Add ability to report when a variable's value is uninitialized,
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
7 Inc. with support from Florida State University (under contract
8 with the Ada Joint Program Office), and Silicon Graphics, Inc.
9 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
10 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
11 support.
12
13 This file is part of GDB.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 2 of the License, or (at
18 your option) any later version.
19
20 This program is distributed in the hope that it will be useful, but
21 WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street, Fifth Floor,
28 Boston, MA 02110-1301, USA. */
29
30 #include "defs.h"
31 #include "bfd.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "elf/dwarf2.h"
36 #include "buildsym.h"
37 #include "demangle.h"
38 #include "expression.h"
39 #include "filenames.h" /* for DOSish file names */
40 #include "macrotab.h"
41 #include "language.h"
42 #include "complaints.h"
43 #include "bcache.h"
44 #include "dwarf2expr.h"
45 #include "dwarf2loc.h"
46 #include "cp-support.h"
47 #include "hashtab.h"
48 #include "command.h"
49 #include "gdbcmd.h"
50
51 #include <fcntl.h>
52 #include "gdb_string.h"
53 #include "gdb_assert.h"
54 #include <sys/types.h>
55
56 /* A note on memory usage for this file.
57
58 At the present time, this code reads the debug info sections into
59 the objfile's objfile_obstack. A definite improvement for startup
60 time, on platforms which do not emit relocations for debug
61 sections, would be to use mmap instead. The object's complete
62 debug information is loaded into memory, partly to simplify
63 absolute DIE references.
64
65 Whether using obstacks or mmap, the sections should remain loaded
66 until the objfile is released, and pointers into the section data
67 can be used for any other data associated to the objfile (symbol
68 names, type names, location expressions to name a few). */
69
70 #ifndef DWARF2_REG_TO_REGNUM
71 #define DWARF2_REG_TO_REGNUM(REG) (REG)
72 #endif
73
74 #if 0
75 /* .debug_info header for a compilation unit
76 Because of alignment constraints, this structure has padding and cannot
77 be mapped directly onto the beginning of the .debug_info section. */
78 typedef struct comp_unit_header
79 {
80 unsigned int length; /* length of the .debug_info
81 contribution */
82 unsigned short version; /* version number -- 2 for DWARF
83 version 2 */
84 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
85 unsigned char addr_size; /* byte size of an address -- 4 */
86 }
87 _COMP_UNIT_HEADER;
88 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
89 #endif
90
91 /* .debug_pubnames header
92 Because of alignment constraints, this structure has padding and cannot
93 be mapped directly onto the beginning of the .debug_info section. */
94 typedef struct pubnames_header
95 {
96 unsigned int length; /* length of the .debug_pubnames
97 contribution */
98 unsigned char version; /* version number -- 2 for DWARF
99 version 2 */
100 unsigned int info_offset; /* offset into .debug_info section */
101 unsigned int info_size; /* byte size of .debug_info section
102 portion */
103 }
104 _PUBNAMES_HEADER;
105 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
106
107 /* .debug_pubnames header
108 Because of alignment constraints, this structure has padding and cannot
109 be mapped directly onto the beginning of the .debug_info section. */
110 typedef struct aranges_header
111 {
112 unsigned int length; /* byte len of the .debug_aranges
113 contribution */
114 unsigned short version; /* version number -- 2 for DWARF
115 version 2 */
116 unsigned int info_offset; /* offset into .debug_info section */
117 unsigned char addr_size; /* byte size of an address */
118 unsigned char seg_size; /* byte size of segment descriptor */
119 }
120 _ARANGES_HEADER;
121 #define _ACTUAL_ARANGES_HEADER_SIZE 12
122
123 /* .debug_line statement program prologue
124 Because of alignment constraints, this structure has padding and cannot
125 be mapped directly onto the beginning of the .debug_info section. */
126 typedef struct statement_prologue
127 {
128 unsigned int total_length; /* byte length of the statement
129 information */
130 unsigned short version; /* version number -- 2 for DWARF
131 version 2 */
132 unsigned int prologue_length; /* # bytes between prologue &
133 stmt program */
134 unsigned char minimum_instruction_length; /* byte size of
135 smallest instr */
136 unsigned char default_is_stmt; /* initial value of is_stmt
137 register */
138 char line_base;
139 unsigned char line_range;
140 unsigned char opcode_base; /* number assigned to first special
141 opcode */
142 unsigned char *standard_opcode_lengths;
143 }
144 _STATEMENT_PROLOGUE;
145
146 static const struct objfile_data *dwarf2_objfile_data_key;
147
148 struct dwarf2_per_objfile
149 {
150 /* Sizes of debugging sections. */
151 unsigned int info_size;
152 unsigned int abbrev_size;
153 unsigned int line_size;
154 unsigned int pubnames_size;
155 unsigned int aranges_size;
156 unsigned int loc_size;
157 unsigned int macinfo_size;
158 unsigned int str_size;
159 unsigned int ranges_size;
160 unsigned int frame_size;
161 unsigned int eh_frame_size;
162
163 /* Loaded data from the sections. */
164 gdb_byte *info_buffer;
165 gdb_byte *abbrev_buffer;
166 gdb_byte *line_buffer;
167 gdb_byte *str_buffer;
168 gdb_byte *macinfo_buffer;
169 gdb_byte *ranges_buffer;
170 gdb_byte *loc_buffer;
171
172 /* A list of all the compilation units. This is used to locate
173 the target compilation unit of a particular reference. */
174 struct dwarf2_per_cu_data **all_comp_units;
175
176 /* The number of compilation units in ALL_COMP_UNITS. */
177 int n_comp_units;
178
179 /* A chain of compilation units that are currently read in, so that
180 they can be freed later. */
181 struct dwarf2_per_cu_data *read_in_chain;
182
183 /* A flag indicating wether this objfile has a section loaded at a
184 VMA of 0. */
185 int has_section_at_zero;
186 };
187
188 static struct dwarf2_per_objfile *dwarf2_per_objfile;
189
190 static asection *dwarf_info_section;
191 static asection *dwarf_abbrev_section;
192 static asection *dwarf_line_section;
193 static asection *dwarf_pubnames_section;
194 static asection *dwarf_aranges_section;
195 static asection *dwarf_loc_section;
196 static asection *dwarf_macinfo_section;
197 static asection *dwarf_str_section;
198 static asection *dwarf_ranges_section;
199 asection *dwarf_frame_section;
200 asection *dwarf_eh_frame_section;
201
202 /* names of the debugging sections */
203
204 #define INFO_SECTION ".debug_info"
205 #define ABBREV_SECTION ".debug_abbrev"
206 #define LINE_SECTION ".debug_line"
207 #define PUBNAMES_SECTION ".debug_pubnames"
208 #define ARANGES_SECTION ".debug_aranges"
209 #define LOC_SECTION ".debug_loc"
210 #define MACINFO_SECTION ".debug_macinfo"
211 #define STR_SECTION ".debug_str"
212 #define RANGES_SECTION ".debug_ranges"
213 #define FRAME_SECTION ".debug_frame"
214 #define EH_FRAME_SECTION ".eh_frame"
215
216 /* local data types */
217
218 /* We hold several abbreviation tables in memory at the same time. */
219 #ifndef ABBREV_HASH_SIZE
220 #define ABBREV_HASH_SIZE 121
221 #endif
222
223 /* The data in a compilation unit header, after target2host
224 translation, looks like this. */
225 struct comp_unit_head
226 {
227 unsigned long length;
228 short version;
229 unsigned int abbrev_offset;
230 unsigned char addr_size;
231 unsigned char signed_addr_p;
232
233 /* Size of file offsets; either 4 or 8. */
234 unsigned int offset_size;
235
236 /* Size of the length field; either 4 or 12. */
237 unsigned int initial_length_size;
238
239 /* Offset to the first byte of this compilation unit header in the
240 .debug_info section, for resolving relative reference dies. */
241 unsigned int offset;
242
243 /* Pointer to this compilation unit header in the .debug_info
244 section. */
245 gdb_byte *cu_head_ptr;
246
247 /* Pointer to the first die of this compilation unit. This will be
248 the first byte following the compilation unit header. */
249 gdb_byte *first_die_ptr;
250
251 /* Pointer to the next compilation unit header in the program. */
252 struct comp_unit_head *next;
253
254 /* Base address of this compilation unit. */
255 CORE_ADDR base_address;
256
257 /* Non-zero if base_address has been set. */
258 int base_known;
259 };
260
261 /* Fixed size for the DIE hash table. */
262 #ifndef REF_HASH_SIZE
263 #define REF_HASH_SIZE 1021
264 #endif
265
266 /* Internal state when decoding a particular compilation unit. */
267 struct dwarf2_cu
268 {
269 /* The objfile containing this compilation unit. */
270 struct objfile *objfile;
271
272 /* The header of the compilation unit.
273
274 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
275 should logically be moved to the dwarf2_cu structure. */
276 struct comp_unit_head header;
277
278 struct function_range *first_fn, *last_fn, *cached_fn;
279
280 /* The language we are debugging. */
281 enum language language;
282 const struct language_defn *language_defn;
283
284 const char *producer;
285
286 /* The generic symbol table building routines have separate lists for
287 file scope symbols and all all other scopes (local scopes). So
288 we need to select the right one to pass to add_symbol_to_list().
289 We do it by keeping a pointer to the correct list in list_in_scope.
290
291 FIXME: The original dwarf code just treated the file scope as the
292 first local scope, and all other local scopes as nested local
293 scopes, and worked fine. Check to see if we really need to
294 distinguish these in buildsym.c. */
295 struct pending **list_in_scope;
296
297 /* Maintain an array of referenced fundamental types for the current
298 compilation unit being read. For DWARF version 1, we have to construct
299 the fundamental types on the fly, since no information about the
300 fundamental types is supplied. Each such fundamental type is created by
301 calling a language dependent routine to create the type, and then a
302 pointer to that type is then placed in the array at the index specified
303 by it's FT_<TYPENAME> value. The array has a fixed size set by the
304 FT_NUM_MEMBERS compile time constant, which is the number of predefined
305 fundamental types gdb knows how to construct. */
306 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
307
308 /* DWARF abbreviation table associated with this compilation unit. */
309 struct abbrev_info **dwarf2_abbrevs;
310
311 /* Storage for the abbrev table. */
312 struct obstack abbrev_obstack;
313
314 /* Hash table holding all the loaded partial DIEs. */
315 htab_t partial_dies;
316
317 /* Storage for things with the same lifetime as this read-in compilation
318 unit, including partial DIEs. */
319 struct obstack comp_unit_obstack;
320
321 /* When multiple dwarf2_cu structures are living in memory, this field
322 chains them all together, so that they can be released efficiently.
323 We will probably also want a generation counter so that most-recently-used
324 compilation units are cached... */
325 struct dwarf2_per_cu_data *read_in_chain;
326
327 /* Backchain to our per_cu entry if the tree has been built. */
328 struct dwarf2_per_cu_data *per_cu;
329
330 /* How many compilation units ago was this CU last referenced? */
331 int last_used;
332
333 /* A hash table of die offsets for following references. */
334 struct die_info *die_ref_table[REF_HASH_SIZE];
335
336 /* Full DIEs if read in. */
337 struct die_info *dies;
338
339 /* A set of pointers to dwarf2_per_cu_data objects for compilation
340 units referenced by this one. Only set during full symbol processing;
341 partial symbol tables do not have dependencies. */
342 htab_t dependencies;
343
344 /* Header data from the line table, during full symbol processing. */
345 struct line_header *line_header;
346
347 /* Mark used when releasing cached dies. */
348 unsigned int mark : 1;
349
350 /* This flag will be set if this compilation unit might include
351 inter-compilation-unit references. */
352 unsigned int has_form_ref_addr : 1;
353
354 /* This flag will be set if this compilation unit includes any
355 DW_TAG_namespace DIEs. If we know that there are explicit
356 DIEs for namespaces, we don't need to try to infer them
357 from mangled names. */
358 unsigned int has_namespace_info : 1;
359 };
360
361 /* Persistent data held for a compilation unit, even when not
362 processing it. We put a pointer to this structure in the
363 read_symtab_private field of the psymtab. If we encounter
364 inter-compilation-unit references, we also maintain a sorted
365 list of all compilation units. */
366
367 struct dwarf2_per_cu_data
368 {
369 /* The start offset and length of this compilation unit. 2**30-1
370 bytes should suffice to store the length of any compilation unit
371 - if it doesn't, GDB will fall over anyway. */
372 unsigned long offset;
373 unsigned long length : 30;
374
375 /* Flag indicating this compilation unit will be read in before
376 any of the current compilation units are processed. */
377 unsigned long queued : 1;
378
379 /* This flag will be set if we need to load absolutely all DIEs
380 for this compilation unit, instead of just the ones we think
381 are interesting. It gets set if we look for a DIE in the
382 hash table and don't find it. */
383 unsigned int load_all_dies : 1;
384
385 /* Set iff currently read in. */
386 struct dwarf2_cu *cu;
387
388 /* If full symbols for this CU have been read in, then this field
389 holds a map of DIE offsets to types. It isn't always possible
390 to reconstruct this information later, so we have to preserve
391 it. */
392 htab_t type_hash;
393
394 /* The partial symbol table associated with this compilation unit,
395 or NULL for partial units (which do not have an associated
396 symtab). */
397 struct partial_symtab *psymtab;
398 };
399
400 /* The line number information for a compilation unit (found in the
401 .debug_line section) begins with a "statement program header",
402 which contains the following information. */
403 struct line_header
404 {
405 unsigned int total_length;
406 unsigned short version;
407 unsigned int header_length;
408 unsigned char minimum_instruction_length;
409 unsigned char default_is_stmt;
410 int line_base;
411 unsigned char line_range;
412 unsigned char opcode_base;
413
414 /* standard_opcode_lengths[i] is the number of operands for the
415 standard opcode whose value is i. This means that
416 standard_opcode_lengths[0] is unused, and the last meaningful
417 element is standard_opcode_lengths[opcode_base - 1]. */
418 unsigned char *standard_opcode_lengths;
419
420 /* The include_directories table. NOTE! These strings are not
421 allocated with xmalloc; instead, they are pointers into
422 debug_line_buffer. If you try to free them, `free' will get
423 indigestion. */
424 unsigned int num_include_dirs, include_dirs_size;
425 char **include_dirs;
426
427 /* The file_names table. NOTE! These strings are not allocated
428 with xmalloc; instead, they are pointers into debug_line_buffer.
429 Don't try to free them directly. */
430 unsigned int num_file_names, file_names_size;
431 struct file_entry
432 {
433 char *name;
434 unsigned int dir_index;
435 unsigned int mod_time;
436 unsigned int length;
437 int included_p; /* Non-zero if referenced by the Line Number Program. */
438 struct symtab *symtab; /* The associated symbol table, if any. */
439 } *file_names;
440
441 /* The start and end of the statement program following this
442 header. These point into dwarf2_per_objfile->line_buffer. */
443 gdb_byte *statement_program_start, *statement_program_end;
444 };
445
446 /* When we construct a partial symbol table entry we only
447 need this much information. */
448 struct partial_die_info
449 {
450 /* Offset of this DIE. */
451 unsigned int offset;
452
453 /* DWARF-2 tag for this DIE. */
454 ENUM_BITFIELD(dwarf_tag) tag : 16;
455
456 /* Language code associated with this DIE. This is only used
457 for the compilation unit DIE. */
458 unsigned int language : 8;
459
460 /* Assorted flags describing the data found in this DIE. */
461 unsigned int has_children : 1;
462 unsigned int is_external : 1;
463 unsigned int is_declaration : 1;
464 unsigned int has_type : 1;
465 unsigned int has_specification : 1;
466 unsigned int has_stmt_list : 1;
467 unsigned int has_pc_info : 1;
468
469 /* Flag set if the SCOPE field of this structure has been
470 computed. */
471 unsigned int scope_set : 1;
472
473 /* Flag set if the DIE has a byte_size attribute. */
474 unsigned int has_byte_size : 1;
475
476 /* The name of this DIE. Normally the value of DW_AT_name, but
477 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
478 other fashion. */
479 char *name;
480 char *dirname;
481
482 /* The scope to prepend to our children. This is generally
483 allocated on the comp_unit_obstack, so will disappear
484 when this compilation unit leaves the cache. */
485 char *scope;
486
487 /* The location description associated with this DIE, if any. */
488 struct dwarf_block *locdesc;
489
490 /* If HAS_PC_INFO, the PC range associated with this DIE. */
491 CORE_ADDR lowpc;
492 CORE_ADDR highpc;
493
494 /* Pointer into the info_buffer pointing at the target of
495 DW_AT_sibling, if any. */
496 gdb_byte *sibling;
497
498 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
499 DW_AT_specification (or DW_AT_abstract_origin or
500 DW_AT_extension). */
501 unsigned int spec_offset;
502
503 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
504 unsigned int line_offset;
505
506 /* Pointers to this DIE's parent, first child, and next sibling,
507 if any. */
508 struct partial_die_info *die_parent, *die_child, *die_sibling;
509 };
510
511 /* This data structure holds the information of an abbrev. */
512 struct abbrev_info
513 {
514 unsigned int number; /* number identifying abbrev */
515 enum dwarf_tag tag; /* dwarf tag */
516 unsigned short has_children; /* boolean */
517 unsigned short num_attrs; /* number of attributes */
518 struct attr_abbrev *attrs; /* an array of attribute descriptions */
519 struct abbrev_info *next; /* next in chain */
520 };
521
522 struct attr_abbrev
523 {
524 enum dwarf_attribute name;
525 enum dwarf_form form;
526 };
527
528 /* This data structure holds a complete die structure. */
529 struct die_info
530 {
531 enum dwarf_tag tag; /* Tag indicating type of die */
532 unsigned int abbrev; /* Abbrev number */
533 unsigned int offset; /* Offset in .debug_info section */
534 unsigned int num_attrs; /* Number of attributes */
535 struct attribute *attrs; /* An array of attributes */
536 struct die_info *next_ref; /* Next die in ref hash table */
537
538 /* The dies in a compilation unit form an n-ary tree. PARENT
539 points to this die's parent; CHILD points to the first child of
540 this node; and all the children of a given node are chained
541 together via their SIBLING fields, terminated by a die whose
542 tag is zero. */
543 struct die_info *child; /* Its first child, if any. */
544 struct die_info *sibling; /* Its next sibling, if any. */
545 struct die_info *parent; /* Its parent, if any. */
546
547 struct type *type; /* Cached type information */
548 };
549
550 /* Attributes have a name and a value */
551 struct attribute
552 {
553 enum dwarf_attribute name;
554 enum dwarf_form form;
555 union
556 {
557 char *str;
558 struct dwarf_block *blk;
559 unsigned long unsnd;
560 long int snd;
561 CORE_ADDR addr;
562 }
563 u;
564 };
565
566 struct function_range
567 {
568 const char *name;
569 CORE_ADDR lowpc, highpc;
570 int seen_line;
571 struct function_range *next;
572 };
573
574 /* Get at parts of an attribute structure */
575
576 #define DW_STRING(attr) ((attr)->u.str)
577 #define DW_UNSND(attr) ((attr)->u.unsnd)
578 #define DW_BLOCK(attr) ((attr)->u.blk)
579 #define DW_SND(attr) ((attr)->u.snd)
580 #define DW_ADDR(attr) ((attr)->u.addr)
581
582 /* Blocks are a bunch of untyped bytes. */
583 struct dwarf_block
584 {
585 unsigned int size;
586 gdb_byte *data;
587 };
588
589 #ifndef ATTR_ALLOC_CHUNK
590 #define ATTR_ALLOC_CHUNK 4
591 #endif
592
593 /* Allocate fields for structs, unions and enums in this size. */
594 #ifndef DW_FIELD_ALLOC_CHUNK
595 #define DW_FIELD_ALLOC_CHUNK 4
596 #endif
597
598 /* A zeroed version of a partial die for initialization purposes. */
599 static struct partial_die_info zeroed_partial_die;
600
601 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
602 but this would require a corresponding change in unpack_field_as_long
603 and friends. */
604 static int bits_per_byte = 8;
605
606 /* The routines that read and process dies for a C struct or C++ class
607 pass lists of data member fields and lists of member function fields
608 in an instance of a field_info structure, as defined below. */
609 struct field_info
610 {
611 /* List of data member and baseclasses fields. */
612 struct nextfield
613 {
614 struct nextfield *next;
615 int accessibility;
616 int virtuality;
617 struct field field;
618 }
619 *fields;
620
621 /* Number of fields. */
622 int nfields;
623
624 /* Number of baseclasses. */
625 int nbaseclasses;
626
627 /* Set if the accesibility of one of the fields is not public. */
628 int non_public_fields;
629
630 /* Member function fields array, entries are allocated in the order they
631 are encountered in the object file. */
632 struct nextfnfield
633 {
634 struct nextfnfield *next;
635 struct fn_field fnfield;
636 }
637 *fnfields;
638
639 /* Member function fieldlist array, contains name of possibly overloaded
640 member function, number of overloaded member functions and a pointer
641 to the head of the member function field chain. */
642 struct fnfieldlist
643 {
644 char *name;
645 int length;
646 struct nextfnfield *head;
647 }
648 *fnfieldlists;
649
650 /* Number of entries in the fnfieldlists array. */
651 int nfnfields;
652 };
653
654 /* One item on the queue of compilation units to read in full symbols
655 for. */
656 struct dwarf2_queue_item
657 {
658 struct dwarf2_per_cu_data *per_cu;
659 struct dwarf2_queue_item *next;
660 };
661
662 /* The current queue. */
663 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
664
665 /* Loaded secondary compilation units are kept in memory until they
666 have not been referenced for the processing of this many
667 compilation units. Set this to zero to disable caching. Cache
668 sizes of up to at least twenty will improve startup time for
669 typical inter-CU-reference binaries, at an obvious memory cost. */
670 static int dwarf2_max_cache_age = 5;
671 static void
672 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
673 struct cmd_list_element *c, const char *value)
674 {
675 fprintf_filtered (file, _("\
676 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
677 value);
678 }
679
680
681 /* Various complaints about symbol reading that don't abort the process */
682
683 static void
684 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
685 {
686 complaint (&symfile_complaints,
687 _("statement list doesn't fit in .debug_line section"));
688 }
689
690 static void
691 dwarf2_debug_line_missing_file_complaint (void)
692 {
693 complaint (&symfile_complaints,
694 _(".debug_line section has line data without a file"));
695 }
696
697 static void
698 dwarf2_complex_location_expr_complaint (void)
699 {
700 complaint (&symfile_complaints, _("location expression too complex"));
701 }
702
703 static void
704 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
705 int arg3)
706 {
707 complaint (&symfile_complaints,
708 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
709 arg2, arg3);
710 }
711
712 static void
713 dwarf2_macros_too_long_complaint (void)
714 {
715 complaint (&symfile_complaints,
716 _("macro info runs off end of `.debug_macinfo' section"));
717 }
718
719 static void
720 dwarf2_macro_malformed_definition_complaint (const char *arg1)
721 {
722 complaint (&symfile_complaints,
723 _("macro debug info contains a malformed macro definition:\n`%s'"),
724 arg1);
725 }
726
727 static void
728 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
729 {
730 complaint (&symfile_complaints,
731 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
732 }
733
734 /* local function prototypes */
735
736 static void dwarf2_locate_sections (bfd *, asection *, void *);
737
738 #if 0
739 static void dwarf2_build_psymtabs_easy (struct objfile *, int);
740 #endif
741
742 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
743 struct objfile *);
744
745 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
746 struct partial_die_info *,
747 struct partial_symtab *);
748
749 static void dwarf2_build_psymtabs_hard (struct objfile *, int);
750
751 static void scan_partial_symbols (struct partial_die_info *,
752 CORE_ADDR *, CORE_ADDR *,
753 struct dwarf2_cu *);
754
755 static void add_partial_symbol (struct partial_die_info *,
756 struct dwarf2_cu *);
757
758 static int pdi_needs_namespace (enum dwarf_tag tag);
759
760 static void add_partial_namespace (struct partial_die_info *pdi,
761 CORE_ADDR *lowpc, CORE_ADDR *highpc,
762 struct dwarf2_cu *cu);
763
764 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
765 struct dwarf2_cu *cu);
766
767 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
768 gdb_byte *info_ptr,
769 bfd *abfd,
770 struct dwarf2_cu *cu);
771
772 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
773
774 static void psymtab_to_symtab_1 (struct partial_symtab *);
775
776 gdb_byte *dwarf2_read_section (struct objfile *, asection *);
777
778 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
779
780 static void dwarf2_free_abbrev_table (void *);
781
782 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
783 struct dwarf2_cu *);
784
785 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
786 struct dwarf2_cu *);
787
788 static struct partial_die_info *load_partial_dies (bfd *, gdb_byte *, int,
789 struct dwarf2_cu *);
790
791 static gdb_byte *read_partial_die (struct partial_die_info *,
792 struct abbrev_info *abbrev, unsigned int,
793 bfd *, gdb_byte *, struct dwarf2_cu *);
794
795 static struct partial_die_info *find_partial_die (unsigned long,
796 struct dwarf2_cu *);
797
798 static void fixup_partial_die (struct partial_die_info *,
799 struct dwarf2_cu *);
800
801 static gdb_byte *read_full_die (struct die_info **, bfd *, gdb_byte *,
802 struct dwarf2_cu *, int *);
803
804 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
805 bfd *, gdb_byte *, struct dwarf2_cu *);
806
807 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
808 bfd *, gdb_byte *, struct dwarf2_cu *);
809
810 static unsigned int read_1_byte (bfd *, gdb_byte *);
811
812 static int read_1_signed_byte (bfd *, gdb_byte *);
813
814 static unsigned int read_2_bytes (bfd *, gdb_byte *);
815
816 static unsigned int read_4_bytes (bfd *, gdb_byte *);
817
818 static unsigned long read_8_bytes (bfd *, gdb_byte *);
819
820 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
821 unsigned int *);
822
823 static LONGEST read_initial_length (bfd *, gdb_byte *,
824 struct comp_unit_head *, unsigned int *);
825
826 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
827 unsigned int *);
828
829 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
830
831 static char *read_string (bfd *, gdb_byte *, unsigned int *);
832
833 static char *read_indirect_string (bfd *, gdb_byte *,
834 const struct comp_unit_head *,
835 unsigned int *);
836
837 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
838
839 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
840
841 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
842
843 static void set_cu_language (unsigned int, struct dwarf2_cu *);
844
845 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
846 struct dwarf2_cu *);
847
848 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
849 struct dwarf2_cu *cu);
850
851 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
852
853 static struct die_info *die_specification (struct die_info *die,
854 struct dwarf2_cu *);
855
856 static void free_line_header (struct line_header *lh);
857
858 static void add_file_name (struct line_header *, char *, unsigned int,
859 unsigned int, unsigned int);
860
861 static struct line_header *(dwarf_decode_line_header
862 (unsigned int offset,
863 bfd *abfd, struct dwarf2_cu *cu));
864
865 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
866 struct dwarf2_cu *, struct partial_symtab *);
867
868 static void dwarf2_start_subfile (char *, char *, char *);
869
870 static struct symbol *new_symbol (struct die_info *, struct type *,
871 struct dwarf2_cu *);
872
873 static void dwarf2_const_value (struct attribute *, struct symbol *,
874 struct dwarf2_cu *);
875
876 static void dwarf2_const_value_data (struct attribute *attr,
877 struct symbol *sym,
878 int bits);
879
880 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
881
882 static struct type *die_containing_type (struct die_info *,
883 struct dwarf2_cu *);
884
885 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
886
887 static void read_type_die (struct die_info *, struct dwarf2_cu *);
888
889 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
890
891 static char *typename_concat (struct obstack *,
892 const char *prefix,
893 const char *suffix,
894 struct dwarf2_cu *);
895
896 static void read_typedef (struct die_info *, struct dwarf2_cu *);
897
898 static void read_base_type (struct die_info *, struct dwarf2_cu *);
899
900 static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
901
902 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
903
904 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
905
906 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
907
908 static int dwarf2_get_pc_bounds (struct die_info *,
909 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
910
911 static void get_scope_pc_bounds (struct die_info *,
912 CORE_ADDR *, CORE_ADDR *,
913 struct dwarf2_cu *);
914
915 static void dwarf2_add_field (struct field_info *, struct die_info *,
916 struct dwarf2_cu *);
917
918 static void dwarf2_attach_fields_to_type (struct field_info *,
919 struct type *, struct dwarf2_cu *);
920
921 static void dwarf2_add_member_fn (struct field_info *,
922 struct die_info *, struct type *,
923 struct dwarf2_cu *);
924
925 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
926 struct type *, struct dwarf2_cu *);
927
928 static void read_structure_type (struct die_info *, struct dwarf2_cu *);
929
930 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
931
932 static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
933
934 static void read_common_block (struct die_info *, struct dwarf2_cu *);
935
936 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
937
938 static const char *namespace_name (struct die_info *die,
939 int *is_anonymous, struct dwarf2_cu *);
940
941 static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
942
943 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
944
945 static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
946
947 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
948
949 static void read_array_type (struct die_info *, struct dwarf2_cu *);
950
951 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
952 struct dwarf2_cu *);
953
954 static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
955
956 static void read_tag_ptr_to_member_type (struct die_info *,
957 struct dwarf2_cu *);
958
959 static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
960
961 static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
962
963 static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
964
965 static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
966
967 static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
968
969 static struct die_info *read_comp_unit (gdb_byte *, bfd *, struct dwarf2_cu *);
970
971 static struct die_info *read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
972 struct dwarf2_cu *,
973 gdb_byte **new_info_ptr,
974 struct die_info *parent);
975
976 static struct die_info *read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
977 struct dwarf2_cu *,
978 gdb_byte **new_info_ptr,
979 struct die_info *parent);
980
981 static void free_die_list (struct die_info *);
982
983 static void process_die (struct die_info *, struct dwarf2_cu *);
984
985 static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
986
987 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
988
989 static struct die_info *dwarf2_extension (struct die_info *die,
990 struct dwarf2_cu *);
991
992 static char *dwarf_tag_name (unsigned int);
993
994 static char *dwarf_attr_name (unsigned int);
995
996 static char *dwarf_form_name (unsigned int);
997
998 static char *dwarf_stack_op_name (unsigned int);
999
1000 static char *dwarf_bool_name (unsigned int);
1001
1002 static char *dwarf_type_encoding_name (unsigned int);
1003
1004 #if 0
1005 static char *dwarf_cfi_name (unsigned int);
1006
1007 struct die_info *copy_die (struct die_info *);
1008 #endif
1009
1010 static struct die_info *sibling_die (struct die_info *);
1011
1012 static void dump_die (struct die_info *);
1013
1014 static void dump_die_list (struct die_info *);
1015
1016 static void store_in_ref_table (unsigned int, struct die_info *,
1017 struct dwarf2_cu *);
1018
1019 static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
1020 struct dwarf2_cu *);
1021
1022 static int dwarf2_get_attr_constant_value (struct attribute *, int);
1023
1024 static struct die_info *follow_die_ref (struct die_info *,
1025 struct attribute *,
1026 struct dwarf2_cu *);
1027
1028 static struct type *dwarf2_fundamental_type (struct objfile *, int,
1029 struct dwarf2_cu *);
1030
1031 /* memory allocation interface */
1032
1033 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1034
1035 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1036
1037 static struct die_info *dwarf_alloc_die (void);
1038
1039 static void initialize_cu_func_list (struct dwarf2_cu *);
1040
1041 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1042 struct dwarf2_cu *);
1043
1044 static void dwarf_decode_macros (struct line_header *, unsigned int,
1045 char *, bfd *, struct dwarf2_cu *);
1046
1047 static int attr_form_is_block (struct attribute *);
1048
1049 static void
1050 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
1051 struct dwarf2_cu *cu);
1052
1053 static gdb_byte *skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
1054 struct dwarf2_cu *cu);
1055
1056 static void free_stack_comp_unit (void *);
1057
1058 static hashval_t partial_die_hash (const void *item);
1059
1060 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1061
1062 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1063 (unsigned long offset, struct objfile *objfile);
1064
1065 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1066 (unsigned long offset, struct objfile *objfile);
1067
1068 static void free_one_comp_unit (void *);
1069
1070 static void free_cached_comp_units (void *);
1071
1072 static void age_cached_comp_units (void);
1073
1074 static void free_one_cached_comp_unit (void *);
1075
1076 static void set_die_type (struct die_info *, struct type *,
1077 struct dwarf2_cu *);
1078
1079 static void reset_die_and_siblings_types (struct die_info *,
1080 struct dwarf2_cu *);
1081
1082 static void create_all_comp_units (struct objfile *);
1083
1084 static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *,
1085 struct objfile *);
1086
1087 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1088
1089 static void dwarf2_add_dependence (struct dwarf2_cu *,
1090 struct dwarf2_per_cu_data *);
1091
1092 static void dwarf2_mark (struct dwarf2_cu *);
1093
1094 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1095
1096 static void read_set_type (struct die_info *, struct dwarf2_cu *);
1097
1098
1099 /* Try to locate the sections we need for DWARF 2 debugging
1100 information and return true if we have enough to do something. */
1101
1102 int
1103 dwarf2_has_info (struct objfile *objfile)
1104 {
1105 struct dwarf2_per_objfile *data;
1106
1107 /* Initialize per-objfile state. */
1108 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1109 memset (data, 0, sizeof (*data));
1110 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1111 dwarf2_per_objfile = data;
1112
1113 dwarf_info_section = 0;
1114 dwarf_abbrev_section = 0;
1115 dwarf_line_section = 0;
1116 dwarf_str_section = 0;
1117 dwarf_macinfo_section = 0;
1118 dwarf_frame_section = 0;
1119 dwarf_eh_frame_section = 0;
1120 dwarf_ranges_section = 0;
1121 dwarf_loc_section = 0;
1122
1123 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1124 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
1125 }
1126
1127 /* This function is mapped across the sections and remembers the
1128 offset and size of each of the debugging sections we are interested
1129 in. */
1130
1131 static void
1132 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1133 {
1134 if (strcmp (sectp->name, INFO_SECTION) == 0)
1135 {
1136 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
1137 dwarf_info_section = sectp;
1138 }
1139 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
1140 {
1141 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
1142 dwarf_abbrev_section = sectp;
1143 }
1144 else if (strcmp (sectp->name, LINE_SECTION) == 0)
1145 {
1146 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
1147 dwarf_line_section = sectp;
1148 }
1149 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
1150 {
1151 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
1152 dwarf_pubnames_section = sectp;
1153 }
1154 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
1155 {
1156 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
1157 dwarf_aranges_section = sectp;
1158 }
1159 else if (strcmp (sectp->name, LOC_SECTION) == 0)
1160 {
1161 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
1162 dwarf_loc_section = sectp;
1163 }
1164 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
1165 {
1166 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
1167 dwarf_macinfo_section = sectp;
1168 }
1169 else if (strcmp (sectp->name, STR_SECTION) == 0)
1170 {
1171 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
1172 dwarf_str_section = sectp;
1173 }
1174 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
1175 {
1176 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
1177 dwarf_frame_section = sectp;
1178 }
1179 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
1180 {
1181 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1182 if (aflag & SEC_HAS_CONTENTS)
1183 {
1184 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
1185 dwarf_eh_frame_section = sectp;
1186 }
1187 }
1188 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
1189 {
1190 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
1191 dwarf_ranges_section = sectp;
1192 }
1193
1194 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1195 && bfd_section_vma (abfd, sectp) == 0)
1196 dwarf2_per_objfile->has_section_at_zero = 1;
1197 }
1198
1199 /* Build a partial symbol table. */
1200
1201 void
1202 dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1203 {
1204 /* We definitely need the .debug_info and .debug_abbrev sections */
1205
1206 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1207 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
1208
1209 if (dwarf_line_section)
1210 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
1211 else
1212 dwarf2_per_objfile->line_buffer = NULL;
1213
1214 if (dwarf_str_section)
1215 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
1216 else
1217 dwarf2_per_objfile->str_buffer = NULL;
1218
1219 if (dwarf_macinfo_section)
1220 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
1221 dwarf_macinfo_section);
1222 else
1223 dwarf2_per_objfile->macinfo_buffer = NULL;
1224
1225 if (dwarf_ranges_section)
1226 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
1227 else
1228 dwarf2_per_objfile->ranges_buffer = NULL;
1229
1230 if (dwarf_loc_section)
1231 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
1232 else
1233 dwarf2_per_objfile->loc_buffer = NULL;
1234
1235 if (mainline
1236 || (objfile->global_psymbols.size == 0
1237 && objfile->static_psymbols.size == 0))
1238 {
1239 init_psymbol_list (objfile, 1024);
1240 }
1241
1242 #if 0
1243 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1244 {
1245 /* Things are significantly easier if we have .debug_aranges and
1246 .debug_pubnames sections */
1247
1248 dwarf2_build_psymtabs_easy (objfile, mainline);
1249 }
1250 else
1251 #endif
1252 /* only test this case for now */
1253 {
1254 /* In this case we have to work a bit harder */
1255 dwarf2_build_psymtabs_hard (objfile, mainline);
1256 }
1257 }
1258
1259 #if 0
1260 /* Build the partial symbol table from the information in the
1261 .debug_pubnames and .debug_aranges sections. */
1262
1263 static void
1264 dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1265 {
1266 bfd *abfd = objfile->obfd;
1267 char *aranges_buffer, *pubnames_buffer;
1268 char *aranges_ptr, *pubnames_ptr;
1269 unsigned int entry_length, version, info_offset, info_size;
1270
1271 pubnames_buffer = dwarf2_read_section (objfile,
1272 dwarf_pubnames_section);
1273 pubnames_ptr = pubnames_buffer;
1274 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
1275 {
1276 struct comp_unit_head cu_header;
1277 unsigned int bytes_read;
1278
1279 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1280 &bytes_read);
1281 pubnames_ptr += bytes_read;
1282 version = read_1_byte (abfd, pubnames_ptr);
1283 pubnames_ptr += 1;
1284 info_offset = read_4_bytes (abfd, pubnames_ptr);
1285 pubnames_ptr += 4;
1286 info_size = read_4_bytes (abfd, pubnames_ptr);
1287 pubnames_ptr += 4;
1288 }
1289
1290 aranges_buffer = dwarf2_read_section (objfile,
1291 dwarf_aranges_section);
1292
1293 }
1294 #endif
1295
1296 /* Read in the comp unit header information from the debug_info at
1297 info_ptr. */
1298
1299 static gdb_byte *
1300 read_comp_unit_head (struct comp_unit_head *cu_header,
1301 gdb_byte *info_ptr, bfd *abfd)
1302 {
1303 int signed_addr;
1304 unsigned int bytes_read;
1305 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1306 &bytes_read);
1307 info_ptr += bytes_read;
1308 cu_header->version = read_2_bytes (abfd, info_ptr);
1309 info_ptr += 2;
1310 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1311 &bytes_read);
1312 info_ptr += bytes_read;
1313 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1314 info_ptr += 1;
1315 signed_addr = bfd_get_sign_extend_vma (abfd);
1316 if (signed_addr < 0)
1317 internal_error (__FILE__, __LINE__,
1318 _("read_comp_unit_head: dwarf from non elf file"));
1319 cu_header->signed_addr_p = signed_addr;
1320 return info_ptr;
1321 }
1322
1323 static gdb_byte *
1324 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
1325 bfd *abfd)
1326 {
1327 gdb_byte *beg_of_comp_unit = info_ptr;
1328
1329 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1330
1331 if (header->version != 2 && header->version != 3)
1332 error (_("Dwarf Error: wrong version in compilation unit header "
1333 "(is %d, should be %d) [in module %s]"), header->version,
1334 2, bfd_get_filename (abfd));
1335
1336 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
1337 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1338 "(offset 0x%lx + 6) [in module %s]"),
1339 (long) header->abbrev_offset,
1340 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1341 bfd_get_filename (abfd));
1342
1343 if (beg_of_comp_unit + header->length + header->initial_length_size
1344 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1345 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1346 "(offset 0x%lx + 0) [in module %s]"),
1347 (long) header->length,
1348 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1349 bfd_get_filename (abfd));
1350
1351 return info_ptr;
1352 }
1353
1354 /* Allocate a new partial symtab for file named NAME and mark this new
1355 partial symtab as being an include of PST. */
1356
1357 static void
1358 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1359 struct objfile *objfile)
1360 {
1361 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1362
1363 subpst->section_offsets = pst->section_offsets;
1364 subpst->textlow = 0;
1365 subpst->texthigh = 0;
1366
1367 subpst->dependencies = (struct partial_symtab **)
1368 obstack_alloc (&objfile->objfile_obstack,
1369 sizeof (struct partial_symtab *));
1370 subpst->dependencies[0] = pst;
1371 subpst->number_of_dependencies = 1;
1372
1373 subpst->globals_offset = 0;
1374 subpst->n_global_syms = 0;
1375 subpst->statics_offset = 0;
1376 subpst->n_static_syms = 0;
1377 subpst->symtab = NULL;
1378 subpst->read_symtab = pst->read_symtab;
1379 subpst->readin = 0;
1380
1381 /* No private part is necessary for include psymtabs. This property
1382 can be used to differentiate between such include psymtabs and
1383 the regular ones. */
1384 subpst->read_symtab_private = NULL;
1385 }
1386
1387 /* Read the Line Number Program data and extract the list of files
1388 included by the source file represented by PST. Build an include
1389 partial symtab for each of these included files.
