Remove DEF_VECs from symtab.h
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "bcache.h"
50 #include "dwarf2expr.h"
51 #include "dwarf2loc.h"
52 #include "cp-support.h"
53 #include "hashtab.h"
54 #include "command.h"
55 #include "gdbcmd.h"
56 #include "block.h"
57 #include "addrmap.h"
58 #include "typeprint.h"
59 #include "psympriv.h"
60 #include <sys/stat.h>
61 #include "completer.h"
62 #include "vec.h"
63 #include "c-lang.h"
64 #include "go-lang.h"
65 #include "valprint.h"
66 #include "gdbcore.h" /* for gnutarget */
67 #include "gdb/gdb-index.h"
68 #include <ctype.h>
69 #include "gdb_bfd.h"
70 #include "f-lang.h"
71 #include "source.h"
72 #include "filestuff.h"
73 #include "build-id.h"
74 #include "namespace.h"
75 #include "common/gdb_unlinker.h"
76 #include "common/function-view.h"
77 #include "common/gdb_optional.h"
78 #include "common/underlying.h"
79 #include "common/byte-vector.h"
80 #include "common/hash_enum.h"
81 #include "filename-seen-cache.h"
82 #include "producer.h"
83 #include <fcntl.h>
84 #include <sys/types.h>
85 #include <algorithm>
86 #include <unordered_set>
87 #include <unordered_map>
88 #include "selftest.h"
89 #include <cmath>
90 #include <set>
91 #include <forward_list>
92 #include "rust-lang.h"
93 #include "common/pathstuff.h"
94
95 /* When == 1, print basic high level tracing messages.
96 When > 1, be more verbose.
97 This is in contrast to the low level DIE reading of dwarf_die_debug. */
98 static unsigned int dwarf_read_debug = 0;
99
100 /* When non-zero, dump DIEs after they are read in. */
101 static unsigned int dwarf_die_debug = 0;
102
103 /* When non-zero, dump line number entries as they are read in. */
104 static unsigned int dwarf_line_debug = 0;
105
106 /* When non-zero, cross-check physname against demangler. */
107 static int check_physname = 0;
108
109 /* When non-zero, do not reject deprecated .gdb_index sections. */
110 static int use_deprecated_index_sections = 0;
111
112 static const struct objfile_data *dwarf2_objfile_data_key;
113
114 /* The "aclass" indices for various kinds of computed DWARF symbols. */
115
116 static int dwarf2_locexpr_index;
117 static int dwarf2_loclist_index;
118 static int dwarf2_locexpr_block_index;
119 static int dwarf2_loclist_block_index;
120
121 /* An index into a (C++) symbol name component in a symbol name as
122 recorded in the mapped_index's symbol table. For each C++ symbol
123 in the symbol table, we record one entry for the start of each
124 component in the symbol in a table of name components, and then
125 sort the table, in order to be able to binary search symbol names,
126 ignoring leading namespaces, both completion and regular look up.
127 For example, for symbol "A::B::C", we'll have an entry that points
128 to "A::B::C", another that points to "B::C", and another for "C".
129 Note that function symbols in GDB index have no parameter
130 information, just the function/method names. You can convert a
131 name_component to a "const char *" using the
132 'mapped_index::symbol_name_at(offset_type)' method. */
133
134 struct name_component
135 {
136 /* Offset in the symbol name where the component starts. Stored as
137 a (32-bit) offset instead of a pointer to save memory and improve
138 locality on 64-bit architectures. */
139 offset_type name_offset;
140
141 /* The symbol's index in the symbol and constant pool tables of a
142 mapped_index. */
143 offset_type idx;
144 };
145
146 /* Base class containing bits shared by both .gdb_index and
147 .debug_name indexes. */
148
149 struct mapped_index_base
150 {
151 mapped_index_base () = default;
152 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
153
154 /* The name_component table (a sorted vector). See name_component's
155 description above. */
156 std::vector<name_component> name_components;
157
158 /* How NAME_COMPONENTS is sorted. */
159 enum case_sensitivity name_components_casing;
160
161 /* Return the number of names in the symbol table. */
162 virtual size_t symbol_name_count () const = 0;
163
164 /* Get the name of the symbol at IDX in the symbol table. */
165 virtual const char *symbol_name_at (offset_type idx) const = 0;
166
167 /* Return whether the name at IDX in the symbol table should be
168 ignored. */
169 virtual bool symbol_name_slot_invalid (offset_type idx) const
170 {
171 return false;
172 }
173
174 /* Build the symbol name component sorted vector, if we haven't
175 yet. */
176 void build_name_components ();
177
178 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
179 possible matches for LN_NO_PARAMS in the name component
180 vector. */
181 std::pair<std::vector<name_component>::const_iterator,
182 std::vector<name_component>::const_iterator>
183 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
184
185 /* Prevent deleting/destroying via a base class pointer. */
186 protected:
187 ~mapped_index_base() = default;
188 };
189
190 /* A description of the mapped index. The file format is described in
191 a comment by the code that writes the index. */
192 struct mapped_index final : public mapped_index_base
193 {
194 /* A slot/bucket in the symbol table hash. */
195 struct symbol_table_slot
196 {
197 const offset_type name;
198 const offset_type vec;
199 };
200
201 /* Index data format version. */
202 int version = 0;
203
204 /* The address table data. */
205 gdb::array_view<const gdb_byte> address_table;
206
207 /* The symbol table, implemented as a hash table. */
208 gdb::array_view<symbol_table_slot> symbol_table;
209
210 /* A pointer to the constant pool. */
211 const char *constant_pool = nullptr;
212
213 bool symbol_name_slot_invalid (offset_type idx) const override
214 {
215 const auto &bucket = this->symbol_table[idx];
216 return bucket.name == 0 && bucket.vec;
217 }
218
219 /* Convenience method to get at the name of the symbol at IDX in the
220 symbol table. */
221 const char *symbol_name_at (offset_type idx) const override
222 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
223
224 size_t symbol_name_count () const override
225 { return this->symbol_table.size (); }
226 };
227
228 /* A description of the mapped .debug_names.
229 Uninitialized map has CU_COUNT 0. */
230 struct mapped_debug_names final : public mapped_index_base
231 {
232 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
233 : dwarf2_per_objfile (dwarf2_per_objfile_)
234 {}
235
236 struct dwarf2_per_objfile *dwarf2_per_objfile;
237 bfd_endian dwarf5_byte_order;
238 bool dwarf5_is_dwarf64;
239 bool augmentation_is_gdb;
240 uint8_t offset_size;
241 uint32_t cu_count = 0;
242 uint32_t tu_count, bucket_count, name_count;
243 const gdb_byte *cu_table_reordered, *tu_table_reordered;
244 const uint32_t *bucket_table_reordered, *hash_table_reordered;
245 const gdb_byte *name_table_string_offs_reordered;
246 const gdb_byte *name_table_entry_offs_reordered;
247 const gdb_byte *entry_pool;
248
249 struct index_val
250 {
251 ULONGEST dwarf_tag;
252 struct attr
253 {
254 /* Attribute name DW_IDX_*. */
255 ULONGEST dw_idx;
256
257 /* Attribute form DW_FORM_*. */
258 ULONGEST form;
259
260 /* Value if FORM is DW_FORM_implicit_const. */
261 LONGEST implicit_const;
262 };
263 std::vector<attr> attr_vec;
264 };
265
266 std::unordered_map<ULONGEST, index_val> abbrev_map;
267
268 const char *namei_to_name (uint32_t namei) const;
269
270 /* Implementation of the mapped_index_base virtual interface, for
271 the name_components cache. */
272
273 const char *symbol_name_at (offset_type idx) const override
274 { return namei_to_name (idx); }
275
276 size_t symbol_name_count () const override
277 { return this->name_count; }
278 };
279
280 /* See dwarf2read.h. */
281
282 dwarf2_per_objfile *
283 get_dwarf2_per_objfile (struct objfile *objfile)
284 {
285 return ((struct dwarf2_per_objfile *)
286 objfile_data (objfile, dwarf2_objfile_data_key));
287 }
288
289 /* Set the dwarf2_per_objfile associated to OBJFILE. */
290
291 void
292 set_dwarf2_per_objfile (struct objfile *objfile,
293 struct dwarf2_per_objfile *dwarf2_per_objfile)
294 {
295 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
296 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
297 }
298
299 /* Default names of the debugging sections. */
300
301 /* Note that if the debugging section has been compressed, it might
302 have a name like .zdebug_info. */
303
304 static const struct dwarf2_debug_sections dwarf2_elf_names =
305 {
306 { ".debug_info", ".zdebug_info" },
307 { ".debug_abbrev", ".zdebug_abbrev" },
308 { ".debug_line", ".zdebug_line" },
309 { ".debug_loc", ".zdebug_loc" },
310 { ".debug_loclists", ".zdebug_loclists" },
311 { ".debug_macinfo", ".zdebug_macinfo" },
312 { ".debug_macro", ".zdebug_macro" },
313 { ".debug_str", ".zdebug_str" },
314 { ".debug_line_str", ".zdebug_line_str" },
315 { ".debug_ranges", ".zdebug_ranges" },
316 { ".debug_rnglists", ".zdebug_rnglists" },
317 { ".debug_types", ".zdebug_types" },
318 { ".debug_addr", ".zdebug_addr" },
319 { ".debug_frame", ".zdebug_frame" },
320 { ".eh_frame", NULL },
321 { ".gdb_index", ".zgdb_index" },
322 { ".debug_names", ".zdebug_names" },
323 { ".debug_aranges", ".zdebug_aranges" },
324 23
325 };
326
327 /* List of DWO/DWP sections. */
328
329 static const struct dwop_section_names
330 {
331 struct dwarf2_section_names abbrev_dwo;
332 struct dwarf2_section_names info_dwo;
333 struct dwarf2_section_names line_dwo;
334 struct dwarf2_section_names loc_dwo;
335 struct dwarf2_section_names loclists_dwo;
336 struct dwarf2_section_names macinfo_dwo;
337 struct dwarf2_section_names macro_dwo;
338 struct dwarf2_section_names str_dwo;
339 struct dwarf2_section_names str_offsets_dwo;
340 struct dwarf2_section_names types_dwo;
341 struct dwarf2_section_names cu_index;
342 struct dwarf2_section_names tu_index;
343 }
344 dwop_section_names =
345 {
346 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
347 { ".debug_info.dwo", ".zdebug_info.dwo" },
348 { ".debug_line.dwo", ".zdebug_line.dwo" },
349 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
350 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
351 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
352 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
353 { ".debug_str.dwo", ".zdebug_str.dwo" },
354 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
355 { ".debug_types.dwo", ".zdebug_types.dwo" },
356 { ".debug_cu_index", ".zdebug_cu_index" },
357 { ".debug_tu_index", ".zdebug_tu_index" },
358 };
359
360 /* local data types */
361
362 /* The data in a compilation unit header, after target2host
363 translation, looks like this. */
364 struct comp_unit_head
365 {
366 unsigned int length;
367 short version;
368 unsigned char addr_size;
369 unsigned char signed_addr_p;
370 sect_offset abbrev_sect_off;
371
372 /* Size of file offsets; either 4 or 8. */
373 unsigned int offset_size;
374
375 /* Size of the length field; either 4 or 12. */
376 unsigned int initial_length_size;
377
378 enum dwarf_unit_type unit_type;
379
380 /* Offset to the first byte of this compilation unit header in the
381 .debug_info section, for resolving relative reference dies. */
382 sect_offset sect_off;
383
384 /* Offset to first die in this cu from the start of the cu.
385 This will be the first byte following the compilation unit header. */
386 cu_offset first_die_cu_offset;
387
388 /* 64-bit signature of this type unit - it is valid only for
389 UNIT_TYPE DW_UT_type. */
390 ULONGEST signature;
391
392 /* For types, offset in the type's DIE of the type defined by this TU. */
393 cu_offset type_cu_offset_in_tu;
394 };
395
396 /* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398 struct delayed_method_info
399 {
400 /* The type to which the method is attached, i.e., its parent class. */
401 struct type *type;
402
403 /* The index of the method in the type's function fieldlists. */
404 int fnfield_index;
405
406 /* The index of the method in the fieldlist. */
407 int index;
408
409 /* The name of the DIE. */
410 const char *name;
411
412 /* The DIE associated with this method. */
413 struct die_info *die;
414 };
415
416 /* Internal state when decoding a particular compilation unit. */
417 struct dwarf2_cu
418 {
419 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
420 ~dwarf2_cu ();
421
422 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
423
424 /* The header of the compilation unit. */
425 struct comp_unit_head header {};
426
427 /* Base address of this compilation unit. */
428 CORE_ADDR base_address = 0;
429
430 /* Non-zero if base_address has been set. */
431 int base_known = 0;
432
433 /* The language we are debugging. */
434 enum language language = language_unknown;
435 const struct language_defn *language_defn = nullptr;
436
437 const char *producer = nullptr;
438
439 /* The symtab builder for this CU. This is only non-NULL when full
440 symbols are being read. */
441 std::unique_ptr<buildsym_compunit> builder;
442
443 /* The generic symbol table building routines have separate lists for
444 file scope symbols and all all other scopes (local scopes). So
445 we need to select the right one to pass to add_symbol_to_list().
446 We do it by keeping a pointer to the correct list in list_in_scope.
447
448 FIXME: The original dwarf code just treated the file scope as the
449 first local scope, and all other local scopes as nested local
450 scopes, and worked fine. Check to see if we really need to
451 distinguish these in buildsym.c. */
452 struct pending **list_in_scope = nullptr;
453
454 /* Hash table holding all the loaded partial DIEs
455 with partial_die->offset.SECT_OFF as hash. */
456 htab_t partial_dies = nullptr;
457
458 /* Storage for things with the same lifetime as this read-in compilation
459 unit, including partial DIEs. */
460 auto_obstack comp_unit_obstack;
461
462 /* When multiple dwarf2_cu structures are living in memory, this field
463 chains them all together, so that they can be released efficiently.
464 We will probably also want a generation counter so that most-recently-used
465 compilation units are cached... */
466 struct dwarf2_per_cu_data *read_in_chain = nullptr;
467
468 /* Backlink to our per_cu entry. */
469 struct dwarf2_per_cu_data *per_cu;
470
471 /* How many compilation units ago was this CU last referenced? */
472 int last_used = 0;
473
474 /* A hash table of DIE cu_offset for following references with
475 die_info->offset.sect_off as hash. */
476 htab_t die_hash = nullptr;
477
478 /* Full DIEs if read in. */
479 struct die_info *dies = nullptr;
480
481 /* A set of pointers to dwarf2_per_cu_data objects for compilation
482 units referenced by this one. Only set during full symbol processing;
483 partial symbol tables do not have dependencies. */
484 htab_t dependencies = nullptr;
485
486 /* Header data from the line table, during full symbol processing. */
487 struct line_header *line_header = nullptr;
488 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
489 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
490 this is the DW_TAG_compile_unit die for this CU. We'll hold on
491 to the line header as long as this DIE is being processed. See
492 process_die_scope. */
493 die_info *line_header_die_owner = nullptr;
494
495 /* A list of methods which need to have physnames computed
496 after all type information has been read. */
497 std::vector<delayed_method_info> method_list;
498
499 /* To be copied to symtab->call_site_htab. */
500 htab_t call_site_htab = nullptr;
501
502 /* Non-NULL if this CU came from a DWO file.
503 There is an invariant here that is important to remember:
504 Except for attributes copied from the top level DIE in the "main"
505 (or "stub") file in preparation for reading the DWO file
506 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
507 Either there isn't a DWO file (in which case this is NULL and the point
508 is moot), or there is and either we're not going to read it (in which
509 case this is NULL) or there is and we are reading it (in which case this
510 is non-NULL). */
511 struct dwo_unit *dwo_unit = nullptr;
512
513 /* The DW_AT_addr_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE. */
516 ULONGEST addr_base = 0;
517
518 /* The DW_AT_ranges_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE.
521 Also note that the value is zero in the non-DWO case so this value can
522 be used without needing to know whether DWO files are in use or not.
523 N.B. This does not apply to DW_AT_ranges appearing in
524 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
525 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
526 DW_AT_ranges_base *would* have to be applied, and we'd have to care
527 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
528 ULONGEST ranges_base = 0;
529
530 /* When reading debug info generated by older versions of rustc, we
531 have to rewrite some union types to be struct types with a
532 variant part. This rewriting must be done after the CU is fully
533 read in, because otherwise at the point of rewriting some struct
534 type might not have been fully processed. So, we keep a list of
535 all such types here and process them after expansion. */
536 std::vector<struct type *> rust_unions;
537
538 /* Mark used when releasing cached dies. */
539 unsigned int mark : 1;
540
541 /* This CU references .debug_loc. See the symtab->locations_valid field.
542 This test is imperfect as there may exist optimized debug code not using
543 any location list and still facing inlining issues if handled as
544 unoptimized code. For a future better test see GCC PR other/32998. */
545 unsigned int has_loclist : 1;
546
547 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
548 if all the producer_is_* fields are valid. This information is cached
549 because profiling CU expansion showed excessive time spent in
550 producer_is_gxx_lt_4_6. */
551 unsigned int checked_producer : 1;
552 unsigned int producer_is_gxx_lt_4_6 : 1;
553 unsigned int producer_is_gcc_lt_4_3 : 1;
554 unsigned int producer_is_icc_lt_14 : 1;
555 bool producer_is_codewarrior : 1;
556
557 /* When set, the file that we're processing is known to have
558 debugging info for C++ namespaces. GCC 3.3.x did not produce
559 this information, but later versions do. */
560
561 unsigned int processing_has_namespace_info : 1;
562
563 struct partial_die_info *find_partial_die (sect_offset sect_off);
564 };
565
566 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
567 This includes type_unit_group and quick_file_names. */
568
569 struct stmt_list_hash
570 {
571 /* The DWO unit this table is from or NULL if there is none. */
572 struct dwo_unit *dwo_unit;
573
574 /* Offset in .debug_line or .debug_line.dwo. */
575 sect_offset line_sect_off;
576 };
577
578 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
579 an object of this type. */
580
581 struct type_unit_group
582 {
583 /* dwarf2read.c's main "handle" on a TU symtab.
584 To simplify things we create an artificial CU that "includes" all the
585 type units using this stmt_list so that the rest of the code still has
586 a "per_cu" handle on the symtab.
587 This PER_CU is recognized by having no section. */
588 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
589 struct dwarf2_per_cu_data per_cu;
590
591 /* The TUs that share this DW_AT_stmt_list entry.
592 This is added to while parsing type units to build partial symtabs,
593 and is deleted afterwards and not used again. */
594 VEC (sig_type_ptr) *tus;
595
596 /* The compunit symtab.
597 Type units in a group needn't all be defined in the same source file,
598 so we create an essentially anonymous symtab as the compunit symtab. */
599 struct compunit_symtab *compunit_symtab;
600
601 /* The data used to construct the hash key. */
602 struct stmt_list_hash hash;
603
604 /* The number of symtabs from the line header.
605 The value here must match line_header.num_file_names. */
606 unsigned int num_symtabs;
607
608 /* The symbol tables for this TU (obtained from the files listed in
609 DW_AT_stmt_list).
610 WARNING: The order of entries here must match the order of entries
611 in the line header. After the first TU using this type_unit_group, the
612 line header for the subsequent TUs is recreated from this. This is done
613 because we need to use the same symtabs for each TU using the same
614 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
615 there's no guarantee the line header doesn't have duplicate entries. */
616 struct symtab **symtabs;
617 };
618
619 /* These sections are what may appear in a (real or virtual) DWO file. */
620
621 struct dwo_sections
622 {
623 struct dwarf2_section_info abbrev;
624 struct dwarf2_section_info line;
625 struct dwarf2_section_info loc;
626 struct dwarf2_section_info loclists;
627 struct dwarf2_section_info macinfo;
628 struct dwarf2_section_info macro;
629 struct dwarf2_section_info str;
630 struct dwarf2_section_info str_offsets;
631 /* In the case of a virtual DWO file, these two are unused. */
632 struct dwarf2_section_info info;
633 VEC (dwarf2_section_info_def) *types;
634 };
635
636 /* CUs/TUs in DWP/DWO files. */
637
638 struct dwo_unit
639 {
640 /* Backlink to the containing struct dwo_file. */
641 struct dwo_file *dwo_file;
642
643 /* The "id" that distinguishes this CU/TU.
644 .debug_info calls this "dwo_id", .debug_types calls this "signature".
645 Since signatures came first, we stick with it for consistency. */
646 ULONGEST signature;
647
648 /* The section this CU/TU lives in, in the DWO file. */
649 struct dwarf2_section_info *section;
650
651 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
652 sect_offset sect_off;
653 unsigned int length;
654
655 /* For types, offset in the type's DIE of the type defined by this TU. */
656 cu_offset type_offset_in_tu;
657 };
658
659 /* include/dwarf2.h defines the DWP section codes.
660 It defines a max value but it doesn't define a min value, which we
661 use for error checking, so provide one. */
662
663 enum dwp_v2_section_ids
664 {
665 DW_SECT_MIN = 1
666 };
667
668 /* Data for one DWO file.
669
670 This includes virtual DWO files (a virtual DWO file is a DWO file as it
671 appears in a DWP file). DWP files don't really have DWO files per se -
672 comdat folding of types "loses" the DWO file they came from, and from
673 a high level view DWP files appear to contain a mass of random types.
674 However, to maintain consistency with the non-DWP case we pretend DWP
675 files contain virtual DWO files, and we assign each TU with one virtual
676 DWO file (generally based on the line and abbrev section offsets -
677 a heuristic that seems to work in practice). */
678
679 struct dwo_file
680 {
681 /* The DW_AT_GNU_dwo_name attribute.
682 For virtual DWO files the name is constructed from the section offsets
683 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
684 from related CU+TUs. */
685 const char *dwo_name;
686
687 /* The DW_AT_comp_dir attribute. */
688 const char *comp_dir;
689
690 /* The bfd, when the file is open. Otherwise this is NULL.
691 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
692 bfd *dbfd;
693
694 /* The sections that make up this DWO file.
695 Remember that for virtual DWO files in DWP V2, these are virtual
696 sections (for lack of a better name). */
697 struct dwo_sections sections;
698
699 /* The CUs in the file.
700 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
701 an extension to handle LLVM's Link Time Optimization output (where
702 multiple source files may be compiled into a single object/dwo pair). */
703 htab_t cus;
704
705 /* Table of TUs in the file.
706 Each element is a struct dwo_unit. */
707 htab_t tus;
708 };
709
710 /* These sections are what may appear in a DWP file. */
711
712 struct dwp_sections
713 {
714 /* These are used by both DWP version 1 and 2. */
715 struct dwarf2_section_info str;
716 struct dwarf2_section_info cu_index;
717 struct dwarf2_section_info tu_index;
718
719 /* These are only used by DWP version 2 files.
720 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
721 sections are referenced by section number, and are not recorded here.
722 In DWP version 2 there is at most one copy of all these sections, each
723 section being (effectively) comprised of the concatenation of all of the
724 individual sections that exist in the version 1 format.
725 To keep the code simple we treat each of these concatenated pieces as a
726 section itself (a virtual section?). */
727 struct dwarf2_section_info abbrev;
728 struct dwarf2_section_info info;
729 struct dwarf2_section_info line;
730 struct dwarf2_section_info loc;
731 struct dwarf2_section_info macinfo;
732 struct dwarf2_section_info macro;
733 struct dwarf2_section_info str_offsets;
734 struct dwarf2_section_info types;
735 };
736
737 /* These sections are what may appear in a virtual DWO file in DWP version 1.
738 A virtual DWO file is a DWO file as it appears in a DWP file. */
739
740 struct virtual_v1_dwo_sections
741 {
742 struct dwarf2_section_info abbrev;
743 struct dwarf2_section_info line;
744 struct dwarf2_section_info loc;
745 struct dwarf2_section_info macinfo;
746 struct dwarf2_section_info macro;
747 struct dwarf2_section_info str_offsets;
748 /* Each DWP hash table entry records one CU or one TU.
749 That is recorded here, and copied to dwo_unit.section. */
750 struct dwarf2_section_info info_or_types;
751 };
752
753 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
754 In version 2, the sections of the DWO files are concatenated together
755 and stored in one section of that name. Thus each ELF section contains
756 several "virtual" sections. */
757
758 struct virtual_v2_dwo_sections
759 {
760 bfd_size_type abbrev_offset;
761 bfd_size_type abbrev_size;
762
763 bfd_size_type line_offset;
764 bfd_size_type line_size;
765
766 bfd_size_type loc_offset;
767 bfd_size_type loc_size;
768
769 bfd_size_type macinfo_offset;
770 bfd_size_type macinfo_size;
771
772 bfd_size_type macro_offset;
773 bfd_size_type macro_size;
774
775 bfd_size_type str_offsets_offset;
776 bfd_size_type str_offsets_size;
777
778 /* Each DWP hash table entry records one CU or one TU.
779 That is recorded here, and copied to dwo_unit.section. */
780 bfd_size_type info_or_types_offset;
781 bfd_size_type info_or_types_size;
782 };
783
784 /* Contents of DWP hash tables. */
785
786 struct dwp_hash_table
787 {
788 uint32_t version, nr_columns;
789 uint32_t nr_units, nr_slots;
790 const gdb_byte *hash_table, *unit_table;
791 union
792 {
793 struct
794 {
795 const gdb_byte *indices;
796 } v1;
797 struct
798 {
799 /* This is indexed by column number and gives the id of the section
800 in that column. */
801 #define MAX_NR_V2_DWO_SECTIONS \
802 (1 /* .debug_info or .debug_types */ \
803 + 1 /* .debug_abbrev */ \
804 + 1 /* .debug_line */ \
805 + 1 /* .debug_loc */ \
806 + 1 /* .debug_str_offsets */ \
807 + 1 /* .debug_macro or .debug_macinfo */)
808 int section_ids[MAX_NR_V2_DWO_SECTIONS];
809 const gdb_byte *offsets;
810 const gdb_byte *sizes;
811 } v2;
812 } section_pool;
813 };
814
815 /* Data for one DWP file. */
816
817 struct dwp_file
818 {
819 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
820 : name (name_),
821 dbfd (std::move (abfd))
822 {
823 }
824
825 /* Name of the file. */
826 const char *name;
827
828 /* File format version. */
829 int version = 0;
830
831 /* The bfd. */
832 gdb_bfd_ref_ptr dbfd;
833
834 /* Section info for this file. */
835 struct dwp_sections sections {};
836
837 /* Table of CUs in the file. */
838 const struct dwp_hash_table *cus = nullptr;
839
840 /* Table of TUs in the file. */
841 const struct dwp_hash_table *tus = nullptr;
842
843 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
844 htab_t loaded_cus {};
845 htab_t loaded_tus {};
846
847 /* Table to map ELF section numbers to their sections.
848 This is only needed for the DWP V1 file format. */
849 unsigned int num_sections = 0;
850 asection **elf_sections = nullptr;
851 };
852
853 /* This represents a '.dwz' file. */
854
855 struct dwz_file
856 {
857 dwz_file (gdb_bfd_ref_ptr &&bfd)
858 : dwz_bfd (std::move (bfd))
859 {
860 }
861
862 /* A dwz file can only contain a few sections. */
863 struct dwarf2_section_info abbrev {};
864 struct dwarf2_section_info info {};
865 struct dwarf2_section_info str {};
866 struct dwarf2_section_info line {};
867 struct dwarf2_section_info macro {};
868 struct dwarf2_section_info gdb_index {};
869 struct dwarf2_section_info debug_names {};
870
871 /* The dwz's BFD. */
872 gdb_bfd_ref_ptr dwz_bfd;
873
874 /* If we loaded the index from an external file, this contains the
875 resources associated to the open file, memory mapping, etc. */
876 std::unique_ptr<index_cache_resource> index_cache_res;
877 };
878
879 /* Struct used to pass misc. parameters to read_die_and_children, et
880 al. which are used for both .debug_info and .debug_types dies.
881 All parameters here are unchanging for the life of the call. This
882 struct exists to abstract away the constant parameters of die reading. */
883
884 struct die_reader_specs
885 {
886 /* The bfd of die_section. */
887 bfd* abfd;
888
889 /* The CU of the DIE we are parsing. */
890 struct dwarf2_cu *cu;
891
892 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
893 struct dwo_file *dwo_file;
894
895 /* The section the die comes from.
896 This is either .debug_info or .debug_types, or the .dwo variants. */
897 struct dwarf2_section_info *die_section;
898
899 /* die_section->buffer. */
900 const gdb_byte *buffer;
901
902 /* The end of the buffer. */
903 const gdb_byte *buffer_end;
904
905 /* The value of the DW_AT_comp_dir attribute. */
906 const char *comp_dir;
907
908 /* The abbreviation table to use when reading the DIEs. */
909 struct abbrev_table *abbrev_table;
910 };
911
912 /* Type of function passed to init_cutu_and_read_dies, et.al. */
913 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
914 const gdb_byte *info_ptr,
915 struct die_info *comp_unit_die,
916 int has_children,
917 void *data);
918
919 /* A 1-based directory index. This is a strong typedef to prevent
920 accidentally using a directory index as a 0-based index into an
921 array/vector. */
922 enum class dir_index : unsigned int {};
923
924 /* Likewise, a 1-based file name index. */
925 enum class file_name_index : unsigned int {};
926
927 struct file_entry
928 {
929 file_entry () = default;
930
931 file_entry (const char *name_, dir_index d_index_,
932 unsigned int mod_time_, unsigned int length_)
933 : name (name_),
934 d_index (d_index_),
935 mod_time (mod_time_),
936 length (length_)
937 {}
938
939 /* Return the include directory at D_INDEX stored in LH. Returns
940 NULL if D_INDEX is out of bounds. */
941 const char *include_dir (const line_header *lh) const;
942
943 /* The file name. Note this is an observing pointer. The memory is
944 owned by debug_line_buffer. */
945 const char *name {};
946
947 /* The directory index (1-based). */
948 dir_index d_index {};
949
950 unsigned int mod_time {};
951
952 unsigned int length {};
953
954 /* True if referenced by the Line Number Program. */
955 bool included_p {};
956
957 /* The associated symbol table, if any. */
958 struct symtab *symtab {};
959 };
960
961 /* The line number information for a compilation unit (found in the
962 .debug_line section) begins with a "statement program header",
963 which contains the following information. */
964 struct line_header
965 {
966 line_header ()
967 : offset_in_dwz {}
968 {}
969
970 /* Add an entry to the include directory table. */
971 void add_include_dir (const char *include_dir);
972
973 /* Add an entry to the file name table. */
974 void add_file_name (const char *name, dir_index d_index,
975 unsigned int mod_time, unsigned int length);
976
977 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
978 is out of bounds. */
979 const char *include_dir_at (dir_index index) const
980 {
981 /* Convert directory index number (1-based) to vector index
982 (0-based). */
983 size_t vec_index = to_underlying (index) - 1;
984
985 if (vec_index >= include_dirs.size ())
986 return NULL;
987 return include_dirs[vec_index];
988 }
989
990 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
991 is out of bounds. */
992 file_entry *file_name_at (file_name_index index)
993 {
994 /* Convert file name index number (1-based) to vector index
995 (0-based). */
996 size_t vec_index = to_underlying (index) - 1;
997
998 if (vec_index >= file_names.size ())
999 return NULL;
1000 return &file_names[vec_index];
1001 }
1002
1003 /* Const version of the above. */
1004 const file_entry *file_name_at (unsigned int index) const
1005 {
1006 if (index >= file_names.size ())
1007 return NULL;
1008 return &file_names[index];
1009 }
1010
1011 /* Offset of line number information in .debug_line section. */
1012 sect_offset sect_off {};
1013
1014 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1015 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1016
1017 unsigned int total_length {};
1018 unsigned short version {};
1019 unsigned int header_length {};
1020 unsigned char minimum_instruction_length {};
1021 unsigned char maximum_ops_per_instruction {};
1022 unsigned char default_is_stmt {};
1023 int line_base {};
1024 unsigned char line_range {};
1025 unsigned char opcode_base {};
1026
1027 /* standard_opcode_lengths[i] is the number of operands for the
1028 standard opcode whose value is i. This means that
1029 standard_opcode_lengths[0] is unused, and the last meaningful
1030 element is standard_opcode_lengths[opcode_base - 1]. */
1031 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1032
1033 /* The include_directories table. Note these are observing
1034 pointers. The memory is owned by debug_line_buffer. */
1035 std::vector<const char *> include_dirs;
1036
1037 /* The file_names table. */
1038 std::vector<file_entry> file_names;
1039
1040 /* The start and end of the statement program following this
1041 header. These point into dwarf2_per_objfile->line_buffer. */
1042 const gdb_byte *statement_program_start {}, *statement_program_end {};
1043 };
1044
1045 typedef std::unique_ptr<line_header> line_header_up;
1046
1047 const char *
1048 file_entry::include_dir (const line_header *lh) const
1049 {
1050 return lh->include_dir_at (d_index);
1051 }
1052
1053 /* When we construct a partial symbol table entry we only
1054 need this much information. */
1055 struct partial_die_info : public allocate_on_obstack
1056 {
1057 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1058
1059 /* Disable assign but still keep copy ctor, which is needed
1060 load_partial_dies. */
1061 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1062
1063 /* Adjust the partial die before generating a symbol for it. This
1064 function may set the is_external flag or change the DIE's
1065 name. */
1066 void fixup (struct dwarf2_cu *cu);
1067
1068 /* Read a minimal amount of information into the minimal die
1069 structure. */
1070 const gdb_byte *read (const struct die_reader_specs *reader,
1071 const struct abbrev_info &abbrev,
1072 const gdb_byte *info_ptr);
1073
1074 /* Offset of this DIE. */
1075 const sect_offset sect_off;
1076
1077 /* DWARF-2 tag for this DIE. */
1078 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1079
1080 /* Assorted flags describing the data found in this DIE. */
1081 const unsigned int has_children : 1;
1082
1083 unsigned int is_external : 1;
1084 unsigned int is_declaration : 1;
1085 unsigned int has_type : 1;
1086 unsigned int has_specification : 1;
1087 unsigned int has_pc_info : 1;
1088 unsigned int may_be_inlined : 1;
1089
1090 /* This DIE has been marked DW_AT_main_subprogram. */
1091 unsigned int main_subprogram : 1;
1092
1093 /* Flag set if the SCOPE field of this structure has been
1094 computed. */
1095 unsigned int scope_set : 1;
1096
1097 /* Flag set if the DIE has a byte_size attribute. */
1098 unsigned int has_byte_size : 1;
1099
1100 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1101 unsigned int has_const_value : 1;
1102
1103 /* Flag set if any of the DIE's children are template arguments. */
1104 unsigned int has_template_arguments : 1;
1105
1106 /* Flag set if fixup has been called on this die. */
1107 unsigned int fixup_called : 1;
1108
1109 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1110 unsigned int is_dwz : 1;
1111
1112 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1113 unsigned int spec_is_dwz : 1;
1114
1115 /* The name of this DIE. Normally the value of DW_AT_name, but
1116 sometimes a default name for unnamed DIEs. */
1117 const char *name = nullptr;
1118
1119 /* The linkage name, if present. */
1120 const char *linkage_name = nullptr;
1121
1122 /* The scope to prepend to our children. This is generally
1123 allocated on the comp_unit_obstack, so will disappear
1124 when this compilation unit leaves the cache. */
1125 const char *scope = nullptr;
1126
1127 /* Some data associated with the partial DIE. The tag determines
1128 which field is live. */
1129 union
1130 {
1131 /* The location description associated with this DIE, if any. */
1132 struct dwarf_block *locdesc;
1133 /* The offset of an import, for DW_TAG_imported_unit. */
1134 sect_offset sect_off;
1135 } d {};
1136
1137 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1138 CORE_ADDR lowpc = 0;
1139 CORE_ADDR highpc = 0;
1140
1141 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1142 DW_AT_sibling, if any. */
1143 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1144 could return DW_AT_sibling values to its caller load_partial_dies. */
1145 const gdb_byte *sibling = nullptr;
1146
1147 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1148 DW_AT_specification (or DW_AT_abstract_origin or
1149 DW_AT_extension). */
1150 sect_offset spec_offset {};
1151
1152 /* Pointers to this DIE's parent, first child, and next sibling,
1153 if any. */
1154 struct partial_die_info *die_parent = nullptr;
1155 struct partial_die_info *die_child = nullptr;
1156 struct partial_die_info *die_sibling = nullptr;
1157
1158 friend struct partial_die_info *
1159 dwarf2_cu::find_partial_die (sect_offset sect_off);
1160
1161 private:
1162 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1163 partial_die_info (sect_offset sect_off)
1164 : partial_die_info (sect_off, DW_TAG_padding, 0)
1165 {
1166 }
1167
1168 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1169 int has_children_)
1170 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1171 {
1172 is_external = 0;
1173 is_declaration = 0;
1174 has_type = 0;
1175 has_specification = 0;
1176 has_pc_info = 0;
1177 may_be_inlined = 0;
1178 main_subprogram = 0;
1179 scope_set = 0;
1180 has_byte_size = 0;
1181 has_const_value = 0;
1182 has_template_arguments = 0;
1183 fixup_called = 0;
1184 is_dwz = 0;
1185 spec_is_dwz = 0;
1186 }
1187 };
1188
1189 /* This data structure holds the information of an abbrev. */
1190 struct abbrev_info
1191 {
1192 unsigned int number; /* number identifying abbrev */
1193 enum dwarf_tag tag; /* dwarf tag */
1194 unsigned short has_children; /* boolean */
1195 unsigned short num_attrs; /* number of attributes */
1196 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1197 struct abbrev_info *next; /* next in chain */
1198 };
1199
1200 struct attr_abbrev
1201 {
1202 ENUM_BITFIELD(dwarf_attribute) name : 16;
1203 ENUM_BITFIELD(dwarf_form) form : 16;
1204
1205 /* It is valid only if FORM is DW_FORM_implicit_const. */
1206 LONGEST implicit_const;
1207 };
1208
1209 /* Size of abbrev_table.abbrev_hash_table. */
1210 #define ABBREV_HASH_SIZE 121
1211
1212 /* Top level data structure to contain an abbreviation table. */
1213
1214 struct abbrev_table
1215 {
1216 explicit abbrev_table (sect_offset off)
1217 : sect_off (off)
1218 {
1219 m_abbrevs =
1220 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1221 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1222 }
1223
1224 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1225
1226 /* Allocate space for a struct abbrev_info object in
1227 ABBREV_TABLE. */
1228 struct abbrev_info *alloc_abbrev ();
1229
1230 /* Add an abbreviation to the table. */
1231 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1232
1233 /* Look up an abbrev in the table.
1234 Returns NULL if the abbrev is not found. */
1235
1236 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1237
1238
1239 /* Where the abbrev table came from.
1240 This is used as a sanity check when the table is used. */
1241 const sect_offset sect_off;
1242
1243 /* Storage for the abbrev table. */
1244 auto_obstack abbrev_obstack;
1245
1246 private:
1247
1248 /* Hash table of abbrevs.
1249 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1250 It could be statically allocated, but the previous code didn't so we
1251 don't either. */
1252 struct abbrev_info **m_abbrevs;
1253 };
1254
1255 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1256
1257 /* Attributes have a name and a value. */
1258 struct attribute
1259 {
1260 ENUM_BITFIELD(dwarf_attribute) name : 16;
1261 ENUM_BITFIELD(dwarf_form) form : 15;
1262
1263 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1264 field should be in u.str (existing only for DW_STRING) but it is kept
1265 here for better struct attribute alignment. */
1266 unsigned int string_is_canonical : 1;
1267
1268 union
1269 {
1270 const char *str;
1271 struct dwarf_block *blk;
1272 ULONGEST unsnd;
1273 LONGEST snd;
1274 CORE_ADDR addr;
1275 ULONGEST signature;
1276 }
1277 u;
1278 };
1279
1280 /* This data structure holds a complete die structure. */
1281 struct die_info
1282 {
1283 /* DWARF-2 tag for this DIE. */
1284 ENUM_BITFIELD(dwarf_tag) tag : 16;
1285
1286 /* Number of attributes */
1287 unsigned char num_attrs;
1288
1289 /* True if we're presently building the full type name for the
1290 type derived from this DIE. */
1291 unsigned char building_fullname : 1;
1292
1293 /* True if this die is in process. PR 16581. */
1294 unsigned char in_process : 1;
1295
1296 /* Abbrev number */
1297 unsigned int abbrev;
1298
1299 /* Offset in .debug_info or .debug_types section. */
1300 sect_offset sect_off;
1301
1302 /* The dies in a compilation unit form an n-ary tree. PARENT
1303 points to this die's parent; CHILD points to the first child of
1304 this node; and all the children of a given node are chained
1305 together via their SIBLING fields. */
1306 struct die_info *child; /* Its first child, if any. */
1307 struct die_info *sibling; /* Its next sibling, if any. */
1308 struct die_info *parent; /* Its parent, if any. */
1309
1310 /* An array of attributes, with NUM_ATTRS elements. There may be
1311 zero, but it's not common and zero-sized arrays are not
1312 sufficiently portable C. */
1313 struct attribute attrs[1];
1314 };
1315
1316 /* Get at parts of an attribute structure. */
1317
1318 #define DW_STRING(attr) ((attr)->u.str)
1319 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1320 #define DW_UNSND(attr) ((attr)->u.unsnd)
1321 #define DW_BLOCK(attr) ((attr)->u.blk)
1322 #define DW_SND(attr) ((attr)->u.snd)
1323 #define DW_ADDR(attr) ((attr)->u.addr)
1324 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1325
1326 /* Blocks are a bunch of untyped bytes. */
1327 struct dwarf_block
1328 {
1329 size_t size;
1330
1331 /* Valid only if SIZE is not zero. */
1332 const gdb_byte *data;
1333 };
1334
1335 #ifndef ATTR_ALLOC_CHUNK
1336 #define ATTR_ALLOC_CHUNK 4
1337 #endif
1338
1339 /* Allocate fields for structs, unions and enums in this size. */
1340 #ifndef DW_FIELD_ALLOC_CHUNK
1341 #define DW_FIELD_ALLOC_CHUNK 4
1342 #endif
1343
1344 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1345 but this would require a corresponding change in unpack_field_as_long
1346 and friends. */
1347 static int bits_per_byte = 8;
1348
1349 /* When reading a variant or variant part, we track a bit more
1350 information about the field, and store it in an object of this
1351 type. */
1352
1353 struct variant_field
1354 {
1355 /* If we see a DW_TAG_variant, then this will be the discriminant
1356 value. */
1357 ULONGEST discriminant_value;
1358 /* If we see a DW_TAG_variant, then this will be set if this is the
1359 default branch. */
1360 bool default_branch;
1361 /* While reading a DW_TAG_variant_part, this will be set if this
1362 field is the discriminant. */
1363 bool is_discriminant;
1364 };
1365
1366 struct nextfield
1367 {
1368 int accessibility = 0;
1369 int virtuality = 0;
1370 /* Extra information to describe a variant or variant part. */
1371 struct variant_field variant {};
1372 struct field field {};
1373 };
1374
1375 struct fnfieldlist
1376 {
1377 const char *name = nullptr;
1378 std::vector<struct fn_field> fnfields;
1379 };
1380
1381 /* The routines that read and process dies for a C struct or C++ class
1382 pass lists of data member fields and lists of member function fields
1383 in an instance of a field_info structure, as defined below. */
1384 struct field_info
1385 {
1386 /* List of data member and baseclasses fields. */
1387 std::vector<struct nextfield> fields;
1388 std::vector<struct nextfield> baseclasses;
1389
1390 /* Number of fields (including baseclasses). */
1391 int nfields = 0;
1392
1393 /* Set if the accesibility of one of the fields is not public. */
1394 int non_public_fields = 0;
1395
1396 /* Member function fieldlist array, contains name of possibly overloaded
1397 member function, number of overloaded member functions and a pointer
1398 to the head of the member function field chain. */
1399 std::vector<struct fnfieldlist> fnfieldlists;
1400
1401 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1402 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1403 std::vector<struct decl_field> typedef_field_list;
1404
1405 /* Nested types defined by this class and the number of elements in this
1406 list. */
1407 std::vector<struct decl_field> nested_types_list;
1408 };
1409
1410 /* One item on the queue of compilation units to read in full symbols
1411 for. */
1412 struct dwarf2_queue_item
1413 {
1414 struct dwarf2_per_cu_data *per_cu;
1415 enum language pretend_language;
1416 struct dwarf2_queue_item *next;
1417 };
1418
1419 /* The current queue. */
1420 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1421
1422 /* Loaded secondary compilation units are kept in memory until they
1423 have not been referenced for the processing of this many
1424 compilation units. Set this to zero to disable caching. Cache
1425 sizes of up to at least twenty will improve startup time for
1426 typical inter-CU-reference binaries, at an obvious memory cost. */
1427 static int dwarf_max_cache_age = 5;
1428 static void
1429 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1430 struct cmd_list_element *c, const char *value)
1431 {
1432 fprintf_filtered (file, _("The upper bound on the age of cached "
1433 "DWARF compilation units is %s.\n"),
1434 value);
1435 }
1436 \f
1437 /* local function prototypes */
1438
1439 static const char *get_section_name (const struct dwarf2_section_info *);
1440
1441 static const char *get_section_file_name (const struct dwarf2_section_info *);
1442
1443 static void dwarf2_find_base_address (struct die_info *die,
1444 struct dwarf2_cu *cu);
1445
1446 static struct partial_symtab *create_partial_symtab
1447 (struct dwarf2_per_cu_data *per_cu, const char *name);
1448
1449 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1450 const gdb_byte *info_ptr,
1451 struct die_info *type_unit_die,
1452 int has_children, void *data);
1453
1454 static void dwarf2_build_psymtabs_hard
1455 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1456
1457 static void scan_partial_symbols (struct partial_die_info *,
1458 CORE_ADDR *, CORE_ADDR *,
1459 int, struct dwarf2_cu *);
1460
1461 static void add_partial_symbol (struct partial_die_info *,
1462 struct dwarf2_cu *);
1463
1464 static void add_partial_namespace (struct partial_die_info *pdi,
1465 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1466 int set_addrmap, struct dwarf2_cu *cu);
1467
1468 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1469 CORE_ADDR *highpc, int set_addrmap,
1470 struct dwarf2_cu *cu);
1471
1472 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1473 struct dwarf2_cu *cu);
1474
1475 static void add_partial_subprogram (struct partial_die_info *pdi,
1476 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1477 int need_pc, struct dwarf2_cu *cu);
1478
1479 static void dwarf2_read_symtab (struct partial_symtab *,
1480 struct objfile *);
1481
1482 static void psymtab_to_symtab_1 (struct partial_symtab *);
1483
1484 static abbrev_table_up abbrev_table_read_table
1485 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1486 sect_offset);
1487
1488 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1489
1490 static struct partial_die_info *load_partial_dies
1491 (const struct die_reader_specs *, const gdb_byte *, int);
1492
1493 static struct partial_die_info *find_partial_die (sect_offset, int,
1494 struct dwarf2_cu *);
1495
1496 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1497 struct attribute *, struct attr_abbrev *,
1498 const gdb_byte *);
1499
1500 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1501
1502 static int read_1_signed_byte (bfd *, const gdb_byte *);
1503
1504 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1505
1506 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1507
1508 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1509
1510 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1511 unsigned int *);
1512
1513 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1514
1515 static LONGEST read_checked_initial_length_and_offset
1516 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1517 unsigned int *, unsigned int *);
1518
1519 static LONGEST read_offset (bfd *, const gdb_byte *,
1520 const struct comp_unit_head *,
1521 unsigned int *);
1522
1523 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1524
1525 static sect_offset read_abbrev_offset
1526 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1527 struct dwarf2_section_info *, sect_offset);
1528
1529 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1530
1531 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1532
1533 static const char *read_indirect_string
1534 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1535 const struct comp_unit_head *, unsigned int *);
1536
1537 static const char *read_indirect_line_string
1538 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1539 const struct comp_unit_head *, unsigned int *);
1540
1541 static const char *read_indirect_string_at_offset
1542 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1543 LONGEST str_offset);
1544
1545 static const char *read_indirect_string_from_dwz
1546 (struct objfile *objfile, struct dwz_file *, LONGEST);
1547
1548 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1549
1550 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1551 const gdb_byte *,
1552 unsigned int *);
1553
1554 static const char *read_str_index (const struct die_reader_specs *reader,
1555 ULONGEST str_index);
1556
1557 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1558
1559 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1560 struct dwarf2_cu *);
1561
1562 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1563 unsigned int);
1564
1565 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1566 struct dwarf2_cu *cu);
1567
1568 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1569 struct dwarf2_cu *cu);
1570
1571 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1572
1573 static struct die_info *die_specification (struct die_info *die,
1574 struct dwarf2_cu **);
1575
1576 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1577 struct dwarf2_cu *cu);
1578
1579 static void dwarf_decode_lines (struct line_header *, const char *,
1580 struct dwarf2_cu *, struct partial_symtab *,
1581 CORE_ADDR, int decode_mapping);
1582
1583 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1584 const char *);
1585
1586 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1587 const char *, const char *,
1588 CORE_ADDR);
1589
1590 static struct symbol *new_symbol (struct die_info *, struct type *,
1591 struct dwarf2_cu *, struct symbol * = NULL);
1592
1593 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1594 struct dwarf2_cu *);
1595
1596 static void dwarf2_const_value_attr (const struct attribute *attr,
1597 struct type *type,
1598 const char *name,
1599 struct obstack *obstack,
1600 struct dwarf2_cu *cu, LONGEST *value,
1601 const gdb_byte **bytes,
1602 struct dwarf2_locexpr_baton **baton);
1603
1604 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1605
1606 static int need_gnat_info (struct dwarf2_cu *);
1607
1608 static struct type *die_descriptive_type (struct die_info *,
1609 struct dwarf2_cu *);
1610
1611 static void set_descriptive_type (struct type *, struct die_info *,
1612 struct dwarf2_cu *);
1613
1614 static struct type *die_containing_type (struct die_info *,
1615 struct dwarf2_cu *);
1616
1617 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1618 struct dwarf2_cu *);
1619
1620 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1621
1622 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1623
1624 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1625
1626 static char *typename_concat (struct obstack *obs, const char *prefix,
1627 const char *suffix, int physname,
1628 struct dwarf2_cu *cu);
1629
1630 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1631
1632 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1633
1634 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1635
1636 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1637
1638 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1639
1640 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1641
1642 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1643 struct dwarf2_cu *, struct partial_symtab *);
1644
1645 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1646 values. Keep the items ordered with increasing constraints compliance. */
1647 enum pc_bounds_kind
1648 {
1649 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1650 PC_BOUNDS_NOT_PRESENT,
1651
1652 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1653 were present but they do not form a valid range of PC addresses. */
1654 PC_BOUNDS_INVALID,
1655
1656 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1657 PC_BOUNDS_RANGES,
1658
1659 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1660 PC_BOUNDS_HIGH_LOW,
1661 };
1662
1663 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1664 CORE_ADDR *, CORE_ADDR *,
1665 struct dwarf2_cu *,
1666 struct partial_symtab *);
1667
1668 static void get_scope_pc_bounds (struct die_info *,
1669 CORE_ADDR *, CORE_ADDR *,
1670 struct dwarf2_cu *);
1671
1672 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1673 CORE_ADDR, struct dwarf2_cu *);
1674
1675 static void dwarf2_add_field (struct field_info *, struct die_info *,
1676 struct dwarf2_cu *);
1677
1678 static void dwarf2_attach_fields_to_type (struct field_info *,
1679 struct type *, struct dwarf2_cu *);
1680
1681 static void dwarf2_add_member_fn (struct field_info *,
1682 struct die_info *, struct type *,
1683 struct dwarf2_cu *);
1684
1685 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1686 struct type *,
1687 struct dwarf2_cu *);
1688
1689 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1690
1691 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1692
1693 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1694
1695 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1696
1697 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1698
1699 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1700
1701 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1702
1703 static struct type *read_module_type (struct die_info *die,
1704 struct dwarf2_cu *cu);
1705
1706 static const char *namespace_name (struct die_info *die,
1707 int *is_anonymous, struct dwarf2_cu *);
1708
1709 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1710
1711 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1712
1713 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1714 struct dwarf2_cu *);
1715
1716 static struct die_info *read_die_and_siblings_1
1717 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1718 struct die_info *);
1719
1720 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1721 const gdb_byte *info_ptr,
1722 const gdb_byte **new_info_ptr,
1723 struct die_info *parent);
1724
1725 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1726 struct die_info **, const gdb_byte *,
1727 int *, int);
1728
1729 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1730 struct die_info **, const gdb_byte *,
1731 int *);
1732
1733 static void process_die (struct die_info *, struct dwarf2_cu *);
1734
1735 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1736 struct obstack *);
1737
1738 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1739
1740 static const char *dwarf2_full_name (const char *name,
1741 struct die_info *die,
1742 struct dwarf2_cu *cu);
1743
1744 static const char *dwarf2_physname (const char *name, struct die_info *die,
1745 struct dwarf2_cu *cu);
1746
1747 static struct die_info *dwarf2_extension (struct die_info *die,
1748 struct dwarf2_cu **);
1749
1750 static const char *dwarf_tag_name (unsigned int);
1751
1752 static const char *dwarf_attr_name (unsigned int);
1753
1754 static const char *dwarf_form_name (unsigned int);
1755
1756 static const char *dwarf_bool_name (unsigned int);
1757
1758 static const char *dwarf_type_encoding_name (unsigned int);
1759
1760 static struct die_info *sibling_die (struct die_info *);
1761
1762 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1763
1764 static void dump_die_for_error (struct die_info *);
1765
1766 static void dump_die_1 (struct ui_file *, int level, int max_level,
1767 struct die_info *);
1768
1769 /*static*/ void dump_die (struct die_info *, int max_level);
1770
1771 static void store_in_ref_table (struct die_info *,
1772 struct dwarf2_cu *);
1773
1774 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1775
1776 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1777
1778 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1779 const struct attribute *,
1780 struct dwarf2_cu **);
1781
1782 static struct die_info *follow_die_ref (struct die_info *,
1783 const struct attribute *,
1784 struct dwarf2_cu **);
1785
1786 static struct die_info *follow_die_sig (struct die_info *,
1787 const struct attribute *,
1788 struct dwarf2_cu **);
1789
1790 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1791 struct dwarf2_cu *);
1792
1793 static struct type *get_DW_AT_signature_type (struct die_info *,
1794 const struct attribute *,
1795 struct dwarf2_cu *);
1796
1797 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1798
1799 static void read_signatured_type (struct signatured_type *);
1800
1801 static int attr_to_dynamic_prop (const struct attribute *attr,
1802 struct die_info *die, struct dwarf2_cu *cu,
1803 struct dynamic_prop *prop);
1804
1805 /* memory allocation interface */
1806
1807 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1808
1809 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1810
1811 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1812
1813 static int attr_form_is_block (const struct attribute *);
1814
1815 static int attr_form_is_section_offset (const struct attribute *);
1816
1817 static int attr_form_is_constant (const struct attribute *);
1818
1819 static int attr_form_is_ref (const struct attribute *);
1820
1821 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1822 struct dwarf2_loclist_baton *baton,
1823 const struct attribute *attr);
1824
1825 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1826 struct symbol *sym,
1827 struct dwarf2_cu *cu,
1828 int is_block);
1829
1830 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1831 const gdb_byte *info_ptr,
1832 struct abbrev_info *abbrev);
1833
1834 static hashval_t partial_die_hash (const void *item);
1835
1836 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1837
1838 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1839 (sect_offset sect_off, unsigned int offset_in_dwz,
1840 struct dwarf2_per_objfile *dwarf2_per_objfile);
1841
1842 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1843 struct die_info *comp_unit_die,
1844 enum language pretend_language);
1845
1846 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1847
1848 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1849
1850 static struct type *set_die_type (struct die_info *, struct type *,
1851 struct dwarf2_cu *);
1852
1853 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1854
1855 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1856
1857 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1858 enum language);
1859
1860 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1861 enum language);
1862
1863 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1864 enum language);
1865
1866 static void dwarf2_add_dependence (struct dwarf2_cu *,
1867 struct dwarf2_per_cu_data *);
1868
1869 static void dwarf2_mark (struct dwarf2_cu *);
1870
1871 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1872
1873 static struct type *get_die_type_at_offset (sect_offset,
1874 struct dwarf2_per_cu_data *);
1875
1876 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1877
1878 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1879 enum language pretend_language);
1880
1881 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1882
1883 /* Class, the destructor of which frees all allocated queue entries. This
1884 will only have work to do if an error was thrown while processing the
1885 dwarf. If no error was thrown then the queue entries should have all
1886 been processed, and freed, as we went along. */
1887
1888 class dwarf2_queue_guard
1889 {
1890 public:
1891 dwarf2_queue_guard () = default;
1892
1893 /* Free any entries remaining on the queue. There should only be
1894 entries left if we hit an error while processing the dwarf. */
1895 ~dwarf2_queue_guard ()
1896 {
1897 struct dwarf2_queue_item *item, *last;
1898
1899 item = dwarf2_queue;
1900 while (item)
1901 {
1902 /* Anything still marked queued is likely to be in an
1903 inconsistent state, so discard it. */
1904 if (item->per_cu->queued)
1905 {
1906 if (item->per_cu->cu != NULL)
1907 free_one_cached_comp_unit (item->per_cu);
1908 item->per_cu->queued = 0;
1909 }
1910
1911 last = item;
1912 item = item->next;
1913 xfree (last);
1914 }
1915
1916 dwarf2_queue = dwarf2_queue_tail = NULL;
1917 }
1918 };
1919
1920 /* The return type of find_file_and_directory. Note, the enclosed
1921 string pointers are only valid while this object is valid. */
1922
1923 struct file_and_directory
1924 {
1925 /* The filename. This is never NULL. */
1926 const char *name;
1927
1928 /* The compilation directory. NULL if not known. If we needed to
1929 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1930 points directly to the DW_AT_comp_dir string attribute owned by
1931 the obstack that owns the DIE. */
1932 const char *comp_dir;
1933
1934 /* If we needed to build a new string for comp_dir, this is what
1935 owns the storage. */
1936 std::string comp_dir_storage;
1937 };
1938
1939 static file_and_directory find_file_and_directory (struct die_info *die,
1940 struct dwarf2_cu *cu);
1941
1942 static char *file_full_name (int file, struct line_header *lh,
1943 const char *comp_dir);
1944
1945 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1946 enum class rcuh_kind { COMPILE, TYPE };
1947
1948 static const gdb_byte *read_and_check_comp_unit_head
1949 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1950 struct comp_unit_head *header,
1951 struct dwarf2_section_info *section,
1952 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1953 rcuh_kind section_kind);
1954
1955 static void init_cutu_and_read_dies
1956 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1957 int use_existing_cu, int keep, bool skip_partial,
1958 die_reader_func_ftype *die_reader_func, void *data);
1959
1960 static void init_cutu_and_read_dies_simple
1961 (struct dwarf2_per_cu_data *this_cu,
1962 die_reader_func_ftype *die_reader_func, void *data);
1963
1964 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1965
1966 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1967
1968 static struct dwo_unit *lookup_dwo_unit_in_dwp
1969 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1970 struct dwp_file *dwp_file, const char *comp_dir,
1971 ULONGEST signature, int is_debug_types);
1972
1973 static struct dwp_file *get_dwp_file
1974 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1975
1976 static struct dwo_unit *lookup_dwo_comp_unit
1977 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1978
1979 static struct dwo_unit *lookup_dwo_type_unit
1980 (struct signatured_type *, const char *, const char *);
1981
1982 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1983
1984 static void free_dwo_file (struct dwo_file *);
1985
1986 /* A unique_ptr helper to free a dwo_file. */
1987
1988 struct dwo_file_deleter
1989 {
1990 void operator() (struct dwo_file *df) const
1991 {
1992 free_dwo_file (df);
1993 }
1994 };
1995
1996 /* A unique pointer to a dwo_file. */
1997
1998 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
1999
2000 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2001
2002 static void check_producer (struct dwarf2_cu *cu);
2003
2004 static void free_line_header_voidp (void *arg);
2005 \f
2006 /* Various complaints about symbol reading that don't abort the process. */
2007
2008 static void
2009 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2010 {
2011 complaint (_("statement list doesn't fit in .debug_line section"));
2012 }
2013
2014 static void
2015 dwarf2_debug_line_missing_file_complaint (void)
2016 {
2017 complaint (_(".debug_line section has line data without a file"));
2018 }
2019
2020 static void
2021 dwarf2_debug_line_missing_end_sequence_complaint (void)
2022 {
2023 complaint (_(".debug_line section has line "
2024 "program sequence without an end"));
2025 }
2026
2027 static void
2028 dwarf2_complex_location_expr_complaint (void)
2029 {
2030 complaint (_("location expression too complex"));
2031 }
2032
2033 static void
2034 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2035 int arg3)
2036 {
2037 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2038 arg1, arg2, arg3);
2039 }
2040
2041 static void
2042 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2043 {
2044 complaint (_("debug info runs off end of %s section"
2045 " [in module %s]"),
2046 get_section_name (section),
2047 get_section_file_name (section));
2048 }
2049
2050 static void
2051 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2052 {
2053 complaint (_("macro debug info contains a "
2054 "malformed macro definition:\n`%s'"),
2055 arg1);
2056 }
2057
2058 static void
2059 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2060 {
2061 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2062 arg1, arg2);
2063 }
2064
2065 /* Hash function for line_header_hash. */
2066
2067 static hashval_t
2068 line_header_hash (const struct line_header *ofs)
2069 {
2070 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2071 }
2072
2073 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2074
2075 static hashval_t
2076 line_header_hash_voidp (const void *item)
2077 {
2078 const struct line_header *ofs = (const struct line_header *) item;
2079
2080 return line_header_hash (ofs);
2081 }
2082
2083 /* Equality function for line_header_hash. */
2084
2085 static int
2086 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2087 {
2088 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2089 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2090
2091 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2092 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2093 }
2094
2095 \f
2096
2097 /* Read the given attribute value as an address, taking the attribute's
2098 form into account. */
2099
2100 static CORE_ADDR
2101 attr_value_as_address (struct attribute *attr)
2102 {
2103 CORE_ADDR addr;
2104
2105 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2106 {
2107 /* Aside from a few clearly defined exceptions, attributes that
2108 contain an address must always be in DW_FORM_addr form.
