per_cu_data *per_cu,
21063 CORE_ADDR (*get_frame_pc) (void *baton),
21064 void *baton)
21065 {
21066 struct dwarf2_cu *cu;
21067 struct die_info *die;
21068 struct attribute *attr;
21069 struct dwarf2_locexpr_baton retval;
21070
21071 dw2_setup (per_cu->objfile);
21072
21073 if (per_cu->cu == NULL)
21074 load_cu (per_cu);
21075 cu = per_cu->cu;
21076 if (cu == NULL)
21077 {
21078 /* We shouldn't get here for a dummy CU, but don't crash on the user.
21079 Instead just throw an error, not much else we can do. */
21080 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
21081 to_underlying (sect_off), objfile_name (per_cu->objfile));
21082 }
21083
21084 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
21085 if (!die)
21086 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
21087 to_underlying (sect_off), objfile_name (per_cu->objfile));
21088
21089 attr = dwarf2_attr (die, DW_AT_location, cu);
21090 if (!attr)
21091 {
21092 /* DWARF: "If there is no such attribute, then there is no effect.".
21093 DATA is ignored if SIZE is 0. */
21094
21095 retval.data = NULL;
21096 retval.size = 0;
21097 }
21098 else if (attr_form_is_section_offset (attr))
21099 {
21100 struct dwarf2_loclist_baton loclist_baton;
21101 CORE_ADDR pc = (*get_frame_pc) (baton);
21102 size_t size;
21103
21104 fill_in_loclist_baton (cu, &loclist_baton, attr);
21105
21106 retval.data = dwarf2_find_location_expression (&loclist_baton,
21107 &size, pc);
21108 retval.size = size;
21109 }
21110 else
21111 {
21112 if (!attr_form_is_block (attr))
21113 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
21114 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
21115 to_underlying (sect_off), objfile_name (per_cu->objfile));
21116
21117 retval.data = DW_BLOCK (attr)->data;
21118 retval.size = DW_BLOCK (attr)->size;
21119 }
21120 retval.per_cu = cu->per_cu;
21121
21122 age_cached_comp_units ();
21123
21124 return retval;
21125 }
21126
21127 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
21128 offset. */
21129
21130 struct dwarf2_locexpr_baton
21131 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
21132 struct dwarf2_per_cu_data *per_cu,
21133 CORE_ADDR (*get_frame_pc) (void *baton),
21134 void *baton)
21135 {
21136 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
21137
21138 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
21139 }
21140
21141 /* Write a constant of a given type as target-ordered bytes into
21142 OBSTACK. */
21143
21144 static const gdb_byte *
21145 write_constant_as_bytes (struct obstack *obstack,
21146 enum bfd_endian byte_order,
21147 struct type *type,
21148 ULONGEST value,
21149 LONGEST *len)
21150 {
21151 gdb_byte *result;
21152
21153 *len = TYPE_LENGTH (type);
21154 result = (gdb_byte *) obstack_alloc (obstack, *len);
21155 store_unsigned_integer (result, *len, byte_order, value);
21156
21157 return result;
21158 }
21159
21160 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
21161 pointer to the constant bytes and set LEN to the length of the
21162 data. If memory is needed, allocate it on OBSTACK. If the DIE
21163 does not have a DW_AT_const_value, return NULL. */
21164
21165 const gdb_byte *
21166 dwarf2_fetch_constant_bytes (sect_offset sect_off,
21167 struct dwarf2_per_cu_data *per_cu,
21168 struct obstack *obstack,
21169 LONGEST *len)
21170 {
21171 struct dwarf2_cu *cu;
21172 struct die_info *die;
21173 struct attribute *attr;
21174 const gdb_byte *result = NULL;
21175 struct type *type;
21176 LONGEST value;
21177 enum bfd_endian byte_order;
21178
21179 dw2_setup (per_cu->objfile);
21180
21181 if (per_cu->cu == NULL)
21182 load_cu (per_cu);
21183 cu = per_cu->cu;
21184 if (cu == NULL)
21185 {
21186 /* We shouldn't get here for a dummy CU, but don't crash on the user.
21187 Instead just throw an error, not much else we can do. */
21188 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
21189 to_underlying (sect_off), objfile_name (per_cu->objfile));
21190 }
21191
21192 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
21193 if (!die)
21194 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
21195 to_underlying (sect_off), objfile_name (per_cu->objfile));
21196
21197
21198 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21199 if (attr == NULL)
21200 return NULL;
21201
21202 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
21203 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21204
21205 switch (attr->form)
21206 {
21207 case DW_FORM_addr:
21208 case DW_FORM_GNU_addr_index:
21209 {
21210 gdb_byte *tem;
21211
21212 *len = cu->header.addr_size;
21213 tem = (gdb_byte *) obstack_alloc (obstack, *len);
21214 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
21215 result = tem;
21216 }
21217 break;
21218 case DW_FORM_string:
21219 case DW_FORM_strp:
21220 case DW_FORM_GNU_str_index:
21221 case DW_FORM_GNU_strp_alt:
21222 /* DW_STRING is already allocated on the objfile obstack, point
21223 directly to it. */
21224 result = (const gdb_byte *) DW_STRING (attr);
21225 *len = strlen (DW_STRING (attr));
21226 break;
21227 case DW_FORM_block1:
21228 case DW_FORM_block2:
21229 case DW_FORM_block4:
21230 case DW_FORM_block:
21231 case DW_FORM_exprloc:
21232 case DW_FORM_data16:
21233 result = DW_BLOCK (attr)->data;
21234 *len = DW_BLOCK (attr)->size;
21235 break;
21236
21237 /* The DW_AT_const_value attributes are supposed to carry the
21238 symbol's value "represented as it would be on the target
21239 architecture." By the time we get here, it's already been
21240 converted to host endianness, so we just need to sign- or
21241 zero-extend it as appropriate. */
21242 case DW_FORM_data1:
21243 type = die_type (die, cu);
21244 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
21245 if (result == NULL)
21246 result = write_constant_as_bytes (obstack, byte_order,
21247 type, value, len);
21248 break;
21249 case DW_FORM_data2:
21250 type = die_type (die, cu);
21251 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
21252 if (result == NULL)
21253 result = write_constant_as_bytes (obstack, byte_order,
21254 type, value, len);
21255 break;
21256 case DW_FORM_data4:
21257 type = die_type (die, cu);
21258 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
21259 if (result == NULL)
21260 result = write_constant_as_bytes (obstack, byte_order,
21261 type, value, len);
21262 break;
21263 case DW_FORM_data8:
21264 type = die_type (die, cu);
21265 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
21266 if (result == NULL)
21267 result = write_constant_as_bytes (obstack, byte_order,
21268 type, value, len);
21269 break;
21270
21271 case DW_FORM_sdata:
21272 case DW_FORM_implicit_const:
21273 type = die_type (die, cu);
21274 result = write_constant_as_bytes (obstack, byte_order,
21275 type, DW_SND (attr), len);
21276 break;
21277
21278 case DW_FORM_udata:
21279 type = die_type (die, cu);
21280 result = write_constant_as_bytes (obstack, byte_order,
21281 type, DW_UNSND (attr), len);
21282 break;
21283
21284 default:
21285 complaint (&symfile_complaints,
21286 _("unsupported const value attribute form: '%s'"),
21287 dwarf_form_name (attr->form));
21288 break;
21289 }
21290
21291 return result;
21292 }
21293
21294 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
21295 valid type for this die is found. */
21296
21297 struct type *
21298 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
21299 struct dwarf2_per_cu_data *per_cu)
21300 {
21301 struct dwarf2_cu *cu;
21302 struct die_info *die;
21303
21304 dw2_setup (per_cu->objfile);
21305
21306 if (per_cu->cu == NULL)
21307 load_cu (per_cu);
21308 cu = per_cu->cu;
21309 if (!cu)
21310 return NULL;
21311
21312 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
21313 if (!die)
21314 return NULL;
21315
21316 return die_type (die, cu);
21317 }
21318
21319 /* Return the type of the DIE at DIE_OFFSET in the CU named by
21320 PER_CU. */
21321
21322 struct type *
21323 dwarf2_get_die_type (cu_offset die_offset,
21324 struct dwarf2_per_cu_data *per_cu)
21325 {
21326 dw2_setup (per_cu->objfile);
21327
21328 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
21329 return get_die_type_at_offset (die_offset_sect, per_cu);
21330 }
21331
21332 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
21333 On entry *REF_CU is the CU of SRC_DIE.
21334 On exit *REF_CU is the CU of the result.
21335 Returns NULL if the referenced DIE isn't found. */
21336
21337 static struct die_info *
21338 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
21339 struct dwarf2_cu **ref_cu)
21340 {
21341 struct die_info temp_die;
21342 struct dwarf2_cu *sig_cu;
21343 struct die_info *die;
21344
21345 /* While it might be nice to assert sig_type->type == NULL here,
21346 we can get here for DW_AT_imported_declaration where we need
21347 the DIE not the type. */
21348
21349 /* If necessary, add it to the queue and load its DIEs. */
21350
21351 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
21352 read_signatured_type (sig_type);
21353
21354 sig_cu = sig_type->per_cu.cu;
21355 gdb_assert (sig_cu != NULL);
21356 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
21357 temp_die.sect_off = sig_type->type_offset_in_section;
21358 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
21359 to_underlying (temp_die.sect_off));
21360 if (die)
21361 {
21362 /* For .gdb_index version 7 keep track of included TUs.
21363 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
21364 if (dwarf2_per_objfile->index_table != NULL
21365 && dwarf2_per_objfile->index_table->version <= 7)
21366 {
21367 VEC_safe_push (dwarf2_per_cu_ptr,
21368 (*ref_cu)->per_cu->imported_symtabs,
21369 sig_cu->per_cu);
21370 }
21371
21372 *ref_cu = sig_cu;
21373 return die;
21374 }
21375
21376 return NULL;
21377 }
21378
21379 /* Follow signatured type referenced by ATTR in SRC_DIE.
21380 On entry *REF_CU is the CU of SRC_DIE.
21381 On exit *REF_CU is the CU of the result.
21382 The result is the DIE of the type.
21383 If the referenced type cannot be found an error is thrown. */
21384
21385 static struct die_info *
21386 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
21387 struct dwarf2_cu **ref_cu)
21388 {
21389 ULONGEST signature = DW_SIGNATURE (attr);
21390 struct signatured_type *sig_type;
21391 struct die_info *die;
21392
21393 gdb_assert (attr->form == DW_FORM_ref_sig8);
21394
21395 sig_type = lookup_signatured_type (*ref_cu, signature);
21396 /* sig_type will be NULL if the signatured type is missing from
21397 the debug info. */
21398 if (sig_type == NULL)
21399 {
21400 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
21401 " from DIE at 0x%x [in module %s]"),
21402 hex_string (signature), to_underlying (src_die->sect_off),
21403 objfile_name ((*ref_cu)->objfile));
21404 }
21405
21406 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
21407 if (die == NULL)
21408 {
21409 dump_die_for_error (src_die);
21410 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
21411 " from DIE at 0x%x [in module %s]"),
21412 hex_string (signature), to_underlying (src_die->sect_off),
21413 objfile_name ((*ref_cu)->objfile));
21414 }
21415
21416 return die;
21417 }
21418
21419 /* Get the type specified by SIGNATURE referenced in DIE/CU,
21420 reading in and processing the type unit if necessary. */
21421
21422 static struct type *
21423 get_signatured_type (struct die_info *die, ULONGEST signature,
21424 struct dwarf2_cu *cu)
21425 {
21426 struct signatured_type *sig_type;
21427 struct dwarf2_cu *type_cu;
21428 struct die_info *type_die;
21429 struct type *type;
21430
21431 sig_type = lookup_signatured_type (cu, signature);
21432 /* sig_type will be NULL if the signatured type is missing from
21433 the debug info. */
21434 if (sig_type == NULL)
21435 {
21436 complaint (&symfile_complaints,
21437 _("Dwarf Error: Cannot find signatured DIE %s referenced"
21438 " from DIE at 0x%x [in module %s]"),
21439 hex_string (signature), to_underlying (die->sect_off),
21440 objfile_name (dwarf2_per_objfile->objfile));
21441 return build_error_marker_type (cu, die);
21442 }
21443
21444 /* If we already know the type we're done. */
21445 if (sig_type->type != NULL)
21446 return sig_type->type;
21447
21448 type_cu = cu;
21449 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
21450 if (type_die != NULL)
21451 {
21452 /* N.B. We need to call get_die_type to ensure only one type for this DIE
21453 is created. This is important, for example, because for c++ classes
21454 we need TYPE_NAME set which is only done by new_symbol. Blech. */
21455 type = read_type_die (type_die, type_cu);
21456 if (type == NULL)
21457 {
21458 complaint (&symfile_complaints,
21459 _("Dwarf Error: Cannot build signatured type %s"
21460 " referenced from DIE at 0x%x [in module %s]"),
21461 hex_string (signature), to_underlying (die->sect_off),
21462 objfile_name (dwarf2_per_objfile->objfile));
21463 type = build_error_marker_type (cu, die);
21464 }
21465 }
21466 else
21467 {
21468 complaint (&symfile_complaints,
21469 _("Dwarf Error: Problem reading signatured DIE %s referenced"
21470 " from DIE at 0x%x [in module %s]"),
21471 hex_string (signature), to_underlying (die->sect_off),
21472 objfile_name (dwarf2_per_objfile->objfile));
21473 type = build_error_marker_type (cu, die);
21474 }
21475 sig_type->type = type;
21476
21477 return type;
21478 }
21479
21480 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
21481 reading in and processing the type unit if necessary. */
21482
21483 static struct type *
21484 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
21485 struct dwarf2_cu *cu) /* ARI: editCase function */
21486 {
21487 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
21488 if (attr_form_is_ref (attr))
21489 {
21490 struct dwarf2_cu *type_cu = cu;
21491 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
21492
21493 return read_type_die (type_die, type_cu);
21494 }
21495 else if (attr->form == DW_FORM_ref_sig8)
21496 {
21497 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
21498 }
21499 else
21500 {
21501 complaint (&symfile_complaints,
21502 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
21503 " at 0x%x [in module %s]"),
21504 dwarf_form_name (attr->form), to_underlying (die->sect_off),
21505 objfile_name (dwarf2_per_objfile->objfile));
21506 return build_error_marker_type (cu, die);
21507 }
21508 }
21509
21510 /* Load the DIEs associated with type unit PER_CU into memory. */
21511
21512 static void
21513 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
21514 {
21515 struct signatured_type *sig_type;
21516
21517 /* Caller is responsible for ensuring type_unit_groups don't get here. */
21518 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
21519
21520 /* We have the per_cu, but we need the signatured_type.