1390
1391 This procedure assumes that there *is* a Line Number Program in
1392 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1393 before calling this procedure. */
1394
1395 static void
1396 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1397 struct partial_die_info *pdi,
1398 struct partial_symtab *pst)
1399 {
1400 struct objfile *objfile = cu->objfile;
1401 bfd *abfd = objfile->obfd;
1402 struct line_header *lh;
1403
1404 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1405 if (lh == NULL)
1406 return; /* No linetable, so no includes. */
1407
1408 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1409
1410 free_line_header (lh);
1411 }
1412
1413
1414 /* Build the partial symbol table by doing a quick pass through the
1415 .debug_info and .debug_abbrev sections. */
1416
1417 static void
1418 dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
1419 {
1420 /* Instead of reading this into a big buffer, we should probably use
1421 mmap() on architectures that support it. (FIXME) */
1422 bfd *abfd = objfile->obfd;
1423 gdb_byte *info_ptr;
1424 gdb_byte *beg_of_comp_unit;
1425 struct partial_die_info comp_unit_die;
1426 struct partial_symtab *pst;
1427 struct cleanup *back_to;
1428 CORE_ADDR lowpc, highpc, baseaddr;
1429
1430 info_ptr = dwarf2_per_objfile->info_buffer;
1431
1432 /* Any cached compilation units will be linked by the per-objfile
1433 read_in_chain. Make sure to free them when we're done. */
1434 back_to = make_cleanup (free_cached_comp_units, NULL);
1435
1436 create_all_comp_units (objfile);
1437
1438 /* Since the objects we're extracting from .debug_info vary in
1439 length, only the individual functions to extract them (like
1440 read_comp_unit_head and load_partial_die) can really know whether
1441 the buffer is large enough to hold another complete object.
1442
1443 At the moment, they don't actually check that. If .debug_info
1444 holds just one extra byte after the last compilation unit's dies,
1445 then read_comp_unit_head will happily read off the end of the
1446 buffer. read_partial_die is similarly casual. Those functions
1447 should be fixed.
1448
1449 For this loop condition, simply checking whether there's any data
1450 left at all should be sufficient. */
1451 while (info_ptr < (dwarf2_per_objfile->info_buffer
1452 + dwarf2_per_objfile->info_size))
1453 {
1454 struct cleanup *back_to_inner;
1455 struct dwarf2_cu cu;
1456 struct abbrev_info *abbrev;
1457 unsigned int bytes_read;
1458 struct dwarf2_per_cu_data *this_cu;
1459
1460 beg_of_comp_unit = info_ptr;
1461
1462 memset (&cu, 0, sizeof (cu));
1463
1464 obstack_init (&cu.comp_unit_obstack);
1465
1466 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1467
1468 cu.objfile = objfile;
1469 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
1470
1471 /* Complete the cu_header */
1472 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1473 cu.header.first_die_ptr = info_ptr;
1474 cu.header.cu_head_ptr = beg_of_comp_unit;
1475
1476 cu.list_in_scope = &file_symbols;
1477
1478 /* Read the abbrevs for this compilation unit into a table */
1479 dwarf2_read_abbrevs (abfd, &cu);
1480 make_cleanup (dwarf2_free_abbrev_table, &cu);
1481
1482 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
1483
1484 /* Read the compilation unit die */
1485 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1486 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1487 abfd, info_ptr, &cu);
1488
1489 if (comp_unit_die.tag == DW_TAG_partial_unit)
1490 {
1491 info_ptr = (beg_of_comp_unit + cu.header.length
1492 + cu.header.initial_length_size);
1493 do_cleanups (back_to_inner);
1494 continue;
1495 }
1496
1497 /* Set the language we're debugging */
1498 set_cu_language (comp_unit_die.language, &cu);
1499
1500 /* Allocate a new partial symbol table structure */
1501 pst = start_psymtab_common (objfile, objfile->section_offsets,
1502 comp_unit_die.name ? comp_unit_die.name : "",
1503 comp_unit_die.lowpc,
1504 objfile->global_psymbols.next,
1505 objfile->static_psymbols.next);
1506
1507 if (comp_unit_die.dirname)
1508 pst->dirname = xstrdup (comp_unit_die.dirname);
1509
1510 pst->read_symtab_private = (char *) this_cu;
1511
1512 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1513
1514 /* Store the function that reads in the rest of the symbol table */
1515 pst->read_symtab = dwarf2_psymtab_to_symtab;
1516
1517 /* If this compilation unit was already read in, free the
1518 cached copy in order to read it in again. This is
1519 necessary because we skipped some symbols when we first
1520 read in the compilation unit (see load_partial_dies).
1521 This problem could be avoided, but the benefit is
1522 unclear. */
1523 if (this_cu->cu != NULL)
1524 free_one_cached_comp_unit (this_cu->cu);
1525
1526 cu.per_cu = this_cu;
1527
1528 /* Note that this is a pointer to our stack frame, being
1529 added to a global data structure. It will be cleaned up
1530 in free_stack_comp_unit when we finish with this
1531 compilation unit. */
1532 this_cu->cu = &cu;
1533
1534 this_cu->psymtab = pst;
1535
1536 /* Check if comp unit has_children.
1537 If so, read the rest of the partial symbols from this comp unit.
1538 If not, there's no more debug_info for this comp unit. */
1539 if (comp_unit_die.has_children)
1540 {
1541 struct partial_die_info *first_die;
1542
1543 lowpc = ((CORE_ADDR) -1);
1544 highpc = ((CORE_ADDR) 0);
1545
1546 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1547
1548 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
1549
1550 /* If we didn't find a lowpc, set it to highpc to avoid
1551 complaints from `maint check'. */
1552 if (lowpc == ((CORE_ADDR) -1))
1553 lowpc = highpc;
1554
1555 /* If the compilation unit didn't have an explicit address range,
1556 then use the information extracted from its child dies. */
1557 if (! comp_unit_die.has_pc_info)
1558 {
1559 comp_unit_die.lowpc = lowpc;
1560 comp_unit_die.highpc = highpc;
1561 }
1562 }
1563 pst->textlow = comp_unit_die.lowpc + baseaddr;
1564 pst->texthigh = comp_unit_die.highpc + baseaddr;
1565
1566 pst->n_global_syms = objfile->global_psymbols.next -
1567 (objfile->global_psymbols.list + pst->globals_offset);
1568 pst->n_static_syms = objfile->static_psymbols.next -
1569 (objfile->static_psymbols.list + pst->statics_offset);
1570 sort_pst_symbols (pst);
1571
1572 /* If there is already a psymtab or symtab for a file of this
1573 name, remove it. (If there is a symtab, more drastic things
1574 also happen.) This happens in VxWorks. */
1575 free_named_symtabs (pst->filename);
1576
1577 info_ptr = beg_of_comp_unit + cu.header.length
1578 + cu.header.initial_length_size;
1579
1580 if (comp_unit_die.has_stmt_list)
1581 {
1582 /* Get the list of files included in the current compilation unit,
1583 and build a psymtab for each of them. */
1584 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1585 }
1586
1587 do_cleanups (back_to_inner);
1588 }
1589 do_cleanups (back_to);
1590 }
1591
1592 /* Load the DIEs for a secondary CU into memory. */
1593
1594 static void
1595 load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1596 {
1597 bfd *abfd = objfile->obfd;
1598 gdb_byte *info_ptr, *beg_of_comp_unit;
1599 struct partial_die_info comp_unit_die;
1600 struct dwarf2_cu *cu;
1601 struct abbrev_info *abbrev;
1602 unsigned int bytes_read;
1603 struct cleanup *back_to;
1604
1605 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1606 beg_of_comp_unit = info_ptr;
1607
1608 cu = xmalloc (sizeof (struct dwarf2_cu));
1609 memset (cu, 0, sizeof (struct dwarf2_cu));
1610
1611 obstack_init (&cu->comp_unit_obstack);
1612
1613 cu->objfile = objfile;
1614 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1615
1616 /* Complete the cu_header. */
1617 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1618 cu->header.first_die_ptr = info_ptr;
1619 cu->header.cu_head_ptr = beg_of_comp_unit;
1620
1621 /* Read the abbrevs for this compilation unit into a table. */
1622 dwarf2_read_abbrevs (abfd, cu);
1623 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1624
1625 /* Read the compilation unit die. */
1626 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1627 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1628 abfd, info_ptr, cu);
1629
1630 /* Set the language we're debugging. */
1631 set_cu_language (comp_unit_die.language, cu);
1632
1633 /* Link this compilation unit into the compilation unit tree. */
1634 this_cu->cu = cu;
1635 cu->per_cu = this_cu;
1636
1637 /* Check if comp unit has_children.
1638 If so, read the rest of the partial symbols from this comp unit.
1639 If not, there's no more debug_info for this comp unit. */
1640 if (comp_unit_die.has_children)
1641 load_partial_dies (abfd, info_ptr, 0, cu);
1642
1643 do_cleanups (back_to);
1644 }
1645
1646 /* Create a list of all compilation units in OBJFILE. We do this only
1647 if an inter-comp-unit reference is found; presumably if there is one,
1648 there will be many, and one will occur early in the .debug_info section.
1649 So there's no point in building this list incrementally. */
1650
1651 static void
1652 create_all_comp_units (struct objfile *objfile)
1653 {
1654 int n_allocated;
1655 int n_comp_units;
1656 struct dwarf2_per_cu_data **all_comp_units;
1657 gdb_byte *info_ptr = dwarf2_per_objfile->info_buffer;
1658
1659 n_comp_units = 0;
1660 n_allocated = 10;
1661 all_comp_units = xmalloc (n_allocated
1662 * sizeof (struct dwarf2_per_cu_data *));
1663
1664 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1665 {
1666 struct comp_unit_head cu_header;
1667 gdb_byte *beg_of_comp_unit;
1668 struct dwarf2_per_cu_data *this_cu;
1669 unsigned long offset;
1670 unsigned int bytes_read;
1671
1672 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1673
1674 /* Read just enough information to find out where the next
1675 compilation unit is. */
1676 cu_header.initial_length_size = 0;
1677 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1678 &cu_header, &bytes_read);
1679
1680 /* Save the compilation unit for later lookup. */
1681 this_cu = obstack_alloc (&objfile->objfile_obstack,
1682 sizeof (struct dwarf2_per_cu_data));
1683 memset (this_cu, 0, sizeof (*this_cu));
1684 this_cu->offset = offset;
1685 this_cu->length = cu_header.length + cu_header.initial_length_size;
1686
1687 if (n_comp_units == n_allocated)
1688 {
1689 n_allocated *= 2;
1690 all_comp_units = xrealloc (all_comp_units,
1691 n_allocated
1692 * sizeof (struct dwarf2_per_cu_data *));
1693 }
1694 all_comp_units[n_comp_units++] = this_cu;
1695
1696 info_ptr = info_ptr + this_cu->length;
1697 }
1698
1699 dwarf2_per_objfile->all_comp_units
1700 = obstack_alloc (&objfile->objfile_obstack,
1701 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1702 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1703 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1704 xfree (all_comp_units);
1705 dwarf2_per_objfile->n_comp_units = n_comp_units;
1706 }
1707
1708 /* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1709 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1710 in CU. */
1711
1712 static void
1713 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1714 CORE_ADDR *highpc, struct dwarf2_cu *cu)
1715 {
1716 struct objfile *objfile = cu->objfile;
1717 bfd *abfd = objfile->obfd;
1718 struct partial_die_info *pdi;
1719
1720 /* Now, march along the PDI's, descending into ones which have
1721 interesting children but skipping the children of the other ones,
1722 until we reach the end of the compilation unit. */
1723
1724 pdi = first_die;
1725
1726 while (pdi != NULL)
1727 {
1728 fixup_partial_die (pdi, cu);
1729
1730 /* Anonymous namespaces have no name but have interesting
1731 children, so we need to look at them. Ditto for anonymous
1732 enums. */
1733
1734 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1735 || pdi->tag == DW_TAG_enumeration_type)
1736 {
1737 switch (pdi->tag)
1738 {
1739 case DW_TAG_subprogram:
1740 if (pdi->has_pc_info)
1741 {
1742 if (pdi->lowpc < *lowpc)
1743 {
1744 *lowpc = pdi->lowpc;
1745 }
1746 if (pdi->highpc > *highpc)
1747 {
1748 *highpc = pdi->highpc;
1749 }
1750 if (!pdi->is_declaration)
1751 {
1752 add_partial_symbol (pdi, cu);
1753 }
1754 }
1755 break;
1756 case DW_TAG_variable:
1757 case DW_TAG_typedef:
1758 case DW_TAG_union_type:
1759 if (!pdi->is_declaration)
1760 {
1761 add_partial_symbol (pdi, cu);
1762 }
1763 break;
1764 case DW_TAG_class_type:
1765 case DW_TAG_structure_type:
1766 if (!pdi->is_declaration)
1767 {
1768 add_partial_symbol (pdi, cu);
1769 }
1770 break;
1771 case DW_TAG_enumeration_type:
1772 if (!pdi->is_declaration)
1773 add_partial_enumeration (pdi, cu);
1774 break;
1775 case DW_TAG_base_type:
1776 case DW_TAG_subrange_type:
1777 /* File scope base type definitions are added to the partial
1778 symbol table. */
1779 add_partial_symbol (pdi, cu);
1780 break;
1781 case DW_TAG_namespace:
1782 add_partial_namespace (pdi, lowpc, highpc, cu);
1783 break;
1784 default:
1785 break;
1786 }
1787 }
1788
1789 /* If the die has a sibling, skip to the sibling. */
1790
1791 pdi = pdi->die_sibling;
1792 }
1793 }
1794
1795 /* Functions used to compute the fully scoped name of a partial DIE.
1796
1797 Normally, this is simple. For C++, the parent DIE's fully scoped
1798 name is concatenated with "::" and the partial DIE's name. For
1799 Java, the same thing occurs except that "." is used instead of "::".
1800 Enumerators are an exception; they use the scope of their parent
1801 enumeration type, i.e. the name of the enumeration type is not
1802 prepended to the enumerator.
1803
1804 There are two complexities. One is DW_AT_specification; in this
1805 case "parent" means the parent of the target of the specification,
1806 instead of the direct parent of the DIE. The other is compilers
1807 which do not emit DW_TAG_namespace; in this case we try to guess
1808 the fully qualified name of structure types from their members'
1809 linkage names. This must be done using the DIE's children rather
1810 than the children of any DW_AT_specification target. We only need
1811 to do this for structures at the top level, i.e. if the target of
1812 any DW_AT_specification (if any; otherwise the DIE itself) does not
1813 have a parent. */
1814
1815 /* Compute the scope prefix associated with PDI's parent, in
1816 compilation unit CU. The result will be allocated on CU's
1817 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1818 field. NULL is returned if no prefix is necessary. */
1819 static char *
1820 partial_die_parent_scope (struct partial_die_info *pdi,
1821 struct dwarf2_cu *cu)
1822 {
1823 char *grandparent_scope;
1824 struct partial_die_info *parent, *real_pdi;
1825
1826 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1827 then this means the parent of the specification DIE. */
1828
1829 real_pdi = pdi;
1830 while (real_pdi->has_specification)
1831 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
1832
1833 parent = real_pdi->die_parent;
1834 if (parent == NULL)
1835 return NULL;
1836
1837 if (parent->scope_set)
1838 return parent->scope;
1839
1840 fixup_partial_die (parent, cu);
1841
1842 grandparent_scope = partial_die_parent_scope (parent, cu);
1843
1844 if (parent->tag == DW_TAG_namespace
1845 || parent->tag == DW_TAG_structure_type
1846 || parent->tag == DW_TAG_class_type
1847 || parent->tag == DW_TAG_union_type)
1848 {
1849 if (grandparent_scope == NULL)
1850 parent->scope = parent->name;
1851 else
1852 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1853 parent->name, cu);
1854 }
1855 else if (parent->tag == DW_TAG_enumeration_type)
1856 /* Enumerators should not get the name of the enumeration as a prefix. */
1857 parent->scope = grandparent_scope;
1858 else
1859 {
1860 /* FIXME drow/2004-04-01: What should we be doing with
1861 function-local names? For partial symbols, we should probably be
1862 ignoring them. */
1863 complaint (&symfile_complaints,
1864 _("unhandled containing DIE tag %d for DIE at %d"),
1865 parent->tag, pdi->offset);
1866 parent->scope = grandparent_scope;
1867 }
1868
1869 parent->scope_set = 1;
1870 return parent->scope;
1871 }
1872
1873 /* Return the fully scoped name associated with PDI, from compilation unit
1874 CU. The result will be allocated with malloc. */
1875 static char *
1876 partial_die_full_name (struct partial_die_info *pdi,
1877 struct dwarf2_cu *cu)
1878 {
1879 char *parent_scope;
1880
1881 parent_scope = partial_die_parent_scope (pdi, cu);
1882 if (parent_scope == NULL)
1883 return NULL;
1884 else
1885 return typename_concat (NULL, parent_scope, pdi->name, cu);
1886 }
1887
1888 static void
1889 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
1890 {
1891 struct objfile *objfile = cu->objfile;
1892 CORE_ADDR addr = 0;
1893 char *actual_name;
1894 const char *my_prefix;
1895 const struct partial_symbol *psym = NULL;
1896 CORE_ADDR baseaddr;
1897 int built_actual_name = 0;
1898
1899 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1900
1901 actual_name = NULL;
1902
1903 if (pdi_needs_namespace (pdi->tag))
1904 {
1905 actual_name = partial_die_full_name (pdi, cu);
1906 if (actual_name)
1907 built_actual_name = 1;
1908 }
1909
1910 if (actual_name == NULL)
1911 actual_name = pdi->name;
1912
1913 switch (pdi->tag)
1914 {
1915 case DW_TAG_subprogram:
1916 if (pdi->is_external)
1917 {
1918 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1919 mst_text, objfile); */
1920 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1921 VAR_DOMAIN, LOC_BLOCK,
1922 &objfile->global_psymbols,
1923 0, pdi->lowpc + baseaddr,
1924 cu->language, objfile);
1925 }
1926 else
1927 {
1928 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1929 mst_file_text, objfile); */
1930 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1931 VAR_DOMAIN, LOC_BLOCK,
1932 &objfile->static_psymbols,
1933 0, pdi->lowpc + baseaddr,
1934 cu->language, objfile);
1935 }
1936 break;
1937 case DW_TAG_variable:
1938 if (pdi->is_external)
1939 {
1940 /* Global Variable.
1941 Don't enter into the minimal symbol tables as there is
1942 a minimal symbol table entry from the ELF symbols already.
1943 Enter into partial symbol table if it has a location
1944 descriptor or a type.
1945 If the location descriptor is missing, new_symbol will create
1946 a LOC_UNRESOLVED symbol, the address of the variable will then
1947 be determined from the minimal symbol table whenever the variable
1948 is referenced.
1949 The address for the partial symbol table entry is not
1950 used by GDB, but it comes in handy for debugging partial symbol
1951 table building. */
1952
1953 if (pdi->locdesc)
1954 addr = decode_locdesc (pdi->locdesc, cu);
1955 if (pdi->locdesc || pdi->has_type)
1956 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1957 VAR_DOMAIN, LOC_STATIC,
1958 &objfile->global_psymbols,
1959 0, addr + baseaddr,
1960 cu->language, objfile);
1961 }
1962 else
1963 {
1964 /* Static Variable. Skip symbols without location descriptors. */
1965 if (pdi->locdesc == NULL)
1966 return;
1967 addr = decode_locdesc (pdi->locdesc, cu);
1968 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
1969 mst_file_data, objfile); */
1970 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1971 VAR_DOMAIN, LOC_STATIC,
1972 &objfile->static_psymbols,
1973 0, addr + baseaddr,
1974 cu->language, objfile);
1975 }
1976 break;
1977 case DW_TAG_typedef:
1978 case DW_TAG_base_type:
1979 case DW_TAG_subrange_type:
1980 add_psymbol_to_list (actual_name, strlen (actual_name),
1981 VAR_DOMAIN, LOC_TYPEDEF,
1982 &objfile->static_psymbols,
1983 0, (CORE_ADDR) 0, cu->language, objfile);
1984 break;
1985 case DW_TAG_namespace:
1986 add_psymbol_to_list (actual_name, strlen (actual_name),
1987 VAR_DOMAIN, LOC_TYPEDEF,
1988 &objfile->global_psymbols,
1989 0, (CORE_ADDR) 0, cu->language, objfile);
1990 break;
1991 case DW_TAG_class_type:
1992 case DW_TAG_structure_type:
1993 case DW_TAG_union_type:
1994 case DW_TAG_enumeration_type:
1995 /* Skip external references. The DWARF standard says in the section
1996 about "Structure, Union, and Class Type Entries": "An incomplete
1997 structure, union or class type is represented by a structure,
1998 union or class entry that does not have a byte size attribute
1999 and that has a DW_AT_declaration attribute." */
2000 if (!pdi->has_byte_size && pdi->is_declaration)
2001 return;
2002
2003 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
2004 static vs. global. */
2005 add_psymbol_to_list (actual_name, strlen (actual_name),
2006 STRUCT_DOMAIN, LOC_TYPEDEF,
2007 (cu->language == language_cplus
2008 || cu->language == language_java)
2009 ? &objfile->global_psymbols
2010 : &objfile->static_psymbols,
2011 0, (CORE_ADDR) 0, cu->language, objfile);
2012
2013 if (cu->language == language_cplus
2014 || cu->language == language_java
2015 || cu->language == language_ada)
2016 {
2017 /* For C++ and Java, these implicitly act as typedefs as well. */
2018 add_psymbol_to_list (actual_name, strlen (actual_name),
2019 VAR_DOMAIN, LOC_TYPEDEF,
2020 &objfile->global_psymbols,
2021 0, (CORE_ADDR) 0, cu->language, objfile);
2022 }
2023 break;
2024 case DW_TAG_enumerator:
2025 add_psymbol_to_list (actual_name, strlen (actual_name),
2026 VAR_DOMAIN, LOC_CONST,
2027 (cu->language == language_cplus
2028 || cu->language == language_java)
2029 ? &objfile->global_psymbols
2030 : &objfile->static_psymbols,
2031 0, (CORE_ADDR) 0, cu->language, objfile);
2032 break;
2033 default:
2034 break;
2035 }
2036
2037 /* Check to see if we should scan the name for possible namespace
2038 info. Only do this if this is C++, if we don't have namespace
2039 debugging info in the file, if the psym is of an appropriate type
2040 (otherwise we'll have psym == NULL), and if we actually had a
2041 mangled name to begin with. */
2042
2043 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2044 cases which do not set PSYM above? */
2045
2046 if (cu->language == language_cplus
2047 && cu->has_namespace_info == 0
2048 && psym != NULL
2049 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2050 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2051 objfile);
2052
2053 if (built_actual_name)
2054 xfree (actual_name);
2055 }
2056
2057 /* Determine whether a die of type TAG living in a C++ class or
2058 namespace needs to have the name of the scope prepended to the
2059 name listed in the die. */
2060
2061 static int
2062 pdi_needs_namespace (enum dwarf_tag tag)
2063 {
2064 switch (tag)
2065 {
2066 case DW_TAG_namespace:
2067 case DW_TAG_typedef:
2068 case DW_TAG_class_type:
2069 case DW_TAG_structure_type:
2070 case DW_TAG_union_type:
2071 case DW_TAG_enumeration_type:
2072 case DW_TAG_enumerator:
2073 return 1;
2074 default:
2075 return 0;
2076 }
2077 }
2078
2079 /* Read a partial die corresponding to a namespace; also, add a symbol
2080 corresponding to that namespace to the symbol table. NAMESPACE is
2081 the name of the enclosing namespace. */
2082
2083 static void
2084 add_partial_namespace (struct partial_die_info *pdi,
2085 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2086 struct dwarf2_cu *cu)
2087 {
2088 struct objfile *objfile = cu->objfile;
2089
2090 /* Add a symbol for the namespace. */
2091
2092 add_partial_symbol (pdi, cu);
2093
2094 /* Now scan partial symbols in that namespace. */
2095
2096 if (pdi->has_children)
2097 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
2098 }
2099
2100 /* See if we can figure out if the class lives in a namespace. We do
2101 this by looking for a member function; its demangled name will
2102 contain namespace info, if there is any. */
2103
2104 static void
2105 guess_structure_name (struct partial_die_info *struct_pdi,
2106 struct dwarf2_cu *cu)
2107 {
2108 if ((cu->language == language_cplus
2109 || cu->language == language_java)
2110 && cu->has_namespace_info == 0
2111 && struct_pdi->has_children)
2112 {
2113 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2114 what template types look like, because the demangler
2115 frequently doesn't give the same name as the debug info. We
2116 could fix this by only using the demangled name to get the
2117 prefix (but see comment in read_structure_type). */
2118
2119 struct partial_die_info *child_pdi = struct_pdi->die_child;
2120 struct partial_die_info *real_pdi;
2121
2122 /* If this DIE (this DIE's specification, if any) has a parent, then
2123 we should not do this. We'll prepend the parent's fully qualified
2124 name when we create the partial symbol. */
2125
2126 real_pdi = struct_pdi;
2127 while (real_pdi->has_specification)
2128 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2129
2130 if (real_pdi->die_parent != NULL)
2131 return;
2132
2133 while (child_pdi != NULL)
2134 {
2135 if (child_pdi->tag == DW_TAG_subprogram)
2136 {
2137 char *actual_class_name
2138 = language_class_name_from_physname (cu->language_defn,
2139 child_pdi->name);
2140 if (actual_class_name != NULL)
2141 {
2142 struct_pdi->name
2143 = obsavestring (actual_class_name,
2144 strlen (actual_class_name),
2145 &cu->comp_unit_obstack);
2146 xfree (actual_class_name);
2147 }
2148 break;
2149 }
2150
2151 child_pdi = child_pdi->die_sibling;
2152 }
2153 }
2154 }
2155
2156 /* Read a partial die corresponding to an enumeration type. */
2157
2158 static void
2159 add_partial_enumeration (struct partial_die_info *enum_pdi,
2160 struct dwarf2_cu *cu)
2161 {
2162 struct objfile *objfile = cu->objfile;
2163 bfd *abfd = objfile->obfd;
2164 struct partial_die_info *pdi;
2165
2166 if (enum_pdi->name != NULL)
2167 add_partial_symbol (enum_pdi, cu);
2168
2169 pdi = enum_pdi->die_child;
2170 while (pdi)
2171 {
2172 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2173 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
2174 else
2175 add_partial_symbol (pdi, cu);
2176 pdi = pdi->die_sibling;
2177 }
2178 }
2179
2180 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2181 Return the corresponding abbrev, or NULL if the number is zero (indicating
2182 an empty DIE). In either case *BYTES_READ will be set to the length of
2183 the initial number. */
2184
2185 static struct abbrev_info *
2186 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
2187 struct dwarf2_cu *cu)
2188 {
2189 bfd *abfd = cu->objfile->obfd;
2190 unsigned int abbrev_number;
2191 struct abbrev_info *abbrev;
2192
2193 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2194
2195 if (abbrev_number == 0)
2196 return NULL;
2197
2198 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2199 if (!abbrev)
2200 {
2201 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
2202 bfd_get_filename (abfd));
2203 }
2204
2205 return abbrev;
2206 }
2207
2208 /* Scan the debug information for CU starting at INFO_PTR. Returns a
2209 pointer to the end of a series of DIEs, terminated by an empty
2210 DIE. Any children of the skipped DIEs will also be skipped. */
2211
2212 static gdb_byte *
2213 skip_children (gdb_byte *info_ptr, struct dwarf2_cu *cu)
2214 {
2215 struct abbrev_info *abbrev;
2216 unsigned int bytes_read;
2217
2218 while (1)
2219 {
2220 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2221 if (abbrev == NULL)
2222 return info_ptr + bytes_read;
2223 else
2224 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2225 }
2226 }
2227
2228 /* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2229 should point just after the initial uleb128 of a DIE, and the
2230 abbrev corresponding to that skipped uleb128 should be passed in
2231 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2232 children. */
2233
2234 static gdb_byte *
2235 skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
2236 struct dwarf2_cu *cu)
2237 {
2238 unsigned int bytes_read;
2239 struct attribute attr;
2240 bfd *abfd = cu->objfile->obfd;
2241 unsigned int form, i;
2242
2243 for (i = 0; i < abbrev->num_attrs; i++)
2244 {
2245 /* The only abbrev we care about is DW_AT_sibling. */
2246 if (abbrev->attrs[i].name == DW_AT_sibling)
2247 {
2248 read_attribute (&attr, &abbrev->attrs[i],
2249 abfd, info_ptr, cu);
2250 if (attr.form == DW_FORM_ref_addr)
2251 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
2252 else
2253 return dwarf2_per_objfile->info_buffer
2254 + dwarf2_get_ref_die_offset (&attr, cu);
2255 }
2256
2257 /* If it isn't DW_AT_sibling, skip this attribute. */
2258 form = abbrev->attrs[i].form;
2259 skip_attribute:
2260 switch (form)
2261 {
2262 case DW_FORM_addr:
2263 case DW_FORM_ref_addr:
2264 info_ptr += cu->header.addr_size;
2265 break;
2266 case DW_FORM_data1:
2267 case DW_FORM_ref1:
2268 case DW_FORM_flag:
2269 info_ptr += 1;
2270 break;
2271 case DW_FORM_data2:
2272 case DW_FORM_ref2:
2273 info_ptr += 2;
2274 break;
2275 case DW_FORM_data4:
2276 case DW_FORM_ref4:
2277 info_ptr += 4;
2278 break;
2279 case DW_FORM_data8:
2280 case DW_FORM_ref8:
2281 info_ptr += 8;
2282 break;
2283 case DW_FORM_string:
2284 read_string (abfd, info_ptr, &bytes_read);
2285 info_ptr += bytes_read;
2286 break;
2287 case DW_FORM_strp:
2288 info_ptr += cu->header.offset_size;
2289 break;
2290 case DW_FORM_block:
2291 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2292 info_ptr += bytes_read;
2293 break;
2294 case DW_FORM_block1:
2295 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2296 break;
2297 case DW_FORM_block2:
2298 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2299 break;
2300 case DW_FORM_block4:
2301 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2302 break;
2303 case DW_FORM_sdata:
2304 case DW_FORM_udata:
2305 case DW_FORM_ref_udata:
2306 info_ptr = skip_leb128 (abfd, info_ptr);
2307 break;
2308 case DW_FORM_indirect:
2309 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2310 info_ptr += bytes_read;
2311 /* We need to continue parsing from here, so just go back to
2312 the top. */
2313 goto skip_attribute;
2314
2315 default:
2316 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
2317 dwarf_form_name (form),
2318 bfd_get_filename (abfd));
2319 }
2320 }
2321
2322 if (abbrev->has_children)
2323 return skip_children (info_ptr, cu);
2324 else
2325 return info_ptr;
2326 }
2327
2328 /* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2329 the next DIE after ORIG_PDI. */
2330
2331 static gdb_byte *
2332 locate_pdi_sibling (struct partial_die_info *orig_pdi, gdb_byte *info_ptr,
2333 bfd *abfd, struct dwarf2_cu *cu)
2334 {
2335 /* Do we know the sibling already? */
2336
2337 if (orig_pdi->sibling)
2338 return orig_pdi->sibling;
2339
2340 /* Are there any children to deal with? */
2341
2342 if (!orig_pdi->has_children)
2343 return info_ptr;
2344
2345 /* Skip the children the long way. */
2346
2347 return skip_children (info_ptr, cu);
2348 }
2349
2350 /* Expand this partial symbol table into a full symbol table. */
2351
2352 static void
2353 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2354 {
2355 /* FIXME: This is barely more than a stub. */
2356 if (pst != NULL)
2357 {
2358 if (pst->readin)
2359 {
2360 warning (_("bug: psymtab for %s is already read in."), pst->filename);
2361 }
2362 else
2363 {
2364 if (info_verbose)
2365 {
2366 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
2367 gdb_flush (gdb_stdout);
2368 }
2369
2370 /* Restore our global data. */
2371 dwarf2_per_objfile = objfile_data (pst->objfile,
2372 dwarf2_objfile_data_key);
2373
2374 psymtab_to_symtab_1 (pst);
2375
2376 /* Finish up the debug error message. */
2377 if (info_verbose)
2378 printf_filtered (_("done.\n"));
2379 }
2380 }
2381 }
2382
2383 /* Add PER_CU to the queue. */
2384
2385 static void
2386 queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2387 {
2388 struct dwarf2_queue_item *item;
2389
2390 per_cu->queued = 1;
2391 item = xmalloc (sizeof (*item));
2392 item->per_cu = per_cu;
2393 item->next = NULL;
2394
2395 if (dwarf2_queue == NULL)
2396 dwarf2_queue = item;
2397 else
2398 dwarf2_queue_tail->next = item;
2399
2400 dwarf2_queue_tail = item;
2401 }
2402
2403 /* Process the queue. */
2404
2405 static void
2406 process_queue (struct objfile *objfile)
2407 {
2408 struct dwarf2_queue_item *item, *next_item;
2409
2410 /* Initially, there is just one item on the queue. Load its DIEs,
2411 and the DIEs of any other compilation units it requires,
2412 transitively. */
2413
2414 for (item = dwarf2_queue; item != NULL; item = item->next)
2415 {
2416 /* Read in this compilation unit. This may add new items to
2417 the end of the queue. */
2418 load_full_comp_unit (item->per_cu, objfile);
2419
2420 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2421 dwarf2_per_objfile->read_in_chain = item->per_cu;
2422
2423 /* If this compilation unit has already had full symbols created,
2424 reset the TYPE fields in each DIE. */
2425 if (item->per_cu->type_hash)
2426 reset_die_and_siblings_types (item->per_cu->cu->dies,
2427 item->per_cu->cu);
2428 }
2429
2430 /* Now everything left on the queue needs to be read in. Process
2431 them, one at a time, removing from the queue as we finish. */
2432 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2433 {
2434 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
2435 process_full_comp_unit (item->per_cu);
2436
2437 item->per_cu->queued = 0;
2438 next_item = item->next;
2439 xfree (item);
2440 }
2441
2442 dwarf2_queue_tail = NULL;
2443 }
2444
2445 /* Free all allocated queue entries. This function only releases anything if
2446 an error was thrown; if the queue was processed then it would have been
2447 freed as we went along. */
2448
2449 static void
2450 dwarf2_release_queue (void *dummy)
2451 {
2452 struct dwarf2_queue_item *item, *last;
2453
2454 item = dwarf2_queue;
2455 while (item)
2456 {
2457 /* Anything still marked queued is likely to be in an
2458 inconsistent state, so discard it. */
2459 if (item->per_cu->queued)
2460 {
2461 if (item->per_cu->cu != NULL)
2462 free_one_cached_comp_unit (item->per_cu->cu);
2463 item->per_cu->queued = 0;
2464 }
2465
2466 last = item;
2467 item = item->next;
2468 xfree (last);
2469 }
2470
2471 dwarf2_queue = dwarf2_queue_tail = NULL;
2472 }
2473
2474 /* Read in full symbols for PST, and anything it depends on. */
2475
2476 static void
2477 psymtab_to_symtab_1 (struct partial_symtab *pst)
2478 {
2479 struct dwarf2_per_cu_data *per_cu;
2480 struct cleanup *back_to;
2481 int i;
2482
2483 for (i = 0; i < pst->number_of_dependencies; i++)
2484 if (!pst->dependencies[i]->readin)
2485 {
2486 /* Inform about additional files that need to be read in. */
2487 if (info_verbose)
2488 {
2489 /* FIXME: i18n: Need to make this a single string. */
2490 fputs_filtered (" ", gdb_stdout);
2491 wrap_here ("");
2492 fputs_filtered ("and ", gdb_stdout);
2493 wrap_here ("");
2494 printf_filtered ("%s...", pst->dependencies[i]->filename);
2495 wrap_here (""); /* Flush output */
2496 gdb_flush (gdb_stdout);
2497 }
2498 psymtab_to_symtab_1 (pst->dependencies[i]);
2499 }
2500
2501 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2502
2503 if (per_cu == NULL)
2504 {
2505 /* It's an include file, no symbols to read for it.