2109 Unfortunately, some compilers happen to be violating this
2110 requirement by encoding addresses using other forms, such
2111 as DW_FORM_data4 for example. For those broken compilers,
2112 we try to do our best, without any guarantee of success,
2113 to interpret the address correctly. It would also be nice
2114 to generate a complaint, but that would require us to maintain
2115 a list of legitimate cases where a non-address form is allowed,
2116 as well as update callers to pass in at least the CU's DWARF
2117 version. This is more overhead than what we're willing to
2118 expand for a pretty rare case. */
2119 addr = DW_UNSND (attr);
2120 }
2121 else
2122 addr = DW_ADDR (attr);
2123
2124 return addr;
2125 }
2126
2127 /* See declaration. */
2128
2129 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2130 const dwarf2_debug_sections *names)
2131 : objfile (objfile_)
2132 {
2133 if (names == NULL)
2134 names = &dwarf2_elf_names;
2135
2136 bfd *obfd = objfile->obfd;
2137
2138 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2139 locate_sections (obfd, sec, *names);
2140 }
2141
2142 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2143
2144 dwarf2_per_objfile::~dwarf2_per_objfile ()
2145 {
2146 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2147 free_cached_comp_units ();
2148
2149 if (quick_file_names_table)
2150 htab_delete (quick_file_names_table);
2151
2152 if (line_header_hash)
2153 htab_delete (line_header_hash);
2154
2155 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2156 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2157
2158 for (signatured_type *sig_type : all_type_units)
2159 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2160
2161 VEC_free (dwarf2_section_info_def, types);
2162
2163 if (dwo_files != NULL)
2164 free_dwo_files (dwo_files, objfile);
2165
2166 /* Everything else should be on the objfile obstack. */
2167 }
2168
2169 /* See declaration. */
2170
2171 void
2172 dwarf2_per_objfile::free_cached_comp_units ()
2173 {
2174 dwarf2_per_cu_data *per_cu = read_in_chain;
2175 dwarf2_per_cu_data **last_chain = &read_in_chain;
2176 while (per_cu != NULL)
2177 {
2178 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2179
2180 delete per_cu->cu;
2181 *last_chain = next_cu;
2182 per_cu = next_cu;
2183 }
2184 }
2185
2186 /* A helper class that calls free_cached_comp_units on
2187 destruction. */
2188
2189 class free_cached_comp_units
2190 {
2191 public:
2192
2193 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2194 : m_per_objfile (per_objfile)
2195 {
2196 }
2197
2198 ~free_cached_comp_units ()
2199 {
2200 m_per_objfile->free_cached_comp_units ();
2201 }
2202
2203 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2204
2205 private:
2206
2207 dwarf2_per_objfile *m_per_objfile;
2208 };
2209
2210 /* Try to locate the sections we need for DWARF 2 debugging
2211 information and return true if we have enough to do something.
2212 NAMES points to the dwarf2 section names, or is NULL if the standard
2213 ELF names are used. */
2214
2215 int
2216 dwarf2_has_info (struct objfile *objfile,
2217 const struct dwarf2_debug_sections *names)
2218 {
2219 if (objfile->flags & OBJF_READNEVER)
2220 return 0;
2221
2222 struct dwarf2_per_objfile *dwarf2_per_objfile
2223 = get_dwarf2_per_objfile (objfile);
2224
2225 if (dwarf2_per_objfile == NULL)
2226 {
2227 /* Initialize per-objfile state. */
2228 dwarf2_per_objfile
2229 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2230 names);
2231 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2232 }
2233 return (!dwarf2_per_objfile->info.is_virtual
2234 && dwarf2_per_objfile->info.s.section != NULL
2235 && !dwarf2_per_objfile->abbrev.is_virtual
2236 && dwarf2_per_objfile->abbrev.s.section != NULL);
2237 }
2238
2239 /* Return the containing section of virtual section SECTION. */
2240
2241 static struct dwarf2_section_info *
2242 get_containing_section (const struct dwarf2_section_info *section)
2243 {
2244 gdb_assert (section->is_virtual);
2245 return section->s.containing_section;
2246 }
2247
2248 /* Return the bfd owner of SECTION. */
2249
2250 static struct bfd *
2251 get_section_bfd_owner (const struct dwarf2_section_info *section)
2252 {
2253 if (section->is_virtual)
2254 {
2255 section = get_containing_section (section);
2256 gdb_assert (!section->is_virtual);
2257 }
2258 return section->s.section->owner;
2259 }
2260
2261 /* Return the bfd section of SECTION.
2262 Returns NULL if the section is not present. */
2263
2264 static asection *
2265 get_section_bfd_section (const struct dwarf2_section_info *section)
2266 {
2267 if (section->is_virtual)
2268 {
2269 section = get_containing_section (section);
2270 gdb_assert (!section->is_virtual);
2271 }
2272 return section->s.section;
2273 }
2274
2275 /* Return the name of SECTION. */
2276
2277 static const char *
2278 get_section_name (const struct dwarf2_section_info *section)
2279 {
2280 asection *sectp = get_section_bfd_section (section);
2281
2282 gdb_assert (sectp != NULL);
2283 return bfd_section_name (get_section_bfd_owner (section), sectp);
2284 }
2285
2286 /* Return the name of the file SECTION is in. */
2287
2288 static const char *
2289 get_section_file_name (const struct dwarf2_section_info *section)
2290 {
2291 bfd *abfd = get_section_bfd_owner (section);
2292
2293 return bfd_get_filename (abfd);
2294 }
2295
2296 /* Return the id of SECTION.
2297 Returns 0 if SECTION doesn't exist. */
2298
2299 static int
2300 get_section_id (const struct dwarf2_section_info *section)
2301 {
2302 asection *sectp = get_section_bfd_section (section);
2303
2304 if (sectp == NULL)
2305 return 0;
2306 return sectp->id;
2307 }
2308
2309 /* Return the flags of SECTION.
2310 SECTION (or containing section if this is a virtual section) must exist. */
2311
2312 static int
2313 get_section_flags (const struct dwarf2_section_info *section)
2314 {
2315 asection *sectp = get_section_bfd_section (section);
2316
2317 gdb_assert (sectp != NULL);
2318 return bfd_get_section_flags (sectp->owner, sectp);
2319 }
2320
2321 /* When loading sections, we look either for uncompressed section or for
2322 compressed section names. */
2323
2324 static int
2325 section_is_p (const char *section_name,
2326 const struct dwarf2_section_names *names)
2327 {
2328 if (names->normal != NULL
2329 && strcmp (section_name, names->normal) == 0)
2330 return 1;
2331 if (names->compressed != NULL
2332 && strcmp (section_name, names->compressed) == 0)
2333 return 1;
2334 return 0;
2335 }
2336
2337 /* See declaration. */
2338
2339 void
2340 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2341 const dwarf2_debug_sections &names)
2342 {
2343 flagword aflag = bfd_get_section_flags (abfd, sectp);
2344
2345 if ((aflag & SEC_HAS_CONTENTS) == 0)
2346 {
2347 }
2348 else if (section_is_p (sectp->name, &names.info))
2349 {
2350 this->info.s.section = sectp;
2351 this->info.size = bfd_get_section_size (sectp);
2352 }
2353 else if (section_is_p (sectp->name, &names.abbrev))
2354 {
2355 this->abbrev.s.section = sectp;
2356 this->abbrev.size = bfd_get_section_size (sectp);
2357 }
2358 else if (section_is_p (sectp->name, &names.line))
2359 {
2360 this->line.s.section = sectp;
2361 this->line.size = bfd_get_section_size (sectp);
2362 }
2363 else if (section_is_p (sectp->name, &names.loc))
2364 {
2365 this->loc.s.section = sectp;
2366 this->loc.size = bfd_get_section_size (sectp);
2367 }
2368 else if (section_is_p (sectp->name, &names.loclists))
2369 {
2370 this->loclists.s.section = sectp;
2371 this->loclists.size = bfd_get_section_size (sectp);
2372 }
2373 else if (section_is_p (sectp->name, &names.macinfo))
2374 {
2375 this->macinfo.s.section = sectp;
2376 this->macinfo.size = bfd_get_section_size (sectp);
2377 }
2378 else if (section_is_p (sectp->name, &names.macro))
2379 {
2380 this->macro.s.section = sectp;
2381 this->macro.size = bfd_get_section_size (sectp);
2382 }
2383 else if (section_is_p (sectp->name, &names.str))
2384 {
2385 this->str.s.section = sectp;
2386 this->str.size = bfd_get_section_size (sectp);
2387 }
2388 else if (section_is_p (sectp->name, &names.line_str))
2389 {
2390 this->line_str.s.section = sectp;
2391 this->line_str.size = bfd_get_section_size (sectp);
2392 }
2393 else if (section_is_p (sectp->name, &names.addr))
2394 {
2395 this->addr.s.section = sectp;
2396 this->addr.size = bfd_get_section_size (sectp);
2397 }
2398 else if (section_is_p (sectp->name, &names.frame))
2399 {
2400 this->frame.s.section = sectp;
2401 this->frame.size = bfd_get_section_size (sectp);
2402 }
2403 else if (section_is_p (sectp->name, &names.eh_frame))
2404 {
2405 this->eh_frame.s.section = sectp;
2406 this->eh_frame.size = bfd_get_section_size (sectp);
2407 }
2408 else if (section_is_p (sectp->name, &names.ranges))
2409 {
2410 this->ranges.s.section = sectp;
2411 this->ranges.size = bfd_get_section_size (sectp);
2412 }
2413 else if (section_is_p (sectp->name, &names.rnglists))
2414 {
2415 this->rnglists.s.section = sectp;
2416 this->rnglists.size = bfd_get_section_size (sectp);
2417 }
2418 else if (section_is_p (sectp->name, &names.types))
2419 {
2420 struct dwarf2_section_info type_section;
2421
2422 memset (&type_section, 0, sizeof (type_section));
2423 type_section.s.section = sectp;
2424 type_section.size = bfd_get_section_size (sectp);
2425
2426 VEC_safe_push (dwarf2_section_info_def, this->types,
2427 &type_section);
2428 }
2429 else if (section_is_p (sectp->name, &names.gdb_index))
2430 {
2431 this->gdb_index.s.section = sectp;
2432 this->gdb_index.size = bfd_get_section_size (sectp);
2433 }
2434 else if (section_is_p (sectp->name, &names.debug_names))
2435 {
2436 this->debug_names.s.section = sectp;
2437 this->debug_names.size = bfd_get_section_size (sectp);
2438 }
2439 else if (section_is_p (sectp->name, &names.debug_aranges))
2440 {
2441 this->debug_aranges.s.section = sectp;
2442 this->debug_aranges.size = bfd_get_section_size (sectp);
2443 }
2444
2445 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2446 && bfd_section_vma (abfd, sectp) == 0)
2447 this->has_section_at_zero = true;
2448 }
2449
2450 /* A helper function that decides whether a section is empty,
2451 or not present. */
2452
2453 static int
2454 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2455 {
2456 if (section->is_virtual)
2457 return section->size == 0;
2458 return section->s.section == NULL || section->size == 0;
2459 }
2460
2461 /* See dwarf2read.h. */
2462
2463 void
2464 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2465 {
2466 asection *sectp;
2467 bfd *abfd;
2468 gdb_byte *buf, *retbuf;
2469
2470 if (info->readin)
2471 return;
2472 info->buffer = NULL;
2473 info->readin = 1;
2474
2475 if (dwarf2_section_empty_p (info))
2476 return;
2477
2478 sectp = get_section_bfd_section (info);
2479
2480 /* If this is a virtual section we need to read in the real one first. */
2481 if (info->is_virtual)
2482 {
2483 struct dwarf2_section_info *containing_section =
2484 get_containing_section (info);
2485
2486 gdb_assert (sectp != NULL);
2487 if ((sectp->flags & SEC_RELOC) != 0)
2488 {
2489 error (_("Dwarf Error: DWP format V2 with relocations is not"
2490 " supported in section %s [in module %s]"),
2491 get_section_name (info), get_section_file_name (info));
2492 }
2493 dwarf2_read_section (objfile, containing_section);
2494 /* Other code should have already caught virtual sections that don't
2495 fit. */
2496 gdb_assert (info->virtual_offset + info->size
2497 <= containing_section->size);
2498 /* If the real section is empty or there was a problem reading the
2499 section we shouldn't get here. */
2500 gdb_assert (containing_section->buffer != NULL);
2501 info->buffer = containing_section->buffer + info->virtual_offset;
2502 return;
2503 }
2504
2505 /* If the section has relocations, we must read it ourselves.
2506 Otherwise we attach it to the BFD. */
2507 if ((sectp->flags & SEC_RELOC) == 0)
2508 {
2509 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2510 return;
2511 }
2512
2513 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2514 info->buffer = buf;
2515
2516 /* When debugging .o files, we may need to apply relocations; see
2517 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2518 We never compress sections in .o files, so we only need to
2519 try this when the section is not compressed. */
2520 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2521 if (retbuf != NULL)
2522 {
2523 info->buffer = retbuf;
2524 return;
2525 }
2526
2527 abfd = get_section_bfd_owner (info);
2528 gdb_assert (abfd != NULL);
2529
2530 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2531 || bfd_bread (buf, info->size, abfd) != info->size)
2532 {
2533 error (_("Dwarf Error: Can't read DWARF data"
2534 " in section %s [in module %s]"),
2535 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2536 }
2537 }
2538
2539 /* A helper function that returns the size of a section in a safe way.
2540 If you are positive that the section has been read before using the
2541 size, then it is safe to refer to the dwarf2_section_info object's
2542 "size" field directly. In other cases, you must call this
2543 function, because for compressed sections the size field is not set
2544 correctly until the section has been read. */
2545
2546 static bfd_size_type
2547 dwarf2_section_size (struct objfile *objfile,
2548 struct dwarf2_section_info *info)
2549 {
2550 if (!info->readin)
2551 dwarf2_read_section (objfile, info);
2552 return info->size;
2553 }
2554
2555 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2556 SECTION_NAME. */
2557
2558 void
2559 dwarf2_get_section_info (struct objfile *objfile,
2560 enum dwarf2_section_enum sect,
2561 asection **sectp, const gdb_byte **bufp,
2562 bfd_size_type *sizep)
2563 {
2564 struct dwarf2_per_objfile *data
2565 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2566 dwarf2_objfile_data_key);
2567 struct dwarf2_section_info *info;
2568
2569 /* We may see an objfile without any DWARF, in which case we just
2570 return nothing. */
2571 if (data == NULL)
2572 {
2573 *sectp = NULL;
2574 *bufp = NULL;
2575 *sizep = 0;
2576 return;
2577 }
2578 switch (sect)
2579 {
2580 case DWARF2_DEBUG_FRAME:
2581 info = &data->frame;
2582 break;
2583 case DWARF2_EH_FRAME:
2584 info = &data->eh_frame;
2585 break;
2586 default:
2587 gdb_assert_not_reached ("unexpected section");
2588 }
2589
2590 dwarf2_read_section (objfile, info);
2591
2592 *sectp = get_section_bfd_section (info);
2593 *bufp = info->buffer;
2594 *sizep = info->size;
2595 }
2596
2597 /* A helper function to find the sections for a .dwz file. */
2598
2599 static void
2600 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2601 {
2602 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2603
2604 /* Note that we only support the standard ELF names, because .dwz
2605 is ELF-only (at the time of writing). */
2606 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2607 {
2608 dwz_file->abbrev.s.section = sectp;
2609 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2610 }
2611 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2612 {
2613 dwz_file->info.s.section = sectp;
2614 dwz_file->info.size = bfd_get_section_size (sectp);
2615 }
2616 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2617 {
2618 dwz_file->str.s.section = sectp;
2619 dwz_file->str.size = bfd_get_section_size (sectp);
2620 }
2621 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2622 {
2623 dwz_file->line.s.section = sectp;
2624 dwz_file->line.size = bfd_get_section_size (sectp);
2625 }
2626 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2627 {
2628 dwz_file->macro.s.section = sectp;
2629 dwz_file->macro.size = bfd_get_section_size (sectp);
2630 }
2631 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2632 {
2633 dwz_file->gdb_index.s.section = sectp;
2634 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2635 }
2636 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2637 {
2638 dwz_file->debug_names.s.section = sectp;
2639 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2640 }
2641 }
2642
2643 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2644 there is no .gnu_debugaltlink section in the file. Error if there
2645 is such a section but the file cannot be found. */
2646
2647 static struct dwz_file *
2648 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2649 {
2650 const char *filename;
2651 bfd_size_type buildid_len_arg;
2652 size_t buildid_len;
2653 bfd_byte *buildid;
2654
2655 if (dwarf2_per_objfile->dwz_file != NULL)
2656 return dwarf2_per_objfile->dwz_file.get ();
2657
2658 bfd_set_error (bfd_error_no_error);
2659 gdb::unique_xmalloc_ptr<char> data
2660 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2661 &buildid_len_arg, &buildid));
2662 if (data == NULL)
2663 {
2664 if (bfd_get_error () == bfd_error_no_error)
2665 return NULL;
2666 error (_("could not read '.gnu_debugaltlink' section: %s"),
2667 bfd_errmsg (bfd_get_error ()));
2668 }
2669
2670 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2671
2672 buildid_len = (size_t) buildid_len_arg;
2673
2674 filename = data.get ();
2675
2676 std::string abs_storage;
2677 if (!IS_ABSOLUTE_PATH (filename))
2678 {
2679 gdb::unique_xmalloc_ptr<char> abs
2680 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2681
2682 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2683 filename = abs_storage.c_str ();
2684 }
2685
2686 /* First try the file name given in the section. If that doesn't
2687 work, try to use the build-id instead. */
2688 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2689 if (dwz_bfd != NULL)
2690 {
2691 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2692 dwz_bfd.release ();
2693 }
2694
2695 if (dwz_bfd == NULL)
2696 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2697
2698 if (dwz_bfd == NULL)
2699 error (_("could not find '.gnu_debugaltlink' file for %s"),
2700 objfile_name (dwarf2_per_objfile->objfile));
2701
2702 std::unique_ptr<struct dwz_file> result
2703 (new struct dwz_file (std::move (dwz_bfd)));
2704
2705 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2706 result.get ());
2707
2708 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2709 result->dwz_bfd.get ());
2710 dwarf2_per_objfile->dwz_file = std::move (result);
2711 return dwarf2_per_objfile->dwz_file.get ();
2712 }
2713 \f
2714 /* DWARF quick_symbols_functions support. */
2715
2716 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2717 unique line tables, so we maintain a separate table of all .debug_line
2718 derived entries to support the sharing.
2719 All the quick functions need is the list of file names. We discard the
2720 line_header when we're done and don't need to record it here. */
2721 struct quick_file_names
2722 {
2723 /* The data used to construct the hash key. */
2724 struct stmt_list_hash hash;
2725
2726 /* The number of entries in file_names, real_names. */
2727 unsigned int num_file_names;
2728
2729 /* The file names from the line table, after being run through
2730 file_full_name. */
2731 const char **file_names;
2732
2733 /* The file names from the line table after being run through
2734 gdb_realpath. These are computed lazily. */
2735 const char **real_names;
2736 };
2737
2738 /* When using the index (and thus not using psymtabs), each CU has an
2739 object of this type. This is used to hold information needed by
2740 the various "quick" methods. */
2741 struct dwarf2_per_cu_quick_data
2742 {
2743 /* The file table. This can be NULL if there was no file table
2744 or it's currently not read in.
2745 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2746 struct quick_file_names *file_names;
2747
2748 /* The corresponding symbol table. This is NULL if symbols for this
2749 CU have not yet been read. */
2750 struct compunit_symtab *compunit_symtab;
2751
2752 /* A temporary mark bit used when iterating over all CUs in
2753 expand_symtabs_matching. */
2754 unsigned int mark : 1;
2755
2756 /* True if we've tried to read the file table and found there isn't one.
2757 There will be no point in trying to read it again next time. */
2758 unsigned int no_file_data : 1;
2759 };
2760
2761 /* Utility hash function for a stmt_list_hash. */
2762
2763 static hashval_t
2764 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2765 {
2766 hashval_t v = 0;
2767
2768 if (stmt_list_hash->dwo_unit != NULL)
2769 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2770 v += to_underlying (stmt_list_hash->line_sect_off);
2771 return v;
2772 }
2773
2774 /* Utility equality function for a stmt_list_hash. */
2775
2776 static int
2777 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2778 const struct stmt_list_hash *rhs)
2779 {
2780 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2781 return 0;
2782 if (lhs->dwo_unit != NULL
2783 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2784 return 0;
2785
2786 return lhs->line_sect_off == rhs->line_sect_off;
2787 }
2788
2789 /* Hash function for a quick_file_names. */
2790
2791 static hashval_t
2792 hash_file_name_entry (const void *e)
2793 {
2794 const struct quick_file_names *file_data
2795 = (const struct quick_file_names *) e;
2796
2797 return hash_stmt_list_entry (&file_data->hash);
2798 }
2799
2800 /* Equality function for a quick_file_names. */
2801
2802 static int
2803 eq_file_name_entry (const void *a, const void *b)
2804 {
2805 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2806 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2807
2808 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2809 }
2810
2811 /* Delete function for a quick_file_names. */
2812
2813 static void
2814 delete_file_name_entry (void *e)
2815 {
2816 struct quick_file_names *file_data = (struct quick_file_names *) e;
2817 int i;
2818
2819 for (i = 0; i < file_data->num_file_names; ++i)
2820 {
2821 xfree ((void*) file_data->file_names[i]);
2822 if (file_data->real_names)
2823 xfree ((void*) file_data->real_names[i]);
2824 }
2825
2826 /* The space for the struct itself lives on objfile_obstack,
2827 so we don't free it here. */
2828 }
2829
2830 /* Create a quick_file_names hash table. */
2831
2832 static htab_t
2833 create_quick_file_names_table (unsigned int nr_initial_entries)
2834 {
2835 return htab_create_alloc (nr_initial_entries,
2836 hash_file_name_entry, eq_file_name_entry,
2837 delete_file_name_entry, xcalloc, xfree);
2838 }
2839
2840 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2841 have to be created afterwards. You should call age_cached_comp_units after
2842 processing PER_CU->CU. dw2_setup must have been already called. */
2843
2844 static void
2845 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2846 {
2847 if (per_cu->is_debug_types)
2848 load_full_type_unit (per_cu);
2849 else
2850 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2851
2852 if (per_cu->cu == NULL)
2853 return; /* Dummy CU. */
2854
2855 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2856 }
2857
2858 /* Read in the symbols for PER_CU. */
2859
2860 static void
2861 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2862 {
2863 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2864
2865 /* Skip type_unit_groups, reading the type units they contain
2866 is handled elsewhere. */
2867 if (IS_TYPE_UNIT_GROUP (per_cu))
2868 return;
2869
2870 /* The destructor of dwarf2_queue_guard frees any entries left on
2871 the queue. After this point we're guaranteed to leave this function
2872 with the dwarf queue empty. */
2873 dwarf2_queue_guard q_guard;
2874
2875 if (dwarf2_per_objfile->using_index
2876 ? per_cu->v.quick->compunit_symtab == NULL
2877 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2878 {
2879 queue_comp_unit (per_cu, language_minimal);
2880 load_cu (per_cu, skip_partial);
2881
2882 /* If we just loaded a CU from a DWO, and we're working with an index
2883 that may badly handle TUs, load all the TUs in that DWO as well.
2884 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2885 if (!per_cu->is_debug_types
2886 && per_cu->cu != NULL
2887 && per_cu->cu->dwo_unit != NULL
2888 && dwarf2_per_objfile->index_table != NULL
2889 && dwarf2_per_objfile->index_table->version <= 7
2890 /* DWP files aren't supported yet. */
2891 && get_dwp_file (dwarf2_per_objfile) == NULL)
2892 queue_and_load_all_dwo_tus (per_cu);
2893 }
2894
2895 process_queue (dwarf2_per_objfile);
2896
2897 /* Age the cache, releasing compilation units that have not
2898 been used recently. */
2899 age_cached_comp_units (dwarf2_per_objfile);
2900 }
2901
2902 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2903 the objfile from which this CU came. Returns the resulting symbol
2904 table. */
2905
2906 static struct compunit_symtab *
2907 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2908 {
2909 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2910
2911 gdb_assert (dwarf2_per_objfile->using_index);
2912 if (!per_cu->v.quick->compunit_symtab)
2913 {
2914 free_cached_comp_units freer (dwarf2_per_objfile);
2915 scoped_restore decrementer = increment_reading_symtab ();
2916 dw2_do_instantiate_symtab (per_cu, skip_partial);
2917 process_cu_includes (dwarf2_per_objfile);
2918 }
2919
2920 return per_cu->v.quick->compunit_symtab;
2921 }
2922
2923 /* See declaration. */
2924
2925 dwarf2_per_cu_data *
2926 dwarf2_per_objfile::get_cutu (int index)
2927 {
2928 if (index >= this->all_comp_units.size ())
2929 {
2930 index -= this->all_comp_units.size ();
2931 gdb_assert (index < this->all_type_units.size ());
2932 return &this->all_type_units[index]->per_cu;
2933 }
2934
2935 return this->all_comp_units[index];
2936 }
2937
2938 /* See declaration. */
2939
2940 dwarf2_per_cu_data *
2941 dwarf2_per_objfile::get_cu (int index)
2942 {
2943 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2944
2945 return this->all_comp_units[index];
2946 }
2947
2948 /* See declaration. */
2949
2950 signatured_type *
2951 dwarf2_per_objfile::get_tu (int index)
2952 {
2953 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2954
2955 return this->all_type_units[index];
2956 }
2957
2958 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2959 objfile_obstack, and constructed with the specified field
2960 values. */
2961
2962 static dwarf2_per_cu_data *
2963 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2964 struct dwarf2_section_info *section,
2965 int is_dwz,
2966 sect_offset sect_off, ULONGEST length)
2967 {
2968 struct objfile *objfile = dwarf2_per_objfile->objfile;
2969 dwarf2_per_cu_data *the_cu
2970 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2971 struct dwarf2_per_cu_data);
2972 the_cu->sect_off = sect_off;
2973 the_cu->length = length;
2974 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2975 the_cu->section = section;
2976 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2977 struct dwarf2_per_cu_quick_data);
2978 the_cu->is_dwz = is_dwz;
2979 return the_cu;
2980 }
2981
2982 /* A helper for create_cus_from_index that handles a given list of
2983 CUs. */
2984
2985 static void
2986 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2987 const gdb_byte *cu_list, offset_type n_elements,
2988 struct dwarf2_section_info *section,
2989 int is_dwz)
2990 {
2991 for (offset_type i = 0; i < n_elements; i += 2)
2992 {
2993 gdb_static_assert (sizeof (ULONGEST) >= 8);
2994
2995 sect_offset sect_off
2996 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2997 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2998 cu_list += 2 * 8;
2999
3000 dwarf2_per_cu_data *per_cu
3001 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3002 sect_off, length);
3003 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3004 }
3005 }
3006
3007 /* Read the CU list from the mapped index, and use it to create all
3008 the CU objects for this objfile. */
3009
3010 static void
3011 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3012 const gdb_byte *cu_list, offset_type cu_list_elements,
3013 const gdb_byte *dwz_list, offset_type dwz_elements)
3014 {
3015 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3016 dwarf2_per_objfile->all_comp_units.reserve
3017 ((cu_list_elements + dwz_elements) / 2);
3018
3019 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3020 &dwarf2_per_objfile->info, 0);
3021
3022 if (dwz_elements == 0)
3023 return;
3024
3025 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3026 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3027 &dwz->info, 1);
3028 }
3029
3030 /* Create the signatured type hash table from the index. */
3031
3032 static void
3033 create_signatured_type_table_from_index
3034 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3035 struct dwarf2_section_info *section,
3036 const gdb_byte *bytes,
3037 offset_type elements)
3038 {
3039 struct objfile *objfile = dwarf2_per_objfile->objfile;
3040
3041 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3042 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3043
3044 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3045
3046 for (offset_type i = 0; i < elements; i += 3)
3047 {
3048 struct signatured_type *sig_type;
3049 ULONGEST signature;
3050 void **slot;
3051 cu_offset type_offset_in_tu;
3052
3053 gdb_static_assert (sizeof (ULONGEST) >= 8);
3054 sect_offset sect_off
3055 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3056 type_offset_in_tu
3057 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3058 BFD_ENDIAN_LITTLE);
3059 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3060 bytes += 3 * 8;
3061
3062 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3063 struct signatured_type);
3064 sig_type->signature = signature;
3065 sig_type->type_offset_in_tu = type_offset_in_tu;
3066 sig_type->per_cu.is_debug_types = 1;
3067 sig_type->per_cu.section = section;
3068 sig_type->per_cu.sect_off = sect_off;
3069 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3070 sig_type->per_cu.v.quick
3071 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3072 struct dwarf2_per_cu_quick_data);
3073
3074 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3075 *slot = sig_type;
3076
3077 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3078 }
3079
3080 dwarf2_per_objfile->signatured_types = sig_types_hash;
3081 }
3082
3083 /* Create the signatured type hash table from .debug_names. */
3084
3085 static void
3086 create_signatured_type_table_from_debug_names
3087 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3088 const mapped_debug_names &map,
3089 struct dwarf2_section_info *section,
3090 struct dwarf2_section_info *abbrev_section)
3091 {
3092 struct objfile *objfile = dwarf2_per_objfile->objfile;
3093
3094 dwarf2_read_section (objfile, section);
3095 dwarf2_read_section (objfile, abbrev_section);
3096
3097 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3098 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3099
3100 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3101
3102 for (uint32_t i = 0; i < map.tu_count; ++i)
3103 {
3104 struct signatured_type *sig_type;
3105 void **slot;
3106
3107 sect_offset sect_off
3108 = (sect_offset) (extract_unsigned_integer
3109 (map.tu_table_reordered + i * map.offset_size,
3110 map.offset_size,
3111 map.dwarf5_byte_order));
3112
3113 comp_unit_head cu_header;
3114 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3115 abbrev_section,
3116 section->buffer + to_underlying (sect_off),
3117 rcuh_kind::TYPE);
3118
3119 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3120 struct signatured_type);
3121 sig_type->signature = cu_header.signature;
3122 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3123 sig_type->per_cu.is_debug_types = 1;
3124 sig_type->per_cu.section = section;
3125 sig_type->per_cu.sect_off = sect_off;
3126 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3127 sig_type->per_cu.v.quick
3128 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3129 struct dwarf2_per_cu_quick_data);
3130
3131 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3132 *slot = sig_type;
3133
3134 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3135 }
3136
3137 dwarf2_per_objfile->signatured_types = sig_types_hash;
3138 }
3139
3140 /* Read the address map data from the mapped index, and use it to
3141 populate the objfile's psymtabs_addrmap. */
3142
3143 static void
3144 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3145 struct mapped_index *index)
3146 {
3147 struct objfile *objfile = dwarf2_per_objfile->objfile;
3148 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3149 const gdb_byte *iter, *end;
3150 struct addrmap *mutable_map;
3151 CORE_ADDR baseaddr;
3152
3153 auto_obstack temp_obstack;
3154
3155 mutable_map = addrmap_create_mutable (&temp_obstack);
3156
3157 iter = index->address_table.data ();
3158 end = iter + index->address_table.size ();
3159
3160 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3161
3162 while (iter < end)
3163 {
3164 ULONGEST hi, lo, cu_index;
3165 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3166 iter += 8;
3167 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3168 iter += 8;
3169 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3170 iter += 4;
3171
3172 if (lo > hi)
3173 {
3174 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3175 hex_string (lo), hex_string (hi));
3176 continue;
3177 }
3178
3179 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3180 {
3181 complaint (_(".gdb_index address table has invalid CU number %u"),
3182 (unsigned) cu_index);
3183 continue;
3184 }
3185
3186 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3187 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3188 addrmap_set_empty (mutable_map, lo, hi - 1,
3189 dwarf2_per_objfile->get_cu (cu_index));
3190 }
3191
3192 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3193 &objfile->objfile_obstack);
3194 }
3195
3196 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3197 populate the objfile's psymtabs_addrmap. */
3198
3199 static void
3200 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3201 struct dwarf2_section_info *section)
3202 {
3203 struct objfile *objfile = dwarf2_per_objfile->objfile;
3204 bfd *abfd = objfile->obfd;
3205 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3206 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3207 SECT_OFF_TEXT (objfile));
3208
3209 auto_obstack temp_obstack;
3210 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3211
3212 std::unordered_map<sect_offset,
3213 dwarf2_per_cu_data *,
3214 gdb::hash_enum<sect_offset>>
3215 debug_info_offset_to_per_cu;
3216 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3217 {
3218 const auto insertpair
3219 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3220 if (!insertpair.second)
3221 {
3222 warning (_("Section .debug_aranges in %s has duplicate "
3223 "debug_info_offset %s, ignoring .debug_aranges."),
3224 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3225 return;
3226 }
3227 }
3228
3229 dwarf2_read_section (objfile, section);
3230
3231 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3232
3233 const gdb_byte *addr = section->buffer;
3234
3235 while (addr < section->buffer + section->size)
3236 {
3237 const gdb_byte *const entry_addr = addr;
3238 unsigned int bytes_read;
3239
3240 const LONGEST entry_length = read_initial_length (abfd, addr,
3241 &bytes_read);
3242 addr += bytes_read;
3243
3244 const gdb_byte *const entry_end = addr + entry_length;
3245 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3246 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3247 if (addr + entry_length > section->buffer + section->size)
3248 {
3249 warning (_("Section .debug_aranges in %s entry at offset %zu "
3250 "length %s exceeds section length %s, "
3251 "ignoring .debug_aranges."),
3252 objfile_name (objfile), entry_addr - section->buffer,
3253 plongest (bytes_read + entry_length),
3254 pulongest (section->size));
3255 return;
3256 }
3257
3258 /* The version number. */
3259 const uint16_t version = read_2_bytes (abfd, addr);
3260 addr += 2;
3261 if (version != 2)
3262 {
3263 warning (_("Section .debug_aranges in %s entry at offset %zu "
3264 "has unsupported version %d, ignoring .debug_aranges."),
3265 objfile_name (objfile), entry_addr - section->buffer,
3266 version);
3267 return;
3268 }
3269
3270 const uint64_t debug_info_offset
3271 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3272 addr += offset_size;
3273 const auto per_cu_it
3274 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3275 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3276 {
3277 warning (_("Section .debug_aranges in %s entry at offset %zu "
3278 "debug_info_offset %s does not exists, "
3279 "ignoring .debug_aranges."),
3280 objfile_name (objfile), entry_addr - section->buffer,
3281 pulongest (debug_info_offset));
3282 return;
3283 }
3284 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3285
3286 const uint8_t address_size = *addr++;
3287 if (address_size < 1 || address_size > 8)
3288 {
3289 warning (_("Section .debug_aranges in %s entry at offset %zu "
3290 "address_size %u is invalid, ignoring .debug_aranges."),
3291 objfile_name (objfile), entry_addr - section->buffer,
3292 address_size);
3293 return;
3294 }
3295
3296 const uint8_t segment_selector_size = *addr++;
3297 if (segment_selector_size != 0)
3298 {
3299 warning (_("Section .debug_aranges in %s entry at offset %zu "
3300 "segment_selector_size %u is not supported, "
3301 "ignoring .debug_aranges."),
3302 objfile_name (objfile), entry_addr - section->buffer,
3303 segment_selector_size);
3304 return;
3305 }
3306
3307 /* Must pad to an alignment boundary that is twice the address
3308 size. It is undocumented by the DWARF standard but GCC does
3309 use it. */
3310 for (size_t padding = ((-(addr - section->buffer))
3311 & (2 * address_size - 1));
3312 padding > 0; padding--)
3313 if (*addr++ != 0)
3314 {
3315 warning (_("Section .debug_aranges in %s entry at offset %zu "
3316 "padding is not zero, ignoring .debug_aranges."),
3317 objfile_name (objfile), entry_addr - section->buffer);
3318 return;
3319 }
3320
3321 for (;;)
3322 {
3323 if (addr + 2 * address_size > entry_end)
3324 {
3325 warning (_("Section .debug_aranges in %s entry at offset %zu "
3326 "address list is not properly terminated, "
3327 "ignoring .debug_aranges."),
3328 objfile_name (objfile), entry_addr - section->buffer);
3329 return;
3330 }
3331 ULONGEST start = extract_unsigned_integer (addr, address_size,
3332 dwarf5_byte_order);
3333 addr += address_size;
3334 ULONGEST length = extract_unsigned_integer (addr, address_size,
3335 dwarf5_byte_order);
3336 addr += address_size;
3337 if (start == 0 && length == 0)
3338 break;
3339 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3340 {
3341 /* Symbol was eliminated due to a COMDAT group. */
3342 continue;
3343 }
3344 ULONGEST end = start + length;
3345 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3346 - baseaddr);
3347 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3348 - baseaddr);
3349 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3350 }
3351 }
3352
3353 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3354 &objfile->objfile_obstack);
3355 }
3356
3357 /* Find a slot in the mapped index INDEX for the object named NAME.
3358 If NAME is found, set *VEC_OUT to point to the CU vector in the
3359 constant pool and return true. If NAME cannot be found, return
3360 false. */
3361
3362 static bool
3363 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3364 offset_type **vec_out)
3365 {
3366 offset_type hash;
3367 offset_type slot, step;
3368 int (*cmp) (const char *, const char *);
3369
3370 gdb::unique_xmalloc_ptr<char> without_params;
3371 if (current_language->la_language == language_cplus
3372 || current_language->la_language == language_fortran
3373 || current_language->la_language == language_d)
3374 {
3375 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3376 not contain any. */
3377
3378 if (strchr (name, '(') != NULL)
3379 {
3380 without_params = cp_remove_params (name);
3381
3382 if (without_params != NULL)
3383 name = without_params.get ();
3384 }
3385 }
3386
3387 /* Index version 4 did not support case insensitive searches. But the
3388 indices for case insensitive languages are built in lowercase, therefore
3389 simulate our NAME being searched is also lowercased. */
3390 hash = mapped_index_string_hash ((index->version == 4
3391 && case_sensitivity == case_sensitive_off
3392 ? 5 : index->version),
3393 name);
3394
3395 slot = hash & (index->symbol_table.size () - 1);
3396 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3397 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3398
3399 for (;;)
3400 {
3401 const char *str;
3402
3403 const auto &bucket = index->symbol_table[slot];
3404 if (bucket.name == 0 && bucket.vec == 0)
3405 return false;
3406
3407 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3408 if (!cmp (name, str))
3409 {
3410 *vec_out = (offset_type *) (index->constant_pool
3411 + MAYBE_SWAP (bucket.vec));
3412 return true;
3413 }
3414
3415 slot = (slot + step) & (index->symbol_table.size () - 1);
3416 }
3417 }
3418
3419 /* A helper function that reads the .gdb_index from BUFFER and fills
3420 in MAP. FILENAME is the name of the file containing the data;
3421 it is used for error reporting. DEPRECATED_OK is true if it is
3422 ok to use deprecated sections.
3423
3424 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3425 out parameters that are filled in with information about the CU and
3426 TU lists in the section.
3427
3428 Returns true if all went well, false otherwise. */
3429
3430 static bool
3431 read_gdb_index_from_buffer (struct objfile *objfile,
3432 const char *filename,
3433 bool deprecated_ok,
3434 gdb::array_view<const gdb_byte> buffer,
3435 struct mapped_index *map,
3436 const gdb_byte **cu_list,
3437 offset_type *cu_list_elements,
3438 const gdb_byte **types_list,
3439 offset_type *types_list_elements)
3440 {
3441 const gdb_byte *addr = &buffer[0];
3442
3443 /* Version check. */
3444 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3445 /* Versions earlier than 3 emitted every copy of a psymbol. This
3446 causes the index to behave very poorly for certain requests. Version 3
3447 contained incomplete addrmap. So, it seems better to just ignore such
3448 indices. */
3449 if (version < 4)
3450 {
3451 static int warning_printed = 0;
3452 if (!warning_printed)
3453 {
3454 warning (_("Skipping obsolete .gdb_index section in %s."),
3455 filename);
3456 warning_printed = 1;
3457 }
3458 return 0;
3459 }
3460 /* Index version 4 uses a different hash function than index version
3461 5 and later.