21521 Fortunately this is an easy translation. */
21522 gdb_assert (per_cu->is_debug_types);
21523 sig_type = (struct signatured_type *) per_cu;
21524
21525 gdb_assert (per_cu->cu == NULL);
21526
21527 read_signatured_type (sig_type);
21528
21529 gdb_assert (per_cu->cu != NULL);
21530 }
21531
21532 /* die_reader_func for read_signatured_type.
21533 This is identical to load_full_comp_unit_reader,
21534 but is kept separate for now. */
21535
21536 static void
21537 read_signatured_type_reader (const struct die_reader_specs *reader,
21538 const gdb_byte *info_ptr,
21539 struct die_info *comp_unit_die,
21540 int has_children,
21541 void *data)
21542 {
21543 struct dwarf2_cu *cu = reader->cu;
21544
21545 gdb_assert (cu->die_hash == NULL);
21546 cu->die_hash =
21547 htab_create_alloc_ex (cu->header.length / 12,
21548 die_hash,
21549 die_eq,
21550 NULL,
21551 &cu->comp_unit_obstack,
21552 hashtab_obstack_allocate,
21553 dummy_obstack_deallocate);
21554
21555 if (has_children)
21556 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
21557 &info_ptr, comp_unit_die);
21558 cu->dies = comp_unit_die;
21559 /* comp_unit_die is not stored in die_hash, no need. */
21560
21561 /* We try not to read any attributes in this function, because not
21562 all CUs needed for references have been loaded yet, and symbol
21563 table processing isn't initialized. But we have to set the CU language,
21564 or we won't be able to build types correctly.
21565 Similarly, if we do not read the producer, we can not apply
21566 producer-specific interpretation. */
21567 prepare_one_comp_unit (cu, cu->dies, language_minimal);
21568 }
21569
21570 /* Read in a signatured type and build its CU and DIEs.
21571 If the type is a stub for the real type in a DWO file,
21572 read in the real type from the DWO file as well. */
21573
21574 static void
21575 read_signatured_type (struct signatured_type *sig_type)
21576 {
21577 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
21578
21579 gdb_assert (per_cu->is_debug_types);
21580 gdb_assert (per_cu->cu == NULL);
21581
21582 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
21583 read_signatured_type_reader, NULL);
21584 sig_type->per_cu.tu_read = 1;
21585 }
21586
21587 /* Decode simple location descriptions.
21588 Given a pointer to a dwarf block that defines a location, compute
21589 the location and return the value.
21590
21591 NOTE drow/2003-11-18: This function is called in two situations
21592 now: for the address of static or global variables (partial symbols
21593 only) and for offsets into structures which are expected to be
21594 (more or less) constant. The partial symbol case should go away,
21595 and only the constant case should remain. That will let this
21596 function complain more accurately. A few special modes are allowed
21597 without complaint for global variables (for instance, global
21598 register values and thread-local values).
21599
21600 A location description containing no operations indicates that the
21601 object is optimized out. The return value is 0 for that case.
21602 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21603 callers will only want a very basic result and this can become a
21604 complaint.
21605
21606 Note that stack[0] is unused except as a default error return. */
21607
21608 static CORE_ADDR
21609 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
21610 {
21611 struct objfile *objfile = cu->objfile;
21612 size_t i;
21613 size_t size = blk->size;
21614 const gdb_byte *data = blk->data;
21615 CORE_ADDR stack[64];
21616 int stacki;
21617 unsigned int bytes_read, unsnd;
21618 gdb_byte op;
21619
21620 i = 0;
21621 stacki = 0;
21622 stack[stacki] = 0;
21623 stack[++stacki] = 0;
21624
21625 while (i < size)
21626 {
21627 op = data[i++];
21628 switch (op)
21629 {
21630 case DW_OP_lit0:
21631 case DW_OP_lit1:
21632 case DW_OP_lit2:
21633 case DW_OP_lit3:
21634 case DW_OP_lit4:
21635 case DW_OP_lit5:
21636 case DW_OP_lit6:
21637 case DW_OP_lit7:
21638 case DW_OP_lit8:
21639 case DW_OP_lit9:
21640 case DW_OP_lit10:
21641 case DW_OP_lit11:
21642 case DW_OP_lit12:
21643 case DW_OP_lit13:
21644 case DW_OP_lit14:
21645 case DW_OP_lit15:
21646 case DW_OP_lit16:
21647 case DW_OP_lit17:
21648 case DW_OP_lit18:
21649 case DW_OP_lit19:
21650 case DW_OP_lit20:
21651 case DW_OP_lit21:
21652 case DW_OP_lit22:
21653 case DW_OP_lit23:
21654 case DW_OP_lit24:
21655 case DW_OP_lit25:
21656 case DW_OP_lit26:
21657 case DW_OP_lit27:
21658 case DW_OP_lit28:
21659 case DW_OP_lit29:
21660 case DW_OP_lit30:
21661 case DW_OP_lit31:
21662 stack[++stacki] = op - DW_OP_lit0;
21663 break;
21664
21665 case DW_OP_reg0:
21666 case DW_OP_reg1:
21667 case DW_OP_reg2:
21668 case DW_OP_reg3:
21669 case DW_OP_reg4:
21670 case DW_OP_reg5:
21671 case DW_OP_reg6:
21672 case DW_OP_reg7:
21673 case DW_OP_reg8:
21674 case DW_OP_reg9:
21675 case DW_OP_reg10:
21676 case DW_OP_reg11:
21677 case DW_OP_reg12:
21678 case DW_OP_reg13:
21679 case DW_OP_reg14:
21680 case DW_OP_reg15:
21681 case DW_OP_reg16:
21682 case DW_OP_reg17:
21683 case DW_OP_reg18:
21684 case DW_OP_reg19:
21685 case DW_OP_reg20:
21686 case DW_OP_reg21:
21687 case DW_OP_reg22:
21688 case DW_OP_reg23:
21689 case DW_OP_reg24:
21690 case DW_OP_reg25:
21691 case DW_OP_reg26:
21692 case DW_OP_reg27:
21693 case DW_OP_reg28:
21694 case DW_OP_reg29:
21695 case DW_OP_reg30:
21696 case DW_OP_reg31:
21697 stack[++stacki] = op - DW_OP_reg0;
21698 if (i < size)
21699 dwarf2_complex_location_expr_complaint ();
21700 break;
21701
21702 case DW_OP_regx:
21703 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
21704 i += bytes_read;
21705 stack[++stacki] = unsnd;
21706 if (i < size)
21707 dwarf2_complex_location_expr_complaint ();
21708 break;
21709
21710 case DW_OP_addr:
21711 stack[++stacki] = read_address (objfile->obfd, &data[i],
21712 cu, &bytes_read);
21713 i += bytes_read;
21714 break;
21715
21716 case DW_OP_const1u:
21717 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
21718 i += 1;
21719 break;
21720
21721 case DW_OP_const1s:
21722 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
21723 i += 1;
21724 break;
21725
21726 case DW_OP_const2u:
21727 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
21728 i += 2;
21729 break;
21730
21731 case DW_OP_const2s:
21732 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
21733 i += 2;
21734 break;
21735
21736 case DW_OP_const4u:
21737 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
21738 i += 4;
21739 break;
21740
21741 case DW_OP_const4s:
21742 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
21743 i += 4;
21744 break;
21745
21746 case DW_OP_const8u:
21747 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
21748 i += 8;
21749 break;
21750
21751 case DW_OP_constu:
21752 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
21753 &bytes_read);
21754 i += bytes_read;
21755 break;
21756
21757 case DW_OP_consts:
21758 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
21759 i += bytes_read;
21760 break;
21761
21762 case DW_OP_dup:
21763 stack[stacki + 1] = stack[stacki];
21764 stacki++;
21765 break;
21766
21767 case DW_OP_plus:
21768 stack[stacki - 1] += stack[stacki];
21769 stacki--;
21770 break;
21771
21772 case DW_OP_plus_uconst:
21773 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
21774 &bytes_read);
21775 i += bytes_read;
21776 break;
21777
21778 case DW_OP_minus:
21779 stack[stacki - 1] -= stack[stacki];
21780 stacki--;
21781 break;
21782
21783 case DW_OP_deref:
21784 /* If we're not the last op, then we definitely can't encode
21785 this using GDB's address_class enum. This is valid for partial
21786 global symbols, although the variable's address will be bogus
21787 in the psymtab. */
21788 if (i < size)
21789 dwarf2_complex_location_expr_complaint ();
21790 break;
21791
21792 case DW_OP_GNU_push_tls_address:
21793 case DW_OP_form_tls_address:
21794 /* The top of the stack has the offset from the beginning
21795 of the thread control block at which the variable is located. */
21796 /* Nothing should follow this operator, so the top of stack would
21797 be returned. */
21798 /* This is valid for partial global symbols, but the variable's
21799 address will be bogus in the psymtab. Make it always at least
21800 non-zero to not look as a variable garbage collected by linker
21801 which have DW_OP_addr 0. */
21802 if (i < size)
21803 dwarf2_complex_location_expr_complaint ();
21804 stack[stacki]++;
21805 break;
21806
21807 case DW_OP_GNU_uninit:
21808 break;
21809
21810 case DW_OP_GNU_addr_index:
21811 case DW_OP_GNU_const_index:
21812 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
21813 &bytes_read);
21814 i += bytes_read;
21815 break;
21816
21817 default:
21818 {
21819 const char *name = get_DW_OP_name (op);
21820
21821 if (name)
21822 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
21823 name);
21824 else
21825 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
21826 op);
21827 }
21828
21829 return (stack[stacki]);
21830 }
21831
21832 /* Enforce maximum stack depth of SIZE-1 to avoid writing
21833 outside of the allocated space. Also enforce minimum>0. */
21834 if (stacki >= ARRAY_SIZE (stack) - 1)
21835 {
21836 complaint (&symfile_complaints,
21837 _("location description stack overflow"));
21838 return 0;
21839 }
21840
21841 if (stacki <= 0)
21842 {
21843 complaint (&symfile_complaints,
21844 _("location description stack underflow"));
21845 return 0;
21846 }
21847 }
21848 return (stack[stacki]);
21849 }
21850
21851 /* memory allocation interface */
21852
21853 static struct dwarf_block *
21854 dwarf_alloc_block (struct dwarf2_cu *cu)
21855 {
21856 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
21857 }
21858
21859 static struct die_info *
21860 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
21861 {
21862 struct die_info *die;
21863 size_t size = sizeof (struct die_info);
21864
21865 if (num_attrs > 1)
21866 size += (num_attrs - 1) * sizeof (struct attribute);
21867
21868 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
21869 memset (die, 0, sizeof (struct die_info));
21870 return (die);
21871 }
21872
21873 \f
21874 /* Macro support. */
21875
21876 /* Return file name relative to the compilation directory of file number I in
21877 *LH's file name table. The result is allocated using xmalloc; the caller is
21878 responsible for freeing it. */
21879
21880 static char *
21881 file_file_name (int file, struct line_header *lh)
21882 {
21883 /* Is the file number a valid index into the line header's file name
21884 table? Remember that file numbers start with one, not zero. */
21885 if (1 <= file && file <= lh->file_names.size ())
21886 {
21887 const file_entry &fe = lh->file_names[file - 1];
21888
21889 if (!IS_ABSOLUTE_PATH (fe.name))
21890 {
21891 const char *dir = fe.include_dir (lh);
21892 if (dir != NULL)
21893 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
21894 }
21895 return xstrdup (fe.name);
21896 }
21897 else
21898 {
21899 /* The compiler produced a bogus file number. We can at least
21900 record the macro definitions made in the file, even if we
21901 won't be able to find the file by name. */
21902 char fake_name[80];
21903
21904 xsnprintf (fake_name, sizeof (fake_name),
21905 "<bad macro file number %d>", file);
21906
21907 complaint (&symfile_complaints,
21908 _("bad file number in macro information (%d)"),
21909 file);
21910
21911 return xstrdup (fake_name);
21912 }
21913 }
21914
21915 /* Return the full name of file number I in *LH's file name table.