2506 Everything is in the parent symtab. */
2507 pst->readin = 1;
2508 return;
2509 }
2510
2511 back_to = make_cleanup (dwarf2_release_queue, NULL);
2512
2513 queue_comp_unit (per_cu);
2514
2515 process_queue (pst->objfile);
2516
2517 /* Age the cache, releasing compilation units that have not
2518 been used recently. */
2519 age_cached_comp_units ();
2520
2521 do_cleanups (back_to);
2522 }
2523
2524 /* Load the DIEs associated with PST and PER_CU into memory. */
2525
2526 static struct dwarf2_cu *
2527 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
2528 {
2529 bfd *abfd = objfile->obfd;
2530 struct dwarf2_cu *cu;
2531 unsigned long offset;
2532 gdb_byte *info_ptr;
2533 struct cleanup *back_to, *free_cu_cleanup;
2534 struct attribute *attr;
2535 CORE_ADDR baseaddr;
2536
2537 /* Set local variables from the partial symbol table info. */
2538 offset = per_cu->offset;
2539
2540 info_ptr = dwarf2_per_objfile->info_buffer + offset;
2541
2542 cu = xmalloc (sizeof (struct dwarf2_cu));
2543 memset (cu, 0, sizeof (struct dwarf2_cu));
2544
2545 /* If an error occurs while loading, release our storage. */
2546 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
2547
2548 cu->objfile = objfile;
2549
2550 /* read in the comp_unit header */
2551 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
2552
2553 /* Read the abbrevs for this compilation unit */
2554 dwarf2_read_abbrevs (abfd, cu);
2555 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2556
2557 cu->header.offset = offset;
2558
2559 cu->per_cu = per_cu;
2560 per_cu->cu = cu;
2561
2562 /* We use this obstack for block values in dwarf_alloc_block. */
2563 obstack_init (&cu->comp_unit_obstack);
2564
2565 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2566
2567 /* We try not to read any attributes in this function, because not
2568 all objfiles needed for references have been loaded yet, and symbol
2569 table processing isn't initialized. But we have to set the CU language,
2570 or we won't be able to build types correctly. */
2571 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2572 if (attr)
2573 set_cu_language (DW_UNSND (attr), cu);
2574 else
2575 set_cu_language (language_minimal, cu);
2576
2577 do_cleanups (back_to);
2578
2579 /* We've successfully allocated this compilation unit. Let our caller
2580 clean it up when finished with it. */
2581 discard_cleanups (free_cu_cleanup);
2582
2583 return cu;
2584 }
2585
2586 /* Generate full symbol information for PST and CU, whose DIEs have
2587 already been loaded into memory. */
2588
2589 static void
2590 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2591 {
2592 struct partial_symtab *pst = per_cu->psymtab;
2593 struct dwarf2_cu *cu = per_cu->cu;
2594 struct objfile *objfile = pst->objfile;
2595 bfd *abfd = objfile->obfd;
2596 CORE_ADDR lowpc, highpc;
2597 struct symtab *symtab;
2598 struct cleanup *back_to;
2599 struct attribute *attr;
2600 CORE_ADDR baseaddr;
2601
2602 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2603
2604 /* We're in the global namespace. */
2605 processing_current_prefix = "";
2606
2607 buildsym_init ();
2608 back_to = make_cleanup (really_free_pendings, NULL);
2609
2610 cu->list_in_scope = &file_symbols;
2611
2612 /* Find the base address of the compilation unit for range lists and
2613 location lists. It will normally be specified by DW_AT_low_pc.
2614 In DWARF-3 draft 4, the base address could be overridden by
2615 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2616 compilation units with discontinuous ranges. */
2617
2618 cu->header.base_known = 0;
2619 cu->header.base_address = 0;
2620
2621 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
2622 if (attr)
2623 {
2624 cu->header.base_address = DW_ADDR (attr);
2625 cu->header.base_known = 1;
2626 }
2627 else
2628 {
2629 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
2630 if (attr)
2631 {
2632 cu->header.base_address = DW_ADDR (attr);
2633 cu->header.base_known = 1;
2634 }
2635 }
2636
2637 /* Do line number decoding in read_file_scope () */
2638 process_die (cu->dies, cu);
2639
2640 /* Some compilers don't define a DW_AT_high_pc attribute for the
2641 compilation unit. If the DW_AT_high_pc is missing, synthesize
2642 it, by scanning the DIE's below the compilation unit. */
2643 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
2644
2645 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
2646
2647 /* Set symtab language to language from DW_AT_language.
2648 If the compilation is from a C file generated by language preprocessors,
2649 do not set the language if it was already deduced by start_subfile. */
2650 if (symtab != NULL
2651 && !(cu->language == language_c && symtab->language != language_c))
2652 {
2653 symtab->language = cu->language;
2654 }
2655 pst->symtab = symtab;
2656 pst->readin = 1;
2657
2658 do_cleanups (back_to);
2659 }
2660
2661 /* Process a die and its children. */
2662
2663 static void
2664 process_die (struct die_info *die, struct dwarf2_cu *cu)
2665 {
2666 switch (die->tag)
2667 {
2668 case DW_TAG_padding:
2669 break;
2670 case DW_TAG_compile_unit:
2671 read_file_scope (die, cu);
2672 break;
2673 case DW_TAG_subprogram:
2674 read_subroutine_type (die, cu);
2675 read_func_scope (die, cu);
2676 break;
2677 case DW_TAG_inlined_subroutine:
2678 /* FIXME: These are ignored for now.
2679 They could be used to set breakpoints on all inlined instances
2680 of a function and make GDB `next' properly over inlined functions. */
2681 break;
2682 case DW_TAG_lexical_block:
2683 case DW_TAG_try_block:
2684 case DW_TAG_catch_block:
2685 read_lexical_block_scope (die, cu);
2686 break;
2687 case DW_TAG_class_type:
2688 case DW_TAG_structure_type:
2689 case DW_TAG_union_type:
2690 read_structure_type (die, cu);
2691 process_structure_scope (die, cu);
2692 break;
2693 case DW_TAG_enumeration_type:
2694 read_enumeration_type (die, cu);
2695 process_enumeration_scope (die, cu);
2696 break;
2697
2698 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2699 a symbol or process any children. Therefore it doesn't do anything
2700 that won't be done on-demand by read_type_die. */
2701 case DW_TAG_subroutine_type:
2702 read_subroutine_type (die, cu);
2703 break;
2704 case DW_TAG_set_type:
2705 read_set_type (die, cu);
2706 break;
2707 case DW_TAG_array_type:
2708 read_array_type (die, cu);
2709 break;
2710 case DW_TAG_pointer_type:
2711 read_tag_pointer_type (die, cu);
2712 break;
2713 case DW_TAG_ptr_to_member_type:
2714 read_tag_ptr_to_member_type (die, cu);
2715 break;
2716 case DW_TAG_reference_type:
2717 read_tag_reference_type (die, cu);
2718 break;
2719 case DW_TAG_string_type:
2720 read_tag_string_type (die, cu);
2721 break;
2722 /* END FIXME */
2723
2724 case DW_TAG_base_type:
2725 read_base_type (die, cu);
2726 /* Add a typedef symbol for the type definition, if it has a
2727 DW_AT_name. */
2728 new_symbol (die, die->type, cu);
2729 break;
2730 case DW_TAG_subrange_type:
2731 read_subrange_type (die, cu);
2732 /* Add a typedef symbol for the type definition, if it has a
2733 DW_AT_name. */
2734 new_symbol (die, die->type, cu);
2735 break;
2736 case DW_TAG_common_block:
2737 read_common_block (die, cu);
2738 break;
2739 case DW_TAG_common_inclusion:
2740 break;
2741 case DW_TAG_namespace:
2742 processing_has_namespace_info = 1;
2743 read_namespace (die, cu);
2744 break;
2745 case DW_TAG_imported_declaration:
2746 case DW_TAG_imported_module:
2747 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2748 information contained in these. DW_TAG_imported_declaration
2749 dies shouldn't have children; DW_TAG_imported_module dies
2750 shouldn't in the C++ case, but conceivably could in the
2751 Fortran case, so we'll have to replace this gdb_assert if
2752 Fortran compilers start generating that info. */
2753 processing_has_namespace_info = 1;
2754 gdb_assert (die->child == NULL);
2755 break;
2756 default:
2757 new_symbol (die, NULL, cu);
2758 break;
2759 }
2760 }
2761
2762 static void
2763 initialize_cu_func_list (struct dwarf2_cu *cu)
2764 {
2765 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
2766 }
2767
2768 static void
2769 free_cu_line_header (void *arg)
2770 {
2771 struct dwarf2_cu *cu = arg;
2772
2773 free_line_header (cu->line_header);
2774 cu->line_header = NULL;
2775 }
2776
2777 static void
2778 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
2779 {
2780 struct objfile *objfile = cu->objfile;
2781 struct comp_unit_head *cu_header = &cu->header;
2782 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2783 CORE_ADDR lowpc = ((CORE_ADDR) -1);
2784 CORE_ADDR highpc = ((CORE_ADDR) 0);
2785 struct attribute *attr;
2786 char *name = "<unknown>";
2787 char *comp_dir = NULL;
2788 struct die_info *child_die;
2789 bfd *abfd = objfile->obfd;
2790 struct line_header *line_header = 0;
2791 CORE_ADDR baseaddr;
2792
2793 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2794
2795 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
2796
2797 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2798 from finish_block. */
2799 if (lowpc == ((CORE_ADDR) -1))
2800 lowpc = highpc;
2801 lowpc += baseaddr;
2802 highpc += baseaddr;
2803
2804 attr = dwarf2_attr (die, DW_AT_name, cu);
2805 if (attr)
2806 {
2807 name = DW_STRING (attr);
2808 }
2809 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
2810 if (attr)
2811 {
2812 comp_dir = DW_STRING (attr);
2813 if (comp_dir)
2814 {
2815 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2816 directory, get rid of it. */
2817 char *cp = strchr (comp_dir, ':');
2818
2819 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2820 comp_dir = cp + 1;
2821 }
2822 }
2823
2824 attr = dwarf2_attr (die, DW_AT_language, cu);
2825 if (attr)
2826 {
2827 set_cu_language (DW_UNSND (attr), cu);
2828 }
2829
2830 attr = dwarf2_attr (die, DW_AT_producer, cu);
2831 if (attr)
2832 cu->producer = DW_STRING (attr);
2833
2834 /* We assume that we're processing GCC output. */
2835 processing_gcc_compilation = 2;
2836
2837 /* The compilation unit may be in a different language or objfile,
2838 zero out all remembered fundamental types. */
2839 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
2840
2841 start_symtab (name, comp_dir, lowpc);
2842 record_debugformat ("DWARF 2");
2843 record_producer (cu->producer);
2844
2845 initialize_cu_func_list (cu);
2846
2847 /* Decode line number information if present. We do this before
2848 processing child DIEs, so that the line header table is available
2849 for DW_AT_decl_file. */
2850 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2851 if (attr)
2852 {
2853 unsigned int line_offset = DW_UNSND (attr);
2854 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
2855 if (line_header)
2856 {
2857 cu->line_header = line_header;
2858 make_cleanup (free_cu_line_header, cu);
2859 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
2860 }
2861 }
2862
2863 /* Process all dies in compilation unit. */
2864 if (die->child != NULL)
2865 {
2866 child_die = die->child;
2867 while (child_die && child_die->tag)
2868 {
2869 process_die (child_die, cu);
2870 child_die = sibling_die (child_die);
2871 }
2872 }
2873
2874 /* Decode macro information, if present. Dwarf 2 macro information
2875 refers to information in the line number info statement program
2876 header, so we can only read it if we've read the header
2877 successfully. */
2878 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
2879 if (attr && line_header)
2880 {
2881 unsigned int macro_offset = DW_UNSND (attr);
2882 dwarf_decode_macros (line_header, macro_offset,
2883 comp_dir, abfd, cu);
2884 }
2885 do_cleanups (back_to);
2886 }
2887
2888 static void
2889 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2890 struct dwarf2_cu *cu)
2891 {
2892 struct function_range *thisfn;
2893
2894 thisfn = (struct function_range *)
2895 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
2896 thisfn->name = name;
2897 thisfn->lowpc = lowpc;
2898 thisfn->highpc = highpc;
2899 thisfn->seen_line = 0;
2900 thisfn->next = NULL;
2901
2902 if (cu->last_fn == NULL)
2903 cu->first_fn = thisfn;
2904 else
2905 cu->last_fn->next = thisfn;
2906
2907 cu->last_fn = thisfn;
2908 }
2909
2910 static void
2911 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
2912 {
2913 struct objfile *objfile = cu->objfile;
2914 struct context_stack *new;
2915 CORE_ADDR lowpc;
2916 CORE_ADDR highpc;
2917 struct die_info *child_die;
2918 struct attribute *attr;
2919 char *name;
2920 const char *previous_prefix = processing_current_prefix;
2921 struct cleanup *back_to = NULL;
2922 CORE_ADDR baseaddr;
2923
2924 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2925
2926 name = dwarf2_linkage_name (die, cu);
2927
2928 /* Ignore functions with missing or empty names and functions with
2929 missing or invalid low and high pc attributes. */
2930 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2931 return;
2932
2933 if (cu->language == language_cplus
2934 || cu->language == language_java)
2935 {
2936 struct die_info *spec_die = die_specification (die, cu);
2937
2938 /* NOTE: carlton/2004-01-23: We have to be careful in the
2939 presence of DW_AT_specification. For example, with GCC 3.4,
2940 given the code
2941
2942 namespace N {
2943 void foo() {
2944 // Definition of N::foo.
2945 }
2946 }
2947
2948 then we'll have a tree of DIEs like this:
2949
2950 1: DW_TAG_compile_unit
2951 2: DW_TAG_namespace // N
2952 3: DW_TAG_subprogram // declaration of N::foo
2953 4: DW_TAG_subprogram // definition of N::foo
2954 DW_AT_specification // refers to die #3
2955
2956 Thus, when processing die #4, we have to pretend that we're
2957 in the context of its DW_AT_specification, namely the contex
2958 of die #3. */
2959
2960 if (spec_die != NULL)
2961 {
2962 char *specification_prefix = determine_prefix (spec_die, cu);
2963 processing_current_prefix = specification_prefix;
2964 back_to = make_cleanup (xfree, specification_prefix);
2965 }
2966 }
2967
2968 lowpc += baseaddr;
2969 highpc += baseaddr;
2970
2971 /* Record the function range for dwarf_decode_lines. */
2972 add_to_cu_func_list (name, lowpc, highpc, cu);
2973
2974 new = push_context (0, lowpc);
2975 new->name = new_symbol (die, die->type, cu);
2976
2977 /* If there is a location expression for DW_AT_frame_base, record
2978 it. */
2979 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
2980 if (attr)
2981 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2982 expression is being recorded directly in the function's symbol
2983 and not in a separate frame-base object. I guess this hack is
2984 to avoid adding some sort of frame-base adjunct/annex to the
2985 function's symbol :-(. The problem with doing this is that it
2986 results in a function symbol with a location expression that
2987 has nothing to do with the location of the function, ouch! The
2988 relationship should be: a function's symbol has-a frame base; a
2989 frame-base has-a location expression. */
2990 dwarf2_symbol_mark_computed (attr, new->name, cu);
2991
2992 cu->list_in_scope = &local_symbols;
2993
2994 if (die->child != NULL)
2995 {
2996 child_die = die->child;
2997 while (child_die && child_die->tag)
2998 {
2999 process_die (child_die, cu);
3000 child_die = sibling_die (child_die);
3001 }
3002 }
3003
3004 new = pop_context ();
3005 /* Make a block for the local symbols within. */
3006 finish_block (new->name, &local_symbols, new->old_blocks,
3007 lowpc, highpc, objfile);
3008
3009 /* In C++, we can have functions nested inside functions (e.g., when
3010 a function declares a class that has methods). This means that
3011 when we finish processing a function scope, we may need to go
3012 back to building a containing block's symbol lists. */
3013 local_symbols = new->locals;
3014 param_symbols = new->params;
3015
3016 /* If we've finished processing a top-level function, subsequent
3017 symbols go in the file symbol list. */
3018 if (outermost_context_p ())
3019 cu->list_in_scope = &file_symbols;
3020
3021 processing_current_prefix = previous_prefix;
3022 if (back_to != NULL)
3023 do_cleanups (back_to);
3024 }
3025
3026 /* Process all the DIES contained within a lexical block scope. Start
3027 a new scope, process the dies, and then close the scope. */
3028
3029 static void
3030 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
3031 {
3032 struct objfile *objfile = cu->objfile;
3033 struct context_stack *new;
3034 CORE_ADDR lowpc, highpc;
3035 struct die_info *child_die;
3036 CORE_ADDR baseaddr;
3037
3038 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3039
3040 /* Ignore blocks with missing or invalid low and high pc attributes. */
3041 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
3042 as multiple lexical blocks? Handling children in a sane way would
3043 be nasty. Might be easier to properly extend generic blocks to
3044 describe ranges. */
3045 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
3046 return;
3047 lowpc += baseaddr;
3048 highpc += baseaddr;
3049
3050 push_context (0, lowpc);
3051 if (die->child != NULL)
3052 {
3053 child_die = die->child;
3054 while (child_die && child_die->tag)
3055 {
3056 process_die (child_die, cu);
3057 child_die = sibling_die (child_die);
3058 }
3059 }
3060 new = pop_context ();
3061
3062 if (local_symbols != NULL)
3063 {
3064 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3065 highpc, objfile);
3066 }
3067 local_symbols = new->locals;
3068 }
3069
3070 /* Get low and high pc attributes from a die. Return 1 if the attributes
3071 are present and valid, otherwise, return 0. Return -1 if the range is
3072 discontinuous, i.e. derived from DW_AT_ranges information. */
3073 static int
3074 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
3075 CORE_ADDR *highpc, struct dwarf2_cu *cu)
3076 {
3077 struct objfile *objfile = cu->objfile;
3078 struct comp_unit_head *cu_header = &cu->header;
3079 struct attribute *attr;
3080 bfd *obfd = objfile->obfd;
3081 CORE_ADDR low = 0;
3082 CORE_ADDR high = 0;
3083 int ret = 0;
3084
3085 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3086 if (attr)
3087 {
3088 high = DW_ADDR (attr);
3089 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3090 if (attr)
3091 low = DW_ADDR (attr);
3092 else
3093 /* Found high w/o low attribute. */
3094 return 0;
3095
3096 /* Found consecutive range of addresses. */
3097 ret = 1;
3098 }
3099 else
3100 {
3101 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3102 if (attr != NULL)
3103 {
3104 unsigned int addr_size = cu_header->addr_size;
3105 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3106 /* Value of the DW_AT_ranges attribute is the offset in the
3107 .debug_ranges section. */
3108 unsigned int offset = DW_UNSND (attr);
3109 /* Base address selection entry. */
3110 CORE_ADDR base;
3111 int found_base;
3112 unsigned int dummy;
3113 gdb_byte *buffer;
3114 CORE_ADDR marker;
3115 int low_set;
3116
3117 found_base = cu_header->base_known;
3118 base = cu_header->base_address;
3119
3120 if (offset >= dwarf2_per_objfile->ranges_size)
3121 {
3122 complaint (&symfile_complaints,
3123 _("Offset %d out of bounds for DW_AT_ranges attribute"),
3124 offset);
3125 return 0;
3126 }
3127 buffer = dwarf2_per_objfile->ranges_buffer + offset;
3128
3129 /* Read in the largest possible address. */
3130 marker = read_address (obfd, buffer, cu, &dummy);
3131 if ((marker & mask) == mask)
3132 {
3133 /* If we found the largest possible address, then
3134 read the base address. */
3135 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3136 buffer += 2 * addr_size;
3137 offset += 2 * addr_size;
3138 found_base = 1;
3139 }
3140
3141 low_set = 0;
3142
3143 while (1)
3144 {
3145 CORE_ADDR range_beginning, range_end;
3146
3147 range_beginning = read_address (obfd, buffer, cu, &dummy);
3148 buffer += addr_size;
3149 range_end = read_address (obfd, buffer, cu, &dummy);
3150 buffer += addr_size;
3151 offset += 2 * addr_size;
3152
3153 /* An end of list marker is a pair of zero addresses. */
3154 if (range_beginning == 0 && range_end == 0)
3155 /* Found the end of list entry. */
3156 break;
3157
3158 /* Each base address selection entry is a pair of 2 values.
3159 The first is the largest possible address, the second is
3160 the base address. Check for a base address here. */
3161 if ((range_beginning & mask) == mask)
3162 {
3163 /* If we found the largest possible address, then
3164 read the base address. */
3165 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3166 found_base = 1;
3167 continue;
3168 }
3169
3170 if (!found_base)
3171 {
3172 /* We have no valid base address for the ranges
3173 data. */
3174 complaint (&symfile_complaints,
3175 _("Invalid .debug_ranges data (no base address)"));
3176 return 0;
3177 }
3178
3179 range_beginning += base;
3180 range_end += base;
3181
3182 /* FIXME: This is recording everything as a low-high
3183 segment of consecutive addresses. We should have a
3184 data structure for discontiguous block ranges
3185 instead. */
3186 if (! low_set)
3187 {
3188 low = range_beginning;
3189 high = range_end;
3190 low_set = 1;
3191 }
3192 else
3193 {
3194 if (range_beginning < low)
3195 low = range_beginning;
3196 if (range_end > high)
3197 high = range_end;
3198 }
3199 }
3200
3201 if (! low_set)
3202 /* If the first entry is an end-of-list marker, the range
3203 describes an empty scope, i.e. no instructions. */
3204 return 0;
3205
3206 ret = -1;
3207 }
3208 }
3209
3210 if (high < low)
3211 return 0;
3212
3213 /* When using the GNU linker, .gnu.linkonce. sections are used to
3214 eliminate duplicate copies of functions and vtables and such.
3215 The linker will arbitrarily choose one and discard the others.
3216 The AT_*_pc values for such functions refer to local labels in
3217 these sections. If the section from that file was discarded, the
3218 labels are not in the output, so the relocs get a value of 0.
3219 If this is a discarded function, mark the pc bounds as invalid,
3220 so that GDB will ignore it. */
3221 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
3222 return 0;
3223
3224 *lowpc = low;
3225 *highpc = high;
3226 return ret;
3227 }
3228
3229 /* Get the low and high pc's represented by the scope DIE, and store
3230 them in *LOWPC and *HIGHPC. If the correct values can't be
3231 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3232
3233 static void
3234 get_scope_pc_bounds (struct die_info *die,
3235 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3236 struct dwarf2_cu *cu)
3237 {
3238 CORE_ADDR best_low = (CORE_ADDR) -1;
3239 CORE_ADDR best_high = (CORE_ADDR) 0;
3240 CORE_ADDR current_low, current_high;
3241
3242 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3243 {
3244 best_low = current_low;
3245 best_high = current_high;
3246 }
3247 else
3248 {
3249 struct die_info *child = die->child;
3250
3251 while (child && child->tag)
3252 {
3253 switch (child->tag) {
3254 case DW_TAG_subprogram:
3255 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3256 {
3257 best_low = min (best_low, current_low);
3258 best_high = max (best_high, current_high);
3259 }
3260 break;
3261 case DW_TAG_namespace:
3262 /* FIXME: carlton/2004-01-16: Should we do this for
3263 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3264 that current GCC's always emit the DIEs corresponding
3265 to definitions of methods of classes as children of a
3266 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3267 the DIEs giving the declarations, which could be
3268 anywhere). But I don't see any reason why the
3269 standards says that they have to be there. */
3270 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3271
3272 if (current_low != ((CORE_ADDR) -1))
3273 {
3274 best_low = min (best_low, current_low);
3275 best_high = max (best_high, current_high);
3276 }
3277 break;
3278 default:
3279 /* Ignore. */
3280 break;
3281 }
3282
3283 child = sibling_die (child);
3284 }
3285 }
3286
3287 *lowpc = best_low;
3288 *highpc = best_high;
3289 }
3290
3291 /* Add an aggregate field to the field list. */
3292
3293 static void
3294 dwarf2_add_field (struct field_info *fip, struct die_info *die,
3295 struct dwarf2_cu *cu)
3296 {
3297 struct objfile *objfile = cu->objfile;
3298 struct nextfield *new_field;
3299 struct attribute *attr;
3300 struct field *fp;
3301 char *fieldname = "";
3302
3303 /* Allocate a new field list entry and link it in. */
3304 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3305 make_cleanup (xfree, new_field);
3306 memset (new_field, 0, sizeof (struct nextfield));
3307 new_field->next = fip->fields;
3308 fip->fields = new_field;
3309 fip->nfields++;
3310
3311 /* Handle accessibility and virtuality of field.
3312 The default accessibility for members is public, the default
3313 accessibility for inheritance is private. */
3314 if (die->tag != DW_TAG_inheritance)
3315 new_field->accessibility = DW_ACCESS_public;
3316 else
3317 new_field->accessibility = DW_ACCESS_private;
3318 new_field->virtuality = DW_VIRTUALITY_none;
3319
3320 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3321 if (attr)
3322 new_field->accessibility = DW_UNSND (attr);
3323 if (new_field->accessibility != DW_ACCESS_public)
3324 fip->non_public_fields = 1;
3325 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
3326 if (attr)
3327 new_field->virtuality = DW_UNSND (attr);
3328
3329 fp = &new_field->field;
3330
3331 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
3332 {
3333 /* Data member other than a C++ static data member. */
3334
3335 /* Get type of field. */
3336 fp->type = die_type (die, cu);
3337
3338 FIELD_STATIC_KIND (*fp) = 0;
3339
3340 /* Get bit size of field (zero if none). */
3341 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
3342 if (attr)
3343 {
3344 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3345 }
3346 else
3347 {
3348 FIELD_BITSIZE (*fp) = 0;
3349 }
3350
3351 /* Get bit offset of field. */
3352 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3353 if (attr)
3354 {
3355 FIELD_BITPOS (*fp) =
3356 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
3357 }
3358 else
3359 FIELD_BITPOS (*fp) = 0;
3360 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
3361 if (attr)
3362 {
3363 if (BITS_BIG_ENDIAN)
3364 {
3365 /* For big endian bits, the DW_AT_bit_offset gives the
3366 additional bit offset from the MSB of the containing
3367 anonymous object to the MSB of the field. We don't
3368 have to do anything special since we don't need to
3369 know the size of the anonymous object. */
3370 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3371 }
3372 else
3373 {
3374 /* For little endian bits, compute the bit offset to the
3375 MSB of the anonymous object, subtract off the number of
3376 bits from the MSB of the field to the MSB of the
3377 object, and then subtract off the number of bits of
3378 the field itself. The result is the bit offset of
3379 the LSB of the field. */
3380 int anonymous_size;
3381 int bit_offset = DW_UNSND (attr);
3382
3383 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3384 if (attr)
3385 {
3386 /* The size of the anonymous object containing
3387 the bit field is explicit, so use the
3388 indicated size (in bytes). */
3389 anonymous_size = DW_UNSND (attr);
3390 }
3391 else
3392 {
3393 /* The size of the anonymous object containing
3394 the bit field must be inferred from the type
3395 attribute of the data member containing the
3396 bit field. */
3397 anonymous_size = TYPE_LENGTH (fp->type);
3398 }
3399 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3400 - bit_offset - FIELD_BITSIZE (*fp);
3401 }
3402 }
3403
3404 /* Get name of field. */
3405 attr = dwarf2_attr (die, DW_AT_name, cu);
3406 if (attr && DW_STRING (attr))
3407 fieldname = DW_STRING (attr);
3408
3409 /* The name is already allocated along with this objfile, so we don't
3410 need to duplicate it for the type. */
3411 fp->name = fieldname;
3412
3413 /* Change accessibility for artificial fields (e.g. virtual table
3414 pointer or virtual base class pointer) to private. */
3415 if (dwarf2_attr (die, DW_AT_artificial, cu))
3416 {
3417 new_field->accessibility = DW_ACCESS_private;
3418 fip->non_public_fields = 1;
3419 }
3420 }
3421 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
3422 {
3423 /* C++ static member. */
3424
3425 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3426 is a declaration, but all versions of G++ as of this writing
3427 (so through at least 3.2.1) incorrectly generate
3428 DW_TAG_variable tags. */
3429
3430 char *physname;
3431
3432 /* Get name of field. */
3433 attr = dwarf2_attr (die, DW_AT_name, cu);
3434 if (attr && DW_STRING (attr))
3435 fieldname = DW_STRING (attr);
3436 else
3437 return;
3438
3439 /* Get physical name. */
3440 physname = dwarf2_linkage_name (die, cu);
3441
3442 /* The name is already allocated along with this objfile, so we don't
3443 need to duplicate it for the type. */
3444 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
3445 FIELD_TYPE (*fp) = die_type (die, cu);
3446 FIELD_NAME (*fp) = fieldname;
3447 }
3448 else if (die->tag == DW_TAG_inheritance)
3449 {
3450 /* C++ base class field. */
3451 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3452 if (attr)
3453 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
3454 * bits_per_byte);
3455 FIELD_BITSIZE (*fp) = 0;
3456 FIELD_STATIC_KIND (*fp) = 0;
3457 FIELD_TYPE (*fp) = die_type (die, cu);
3458 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3459 fip->nbaseclasses++;
3460 }
3461 }
3462
3463 /* Create the vector of fields, and attach it to the type. */
3464
3465 static void
3466 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
3467 struct dwarf2_cu *cu)
3468 {
3469 int nfields = fip->nfields;
3470
3471 /* Record the field count, allocate space for the array of fields,
3472 and create blank accessibility bitfields if necessary. */
3473 TYPE_NFIELDS (type) = nfields;
3474 TYPE_FIELDS (type) = (struct field *)
3475 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3476 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3477
3478 if (fip->non_public_fields)
3479 {
3480 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3481
3482 TYPE_FIELD_PRIVATE_BITS (type) =
3483 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3484 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3485
3486 TYPE_FIELD_PROTECTED_BITS (type) =
3487 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3488 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3489
3490 TYPE_FIELD_IGNORE_BITS (type) =
3491 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3492 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3493 }
3494
3495 /* If the type has baseclasses, allocate and clear a bit vector for
3496 TYPE_FIELD_VIRTUAL_BITS. */
3497 if (fip->nbaseclasses)
3498 {
3499 int num_bytes = B_BYTES (fip->nbaseclasses);
3500 unsigned char *pointer;
3501
3502 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3503 pointer = TYPE_ALLOC (type, num_bytes);
3504 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
3505 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3506 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3507 }
3508
3509 /* Copy the saved-up fields into the field vector. Start from the head
3510 of the list, adding to the tail of the field array, so that they end
3511 up in the same order in the array in which they were added to the list. */
3512 while (nfields-- > 0)
3513 {
3514 TYPE_FIELD (type, nfields) = fip->fields->field;
3515 switch (fip->fields->accessibility)
3516 {
3517 case DW_ACCESS_private:
3518 SET_TYPE_FIELD_PRIVATE (type, nfields);
3519 break;
3520
3521 case DW_ACCESS_protected:
3522 SET_TYPE_FIELD_PROTECTED (type, nfields);
3523 break;
3524
3525 case DW_ACCESS_public:
3526 break;
3527
3528 default:
3529 /* Unknown accessibility. Complain and treat it as public. */
3530 {
3531 complaint (&symfile_complaints, _("unsupported accessibility %d"),
3532 fip->fields->accessibility);
3533 }
3534 break;
3535 }
3536 if (nfields < fip->nbaseclasses)
3537 {
3538 switch (fip->fields->virtuality)
3539 {
3540 case DW_VIRTUALITY_virtual:
3541 case DW_VIRTUALITY_pure_virtual:
3542 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3543 break;
3544 }
3545 }
3546 fip->fields = fip->fields->next;
3547 }
3548 }
3549
3550 /* Add a member function to the proper fieldlist. */
3551
3552 static void
3553 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
3554 struct type *type, struct dwarf2_cu *cu)
3555 {
3556 struct objfile *objfile = cu->objfile;
3557 struct attribute *attr;
3558 struct fnfieldlist *flp;
3559 int i;
3560 struct fn_field *fnp;
3561 char *fieldname;
3562 char *physname;
3563 struct nextfnfield *new_fnfield;
3564
3565 /* Get name of member function. */
3566 attr = dwarf2_attr (die, DW_AT_name, cu);
3567 if (attr && DW_STRING (attr))
3568 fieldname = DW_STRING (attr);
3569 else
3570 return;
3571
3572 /* Get the mangled name. */
3573 physname = dwarf2_linkage_name (die, cu);
3574
3575 /* Look up member function name in fieldlist. */
3576 for (i = 0; i < fip->nfnfields; i++)
3577 {
3578 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
3579 break;
3580 }
3581
3582 /* Create new list element if necessary. */
3583 if (i < fip->nfnfields)
3584 flp = &fip->fnfieldlists[i];
3585 else
3586 {
3587 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3588 {
3589 fip->fnfieldlists = (struct fnfieldlist *)
3590 xrealloc (fip->fnfieldlists,
3591 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
3592 * sizeof (struct fnfieldlist));
3593 if (fip->nfnfields == 0)
3594 make_cleanup (free_current_contents, &fip->fnfieldlists);
3595 }
3596 flp = &fip->fnfieldlists[fip->nfnfields];
3597 flp->name = fieldname;
3598 flp->length = 0;
3599 flp->head = NULL;
3600 fip->nfnfields++;
3601 }
3602
3603 /* Create a new member function field and chain it to the field list
3604 entry. */
3605 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
3606 make_cleanup (xfree, new_fnfield);
3607 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3608 new_fnfield->next = flp->head;
3609 flp->head = new_fnfield;
3610 flp->length++;
3611
3612 /* Fill in the member function field info. */
3613 fnp = &new_fnfield->fnfield;
3614 /* The name is already allocated along with this objfile, so we don't
3615 need to duplicate it for the type. */
3616 fnp->physname = physname ? physname : "";
3617 fnp->type = alloc_type (objfile);
3618 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3619 {
3620 int nparams = TYPE_NFIELDS (die->type);
3621
3622 /* TYPE is the domain of this method, and DIE->TYPE is the type
3623 of the method itself (TYPE_CODE_METHOD). */
3624 smash_to_method_type (fnp->type, type,
3625 TYPE_TARGET_TYPE (die->type),
3626 TYPE_FIELDS (die->type),
3627 TYPE_NFIELDS (die->type),
3628 TYPE_VARARGS (die->type));
3629
3630 /* Handle static member functions.
3631 Dwarf2 has no clean way to discern C++ static and non-static
3632 member functions. G++ helps GDB by marking the first
3633 parameter for non-static member functions (which is the
3634 this pointer) as artificial. We obtain this information
3635 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
3636 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3637 fnp->voffset = VOFFSET_STATIC;
3638 }
3639 else
3640 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3641 physname);
3642
3643 /* Get fcontext from DW_AT_containing_type if present. */
3644 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3645 fnp->fcontext = die_containing_type (die, cu);
3646
3647 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3648 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3649
3650 /* Get accessibility. */
3651 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3652 if (attr)
3653 {
3654 switch (DW_UNSND (attr))
3655 {
3656 case DW_ACCESS_private:
3657 fnp->is_private = 1;
3658 break;
3659 case DW_ACCESS_protected:
3660 fnp->is_protected = 1;
3661 break;
3662 }
3663 }
3664
3665 /* Check for artificial methods. */
3666 attr = dwarf2_attr (die, DW_AT_artificial, cu);
3667 if (attr && DW_UNSND (attr) != 0)
3668 fnp->is_artificial = 1;
3669
3670 /* Get index in virtual function table if it is a virtual member function. */
3671 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
3672 if (attr)
3673 {
3674 /* Support the .debug_loc offsets */
3675 if (attr_form_is_block (attr))
3676 {
3677 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
3678 }
3679 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3680 {
3681 dwarf2_complex_location_expr_complaint ();
3682 }
3683 else
3684 {
3685 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3686 fieldname);
3687 }
3688 }
3689 }
3690
3691 /* Create the vector of member function fields, and attach it to the type. */
3692
3693 static void
3694 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
3695 struct dwarf2_cu *cu)
3696 {
3697 struct fnfieldlist *flp;
3698 int total_length = 0;
3699 int i;
3700
3701 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3702 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3703 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3704
3705 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3706 {
3707 struct nextfnfield *nfp = flp->head;
3708 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3709 int k;
3710
3711 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3712 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3713 fn_flp->fn_fields = (struct fn_field *)
3714 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3715 for (k = flp->length; (k--, nfp); nfp = nfp->next)
3716 fn_flp->fn_fields[k] = nfp->fnfield;
3717
3718 total_length += flp->length;
3719 }
3720
3721 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3722 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3723 }
3724
3725 /* Returns non-zero if NAME is the name of a vtable member in CU's
3726 language, zero otherwise. */
3727 static int
3728 is_vtable_name (const char *name, struct dwarf2_cu *cu)
3729 {
3730 static const char vptr[] = "_vptr";
3731 static const char vtable[] = "vtable";
3732
3733 /* Look for the C++ and Java forms of the vtable. */
3734 if ((cu->language == language_java
3735 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3736 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3737 && is_cplus_marker (name[sizeof (vptr) - 1])))
3738 return 1;
3739
3740 return 0;
3741 }
3742
3743 /* GCC outputs unnamed structures that are really pointers to member
3744 functions, with the ABI-specified layout. If DIE (from CU) describes
3745 such a structure, set its type, and return nonzero. Otherwise return
3746 zero.
3747
3748 GCC shouldn't do this; it should just output pointer to member DIEs.
3749 This is GCC PR debug/28767. */
3750
3751 static int
3752 quirk_gcc_member_function_pointer (struct die_info *die, struct dwarf2_cu *cu)
3753 {
3754 struct objfile *objfile = cu->objfile;
3755 struct type *type;
3756 struct die_info *pfn_die, *delta_die;
3757 struct attribute *pfn_name, *delta_name;
3758 struct type *pfn_type, *domain_type;
3759
3760 /* Check for a structure with no name and two children. */
3761 if (die->tag != DW_TAG_structure_type
3762 || dwarf2_attr (die, DW_AT_name, cu) != NULL
3763 || die->child == NULL
3764 || die->child->sibling == NULL
3765 || (die->child->sibling->sibling != NULL
3766 && die->child->sibling->sibling->tag != DW_TAG_padding))
3767 return 0;
3768
3769 /* Check for __pfn and __delta members. */
3770 pfn_die = die->child;
3771 pfn_name = dwarf2_attr (pfn_die, DW_AT_name, cu);
3772 if (pfn_die->tag != DW_TAG_member
3773 || pfn_name == NULL
3774 || DW_STRING (pfn_name) == NULL
3775 || strcmp ("__pfn", DW_STRING (pfn_name)) != 0)
3776 return 0;
3777
3778 delta_die = pfn_die->sibling;
3779 delta_name = dwarf2_attr (delta_die, DW_AT_name, cu);
3780 if (delta_die->tag != DW_TAG_member
3781 || delta_name == NULL
3782 || DW_STRING (delta_name) == NULL
3783 || strcmp ("__delta", DW_STRING (delta_name)) != 0)
3784 return 0;
3785
3786 /* Find the type of the method. */
3787 pfn_type = die_type (pfn_die, cu);
3788 if (pfn_type == NULL
3789 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
3790 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
3791 return 0;
3792
3793 /* Look for the "this" argument. */
3794 pfn_type = TYPE_TARGET_TYPE (pfn_type);
3795 if (TYPE_NFIELDS (pfn_type) == 0
3796 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
3797 return 0;
3798
3799 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
3800 type = alloc_type (objfile);
3801 smash_to_method_type (type, domain_type, TYPE_TARGET_TYPE (pfn_type),
3802 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
3803 TYPE_VARARGS (pfn_type));
3804 type = lookup_methodptr_type (type);
3805 set_die_type (die, type, cu);
3806
3807 return 1;
3808 }
3809
3810 /* Called when we find the DIE that starts a structure or union scope
3811 (definition) to process all dies that define the members of the
3812 structure or union.
3813
3814 NOTE: we need to call struct_type regardless of whether or not the
3815 DIE has an at_name attribute, since it might be an anonymous
3816 structure or union. This gets the type entered into our set of
3817 user defined types.