3462
3463 Versions earlier than 6 did not emit psymbols for inlined
3464 functions. Using these files will cause GDB not to be able to
3465 set breakpoints on inlined functions by name, so we ignore these
3466 indices unless the user has done
3467 "set use-deprecated-index-sections on". */
3468 if (version < 6 && !deprecated_ok)
3469 {
3470 static int warning_printed = 0;
3471 if (!warning_printed)
3472 {
3473 warning (_("\
3474 Skipping deprecated .gdb_index section in %s.\n\
3475 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3476 to use the section anyway."),
3477 filename);
3478 warning_printed = 1;
3479 }
3480 return 0;
3481 }
3482 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3483 of the TU (for symbols coming from TUs),
3484 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3485 Plus gold-generated indices can have duplicate entries for global symbols,
3486 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3487 These are just performance bugs, and we can't distinguish gdb-generated
3488 indices from gold-generated ones, so issue no warning here. */
3489
3490 /* Indexes with higher version than the one supported by GDB may be no
3491 longer backward compatible. */
3492 if (version > 8)
3493 return 0;
3494
3495 map->version = version;
3496
3497 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3498
3499 int i = 0;
3500 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3501 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3502 / 8);
3503 ++i;
3504
3505 *types_list = addr + MAYBE_SWAP (metadata[i]);
3506 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3507 - MAYBE_SWAP (metadata[i]))
3508 / 8);
3509 ++i;
3510
3511 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3512 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3513 map->address_table
3514 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3515 ++i;
3516
3517 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3518 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3519 map->symbol_table
3520 = gdb::array_view<mapped_index::symbol_table_slot>
3521 ((mapped_index::symbol_table_slot *) symbol_table,
3522 (mapped_index::symbol_table_slot *) symbol_table_end);
3523
3524 ++i;
3525 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3526
3527 return 1;
3528 }
3529
3530 /* Callback types for dwarf2_read_gdb_index. */
3531
3532 typedef gdb::function_view
3533 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3534 get_gdb_index_contents_ftype;
3535 typedef gdb::function_view
3536 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3537 get_gdb_index_contents_dwz_ftype;
3538
3539 /* Read .gdb_index. If everything went ok, initialize the "quick"
3540 elements of all the CUs and return 1. Otherwise, return 0. */
3541
3542 static int
3543 dwarf2_read_gdb_index
3544 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3545 get_gdb_index_contents_ftype get_gdb_index_contents,
3546 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3547 {
3548 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3549 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3550 struct dwz_file *dwz;
3551 struct objfile *objfile = dwarf2_per_objfile->objfile;
3552
3553 gdb::array_view<const gdb_byte> main_index_contents
3554 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3555
3556 if (main_index_contents.empty ())
3557 return 0;
3558
3559 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3560 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3561 use_deprecated_index_sections,
3562 main_index_contents, map.get (), &cu_list,
3563 &cu_list_elements, &types_list,
3564 &types_list_elements))
3565 return 0;
3566
3567 /* Don't use the index if it's empty. */
3568 if (map->symbol_table.empty ())
3569 return 0;
3570
3571 /* If there is a .dwz file, read it so we can get its CU list as
3572 well. */
3573 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3574 if (dwz != NULL)
3575 {
3576 struct mapped_index dwz_map;
3577 const gdb_byte *dwz_types_ignore;
3578 offset_type dwz_types_elements_ignore;
3579
3580 gdb::array_view<const gdb_byte> dwz_index_content
3581 = get_gdb_index_contents_dwz (objfile, dwz);
3582
3583 if (dwz_index_content.empty ())
3584 return 0;
3585
3586 if (!read_gdb_index_from_buffer (objfile,
3587 bfd_get_filename (dwz->dwz_bfd), 1,
3588 dwz_index_content, &dwz_map,
3589 &dwz_list, &dwz_list_elements,
3590 &dwz_types_ignore,
3591 &dwz_types_elements_ignore))
3592 {
3593 warning (_("could not read '.gdb_index' section from %s; skipping"),
3594 bfd_get_filename (dwz->dwz_bfd));
3595 return 0;
3596 }
3597 }
3598
3599 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3600 dwz_list, dwz_list_elements);
3601
3602 if (types_list_elements)
3603 {
3604 struct dwarf2_section_info *section;
3605
3606 /* We can only handle a single .debug_types when we have an
3607 index. */
3608 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3609 return 0;
3610
3611 section = VEC_index (dwarf2_section_info_def,
3612 dwarf2_per_objfile->types, 0);
3613
3614 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3615 types_list, types_list_elements);
3616 }
3617
3618 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3619
3620 dwarf2_per_objfile->index_table = std::move (map);
3621 dwarf2_per_objfile->using_index = 1;
3622 dwarf2_per_objfile->quick_file_names_table =
3623 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3624
3625 return 1;
3626 }
3627
3628 /* die_reader_func for dw2_get_file_names. */
3629
3630 static void
3631 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3632 const gdb_byte *info_ptr,
3633 struct die_info *comp_unit_die,
3634 int has_children,
3635 void *data)
3636 {
3637 struct dwarf2_cu *cu = reader->cu;
3638 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3639 struct dwarf2_per_objfile *dwarf2_per_objfile
3640 = cu->per_cu->dwarf2_per_objfile;
3641 struct objfile *objfile = dwarf2_per_objfile->objfile;
3642 struct dwarf2_per_cu_data *lh_cu;
3643 struct attribute *attr;
3644 int i;
3645 void **slot;
3646 struct quick_file_names *qfn;
3647
3648 gdb_assert (! this_cu->is_debug_types);
3649
3650 /* Our callers never want to match partial units -- instead they
3651 will match the enclosing full CU. */
3652 if (comp_unit_die->tag == DW_TAG_partial_unit)
3653 {
3654 this_cu->v.quick->no_file_data = 1;
3655 return;
3656 }
3657
3658 lh_cu = this_cu;
3659 slot = NULL;
3660
3661 line_header_up lh;
3662 sect_offset line_offset {};
3663
3664 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3665 if (attr)
3666 {
3667 struct quick_file_names find_entry;
3668
3669 line_offset = (sect_offset) DW_UNSND (attr);
3670
3671 /* We may have already read in this line header (TU line header sharing).
3672 If we have we're done. */
3673 find_entry.hash.dwo_unit = cu->dwo_unit;
3674 find_entry.hash.line_sect_off = line_offset;
3675 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3676 &find_entry, INSERT);
3677 if (*slot != NULL)
3678 {
3679 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3680 return;
3681 }
3682
3683 lh = dwarf_decode_line_header (line_offset, cu);
3684 }
3685 if (lh == NULL)
3686 {
3687 lh_cu->v.quick->no_file_data = 1;
3688 return;
3689 }
3690
3691 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3692 qfn->hash.dwo_unit = cu->dwo_unit;
3693 qfn->hash.line_sect_off = line_offset;
3694 gdb_assert (slot != NULL);
3695 *slot = qfn;
3696
3697 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3698
3699 qfn->num_file_names = lh->file_names.size ();
3700 qfn->file_names =
3701 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3702 for (i = 0; i < lh->file_names.size (); ++i)
3703 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3704 qfn->real_names = NULL;
3705
3706 lh_cu->v.quick->file_names = qfn;
3707 }
3708
3709 /* A helper for the "quick" functions which attempts to read the line
3710 table for THIS_CU. */
3711
3712 static struct quick_file_names *
3713 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3714 {
3715 /* This should never be called for TUs. */
3716 gdb_assert (! this_cu->is_debug_types);
3717 /* Nor type unit groups. */
3718 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3719
3720 if (this_cu->v.quick->file_names != NULL)
3721 return this_cu->v.quick->file_names;
3722 /* If we know there is no line data, no point in looking again. */
3723 if (this_cu->v.quick->no_file_data)
3724 return NULL;
3725
3726 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3727
3728 if (this_cu->v.quick->no_file_data)
3729 return NULL;
3730 return this_cu->v.quick->file_names;
3731 }
3732
3733 /* A helper for the "quick" functions which computes and caches the
3734 real path for a given file name from the line table. */
3735
3736 static const char *
3737 dw2_get_real_path (struct objfile *objfile,
3738 struct quick_file_names *qfn, int index)
3739 {
3740 if (qfn->real_names == NULL)
3741 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3742 qfn->num_file_names, const char *);
3743
3744 if (qfn->real_names[index] == NULL)
3745 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3746
3747 return qfn->real_names[index];
3748 }
3749
3750 static struct symtab *
3751 dw2_find_last_source_symtab (struct objfile *objfile)
3752 {
3753 struct dwarf2_per_objfile *dwarf2_per_objfile
3754 = get_dwarf2_per_objfile (objfile);
3755 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3756 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3757
3758 if (cust == NULL)
3759 return NULL;
3760
3761 return compunit_primary_filetab (cust);
3762 }
3763
3764 /* Traversal function for dw2_forget_cached_source_info. */
3765
3766 static int
3767 dw2_free_cached_file_names (void **slot, void *info)
3768 {
3769 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3770
3771 if (file_data->real_names)
3772 {
3773 int i;
3774
3775 for (i = 0; i < file_data->num_file_names; ++i)
3776 {
3777 xfree ((void*) file_data->real_names[i]);
3778 file_data->real_names[i] = NULL;
3779 }
3780 }
3781
3782 return 1;
3783 }
3784
3785 static void
3786 dw2_forget_cached_source_info (struct objfile *objfile)
3787 {
3788 struct dwarf2_per_objfile *dwarf2_per_objfile
3789 = get_dwarf2_per_objfile (objfile);
3790
3791 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3792 dw2_free_cached_file_names, NULL);
3793 }
3794
3795 /* Helper function for dw2_map_symtabs_matching_filename that expands
3796 the symtabs and calls the iterator. */
3797
3798 static int
3799 dw2_map_expand_apply (struct objfile *objfile,
3800 struct dwarf2_per_cu_data *per_cu,
3801 const char *name, const char *real_path,
3802 gdb::function_view<bool (symtab *)> callback)
3803 {
3804 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3805
3806 /* Don't visit already-expanded CUs. */
3807 if (per_cu->v.quick->compunit_symtab)
3808 return 0;
3809
3810 /* This may expand more than one symtab, and we want to iterate over
3811 all of them. */
3812 dw2_instantiate_symtab (per_cu, false);
3813
3814 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3815 last_made, callback);
3816 }
3817
3818 /* Implementation of the map_symtabs_matching_filename method. */
3819
3820 static bool
3821 dw2_map_symtabs_matching_filename
3822 (struct objfile *objfile, const char *name, const char *real_path,
3823 gdb::function_view<bool (symtab *)> callback)
3824 {
3825 const char *name_basename = lbasename (name);
3826 struct dwarf2_per_objfile *dwarf2_per_objfile
3827 = get_dwarf2_per_objfile (objfile);
3828
3829 /* The rule is CUs specify all the files, including those used by
3830 any TU, so there's no need to scan TUs here. */
3831
3832 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3833 {
3834 /* We only need to look at symtabs not already expanded. */
3835 if (per_cu->v.quick->compunit_symtab)
3836 continue;
3837
3838 quick_file_names *file_data = dw2_get_file_names (per_cu);
3839 if (file_data == NULL)
3840 continue;
3841
3842 for (int j = 0; j < file_data->num_file_names; ++j)
3843 {
3844 const char *this_name = file_data->file_names[j];
3845 const char *this_real_name;
3846
3847 if (compare_filenames_for_search (this_name, name))
3848 {
3849 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3850 callback))
3851 return true;
3852 continue;
3853 }
3854
3855 /* Before we invoke realpath, which can get expensive when many
3856 files are involved, do a quick comparison of the basenames. */
3857 if (! basenames_may_differ
3858 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3859 continue;
3860
3861 this_real_name = dw2_get_real_path (objfile, file_data, j);
3862 if (compare_filenames_for_search (this_real_name, name))
3863 {
3864 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3865 callback))
3866 return true;
3867 continue;
3868 }
3869
3870 if (real_path != NULL)
3871 {
3872 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3873 gdb_assert (IS_ABSOLUTE_PATH (name));
3874 if (this_real_name != NULL
3875 && FILENAME_CMP (real_path, this_real_name) == 0)
3876 {
3877 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3878 callback))
3879 return true;
3880 continue;
3881 }
3882 }
3883 }
3884 }
3885
3886 return false;
3887 }
3888
3889 /* Struct used to manage iterating over all CUs looking for a symbol. */
3890
3891 struct dw2_symtab_iterator
3892 {
3893 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3894 struct dwarf2_per_objfile *dwarf2_per_objfile;
3895 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3896 int want_specific_block;
3897 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3898 Unused if !WANT_SPECIFIC_BLOCK. */
3899 int block_index;
3900 /* The kind of symbol we're looking for. */
3901 domain_enum domain;
3902 /* The list of CUs from the index entry of the symbol,
3903 or NULL if not found. */
3904 offset_type *vec;
3905 /* The next element in VEC to look at. */
3906 int next;
3907 /* The number of elements in VEC, or zero if there is no match. */
3908 int length;
3909 /* Have we seen a global version of the symbol?
3910 If so we can ignore all further global instances.
3911 This is to work around gold/15646, inefficient gold-generated
3912 indices. */
3913 int global_seen;
3914 };
3915
3916 /* Initialize the index symtab iterator ITER.
3917 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3918 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3919
3920 static void
3921 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3922 struct dwarf2_per_objfile *dwarf2_per_objfile,
3923 int want_specific_block,
3924 int block_index,
3925 domain_enum domain,
3926 const char *name)
3927 {
3928 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3929 iter->want_specific_block = want_specific_block;
3930 iter->block_index = block_index;
3931 iter->domain = domain;
3932 iter->next = 0;
3933 iter->global_seen = 0;
3934
3935 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3936
3937 /* index is NULL if OBJF_READNOW. */
3938 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3939 iter->length = MAYBE_SWAP (*iter->vec);
3940 else
3941 {
3942 iter->vec = NULL;
3943 iter->length = 0;
3944 }
3945 }
3946
3947 /* Return the next matching CU or NULL if there are no more. */
3948
3949 static struct dwarf2_per_cu_data *
3950 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3951 {
3952 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3953
3954 for ( ; iter->next < iter->length; ++iter->next)
3955 {
3956 offset_type cu_index_and_attrs =
3957 MAYBE_SWAP (iter->vec[iter->next + 1]);
3958 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3959 int want_static = iter->block_index != GLOBAL_BLOCK;
3960 /* This value is only valid for index versions >= 7. */
3961 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3962 gdb_index_symbol_kind symbol_kind =
3963 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3964 /* Only check the symbol attributes if they're present.
3965 Indices prior to version 7 don't record them,
3966 and indices >= 7 may elide them for certain symbols
3967 (gold does this). */
3968 int attrs_valid =
3969 (dwarf2_per_objfile->index_table->version >= 7
3970 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3971
3972 /* Don't crash on bad data. */
3973 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3974 + dwarf2_per_objfile->all_type_units.size ()))
3975 {
3976 complaint (_(".gdb_index entry has bad CU index"
3977 " [in module %s]"),
3978 objfile_name (dwarf2_per_objfile->objfile));
3979 continue;
3980 }
3981
3982 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3983
3984 /* Skip if already read in. */
3985 if (per_cu->v.quick->compunit_symtab)
3986 continue;
3987
3988 /* Check static vs global. */
3989 if (attrs_valid)
3990 {
3991 if (iter->want_specific_block
3992 && want_static != is_static)
3993 continue;
3994 /* Work around gold/15646. */
3995 if (!is_static && iter->global_seen)
3996 continue;
3997 if (!is_static)
3998 iter->global_seen = 1;
3999 }
4000
4001 /* Only check the symbol's kind if it has one. */
4002 if (attrs_valid)
4003 {
4004 switch (iter->domain)
4005 {
4006 case VAR_DOMAIN:
4007 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4008 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4009 /* Some types are also in VAR_DOMAIN. */
4010 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4011 continue;
4012 break;
4013 case STRUCT_DOMAIN:
4014 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4015 continue;
4016 break;
4017 case LABEL_DOMAIN:
4018 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4019 continue;
4020 break;
4021 default:
4022 break;
4023 }
4024 }
4025
4026 ++iter->next;
4027 return per_cu;
4028 }
4029
4030 return NULL;
4031 }
4032
4033 static struct compunit_symtab *
4034 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4035 const char *name, domain_enum domain)
4036 {
4037 struct compunit_symtab *stab_best = NULL;
4038 struct dwarf2_per_objfile *dwarf2_per_objfile
4039 = get_dwarf2_per_objfile (objfile);
4040
4041 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4042
4043 struct dw2_symtab_iterator iter;
4044 struct dwarf2_per_cu_data *per_cu;
4045
4046 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4047
4048 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4049 {
4050 struct symbol *sym, *with_opaque = NULL;
4051 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4052 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4053 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4054
4055 sym = block_find_symbol (block, name, domain,
4056 block_find_non_opaque_type_preferred,
4057 &with_opaque);
4058
4059 /* Some caution must be observed with overloaded functions
4060 and methods, since the index will not contain any overload
4061 information (but NAME might contain it). */
4062
4063 if (sym != NULL
4064 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4065 return stab;
4066 if (with_opaque != NULL
4067 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4068 stab_best = stab;
4069
4070 /* Keep looking through other CUs. */
4071 }
4072
4073 return stab_best;
4074 }
4075
4076 static void
4077 dw2_print_stats (struct objfile *objfile)
4078 {
4079 struct dwarf2_per_objfile *dwarf2_per_objfile
4080 = get_dwarf2_per_objfile (objfile);
4081 int total = (dwarf2_per_objfile->all_comp_units.size ()
4082 + dwarf2_per_objfile->all_type_units.size ());
4083 int count = 0;
4084
4085 for (int i = 0; i < total; ++i)
4086 {
4087 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4088
4089 if (!per_cu->v.quick->compunit_symtab)
4090 ++count;
4091 }
4092 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4093 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4094 }
4095
4096 /* This dumps minimal information about the index.
4097 It is called via "mt print objfiles".
4098 One use is to verify .gdb_index has been loaded by the
4099 gdb.dwarf2/gdb-index.exp testcase. */
4100
4101 static void
4102 dw2_dump (struct objfile *objfile)
4103 {
4104 struct dwarf2_per_objfile *dwarf2_per_objfile
4105 = get_dwarf2_per_objfile (objfile);
4106
4107 gdb_assert (dwarf2_per_objfile->using_index);
4108 printf_filtered (".gdb_index:");
4109 if (dwarf2_per_objfile->index_table != NULL)
4110 {
4111 printf_filtered (" version %d\n",
4112 dwarf2_per_objfile->index_table->version);
4113 }
4114 else
4115 printf_filtered (" faked for \"readnow\"\n");
4116 printf_filtered ("\n");
4117 }
4118
4119 static void
4120 dw2_expand_symtabs_for_function (struct objfile *objfile,
4121 const char *func_name)
4122 {
4123 struct dwarf2_per_objfile *dwarf2_per_objfile
4124 = get_dwarf2_per_objfile (objfile);
4125
4126 struct dw2_symtab_iterator iter;
4127 struct dwarf2_per_cu_data *per_cu;
4128
4129 /* Note: It doesn't matter what we pass for block_index here. */
4130 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4131 func_name);
4132
4133 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4134 dw2_instantiate_symtab (per_cu, false);
4135
4136 }
4137
4138 static void
4139 dw2_expand_all_symtabs (struct objfile *objfile)
4140 {
4141 struct dwarf2_per_objfile *dwarf2_per_objfile
4142 = get_dwarf2_per_objfile (objfile);
4143 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4144 + dwarf2_per_objfile->all_type_units.size ());
4145
4146 for (int i = 0; i < total_units; ++i)
4147 {
4148 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4149
4150 /* We don't want to directly expand a partial CU, because if we
4151 read it with the wrong language, then assertion failures can
4152 be triggered later on. See PR symtab/23010. So, tell
4153 dw2_instantiate_symtab to skip partial CUs -- any important
4154 partial CU will be read via DW_TAG_imported_unit anyway. */
4155 dw2_instantiate_symtab (per_cu, true);
4156 }
4157 }
4158
4159 static void
4160 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4161 const char *fullname)
4162 {
4163 struct dwarf2_per_objfile *dwarf2_per_objfile
4164 = get_dwarf2_per_objfile (objfile);
4165
4166 /* We don't need to consider type units here.
4167 This is only called for examining code, e.g. expand_line_sal.
4168 There can be an order of magnitude (or more) more type units
4169 than comp units, and we avoid them if we can. */
4170
4171 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4172 {
4173 /* We only need to look at symtabs not already expanded. */
4174 if (per_cu->v.quick->compunit_symtab)
4175 continue;
4176
4177 quick_file_names *file_data = dw2_get_file_names (per_cu);
4178 if (file_data == NULL)
4179 continue;
4180
4181 for (int j = 0; j < file_data->num_file_names; ++j)
4182 {
4183 const char *this_fullname = file_data->file_names[j];
4184
4185 if (filename_cmp (this_fullname, fullname) == 0)
4186 {
4187 dw2_instantiate_symtab (per_cu, false);
4188 break;
4189 }
4190 }
4191 }
4192 }
4193
4194 static void
4195 dw2_map_matching_symbols (struct objfile *objfile,
4196 const char * name, domain_enum domain,
4197 int global,
4198 int (*callback) (struct block *,
4199 struct symbol *, void *),
4200 void *data, symbol_name_match_type match,
4201 symbol_compare_ftype *ordered_compare)
4202 {
4203 /* Currently unimplemented; used for Ada. The function can be called if the
4204 current language is Ada for a non-Ada objfile using GNU index. As Ada
4205 does not look for non-Ada symbols this function should just return. */
4206 }
4207
4208 /* Symbol name matcher for .gdb_index names.
4209
4210 Symbol names in .gdb_index have a few particularities:
4211
4212 - There's no indication of which is the language of each symbol.
4213
4214 Since each language has its own symbol name matching algorithm,
4215 and we don't know which language is the right one, we must match
4216 each symbol against all languages. This would be a potential
4217 performance problem if it were not mitigated by the
4218 mapped_index::name_components lookup table, which significantly
4219 reduces the number of times we need to call into this matcher,
4220 making it a non-issue.
4221
4222 - Symbol names in the index have no overload (parameter)
4223 information. I.e., in C++, "foo(int)" and "foo(long)" both
4224 appear as "foo" in the index, for example.
4225
4226 This means that the lookup names passed to the symbol name
4227 matcher functions must have no parameter information either
4228 because (e.g.) symbol search name "foo" does not match
4229 lookup-name "foo(int)" [while swapping search name for lookup
4230 name would match].
4231 */
4232 class gdb_index_symbol_name_matcher
4233 {
4234 public:
4235 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4236 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4237
4238 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4239 Returns true if any matcher matches. */
4240 bool matches (const char *symbol_name);
4241
4242 private:
4243 /* A reference to the lookup name we're matching against. */
4244 const lookup_name_info &m_lookup_name;
4245
4246 /* A vector holding all the different symbol name matchers, for all
4247 languages. */
4248 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4249 };
4250
4251 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4252 (const lookup_name_info &lookup_name)
4253 : m_lookup_name (lookup_name)
4254 {
4255 /* Prepare the vector of comparison functions upfront, to avoid
4256 doing the same work for each symbol. Care is taken to avoid
4257 matching with the same matcher more than once if/when multiple
4258 languages use the same matcher function. */
4259 auto &matchers = m_symbol_name_matcher_funcs;
4260 matchers.reserve (nr_languages);
4261
4262 matchers.push_back (default_symbol_name_matcher);
4263
4264 for (int i = 0; i < nr_languages; i++)
4265 {
4266 const language_defn *lang = language_def ((enum language) i);
4267 symbol_name_matcher_ftype *name_matcher
4268 = get_symbol_name_matcher (lang, m_lookup_name);
4269
4270 /* Don't insert the same comparison routine more than once.
4271 Note that we do this linear walk instead of a seemingly
4272 cheaper sorted insert, or use a std::set or something like
4273 that, because relative order of function addresses is not
4274 stable. This is not a problem in practice because the number
4275 of supported languages is low, and the cost here is tiny
4276 compared to the number of searches we'll do afterwards using
4277 this object. */
4278 if (name_matcher != default_symbol_name_matcher
4279 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4280 == matchers.end ()))
4281 matchers.push_back (name_matcher);
4282 }
4283 }
4284
4285 bool
4286 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4287 {
4288 for (auto matches_name : m_symbol_name_matcher_funcs)
4289 if (matches_name (symbol_name, m_lookup_name, NULL))
4290 return true;
4291
4292 return false;
4293 }
4294
4295 /* Starting from a search name, return the string that finds the upper
4296 bound of all strings that start with SEARCH_NAME in a sorted name
4297 list. Returns the empty string to indicate that the upper bound is
4298 the end of the list. */
4299
4300 static std::string
4301 make_sort_after_prefix_name (const char *search_name)
4302 {
4303 /* When looking to complete "func", we find the upper bound of all
4304 symbols that start with "func" by looking for where we'd insert
4305 the closest string that would follow "func" in lexicographical
4306 order. Usually, that's "func"-with-last-character-incremented,
4307 i.e. "fund". Mind non-ASCII characters, though. Usually those
4308 will be UTF-8 multi-byte sequences, but we can't be certain.
4309 Especially mind the 0xff character, which is a valid character in
4310 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4311 rule out compilers allowing it in identifiers. Note that
4312 conveniently, strcmp/strcasecmp are specified to compare
4313 characters interpreted as unsigned char. So what we do is treat
4314 the whole string as a base 256 number composed of a sequence of
4315 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4316 to 0, and carries 1 to the following more-significant position.
4317 If the very first character in SEARCH_NAME ends up incremented
4318 and carries/overflows, then the upper bound is the end of the
4319 list. The string after the empty string is also the empty
4320 string.
4321
4322 Some examples of this operation:
4323
4324 SEARCH_NAME => "+1" RESULT
4325
4326 "abc" => "abd"
4327 "ab\xff" => "ac"
4328 "\xff" "a" "\xff" => "\xff" "b"
4329 "\xff" => ""
4330 "\xff\xff" => ""
4331 "" => ""
4332
4333 Then, with these symbols for example:
4334
4335 func
4336 func1
4337 fund
4338
4339 completing "func" looks for symbols between "func" and
4340 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4341 which finds "func" and "func1", but not "fund".
4342
4343 And with:
4344
4345 funcÿ (Latin1 'ÿ' [0xff])
4346 funcÿ1
4347 fund
4348
4349 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4350 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4351
4352 And with:
4353
4354 ÿÿ (Latin1 'ÿ' [0xff])
4355 ÿÿ1
4356
4357 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4358 the end of the list.
4359 */
4360 std::string after = search_name;
4361 while (!after.empty () && (unsigned char) after.back () == 0xff)
4362 after.pop_back ();
4363 if (!after.empty ())
4364 after.back () = (unsigned char) after.back () + 1;
4365 return after;
4366 }
4367
4368 /* See declaration. */
4369
4370 std::pair<std::vector<name_component>::const_iterator,
4371 std::vector<name_component>::const_iterator>
4372 mapped_index_base::find_name_components_bounds
4373 (const lookup_name_info &lookup_name_without_params) const
4374 {
4375 auto *name_cmp
4376 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4377
4378 const char *cplus
4379 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4380
4381 /* Comparison function object for lower_bound that matches against a
4382 given symbol name. */
4383 auto lookup_compare_lower = [&] (const name_component &elem,
4384 const char *name)
4385 {
4386 const char *elem_qualified = this->symbol_name_at (elem.idx);
4387 const char *elem_name = elem_qualified + elem.name_offset;
4388 return name_cmp (elem_name, name) < 0;
4389 };
4390
4391 /* Comparison function object for upper_bound that matches against a
4392 given symbol name. */
4393 auto lookup_compare_upper = [&] (const char *name,
4394 const name_component &elem)
4395 {
4396 const char *elem_qualified = this->symbol_name_at (elem.idx);
4397 const char *elem_name = elem_qualified + elem.name_offset;
4398 return name_cmp (name, elem_name) < 0;
4399 };
4400
4401 auto begin = this->name_components.begin ();
4402 auto end = this->name_components.end ();
4403
4404 /* Find the lower bound. */
4405 auto lower = [&] ()
4406 {
4407 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4408 return begin;
4409 else
4410 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4411 } ();
4412
4413 /* Find the upper bound. */
4414 auto upper = [&] ()
4415 {
4416 if (lookup_name_without_params.completion_mode ())
4417 {
4418 /* In completion mode, we want UPPER to point past all
4419 symbols names that have the same prefix. I.e., with
4420 these symbols, and completing "func":
4421
4422 function << lower bound
4423 function1
4424 other_function << upper bound
4425
4426 We find the upper bound by looking for the insertion
4427 point of "func"-with-last-character-incremented,
4428 i.e. "fund". */
4429 std::string after = make_sort_after_prefix_name (cplus);
4430 if (after.empty ())
4431 return end;
4432 return std::lower_bound (lower, end, after.c_str (),
4433 lookup_compare_lower);
4434 }
4435 else
4436 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4437 } ();
4438
4439 return {lower, upper};
4440 }
4441
4442 /* See declaration. */
4443
4444 void
4445 mapped_index_base::build_name_components ()
4446 {
4447 if (!this->name_components.empty ())
4448 return;
4449
4450 this->name_components_casing = case_sensitivity;
4451 auto *name_cmp
4452 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4453
4454 /* The code below only knows how to break apart components of C++
4455 symbol names (and other languages that use '::' as
4456 namespace/module separator). If we add support for wild matching
4457 to some language that uses some other operator (E.g., Ada, Go and
4458 D use '.'), then we'll need to try splitting the symbol name
4459 according to that language too. Note that Ada does support wild
4460 matching, but doesn't currently support .gdb_index. */
4461 auto count = this->symbol_name_count ();
4462 for (offset_type idx = 0; idx < count; idx++)
4463 {
4464 if (this->symbol_name_slot_invalid (idx))
4465 continue;
4466
4467 const char *name = this->symbol_name_at (idx);
4468
4469 /* Add each name component to the name component table. */
4470 unsigned int previous_len = 0;
4471 for (unsigned int current_len = cp_find_first_component (name);
4472 name[current_len] != '\0';
4473 current_len += cp_find_first_component (name + current_len))
4474 {
4475 gdb_assert (name[current_len] == ':');
4476 this->name_components.push_back ({previous_len, idx});
4477 /* Skip the '::'. */
4478 current_len += 2;
4479 previous_len = current_len;
4480 }
4481 this->name_components.push_back ({previous_len, idx});
4482 }
4483
4484 /* Sort name_components elements by name. */
4485 auto name_comp_compare = [&] (const name_component &left,
4486 const name_component &right)
4487 {
4488 const char *left_qualified = this->symbol_name_at (left.idx);
4489 const char *right_qualified = this->symbol_name_at (right.idx);
4490
4491 const char *left_name = left_qualified + left.name_offset;
4492 const char *right_name = right_qualified + right.name_offset;
4493
4494 return name_cmp (left_name, right_name) < 0;
4495 };
4496
4497 std::sort (this->name_components.begin (),
4498 this->name_components.end (),
4499 name_comp_compare);
4500 }
4501
4502 /* Helper for dw2_expand_symtabs_matching that works with a
4503 mapped_index_base instead of the containing objfile. This is split
4504 to a separate function in order to be able to unit test the
4505 name_components matching using a mock mapped_index_base. For each
4506 symbol name that matches, calls MATCH_CALLBACK, passing it the
4507 symbol's index in the mapped_index_base symbol table. */
4508
4509 static void
4510 dw2_expand_symtabs_matching_symbol
4511 (mapped_index_base &index,
4512 const lookup_name_info &lookup_name_in,
4513 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4514 enum search_domain kind,
4515 gdb::function_view<void (offset_type)> match_callback)
4516 {
4517 lookup_name_info lookup_name_without_params
4518 = lookup_name_in.make_ignore_params ();
4519 gdb_index_symbol_name_matcher lookup_name_matcher
4520 (lookup_name_without_params);
4521
4522 /* Build the symbol name component sorted vector, if we haven't
4523 yet. */
4524 index.build_name_components ();
4525
4526 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4527
4528 /* Now for each symbol name in range, check to see if we have a name
4529 match, and if so, call the MATCH_CALLBACK callback. */
4530
4531 /* The same symbol may appear more than once in the range though.
4532 E.g., if we're looking for symbols that complete "w", and we have
4533 a symbol named "w1::w2", we'll find the two name components for
4534 that same symbol in the range. To be sure we only call the
4535 callback once per symbol, we first collect the symbol name
4536 indexes that matched in a temporary vector and ignore
4537 duplicates. */
4538 std::vector<offset_type> matches;
4539 matches.reserve (std::distance (bounds.first, bounds.second));
4540
4541 for (; bounds.first != bounds.second; ++bounds.first)
4542 {
4543 const char *qualified = index.symbol_name_at (bounds.first->idx);
4544
4545 if (!lookup_name_matcher.matches (qualified)
4546 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4547 continue;
4548
4549 matches.push_back (bounds.first->idx);
4550 }
4551
4552 std::sort (matches.begin (), matches.end ());
4553
4554 /* Finally call the callback, once per match. */
4555 ULONGEST prev = -1;
4556 for (offset_type idx : matches)
4557 {
4558 if (prev != idx)
4559 {
4560 match_callback (idx);
4561 prev = idx;
4562 }
4563 }
4564
4565 /* Above we use a type wider than idx's for 'prev', since 0 and
4566 (offset_type)-1 are both possible values. */
4567 static_assert (sizeof (prev) > sizeof (offset_type), "");
4568 }
4569
4570 #if GDB_SELF_TEST
4571
4572 namespace selftests { namespace dw2_expand_symtabs_matching {
4573
4574 /* A mock .gdb_index/.debug_names-like name index table, enough to
4575 exercise dw2_expand_symtabs_matching_symbol, which works with the
4576 mapped_index_base interface. Builds an index from the symbol list
4577 passed as parameter to the constructor. */
4578 class mock_mapped_index : public mapped_index_base
4579 {
4580 public:
4581 mock_mapped_index (gdb::array_view<const char *> symbols)
4582 : m_symbol_table (symbols)
4583 {}
4584
4585 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4586
4587 /* Return the number of names in the symbol table. */
4588 size_t symbol_name_count () const override
4589 {
4590 return m_symbol_table.size ();
4591 }
4592
4593 /* Get the name of the symbol at IDX in the symbol table. */
4594 const char *symbol_name_at (offset_type idx) const override
4595 {
4596 return m_symbol_table[idx];
4597 }
4598
4599 private:
4600 gdb::array_view<const char *> m_symbol_table;
4601 };
4602
4603 /* Convenience function that converts a NULL pointer to a "<null>"
4604 string, to pass to print routines. */
4605
4606 static const char *
4607 string_or_null (const char *str)
4608 {
4609 return str != NULL ? str : "<null>";
4610 }
4611
4612 /* Check if a lookup_name_info built from
4613 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4614 index. EXPECTED_LIST is the list of expected matches, in expected
4615 matching order. If no match expected, then an empty list is
4616 specified. Returns true on success. On failure prints a warning
4617 indicating the file:line that failed, and returns false. */
4618
4619 static bool
4620 check_match (const char *file, int line,
4621 mock_mapped_index &mock_index,
4622 const char *name, symbol_name_match_type match_type,
4623 bool completion_mode,
4624 std::initializer_list<const char *> expected_list)
4625 {
4626 lookup_name_info lookup_name (name, match_type, completion_mode);
4627
4628 bool matched = true;
4629
4630 auto mismatch = [&] (const char *expected_str,
4631 const char *got)
4632 {
4633 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4634 "expected=\"%s\", got=\"%s\"\n"),
4635 file, line,
4636 (match_type == symbol_name_match_type::FULL
4637 ? "FULL" : "WILD"),
4638 name, string_or_null (expected_str), string_or_null (got));
4639 matched = false;
4640 };
4641
4642 auto expected_it = expected_list.begin ();
4643 auto expected_end = expected_list.end ();
4644
4645 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4646 NULL, ALL_DOMAIN,
4647 [&] (offset_type idx)
4648 {
4649 const char *matched_name = mock_index.symbol_name_at (idx);
4650 const char *expected_str
4651 = expected_it == expected_end ? NULL : *expected_it++;
4652
4653 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4654 mismatch (expected_str, matched_name);
4655 });
4656
4657 const char *expected_str
4658 = expected_it == expected_end ? NULL : *expected_it++;
4659 if (expected_str != NULL)
4660 mismatch (expected_str, NULL);
4661
4662 return matched;
4663 }
4664
4665 /* The symbols added to the mock mapped_index for testing (in
4666 canonical form). */
4667 static const char *test_symbols[] = {
4668 "function",
4669 "std::bar",
4670 "std::zfunction",
4671 "std::zfunction2",
4672 "w1::w2",
4673 "ns::foo<char*>",
4674 "ns::foo<int>",
4675 "ns::foo<long>",
4676 "ns2::tmpl<int>::foo2",
4677 "(anonymous namespace)::A::B::C",
4678
4679 /* These are used to check that the increment-last-char in the
4680 matching algorithm for completion doesn't match "t1_fund" when
4681 completing "t1_func". */
4682 "t1_func",
4683 "t1_func1",
4684 "t1_fund",
4685 "t1_fund1",
4686
4687 /* A UTF-8 name with multi-byte sequences to make sure that
4688 cp-name-parser understands this as a single identifier ("função"
4689 is "function" in PT). */
4690 u8"u8função",
4691
4692 /* \377 (0xff) is Latin1 'ÿ'. */
4693 "yfunc\377",
4694
4695 /* \377 (0xff) is Latin1 'ÿ'. */
4696 "\377",
4697 "\377\377123",
4698
4699 /* A name with all sorts of complications. Starts with "z" to make
4700 it easier for the completion tests below. */
4701 #define Z_SYM_NAME \
4702 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4703 "::tuple<(anonymous namespace)::ui*, " \
4704 "std::default_delete<(anonymous namespace)::ui>, void>"
4705
4706 Z_SYM_NAME
4707 };
4708
4709 /* Returns true if the mapped_index_base::find_name_component_bounds
4710 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4711 in completion mode. */
4712
4713 static bool
4714 check_find_bounds_finds (mapped_index_base &index,
4715 const char *search_name,
4716 gdb::array_view<const char *> expected_syms)
4717 {
4718 lookup_name_info lookup_name (search_name,
4719 symbol_name_match_type::FULL, true);
4720
4721 auto bounds = index.find_name_components_bounds (lookup_name);
4722
4723 size_t distance = std::distance (bounds.first, bounds.second);
4724 if (distance != expected_syms.size ())
4725 return false;
4726
4727 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4728 {
4729 auto nc_elem = bounds.first + exp_elem;
4730 const char *qualified = index.symbol_name_at (nc_elem->idx);
4731 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4732 return false;
4733 }
4734
4735 return true;
4736 }
4737
4738 /* Test the lower-level mapped_index::find_name_component_bounds
4739 method. */
4740
4741 static void
4742 test_mapped_index_find_name_component_bounds ()
4743 {
4744 mock_mapped_index mock_index (test_symbols);
4745
4746 mock_index.build_name_components ();
4747
4748 /* Test the lower-level mapped_index::find_name_component_bounds
4749 method in completion mode. */
4750 {
4751 static const char *expected_syms[] = {
4752 "t1_func",
4753 "t1_func1",
4754 };
4755
4756 SELF_CHECK (check_find_bounds_finds (mock_index,
4757 "t1_func", expected_syms));
4758 }
4759
4760 /* Check that the increment-last-char in the name matching algorithm
4761 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4762 {
4763 static const char *expected_syms1[] = {
4764 "\377",
4765 "\377\377123",
4766 };
4767 SELF_CHECK (check_find_bounds_finds (mock_index,
4768 "\377", expected_syms1));
4769
4770 static const char *expected_syms2[] = {
4771 "\377\377123",
4772 };
4773 SELF_CHECK (check_find_bounds_finds (mock_index,
4774 "\377\377", expected_syms2));
4775 }
4776 }
4777
4778 /* Test dw2_expand_symtabs_matching_symbol. */
4779
4780 static void
4781 test_dw2_expand_symtabs_matching_symbol ()
4782 {
4783 mock_mapped_index mock_index (test_symbols);
4784
4785 /* We let all tests run until the end even if some fails, for debug
4786 convenience. */
4787 bool any_mismatch = false;
4788
4789 /* Create the expected symbols list (an initializer_list). Needed
4790 because lists have commas, and we need to pass them to CHECK,
4791 which is a macro. */
4792 #define EXPECT(...) { __VA_ARGS__ }
4793
4794 /* Wrapper for check_match that passes down the current
4795 __FILE__/__LINE__. */
4796 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4797 any_mismatch |= !check_match (__FILE__, __LINE__, \
4798 mock_index, \
4799 NAME, MATCH_TYPE, COMPLETION_MODE, \
4800 EXPECTED_LIST)
4801
4802 /* Identity checks. */
4803 for (const char *sym : test_symbols)
4804 {
4805 /* Should be able to match all existing symbols. */
4806 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4807 EXPECT (sym));
4808
4809 /* Should be able to match all existing symbols with
4810 parameters. */
4811 std::string with_params = std::string (sym) + "(int)";
4812 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4813 EXPECT (sym));
4814
4815 /* Should be able to match all existing symbols with
4816 parameters and qualifiers. */
4817 with_params = std::string (sym) + " ( int ) const";
4818 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4819 EXPECT (sym));
4820
4821 /* This should really find sym, but cp-name-parser.y doesn't
4822 know about lvalue/rvalue qualifiers yet. */
4823 with_params = std::string (sym) + " ( int ) &&";
4824 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4825 {});
4826 }
4827
4828 /* Check that the name matching algorithm for completion doesn't get
4829 confused with Latin1 'ÿ' / 0xff. */
4830 {
4831 static const char str[] = "\377";
4832 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4833 EXPECT ("\377", "\377\377123"));
4834 }
4835
4836 /* Check that the increment-last-char in the matching algorithm for
4837 completion doesn't match "t1_fund" when completing "t1_func". */
4838 {
4839 static const char str[] = "t1_func";
4840 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4841 EXPECT ("t1_func", "t1_func1"));
4842 }
4843
4844 /* Check that completion mode works at each prefix of the expected
4845 symbol name. */
4846 {
4847 static const char str[] = "function(int)";
4848 size_t len = strlen (str);
4849 std::string lookup;
4850
4851 for (size_t i = 1; i < len; i++)
4852 {
4853 lookup.assign (str, i);
4854 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4855 EXPECT ("function"));
4856 }
4857 }
4858
4859 /* While "w" is a prefix of both components, the match function
4860 should still only be called once. */
4861 {
4862 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4863 EXPECT ("w1::w2"));
4864 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4865 EXPECT ("w1::w2"));
4866 }
4867
4868 /* Same, with a "complicated" symbol. */
4869 {
4870 static const char str[] = Z_SYM_NAME;
4871 size_t len = strlen (str);
4872 std::string lookup;
4873
4874 for (size_t i = 1; i < len; i++)
4875 {
4876 lookup.assign (str, i);
4877 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4878 EXPECT (Z_SYM_NAME));
4879 }
4880 }
4881
4882 /* In FULL mode, an incomplete symbol doesn't match. */
4883 {
4884 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4885 {});
4886 }
4887
4888 /* A complete symbol with parameters matches any overload, since the
4889 index has no overload info. */
4890 {
4891 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4892 EXPECT ("std::zfunction", "std::zfunction2"));
4893 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4894 EXPECT ("std::zfunction", "std::zfunction2"));
4895 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4896 EXPECT ("std::zfunction", "std::zfunction2"));
4897 }
4898
4899 /* Check that whitespace is ignored appropriately. A symbol with a
4900 template argument list. */
4901 {
4902 static const char expected[] = "ns::foo<int>";
4903 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4904 EXPECT (expected));
4905 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4906 EXPECT (expected));
4907 }
4908
4909 /* Check that whitespace is ignored appropriately. A symbol with a
4910 template argument list that includes a pointer. */
4911 {
4912 static const char expected[] = "ns::foo<char*>";
4913 /* Try both completion and non-completion modes. */
4914 static const bool completion_mode[2] = {false, true};
4915 for (size_t i = 0; i < 2; i++)
4916 {
4917 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4918 completion_mode[i], EXPECT (expected));
4919 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4920 completion_mode[i], EXPECT (expected));
4921
4922 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4923 completion_mode[i], EXPECT (expected));
4924 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4925 completion_mode[i], EXPECT (expected));
4926 }
4927 }
4928
4929 {
4930 /* Check method qualifiers are ignored. */
4931 static const char expected[] = "ns::foo<char*>";
4932 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4933 symbol_name_match_type::FULL, true, EXPECT (expected));
4934 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4935 symbol_name_match_type::FULL, true, EXPECT (expected));
4936 CHECK_MATCH ("foo < char * > ( int ) const",
4937 symbol_name_match_type::WILD, true, EXPECT (expected));
4938 CHECK_MATCH ("foo < char * > ( int ) &&",
4939 symbol_name_match_type::WILD, true, EXPECT (expected));
4940 }
4941
4942 /* Test lookup names that don't match anything. */
4943 {
4944 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4945 {});
4946
4947 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4948 {});
4949 }
4950
4951 /* Some wild matching tests, exercising "(anonymous namespace)",
4952 which should not be confused with a parameter list. */
4953 {
4954 static const char *syms[] = {
4955 "A::B::C",
4956 "B::C",
4957 "C",
4958 "A :: B :: C ( int )",
4959 "B :: C ( int )",
4960 "C ( int )",
4961 };
4962
4963 for (const char *s : syms)
4964 {
4965 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4966 EXPECT ("(anonymous namespace)::A::B::C"));
4967 }
4968 }
4969
4970 {
4971 static const char expected[] = "ns2::tmpl<int>::foo2";
4972 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4973 EXPECT (expected));
4974 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4975 EXPECT (expected));
4976 }
4977
4978 SELF_CHECK (!any_mismatch);
4979
4980 #undef EXPECT
4981 #undef CHECK_MATCH
4982 }
4983
4984 static void
4985 run_test ()
4986 {
4987 test_mapped_index_find_name_component_bounds ();
4988 test_dw2_expand_symtabs_matching_symbol ();
4989 }
4990
4991 }} // namespace selftests::dw2_expand_symtabs_matching
4992
4993 #endif /* GDB_SELF_TEST */
4994
4995 /* If FILE_MATCHER is NULL or if PER_CU has
4996 dwarf2_per_cu_quick_data::MARK set (see
4997 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4998 EXPANSION_NOTIFY on it. */
4999
5000 static void
5001 dw2_expand_symtabs_matching_one
5002 (struct dwarf2_per_cu_data *per_cu,
5003 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5004 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5005 {
5006 if (file_matcher == NULL || per_cu->v.quick->mark)
5007 {
5008 bool symtab_was_null
5009 = (per_cu->v.quick->compunit_symtab == NULL);
5010
5011 dw2_instantiate_symtab (per_cu, false);
5012
5013 if (expansion_notify != NULL
5014 && symtab_was_null
5015 && per_cu->v.quick->compunit_symtab != NULL)
5016 expansion_notify (per_cu->v.quick->compunit_symtab);
5017 }
5018 }
5019
5020 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5021 matched, to expand corresponding CUs that were marked. IDX is the
5022 index of the symbol name that matched. */
5023
5024 static void
5025 dw2_expand_marked_cus
5026 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5027 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5028 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5029 search_domain kind)
5030 {
5031 offset_type *vec, vec_len, vec_idx;
5032 bool global_seen = false;
5033 mapped_index &index = *dwarf2_per_objfile->index_table;
5034
5035 vec = (offset_type *) (index.constant_pool
5036 + MAYBE_SWAP (index.symbol_table[idx].vec));
5037 vec_len = MAYBE_SWAP (vec[0]);
5038 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5039 {
5040 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5041 /* This value is only valid for index versions >= 7. */
5042 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5043 gdb_index_symbol_kind symbol_kind =
5044 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5045 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5046 /* Only check the symbol attributes if they're present.