21916 Use COMP_DIR as the name of the current directory of the
21917 compilation. The result is allocated using xmalloc; the caller is
21918 responsible for freeing it. */
21919 static char *
21920 file_full_name (int file, struct line_header *lh, const char *comp_dir)
21921 {
21922 /* Is the file number a valid index into the line header's file name
21923 table? Remember that file numbers start with one, not zero. */
21924 if (1 <= file && file <= lh->file_names.size ())
21925 {
21926 char *relative = file_file_name (file, lh);
21927
21928 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
21929 return relative;
21930 return reconcat (relative, comp_dir, SLASH_STRING,
21931 relative, (char *) NULL);
21932 }
21933 else
21934 return file_file_name (file, lh);
21935 }
21936
21937
21938 static struct macro_source_file *
21939 macro_start_file (int file, int line,
21940 struct macro_source_file *current_file,
21941 struct line_header *lh)
21942 {
21943 /* File name relative to the compilation directory of this source file. */
21944 char *file_name = file_file_name (file, lh);
21945
21946 if (! current_file)
21947 {
21948 /* Note: We don't create a macro table for this compilation unit
21949 at all until we actually get a filename. */
21950 struct macro_table *macro_table = get_macro_table ();
21951
21952 /* If we have no current file, then this must be the start_file
21953 directive for the compilation unit's main source file. */
21954 current_file = macro_set_main (macro_table, file_name);
21955 macro_define_special (macro_table);
21956 }
21957 else
21958 current_file = macro_include (current_file, line, file_name);
21959
21960 xfree (file_name);
21961
21962 return current_file;
21963 }
21964
21965 static const char *
21966 consume_improper_spaces (const char *p, const char *body)
21967 {
21968 if (*p == ' ')
21969 {
21970 complaint (&symfile_complaints,
21971 _("macro definition contains spaces "
21972 "in formal argument list:\n`%s'"),
21973 body);
21974
21975 while (*p == ' ')
21976 p++;
21977 }
21978
21979 return p;
21980 }
21981
21982
21983 static void
21984 parse_macro_definition (struct macro_source_file *file, int line,
21985 const char *body)
21986 {
21987 const char *p;
21988
21989 /* The body string takes one of two forms. For object-like macro
21990 definitions, it should be:
21991
21992 <macro name> " " <definition>
21993
21994 For function-like macro definitions, it should be:
21995
21996 <macro name> "() " <definition>
21997 or
21998 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21999
22000 Spaces may appear only where explicitly indicated, and in the
22001 <definition>.
22002
22003 The Dwarf 2 spec says that an object-like macro's name is always
22004 followed by a space, but versions of GCC around March 2002 omit
22005 the space when the macro's definition is the empty string.
22006
22007 The Dwarf 2 spec says that there should be no spaces between the
22008 formal arguments in a function-like macro's formal argument list,
22009 but versions of GCC around March 2002 include spaces after the
22010 commas. */
22011
22012
22013 /* Find the extent of the macro name. The macro name is terminated
22014 by either a space or null character (for an object-like macro) or
22015 an opening paren (for a function-like macro). */
22016 for (p = body; *p; p++)
22017 if (*p == ' ' || *p == '(')
22018 break;
22019
22020 if (*p == ' ' || *p == '\0')
22021 {
22022 /* It's an object-like macro. */
22023 int name_len = p - body;
22024 char *name = savestring (body, name_len);
22025 const char *replacement;
22026
22027 if (*p == ' ')
22028 replacement = body + name_len + 1;
22029 else
22030 {
22031 dwarf2_macro_malformed_definition_complaint (body);
22032 replacement = body + name_len;
22033 }
22034
22035 macro_define_object (file, line, name, replacement);
22036
22037 xfree (name);
22038 }
22039 else if (*p == '(')
22040 {
22041 /* It's a function-like macro. */
22042 char *name = savestring (body, p - body);
22043 int argc = 0;
22044 int argv_size = 1;
22045 char **argv = XNEWVEC (char *, argv_size);
22046
22047 p++;
22048
22049 p = consume_improper_spaces (p, body);
22050
22051 /* Parse the formal argument list. */
22052 while (*p && *p != ')')
22053 {
22054 /* Find the extent of the current argument name. */
22055 const char *arg_start = p;
22056
22057 while (*p && *p != ',' && *p != ')' && *p != ' ')
22058 p++;
22059
22060 if (! *p || p == arg_start)
22061 dwarf2_macro_malformed_definition_complaint (body);
22062 else
22063 {
22064 /* Make sure argv has room for the new argument. */
22065 if (argc >= argv_size)
22066 {
22067 argv_size *= 2;
22068 argv = XRESIZEVEC (char *, argv, argv_size);
22069 }
22070
22071 argv[argc++] = savestring (arg_start, p - arg_start);
22072 }
22073
22074 p = consume_improper_spaces (p, body);
22075
22076 /* Consume the comma, if present. */
22077 if (*p == ',')
22078 {
22079 p++;
22080
22081 p = consume_improper_spaces (p, body);
22082 }
22083 }
22084
22085 if (*p == ')')
22086 {
22087 p++;
22088
22089 if (*p == ' ')
22090 /* Perfectly formed definition, no complaints. */
22091 macro_define_function (file, line, name,
22092 argc, (const char **) argv,
22093 p + 1);
22094 else if (*p == '\0')
22095 {
22096 /* Complain, but do define it. */
22097 dwarf2_macro_malformed_definition_complaint (body);
22098 macro_define_function (file, line, name,
22099 argc, (const char **) argv,
22100 p);
22101 }
22102 else
22103 /* Just complain. */
22104 dwarf2_macro_malformed_definition_complaint (body);
22105 }
22106 else
22107 /* Just complain. */
22108 dwarf2_macro_malformed_definition_complaint (body);
22109
22110 xfree (name);
22111 {
22112 int i;
22113
22114 for (i = 0; i < argc; i++)
22115 xfree (argv[i]);
22116 }
22117 xfree (argv);
22118 }
22119 else
22120 dwarf2_macro_malformed_definition_complaint (body);
22121 }
22122
22123 /* Skip some bytes from BYTES according to the form given in FORM.
22124 Returns the new pointer. */
22125
22126 static const gdb_byte *
22127 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
22128 enum dwarf_form form,
22129 unsigned int offset_size,
22130 struct dwarf2_section_info *section)
22131 {
22132 unsigned int bytes_read;
22133
22134 switch (form)
22135 {
22136 case DW_FORM_data1:
22137 case DW_FORM_flag:
22138 ++bytes;
22139 break;
22140
22141 case DW_FORM_data2:
22142 bytes += 2;
22143 break;
22144
22145 case DW_FORM_data4:
22146 bytes += 4;
22147 break;
22148
22149 case DW_FORM_data8:
22150 bytes += 8;
22151 break;
22152
22153 case DW_FORM_data16:
22154 bytes += 16;
22155 break;
22156
22157 case DW_FORM_string:
22158 read_direct_string (abfd, bytes, &bytes_read);
22159 bytes += bytes_read;
22160 break;
22161
22162 case DW_FORM_sec_offset:
22163 case DW_FORM_strp:
22164 case DW_FORM_GNU_strp_alt:
22165 bytes += offset_size;
22166 break;
22167
22168 case DW_FORM_block:
22169 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
22170 bytes += bytes_read;
22171 break;
22172
22173 case DW_FORM_block1:
22174 bytes += 1 + read_1_byte (abfd, bytes);
22175 break;
22176 case DW_FORM_block2:
22177 bytes += 2 + read_2_bytes (abfd, bytes);
22178 break;
22179 case DW_FORM_block4:
22180 bytes += 4 + read_4_bytes (abfd, bytes);
22181 break;
22182
22183 case DW_FORM_sdata:
22184 case DW_FORM_udata:
22185 case DW_FORM_GNU_addr_index:
22186 case DW_FORM_GNU_str_index:
22187 bytes = gdb_skip_leb128 (bytes, buffer_end);
22188 if (bytes == NULL)
22189 {
22190 dwarf2_section_buffer_overflow_complaint (section);
22191 return NULL;
22192 }
22193 break;
22194
22195 case DW_FORM_implicit_const:
22196 break;
22197
22198 default:
22199 {
22200 complain:
22201 complaint (&symfile_complaints,
22202 _("invalid form 0x%x in `%s'"),
22203 form, get_section_name (section));
22204 return NULL;
22205 }
22206 }
22207
22208 return bytes;
22209 }
22210
22211 /* A helper for dwarf_decode_macros that handles skipping an unknown
22212 opcode. Returns an updated pointer to the macro data buffer; or,
22213 on error, issues a complaint and returns NULL. */
22214
22215 static const gdb_byte *
22216 skip_unknown_opcode (unsigned int opcode,
22217 const gdb_byte **opcode_definitions,
22218 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
22219 bfd *abfd,
22220 unsigned int offset_size,
22221 struct dwarf2_section_info *section)
22222 {
22223 unsigned int bytes_read, i;
22224 unsigned long arg;
22225 const gdb_byte *defn;
22226
22227 if (opcode_definitions[opcode] == NULL)
22228 {
22229 complaint (&symfile_complaints,
22230 _("unrecognized DW_MACFINO opcode 0x%x"),
22231 opcode);
22232 return NULL;
22233 }
22234
22235 defn = opcode_definitions[opcode];
22236 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
22237 defn += bytes_read;
22238
22239 for (i = 0; i < arg; ++i)
22240 {
22241 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
22242 (enum dwarf_form) defn[i], offset_size,
22243 section);
22244 if (mac_ptr == NULL)
22245 {
22246 /* skip_form_bytes already issued the complaint. */
22247 return NULL;
22248 }
22249 }
22250
22251 return mac_ptr;
22252 }
22253
22254 /* A helper function which parses the header of a macro section.