3818
3819 However, if the structure is incomplete (an opaque struct/union)
3820 then suppress creating a symbol table entry for it since gdb only
3821 wants to find the one with the complete definition. Note that if
3822 it is complete, we just call new_symbol, which does it's own
3823 checking about whether the struct/union is anonymous or not (and
3824 suppresses creating a symbol table entry itself). */
3825
3826 static void
3827 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
3828 {
3829 struct objfile *objfile = cu->objfile;
3830 struct type *type;
3831 struct attribute *attr;
3832 const char *previous_prefix = processing_current_prefix;
3833 struct cleanup *back_to = NULL;
3834
3835 if (die->type)
3836 return;
3837
3838 if (quirk_gcc_member_function_pointer (die, cu))
3839 return;
3840
3841 type = alloc_type (objfile);
3842 INIT_CPLUS_SPECIFIC (type);
3843 attr = dwarf2_attr (die, DW_AT_name, cu);
3844 if (attr && DW_STRING (attr))
3845 {
3846 if (cu->language == language_cplus
3847 || cu->language == language_java)
3848 {
3849 char *new_prefix = determine_class_name (die, cu);
3850 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3851 strlen (new_prefix),
3852 &objfile->objfile_obstack);
3853 back_to = make_cleanup (xfree, new_prefix);
3854 processing_current_prefix = new_prefix;
3855 }
3856 else
3857 {
3858 /* The name is already allocated along with this objfile, so
3859 we don't need to duplicate it for the type. */
3860 TYPE_TAG_NAME (type) = DW_STRING (attr);
3861 }
3862 }
3863
3864 if (die->tag == DW_TAG_structure_type)
3865 {
3866 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3867 }
3868 else if (die->tag == DW_TAG_union_type)
3869 {
3870 TYPE_CODE (type) = TYPE_CODE_UNION;
3871 }
3872 else
3873 {
3874 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
3875 in gdbtypes.h. */
3876 TYPE_CODE (type) = TYPE_CODE_CLASS;
3877 }
3878
3879 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3880 if (attr)
3881 {
3882 TYPE_LENGTH (type) = DW_UNSND (attr);
3883 }
3884 else
3885 {
3886 TYPE_LENGTH (type) = 0;
3887 }
3888
3889 TYPE_FLAGS (type) |= TYPE_FLAG_STUB_SUPPORTED;
3890 if (die_is_declaration (die, cu))
3891 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3892
3893 /* We need to add the type field to the die immediately so we don't
3894 infinitely recurse when dealing with pointers to the structure
3895 type within the structure itself. */
3896 set_die_type (die, type, cu);
3897
3898 if (die->child != NULL && ! die_is_declaration (die, cu))
3899 {
3900 struct field_info fi;
3901 struct die_info *child_die;
3902 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3903
3904 memset (&fi, 0, sizeof (struct field_info));
3905
3906 child_die = die->child;
3907
3908 while (child_die && child_die->tag)
3909 {
3910 if (child_die->tag == DW_TAG_member
3911 || child_die->tag == DW_TAG_variable)
3912 {
3913 /* NOTE: carlton/2002-11-05: A C++ static data member
3914 should be a DW_TAG_member that is a declaration, but
3915 all versions of G++ as of this writing (so through at
3916 least 3.2.1) incorrectly generate DW_TAG_variable
3917 tags for them instead. */
3918 dwarf2_add_field (&fi, child_die, cu);
3919 }
3920 else if (child_die->tag == DW_TAG_subprogram)
3921 {
3922 /* C++ member function. */
3923 read_type_die (child_die, cu);
3924 dwarf2_add_member_fn (&fi, child_die, type, cu);
3925 }
3926 else if (child_die->tag == DW_TAG_inheritance)
3927 {
3928 /* C++ base class field. */
3929 dwarf2_add_field (&fi, child_die, cu);
3930 }
3931 child_die = sibling_die (child_die);
3932 }
3933
3934 /* Attach fields and member functions to the type. */
3935 if (fi.nfields)
3936 dwarf2_attach_fields_to_type (&fi, type, cu);
3937 if (fi.nfnfields)
3938 {
3939 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
3940
3941 /* Get the type which refers to the base class (possibly this
3942 class itself) which contains the vtable pointer for the current
3943 class from the DW_AT_containing_type attribute. */
3944
3945 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3946 {
3947 struct type *t = die_containing_type (die, cu);
3948
3949 TYPE_VPTR_BASETYPE (type) = t;
3950 if (type == t)
3951 {
3952 int i;
3953
3954 /* Our own class provides vtbl ptr. */
3955 for (i = TYPE_NFIELDS (t) - 1;
3956 i >= TYPE_N_BASECLASSES (t);
3957 --i)
3958 {
3959 char *fieldname = TYPE_FIELD_NAME (t, i);
3960
3961 if (is_vtable_name (fieldname, cu))
3962 {
3963 TYPE_VPTR_FIELDNO (type) = i;
3964 break;
3965 }
3966 }
3967
3968 /* Complain if virtual function table field not found. */
3969 if (i < TYPE_N_BASECLASSES (t))
3970 complaint (&symfile_complaints,
3971 _("virtual function table pointer not found when defining class '%s'"),
3972 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3973 "");
3974 }
3975 else
3976 {
3977 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3978 }
3979 }
3980 else if (cu->producer
3981 && strncmp (cu->producer,
3982 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
3983 {
3984 /* The IBM XLC compiler does not provide direct indication
3985 of the containing type, but the vtable pointer is
3986 always named __vfp. */
3987
3988 int i;
3989
3990 for (i = TYPE_NFIELDS (type) - 1;
3991 i >= TYPE_N_BASECLASSES (type);
3992 --i)
3993 {
3994 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
3995 {
3996 TYPE_VPTR_FIELDNO (type) = i;
3997 TYPE_VPTR_BASETYPE (type) = type;
3998 break;
3999 }
4000 }
4001 }
4002 }
4003
4004 do_cleanups (back_to);
4005 }
4006
4007 processing_current_prefix = previous_prefix;
4008 if (back_to != NULL)
4009 do_cleanups (back_to);
4010 }
4011
4012 static void
4013 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
4014 {
4015 struct objfile *objfile = cu->objfile;
4016 const char *previous_prefix = processing_current_prefix;
4017 struct die_info *child_die = die->child;
4018
4019 if (TYPE_TAG_NAME (die->type) != NULL)
4020 processing_current_prefix = TYPE_TAG_NAME (die->type);
4021
4022 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
4023 snapshots) has been known to create a die giving a declaration
4024 for a class that has, as a child, a die giving a definition for a
4025 nested class. So we have to process our children even if the
4026 current die is a declaration. Normally, of course, a declaration
4027 won't have any children at all. */
4028
4029 while (child_die != NULL && child_die->tag)
4030 {
4031 if (child_die->tag == DW_TAG_member
4032 || child_die->tag == DW_TAG_variable
4033 || child_die->tag == DW_TAG_inheritance)
4034 {
4035 /* Do nothing. */
4036 }
4037 else
4038 process_die (child_die, cu);
4039
4040 child_die = sibling_die (child_die);
4041 }
4042
4043 /* Do not consider external references. According to the DWARF standard,
4044 these DIEs are identified by the fact that they have no byte_size
4045 attribute, and a declaration attribute. */
4046 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
4047 || !die_is_declaration (die, cu))
4048 new_symbol (die, die->type, cu);
4049
4050 processing_current_prefix = previous_prefix;
4051 }
4052
4053 /* Given a DW_AT_enumeration_type die, set its type. We do not
4054 complete the type's fields yet, or create any symbols. */
4055
4056 static void
4057 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
4058 {
4059 struct objfile *objfile = cu->objfile;
4060 struct type *type;
4061 struct attribute *attr;
4062
4063 if (die->type)
4064 return;
4065
4066 type = alloc_type (objfile);
4067
4068 TYPE_CODE (type) = TYPE_CODE_ENUM;
4069 attr = dwarf2_attr (die, DW_AT_name, cu);
4070 if (attr && DW_STRING (attr))
4071 {
4072 char *name = DW_STRING (attr);
4073
4074 if (processing_has_namespace_info)
4075 {
4076 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
4077 processing_current_prefix,
4078 name, cu);
4079 }
4080 else
4081 {
4082 /* The name is already allocated along with this objfile, so
4083 we don't need to duplicate it for the type. */
4084 TYPE_TAG_NAME (type) = name;
4085 }
4086 }
4087
4088 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4089 if (attr)
4090 {
4091 TYPE_LENGTH (type) = DW_UNSND (attr);
4092 }
4093 else
4094 {
4095 TYPE_LENGTH (type) = 0;
4096 }
4097
4098 set_die_type (die, type, cu);
4099 }
4100
4101 /* Determine the name of the type represented by DIE, which should be
4102 a named C++ or Java compound type. Return the name in question; the caller
4103 is responsible for xfree()'ing it. */
4104
4105 static char *
4106 determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
4107 {
4108 struct cleanup *back_to = NULL;
4109 struct die_info *spec_die = die_specification (die, cu);
4110 char *new_prefix = NULL;
4111
4112 /* If this is the definition of a class that is declared by another
4113 die, then processing_current_prefix may not be accurate; see
4114 read_func_scope for a similar example. */
4115 if (spec_die != NULL)
4116 {
4117 char *specification_prefix = determine_prefix (spec_die, cu);
4118 processing_current_prefix = specification_prefix;
4119 back_to = make_cleanup (xfree, specification_prefix);
4120 }
4121
4122 /* If we don't have namespace debug info, guess the name by trying
4123 to demangle the names of members, just like we did in
4124 guess_structure_name. */
4125 if (!processing_has_namespace_info)
4126 {
4127 struct die_info *child;
4128
4129 for (child = die->child;
4130 child != NULL && child->tag != 0;
4131 child = sibling_die (child))
4132 {
4133 if (child->tag == DW_TAG_subprogram)
4134 {
4135 new_prefix
4136 = language_class_name_from_physname (cu->language_defn,
4137 dwarf2_linkage_name
4138 (child, cu));
4139
4140 if (new_prefix != NULL)
4141 break;
4142 }
4143 }
4144 }
4145
4146 if (new_prefix == NULL)
4147 {
4148 const char *name = dwarf2_name (die, cu);
4149 new_prefix = typename_concat (NULL, processing_current_prefix,
4150 name ? name : "<<anonymous>>",
4151 cu);
4152 }
4153
4154 if (back_to != NULL)
4155 do_cleanups (back_to);
4156
4157 return new_prefix;
4158 }
4159
4160 /* Given a pointer to a die which begins an enumeration, process all
4161 the dies that define the members of the enumeration, and create the
4162 symbol for the enumeration type.
4163
4164 NOTE: We reverse the order of the element list. */
4165
4166 static void
4167 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4168 {
4169 struct objfile *objfile = cu->objfile;
4170 struct die_info *child_die;
4171 struct field *fields;
4172 struct attribute *attr;
4173 struct symbol *sym;
4174 int num_fields;
4175 int unsigned_enum = 1;
4176
4177 num_fields = 0;
4178 fields = NULL;
4179 if (die->child != NULL)
4180 {
4181 child_die = die->child;
4182 while (child_die && child_die->tag)
4183 {
4184 if (child_die->tag != DW_TAG_enumerator)
4185 {
4186 process_die (child_die, cu);
4187 }
4188 else
4189 {
4190 attr = dwarf2_attr (child_die, DW_AT_name, cu);
4191 if (attr)
4192 {
4193 sym = new_symbol (child_die, die->type, cu);
4194 if (SYMBOL_VALUE (sym) < 0)
4195 unsigned_enum = 0;
4196
4197 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4198 {
4199 fields = (struct field *)
4200 xrealloc (fields,
4201 (num_fields + DW_FIELD_ALLOC_CHUNK)
4202 * sizeof (struct field));
4203 }
4204
4205 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
4206 FIELD_TYPE (fields[num_fields]) = NULL;
4207 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4208 FIELD_BITSIZE (fields[num_fields]) = 0;
4209 FIELD_STATIC_KIND (fields[num_fields]) = 0;
4210
4211 num_fields++;
4212 }
4213 }
4214
4215 child_die = sibling_die (child_die);
4216 }
4217
4218 if (num_fields)
4219 {
4220 TYPE_NFIELDS (die->type) = num_fields;
4221 TYPE_FIELDS (die->type) = (struct field *)
4222 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4223 memcpy (TYPE_FIELDS (die->type), fields,
4224 sizeof (struct field) * num_fields);
4225 xfree (fields);
4226 }
4227 if (unsigned_enum)
4228 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
4229 }
4230
4231 new_symbol (die, die->type, cu);
4232 }
4233
4234 /* Extract all information from a DW_TAG_array_type DIE and put it in
4235 the DIE's type field. For now, this only handles one dimensional
4236 arrays. */
4237
4238 static void
4239 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
4240 {
4241 struct objfile *objfile = cu->objfile;
4242 struct die_info *child_die;
4243 struct type *type = NULL;
4244 struct type *element_type, *range_type, *index_type;
4245 struct type **range_types = NULL;
4246 struct attribute *attr;
4247 int ndim = 0;
4248 struct cleanup *back_to;
4249
4250 /* Return if we've already decoded this type. */
4251 if (die->type)
4252 {
4253 return;
4254 }
4255
4256 element_type = die_type (die, cu);
4257
4258 /* Irix 6.2 native cc creates array types without children for
4259 arrays with unspecified length. */
4260 if (die->child == NULL)
4261 {
4262 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4263 range_type = create_range_type (NULL, index_type, 0, -1);
4264 set_die_type (die, create_array_type (NULL, element_type, range_type),
4265 cu);
4266 return;
4267 }
4268
4269 back_to = make_cleanup (null_cleanup, NULL);
4270 child_die = die->child;
4271 while (child_die && child_die->tag)
4272 {
4273 if (child_die->tag == DW_TAG_subrange_type)
4274 {
4275 read_subrange_type (child_die, cu);
4276
4277 if (child_die->type != NULL)
4278 {
4279 /* The range type was succesfully read. Save it for
4280 the array type creation. */
4281 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4282 {
4283 range_types = (struct type **)
4284 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4285 * sizeof (struct type *));
4286 if (ndim == 0)
4287 make_cleanup (free_current_contents, &range_types);
4288 }
4289 range_types[ndim++] = child_die->type;
4290 }
4291 }
4292 child_die = sibling_die (child_die);
4293 }
4294
4295 /* Dwarf2 dimensions are output from left to right, create the
4296 necessary array types in backwards order. */
4297
4298 type = element_type;
4299
4300 if (read_array_order (die, cu) == DW_ORD_col_major)
4301 {
4302 int i = 0;
4303 while (i < ndim)
4304 type = create_array_type (NULL, type, range_types[i++]);
4305 }
4306 else
4307 {
4308 while (ndim-- > 0)
4309 type = create_array_type (NULL, type, range_types[ndim]);
4310 }
4311
4312 /* Understand Dwarf2 support for vector types (like they occur on
4313 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4314 array type. This is not part of the Dwarf2/3 standard yet, but a
4315 custom vendor extension. The main difference between a regular
4316 array and the vector variant is that vectors are passed by value
4317 to functions. */
4318 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
4319 if (attr)
4320 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
4321
4322 attr = dwarf2_attr (die, DW_AT_name, cu);
4323 if (attr && DW_STRING (attr))
4324 TYPE_NAME (type) = DW_STRING (attr);
4325
4326 do_cleanups (back_to);
4327
4328 /* Install the type in the die. */
4329 set_die_type (die, type, cu);
4330 }
4331
4332 static enum dwarf_array_dim_ordering
4333 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4334 {
4335 struct attribute *attr;
4336
4337 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4338
4339 if (attr) return DW_SND (attr);
4340
4341 /*
4342 GNU F77 is a special case, as at 08/2004 array type info is the
4343 opposite order to the dwarf2 specification, but data is still
4344 laid out as per normal fortran.
4345
4346 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4347 version checking.
4348 */
4349
4350 if (cu->language == language_fortran &&
4351 cu->producer && strstr (cu->producer, "GNU F77"))
4352 {
4353 return DW_ORD_row_major;
4354 }
4355
4356 switch (cu->language_defn->la_array_ordering)
4357 {
4358 case array_column_major:
4359 return DW_ORD_col_major;
4360 case array_row_major:
4361 default:
4362 return DW_ORD_row_major;
4363 };
4364 }
4365
4366 /* Extract all information from a DW_TAG_set_type DIE and put it in
4367 the DIE's type field. */
4368
4369 static void
4370 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
4371 {
4372 if (die->type == NULL)
4373 die->type = create_set_type ((struct type *) NULL, die_type (die, cu));
4374 }
4375
4376 /* First cut: install each common block member as a global variable. */
4377
4378 static void
4379 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
4380 {
4381 struct die_info *child_die;
4382 struct attribute *attr;
4383 struct symbol *sym;
4384 CORE_ADDR base = (CORE_ADDR) 0;
4385
4386 attr = dwarf2_attr (die, DW_AT_location, cu);
4387 if (attr)
4388 {
4389 /* Support the .debug_loc offsets */
4390 if (attr_form_is_block (attr))
4391 {
4392 base = decode_locdesc (DW_BLOCK (attr), cu);
4393 }
4394 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4395 {
4396 dwarf2_complex_location_expr_complaint ();
4397 }
4398 else
4399 {
4400 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4401 "common block member");
4402 }
4403 }
4404 if (die->child != NULL)
4405 {
4406 child_die = die->child;
4407 while (child_die && child_die->tag)
4408 {
4409 sym = new_symbol (child_die, NULL, cu);
4410 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
4411 if (attr)
4412 {
4413 SYMBOL_VALUE_ADDRESS (sym) =
4414 base + decode_locdesc (DW_BLOCK (attr), cu);
4415 add_symbol_to_list (sym, &global_symbols);
4416 }
4417 child_die = sibling_die (child_die);
4418 }
4419 }
4420 }
4421
4422 /* Read a C++ namespace. */
4423
4424 static void
4425 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
4426 {
4427 struct objfile *objfile = cu->objfile;
4428 const char *previous_prefix = processing_current_prefix;
4429 const char *name;
4430 int is_anonymous;
4431 struct die_info *current_die;
4432 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4433
4434 name = namespace_name (die, &is_anonymous, cu);
4435
4436 /* Now build the name of the current namespace. */
4437
4438 if (previous_prefix[0] == '\0')
4439 {
4440 processing_current_prefix = name;
4441 }
4442 else
4443 {
4444 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4445 make_cleanup (xfree, temp_name);
4446 processing_current_prefix = temp_name;
4447 }
4448
4449 /* Add a symbol associated to this if we haven't seen the namespace
4450 before. Also, add a using directive if it's an anonymous
4451 namespace. */
4452
4453 if (dwarf2_extension (die, cu) == NULL)
4454 {
4455 struct type *type;
4456
4457 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4458 this cast will hopefully become unnecessary. */
4459 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
4460 (char *) processing_current_prefix,
4461 objfile);
4462 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4463
4464 new_symbol (die, type, cu);
4465 set_die_type (die, type, cu);
4466
4467 if (is_anonymous)
4468 cp_add_using_directive (processing_current_prefix,
4469 strlen (previous_prefix),
4470 strlen (processing_current_prefix));
4471 }
4472
4473 if (die->child != NULL)
4474 {
4475 struct die_info *child_die = die->child;
4476
4477 while (child_die && child_die->tag)
4478 {
4479 process_die (child_die, cu);
4480 child_die = sibling_die (child_die);
4481 }
4482 }
4483
4484 processing_current_prefix = previous_prefix;
4485 do_cleanups (back_to);
4486 }
4487
4488 /* Return the name of the namespace represented by DIE. Set
4489 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4490 namespace. */
4491
4492 static const char *
4493 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
4494 {
4495 struct die_info *current_die;
4496 const char *name = NULL;
4497
4498 /* Loop through the extensions until we find a name. */
4499
4500 for (current_die = die;
4501 current_die != NULL;
4502 current_die = dwarf2_extension (die, cu))
4503 {
4504 name = dwarf2_name (current_die, cu);
4505 if (name != NULL)
4506 break;
4507 }
4508
4509 /* Is it an anonymous namespace? */
4510
4511 *is_anonymous = (name == NULL);
4512 if (*is_anonymous)
4513 name = "(anonymous namespace)";
4514
4515 return name;
4516 }
4517
4518 /* Extract all information from a DW_TAG_pointer_type DIE and add to
4519 the user defined type vector. */
4520
4521 static void
4522 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
4523 {
4524 struct comp_unit_head *cu_header = &cu->header;
4525 struct type *type;
4526 struct attribute *attr_byte_size;
4527 struct attribute *attr_address_class;
4528 int byte_size, addr_class;
4529
4530 if (die->type)
4531 {
4532 return;
4533 }
4534
4535 type = lookup_pointer_type (die_type (die, cu));
4536
4537 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
4538 if (attr_byte_size)
4539 byte_size = DW_UNSND (attr_byte_size);
4540 else
4541 byte_size = cu_header->addr_size;
4542
4543 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
4544 if (attr_address_class)
4545 addr_class = DW_UNSND (attr_address_class);
4546 else
4547 addr_class = DW_ADDR_none;
4548
4549 /* If the pointer size or address class is different than the
4550 default, create a type variant marked as such and set the
4551 length accordingly. */
4552 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
4553 {
4554 if (ADDRESS_CLASS_TYPE_FLAGS_P ())
4555 {
4556 int type_flags;
4557
4558 type_flags = ADDRESS_CLASS_TYPE_FLAGS (byte_size, addr_class);
4559 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4560 type = make_type_with_address_space (type, type_flags);
4561 }
4562 else if (TYPE_LENGTH (type) != byte_size)
4563 {
4564 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
4565 }
4566 else {
4567 /* Should we also complain about unhandled address classes? */
4568 }
4569 }
4570
4571 TYPE_LENGTH (type) = byte_size;
4572 set_die_type (die, type, cu);
4573 }
4574
4575 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4576 the user defined type vector. */
4577
4578 static void
4579 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
4580 {
4581 struct objfile *objfile = cu->objfile;
4582 struct type *type;
4583 struct type *to_type;
4584 struct type *domain;
4585
4586 if (die->type)
4587 {
4588 return;
4589 }
4590
4591 to_type = die_type (die, cu);
4592 domain = die_containing_type (die, cu);
4593
4594 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
4595 type = lookup_methodptr_type (to_type);
4596 else
4597 type = lookup_memberptr_type (to_type, domain);
4598
4599 set_die_type (die, type, cu);
4600 }
4601
4602 /* Extract all information from a DW_TAG_reference_type DIE and add to
4603 the user defined type vector. */
4604
4605 static void
4606 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
4607 {
4608 struct comp_unit_head *cu_header = &cu->header;
4609 struct type *type;
4610 struct attribute *attr;
4611
4612 if (die->type)
4613 {
4614 return;
4615 }
4616
4617 type = lookup_reference_type (die_type (die, cu));
4618 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4619 if (attr)
4620 {
4621 TYPE_LENGTH (type) = DW_UNSND (attr);
4622 }
4623 else
4624 {
4625 TYPE_LENGTH (type) = cu_header->addr_size;
4626 }
4627 set_die_type (die, type, cu);
4628 }
4629
4630 static void
4631 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
4632 {
4633 struct type *base_type;
4634
4635 if (die->type)
4636 {
4637 return;
4638 }
4639
4640 base_type = die_type (die, cu);
4641 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4642 cu);
4643 }
4644
4645 static void
4646 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
4647 {
4648 struct type *base_type;
4649
4650 if (die->type)
4651 {
4652 return;
4653 }
4654
4655 base_type = die_type (die, cu);
4656 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4657 cu);
4658 }
4659
4660 /* Extract all information from a DW_TAG_string_type DIE and add to
4661 the user defined type vector. It isn't really a user defined type,
4662 but it behaves like one, with other DIE's using an AT_user_def_type
4663 attribute to reference it. */
4664
4665 static void
4666 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
4667 {
4668 struct objfile *objfile = cu->objfile;
4669 struct type *type, *range_type, *index_type, *char_type;
4670 struct attribute *attr;
4671 unsigned int length;
4672
4673 if (die->type)
4674 {
4675 return;
4676 }
4677
4678 attr = dwarf2_attr (die, DW_AT_string_length, cu);
4679 if (attr)
4680 {
4681 length = DW_UNSND (attr);
4682 }
4683 else
4684 {
4685 /* check for the DW_AT_byte_size attribute */
4686 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4687 if (attr)
4688 {
4689 length = DW_UNSND (attr);
4690 }
4691 else
4692 {
4693 length = 1;
4694 }
4695 }
4696 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4697 range_type = create_range_type (NULL, index_type, 1, length);
4698 if (cu->language == language_fortran)
4699 {
4700 /* Need to create a unique string type for bounds
4701 information */
4702 type = create_string_type (0, range_type);
4703 }
4704 else
4705 {
4706 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
4707 type = create_string_type (char_type, range_type);
4708 }
4709 set_die_type (die, type, cu);
4710 }
4711
4712 /* Handle DIES due to C code like:
4713
4714 struct foo
4715 {
4716 int (*funcp)(int a, long l);
4717 int b;
4718 };
4719
4720 ('funcp' generates a DW_TAG_subroutine_type DIE)
4721 */
4722
4723 static void
4724 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
4725 {
4726 struct type *type; /* Type that this function returns */
4727 struct type *ftype; /* Function that returns above type */
4728 struct attribute *attr;
4729
4730 /* Decode the type that this subroutine returns */
4731 if (die->type)
4732 {
4733 return;
4734 }
4735 type = die_type (die, cu);
4736 ftype = make_function_type (type, (struct type **) 0);
4737
4738 /* All functions in C++ and Java have prototypes. */
4739 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
4740 if ((attr && (DW_UNSND (attr) != 0))
4741 || cu->language == language_cplus
4742 || cu->language == language_java)
4743 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4744
4745 if (die->child != NULL)
4746 {
4747 struct die_info *child_die;
4748 int nparams = 0;
4749 int iparams = 0;
4750
4751 /* Count the number of parameters.
4752 FIXME: GDB currently ignores vararg functions, but knows about
4753 vararg member functions. */
4754 child_die = die->child;
4755 while (child_die && child_die->tag)
4756 {
4757 if (child_die->tag == DW_TAG_formal_parameter)
4758 nparams++;
4759 else if (child_die->tag == DW_TAG_unspecified_parameters)
4760 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4761 child_die = sibling_die (child_die);
4762 }
4763
4764 /* Allocate storage for parameters and fill them in. */
4765 TYPE_NFIELDS (ftype) = nparams;
4766 TYPE_FIELDS (ftype) = (struct field *)
4767 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
4768
4769 child_die = die->child;
4770 while (child_die && child_die->tag)
4771 {
4772 if (child_die->tag == DW_TAG_formal_parameter)
4773 {
4774 /* Dwarf2 has no clean way to discern C++ static and non-static
4775 member functions. G++ helps GDB by marking the first
4776 parameter for non-static member functions (which is the
4777 this pointer) as artificial. We pass this information
4778 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
4779 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
4780 if (attr)
4781 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4782 else
4783 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
4784 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
4785 iparams++;
4786 }
4787 child_die = sibling_die (child_die);
4788 }
4789 }
4790
4791 set_die_type (die, ftype, cu);
4792 }
4793
4794 static void
4795 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
4796 {
4797 struct objfile *objfile = cu->objfile;
4798 struct attribute *attr;
4799 char *name = NULL;
4800
4801 if (!die->type)
4802 {
4803 attr = dwarf2_attr (die, DW_AT_name, cu);
4804 if (attr && DW_STRING (attr))
4805 {
4806 name = DW_STRING (attr);
4807 }
4808 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4809 TYPE_FLAG_TARGET_STUB, name, objfile),
4810 cu);
4811 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
4812 }
4813 }
4814
4815 /* Find a representation of a given base type and install
4816 it in the TYPE field of the die. */
4817
4818 static void
4819 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
4820 {
4821 struct objfile *objfile = cu->objfile;
4822 struct type *type;
4823 struct attribute *attr;
4824 int encoding = 0, size = 0;
4825
4826 /* If we've already decoded this die, this is a no-op. */
4827 if (die->type)
4828 {
4829 return;
4830 }
4831
4832 attr = dwarf2_attr (die, DW_AT_encoding, cu);
4833 if (attr)
4834 {
4835 encoding = DW_UNSND (attr);
4836 }
4837 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4838 if (attr)
4839 {
4840 size = DW_UNSND (attr);
4841 }
4842 attr = dwarf2_attr (die, DW_AT_name, cu);
4843 if (attr && DW_STRING (attr))
4844 {
4845 enum type_code code = TYPE_CODE_INT;
4846 int type_flags = 0;
4847
4848 switch (encoding)
4849 {
4850 case DW_ATE_address:
4851 /* Turn DW_ATE_address into a void * pointer. */
4852 code = TYPE_CODE_PTR;
4853 type_flags |= TYPE_FLAG_UNSIGNED;
4854 break;
4855 case DW_ATE_boolean:
4856 code = TYPE_CODE_BOOL;
4857 type_flags |= TYPE_FLAG_UNSIGNED;
4858 break;
4859 case DW_ATE_complex_float:
4860 code = TYPE_CODE_COMPLEX;
4861 break;
4862 case DW_ATE_float:
4863 code = TYPE_CODE_FLT;
4864 break;
4865 case DW_ATE_signed:
4866 break;
4867 case DW_ATE_unsigned:
4868 type_flags |= TYPE_FLAG_UNSIGNED;
4869 break;
4870 case DW_ATE_signed_char:
4871 if (cu->language == language_m2)
4872 code = TYPE_CODE_CHAR;
4873 break;
4874 case DW_ATE_unsigned_char:
4875 if (cu->language == language_m2)
4876 code = TYPE_CODE_CHAR;
4877 type_flags |= TYPE_FLAG_UNSIGNED;
4878 break;
4879 default:
4880 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
4881 dwarf_type_encoding_name (encoding));
4882 break;
4883 }
4884 type = init_type (code, size, type_flags, DW_STRING (attr), objfile);
4885 if (encoding == DW_ATE_address)
4886 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4887 cu);
4888 else if (encoding == DW_ATE_complex_float)
4889 {
4890 if (size == 32)
4891 TYPE_TARGET_TYPE (type)
4892 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
4893 else if (size == 16)
4894 TYPE_TARGET_TYPE (type)
4895 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
4896 else if (size == 8)
4897 TYPE_TARGET_TYPE (type)
4898 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
4899 }
4900 }
4901 else
4902 {
4903 type = dwarf_base_type (encoding, size, cu);
4904 }
4905 set_die_type (die, type, cu);
4906 }
4907
4908 /* Read the given DW_AT_subrange DIE. */
4909
4910 static void
4911 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4912 {
4913 struct type *base_type;
4914 struct type *range_type;
4915 struct attribute *attr;
4916 int low = 0;
4917 int high = -1;
4918
4919 /* If we have already decoded this die, then nothing more to do. */
4920 if (die->type)
4921 return;
4922
4923 base_type = die_type (die, cu);
4924 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
4925 {
4926 complaint (&symfile_complaints,
4927 _("DW_AT_type missing from DW_TAG_subrange_type"));
4928 base_type = dwarf_base_type (DW_ATE_signed, TARGET_ADDR_BIT / 8, cu);
4929 }
4930
4931 if (cu->language == language_fortran)
4932 {
4933 /* FORTRAN implies a lower bound of 1, if not given. */
4934 low = 1;
4935 }
4936
4937 /* FIXME: For variable sized arrays either of these could be
4938 a variable rather than a constant value. We'll allow it,
4939 but we don't know how to handle it. */
4940 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
4941 if (attr)
4942 low = dwarf2_get_attr_constant_value (attr, 0);
4943
4944 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
4945 if (attr)
4946 {
4947 if (attr->form == DW_FORM_block1)
4948 {
4949 /* GCC encodes arrays with unspecified or dynamic length
4950 with a DW_FORM_block1 attribute.
4951 FIXME: GDB does not yet know how to handle dynamic
4952 arrays properly, treat them as arrays with unspecified
4953 length for now.
4954
4955 FIXME: jimb/2003-09-22: GDB does not really know
4956 how to handle arrays of unspecified length
4957 either; we just represent them as zero-length
4958 arrays. Choose an appropriate upper bound given
4959 the lower bound we've computed above. */
4960 high = low - 1;
4961 }
4962 else
4963 high = dwarf2_get_attr_constant_value (attr, 1);
4964 }
4965
4966 range_type = create_range_type (NULL, base_type, low, high);
4967
4968 attr = dwarf2_attr (die, DW_AT_name, cu);
4969 if (attr && DW_STRING (attr))
4970 TYPE_NAME (range_type) = DW_STRING (attr);
4971
4972 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4973 if (attr)
4974 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4975
4976 set_die_type (die, range_type, cu);
4977 }
4978
4979 static void
4980 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
4981 {
4982 struct type *type;
4983 struct attribute *attr;
4984
4985 if (die->type)
4986 return;
4987
4988 /* For now, we only support the C meaning of an unspecified type: void. */
4989
4990 attr = dwarf2_attr (die, DW_AT_name, cu);
4991 type = init_type (TYPE_CODE_VOID, 0, 0, attr ? DW_STRING (attr) : "",
4992 cu->objfile);
4993
4994 set_die_type (die, type, cu);
4995 }
4996
4997 /* Read a whole compilation unit into a linked list of dies. */
4998
4999 static struct die_info *
5000 read_comp_unit (gdb_byte *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
5001 {
5002 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
5003 }
5004
5005 /* Read a single die and all its descendents. Set the die's sibling
5006 field to NULL; set other fields in the die correctly, and set all
5007 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
5008 location of the info_ptr after reading all of those dies. PARENT
5009 is the parent of the die in question. */
5010
5011 static struct die_info *
5012 read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
5013 struct dwarf2_cu *cu,
5014 gdb_byte **new_info_ptr,
5015 struct die_info *parent)
5016 {
5017 struct die_info *die;
5018 gdb_byte *cur_ptr;
5019 int has_children;
5020
5021 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
5022 store_in_ref_table (die->offset, die, cu);
5023
5024 if (has_children)
5025 {
5026 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
5027 new_info_ptr, die);
5028 }
5029 else
5030 {
5031 die->child = NULL;
5032 *new_info_ptr = cur_ptr;
5033 }
5034
5035 die->sibling = NULL;
5036 die->parent = parent;
5037 return die;
5038 }
5039
5040 /* Read a die, all of its descendents, and all of its siblings; set
5041 all of the fields of all of the dies correctly. Arguments are as
5042 in read_die_and_children. */
5043
5044 static struct die_info *
5045 read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
5046 struct dwarf2_cu *cu,
5047 gdb_byte **new_info_ptr,
5048 struct die_info *parent)
5049 {
5050 struct die_info *first_die, *last_sibling;
5051 gdb_byte *cur_ptr;
5052
5053 cur_ptr = info_ptr;
5054 first_die = last_sibling = NULL;
5055
5056 while (1)
5057 {
5058 struct die_info *die
5059 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
5060
5061 if (!first_die)
5062 {
5063 first_die = die;
5064 }
5065 else
5066 {
5067 last_sibling->sibling = die;
5068 }
5069
5070 if (die->tag == 0)
5071 {
5072 *new_info_ptr = cur_ptr;
5073 return first_die;
5074 }
5075 else
5076 {
5077 last_sibling = die;
5078 }
5079 }
5080 }
5081
5082 /* Free a linked list of dies. */
5083
5084 static void
5085 free_die_list (struct die_info *dies)
5086 {
5087 struct die_info *die, *next;
5088
5089 die = dies;
5090 while (die)
5091 {
5092 if (die->child != NULL)
5093 free_die_list (die->child);
5094 next = die->sibling;
5095 xfree (die->attrs);
5096 xfree (die);
5097 die = next;
5098 }
5099 }
5100
5101 /* Read the contents of the section at OFFSET and of size SIZE from the
5102 object file specified by OBJFILE into the objfile_obstack and return it. */
5103
5104 gdb_byte *
5105 dwarf2_read_section (struct objfile *objfile, asection *sectp)
5106 {
5107 bfd *abfd = objfile->obfd;
5108 gdb_byte *buf, *retbuf;
5109 bfd_size_type size = bfd_get_section_size (sectp);
5110
5111 if (size == 0)
5112 return NULL;
5113
5114 buf = obstack_alloc (&objfile->objfile_obstack, size);
5115 retbuf = symfile_relocate_debug_section (abfd, sectp, buf);
5116 if (retbuf != NULL)
5117 return retbuf;
5118
5119 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
5120 || bfd_bread (buf, size, abfd) != size)
5121 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
5122 bfd_get_filename (abfd));
5123
5124 return buf;
5125 }
5126
5127 /* In DWARF version 2, the description of the debugging information is
5128 stored in a separate .debug_abbrev section. Before we read any
5129 dies from a section we read in all abbreviations and install them
5130 in a hash table. This function also sets flags in CU describing
5131 the data found in the abbrev table. */
5132
5133 static void
5134 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
5135 {
5136 struct comp_unit_head *cu_header = &cu->header;
5137 gdb_byte *abbrev_ptr;
5138 struct abbrev_info *cur_abbrev;
5139 unsigned int abbrev_number, bytes_read, abbrev_name;
5140 unsigned int abbrev_form, hash_number;
5141 struct attr_abbrev *cur_attrs;
5142 unsigned int allocated_attrs;
5143
5144 /* Initialize dwarf2 abbrevs */
5145 obstack_init (&cu->abbrev_obstack);
5146 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
5147 (ABBREV_HASH_SIZE
5148 * sizeof (struct abbrev_info *)));
5149 memset (cu->dwarf2_abbrevs, 0,
5150 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
5151
5152 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
5153 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5154 abbrev_ptr += bytes_read;
5155
5156 allocated_attrs = ATTR_ALLOC_CHUNK;
5157 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
5158
5159 /* loop until we reach an abbrev number of 0 */
5160 while (abbrev_number)
5161 {
5162 cur_abbrev = dwarf_alloc_abbrev (cu);
5163
5164 /* read in abbrev header */
5165 cur_abbrev->number = abbrev_number;
5166 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5167 abbrev_ptr += bytes_read;
5168 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
5169 abbrev_ptr += 1;
5170
5171 if (cur_abbrev->tag == DW_TAG_namespace)
5172 cu->has_namespace_info = 1;
5173
5174 /* now read in declarations */
5175 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5176 abbrev_ptr += bytes_read;
5177 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5178 abbrev_ptr += bytes_read;
5179 while (abbrev_name)
5180 {
5181 if (cur_abbrev->num_attrs == allocated_attrs)
5182 {
5183 allocated_attrs += ATTR_ALLOC_CHUNK;
5184 cur_attrs
5185 = xrealloc (cur_attrs, (allocated_attrs
5186 * sizeof (struct attr_abbrev)));
5187 }
5188
5189 /* Record whether this compilation unit might have
5190 inter-compilation-unit references. If we don't know what form
5191 this attribute will have, then it might potentially be a
5192 DW_FORM_ref_addr, so we conservatively expect inter-CU
5193 references. */
5194
5195 if (abbrev_form == DW_FORM_ref_addr
5196 || abbrev_form == DW_FORM_indirect)
5197 cu->has_form_ref_addr = 1;
5198
5199 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5200 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
5201 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5202 abbrev_ptr += bytes_read;
5203 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5204 abbrev_ptr += bytes_read;
5205 }
5206
5207 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5208 (cur_abbrev->num_attrs
5209 * sizeof (struct attr_abbrev)));
5210 memcpy (cur_abbrev->attrs, cur_attrs,
5211 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5212
5213 hash_number = abbrev_number % ABBREV_HASH_SIZE;
5214 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5215 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
5216
5217 /* Get next abbreviation.
5218 Under Irix6 the abbreviations for a compilation unit are not
5219 always properly terminated with an abbrev number of 0.