5047 Indices prior to version 7 don't record them,
5048 and indices >= 7 may elide them for certain symbols
5049 (gold does this). */
5050 int attrs_valid =
5051 (index.version >= 7
5052 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5053
5054 /* Work around gold/15646. */
5055 if (attrs_valid)
5056 {
5057 if (!is_static && global_seen)
5058 continue;
5059 if (!is_static)
5060 global_seen = true;
5061 }
5062
5063 /* Only check the symbol's kind if it has one. */
5064 if (attrs_valid)
5065 {
5066 switch (kind)
5067 {
5068 case VARIABLES_DOMAIN:
5069 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5070 continue;
5071 break;
5072 case FUNCTIONS_DOMAIN:
5073 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5074 continue;
5075 break;
5076 case TYPES_DOMAIN:
5077 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5078 continue;
5079 break;
5080 default:
5081 break;
5082 }
5083 }
5084
5085 /* Don't crash on bad data. */
5086 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5087 + dwarf2_per_objfile->all_type_units.size ()))
5088 {
5089 complaint (_(".gdb_index entry has bad CU index"
5090 " [in module %s]"),
5091 objfile_name (dwarf2_per_objfile->objfile));
5092 continue;
5093 }
5094
5095 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5096 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5097 expansion_notify);
5098 }
5099 }
5100
5101 /* If FILE_MATCHER is non-NULL, set all the
5102 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5103 that match FILE_MATCHER. */
5104
5105 static void
5106 dw_expand_symtabs_matching_file_matcher
5107 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5108 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5109 {
5110 if (file_matcher == NULL)
5111 return;
5112
5113 objfile *const objfile = dwarf2_per_objfile->objfile;
5114
5115 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5116 htab_eq_pointer,
5117 NULL, xcalloc, xfree));
5118 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5119 htab_eq_pointer,
5120 NULL, xcalloc, xfree));
5121
5122 /* The rule is CUs specify all the files, including those used by
5123 any TU, so there's no need to scan TUs here. */
5124
5125 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5126 {
5127 QUIT;
5128
5129 per_cu->v.quick->mark = 0;
5130
5131 /* We only need to look at symtabs not already expanded. */
5132 if (per_cu->v.quick->compunit_symtab)
5133 continue;
5134
5135 quick_file_names *file_data = dw2_get_file_names (per_cu);
5136 if (file_data == NULL)
5137 continue;
5138
5139 if (htab_find (visited_not_found.get (), file_data) != NULL)
5140 continue;
5141 else if (htab_find (visited_found.get (), file_data) != NULL)
5142 {
5143 per_cu->v.quick->mark = 1;
5144 continue;
5145 }
5146
5147 for (int j = 0; j < file_data->num_file_names; ++j)
5148 {
5149 const char *this_real_name;
5150
5151 if (file_matcher (file_data->file_names[j], false))
5152 {
5153 per_cu->v.quick->mark = 1;
5154 break;
5155 }
5156
5157 /* Before we invoke realpath, which can get expensive when many
5158 files are involved, do a quick comparison of the basenames. */
5159 if (!basenames_may_differ
5160 && !file_matcher (lbasename (file_data->file_names[j]),
5161 true))
5162 continue;
5163
5164 this_real_name = dw2_get_real_path (objfile, file_data, j);
5165 if (file_matcher (this_real_name, false))
5166 {
5167 per_cu->v.quick->mark = 1;
5168 break;
5169 }
5170 }
5171
5172 void **slot = htab_find_slot (per_cu->v.quick->mark
5173 ? visited_found.get ()
5174 : visited_not_found.get (),
5175 file_data, INSERT);
5176 *slot = file_data;
5177 }
5178 }
5179
5180 static void
5181 dw2_expand_symtabs_matching
5182 (struct objfile *objfile,
5183 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5184 const lookup_name_info &lookup_name,
5185 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5186 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5187 enum search_domain kind)
5188 {
5189 struct dwarf2_per_objfile *dwarf2_per_objfile
5190 = get_dwarf2_per_objfile (objfile);
5191
5192 /* index_table is NULL if OBJF_READNOW. */
5193 if (!dwarf2_per_objfile->index_table)
5194 return;
5195
5196 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5197
5198 mapped_index &index = *dwarf2_per_objfile->index_table;
5199
5200 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5201 symbol_matcher,
5202 kind, [&] (offset_type idx)
5203 {
5204 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5205 expansion_notify, kind);
5206 });
5207 }
5208
5209 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5210 symtab. */
5211
5212 static struct compunit_symtab *
5213 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5214 CORE_ADDR pc)
5215 {
5216 int i;
5217
5218 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5219 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5220 return cust;
5221
5222 if (cust->includes == NULL)
5223 return NULL;
5224
5225 for (i = 0; cust->includes[i]; ++i)
5226 {
5227 struct compunit_symtab *s = cust->includes[i];
5228
5229 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5230 if (s != NULL)
5231 return s;
5232 }
5233
5234 return NULL;
5235 }
5236
5237 static struct compunit_symtab *
5238 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5239 struct bound_minimal_symbol msymbol,
5240 CORE_ADDR pc,
5241 struct obj_section *section,
5242 int warn_if_readin)
5243 {
5244 struct dwarf2_per_cu_data *data;
5245 struct compunit_symtab *result;
5246
5247 if (!objfile->psymtabs_addrmap)
5248 return NULL;
5249
5250 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5251 SECT_OFF_TEXT (objfile));
5252 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5253 pc - baseaddr);
5254 if (!data)
5255 return NULL;
5256
5257 if (warn_if_readin && data->v.quick->compunit_symtab)
5258 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5259 paddress (get_objfile_arch (objfile), pc));
5260
5261 result
5262 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5263 false),
5264 pc);
5265 gdb_assert (result != NULL);
5266 return result;
5267 }
5268
5269 static void
5270 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5271 void *data, int need_fullname)
5272 {
5273 struct dwarf2_per_objfile *dwarf2_per_objfile
5274 = get_dwarf2_per_objfile (objfile);
5275
5276 if (!dwarf2_per_objfile->filenames_cache)
5277 {
5278 dwarf2_per_objfile->filenames_cache.emplace ();
5279
5280 htab_up visited (htab_create_alloc (10,
5281 htab_hash_pointer, htab_eq_pointer,
5282 NULL, xcalloc, xfree));
5283
5284 /* The rule is CUs specify all the files, including those used
5285 by any TU, so there's no need to scan TUs here. We can
5286 ignore file names coming from already-expanded CUs. */
5287
5288 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5289 {
5290 if (per_cu->v.quick->compunit_symtab)
5291 {
5292 void **slot = htab_find_slot (visited.get (),
5293 per_cu->v.quick->file_names,
5294 INSERT);
5295
5296 *slot = per_cu->v.quick->file_names;
5297 }
5298 }
5299
5300 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5301 {
5302 /* We only need to look at symtabs not already expanded. */
5303 if (per_cu->v.quick->compunit_symtab)
5304 continue;
5305
5306 quick_file_names *file_data = dw2_get_file_names (per_cu);
5307 if (file_data == NULL)
5308 continue;
5309
5310 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5311 if (*slot)
5312 {
5313 /* Already visited. */
5314 continue;
5315 }
5316 *slot = file_data;
5317
5318 for (int j = 0; j < file_data->num_file_names; ++j)
5319 {
5320 const char *filename = file_data->file_names[j];
5321 dwarf2_per_objfile->filenames_cache->seen (filename);
5322 }
5323 }
5324 }
5325
5326 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5327 {
5328 gdb::unique_xmalloc_ptr<char> this_real_name;
5329
5330 if (need_fullname)
5331 this_real_name = gdb_realpath (filename);
5332 (*fun) (filename, this_real_name.get (), data);
5333 });
5334 }
5335
5336 static int
5337 dw2_has_symbols (struct objfile *objfile)
5338 {
5339 return 1;
5340 }
5341
5342 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5343 {
5344 dw2_has_symbols,
5345 dw2_find_last_source_symtab,
5346 dw2_forget_cached_source_info,
5347 dw2_map_symtabs_matching_filename,
5348 dw2_lookup_symbol,
5349 dw2_print_stats,
5350 dw2_dump,
5351 dw2_expand_symtabs_for_function,
5352 dw2_expand_all_symtabs,
5353 dw2_expand_symtabs_with_fullname,
5354 dw2_map_matching_symbols,
5355 dw2_expand_symtabs_matching,
5356 dw2_find_pc_sect_compunit_symtab,
5357 NULL,
5358 dw2_map_symbol_filenames
5359 };
5360
5361 /* DWARF-5 debug_names reader. */
5362
5363 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5364 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5365
5366 /* A helper function that reads the .debug_names section in SECTION
5367 and fills in MAP. FILENAME is the name of the file containing the
5368 section; it is used for error reporting.
5369
5370 Returns true if all went well, false otherwise. */
5371
5372 static bool
5373 read_debug_names_from_section (struct objfile *objfile,
5374 const char *filename,
5375 struct dwarf2_section_info *section,
5376 mapped_debug_names &map)
5377 {
5378 if (dwarf2_section_empty_p (section))
5379 return false;
5380
5381 /* Older elfutils strip versions could keep the section in the main
5382 executable while splitting it for the separate debug info file. */
5383 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5384 return false;
5385
5386 dwarf2_read_section (objfile, section);
5387
5388 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5389
5390 const gdb_byte *addr = section->buffer;
5391
5392 bfd *const abfd = get_section_bfd_owner (section);
5393
5394 unsigned int bytes_read;
5395 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5396 addr += bytes_read;
5397
5398 map.dwarf5_is_dwarf64 = bytes_read != 4;
5399 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5400 if (bytes_read + length != section->size)
5401 {
5402 /* There may be multiple per-CU indices. */
5403 warning (_("Section .debug_names in %s length %s does not match "
5404 "section length %s, ignoring .debug_names."),
5405 filename, plongest (bytes_read + length),
5406 pulongest (section->size));
5407 return false;
5408 }
5409
5410 /* The version number. */
5411 uint16_t version = read_2_bytes (abfd, addr);
5412 addr += 2;
5413 if (version != 5)
5414 {
5415 warning (_("Section .debug_names in %s has unsupported version %d, "
5416 "ignoring .debug_names."),
5417 filename, version);
5418 return false;
5419 }
5420
5421 /* Padding. */
5422 uint16_t padding = read_2_bytes (abfd, addr);
5423 addr += 2;
5424 if (padding != 0)
5425 {
5426 warning (_("Section .debug_names in %s has unsupported padding %d, "
5427 "ignoring .debug_names."),
5428 filename, padding);
5429 return false;
5430 }
5431
5432 /* comp_unit_count - The number of CUs in the CU list. */
5433 map.cu_count = read_4_bytes (abfd, addr);
5434 addr += 4;
5435
5436 /* local_type_unit_count - The number of TUs in the local TU
5437 list. */
5438 map.tu_count = read_4_bytes (abfd, addr);
5439 addr += 4;
5440
5441 /* foreign_type_unit_count - The number of TUs in the foreign TU
5442 list. */
5443 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5444 addr += 4;
5445 if (foreign_tu_count != 0)
5446 {
5447 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5448 "ignoring .debug_names."),
5449 filename, static_cast<unsigned long> (foreign_tu_count));
5450 return false;
5451 }
5452
5453 /* bucket_count - The number of hash buckets in the hash lookup
5454 table. */
5455 map.bucket_count = read_4_bytes (abfd, addr);
5456 addr += 4;
5457
5458 /* name_count - The number of unique names in the index. */
5459 map.name_count = read_4_bytes (abfd, addr);
5460 addr += 4;
5461
5462 /* abbrev_table_size - The size in bytes of the abbreviations
5463 table. */
5464 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5465 addr += 4;
5466
5467 /* augmentation_string_size - The size in bytes of the augmentation
5468 string. This value is rounded up to a multiple of 4. */
5469 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5470 addr += 4;
5471 map.augmentation_is_gdb = ((augmentation_string_size
5472 == sizeof (dwarf5_augmentation))
5473 && memcmp (addr, dwarf5_augmentation,
5474 sizeof (dwarf5_augmentation)) == 0);
5475 augmentation_string_size += (-augmentation_string_size) & 3;
5476 addr += augmentation_string_size;
5477
5478 /* List of CUs */
5479 map.cu_table_reordered = addr;
5480 addr += map.cu_count * map.offset_size;
5481
5482 /* List of Local TUs */
5483 map.tu_table_reordered = addr;
5484 addr += map.tu_count * map.offset_size;
5485
5486 /* Hash Lookup Table */
5487 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5488 addr += map.bucket_count * 4;
5489 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5490 addr += map.name_count * 4;
5491
5492 /* Name Table */
5493 map.name_table_string_offs_reordered = addr;
5494 addr += map.name_count * map.offset_size;
5495 map.name_table_entry_offs_reordered = addr;
5496 addr += map.name_count * map.offset_size;
5497
5498 const gdb_byte *abbrev_table_start = addr;
5499 for (;;)
5500 {
5501 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5502 addr += bytes_read;
5503 if (index_num == 0)
5504 break;
5505
5506 const auto insertpair
5507 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5508 if (!insertpair.second)
5509 {
5510 warning (_("Section .debug_names in %s has duplicate index %s, "
5511 "ignoring .debug_names."),
5512 filename, pulongest (index_num));
5513 return false;
5514 }
5515 mapped_debug_names::index_val &indexval = insertpair.first->second;
5516 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5517 addr += bytes_read;
5518
5519 for (;;)
5520 {
5521 mapped_debug_names::index_val::attr attr;
5522 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5523 addr += bytes_read;
5524 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5525 addr += bytes_read;
5526 if (attr.form == DW_FORM_implicit_const)
5527 {
5528 attr.implicit_const = read_signed_leb128 (abfd, addr,
5529 &bytes_read);
5530 addr += bytes_read;
5531 }
5532 if (attr.dw_idx == 0 && attr.form == 0)
5533 break;
5534 indexval.attr_vec.push_back (std::move (attr));
5535 }
5536 }
5537 if (addr != abbrev_table_start + abbrev_table_size)
5538 {
5539 warning (_("Section .debug_names in %s has abbreviation_table "
5540 "of size %zu vs. written as %u, ignoring .debug_names."),
5541 filename, addr - abbrev_table_start, abbrev_table_size);
5542 return false;
5543 }
5544 map.entry_pool = addr;
5545
5546 return true;
5547 }
5548
5549 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5550 list. */
5551
5552 static void
5553 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5554 const mapped_debug_names &map,
5555 dwarf2_section_info &section,
5556 bool is_dwz)
5557 {
5558 sect_offset sect_off_prev;
5559 for (uint32_t i = 0; i <= map.cu_count; ++i)
5560 {
5561 sect_offset sect_off_next;
5562 if (i < map.cu_count)
5563 {
5564 sect_off_next
5565 = (sect_offset) (extract_unsigned_integer
5566 (map.cu_table_reordered + i * map.offset_size,
5567 map.offset_size,
5568 map.dwarf5_byte_order));
5569 }
5570 else
5571 sect_off_next = (sect_offset) section.size;
5572 if (i >= 1)
5573 {
5574 const ULONGEST length = sect_off_next - sect_off_prev;
5575 dwarf2_per_cu_data *per_cu
5576 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5577 sect_off_prev, length);
5578 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5579 }
5580 sect_off_prev = sect_off_next;
5581 }
5582 }
5583
5584 /* Read the CU list from the mapped index, and use it to create all
5585 the CU objects for this dwarf2_per_objfile. */
5586
5587 static void
5588 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5589 const mapped_debug_names &map,
5590 const mapped_debug_names &dwz_map)
5591 {
5592 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5593 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5594
5595 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5596 dwarf2_per_objfile->info,
5597 false /* is_dwz */);
5598
5599 if (dwz_map.cu_count == 0)
5600 return;
5601
5602 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5603 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5604 true /* is_dwz */);
5605 }
5606
5607 /* Read .debug_names. If everything went ok, initialize the "quick"
5608 elements of all the CUs and return true. Otherwise, return false. */
5609
5610 static bool
5611 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5612 {
5613 std::unique_ptr<mapped_debug_names> map
5614 (new mapped_debug_names (dwarf2_per_objfile));
5615 mapped_debug_names dwz_map (dwarf2_per_objfile);
5616 struct objfile *objfile = dwarf2_per_objfile->objfile;
5617
5618 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5619 &dwarf2_per_objfile->debug_names,
5620 *map))
5621 return false;
5622
5623 /* Don't use the index if it's empty. */
5624 if (map->name_count == 0)
5625 return false;
5626
5627 /* If there is a .dwz file, read it so we can get its CU list as
5628 well. */
5629 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5630 if (dwz != NULL)
5631 {
5632 if (!read_debug_names_from_section (objfile,
5633 bfd_get_filename (dwz->dwz_bfd),
5634 &dwz->debug_names, dwz_map))
5635 {
5636 warning (_("could not read '.debug_names' section from %s; skipping"),
5637 bfd_get_filename (dwz->dwz_bfd));
5638 return false;
5639 }
5640 }
5641
5642 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5643
5644 if (map->tu_count != 0)
5645 {
5646 /* We can only handle a single .debug_types when we have an
5647 index. */
5648 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5649 return false;
5650
5651 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5652 dwarf2_per_objfile->types, 0);
5653
5654 create_signatured_type_table_from_debug_names
5655 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5656 }
5657
5658 create_addrmap_from_aranges (dwarf2_per_objfile,
5659 &dwarf2_per_objfile->debug_aranges);
5660
5661 dwarf2_per_objfile->debug_names_table = std::move (map);
5662 dwarf2_per_objfile->using_index = 1;
5663 dwarf2_per_objfile->quick_file_names_table =
5664 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5665
5666 return true;
5667 }
5668
5669 /* Type used to manage iterating over all CUs looking for a symbol for
5670 .debug_names. */
5671
5672 class dw2_debug_names_iterator
5673 {
5674 public:
5675 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5676 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5677 dw2_debug_names_iterator (const mapped_debug_names &map,
5678 bool want_specific_block,
5679 block_enum block_index, domain_enum domain,
5680 const char *name)
5681 : m_map (map), m_want_specific_block (want_specific_block),
5682 m_block_index (block_index), m_domain (domain),
5683 m_addr (find_vec_in_debug_names (map, name))
5684 {}
5685
5686 dw2_debug_names_iterator (const mapped_debug_names &map,
5687 search_domain search, uint32_t namei)
5688 : m_map (map),
5689 m_search (search),
5690 m_addr (find_vec_in_debug_names (map, namei))
5691 {}
5692
5693 /* Return the next matching CU or NULL if there are no more. */
5694 dwarf2_per_cu_data *next ();
5695
5696 private:
5697 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5698 const char *name);
5699 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5700 uint32_t namei);
5701
5702 /* The internalized form of .debug_names. */
5703 const mapped_debug_names &m_map;
5704
5705 /* If true, only look for symbols that match BLOCK_INDEX. */
5706 const bool m_want_specific_block = false;
5707
5708 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5709 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5710 value. */
5711 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5712
5713 /* The kind of symbol we're looking for. */
5714 const domain_enum m_domain = UNDEF_DOMAIN;
5715 const search_domain m_search = ALL_DOMAIN;
5716
5717 /* The list of CUs from the index entry of the symbol, or NULL if
5718 not found. */
5719 const gdb_byte *m_addr;
5720 };
5721
5722 const char *
5723 mapped_debug_names::namei_to_name (uint32_t namei) const
5724 {
5725 const ULONGEST namei_string_offs
5726 = extract_unsigned_integer ((name_table_string_offs_reordered
5727 + namei * offset_size),
5728 offset_size,
5729 dwarf5_byte_order);
5730 return read_indirect_string_at_offset
5731 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5732 }
5733
5734 /* Find a slot in .debug_names for the object named NAME. If NAME is
5735 found, return pointer to its pool data. If NAME cannot be found,
5736 return NULL. */
5737
5738 const gdb_byte *
5739 dw2_debug_names_iterator::find_vec_in_debug_names
5740 (const mapped_debug_names &map, const char *name)
5741 {
5742 int (*cmp) (const char *, const char *);
5743
5744 if (current_language->la_language == language_cplus
5745 || current_language->la_language == language_fortran
5746 || current_language->la_language == language_d)
5747 {
5748 /* NAME is already canonical. Drop any qualifiers as
5749 .debug_names does not contain any. */
5750
5751 if (strchr (name, '(') != NULL)
5752 {
5753 gdb::unique_xmalloc_ptr<char> without_params
5754 = cp_remove_params (name);
5755
5756 if (without_params != NULL)
5757 {
5758 name = without_params.get();
5759 }
5760 }
5761 }
5762
5763 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5764
5765 const uint32_t full_hash = dwarf5_djb_hash (name);
5766 uint32_t namei
5767 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5768 (map.bucket_table_reordered
5769 + (full_hash % map.bucket_count)), 4,
5770 map.dwarf5_byte_order);
5771 if (namei == 0)
5772 return NULL;
5773 --namei;
5774 if (namei >= map.name_count)
5775 {
5776 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5777 "[in module %s]"),
5778 namei, map.name_count,
5779 objfile_name (map.dwarf2_per_objfile->objfile));
5780 return NULL;
5781 }
5782
5783 for (;;)
5784 {
5785 const uint32_t namei_full_hash
5786 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5787 (map.hash_table_reordered + namei), 4,
5788 map.dwarf5_byte_order);
5789 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5790 return NULL;
5791
5792 if (full_hash == namei_full_hash)
5793 {
5794 const char *const namei_string = map.namei_to_name (namei);
5795
5796 #if 0 /* An expensive sanity check. */
5797 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5798 {
5799 complaint (_("Wrong .debug_names hash for string at index %u "
5800 "[in module %s]"),
5801 namei, objfile_name (dwarf2_per_objfile->objfile));
5802 return NULL;
5803 }
5804 #endif
5805
5806 if (cmp (namei_string, name) == 0)
5807 {
5808 const ULONGEST namei_entry_offs
5809 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5810 + namei * map.offset_size),
5811 map.offset_size, map.dwarf5_byte_order);
5812 return map.entry_pool + namei_entry_offs;
5813 }
5814 }
5815
5816 ++namei;
5817 if (namei >= map.name_count)
5818 return NULL;
5819 }
5820 }
5821
5822 const gdb_byte *
5823 dw2_debug_names_iterator::find_vec_in_debug_names
5824 (const mapped_debug_names &map, uint32_t namei)
5825 {
5826 if (namei >= map.name_count)
5827 {
5828 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5829 "[in module %s]"),
5830 namei, map.name_count,
5831 objfile_name (map.dwarf2_per_objfile->objfile));
5832 return NULL;
5833 }
5834
5835 const ULONGEST namei_entry_offs
5836 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5837 + namei * map.offset_size),
5838 map.offset_size, map.dwarf5_byte_order);
5839 return map.entry_pool + namei_entry_offs;
5840 }
5841
5842 /* See dw2_debug_names_iterator. */
5843
5844 dwarf2_per_cu_data *
5845 dw2_debug_names_iterator::next ()
5846 {
5847 if (m_addr == NULL)
5848 return NULL;
5849
5850 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5851 struct objfile *objfile = dwarf2_per_objfile->objfile;
5852 bfd *const abfd = objfile->obfd;
5853
5854 again:
5855
5856 unsigned int bytes_read;
5857 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5858 m_addr += bytes_read;
5859 if (abbrev == 0)
5860 return NULL;
5861
5862 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5863 if (indexval_it == m_map.abbrev_map.cend ())
5864 {
5865 complaint (_("Wrong .debug_names undefined abbrev code %s "
5866 "[in module %s]"),
5867 pulongest (abbrev), objfile_name (objfile));
5868 return NULL;
5869 }
5870 const mapped_debug_names::index_val &indexval = indexval_it->second;
5871 bool have_is_static = false;
5872 bool is_static;
5873 dwarf2_per_cu_data *per_cu = NULL;
5874 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5875 {
5876 ULONGEST ull;
5877 switch (attr.form)
5878 {
5879 case DW_FORM_implicit_const:
5880 ull = attr.implicit_const;
5881 break;
5882 case DW_FORM_flag_present:
5883 ull = 1;
5884 break;
5885 case DW_FORM_udata:
5886 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5887 m_addr += bytes_read;
5888 break;
5889 default:
5890 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5891 dwarf_form_name (attr.form),
5892 objfile_name (objfile));
5893 return NULL;
5894 }
5895 switch (attr.dw_idx)
5896 {
5897 case DW_IDX_compile_unit:
5898 /* Don't crash on bad data. */
5899 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5900 {
5901 complaint (_(".debug_names entry has bad CU index %s"
5902 " [in module %s]"),
5903 pulongest (ull),
5904 objfile_name (dwarf2_per_objfile->objfile));
5905 continue;
5906 }
5907 per_cu = dwarf2_per_objfile->get_cutu (ull);
5908 break;
5909 case DW_IDX_type_unit:
5910 /* Don't crash on bad data. */
5911 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5912 {
5913 complaint (_(".debug_names entry has bad TU index %s"
5914 " [in module %s]"),
5915 pulongest (ull),
5916 objfile_name (dwarf2_per_objfile->objfile));
5917 continue;
5918 }
5919 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5920 break;
5921 case DW_IDX_GNU_internal:
5922 if (!m_map.augmentation_is_gdb)
5923 break;
5924 have_is_static = true;
5925 is_static = true;
5926 break;
5927 case DW_IDX_GNU_external:
5928 if (!m_map.augmentation_is_gdb)
5929 break;
5930 have_is_static = true;
5931 is_static = false;
5932 break;
5933 }
5934 }
5935
5936 /* Skip if already read in. */
5937 if (per_cu->v.quick->compunit_symtab)
5938 goto again;
5939
5940 /* Check static vs global. */
5941 if (have_is_static)
5942 {
5943 const bool want_static = m_block_index != GLOBAL_BLOCK;
5944 if (m_want_specific_block && want_static != is_static)
5945 goto again;
5946 }
5947
5948 /* Match dw2_symtab_iter_next, symbol_kind
5949 and debug_names::psymbol_tag. */
5950 switch (m_domain)
5951 {
5952 case VAR_DOMAIN:
5953 switch (indexval.dwarf_tag)
5954 {
5955 case DW_TAG_variable:
5956 case DW_TAG_subprogram:
5957 /* Some types are also in VAR_DOMAIN. */
5958 case DW_TAG_typedef:
5959 case DW_TAG_structure_type:
5960 break;
5961 default:
5962 goto again;
5963 }
5964 break;
5965 case STRUCT_DOMAIN:
5966 switch (indexval.dwarf_tag)
5967 {
5968 case DW_TAG_typedef:
5969 case DW_TAG_structure_type:
5970 break;
5971 default:
5972 goto again;
5973 }
5974 break;
5975 case LABEL_DOMAIN:
5976 switch (indexval.dwarf_tag)
5977 {
5978 case 0:
5979 case DW_TAG_variable:
5980 break;
5981 default:
5982 goto again;
5983 }
5984 break;
5985 default:
5986 break;
5987 }
5988
5989 /* Match dw2_expand_symtabs_matching, symbol_kind and
5990 debug_names::psymbol_tag. */
5991 switch (m_search)
5992 {
5993 case VARIABLES_DOMAIN:
5994 switch (indexval.dwarf_tag)
5995 {
5996 case DW_TAG_variable:
5997 break;
5998 default:
5999 goto again;
6000 }
6001 break;
6002 case FUNCTIONS_DOMAIN:
6003 switch (indexval.dwarf_tag)
6004 {
6005 case DW_TAG_subprogram:
6006 break;
6007 default:
6008 goto again;
6009 }
6010 break;
6011 case TYPES_DOMAIN:
6012 switch (indexval.dwarf_tag)
6013 {
6014 case DW_TAG_typedef:
6015 case DW_TAG_structure_type:
6016 break;
6017 default:
6018 goto again;
6019 }
6020 break;
6021 default:
6022 break;
6023 }
6024
6025 return per_cu;
6026 }
6027
6028 static struct compunit_symtab *
6029 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6030 const char *name, domain_enum domain)
6031 {
6032 const block_enum block_index = static_cast<block_enum> (block_index_int);
6033 struct dwarf2_per_objfile *dwarf2_per_objfile
6034 = get_dwarf2_per_objfile (objfile);
6035
6036 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6037 if (!mapp)
6038 {
6039 /* index is NULL if OBJF_READNOW. */
6040 return NULL;
6041 }
6042 const auto &map = *mapp;
6043
6044 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6045 block_index, domain, name);
6046
6047 struct compunit_symtab *stab_best = NULL;
6048 struct dwarf2_per_cu_data *per_cu;
6049 while ((per_cu = iter.next ()) != NULL)
6050 {
6051 struct symbol *sym, *with_opaque = NULL;
6052 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6053 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6054 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6055
6056 sym = block_find_symbol (block, name, domain,
6057 block_find_non_opaque_type_preferred,
6058 &with_opaque);
6059
6060 /* Some caution must be observed with overloaded functions and
6061 methods, since the index will not contain any overload
6062 information (but NAME might contain it). */
6063
6064 if (sym != NULL
6065 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6066 return stab;
6067 if (with_opaque != NULL
6068 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6069 stab_best = stab;
6070
6071 /* Keep looking through other CUs. */
6072 }
6073
6074 return stab_best;
6075 }
6076
6077 /* This dumps minimal information about .debug_names. It is called
6078 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6079 uses this to verify that .debug_names has been loaded. */
6080
6081 static void
6082 dw2_debug_names_dump (struct objfile *objfile)
6083 {
6084 struct dwarf2_per_objfile *dwarf2_per_objfile
6085 = get_dwarf2_per_objfile (objfile);
6086
6087 gdb_assert (dwarf2_per_objfile->using_index);
6088 printf_filtered (".debug_names:");
6089 if (dwarf2_per_objfile->debug_names_table)
6090 printf_filtered (" exists\n");
6091 else
6092 printf_filtered (" faked for \"readnow\"\n");
6093 printf_filtered ("\n");
6094 }
6095
6096 static void
6097 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6098 const char *func_name)
6099 {
6100 struct dwarf2_per_objfile *dwarf2_per_objfile
6101 = get_dwarf2_per_objfile (objfile);
6102
6103 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6104 if (dwarf2_per_objfile->debug_names_table)
6105 {
6106 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6107
6108 /* Note: It doesn't matter what we pass for block_index here. */
6109 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6110 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6111
6112 struct dwarf2_per_cu_data *per_cu;
6113 while ((per_cu = iter.next ()) != NULL)
6114 dw2_instantiate_symtab (per_cu, false);
6115 }
6116 }
6117
6118 static void
6119 dw2_debug_names_expand_symtabs_matching
6120 (struct objfile *objfile,
6121 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6122 const lookup_name_info &lookup_name,
6123 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6124 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6125 enum search_domain kind)
6126 {
6127 struct dwarf2_per_objfile *dwarf2_per_objfile
6128 = get_dwarf2_per_objfile (objfile);
6129
6130 /* debug_names_table is NULL if OBJF_READNOW. */
6131 if (!dwarf2_per_objfile->debug_names_table)
6132 return;
6133
6134 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6135
6136 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6137
6138 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6139 symbol_matcher,
6140 kind, [&] (offset_type namei)
6141 {
6142 /* The name was matched, now expand corresponding CUs that were
6143 marked. */
6144 dw2_debug_names_iterator iter (map, kind, namei);
6145
6146 struct dwarf2_per_cu_data *per_cu;
6147 while ((per_cu = iter.next ()) != NULL)
6148 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6149 expansion_notify);
6150 });
6151 }
6152
6153 const struct quick_symbol_functions dwarf2_debug_names_functions =
6154 {
6155 dw2_has_symbols,
6156 dw2_find_last_source_symtab,
6157 dw2_forget_cached_source_info,
6158 dw2_map_symtabs_matching_filename,
6159 dw2_debug_names_lookup_symbol,
6160 dw2_print_stats,
6161 dw2_debug_names_dump,
6162 dw2_debug_names_expand_symtabs_for_function,
6163 dw2_expand_all_symtabs,
6164 dw2_expand_symtabs_with_fullname,
6165 dw2_map_matching_symbols,
6166 dw2_debug_names_expand_symtabs_matching,
6167 dw2_find_pc_sect_compunit_symtab,
6168 NULL,
6169 dw2_map_symbol_filenames
6170 };
6171
6172 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6173 to either a dwarf2_per_objfile or dwz_file object. */
6174
6175 template <typename T>
6176 static gdb::array_view<const gdb_byte>
6177 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6178 {
6179 dwarf2_section_info *section = &section_owner->gdb_index;
6180
6181 if (dwarf2_section_empty_p (section))
6182 return {};
6183
6184 /* Older elfutils strip versions could keep the section in the main
6185 executable while splitting it for the separate debug info file. */
6186 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6187 return {};
6188
6189 dwarf2_read_section (obj, section);
6190
6191 return {section->buffer, section->size};
6192 }
6193
6194 /* Lookup the index cache for the contents of the index associated to
6195 DWARF2_OBJ. */
6196
6197 static gdb::array_view<const gdb_byte>
6198 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6199 {
6200 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6201 if (build_id == nullptr)
6202 return {};
6203
6204 return global_index_cache.lookup_gdb_index (build_id,
6205 &dwarf2_obj->index_cache_res);
6206 }
6207
6208 /* Same as the above, but for DWZ. */
6209
6210 static gdb::array_view<const gdb_byte>
6211 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6212 {
6213 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6214 if (build_id == nullptr)
6215 return {};
6216
6217 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6218 }
6219
6220 /* See symfile.h. */
6221
6222 bool
6223 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6224 {
6225 struct dwarf2_per_objfile *dwarf2_per_objfile
6226 = get_dwarf2_per_objfile (objfile);
6227
6228 /* If we're about to read full symbols, don't bother with the
6229 indices. In this case we also don't care if some other debug
6230 format is making psymtabs, because they are all about to be
6231 expanded anyway. */
6232 if ((objfile->flags & OBJF_READNOW))
6233 {
6234 dwarf2_per_objfile->using_index = 1;
6235 create_all_comp_units (dwarf2_per_objfile);
6236 create_all_type_units (dwarf2_per_objfile);
6237 dwarf2_per_objfile->quick_file_names_table
6238 = create_quick_file_names_table
6239 (dwarf2_per_objfile->all_comp_units.size ());
6240
6241 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6242 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6243 {
6244 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6245
6246 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6247 struct dwarf2_per_cu_quick_data);
6248 }
6249
6250 /* Return 1 so that gdb sees the "quick" functions. However,
6251 these functions will be no-ops because we will have expanded
6252 all symtabs. */
6253 *index_kind = dw_index_kind::GDB_INDEX;
6254 return true;
6255 }
6256
6257 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6258 {
6259 *index_kind = dw_index_kind::DEBUG_NAMES;
6260 return true;
6261 }
6262
6263 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6264 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6265 get_gdb_index_contents_from_section<dwz_file>))
6266 {
6267 *index_kind = dw_index_kind::GDB_INDEX;
6268 return true;
6269 }
6270
6271 /* ... otherwise, try to find the index in the index cache. */
6272 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6273 get_gdb_index_contents_from_cache,
6274 get_gdb_index_contents_from_cache_dwz))
6275 {
6276 global_index_cache.hit ();
6277 *index_kind = dw_index_kind::GDB_INDEX;
6278 return true;
6279 }
6280
6281 global_index_cache.miss ();
6282 return false;
6283 }
6284
6285 \f
6286
6287 /* Build a partial symbol table. */
6288
6289 void
6290 dwarf2_build_psymtabs (struct objfile *objfile)
6291 {
6292 struct dwarf2_per_objfile *dwarf2_per_objfile
6293 = get_dwarf2_per_objfile (objfile);
6294
6295 if (objfile->global_psymbols.capacity () == 0
6296 && objfile->static_psymbols.capacity () == 0)
6297 init_psymbol_list (objfile, 1024);
6298
6299 TRY
6300 {
6301 /* This isn't really ideal: all the data we allocate on the
6302 objfile's obstack is still uselessly kept around. However,
6303 freeing it seems unsafe. */
6304 psymtab_discarder psymtabs (objfile);
6305 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6306 psymtabs.keep ();
6307
6308 /* (maybe) store an index in the cache. */
6309 global_index_cache.store (dwarf2_per_objfile);
6310 }
6311 CATCH (except, RETURN_MASK_ERROR)
6312 {
6313 exception_print (gdb_stderr, except);
6314 }
6315 END_CATCH
6316 }
6317
6318 /* Return the total length of the CU described by HEADER. */
6319
6320 static unsigned int
6321 get_cu_length (const struct comp_unit_head *header)
6322 {
6323 return header->initial_length_size + header->length;
6324 }
6325
6326 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6327
6328 static inline bool
6329 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6330 {
6331 sect_offset bottom = cu_header->sect_off;
6332 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6333
6334 return sect_off >= bottom && sect_off < top;
6335 }
6336
6337 /* Find the base address of the compilation unit for range lists and
6338 location lists. It will normally be specified by DW_AT_low_pc.
6339 In DWARF-3 draft 4, the base address could be overridden by
6340 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6341 compilation units with discontinuous ranges. */
6342
6343 static void
6344 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6345 {
6346 struct attribute *attr;
6347
6348 cu->base_known = 0;
6349 cu->base_address = 0;
6350
6351 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6352 if (attr)
6353 {
6354 cu->base_address = attr_value_as_address (attr);
6355 cu->base_known = 1;
6356 }
6357 else
6358 {
6359 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6360 if (attr)
6361 {
6362 cu->base_address = attr_value_as_address (attr);
6363 cu->base_known = 1;
6364 }
6365 }
6366 }
6367
6368 /* Read in the comp unit header information from the debug_info at info_ptr.
6369 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6370 NOTE: This leaves members offset, first_die_offset to be filled in
6371 by the caller. */
6372
6373 static const gdb_byte *
6374 read_comp_unit_head (struct comp_unit_head *cu_header,
6375 const gdb_byte *info_ptr,
6376 struct dwarf2_section_info *section,
6377 rcuh_kind section_kind)
6378 {
6379 int signed_addr;
6380 unsigned int bytes_read;
6381 const char *filename = get_section_file_name (section);
6382 bfd *abfd = get_section_bfd_owner (section);
6383
6384 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6385 cu_header->initial_length_size = bytes_read;
6386 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6387 info_ptr += bytes_read;
6388 cu_header->version = read_2_bytes (abfd, info_ptr);
6389 if (cu_header->version < 2 || cu_header->version > 5)
6390 error (_("Dwarf Error: wrong version in compilation unit header "
6391 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6392 cu_header->version, filename);
6393 info_ptr += 2;
6394 if (cu_header->version < 5)
6395 switch (section_kind)
6396 {
6397 case rcuh_kind::COMPILE:
6398 cu_header->unit_type = DW_UT_compile;
6399 break;
6400 case rcuh_kind::TYPE:
6401 cu_header->unit_type = DW_UT_type;
6402 break;
6403 default:
6404 internal_error (__FILE__, __LINE__,
6405 _("read_comp_unit_head: invalid section_kind"));
6406 }
6407 else
6408 {
6409 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6410 (read_1_byte (abfd, info_ptr));
6411 info_ptr += 1;
6412 switch (cu_header->unit_type)
6413 {
6414 case DW_UT_compile:
6415 if (section_kind != rcuh_kind::COMPILE)
6416 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6417 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6418 filename);
6419 break;
6420 case DW_UT_type:
6421 section_kind = rcuh_kind::TYPE;
6422 break;
6423 default:
6424 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6425 "(is %d, should be %d or %d) [in module %s]"),
6426 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6427 }
6428
6429 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6430 info_ptr += 1;
6431 }
6432 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6433 cu_header,
6434 &bytes_read);
6435 info_ptr += bytes_read;
6436 if (cu_header->version < 5)
6437 {
6438 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6439 info_ptr += 1;
6440 }
6441 signed_addr = bfd_get_sign_extend_vma (abfd);
6442 if (signed_addr < 0)
6443 internal_error (__FILE__, __LINE__,
6444 _("read_comp_unit_head: dwarf from non elf file"));
6445 cu_header->signed_addr_p = signed_addr;
6446
6447 if (section_kind == rcuh_kind::TYPE)
6448 {
6449 LONGEST type_offset;
6450
6451 cu_header->signature = read_8_bytes (abfd, info_ptr);
6452 info_ptr += 8;
6453
6454 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6455 info_ptr += bytes_read;
6456 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6457 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6458 error (_("Dwarf Error: Too big type_offset in compilation unit "
6459 "header (is %s) [in module %s]"), plongest (type_offset),
6460 filename);
6461 }
6462
6463 return info_ptr;
6464 }
6465
6466 /* Helper function that returns the proper abbrev section for
6467 THIS_CU. */
6468
6469 static struct dwarf2_section_info *
6470 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6471 {
6472 struct dwarf2_section_info *abbrev;
6473 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6474
6475 if (this_cu->is_dwz)
6476 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6477 else
6478 abbrev = &dwarf2_per_objfile->abbrev;
6479
6480 return abbrev;
6481 }
6482
6483 /* Subroutine of read_and_check_comp_unit_head and
6484 read_and_check_type_unit_head to simplify them.
6485 Perform various error checking on the header. */
6486
6487 static void
6488 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6489 struct comp_unit_head *header,
6490 struct dwarf2_section_info *section,
6491 struct dwarf2_section_info *abbrev_section)
6492 {
6493 const char *filename = get_section_file_name (section);
6494
6495 if (to_underlying (header->abbrev_sect_off)
6496 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6497 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6498 "(offset %s + 6) [in module %s]"),
6499 sect_offset_str (header->abbrev_sect_off),
6500 sect_offset_str (header->sect_off),
6501 filename);
6502
6503 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6504 avoid potential 32-bit overflow. */
6505 if (((ULONGEST) header->sect_off + get_cu_length (header))
6506 > section->size)
6507 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6508 "(offset %s + 0) [in module %s]"),
6509 header->length, sect_offset_str (header->sect_off),
6510 filename);
6511 }
6512
6513 /* Read in a CU/TU header and perform some basic error checking.
6514 The contents of the header are stored in HEADER.
6515 The result is a pointer to the start of the first DIE. */
6516
6517 static const gdb_byte *
6518 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6519 struct comp_unit_head *header,
6520 struct dwarf2_section_info *section,
6521 struct dwarf2_section_info *abbrev_section,
6522 const gdb_byte *info_ptr,
6523 rcuh_kind section_kind)
6524 {
6525 const gdb_byte *beg_of_comp_unit = info_ptr;
6526
6527 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6528
6529 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6530
6531 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6532
6533 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6534 abbrev_section);
6535
6536 return info_ptr;
6537 }
6538
6539 /* Fetch the abbreviation table offset from a comp or type unit header. */
6540
6541 static sect_offset
6542 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6543 struct dwarf2_section_info *section,
6544 sect_offset sect_off)
6545 {
6546 bfd *abfd = get_section_bfd_owner (section);
6547 const gdb_byte *info_ptr;
6548 unsigned int initial_length_size, offset_size;
6549 uint16_t version;
6550
6551 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6552 info_ptr = section->buffer + to_underlying (sect_off);
6553 read_initial_length (abfd, info_ptr, &initial_length_size);
6554 offset_size = initial_length_size == 4 ? 4 : 8;
6555 info_ptr += initial_length_size;
6556
6557 version = read_2_bytes (abfd, info_ptr);
6558 info_ptr += 2;
6559 if (version >= 5)
6560 {
6561 /* Skip unit type and address size. */
6562 info_ptr += 2;
6563 }
6564
6565 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6566 }
6567
6568 /* Allocate a new partial symtab for file named NAME and mark this new
6569 partial symtab as being an include of PST. */
6570
6571 static void
6572 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6573 struct objfile *objfile)
6574 {
6575 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6576
6577 if (!IS_ABSOLUTE_PATH (subpst->filename))
6578 {
6579 /* It shares objfile->objfile_obstack. */
6580 subpst->dirname = pst->dirname;
6581 }
6582
6583 subpst->dependencies
6584 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6585 subpst->dependencies[0] = pst;
6586 subpst->number_of_dependencies = 1;
6587
6588 subpst->globals_offset = 0;
6589 subpst->n_global_syms = 0;
6590 subpst->statics_offset = 0;
6591 subpst->n_static_syms = 0;
6592 subpst->compunit_symtab = NULL;
6593 subpst->read_symtab = pst->read_symtab;
6594 subpst->readin = 0;
6595
6596 /* No private part is necessary for include psymtabs. This property
6597 can be used to differentiate between such include psymtabs and
6598 the regular ones. */
6599 subpst->read_symtab_private = NULL;
6600 }
6601
6602 /* Read the Line Number Program data and extract the list of files
6603 included by the source file represented by PST. Build an include
6604 partial symtab for each of these included files. */
6605
6606 static void
6607 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6608 struct die_info *die,
6609 struct partial_symtab *pst)
6610 {
6611 line_header_up lh;
6612 struct attribute *attr;
6613
6614 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6615 if (attr)
6616 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6617 if (lh == NULL)
6618 return; /* No linetable, so no includes. */
6619
6620 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6621 that we pass in the raw text_low here; that is ok because we're
6622 only decoding the line table to make include partial symtabs, and
6623 so the addresses aren't really used. */
6624 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6625 pst->raw_text_low (), 1);
6626 }
6627
6628 static hashval_t
6629 hash_signatured_type (const void *item)
6630 {
6631 const struct signatured_type *sig_type
6632 = (const struct signatured_type *) item;
6633
6634 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6635 return sig_type->signature;
6636 }
6637
6638 static int
6639 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6640 {
6641 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6642 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6643
6644 return lhs->signature == rhs->signature;
6645 }
6646
6647 /* Allocate a hash table for signatured types. */
6648
6649 static htab_t
6650 allocate_signatured_type_table (struct objfile *objfile)
6651 {
6652 return htab_create_alloc_ex (41,
6653 hash_signatured_type,
6654 eq_signatured_type,
6655 NULL,
6656 &objfile->objfile_obstack,
6657 hashtab_obstack_allocate,
6658 dummy_obstack_deallocate);
6659 }
6660
6661 /* A helper function to add a signatured type CU to a table. */
6662
6663 static int
6664 add_signatured_type_cu_to_table (void **slot, void *datum)
6665 {
6666 struct signatured_type *sigt = (struct signatured_type *) *slot;
6667 std::vector<signatured_type *> *all_type_units
6668 = (std::vector<signatured_type *> *) datum;
6669
6670 all_type_units->push_back (sigt);
6671
6672 return 1;
6673 }
6674
6675 /* A helper for create_debug_types_hash_table. Read types from SECTION
6676 and fill them into TYPES_HTAB. It will process only type units,
6677 therefore DW_UT_type. */
6678
6679 static void
6680 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6681 struct dwo_file *dwo_file,
6682 dwarf2_section_info *section, htab_t &types_htab,
6683 rcuh_kind section_kind)
6684 {
6685 struct objfile *objfile = dwarf2_per_objfile->objfile;
6686 struct dwarf2_section_info *abbrev_section;
6687 bfd *abfd;
6688 const gdb_byte *info_ptr, *end_ptr;
6689
6690 abbrev_section = (dwo_file != NULL
6691 ? &dwo_file->sections.abbrev
6692 : &dwarf2_per_objfile->abbrev);
6693
6694 if (dwarf_read_debug)
6695 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6696 get_section_name (section),
6697 get_section_file_name (abbrev_section));
6698
6699 dwarf2_read_section (objfile, section);
6700 info_ptr = section->buffer;
6701
6702 if (info_ptr == NULL)
6703 return;
6704
6705 /* We can't set abfd until now because the section may be empty or
6706 not present, in which case the bfd is unknown. */
6707 abfd = get_section_bfd_owner (section);
6708
6709 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6710 because we don't need to read any dies: the signature is in the
6711 header. */
6712
6713 end_ptr = info_ptr + section->size;
6714 while (info_ptr < end_ptr)
6715 {
6716 struct signatured_type *sig_type;
6717 struct dwo_unit *dwo_tu;
6718 void **slot;
6719 const gdb_byte *ptr = info_ptr;
6720 struct comp_unit_head header;
6721 unsigned int length;
6722
6723 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6724
6725 /* Initialize it due to a false compiler warning. */
6726 header.signature = -1;
6727 header.type_cu_offset_in_tu = (cu_offset) -1;
6728
6729 /* We need to read the type's signature in order to build the hash
6730 table, but we don't need anything else just yet. */
6731
6732 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6733 abbrev_section, ptr, section_kind);
6734
6735 length = get_cu_length (&header);
6736
6737 /* Skip dummy type units. */
6738 if (ptr >= info_ptr + length
6739 || peek_abbrev_code (abfd, ptr) == 0
6740 || header.unit_type != DW_UT_type)
6741 {
6742 info_ptr += length;
6743 continue;
6744 }
6745
6746 if (types_htab == NULL)
6747 {
6748 if (dwo_file)
6749 types_htab = allocate_dwo_unit_table (objfile);
6750 else
6751 types_htab = allocate_signatured_type_table (objfile);
6752 }
6753
6754 if (dwo_file)
6755 {
6756 sig_type = NULL;
6757 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6758 struct dwo_unit);
6759 dwo_tu->dwo_file = dwo_file;
6760 dwo_tu->signature = header.signature;
6761 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6762 dwo_tu->section = section;
6763 dwo_tu->sect_off = sect_off;
6764 dwo_tu->length = length;
6765 }
6766 else
6767 {
6768 /* N.B.: type_offset is not usable if this type uses a DWO file.
6769 The real type_offset is in the DWO file. */
6770 dwo_tu = NULL;
6771 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6772 struct signatured_type);
6773 sig_type->signature = header.signature;
6774 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6775 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6776 sig_type->per_cu.is_debug_types = 1;
6777 sig_type->per_cu.section = section;
6778 sig_type->per_cu.sect_off = sect_off;
6779 sig_type->per_cu.length = length;
6780 }
6781
6782 slot = htab_find_slot (types_htab,
6783 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6784 INSERT);
6785 gdb_assert (slot != NULL);
6786 if (*slot != NULL)
6787 {
6788 sect_offset dup_sect_off;
6789
6790 if (dwo_file)
6791 {
6792 const struct dwo_unit *dup_tu
6793 = (const struct dwo_unit *) *slot;
6794
6795 dup_sect_off = dup_tu->sect_off;
6796 }
6797 else
6798 {
6799 const struct signatured_type *dup_tu
6800 = (const struct signatured_type *) *slot;
6801
6802 dup_sect_off = dup_tu->per_cu.sect_off;
6803 }
6804
6805 complaint (_("debug type entry at offset %s is duplicate to"
6806 " the entry at offset %s, signature %s"),
6807 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6808 hex_string (header.signature));
6809 }
6810 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6811
6812 if (dwarf_read_debug > 1)
6813 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6814 sect_offset_str (sect_off),
6815 hex_string (header.signature));
6816
6817 info_ptr += length;
6818 }
6819 }
6820
6821 /* Create the hash table of all entries in the .debug_types
6822 (or .debug_types.dwo) section(s).
6823 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6824 otherwise it is NULL.
6825
6826 The result is a pointer to the hash table or NULL if there are no types.
6827
6828 Note: This function processes DWO files only, not DWP files. */
6829
6830 static void
6831 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6832 struct dwo_file *dwo_file,
6833 VEC (dwarf2_section_info_def) *types,
6834 htab_t &types_htab)
6835 {
6836 int ix;
6837 struct dwarf2_section_info *section;
6838
6839 if (VEC_empty (dwarf2_section_info_def, types))
6840 return;
6841
6842 for (ix = 0;
6843 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6844 ++ix)
6845 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6846 types_htab, rcuh_kind::TYPE);
6847 }
6848
6849 /* Create the hash table of all entries in the .debug_types section,
6850 and initialize all_type_units.
6851 The result is zero if there is an error (e.g. missing .debug_types section),
6852 otherwise non-zero. */
6853
6854 static int
6855 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6856 {
6857 htab_t types_htab = NULL;
6858
6859 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6860 &dwarf2_per_objfile->info, types_htab,
6861 rcuh_kind::COMPILE);
6862 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6863 dwarf2_per_objfile->types, types_htab);
6864 if (types_htab == NULL)
6865 {
6866 dwarf2_per_objfile->signatured_types = NULL;
6867 return 0;
6868 }
6869
6870 dwarf2_per_objfile->signatured_types = types_htab;
6871
6872 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6873 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6874
6875 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6876 &dwarf2_per_objfile->all_type_units);
6877
6878 return 1;
6879 }
6880
6881 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6882 If SLOT is non-NULL, it is the entry to use in the hash table.
6883 Otherwise we find one. */
6884
6885 static struct signatured_type *
6886 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6887 void **slot)
6888 {
6889 struct objfile *objfile = dwarf2_per_objfile->objfile;
6890
6891 if (dwarf2_per_objfile->all_type_units.size ()
6892 == dwarf2_per_objfile->all_type_units.capacity ())
6893 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6894
6895 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6896 struct signatured_type);
6897
6898 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6899 sig_type->signature = sig;
6900 sig_type->per_cu.is_debug_types = 1;
6901 if (dwarf2_per_objfile->using_index)
6902 {
6903 sig_type->per_cu.v.quick =
6904 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6905 struct dwarf2_per_cu_quick_data);
6906 }
6907
6908 if (slot == NULL)
6909 {
6910 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6911 sig_type, INSERT);
6912 }
6913 gdb_assert (*slot == NULL);
6914 *slot = sig_type;
6915 /* The rest of sig_type must be filled in by the caller. */
6916 return sig_type;
6917 }
6918
6919 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6920 Fill in SIG_ENTRY with DWO_ENTRY. */
6921
6922 static void
6923 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6924 struct signatured_type *sig_entry,
6925 struct dwo_unit *dwo_entry)
6926 {
6927 /* Make sure we're not clobbering something we don't expect to. */
6928 gdb_assert (! sig_entry->per_cu.queued);
6929 gdb_assert (sig_entry->per_cu.cu == NULL);
6930 if (dwarf2_per_objfile->using_index)
6931 {
6932 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6933 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6934 }
6935 else
6936 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6937 gdb_assert (sig_entry->signature == dwo_entry->signature);
6938 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6939 gdb_assert (sig_entry->type_unit_group == NULL);
6940 gdb_assert (sig_entry->dwo_unit == NULL);
6941
6942 sig_entry->per_cu.section = dwo_entry->section;
6943 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6944 sig_entry->per_cu.length = dwo_entry->length;
6945 sig_entry->per_cu.reading_dwo_directly = 1;
6946 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6947 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6948 sig_entry->dwo_unit = dwo_entry;
6949 }
6950
6951 /* Subroutine of lookup_signatured_type.
6952 If we haven't read the TU yet, create the signatured_type data structure
6953 for a TU to be read in directly from a DWO file, bypassing the stub.