22255 If the macro section is the extended (for now called "GNU") type,
22256 then this updates *OFFSET_SIZE. Returns a pointer to just after
22257 the header, or issues a complaint and returns NULL on error. */
22258
22259 static const gdb_byte *
22260 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
22261 bfd *abfd,
22262 const gdb_byte *mac_ptr,
22263 unsigned int *offset_size,
22264 int section_is_gnu)
22265 {
22266 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
22267
22268 if (section_is_gnu)
22269 {
22270 unsigned int version, flags;
22271
22272 version = read_2_bytes (abfd, mac_ptr);
22273 if (version != 4 && version != 5)
22274 {
22275 complaint (&symfile_complaints,
22276 _("unrecognized version `%d' in .debug_macro section"),
22277 version);
22278 return NULL;
22279 }
22280 mac_ptr += 2;
22281
22282 flags = read_1_byte (abfd, mac_ptr);
22283 ++mac_ptr;
22284 *offset_size = (flags & 1) ? 8 : 4;
22285
22286 if ((flags & 2) != 0)
22287 /* We don't need the line table offset. */
22288 mac_ptr += *offset_size;
22289
22290 /* Vendor opcode descriptions. */
22291 if ((flags & 4) != 0)
22292 {
22293 unsigned int i, count;
22294
22295 count = read_1_byte (abfd, mac_ptr);
22296 ++mac_ptr;
22297 for (i = 0; i < count; ++i)
22298 {
22299 unsigned int opcode, bytes_read;
22300 unsigned long arg;
22301
22302 opcode = read_1_byte (abfd, mac_ptr);
22303 ++mac_ptr;
22304 opcode_definitions[opcode] = mac_ptr;
22305 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22306 mac_ptr += bytes_read;
22307 mac_ptr += arg;
22308 }
22309 }
22310 }
22311
22312 return mac_ptr;
22313 }
22314
22315 /* A helper for dwarf_decode_macros that handles the GNU extensions,
22316 including DW_MACRO_import. */
22317
22318 static void
22319 dwarf_decode_macro_bytes (bfd *abfd,
22320 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
22321 struct macro_source_file *current_file,
22322 struct line_header *lh,
22323 struct dwarf2_section_info *section,
22324 int section_is_gnu, int section_is_dwz,
22325 unsigned int offset_size,
22326 htab_t include_hash)
22327 {
22328 struct objfile *objfile = dwarf2_per_objfile->objfile;
22329 enum dwarf_macro_record_type macinfo_type;
22330 int at_commandline;
22331 const gdb_byte *opcode_definitions[256];
22332
22333 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22334 &offset_size, section_is_gnu);
22335 if (mac_ptr == NULL)
22336 {
22337 /* We already issued a complaint. */
22338 return;
22339 }
22340
22341 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
22342 GDB is still reading the definitions from command line. First
22343 DW_MACINFO_start_file will need to be ignored as it was already executed
22344 to create CURRENT_FILE for the main source holding also the command line
22345 definitions. On first met DW_MACINFO_start_file this flag is reset to
22346 normally execute all the remaining DW_MACINFO_start_file macinfos. */
22347
22348 at_commandline = 1;
22349
22350 do
22351 {
22352 /* Do we at least have room for a macinfo type byte? */
22353 if (mac_ptr >= mac_end)
22354 {
22355 dwarf2_section_buffer_overflow_complaint (section);
22356 break;
22357 }
22358
22359 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22360 mac_ptr++;
22361
22362 /* Note that we rely on the fact that the corresponding GNU and
22363 DWARF constants are the same. */
22364 switch (macinfo_type)
22365 {
22366 /* A zero macinfo type indicates the end of the macro
22367 information. */
22368 case 0:
22369 break;
22370
22371 case DW_MACRO_define:
22372 case DW_MACRO_undef:
22373 case DW_MACRO_define_strp:
22374 case DW_MACRO_undef_strp:
22375 case DW_MACRO_define_sup:
22376 case DW_MACRO_undef_sup:
22377 {
22378 unsigned int bytes_read;
22379 int line;
22380 const char *body;
22381 int is_define;
22382
22383 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22384 mac_ptr += bytes_read;
22385
22386 if (macinfo_type == DW_MACRO_define
22387 || macinfo_type == DW_MACRO_undef)
22388 {
22389 body = read_direct_string (abfd, mac_ptr, &bytes_read);
22390 mac_ptr += bytes_read;
22391 }
22392 else
22393 {
22394 LONGEST str_offset;
22395
22396 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
22397 mac_ptr += offset_size;
22398
22399 if (macinfo_type == DW_MACRO_define_sup
22400 || macinfo_type == DW_MACRO_undef_sup
22401 || section_is_dwz)
22402 {
22403 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22404
22405 body = read_indirect_string_from_dwz (dwz, str_offset);
22406 }
22407 else
22408 body = read_indirect_string_at_offset (abfd, str_offset);
22409 }
22410
22411 is_define = (macinfo_type == DW_MACRO_define
22412 || macinfo_type == DW_MACRO_define_strp
22413 || macinfo_type == DW_MACRO_define_sup);
22414 if (! current_file)
22415 {
22416 /* DWARF violation as no main source is present. */
22417 complaint (&symfile_complaints,
22418 _("debug info with no main source gives macro %s "
22419 "on line %d: %s"),
22420 is_define ? _("definition") : _("undefinition"),
22421 line, body);
22422 break;
22423 }
22424 if ((line == 0 && !at_commandline)
22425 || (line != 0 && at_commandline))
22426 complaint (&symfile_complaints,
22427 _("debug info gives %s macro %s with %s line %d: %s"),
22428 at_commandline ? _("command-line") : _("in-file"),
22429 is_define ? _("definition") : _("undefinition"),
22430 line == 0 ? _("zero") : _("non-zero"), line, body);
22431
22432 if (is_define)
22433 parse_macro_definition (current_file, line, body);
22434 else
22435 {
22436 gdb_assert (macinfo_type == DW_MACRO_undef
22437 || macinfo_type == DW_MACRO_undef_strp
22438 || macinfo_type == DW_MACRO_undef_sup);
22439 macro_undef (current_file, line, body);
22440 }
22441 }
22442 break;
22443
22444 case DW_MACRO_start_file:
22445 {
22446 unsigned int bytes_read;
22447 int line, file;
22448
22449 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22450 mac_ptr += bytes_read;
22451 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22452 mac_ptr += bytes_read;
22453
22454 if ((line == 0 && !at_commandline)
22455 || (line != 0 && at_commandline))
22456 complaint (&symfile_complaints,
22457 _("debug info gives source %d included "
22458 "from %s at %s line %d"),
22459 file, at_commandline ? _("command-line") : _("file"),
22460 line == 0 ? _("zero") : _("non-zero"), line);
22461
22462 if (at_commandline)
22463 {
22464 /* This DW_MACRO_start_file was executed in the
22465 pass one. */
22466 at_commandline = 0;
22467 }
22468 else
22469 current_file = macro_start_file (file, line, current_file, lh);
22470 }
22471 break;
22472
22473 case DW_MACRO_end_file:
22474 if (! current_file)
22475 complaint (&symfile_complaints,
22476 _("macro debug info has an unmatched "
22477 "`close_file' directive"));
22478 else
22479 {
22480 current_file = current_file->included_by;
22481 if (! current_file)
22482 {
22483 enum dwarf_macro_record_type next_type;
22484
22485 /* GCC circa March 2002 doesn't produce the zero
22486 type byte marking the end of the compilation
22487 unit. Complain if it's not there, but exit no
22488 matter what. */
22489
22490 /* Do we at least have room for a macinfo type byte? */
22491 if (mac_ptr >= mac_end)
22492 {
22493 dwarf2_section_buffer_overflow_complaint (section);
22494 return;
22495 }
22496
22497 /* We don't increment mac_ptr here, so this is just
22498 a look-ahead. */
22499 next_type
22500 = (enum dwarf_macro_record_type) read_1_byte (abfd,
22501 mac_ptr);
22502 if (next_type != 0)
22503 complaint (&symfile_complaints,
22504 _("no terminating 0-type entry for "
22505 "macros in `.debug_macinfo' section"));
22506
22507 return;
22508 }
22509 }
22510 break;
22511
22512 case DW_MACRO_import:
22513 case DW_MACRO_import_sup:
22514 {
22515 LONGEST offset;
22516 void **slot;
22517 bfd *include_bfd = abfd;
22518 struct dwarf2_section_info *include_section = section;
22519 const gdb_byte *include_mac_end = mac_end;
22520 int is_dwz = section_is_dwz;
22521 const gdb_byte *new_mac_ptr;
22522
22523 offset = read_offset_1 (abfd, mac_ptr, offset_size);
22524 mac_ptr += offset_size;
22525
22526 if (macinfo_type == DW_MACRO_import_sup)
22527 {
22528 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22529
22530 dwarf2_read_section (objfile, &dwz->macro);
22531
22532 include_section = &dwz->macro;
22533 include_bfd = get_section_bfd_owner (include_section);
22534 include_mac_end = dwz->macro.buffer + dwz->macro.size;
22535 is_dwz = 1;
22536 }
22537
22538 new_mac_ptr = include_section->buffer + offset;
22539 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
22540
22541 if (*slot != NULL)
22542 {
22543 /* This has actually happened; see
22544 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
22545 complaint (&symfile_complaints,
22546 _("recursive DW_MACRO_import in "
22547 ".debug_macro section"));
22548 }
22549 else
22550 {
22551 *slot = (void *) new_mac_ptr;
22552
22553 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
22554 include_mac_end, current_file, lh,
22555 section, section_is_gnu, is_dwz,
22556 offset_size, include_hash);
22557
22558 htab_remove_elt (include_hash, (void *) new_mac_ptr);
22559 }
22560 }
22561 break;
22562
22563 case DW_MACINFO_vendor_ext:
22564 if (!section_is_gnu)
22565 {
22566 unsigned int bytes_read;
22567
22568 /* This reads the constant, but since we don't recognize
22569 any vendor extensions, we ignore it. */
22570 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22571 mac_ptr += bytes_read;
22572 read_direct_string (abfd, mac_ptr, &bytes_read);
22573 mac_ptr += bytes_read;
22574
22575 /* We don't recognize any vendor extensions. */
22576 break;
22577 }
22578 /* FALLTHROUGH */
22579
22580 default:
22581 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22582 mac_ptr, mac_end, abfd, offset_size,
22583 section);
22584 if (mac_ptr == NULL)
22585 return;
22586 break;
22587 }
22588 } while (macinfo_type != 0);
22589 }
22590
22591 static void
22592 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
22593 int section_is_gnu)
22594 {
22595 struct objfile *objfile = dwarf2_per_objfile->objfile;
22596 struct line_header *lh = cu->line_header;
22597 bfd *abfd;
22598 const gdb_byte *mac_ptr, *mac_end;
22599 struct macro_source_file *current_file = 0;
22600 enum dwarf_macro_record_type macinfo_type;
22601 unsigned int offset_size = cu->header.offset_size;
22602 const gdb_byte *opcode_definitions[256];
22603 void **slot;
22604 struct dwarf2_section_info *section;
22605 const char *section_name;
22606
22607 if (cu->dwo_unit != NULL)
22608 {
22609 if (section_is_gnu)
22610 {
22611 section = &cu->dwo_unit->dwo_file->sections.macro;
22612 section_name = ".debug_macro.dwo";
22613 }
22614 else
22615 {
22616 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22617 section_name = ".debug_macinfo.dwo";
22618 }
22619 }
22620 else
22621 {
22622 if (section_is_gnu)
22623 {
22624 section = &dwarf2_per_objfile->macro;
22625 section_name = ".debug_macro";
22626 }
22627 else
22628 {
22629 section = &dwarf2_per_objfile->macinfo;
22630 section_name = ".debug_macinfo";
22631 }
22632 }
22633
22634 dwarf2_read_section (objfile, section);
22635 if (section->buffer == NULL)
22636 {
22637 complaint (&symfile_complaints, _("missing %s section"), section_name);
22638 return;
22639 }
22640 abfd = get_section_bfd_owner (section);
22641
22642 /* First pass: Find the name of the base filename.
22643 This filename is needed in order to process all macros whose definition
22644 (or undefinition) comes from the command line. These macros are defined
22645 before the first DW_MACINFO_start_file entry, and yet still need to be
22646 associated to the base file.
22647
22648 To determine the base file name, we scan the macro definitions until we
22649 reach the first DW_MACINFO_start_file entry. We then initialize
22650 CURRENT_FILE accordingly so that any macro definition found before the
22651 first DW_MACINFO_start_file can still be associated to the base file. */
22652
22653 mac_ptr = section->buffer + offset;
22654 mac_end = section->buffer + section->size;
22655
22656 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22657 &offset_size, section_is_gnu);
22658 if (mac_ptr == NULL)
22659 {
22660 /* We already issued a complaint. */
22661 return;
22662 }
22663
22664 do
22665 {
22666 /* Do we at least have room for a macinfo type byte? */
22667 if (mac_ptr >= mac_end)
22668 {
22669 /* Complaint is printed during the second pass as GDB will probably
22670 stop the first pass earlier upon finding
22671 DW_MACINFO_start_file. */
22672 break;
22673 }
22674
22675 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22676 mac_ptr++;
22677
22678 /* Note that we rely on the fact that the corresponding GNU and
22679 DWARF constants are the same. */
22680 switch (macinfo_type)
22681 {
22682 /* A zero macinfo type indicates the end of the macro
22683 information. */
22684 case 0:
22685 break;
22686
22687 case DW_MACRO_define:
22688 case DW_MACRO_undef:
22689 /* Only skip the data by MAC_PTR. */
22690 {
22691 unsigned int bytes_read;
22692
22693 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22694 mac_ptr += bytes_read;
22695 read_direct_string (abfd, mac_ptr, &bytes_read);
22696 mac_ptr += bytes_read;
22697 }
22698 break;
22699
22700 case DW_MACRO_start_file:
22701 {
22702 unsigned int bytes_read;
22703 int line, file;
22704
22705 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22706 mac_ptr += bytes_read;
22707 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22708 mac_ptr += bytes_read;
22709
22710 current_file = macro_start_file (file, line, current_file, lh);
22711 }
22712 break;
22713
22714 case DW_MACRO_end_file:
22715 /* No data to skip by MAC_PTR. */
22716 break;
22717
22718 case DW_MACRO_define_strp:
22719 case DW_MACRO_undef_strp:
22720 case DW_MACRO_define_sup:
22721 case DW_MACRO_undef_sup:
22722 {
22723 unsigned int bytes_read;
22724
22725 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22726 mac_ptr += bytes_read;
22727 mac_ptr += offset_size;
22728 }
22729 break;
22730
22731 case DW_MACRO_import:
22732 case DW_MACRO_import_sup:
22733 /* Note that, according to the spec, a transparent include
22734 chain cannot call DW_MACRO_start_file. So, we can just
22735 skip this opcode. */
22736 mac_ptr += offset_size;
22737 break;
22738
22739 case DW_MACINFO_vendor_ext:
22740 /* Only skip the data by MAC_PTR. */
22741 if (!section_is_gnu)
22742 {
22743 unsigned int bytes_read;
22744
22745 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22746 mac_ptr += bytes_read;
22747 read_direct_string (abfd, mac_ptr, &bytes_read);
22748 mac_ptr += bytes_read;
22749 }
22750 /* FALLTHROUGH */
22751
22752 default:
22753 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22754 mac_ptr, mac_end, abfd, offset_size,
22755 section);
22756 if (mac_ptr == NULL)
22757 return;
22758 break;
22759 }
22760 } while (macinfo_type != 0 && current_file == NULL);
22761
22762 /* Second pass: Process all entries.
22763
22764 Use the AT_COMMAND_LINE flag to determine whether we are still processing
22765 command-line macro definitions/undefinitions. This flag is unset when we
22766 reach the first DW_MACINFO_start_file entry. */
22767
22768 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
22769 htab_eq_pointer,
22770 NULL, xcalloc, xfree));
22771 mac_ptr = section->buffer + offset;
22772 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
22773 *slot = (void *) mac_ptr;
22774 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
22775 current_file, lh, section,
22776 section_is_gnu, 0, offset_size,
22777 include_hash.get ());
22778 }
22779
22780 /* Check if the attribute's form is a DW_FORM_block*
22781 if so return true else false. */
22782
22783 static int
22784 attr_form_is_block (const struct attribute *attr)
22785 {
22786 return (attr == NULL ? 0 :
22787 attr->form == DW_FORM_block1
22788 || attr->form == DW_FORM_block2
22789 || attr->form == DW_FORM_block4
22790 || attr->form == DW_FORM_block
22791 || attr->form == DW_FORM_exprloc);
22792 }
22793
22794 /* Return non-zero if ATTR's value is a section offset --- classes
22795 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
22796 You may use DW_UNSND (attr) to retrieve such offsets.
22797
22798 Section 7.5.4, "Attribute Encodings", explains that no attribute
22799 may have a value that belongs to more than one of these classes; it
22800 would be ambiguous if we did, because we use the same forms for all
22801 of them. */
22802
22803 static int
22804 attr_form_is_section_offset (const struct attribute *attr)
22805 {
22806 return (attr->form == DW_FORM_data4
22807 || attr->form == DW_FORM_data8
22808 || attr->form == DW_FORM_sec_offset);
22809 }
22810
22811 /* Return non-zero if ATTR's value falls in the 'constant' class, or
22812 zero otherwise. When this function returns true, you can apply
22813 dwarf2_get_attr_constant_value to it.