5220 Exit loop if we encounter an abbreviation which we have
5221 already read (which means we are about to read the abbreviations
5222 for the next compile unit) or if the end of the abbreviation
5223 table is reached. */
5224 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5225 >= dwarf2_per_objfile->abbrev_size)
5226 break;
5227 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5228 abbrev_ptr += bytes_read;
5229 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
5230 break;
5231 }
5232
5233 xfree (cur_attrs);
5234 }
5235
5236 /* Release the memory used by the abbrev table for a compilation unit. */
5237
5238 static void
5239 dwarf2_free_abbrev_table (void *ptr_to_cu)
5240 {
5241 struct dwarf2_cu *cu = ptr_to_cu;
5242
5243 obstack_free (&cu->abbrev_obstack, NULL);
5244 cu->dwarf2_abbrevs = NULL;
5245 }
5246
5247 /* Lookup an abbrev_info structure in the abbrev hash table. */
5248
5249 static struct abbrev_info *
5250 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
5251 {
5252 unsigned int hash_number;
5253 struct abbrev_info *abbrev;
5254
5255 hash_number = number % ABBREV_HASH_SIZE;
5256 abbrev = cu->dwarf2_abbrevs[hash_number];
5257
5258 while (abbrev)
5259 {
5260 if (abbrev->number == number)
5261 return abbrev;
5262 else
5263 abbrev = abbrev->next;
5264 }
5265 return NULL;
5266 }
5267
5268 /* Returns nonzero if TAG represents a type that we might generate a partial
5269 symbol for. */
5270
5271 static int
5272 is_type_tag_for_partial (int tag)
5273 {
5274 switch (tag)
5275 {
5276 #if 0
5277 /* Some types that would be reasonable to generate partial symbols for,
5278 that we don't at present. */
5279 case DW_TAG_array_type:
5280 case DW_TAG_file_type:
5281 case DW_TAG_ptr_to_member_type:
5282 case DW_TAG_set_type:
5283 case DW_TAG_string_type:
5284 case DW_TAG_subroutine_type:
5285 #endif
5286 case DW_TAG_base_type:
5287 case DW_TAG_class_type:
5288 case DW_TAG_enumeration_type:
5289 case DW_TAG_structure_type:
5290 case DW_TAG_subrange_type:
5291 case DW_TAG_typedef:
5292 case DW_TAG_union_type:
5293 return 1;
5294 default:
5295 return 0;
5296 }
5297 }
5298
5299 /* Load all DIEs that are interesting for partial symbols into memory. */
5300
5301 static struct partial_die_info *
5302 load_partial_dies (bfd *abfd, gdb_byte *info_ptr, int building_psymtab,
5303 struct dwarf2_cu *cu)
5304 {
5305 struct partial_die_info *part_die;
5306 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5307 struct abbrev_info *abbrev;
5308 unsigned int bytes_read;
5309 unsigned int load_all = 0;
5310
5311 int nesting_level = 1;
5312
5313 parent_die = NULL;
5314 last_die = NULL;
5315
5316 if (cu->per_cu && cu->per_cu->load_all_dies)
5317 load_all = 1;
5318
5319 cu->partial_dies
5320 = htab_create_alloc_ex (cu->header.length / 12,
5321 partial_die_hash,
5322 partial_die_eq,
5323 NULL,
5324 &cu->comp_unit_obstack,
5325 hashtab_obstack_allocate,
5326 dummy_obstack_deallocate);
5327
5328 part_die = obstack_alloc (&cu->comp_unit_obstack,
5329 sizeof (struct partial_die_info));
5330
5331 while (1)
5332 {
5333 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5334
5335 /* A NULL abbrev means the end of a series of children. */
5336 if (abbrev == NULL)
5337 {
5338 if (--nesting_level == 0)
5339 {
5340 /* PART_DIE was probably the last thing allocated on the
5341 comp_unit_obstack, so we could call obstack_free
5342 here. We don't do that because the waste is small,
5343 and will be cleaned up when we're done with this
5344 compilation unit. This way, we're also more robust
5345 against other users of the comp_unit_obstack. */
5346 return first_die;
5347 }
5348 info_ptr += bytes_read;
5349 last_die = parent_die;
5350 parent_die = parent_die->die_parent;
5351 continue;
5352 }
5353
5354 /* Check whether this DIE is interesting enough to save. Normally
5355 we would not be interested in members here, but there may be
5356 later variables referencing them via DW_AT_specification (for
5357 static members). */
5358 if (!load_all
5359 && !is_type_tag_for_partial (abbrev->tag)
5360 && abbrev->tag != DW_TAG_enumerator
5361 && abbrev->tag != DW_TAG_subprogram
5362 && abbrev->tag != DW_TAG_variable
5363 && abbrev->tag != DW_TAG_namespace
5364 && abbrev->tag != DW_TAG_member)
5365 {
5366 /* Otherwise we skip to the next sibling, if any. */
5367 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5368 continue;
5369 }
5370
5371 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5372 abfd, info_ptr, cu);
5373
5374 /* This two-pass algorithm for processing partial symbols has a
5375 high cost in cache pressure. Thus, handle some simple cases
5376 here which cover the majority of C partial symbols. DIEs
5377 which neither have specification tags in them, nor could have
5378 specification tags elsewhere pointing at them, can simply be
5379 processed and discarded.
5380
5381 This segment is also optional; scan_partial_symbols and
5382 add_partial_symbol will handle these DIEs if we chain
5383 them in normally. When compilers which do not emit large
5384 quantities of duplicate debug information are more common,
5385 this code can probably be removed. */
5386
5387 /* Any complete simple types at the top level (pretty much all
5388 of them, for a language without namespaces), can be processed
5389 directly. */
5390 if (parent_die == NULL
5391 && part_die->has_specification == 0
5392 && part_die->is_declaration == 0
5393 && (part_die->tag == DW_TAG_typedef
5394 || part_die->tag == DW_TAG_base_type
5395 || part_die->tag == DW_TAG_subrange_type))
5396 {
5397 if (building_psymtab && part_die->name != NULL)
5398 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5399 VAR_DOMAIN, LOC_TYPEDEF,
5400 &cu->objfile->static_psymbols,
5401 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5402 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5403 continue;
5404 }
5405
5406 /* If we're at the second level, and we're an enumerator, and
5407 our parent has no specification (meaning possibly lives in a
5408 namespace elsewhere), then we can add the partial symbol now
5409 instead of queueing it. */
5410 if (part_die->tag == DW_TAG_enumerator
5411 && parent_die != NULL
5412 && parent_die->die_parent == NULL
5413 && parent_die->tag == DW_TAG_enumeration_type
5414 && parent_die->has_specification == 0)
5415 {
5416 if (part_die->name == NULL)
5417 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
5418 else if (building_psymtab)
5419 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5420 VAR_DOMAIN, LOC_CONST,
5421 (cu->language == language_cplus
5422 || cu->language == language_java)
5423 ? &cu->objfile->global_psymbols
5424 : &cu->objfile->static_psymbols,
5425 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5426
5427 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5428 continue;
5429 }
5430
5431 /* We'll save this DIE so link it in. */
5432 part_die->die_parent = parent_die;
5433 part_die->die_sibling = NULL;
5434 part_die->die_child = NULL;
5435
5436 if (last_die && last_die == parent_die)
5437 last_die->die_child = part_die;
5438 else if (last_die)
5439 last_die->die_sibling = part_die;
5440
5441 last_die = part_die;
5442
5443 if (first_die == NULL)
5444 first_die = part_die;
5445
5446 /* Maybe add the DIE to the hash table. Not all DIEs that we
5447 find interesting need to be in the hash table, because we
5448 also have the parent/sibling/child chains; only those that we
5449 might refer to by offset later during partial symbol reading.
5450
5451 For now this means things that might have be the target of a
5452 DW_AT_specification, DW_AT_abstract_origin, or
5453 DW_AT_extension. DW_AT_extension will refer only to
5454 namespaces; DW_AT_abstract_origin refers to functions (and
5455 many things under the function DIE, but we do not recurse
5456 into function DIEs during partial symbol reading) and
5457 possibly variables as well; DW_AT_specification refers to
5458 declarations. Declarations ought to have the DW_AT_declaration
5459 flag. It happens that GCC forgets to put it in sometimes, but
5460 only for functions, not for types.
5461
5462 Adding more things than necessary to the hash table is harmless
5463 except for the performance cost. Adding too few will result in
5464 wasted time in find_partial_die, when we reread the compilation
5465 unit with load_all_dies set. */
5466
5467 if (load_all
5468 || abbrev->tag == DW_TAG_subprogram
5469 || abbrev->tag == DW_TAG_variable
5470 || abbrev->tag == DW_TAG_namespace
5471 || part_die->is_declaration)
5472 {
5473 void **slot;
5474
5475 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5476 part_die->offset, INSERT);
5477 *slot = part_die;
5478 }
5479
5480 part_die = obstack_alloc (&cu->comp_unit_obstack,
5481 sizeof (struct partial_die_info));
5482
5483 /* For some DIEs we want to follow their children (if any). For C
5484 we have no reason to follow the children of structures; for other
5485 languages we have to, both so that we can get at method physnames
5486 to infer fully qualified class names, and for DW_AT_specification. */
5487 if (last_die->has_children
5488 && (load_all
5489 || last_die->tag == DW_TAG_namespace
5490 || last_die->tag == DW_TAG_enumeration_type
5491 || (cu->language != language_c
5492 && (last_die->tag == DW_TAG_class_type
5493 || last_die->tag == DW_TAG_structure_type
5494 || last_die->tag == DW_TAG_union_type))))
5495 {
5496 nesting_level++;
5497 parent_die = last_die;
5498 continue;
5499 }
5500
5501 /* Otherwise we skip to the next sibling, if any. */
5502 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5503
5504 /* Back to the top, do it again. */
5505 }
5506 }
5507
5508 /* Read a minimal amount of information into the minimal die structure. */
5509
5510 static gdb_byte *
5511 read_partial_die (struct partial_die_info *part_die,
5512 struct abbrev_info *abbrev,
5513 unsigned int abbrev_len, bfd *abfd,
5514 gdb_byte *info_ptr, struct dwarf2_cu *cu)
5515 {
5516 unsigned int bytes_read, i;
5517 struct attribute attr;
5518 int has_low_pc_attr = 0;
5519 int has_high_pc_attr = 0;
5520
5521 memset (part_die, 0, sizeof (struct partial_die_info));
5522
5523 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
5524
5525 info_ptr += abbrev_len;
5526
5527 if (abbrev == NULL)
5528 return info_ptr;
5529
5530 part_die->tag = abbrev->tag;
5531 part_die->has_children = abbrev->has_children;
5532
5533 for (i = 0; i < abbrev->num_attrs; ++i)
5534 {
5535 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
5536
5537 /* Store the data if it is of an attribute we want to keep in a
5538 partial symbol table. */
5539 switch (attr.name)
5540 {
5541 case DW_AT_name:
5542
5543 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5544 if (part_die->name == NULL)
5545 part_die->name = DW_STRING (&attr);
5546 break;
5547 case DW_AT_comp_dir:
5548 if (part_die->dirname == NULL)
5549 part_die->dirname = DW_STRING (&attr);
5550 break;
5551 case DW_AT_MIPS_linkage_name:
5552 part_die->name = DW_STRING (&attr);
5553 break;
5554 case DW_AT_low_pc:
5555 has_low_pc_attr = 1;
5556 part_die->lowpc = DW_ADDR (&attr);
5557 break;
5558 case DW_AT_high_pc:
5559 has_high_pc_attr = 1;
5560 part_die->highpc = DW_ADDR (&attr);
5561 break;
5562 case DW_AT_location:
5563 /* Support the .debug_loc offsets */
5564 if (attr_form_is_block (&attr))
5565 {
5566 part_die->locdesc = DW_BLOCK (&attr);
5567 }
5568 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
5569 {
5570 dwarf2_complex_location_expr_complaint ();
5571 }
5572 else
5573 {
5574 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5575 "partial symbol information");
5576 }
5577 break;
5578 case DW_AT_language:
5579 part_die->language = DW_UNSND (&attr);
5580 break;
5581 case DW_AT_external:
5582 part_die->is_external = DW_UNSND (&attr);
5583 break;
5584 case DW_AT_declaration:
5585 part_die->is_declaration = DW_UNSND (&attr);
5586 break;
5587 case DW_AT_type:
5588 part_die->has_type = 1;
5589 break;
5590 case DW_AT_abstract_origin:
5591 case DW_AT_specification:
5592 case DW_AT_extension:
5593 part_die->has_specification = 1;
5594 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
5595 break;
5596 case DW_AT_sibling:
5597 /* Ignore absolute siblings, they might point outside of
5598 the current compile unit. */
5599 if (attr.form == DW_FORM_ref_addr)
5600 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
5601 else
5602 part_die->sibling = dwarf2_per_objfile->info_buffer
5603 + dwarf2_get_ref_die_offset (&attr, cu);
5604 break;
5605 case DW_AT_stmt_list:
5606 part_die->has_stmt_list = 1;
5607 part_die->line_offset = DW_UNSND (&attr);
5608 break;
5609 case DW_AT_byte_size:
5610 part_die->has_byte_size = 1;
5611 break;
5612 default:
5613 break;
5614 }
5615 }
5616
5617 /* When using the GNU linker, .gnu.linkonce. sections are used to
5618 eliminate duplicate copies of functions and vtables and such.
5619 The linker will arbitrarily choose one and discard the others.
5620 The AT_*_pc values for such functions refer to local labels in
5621 these sections. If the section from that file was discarded, the
5622 labels are not in the output, so the relocs get a value of 0.
5623 If this is a discarded function, mark the pc bounds as invalid,
5624 so that GDB will ignore it. */
5625 if (has_low_pc_attr && has_high_pc_attr
5626 && part_die->lowpc < part_die->highpc
5627 && (part_die->lowpc != 0
5628 || dwarf2_per_objfile->has_section_at_zero))
5629 part_die->has_pc_info = 1;
5630 return info_ptr;
5631 }
5632
5633 /* Find a cached partial DIE at OFFSET in CU. */
5634
5635 static struct partial_die_info *
5636 find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5637 {
5638 struct partial_die_info *lookup_die = NULL;
5639 struct partial_die_info part_die;
5640
5641 part_die.offset = offset;
5642 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5643
5644 return lookup_die;
5645 }
5646
5647 /* Find a partial DIE at OFFSET, which may or may not be in CU. */
5648
5649 static struct partial_die_info *
5650 find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
5651 {
5652 struct dwarf2_per_cu_data *per_cu = NULL;
5653 struct partial_die_info *pd = NULL;
5654
5655 if (offset >= cu->header.offset
5656 && offset < cu->header.offset + cu->header.length)
5657 {
5658 pd = find_partial_die_in_comp_unit (offset, cu);
5659 if (pd != NULL)
5660 return pd;
5661 }
5662
5663 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5664
5665 if (per_cu->cu == NULL)
5666 {
5667 load_comp_unit (per_cu, cu->objfile);
5668 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5669 dwarf2_per_objfile->read_in_chain = per_cu;
5670 }
5671
5672 per_cu->cu->last_used = 0;
5673 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5674
5675 if (pd == NULL && per_cu->load_all_dies == 0)
5676 {
5677 struct cleanup *back_to;
5678 struct partial_die_info comp_unit_die;
5679 struct abbrev_info *abbrev;
5680 unsigned int bytes_read;
5681 char *info_ptr;
5682
5683 per_cu->load_all_dies = 1;
5684
5685 /* Re-read the DIEs. */
5686 back_to = make_cleanup (null_cleanup, 0);
5687 if (per_cu->cu->dwarf2_abbrevs == NULL)
5688 {
5689 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
5690 back_to = make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5691 }
5692 info_ptr = per_cu->cu->header.first_die_ptr;
5693 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
5694 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
5695 per_cu->cu->objfile->obfd, info_ptr,
5696 per_cu->cu);
5697 if (comp_unit_die.has_children)
5698 load_partial_dies (per_cu->cu->objfile->obfd, info_ptr, 0, per_cu->cu);
5699 do_cleanups (back_to);
5700
5701 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5702 }
5703
5704 if (pd == NULL)
5705 internal_error (__FILE__, __LINE__,
5706 _("could not find partial DIE 0x%lx in cache [from module %s]\n"),
5707 offset, bfd_get_filename (cu->objfile->obfd));
5708 return pd;
5709 }
5710
5711 /* Adjust PART_DIE before generating a symbol for it. This function
5712 may set the is_external flag or change the DIE's name. */
5713
5714 static void
5715 fixup_partial_die (struct partial_die_info *part_die,
5716 struct dwarf2_cu *cu)
5717 {
5718 /* If we found a reference attribute and the DIE has no name, try
5719 to find a name in the referred to DIE. */
5720
5721 if (part_die->name == NULL && part_die->has_specification)
5722 {
5723 struct partial_die_info *spec_die;
5724
5725 spec_die = find_partial_die (part_die->spec_offset, cu);
5726
5727 fixup_partial_die (spec_die, cu);
5728
5729 if (spec_die->name)
5730 {
5731 part_die->name = spec_die->name;
5732
5733 /* Copy DW_AT_external attribute if it is set. */
5734 if (spec_die->is_external)
5735 part_die->is_external = spec_die->is_external;
5736 }
5737 }
5738
5739 /* Set default names for some unnamed DIEs. */
5740 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5741 || part_die->tag == DW_TAG_class_type))
5742 part_die->name = "(anonymous class)";
5743
5744 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5745 part_die->name = "(anonymous namespace)";
5746
5747 if (part_die->tag == DW_TAG_structure_type
5748 || part_die->tag == DW_TAG_class_type
5749 || part_die->tag == DW_TAG_union_type)
5750 guess_structure_name (part_die, cu);
5751 }
5752
5753 /* Read the die from the .debug_info section buffer. Set DIEP to
5754 point to a newly allocated die with its information, except for its
5755 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5756 whether the die has children or not. */
5757
5758 static gdb_byte *
5759 read_full_die (struct die_info **diep, bfd *abfd, gdb_byte *info_ptr,
5760 struct dwarf2_cu *cu, int *has_children)
5761 {
5762 unsigned int abbrev_number, bytes_read, i, offset;
5763 struct abbrev_info *abbrev;
5764 struct die_info *die;
5765
5766 offset = info_ptr - dwarf2_per_objfile->info_buffer;
5767 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5768 info_ptr += bytes_read;
5769 if (!abbrev_number)
5770 {
5771 die = dwarf_alloc_die ();
5772 die->tag = 0;
5773 die->abbrev = abbrev_number;
5774 die->type = NULL;
5775 *diep = die;
5776 *has_children = 0;
5777 return info_ptr;
5778 }
5779
5780 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
5781 if (!abbrev)
5782 {
5783 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
5784 abbrev_number,
5785 bfd_get_filename (abfd));
5786 }
5787 die = dwarf_alloc_die ();
5788 die->offset = offset;
5789 die->tag = abbrev->tag;
5790 die->abbrev = abbrev_number;
5791 die->type = NULL;
5792
5793 die->num_attrs = abbrev->num_attrs;
5794 die->attrs = (struct attribute *)
5795 xmalloc (die->num_attrs * sizeof (struct attribute));
5796
5797 for (i = 0; i < abbrev->num_attrs; ++i)
5798 {
5799 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
5800 abfd, info_ptr, cu);
5801
5802 /* If this attribute is an absolute reference to a different
5803 compilation unit, make sure that compilation unit is loaded
5804 also. */
5805 if (die->attrs[i].form == DW_FORM_ref_addr
5806 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5807 || (DW_ADDR (&die->attrs[i])
5808 >= cu->header.offset + cu->header.length)))
5809 {
5810 struct dwarf2_per_cu_data *per_cu;
5811 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5812 cu->objfile);
5813
5814 /* Mark the dependence relation so that we don't flush PER_CU
5815 too early. */
5816 dwarf2_add_dependence (cu, per_cu);
5817
5818 /* If it's already on the queue, we have nothing to do. */
5819 if (per_cu->queued)
5820 continue;
5821
5822 /* If the compilation unit is already loaded, just mark it as
5823 used. */
5824 if (per_cu->cu != NULL)
5825 {
5826 per_cu->cu->last_used = 0;
5827 continue;
5828 }
5829
5830 /* Add it to the queue. */
5831 queue_comp_unit (per_cu);
5832 }
5833 }
5834
5835 *diep = die;
5836 *has_children = abbrev->has_children;
5837 return info_ptr;
5838 }
5839
5840 /* Read an attribute value described by an attribute form. */
5841
5842 static gdb_byte *
5843 read_attribute_value (struct attribute *attr, unsigned form,
5844 bfd *abfd, gdb_byte *info_ptr,
5845 struct dwarf2_cu *cu)
5846 {
5847 struct comp_unit_head *cu_header = &cu->header;
5848 unsigned int bytes_read;
5849 struct dwarf_block *blk;
5850
5851 attr->form = form;
5852 switch (form)
5853 {
5854 case DW_FORM_addr:
5855 case DW_FORM_ref_addr:
5856 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
5857 info_ptr += bytes_read;
5858 break;
5859 case DW_FORM_block2:
5860 blk = dwarf_alloc_block (cu);
5861 blk->size = read_2_bytes (abfd, info_ptr);
5862 info_ptr += 2;
5863 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5864 info_ptr += blk->size;
5865 DW_BLOCK (attr) = blk;
5866 break;
5867 case DW_FORM_block4:
5868 blk = dwarf_alloc_block (cu);
5869 blk->size = read_4_bytes (abfd, info_ptr);
5870 info_ptr += 4;
5871 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5872 info_ptr += blk->size;
5873 DW_BLOCK (attr) = blk;
5874 break;
5875 case DW_FORM_data2:
5876 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5877 info_ptr += 2;
5878 break;
5879 case DW_FORM_data4:
5880 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5881 info_ptr += 4;
5882 break;
5883 case DW_FORM_data8:
5884 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5885 info_ptr += 8;
5886 break;
5887 case DW_FORM_string:
5888 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5889 info_ptr += bytes_read;
5890 break;
5891 case DW_FORM_strp:
5892 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5893 &bytes_read);
5894 info_ptr += bytes_read;
5895 break;
5896 case DW_FORM_block:
5897 blk = dwarf_alloc_block (cu);
5898 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5899 info_ptr += bytes_read;
5900 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5901 info_ptr += blk->size;
5902 DW_BLOCK (attr) = blk;
5903 break;
5904 case DW_FORM_block1:
5905 blk = dwarf_alloc_block (cu);
5906 blk->size = read_1_byte (abfd, info_ptr);
5907 info_ptr += 1;
5908 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5909 info_ptr += blk->size;
5910 DW_BLOCK (attr) = blk;
5911 break;
5912 case DW_FORM_data1:
5913 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5914 info_ptr += 1;
5915 break;
5916 case DW_FORM_flag:
5917 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5918 info_ptr += 1;
5919 break;
5920 case DW_FORM_sdata:
5921 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5922 info_ptr += bytes_read;
5923 break;
5924 case DW_FORM_udata:
5925 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5926 info_ptr += bytes_read;
5927 break;
5928 case DW_FORM_ref1:
5929 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
5930 info_ptr += 1;
5931 break;
5932 case DW_FORM_ref2:
5933 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
5934 info_ptr += 2;
5935 break;
5936 case DW_FORM_ref4:
5937 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
5938 info_ptr += 4;
5939 break;
5940 case DW_FORM_ref8:
5941 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
5942 info_ptr += 8;
5943 break;
5944 case DW_FORM_ref_udata:
5945 DW_ADDR (attr) = (cu->header.offset
5946 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
5947 info_ptr += bytes_read;
5948 break;
5949 case DW_FORM_indirect:
5950 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5951 info_ptr += bytes_read;
5952 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
5953 break;
5954 default:
5955 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
5956 dwarf_form_name (form),
5957 bfd_get_filename (abfd));
5958 }
5959 return info_ptr;
5960 }
5961
5962 /* Read an attribute described by an abbreviated attribute. */
5963
5964 static gdb_byte *
5965 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
5966 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
5967 {
5968 attr->name = abbrev->name;
5969 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
5970 }
5971
5972 /* read dwarf information from a buffer */
5973
5974 static unsigned int
5975 read_1_byte (bfd *abfd, gdb_byte *buf)
5976 {
5977 return bfd_get_8 (abfd, buf);
5978 }
5979
5980 static int
5981 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
5982 {
5983 return bfd_get_signed_8 (abfd, buf);
5984 }
5985
5986 static unsigned int
5987 read_2_bytes (bfd *abfd, gdb_byte *buf)
5988 {
5989 return bfd_get_16 (abfd, buf);
5990 }
5991
5992 static int
5993 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
5994 {
5995 return bfd_get_signed_16 (abfd, buf);
5996 }
5997
5998 static unsigned int
5999 read_4_bytes (bfd *abfd, gdb_byte *buf)
6000 {
6001 return bfd_get_32 (abfd, buf);
6002 }
6003
6004 static int
6005 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
6006 {
6007 return bfd_get_signed_32 (abfd, buf);
6008 }
6009
6010 static unsigned long
6011 read_8_bytes (bfd *abfd, gdb_byte *buf)
6012 {
6013 return bfd_get_64 (abfd, buf);
6014 }
6015
6016 static CORE_ADDR
6017 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
6018 unsigned int *bytes_read)
6019 {
6020 struct comp_unit_head *cu_header = &cu->header;
6021 CORE_ADDR retval = 0;
6022
6023 if (cu_header->signed_addr_p)
6024 {
6025 switch (cu_header->addr_size)
6026 {
6027 case 2:
6028 retval = bfd_get_signed_16 (abfd, buf);
6029 break;
6030 case 4:
6031 retval = bfd_get_signed_32 (abfd, buf);
6032 break;
6033 case 8:
6034 retval = bfd_get_signed_64 (abfd, buf);
6035 break;
6036 default:
6037 internal_error (__FILE__, __LINE__,
6038 _("read_address: bad switch, signed [in module %s]"),
6039 bfd_get_filename (abfd));
6040 }
6041 }
6042 else
6043 {
6044 switch (cu_header->addr_size)
6045 {
6046 case 2:
6047 retval = bfd_get_16 (abfd, buf);
6048 break;
6049 case 4:
6050 retval = bfd_get_32 (abfd, buf);
6051 break;
6052 case 8:
6053 retval = bfd_get_64 (abfd, buf);
6054 break;
6055 default:
6056 internal_error (__FILE__, __LINE__,
6057 _("read_address: bad switch, unsigned [in module %s]"),
6058 bfd_get_filename (abfd));
6059 }
6060 }
6061
6062 *bytes_read = cu_header->addr_size;
6063 return retval;
6064 }
6065
6066 /* Read the initial length from a section. The (draft) DWARF 3
6067 specification allows the initial length to take up either 4 bytes
6068 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
6069 bytes describe the length and all offsets will be 8 bytes in length
6070 instead of 4.
6071
6072 An older, non-standard 64-bit format is also handled by this
6073 function. The older format in question stores the initial length
6074 as an 8-byte quantity without an escape value. Lengths greater
6075 than 2^32 aren't very common which means that the initial 4 bytes
6076 is almost always zero. Since a length value of zero doesn't make
6077 sense for the 32-bit format, this initial zero can be considered to
6078 be an escape value which indicates the presence of the older 64-bit
6079 format. As written, the code can't detect (old format) lengths
6080 greater than 4GB. If it becomes necessary to handle lengths
6081 somewhat larger than 4GB, we could allow other small values (such
6082 as the non-sensical values of 1, 2, and 3) to also be used as
6083 escape values indicating the presence of the old format.
6084
6085 The value returned via bytes_read should be used to increment the
6086 relevant pointer after calling read_initial_length().
6087
6088 As a side effect, this function sets the fields initial_length_size
6089 and offset_size in cu_header to the values appropriate for the
6090 length field. (The format of the initial length field determines
6091 the width of file offsets to be fetched later with read_offset().)
6092
6093 [ Note: read_initial_length() and read_offset() are based on the
6094 document entitled "DWARF Debugging Information Format", revision
6095 3, draft 8, dated November 19, 2001. This document was obtained
6096 from:
6097
6098 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6099
6100 This document is only a draft and is subject to change. (So beware.)
6101
6102 Details regarding the older, non-standard 64-bit format were
6103 determined empirically by examining 64-bit ELF files produced by
6104 the SGI toolchain on an IRIX 6.5 machine.
6105
6106 - Kevin, July 16, 2002
6107 ] */
6108
6109 static LONGEST
6110 read_initial_length (bfd *abfd, gdb_byte *buf, struct comp_unit_head *cu_header,
6111 unsigned int *bytes_read)
6112 {
6113 LONGEST length = bfd_get_32 (abfd, buf);
6114
6115 if (length == 0xffffffff)
6116 {
6117 length = bfd_get_64 (abfd, buf + 4);
6118 *bytes_read = 12;
6119 }
6120 else if (length == 0)
6121 {
6122 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
6123 length = bfd_get_64 (abfd, buf);
6124 *bytes_read = 8;
6125 }
6126 else
6127 {
6128 *bytes_read = 4;
6129 }
6130
6131 if (cu_header)
6132 {
6133 gdb_assert (cu_header->initial_length_size == 0
6134 || cu_header->initial_length_size == 4
6135 || cu_header->initial_length_size == 8
6136 || cu_header->initial_length_size == 12);
6137
6138 if (cu_header->initial_length_size != 0
6139 && cu_header->initial_length_size != *bytes_read)
6140 complaint (&symfile_complaints,
6141 _("intermixed 32-bit and 64-bit DWARF sections"));
6142
6143 cu_header->initial_length_size = *bytes_read;
6144 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
6145 }
6146
6147 return length;
6148 }
6149
6150 /* Read an offset from the data stream. The size of the offset is
6151 given by cu_header->offset_size. */
6152
6153 static LONGEST
6154 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
6155 unsigned int *bytes_read)
6156 {
6157 LONGEST retval = 0;
6158
6159 switch (cu_header->offset_size)
6160 {
6161 case 4:
6162 retval = bfd_get_32 (abfd, buf);
6163 *bytes_read = 4;
6164 break;
6165 case 8:
6166 retval = bfd_get_64 (abfd, buf);
6167 *bytes_read = 8;
6168 break;
6169 default:
6170 internal_error (__FILE__, __LINE__,
6171 _("read_offset: bad switch [in module %s]"),
6172 bfd_get_filename (abfd));
6173 }
6174
6175 return retval;
6176 }
6177
6178 static gdb_byte *
6179 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
6180 {
6181 /* If the size of a host char is 8 bits, we can return a pointer
6182 to the buffer, otherwise we have to copy the data to a buffer
6183 allocated on the temporary obstack. */
6184 gdb_assert (HOST_CHAR_BIT == 8);
6185 return buf;
6186 }
6187
6188 static char *
6189 read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6190 {
6191 /* If the size of a host char is 8 bits, we can return a pointer
6192 to the string, otherwise we have to copy the string to a buffer
6193 allocated on the temporary obstack. */
6194 gdb_assert (HOST_CHAR_BIT == 8);
6195 if (*buf == '\0')
6196 {
6197 *bytes_read_ptr = 1;
6198 return NULL;
6199 }
6200 *bytes_read_ptr = strlen ((char *) buf) + 1;
6201 return (char *) buf;
6202 }
6203
6204 static char *
6205 read_indirect_string (bfd *abfd, gdb_byte *buf,
6206 const struct comp_unit_head *cu_header,
6207 unsigned int *bytes_read_ptr)
6208 {
6209 LONGEST str_offset = read_offset (abfd, buf, cu_header,
6210 bytes_read_ptr);
6211
6212 if (dwarf2_per_objfile->str_buffer == NULL)
6213 {
6214 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
6215 bfd_get_filename (abfd));
6216 return NULL;
6217 }
6218 if (str_offset >= dwarf2_per_objfile->str_size)
6219 {
6220 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
6221 bfd_get_filename (abfd));
6222 return NULL;
6223 }
6224 gdb_assert (HOST_CHAR_BIT == 8);
6225 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
6226 return NULL;
6227 return (char *) (dwarf2_per_objfile->str_buffer + str_offset);
6228 }
6229
6230 static unsigned long
6231 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6232 {
6233 unsigned long result;
6234 unsigned int num_read;
6235 int i, shift;
6236 unsigned char byte;
6237
6238 result = 0;
6239 shift = 0;
6240 num_read = 0;
6241 i = 0;
6242 while (1)
6243 {
6244 byte = bfd_get_8 (abfd, buf);
6245 buf++;
6246 num_read++;
6247 result |= ((unsigned long)(byte & 127) << shift);
6248 if ((byte & 128) == 0)
6249 {
6250 break;
6251 }
6252 shift += 7;
6253 }
6254 *bytes_read_ptr = num_read;
6255 return result;
6256 }
6257
6258 static long
6259 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6260 {
6261 long result;
6262 int i, shift, num_read;
6263 unsigned char byte;
6264
6265 result = 0;
6266 shift = 0;
6267 num_read = 0;
6268 i = 0;
6269 while (1)
6270 {
6271 byte = bfd_get_8 (abfd, buf);
6272 buf++;
6273 num_read++;
6274 result |= ((long)(byte & 127) << shift);
6275 shift += 7;
6276 if ((byte & 128) == 0)
6277 {
6278 break;
6279 }
6280 }
6281 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
6282 result |= -(((long)1) << shift);
6283 *bytes_read_ptr = num_read;
6284 return result;
6285 }
6286
6287 /* Return a pointer to just past the end of an LEB128 number in BUF. */
6288
6289 static gdb_byte *
6290 skip_leb128 (bfd *abfd, gdb_byte *buf)
6291 {
6292 int byte;
6293
6294 while (1)
6295 {
6296 byte = bfd_get_8 (abfd, buf);
6297 buf++;
6298 if ((byte & 128) == 0)
6299 return buf;
6300 }
6301 }
6302
6303 static void
6304 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
6305 {
6306 switch (lang)
6307 {
6308 case DW_LANG_C89:
6309 case DW_LANG_C:
6310 cu->language = language_c;
6311 break;
6312 case DW_LANG_C_plus_plus:
6313 cu->language = language_cplus;
6314 break;
6315 case DW_LANG_Fortran77:
6316 case DW_LANG_Fortran90:
6317 case DW_LANG_Fortran95:
6318 cu->language = language_fortran;
6319 break;
6320 case DW_LANG_Mips_Assembler:
6321 cu->language = language_asm;
6322 break;
6323 case DW_LANG_Java:
6324 cu->language = language_java;
6325 break;
6326 case DW_LANG_Ada83:
6327 case DW_LANG_Ada95:
6328 cu->language = language_ada;
6329 break;
6330 case DW_LANG_Modula2:
6331 cu->language = language_m2;
6332 break;
6333 case DW_LANG_Pascal83:
6334 cu->language = language_pascal;
6335 break;
6336 case DW_LANG_Cobol74:
6337 case DW_LANG_Cobol85:
6338 default:
6339 cu->language = language_minimal;
6340 break;
6341 }
6342 cu->language_defn = language_def (cu->language);
6343 }
6344
6345 /* Return the named attribute or NULL if not there. */
6346
6347 static struct attribute *
6348 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
6349 {
6350 unsigned int i;
6351 struct attribute *spec = NULL;
6352
6353 for (i = 0; i < die->num_attrs; ++i)
6354 {
6355 if (die->attrs[i].name == name)
6356 return &die->attrs[i];
6357 if (die->attrs[i].name == DW_AT_specification
6358 || die->attrs[i].name == DW_AT_abstract_origin)
6359 spec = &die->attrs[i];
6360 }
6361
6362 if (spec)
6363 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
6364
6365 return NULL;
6366 }
6367
6368 /* Return non-zero iff the attribute NAME is defined for the given DIE,
6369 and holds a non-zero value. This function should only be used for
6370 DW_FORM_flag attributes. */
6371
6372 static int
6373 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6374 {
6375 struct attribute *attr = dwarf2_attr (die, name, cu);
6376
6377 return (attr && DW_UNSND (attr));
6378 }
6379
6380 static int
6381 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
6382 {
6383 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6384 which value is non-zero. However, we have to be careful with
6385 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6386 (via dwarf2_flag_true_p) follows this attribute. So we may
6387 end up accidently finding a declaration attribute that belongs
6388 to a different DIE referenced by the specification attribute,
6389 even though the given DIE does not have a declaration attribute. */
6390 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6391 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
6392 }
6393
6394 /* Return the die giving the specification for DIE, if there is
6395 one. */
6396
6397 static struct die_info *
6398 die_specification (struct die_info *die, struct dwarf2_cu *cu)
6399 {
6400 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
6401
6402 if (spec_attr == NULL)
6403 return NULL;
6404 else
6405 return follow_die_ref (die, spec_attr, cu);
6406 }
6407
6408 /* Free the line_header structure *LH, and any arrays and strings it
6409 refers to. */
6410 static void
6411 free_line_header (struct line_header *lh)
6412 {
6413 if (lh->standard_opcode_lengths)
6414 xfree (lh->standard_opcode_lengths);
6415
6416 /* Remember that all the lh->file_names[i].name pointers are
6417 pointers into debug_line_buffer, and don't need to be freed. */
6418 if (lh->file_names)
6419 xfree (lh->file_names);
6420
6421 /* Similarly for the include directory names. */
6422 if (lh->include_dirs)
6423 xfree (lh->include_dirs);
6424
6425 xfree (lh);
6426 }
6427
6428
6429 /* Add an entry to LH's include directory table. */
6430 static void
6431 add_include_dir (struct line_header *lh, char *include_dir)
6432 {
6433 /* Grow the array if necessary. */
6434 if (lh->include_dirs_size == 0)
6435 {
6436 lh->include_dirs_size = 1; /* for testing */
6437 lh->include_dirs = xmalloc (lh->include_dirs_size
6438 * sizeof (*lh->include_dirs));
6439 }
6440 else if (lh->num_include_dirs >= lh->include_dirs_size)
6441 {
6442 lh->include_dirs_size *= 2;
6443 lh->include_dirs = xrealloc (lh->include_dirs,
6444 (lh->include_dirs_size
6445 * sizeof (*lh->include_dirs)));
6446 }
6447
6448 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6449 }
6450
6451
6452 /* Add an entry to LH's file name table. */
6453 static void
6454 add_file_name (struct line_header *lh,
6455 char *name,
6456 unsigned int dir_index,
6457 unsigned int mod_time,
6458 unsigned int length)
6459 {
6460 struct file_entry *fe;
6461
6462 /* Grow the array if necessary. */
6463 if (lh->file_names_size == 0)
6464 {
6465 lh->file_names_size = 1; /* for testing */
6466 lh->file_names = xmalloc (lh->file_names_size
6467 * sizeof (*lh->file_names));
6468 }
6469 else if (lh->num_file_names >= lh->file_names_size)
6470 {
6471 lh->file_names_size *= 2;
6472 lh->file_names = xrealloc (lh->file_names,
6473 (lh->file_names_size
6474 * sizeof (*lh->file_names)));
6475 }
6476
6477 fe = &lh->file_names[lh->num_file_names++];
6478 fe->name = name;
6479 fe->dir_index = dir_index;
6480 fe->mod_time = mod_time;
6481 fe->length = length;
6482 fe->included_p = 0;
6483 fe->symtab = NULL;
6484 }
6485
6486
6487 /* Read the statement program header starting at OFFSET in
6488 .debug_line, according to the endianness of ABFD. Return a pointer
6489 to a struct line_header, allocated using xmalloc.