6954 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6955 using .gdb_index, then when reading a CU we want to stay in the DWO file
6956 containing that CU. Otherwise we could end up reading several other DWO
6957 files (due to comdat folding) to process the transitive closure of all the
6958 mentioned TUs, and that can be slow. The current DWO file will have every
6959 type signature that it needs.
6960 We only do this for .gdb_index because in the psymtab case we already have
6961 to read all the DWOs to build the type unit groups. */
6962
6963 static struct signatured_type *
6964 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6965 {
6966 struct dwarf2_per_objfile *dwarf2_per_objfile
6967 = cu->per_cu->dwarf2_per_objfile;
6968 struct objfile *objfile = dwarf2_per_objfile->objfile;
6969 struct dwo_file *dwo_file;
6970 struct dwo_unit find_dwo_entry, *dwo_entry;
6971 struct signatured_type find_sig_entry, *sig_entry;
6972 void **slot;
6973
6974 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6975
6976 /* If TU skeletons have been removed then we may not have read in any
6977 TUs yet. */
6978 if (dwarf2_per_objfile->signatured_types == NULL)
6979 {
6980 dwarf2_per_objfile->signatured_types
6981 = allocate_signatured_type_table (objfile);
6982 }
6983
6984 /* We only ever need to read in one copy of a signatured type.
6985 Use the global signatured_types array to do our own comdat-folding
6986 of types. If this is the first time we're reading this TU, and
6987 the TU has an entry in .gdb_index, replace the recorded data from
6988 .gdb_index with this TU. */
6989
6990 find_sig_entry.signature = sig;
6991 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6992 &find_sig_entry, INSERT);
6993 sig_entry = (struct signatured_type *) *slot;
6994
6995 /* We can get here with the TU already read, *or* in the process of being
6996 read. Don't reassign the global entry to point to this DWO if that's
6997 the case. Also note that if the TU is already being read, it may not
6998 have come from a DWO, the program may be a mix of Fission-compiled
6999 code and non-Fission-compiled code. */
7000
7001 /* Have we already tried to read this TU?
7002 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7003 needn't exist in the global table yet). */
7004 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7005 return sig_entry;
7006
7007 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7008 dwo_unit of the TU itself. */
7009 dwo_file = cu->dwo_unit->dwo_file;
7010
7011 /* Ok, this is the first time we're reading this TU. */
7012 if (dwo_file->tus == NULL)
7013 return NULL;
7014 find_dwo_entry.signature = sig;
7015 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7016 if (dwo_entry == NULL)
7017 return NULL;
7018
7019 /* If the global table doesn't have an entry for this TU, add one. */
7020 if (sig_entry == NULL)
7021 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7022
7023 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7024 sig_entry->per_cu.tu_read = 1;
7025 return sig_entry;
7026 }
7027
7028 /* Subroutine of lookup_signatured_type.
7029 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7030 then try the DWP file. If the TU stub (skeleton) has been removed then
7031 it won't be in .gdb_index. */
7032
7033 static struct signatured_type *
7034 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7035 {
7036 struct dwarf2_per_objfile *dwarf2_per_objfile
7037 = cu->per_cu->dwarf2_per_objfile;
7038 struct objfile *objfile = dwarf2_per_objfile->objfile;
7039 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7040 struct dwo_unit *dwo_entry;
7041 struct signatured_type find_sig_entry, *sig_entry;
7042 void **slot;
7043
7044 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7045 gdb_assert (dwp_file != NULL);
7046
7047 /* If TU skeletons have been removed then we may not have read in any
7048 TUs yet. */
7049 if (dwarf2_per_objfile->signatured_types == NULL)
7050 {
7051 dwarf2_per_objfile->signatured_types
7052 = allocate_signatured_type_table (objfile);
7053 }
7054
7055 find_sig_entry.signature = sig;
7056 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7057 &find_sig_entry, INSERT);
7058 sig_entry = (struct signatured_type *) *slot;
7059
7060 /* Have we already tried to read this TU?
7061 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7062 needn't exist in the global table yet). */
7063 if (sig_entry != NULL)
7064 return sig_entry;
7065
7066 if (dwp_file->tus == NULL)
7067 return NULL;
7068 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7069 sig, 1 /* is_debug_types */);
7070 if (dwo_entry == NULL)
7071 return NULL;
7072
7073 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7074 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7075
7076 return sig_entry;
7077 }
7078
7079 /* Lookup a signature based type for DW_FORM_ref_sig8.
7080 Returns NULL if signature SIG is not present in the table.
7081 It is up to the caller to complain about this. */
7082
7083 static struct signatured_type *
7084 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7085 {
7086 struct dwarf2_per_objfile *dwarf2_per_objfile
7087 = cu->per_cu->dwarf2_per_objfile;
7088
7089 if (cu->dwo_unit
7090 && dwarf2_per_objfile->using_index)
7091 {
7092 /* We're in a DWO/DWP file, and we're using .gdb_index.
7093 These cases require special processing. */
7094 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7095 return lookup_dwo_signatured_type (cu, sig);
7096 else
7097 return lookup_dwp_signatured_type (cu, sig);
7098 }
7099 else
7100 {
7101 struct signatured_type find_entry, *entry;
7102
7103 if (dwarf2_per_objfile->signatured_types == NULL)
7104 return NULL;
7105 find_entry.signature = sig;
7106 entry = ((struct signatured_type *)
7107 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7108 return entry;
7109 }
7110 }
7111 \f
7112 /* Low level DIE reading support. */
7113
7114 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7115
7116 static void
7117 init_cu_die_reader (struct die_reader_specs *reader,
7118 struct dwarf2_cu *cu,
7119 struct dwarf2_section_info *section,
7120 struct dwo_file *dwo_file,
7121 struct abbrev_table *abbrev_table)
7122 {
7123 gdb_assert (section->readin && section->buffer != NULL);
7124 reader->abfd = get_section_bfd_owner (section);
7125 reader->cu = cu;
7126 reader->dwo_file = dwo_file;
7127 reader->die_section = section;
7128 reader->buffer = section->buffer;
7129 reader->buffer_end = section->buffer + section->size;
7130 reader->comp_dir = NULL;
7131 reader->abbrev_table = abbrev_table;
7132 }
7133
7134 /* Subroutine of init_cutu_and_read_dies to simplify it.
7135 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7136 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7137 already.
7138
7139 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7140 from it to the DIE in the DWO. If NULL we are skipping the stub.
7141 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7142 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7143 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7144 STUB_COMP_DIR may be non-NULL.
7145 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7146 are filled in with the info of the DIE from the DWO file.
7147 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7148 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7149 kept around for at least as long as *RESULT_READER.
7150
7151 The result is non-zero if a valid (non-dummy) DIE was found. */
7152
7153 static int
7154 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7155 struct dwo_unit *dwo_unit,
7156 struct die_info *stub_comp_unit_die,
7157 const char *stub_comp_dir,
7158 struct die_reader_specs *result_reader,
7159 const gdb_byte **result_info_ptr,
7160 struct die_info **result_comp_unit_die,
7161 int *result_has_children,
7162 abbrev_table_up *result_dwo_abbrev_table)
7163 {
7164 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7165 struct objfile *objfile = dwarf2_per_objfile->objfile;
7166 struct dwarf2_cu *cu = this_cu->cu;
7167 bfd *abfd;
7168 const gdb_byte *begin_info_ptr, *info_ptr;
7169 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7170 int i,num_extra_attrs;
7171 struct dwarf2_section_info *dwo_abbrev_section;
7172 struct attribute *attr;
7173 struct die_info *comp_unit_die;
7174
7175 /* At most one of these may be provided. */
7176 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7177
7178 /* These attributes aren't processed until later:
7179 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7180 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7181 referenced later. However, these attributes are found in the stub
7182 which we won't have later. In order to not impose this complication
7183 on the rest of the code, we read them here and copy them to the
7184 DWO CU/TU die. */
7185
7186 stmt_list = NULL;
7187 low_pc = NULL;
7188 high_pc = NULL;
7189 ranges = NULL;
7190 comp_dir = NULL;
7191
7192 if (stub_comp_unit_die != NULL)
7193 {
7194 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7195 DWO file. */
7196 if (! this_cu->is_debug_types)
7197 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7198 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7199 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7200 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7201 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7202
7203 /* There should be a DW_AT_addr_base attribute here (if needed).
7204 We need the value before we can process DW_FORM_GNU_addr_index. */
7205 cu->addr_base = 0;
7206 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7207 if (attr)
7208 cu->addr_base = DW_UNSND (attr);
7209
7210 /* There should be a DW_AT_ranges_base attribute here (if needed).
7211 We need the value before we can process DW_AT_ranges. */
7212 cu->ranges_base = 0;
7213 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7214 if (attr)
7215 cu->ranges_base = DW_UNSND (attr);
7216 }
7217 else if (stub_comp_dir != NULL)
7218 {
7219 /* Reconstruct the comp_dir attribute to simplify the code below. */
7220 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7221 comp_dir->name = DW_AT_comp_dir;
7222 comp_dir->form = DW_FORM_string;
7223 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7224 DW_STRING (comp_dir) = stub_comp_dir;
7225 }
7226
7227 /* Set up for reading the DWO CU/TU. */
7228 cu->dwo_unit = dwo_unit;
7229 dwarf2_section_info *section = dwo_unit->section;
7230 dwarf2_read_section (objfile, section);
7231 abfd = get_section_bfd_owner (section);
7232 begin_info_ptr = info_ptr = (section->buffer
7233 + to_underlying (dwo_unit->sect_off));
7234 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7235
7236 if (this_cu->is_debug_types)
7237 {
7238 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7239
7240 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7241 &cu->header, section,
7242 dwo_abbrev_section,
7243 info_ptr, rcuh_kind::TYPE);
7244 /* This is not an assert because it can be caused by bad debug info. */
7245 if (sig_type->signature != cu->header.signature)
7246 {
7247 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7248 " TU at offset %s [in module %s]"),
7249 hex_string (sig_type->signature),
7250 hex_string (cu->header.signature),
7251 sect_offset_str (dwo_unit->sect_off),
7252 bfd_get_filename (abfd));
7253 }
7254 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7255 /* For DWOs coming from DWP files, we don't know the CU length
7256 nor the type's offset in the TU until now. */
7257 dwo_unit->length = get_cu_length (&cu->header);
7258 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7259
7260 /* Establish the type offset that can be used to lookup the type.
7261 For DWO files, we don't know it until now. */
7262 sig_type->type_offset_in_section
7263 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7264 }
7265 else
7266 {
7267 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7268 &cu->header, section,
7269 dwo_abbrev_section,
7270 info_ptr, rcuh_kind::COMPILE);
7271 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7272 /* For DWOs coming from DWP files, we don't know the CU length
7273 until now. */
7274 dwo_unit->length = get_cu_length (&cu->header);
7275 }
7276
7277 *result_dwo_abbrev_table
7278 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7279 cu->header.abbrev_sect_off);
7280 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7281 result_dwo_abbrev_table->get ());
7282
7283 /* Read in the die, but leave space to copy over the attributes
7284 from the stub. This has the benefit of simplifying the rest of
7285 the code - all the work to maintain the illusion of a single
7286 DW_TAG_{compile,type}_unit DIE is done here. */
7287 num_extra_attrs = ((stmt_list != NULL)
7288 + (low_pc != NULL)
7289 + (high_pc != NULL)
7290 + (ranges != NULL)
7291 + (comp_dir != NULL));
7292 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7293 result_has_children, num_extra_attrs);
7294
7295 /* Copy over the attributes from the stub to the DIE we just read in. */
7296 comp_unit_die = *result_comp_unit_die;
7297 i = comp_unit_die->num_attrs;
7298 if (stmt_list != NULL)
7299 comp_unit_die->attrs[i++] = *stmt_list;
7300 if (low_pc != NULL)
7301 comp_unit_die->attrs[i++] = *low_pc;
7302 if (high_pc != NULL)
7303 comp_unit_die->attrs[i++] = *high_pc;
7304 if (ranges != NULL)
7305 comp_unit_die->attrs[i++] = *ranges;
7306 if (comp_dir != NULL)
7307 comp_unit_die->attrs[i++] = *comp_dir;
7308 comp_unit_die->num_attrs += num_extra_attrs;
7309
7310 if (dwarf_die_debug)
7311 {
7312 fprintf_unfiltered (gdb_stdlog,
7313 "Read die from %s@0x%x of %s:\n",
7314 get_section_name (section),
7315 (unsigned) (begin_info_ptr - section->buffer),
7316 bfd_get_filename (abfd));
7317 dump_die (comp_unit_die, dwarf_die_debug);
7318 }
7319
7320 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7321 TUs by skipping the stub and going directly to the entry in the DWO file.
7322 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7323 to get it via circuitous means. Blech. */
7324 if (comp_dir != NULL)
7325 result_reader->comp_dir = DW_STRING (comp_dir);
7326
7327 /* Skip dummy compilation units. */
7328 if (info_ptr >= begin_info_ptr + dwo_unit->length
7329 || peek_abbrev_code (abfd, info_ptr) == 0)
7330 return 0;
7331
7332 *result_info_ptr = info_ptr;
7333 return 1;
7334 }
7335
7336 /* Subroutine of init_cutu_and_read_dies to simplify it.
7337 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7338 Returns NULL if the specified DWO unit cannot be found. */
7339
7340 static struct dwo_unit *
7341 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7342 struct die_info *comp_unit_die)
7343 {
7344 struct dwarf2_cu *cu = this_cu->cu;
7345 ULONGEST signature;
7346 struct dwo_unit *dwo_unit;
7347 const char *comp_dir, *dwo_name;
7348
7349 gdb_assert (cu != NULL);
7350
7351 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7352 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7353 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7354
7355 if (this_cu->is_debug_types)
7356 {
7357 struct signatured_type *sig_type;
7358
7359 /* Since this_cu is the first member of struct signatured_type,
7360 we can go from a pointer to one to a pointer to the other. */
7361 sig_type = (struct signatured_type *) this_cu;
7362 signature = sig_type->signature;
7363 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7364 }
7365 else
7366 {
7367 struct attribute *attr;
7368
7369 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7370 if (! attr)
7371 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7372 " [in module %s]"),
7373 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7374 signature = DW_UNSND (attr);
7375 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7376 signature);
7377 }
7378
7379 return dwo_unit;
7380 }
7381
7382 /* Subroutine of init_cutu_and_read_dies to simplify it.
7383 See it for a description of the parameters.
7384 Read a TU directly from a DWO file, bypassing the stub. */
7385
7386 static void
7387 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7388 int use_existing_cu, int keep,
7389 die_reader_func_ftype *die_reader_func,
7390 void *data)
7391 {
7392 std::unique_ptr<dwarf2_cu> new_cu;
7393 struct signatured_type *sig_type;
7394 struct die_reader_specs reader;
7395 const gdb_byte *info_ptr;
7396 struct die_info *comp_unit_die;
7397 int has_children;
7398 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7399
7400 /* Verify we can do the following downcast, and that we have the
7401 data we need. */
7402 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7403 sig_type = (struct signatured_type *) this_cu;
7404 gdb_assert (sig_type->dwo_unit != NULL);
7405
7406 if (use_existing_cu && this_cu->cu != NULL)
7407 {
7408 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7409 /* There's no need to do the rereading_dwo_cu handling that
7410 init_cutu_and_read_dies does since we don't read the stub. */
7411 }
7412 else
7413 {
7414 /* If !use_existing_cu, this_cu->cu must be NULL. */
7415 gdb_assert (this_cu->cu == NULL);
7416 new_cu.reset (new dwarf2_cu (this_cu));
7417 }
7418
7419 /* A future optimization, if needed, would be to use an existing
7420 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7421 could share abbrev tables. */
7422
7423 /* The abbreviation table used by READER, this must live at least as long as
7424 READER. */
7425 abbrev_table_up dwo_abbrev_table;
7426
7427 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7428 NULL /* stub_comp_unit_die */,
7429 sig_type->dwo_unit->dwo_file->comp_dir,
7430 &reader, &info_ptr,
7431 &comp_unit_die, &has_children,
7432 &dwo_abbrev_table) == 0)
7433 {
7434 /* Dummy die. */
7435 return;
7436 }
7437
7438 /* All the "real" work is done here. */
7439 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7440
7441 /* This duplicates the code in init_cutu_and_read_dies,
7442 but the alternative is making the latter more complex.
7443 This function is only for the special case of using DWO files directly:
7444 no point in overly complicating the general case just to handle this. */
7445 if (new_cu != NULL && keep)
7446 {
7447 /* Link this CU into read_in_chain. */
7448 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7449 dwarf2_per_objfile->read_in_chain = this_cu;
7450 /* The chain owns it now. */
7451 new_cu.release ();
7452 }
7453 }
7454
7455 /* Initialize a CU (or TU) and read its DIEs.
7456 If the CU defers to a DWO file, read the DWO file as well.
7457
7458 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7459 Otherwise the table specified in the comp unit header is read in and used.
7460 This is an optimization for when we already have the abbrev table.
7461
7462 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7463 Otherwise, a new CU is allocated with xmalloc.
7464
7465 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7466 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7467
7468 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7469 linker) then DIE_READER_FUNC will not get called. */
7470
7471 static void
7472 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7473 struct abbrev_table *abbrev_table,
7474 int use_existing_cu, int keep,
7475 bool skip_partial,
7476 die_reader_func_ftype *die_reader_func,
7477 void *data)
7478 {
7479 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7480 struct objfile *objfile = dwarf2_per_objfile->objfile;
7481 struct dwarf2_section_info *section = this_cu->section;
7482 bfd *abfd = get_section_bfd_owner (section);
7483 struct dwarf2_cu *cu;
7484 const gdb_byte *begin_info_ptr, *info_ptr;
7485 struct die_reader_specs reader;
7486 struct die_info *comp_unit_die;
7487 int has_children;
7488 struct attribute *attr;
7489 struct signatured_type *sig_type = NULL;
7490 struct dwarf2_section_info *abbrev_section;
7491 /* Non-zero if CU currently points to a DWO file and we need to
7492 reread it. When this happens we need to reread the skeleton die
7493 before we can reread the DWO file (this only applies to CUs, not TUs). */
7494 int rereading_dwo_cu = 0;
7495
7496 if (dwarf_die_debug)
7497 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7498 this_cu->is_debug_types ? "type" : "comp",
7499 sect_offset_str (this_cu->sect_off));
7500
7501 if (use_existing_cu)
7502 gdb_assert (keep);
7503
7504 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7505 file (instead of going through the stub), short-circuit all of this. */
7506 if (this_cu->reading_dwo_directly)
7507 {
7508 /* Narrow down the scope of possibilities to have to understand. */
7509 gdb_assert (this_cu->is_debug_types);
7510 gdb_assert (abbrev_table == NULL);
7511 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7512 die_reader_func, data);
7513 return;
7514 }
7515
7516 /* This is cheap if the section is already read in. */
7517 dwarf2_read_section (objfile, section);
7518
7519 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7520
7521 abbrev_section = get_abbrev_section_for_cu (this_cu);
7522
7523 std::unique_ptr<dwarf2_cu> new_cu;
7524 if (use_existing_cu && this_cu->cu != NULL)
7525 {
7526 cu = this_cu->cu;
7527 /* If this CU is from a DWO file we need to start over, we need to
7528 refetch the attributes from the skeleton CU.
7529 This could be optimized by retrieving those attributes from when we
7530 were here the first time: the previous comp_unit_die was stored in
7531 comp_unit_obstack. But there's no data yet that we need this
7532 optimization. */
7533 if (cu->dwo_unit != NULL)
7534 rereading_dwo_cu = 1;
7535 }
7536 else
7537 {
7538 /* If !use_existing_cu, this_cu->cu must be NULL. */
7539 gdb_assert (this_cu->cu == NULL);
7540 new_cu.reset (new dwarf2_cu (this_cu));
7541 cu = new_cu.get ();
7542 }
7543
7544 /* Get the header. */
7545 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7546 {
7547 /* We already have the header, there's no need to read it in again. */
7548 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7549 }
7550 else
7551 {
7552 if (this_cu->is_debug_types)
7553 {
7554 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7555 &cu->header, section,
7556 abbrev_section, info_ptr,
7557 rcuh_kind::TYPE);
7558
7559 /* Since per_cu is the first member of struct signatured_type,
7560 we can go from a pointer to one to a pointer to the other. */
7561 sig_type = (struct signatured_type *) this_cu;
7562 gdb_assert (sig_type->signature == cu->header.signature);
7563 gdb_assert (sig_type->type_offset_in_tu
7564 == cu->header.type_cu_offset_in_tu);
7565 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7566
7567 /* LENGTH has not been set yet for type units if we're
7568 using .gdb_index. */
7569 this_cu->length = get_cu_length (&cu->header);
7570
7571 /* Establish the type offset that can be used to lookup the type. */
7572 sig_type->type_offset_in_section =
7573 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7574
7575 this_cu->dwarf_version = cu->header.version;
7576 }
7577 else
7578 {
7579 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7580 &cu->header, section,
7581 abbrev_section,
7582 info_ptr,
7583 rcuh_kind::COMPILE);
7584
7585 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7586 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7587 this_cu->dwarf_version = cu->header.version;
7588 }
7589 }
7590
7591 /* Skip dummy compilation units. */
7592 if (info_ptr >= begin_info_ptr + this_cu->length
7593 || peek_abbrev_code (abfd, info_ptr) == 0)
7594 return;
7595
7596 /* If we don't have them yet, read the abbrevs for this compilation unit.
7597 And if we need to read them now, make sure they're freed when we're
7598 done (own the table through ABBREV_TABLE_HOLDER). */
7599 abbrev_table_up abbrev_table_holder;
7600 if (abbrev_table != NULL)
7601 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7602 else
7603 {
7604 abbrev_table_holder
7605 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7606 cu->header.abbrev_sect_off);
7607 abbrev_table = abbrev_table_holder.get ();
7608 }
7609
7610 /* Read the top level CU/TU die. */
7611 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7612 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7613
7614 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7615 return;
7616
7617 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7618 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7619 table from the DWO file and pass the ownership over to us. It will be
7620 referenced from READER, so we must make sure to free it after we're done
7621 with READER.
7622
7623 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7624 DWO CU, that this test will fail (the attribute will not be present). */
7625 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7626 abbrev_table_up dwo_abbrev_table;
7627 if (attr)
7628 {
7629 struct dwo_unit *dwo_unit;
7630 struct die_info *dwo_comp_unit_die;
7631
7632 if (has_children)
7633 {
7634 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7635 " has children (offset %s) [in module %s]"),
7636 sect_offset_str (this_cu->sect_off),
7637 bfd_get_filename (abfd));
7638 }
7639 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7640 if (dwo_unit != NULL)
7641 {
7642 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7643 comp_unit_die, NULL,
7644 &reader, &info_ptr,
7645 &dwo_comp_unit_die, &has_children,
7646 &dwo_abbrev_table) == 0)
7647 {
7648 /* Dummy die. */
7649 return;
7650 }
7651 comp_unit_die = dwo_comp_unit_die;
7652 }
7653 else
7654 {
7655 /* Yikes, we couldn't find the rest of the DIE, we only have
7656 the stub. A complaint has already been logged. There's
7657 not much more we can do except pass on the stub DIE to
7658 die_reader_func. We don't want to throw an error on bad
7659 debug info. */
7660 }
7661 }
7662
7663 /* All of the above is setup for this call. Yikes. */
7664 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7665
7666 /* Done, clean up. */
7667 if (new_cu != NULL && keep)
7668 {
7669 /* Link this CU into read_in_chain. */
7670 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7671 dwarf2_per_objfile->read_in_chain = this_cu;
7672 /* The chain owns it now. */
7673 new_cu.release ();
7674 }
7675 }
7676
7677 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7678 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7679 to have already done the lookup to find the DWO file).
7680
7681 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7682 THIS_CU->is_debug_types, but nothing else.
7683
7684 We fill in THIS_CU->length.
7685
7686 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7687 linker) then DIE_READER_FUNC will not get called.
7688
7689 THIS_CU->cu is always freed when done.
7690 This is done in order to not leave THIS_CU->cu in a state where we have
7691 to care whether it refers to the "main" CU or the DWO CU. */
7692
7693 static void
7694 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7695 struct dwo_file *dwo_file,
7696 die_reader_func_ftype *die_reader_func,
7697 void *data)
7698 {
7699 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7700 struct objfile *objfile = dwarf2_per_objfile->objfile;
7701 struct dwarf2_section_info *section = this_cu->section;
7702 bfd *abfd = get_section_bfd_owner (section);
7703 struct dwarf2_section_info *abbrev_section;
7704 const gdb_byte *begin_info_ptr, *info_ptr;
7705 struct die_reader_specs reader;
7706 struct die_info *comp_unit_die;
7707 int has_children;
7708
7709 if (dwarf_die_debug)
7710 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7711 this_cu->is_debug_types ? "type" : "comp",
7712 sect_offset_str (this_cu->sect_off));
7713
7714 gdb_assert (this_cu->cu == NULL);
7715
7716 abbrev_section = (dwo_file != NULL
7717 ? &dwo_file->sections.abbrev
7718 : get_abbrev_section_for_cu (this_cu));
7719
7720 /* This is cheap if the section is already read in. */
7721 dwarf2_read_section (objfile, section);
7722
7723 struct dwarf2_cu cu (this_cu);
7724
7725 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7726 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7727 &cu.header, section,
7728 abbrev_section, info_ptr,
7729 (this_cu->is_debug_types
7730 ? rcuh_kind::TYPE
7731 : rcuh_kind::COMPILE));
7732
7733 this_cu->length = get_cu_length (&cu.header);
7734
7735 /* Skip dummy compilation units. */
7736 if (info_ptr >= begin_info_ptr + this_cu->length
7737 || peek_abbrev_code (abfd, info_ptr) == 0)
7738 return;
7739
7740 abbrev_table_up abbrev_table
7741 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7742 cu.header.abbrev_sect_off);
7743
7744 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7745 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7746
7747 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7748 }
7749
7750 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7751 does not lookup the specified DWO file.
7752 This cannot be used to read DWO files.
7753
7754 THIS_CU->cu is always freed when done.
7755 This is done in order to not leave THIS_CU->cu in a state where we have
7756 to care whether it refers to the "main" CU or the DWO CU.
7757 We can revisit this if the data shows there's a performance issue. */
7758
7759 static void
7760 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7761 die_reader_func_ftype *die_reader_func,
7762 void *data)
7763 {
7764 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7765 }
7766 \f
7767 /* Type Unit Groups.
7768
7769 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7770 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7771 so that all types coming from the same compilation (.o file) are grouped
7772 together. A future step could be to put the types in the same symtab as
7773 the CU the types ultimately came from. */
7774
7775 static hashval_t
7776 hash_type_unit_group (const void *item)
7777 {
7778 const struct type_unit_group *tu_group
7779 = (const struct type_unit_group *) item;
7780
7781 return hash_stmt_list_entry (&tu_group->hash);
7782 }
7783
7784 static int
7785 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7786 {
7787 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7788 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7789
7790 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7791 }
7792
7793 /* Allocate a hash table for type unit groups. */
7794
7795 static htab_t
7796 allocate_type_unit_groups_table (struct objfile *objfile)
7797 {
7798 return htab_create_alloc_ex (3,
7799 hash_type_unit_group,
7800 eq_type_unit_group,
7801 NULL,
7802 &objfile->objfile_obstack,
7803 hashtab_obstack_allocate,
7804 dummy_obstack_deallocate);
7805 }
7806
7807 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7808 partial symtabs. We combine several TUs per psymtab to not let the size
7809 of any one psymtab grow too big. */
7810 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7811 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7812
7813 /* Helper routine for get_type_unit_group.
7814 Create the type_unit_group object used to hold one or more TUs. */
7815
7816 static struct type_unit_group *
7817 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7818 {
7819 struct dwarf2_per_objfile *dwarf2_per_objfile
7820 = cu->per_cu->dwarf2_per_objfile;
7821 struct objfile *objfile = dwarf2_per_objfile->objfile;
7822 struct dwarf2_per_cu_data *per_cu;
7823 struct type_unit_group *tu_group;
7824
7825 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7826 struct type_unit_group);
7827 per_cu = &tu_group->per_cu;
7828 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7829
7830 if (dwarf2_per_objfile->using_index)
7831 {
7832 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7833 struct dwarf2_per_cu_quick_data);
7834 }
7835 else
7836 {
7837 unsigned int line_offset = to_underlying (line_offset_struct);
7838 struct partial_symtab *pst;
7839 std::string name;
7840
7841 /* Give the symtab a useful name for debug purposes. */
7842 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7843 name = string_printf ("<type_units_%d>",
7844 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7845 else
7846 name = string_printf ("<type_units_at_0x%x>", line_offset);
7847
7848 pst = create_partial_symtab (per_cu, name.c_str ());
7849 pst->anonymous = 1;
7850 }
7851
7852 tu_group->hash.dwo_unit = cu->dwo_unit;
7853 tu_group->hash.line_sect_off = line_offset_struct;
7854
7855 return tu_group;
7856 }
7857
7858 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7859 STMT_LIST is a DW_AT_stmt_list attribute. */
7860
7861 static struct type_unit_group *
7862 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7863 {
7864 struct dwarf2_per_objfile *dwarf2_per_objfile
7865 = cu->per_cu->dwarf2_per_objfile;
7866 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7867 struct type_unit_group *tu_group;
7868 void **slot;
7869 unsigned int line_offset;
7870 struct type_unit_group type_unit_group_for_lookup;
7871
7872 if (dwarf2_per_objfile->type_unit_groups == NULL)
7873 {
7874 dwarf2_per_objfile->type_unit_groups =
7875 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7876 }
7877
7878 /* Do we need to create a new group, or can we use an existing one? */
7879
7880 if (stmt_list)
7881 {
7882 line_offset = DW_UNSND (stmt_list);
7883 ++tu_stats->nr_symtab_sharers;
7884 }
7885 else
7886 {
7887 /* Ugh, no stmt_list. Rare, but we have to handle it.
7888 We can do various things here like create one group per TU or
7889 spread them over multiple groups to split up the expansion work.
7890 To avoid worst case scenarios (too many groups or too large groups)
7891 we, umm, group them in bunches. */
7892 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7893 | (tu_stats->nr_stmt_less_type_units
7894 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7895 ++tu_stats->nr_stmt_less_type_units;
7896 }
7897
7898 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7899 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7900 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7901 &type_unit_group_for_lookup, INSERT);
7902 if (*slot != NULL)
7903 {
7904 tu_group = (struct type_unit_group *) *slot;
7905 gdb_assert (tu_group != NULL);
7906 }
7907 else
7908 {
7909 sect_offset line_offset_struct = (sect_offset) line_offset;
7910 tu_group = create_type_unit_group (cu, line_offset_struct);
7911 *slot = tu_group;
7912 ++tu_stats->nr_symtabs;
7913 }
7914
7915 return tu_group;
7916 }
7917 \f
7918 /* Partial symbol tables. */
7919
7920 /* Create a psymtab named NAME and assign it to PER_CU.
7921
7922 The caller must fill in the following details:
7923 dirname, textlow, texthigh. */
7924
7925 static struct partial_symtab *
7926 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7927 {
7928 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7929 struct partial_symtab *pst;
7930
7931 pst = start_psymtab_common (objfile, name, 0,
7932 objfile->global_psymbols,
7933 objfile->static_psymbols);
7934
7935 pst->psymtabs_addrmap_supported = 1;
7936
7937 /* This is the glue that links PST into GDB's symbol API. */
7938 pst->read_symtab_private = per_cu;
7939 pst->read_symtab = dwarf2_read_symtab;
7940 per_cu->v.psymtab = pst;
7941
7942 return pst;
7943 }
7944
7945 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7946 type. */
7947
7948 struct process_psymtab_comp_unit_data
7949 {
7950 /* True if we are reading a DW_TAG_partial_unit. */
7951
7952 int want_partial_unit;
7953
7954 /* The "pretend" language that is used if the CU doesn't declare a
7955 language. */
7956
7957 enum language pretend_language;
7958 };
7959
7960 /* die_reader_func for process_psymtab_comp_unit. */
7961
7962 static void
7963 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7964 const gdb_byte *info_ptr,
7965 struct die_info *comp_unit_die,
7966 int has_children,
7967 void *data)
7968 {
7969 struct dwarf2_cu *cu = reader->cu;
7970 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7971 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7972 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7973 CORE_ADDR baseaddr;
7974 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7975 struct partial_symtab *pst;
7976 enum pc_bounds_kind cu_bounds_kind;
7977 const char *filename;
7978 struct process_psymtab_comp_unit_data *info
7979 = (struct process_psymtab_comp_unit_data *) data;
7980
7981 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7982 return;
7983
7984 gdb_assert (! per_cu->is_debug_types);
7985
7986 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7987
7988 /* Allocate a new partial symbol table structure. */
7989 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7990 if (filename == NULL)
7991 filename = "";
7992
7993 pst = create_partial_symtab (per_cu, filename);
7994
7995 /* This must be done before calling dwarf2_build_include_psymtabs. */
7996 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7997
7998 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7999
8000 dwarf2_find_base_address (comp_unit_die, cu);
8001
8002 /* Possibly set the default values of LOWPC and HIGHPC from
8003 `DW_AT_ranges'. */
8004 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8005 &best_highpc, cu, pst);
8006 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8007 {
8008 CORE_ADDR low
8009 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8010 - baseaddr);
8011 CORE_ADDR high
8012 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8013 - baseaddr - 1);
8014 /* Store the contiguous range if it is not empty; it can be
8015 empty for CUs with no code. */
8016 addrmap_set_empty (objfile->psymtabs_addrmap, low, high, pst);
8017 }
8018
8019 /* Check if comp unit has_children.
8020 If so, read the rest of the partial symbols from this comp unit.
8021 If not, there's no more debug_info for this comp unit. */
8022 if (has_children)
8023 {
8024 struct partial_die_info *first_die;
8025 CORE_ADDR lowpc, highpc;
8026
8027 lowpc = ((CORE_ADDR) -1);
8028 highpc = ((CORE_ADDR) 0);
8029
8030 first_die = load_partial_dies (reader, info_ptr, 1);
8031
8032 scan_partial_symbols (first_die, &lowpc, &highpc,
8033 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8034
8035 /* If we didn't find a lowpc, set it to highpc to avoid
8036 complaints from `maint check'. */
8037 if (lowpc == ((CORE_ADDR) -1))
8038 lowpc = highpc;
8039
8040 /* If the compilation unit didn't have an explicit address range,
8041 then use the information extracted from its child dies. */
8042 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8043 {
8044 best_lowpc = lowpc;
8045 best_highpc = highpc;
8046 }
8047 }
8048 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8049 best_lowpc + baseaddr)
8050 - baseaddr);
8051 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8052 best_highpc + baseaddr)
8053 - baseaddr);
8054
8055 end_psymtab_common (objfile, pst);
8056
8057 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8058 {
8059 int i;
8060 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8061 struct dwarf2_per_cu_data *iter;
8062
8063 /* Fill in 'dependencies' here; we fill in 'users' in a
8064 post-pass. */
8065 pst->number_of_dependencies = len;
8066 pst->dependencies =
8067 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8068 for (i = 0;
8069 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8070 i, iter);
8071 ++i)
8072 pst->dependencies[i] = iter->v.psymtab;
8073
8074 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8075 }
8076
8077 /* Get the list of files included in the current compilation unit,
8078 and build a psymtab for each of them. */
8079 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8080
8081 if (dwarf_read_debug)
8082 fprintf_unfiltered (gdb_stdlog,
8083 "Psymtab for %s unit @%s: %s - %s"
8084 ", %d global, %d static syms\n",
8085 per_cu->is_debug_types ? "type" : "comp",
8086 sect_offset_str (per_cu->sect_off),
8087 paddress (gdbarch, pst->text_low (objfile)),
8088 paddress (gdbarch, pst->text_high (objfile)),
8089 pst->n_global_syms, pst->n_static_syms);
8090 }
8091
8092 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8093 Process compilation unit THIS_CU for a psymtab. */
8094
8095 static void
8096 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8097 int want_partial_unit,
8098 enum language pretend_language)
8099 {
8100 /* If this compilation unit was already read in, free the
8101 cached copy in order to read it in again. This is
8102 necessary because we skipped some symbols when we first
8103 read in the compilation unit (see load_partial_dies).
8104 This problem could be avoided, but the benefit is unclear. */
8105 if (this_cu->cu != NULL)
8106 free_one_cached_comp_unit (this_cu);
8107
8108 if (this_cu->is_debug_types)
8109 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8110 build_type_psymtabs_reader, NULL);
8111 else
8112 {
8113 process_psymtab_comp_unit_data info;
8114 info.want_partial_unit = want_partial_unit;
8115 info.pretend_language = pretend_language;
8116 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8117 process_psymtab_comp_unit_reader, &info);
8118 }
8119
8120 /* Age out any secondary CUs. */
8121 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8122 }
8123
8124 /* Reader function for build_type_psymtabs. */
8125
8126 static void
8127 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8128 const gdb_byte *info_ptr,
8129 struct die_info *type_unit_die,
8130 int has_children,
8131 void *data)
8132 {
8133 struct dwarf2_per_objfile *dwarf2_per_objfile
8134 = reader->cu->per_cu->dwarf2_per_objfile;
8135 struct objfile *objfile = dwarf2_per_objfile->objfile;
8136 struct dwarf2_cu *cu = reader->cu;
8137 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8138 struct signatured_type *sig_type;
8139 struct type_unit_group *tu_group;
8140 struct attribute *attr;
8141 struct partial_die_info *first_die;
8142 CORE_ADDR lowpc, highpc;
8143 struct partial_symtab *pst;
8144
8145 gdb_assert (data == NULL);
8146 gdb_assert (per_cu->is_debug_types);
8147 sig_type = (struct signatured_type *) per_cu;
8148
8149 if (! has_children)
8150 return;
8151
8152 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8153 tu_group = get_type_unit_group (cu, attr);
8154
8155 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8156
8157 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8158 pst = create_partial_symtab (per_cu, "");
8159 pst->anonymous = 1;
8160
8161 first_die = load_partial_dies (reader, info_ptr, 1);
8162
8163 lowpc = (CORE_ADDR) -1;
8164 highpc = (CORE_ADDR) 0;
8165 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8166
8167 end_psymtab_common (objfile, pst);
8168 }
8169
8170 /* Struct used to sort TUs by their abbreviation table offset. */
8171
8172 struct tu_abbrev_offset
8173 {
8174 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8175 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8176 {}
8177
8178 signatured_type *sig_type;
8179 sect_offset abbrev_offset;
8180 };
8181
8182 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8183
8184 static bool
8185 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8186 const struct tu_abbrev_offset &b)
8187 {
8188 return a.abbrev_offset < b.abbrev_offset;
8189 }
8190
8191 /* Efficiently read all the type units.
8192 This does the bulk of the work for build_type_psymtabs.
8193
8194 The efficiency is because we sort TUs by the abbrev table they use and
8195 only read each abbrev table once. In one program there are 200K TUs
8196 sharing 8K abbrev tables.
8197
8198 The main purpose of this function is to support building the
8199 dwarf2_per_objfile->type_unit_groups table.
8200 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8201 can collapse the search space by grouping them by stmt_list.
8202 The savings can be significant, in the same program from above the 200K TUs
8203 share 8K stmt_list tables.
8204
8205 FUNC is expected to call get_type_unit_group, which will create the
8206 struct type_unit_group if necessary and add it to
8207 dwarf2_per_objfile->type_unit_groups. */
8208
8209 static void
8210 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8211 {
8212 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8213 abbrev_table_up abbrev_table;
8214 sect_offset abbrev_offset;
8215
8216 /* It's up to the caller to not call us multiple times. */
8217 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8218
8219 if (dwarf2_per_objfile->all_type_units.empty ())
8220 return;
8221
8222 /* TUs typically share abbrev tables, and there can be way more TUs than
8223 abbrev tables. Sort by abbrev table to reduce the number of times we
8224 read each abbrev table in.
8225 Alternatives are to punt or to maintain a cache of abbrev tables.
8226 This is simpler and efficient enough for now.
8227
8228 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8229 symtab to use). Typically TUs with the same abbrev offset have the same
8230 stmt_list value too so in practice this should work well.
8231
8232 The basic algorithm here is:
8233
8234 sort TUs by abbrev table
8235 for each TU with same abbrev table:
8236 read abbrev table if first user
8237 read TU top level DIE
8238 [IWBN if DWO skeletons had DW_AT_stmt_list]
8239 call FUNC */
8240
8241 if (dwarf_read_debug)
8242 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8243
8244 /* Sort in a separate table to maintain the order of all_type_units
8245 for .gdb_index: TU indices directly index all_type_units. */
8246 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8247 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8248
8249 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8250 sorted_by_abbrev.emplace_back
8251 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8252 sig_type->per_cu.section,
8253 sig_type->per_cu.sect_off));
8254
8255 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8256 sort_tu_by_abbrev_offset);
8257
8258 abbrev_offset = (sect_offset) ~(unsigned) 0;
8259
8260 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8261 {
8262 /* Switch to the next abbrev table if necessary. */
8263 if (abbrev_table == NULL
8264 || tu.abbrev_offset != abbrev_offset)
8265 {
8266 abbrev_offset = tu.abbrev_offset;
8267 abbrev_table =
8268 abbrev_table_read_table (dwarf2_per_objfile,
8269 &dwarf2_per_objfile->abbrev,
8270 abbrev_offset);
8271 ++tu_stats->nr_uniq_abbrev_tables;
8272 }
8273
8274 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8275 0, 0, false, build_type_psymtabs_reader, NULL);
8276 }
8277 }
8278
8279 /* Print collected type unit statistics. */
8280
8281 static void
8282 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8283 {
8284 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8285
8286 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8287 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8288 dwarf2_per_objfile->all_type_units.size ());
8289 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8290 tu_stats->nr_uniq_abbrev_tables);
8291 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8292 tu_stats->nr_symtabs);
8293 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8294 tu_stats->nr_symtab_sharers);
8295 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8296 tu_stats->nr_stmt_less_type_units);
8297 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8298 tu_stats->nr_all_type_units_reallocs);
8299 }
8300
8301 /* Traversal function for build_type_psymtabs. */
8302
8303 static int
8304 build_type_psymtab_dependencies (void **slot, void *info)
8305 {
8306 struct dwarf2_per_objfile *dwarf2_per_objfile
8307 = (struct dwarf2_per_objfile *) info;
8308 struct objfile *objfile = dwarf2_per_objfile->objfile;
8309 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8310 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8311 struct partial_symtab *pst = per_cu->v.psymtab;
8312 int len = VEC_length (sig_type_ptr, tu_group->tus);
8313 struct signatured_type *iter;
8314 int i;
8315
8316 gdb_assert (len > 0);
8317 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8318
8319 pst->number_of_dependencies = len;
8320 pst->dependencies =
8321 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8322 for (i = 0;
8323 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8324 ++i)
8325 {
8326 gdb_assert (iter->per_cu.is_debug_types);
8327 pst->dependencies[i] = iter->per_cu.v.psymtab;
8328 iter->type_unit_group = tu_group;
8329 }
8330
8331 VEC_free (sig_type_ptr, tu_group->tus);
8332
8333 return 1;
8334 }
8335
8336 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8337 Build partial symbol tables for the .debug_types comp-units. */
8338
8339 static void
8340 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8341 {
8342 if (! create_all_type_units (dwarf2_per_objfile))
8343 return;
8344
8345 build_type_psymtabs_1 (dwarf2_per_objfile);
8346 }
8347
8348 /* Traversal function for process_skeletonless_type_unit.
8349 Read a TU in a DWO file and build partial symbols for it. */
8350
8351 static int
8352 process_skeletonless_type_unit (void **slot, void *info)
8353 {
8354 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8355 struct dwarf2_per_objfile *dwarf2_per_objfile
8356 = (struct dwarf2_per_objfile *) info;
8357 struct signatured_type find_entry, *entry;
8358
8359 /* If this TU doesn't exist in the global table, add it and read it in. */
8360
8361 if (dwarf2_per_objfile->signatured_types == NULL)
8362 {
8363 dwarf2_per_objfile->signatured_types
8364 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8365 }
8366
8367 find_entry.signature = dwo_unit->signature;
8368 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8369 INSERT);
8370 /* If we've already seen this type there's nothing to do. What's happening
8371 is we're doing our own version of comdat-folding here. */
8372 if (*slot != NULL)
8373 return 1;
8374
8375 /* This does the job that create_all_type_units would have done for
8376 this TU. */
8377 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8378 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8379 *slot = entry;
8380
8381 /* This does the job that build_type_psymtabs_1 would have done. */
8382 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8383 build_type_psymtabs_reader, NULL);
8384
8385 return 1;
8386 }
8387
8388 /* Traversal function for process_skeletonless_type_units. */
8389
8390 static int
8391 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8392 {
8393 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8394
8395 if (dwo_file->tus != NULL)
8396 {
8397 htab_traverse_noresize (dwo_file->tus,
8398 process_skeletonless_type_unit, info);
8399 }
8400
8401 return 1;
8402 }
8403
8404 /* Scan all TUs of DWO files, verifying we've processed them.
8405 This is needed in case a TU was emitted without its skeleton.
8406 Note: This can't be done until we know what all the DWO files are. */
8407
8408 static void
8409 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8410 {
8411 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8412 if (get_dwp_file (dwarf2_per_objfile) == NULL
8413 && dwarf2_per_objfile->dwo_files != NULL)
8414 {
8415 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8416 process_dwo_file_for_skeletonless_type_units,
8417 dwarf2_per_objfile);
8418 }
8419 }
8420
8421 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8422
8423 static void
8424 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8425 {
8426 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8427 {
8428 struct partial_symtab *pst = per_cu->v.psymtab;
8429
8430 if (pst == NULL)
8431 continue;
8432
8433 for (int j = 0; j < pst->number_of_dependencies; ++j)
8434 {
8435 /* Set the 'user' field only if it is not already set. */
8436 if (pst->dependencies[j]->user == NULL)
8437 pst->dependencies[j]->user = pst;
8438 }
8439 }
8440 }
8441
8442 /* Build the partial symbol table by doing a quick pass through the
8443 .debug_info and .debug_abbrev sections. */
8444
8445 static void
8446 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8447 {
8448 struct objfile *objfile = dwarf2_per_objfile->objfile;
8449
8450 if (dwarf_read_debug)
8451 {
8452 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8453 objfile_name (objfile));
8454 }
8455
8456 dwarf2_per_objfile->reading_partial_symbols = 1;
8457
8458 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8459
8460 /* Any cached compilation units will be linked by the per-objfile
8461 read_in_chain. Make sure to free them when we're done. */
8462 free_cached_comp_units freer (dwarf2_per_objfile);
8463
8464 build_type_psymtabs (dwarf2_per_objfile);
8465
8466 create_all_comp_units (dwarf2_per_objfile);
8467
8468 /* Create a temporary address map on a temporary obstack. We later
8469 copy this to the final obstack. */
8470 auto_obstack temp_obstack;
8471
8472 scoped_restore save_psymtabs_addrmap
8473 = make_scoped_restore (&objfile->psymtabs_addrmap,
8474 addrmap_create_mutable (&temp_obstack));
8475
8476 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8477 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8478
8479 /* This has to wait until we read the CUs, we need the list of DWOs. */
8480 process_skeletonless_type_units (dwarf2_per_objfile);
8481
8482 /* Now that all TUs have been processed we can fill in the dependencies. */
8483 if (dwarf2_per_objfile->type_unit_groups != NULL)
8484 {
8485 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8486 build_type_psymtab_dependencies, dwarf2_per_objfile);
8487 }
8488
8489 if (dwarf_read_debug)
8490 print_tu_stats (dwarf2_per_objfile);
8491
8492 set_partial_user (dwarf2_per_objfile);
8493
8494 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8495 &objfile->objfile_obstack);
8496 /* At this point we want to keep the address map. */
8497 save_psymtabs_addrmap.release ();
8498
8499 if (dwarf_read_debug)
8500 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8501 objfile_name (objfile));
8502 }
8503
8504 /* die_reader_func for load_partial_comp_unit. */
8505
8506 static void
8507 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8508 const gdb_byte *info_ptr,
8509 struct die_info *comp_unit_die,
8510 int has_children,
8511 void *data)
8512 {
8513 struct dwarf2_cu *cu = reader->cu;
8514
8515 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8516
8517 /* Check if comp unit has_children.
8518 If so, read the rest of the partial symbols from this comp unit.
8519 If not, there's no more debug_info for this comp unit. */
8520 if (has_children)
8521 load_partial_dies (reader, info_ptr, 0);
8522 }
8523
8524 /* Load the partial DIEs for a secondary CU into memory.
8525 This is also used when rereading a primary CU with load_all_dies. */
8526
8527 static void
8528 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8529 {
8530 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8531 load_partial_comp_unit_reader, NULL);
8532 }
8533
8534 static void
8535 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8536 struct dwarf2_section_info *section,
8537 struct dwarf2_section_info *abbrev_section,
8538 unsigned int is_dwz)
8539 {
8540 const gdb_byte *info_ptr;
8541 struct objfile *objfile = dwarf2_per_objfile->objfile;
8542
8543 if (dwarf_read_debug)
8544 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8545 get_section_name (section),
8546 get_section_file_name (section));
8547
8548 dwarf2_read_section (objfile, section);
8549
8550 info_ptr = section->buffer;
8551
8552 while (info_ptr < section->buffer + section->size)
8553 {
8554 struct dwarf2_per_cu_data *this_cu;
8555
8556 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8557
8558 comp_unit_head cu_header;
8559 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8560 abbrev_section, info_ptr,
8561 rcuh_kind::COMPILE);
8562
8563 /* Save the compilation unit for later lookup. */
8564 if (cu_header.unit_type != DW_UT_type)
8565 {
8566 this_cu = XOBNEW (&objfile->objfile_obstack,
8567 struct dwarf2_per_cu_data);
8568 memset (this_cu, 0, sizeof (*this_cu));
8569 }
8570 else
8571 {
8572 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8573 struct signatured_type);
8574 memset (sig_type, 0, sizeof (*sig_type));
8575 sig_type->signature = cu_header.signature;
8576 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8577 this_cu = &sig_type->per_cu;
8578 }
8579 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8580 this_cu->sect_off = sect_off;
8581 this_cu->length = cu_header.length + cu_header.initial_length_size;
8582 this_cu->is_dwz = is_dwz;
8583 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8584 this_cu->section = section;
8585
8586 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8587
8588 info_ptr = info_ptr + this_cu->length;
8589 }
8590 }
8591
8592 /* Create a list of all compilation units in OBJFILE.