22814
22815 However, note that for some attributes you must check
22816 attr_form_is_section_offset before using this test. DW_FORM_data4
22817 and DW_FORM_data8 are members of both the constant class, and of
22818 the classes that contain offsets into other debug sections
22819 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
22820 that, if an attribute's can be either a constant or one of the
22821 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
22822 taken as section offsets, not constants.
22823
22824 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
22825 cannot handle that. */
22826
22827 static int
22828 attr_form_is_constant (const struct attribute *attr)
22829 {
22830 switch (attr->form)
22831 {
22832 case DW_FORM_sdata:
22833 case DW_FORM_udata:
22834 case DW_FORM_data1:
22835 case DW_FORM_data2:
22836 case DW_FORM_data4:
22837 case DW_FORM_data8:
22838 case DW_FORM_implicit_const:
22839 return 1;
22840 default:
22841 return 0;
22842 }
22843 }
22844
22845
22846 /* DW_ADDR is always stored already as sect_offset; despite for the forms
22847 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
22848
22849 static int
22850 attr_form_is_ref (const struct attribute *attr)
22851 {
22852 switch (attr->form)
22853 {
22854 case DW_FORM_ref_addr:
22855 case DW_FORM_ref1:
22856 case DW_FORM_ref2:
22857 case DW_FORM_ref4:
22858 case DW_FORM_ref8:
22859 case DW_FORM_ref_udata:
22860 case DW_FORM_GNU_ref_alt:
22861 return 1;
22862 default:
22863 return 0;
22864 }
22865 }
22866
22867 /* Return the .debug_loc section to use for CU.
22868 For DWO files use .debug_loc.dwo. */
22869
22870 static struct dwarf2_section_info *
22871 cu_debug_loc_section (struct dwarf2_cu *cu)
22872 {
22873 if (cu->dwo_unit)
22874 {
22875 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22876
22877 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22878 }
22879 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22880 : &dwarf2_per_objfile->loc);
22881 }
22882
22883 /* A helper function that fills in a dwarf2_loclist_baton. */
22884
22885 static void
22886 fill_in_loclist_baton (struct dwarf2_cu *cu,
22887 struct dwarf2_loclist_baton *baton,
22888 const struct attribute *attr)
22889 {
22890 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22891
22892 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
22893
22894 baton->per_cu = cu->per_cu;
22895 gdb_assert (baton->per_cu);
22896 /* We don't know how long the location list is, but make sure we
22897 don't run off the edge of the section. */
22898 baton->size = section->size - DW_UNSND (attr);
22899 baton->data = section->buffer + DW_UNSND (attr);
22900 baton->base_address = cu->base_address;
22901 baton->from_dwo = cu->dwo_unit != NULL;
22902 }
22903
22904 static void
22905 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
22906 struct dwarf2_cu *cu, int is_block)
22907 {
22908 struct objfile *objfile = dwarf2_per_objfile->objfile;
22909 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22910
22911 if (attr_form_is_section_offset (attr)
22912 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
22913 the section. If so, fall through to the complaint in the
22914 other branch. */
22915 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
22916 {
22917 struct dwarf2_loclist_baton *baton;
22918
22919 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
22920
22921 fill_in_loclist_baton (cu, baton, attr);
22922
22923 if (cu->base_known == 0)
22924 complaint (&symfile_complaints,
22925 _("Location list used without "
22926 "specifying the CU base address."));
22927
22928 SYMBOL_ACLASS_INDEX (sym) = (is_block
22929 ? dwarf2_loclist_block_index
22930 : dwarf2_loclist_index);
22931 SYMBOL_LOCATION_BATON (sym) = baton;
22932 }
22933 else
22934 {
22935 struct dwarf2_locexpr_baton *baton;
22936
22937 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
22938 baton->per_cu = cu->per_cu;
22939 gdb_assert (baton->per_cu);
22940
22941 if (attr_form_is_block (attr))
22942 {
22943 /* Note that we're just copying the block's data pointer
22944 here, not the actual data. We're still pointing into the
22945 info_buffer for SYM's objfile; right now we never release
22946 that buffer, but when we do clean up properly this may
22947 need to change. */
22948 baton->size = DW_BLOCK (attr)->size;
22949 baton->data = DW_BLOCK (attr)->data;
22950 }
22951 else
22952 {
22953 dwarf2_invalid_attrib_class_complaint ("location description",
22954 SYMBOL_NATURAL_NAME (sym));
22955 baton->size = 0;
22956 }
22957
22958 SYMBOL_ACLASS_INDEX (sym) = (is_block
22959 ? dwarf2_locexpr_block_index
22960 : dwarf2_locexpr_index);
22961 SYMBOL_LOCATION_BATON (sym) = baton;
22962 }
22963 }
22964
22965 /* Return the OBJFILE associated with the compilation unit CU. If CU
22966 came from a separate debuginfo file, then the master objfile is
22967 returned. */
22968
22969 struct objfile *
22970 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22971 {
22972 struct objfile *objfile = per_cu->objfile;
22973
22974 /* Return the master objfile, so that we can report and look up the
22975 correct file containing this variable. */
22976 if (objfile->separate_debug_objfile_backlink)
22977 objfile = objfile->separate_debug_objfile_backlink;
22978
22979 return objfile;
22980 }
22981
22982 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22983 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22984 CU_HEADERP first. */
22985
22986 static const struct comp_unit_head *
22987 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22988 struct dwarf2_per_cu_data *per_cu)
22989 {
22990 const gdb_byte *info_ptr;
22991
22992 if (per_cu->cu)
22993 return &per_cu->cu->header;
22994
22995 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
22996
22997 memset (cu_headerp, 0, sizeof (*cu_headerp));
22998 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22999 rcuh_kind::COMPILE);
23000
23001 return cu_headerp;
23002 }
23003
23004 /* Return the address size given in the compilation unit header for CU. */
23005
23006 int
23007 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
23008 {
23009 struct comp_unit_head cu_header_local;
23010 const struct comp_unit_head *cu_headerp;
23011
23012 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
23013
23014 return cu_headerp->addr_size;
23015 }
23016
23017 /* Return the offset size given in the compilation unit header for CU. */
23018
23019 int
23020 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
23021 {
23022 struct comp_unit_head cu_header_local;
23023 const struct comp_unit_head *cu_headerp;
23024
23025 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
23026
23027 return cu_headerp->offset_size;
23028 }
23029
23030 /* See its dwarf2loc.h declaration. */
23031
23032 int
23033 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
23034 {
23035 struct comp_unit_head cu_header_local;
23036 const struct comp_unit_head *cu_headerp;
23037
23038 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
23039
23040 if (cu_headerp->version == 2)
23041 return cu_headerp->addr_size;
23042 else
23043 return cu_headerp->offset_size;
23044 }
23045
23046 /* Return the text offset of the CU. The returned offset comes from
23047 this CU's objfile. If this objfile came from a separate debuginfo
23048 file, then the offset may be different from the corresponding
23049 offset in the parent objfile. */
23050
23051 CORE_ADDR
23052 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
23053 {
23054 struct objfile *objfile = per_cu->objfile;
23055
23056 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23057 }
23058
23059 /* Return DWARF version number of PER_CU. */
23060
23061 short
23062 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
23063 {
23064 return per_cu->dwarf_version;
23065 }
23066
23067 /* Locate the .debug_info compilation unit from CU's objfile which contains
23068 the DIE at OFFSET. Raises an error on failure. */
23069
23070 static struct dwarf2_per_cu_data *
23071 dwarf2_find_containing_comp_unit (sect_offset sect_off,
23072 unsigned int offset_in_dwz,
23073 struct objfile *objfile)
23074 {
23075 struct dwarf2_per_cu_data *this_cu;
23076 int low, high;
23077 const sect_offset *cu_off;
23078
23079 low = 0;
23080 high = dwarf2_per_objfile->n_comp_units - 1;
23081 while (high > low)
23082 {
23083 struct dwarf2_per_cu_data *mid_cu;
23084 int mid = low + (high - low) / 2;
23085
23086 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
23087 cu_off = &mid_cu->sect_off;
23088 if (mid_cu->is_dwz > offset_in_dwz
23089 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
23090 high = mid;
23091 else
23092 low = mid + 1;
23093 }
23094 gdb_assert (low == high);
23095 this_cu = dwarf2_per_objfile->all_comp_units[low];
23096 cu_off = &this_cu->sect_off;
23097 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
23098 {
23099 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
23100 error (_("Dwarf Error: could not find partial DIE containing "
23101 "offset 0x%x [in module %s]"),
23102 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
23103
23104 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
23105 <= sect_off);
23106 return dwarf2_per_objfile->all_comp_units[low-1];
23107 }
23108 else
23109 {
23110 this_cu = dwarf2_per_objfile->all_comp_units[low];
23111 if (low == dwarf2_per_objfile->n_comp_units - 1
23112 && sect_off >= this_cu->sect_off + this_cu->length)
23113 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off));
23114 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
23115 return this_cu;
23116 }
23117 }
23118
23119 /* Initialize dwarf2_cu CU, owned by PER_CU. */
23120
23121 static void
23122 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
23123 {
23124 memset (cu, 0, sizeof (*cu));
23125 per_cu->cu = cu;
23126 cu->per_cu = per_cu;
23127 cu->objfile = per_cu->objfile;
23128 obstack_init (&cu->comp_unit_obstack);
23129 }
23130
23131 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
23132
23133 static void
23134 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
23135 enum language pretend_language)
23136 {
23137 struct attribute *attr;
23138
23139 /* Set the language we're debugging. */
23140 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
23141 if (attr)
23142 set_cu_language (DW_UNSND (attr), cu);
23143 else
23144 {
23145 cu->language = pretend_language;
23146 cu->language_defn = language_def (cu->language);
23147 }
23148
23149 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
23150 }
23151
23152 /* Release one cached compilation unit, CU. We unlink it from the tree
23153 of compilation units, but we don't remove it from the read_in_chain;
23154 the caller is responsible for that.
23155 NOTE: DATA is a void * because this function is also used as a
23156 cleanup routine. */
23157
23158 static void
23159 free_heap_comp_unit (void *data)
23160 {
23161 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
23162
23163 gdb_assert (cu->per_cu != NULL);
23164 cu->per_cu->cu = NULL;
23165 cu->per_cu = NULL;
23166
23167 obstack_free (&cu->comp_unit_obstack, NULL);
23168
23169 xfree (cu);
23170 }
23171
23172 /* This cleanup function is passed the address of a dwarf2_cu on the stack
23173 when we're finished with it. We can't free the pointer itself, but be
23174 sure to unlink it from the cache. Also release any associated storage. */
23175
23176 static void
23177 free_stack_comp_unit (void *data)
23178 {
23179 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
23180
23181 gdb_assert (cu->per_cu != NULL);
23182 cu->per_cu->cu = NULL;
23183 cu->per_cu = NULL;
23184
23185 obstack_free (&cu->comp_unit_obstack, NULL);
23186 cu->partial_dies = NULL;
23187 }
23188
23189 /* Free all cached compilation units. */
23190
23191 static void
23192 free_cached_comp_units (void *data)
23193 {
23194 dwarf2_per_objfile->free_cached_comp_units ();
23195 }
23196
23197 /* Increase the age counter on each cached compilation unit, and free
23198 any that are too old. */
23199
23200 static void
23201 age_cached_comp_units (void)
23202 {
23203 struct dwarf2_per_cu_data *per_cu, **last_chain;
23204
23205 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
23206 per_cu = dwarf2_per_objfile->read_in_chain;
23207 while (per_cu != NULL)
23208 {
23209 per_cu->cu->last_used ++;
23210 if (per_cu->cu->last_used <= dwarf_max_cache_age)
23211 dwarf2_mark (per_cu->cu);
23212 per_cu = per_cu->cu->read_in_chain;
23213 }
23214
23215 per_cu = dwarf2_per_objfile->read_in_chain;
23216 last_chain = &dwarf2_per_objfile->read_in_chain;
23217 while (per_cu != NULL)
23218 {
23219 struct dwarf2_per_cu_data *next_cu;
23220
23221 next_cu = per_cu->cu->read_in_chain;
23222
23223 if (!per_cu->cu->mark)
23224 {
23225 free_heap_comp_unit (per_cu->cu);
23226 *last_chain = next_cu;
23227 }
23228 else
23229 last_chain = &per_cu->cu->read_in_chain;
23230
23231 per_cu = next_cu;
23232 }
23233 }
23234
23235 /* Remove a single compilation unit from the cache. */
23236
23237 static void
23238 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
23239 {
23240 struct dwarf2_per_cu_data *per_cu, **last_chain;
23241
23242 per_cu = dwarf2_per_objfile->read_in_chain;
23243 last_chain = &dwarf2_per_objfile->read_in_chain;
23244 while (per_cu != NULL)
23245 {
23246 struct dwarf2_per_cu_data *next_cu;
23247
23248 next_cu = per_cu->cu->read_in_chain;
23249
23250 if (per_cu == target_per_cu)
23251 {
23252 free_heap_comp_unit (per_cu->cu);
23253 per_cu->cu = NULL;
23254 *last_chain = next_cu;
23255 break;
23256 }
23257 else
23258 last_chain = &per_cu->cu->read_in_chain;
23259
23260 per_cu = next_cu;
23261 }
23262 }
23263
23264 /* Release all extra memory associated with OBJFILE. */
23265
23266 void
23267 dwarf2_free_objfile (struct objfile *objfile)
23268 {
23269 dwarf2_per_objfile
23270 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23271 dwarf2_objfile_data_key);
23272
23273 if (dwarf2_per_objfile == NULL)
23274 return;
23275
23276 dwarf2_per_objfile->~dwarf2_per_objfile ();
23277 }
23278
23279 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
23280 We store these in a hash table separate from the DIEs, and preserve them
23281 when the DIEs are flushed out of cache.