6490
6491 NOTE: the strings in the include directory and file name tables of
6492 the returned object point into debug_line_buffer, and must not be
6493 freed. */
6494 static struct line_header *
6495 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
6496 struct dwarf2_cu *cu)
6497 {
6498 struct cleanup *back_to;
6499 struct line_header *lh;
6500 gdb_byte *line_ptr;
6501 unsigned int bytes_read;
6502 int i;
6503 char *cur_dir, *cur_file;
6504
6505 if (dwarf2_per_objfile->line_buffer == NULL)
6506 {
6507 complaint (&symfile_complaints, _("missing .debug_line section"));
6508 return 0;
6509 }
6510
6511 /* Make sure that at least there's room for the total_length field.
6512 That could be 12 bytes long, but we're just going to fudge that. */
6513 if (offset + 4 >= dwarf2_per_objfile->line_size)
6514 {
6515 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6516 return 0;
6517 }
6518
6519 lh = xmalloc (sizeof (*lh));
6520 memset (lh, 0, sizeof (*lh));
6521 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6522 (void *) lh);
6523
6524 line_ptr = dwarf2_per_objfile->line_buffer + offset;
6525
6526 /* Read in the header. */
6527 lh->total_length =
6528 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
6529 line_ptr += bytes_read;
6530 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6531 + dwarf2_per_objfile->line_size))
6532 {
6533 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6534 return 0;
6535 }
6536 lh->statement_program_end = line_ptr + lh->total_length;
6537 lh->version = read_2_bytes (abfd, line_ptr);
6538 line_ptr += 2;
6539 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
6540 line_ptr += bytes_read;
6541 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6542 line_ptr += 1;
6543 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6544 line_ptr += 1;
6545 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6546 line_ptr += 1;
6547 lh->line_range = read_1_byte (abfd, line_ptr);
6548 line_ptr += 1;
6549 lh->opcode_base = read_1_byte (abfd, line_ptr);
6550 line_ptr += 1;
6551 lh->standard_opcode_lengths
6552 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
6553
6554 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6555 for (i = 1; i < lh->opcode_base; ++i)
6556 {
6557 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6558 line_ptr += 1;
6559 }
6560
6561 /* Read directory table. */
6562 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6563 {
6564 line_ptr += bytes_read;
6565 add_include_dir (lh, cur_dir);
6566 }
6567 line_ptr += bytes_read;
6568
6569 /* Read file name table. */
6570 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6571 {
6572 unsigned int dir_index, mod_time, length;
6573
6574 line_ptr += bytes_read;
6575 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6576 line_ptr += bytes_read;
6577 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6578 line_ptr += bytes_read;
6579 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6580 line_ptr += bytes_read;
6581
6582 add_file_name (lh, cur_file, dir_index, mod_time, length);
6583 }
6584 line_ptr += bytes_read;
6585 lh->statement_program_start = line_ptr;
6586
6587 if (line_ptr > (dwarf2_per_objfile->line_buffer
6588 + dwarf2_per_objfile->line_size))
6589 complaint (&symfile_complaints,
6590 _("line number info header doesn't fit in `.debug_line' section"));
6591
6592 discard_cleanups (back_to);
6593 return lh;
6594 }
6595
6596 /* This function exists to work around a bug in certain compilers
6597 (particularly GCC 2.95), in which the first line number marker of a
6598 function does not show up until after the prologue, right before
6599 the second line number marker. This function shifts ADDRESS down
6600 to the beginning of the function if necessary, and is called on
6601 addresses passed to record_line. */
6602
6603 static CORE_ADDR
6604 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
6605 {
6606 struct function_range *fn;
6607
6608 /* Find the function_range containing address. */
6609 if (!cu->first_fn)
6610 return address;
6611
6612 if (!cu->cached_fn)
6613 cu->cached_fn = cu->first_fn;
6614
6615 fn = cu->cached_fn;
6616 while (fn)
6617 if (fn->lowpc <= address && fn->highpc > address)
6618 goto found;
6619 else
6620 fn = fn->next;
6621
6622 fn = cu->first_fn;
6623 while (fn && fn != cu->cached_fn)
6624 if (fn->lowpc <= address && fn->highpc > address)
6625 goto found;
6626 else
6627 fn = fn->next;
6628
6629 return address;
6630
6631 found:
6632 if (fn->seen_line)
6633 return address;
6634 if (address != fn->lowpc)
6635 complaint (&symfile_complaints,
6636 _("misplaced first line number at 0x%lx for '%s'"),
6637 (unsigned long) address, fn->name);
6638 fn->seen_line = 1;
6639 return fn->lowpc;
6640 }
6641
6642 /* Decode the Line Number Program (LNP) for the given line_header
6643 structure and CU. The actual information extracted and the type
6644 of structures created from the LNP depends on the value of PST.
6645
6646 1. If PST is NULL, then this procedure uses the data from the program
6647 to create all necessary symbol tables, and their linetables.
6648 The compilation directory of the file is passed in COMP_DIR,
6649 and must not be NULL.
6650
6651 2. If PST is not NULL, this procedure reads the program to determine
6652 the list of files included by the unit represented by PST, and
6653 builds all the associated partial symbol tables. In this case,
6654 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6655 is not used to compute the full name of the symtab, and therefore
6656 omitting it when building the partial symtab does not introduce
6657 the potential for inconsistency - a partial symtab and its associated
6658 symbtab having a different fullname -). */
6659
6660 static void
6661 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
6662 struct dwarf2_cu *cu, struct partial_symtab *pst)
6663 {
6664 gdb_byte *line_ptr;
6665 gdb_byte *line_end;
6666 unsigned int bytes_read;
6667 unsigned char op_code, extended_op, adj_opcode;
6668 CORE_ADDR baseaddr;
6669 struct objfile *objfile = cu->objfile;
6670 const int decode_for_pst_p = (pst != NULL);
6671 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
6672
6673 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6674
6675 line_ptr = lh->statement_program_start;
6676 line_end = lh->statement_program_end;
6677
6678 /* Read the statement sequences until there's nothing left. */
6679 while (line_ptr < line_end)
6680 {
6681 /* state machine registers */
6682 CORE_ADDR address = 0;
6683 unsigned int file = 1;
6684 unsigned int line = 1;
6685 unsigned int column = 0;
6686 int is_stmt = lh->default_is_stmt;
6687 int basic_block = 0;
6688 int end_sequence = 0;
6689
6690 if (!decode_for_pst_p && lh->num_file_names >= file)
6691 {
6692 /* Start a subfile for the current file of the state machine. */
6693 /* lh->include_dirs and lh->file_names are 0-based, but the
6694 directory and file name numbers in the statement program
6695 are 1-based. */
6696 struct file_entry *fe = &lh->file_names[file - 1];
6697 char *dir = NULL;
6698
6699 if (fe->dir_index)
6700 dir = lh->include_dirs[fe->dir_index - 1];
6701
6702 dwarf2_start_subfile (fe->name, dir, comp_dir);
6703 }
6704
6705 /* Decode the table. */
6706 while (!end_sequence)
6707 {
6708 op_code = read_1_byte (abfd, line_ptr);
6709 line_ptr += 1;
6710
6711 if (op_code >= lh->opcode_base)
6712 {
6713 /* Special operand. */
6714 adj_opcode = op_code - lh->opcode_base;
6715 address += (adj_opcode / lh->line_range)
6716 * lh->minimum_instruction_length;
6717 line += lh->line_base + (adj_opcode % lh->line_range);
6718 if (lh->num_file_names < file)
6719 dwarf2_debug_line_missing_file_complaint ();
6720 else
6721 {
6722 lh->file_names[file - 1].included_p = 1;
6723 if (!decode_for_pst_p)
6724 {
6725 if (last_subfile != current_subfile)
6726 {
6727 if (last_subfile)
6728 record_line (last_subfile, 0, address);
6729 last_subfile = current_subfile;
6730 }
6731 /* Append row to matrix using current values. */
6732 record_line (current_subfile, line,
6733 check_cu_functions (address, cu));
6734 }
6735 }
6736 basic_block = 1;
6737 }
6738 else switch (op_code)
6739 {
6740 case DW_LNS_extended_op:
6741 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6742 line_ptr += bytes_read;
6743 extended_op = read_1_byte (abfd, line_ptr);
6744 line_ptr += 1;
6745 switch (extended_op)
6746 {
6747 case DW_LNE_end_sequence:
6748 end_sequence = 1;
6749
6750 if (lh->num_file_names < file)
6751 dwarf2_debug_line_missing_file_complaint ();
6752 else
6753 {
6754 lh->file_names[file - 1].included_p = 1;
6755 if (!decode_for_pst_p)
6756 record_line (current_subfile, 0, address);
6757 }
6758 break;
6759 case DW_LNE_set_address:
6760 address = read_address (abfd, line_ptr, cu, &bytes_read);
6761 line_ptr += bytes_read;
6762 address += baseaddr;
6763 break;
6764 case DW_LNE_define_file:
6765 {
6766 char *cur_file;
6767 unsigned int dir_index, mod_time, length;
6768
6769 cur_file = read_string (abfd, line_ptr, &bytes_read);
6770 line_ptr += bytes_read;
6771 dir_index =
6772 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6773 line_ptr += bytes_read;
6774 mod_time =
6775 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6776 line_ptr += bytes_read;
6777 length =
6778 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6779 line_ptr += bytes_read;
6780 add_file_name (lh, cur_file, dir_index, mod_time, length);
6781 }
6782 break;
6783 default:
6784 complaint (&symfile_complaints,
6785 _("mangled .debug_line section"));
6786 return;
6787 }
6788 break;
6789 case DW_LNS_copy:
6790 if (lh->num_file_names < file)
6791 dwarf2_debug_line_missing_file_complaint ();
6792 else
6793 {
6794 lh->file_names[file - 1].included_p = 1;
6795 if (!decode_for_pst_p)
6796 {
6797 if (last_subfile != current_subfile)
6798 {
6799 if (last_subfile)
6800 record_line (last_subfile, 0, address);
6801 last_subfile = current_subfile;
6802 }
6803 record_line (current_subfile, line,
6804 check_cu_functions (address, cu));
6805 }
6806 }
6807 basic_block = 0;
6808 break;
6809 case DW_LNS_advance_pc:
6810 address += lh->minimum_instruction_length
6811 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6812 line_ptr += bytes_read;
6813 break;
6814 case DW_LNS_advance_line:
6815 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6816 line_ptr += bytes_read;
6817 break;
6818 case DW_LNS_set_file:
6819 {
6820 /* The arrays lh->include_dirs and lh->file_names are
6821 0-based, but the directory and file name numbers in
6822 the statement program are 1-based. */
6823 struct file_entry *fe;
6824 char *dir = NULL;
6825
6826 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6827 line_ptr += bytes_read;
6828 if (lh->num_file_names < file)
6829 dwarf2_debug_line_missing_file_complaint ();
6830 else
6831 {
6832 fe = &lh->file_names[file - 1];
6833 if (fe->dir_index)
6834 dir = lh->include_dirs[fe->dir_index - 1];
6835 if (!decode_for_pst_p)
6836 {
6837 last_subfile = current_subfile;
6838 dwarf2_start_subfile (fe->name, dir, comp_dir);
6839 }
6840 }
6841 }
6842 break;
6843 case DW_LNS_set_column:
6844 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6845 line_ptr += bytes_read;
6846 break;
6847 case DW_LNS_negate_stmt:
6848 is_stmt = (!is_stmt);
6849 break;
6850 case DW_LNS_set_basic_block:
6851 basic_block = 1;
6852 break;
6853 /* Add to the address register of the state machine the
6854 address increment value corresponding to special opcode
6855 255. I.e., this value is scaled by the minimum
6856 instruction length since special opcode 255 would have
6857 scaled the the increment. */
6858 case DW_LNS_const_add_pc:
6859 address += (lh->minimum_instruction_length
6860 * ((255 - lh->opcode_base) / lh->line_range));
6861 break;
6862 case DW_LNS_fixed_advance_pc:
6863 address += read_2_bytes (abfd, line_ptr);
6864 line_ptr += 2;
6865 break;
6866 default:
6867 {
6868 /* Unknown standard opcode, ignore it. */
6869 int i;
6870
6871 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
6872 {
6873 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6874 line_ptr += bytes_read;
6875 }
6876 }
6877 }
6878 }
6879 }
6880
6881 if (decode_for_pst_p)
6882 {
6883 int file_index;
6884
6885 /* Now that we're done scanning the Line Header Program, we can
6886 create the psymtab of each included file. */
6887 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6888 if (lh->file_names[file_index].included_p == 1)
6889 {
6890 const struct file_entry fe = lh->file_names [file_index];
6891 char *include_name = fe.name;
6892 char *dir_name = NULL;
6893 char *pst_filename = pst->filename;
6894
6895 if (fe.dir_index)
6896 dir_name = lh->include_dirs[fe.dir_index - 1];
6897
6898 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
6899 {
6900 include_name = concat (dir_name, SLASH_STRING,
6901 include_name, (char *)NULL);
6902 make_cleanup (xfree, include_name);
6903 }
6904
6905 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
6906 {
6907 pst_filename = concat (pst->dirname, SLASH_STRING,
6908 pst_filename, (char *)NULL);
6909 make_cleanup (xfree, pst_filename);
6910 }
6911
6912 if (strcmp (include_name, pst_filename) != 0)
6913 dwarf2_create_include_psymtab (include_name, pst, objfile);
6914 }
6915 }
6916 else
6917 {
6918 /* Make sure a symtab is created for every file, even files
6919 which contain only variables (i.e. no code with associated
6920 line numbers). */
6921
6922 int i;
6923 struct file_entry *fe;
6924
6925 for (i = 0; i < lh->num_file_names; i++)
6926 {
6927 char *dir = NULL;
6928 fe = &lh->file_names[i];
6929 if (fe->dir_index)
6930 dir = lh->include_dirs[fe->dir_index - 1];
6931 dwarf2_start_subfile (fe->name, dir, comp_dir);
6932
6933 /* Skip the main file; we don't need it, and it must be
6934 allocated last, so that it will show up before the
6935 non-primary symtabs in the objfile's symtab list. */
6936 if (current_subfile == first_subfile)
6937 continue;
6938
6939 if (current_subfile->symtab == NULL)
6940 current_subfile->symtab = allocate_symtab (current_subfile->name,
6941 cu->objfile);
6942 fe->symtab = current_subfile->symtab;
6943 }
6944 }
6945 }
6946
6947 /* Start a subfile for DWARF. FILENAME is the name of the file and
6948 DIRNAME the name of the source directory which contains FILENAME
6949 or NULL if not known. COMP_DIR is the compilation directory for the
6950 linetable's compilation unit or NULL if not known.
6951 This routine tries to keep line numbers from identical absolute and
6952 relative file names in a common subfile.
6953
6954 Using the `list' example from the GDB testsuite, which resides in
6955 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6956 of /srcdir/list0.c yields the following debugging information for list0.c:
6957
6958 DW_AT_name: /srcdir/list0.c
6959 DW_AT_comp_dir: /compdir
6960 files.files[0].name: list0.h
6961 files.files[0].dir: /srcdir
6962 files.files[1].name: list0.c
6963 files.files[1].dir: /srcdir
6964
6965 The line number information for list0.c has to end up in a single
6966 subfile, so that `break /srcdir/list0.c:1' works as expected.
6967 start_subfile will ensure that this happens provided that we pass the
6968 concatenation of files.files[1].dir and files.files[1].name as the
6969 subfile's name. */
6970
6971 static void
6972 dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
6973 {
6974 char *fullname;
6975
6976 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
6977 `start_symtab' will always pass the contents of DW_AT_comp_dir as
6978 second argument to start_subfile. To be consistent, we do the
6979 same here. In order not to lose the line information directory,
6980 we concatenate it to the filename when it makes sense.
6981 Note that the Dwarf3 standard says (speaking of filenames in line
6982 information): ``The directory index is ignored for file names
6983 that represent full path names''. Thus ignoring dirname in the
6984 `else' branch below isn't an issue. */
6985
6986 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
6987 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
6988 else
6989 fullname = filename;
6990
6991 start_subfile (fullname, comp_dir);
6992
6993 if (fullname != filename)
6994 xfree (fullname);
6995 }
6996
6997 static void
6998 var_decode_location (struct attribute *attr, struct symbol *sym,
6999 struct dwarf2_cu *cu)
7000 {
7001 struct objfile *objfile = cu->objfile;
7002 struct comp_unit_head *cu_header = &cu->header;
7003
7004 /* NOTE drow/2003-01-30: There used to be a comment and some special
7005 code here to turn a symbol with DW_AT_external and a
7006 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
7007 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
7008 with some versions of binutils) where shared libraries could have
7009 relocations against symbols in their debug information - the
7010 minimal symbol would have the right address, but the debug info
7011 would not. It's no longer necessary, because we will explicitly
7012 apply relocations when we read in the debug information now. */
7013
7014 /* A DW_AT_location attribute with no contents indicates that a
7015 variable has been optimized away. */
7016 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
7017 {
7018 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7019 return;
7020 }
7021
7022 /* Handle one degenerate form of location expression specially, to
7023 preserve GDB's previous behavior when section offsets are
7024 specified. If this is just a DW_OP_addr then mark this symbol
7025 as LOC_STATIC. */
7026
7027 if (attr_form_is_block (attr)
7028 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
7029 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
7030 {
7031 unsigned int dummy;
7032
7033 SYMBOL_VALUE_ADDRESS (sym) =
7034 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
7035 fixup_symbol_section (sym, objfile);
7036 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
7037 SYMBOL_SECTION (sym));
7038 SYMBOL_CLASS (sym) = LOC_STATIC;
7039 return;
7040 }
7041
7042 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
7043 expression evaluator, and use LOC_COMPUTED only when necessary
7044 (i.e. when the value of a register or memory location is
7045 referenced, or a thread-local block, etc.). Then again, it might
7046 not be worthwhile. I'm assuming that it isn't unless performance
7047 or memory numbers show me otherwise. */
7048
7049 dwarf2_symbol_mark_computed (attr, sym, cu);
7050 SYMBOL_CLASS (sym) = LOC_COMPUTED;
7051 }
7052
7053 /* Given a pointer to a DWARF information entry, figure out if we need
7054 to make a symbol table entry for it, and if so, create a new entry
7055 and return a pointer to it.
7056 If TYPE is NULL, determine symbol type from the die, otherwise
7057 used the passed type. */
7058
7059 static struct symbol *
7060 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
7061 {
7062 struct objfile *objfile = cu->objfile;
7063 struct symbol *sym = NULL;
7064 char *name;
7065 struct attribute *attr = NULL;
7066 struct attribute *attr2 = NULL;
7067 CORE_ADDR baseaddr;
7068
7069 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7070
7071 if (die->tag != DW_TAG_namespace)
7072 name = dwarf2_linkage_name (die, cu);
7073 else
7074 name = TYPE_NAME (type);
7075
7076 if (name)
7077 {
7078 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
7079 sizeof (struct symbol));
7080 OBJSTAT (objfile, n_syms++);
7081 memset (sym, 0, sizeof (struct symbol));
7082
7083 /* Cache this symbol's name and the name's demangled form (if any). */
7084 SYMBOL_LANGUAGE (sym) = cu->language;
7085 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
7086
7087 /* Default assumptions.
7088 Use the passed type or decode it from the die. */
7089 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7090 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7091 if (type != NULL)
7092 SYMBOL_TYPE (sym) = type;
7093 else
7094 SYMBOL_TYPE (sym) = die_type (die, cu);
7095 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
7096 if (attr)
7097 {
7098 SYMBOL_LINE (sym) = DW_UNSND (attr);
7099 }
7100
7101 attr = dwarf2_attr (die, DW_AT_decl_file, cu);
7102 if (attr)
7103 {
7104 int file_index = DW_UNSND (attr);
7105 if (cu->line_header == NULL
7106 || file_index > cu->line_header->num_file_names)
7107 complaint (&symfile_complaints,
7108 _("file index out of range"));
7109 else if (file_index > 0)
7110 {
7111 struct file_entry *fe;
7112 fe = &cu->line_header->file_names[file_index - 1];
7113 SYMBOL_SYMTAB (sym) = fe->symtab;
7114 }
7115 }
7116
7117 switch (die->tag)
7118 {
7119 case DW_TAG_label:
7120 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
7121 if (attr)
7122 {
7123 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
7124 }
7125 SYMBOL_CLASS (sym) = LOC_LABEL;
7126 break;
7127 case DW_TAG_subprogram:
7128 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
7129 finish_block. */
7130 SYMBOL_CLASS (sym) = LOC_BLOCK;
7131 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7132 if (attr2 && (DW_UNSND (attr2) != 0))
7133 {
7134 add_symbol_to_list (sym, &global_symbols);
7135 }
7136 else
7137 {
7138 add_symbol_to_list (sym, cu->list_in_scope);
7139 }
7140 break;
7141 case DW_TAG_variable:
7142 /* Compilation with minimal debug info may result in variables
7143 with missing type entries. Change the misleading `void' type
7144 to something sensible. */
7145 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
7146 SYMBOL_TYPE (sym) = init_type (TYPE_CODE_INT,
7147 TARGET_INT_BIT / HOST_CHAR_BIT, 0,
7148 "<variable, no debug info>",
7149 objfile);
7150 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7151 if (attr)
7152 {
7153 dwarf2_const_value (attr, sym, cu);
7154 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7155 if (attr2 && (DW_UNSND (attr2) != 0))
7156 add_symbol_to_list (sym, &global_symbols);
7157 else
7158 add_symbol_to_list (sym, cu->list_in_scope);
7159 break;
7160 }
7161 attr = dwarf2_attr (die, DW_AT_location, cu);
7162 if (attr)
7163 {
7164 var_decode_location (attr, sym, cu);
7165 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7166 if (attr2 && (DW_UNSND (attr2) != 0))
7167 add_symbol_to_list (sym, &global_symbols);
7168 else
7169 add_symbol_to_list (sym, cu->list_in_scope);
7170 }
7171 else
7172 {
7173 /* We do not know the address of this symbol.
7174 If it is an external symbol and we have type information
7175 for it, enter the symbol as a LOC_UNRESOLVED symbol.
7176 The address of the variable will then be determined from
7177 the minimal symbol table whenever the variable is
7178 referenced. */
7179 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7180 if (attr2 && (DW_UNSND (attr2) != 0)
7181 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
7182 {
7183 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
7184 add_symbol_to_list (sym, &global_symbols);
7185 }
7186 }
7187 break;
7188 case DW_TAG_formal_parameter:
7189 attr = dwarf2_attr (die, DW_AT_location, cu);
7190 if (attr)
7191 {
7192 var_decode_location (attr, sym, cu);
7193 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
7194 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
7195 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
7196 }
7197 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7198 if (attr)
7199 {
7200 dwarf2_const_value (attr, sym, cu);
7201 }
7202 add_symbol_to_list (sym, cu->list_in_scope);
7203 break;
7204 case DW_TAG_unspecified_parameters:
7205 /* From varargs functions; gdb doesn't seem to have any
7206 interest in this information, so just ignore it for now.
7207 (FIXME?) */
7208 break;
7209 case DW_TAG_class_type:
7210 case DW_TAG_structure_type:
7211 case DW_TAG_union_type:
7212 case DW_TAG_set_type:
7213 case DW_TAG_enumeration_type:
7214 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7215 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7216
7217 /* Make sure that the symbol includes appropriate enclosing
7218 classes/namespaces in its name. These are calculated in
7219 read_structure_type, and the correct name is saved in
7220 the type. */
7221
7222 if (cu->language == language_cplus
7223 || cu->language == language_java)
7224 {
7225 struct type *type = SYMBOL_TYPE (sym);
7226
7227 if (TYPE_TAG_NAME (type) != NULL)
7228 {
7229 /* FIXME: carlton/2003-11-10: Should this use
7230 SYMBOL_SET_NAMES instead? (The same problem also
7231 arises further down in this function.) */
7232 /* The type's name is already allocated along with
7233 this objfile, so we don't need to duplicate it
7234 for the symbol. */
7235 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
7236 }
7237 }
7238
7239 {
7240 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
7241 really ever be static objects: otherwise, if you try
7242 to, say, break of a class's method and you're in a file
7243 which doesn't mention that class, it won't work unless
7244 the check for all static symbols in lookup_symbol_aux
7245 saves you. See the OtherFileClass tests in
7246 gdb.c++/namespace.exp. */
7247
7248 struct pending **list_to_add;
7249
7250 list_to_add = (cu->list_in_scope == &file_symbols
7251 && (cu->language == language_cplus
7252 || cu->language == language_java)
7253 ? &global_symbols : cu->list_in_scope);
7254
7255 add_symbol_to_list (sym, list_to_add);
7256
7257 /* The semantics of C++ state that "struct foo { ... }" also
7258 defines a typedef for "foo". A Java class declaration also
7259 defines a typedef for the class. Synthesize a typedef symbol
7260 so that "ptype foo" works as expected. */
7261 if (cu->language == language_cplus
7262 || cu->language == language_java
7263 || cu->language == language_ada)
7264 {
7265 struct symbol *typedef_sym = (struct symbol *)
7266 obstack_alloc (&objfile->objfile_obstack,
7267 sizeof (struct symbol));
7268 *typedef_sym = *sym;
7269 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
7270 /* The symbol's name is already allocated along with
7271 this objfile, so we don't need to duplicate it for
7272 the type. */
7273 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
7274 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
7275 add_symbol_to_list (typedef_sym, list_to_add);
7276 }
7277 }
7278 break;
7279 case DW_TAG_typedef:
7280 if (processing_has_namespace_info
7281 && processing_current_prefix[0] != '\0')
7282 {
7283 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7284 processing_current_prefix,
7285 name, cu);
7286 }
7287 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7288 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7289 add_symbol_to_list (sym, cu->list_in_scope);
7290 break;
7291 case DW_TAG_base_type:
7292 case DW_TAG_subrange_type:
7293 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7294 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7295 add_symbol_to_list (sym, cu->list_in_scope);
7296 break;
7297 case DW_TAG_enumerator:
7298 if (processing_has_namespace_info
7299 && processing_current_prefix[0] != '\0')
7300 {
7301 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7302 processing_current_prefix,
7303 name, cu);
7304 }
7305 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7306 if (attr)
7307 {
7308 dwarf2_const_value (attr, sym, cu);
7309 }
7310 {
7311 /* NOTE: carlton/2003-11-10: See comment above in the
7312 DW_TAG_class_type, etc. block. */
7313
7314 struct pending **list_to_add;
7315
7316 list_to_add = (cu->list_in_scope == &file_symbols
7317 && (cu->language == language_cplus
7318 || cu->language == language_java)
7319 ? &global_symbols : cu->list_in_scope);
7320
7321 add_symbol_to_list (sym, list_to_add);
7322 }
7323 break;
7324 case DW_TAG_namespace:
7325 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7326 add_symbol_to_list (sym, &global_symbols);
7327 break;
7328 default:
7329 /* Not a tag we recognize. Hopefully we aren't processing
7330 trash data, but since we must specifically ignore things
7331 we don't recognize, there is nothing else we should do at
7332 this point. */
7333 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
7334 dwarf_tag_name (die->tag));
7335 break;
7336 }
7337 }
7338 return (sym);
7339 }
7340
7341 /* Copy constant value from an attribute to a symbol. */
7342
7343 static void
7344 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
7345 struct dwarf2_cu *cu)
7346 {
7347 struct objfile *objfile = cu->objfile;
7348 struct comp_unit_head *cu_header = &cu->header;
7349 struct dwarf_block *blk;
7350
7351 switch (attr->form)
7352 {
7353 case DW_FORM_addr:
7354 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
7355 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7356 cu_header->addr_size,
7357 TYPE_LENGTH (SYMBOL_TYPE
7358 (sym)));
7359 SYMBOL_VALUE_BYTES (sym) =
7360 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
7361 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7362 it's body - store_unsigned_integer. */
7363 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7364 DW_ADDR (attr));
7365 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7366 break;
7367 case DW_FORM_block1:
7368 case DW_FORM_block2:
7369 case DW_FORM_block4:
7370 case DW_FORM_block:
7371 blk = DW_BLOCK (attr);
7372 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
7373 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7374 blk->size,
7375 TYPE_LENGTH (SYMBOL_TYPE
7376 (sym)));
7377 SYMBOL_VALUE_BYTES (sym) =
7378 obstack_alloc (&objfile->objfile_obstack, blk->size);
7379 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7380 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7381 break;
7382
7383 /* The DW_AT_const_value attributes are supposed to carry the
7384 symbol's value "represented as it would be on the target
7385 architecture." By the time we get here, it's already been
7386 converted to host endianness, so we just need to sign- or
7387 zero-extend it as appropriate. */
7388 case DW_FORM_data1:
7389 dwarf2_const_value_data (attr, sym, 8);
7390 break;
7391 case DW_FORM_data2:
7392 dwarf2_const_value_data (attr, sym, 16);
7393 break;
7394 case DW_FORM_data4:
7395 dwarf2_const_value_data (attr, sym, 32);
7396 break;
7397 case DW_FORM_data8:
7398 dwarf2_const_value_data (attr, sym, 64);
7399 break;
7400
7401 case DW_FORM_sdata:
7402 SYMBOL_VALUE (sym) = DW_SND (attr);
7403 SYMBOL_CLASS (sym) = LOC_CONST;
7404 break;
7405
7406 case DW_FORM_udata:
7407 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7408 SYMBOL_CLASS (sym) = LOC_CONST;
7409 break;
7410
7411 default:
7412 complaint (&symfile_complaints,
7413 _("unsupported const value attribute form: '%s'"),
7414 dwarf_form_name (attr->form));
7415 SYMBOL_VALUE (sym) = 0;
7416 SYMBOL_CLASS (sym) = LOC_CONST;
7417 break;
7418 }
7419 }
7420
7421
7422 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7423 or zero-extend it as appropriate for the symbol's type. */
7424 static void
7425 dwarf2_const_value_data (struct attribute *attr,
7426 struct symbol *sym,
7427 int bits)
7428 {
7429 LONGEST l = DW_UNSND (attr);
7430
7431 if (bits < sizeof (l) * 8)
7432 {
7433 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7434 l &= ((LONGEST) 1 << bits) - 1;
7435 else
7436 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
7437 }
7438
7439 SYMBOL_VALUE (sym) = l;
7440 SYMBOL_CLASS (sym) = LOC_CONST;
7441 }
7442
7443
7444 /* Return the type of the die in question using its DW_AT_type attribute. */
7445
7446 static struct type *
7447 die_type (struct die_info *die, struct dwarf2_cu *cu)
7448 {
7449 struct type *type;
7450 struct attribute *type_attr;
7451 struct die_info *type_die;
7452
7453 type_attr = dwarf2_attr (die, DW_AT_type, cu);
7454 if (!type_attr)
7455 {
7456 /* A missing DW_AT_type represents a void type. */
7457 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
7458 }
7459 else
7460 type_die = follow_die_ref (die, type_attr, cu);
7461
7462 type = tag_type_to_type (type_die, cu);
7463 if (!type)
7464 {
7465 dump_die (type_die);
7466 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
7467 cu->objfile->name);
7468 }
7469 return type;
7470 }
7471
7472 /* Return the containing type of the die in question using its
7473 DW_AT_containing_type attribute. */
7474
7475 static struct type *
7476 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
7477 {
7478 struct type *type = NULL;
7479 struct attribute *type_attr;
7480 struct die_info *type_die = NULL;
7481
7482 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
7483 if (type_attr)
7484 {
7485 type_die = follow_die_ref (die, type_attr, cu);
7486 type = tag_type_to_type (type_die, cu);
7487 }
7488 if (!type)
7489 {
7490 if (type_die)
7491 dump_die (type_die);
7492 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
7493 cu->objfile->name);
7494 }
7495 return type;
7496 }
7497
7498 static struct type *
7499 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
7500 {
7501 if (die->type)
7502 {
7503 return die->type;
7504 }
7505 else
7506 {
7507 read_type_die (die, cu);
7508 if (!die->type)
7509 {
7510 dump_die (die);
7511 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
7512 cu->objfile->name);
7513 }
7514 return die->type;
7515 }
7516 }
7517
7518 static void
7519 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
7520 {
7521 char *prefix = determine_prefix (die, cu);
7522 const char *old_prefix = processing_current_prefix;
7523 struct cleanup *back_to = make_cleanup (xfree, prefix);
7524 processing_current_prefix = prefix;
7525
7526 switch (die->tag)
7527 {
7528 case DW_TAG_class_type:
7529 case DW_TAG_structure_type:
7530 case DW_TAG_union_type:
7531 read_structure_type (die, cu);
7532 break;
7533 case DW_TAG_enumeration_type:
7534 read_enumeration_type (die, cu);
7535 break;
7536 case DW_TAG_subprogram:
7537 case DW_TAG_subroutine_type:
7538 read_subroutine_type (die, cu);
7539 break;
7540 case DW_TAG_array_type:
7541 read_array_type (die, cu);
7542 break;
7543 case DW_TAG_set_type:
7544 read_set_type (die, cu);
7545 break;
7546 case DW_TAG_pointer_type:
7547 read_tag_pointer_type (die, cu);
7548 break;
7549 case DW_TAG_ptr_to_member_type:
7550 read_tag_ptr_to_member_type (die, cu);
7551 break;
7552 case DW_TAG_reference_type:
7553 read_tag_reference_type (die, cu);
7554 break;
7555 case DW_TAG_const_type:
7556 read_tag_const_type (die, cu);
7557 break;
7558 case DW_TAG_volatile_type:
7559 read_tag_volatile_type (die, cu);
7560 break;
7561 case DW_TAG_string_type:
7562 read_tag_string_type (die, cu);
7563 break;
7564 case DW_TAG_typedef:
7565 read_typedef (die, cu);
7566 break;
7567 case DW_TAG_subrange_type:
7568 read_subrange_type (die, cu);
7569 break;
7570 case DW_TAG_base_type:
7571 read_base_type (die, cu);
7572 break;
7573 case DW_TAG_unspecified_type:
7574 read_unspecified_type (die, cu);
7575 break;
7576 default:
7577 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
7578 dwarf_tag_name (die->tag));
7579 break;
7580 }
7581
7582 processing_current_prefix = old_prefix;
7583 do_cleanups (back_to);
7584 }
7585
7586 /* Return the name of the namespace/class that DIE is defined within,
7587 or "" if we can't tell. The caller should xfree the result. */
7588
7589 /* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7590 therein) for an example of how to use this function to deal with
7591 DW_AT_specification. */
7592
7593 static char *
7594 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
7595 {
7596 struct die_info *parent;
7597
7598 if (cu->language != language_cplus
7599 && cu->language != language_java)
7600 return NULL;
7601
7602 parent = die->parent;
7603
7604 if (parent == NULL)
7605 {
7606 return xstrdup ("");
7607 }
7608 else
7609 {
7610 switch (parent->tag) {
7611 case DW_TAG_namespace:
7612 {
7613 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7614 before doing this check? */
7615 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7616 {
7617 return xstrdup (TYPE_TAG_NAME (parent->type));
7618 }
7619 else
7620 {
7621 int dummy;
7622 char *parent_prefix = determine_prefix (parent, cu);
7623 char *retval = typename_concat (NULL, parent_prefix,
7624 namespace_name (parent, &dummy,
7625 cu),
7626 cu);
7627 xfree (parent_prefix);
7628 return retval;
7629 }
7630 }
7631 break;
7632 case DW_TAG_class_type:
7633 case DW_TAG_structure_type:
7634 {
7635 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7636 {
7637 return xstrdup (TYPE_TAG_NAME (parent->type));
7638 }
7639 else
7640 {
7641 const char *old_prefix = processing_current_prefix;
7642 char *new_prefix = determine_prefix (parent, cu);
7643 char *retval;
7644
7645 processing_current_prefix = new_prefix;
7646 retval = determine_class_name (parent, cu);
7647 processing_current_prefix = old_prefix;
7648
7649 xfree (new_prefix);
7650 return retval;
7651 }
7652 }
7653 default:
7654 return determine_prefix (parent, cu);
7655 }
7656 }
7657 }
7658
7659 /* Return a newly-allocated string formed by concatenating PREFIX and
7660 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7661 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7662 perform an obconcat, otherwise allocate storage for the result. The CU argument
7663 is used to determine the language and hence, the appropriate separator. */
7664
7665 #define MAX_SEP_LEN 2 /* sizeof ("::") */
7666
7667 static char *
7668 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7669 struct dwarf2_cu *cu)
7670 {
7671 char *sep;
7672
7673 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7674 sep = "";
7675 else if (cu->language == language_java)
7676 sep = ".";
7677 else
7678 sep = "::";
7679
7680 if (obs == NULL)
7681 {
7682 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7683 retval[0] = '\0';
7684
7685 if (prefix)