8593 This is only done for -readnow and building partial symtabs. */
8594
8595 static void
8596 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8597 {
8598 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8599 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8600 &dwarf2_per_objfile->abbrev, 0);
8601
8602 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8603 if (dwz != NULL)
8604 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8605 1);
8606 }
8607
8608 /* Process all loaded DIEs for compilation unit CU, starting at
8609 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8610 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8611 DW_AT_ranges). See the comments of add_partial_subprogram on how
8612 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8613
8614 static void
8615 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8616 CORE_ADDR *highpc, int set_addrmap,
8617 struct dwarf2_cu *cu)
8618 {
8619 struct partial_die_info *pdi;
8620
8621 /* Now, march along the PDI's, descending into ones which have
8622 interesting children but skipping the children of the other ones,
8623 until we reach the end of the compilation unit. */
8624
8625 pdi = first_die;
8626
8627 while (pdi != NULL)
8628 {
8629 pdi->fixup (cu);
8630
8631 /* Anonymous namespaces or modules have no name but have interesting
8632 children, so we need to look at them. Ditto for anonymous
8633 enums. */
8634
8635 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8636 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8637 || pdi->tag == DW_TAG_imported_unit
8638 || pdi->tag == DW_TAG_inlined_subroutine)
8639 {
8640 switch (pdi->tag)
8641 {
8642 case DW_TAG_subprogram:
8643 case DW_TAG_inlined_subroutine:
8644 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8645 break;
8646 case DW_TAG_constant:
8647 case DW_TAG_variable:
8648 case DW_TAG_typedef:
8649 case DW_TAG_union_type:
8650 if (!pdi->is_declaration)
8651 {
8652 add_partial_symbol (pdi, cu);
8653 }
8654 break;
8655 case DW_TAG_class_type:
8656 case DW_TAG_interface_type:
8657 case DW_TAG_structure_type:
8658 if (!pdi->is_declaration)
8659 {
8660 add_partial_symbol (pdi, cu);
8661 }
8662 if ((cu->language == language_rust
8663 || cu->language == language_cplus) && pdi->has_children)
8664 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8665 set_addrmap, cu);
8666 break;
8667 case DW_TAG_enumeration_type:
8668 if (!pdi->is_declaration)
8669 add_partial_enumeration (pdi, cu);
8670 break;
8671 case DW_TAG_base_type:
8672 case DW_TAG_subrange_type:
8673 /* File scope base type definitions are added to the partial
8674 symbol table. */
8675 add_partial_symbol (pdi, cu);
8676 break;
8677 case DW_TAG_namespace:
8678 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8679 break;
8680 case DW_TAG_module:
8681 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8682 break;
8683 case DW_TAG_imported_unit:
8684 {
8685 struct dwarf2_per_cu_data *per_cu;
8686
8687 /* For now we don't handle imported units in type units. */
8688 if (cu->per_cu->is_debug_types)
8689 {
8690 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8691 " supported in type units [in module %s]"),
8692 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8693 }
8694
8695 per_cu = dwarf2_find_containing_comp_unit
8696 (pdi->d.sect_off, pdi->is_dwz,
8697 cu->per_cu->dwarf2_per_objfile);
8698
8699 /* Go read the partial unit, if needed. */
8700 if (per_cu->v.psymtab == NULL)
8701 process_psymtab_comp_unit (per_cu, 1, cu->language);
8702
8703 VEC_safe_push (dwarf2_per_cu_ptr,
8704 cu->per_cu->imported_symtabs, per_cu);
8705 }
8706 break;
8707 case DW_TAG_imported_declaration:
8708 add_partial_symbol (pdi, cu);
8709 break;
8710 default:
8711 break;
8712 }
8713 }
8714
8715 /* If the die has a sibling, skip to the sibling. */
8716
8717 pdi = pdi->die_sibling;
8718 }
8719 }
8720
8721 /* Functions used to compute the fully scoped name of a partial DIE.
8722
8723 Normally, this is simple. For C++, the parent DIE's fully scoped
8724 name is concatenated with "::" and the partial DIE's name.
8725 Enumerators are an exception; they use the scope of their parent
8726 enumeration type, i.e. the name of the enumeration type is not
8727 prepended to the enumerator.
8728
8729 There are two complexities. One is DW_AT_specification; in this
8730 case "parent" means the parent of the target of the specification,
8731 instead of the direct parent of the DIE. The other is compilers
8732 which do not emit DW_TAG_namespace; in this case we try to guess
8733 the fully qualified name of structure types from their members'
8734 linkage names. This must be done using the DIE's children rather
8735 than the children of any DW_AT_specification target. We only need
8736 to do this for structures at the top level, i.e. if the target of
8737 any DW_AT_specification (if any; otherwise the DIE itself) does not
8738 have a parent. */
8739
8740 /* Compute the scope prefix associated with PDI's parent, in
8741 compilation unit CU. The result will be allocated on CU's
8742 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8743 field. NULL is returned if no prefix is necessary. */
8744 static const char *
8745 partial_die_parent_scope (struct partial_die_info *pdi,
8746 struct dwarf2_cu *cu)
8747 {
8748 const char *grandparent_scope;
8749 struct partial_die_info *parent, *real_pdi;
8750
8751 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8752 then this means the parent of the specification DIE. */
8753
8754 real_pdi = pdi;
8755 while (real_pdi->has_specification)
8756 real_pdi = find_partial_die (real_pdi->spec_offset,
8757 real_pdi->spec_is_dwz, cu);
8758
8759 parent = real_pdi->die_parent;
8760 if (parent == NULL)
8761 return NULL;
8762
8763 if (parent->scope_set)
8764 return parent->scope;
8765
8766 parent->fixup (cu);
8767
8768 grandparent_scope = partial_die_parent_scope (parent, cu);
8769
8770 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8771 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8772 Work around this problem here. */
8773 if (cu->language == language_cplus
8774 && parent->tag == DW_TAG_namespace
8775 && strcmp (parent->name, "::") == 0
8776 && grandparent_scope == NULL)
8777 {
8778 parent->scope = NULL;
8779 parent->scope_set = 1;
8780 return NULL;
8781 }
8782
8783 if (pdi->tag == DW_TAG_enumerator)
8784 /* Enumerators should not get the name of the enumeration as a prefix. */
8785 parent->scope = grandparent_scope;
8786 else if (parent->tag == DW_TAG_namespace
8787 || parent->tag == DW_TAG_module
8788 || parent->tag == DW_TAG_structure_type
8789 || parent->tag == DW_TAG_class_type
8790 || parent->tag == DW_TAG_interface_type
8791 || parent->tag == DW_TAG_union_type
8792 || parent->tag == DW_TAG_enumeration_type)
8793 {
8794 if (grandparent_scope == NULL)
8795 parent->scope = parent->name;
8796 else
8797 parent->scope = typename_concat (&cu->comp_unit_obstack,
8798 grandparent_scope,
8799 parent->name, 0, cu);
8800 }
8801 else
8802 {
8803 /* FIXME drow/2004-04-01: What should we be doing with
8804 function-local names? For partial symbols, we should probably be
8805 ignoring them. */
8806 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8807 parent->tag, sect_offset_str (pdi->sect_off));
8808 parent->scope = grandparent_scope;
8809 }
8810
8811 parent->scope_set = 1;
8812 return parent->scope;
8813 }
8814
8815 /* Return the fully scoped name associated with PDI, from compilation unit
8816 CU. The result will be allocated with malloc. */
8817
8818 static char *
8819 partial_die_full_name (struct partial_die_info *pdi,
8820 struct dwarf2_cu *cu)
8821 {
8822 const char *parent_scope;
8823
8824 /* If this is a template instantiation, we can not work out the
8825 template arguments from partial DIEs. So, unfortunately, we have
8826 to go through the full DIEs. At least any work we do building
8827 types here will be reused if full symbols are loaded later. */
8828 if (pdi->has_template_arguments)
8829 {
8830 pdi->fixup (cu);
8831
8832 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8833 {
8834 struct die_info *die;
8835 struct attribute attr;
8836 struct dwarf2_cu *ref_cu = cu;
8837
8838 /* DW_FORM_ref_addr is using section offset. */
8839 attr.name = (enum dwarf_attribute) 0;
8840 attr.form = DW_FORM_ref_addr;
8841 attr.u.unsnd = to_underlying (pdi->sect_off);
8842 die = follow_die_ref (NULL, &attr, &ref_cu);
8843
8844 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8845 }
8846 }
8847
8848 parent_scope = partial_die_parent_scope (pdi, cu);
8849 if (parent_scope == NULL)
8850 return NULL;
8851 else
8852 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8853 }
8854
8855 static void
8856 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8857 {
8858 struct dwarf2_per_objfile *dwarf2_per_objfile
8859 = cu->per_cu->dwarf2_per_objfile;
8860 struct objfile *objfile = dwarf2_per_objfile->objfile;
8861 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8862 CORE_ADDR addr = 0;
8863 const char *actual_name = NULL;
8864 CORE_ADDR baseaddr;
8865 char *built_actual_name;
8866
8867 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8868
8869 built_actual_name = partial_die_full_name (pdi, cu);
8870 if (built_actual_name != NULL)
8871 actual_name = built_actual_name;
8872
8873 if (actual_name == NULL)
8874 actual_name = pdi->name;
8875
8876 switch (pdi->tag)
8877 {
8878 case DW_TAG_inlined_subroutine:
8879 case DW_TAG_subprogram:
8880 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8881 - baseaddr);
8882 if (pdi->is_external || cu->language == language_ada)
8883 {
8884 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8885 of the global scope. But in Ada, we want to be able to access
8886 nested procedures globally. So all Ada subprograms are stored
8887 in the global scope. */
8888 add_psymbol_to_list (actual_name, strlen (actual_name),
8889 built_actual_name != NULL,
8890 VAR_DOMAIN, LOC_BLOCK,
8891 SECT_OFF_TEXT (objfile),
8892 &objfile->global_psymbols,
8893 addr,
8894 cu->language, objfile);
8895 }
8896 else
8897 {
8898 add_psymbol_to_list (actual_name, strlen (actual_name),
8899 built_actual_name != NULL,
8900 VAR_DOMAIN, LOC_BLOCK,
8901 SECT_OFF_TEXT (objfile),
8902 &objfile->static_psymbols,
8903 addr, cu->language, objfile);
8904 }
8905
8906 if (pdi->main_subprogram && actual_name != NULL)
8907 set_objfile_main_name (objfile, actual_name, cu->language);
8908 break;
8909 case DW_TAG_constant:
8910 {
8911 std::vector<partial_symbol *> *list;
8912
8913 if (pdi->is_external)
8914 list = &objfile->global_psymbols;
8915 else
8916 list = &objfile->static_psymbols;
8917 add_psymbol_to_list (actual_name, strlen (actual_name),
8918 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8919 -1, list, 0, cu->language, objfile);
8920 }
8921 break;
8922 case DW_TAG_variable:
8923 if (pdi->d.locdesc)
8924 addr = decode_locdesc (pdi->d.locdesc, cu);
8925
8926 if (pdi->d.locdesc
8927 && addr == 0
8928 && !dwarf2_per_objfile->has_section_at_zero)
8929 {
8930 /* A global or static variable may also have been stripped
8931 out by the linker if unused, in which case its address
8932 will be nullified; do not add such variables into partial
8933 symbol table then. */
8934 }
8935 else if (pdi->is_external)
8936 {
8937 /* Global Variable.
8938 Don't enter into the minimal symbol tables as there is
8939 a minimal symbol table entry from the ELF symbols already.
8940 Enter into partial symbol table if it has a location
8941 descriptor or a type.
8942 If the location descriptor is missing, new_symbol will create
8943 a LOC_UNRESOLVED symbol, the address of the variable will then
8944 be determined from the minimal symbol table whenever the variable
8945 is referenced.
8946 The address for the partial symbol table entry is not
8947 used by GDB, but it comes in handy for debugging partial symbol
8948 table building. */
8949
8950 if (pdi->d.locdesc || pdi->has_type)
8951 add_psymbol_to_list (actual_name, strlen (actual_name),
8952 built_actual_name != NULL,
8953 VAR_DOMAIN, LOC_STATIC,
8954 SECT_OFF_TEXT (objfile),
8955 &objfile->global_psymbols,
8956 addr, cu->language, objfile);
8957 }
8958 else
8959 {
8960 int has_loc = pdi->d.locdesc != NULL;
8961
8962 /* Static Variable. Skip symbols whose value we cannot know (those
8963 without location descriptors or constant values). */
8964 if (!has_loc && !pdi->has_const_value)
8965 {
8966 xfree (built_actual_name);
8967 return;
8968 }
8969
8970 add_psymbol_to_list (actual_name, strlen (actual_name),
8971 built_actual_name != NULL,
8972 VAR_DOMAIN, LOC_STATIC,
8973 SECT_OFF_TEXT (objfile),
8974 &objfile->static_psymbols,
8975 has_loc ? addr : 0,
8976 cu->language, objfile);
8977 }
8978 break;
8979 case DW_TAG_typedef:
8980 case DW_TAG_base_type:
8981 case DW_TAG_subrange_type:
8982 add_psymbol_to_list (actual_name, strlen (actual_name),
8983 built_actual_name != NULL,
8984 VAR_DOMAIN, LOC_TYPEDEF, -1,
8985 &objfile->static_psymbols,
8986 0, cu->language, objfile);
8987 break;
8988 case DW_TAG_imported_declaration:
8989 case DW_TAG_namespace:
8990 add_psymbol_to_list (actual_name, strlen (actual_name),
8991 built_actual_name != NULL,
8992 VAR_DOMAIN, LOC_TYPEDEF, -1,
8993 &objfile->global_psymbols,
8994 0, cu->language, objfile);
8995 break;
8996 case DW_TAG_module:
8997 add_psymbol_to_list (actual_name, strlen (actual_name),
8998 built_actual_name != NULL,
8999 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9000 &objfile->global_psymbols,
9001 0, cu->language, objfile);
9002 break;
9003 case DW_TAG_class_type:
9004 case DW_TAG_interface_type:
9005 case DW_TAG_structure_type:
9006 case DW_TAG_union_type:
9007 case DW_TAG_enumeration_type:
9008 /* Skip external references. The DWARF standard says in the section
9009 about "Structure, Union, and Class Type Entries": "An incomplete
9010 structure, union or class type is represented by a structure,
9011 union or class entry that does not have a byte size attribute
9012 and that has a DW_AT_declaration attribute." */
9013 if (!pdi->has_byte_size && pdi->is_declaration)
9014 {
9015 xfree (built_actual_name);
9016 return;
9017 }
9018
9019 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9020 static vs. global. */
9021 add_psymbol_to_list (actual_name, strlen (actual_name),
9022 built_actual_name != NULL,
9023 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9024 cu->language == language_cplus
9025 ? &objfile->global_psymbols
9026 : &objfile->static_psymbols,
9027 0, cu->language, objfile);
9028
9029 break;
9030 case DW_TAG_enumerator:
9031 add_psymbol_to_list (actual_name, strlen (actual_name),
9032 built_actual_name != NULL,
9033 VAR_DOMAIN, LOC_CONST, -1,
9034 cu->language == language_cplus
9035 ? &objfile->global_psymbols
9036 : &objfile->static_psymbols,
9037 0, cu->language, objfile);
9038 break;
9039 default:
9040 break;
9041 }
9042
9043 xfree (built_actual_name);
9044 }
9045
9046 /* Read a partial die corresponding to a namespace; also, add a symbol
9047 corresponding to that namespace to the symbol table. NAMESPACE is
9048 the name of the enclosing namespace. */
9049
9050 static void
9051 add_partial_namespace (struct partial_die_info *pdi,
9052 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9053 int set_addrmap, struct dwarf2_cu *cu)
9054 {
9055 /* Add a symbol for the namespace. */
9056
9057 add_partial_symbol (pdi, cu);
9058
9059 /* Now scan partial symbols in that namespace. */
9060
9061 if (pdi->has_children)
9062 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9063 }
9064
9065 /* Read a partial die corresponding to a Fortran module. */
9066
9067 static void
9068 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9069 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9070 {
9071 /* Add a symbol for the namespace. */
9072
9073 add_partial_symbol (pdi, cu);
9074
9075 /* Now scan partial symbols in that module. */
9076
9077 if (pdi->has_children)
9078 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9079 }
9080
9081 /* Read a partial die corresponding to a subprogram or an inlined
9082 subprogram and create a partial symbol for that subprogram.
9083 When the CU language allows it, this routine also defines a partial
9084 symbol for each nested subprogram that this subprogram contains.
9085 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9086 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9087
9088 PDI may also be a lexical block, in which case we simply search
9089 recursively for subprograms defined inside that lexical block.
9090 Again, this is only performed when the CU language allows this
9091 type of definitions. */
9092
9093 static void
9094 add_partial_subprogram (struct partial_die_info *pdi,
9095 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9096 int set_addrmap, struct dwarf2_cu *cu)
9097 {
9098 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9099 {
9100 if (pdi->has_pc_info)
9101 {
9102 if (pdi->lowpc < *lowpc)
9103 *lowpc = pdi->lowpc;
9104 if (pdi->highpc > *highpc)
9105 *highpc = pdi->highpc;
9106 if (set_addrmap)
9107 {
9108 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9109 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9110 CORE_ADDR baseaddr;
9111 CORE_ADDR this_highpc;
9112 CORE_ADDR this_lowpc;
9113
9114 baseaddr = ANOFFSET (objfile->section_offsets,
9115 SECT_OFF_TEXT (objfile));
9116 this_lowpc
9117 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9118 pdi->lowpc + baseaddr)
9119 - baseaddr);
9120 this_highpc
9121 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9122 pdi->highpc + baseaddr)
9123 - baseaddr);
9124 addrmap_set_empty (objfile->psymtabs_addrmap,
9125 this_lowpc, this_highpc - 1,
9126 cu->per_cu->v.psymtab);
9127 }
9128 }
9129
9130 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9131 {
9132 if (!pdi->is_declaration)
9133 /* Ignore subprogram DIEs that do not have a name, they are
9134 illegal. Do not emit a complaint at this point, we will
9135 do so when we convert this psymtab into a symtab. */
9136 if (pdi->name)
9137 add_partial_symbol (pdi, cu);
9138 }
9139 }
9140
9141 if (! pdi->has_children)
9142 return;
9143
9144 if (cu->language == language_ada)
9145 {
9146 pdi = pdi->die_child;
9147 while (pdi != NULL)
9148 {
9149 pdi->fixup (cu);
9150 if (pdi->tag == DW_TAG_subprogram
9151 || pdi->tag == DW_TAG_inlined_subroutine
9152 || pdi->tag == DW_TAG_lexical_block)
9153 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9154 pdi = pdi->die_sibling;
9155 }
9156 }
9157 }
9158
9159 /* Read a partial die corresponding to an enumeration type. */
9160
9161 static void
9162 add_partial_enumeration (struct partial_die_info *enum_pdi,
9163 struct dwarf2_cu *cu)
9164 {
9165 struct partial_die_info *pdi;
9166
9167 if (enum_pdi->name != NULL)
9168 add_partial_symbol (enum_pdi, cu);
9169
9170 pdi = enum_pdi->die_child;
9171 while (pdi)
9172 {
9173 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9174 complaint (_("malformed enumerator DIE ignored"));
9175 else
9176 add_partial_symbol (pdi, cu);
9177 pdi = pdi->die_sibling;
9178 }
9179 }
9180
9181 /* Return the initial uleb128 in the die at INFO_PTR. */
9182
9183 static unsigned int
9184 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9185 {
9186 unsigned int bytes_read;
9187
9188 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9189 }
9190
9191 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9192 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9193
9194 Return the corresponding abbrev, or NULL if the number is zero (indicating
9195 an empty DIE). In either case *BYTES_READ will be set to the length of
9196 the initial number. */
9197
9198 static struct abbrev_info *
9199 peek_die_abbrev (const die_reader_specs &reader,
9200 const gdb_byte *info_ptr, unsigned int *bytes_read)
9201 {
9202 dwarf2_cu *cu = reader.cu;
9203 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9204 unsigned int abbrev_number
9205 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9206
9207 if (abbrev_number == 0)
9208 return NULL;
9209
9210 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9211 if (!abbrev)
9212 {
9213 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9214 " at offset %s [in module %s]"),
9215 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9216 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9217 }
9218
9219 return abbrev;
9220 }
9221
9222 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9223 Returns a pointer to the end of a series of DIEs, terminated by an empty
9224 DIE. Any children of the skipped DIEs will also be skipped. */
9225
9226 static const gdb_byte *
9227 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9228 {
9229 while (1)
9230 {
9231 unsigned int bytes_read;
9232 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9233
9234 if (abbrev == NULL)
9235 return info_ptr + bytes_read;
9236 else
9237 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9238 }
9239 }
9240
9241 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9242 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9243 abbrev corresponding to that skipped uleb128 should be passed in
9244 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9245 children. */
9246
9247 static const gdb_byte *
9248 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9249 struct abbrev_info *abbrev)
9250 {
9251 unsigned int bytes_read;
9252 struct attribute attr;
9253 bfd *abfd = reader->abfd;
9254 struct dwarf2_cu *cu = reader->cu;
9255 const gdb_byte *buffer = reader->buffer;
9256 const gdb_byte *buffer_end = reader->buffer_end;
9257 unsigned int form, i;
9258
9259 for (i = 0; i < abbrev->num_attrs; i++)
9260 {
9261 /* The only abbrev we care about is DW_AT_sibling. */
9262 if (abbrev->attrs[i].name == DW_AT_sibling)
9263 {
9264 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9265 if (attr.form == DW_FORM_ref_addr)
9266 complaint (_("ignoring absolute DW_AT_sibling"));
9267 else
9268 {
9269 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9270 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9271
9272 if (sibling_ptr < info_ptr)
9273 complaint (_("DW_AT_sibling points backwards"));
9274 else if (sibling_ptr > reader->buffer_end)
9275 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9276 else
9277 return sibling_ptr;
9278 }
9279 }
9280
9281 /* If it isn't DW_AT_sibling, skip this attribute. */
9282 form = abbrev->attrs[i].form;
9283 skip_attribute:
9284 switch (form)
9285 {
9286 case DW_FORM_ref_addr:
9287 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9288 and later it is offset sized. */
9289 if (cu->header.version == 2)
9290 info_ptr += cu->header.addr_size;
9291 else
9292 info_ptr += cu->header.offset_size;
9293 break;
9294 case DW_FORM_GNU_ref_alt:
9295 info_ptr += cu->header.offset_size;
9296 break;
9297 case DW_FORM_addr:
9298 info_ptr += cu->header.addr_size;
9299 break;
9300 case DW_FORM_data1:
9301 case DW_FORM_ref1:
9302 case DW_FORM_flag:
9303 info_ptr += 1;
9304 break;
9305 case DW_FORM_flag_present:
9306 case DW_FORM_implicit_const:
9307 break;
9308 case DW_FORM_data2:
9309 case DW_FORM_ref2:
9310 info_ptr += 2;
9311 break;
9312 case DW_FORM_data4:
9313 case DW_FORM_ref4:
9314 info_ptr += 4;
9315 break;
9316 case DW_FORM_data8:
9317 case DW_FORM_ref8:
9318 case DW_FORM_ref_sig8:
9319 info_ptr += 8;
9320 break;
9321 case DW_FORM_data16:
9322 info_ptr += 16;
9323 break;
9324 case DW_FORM_string:
9325 read_direct_string (abfd, info_ptr, &bytes_read);
9326 info_ptr += bytes_read;
9327 break;
9328 case DW_FORM_sec_offset:
9329 case DW_FORM_strp:
9330 case DW_FORM_GNU_strp_alt:
9331 info_ptr += cu->header.offset_size;
9332 break;
9333 case DW_FORM_exprloc:
9334 case DW_FORM_block:
9335 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9336 info_ptr += bytes_read;
9337 break;
9338 case DW_FORM_block1:
9339 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9340 break;
9341 case DW_FORM_block2:
9342 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9343 break;
9344 case DW_FORM_block4:
9345 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9346 break;
9347 case DW_FORM_sdata:
9348 case DW_FORM_udata:
9349 case DW_FORM_ref_udata:
9350 case DW_FORM_GNU_addr_index:
9351 case DW_FORM_GNU_str_index:
9352 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9353 break;
9354 case DW_FORM_indirect:
9355 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9356 info_ptr += bytes_read;
9357 /* We need to continue parsing from here, so just go back to
9358 the top. */
9359 goto skip_attribute;
9360
9361 default:
9362 error (_("Dwarf Error: Cannot handle %s "
9363 "in DWARF reader [in module %s]"),
9364 dwarf_form_name (form),
9365 bfd_get_filename (abfd));
9366 }
9367 }
9368
9369 if (abbrev->has_children)
9370 return skip_children (reader, info_ptr);
9371 else
9372 return info_ptr;
9373 }
9374
9375 /* Locate ORIG_PDI's sibling.
9376 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9377
9378 static const gdb_byte *
9379 locate_pdi_sibling (const struct die_reader_specs *reader,
9380 struct partial_die_info *orig_pdi,
9381 const gdb_byte *info_ptr)
9382 {
9383 /* Do we know the sibling already? */
9384
9385 if (orig_pdi->sibling)
9386 return orig_pdi->sibling;
9387
9388 /* Are there any children to deal with? */
9389
9390 if (!orig_pdi->has_children)
9391 return info_ptr;
9392
9393 /* Skip the children the long way. */
9394
9395 return skip_children (reader, info_ptr);
9396 }
9397
9398 /* Expand this partial symbol table into a full symbol table. SELF is
9399 not NULL. */
9400
9401 static void
9402 dwarf2_read_symtab (struct partial_symtab *self,
9403 struct objfile *objfile)
9404 {
9405 struct dwarf2_per_objfile *dwarf2_per_objfile
9406 = get_dwarf2_per_objfile (objfile);
9407
9408 if (self->readin)
9409 {
9410 warning (_("bug: psymtab for %s is already read in."),
9411 self->filename);
9412 }
9413 else
9414 {
9415 if (info_verbose)
9416 {
9417 printf_filtered (_("Reading in symbols for %s..."),
9418 self->filename);
9419 gdb_flush (gdb_stdout);
9420 }
9421
9422 /* If this psymtab is constructed from a debug-only objfile, the
9423 has_section_at_zero flag will not necessarily be correct. We
9424 can get the correct value for this flag by looking at the data
9425 associated with the (presumably stripped) associated objfile. */
9426 if (objfile->separate_debug_objfile_backlink)
9427 {
9428 struct dwarf2_per_objfile *dpo_backlink
9429 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9430
9431 dwarf2_per_objfile->has_section_at_zero
9432 = dpo_backlink->has_section_at_zero;
9433 }
9434
9435 dwarf2_per_objfile->reading_partial_symbols = 0;
9436
9437 psymtab_to_symtab_1 (self);
9438
9439 /* Finish up the debug error message. */
9440 if (info_verbose)
9441 printf_filtered (_("done.\n"));
9442 }
9443
9444 process_cu_includes (dwarf2_per_objfile);
9445 }
9446 \f
9447 /* Reading in full CUs. */
9448
9449 /* Add PER_CU to the queue. */
9450
9451 static void
9452 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9453 enum language pretend_language)
9454 {
9455 struct dwarf2_queue_item *item;
9456
9457 per_cu->queued = 1;
9458 item = XNEW (struct dwarf2_queue_item);
9459 item->per_cu = per_cu;
9460 item->pretend_language = pretend_language;
9461 item->next = NULL;
9462
9463 if (dwarf2_queue == NULL)
9464 dwarf2_queue = item;
9465 else
9466 dwarf2_queue_tail->next = item;
9467
9468 dwarf2_queue_tail = item;
9469 }
9470
9471 /* If PER_CU is not yet queued, add it to the queue.
9472 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9473 dependency.
9474 The result is non-zero if PER_CU was queued, otherwise the result is zero
9475 meaning either PER_CU is already queued or it is already loaded.
9476
9477 N.B. There is an invariant here that if a CU is queued then it is loaded.
9478 The caller is required to load PER_CU if we return non-zero. */
9479
9480 static int
9481 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9482 struct dwarf2_per_cu_data *per_cu,
9483 enum language pretend_language)
9484 {
9485 /* We may arrive here during partial symbol reading, if we need full
9486 DIEs to process an unusual case (e.g. template arguments). Do
9487 not queue PER_CU, just tell our caller to load its DIEs. */
9488 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9489 {
9490 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9491 return 1;
9492 return 0;
9493 }
9494
9495 /* Mark the dependence relation so that we don't flush PER_CU
9496 too early. */
9497 if (dependent_cu != NULL)
9498 dwarf2_add_dependence (dependent_cu, per_cu);
9499
9500 /* If it's already on the queue, we have nothing to do. */
9501 if (per_cu->queued)
9502 return 0;
9503
9504 /* If the compilation unit is already loaded, just mark it as
9505 used. */
9506 if (per_cu->cu != NULL)
9507 {
9508 per_cu->cu->last_used = 0;
9509 return 0;
9510 }
9511
9512 /* Add it to the queue. */
9513 queue_comp_unit (per_cu, pretend_language);
9514
9515 return 1;
9516 }
9517
9518 /* Process the queue. */
9519
9520 static void
9521 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9522 {
9523 struct dwarf2_queue_item *item, *next_item;
9524
9525 if (dwarf_read_debug)
9526 {
9527 fprintf_unfiltered (gdb_stdlog,
9528 "Expanding one or more symtabs of objfile %s ...\n",
9529 objfile_name (dwarf2_per_objfile->objfile));
9530 }
9531
9532 /* The queue starts out with one item, but following a DIE reference
9533 may load a new CU, adding it to the end of the queue. */
9534 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9535 {
9536 if ((dwarf2_per_objfile->using_index
9537 ? !item->per_cu->v.quick->compunit_symtab
9538 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9539 /* Skip dummy CUs. */
9540 && item->per_cu->cu != NULL)
9541 {
9542 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9543 unsigned int debug_print_threshold;
9544 char buf[100];
9545
9546 if (per_cu->is_debug_types)
9547 {
9548 struct signatured_type *sig_type =
9549 (struct signatured_type *) per_cu;
9550
9551 sprintf (buf, "TU %s at offset %s",
9552 hex_string (sig_type->signature),
9553 sect_offset_str (per_cu->sect_off));
9554 /* There can be 100s of TUs.
9555 Only print them in verbose mode. */
9556 debug_print_threshold = 2;
9557 }
9558 else
9559 {
9560 sprintf (buf, "CU at offset %s",
9561 sect_offset_str (per_cu->sect_off));
9562 debug_print_threshold = 1;
9563 }
9564
9565 if (dwarf_read_debug >= debug_print_threshold)
9566 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9567
9568 if (per_cu->is_debug_types)
9569 process_full_type_unit (per_cu, item->pretend_language);
9570 else
9571 process_full_comp_unit (per_cu, item->pretend_language);
9572
9573 if (dwarf_read_debug >= debug_print_threshold)
9574 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9575 }
9576
9577 item->per_cu->queued = 0;
9578 next_item = item->next;
9579 xfree (item);
9580 }
9581
9582 dwarf2_queue_tail = NULL;
9583
9584 if (dwarf_read_debug)
9585 {
9586 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9587 objfile_name (dwarf2_per_objfile->objfile));
9588 }
9589 }
9590
9591 /* Read in full symbols for PST, and anything it depends on. */
9592
9593 static void
9594 psymtab_to_symtab_1 (struct partial_symtab *pst)
9595 {
9596 struct dwarf2_per_cu_data *per_cu;
9597 int i;
9598
9599 if (pst->readin)
9600 return;
9601
9602 for (i = 0; i < pst->number_of_dependencies; i++)
9603 if (!pst->dependencies[i]->readin
9604 && pst->dependencies[i]->user == NULL)
9605 {
9606 /* Inform about additional files that need to be read in. */
9607 if (info_verbose)
9608 {
9609 /* FIXME: i18n: Need to make this a single string. */
9610 fputs_filtered (" ", gdb_stdout);
9611 wrap_here ("");
9612 fputs_filtered ("and ", gdb_stdout);
9613 wrap_here ("");
9614 printf_filtered ("%s...", pst->dependencies[i]->filename);
9615 wrap_here (""); /* Flush output. */
9616 gdb_flush (gdb_stdout);
9617 }
9618 psymtab_to_symtab_1 (pst->dependencies[i]);
9619 }
9620
9621 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9622
9623 if (per_cu == NULL)
9624 {
9625 /* It's an include file, no symbols to read for it.
9626 Everything is in the parent symtab. */
9627 pst->readin = 1;
9628 return;
9629 }
9630
9631 dw2_do_instantiate_symtab (per_cu, false);
9632 }
9633
9634 /* Trivial hash function for die_info: the hash value of a DIE
9635 is its offset in .debug_info for this objfile. */
9636
9637 static hashval_t
9638 die_hash (const void *item)
9639 {
9640 const struct die_info *die = (const struct die_info *) item;
9641
9642 return to_underlying (die->sect_off);
9643 }
9644
9645 /* Trivial comparison function for die_info structures: two DIEs
9646 are equal if they have the same offset. */
9647
9648 static int
9649 die_eq (const void *item_lhs, const void *item_rhs)
9650 {
9651 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9652 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9653
9654 return die_lhs->sect_off == die_rhs->sect_off;
9655 }
9656
9657 /* die_reader_func for load_full_comp_unit.
9658 This is identical to read_signatured_type_reader,
9659 but is kept separate for now. */
9660
9661 static void
9662 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9663 const gdb_byte *info_ptr,
9664 struct die_info *comp_unit_die,
9665 int has_children,
9666 void *data)
9667 {
9668 struct dwarf2_cu *cu = reader->cu;
9669 enum language *language_ptr = (enum language *) data;
9670
9671 gdb_assert (cu->die_hash == NULL);
9672 cu->die_hash =
9673 htab_create_alloc_ex (cu->header.length / 12,
9674 die_hash,
9675 die_eq,
9676 NULL,
9677 &cu->comp_unit_obstack,
9678 hashtab_obstack_allocate,
9679 dummy_obstack_deallocate);
9680
9681 if (has_children)
9682 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9683 &info_ptr, comp_unit_die);
9684 cu->dies = comp_unit_die;
9685 /* comp_unit_die is not stored in die_hash, no need. */
9686
9687 /* We try not to read any attributes in this function, because not
9688 all CUs needed for references have been loaded yet, and symbol
9689 table processing isn't initialized. But we have to set the CU language,
9690 or we won't be able to build types correctly.
9691 Similarly, if we do not read the producer, we can not apply
9692 producer-specific interpretation. */
9693 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9694 }
9695
9696 /* Load the DIEs associated with PER_CU into memory. */
9697
9698 static void
9699 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9700 bool skip_partial,
9701 enum language pretend_language)
9702 {
9703 gdb_assert (! this_cu->is_debug_types);
9704
9705 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9706 load_full_comp_unit_reader, &pretend_language);
9707 }
9708
9709 /* Add a DIE to the delayed physname list. */
9710
9711 static void
9712 add_to_method_list (struct type *type, int fnfield_index, int index,
9713 const char *name, struct die_info *die,
9714 struct dwarf2_cu *cu)
9715 {
9716 struct delayed_method_info mi;
9717 mi.type = type;
9718 mi.fnfield_index = fnfield_index;
9719 mi.index = index;
9720 mi.name = name;
9721 mi.die = die;
9722 cu->method_list.push_back (mi);
9723 }
9724
9725 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9726 "const" / "volatile". If so, decrements LEN by the length of the
9727 modifier and return true. Otherwise return false. */
9728
9729 template<size_t N>
9730 static bool
9731 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9732 {
9733 size_t mod_len = sizeof (mod) - 1;
9734 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9735 {
9736 len -= mod_len;
9737 return true;
9738 }
9739 return false;
9740 }
9741
9742 /* Compute the physnames of any methods on the CU's method list.
9743
9744 The computation of method physnames is delayed in order to avoid the
9745 (bad) condition that one of the method's formal parameters is of an as yet
9746 incomplete type. */
9747
9748 static void
9749 compute_delayed_physnames (struct dwarf2_cu *cu)
9750 {
9751 /* Only C++ delays computing physnames. */
9752 if (cu->method_list.empty ())
9753 return;
9754 gdb_assert (cu->language == language_cplus);
9755
9756 for (const delayed_method_info &mi : cu->method_list)
9757 {
9758 const char *physname;
9759 struct fn_fieldlist *fn_flp
9760 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9761 physname = dwarf2_physname (mi.name, mi.die, cu);
9762 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9763 = physname ? physname : "";
9764
9765 /* Since there's no tag to indicate whether a method is a
9766 const/volatile overload, extract that information out of the
9767 demangled name. */
9768 if (physname != NULL)
9769 {
9770 size_t len = strlen (physname);
9771
9772 while (1)
9773 {
9774 if (physname[len] == ')') /* shortcut */
9775 break;
9776 else if (check_modifier (physname, len, " const"))
9777 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9778 else if (check_modifier (physname, len, " volatile"))
9779 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9780 else
9781 break;
9782 }
9783 }
9784 }
9785
9786 /* The list is no longer needed. */
9787 cu->method_list.clear ();
9788 }
9789
9790 /* A wrapper for add_symbol_to_list to ensure that SYMBOL's language is
9791 the same as all other symbols in LISTHEAD. If a new symbol is added
9792 with a different language, this function asserts. */
9793
9794 static inline void
9795 dw2_add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
9796 {
9797 /* Only assert if LISTHEAD already contains symbols of a different
9798 language (dict_create_hashed/insert_symbol_hashed requires that all
9799 symbols in this list are of the same language). */
9800 gdb_assert ((*listhead) == NULL
9801 || (SYMBOL_LANGUAGE ((*listhead)->symbol[0])
9802 == SYMBOL_LANGUAGE (symbol)));
9803
9804 add_symbol_to_list (symbol, listhead);
9805 }
9806
9807 /* Go objects should be embedded in a DW_TAG_module DIE,
9808 and it's not clear if/how imported objects will appear.
9809 To keep Go support simple until that's worked out,
9810 go back through what we've read and create something usable.
9811 We could do this while processing each DIE, and feels kinda cleaner,
9812 but that way is more invasive.
9813 This is to, for example, allow the user to type "p var" or "b main"
9814 without having to specify the package name, and allow lookups
9815 of module.object to work in contexts that use the expression
9816 parser. */
9817
9818 static void
9819 fixup_go_packaging (struct dwarf2_cu *cu)
9820 {
9821 char *package_name = NULL;
9822 struct pending *list;
9823 int i;
9824
9825 for (list = *cu->builder->get_global_symbols ();
9826 list != NULL;
9827 list = list->next)
9828 {
9829 for (i = 0; i < list->nsyms; ++i)
9830 {
9831 struct symbol *sym = list->symbol[i];
9832
9833 if (SYMBOL_LANGUAGE (sym) == language_go
9834 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9835 {
9836 char *this_package_name = go_symbol_package_name (sym);
9837
9838 if (this_package_name == NULL)
9839 continue;
9840 if (package_name == NULL)
9841 package_name = this_package_name;
9842 else
9843 {
9844 struct objfile *objfile
9845 = cu->per_cu->dwarf2_per_objfile->objfile;
9846 if (strcmp (package_name, this_package_name) != 0)
9847 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9848 (symbol_symtab (sym) != NULL
9849 ? symtab_to_filename_for_display
9850 (symbol_symtab (sym))
9851 : objfile_name (objfile)),
9852 this_package_name, package_name);
9853 xfree (this_package_name);
9854 }
9855 }
9856 }
9857 }
9858
9859 if (package_name != NULL)
9860 {
9861 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9862 const char *saved_package_name
9863 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9864 package_name,
9865 strlen (package_name));
9866 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9867 saved_package_name);
9868 struct symbol *sym;
9869
9870 sym = allocate_symbol (objfile);
9871 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9872 SYMBOL_SET_NAMES (sym, saved_package_name,
9873 strlen (saved_package_name), 0, objfile);
9874 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9875 e.g., "main" finds the "main" module and not C's main(). */
9876 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9877 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9878 SYMBOL_TYPE (sym) = type;
9879
9880 dw2_add_symbol_to_list (sym, cu->builder->get_global_symbols ());
9881
9882 xfree (package_name);
9883 }
9884 }
9885
9886 /* Allocate a fully-qualified name consisting of the two parts on the
9887 obstack. */
9888
9889 static const char *
9890 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9891 {
9892 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9893 }
9894
9895 /* A helper that allocates a struct discriminant_info to attach to a
9896 union type. */
9897
9898 static struct discriminant_info *
9899 alloc_discriminant_info (struct type *type, int discriminant_index,
9900 int default_index)
9901 {
9902 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9903 gdb_assert (discriminant_index == -1
9904 || (discriminant_index >= 0
9905 && discriminant_index < TYPE_NFIELDS (type)));
9906 gdb_assert (default_index == -1
9907 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9908
9909 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9910
9911 struct discriminant_info *disc
9912 = ((struct discriminant_info *)
9913 TYPE_ZALLOC (type,
9914 offsetof (struct discriminant_info, discriminants)
9915 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9916 disc->default_index = default_index;
9917 disc->discriminant_index = discriminant_index;
9918
9919 struct dynamic_prop prop;
9920 prop.kind = PROP_UNDEFINED;
9921 prop.data.baton = disc;
9922
9923 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9924
9925 return disc;
9926 }
9927
9928 /* Some versions of rustc emitted enums in an unusual way.
9929
9930 Ordinary enums were emitted as unions. The first element of each
9931 structure in the union was named "RUST$ENUM$DISR". This element
9932 held the discriminant.
9933
9934 These versions of Rust also implemented the "non-zero"
9935 optimization. When the enum had two values, and one is empty and
9936 the other holds a pointer that cannot be zero, the pointer is used
9937 as the discriminant, with a zero value meaning the empty variant.
9938 Here, the union's first member is of the form
9939 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9940 where the fieldnos are the indices of the fields that should be
9941 traversed in order to find the field (which may be several fields deep)
9942 and the variantname is the name of the variant of the case when the
9943 field is zero.
9944
9945 This function recognizes whether TYPE is of one of these forms,
9946 and, if so, smashes it to be a variant type. */
9947
9948 static void
9949 quirk_rust_enum (struct type *type, struct objfile *objfile)
9950 {
9951 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9952
9953 /* We don't need to deal with empty enums. */
9954 if (TYPE_NFIELDS (type) == 0)
9955 return;
9956
9957 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9958 if (TYPE_NFIELDS (type) == 1
9959 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9960 {
9961 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9962
9963 /* Decode the field name to find the offset of the
9964 discriminant. */
9965 ULONGEST bit_offset = 0;
9966 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9967 while (name[0] >= '0' && name[0] <= '9')
9968 {
9969 char *tail;
9970 unsigned long index = strtoul (name, &tail, 10);
9971 name = tail;
9972 if (*name != '$'
9973 || index >= TYPE_NFIELDS (field_type)
9974 || (TYPE_FIELD_LOC_KIND (field_type, index)
9975 != FIELD_LOC_KIND_BITPOS))
9976 {
9977 complaint (_("Could not parse Rust enum encoding string \"%s\""
9978 "[in module %s]"),
9979 TYPE_FIELD_NAME (type, 0),
9980 objfile_name (objfile));
9981 return;
9982 }
9983 ++name;
9984
9985 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9986 field_type = TYPE_FIELD_TYPE (field_type, index);
9987 }
9988
9989 /* Make a union to hold the variants. */
9990 struct type *union_type = alloc_type (objfile);
9991 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9992 TYPE_NFIELDS (union_type) = 3;
9993 TYPE_FIELDS (union_type)
9994 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9995 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9996 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9997
9998 /* Put the discriminant must at index 0. */
9999 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10000 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10001 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10002 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10003
10004 /* The order of fields doesn't really matter, so put the real
10005 field at index 1 and the data-less field at index 2. */
10006 struct discriminant_info *disc
10007 = alloc_discriminant_info (union_type, 0, 1);
10008 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10009 TYPE_FIELD_NAME (union_type, 1)
10010 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10011 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10012 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10013 TYPE_FIELD_NAME (union_type, 1));
10014
10015 const char *dataless_name
10016 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10017 name);
10018 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10019 dataless_name);
10020 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10021 /* NAME points into the original discriminant name, which
10022 already has the correct lifetime. */
10023 TYPE_FIELD_NAME (union_type, 2) = name;
10024 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10025 disc->discriminants[2] = 0;
10026
10027 /* Smash this type to be a structure type. We have to do this
10028 because the type has already been recorded. */
10029 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10030 TYPE_NFIELDS (type) = 1;
10031 TYPE_FIELDS (type)
10032 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10033
10034 /* Install the variant part. */
10035 TYPE_FIELD_TYPE (type, 0) = union_type;
10036 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10037 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10038 }
10039 else if (TYPE_NFIELDS (type) == 1)
10040 {
10041 /* We assume that a union with a single field is a univariant
10042 enum. */
10043 /* Smash this type to be a structure type. We have to do this
10044 because the type has already been recorded. */
10045 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10046
10047 /* Make a union to hold the variants. */
10048 struct type *union_type = alloc_type (objfile);
10049 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10050 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10051 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10052 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10053 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10054
10055 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10056 const char *variant_name
10057 = rust_last_path_segment (TYPE_NAME (field_type));
10058 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10059 TYPE_NAME (field_type)
10060 = rust_fully_qualify (&objfile->objfile_obstack,
10061 TYPE_NAME (type), variant_name);
10062
10063 /* Install the union in the outer struct type. */
10064 TYPE_NFIELDS (type) = 1;
10065 TYPE_FIELDS (type)
10066 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10067 TYPE_FIELD_TYPE (type, 0) = union_type;
10068 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10069 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10070
10071 alloc_discriminant_info (union_type, -1, 0);
10072 }
10073 else
10074 {
10075 struct type *disr_type = nullptr;
10076 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10077 {
10078 disr_type = TYPE_FIELD_TYPE (type, i);
10079
10080 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10081 {
10082 /* All fields of a true enum will be structs. */
10083 return;
10084 }
10085 else if (TYPE_NFIELDS (disr_type) == 0)
10086 {
10087 /* Could be data-less variant, so keep going. */
10088 disr_type = nullptr;
10089 }
10090 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10091 "RUST$ENUM$DISR") != 0)
10092 {
10093 /* Not a Rust enum. */
10094 return;
10095 }
10096 else
10097 {
10098 /* Found one. */
10099 break;
10100 }
10101 }
10102
10103 /* If we got here without a discriminant, then it's probably
10104 just a union. */
10105 if (disr_type == nullptr)
10106 return;
10107
10108 /* Smash this type to be a structure type. We have to do this
10109 because the type has already been recorded. */
10110 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10111
10112 /* Make a union to hold the variants. */
10113 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10114 struct type *union_type = alloc_type (objfile);
10115 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10116 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10117 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10118 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10119 TYPE_FIELDS (union_type)
10120 = (struct field *) TYPE_ZALLOC (union_type,
10121 (TYPE_NFIELDS (union_type)
10122 * sizeof (struct field)));
10123
10124 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10125 TYPE_NFIELDS (type) * sizeof (struct field));
10126
10127 /* Install the discriminant at index 0 in the union. */
10128 TYPE_FIELD (union_type, 0) = *disr_field;
10129 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10130 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10131
10132 /* Install the union in the outer struct type. */
10133 TYPE_FIELD_TYPE (type, 0) = union_type;
10134 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10135 TYPE_NFIELDS (type) = 1;
10136
10137 /* Set the size and offset of the union type. */
10138 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10139
10140 /* We need a way to find the correct discriminant given a
10141 variant name. For convenience we build a map here. */
10142 struct type *enum_type = FIELD_TYPE (*disr_field);
10143 std::unordered_map<std::string, ULONGEST> discriminant_map;
10144 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10145 {
10146 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10147 {
10148 const char *name
10149 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10150 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10151 }
10152 }
10153
10154 int n_fields = TYPE_NFIELDS (union_type);
10155 struct discriminant_info *disc
10156 = alloc_discriminant_info (union_type, 0, -1);
10157 /* Skip the discriminant here. */
10158 for (int i = 1; i < n_fields; ++i)
10159 {
10160 /* Find the final word in the name of this variant's type.
10161 That name can be used to look up the correct
10162 discriminant. */
10163 const char *variant_name
10164 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10165 i)));
10166
10167 auto iter = discriminant_map.find (variant_name);
10168 if (iter != discriminant_map.end ())
10169 disc->discriminants[i] = iter->second;
10170
10171 /* Remove the discriminant field, if it exists. */
10172 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10173 if (TYPE_NFIELDS (sub_type) > 0)
10174 {
10175 --TYPE_NFIELDS (sub_type);
10176 ++TYPE_FIELDS (sub_type);
10177 }
10178 TYPE_FIELD_NAME (union_type, i) = variant_name;
10179 TYPE_NAME (sub_type)
10180 = rust_fully_qualify (&objfile->objfile_obstack,
10181 TYPE_NAME (type), variant_name);
10182 }
10183 }
10184 }
10185
10186 /* Rewrite some Rust unions to be structures with variants parts. */
10187
10188 static void
10189 rust_union_quirks (struct dwarf2_cu *cu)
10190 {
10191 gdb_assert (cu->language == language_rust);
10192 for (type *type_ : cu->rust_unions)
10193 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10194 /* We don't need this any more. */
10195 cu->rust_unions.clear ();
10196 }
10197
10198 /* Return the symtab for PER_CU. This works properly regardless of
10199 whether we're using the index or psymtabs. */
10200
10201 static struct compunit_symtab *
10202 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10203 {
10204 return (per_cu->dwarf2_per_objfile->using_index
10205 ? per_cu->v.quick->compunit_symtab
10206 : per_cu->v.psymtab->compunit_symtab);
10207 }
10208
10209 /* A helper function for computing the list of all symbol tables
10210 included by PER_CU. */
10211
10212 static void
10213 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10214 htab_t all_children, htab_t all_type_symtabs,
10215 struct dwarf2_per_cu_data *per_cu,
10216 struct compunit_symtab *immediate_parent)
10217 {
10218 void **slot;
10219 int ix;
10220 struct compunit_symtab *cust;
10221 struct dwarf2_per_cu_data *iter;
10222
10223 slot = htab_find_slot (all_children, per_cu, INSERT);
10224 if (*slot != NULL)
10225 {
10226 /* This inclusion and its children have been processed. */
10227 return;
10228 }
10229
10230 *slot = per_cu;
10231 /* Only add a CU if it has a symbol table. */
10232 cust = get_compunit_symtab (per_cu);
10233 if (cust != NULL)
10234 {
10235 /* If this is a type unit only add its symbol table if we haven't
10236 seen it yet (type unit per_cu's can share symtabs). */
10237 if (per_cu->is_debug_types)
10238 {
10239 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10240 if (*slot == NULL)
10241 {
10242 *slot = cust;
10243 result->push_back (cust);
10244 if (cust->user == NULL)
10245 cust->user = immediate_parent;
10246 }
10247 }
10248 else
10249 {
10250 result->push_back (cust);
10251 if (cust->user == NULL)
10252 cust->user = immediate_parent;
10253 }
10254 }
10255
10256 for (ix = 0;
10257 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10258 ++ix)
10259 {
10260 recursively_compute_inclusions (result, all_children,
10261 all_type_symtabs, iter, cust);
10262 }
10263 }
10264
10265 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10266 PER_CU. */
10267
10268 static void
10269 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10270 {
10271 gdb_assert (! per_cu->is_debug_types);
10272
10273 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10274 {
10275 int ix, len;
10276 struct dwarf2_per_cu_data *per_cu_iter;
10277 std::vector<compunit_symtab *> result_symtabs;
10278 htab_t all_children, all_type_symtabs;
10279 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10280
10281 /* If we don't have a symtab, we can just skip this case. */
10282 if (cust == NULL)
10283 return;
10284
10285 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10286 NULL, xcalloc, xfree);
10287 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10288 NULL, xcalloc, xfree);
10289
10290 for (ix = 0;
10291 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10292 ix, per_cu_iter);
10293 ++ix)
10294 {
10295 recursively_compute_inclusions (&result_symtabs, all_children,
10296 all_type_symtabs, per_cu_iter,
10297 cust);
10298 }
10299
10300 /* Now we have a transitive closure of all the included symtabs. */
10301 len = result_symtabs.size ();
10302 cust->includes
10303 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10304 struct compunit_symtab *, len + 1);
10305 memcpy (cust->includes, result_symtabs.data (),
10306 len * sizeof (compunit_symtab *));
10307 cust->includes[len] = NULL;
10308
10309 htab_delete (all_children);
10310 htab_delete (all_type_symtabs);
10311 }
10312 }
10313
10314 /* Compute the 'includes' field for the symtabs of all the CUs we just
10315 read. */
10316
10317 static void
10318 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10319 {
10320 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10321 {
10322 if (! iter->is_debug_types)
10323 compute_compunit_symtab_includes (iter);
10324 }
10325
10326 dwarf2_per_objfile->just_read_cus.clear ();
10327 }
10328
10329 /* Generate full symbol information for PER_CU, whose DIEs have
10330 already been loaded into memory. */
10331
10332 static void
10333 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10334 enum language pretend_language)
10335 {
10336 struct dwarf2_cu *cu = per_cu->cu;
10337 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10338 struct objfile *objfile = dwarf2_per_objfile->objfile;
10339 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10340 CORE_ADDR lowpc, highpc;
10341 struct compunit_symtab *cust;
10342 CORE_ADDR baseaddr;
10343 struct block *static_block;
10344 CORE_ADDR addr;
10345
10346 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10347
10348 /* Clear the list here in case something was left over. */
10349 cu->method_list.clear ();
10350
10351 cu->language = pretend_language;
10352 cu->language_defn = language_def (cu->language);
10353
10354 /* Do line number decoding in read_file_scope () */
10355 process_die (cu->dies, cu);
10356
10357 /* For now fudge the Go package. */
10358 if (cu->language == language_go)
10359 fixup_go_packaging (cu);
10360
10361 /* Now that we have processed all the DIEs in the CU, all the types
10362 should be complete, and it should now be safe to compute all of the
10363 physnames. */
10364 compute_delayed_physnames (cu);
10365
10366 if (cu->language == language_rust)
10367 rust_union_quirks (cu);
10368
10369 /* Some compilers don't define a DW_AT_high_pc attribute for the
10370 compilation unit. If the DW_AT_high_pc is missing, synthesize
10371 it, by scanning the DIE's below the compilation unit. */
10372 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10373
10374 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10375 static_block = cu->builder->end_symtab_get_static_block (addr, 0, 1);
10376
10377 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10378 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10379 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10380 addrmap to help ensure it has an accurate map of pc values belonging to
10381 this comp unit. */
10382 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10383
10384 cust = cu->builder->end_symtab_from_static_block (static_block,
10385 SECT_OFF_TEXT (objfile),
10386 0);
10387
10388 if (cust != NULL)
10389 {
10390 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10391
10392 /* Set symtab language to language from DW_AT_language. If the
10393 compilation is from a C file generated by language preprocessors, do
10394 not set the language if it was already deduced by start_subfile. */
10395 if (!(cu->language == language_c
10396 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10397 COMPUNIT_FILETABS (cust)->language = cu->language;
10398
10399 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10400 produce DW_AT_location with location lists but it can be possibly
10401 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10402 there were bugs in prologue debug info, fixed later in GCC-4.5
10403 by "unwind info for epilogues" patch (which is not directly related).