23282
23283 The CU "per_cu" pointer is needed because offset alone is not enough to
23284 uniquely identify the type. A file may have multiple .debug_types sections,
23285 or the type may come from a DWO file. Furthermore, while it's more logical
23286 to use per_cu->section+offset, with Fission the section with the data is in
23287 the DWO file but we don't know that section at the point we need it.
23288 We have to use something in dwarf2_per_cu_data (or the pointer to it)
23289 because we can enter the lookup routine, get_die_type_at_offset, from
23290 outside this file, and thus won't necessarily have PER_CU->cu.
23291 Fortunately, PER_CU is stable for the life of the objfile. */
23292
23293 struct dwarf2_per_cu_offset_and_type
23294 {
23295 const struct dwarf2_per_cu_data *per_cu;
23296 sect_offset sect_off;
23297 struct type *type;
23298 };
23299
23300 /* Hash function for a dwarf2_per_cu_offset_and_type. */
23301
23302 static hashval_t
23303 per_cu_offset_and_type_hash (const void *item)
23304 {
23305 const struct dwarf2_per_cu_offset_and_type *ofs
23306 = (const struct dwarf2_per_cu_offset_and_type *) item;
23307
23308 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
23309 }
23310
23311 /* Equality function for a dwarf2_per_cu_offset_and_type. */
23312
23313 static int
23314 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
23315 {
23316 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
23317 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
23318 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
23319 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
23320
23321 return (ofs_lhs->per_cu == ofs_rhs->per_cu
23322 && ofs_lhs->sect_off == ofs_rhs->sect_off);
23323 }
23324
23325 /* Set the type associated with DIE to TYPE. Save it in CU's hash
23326 table if necessary. For convenience, return TYPE.
23327
23328 The DIEs reading must have careful ordering to:
23329 * Not cause infite loops trying to read in DIEs as a prerequisite for
23330 reading current DIE.
23331 * Not trying to dereference contents of still incompletely read in types
23332 while reading in other DIEs.
23333 * Enable referencing still incompletely read in types just by a pointer to
23334 the type without accessing its fields.
23335
23336 Therefore caller should follow these rules:
23337 * Try to fetch any prerequisite types we may need to build this DIE type
23338 before building the type and calling set_die_type.
23339 * After building type call set_die_type for current DIE as soon as
23340 possible before fetching more types to complete the current type.
23341 * Make the type as complete as possible before fetching more types. */
23342
23343 static struct type *
23344 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23345 {
23346 struct dwarf2_per_cu_offset_and_type **slot, ofs;
23347 struct objfile *objfile = cu->objfile;
23348 struct attribute *attr;
23349 struct dynamic_prop prop;
23350
23351 /* For Ada types, make sure that the gnat-specific data is always
23352 initialized (if not already set). There are a few types where
23353 we should not be doing so, because the type-specific area is
23354 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23355 where the type-specific area is used to store the floatformat).
23356 But this is not a problem, because the gnat-specific information
23357 is actually not needed for these types. */
23358 if (need_gnat_info (cu)
23359 && TYPE_CODE (type) != TYPE_CODE_FUNC
23360 && TYPE_CODE (type) != TYPE_CODE_FLT
23361 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
23362 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
23363 && TYPE_CODE (type) != TYPE_CODE_METHOD
23364 && !HAVE_GNAT_AUX_INFO (type))
23365 INIT_GNAT_SPECIFIC (type);
23366
23367 /* Read DW_AT_allocated and set in type. */
23368 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23369 if (attr_form_is_block (attr))
23370 {
23371 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23372 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
23373 }
23374 else if (attr != NULL)
23375 {
23376 complaint (&symfile_complaints,
23377 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
23378 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23379 to_underlying (die->sect_off));
23380 }
23381
23382 /* Read DW_AT_associated and set in type. */
23383 attr = dwarf2_attr (die, DW_AT_associated, cu);
23384 if (attr_form_is_block (attr))
23385 {
23386 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23387 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
23388 }
23389 else if (attr != NULL)
23390 {
23391 complaint (&symfile_complaints,
23392 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
23393 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23394 to_underlying (die->sect_off));
23395 }
23396
23397 /* Read DW_AT_data_location and set in type. */
23398 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23399 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23400 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
23401
23402 if (dwarf2_per_objfile->die_type_hash == NULL)
23403 {
23404 dwarf2_per_objfile->die_type_hash =
23405 htab_create_alloc_ex (127,
23406 per_cu_offset_and_type_hash,
23407 per_cu_offset_and_type_eq,
23408 NULL,
23409 &objfile->objfile_obstack,
23410 hashtab_obstack_allocate,
23411 dummy_obstack_deallocate);
23412 }
23413
23414 ofs.per_cu = cu->per_cu;
23415 ofs.sect_off = die->sect_off;
23416 ofs.type = type;
23417 slot = (struct dwarf2_per_cu_offset_and_type **)
23418 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
23419 if (*slot)
23420 complaint (&symfile_complaints,
23421 _("A problem internal to GDB: DIE 0x%x has type already set"),
23422 to_underlying (die->sect_off));
23423 *slot = XOBNEW (&objfile->objfile_obstack,
23424 struct dwarf2_per_cu_offset_and_type);
23425 **slot = ofs;
23426 return type;
23427 }
23428
23429 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
23430 or return NULL if the die does not have a saved type. */
23431
23432 static struct type *
23433 get_die_type_at_offset (sect_offset sect_off,
23434 struct dwarf2_per_cu_data *per_cu)
23435 {
23436 struct dwarf2_per_cu_offset_and_type *slot, ofs;
23437
23438 if (dwarf2_per_objfile->die_type_hash == NULL)
23439 return NULL;
23440
23441 ofs.per_cu = per_cu;
23442 ofs.sect_off = sect_off;
23443 slot = ((struct dwarf2_per_cu_offset_and_type *)
23444 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
23445 if (slot)
23446 return slot->type;
23447 else
23448 return NULL;
23449 }
23450
23451 /* Look up the type for DIE in CU in die_type_hash,
23452 or return NULL if DIE does not have a saved type. */
23453
23454 static struct type *
23455 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23456 {
23457 return get_die_type_at_offset (die->sect_off, cu->per_cu);
23458 }
23459
23460 /* Add a dependence relationship from CU to REF_PER_CU. */
23461
23462 static void
23463 dwarf2_add_dependence (struct dwarf2_cu *cu,
23464 struct dwarf2_per_cu_data *ref_per_cu)
23465 {
23466 void **slot;
23467
23468 if (cu->dependencies == NULL)
23469 cu->dependencies
23470 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23471 NULL, &cu->comp_unit_obstack,
23472 hashtab_obstack_allocate,
23473 dummy_obstack_deallocate);
23474
23475 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23476 if (*slot == NULL)
23477 *slot = ref_per_cu;
23478 }
23479
23480 /* Subroutine of dwarf2_mark to pass to htab_traverse.
23481 Set the mark field in every compilation unit in the
23482 cache that we must keep because we are keeping CU. */
23483
23484 static int
23485 dwarf2_mark_helper (void **slot, void *data)
23486 {
23487 struct dwarf2_per_cu_data *per_cu;
23488
23489 per_cu = (struct dwarf2_per_cu_data *) *slot;
23490
23491 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23492 reading of the chain. As such dependencies remain valid it is not much
23493 useful to track and undo them during QUIT cleanups. */
23494 if (per_cu->cu == NULL)
23495 return 1;
23496
23497 if (per_cu->cu->mark)
23498 return 1;
23499 per_cu->cu->mark = 1;
23500
23501 if (per_cu->cu->dependencies != NULL)
23502 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23503
23504 return 1;
23505 }
23506
23507 /* Set the mark field in CU and in every other compilation unit in the
23508 cache that we must keep because we are keeping CU. */
23509
23510 static void
23511 dwarf2_mark (struct dwarf2_cu *cu)
23512 {
23513 if (cu->mark)
23514 return;
23515 cu->mark = 1;
23516 if (cu->dependencies != NULL)
23517 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23518 }
23519
23520 static void
23521 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23522 {
23523 while (per_cu)
23524 {
23525 per_cu->cu->mark = 0;
23526 per_cu = per_cu->cu->read_in_chain;
23527 }
23528 }
23529
23530 /* Trivial hash function for partial_die_info: the hash value of a DIE
23531 is its offset in .debug_info for this objfile. */
23532
23533 static hashval_t
23534 partial_die_hash (const void *item)
23535 {
23536 const struct partial_die_info *part_die
23537 = (const struct partial_die_info *) item;
23538
23539 return to_underlying (part_die->sect_off);
23540 }
23541
23542 /* Trivial comparison function for partial_die_info structures: two DIEs
23543 are equal if they have the same offset. */
23544
23545 static int
23546 partial_die_eq (const void *item_lhs, const void *item_rhs)
23547 {
23548 const struct partial_die_info *part_die_lhs
23549 = (const struct partial_die_info *) item_lhs;
23550 const struct partial_die_info *part_die_rhs
23551 = (const struct partial_die_info *) item_rhs;
23552
23553 return part_die_lhs->sect_off == part_die_rhs->sect_off;
23554 }
23555
23556 static struct cmd_list_element *set_dwarf_cmdlist;
23557 static struct cmd_list_element *show_dwarf_cmdlist;
23558
23559 static void
23560 set_dwarf_cmd (const char *args, int from_tty)
23561 {
23562 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
23563 gdb_stdout);
23564 }
23565
23566 static void
23567 show_dwarf_cmd (const char *args, int from_tty)
23568 {
23569 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
23570 }
23571
23572 /* Free data associated with OBJFILE, if necessary. */
23573
23574 static void
23575 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
23576 {
23577 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
23578 int ix;
23579
23580 /* Make sure we don't accidentally use dwarf2_per_objfile while
23581 cleaning up. */
23582 dwarf2_per_objfile = NULL;
23583
23584 for (ix = 0; ix < data->n_comp_units; ++ix)
23585 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
23586
23587 for (ix = 0; ix < data->n_type_units; ++ix)
23588 VEC_free (dwarf2_per_cu_ptr,
23589 data->all_type_units[ix]->per_cu.imported_symtabs);
23590 xfree (data->all_type_units);
23591
23592 VEC_free (dwarf2_section_info_def, data->types);
23593
23594 if (data->dwo_files)
23595 free_dwo_files (data->dwo_files, objfile);
23596 if (data->dwp_file)
23597 gdb_bfd_unref (data->dwp_file->dbfd);
23598
23599 if (data->dwz_file && data->dwz_file->dwz_bfd)
23600 gdb_bfd_unref (data->dwz_file->dwz_bfd);
23601
23602 if (data->index_table != NULL)
23603 data->index_table->~mapped_index ();
23604 }
23605
23606 \f
23607 /* The "save gdb-index" command. */
23608
23609 /* In-memory buffer to prepare data to be written later to a file. */
23610 class data_buf
23611 {
23612 public:
23613 /* Copy DATA to the end of the buffer. */
23614 template<typename T>
23615 void append_data (const T &data)
23616 {
23617 std::copy (reinterpret_cast<const gdb_byte *> (&data),
23618 reinterpret_cast<const gdb_byte *> (&data + 1),
23619 grow (sizeof (data)));
23620 }
23621
23622 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
23623 terminating zero is appended too. */
23624 void append_cstr0 (const char *cstr)
23625 {
23626 const size_t size = strlen (cstr) + 1;
23627 std::copy (cstr, cstr + size, grow (size));
23628 }
23629
23630 /* Accept a host-format integer in VAL and append it to the buffer
23631 as a target-format integer which is LEN bytes long. */
23632 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
23633 {
23634 ::store_unsigned_integer (grow (len), len, byte_order, val);
23635 }
23636
23637 /* Return the size of the buffer. */
23638 size_t size () const
23639 {
23640 return m_vec.size ();
23641 }
23642
23643 /* Write the buffer to FILE. */
23644 void file_write (FILE *file) const
23645 {
23646 if (::fwrite (m_vec.data (), 1, m_vec.size (), file) != m_vec.size ())
23647 error (_("couldn't write data to file"));
23648 }
23649
23650 private:
23651 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
23652 the start of the new block. */
23653 gdb_byte *grow (size_t size)
23654 {
23655 m_vec.resize (m_vec.size () + size);
23656 return &*m_vec.end () - size;
23657 }
23658
23659 gdb::byte_vector m_vec;
23660 };
23661
23662 /* An entry in the symbol table. */
23663 struct symtab_index_entry
23664 {
23665 /* The name of the symbol. */
23666 const char *name;
23667 /* The offset of the name in the constant pool. */
23668 offset_type index_offset;
23669 /* A sorted vector of the indices of all the CUs that hold an object
23670 of this name. */
23671 std::vector<offset_type> cu_indices;
23672 };
23673
23674 /* The symbol table. This is a power-of-2-sized hash table. */
23675 struct mapped_symtab
23676 {
23677 mapped_symtab ()
23678 {
23679 data.resize (1024);
23680 }
23681
23682 offset_type n_elements = 0;
23683 std::vector<symtab_index_entry> data;
23684 };
23685
23686 /* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
23687 the slot.