7686 {
7687 strcpy (retval, prefix);
7688 strcat (retval, sep);
7689 }
7690 if (suffix)
7691 strcat (retval, suffix);
7692
7693 return retval;
7694 }
7695 else
7696 {
7697 /* We have an obstack. */
7698 return obconcat (obs, prefix, sep, suffix);
7699 }
7700 }
7701
7702 static struct type *
7703 dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
7704 {
7705 struct objfile *objfile = cu->objfile;
7706
7707 /* FIXME - this should not produce a new (struct type *)
7708 every time. It should cache base types. */
7709 struct type *type;
7710 switch (encoding)
7711 {
7712 case DW_ATE_address:
7713 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
7714 return type;
7715 case DW_ATE_boolean:
7716 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
7717 return type;
7718 case DW_ATE_complex_float:
7719 if (size == 16)
7720 {
7721 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
7722 }
7723 else
7724 {
7725 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
7726 }
7727 return type;
7728 case DW_ATE_float:
7729 if (size == 8)
7730 {
7731 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
7732 }
7733 else
7734 {
7735 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
7736 }
7737 return type;
7738 case DW_ATE_signed:
7739 switch (size)
7740 {
7741 case 1:
7742 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7743 break;
7744 case 2:
7745 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
7746 break;
7747 default:
7748 case 4:
7749 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7750 break;
7751 }
7752 return type;
7753 case DW_ATE_signed_char:
7754 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7755 return type;
7756 case DW_ATE_unsigned:
7757 switch (size)
7758 {
7759 case 1:
7760 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7761 break;
7762 case 2:
7763 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
7764 break;
7765 default:
7766 case 4:
7767 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
7768 break;
7769 }
7770 return type;
7771 case DW_ATE_unsigned_char:
7772 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7773 return type;
7774 default:
7775 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7776 return type;
7777 }
7778 }
7779
7780 #if 0
7781 struct die_info *
7782 copy_die (struct die_info *old_die)
7783 {
7784 struct die_info *new_die;
7785 int i, num_attrs;
7786
7787 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7788 memset (new_die, 0, sizeof (struct die_info));
7789
7790 new_die->tag = old_die->tag;
7791 new_die->has_children = old_die->has_children;
7792 new_die->abbrev = old_die->abbrev;
7793 new_die->offset = old_die->offset;
7794 new_die->type = NULL;
7795
7796 num_attrs = old_die->num_attrs;
7797 new_die->num_attrs = num_attrs;
7798 new_die->attrs = (struct attribute *)
7799 xmalloc (num_attrs * sizeof (struct attribute));
7800
7801 for (i = 0; i < old_die->num_attrs; ++i)
7802 {
7803 new_die->attrs[i].name = old_die->attrs[i].name;
7804 new_die->attrs[i].form = old_die->attrs[i].form;
7805 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7806 }
7807
7808 new_die->next = NULL;
7809 return new_die;
7810 }
7811 #endif
7812
7813 /* Return sibling of die, NULL if no sibling. */
7814
7815 static struct die_info *
7816 sibling_die (struct die_info *die)
7817 {
7818 return die->sibling;
7819 }
7820
7821 /* Get linkage name of a die, return NULL if not found. */
7822
7823 static char *
7824 dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
7825 {
7826 struct attribute *attr;
7827
7828 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7829 if (attr && DW_STRING (attr))
7830 return DW_STRING (attr);
7831 attr = dwarf2_attr (die, DW_AT_name, cu);
7832 if (attr && DW_STRING (attr))
7833 return DW_STRING (attr);
7834 return NULL;
7835 }
7836
7837 /* Get name of a die, return NULL if not found. */
7838
7839 static char *
7840 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
7841 {
7842 struct attribute *attr;
7843
7844 attr = dwarf2_attr (die, DW_AT_name, cu);
7845 if (attr && DW_STRING (attr))
7846 return DW_STRING (attr);
7847 return NULL;
7848 }
7849
7850 /* Return the die that this die in an extension of, or NULL if there
7851 is none. */
7852
7853 static struct die_info *
7854 dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
7855 {
7856 struct attribute *attr;
7857
7858 attr = dwarf2_attr (die, DW_AT_extension, cu);
7859 if (attr == NULL)
7860 return NULL;
7861
7862 return follow_die_ref (die, attr, cu);
7863 }
7864
7865 /* Convert a DIE tag into its string name. */
7866
7867 static char *
7868 dwarf_tag_name (unsigned tag)
7869 {
7870 switch (tag)
7871 {
7872 case DW_TAG_padding:
7873 return "DW_TAG_padding";
7874 case DW_TAG_array_type:
7875 return "DW_TAG_array_type";
7876 case DW_TAG_class_type:
7877 return "DW_TAG_class_type";
7878 case DW_TAG_entry_point:
7879 return "DW_TAG_entry_point";
7880 case DW_TAG_enumeration_type:
7881 return "DW_TAG_enumeration_type";
7882 case DW_TAG_formal_parameter:
7883 return "DW_TAG_formal_parameter";
7884 case DW_TAG_imported_declaration:
7885 return "DW_TAG_imported_declaration";
7886 case DW_TAG_label:
7887 return "DW_TAG_label";
7888 case DW_TAG_lexical_block:
7889 return "DW_TAG_lexical_block";
7890 case DW_TAG_member:
7891 return "DW_TAG_member";
7892 case DW_TAG_pointer_type:
7893 return "DW_TAG_pointer_type";
7894 case DW_TAG_reference_type:
7895 return "DW_TAG_reference_type";
7896 case DW_TAG_compile_unit:
7897 return "DW_TAG_compile_unit";
7898 case DW_TAG_string_type:
7899 return "DW_TAG_string_type";
7900 case DW_TAG_structure_type:
7901 return "DW_TAG_structure_type";
7902 case DW_TAG_subroutine_type:
7903 return "DW_TAG_subroutine_type";
7904 case DW_TAG_typedef:
7905 return "DW_TAG_typedef";
7906 case DW_TAG_union_type:
7907 return "DW_TAG_union_type";
7908 case DW_TAG_unspecified_parameters:
7909 return "DW_TAG_unspecified_parameters";
7910 case DW_TAG_variant:
7911 return "DW_TAG_variant";
7912 case DW_TAG_common_block:
7913 return "DW_TAG_common_block";
7914 case DW_TAG_common_inclusion:
7915 return "DW_TAG_common_inclusion";
7916 case DW_TAG_inheritance:
7917 return "DW_TAG_inheritance";
7918 case DW_TAG_inlined_subroutine:
7919 return "DW_TAG_inlined_subroutine";
7920 case DW_TAG_module:
7921 return "DW_TAG_module";
7922 case DW_TAG_ptr_to_member_type:
7923 return "DW_TAG_ptr_to_member_type";
7924 case DW_TAG_set_type:
7925 return "DW_TAG_set_type";
7926 case DW_TAG_subrange_type:
7927 return "DW_TAG_subrange_type";
7928 case DW_TAG_with_stmt:
7929 return "DW_TAG_with_stmt";
7930 case DW_TAG_access_declaration:
7931 return "DW_TAG_access_declaration";
7932 case DW_TAG_base_type:
7933 return "DW_TAG_base_type";
7934 case DW_TAG_catch_block:
7935 return "DW_TAG_catch_block";
7936 case DW_TAG_const_type:
7937 return "DW_TAG_const_type";
7938 case DW_TAG_constant:
7939 return "DW_TAG_constant";
7940 case DW_TAG_enumerator:
7941 return "DW_TAG_enumerator";
7942 case DW_TAG_file_type:
7943 return "DW_TAG_file_type";
7944 case DW_TAG_friend:
7945 return "DW_TAG_friend";
7946 case DW_TAG_namelist:
7947 return "DW_TAG_namelist";
7948 case DW_TAG_namelist_item:
7949 return "DW_TAG_namelist_item";
7950 case DW_TAG_packed_type:
7951 return "DW_TAG_packed_type";
7952 case DW_TAG_subprogram:
7953 return "DW_TAG_subprogram";
7954 case DW_TAG_template_type_param:
7955 return "DW_TAG_template_type_param";
7956 case DW_TAG_template_value_param:
7957 return "DW_TAG_template_value_param";
7958 case DW_TAG_thrown_type:
7959 return "DW_TAG_thrown_type";
7960 case DW_TAG_try_block:
7961 return "DW_TAG_try_block";
7962 case DW_TAG_variant_part:
7963 return "DW_TAG_variant_part";
7964 case DW_TAG_variable:
7965 return "DW_TAG_variable";
7966 case DW_TAG_volatile_type:
7967 return "DW_TAG_volatile_type";
7968 case DW_TAG_dwarf_procedure:
7969 return "DW_TAG_dwarf_procedure";
7970 case DW_TAG_restrict_type:
7971 return "DW_TAG_restrict_type";
7972 case DW_TAG_interface_type:
7973 return "DW_TAG_interface_type";
7974 case DW_TAG_namespace:
7975 return "DW_TAG_namespace";
7976 case DW_TAG_imported_module:
7977 return "DW_TAG_imported_module";
7978 case DW_TAG_unspecified_type:
7979 return "DW_TAG_unspecified_type";
7980 case DW_TAG_partial_unit:
7981 return "DW_TAG_partial_unit";
7982 case DW_TAG_imported_unit:
7983 return "DW_TAG_imported_unit";
7984 case DW_TAG_condition:
7985 return "DW_TAG_condition";
7986 case DW_TAG_shared_type:
7987 return "DW_TAG_shared_type";
7988 case DW_TAG_MIPS_loop:
7989 return "DW_TAG_MIPS_loop";
7990 case DW_TAG_HP_array_descriptor:
7991 return "DW_TAG_HP_array_descriptor";
7992 case DW_TAG_format_label:
7993 return "DW_TAG_format_label";
7994 case DW_TAG_function_template:
7995 return "DW_TAG_function_template";
7996 case DW_TAG_class_template:
7997 return "DW_TAG_class_template";
7998 case DW_TAG_GNU_BINCL:
7999 return "DW_TAG_GNU_BINCL";
8000 case DW_TAG_GNU_EINCL:
8001 return "DW_TAG_GNU_EINCL";
8002 case DW_TAG_upc_shared_type:
8003 return "DW_TAG_upc_shared_type";
8004 case DW_TAG_upc_strict_type:
8005 return "DW_TAG_upc_strict_type";
8006 case DW_TAG_upc_relaxed_type:
8007 return "DW_TAG_upc_relaxed_type";
8008 case DW_TAG_PGI_kanji_type:
8009 return "DW_TAG_PGI_kanji_type";
8010 case DW_TAG_PGI_interface_block:
8011 return "DW_TAG_PGI_interface_block";
8012 default:
8013 return "DW_TAG_<unknown>";
8014 }
8015 }
8016
8017 /* Convert a DWARF attribute code into its string name. */
8018
8019 static char *
8020 dwarf_attr_name (unsigned attr)
8021 {
8022 switch (attr)
8023 {
8024 case DW_AT_sibling:
8025 return "DW_AT_sibling";
8026 case DW_AT_location:
8027 return "DW_AT_location";
8028 case DW_AT_name:
8029 return "DW_AT_name";
8030 case DW_AT_ordering:
8031 return "DW_AT_ordering";
8032 case DW_AT_subscr_data:
8033 return "DW_AT_subscr_data";
8034 case DW_AT_byte_size:
8035 return "DW_AT_byte_size";
8036 case DW_AT_bit_offset:
8037 return "DW_AT_bit_offset";
8038 case DW_AT_bit_size:
8039 return "DW_AT_bit_size";
8040 case DW_AT_element_list:
8041 return "DW_AT_element_list";
8042 case DW_AT_stmt_list:
8043 return "DW_AT_stmt_list";
8044 case DW_AT_low_pc:
8045 return "DW_AT_low_pc";
8046 case DW_AT_high_pc:
8047 return "DW_AT_high_pc";
8048 case DW_AT_language:
8049 return "DW_AT_language";
8050 case DW_AT_member:
8051 return "DW_AT_member";
8052 case DW_AT_discr:
8053 return "DW_AT_discr";
8054 case DW_AT_discr_value:
8055 return "DW_AT_discr_value";
8056 case DW_AT_visibility:
8057 return "DW_AT_visibility";
8058 case DW_AT_import:
8059 return "DW_AT_import";
8060 case DW_AT_string_length:
8061 return "DW_AT_string_length";
8062 case DW_AT_common_reference:
8063 return "DW_AT_common_reference";
8064 case DW_AT_comp_dir:
8065 return "DW_AT_comp_dir";
8066 case DW_AT_const_value:
8067 return "DW_AT_const_value";
8068 case DW_AT_containing_type:
8069 return "DW_AT_containing_type";
8070 case DW_AT_default_value:
8071 return "DW_AT_default_value";
8072 case DW_AT_inline:
8073 return "DW_AT_inline";
8074 case DW_AT_is_optional:
8075 return "DW_AT_is_optional";
8076 case DW_AT_lower_bound:
8077 return "DW_AT_lower_bound";
8078 case DW_AT_producer:
8079 return "DW_AT_producer";
8080 case DW_AT_prototyped:
8081 return "DW_AT_prototyped";
8082 case DW_AT_return_addr:
8083 return "DW_AT_return_addr";
8084 case DW_AT_start_scope:
8085 return "DW_AT_start_scope";
8086 case DW_AT_stride_size:
8087 return "DW_AT_stride_size";
8088 case DW_AT_upper_bound:
8089 return "DW_AT_upper_bound";
8090 case DW_AT_abstract_origin:
8091 return "DW_AT_abstract_origin";
8092 case DW_AT_accessibility:
8093 return "DW_AT_accessibility";
8094 case DW_AT_address_class:
8095 return "DW_AT_address_class";
8096 case DW_AT_artificial:
8097 return "DW_AT_artificial";
8098 case DW_AT_base_types:
8099 return "DW_AT_base_types";
8100 case DW_AT_calling_convention:
8101 return "DW_AT_calling_convention";
8102 case DW_AT_count:
8103 return "DW_AT_count";
8104 case DW_AT_data_member_location:
8105 return "DW_AT_data_member_location";
8106 case DW_AT_decl_column:
8107 return "DW_AT_decl_column";
8108 case DW_AT_decl_file:
8109 return "DW_AT_decl_file";
8110 case DW_AT_decl_line:
8111 return "DW_AT_decl_line";
8112 case DW_AT_declaration:
8113 return "DW_AT_declaration";
8114 case DW_AT_discr_list:
8115 return "DW_AT_discr_list";
8116 case DW_AT_encoding:
8117 return "DW_AT_encoding";
8118 case DW_AT_external:
8119 return "DW_AT_external";
8120 case DW_AT_frame_base:
8121 return "DW_AT_frame_base";
8122 case DW_AT_friend:
8123 return "DW_AT_friend";
8124 case DW_AT_identifier_case:
8125 return "DW_AT_identifier_case";
8126 case DW_AT_macro_info:
8127 return "DW_AT_macro_info";
8128 case DW_AT_namelist_items:
8129 return "DW_AT_namelist_items";
8130 case DW_AT_priority:
8131 return "DW_AT_priority";
8132 case DW_AT_segment:
8133 return "DW_AT_segment";
8134 case DW_AT_specification:
8135 return "DW_AT_specification";
8136 case DW_AT_static_link:
8137 return "DW_AT_static_link";
8138 case DW_AT_type:
8139 return "DW_AT_type";
8140 case DW_AT_use_location:
8141 return "DW_AT_use_location";
8142 case DW_AT_variable_parameter:
8143 return "DW_AT_variable_parameter";
8144 case DW_AT_virtuality:
8145 return "DW_AT_virtuality";
8146 case DW_AT_vtable_elem_location:
8147 return "DW_AT_vtable_elem_location";
8148 /* DWARF 3 values. */
8149 case DW_AT_allocated:
8150 return "DW_AT_allocated";
8151 case DW_AT_associated:
8152 return "DW_AT_associated";
8153 case DW_AT_data_location:
8154 return "DW_AT_data_location";
8155 case DW_AT_stride:
8156 return "DW_AT_stride";
8157 case DW_AT_entry_pc:
8158 return "DW_AT_entry_pc";
8159 case DW_AT_use_UTF8:
8160 return "DW_AT_use_UTF8";
8161 case DW_AT_extension:
8162 return "DW_AT_extension";
8163 case DW_AT_ranges:
8164 return "DW_AT_ranges";
8165 case DW_AT_trampoline:
8166 return "DW_AT_trampoline";
8167 case DW_AT_call_column:
8168 return "DW_AT_call_column";
8169 case DW_AT_call_file:
8170 return "DW_AT_call_file";
8171 case DW_AT_call_line:
8172 return "DW_AT_call_line";
8173 case DW_AT_description:
8174 return "DW_AT_description";
8175 case DW_AT_binary_scale:
8176 return "DW_AT_binary_scale";
8177 case DW_AT_decimal_scale:
8178 return "DW_AT_decimal_scale";
8179 case DW_AT_small:
8180 return "DW_AT_small";
8181 case DW_AT_decimal_sign:
8182 return "DW_AT_decimal_sign";
8183 case DW_AT_digit_count:
8184 return "DW_AT_digit_count";
8185 case DW_AT_picture_string:
8186 return "DW_AT_picture_string";
8187 case DW_AT_mutable:
8188 return "DW_AT_mutable";
8189 case DW_AT_threads_scaled:
8190 return "DW_AT_threads_scaled";
8191 case DW_AT_explicit:
8192 return "DW_AT_explicit";
8193 case DW_AT_object_pointer:
8194 return "DW_AT_object_pointer";
8195 case DW_AT_endianity:
8196 return "DW_AT_endianity";
8197 case DW_AT_elemental:
8198 return "DW_AT_elemental";
8199 case DW_AT_pure:
8200 return "DW_AT_pure";
8201 case DW_AT_recursive:
8202 return "DW_AT_recursive";
8203 #ifdef MIPS
8204 /* SGI/MIPS extensions. */
8205 case DW_AT_MIPS_fde:
8206 return "DW_AT_MIPS_fde";
8207 case DW_AT_MIPS_loop_begin:
8208 return "DW_AT_MIPS_loop_begin";
8209 case DW_AT_MIPS_tail_loop_begin:
8210 return "DW_AT_MIPS_tail_loop_begin";
8211 case DW_AT_MIPS_epilog_begin:
8212 return "DW_AT_MIPS_epilog_begin";
8213 case DW_AT_MIPS_loop_unroll_factor:
8214 return "DW_AT_MIPS_loop_unroll_factor";
8215 case DW_AT_MIPS_software_pipeline_depth:
8216 return "DW_AT_MIPS_software_pipeline_depth";
8217 case DW_AT_MIPS_linkage_name:
8218 return "DW_AT_MIPS_linkage_name";
8219 case DW_AT_MIPS_stride:
8220 return "DW_AT_MIPS_stride";
8221 case DW_AT_MIPS_abstract_name:
8222 return "DW_AT_MIPS_abstract_name";
8223 case DW_AT_MIPS_clone_origin:
8224 return "DW_AT_MIPS_clone_origin";
8225 case DW_AT_MIPS_has_inlines:
8226 return "DW_AT_MIPS_has_inlines";
8227 #endif
8228 /* HP extensions. */
8229 case DW_AT_HP_block_index:
8230 return "DW_AT_HP_block_index";
8231 case DW_AT_HP_unmodifiable:
8232 return "DW_AT_HP_unmodifiable";
8233 case DW_AT_HP_actuals_stmt_list:
8234 return "DW_AT_HP_actuals_stmt_list";
8235 case DW_AT_HP_proc_per_section:
8236 return "DW_AT_HP_proc_per_section";
8237 case DW_AT_HP_raw_data_ptr:
8238 return "DW_AT_HP_raw_data_ptr";
8239 case DW_AT_HP_pass_by_reference:
8240 return "DW_AT_HP_pass_by_reference";
8241 case DW_AT_HP_opt_level:
8242 return "DW_AT_HP_opt_level";
8243 case DW_AT_HP_prof_version_id:
8244 return "DW_AT_HP_prof_version_id";
8245 case DW_AT_HP_opt_flags:
8246 return "DW_AT_HP_opt_flags";
8247 case DW_AT_HP_cold_region_low_pc:
8248 return "DW_AT_HP_cold_region_low_pc";
8249 case DW_AT_HP_cold_region_high_pc:
8250 return "DW_AT_HP_cold_region_high_pc";
8251 case DW_AT_HP_all_variables_modifiable:
8252 return "DW_AT_HP_all_variables_modifiable";
8253 case DW_AT_HP_linkage_name:
8254 return "DW_AT_HP_linkage_name";
8255 case DW_AT_HP_prof_flags:
8256 return "DW_AT_HP_prof_flags";
8257 /* GNU extensions. */
8258 case DW_AT_sf_names:
8259 return "DW_AT_sf_names";
8260 case DW_AT_src_info:
8261 return "DW_AT_src_info";
8262 case DW_AT_mac_info:
8263 return "DW_AT_mac_info";
8264 case DW_AT_src_coords:
8265 return "DW_AT_src_coords";
8266 case DW_AT_body_begin:
8267 return "DW_AT_body_begin";
8268 case DW_AT_body_end:
8269 return "DW_AT_body_end";
8270 case DW_AT_GNU_vector:
8271 return "DW_AT_GNU_vector";
8272 /* VMS extensions. */
8273 case DW_AT_VMS_rtnbeg_pd_address:
8274 return "DW_AT_VMS_rtnbeg_pd_address";
8275 /* UPC extension. */
8276 case DW_AT_upc_threads_scaled:
8277 return "DW_AT_upc_threads_scaled";
8278 /* PGI (STMicroelectronics) extensions. */
8279 case DW_AT_PGI_lbase:
8280 return "DW_AT_PGI_lbase";
8281 case DW_AT_PGI_soffset:
8282 return "DW_AT_PGI_soffset";
8283 case DW_AT_PGI_lstride:
8284 return "DW_AT_PGI_lstride";
8285 default:
8286 return "DW_AT_<unknown>";
8287 }
8288 }
8289
8290 /* Convert a DWARF value form code into its string name. */
8291
8292 static char *
8293 dwarf_form_name (unsigned form)
8294 {
8295 switch (form)
8296 {
8297 case DW_FORM_addr:
8298 return "DW_FORM_addr";
8299 case DW_FORM_block2:
8300 return "DW_FORM_block2";
8301 case DW_FORM_block4:
8302 return "DW_FORM_block4";
8303 case DW_FORM_data2:
8304 return "DW_FORM_data2";
8305 case DW_FORM_data4:
8306 return "DW_FORM_data4";
8307 case DW_FORM_data8:
8308 return "DW_FORM_data8";
8309 case DW_FORM_string:
8310 return "DW_FORM_string";
8311 case DW_FORM_block:
8312 return "DW_FORM_block";
8313 case DW_FORM_block1:
8314 return "DW_FORM_block1";
8315 case DW_FORM_data1:
8316 return "DW_FORM_data1";
8317 case DW_FORM_flag:
8318 return "DW_FORM_flag";
8319 case DW_FORM_sdata:
8320 return "DW_FORM_sdata";
8321 case DW_FORM_strp:
8322 return "DW_FORM_strp";
8323 case DW_FORM_udata:
8324 return "DW_FORM_udata";
8325 case DW_FORM_ref_addr:
8326 return "DW_FORM_ref_addr";
8327 case DW_FORM_ref1:
8328 return "DW_FORM_ref1";
8329 case DW_FORM_ref2:
8330 return "DW_FORM_ref2";
8331 case DW_FORM_ref4:
8332 return "DW_FORM_ref4";
8333 case DW_FORM_ref8:
8334 return "DW_FORM_ref8";
8335 case DW_FORM_ref_udata:
8336 return "DW_FORM_ref_udata";
8337 case DW_FORM_indirect:
8338 return "DW_FORM_indirect";
8339 default:
8340 return "DW_FORM_<unknown>";
8341 }
8342 }
8343
8344 /* Convert a DWARF stack opcode into its string name. */
8345
8346 static char *
8347 dwarf_stack_op_name (unsigned op)
8348 {
8349 switch (op)
8350 {
8351 case DW_OP_addr:
8352 return "DW_OP_addr";
8353 case DW_OP_deref:
8354 return "DW_OP_deref";
8355 case DW_OP_const1u:
8356 return "DW_OP_const1u";
8357 case DW_OP_const1s:
8358 return "DW_OP_const1s";
8359 case DW_OP_const2u:
8360 return "DW_OP_const2u";
8361 case DW_OP_const2s:
8362 return "DW_OP_const2s";
8363 case DW_OP_const4u:
8364 return "DW_OP_const4u";
8365 case DW_OP_const4s:
8366 return "DW_OP_const4s";
8367 case DW_OP_const8u:
8368 return "DW_OP_const8u";
8369 case DW_OP_const8s:
8370 return "DW_OP_const8s";
8371 case DW_OP_constu:
8372 return "DW_OP_constu";
8373 case DW_OP_consts:
8374 return "DW_OP_consts";
8375 case DW_OP_dup:
8376 return "DW_OP_dup";
8377 case DW_OP_drop:
8378 return "DW_OP_drop";
8379 case DW_OP_over:
8380 return "DW_OP_over";
8381 case DW_OP_pick:
8382 return "DW_OP_pick";
8383 case DW_OP_swap:
8384 return "DW_OP_swap";
8385 case DW_OP_rot:
8386 return "DW_OP_rot";
8387 case DW_OP_xderef:
8388 return "DW_OP_xderef";
8389 case DW_OP_abs:
8390 return "DW_OP_abs";
8391 case DW_OP_and:
8392 return "DW_OP_and";
8393 case DW_OP_div:
8394 return "DW_OP_div";
8395 case DW_OP_minus:
8396 return "DW_OP_minus";
8397 case DW_OP_mod:
8398 return "DW_OP_mod";
8399 case DW_OP_mul:
8400 return "DW_OP_mul";
8401 case DW_OP_neg:
8402 return "DW_OP_neg";
8403 case DW_OP_not:
8404 return "DW_OP_not";
8405 case DW_OP_or:
8406 return "DW_OP_or";
8407 case DW_OP_plus:
8408 return "DW_OP_plus";
8409 case DW_OP_plus_uconst:
8410 return "DW_OP_plus_uconst";
8411 case DW_OP_shl:
8412 return "DW_OP_shl";
8413 case DW_OP_shr:
8414 return "DW_OP_shr";
8415 case DW_OP_shra:
8416 return "DW_OP_shra";
8417 case DW_OP_xor:
8418 return "DW_OP_xor";
8419 case DW_OP_bra:
8420 return "DW_OP_bra";
8421 case DW_OP_eq:
8422 return "DW_OP_eq";
8423 case DW_OP_ge:
8424 return "DW_OP_ge";
8425 case DW_OP_gt:
8426 return "DW_OP_gt";
8427 case DW_OP_le:
8428 return "DW_OP_le";
8429 case DW_OP_lt:
8430 return "DW_OP_lt";
8431 case DW_OP_ne:
8432 return "DW_OP_ne";
8433 case DW_OP_skip:
8434 return "DW_OP_skip";
8435 case DW_OP_lit0:
8436 return "DW_OP_lit0";
8437 case DW_OP_lit1:
8438 return "DW_OP_lit1";
8439 case DW_OP_lit2:
8440 return "DW_OP_lit2";
8441 case DW_OP_lit3:
8442 return "DW_OP_lit3";
8443 case DW_OP_lit4:
8444 return "DW_OP_lit4";
8445 case DW_OP_lit5:
8446 return "DW_OP_lit5";
8447 case DW_OP_lit6:
8448 return "DW_OP_lit6";
8449 case DW_OP_lit7:
8450 return "DW_OP_lit7";
8451 case DW_OP_lit8:
8452 return "DW_OP_lit8";
8453 case DW_OP_lit9:
8454 return "DW_OP_lit9";
8455 case DW_OP_lit10:
8456 return "DW_OP_lit10";
8457 case DW_OP_lit11:
8458 return "DW_OP_lit11";
8459 case DW_OP_lit12:
8460 return "DW_OP_lit12";
8461 case DW_OP_lit13:
8462 return "DW_OP_lit13";
8463 case DW_OP_lit14:
8464 return "DW_OP_lit14";
8465 case DW_OP_lit15:
8466 return "DW_OP_lit15";
8467 case DW_OP_lit16:
8468 return "DW_OP_lit16";
8469 case DW_OP_lit17:
8470 return "DW_OP_lit17";
8471 case DW_OP_lit18:
8472 return "DW_OP_lit18";
8473 case DW_OP_lit19:
8474 return "DW_OP_lit19";
8475 case DW_OP_lit20:
8476 return "DW_OP_lit20";
8477 case DW_OP_lit21:
8478 return "DW_OP_lit21";
8479 case DW_OP_lit22:
8480 return "DW_OP_lit22";
8481 case DW_OP_lit23:
8482 return "DW_OP_lit23";
8483 case DW_OP_lit24:
8484 return "DW_OP_lit24";
8485 case DW_OP_lit25:
8486 return "DW_OP_lit25";
8487 case DW_OP_lit26:
8488 return "DW_OP_lit26";
8489 case DW_OP_lit27:
8490 return "DW_OP_lit27";
8491 case DW_OP_lit28:
8492 return "DW_OP_lit28";
8493 case DW_OP_lit29:
8494 return "DW_OP_lit29";
8495 case DW_OP_lit30:
8496 return "DW_OP_lit30";
8497 case DW_OP_lit31:
8498 return "DW_OP_lit31";
8499 case DW_OP_reg0:
8500 return "DW_OP_reg0";
8501 case DW_OP_reg1:
8502 return "DW_OP_reg1";
8503 case DW_OP_reg2:
8504 return "DW_OP_reg2";
8505 case DW_OP_reg3:
8506 return "DW_OP_reg3";
8507 case DW_OP_reg4:
8508 return "DW_OP_reg4";
8509 case DW_OP_reg5:
8510 return "DW_OP_reg5";
8511 case DW_OP_reg6:
8512 return "DW_OP_reg6";
8513 case DW_OP_reg7:
8514 return "DW_OP_reg7";
8515 case DW_OP_reg8:
8516 return "DW_OP_reg8";
8517 case DW_OP_reg9:
8518 return "DW_OP_reg9";
8519 case DW_OP_reg10:
8520 return "DW_OP_reg10";
8521 case DW_OP_reg11:
8522 return "DW_OP_reg11";
8523 case DW_OP_reg12:
8524 return "DW_OP_reg12";
8525 case DW_OP_reg13:
8526 return "DW_OP_reg13";
8527 case DW_OP_reg14:
8528 return "DW_OP_reg14";
8529 case DW_OP_reg15:
8530 return "DW_OP_reg15";
8531 case DW_OP_reg16:
8532 return "DW_OP_reg16";
8533 case DW_OP_reg17:
8534 return "DW_OP_reg17";
8535 case DW_OP_reg18:
8536 return "DW_OP_reg18";
8537 case DW_OP_reg19:
8538 return "DW_OP_reg19";
8539 case DW_OP_reg20:
8540 return "DW_OP_reg20";
8541 case DW_OP_reg21:
8542 return "DW_OP_reg21";
8543 case DW_OP_reg22:
8544 return "DW_OP_reg22";
8545 case DW_OP_reg23:
8546 return "DW_OP_reg23";
8547 case DW_OP_reg24:
8548 return "DW_OP_reg24";
8549 case DW_OP_reg25:
8550 return "DW_OP_reg25";
8551 case DW_OP_reg26:
8552 return "DW_OP_reg26";
8553 case DW_OP_reg27:
8554 return "DW_OP_reg27";
8555 case DW_OP_reg28:
8556 return "DW_OP_reg28";
8557 case DW_OP_reg29:
8558 return "DW_OP_reg29";
8559 case DW_OP_reg30:
8560 return "DW_OP_reg30";
8561 case DW_OP_reg31:
8562 return "DW_OP_reg31";
8563 case DW_OP_breg0:
8564 return "DW_OP_breg0";
8565 case DW_OP_breg1:
8566 return "DW_OP_breg1";
8567 case DW_OP_breg2:
8568 return "DW_OP_breg2";
8569 case DW_OP_breg3:
8570 return "DW_OP_breg3";
8571 case DW_OP_breg4:
8572 return "DW_OP_breg4";
8573 case DW_OP_breg5:
8574 return "DW_OP_breg5";
8575 case DW_OP_breg6:
8576 return "DW_OP_breg6";
8577 case DW_OP_breg7:
8578 return "DW_OP_breg7";
8579 case DW_OP_breg8:
8580 return "DW_OP_breg8";
8581 case DW_OP_breg9:
8582 return "DW_OP_breg9";
8583 case DW_OP_breg10:
8584 return "DW_OP_breg10";
8585 case DW_OP_breg11:
8586 return "DW_OP_breg11";
8587 case DW_OP_breg12:
8588 return "DW_OP_breg12";
8589 case DW_OP_breg13:
8590 return "DW_OP_breg13";
8591 case DW_OP_breg14:
8592 return "DW_OP_breg14";
8593 case DW_OP_breg15:
8594 return "DW_OP_breg15";
8595 case DW_OP_breg16:
8596 return "DW_OP_breg16";
8597 case DW_OP_breg17:
8598 return "DW_OP_breg17";
8599 case DW_OP_breg18:
8600 return "DW_OP_breg18";
8601 case DW_OP_breg19:
8602 return "DW_OP_breg19";
8603 case DW_OP_breg20:
8604 return "DW_OP_breg20";
8605 case DW_OP_breg21:
8606 return "DW_OP_breg21";
8607 case DW_OP_breg22:
8608 return "DW_OP_breg22";
8609 case DW_OP_breg23:
8610 return "DW_OP_breg23";
8611 case DW_OP_breg24:
8612 return "DW_OP_breg24";
8613 case DW_OP_breg25:
8614 return "DW_OP_breg25";
8615 case DW_OP_breg26:
8616 return "DW_OP_breg26";
8617 case DW_OP_breg27:
8618 return "DW_OP_breg27";
8619 case DW_OP_breg28:
8620 return "DW_OP_breg28";
8621 case DW_OP_breg29:
8622 return "DW_OP_breg29";
8623 case DW_OP_breg30:
8624 return "DW_OP_breg30";
8625 case DW_OP_breg31:
8626 return "DW_OP_breg31";
8627 case DW_OP_regx:
8628 return "DW_OP_regx";
8629 case DW_OP_fbreg:
8630 return "DW_OP_fbreg";
8631 case DW_OP_bregx:
8632 return "DW_OP_bregx";
8633 case DW_OP_piece:
8634 return "DW_OP_piece";
8635 case DW_OP_deref_size:
8636 return "DW_OP_deref_size";
8637 case DW_OP_xderef_size:
8638 return "DW_OP_xderef_size";
8639 case DW_OP_nop:
8640 return "DW_OP_nop";
8641 /* DWARF 3 extensions. */
8642 case DW_OP_push_object_address:
8643 return "DW_OP_push_object_address";
8644 case DW_OP_call2:
8645 return "DW_OP_call2";
8646 case DW_OP_call4:
8647 return "DW_OP_call4";
8648 case DW_OP_call_ref:
8649 return "DW_OP_call_ref";
8650 /* GNU extensions. */
8651 case DW_OP_form_tls_address:
8652 return "DW_OP_form_tls_address";
8653 case DW_OP_call_frame_cfa:
8654 return "DW_OP_call_frame_cfa";
8655 case DW_OP_bit_piece:
8656 return "DW_OP_bit_piece";
8657 case DW_OP_GNU_push_tls_address:
8658 return "DW_OP_GNU_push_tls_address";
8659 case DW_OP_GNU_uninit:
8660 return "DW_OP_GNU_uninit";
8661 /* HP extensions. */
8662 case DW_OP_HP_is_value:
8663 return "DW_OP_HP_is_value";
8664 case DW_OP_HP_fltconst4:
8665 return "DW_OP_HP_fltconst4";
8666 case DW_OP_HP_fltconst8:
8667 return "DW_OP_HP_fltconst8";
8668 case DW_OP_HP_mod_range:
8669 return "DW_OP_HP_mod_range";
8670 case DW_OP_HP_unmod_range:
8671 return "DW_OP_HP_unmod_range";
8672 case DW_OP_HP_tls:
8673 return "DW_OP_HP_tls";
8674 default:
8675 return "OP_<unknown>";
8676 }
8677 }
8678
8679 static char *
8680 dwarf_bool_name (unsigned mybool)
8681 {
8682 if (mybool)
8683 return "TRUE";
8684 else
8685 return "FALSE";
8686 }
8687
8688 /* Convert a DWARF type code into its string name. */
8689
8690 static char *
8691 dwarf_type_encoding_name (unsigned enc)
8692 {
8693 switch (enc)
8694 {
8695 case DW_ATE_void:
8696 return "DW_ATE_void";
8697 case DW_ATE_address:
8698 return "DW_ATE_address";
8699 case DW_ATE_boolean:
8700 return "DW_ATE_boolean";
8701 case DW_ATE_complex_float:
8702 return "DW_ATE_complex_float";
8703 case DW_ATE_float:
8704 return "DW_ATE_float";
8705 case DW_ATE_signed:
8706 return "DW_ATE_signed";
8707 case DW_ATE_signed_char:
8708 return "DW_ATE_signed_char";
8709 case DW_ATE_unsigned:
8710 return "DW_ATE_unsigned";
8711 case DW_ATE_unsigned_char:
8712 return "DW_ATE_unsigned_char";
8713 /* DWARF 3. */
8714 case DW_ATE_imaginary_float:
8715 return "DW_ATE_imaginary_float";
8716 case DW_ATE_packed_decimal:
8717 return "DW_ATE_packed_decimal";
8718 case DW_ATE_numeric_string:
8719 return "DW_ATE_numeric_string";
8720 case DW_ATE_edited:
8721 return "DW_ATE_edited";
8722 case DW_ATE_signed_fixed:
8723 return "DW_ATE_signed_fixed";
8724 case DW_ATE_unsigned_fixed:
8725 return "DW_ATE_unsigned_fixed";
8726 case DW_ATE_decimal_float:
8727 return "DW_ATE_decimal_float";
8728 /* HP extensions. */
8729 case DW_ATE_HP_float80:
8730 return "DW_ATE_HP_float80";
8731 case DW_ATE_HP_complex_float80:
8732 return "DW_ATE_HP_complex_float80";
8733 case DW_ATE_HP_float128:
8734 return "DW_ATE_HP_float128";
8735 case DW_ATE_HP_complex_float128:
8736 return "DW_ATE_HP_complex_float128";
8737 case DW_ATE_HP_floathpintel:
8738 return "DW_ATE_HP_floathpintel";
8739 case DW_ATE_HP_imaginary_float80:
8740 return "DW_ATE_HP_imaginary_float80";
8741 case DW_ATE_HP_imaginary_float128:
8742 return "DW_ATE_HP_imaginary_float128";
8743 default:
8744 return "DW_ATE_<unknown>";
8745 }
8746 }
8747
8748 /* Convert a DWARF call frame info operation to its string name. */
8749
8750 #if 0
8751 static char *
8752 dwarf_cfi_name (unsigned cfi_opc)
8753 {
8754 switch (cfi_opc)
8755 {
8756 case DW_CFA_advance_loc:
8757 return "DW_CFA_advance_loc";
8758 case DW_CFA_offset:
8759 return "DW_CFA_offset";
8760 case DW_CFA_restore:
8761 return "DW_CFA_restore";
8762 case DW_CFA_nop:
8763 return "DW_CFA_nop";
8764 case DW_CFA_set_loc:
8765 return "DW_CFA_set_loc";
8766 case DW_CFA_advance_loc1:
8767 return "DW_CFA_advance_loc1";
8768 case DW_CFA_advance_loc2:
8769 return "DW_CFA_advance_loc2";
8770 case DW_CFA_advance_loc4:
8771 return "DW_CFA_advance_loc4";
8772 case DW_CFA_offset_extended:
8773 return "DW_CFA_offset_extended";
8774 case DW_CFA_restore_extended:
8775 return "DW_CFA_restore_extended";
8776 case DW_CFA_undefined:
8777 return "DW_CFA_undefined";
8778 case DW_CFA_same_value:
8779 return "DW_CFA_same_value";
8780 case DW_CFA_register:
8781 return "DW_CFA_register";
8782 case DW_CFA_remember_state:
8783 return "DW_CFA_remember_state";
8784 case DW_CFA_restore_state:
8785 return "DW_CFA_restore_state";
8786 case DW_CFA_def_cfa:
8787 return "DW_CFA_def_cfa";
8788 case DW_CFA_def_cfa_register:
8789 return "DW_CFA_def_cfa_register";
8790 case DW_CFA_def_cfa_offset:
8791 return "DW_CFA_def_cfa_offset";
8792 /* DWARF 3. */
8793 case DW_CFA_def_cfa_expression:
8794 return "DW_CFA_def_cfa_expression";
8795 case DW_CFA_expression:
8796 return "DW_CFA_expression";
8797 case DW_CFA_offset_extended_sf:
8798 return "DW_CFA_offset_extended_sf";
8799 case DW_CFA_def_cfa_sf:
8800 return "DW_CFA_def_cfa_sf";
8801 case DW_CFA_def_cfa_offset_sf:
8802 return "DW_CFA_def_cfa_offset_sf";
8803 case DW_CFA_val_offset:
8804 return "DW_CFA_val_offset";
8805 case DW_CFA_val_offset_sf:
8806 return "DW_CFA_val_offset_sf";
8807 case DW_CFA_val_expression:
8808 return "DW_CFA_val_expression";
8809 /* SGI/MIPS specific. */
8810 case DW_CFA_MIPS_advance_loc8:
8811 return "DW_CFA_MIPS_advance_loc8";
8812 /* GNU extensions. */
8813 case DW_CFA_GNU_window_save:
8814 return "DW_CFA_GNU_window_save";
8815 case DW_CFA_GNU_args_size:
8816 return "DW_CFA_GNU_args_size";
8817 case DW_CFA_GNU_negative_offset_extended:
8818 return "DW_CFA_GNU_negative_offset_extended";
8819 default:
8820 return "DW_CFA_<unknown>";
8821 }
8822 }
8823 #endif
8824
8825 static void
8826 dump_die (struct die_info *die)
8827 {
8828 unsigned int i;
8829
8830 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
8831 dwarf_tag_name (die->tag), die->abbrev, die->offset);
8832 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
8833 dwarf_bool_name (die->child != NULL));
8834
8835 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
8836 for (i = 0; i < die->num_attrs; ++i)
8837 {
8838 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
8839 dwarf_attr_name (die->attrs[i].name),
8840 dwarf_form_name (die->attrs[i].form));
8841 switch (die->attrs[i].form)
8842 {
8843 case DW_FORM_ref_addr:
8844 case DW_FORM_addr:
8845 fprintf_unfiltered (gdb_stderr, "address: ");
8846 deprecated_print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
8847 break;
8848 case DW_FORM_block2:
8849 case DW_FORM_block4:
8850 case DW_FORM_block:
8851 case DW_FORM_block1:
8852 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
8853 break;
8854 case DW_FORM_ref1:
8855 case DW_FORM_ref2:
8856 case DW_FORM_ref4:
8857 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8858 (long) (DW_ADDR (&die->attrs[i])));
8859 break;
8860 case DW_FORM_data1:
8861 case DW_FORM_data2:
8862 case DW_FORM_data4:
8863 case DW_FORM_data8:
8864 case DW_FORM_udata:
8865 case DW_FORM_sdata:
8866 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
8867 break;
8868 case DW_FORM_string:
8869 case DW_FORM_strp:
8870 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
8871 DW_STRING (&die->attrs[i])
8872 ? DW_STRING (&die->attrs[i]) : "");
8873 break;
8874 case DW_FORM_flag:
8875 if (DW_UNSND (&die->attrs[i]))
8876 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
8877 else
8878 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
8879 break;
8880 case DW_FORM_indirect:
8881 /* the reader will have reduced the indirect form to
8882 the "base form" so this form should not occur */
8883 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
8884 break;
8885 default:
8886 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
8887 die->attrs[i].form);
8888 }
8889 fprintf_unfiltered (gdb_stderr, "\n");
8890 }
8891 }
8892
8893 static void
8894 dump_die_list (struct die_info *die)
8895 {
8896 while (die)
8897 {
8898 dump_die (die);
8899 if (die->child != NULL)
8900 dump_die_list (die->child);
8901 if (die->sibling != NULL)
8902 dump_die_list (die->sibling);
8903 }
8904 }
8905
8906 static void
8907 store_in_ref_table (unsigned int offset, struct die_info *die,
8908 struct dwarf2_cu *cu)
8909 {
8910 int h;
8911 struct die_info *old;
8912
8913 h = (offset % REF_HASH_SIZE);
8914 old = cu->die_ref_table[h];
8915 die->next_ref = old;
8916 cu->die_ref_table[h] = die;
8917 }
8918
8919 static unsigned int
8920 dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
8921 {
8922 unsigned int result = 0;
8923
8924 switch (attr->form)
8925 {
8926 case DW_FORM_ref_addr:
8927 case DW_FORM_ref1:
8928 case DW_FORM_ref2:
8929 case DW_FORM_ref4:
8930 case DW_FORM_ref8:
8931 case DW_FORM_ref_udata:
8932 result = DW_ADDR (attr);
8933 break;
8934 default:
8935 complaint (&symfile_complaints,
8936 _("unsupported die ref attribute form: '%s'"),
8937 dwarf_form_name (attr->form));
8938 }
8939 return result;
8940 }
8941
8942 /* Return the constant value held by the given attribute. Return -1
8943 if the value held by the attribute is not constant. */
8944
8945 static int
8946 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
8947 {
8948 if (attr->form == DW_FORM_sdata)
8949 return DW_SND (attr);
8950 else if (attr->form == DW_FORM_udata
8951 || attr->form == DW_FORM_data1
8952 || attr->form == DW_FORM_data2
8953 || attr->form == DW_FORM_data4
8954 || attr->form == DW_FORM_data8)
8955 return DW_UNSND (attr);
8956 else
8957 {
8958 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
8959 dwarf_form_name (attr->form));
8960 return default_value;
8961 }
8962 }
8963
8964 static struct die_info *
8965 follow_die_ref (struct die_info *src_die, struct attribute *attr,
8966 struct dwarf2_cu *cu)
8967 {
8968 struct die_info *die;
8969 unsigned int offset;
8970 int h;
8971 struct die_info temp_die;
8972 struct dwarf2_cu *target_cu;
8973
8974 offset = dwarf2_get_ref_die_offset (attr, cu);
8975
8976 if (DW_ADDR (attr) < cu->header.offset
8977 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
8978 {
8979 struct dwarf2_per_cu_data *per_cu;
8980 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
8981 cu->objfile);
8982 target_cu = per_cu->cu;
8983 }
8984 else
8985 target_cu = cu;
8986
8987 h = (offset % REF_HASH_SIZE);
8988 die = target_cu->die_ref_table[h];
8989 while (die)
8990 {
8991 if (die->offset == offset)
8992 return die;
8993 die = die->next_ref;
8994 }
8995
8996 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
8997 "at 0x%lx [in module %s]"),
8998 (long) src_die->offset, (long) offset, cu->objfile->name);
8999
9000 return NULL;
9001 }
9002
9003 static struct type *
9004 dwarf2_fundamental_type (struct objfile *objfile, int typeid,
9005 struct dwarf2_cu *cu)
9006 {
9007 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
9008 {
9009 error (_("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]"),
9010 typeid, objfile->name);
9011 }
9012
9013 /* Look for this particular type in the fundamental type vector. If
9014 one is not found, create and install one appropriate for the
9015 current language and the current target machine. */
9016
9017 if (cu->ftypes[typeid] == NULL)
9018 {
9019 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
9020 }
9021
9022 return (cu->ftypes[typeid]);
9023 }
9024
9025 /* Decode simple location descriptions.