10404
10405 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10406 needed, it would be wrong due to missing DW_AT_producer there.
10407
10408 Still one can confuse GDB by using non-standard GCC compilation
10409 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10410 */
10411 if (cu->has_loclist && gcc_4_minor >= 5)
10412 cust->locations_valid = 1;
10413
10414 if (gcc_4_minor >= 5)
10415 cust->epilogue_unwind_valid = 1;
10416
10417 cust->call_site_htab = cu->call_site_htab;
10418 }
10419
10420 if (dwarf2_per_objfile->using_index)
10421 per_cu->v.quick->compunit_symtab = cust;
10422 else
10423 {
10424 struct partial_symtab *pst = per_cu->v.psymtab;
10425 pst->compunit_symtab = cust;
10426 pst->readin = 1;
10427 }
10428
10429 /* Push it for inclusion processing later. */
10430 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10431
10432 /* Not needed any more. */
10433 cu->builder.reset ();
10434 }
10435
10436 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10437 already been loaded into memory. */
10438
10439 static void
10440 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10441 enum language pretend_language)
10442 {
10443 struct dwarf2_cu *cu = per_cu->cu;
10444 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10445 struct objfile *objfile = dwarf2_per_objfile->objfile;
10446 struct compunit_symtab *cust;
10447 struct signatured_type *sig_type;
10448
10449 gdb_assert (per_cu->is_debug_types);
10450 sig_type = (struct signatured_type *) per_cu;
10451
10452 /* Clear the list here in case something was left over. */
10453 cu->method_list.clear ();
10454
10455 cu->language = pretend_language;
10456 cu->language_defn = language_def (cu->language);
10457
10458 /* The symbol tables are set up in read_type_unit_scope. */
10459 process_die (cu->dies, cu);
10460
10461 /* For now fudge the Go package. */
10462 if (cu->language == language_go)
10463 fixup_go_packaging (cu);
10464
10465 /* Now that we have processed all the DIEs in the CU, all the types
10466 should be complete, and it should now be safe to compute all of the
10467 physnames. */
10468 compute_delayed_physnames (cu);
10469
10470 if (cu->language == language_rust)
10471 rust_union_quirks (cu);
10472
10473 /* TUs share symbol tables.
10474 If this is the first TU to use this symtab, complete the construction
10475 of it with end_expandable_symtab. Otherwise, complete the addition of
10476 this TU's symbols to the existing symtab. */
10477 if (sig_type->type_unit_group->compunit_symtab == NULL)
10478 {
10479 cust = cu->builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10480 sig_type->type_unit_group->compunit_symtab = cust;
10481
10482 if (cust != NULL)
10483 {
10484 /* Set symtab language to language from DW_AT_language. If the
10485 compilation is from a C file generated by language preprocessors,
10486 do not set the language if it was already deduced by
10487 start_subfile. */
10488 if (!(cu->language == language_c
10489 && COMPUNIT_FILETABS (cust)->language != language_c))
10490 COMPUNIT_FILETABS (cust)->language = cu->language;
10491 }
10492 }
10493 else
10494 {
10495 cu->builder->augment_type_symtab ();
10496 cust = sig_type->type_unit_group->compunit_symtab;
10497 }
10498
10499 if (dwarf2_per_objfile->using_index)
10500 per_cu->v.quick->compunit_symtab = cust;
10501 else
10502 {
10503 struct partial_symtab *pst = per_cu->v.psymtab;
10504 pst->compunit_symtab = cust;
10505 pst->readin = 1;
10506 }
10507
10508 /* Not needed any more. */
10509 cu->builder.reset ();
10510 }
10511
10512 /* Process an imported unit DIE. */
10513
10514 static void
10515 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10516 {
10517 struct attribute *attr;
10518
10519 /* For now we don't handle imported units in type units. */
10520 if (cu->per_cu->is_debug_types)
10521 {
10522 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10523 " supported in type units [in module %s]"),
10524 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10525 }
10526
10527 attr = dwarf2_attr (die, DW_AT_import, cu);
10528 if (attr != NULL)
10529 {
10530 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10531 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10532 dwarf2_per_cu_data *per_cu
10533 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10534 cu->per_cu->dwarf2_per_objfile);
10535
10536 /* If necessary, add it to the queue and load its DIEs. */
10537 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10538 load_full_comp_unit (per_cu, false, cu->language);
10539
10540 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10541 per_cu);
10542 }
10543 }
10544
10545 /* RAII object that represents a process_die scope: i.e.,
10546 starts/finishes processing a DIE. */
10547 class process_die_scope
10548 {
10549 public:
10550 process_die_scope (die_info *die, dwarf2_cu *cu)
10551 : m_die (die), m_cu (cu)
10552 {
10553 /* We should only be processing DIEs not already in process. */
10554 gdb_assert (!m_die->in_process);
10555 m_die->in_process = true;
10556 }
10557
10558 ~process_die_scope ()
10559 {
10560 m_die->in_process = false;
10561
10562 /* If we're done processing the DIE for the CU that owns the line
10563 header, we don't need the line header anymore. */
10564 if (m_cu->line_header_die_owner == m_die)
10565 {
10566 delete m_cu->line_header;
10567 m_cu->line_header = NULL;
10568 m_cu->line_header_die_owner = NULL;
10569 }
10570 }
10571
10572 private:
10573 die_info *m_die;
10574 dwarf2_cu *m_cu;
10575 };
10576
10577 /* Process a die and its children. */
10578
10579 static void
10580 process_die (struct die_info *die, struct dwarf2_cu *cu)
10581 {
10582 process_die_scope scope (die, cu);
10583
10584 switch (die->tag)
10585 {
10586 case DW_TAG_padding:
10587 break;
10588 case DW_TAG_compile_unit:
10589 case DW_TAG_partial_unit:
10590 read_file_scope (die, cu);
10591 break;
10592 case DW_TAG_type_unit:
10593 read_type_unit_scope (die, cu);
10594 break;
10595 case DW_TAG_subprogram:
10596 case DW_TAG_inlined_subroutine:
10597 read_func_scope (die, cu);
10598 break;
10599 case DW_TAG_lexical_block:
10600 case DW_TAG_try_block:
10601 case DW_TAG_catch_block:
10602 read_lexical_block_scope (die, cu);
10603 break;
10604 case DW_TAG_call_site:
10605 case DW_TAG_GNU_call_site:
10606 read_call_site_scope (die, cu);
10607 break;
10608 case DW_TAG_class_type:
10609 case DW_TAG_interface_type:
10610 case DW_TAG_structure_type:
10611 case DW_TAG_union_type:
10612 process_structure_scope (die, cu);
10613 break;
10614 case DW_TAG_enumeration_type:
10615 process_enumeration_scope (die, cu);
10616 break;
10617
10618 /* These dies have a type, but processing them does not create
10619 a symbol or recurse to process the children. Therefore we can
10620 read them on-demand through read_type_die. */
10621 case DW_TAG_subroutine_type:
10622 case DW_TAG_set_type:
10623 case DW_TAG_array_type:
10624 case DW_TAG_pointer_type:
10625 case DW_TAG_ptr_to_member_type:
10626 case DW_TAG_reference_type:
10627 case DW_TAG_rvalue_reference_type:
10628 case DW_TAG_string_type:
10629 break;
10630
10631 case DW_TAG_base_type:
10632 case DW_TAG_subrange_type:
10633 case DW_TAG_typedef:
10634 /* Add a typedef symbol for the type definition, if it has a
10635 DW_AT_name. */
10636 new_symbol (die, read_type_die (die, cu), cu);
10637 break;
10638 case DW_TAG_common_block:
10639 read_common_block (die, cu);
10640 break;
10641 case DW_TAG_common_inclusion:
10642 break;
10643 case DW_TAG_namespace:
10644 cu->processing_has_namespace_info = 1;
10645 read_namespace (die, cu);
10646 break;
10647 case DW_TAG_module:
10648 cu->processing_has_namespace_info = 1;
10649 read_module (die, cu);
10650 break;
10651 case DW_TAG_imported_declaration:
10652 cu->processing_has_namespace_info = 1;
10653 if (read_namespace_alias (die, cu))
10654 break;
10655 /* The declaration is not a global namespace alias. */
10656 /* Fall through. */
10657 case DW_TAG_imported_module:
10658 cu->processing_has_namespace_info = 1;
10659 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10660 || cu->language != language_fortran))
10661 complaint (_("Tag '%s' has unexpected children"),
10662 dwarf_tag_name (die->tag));
10663 read_import_statement (die, cu);
10664 break;
10665
10666 case DW_TAG_imported_unit:
10667 process_imported_unit_die (die, cu);
10668 break;
10669
10670 case DW_TAG_variable:
10671 read_variable (die, cu);
10672 break;
10673
10674 default:
10675 new_symbol (die, NULL, cu);
10676 break;
10677 }
10678 }
10679 \f
10680 /* DWARF name computation. */
10681
10682 /* A helper function for dwarf2_compute_name which determines whether DIE
10683 needs to have the name of the scope prepended to the name listed in the
10684 die. */
10685
10686 static int
10687 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10688 {
10689 struct attribute *attr;
10690
10691 switch (die->tag)
10692 {
10693 case DW_TAG_namespace:
10694 case DW_TAG_typedef:
10695 case DW_TAG_class_type:
10696 case DW_TAG_interface_type:
10697 case DW_TAG_structure_type:
10698 case DW_TAG_union_type:
10699 case DW_TAG_enumeration_type:
10700 case DW_TAG_enumerator:
10701 case DW_TAG_subprogram:
10702 case DW_TAG_inlined_subroutine:
10703 case DW_TAG_member:
10704 case DW_TAG_imported_declaration:
10705 return 1;
10706
10707 case DW_TAG_variable:
10708 case DW_TAG_constant:
10709 /* We only need to prefix "globally" visible variables. These include
10710 any variable marked with DW_AT_external or any variable that
10711 lives in a namespace. [Variables in anonymous namespaces
10712 require prefixing, but they are not DW_AT_external.] */
10713
10714 if (dwarf2_attr (die, DW_AT_specification, cu))
10715 {
10716 struct dwarf2_cu *spec_cu = cu;
10717
10718 return die_needs_namespace (die_specification (die, &spec_cu),
10719 spec_cu);
10720 }
10721
10722 attr = dwarf2_attr (die, DW_AT_external, cu);
10723 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10724 && die->parent->tag != DW_TAG_module)
10725 return 0;
10726 /* A variable in a lexical block of some kind does not need a
10727 namespace, even though in C++ such variables may be external
10728 and have a mangled name. */
10729 if (die->parent->tag == DW_TAG_lexical_block
10730 || die->parent->tag == DW_TAG_try_block
10731 || die->parent->tag == DW_TAG_catch_block
10732 || die->parent->tag == DW_TAG_subprogram)
10733 return 0;
10734 return 1;
10735
10736 default:
10737 return 0;
10738 }
10739 }
10740
10741 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10742 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10743 defined for the given DIE. */
10744
10745 static struct attribute *
10746 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10747 {
10748 struct attribute *attr;
10749
10750 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10751 if (attr == NULL)
10752 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10753
10754 return attr;
10755 }
10756
10757 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10758 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10759 defined for the given DIE. */
10760
10761 static const char *
10762 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10763 {
10764 const char *linkage_name;
10765
10766 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10767 if (linkage_name == NULL)
10768 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10769
10770 return linkage_name;
10771 }
10772
10773 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10774 compute the physname for the object, which include a method's:
10775 - formal parameters (C++),
10776 - receiver type (Go),
10777
10778 The term "physname" is a bit confusing.
10779 For C++, for example, it is the demangled name.
10780 For Go, for example, it's the mangled name.
10781
10782 For Ada, return the DIE's linkage name rather than the fully qualified
10783 name. PHYSNAME is ignored..
10784
10785 The result is allocated on the objfile_obstack and canonicalized. */
10786
10787 static const char *
10788 dwarf2_compute_name (const char *name,
10789 struct die_info *die, struct dwarf2_cu *cu,
10790 int physname)
10791 {
10792 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10793
10794 if (name == NULL)
10795 name = dwarf2_name (die, cu);
10796
10797 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10798 but otherwise compute it by typename_concat inside GDB.
10799 FIXME: Actually this is not really true, or at least not always true.
10800 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10801 Fortran names because there is no mangling standard. So new_symbol
10802 will set the demangled name to the result of dwarf2_full_name, and it is
10803 the demangled name that GDB uses if it exists. */
10804 if (cu->language == language_ada
10805 || (cu->language == language_fortran && physname))
10806 {
10807 /* For Ada unit, we prefer the linkage name over the name, as
10808 the former contains the exported name, which the user expects
10809 to be able to reference. Ideally, we want the user to be able
10810 to reference this entity using either natural or linkage name,
10811 but we haven't started looking at this enhancement yet. */
10812 const char *linkage_name = dw2_linkage_name (die, cu);
10813
10814 if (linkage_name != NULL)
10815 return linkage_name;
10816 }
10817
10818 /* These are the only languages we know how to qualify names in. */
10819 if (name != NULL
10820 && (cu->language == language_cplus
10821 || cu->language == language_fortran || cu->language == language_d
10822 || cu->language == language_rust))
10823 {
10824 if (die_needs_namespace (die, cu))
10825 {
10826 const char *prefix;
10827 const char *canonical_name = NULL;
10828
10829 string_file buf;
10830
10831 prefix = determine_prefix (die, cu);
10832 if (*prefix != '\0')
10833 {
10834 char *prefixed_name = typename_concat (NULL, prefix, name,
10835 physname, cu);
10836
10837 buf.puts (prefixed_name);
10838 xfree (prefixed_name);
10839 }
10840 else
10841 buf.puts (name);
10842
10843 /* Template parameters may be specified in the DIE's DW_AT_name, or
10844 as children with DW_TAG_template_type_param or
10845 DW_TAG_value_type_param. If the latter, add them to the name
10846 here. If the name already has template parameters, then
10847 skip this step; some versions of GCC emit both, and
10848 it is more efficient to use the pre-computed name.
10849
10850 Something to keep in mind about this process: it is very
10851 unlikely, or in some cases downright impossible, to produce
10852 something that will match the mangled name of a function.
10853 If the definition of the function has the same debug info,
10854 we should be able to match up with it anyway. But fallbacks
10855 using the minimal symbol, for instance to find a method
10856 implemented in a stripped copy of libstdc++, will not work.
10857 If we do not have debug info for the definition, we will have to
10858 match them up some other way.
10859
10860 When we do name matching there is a related problem with function
10861 templates; two instantiated function templates are allowed to
10862 differ only by their return types, which we do not add here. */
10863
10864 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10865 {
10866 struct attribute *attr;
10867 struct die_info *child;
10868 int first = 1;
10869
10870 die->building_fullname = 1;
10871
10872 for (child = die->child; child != NULL; child = child->sibling)
10873 {
10874 struct type *type;
10875 LONGEST value;
10876 const gdb_byte *bytes;
10877 struct dwarf2_locexpr_baton *baton;
10878 struct value *v;
10879
10880 if (child->tag != DW_TAG_template_type_param
10881 && child->tag != DW_TAG_template_value_param)
10882 continue;
10883
10884 if (first)
10885 {
10886 buf.puts ("<");
10887 first = 0;
10888 }
10889 else
10890 buf.puts (", ");
10891
10892 attr = dwarf2_attr (child, DW_AT_type, cu);
10893 if (attr == NULL)
10894 {
10895 complaint (_("template parameter missing DW_AT_type"));
10896 buf.puts ("UNKNOWN_TYPE");
10897 continue;
10898 }
10899 type = die_type (child, cu);
10900
10901 if (child->tag == DW_TAG_template_type_param)
10902 {
10903 c_print_type (type, "", &buf, -1, 0, cu->language,
10904 &type_print_raw_options);
10905 continue;
10906 }
10907
10908 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10909 if (attr == NULL)
10910 {
10911 complaint (_("template parameter missing "
10912 "DW_AT_const_value"));
10913 buf.puts ("UNKNOWN_VALUE");
10914 continue;
10915 }
10916
10917 dwarf2_const_value_attr (attr, type, name,
10918 &cu->comp_unit_obstack, cu,
10919 &value, &bytes, &baton);
10920
10921 if (TYPE_NOSIGN (type))
10922 /* GDB prints characters as NUMBER 'CHAR'. If that's
10923 changed, this can use value_print instead. */
10924 c_printchar (value, type, &buf);
10925 else
10926 {
10927 struct value_print_options opts;
10928
10929 if (baton != NULL)
10930 v = dwarf2_evaluate_loc_desc (type, NULL,
10931 baton->data,
10932 baton->size,
10933 baton->per_cu);
10934 else if (bytes != NULL)
10935 {
10936 v = allocate_value (type);
10937 memcpy (value_contents_writeable (v), bytes,
10938 TYPE_LENGTH (type));
10939 }
10940 else
10941 v = value_from_longest (type, value);
10942
10943 /* Specify decimal so that we do not depend on
10944 the radix. */
10945 get_formatted_print_options (&opts, 'd');
10946 opts.raw = 1;
10947 value_print (v, &buf, &opts);
10948 release_value (v);
10949 }
10950 }
10951
10952 die->building_fullname = 0;
10953
10954 if (!first)
10955 {
10956 /* Close the argument list, with a space if necessary
10957 (nested templates). */
10958 if (!buf.empty () && buf.string ().back () == '>')
10959 buf.puts (" >");
10960 else
10961 buf.puts (">");
10962 }
10963 }
10964
10965 /* For C++ methods, append formal parameter type
10966 information, if PHYSNAME. */
10967
10968 if (physname && die->tag == DW_TAG_subprogram
10969 && cu->language == language_cplus)
10970 {
10971 struct type *type = read_type_die (die, cu);
10972
10973 c_type_print_args (type, &buf, 1, cu->language,
10974 &type_print_raw_options);
10975
10976 if (cu->language == language_cplus)
10977 {
10978 /* Assume that an artificial first parameter is
10979 "this", but do not crash if it is not. RealView
10980 marks unnamed (and thus unused) parameters as
10981 artificial; there is no way to differentiate
10982 the two cases. */
10983 if (TYPE_NFIELDS (type) > 0
10984 && TYPE_FIELD_ARTIFICIAL (type, 0)
10985 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10986 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10987 0))))
10988 buf.puts (" const");
10989 }
10990 }
10991
10992 const std::string &intermediate_name = buf.string ();
10993
10994 if (cu->language == language_cplus)
10995 canonical_name
10996 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10997 &objfile->per_bfd->storage_obstack);
10998
10999 /* If we only computed INTERMEDIATE_NAME, or if
11000 INTERMEDIATE_NAME is already canonical, then we need to
11001 copy it to the appropriate obstack. */
11002 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11003 name = ((const char *)
11004 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11005 intermediate_name.c_str (),
11006 intermediate_name.length ()));
11007 else
11008 name = canonical_name;
11009 }
11010 }
11011
11012 return name;
11013 }
11014
11015 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11016 If scope qualifiers are appropriate they will be added. The result
11017 will be allocated on the storage_obstack, or NULL if the DIE does
11018 not have a name. NAME may either be from a previous call to
11019 dwarf2_name or NULL.
11020
11021 The output string will be canonicalized (if C++). */
11022
11023 static const char *
11024 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11025 {
11026 return dwarf2_compute_name (name, die, cu, 0);
11027 }
11028
11029 /* Construct a physname for the given DIE in CU. NAME may either be
11030 from a previous call to dwarf2_name or NULL. The result will be
11031 allocated on the objfile_objstack or NULL if the DIE does not have a
11032 name.
11033
11034 The output string will be canonicalized (if C++). */
11035
11036 static const char *
11037 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11038 {
11039 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11040 const char *retval, *mangled = NULL, *canon = NULL;
11041 int need_copy = 1;
11042
11043 /* In this case dwarf2_compute_name is just a shortcut not building anything
11044 on its own. */
11045 if (!die_needs_namespace (die, cu))
11046 return dwarf2_compute_name (name, die, cu, 1);
11047
11048 mangled = dw2_linkage_name (die, cu);
11049
11050 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11051 See https://github.com/rust-lang/rust/issues/32925. */
11052 if (cu->language == language_rust && mangled != NULL
11053 && strchr (mangled, '{') != NULL)
11054 mangled = NULL;
11055
11056 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11057 has computed. */
11058 gdb::unique_xmalloc_ptr<char> demangled;
11059 if (mangled != NULL)
11060 {
11061
11062 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11063 {
11064 /* Do nothing (do not demangle the symbol name). */
11065 }
11066 else if (cu->language == language_go)
11067 {
11068 /* This is a lie, but we already lie to the caller new_symbol.
11069 new_symbol assumes we return the mangled name.
11070 This just undoes that lie until things are cleaned up. */
11071 }
11072 else
11073 {
11074 /* Use DMGL_RET_DROP for C++ template functions to suppress
11075 their return type. It is easier for GDB users to search
11076 for such functions as `name(params)' than `long name(params)'.
11077 In such case the minimal symbol names do not match the full
11078 symbol names but for template functions there is never a need
11079 to look up their definition from their declaration so
11080 the only disadvantage remains the minimal symbol variant
11081 `long name(params)' does not have the proper inferior type. */
11082 demangled.reset (gdb_demangle (mangled,
11083 (DMGL_PARAMS | DMGL_ANSI
11084 | DMGL_RET_DROP)));
11085 }
11086 if (demangled)
11087 canon = demangled.get ();
11088 else
11089 {
11090 canon = mangled;
11091 need_copy = 0;
11092 }
11093 }
11094
11095 if (canon == NULL || check_physname)
11096 {
11097 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11098
11099 if (canon != NULL && strcmp (physname, canon) != 0)
11100 {
11101 /* It may not mean a bug in GDB. The compiler could also
11102 compute DW_AT_linkage_name incorrectly. But in such case
11103 GDB would need to be bug-to-bug compatible. */
11104
11105 complaint (_("Computed physname <%s> does not match demangled <%s> "
11106 "(from linkage <%s>) - DIE at %s [in module %s]"),
11107 physname, canon, mangled, sect_offset_str (die->sect_off),
11108 objfile_name (objfile));
11109
11110 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11111 is available here - over computed PHYSNAME. It is safer
11112 against both buggy GDB and buggy compilers. */
11113
11114 retval = canon;
11115 }
11116 else
11117 {
11118 retval = physname;
11119 need_copy = 0;
11120 }
11121 }
11122 else
11123 retval = canon;
11124
11125 if (need_copy)
11126 retval = ((const char *)
11127 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11128 retval, strlen (retval)));
11129
11130 return retval;
11131 }
11132
11133 /* Inspect DIE in CU for a namespace alias. If one exists, record
11134 a new symbol for it.
11135
11136 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11137
11138 static int
11139 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11140 {
11141 struct attribute *attr;
11142
11143 /* If the die does not have a name, this is not a namespace
11144 alias. */
11145 attr = dwarf2_attr (die, DW_AT_name, cu);
11146 if (attr != NULL)
11147 {
11148 int num;
11149 struct die_info *d = die;
11150 struct dwarf2_cu *imported_cu = cu;
11151
11152 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11153 keep inspecting DIEs until we hit the underlying import. */
11154 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11155 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11156 {
11157 attr = dwarf2_attr (d, DW_AT_import, cu);
11158 if (attr == NULL)
11159 break;
11160
11161 d = follow_die_ref (d, attr, &imported_cu);
11162 if (d->tag != DW_TAG_imported_declaration)
11163 break;
11164 }
11165
11166 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11167 {
11168 complaint (_("DIE at %s has too many recursively imported "
11169 "declarations"), sect_offset_str (d->sect_off));
11170 return 0;
11171 }
11172
11173 if (attr != NULL)
11174 {
11175 struct type *type;
11176 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11177
11178 type = get_die_type_at_offset (sect_off, cu->per_cu);
11179 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11180 {
11181 /* This declaration is a global namespace alias. Add
11182 a symbol for it whose type is the aliased namespace. */
11183 new_symbol (die, type, cu);
11184 return 1;
11185 }
11186 }
11187 }
11188
11189 return 0;
11190 }
11191
11192 /* Return the using directives repository (global or local?) to use in the
11193 current context for CU.
11194
11195 For Ada, imported declarations can materialize renamings, which *may* be
11196 global. However it is impossible (for now?) in DWARF to distinguish
11197 "external" imported declarations and "static" ones. As all imported
11198 declarations seem to be static in all other languages, make them all CU-wide
11199 global only in Ada. */
11200
11201 static struct using_direct **
11202 using_directives (struct dwarf2_cu *cu)
11203 {
11204 if (cu->language == language_ada && cu->builder->outermost_context_p ())
11205 return cu->builder->get_global_using_directives ();
11206 else
11207 return cu->builder->get_local_using_directives ();
11208 }
11209
11210 /* Read the import statement specified by the given die and record it. */
11211
11212 static void
11213 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11214 {
11215 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11216 struct attribute *import_attr;
11217 struct die_info *imported_die, *child_die;
11218 struct dwarf2_cu *imported_cu;
11219 const char *imported_name;
11220 const char *imported_name_prefix;
11221 const char *canonical_name;
11222 const char *import_alias;
11223 const char *imported_declaration = NULL;
11224 const char *import_prefix;
11225 std::vector<const char *> excludes;
11226
11227 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11228 if (import_attr == NULL)
11229 {
11230 complaint (_("Tag '%s' has no DW_AT_import"),
11231 dwarf_tag_name (die->tag));
11232 return;
11233 }
11234
11235 imported_cu = cu;
11236 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11237 imported_name = dwarf2_name (imported_die, imported_cu);
11238 if (imported_name == NULL)
11239 {
11240 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11241
11242 The import in the following code:
11243 namespace A
11244 {
11245 typedef int B;
11246 }
11247
11248 int main ()
11249 {
11250 using A::B;
11251 B b;
11252 return b;
11253 }
11254
11255 ...
11256 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11257 <52> DW_AT_decl_file : 1
11258 <53> DW_AT_decl_line : 6
11259 <54> DW_AT_import : <0x75>
11260 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11261 <59> DW_AT_name : B
11262 <5b> DW_AT_decl_file : 1
11263 <5c> DW_AT_decl_line : 2
11264 <5d> DW_AT_type : <0x6e>
11265 ...
11266 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11267 <76> DW_AT_byte_size : 4
11268 <77> DW_AT_encoding : 5 (signed)
11269
11270 imports the wrong die ( 0x75 instead of 0x58 ).
11271 This case will be ignored until the gcc bug is fixed. */
11272 return;
11273 }
11274
11275 /* Figure out the local name after import. */
11276 import_alias = dwarf2_name (die, cu);
11277
11278 /* Figure out where the statement is being imported to. */
11279 import_prefix = determine_prefix (die, cu);
11280
11281 /* Figure out what the scope of the imported die is and prepend it
11282 to the name of the imported die. */
11283 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11284
11285 if (imported_die->tag != DW_TAG_namespace
11286 && imported_die->tag != DW_TAG_module)
11287 {
11288 imported_declaration = imported_name;
11289 canonical_name = imported_name_prefix;
11290 }
11291 else if (strlen (imported_name_prefix) > 0)
11292 canonical_name = obconcat (&objfile->objfile_obstack,
11293 imported_name_prefix,
11294 (cu->language == language_d ? "." : "::"),
11295 imported_name, (char *) NULL);
11296 else
11297 canonical_name = imported_name;
11298
11299 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11300 for (child_die = die->child; child_die && child_die->tag;
11301 child_die = sibling_die (child_die))
11302 {
11303 /* DWARF-4: A Fortran use statement with a “rename list” may be
11304 represented by an imported module entry with an import attribute
11305 referring to the module and owned entries corresponding to those
11306 entities that are renamed as part of being imported. */
11307
11308 if (child_die->tag != DW_TAG_imported_declaration)
11309 {
11310 complaint (_("child DW_TAG_imported_declaration expected "
11311 "- DIE at %s [in module %s]"),
11312 sect_offset_str (child_die->sect_off),
11313 objfile_name (objfile));
11314 continue;
11315 }
11316
11317 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11318 if (import_attr == NULL)
11319 {
11320 complaint (_("Tag '%s' has no DW_AT_import"),
11321 dwarf_tag_name (child_die->tag));
11322 continue;
11323 }
11324
11325 imported_cu = cu;
11326 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11327 &imported_cu);
11328 imported_name = dwarf2_name (imported_die, imported_cu);
11329 if (imported_name == NULL)
11330 {
11331 complaint (_("child DW_TAG_imported_declaration has unknown "
11332 "imported name - DIE at %s [in module %s]"),
11333 sect_offset_str (child_die->sect_off),
11334 objfile_name (objfile));
11335 continue;
11336 }
11337
11338 excludes.push_back (imported_name);
11339
11340 process_die (child_die, cu);
11341 }
11342
11343 add_using_directive (using_directives (cu),
11344 import_prefix,
11345 canonical_name,
11346 import_alias,
11347 imported_declaration,
11348 excludes,
11349 0,
11350 &objfile->objfile_obstack);
11351 }
11352
11353 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11354 types, but gives them a size of zero. Starting with version 14,
11355 ICC is compatible with GCC. */
11356
11357 static int
11358 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11359 {
11360 if (!cu->checked_producer)
11361 check_producer (cu);
11362
11363 return cu->producer_is_icc_lt_14;
11364 }
11365
11366 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11367 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11368 this, it was first present in GCC release 4.3.0. */
11369
11370 static int
11371 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11372 {
11373 if (!cu->checked_producer)
11374 check_producer (cu);
11375
11376 return cu->producer_is_gcc_lt_4_3;
11377 }
11378
11379 static file_and_directory
11380 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11381 {
11382 file_and_directory res;
11383
11384 /* Find the filename. Do not use dwarf2_name here, since the filename
11385 is not a source language identifier. */
11386 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11387 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11388
11389 if (res.comp_dir == NULL
11390 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11391 && IS_ABSOLUTE_PATH (res.name))
11392 {
11393 res.comp_dir_storage = ldirname (res.name);
11394 if (!res.comp_dir_storage.empty ())
11395 res.comp_dir = res.comp_dir_storage.c_str ();
11396 }
11397 if (res.comp_dir != NULL)
11398 {
11399 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11400 directory, get rid of it. */
11401 const char *cp = strchr (res.comp_dir, ':');
11402
11403 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11404 res.comp_dir = cp + 1;
11405 }
11406
11407 if (res.name == NULL)
11408 res.name = "<unknown>";
11409
11410 return res;
11411 }
11412
11413 /* Handle DW_AT_stmt_list for a compilation unit.
11414 DIE is the DW_TAG_compile_unit die for CU.
11415 COMP_DIR is the compilation directory. LOWPC is passed to
11416 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11417
11418 static void
11419 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11420 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11421 {
11422 struct dwarf2_per_objfile *dwarf2_per_objfile
11423 = cu->per_cu->dwarf2_per_objfile;
11424 struct objfile *objfile = dwarf2_per_objfile->objfile;
11425 struct attribute *attr;
11426 struct line_header line_header_local;
11427 hashval_t line_header_local_hash;
11428 void **slot;
11429 int decode_mapping;
11430
11431 gdb_assert (! cu->per_cu->is_debug_types);
11432
11433 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11434 if (attr == NULL)
11435 return;
11436
11437 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11438
11439 /* The line header hash table is only created if needed (it exists to
11440 prevent redundant reading of the line table for partial_units).
11441 If we're given a partial_unit, we'll need it. If we're given a
11442 compile_unit, then use the line header hash table if it's already
11443 created, but don't create one just yet. */
11444
11445 if (dwarf2_per_objfile->line_header_hash == NULL
11446 && die->tag == DW_TAG_partial_unit)
11447 {
11448 dwarf2_per_objfile->line_header_hash
11449 = htab_create_alloc_ex (127, line_header_hash_voidp,
11450 line_header_eq_voidp,
11451 free_line_header_voidp,
11452 &objfile->objfile_obstack,
11453 hashtab_obstack_allocate,
11454 dummy_obstack_deallocate);
11455 }
11456
11457 line_header_local.sect_off = line_offset;
11458 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11459 line_header_local_hash = line_header_hash (&line_header_local);
11460 if (dwarf2_per_objfile->line_header_hash != NULL)
11461 {
11462 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11463 &line_header_local,
11464 line_header_local_hash, NO_INSERT);
11465
11466 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11467 is not present in *SLOT (since if there is something in *SLOT then
11468 it will be for a partial_unit). */
11469 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11470 {
11471 gdb_assert (*slot != NULL);
11472 cu->line_header = (struct line_header *) *slot;
11473 return;
11474 }
11475 }
11476
11477 /* dwarf_decode_line_header does not yet provide sufficient information.
11478 We always have to call also dwarf_decode_lines for it. */
11479 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11480 if (lh == NULL)
11481 return;
11482
11483 cu->line_header = lh.release ();
11484 cu->line_header_die_owner = die;
11485
11486 if (dwarf2_per_objfile->line_header_hash == NULL)
11487 slot = NULL;
11488 else
11489 {
11490 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11491 &line_header_local,
11492 line_header_local_hash, INSERT);
11493 gdb_assert (slot != NULL);
11494 }
11495 if (slot != NULL && *slot == NULL)
11496 {
11497 /* This newly decoded line number information unit will be owned
11498 by line_header_hash hash table. */
11499 *slot = cu->line_header;
11500 cu->line_header_die_owner = NULL;
11501 }
11502 else
11503 {
11504 /* We cannot free any current entry in (*slot) as that struct line_header
11505 may be already used by multiple CUs. Create only temporary decoded
11506 line_header for this CU - it may happen at most once for each line
11507 number information unit. And if we're not using line_header_hash
11508 then this is what we want as well. */
11509 gdb_assert (die->tag != DW_TAG_partial_unit);
11510 }
11511 decode_mapping = (die->tag != DW_TAG_partial_unit);
11512 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11513 decode_mapping);
11514
11515 }
11516
11517 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11518
11519 static void
11520 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11521 {
11522 struct dwarf2_per_objfile *dwarf2_per_objfile
11523 = cu->per_cu->dwarf2_per_objfile;
11524 struct objfile *objfile = dwarf2_per_objfile->objfile;
11525 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11526 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11527 CORE_ADDR highpc = ((CORE_ADDR) 0);
11528 struct attribute *attr;
11529 struct die_info *child_die;
11530 CORE_ADDR baseaddr;
11531
11532 prepare_one_comp_unit (cu, die, cu->language);
11533 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11534
11535 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11536
11537 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11538 from finish_block. */
11539 if (lowpc == ((CORE_ADDR) -1))
11540 lowpc = highpc;
11541 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11542
11543 file_and_directory fnd = find_file_and_directory (die, cu);
11544
11545 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11546 standardised yet. As a workaround for the language detection we fall
11547 back to the DW_AT_producer string. */
11548 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11549 cu->language = language_opencl;
11550
11551 /* Similar hack for Go. */
11552 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11553 set_cu_language (DW_LANG_Go, cu);
11554
11555 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11556
11557 /* Decode line number information if present. We do this before
11558 processing child DIEs, so that the line header table is available
11559 for DW_AT_decl_file. */
11560 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11561
11562 /* Process all dies in compilation unit. */
11563 if (die->child != NULL)
11564 {
11565 child_die = die->child;
11566 while (child_die && child_die->tag)
11567 {
11568 process_die (child_die, cu);
11569 child_die = sibling_die (child_die);
11570 }
11571 }
11572
11573 /* Decode macro information, if present. Dwarf 2 macro information
11574 refers to information in the line number info statement program
11575 header, so we can only read it if we've read the header
11576 successfully. */
11577 attr = dwarf2_attr (die, DW_AT_macros, cu);
11578 if (attr == NULL)
11579 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11580 if (attr && cu->line_header)
11581 {
11582 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11583 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11584
11585 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11586 }
11587 else
11588 {
11589 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11590 if (attr && cu->line_header)
11591 {
11592 unsigned int macro_offset = DW_UNSND (attr);
11593
11594 dwarf_decode_macros (cu, macro_offset, 0);
11595 }
11596 }
11597 }
11598
11599 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11600 Create the set of symtabs used by this TU, or if this TU is sharing
11601 symtabs with another TU and the symtabs have already been created
11602 then restore those symtabs in the line header.
11603 We don't need the pc/line-number mapping for type units. */
11604
11605 static void
11606 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11607 {
11608 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11609 struct type_unit_group *tu_group;
11610 int first_time;
11611 struct attribute *attr;
11612 unsigned int i;
11613 struct signatured_type *sig_type;
11614
11615 gdb_assert (per_cu->is_debug_types);
11616 sig_type = (struct signatured_type *) per_cu;
11617
11618 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11619
11620 /* If we're using .gdb_index (includes -readnow) then
11621 per_cu->type_unit_group may not have been set up yet. */
11622 if (sig_type->type_unit_group == NULL)
11623 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11624 tu_group = sig_type->type_unit_group;
11625
11626 /* If we've already processed this stmt_list there's no real need to
11627 do it again, we could fake it and just recreate the part we need
11628 (file name,index -> symtab mapping). If data shows this optimization
11629 is useful we can do it then. */
11630 first_time = tu_group->compunit_symtab == NULL;
11631
11632 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11633 debug info. */
11634 line_header_up lh;
11635 if (attr != NULL)
11636 {
11637 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11638 lh = dwarf_decode_line_header (line_offset, cu);
11639 }
11640 if (lh == NULL)
11641 {
11642 if (first_time)
11643 dwarf2_start_symtab (cu, "", NULL, 0);
11644 else
11645 {
11646 gdb_assert (tu_group->symtabs == NULL);
11647 gdb_assert (cu->builder == nullptr);
11648 struct compunit_symtab *cust = tu_group->compunit_symtab;
11649 cu->builder.reset (new struct buildsym_compunit
11650 (COMPUNIT_OBJFILE (cust), "",
11651 COMPUNIT_DIRNAME (cust),
11652 compunit_language (cust),
11653 0, cust));
11654 }
11655 return;
11656 }
11657
11658 cu->line_header = lh.release ();
11659 cu->line_header_die_owner = die;
11660
11661 if (first_time)
11662 {
11663 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11664
11665 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11666 still initializing it, and our caller (a few levels up)
11667 process_full_type_unit still needs to know if this is the first
11668 time. */
11669
11670 tu_group->num_symtabs = cu->line_header->file_names.size ();
11671 tu_group->symtabs = XNEWVEC (struct symtab *,
11672 cu->line_header->file_names.size ());
11673
11674 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11675 {
11676 file_entry &fe = cu->line_header->file_names[i];
11677
11678 dwarf2_start_subfile (cu, fe.name, fe.include_dir (cu->line_header));
11679
11680 if (cu->builder->get_current_subfile ()->symtab == NULL)
11681 {
11682 /* NOTE: start_subfile will recognize when it's been
11683 passed a file it has already seen. So we can't
11684 assume there's a simple mapping from
11685 cu->line_header->file_names to subfiles, plus
11686 cu->line_header->file_names may contain dups. */
11687 cu->builder->get_current_subfile ()->symtab
11688 = allocate_symtab (cust,
11689 cu->builder->get_current_subfile ()->name);
11690 }
11691
11692 fe.symtab = cu->builder->get_current_subfile ()->symtab;
11693 tu_group->symtabs[i] = fe.symtab;
11694 }
11695 }
11696 else
11697 {
11698 gdb_assert (cu->builder == nullptr);
11699 struct compunit_symtab *cust = tu_group->compunit_symtab;
11700 cu->builder.reset (new struct buildsym_compunit
11701 (COMPUNIT_OBJFILE (cust), "",
11702 COMPUNIT_DIRNAME (cust),
11703 compunit_language (cust),
11704 0, cust));
11705
11706 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11707 {
11708 file_entry &fe = cu->line_header->file_names[i];
11709
11710 fe.symtab = tu_group->symtabs[i];
11711 }
11712 }
11713
11714 /* The main symtab is allocated last. Type units don't have DW_AT_name
11715 so they don't have a "real" (so to speak) symtab anyway.
11716 There is later code that will assign the main symtab to all symbols
11717 that don't have one. We need to handle the case of a symbol with a
11718 missing symtab (DW_AT_decl_file) anyway. */
11719 }
11720
11721 /* Process DW_TAG_type_unit.
11722 For TUs we want to skip the first top level sibling if it's not the
11723 actual type being defined by this TU. In this case the first top
11724 level sibling is there to provide context only. */
11725
11726 static void
11727 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11728 {
11729 struct die_info *child_die;
11730
11731 prepare_one_comp_unit (cu, die, language_minimal);
11732
11733 /* Initialize (or reinitialize) the machinery for building symtabs.
11734 We do this before processing child DIEs, so that the line header table
11735 is available for DW_AT_decl_file. */
11736 setup_type_unit_groups (die, cu);
11737
11738 if (die->child != NULL)
11739 {
11740 child_die = die->child;
11741 while (child_die && child_die->tag)
11742 {
11743 process_die (child_die, cu);
11744 child_die = sibling_die (child_die);
11745 }
11746 }
11747 }
11748 \f
11749 /* DWO/DWP files.
11750
11751 http://gcc.gnu.org/wiki/DebugFission
11752 http://gcc.gnu.org/wiki/DebugFissionDWP
11753
11754 To simplify handling of both DWO files ("object" files with the DWARF info)
11755 and DWP files (a file with the DWOs packaged up into one file), we treat
11756 DWP files as having a collection of virtual DWO files. */
11757
11758 static hashval_t
11759 hash_dwo_file (const void *item)
11760 {
11761 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11762 hashval_t hash;
11763
11764 hash = htab_hash_string (dwo_file->dwo_name);
11765 if (dwo_file->comp_dir != NULL)
11766 hash += htab_hash_string (dwo_file->comp_dir);
11767 return hash;
11768 }
11769
11770 static int
11771 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11772 {
11773 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11774 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11775
11776 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11777 return 0;
11778 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11779 return lhs->comp_dir == rhs->comp_dir;
11780 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11781 }
11782
11783 /* Allocate a hash table for DWO files. */
11784
11785 static htab_t
11786 allocate_dwo_file_hash_table (struct objfile *objfile)
11787 {
11788 return htab_create_alloc_ex (41,
11789 hash_dwo_file,
11790 eq_dwo_file,
11791 NULL,
11792 &objfile->objfile_obstack,
11793 hashtab_obstack_allocate,
11794 dummy_obstack_deallocate);
11795 }
11796
11797 /* Lookup DWO file DWO_NAME. */
11798
11799 static void **
11800 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11801 const char *dwo_name,
11802 const char *comp_dir)
11803 {
11804 struct dwo_file find_entry;
11805 void **slot;
11806
11807 if (dwarf2_per_objfile->dwo_files == NULL)
11808 dwarf2_per_objfile->dwo_files
11809 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11810
11811 memset (&find_entry, 0, sizeof (find_entry));
11812 find_entry.dwo_name = dwo_name;
11813 find_entry.comp_dir = comp_dir;
11814 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11815
11816 return slot;
11817 }
11818
11819 static hashval_t
11820 hash_dwo_unit (const void *item)
11821 {
11822 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11823
11824 /* This drops the top 32 bits of the id, but is ok for a hash. */
11825 return dwo_unit->signature;
11826 }
11827
11828 static int
11829 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11830 {
11831 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11832 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11833
11834 /* The signature is assumed to be unique within the DWO file.
11835 So while object file CU dwo_id's always have the value zero,
11836 that's OK, assuming each object file DWO file has only one CU,
11837 and that's the rule for now. */
11838 return lhs->signature == rhs->signature;
11839 }
11840
11841 /* Allocate a hash table for DWO CUs,TUs.
11842 There is one of these tables for each of CUs,TUs for each DWO file. */
11843
11844 static htab_t
11845 allocate_dwo_unit_table (struct objfile *objfile)
11846 {
11847 /* Start out with a pretty small number.
11848 Generally DWO files contain only one CU and maybe some TUs. */
11849 return htab_create_alloc_ex (3,
11850 hash_dwo_unit,
11851 eq_dwo_unit,
11852 NULL,
11853 &objfile->objfile_obstack,
11854 hashtab_obstack_allocate,
11855 dummy_obstack_deallocate);
11856 }
11857
11858 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11859
11860 struct create_dwo_cu_data
11861 {
11862 struct dwo_file *dwo_file;
11863 struct dwo_unit dwo_unit;
11864 };
11865
11866 /* die_reader_func for create_dwo_cu. */
11867
11868 static void
11869 create_dwo_cu_reader (const struct die_reader_specs *reader,
11870 const gdb_byte *info_ptr,
11871 struct die_info *comp_unit_die,
11872 int has_children,
11873 void *datap)
11874 {
11875 struct dwarf2_cu *cu = reader->cu;
11876 sect_offset sect_off = cu->per_cu->sect_off;
11877 struct dwarf2_section_info *section = cu->per_cu->section;
11878 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11879 struct dwo_file *dwo_file = data->dwo_file;
11880 struct dwo_unit *dwo_unit = &data->dwo_unit;
11881 struct attribute *attr;
11882
11883 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11884 if (attr == NULL)
11885 {
11886 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11887 " its dwo_id [in module %s]"),
11888 sect_offset_str (sect_off), dwo_file->dwo_name);
11889 return;
11890 }
11891
11892 dwo_unit->dwo_file = dwo_file;
11893 dwo_unit->signature = DW_UNSND (attr);
11894 dwo_unit->section = section;
11895 dwo_unit->sect_off = sect_off;
11896 dwo_unit->length = cu->per_cu->length;
11897
11898 if (dwarf_read_debug)
11899 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11900 sect_offset_str (sect_off),
11901 hex_string (dwo_unit->signature));
11902 }
11903
11904 /* Create the dwo_units for the CUs in a DWO_FILE.
11905 Note: This function processes DWO files only, not DWP files. */
11906
11907 static void
11908 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11909 struct dwo_file &dwo_file, dwarf2_section_info &section,
11910 htab_t &cus_htab)
11911 {
11912 struct objfile *objfile = dwarf2_per_objfile->objfile;
11913 const gdb_byte *info_ptr, *end_ptr;
11914
11915 dwarf2_read_section (objfile, &section);
11916 info_ptr = section.buffer;
11917
11918 if (info_ptr == NULL)
11919 return;
11920
11921 if (dwarf_read_debug)
11922 {
11923 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11924 get_section_name (&section),
11925 get_section_file_name (&section));
11926 }
11927
11928 end_ptr = info_ptr + section.size;
11929 while (info_ptr < end_ptr)
11930 {
11931 struct dwarf2_per_cu_data per_cu;
11932 struct create_dwo_cu_data create_dwo_cu_data;
11933 struct dwo_unit *dwo_unit;
11934 void **slot;
11935 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11936
11937 memset (&create_dwo_cu_data.dwo_unit, 0,
11938 sizeof (create_dwo_cu_data.dwo_unit));
11939 memset (&per_cu, 0, sizeof (per_cu));
11940 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11941 per_cu.is_debug_types = 0;
11942 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11943 per_cu.section = &section;
11944 create_dwo_cu_data.dwo_file = &dwo_file;
11945
11946 init_cutu_and_read_dies_no_follow (
11947 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11948 info_ptr += per_cu.length;
11949
11950 // If the unit could not be parsed, skip it.
11951 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11952 continue;
11953
11954 if (cus_htab == NULL)
11955 cus_htab = allocate_dwo_unit_table (objfile);
11956
11957 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11958 *dwo_unit = create_dwo_cu_data.dwo_unit;
11959 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11960 gdb_assert (slot != NULL);
11961 if (*slot != NULL)
11962 {
11963 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11964 sect_offset dup_sect_off = dup_cu->sect_off;
11965
11966 complaint (_("debug cu entry at offset %s is duplicate to"
11967 " the entry at offset %s, signature %s"),
11968 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11969 hex_string (dwo_unit->signature));
11970 }
11971 *slot = (void *)dwo_unit;
11972 }
11973 }
11974
11975 /* DWP file .debug_{cu,tu}_index section format:
11976 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11977
11978 DWP Version 1:
11979
11980 Both index sections have the same format, and serve to map a 64-bit
11981 signature to a set of section numbers. Each section begins with a header,
11982 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11983 indexes, and a pool of 32-bit section numbers. The index sections will be
11984 aligned at 8-byte boundaries in the file.