23688
23689 Function is used only during write_hash_table so no index format backward
23690 compatibility is needed. */
23691
23692 static symtab_index_entry &
23693 find_slot (struct mapped_symtab *symtab, const char *name)
23694 {
23695 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
23696
23697 index = hash & (symtab->data.size () - 1);
23698 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
23699
23700 for (;;)
23701 {
23702 if (symtab->data[index].name == NULL
23703 || strcmp (name, symtab->data[index].name) == 0)
23704 return symtab->data[index];
23705 index = (index + step) & (symtab->data.size () - 1);
23706 }
23707 }
23708
23709 /* Expand SYMTAB's hash table. */
23710
23711 static void
23712 hash_expand (struct mapped_symtab *symtab)
23713 {
23714 auto old_entries = std::move (symtab->data);
23715
23716 symtab->data.clear ();
23717 symtab->data.resize (old_entries.size () * 2);
23718
23719 for (auto &it : old_entries)
23720 if (it.name != NULL)
23721 {
23722 auto &ref = find_slot (symtab, it.name);
23723 ref = std::move (it);
23724 }
23725 }
23726
23727 /* Add an entry to SYMTAB. NAME is the name of the symbol.
23728 CU_INDEX is the index of the CU in which the symbol appears.
23729 IS_STATIC is one if the symbol is static, otherwise zero (global). */
23730
23731 static void
23732 add_index_entry (struct mapped_symtab *symtab, const char *name,
23733 int is_static, gdb_index_symbol_kind kind,
23734 offset_type cu_index)
23735 {
23736 offset_type cu_index_and_attrs;
23737
23738 ++symtab->n_elements;
23739 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
23740 hash_expand (symtab);
23741
23742 symtab_index_entry &slot = find_slot (symtab, name);
23743 if (slot.name == NULL)
23744 {
23745 slot.name = name;
23746 /* index_offset is set later. */
23747 }
23748
23749 cu_index_and_attrs = 0;
23750 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
23751 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
23752 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
23753
23754 /* We don't want to record an index value twice as we want to avoid the
23755 duplication.
23756 We process all global symbols and then all static symbols
23757 (which would allow us to avoid the duplication by only having to check
23758 the last entry pushed), but a symbol could have multiple kinds in one CU.
23759 To keep things simple we don't worry about the duplication here and
23760 sort and uniqufy the list after we've processed all symbols. */
23761 slot.cu_indices.push_back (cu_index_and_attrs);
23762 }
23763
23764 /* Sort and remove duplicates of all symbols' cu_indices lists. */
23765
23766 static void
23767 uniquify_cu_indices (struct mapped_symtab *symtab)
23768 {
23769 for (auto &entry : symtab->data)
23770 {
23771 if (entry.name != NULL && !entry.cu_indices.empty ())
23772 {
23773 auto &cu_indices = entry.cu_indices;
23774 std::sort (cu_indices.begin (), cu_indices.end ());
23775 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
23776 cu_indices.erase (from, cu_indices.end ());
23777 }
23778 }
23779 }
23780
23781 /* A form of 'const char *' suitable for container keys. Only the
23782 pointer is stored. The strings themselves are compared, not the
23783 pointers. */
23784 class c_str_view
23785 {
23786 public:
23787 c_str_view (const char *cstr)
23788 : m_cstr (cstr)
23789 {}
23790
23791 bool operator== (const c_str_view &other) const
23792 {
23793 return strcmp (m_cstr, other.m_cstr) == 0;
23794 }
23795
23796 private:
23797 friend class c_str_view_hasher;
23798 const char *const m_cstr;
23799 };
23800
23801 /* A std::unordered_map::hasher for c_str_view that uses the right
23802 hash function for strings in a mapped index. */
23803 class c_str_view_hasher
23804 {
23805 public:
23806 size_t operator () (const c_str_view &x) const
23807 {
23808 return mapped_index_string_hash (INT_MAX, x.m_cstr);
23809 }
23810 };
23811
23812 /* A std::unordered_map::hasher for std::vector<>. */
23813 template<typename T>
23814 class vector_hasher
23815 {
23816 public:
23817 size_t operator () (const std::vector<T> &key) const
23818 {
23819 return iterative_hash (key.data (),
23820 sizeof (key.front ()) * key.size (), 0);
23821 }
23822 };
23823
23824 /* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
23825 constant pool entries going into the data buffer CPOOL. */
23826
23827 static void
23828 write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
23829 {
23830 {
23831 /* Elements are sorted vectors of the indices of all the CUs that
23832 hold an object of this name. */
23833 std::unordered_map<std::vector<offset_type>, offset_type,
23834 vector_hasher<offset_type>>
23835 symbol_hash_table;
23836
23837 /* We add all the index vectors to the constant pool first, to
23838 ensure alignment is ok. */
23839 for (symtab_index_entry &entry : symtab->data)
23840 {
23841 if (entry.name == NULL)
23842 continue;
23843 gdb_assert (entry.index_offset == 0);
23844
23845 /* Finding before inserting is faster than always trying to
23846 insert, because inserting always allocates a node, does the
23847 lookup, and then destroys the new node if another node
23848 already had the same key. C++17 try_emplace will avoid
23849 this. */
23850 const auto found
23851 = symbol_hash_table.find (entry.cu_indices);
23852 if (found != symbol_hash_table.end ())
23853 {
23854 entry.index_offset = found->second;
23855 continue;
23856 }
23857
23858 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
23859 entry.index_offset = cpool.size ();
23860 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
23861 for (const auto index : entry.cu_indices)
23862 cpool.append_data (MAYBE_SWAP (index));
23863 }
23864 }
23865
23866 /* Now write out the hash table. */
23867 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
23868 for (const auto &entry : symtab->data)
23869 {
23870 offset_type str_off, vec_off;
23871
23872 if (entry.name != NULL)
23873 {
23874 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
23875 if (insertpair.second)
23876 cpool.append_cstr0 (entry.name);
23877 str_off = insertpair.first->second;
23878 vec_off = entry.index_offset;
23879 }
23880 else
23881 {
23882 /* While 0 is a valid constant pool index, it is not valid
23883 to have 0 for both offsets. */
23884 str_off = 0;
23885 vec_off = 0;
23886 }
23887
23888 output.append_data (MAYBE_SWAP (str_off));
23889 output.append_data (MAYBE_SWAP (vec_off));
23890 }
23891 }
23892
23893 typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
23894
23895 /* Helper struct for building the address table. */
23896 struct addrmap_index_data
23897 {
23898 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
23899 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
23900 {}
23901
23902 struct objfile *objfile;
23903 data_buf &addr_vec;
23904 psym_index_map &cu_index_htab;
23905
23906 /* Non-zero if the previous_* fields are valid.
23907 We can't write an entry until we see the next entry (since it is only then
23908 that we know the end of the entry). */
23909 int previous_valid;
23910 /* Index of the CU in the table of all CUs in the index file. */
23911 unsigned int previous_cu_index;
23912 /* Start address of the CU. */
23913 CORE_ADDR previous_cu_start;
23914 };
23915
23916 /* Write an address entry to ADDR_VEC. */
23917
23918 static void
23919 add_address_entry (struct objfile *objfile, data_buf &addr_vec,
23920 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23921 {
23922 CORE_ADDR baseaddr;
23923
23924 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23925
23926 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
23927 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
23928 addr_vec.append_data (MAYBE_SWAP (cu_index));
23929 }
23930
23931 /* Worker function for traversing an addrmap to build the address table. */
23932
23933 static int
23934 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23935 {
23936 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23937 struct partial_symtab *pst = (struct partial_symtab *) obj;
23938
23939 if (data->previous_valid)
23940 add_address_entry (data->objfile, data->addr_vec,
23941 data->previous_cu_start, start_addr,
23942 data->previous_cu_index);
23943
23944 data->previous_cu_start = start_addr;
23945 if (pst != NULL)
23946 {
23947 const auto it = data->cu_index_htab.find (pst);
23948 gdb_assert (it != data->cu_index_htab.cend ());
23949 data->previous_cu_index = it->second;
23950 data->previous_valid = 1;
23951 }
23952 else
23953 data->previous_valid = 0;
23954
23955 return 0;
23956 }
23957
23958 /* Write OBJFILE's address map to ADDR_VEC.
23959 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23960 in the index file. */
23961
23962 static void
23963 write_address_map (struct objfile *objfile, data_buf &addr_vec,
23964 psym_index_map &cu_index_htab)
23965 {
23966 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
23967
23968 /* When writing the address table, we have to cope with the fact that
23969 the addrmap iterator only provides the start of a region; we have to
23970 wait until the next invocation to get the start of the next region. */
23971
23972 addrmap_index_data.objfile = objfile;
23973 addrmap_index_data.previous_valid = 0;
23974
23975 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23976 &addrmap_index_data);
23977
23978 /* It's highly unlikely the last entry (end address = 0xff...ff)
23979 is valid, but we should still handle it.
23980 The end address is recorded as the start of the next region, but that
23981 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23982 anyway. */
23983 if (addrmap_index_data.previous_valid)
23984 add_address_entry (objfile, addr_vec,
23985 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23986 addrmap_index_data.previous_cu_index);
23987 }
23988
23989 /* Return the symbol kind of PSYM. */
23990
23991 static gdb_index_symbol_kind
23992 symbol_kind (struct partial_symbol *psym)
23993 {
23994 domain_enum domain = PSYMBOL_DOMAIN (psym);
23995 enum address_class aclass = PSYMBOL_CLASS (psym);
23996
23997 switch (domain)
23998 {
23999 case VAR_DOMAIN:
24000 switch (aclass)
24001 {
24002 case LOC_BLOCK:
24003 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
24004 case LOC_TYPEDEF:
24005 return GDB_INDEX_SYMBOL_KIND_TYPE;
24006 case LOC_COMPUTED:
24007 case LOC_CONST_BYTES:
24008 case LOC_OPTIMIZED_OUT:
24009 case LOC_STATIC:
24010 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
24011 case LOC_CONST:
24012 /* Note: It's currently impossible to recognize psyms as enum values
24013 short of reading the type info. For now punt. */
24014 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
24015 default:
24016 /* There are other LOC_FOO values that one might want to classify
24017 as variables, but dwarf2read.c doesn't currently use them. */
24018 return GDB_INDEX_SYMBOL_KIND_OTHER;
24019 }
24020 case STRUCT_DOMAIN:
24021 return GDB_INDEX_SYMBOL_KIND_TYPE;
24022 default:
24023 return GDB_INDEX_SYMBOL_KIND_OTHER;
24024 }
24025 }
24026
24027 /* Add a list of partial symbols to SYMTAB. */
24028
24029 static void
24030 write_psymbols (struct mapped_symtab *symtab,
24031 std::unordered_set<partial_symbol *> &psyms_seen,
24032 struct partial_symbol **psymp,
24033 int count,
24034 offset_type cu_index,
24035 int is_static)
24036 {
24037 for (; count-- > 0; ++psymp)
24038 {
24039 struct partial_symbol *psym = *psymp;
24040
24041 if (SYMBOL_LANGUAGE (psym) == language_ada)
24042 error (_("Ada is not currently supported by the index"));
24043
24044 /* Only add a given psymbol once. */
24045 if (psyms_seen.insert (psym).second)
24046 {
24047 gdb_index_symbol_kind kind = symbol_kind (psym);
24048
24049 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
24050 is_static, kind, cu_index);
24051 }
24052 }
24053 }
24054
24055 /* A helper struct used when iterating over debug_types. */
24056 struct signatured_type_index_data
24057 {
24058 signatured_type_index_data (data_buf &types_list_,
24059 std::unordered_set<partial_symbol *> &psyms_seen_)
24060 : types_list (types_list_), psyms_seen (psyms_seen_)
24061 {}
24062
24063 struct objfile *objfile;
24064 struct mapped_symtab *symtab;
24065 data_buf &types_list;
24066 std::unordered_set<partial_symbol *> &psyms_seen;
24067 int cu_index;
24068 };
24069
24070 /* A helper function that writes a single signatured_type to an
24071 obstack. */
24072
24073 static int
24074 write_one_signatured_type (void **slot, void *d)
24075 {
24076 struct signatured_type_index_data *info
24077 = (struct signatured_type_index_data *) d;
24078 struct signatured_type *entry = (struct signatured_type *) *slot;
24079 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
24080
24081 write_psymbols (info->symtab,
24082 info->psyms_seen,
24083 &info->objfile->global_psymbols[psymtab->globals_offset],
24084 psymtab->n_global_syms, info->cu_index,
24085 0);
24086 write_psymbols (info->symtab,
24087 info->psyms_seen,
24088 &info->objfile->static_psymbols[psymtab->statics_offset],
24089 psymtab->n_static_syms, info->cu_index,
24090 1);
24091
24092 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
24093 to_underlying (entry->per_cu.sect_off));
24094 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
24095 to_underlying (entry->type_offset_in_tu));
24096 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
24097
24098 ++info->cu_index;
24099
24100 return 1;
24101 }
24102
24103 /* Recurse into all "included" dependencies and count their symbols as
24104 if they appeared in this psymtab. */
24105
24106 static void