9026 Given a pointer to a dwarf block that defines a location, compute
9027 the location and return the value.
9028
9029 NOTE drow/2003-11-18: This function is called in two situations
9030 now: for the address of static or global variables (partial symbols
9031 only) and for offsets into structures which are expected to be
9032 (more or less) constant. The partial symbol case should go away,
9033 and only the constant case should remain. That will let this
9034 function complain more accurately. A few special modes are allowed
9035 without complaint for global variables (for instance, global
9036 register values and thread-local values).
9037
9038 A location description containing no operations indicates that the
9039 object is optimized out. The return value is 0 for that case.
9040 FIXME drow/2003-11-16: No callers check for this case any more; soon all
9041 callers will only want a very basic result and this can become a
9042 complaint.
9043
9044 Note that stack[0] is unused except as a default error return.
9045 Note that stack overflow is not yet handled. */
9046
9047 static CORE_ADDR
9048 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
9049 {
9050 struct objfile *objfile = cu->objfile;
9051 struct comp_unit_head *cu_header = &cu->header;
9052 int i;
9053 int size = blk->size;
9054 gdb_byte *data = blk->data;
9055 CORE_ADDR stack[64];
9056 int stacki;
9057 unsigned int bytes_read, unsnd;
9058 gdb_byte op;
9059
9060 i = 0;
9061 stacki = 0;
9062 stack[stacki] = 0;
9063
9064 while (i < size)
9065 {
9066 op = data[i++];
9067 switch (op)
9068 {
9069 case DW_OP_lit0:
9070 case DW_OP_lit1:
9071 case DW_OP_lit2:
9072 case DW_OP_lit3:
9073 case DW_OP_lit4:
9074 case DW_OP_lit5:
9075 case DW_OP_lit6:
9076 case DW_OP_lit7:
9077 case DW_OP_lit8:
9078 case DW_OP_lit9:
9079 case DW_OP_lit10:
9080 case DW_OP_lit11:
9081 case DW_OP_lit12:
9082 case DW_OP_lit13:
9083 case DW_OP_lit14:
9084 case DW_OP_lit15:
9085 case DW_OP_lit16:
9086 case DW_OP_lit17:
9087 case DW_OP_lit18:
9088 case DW_OP_lit19:
9089 case DW_OP_lit20:
9090 case DW_OP_lit21:
9091 case DW_OP_lit22:
9092 case DW_OP_lit23:
9093 case DW_OP_lit24:
9094 case DW_OP_lit25:
9095 case DW_OP_lit26:
9096 case DW_OP_lit27:
9097 case DW_OP_lit28:
9098 case DW_OP_lit29:
9099 case DW_OP_lit30:
9100 case DW_OP_lit31:
9101 stack[++stacki] = op - DW_OP_lit0;
9102 break;
9103
9104 case DW_OP_reg0:
9105 case DW_OP_reg1:
9106 case DW_OP_reg2:
9107 case DW_OP_reg3:
9108 case DW_OP_reg4:
9109 case DW_OP_reg5:
9110 case DW_OP_reg6:
9111 case DW_OP_reg7:
9112 case DW_OP_reg8:
9113 case DW_OP_reg9:
9114 case DW_OP_reg10:
9115 case DW_OP_reg11:
9116 case DW_OP_reg12:
9117 case DW_OP_reg13:
9118 case DW_OP_reg14:
9119 case DW_OP_reg15:
9120 case DW_OP_reg16:
9121 case DW_OP_reg17:
9122 case DW_OP_reg18:
9123 case DW_OP_reg19:
9124 case DW_OP_reg20:
9125 case DW_OP_reg21:
9126 case DW_OP_reg22:
9127 case DW_OP_reg23:
9128 case DW_OP_reg24:
9129 case DW_OP_reg25:
9130 case DW_OP_reg26:
9131 case DW_OP_reg27:
9132 case DW_OP_reg28:
9133 case DW_OP_reg29:
9134 case DW_OP_reg30:
9135 case DW_OP_reg31:
9136 stack[++stacki] = op - DW_OP_reg0;
9137 if (i < size)
9138 dwarf2_complex_location_expr_complaint ();
9139 break;
9140
9141 case DW_OP_regx:
9142 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9143 i += bytes_read;
9144 stack[++stacki] = unsnd;
9145 if (i < size)
9146 dwarf2_complex_location_expr_complaint ();
9147 break;
9148
9149 case DW_OP_addr:
9150 stack[++stacki] = read_address (objfile->obfd, &data[i],
9151 cu, &bytes_read);
9152 i += bytes_read;
9153 break;
9154
9155 case DW_OP_const1u:
9156 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
9157 i += 1;
9158 break;
9159
9160 case DW_OP_const1s:
9161 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
9162 i += 1;
9163 break;
9164
9165 case DW_OP_const2u:
9166 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
9167 i += 2;
9168 break;
9169
9170 case DW_OP_const2s:
9171 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
9172 i += 2;
9173 break;
9174
9175 case DW_OP_const4u:
9176 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
9177 i += 4;
9178 break;
9179
9180 case DW_OP_const4s:
9181 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
9182 i += 4;
9183 break;
9184
9185 case DW_OP_constu:
9186 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
9187 &bytes_read);
9188 i += bytes_read;
9189 break;
9190
9191 case DW_OP_consts:
9192 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
9193 i += bytes_read;
9194 break;
9195
9196 case DW_OP_dup:
9197 stack[stacki + 1] = stack[stacki];
9198 stacki++;
9199 break;
9200
9201 case DW_OP_plus:
9202 stack[stacki - 1] += stack[stacki];
9203 stacki--;
9204 break;
9205
9206 case DW_OP_plus_uconst:
9207 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9208 i += bytes_read;
9209 break;
9210
9211 case DW_OP_minus:
9212 stack[stacki - 1] -= stack[stacki];
9213 stacki--;
9214 break;
9215
9216 case DW_OP_deref:
9217 /* If we're not the last op, then we definitely can't encode
9218 this using GDB's address_class enum. This is valid for partial
9219 global symbols, although the variable's address will be bogus
9220 in the psymtab. */
9221 if (i < size)
9222 dwarf2_complex_location_expr_complaint ();
9223 break;
9224
9225 case DW_OP_GNU_push_tls_address:
9226 /* The top of the stack has the offset from the beginning
9227 of the thread control block at which the variable is located. */
9228 /* Nothing should follow this operator, so the top of stack would
9229 be returned. */
9230 /* This is valid for partial global symbols, but the variable's
9231 address will be bogus in the psymtab. */
9232 if (i < size)
9233 dwarf2_complex_location_expr_complaint ();
9234 break;
9235
9236 case DW_OP_GNU_uninit:
9237 break;
9238
9239 default:
9240 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
9241 dwarf_stack_op_name (op));
9242 return (stack[stacki]);
9243 }
9244 }
9245 return (stack[stacki]);
9246 }
9247
9248 /* memory allocation interface */
9249
9250 static struct dwarf_block *
9251 dwarf_alloc_block (struct dwarf2_cu *cu)
9252 {
9253 struct dwarf_block *blk;
9254
9255 blk = (struct dwarf_block *)
9256 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
9257 return (blk);
9258 }
9259
9260 static struct abbrev_info *
9261 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
9262 {
9263 struct abbrev_info *abbrev;
9264
9265 abbrev = (struct abbrev_info *)
9266 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
9267 memset (abbrev, 0, sizeof (struct abbrev_info));
9268 return (abbrev);
9269 }
9270
9271 static struct die_info *
9272 dwarf_alloc_die (void)
9273 {
9274 struct die_info *die;
9275
9276 die = (struct die_info *) xmalloc (sizeof (struct die_info));
9277 memset (die, 0, sizeof (struct die_info));
9278 return (die);
9279 }
9280
9281 \f
9282 /* Macro support. */
9283
9284
9285 /* Return the full name of file number I in *LH's file name table.
9286 Use COMP_DIR as the name of the current directory of the
9287 compilation. The result is allocated using xmalloc; the caller is
9288 responsible for freeing it. */
9289 static char *
9290 file_full_name (int file, struct line_header *lh, const char *comp_dir)
9291 {
9292 /* Is the file number a valid index into the line header's file name
9293 table? Remember that file numbers start with one, not zero. */
9294 if (1 <= file && file <= lh->num_file_names)
9295 {
9296 struct file_entry *fe = &lh->file_names[file - 1];
9297
9298 if (IS_ABSOLUTE_PATH (fe->name))
9299 return xstrdup (fe->name);
9300 else
9301 {
9302 const char *dir;
9303 int dir_len;
9304 char *full_name;
9305
9306 if (fe->dir_index)
9307 dir = lh->include_dirs[fe->dir_index - 1];
9308 else
9309 dir = comp_dir;
9310
9311 if (dir)
9312 {
9313 dir_len = strlen (dir);
9314 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
9315 strcpy (full_name, dir);
9316 full_name[dir_len] = '/';
9317 strcpy (full_name + dir_len + 1, fe->name);
9318 return full_name;
9319 }
9320 else
9321 return xstrdup (fe->name);
9322 }
9323 }
9324 else
9325 {
9326 /* The compiler produced a bogus file number. We can at least
9327 record the macro definitions made in the file, even if we
9328 won't be able to find the file by name. */
9329 char fake_name[80];
9330 sprintf (fake_name, "<bad macro file number %d>", file);
9331
9332 complaint (&symfile_complaints,
9333 _("bad file number in macro information (%d)"),
9334 file);
9335
9336 return xstrdup (fake_name);
9337 }
9338 }
9339
9340
9341 static struct macro_source_file *
9342 macro_start_file (int file, int line,
9343 struct macro_source_file *current_file,
9344 const char *comp_dir,
9345 struct line_header *lh, struct objfile *objfile)
9346 {
9347 /* The full name of this source file. */
9348 char *full_name = file_full_name (file, lh, comp_dir);
9349
9350 /* We don't create a macro table for this compilation unit
9351 at all until we actually get a filename. */
9352 if (! pending_macros)
9353 pending_macros = new_macro_table (&objfile->objfile_obstack,
9354 objfile->macro_cache);
9355
9356 if (! current_file)
9357 /* If we have no current file, then this must be the start_file
9358 directive for the compilation unit's main source file. */
9359 current_file = macro_set_main (pending_macros, full_name);
9360 else
9361 current_file = macro_include (current_file, line, full_name);
9362
9363 xfree (full_name);
9364
9365 return current_file;
9366 }
9367
9368
9369 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
9370 followed by a null byte. */
9371 static char *
9372 copy_string (const char *buf, int len)
9373 {
9374 char *s = xmalloc (len + 1);
9375 memcpy (s, buf, len);
9376 s[len] = '\0';
9377
9378 return s;
9379 }
9380
9381
9382 static const char *
9383 consume_improper_spaces (const char *p, const char *body)
9384 {
9385 if (*p == ' ')
9386 {
9387 complaint (&symfile_complaints,
9388 _("macro definition contains spaces in formal argument list:\n`%s'"),
9389 body);
9390
9391 while (*p == ' ')
9392 p++;
9393 }
9394
9395 return p;
9396 }
9397
9398
9399 static void
9400 parse_macro_definition (struct macro_source_file *file, int line,
9401 const char *body)
9402 {
9403 const char *p;
9404
9405 /* The body string takes one of two forms. For object-like macro
9406 definitions, it should be:
9407
9408 <macro name> " " <definition>
9409
9410 For function-like macro definitions, it should be:
9411
9412 <macro name> "() " <definition>
9413 or
9414 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
9415
9416 Spaces may appear only where explicitly indicated, and in the
9417 <definition>.
9418
9419 The Dwarf 2 spec says that an object-like macro's name is always
9420 followed by a space, but versions of GCC around March 2002 omit
9421 the space when the macro's definition is the empty string.
9422
9423 The Dwarf 2 spec says that there should be no spaces between the
9424 formal arguments in a function-like macro's formal argument list,
9425 but versions of GCC around March 2002 include spaces after the
9426 commas. */
9427
9428
9429 /* Find the extent of the macro name. The macro name is terminated
9430 by either a space or null character (for an object-like macro) or
9431 an opening paren (for a function-like macro). */
9432 for (p = body; *p; p++)
9433 if (*p == ' ' || *p == '(')
9434 break;
9435
9436 if (*p == ' ' || *p == '\0')
9437 {
9438 /* It's an object-like macro. */
9439 int name_len = p - body;
9440 char *name = copy_string (body, name_len);
9441 const char *replacement;
9442
9443 if (*p == ' ')
9444 replacement = body + name_len + 1;
9445 else
9446 {
9447 dwarf2_macro_malformed_definition_complaint (body);
9448 replacement = body + name_len;
9449 }
9450
9451 macro_define_object (file, line, name, replacement);
9452
9453 xfree (name);
9454 }
9455 else if (*p == '(')
9456 {
9457 /* It's a function-like macro. */
9458 char *name = copy_string (body, p - body);
9459 int argc = 0;
9460 int argv_size = 1;
9461 char **argv = xmalloc (argv_size * sizeof (*argv));
9462
9463 p++;
9464
9465 p = consume_improper_spaces (p, body);
9466
9467 /* Parse the formal argument list. */
9468 while (*p && *p != ')')
9469 {
9470 /* Find the extent of the current argument name. */
9471 const char *arg_start = p;
9472
9473 while (*p && *p != ',' && *p != ')' && *p != ' ')
9474 p++;
9475
9476 if (! *p || p == arg_start)
9477 dwarf2_macro_malformed_definition_complaint (body);
9478 else
9479 {
9480 /* Make sure argv has room for the new argument. */
9481 if (argc >= argv_size)
9482 {
9483 argv_size *= 2;
9484 argv = xrealloc (argv, argv_size * sizeof (*argv));
9485 }
9486
9487 argv[argc++] = copy_string (arg_start, p - arg_start);
9488 }
9489
9490 p = consume_improper_spaces (p, body);
9491
9492 /* Consume the comma, if present. */
9493 if (*p == ',')
9494 {
9495 p++;
9496
9497 p = consume_improper_spaces (p, body);
9498 }
9499 }
9500
9501 if (*p == ')')
9502 {
9503 p++;
9504
9505 if (*p == ' ')
9506 /* Perfectly formed definition, no complaints. */
9507 macro_define_function (file, line, name,
9508 argc, (const char **) argv,
9509 p + 1);
9510 else if (*p == '\0')
9511 {
9512 /* Complain, but do define it. */
9513 dwarf2_macro_malformed_definition_complaint (body);
9514 macro_define_function (file, line, name,
9515 argc, (const char **) argv,
9516 p);
9517 }
9518 else
9519 /* Just complain. */
9520 dwarf2_macro_malformed_definition_complaint (body);
9521 }
9522 else
9523 /* Just complain. */
9524 dwarf2_macro_malformed_definition_complaint (body);
9525
9526 xfree (name);
9527 {
9528 int i;
9529
9530 for (i = 0; i < argc; i++)
9531 xfree (argv[i]);
9532 }
9533 xfree (argv);
9534 }
9535 else
9536 dwarf2_macro_malformed_definition_complaint (body);
9537 }
9538
9539
9540 static void
9541 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9542 char *comp_dir, bfd *abfd,
9543 struct dwarf2_cu *cu)
9544 {
9545 gdb_byte *mac_ptr, *mac_end;
9546 struct macro_source_file *current_file = 0;
9547
9548 if (dwarf2_per_objfile->macinfo_buffer == NULL)
9549 {
9550 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
9551 return;
9552 }
9553
9554 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9555 mac_end = dwarf2_per_objfile->macinfo_buffer
9556 + dwarf2_per_objfile->macinfo_size;
9557
9558 for (;;)
9559 {
9560 enum dwarf_macinfo_record_type macinfo_type;
9561
9562 /* Do we at least have room for a macinfo type byte? */
9563 if (mac_ptr >= mac_end)
9564 {
9565 dwarf2_macros_too_long_complaint ();
9566 return;
9567 }
9568
9569 macinfo_type = read_1_byte (abfd, mac_ptr);
9570 mac_ptr++;
9571
9572 switch (macinfo_type)
9573 {
9574 /* A zero macinfo type indicates the end of the macro
9575 information. */
9576 case 0:
9577 return;
9578
9579 case DW_MACINFO_define:
9580 case DW_MACINFO_undef:
9581 {
9582 unsigned int bytes_read;
9583 int line;
9584 char *body;
9585
9586 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9587 mac_ptr += bytes_read;
9588 body = read_string (abfd, mac_ptr, &bytes_read);
9589 mac_ptr += bytes_read;
9590
9591 if (! current_file)
9592 complaint (&symfile_complaints,
9593 _("debug info gives macro %s outside of any file: %s"),
9594 macinfo_type ==
9595 DW_MACINFO_define ? "definition" : macinfo_type ==
9596 DW_MACINFO_undef ? "undefinition" :
9597 "something-or-other", body);
9598 else
9599 {
9600 if (macinfo_type == DW_MACINFO_define)
9601 parse_macro_definition (current_file, line, body);
9602 else if (macinfo_type == DW_MACINFO_undef)
9603 macro_undef (current_file, line, body);
9604 }
9605 }
9606 break;
9607
9608 case DW_MACINFO_start_file:
9609 {
9610 unsigned int bytes_read;
9611 int line, file;
9612
9613 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9614 mac_ptr += bytes_read;
9615 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9616 mac_ptr += bytes_read;
9617
9618 current_file = macro_start_file (file, line,
9619 current_file, comp_dir,
9620 lh, cu->objfile);
9621 }
9622 break;
9623
9624 case DW_MACINFO_end_file:
9625 if (! current_file)
9626 complaint (&symfile_complaints,
9627 _("macro debug info has an unmatched `close_file' directive"));
9628 else
9629 {
9630 current_file = current_file->included_by;
9631 if (! current_file)
9632 {
9633 enum dwarf_macinfo_record_type next_type;
9634
9635 /* GCC circa March 2002 doesn't produce the zero
9636 type byte marking the end of the compilation
9637 unit. Complain if it's not there, but exit no
9638 matter what. */
9639
9640 /* Do we at least have room for a macinfo type byte? */
9641 if (mac_ptr >= mac_end)
9642 {
9643 dwarf2_macros_too_long_complaint ();
9644 return;
9645 }
9646
9647 /* We don't increment mac_ptr here, so this is just
9648 a look-ahead. */
9649 next_type = read_1_byte (abfd, mac_ptr);
9650 if (next_type != 0)
9651 complaint (&symfile_complaints,
9652 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
9653
9654 return;
9655 }
9656 }
9657 break;
9658
9659 case DW_MACINFO_vendor_ext:
9660 {
9661 unsigned int bytes_read;
9662 int constant;
9663 char *string;
9664
9665 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9666 mac_ptr += bytes_read;
9667 string = read_string (abfd, mac_ptr, &bytes_read);
9668 mac_ptr += bytes_read;
9669
9670 /* We don't recognize any vendor extensions. */
9671 }
9672 break;
9673 }
9674 }
9675 }
9676
9677 /* Check if the attribute's form is a DW_FORM_block*
9678 if so return true else false. */
9679 static int
9680 attr_form_is_block (struct attribute *attr)
9681 {
9682 return (attr == NULL ? 0 :
9683 attr->form == DW_FORM_block1
9684 || attr->form == DW_FORM_block2
9685 || attr->form == DW_FORM_block4
9686 || attr->form == DW_FORM_block);
9687 }
9688
9689 static void
9690 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
9691 struct dwarf2_cu *cu)
9692 {
9693 if ((attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
9694 /* ".debug_loc" may not exist at all, or the offset may be outside
9695 the section. If so, fall through to the complaint in the
9696 other branch. */
9697 && DW_UNSND (attr) < dwarf2_per_objfile->loc_size)
9698 {
9699 struct dwarf2_loclist_baton *baton;
9700
9701 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9702 sizeof (struct dwarf2_loclist_baton));
9703 baton->objfile = cu->objfile;
9704
9705 /* We don't know how long the location list is, but make sure we
9706 don't run off the edge of the section. */
9707 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9708 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
9709 baton->base_address = cu->header.base_address;
9710 if (cu->header.base_known == 0)
9711 complaint (&symfile_complaints,
9712 _("Location list used without specifying the CU base address."));
9713
9714 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
9715 SYMBOL_LOCATION_BATON (sym) = baton;
9716 }
9717 else
9718 {
9719 struct dwarf2_locexpr_baton *baton;
9720
9721 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9722 sizeof (struct dwarf2_locexpr_baton));
9723 baton->objfile = cu->objfile;
9724
9725 if (attr_form_is_block (attr))
9726 {
9727 /* Note that we're just copying the block's data pointer
9728 here, not the actual data. We're still pointing into the
9729 info_buffer for SYM's objfile; right now we never release
9730 that buffer, but when we do clean up properly this may
9731 need to change. */
9732 baton->size = DW_BLOCK (attr)->size;
9733 baton->data = DW_BLOCK (attr)->data;
9734 }
9735 else
9736 {
9737 dwarf2_invalid_attrib_class_complaint ("location description",
9738 SYMBOL_NATURAL_NAME (sym));
9739 baton->size = 0;
9740 baton->data = NULL;
9741 }
9742
9743 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
9744 SYMBOL_LOCATION_BATON (sym) = baton;
9745 }
9746 }
9747
9748 /* Locate the compilation unit from CU's objfile which contains the
9749 DIE at OFFSET. Raises an error on failure. */
9750
9751 static struct dwarf2_per_cu_data *
9752 dwarf2_find_containing_comp_unit (unsigned long offset,
9753 struct objfile *objfile)
9754 {
9755 struct dwarf2_per_cu_data *this_cu;
9756 int low, high;
9757
9758 low = 0;
9759 high = dwarf2_per_objfile->n_comp_units - 1;
9760 while (high > low)
9761 {
9762 int mid = low + (high - low) / 2;
9763 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9764 high = mid;
9765 else
9766 low = mid + 1;
9767 }
9768 gdb_assert (low == high);
9769 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9770 {
9771 if (low == 0)
9772 error (_("Dwarf Error: could not find partial DIE containing "
9773 "offset 0x%lx [in module %s]"),
9774 (long) offset, bfd_get_filename (objfile->obfd));
9775
9776 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9777 return dwarf2_per_objfile->all_comp_units[low-1];
9778 }
9779 else
9780 {
9781 this_cu = dwarf2_per_objfile->all_comp_units[low];
9782 if (low == dwarf2_per_objfile->n_comp_units - 1
9783 && offset >= this_cu->offset + this_cu->length)
9784 error (_("invalid dwarf2 offset %ld"), offset);
9785 gdb_assert (offset < this_cu->offset + this_cu->length);
9786 return this_cu;
9787 }
9788 }
9789
9790 /* Locate the compilation unit from OBJFILE which is located at exactly
9791 OFFSET. Raises an error on failure. */
9792
9793 static struct dwarf2_per_cu_data *
9794 dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9795 {
9796 struct dwarf2_per_cu_data *this_cu;
9797 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9798 if (this_cu->offset != offset)
9799 error (_("no compilation unit with offset %ld."), offset);
9800 return this_cu;
9801 }
9802
9803 /* Release one cached compilation unit, CU. We unlink it from the tree
9804 of compilation units, but we don't remove it from the read_in_chain;
9805 the caller is responsible for that. */
9806
9807 static void
9808 free_one_comp_unit (void *data)
9809 {
9810 struct dwarf2_cu *cu = data;
9811
9812 if (cu->per_cu != NULL)
9813 cu->per_cu->cu = NULL;
9814 cu->per_cu = NULL;
9815
9816 obstack_free (&cu->comp_unit_obstack, NULL);
9817 if (cu->dies)
9818 free_die_list (cu->dies);
9819
9820 xfree (cu);
9821 }
9822
9823 /* This cleanup function is passed the address of a dwarf2_cu on the stack
9824 when we're finished with it. We can't free the pointer itself, but be
9825 sure to unlink it from the cache. Also release any associated storage
9826 and perform cache maintenance.
9827
9828 Only used during partial symbol parsing. */
9829
9830 static void
9831 free_stack_comp_unit (void *data)
9832 {
9833 struct dwarf2_cu *cu = data;
9834
9835 obstack_free (&cu->comp_unit_obstack, NULL);
9836 cu->partial_dies = NULL;
9837
9838 if (cu->per_cu != NULL)
9839 {
9840 /* This compilation unit is on the stack in our caller, so we
9841 should not xfree it. Just unlink it. */
9842 cu->per_cu->cu = NULL;
9843 cu->per_cu = NULL;
9844
9845 /* If we had a per-cu pointer, then we may have other compilation
9846 units loaded, so age them now. */
9847 age_cached_comp_units ();
9848 }
9849 }
9850
9851 /* Free all cached compilation units. */
9852
9853 static void
9854 free_cached_comp_units (void *data)
9855 {
9856 struct dwarf2_per_cu_data *per_cu, **last_chain;
9857
9858 per_cu = dwarf2_per_objfile->read_in_chain;
9859 last_chain = &dwarf2_per_objfile->read_in_chain;
9860 while (per_cu != NULL)
9861 {
9862 struct dwarf2_per_cu_data *next_cu;
9863
9864 next_cu = per_cu->cu->read_in_chain;
9865
9866 free_one_comp_unit (per_cu->cu);
9867 *last_chain = next_cu;
9868
9869 per_cu = next_cu;
9870 }
9871 }
9872
9873 /* Increase the age counter on each cached compilation unit, and free
9874 any that are too old. */
9875
9876 static void
9877 age_cached_comp_units (void)
9878 {
9879 struct dwarf2_per_cu_data *per_cu, **last_chain;
9880
9881 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9882 per_cu = dwarf2_per_objfile->read_in_chain;
9883 while (per_cu != NULL)
9884 {
9885 per_cu->cu->last_used ++;
9886 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
9887 dwarf2_mark (per_cu->cu);
9888 per_cu = per_cu->cu->read_in_chain;
9889 }
9890
9891 per_cu = dwarf2_per_objfile->read_in_chain;
9892 last_chain = &dwarf2_per_objfile->read_in_chain;
9893 while (per_cu != NULL)
9894 {
9895 struct dwarf2_per_cu_data *next_cu;
9896
9897 next_cu = per_cu->cu->read_in_chain;
9898
9899 if (!per_cu->cu->mark)
9900 {
9901 free_one_comp_unit (per_cu->cu);
9902 *last_chain = next_cu;
9903 }
9904 else
9905 last_chain = &per_cu->cu->read_in_chain;
9906
9907 per_cu = next_cu;
9908 }
9909 }
9910
9911 /* Remove a single compilation unit from the cache. */
9912
9913 static void
9914 free_one_cached_comp_unit (void *target_cu)
9915 {
9916 struct dwarf2_per_cu_data *per_cu, **last_chain;
9917
9918 per_cu = dwarf2_per_objfile->read_in_chain;
9919 last_chain = &dwarf2_per_objfile->read_in_chain;
9920 while (per_cu != NULL)
9921 {
9922 struct dwarf2_per_cu_data *next_cu;
9923
9924 next_cu = per_cu->cu->read_in_chain;
9925
9926 if (per_cu->cu == target_cu)
9927 {
9928 free_one_comp_unit (per_cu->cu);
9929 *last_chain = next_cu;
9930 break;
9931 }
9932 else
9933 last_chain = &per_cu->cu->read_in_chain;
9934
9935 per_cu = next_cu;
9936 }
9937 }
9938
9939 /* A pair of DIE offset and GDB type pointer. We store these
9940 in a hash table separate from the DIEs, and preserve them
9941 when the DIEs are flushed out of cache. */
9942
9943 struct dwarf2_offset_and_type
9944 {
9945 unsigned int offset;
9946 struct type *type;
9947 };
9948
9949 /* Hash function for a dwarf2_offset_and_type. */
9950
9951 static hashval_t
9952 offset_and_type_hash (const void *item)
9953 {
9954 const struct dwarf2_offset_and_type *ofs = item;
9955 return ofs->offset;
9956 }
9957
9958 /* Equality function for a dwarf2_offset_and_type. */
9959
9960 static int
9961 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
9962 {
9963 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
9964 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9965 return ofs_lhs->offset == ofs_rhs->offset;
9966 }
9967
9968 /* Set the type associated with DIE to TYPE. Save it in CU's hash
9969 table if necessary. */
9970
9971 static void
9972 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
9973 {
9974 struct dwarf2_offset_and_type **slot, ofs;
9975
9976 die->type = type;
9977
9978 if (cu->per_cu == NULL)
9979 return;
9980
9981 if (cu->per_cu->type_hash == NULL)
9982 cu->per_cu->type_hash
9983 = htab_create_alloc_ex (cu->header.length / 24,
9984 offset_and_type_hash,
9985 offset_and_type_eq,
9986 NULL,
9987 &cu->objfile->objfile_obstack,
9988 hashtab_obstack_allocate,
9989 dummy_obstack_deallocate);
9990
9991 ofs.offset = die->offset;
9992 ofs.type = type;
9993 slot = (struct dwarf2_offset_and_type **)
9994 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
9995 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
9996 **slot = ofs;
9997 }
9998
9999 /* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
10000 have a saved type. */
10001
10002 static struct type *
10003 get_die_type (struct die_info *die, htab_t type_hash)
10004 {
10005 struct dwarf2_offset_and_type *slot, ofs;
10006
10007 ofs.offset = die->offset;
10008 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
10009 if (slot)
10010 return slot->type;
10011 else
10012 return NULL;
10013 }
10014
10015 /* Restore the types of the DIE tree starting at START_DIE from the hash
10016 table saved in CU. */
10017
10018 static void
10019 reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
10020 {
10021 struct die_info *die;
10022
10023 if (cu->per_cu->type_hash == NULL)
10024 return;
10025
10026 for (die = start_die; die != NULL; die = die->sibling)
10027 {
10028 die->type = get_die_type (die, cu->per_cu->type_hash);
10029 if (die->child != NULL)
10030 reset_die_and_siblings_types (die->child, cu);
10031 }
10032 }
10033
10034 /* Set the mark field in CU and in every other compilation unit in the
10035 cache that we must keep because we are keeping CU. */
10036
10037 /* Add a dependence relationship from CU to REF_PER_CU. */
10038
10039 static void
10040 dwarf2_add_dependence (struct dwarf2_cu *cu,
10041 struct dwarf2_per_cu_data *ref_per_cu)
10042 {
10043 void **slot;
10044
10045 if (cu->dependencies == NULL)
10046 cu->dependencies
10047 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
10048 NULL, &cu->comp_unit_obstack,
10049 hashtab_obstack_allocate,
10050 dummy_obstack_deallocate);
10051
10052 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
10053 if (*slot == NULL)
10054 *slot = ref_per_cu;
10055 }
10056
10057 /* Set the mark field in CU and in every other compilation unit in the
10058 cache that we must keep because we are keeping CU. */
10059
10060 static int
10061 dwarf2_mark_helper (void **slot, void *data)
10062 {
10063 struct dwarf2_per_cu_data *per_cu;
10064
10065 per_cu = (struct dwarf2_per_cu_data *) *slot;
10066 if (per_cu->cu->mark)
10067 return 1;
10068 per_cu->cu->mark = 1;
10069
10070 if (per_cu->cu->dependencies != NULL)
10071 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
10072
10073 return 1;
10074 }
10075
10076 static void
10077 dwarf2_mark (struct dwarf2_cu *cu)
10078 {
10079 if (cu->mark)
10080 return;
10081 cu->mark = 1;
10082 if (cu->dependencies != NULL)
10083 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
10084 }
10085
10086 static void
10087 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
10088 {
10089 while (per_cu)
10090 {
10091 per_cu->cu->mark = 0;
10092 per_cu = per_cu->cu->read_in_chain;
10093 }
10094 }
10095
10096 /* Trivial hash function for partial_die_info: the hash value of a DIE
10097 is its offset in .debug_info for this objfile. */
10098
10099 static hashval_t
10100 partial_die_hash (const void *item)
10101 {
10102 const struct partial_die_info *part_die = item;
10103 return part_die->offset;
10104 }
10105
10106 /* Trivial comparison function for partial_die_info structures: two DIEs
10107 are equal if they have the same offset. */
10108
10109 static int
10110 partial_die_eq (const void *item_lhs, const void *item_rhs)
10111 {
10112 const struct partial_die_info *part_die_lhs = item_lhs;
10113 const struct partial_die_info *part_die_rhs = item_rhs;
10114 return part_die_lhs->offset == part_die_rhs->offset;
10115 }
10116
10117 static struct cmd_list_element *set_dwarf2_cmdlist;
10118 static struct cmd_list_element *show_dwarf2_cmdlist;
10119
10120 static void
10121 set_dwarf2_cmd (char *args, int from_tty)
10122 {
10123 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
10124 }
10125
10126 static void
10127 show_dwarf2_cmd (char *args, int from_tty)
10128 {
10129 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
10130 }
10131
10132 void _initialize_dwarf2_read (void);
10133
10134 void
10135 _initialize_dwarf2_read (void)
10136 {
10137 dwarf2_objfile_data_key = register_objfile_data ();
10138
10139 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
10140 Set DWARF 2 specific variables.\n\
10141 Configure DWARF 2 variables such as the cache size"),
10142 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
10143 0/*allow-unknown*/, &maintenance_set_cmdlist);
10144
10145 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
10146 Show DWARF 2 specific variables\n\
10147 Show DWARF 2 variables such as the cache size"),
10148 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
10149 0/*allow-unknown*/, &maintenance_show_cmdlist);
10150
10151 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
10152 &dwarf2_max_cache_age, _("\
10153 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
10154 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
10155 A higher limit means that cached compilation units will be stored\n\
10156 in memory longer, and more total memory will be used. Zero disables\n\
10157 caching, which can slow down startup."),
10158 NULL,
10159 show_dwarf2_max_cache_age,
10160 &set_dwarf2_cmdlist,
10161 &show_dwarf2_cmdlist);
10162 }
This page took 0.239663 seconds and 5 git commands to generate.