24107 recursively_count_psymbols (struct partial_symtab *psymtab,
24108 size_t &psyms_seen)
24109 {
24110 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
24111 if (psymtab->dependencies[i]->user != NULL)
24112 recursively_count_psymbols (psymtab->dependencies[i],
24113 psyms_seen);
24114
24115 psyms_seen += psymtab->n_global_syms;
24116 psyms_seen += psymtab->n_static_syms;
24117 }
24118
24119 /* Recurse into all "included" dependencies and write their symbols as
24120 if they appeared in this psymtab. */
24121
24122 static void
24123 recursively_write_psymbols (struct objfile *objfile,
24124 struct partial_symtab *psymtab,
24125 struct mapped_symtab *symtab,
24126 std::unordered_set<partial_symbol *> &psyms_seen,
24127 offset_type cu_index)
24128 {
24129 int i;
24130
24131 for (i = 0; i < psymtab->number_of_dependencies; ++i)
24132 if (psymtab->dependencies[i]->user != NULL)
24133 recursively_write_psymbols (objfile, psymtab->dependencies[i],
24134 symtab, psyms_seen, cu_index);
24135
24136 write_psymbols (symtab,
24137 psyms_seen,
24138 &objfile->global_psymbols[psymtab->globals_offset],
24139 psymtab->n_global_syms, cu_index,
24140 0);
24141 write_psymbols (symtab,
24142 psyms_seen,
24143 &objfile->static_psymbols[psymtab->statics_offset],
24144 psymtab->n_static_syms, cu_index,
24145 1);
24146 }
24147
24148 /* Create an index file for OBJFILE in the directory DIR. */
24149
24150 static void
24151 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
24152 {
24153 if (dwarf2_per_objfile->using_index)
24154 error (_("Cannot use an index to create the index"));
24155
24156 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
24157 error (_("Cannot make an index when the file has multiple .debug_types sections"));
24158
24159 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
24160 return;
24161
24162 struct stat st;
24163 if (stat (objfile_name (objfile), &st) < 0)
24164 perror_with_name (objfile_name (objfile));
24165
24166 std::string filename (std::string (dir) + SLASH_STRING
24167 + lbasename (objfile_name (objfile)) + INDEX_SUFFIX);
24168
24169 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
24170 if (!out_file)
24171 error (_("Can't open `%s' for writing"), filename.c_str ());
24172
24173 /* Order matters here; we want FILE to be closed before FILENAME is
24174 unlinked, because on MS-Windows one cannot delete a file that is
24175 still open. (Don't call anything here that might throw until
24176 file_closer is created.) */
24177 gdb::unlinker unlink_file (filename.c_str ());
24178 gdb_file_up close_out_file (out_file);
24179
24180 mapped_symtab symtab;
24181 data_buf cu_list;
24182
24183 /* While we're scanning CU's create a table that maps a psymtab pointer
24184 (which is what addrmap records) to its index (which is what is recorded
24185 in the index file). This will later be needed to write the address
24186 table. */
24187 psym_index_map cu_index_htab;
24188 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
24189
24190 /* The CU list is already sorted, so we don't need to do additional
24191 work here. Also, the debug_types entries do not appear in
24192 all_comp_units, but only in their own hash table. */
24193
24194 /* The psyms_seen set is potentially going to be largish (~40k
24195 elements when indexing a -g3 build of GDB itself). Estimate the
24196 number of elements in order to avoid too many rehashes, which
24197 require rebuilding buckets and thus many trips to
24198 malloc/free. */
24199 size_t psyms_count = 0;
24200 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24201 {
24202 struct dwarf2_per_cu_data *per_cu
24203 = dwarf2_per_objfile->all_comp_units[i];
24204 struct partial_symtab *psymtab = per_cu->v.psymtab;
24205
24206 if (psymtab != NULL && psymtab->user == NULL)
24207 recursively_count_psymbols (psymtab, psyms_count);
24208 }
24209 /* Generating an index for gdb itself shows a ratio of
24210 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
24211 std::unordered_set<partial_symbol *> psyms_seen (psyms_count / 4);
24212 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24213 {
24214 struct dwarf2_per_cu_data *per_cu
24215 = dwarf2_per_objfile->all_comp_units[i];
24216 struct partial_symtab *psymtab = per_cu->v.psymtab;
24217
24218 /* CU of a shared file from 'dwz -m' may be unused by this main file.
24219 It may be referenced from a local scope but in such case it does not
24220 need to be present in .gdb_index. */
24221 if (psymtab == NULL)
24222 continue;
24223
24224 if (psymtab->user == NULL)
24225 recursively_write_psymbols (objfile, psymtab, &symtab,
24226 psyms_seen, i);
24227
24228 const auto insertpair = cu_index_htab.emplace (psymtab, i);
24229 gdb_assert (insertpair.second);
24230
24231 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
24232 to_underlying (per_cu->sect_off));
24233 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
24234 }
24235
24236 /* Dump the address map. */
24237 data_buf addr_vec;
24238 write_address_map (objfile, addr_vec, cu_index_htab);
24239
24240 /* Write out the .debug_type entries, if any. */
24241 data_buf types_cu_list;
24242 if (dwarf2_per_objfile->signatured_types)
24243 {
24244 signatured_type_index_data sig_data (types_cu_list,
24245 psyms_seen);
24246
24247 sig_data.objfile = objfile;
24248 sig_data.symtab = &symtab;
24249 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
24250 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
24251 write_one_signatured_type, &sig_data);
24252 }
24253
24254 /* Now that we've processed all symbols we can shrink their cu_indices
24255 lists. */
24256 uniquify_cu_indices (&symtab);
24257
24258 data_buf symtab_vec, constant_pool;
24259 write_hash_table (&symtab, symtab_vec, constant_pool);
24260
24261 data_buf contents;
24262 const offset_type size_of_contents = 6 * sizeof (offset_type);
24263 offset_type total_len = size_of_contents;
24264
24265 /* The version number. */
24266 contents.append_data (MAYBE_SWAP (8));
24267
24268 /* The offset of the CU list from the start of the file. */
24269 contents.append_data (MAYBE_SWAP (total_len));
24270 total_len += cu_list.size ();
24271
24272 /* The offset of the types CU list from the start of the file. */
24273 contents.append_data (MAYBE_SWAP (total_len));
24274 total_len += types_cu_list.size ();
24275
24276 /* The offset of the address table from the start of the file. */
24277 contents.append_data (MAYBE_SWAP (total_len));
24278 total_len += addr_vec.size ();
24279
24280 /* The offset of the symbol table from the start of the file. */
24281 contents.append_data (MAYBE_SWAP (total_len));
24282 total_len += symtab_vec.size ();
24283
24284 /* The offset of the constant pool from the start of the file. */
24285 contents.append_data (MAYBE_SWAP (total_len));
24286 total_len += constant_pool.size ();
24287
24288 gdb_assert (contents.size () == size_of_contents);
24289
24290 contents.file_write (out_file);
24291 cu_list.file_write (out_file);
24292 types_cu_list.file_write (out_file);
24293 addr_vec.file_write (out_file);
24294 symtab_vec.file_write (out_file);
24295 constant_pool.file_write (out_file);
24296
24297 /* We want to keep the file. */
24298 unlink_file.keep ();
24299 }
24300
24301 /* Implementation of the `save gdb-index' command.
24302
24303 Note that the file format used by this command is documented in the
24304 GDB manual. Any changes here must be documented there. */
24305
24306 static void
24307 save_gdb_index_command (const char *arg, int from_tty)
24308 {
24309 struct objfile *objfile;
24310
24311 if (!arg || !*arg)
24312 error (_("usage: save gdb-index DIRECTORY"));
24313
24314 ALL_OBJFILES (objfile)
24315 {
24316 struct stat st;
24317
24318 /* If the objfile does not correspond to an actual file, skip it. */
24319 if (stat (objfile_name (objfile), &st) < 0)
24320 continue;
24321
24322 dwarf2_per_objfile
24323 = (struct dwarf2_per_objfile *) objfile_data (objfile,
24324 dwarf2_objfile_data_key);
24325 if (dwarf2_per_objfile)
24326 {
24327
24328 TRY
24329 {
24330 write_psymtabs_to_index (objfile, arg);
24331 }
24332 CATCH (except, RETURN_MASK_ERROR)
24333 {
24334 exception_fprintf (gdb_stderr, except,
24335 _("Error while writing index for `%s': "),
24336 objfile_name (objfile));
24337 }
24338 END_CATCH
24339 }
24340 }
24341 }
24342
24343 \f
24344
24345 int dwarf_always_disassemble;
24346
24347 static void
24348 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
24349 struct cmd_list_element *c, const char *value)
24350 {
24351 fprintf_filtered (file,
24352 _("Whether to always disassemble "
24353 "DWARF expressions is %s.\n"),
24354 value);
24355 }
24356
24357 static void
24358 show_check_physname (struct ui_file *file, int from_tty,
24359 struct cmd_list_element *c, const char *value)
24360 {
24361 fprintf_filtered (file,
24362 _("Whether to check \"physname\" is %s.\n"),
24363 value);
24364 }
24365
24366 void
24367 _initialize_dwarf2_read (void)
24368 {
24369 struct cmd_list_element *c;
24370
24371 dwarf2_objfile_data_key
24372 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
24373
24374 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24375 Set DWARF specific variables.\n\
24376 Configure DWARF variables such as the cache size"),
24377 &set_dwarf_cmdlist, "maintenance set dwarf ",
24378 0/*allow-unknown*/, &maintenance_set_cmdlist);
24379
24380 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24381 Show DWARF specific variables\n\
24382 Show DWARF variables such as the cache size"),
24383 &show_dwarf_cmdlist, "maintenance show dwarf ",
24384 0/*allow-unknown*/, &maintenance_show_cmdlist);
24385
24386 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24387 &dwarf_max_cache_age, _("\
24388 Set the upper bound on the age of cached DWARF compilation units."), _("\
24389 Show the upper bound on the age of cached DWARF compilation units."), _("\
24390 A higher limit means that cached compilation units will be stored\n\
24391 in memory longer, and more total memory will be used. Zero disables\n\
24392 caching, which can slow down startup."),
24393 NULL,
24394 show_dwarf_max_cache_age,
24395 &set_dwarf_cmdlist,
24396 &show_dwarf_cmdlist);
24397
24398 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
24399 &dwarf_always_disassemble, _("\
24400 Set whether `info address' always disassembles DWARF expressions."), _("\
24401 Show whether `info address' always disassembles DWARF expressions."), _("\
24402 When enabled, DWARF expressions are always printed in an assembly-like\n\
24403 syntax. When disabled, expressions will be printed in a more\n\
24404 conversational style, when possible."),
24405 NULL,
24406 show_dwarf_always_disassemble,
24407 &set_dwarf_cmdlist,
24408 &show_dwarf_cmdlist);
24409
24410 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24411 Set debugging of the DWARF reader."), _("\
24412 Show debugging of the DWARF reader."), _("\
24413 When enabled (non-zero), debugging messages are printed during DWARF\n\
24414 reading and symtab expansion. A value of 1 (one) provides basic\n\
24415 information. A value greater than 1 provides more verbose information."),
24416 NULL,
24417 NULL,
24418 &setdebuglist, &showdebuglist);
24419
24420 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24421 Set debugging of the DWARF DIE reader."), _("\
24422 Show debugging of the DWARF DIE reader."), _("\
24423 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24424 The value is the maximum depth to print."),
24425 NULL,
24426 NULL,
24427 &setdebuglist, &showdebuglist);
24428
24429 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24430 Set debugging of the dwarf line reader."), _("\
24431 Show debugging of the dwarf line reader."), _("\
24432 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24433 A value of 1 (one) provides basic information.\n\
24434 A value greater than 1 provides more verbose information."),
24435 NULL,
24436 NULL,
24437 &setdebuglist, &showdebuglist);
24438
24439 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24440 Set cross-checking of \"physname\" code against demangler."), _("\
24441 Show cross-checking of \"physname\" code against demangler."), _("\
24442 When enabled, GDB's internal \"physname\" code is checked against\n\
24443 the demangler."),
24444 NULL, show_check_physname,
24445 &setdebuglist, &showdebuglist);
24446
24447 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24448 no_class, &use_deprecated_index_sections, _("\
24449 Set whether to use deprecated gdb_index sections."), _("\
24450 Show whether to use deprecated gdb_index sections."), _("\
24451 When enabled, deprecated .gdb_index sections are used anyway.\n\
24452 Normally they are ignored either because of a missing feature or\n\
24453 performance issue.\n\
24454 Warning: This option must be enabled before gdb reads the file."),
24455 NULL,
24456 NULL,
24457 &setlist, &showlist);
24458
24459 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
24460 _("\
24461 Save a gdb-index file.\n\
24462 Usage: save gdb-index DIRECTORY"),
24463 &save_cmdlist);
24464 set_cmd_completer (c, filename_completer);
24465
24466 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24467 &dwarf2_locexpr_funcs);
24468 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24469 &dwarf2_loclist_funcs);
24470
24471 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24472 &dwarf2_block_frame_base_locexpr_funcs);
24473 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24474 &dwarf2_block_frame_base_loclist_funcs);
24475 }
This page took 0.502394 seconds and 5 git commands to generate.