11985
11986 The index section header consists of:
11987
11988 V, 32 bit version number
11989 -, 32 bits unused
11990 N, 32 bit number of compilation units or type units in the index
11991 M, 32 bit number of slots in the hash table
11992
11993 Numbers are recorded using the byte order of the application binary.
11994
11995 The hash table begins at offset 16 in the section, and consists of an array
11996 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11997 order of the application binary). Unused slots in the hash table are 0.
11998 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11999
12000 The parallel table begins immediately after the hash table
12001 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12002 array of 32-bit indexes (using the byte order of the application binary),
12003 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12004 table contains a 32-bit index into the pool of section numbers. For unused
12005 hash table slots, the corresponding entry in the parallel table will be 0.
12006
12007 The pool of section numbers begins immediately following the hash table
12008 (at offset 16 + 12 * M from the beginning of the section). The pool of
12009 section numbers consists of an array of 32-bit words (using the byte order
12010 of the application binary). Each item in the array is indexed starting
12011 from 0. The hash table entry provides the index of the first section
12012 number in the set. Additional section numbers in the set follow, and the
12013 set is terminated by a 0 entry (section number 0 is not used in ELF).
12014
12015 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12016 section must be the first entry in the set, and the .debug_abbrev.dwo must
12017 be the second entry. Other members of the set may follow in any order.
12018
12019 ---
12020
12021 DWP Version 2:
12022
12023 DWP Version 2 combines all the .debug_info, etc. sections into one,
12024 and the entries in the index tables are now offsets into these sections.
12025 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12026 section.
12027
12028 Index Section Contents:
12029 Header
12030 Hash Table of Signatures dwp_hash_table.hash_table
12031 Parallel Table of Indices dwp_hash_table.unit_table
12032 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12033 Table of Section Sizes dwp_hash_table.v2.sizes
12034
12035 The index section header consists of:
12036
12037 V, 32 bit version number
12038 L, 32 bit number of columns in the table of section offsets
12039 N, 32 bit number of compilation units or type units in the index
12040 M, 32 bit number of slots in the hash table
12041
12042 Numbers are recorded using the byte order of the application binary.
12043
12044 The hash table has the same format as version 1.
12045 The parallel table of indices has the same format as version 1,
12046 except that the entries are origin-1 indices into the table of sections
12047 offsets and the table of section sizes.
12048
12049 The table of offsets begins immediately following the parallel table
12050 (at offset 16 + 12 * M from the beginning of the section). The table is
12051 a two-dimensional array of 32-bit words (using the byte order of the
12052 application binary), with L columns and N+1 rows, in row-major order.
12053 Each row in the array is indexed starting from 0. The first row provides
12054 a key to the remaining rows: each column in this row provides an identifier
12055 for a debug section, and the offsets in the same column of subsequent rows
12056 refer to that section. The section identifiers are:
12057
12058 DW_SECT_INFO 1 .debug_info.dwo
12059 DW_SECT_TYPES 2 .debug_types.dwo
12060 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12061 DW_SECT_LINE 4 .debug_line.dwo
12062 DW_SECT_LOC 5 .debug_loc.dwo
12063 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12064 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12065 DW_SECT_MACRO 8 .debug_macro.dwo
12066
12067 The offsets provided by the CU and TU index sections are the base offsets
12068 for the contributions made by each CU or TU to the corresponding section
12069 in the package file. Each CU and TU header contains an abbrev_offset
12070 field, used to find the abbreviations table for that CU or TU within the
12071 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12072 be interpreted as relative to the base offset given in the index section.
12073 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12074 should be interpreted as relative to the base offset for .debug_line.dwo,
12075 and offsets into other debug sections obtained from DWARF attributes should
12076 also be interpreted as relative to the corresponding base offset.
12077
12078 The table of sizes begins immediately following the table of offsets.
12079 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12080 with L columns and N rows, in row-major order. Each row in the array is
12081 indexed starting from 1 (row 0 is shared by the two tables).
12082
12083 ---
12084
12085 Hash table lookup is handled the same in version 1 and 2:
12086
12087 We assume that N and M will not exceed 2^32 - 1.
12088 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12089
12090 Given a 64-bit compilation unit signature or a type signature S, an entry
12091 in the hash table is located as follows:
12092
12093 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12094 the low-order k bits all set to 1.
12095
12096 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12097
12098 3) If the hash table entry at index H matches the signature, use that
12099 entry. If the hash table entry at index H is unused (all zeroes),
12100 terminate the search: the signature is not present in the table.
12101
12102 4) Let H = (H + H') modulo M. Repeat at Step 3.
12103
12104 Because M > N and H' and M are relatively prime, the search is guaranteed
12105 to stop at an unused slot or find the match. */
12106
12107 /* Create a hash table to map DWO IDs to their CU/TU entry in
12108 .debug_{info,types}.dwo in DWP_FILE.
12109 Returns NULL if there isn't one.
12110 Note: This function processes DWP files only, not DWO files. */
12111
12112 static struct dwp_hash_table *
12113 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12114 struct dwp_file *dwp_file, int is_debug_types)
12115 {
12116 struct objfile *objfile = dwarf2_per_objfile->objfile;
12117 bfd *dbfd = dwp_file->dbfd.get ();
12118 const gdb_byte *index_ptr, *index_end;
12119 struct dwarf2_section_info *index;
12120 uint32_t version, nr_columns, nr_units, nr_slots;
12121 struct dwp_hash_table *htab;
12122
12123 if (is_debug_types)
12124 index = &dwp_file->sections.tu_index;
12125 else
12126 index = &dwp_file->sections.cu_index;
12127
12128 if (dwarf2_section_empty_p (index))
12129 return NULL;
12130 dwarf2_read_section (objfile, index);
12131
12132 index_ptr = index->buffer;
12133 index_end = index_ptr + index->size;
12134
12135 version = read_4_bytes (dbfd, index_ptr);
12136 index_ptr += 4;
12137 if (version == 2)
12138 nr_columns = read_4_bytes (dbfd, index_ptr);
12139 else
12140 nr_columns = 0;
12141 index_ptr += 4;
12142 nr_units = read_4_bytes (dbfd, index_ptr);
12143 index_ptr += 4;
12144 nr_slots = read_4_bytes (dbfd, index_ptr);
12145 index_ptr += 4;
12146
12147 if (version != 1 && version != 2)
12148 {
12149 error (_("Dwarf Error: unsupported DWP file version (%s)"
12150 " [in module %s]"),
12151 pulongest (version), dwp_file->name);
12152 }
12153 if (nr_slots != (nr_slots & -nr_slots))
12154 {
12155 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12156 " is not power of 2 [in module %s]"),
12157 pulongest (nr_slots), dwp_file->name);
12158 }
12159
12160 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12161 htab->version = version;
12162 htab->nr_columns = nr_columns;
12163 htab->nr_units = nr_units;
12164 htab->nr_slots = nr_slots;
12165 htab->hash_table = index_ptr;
12166 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12167
12168 /* Exit early if the table is empty. */
12169 if (nr_slots == 0 || nr_units == 0
12170 || (version == 2 && nr_columns == 0))
12171 {
12172 /* All must be zero. */
12173 if (nr_slots != 0 || nr_units != 0
12174 || (version == 2 && nr_columns != 0))
12175 {
12176 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12177 " all zero [in modules %s]"),
12178 dwp_file->name);
12179 }
12180 return htab;
12181 }
12182
12183 if (version == 1)
12184 {
12185 htab->section_pool.v1.indices =
12186 htab->unit_table + sizeof (uint32_t) * nr_slots;
12187 /* It's harder to decide whether the section is too small in v1.
12188 V1 is deprecated anyway so we punt. */
12189 }
12190 else
12191 {
12192 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12193 int *ids = htab->section_pool.v2.section_ids;
12194 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12195 /* Reverse map for error checking. */
12196 int ids_seen[DW_SECT_MAX + 1];
12197 int i;
12198
12199 if (nr_columns < 2)
12200 {
12201 error (_("Dwarf Error: bad DWP hash table, too few columns"
12202 " in section table [in module %s]"),
12203 dwp_file->name);
12204 }
12205 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12206 {
12207 error (_("Dwarf Error: bad DWP hash table, too many columns"
12208 " in section table [in module %s]"),
12209 dwp_file->name);
12210 }
12211 memset (ids, 255, sizeof_ids);
12212 memset (ids_seen, 255, sizeof (ids_seen));
12213 for (i = 0; i < nr_columns; ++i)
12214 {
12215 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12216
12217 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12218 {
12219 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12220 " in section table [in module %s]"),
12221 id, dwp_file->name);
12222 }
12223 if (ids_seen[id] != -1)
12224 {
12225 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12226 " id %d in section table [in module %s]"),
12227 id, dwp_file->name);
12228 }
12229 ids_seen[id] = i;
12230 ids[i] = id;
12231 }
12232 /* Must have exactly one info or types section. */
12233 if (((ids_seen[DW_SECT_INFO] != -1)
12234 + (ids_seen[DW_SECT_TYPES] != -1))
12235 != 1)
12236 {
12237 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12238 " DWO info/types section [in module %s]"),
12239 dwp_file->name);
12240 }
12241 /* Must have an abbrev section. */
12242 if (ids_seen[DW_SECT_ABBREV] == -1)
12243 {
12244 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12245 " section [in module %s]"),
12246 dwp_file->name);
12247 }
12248 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12249 htab->section_pool.v2.sizes =
12250 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12251 * nr_units * nr_columns);
12252 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12253 * nr_units * nr_columns))
12254 > index_end)
12255 {
12256 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12257 " [in module %s]"),
12258 dwp_file->name);
12259 }
12260 }
12261
12262 return htab;
12263 }
12264
12265 /* Update SECTIONS with the data from SECTP.
12266
12267 This function is like the other "locate" section routines that are
12268 passed to bfd_map_over_sections, but in this context the sections to
12269 read comes from the DWP V1 hash table, not the full ELF section table.
12270
12271 The result is non-zero for success, or zero if an error was found. */
12272
12273 static int
12274 locate_v1_virtual_dwo_sections (asection *sectp,
12275 struct virtual_v1_dwo_sections *sections)
12276 {
12277 const struct dwop_section_names *names = &dwop_section_names;
12278
12279 if (section_is_p (sectp->name, &names->abbrev_dwo))
12280 {
12281 /* There can be only one. */
12282 if (sections->abbrev.s.section != NULL)
12283 return 0;
12284 sections->abbrev.s.section = sectp;
12285 sections->abbrev.size = bfd_get_section_size (sectp);
12286 }
12287 else if (section_is_p (sectp->name, &names->info_dwo)
12288 || section_is_p (sectp->name, &names->types_dwo))
12289 {
12290 /* There can be only one. */
12291 if (sections->info_or_types.s.section != NULL)
12292 return 0;
12293 sections->info_or_types.s.section = sectp;
12294 sections->info_or_types.size = bfd_get_section_size (sectp);
12295 }
12296 else if (section_is_p (sectp->name, &names->line_dwo))
12297 {
12298 /* There can be only one. */
12299 if (sections->line.s.section != NULL)
12300 return 0;
12301 sections->line.s.section = sectp;
12302 sections->line.size = bfd_get_section_size (sectp);
12303 }
12304 else if (section_is_p (sectp->name, &names->loc_dwo))
12305 {
12306 /* There can be only one. */
12307 if (sections->loc.s.section != NULL)
12308 return 0;
12309 sections->loc.s.section = sectp;
12310 sections->loc.size = bfd_get_section_size (sectp);
12311 }
12312 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12313 {
12314 /* There can be only one. */
12315 if (sections->macinfo.s.section != NULL)
12316 return 0;
12317 sections->macinfo.s.section = sectp;
12318 sections->macinfo.size = bfd_get_section_size (sectp);
12319 }
12320 else if (section_is_p (sectp->name, &names->macro_dwo))
12321 {
12322 /* There can be only one. */
12323 if (sections->macro.s.section != NULL)
12324 return 0;
12325 sections->macro.s.section = sectp;
12326 sections->macro.size = bfd_get_section_size (sectp);
12327 }
12328 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12329 {
12330 /* There can be only one. */
12331 if (sections->str_offsets.s.section != NULL)
12332 return 0;
12333 sections->str_offsets.s.section = sectp;
12334 sections->str_offsets.size = bfd_get_section_size (sectp);
12335 }
12336 else
12337 {
12338 /* No other kind of section is valid. */
12339 return 0;
12340 }
12341
12342 return 1;
12343 }
12344
12345 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12346 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12347 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12348 This is for DWP version 1 files. */
12349
12350 static struct dwo_unit *
12351 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12352 struct dwp_file *dwp_file,
12353 uint32_t unit_index,
12354 const char *comp_dir,
12355 ULONGEST signature, int is_debug_types)
12356 {
12357 struct objfile *objfile = dwarf2_per_objfile->objfile;
12358 const struct dwp_hash_table *dwp_htab =
12359 is_debug_types ? dwp_file->tus : dwp_file->cus;
12360 bfd *dbfd = dwp_file->dbfd.get ();
12361 const char *kind = is_debug_types ? "TU" : "CU";
12362 struct dwo_file *dwo_file;
12363 struct dwo_unit *dwo_unit;
12364 struct virtual_v1_dwo_sections sections;
12365 void **dwo_file_slot;
12366 int i;
12367
12368 gdb_assert (dwp_file->version == 1);
12369
12370 if (dwarf_read_debug)
12371 {
12372 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12373 kind,
12374 pulongest (unit_index), hex_string (signature),
12375 dwp_file->name);
12376 }
12377
12378 /* Fetch the sections of this DWO unit.
12379 Put a limit on the number of sections we look for so that bad data
12380 doesn't cause us to loop forever. */
12381
12382 #define MAX_NR_V1_DWO_SECTIONS \
12383 (1 /* .debug_info or .debug_types */ \
12384 + 1 /* .debug_abbrev */ \
12385 + 1 /* .debug_line */ \
12386 + 1 /* .debug_loc */ \
12387 + 1 /* .debug_str_offsets */ \
12388 + 1 /* .debug_macro or .debug_macinfo */ \
12389 + 1 /* trailing zero */)
12390
12391 memset (&sections, 0, sizeof (sections));
12392
12393 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12394 {
12395 asection *sectp;
12396 uint32_t section_nr =
12397 read_4_bytes (dbfd,
12398 dwp_htab->section_pool.v1.indices
12399 + (unit_index + i) * sizeof (uint32_t));
12400
12401 if (section_nr == 0)
12402 break;
12403 if (section_nr >= dwp_file->num_sections)
12404 {
12405 error (_("Dwarf Error: bad DWP hash table, section number too large"
12406 " [in module %s]"),
12407 dwp_file->name);
12408 }
12409
12410 sectp = dwp_file->elf_sections[section_nr];
12411 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12412 {
12413 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12414 " [in module %s]"),
12415 dwp_file->name);
12416 }
12417 }
12418
12419 if (i < 2
12420 || dwarf2_section_empty_p (&sections.info_or_types)
12421 || dwarf2_section_empty_p (&sections.abbrev))
12422 {
12423 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12424 " [in module %s]"),
12425 dwp_file->name);
12426 }
12427 if (i == MAX_NR_V1_DWO_SECTIONS)
12428 {
12429 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12430 " [in module %s]"),
12431 dwp_file->name);
12432 }
12433
12434 /* It's easier for the rest of the code if we fake a struct dwo_file and
12435 have dwo_unit "live" in that. At least for now.
12436
12437 The DWP file can be made up of a random collection of CUs and TUs.
12438 However, for each CU + set of TUs that came from the same original DWO
12439 file, we can combine them back into a virtual DWO file to save space
12440 (fewer struct dwo_file objects to allocate). Remember that for really
12441 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12442
12443 std::string virtual_dwo_name =
12444 string_printf ("virtual-dwo/%d-%d-%d-%d",
12445 get_section_id (&sections.abbrev),
12446 get_section_id (&sections.line),
12447 get_section_id (&sections.loc),
12448 get_section_id (&sections.str_offsets));
12449 /* Can we use an existing virtual DWO file? */
12450 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12451 virtual_dwo_name.c_str (),
12452 comp_dir);
12453 /* Create one if necessary. */
12454 if (*dwo_file_slot == NULL)
12455 {
12456 if (dwarf_read_debug)
12457 {
12458 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12459 virtual_dwo_name.c_str ());
12460 }
12461 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12462 dwo_file->dwo_name
12463 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12464 virtual_dwo_name.c_str (),
12465 virtual_dwo_name.size ());
12466 dwo_file->comp_dir = comp_dir;
12467 dwo_file->sections.abbrev = sections.abbrev;
12468 dwo_file->sections.line = sections.line;
12469 dwo_file->sections.loc = sections.loc;
12470 dwo_file->sections.macinfo = sections.macinfo;
12471 dwo_file->sections.macro = sections.macro;
12472 dwo_file->sections.str_offsets = sections.str_offsets;
12473 /* The "str" section is global to the entire DWP file. */
12474 dwo_file->sections.str = dwp_file->sections.str;
12475 /* The info or types section is assigned below to dwo_unit,
12476 there's no need to record it in dwo_file.
12477 Also, we can't simply record type sections in dwo_file because
12478 we record a pointer into the vector in dwo_unit. As we collect more
12479 types we'll grow the vector and eventually have to reallocate space
12480 for it, invalidating all copies of pointers into the previous
12481 contents. */
12482 *dwo_file_slot = dwo_file;
12483 }
12484 else
12485 {
12486 if (dwarf_read_debug)
12487 {
12488 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12489 virtual_dwo_name.c_str ());
12490 }
12491 dwo_file = (struct dwo_file *) *dwo_file_slot;
12492 }
12493
12494 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12495 dwo_unit->dwo_file = dwo_file;
12496 dwo_unit->signature = signature;
12497 dwo_unit->section =
12498 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12499 *dwo_unit->section = sections.info_or_types;
12500 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12501
12502 return dwo_unit;
12503 }
12504
12505 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12506 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12507 piece within that section used by a TU/CU, return a virtual section
12508 of just that piece. */
12509
12510 static struct dwarf2_section_info
12511 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12512 struct dwarf2_section_info *section,
12513 bfd_size_type offset, bfd_size_type size)
12514 {
12515 struct dwarf2_section_info result;
12516 asection *sectp;
12517
12518 gdb_assert (section != NULL);
12519 gdb_assert (!section->is_virtual);
12520
12521 memset (&result, 0, sizeof (result));
12522 result.s.containing_section = section;
12523 result.is_virtual = 1;
12524
12525 if (size == 0)
12526 return result;
12527
12528 sectp = get_section_bfd_section (section);
12529
12530 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12531 bounds of the real section. This is a pretty-rare event, so just
12532 flag an error (easier) instead of a warning and trying to cope. */
12533 if (sectp == NULL
12534 || offset + size > bfd_get_section_size (sectp))
12535 {
12536 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12537 " in section %s [in module %s]"),
12538 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12539 objfile_name (dwarf2_per_objfile->objfile));
12540 }
12541
12542 result.virtual_offset = offset;
12543 result.size = size;
12544 return result;
12545 }
12546
12547 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12548 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12549 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12550 This is for DWP version 2 files. */
12551
12552 static struct dwo_unit *
12553 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12554 struct dwp_file *dwp_file,
12555 uint32_t unit_index,
12556 const char *comp_dir,
12557 ULONGEST signature, int is_debug_types)
12558 {
12559 struct objfile *objfile = dwarf2_per_objfile->objfile;
12560 const struct dwp_hash_table *dwp_htab =
12561 is_debug_types ? dwp_file->tus : dwp_file->cus;
12562 bfd *dbfd = dwp_file->dbfd.get ();
12563 const char *kind = is_debug_types ? "TU" : "CU";
12564 struct dwo_file *dwo_file;
12565 struct dwo_unit *dwo_unit;
12566 struct virtual_v2_dwo_sections sections;
12567 void **dwo_file_slot;
12568 int i;
12569
12570 gdb_assert (dwp_file->version == 2);
12571
12572 if (dwarf_read_debug)
12573 {
12574 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12575 kind,
12576 pulongest (unit_index), hex_string (signature),
12577 dwp_file->name);
12578 }
12579
12580 /* Fetch the section offsets of this DWO unit. */
12581
12582 memset (&sections, 0, sizeof (sections));
12583
12584 for (i = 0; i < dwp_htab->nr_columns; ++i)
12585 {
12586 uint32_t offset = read_4_bytes (dbfd,
12587 dwp_htab->section_pool.v2.offsets
12588 + (((unit_index - 1) * dwp_htab->nr_columns
12589 + i)
12590 * sizeof (uint32_t)));
12591 uint32_t size = read_4_bytes (dbfd,
12592 dwp_htab->section_pool.v2.sizes
12593 + (((unit_index - 1) * dwp_htab->nr_columns
12594 + i)
12595 * sizeof (uint32_t)));
12596
12597 switch (dwp_htab->section_pool.v2.section_ids[i])
12598 {
12599 case DW_SECT_INFO:
12600 case DW_SECT_TYPES:
12601 sections.info_or_types_offset = offset;
12602 sections.info_or_types_size = size;
12603 break;
12604 case DW_SECT_ABBREV:
12605 sections.abbrev_offset = offset;
12606 sections.abbrev_size = size;
12607 break;
12608 case DW_SECT_LINE:
12609 sections.line_offset = offset;
12610 sections.line_size = size;
12611 break;
12612 case DW_SECT_LOC:
12613 sections.loc_offset = offset;
12614 sections.loc_size = size;
12615 break;
12616 case DW_SECT_STR_OFFSETS:
12617 sections.str_offsets_offset = offset;
12618 sections.str_offsets_size = size;
12619 break;
12620 case DW_SECT_MACINFO:
12621 sections.macinfo_offset = offset;
12622 sections.macinfo_size = size;
12623 break;
12624 case DW_SECT_MACRO:
12625 sections.macro_offset = offset;
12626 sections.macro_size = size;
12627 break;
12628 }
12629 }
12630
12631 /* It's easier for the rest of the code if we fake a struct dwo_file and
12632 have dwo_unit "live" in that. At least for now.
12633
12634 The DWP file can be made up of a random collection of CUs and TUs.
12635 However, for each CU + set of TUs that came from the same original DWO
12636 file, we can combine them back into a virtual DWO file to save space
12637 (fewer struct dwo_file objects to allocate). Remember that for really
12638 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12639
12640 std::string virtual_dwo_name =
12641 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12642 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12643 (long) (sections.line_size ? sections.line_offset : 0),
12644 (long) (sections.loc_size ? sections.loc_offset : 0),
12645 (long) (sections.str_offsets_size
12646 ? sections.str_offsets_offset : 0));
12647 /* Can we use an existing virtual DWO file? */
12648 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12649 virtual_dwo_name.c_str (),
12650 comp_dir);
12651 /* Create one if necessary. */
12652 if (*dwo_file_slot == NULL)
12653 {
12654 if (dwarf_read_debug)
12655 {
12656 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12657 virtual_dwo_name.c_str ());
12658 }
12659 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12660 dwo_file->dwo_name
12661 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12662 virtual_dwo_name.c_str (),
12663 virtual_dwo_name.size ());
12664 dwo_file->comp_dir = comp_dir;
12665 dwo_file->sections.abbrev =
12666 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12667 sections.abbrev_offset, sections.abbrev_size);
12668 dwo_file->sections.line =
12669 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12670 sections.line_offset, sections.line_size);
12671 dwo_file->sections.loc =
12672 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12673 sections.loc_offset, sections.loc_size);
12674 dwo_file->sections.macinfo =
12675 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12676 sections.macinfo_offset, sections.macinfo_size);
12677 dwo_file->sections.macro =
12678 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12679 sections.macro_offset, sections.macro_size);
12680 dwo_file->sections.str_offsets =
12681 create_dwp_v2_section (dwarf2_per_objfile,
12682 &dwp_file->sections.str_offsets,
12683 sections.str_offsets_offset,
12684 sections.str_offsets_size);
12685 /* The "str" section is global to the entire DWP file. */
12686 dwo_file->sections.str = dwp_file->sections.str;
12687 /* The info or types section is assigned below to dwo_unit,
12688 there's no need to record it in dwo_file.
12689 Also, we can't simply record type sections in dwo_file because
12690 we record a pointer into the vector in dwo_unit. As we collect more
12691 types we'll grow the vector and eventually have to reallocate space
12692 for it, invalidating all copies of pointers into the previous
12693 contents. */
12694 *dwo_file_slot = dwo_file;
12695 }
12696 else
12697 {
12698 if (dwarf_read_debug)
12699 {
12700 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12701 virtual_dwo_name.c_str ());
12702 }
12703 dwo_file = (struct dwo_file *) *dwo_file_slot;
12704 }
12705
12706 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12707 dwo_unit->dwo_file = dwo_file;
12708 dwo_unit->signature = signature;
12709 dwo_unit->section =
12710 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12711 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12712 is_debug_types
12713 ? &dwp_file->sections.types
12714 : &dwp_file->sections.info,
12715 sections.info_or_types_offset,
12716 sections.info_or_types_size);
12717 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12718
12719 return dwo_unit;
12720 }
12721
12722 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12723 Returns NULL if the signature isn't found. */
12724
12725 static struct dwo_unit *
12726 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12727 struct dwp_file *dwp_file, const char *comp_dir,
12728 ULONGEST signature, int is_debug_types)
12729 {
12730 const struct dwp_hash_table *dwp_htab =
12731 is_debug_types ? dwp_file->tus : dwp_file->cus;
12732 bfd *dbfd = dwp_file->dbfd.get ();
12733 uint32_t mask = dwp_htab->nr_slots - 1;
12734 uint32_t hash = signature & mask;
12735 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12736 unsigned int i;
12737 void **slot;
12738 struct dwo_unit find_dwo_cu;
12739
12740 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12741 find_dwo_cu.signature = signature;
12742 slot = htab_find_slot (is_debug_types
12743 ? dwp_file->loaded_tus
12744 : dwp_file->loaded_cus,
12745 &find_dwo_cu, INSERT);
12746
12747 if (*slot != NULL)
12748 return (struct dwo_unit *) *slot;
12749
12750 /* Use a for loop so that we don't loop forever on bad debug info. */
12751 for (i = 0; i < dwp_htab->nr_slots; ++i)
12752 {
12753 ULONGEST signature_in_table;
12754
12755 signature_in_table =
12756 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12757 if (signature_in_table == signature)
12758 {
12759 uint32_t unit_index =
12760 read_4_bytes (dbfd,
12761 dwp_htab->unit_table + hash * sizeof (uint32_t));
12762
12763 if (dwp_file->version == 1)
12764 {
12765 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12766 dwp_file, unit_index,
12767 comp_dir, signature,
12768 is_debug_types);
12769 }
12770 else
12771 {
12772 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12773 dwp_file, unit_index,
12774 comp_dir, signature,
12775 is_debug_types);
12776 }
12777 return (struct dwo_unit *) *slot;
12778 }
12779 if (signature_in_table == 0)
12780 return NULL;
12781 hash = (hash + hash2) & mask;
12782 }
12783
12784 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12785 " [in module %s]"),
12786 dwp_file->name);
12787 }
12788
12789 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12790 Open the file specified by FILE_NAME and hand it off to BFD for
12791 preliminary analysis. Return a newly initialized bfd *, which
12792 includes a canonicalized copy of FILE_NAME.
12793 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12794 SEARCH_CWD is true if the current directory is to be searched.
12795 It will be searched before debug-file-directory.
12796 If successful, the file is added to the bfd include table of the
12797 objfile's bfd (see gdb_bfd_record_inclusion).
12798 If unable to find/open the file, return NULL.
12799 NOTE: This function is derived from symfile_bfd_open. */
12800
12801 static gdb_bfd_ref_ptr
12802 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12803 const char *file_name, int is_dwp, int search_cwd)
12804 {
12805 int desc;
12806 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12807 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12808 to debug_file_directory. */
12809 const char *search_path;
12810 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12811
12812 gdb::unique_xmalloc_ptr<char> search_path_holder;
12813 if (search_cwd)
12814 {
12815 if (*debug_file_directory != '\0')
12816 {
12817 search_path_holder.reset (concat (".", dirname_separator_string,
12818 debug_file_directory,
12819 (char *) NULL));
12820 search_path = search_path_holder.get ();
12821 }
12822 else
12823 search_path = ".";
12824 }
12825 else
12826 search_path = debug_file_directory;
12827
12828 openp_flags flags = OPF_RETURN_REALPATH;
12829 if (is_dwp)
12830 flags |= OPF_SEARCH_IN_PATH;
12831
12832 gdb::unique_xmalloc_ptr<char> absolute_name;
12833 desc = openp (search_path, flags, file_name,
12834 O_RDONLY | O_BINARY, &absolute_name);
12835 if (desc < 0)
12836 return NULL;
12837
12838 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12839 gnutarget, desc));
12840 if (sym_bfd == NULL)
12841 return NULL;
12842 bfd_set_cacheable (sym_bfd.get (), 1);
12843
12844 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12845 return NULL;
12846
12847 /* Success. Record the bfd as having been included by the objfile's bfd.
12848 This is important because things like demangled_names_hash lives in the
12849 objfile's per_bfd space and may have references to things like symbol
12850 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12851 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12852
12853 return sym_bfd;
12854 }
12855
12856 /* Try to open DWO file FILE_NAME.
12857 COMP_DIR is the DW_AT_comp_dir attribute.
12858 The result is the bfd handle of the file.
12859 If there is a problem finding or opening the file, return NULL.
12860 Upon success, the canonicalized path of the file is stored in the bfd,
12861 same as symfile_bfd_open. */
12862
12863 static gdb_bfd_ref_ptr
12864 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12865 const char *file_name, const char *comp_dir)
12866 {
12867 if (IS_ABSOLUTE_PATH (file_name))
12868 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12869 0 /*is_dwp*/, 0 /*search_cwd*/);
12870
12871 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12872
12873 if (comp_dir != NULL)
12874 {
12875 char *path_to_try = concat (comp_dir, SLASH_STRING,
12876 file_name, (char *) NULL);
12877
12878 /* NOTE: If comp_dir is a relative path, this will also try the
12879 search path, which seems useful. */
12880 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12881 path_to_try,
12882 0 /*is_dwp*/,
12883 1 /*search_cwd*/));
12884 xfree (path_to_try);
12885 if (abfd != NULL)
12886 return abfd;
12887 }
12888
12889 /* That didn't work, try debug-file-directory, which, despite its name,
12890 is a list of paths. */
12891
12892 if (*debug_file_directory == '\0')
12893 return NULL;
12894
12895 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12896 0 /*is_dwp*/, 1 /*search_cwd*/);
12897 }
12898
12899 /* This function is mapped across the sections and remembers the offset and
12900 size of each of the DWO debugging sections we are interested in. */
12901
12902 static void
12903 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12904 {
12905 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12906 const struct dwop_section_names *names = &dwop_section_names;
12907
12908 if (section_is_p (sectp->name, &names->abbrev_dwo))
12909 {
12910 dwo_sections->abbrev.s.section = sectp;
12911 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12912 }
12913 else if (section_is_p (sectp->name, &names->info_dwo))
12914 {
12915 dwo_sections->info.s.section = sectp;
12916 dwo_sections->info.size = bfd_get_section_size (sectp);
12917 }
12918 else if (section_is_p (sectp->name, &names->line_dwo))
12919 {
12920 dwo_sections->line.s.section = sectp;
12921 dwo_sections->line.size = bfd_get_section_size (sectp);
12922 }
12923 else if (section_is_p (sectp->name, &names->loc_dwo))
12924 {
12925 dwo_sections->loc.s.section = sectp;
12926 dwo_sections->loc.size = bfd_get_section_size (sectp);
12927 }
12928 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12929 {
12930 dwo_sections->macinfo.s.section = sectp;
12931 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12932 }
12933 else if (section_is_p (sectp->name, &names->macro_dwo))
12934 {
12935 dwo_sections->macro.s.section = sectp;
12936 dwo_sections->macro.size = bfd_get_section_size (sectp);
12937 }
12938 else if (section_is_p (sectp->name, &names->str_dwo))
12939 {
12940 dwo_sections->str.s.section = sectp;
12941 dwo_sections->str.size = bfd_get_section_size (sectp);
12942 }
12943 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12944 {
12945 dwo_sections->str_offsets.s.section = sectp;
12946 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12947 }
12948 else if (section_is_p (sectp->name, &names->types_dwo))
12949 {
12950 struct dwarf2_section_info type_section;
12951
12952 memset (&type_section, 0, sizeof (type_section));
12953 type_section.s.section = sectp;
12954 type_section.size = bfd_get_section_size (sectp);
12955 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12956 &type_section);
12957 }
12958 }
12959
12960 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12961 by PER_CU. This is for the non-DWP case.
12962 The result is NULL if DWO_NAME can't be found. */
12963
12964 static struct dwo_file *
12965 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12966 const char *dwo_name, const char *comp_dir)
12967 {
12968 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12969 struct objfile *objfile = dwarf2_per_objfile->objfile;
12970
12971 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12972 if (dbfd == NULL)
12973 {
12974 if (dwarf_read_debug)
12975 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12976 return NULL;
12977 }
12978
12979 /* We use a unique pointer here, despite the obstack allocation,
12980 because a dwo_file needs some cleanup if it is abandoned. */
12981 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12982 struct dwo_file));
12983 dwo_file->dwo_name = dwo_name;
12984 dwo_file->comp_dir = comp_dir;
12985 dwo_file->dbfd = dbfd.release ();
12986
12987 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12988 &dwo_file->sections);
12989
12990 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12991 dwo_file->cus);
12992
12993 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12994 dwo_file->sections.types, dwo_file->tus);
12995
12996 if (dwarf_read_debug)
12997 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12998
12999 return dwo_file.release ();
13000 }
13001
13002 /* This function is mapped across the sections and remembers the offset and
13003 size of each of the DWP debugging sections common to version 1 and 2 that
13004 we are interested in. */
13005
13006 static void
13007 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13008 void *dwp_file_ptr)
13009 {
13010 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13011 const struct dwop_section_names *names = &dwop_section_names;
13012 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13013
13014 /* Record the ELF section number for later lookup: this is what the
13015 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13016 gdb_assert (elf_section_nr < dwp_file->num_sections);
13017 dwp_file->elf_sections[elf_section_nr] = sectp;
13018
13019 /* Look for specific sections that we need. */
13020 if (section_is_p (sectp->name, &names->str_dwo))
13021 {
13022 dwp_file->sections.str.s.section = sectp;
13023 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13024 }
13025 else if (section_is_p (sectp->name, &names->cu_index))
13026 {
13027 dwp_file->sections.cu_index.s.section = sectp;
13028 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13029 }
13030 else if (section_is_p (sectp->name, &names->tu_index))
13031 {
13032 dwp_file->sections.tu_index.s.section = sectp;
13033 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13034 }
13035 }
13036
13037 /* This function is mapped across the sections and remembers the offset and
13038 size of each of the DWP version 2 debugging sections that we are interested
13039 in. This is split into a separate function because we don't know if we
13040 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13041
13042 static void
13043 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13044 {
13045 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13046 const struct dwop_section_names *names = &dwop_section_names;
13047 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13048
13049 /* Record the ELF section number for later lookup: this is what the
13050 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13051 gdb_assert (elf_section_nr < dwp_file->num_sections);
13052 dwp_file->elf_sections[elf_section_nr] = sectp;
13053
13054 /* Look for specific sections that we need. */
13055 if (section_is_p (sectp->name, &names->abbrev_dwo))
13056 {
13057 dwp_file->sections.abbrev.s.section = sectp;
13058 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13059 }
13060 else if (section_is_p (sectp->name, &names->info_dwo))
13061 {
13062 dwp_file->sections.info.s.section = sectp;
13063 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13064 }
13065 else if (section_is_p (sectp->name, &names->line_dwo))
13066 {
13067 dwp_file->sections.line.s.section = sectp;
13068 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13069 }
13070 else if (section_is_p (sectp->name, &names->loc_dwo))
13071 {
13072 dwp_file->sections.loc.s.section = sectp;
13073 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13074 }
13075 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13076 {
13077 dwp_file->sections.macinfo.s.section = sectp;
13078 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13079 }
13080 else if (section_is_p (sectp->name, &names->macro_dwo))
13081 {
13082 dwp_file->sections.macro.s.section = sectp;
13083 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13084 }
13085 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13086 {
13087 dwp_file->sections.str_offsets.s.section = sectp;
13088 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13089 }
13090 else if (section_is_p (sectp->name, &names->types_dwo))
13091 {
13092 dwp_file->sections.types.s.section = sectp;
13093 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13094 }
13095 }
13096
13097 /* Hash function for dwp_file loaded CUs/TUs. */
13098
13099 static hashval_t
13100 hash_dwp_loaded_cutus (const void *item)
13101 {
13102 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13103
13104 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13105 return dwo_unit->signature;
13106 }
13107
13108 /* Equality function for dwp_file loaded CUs/TUs. */
13109
13110 static int
13111 eq_dwp_loaded_cutus (const void *a, const void *b)
13112 {
13113 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13114 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13115
13116 return dua->signature == dub->signature;
13117 }
13118
13119 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13120
13121 static htab_t
13122 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13123 {
13124 return htab_create_alloc_ex (3,
13125 hash_dwp_loaded_cutus,
13126 eq_dwp_loaded_cutus,
13127 NULL,
13128 &objfile->objfile_obstack,
13129 hashtab_obstack_allocate,
13130 dummy_obstack_deallocate);
13131 }
13132
13133 /* Try to open DWP file FILE_NAME.
13134 The result is the bfd handle of the file.
13135 If there is a problem finding or opening the file, return NULL.
13136 Upon success, the canonicalized path of the file is stored in the bfd,
13137 same as symfile_bfd_open. */
13138
13139 static gdb_bfd_ref_ptr
13140 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13141 const char *file_name)
13142 {
13143 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13144 1 /*is_dwp*/,
13145 1 /*search_cwd*/));
13146 if (abfd != NULL)
13147 return abfd;
13148
13149 /* Work around upstream bug 15652.
13150 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13151 [Whether that's a "bug" is debatable, but it is getting in our way.]
13152 We have no real idea where the dwp file is, because gdb's realpath-ing
13153 of the executable's path may have discarded the needed info.
13154 [IWBN if the dwp file name was recorded in the executable, akin to
13155 .gnu_debuglink, but that doesn't exist yet.]
13156 Strip the directory from FILE_NAME and search again. */
13157 if (*debug_file_directory != '\0')
13158 {
13159 /* Don't implicitly search the current directory here.
13160 If the user wants to search "." to handle this case,
13161 it must be added to debug-file-directory. */
13162 return try_open_dwop_file (dwarf2_per_objfile,
13163 lbasename (file_name), 1 /*is_dwp*/,
13164 0 /*search_cwd*/);
13165 }
13166
13167 return NULL;
13168 }
13169
13170 /* Initialize the use of the DWP file for the current objfile.
13171 By convention the name of the DWP file is ${objfile}.dwp.
13172 The result is NULL if it can't be found. */
13173
13174 static std::unique_ptr<struct dwp_file>
13175 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13176 {
13177 struct objfile *objfile = dwarf2_per_objfile->objfile;
13178
13179 /* Try to find first .dwp for the binary file before any symbolic links
13180 resolving. */
13181
13182 /* If the objfile is a debug file, find the name of the real binary
13183 file and get the name of dwp file from there. */
13184 std::string dwp_name;
13185 if (objfile->separate_debug_objfile_backlink != NULL)
13186 {
13187 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13188 const char *backlink_basename = lbasename (backlink->original_name);
13189
13190 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13191 }
13192 else
13193 dwp_name = objfile->original_name;
13194
13195 dwp_name += ".dwp";
13196
13197 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13198 if (dbfd == NULL
13199 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13200 {
13201 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13202 dwp_name = objfile_name (objfile);
13203 dwp_name += ".dwp";
13204 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13205 }
13206
13207 if (dbfd == NULL)
13208 {
13209 if (dwarf_read_debug)
13210 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13211 return std::unique_ptr<dwp_file> ();
13212 }
13213
13214 const char *name = bfd_get_filename (dbfd.get ());
13215 std::unique_ptr<struct dwp_file> dwp_file
13216 (new struct dwp_file (name, std::move (dbfd)));
13217
13218 /* +1: section 0 is unused */
13219 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13220 dwp_file->elf_sections =
13221 OBSTACK_CALLOC (&objfile->objfile_obstack,
13222 dwp_file->num_sections, asection *);
13223
13224 bfd_map_over_sections (dwp_file->dbfd.get (),
13225 dwarf2_locate_common_dwp_sections,
13226 dwp_file.get ());
13227
13228 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13229 0);
13230
13231 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13232 1);
13233
13234 /* The DWP file version is stored in the hash table. Oh well. */
13235 if (dwp_file->cus && dwp_file->tus
13236 && dwp_file->cus->version != dwp_file->tus->version)
13237 {
13238 /* Technically speaking, we should try to limp along, but this is
13239 pretty bizarre. We use pulongest here because that's the established
13240 portability solution (e.g, we cannot use %u for uint32_t). */
13241 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13242 " TU version %s [in DWP file %s]"),
13243 pulongest (dwp_file->cus->version),
13244 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13245 }
13246
13247 if (dwp_file->cus)
13248 dwp_file->version = dwp_file->cus->version;
13249 else if (dwp_file->tus)
13250 dwp_file->version = dwp_file->tus->version;
13251 else
13252 dwp_file->version = 2;
13253
13254 if (dwp_file->version == 2)
13255 bfd_map_over_sections (dwp_file->dbfd.get (),
13256 dwarf2_locate_v2_dwp_sections,
13257 dwp_file.get ());
13258
13259 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13260 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13261
13262 if (dwarf_read_debug)
13263 {
13264 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13265 fprintf_unfiltered (gdb_stdlog,
13266 " %s CUs, %s TUs\n",
13267 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13268 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13269 }
13270
13271 return dwp_file;
13272 }
13273
13274 /* Wrapper around open_and_init_dwp_file, only open it once. */
13275
13276 static struct dwp_file *
13277 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13278 {
13279 if (! dwarf2_per_objfile->dwp_checked)
13280 {
13281 dwarf2_per_objfile->dwp_file
13282 = open_and_init_dwp_file (dwarf2_per_objfile);
13283 dwarf2_per_objfile->dwp_checked = 1;
13284 }
13285 return dwarf2_per_objfile->dwp_file.get ();
13286 }
13287
13288 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13289 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13290 or in the DWP file for the objfile, referenced by THIS_UNIT.
13291 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13292 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13293
13294 This is called, for example, when wanting to read a variable with a
13295 complex location. Therefore we don't want to do file i/o for every call.
13296 Therefore we don't want to look for a DWO file on every call.
13297 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13298 then we check if we've already seen DWO_NAME, and only THEN do we check
13299 for a DWO file.
13300
13301 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13302 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13303
13304 static struct dwo_unit *
13305 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13306 const char *dwo_name, const char *comp_dir,
13307 ULONGEST signature, int is_debug_types)
13308 {
13309 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13310 struct objfile *objfile = dwarf2_per_objfile->objfile;
13311 const char *kind = is_debug_types ? "TU" : "CU";
13312 void **dwo_file_slot;
13313 struct dwo_file *dwo_file;
13314 struct dwp_file *dwp_file;
13315
13316 /* First see if there's a DWP file.
13317 If we have a DWP file but didn't find the DWO inside it, don't
13318 look for the original DWO file. It makes gdb behave differently
13319 depending on whether one is debugging in the build tree. */
13320
13321 dwp_file = get_dwp_file (dwarf2_per_objfile);
13322 if (dwp_file != NULL)
13323 {
13324 const struct dwp_hash_table *dwp_htab =
13325 is_debug_types ? dwp_file->tus : dwp_file->cus;
13326
13327 if (dwp_htab != NULL)
13328 {
13329 struct dwo_unit *dwo_cutu =
13330 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13331 signature, is_debug_types);
13332
13333 if (dwo_cutu != NULL)
13334 {
13335 if (dwarf_read_debug)
13336 {
13337 fprintf_unfiltered (gdb_stdlog,
13338 "Virtual DWO %s %s found: @%s\n",
13339 kind, hex_string (signature),
13340 host_address_to_string (dwo_cutu));
13341 }
13342 return dwo_cutu;
13343 }
13344 }
13345 }
13346 else
13347 {
13348 /* No DWP file, look for the DWO file. */
13349
13350 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13351 dwo_name, comp_dir);
13352 if (*dwo_file_slot == NULL)
13353 {
13354 /* Read in the file and build a table of the CUs/TUs it contains. */
13355 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13356 }
13357 /* NOTE: This will be NULL if unable to open the file. */
13358 dwo_file = (struct dwo_file *) *dwo_file_slot;
13359
13360 if (dwo_file != NULL)
13361 {
13362 struct dwo_unit *dwo_cutu = NULL;
13363
13364 if (is_debug_types && dwo_file->tus)
13365 {
13366 struct dwo_unit find_dwo_cutu;
13367
13368 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13369 find_dwo_cutu.signature = signature;
13370 dwo_cutu
13371 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13372 }
13373 else if (!is_debug_types && dwo_file->cus)
13374 {
13375 struct dwo_unit find_dwo_cutu;
13376
13377 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13378 find_dwo_cutu.signature = signature;
13379 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13380 &find_dwo_cutu);
13381 }
13382
13383 if (dwo_cutu != NULL)
13384 {
13385 if (dwarf_read_debug)
13386 {
13387 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13388 kind, dwo_name, hex_string (signature),
13389 host_address_to_string (dwo_cutu));
13390 }
13391 return dwo_cutu;
13392 }
13393 }
13394 }
13395
13396 /* We didn't find it. This could mean a dwo_id mismatch, or
13397 someone deleted the DWO/DWP file, or the search path isn't set up
13398 correctly to find the file. */
13399
13400 if (dwarf_read_debug)
13401 {
13402 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13403 kind, dwo_name, hex_string (signature));
13404 }
13405
13406 /* This is a warning and not a complaint because it can be caused by
13407 pilot error (e.g., user accidentally deleting the DWO). */
13408 {
13409 /* Print the name of the DWP file if we looked there, helps the user
13410 better diagnose the problem. */
13411 std::string dwp_text;
13412
13413 if (dwp_file != NULL)
13414 dwp_text = string_printf (" [in DWP file %s]",
13415 lbasename (dwp_file->name));
13416
13417 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13418 " [in module %s]"),
13419 kind, dwo_name, hex_string (signature),
13420 dwp_text.c_str (),
13421 this_unit->is_debug_types ? "TU" : "CU",
13422 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13423 }
13424 return NULL;
13425 }
13426
13427 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13428 See lookup_dwo_cutu_unit for details. */
13429
13430 static struct dwo_unit *
13431 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13432 const char *dwo_name, const char *comp_dir,
13433 ULONGEST signature)
13434 {
13435 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13436 }
13437
13438 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13439 See lookup_dwo_cutu_unit for details. */
13440
13441 static struct dwo_unit *
13442 lookup_dwo_type_unit (struct signatured_type *this_tu,
13443 const char *dwo_name, const char *comp_dir)
13444 {
13445 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13446 }
13447
13448 /* Traversal function for queue_and_load_all_dwo_tus. */
13449
13450 static int
13451 queue_and_load_dwo_tu (void **slot, void *info)
13452 {
13453 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13454 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13455 ULONGEST signature = dwo_unit->signature;
13456 struct signatured_type *sig_type =
13457 lookup_dwo_signatured_type (per_cu->cu, signature);
13458
13459 if (sig_type != NULL)
13460 {
13461 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13462
13463 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13464 a real dependency of PER_CU on SIG_TYPE. That is detected later
13465 while processing PER_CU. */
13466 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13467 load_full_type_unit (sig_cu);
13468 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13469 }
13470
13471 return 1;
13472 }
13473
13474 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13475 The DWO may have the only definition of the type, though it may not be
13476 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13477 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13478
13479 static void
13480 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13481 {
13482 struct dwo_unit *dwo_unit;
13483 struct dwo_file *dwo_file;
13484
13485 gdb_assert (!per_cu->is_debug_types);
13486 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13487 gdb_assert (per_cu->cu != NULL);
13488
13489 dwo_unit = per_cu->cu->dwo_unit;
13490 gdb_assert (dwo_unit != NULL);
13491
13492 dwo_file = dwo_unit->dwo_file;
13493 if (dwo_file->tus != NULL)
13494 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13495 }
13496
13497 /* Free all resources associated with DWO_FILE.
13498 Close the DWO file and munmap the sections. */
13499
13500 static void
13501 free_dwo_file (struct dwo_file *dwo_file)
13502 {
13503 /* Note: dbfd is NULL for virtual DWO files. */
13504 gdb_bfd_unref (dwo_file->dbfd);
13505
13506 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13507 }
13508
13509 /* Traversal function for free_dwo_files. */
13510
13511 static int
13512 free_dwo_file_from_slot (void **slot, void *info)
13513 {
13514 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13515
13516 free_dwo_file (dwo_file);
13517
13518 return 1;
13519 }
13520
13521 /* Free all resources associated with DWO_FILES. */
13522
13523 static void
13524 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13525 {
13526 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13527 }
13528 \f
13529 /* Read in various DIEs. */
13530
13531 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13532 Inherit only the children of the DW_AT_abstract_origin DIE not being
13533 already referenced by DW_AT_abstract_origin from the children of the
13534 current DIE. */
13535
13536 static void
13537 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13538 {
13539 struct die_info *child_die;
13540 sect_offset *offsetp;
13541 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13542 struct die_info *origin_die;
13543 /* Iterator of the ORIGIN_DIE children. */
13544 struct die_info *origin_child_die;
13545 struct attribute *attr;
13546 struct dwarf2_cu *origin_cu;
13547 struct pending **origin_previous_list_in_scope;
13548
13549 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13550 if (!attr)
13551 return;
13552
13553 /* Note that following die references may follow to a die in a
13554 different cu. */
13555
13556 origin_cu = cu;
13557 origin_die = follow_die_ref (die, attr, &origin_cu);
13558
13559 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13560 symbols in. */
13561 origin_previous_list_in_scope = origin_cu->list_in_scope;
13562 origin_cu->list_in_scope = cu->list_in_scope;
13563
13564 if (die->tag != origin_die->tag
13565 && !(die->tag == DW_TAG_inlined_subroutine
13566 && origin_die->tag == DW_TAG_subprogram))
13567 complaint (_("DIE %s and its abstract origin %s have different tags"),
13568 sect_offset_str (die->sect_off),
13569 sect_offset_str (origin_die->sect_off));
13570
13571 std::vector<sect_offset> offsets;
13572
13573 for (child_die = die->child;
13574 child_die && child_die->tag;
13575 child_die = sibling_die (child_die))
13576 {
13577 struct die_info *child_origin_die;
13578 struct dwarf2_cu *child_origin_cu;
13579
13580 /* We are trying to process concrete instance entries:
13581 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13582 it's not relevant to our analysis here. i.e. detecting DIEs that are
13583 present in the abstract instance but not referenced in the concrete
13584 one. */
13585 if (child_die->tag == DW_TAG_call_site
13586 || child_die->tag == DW_TAG_GNU_call_site)
13587 continue;
13588
13589 /* For each CHILD_DIE, find the corresponding child of
13590 ORIGIN_DIE. If there is more than one layer of
13591 DW_AT_abstract_origin, follow them all; there shouldn't be,
13592 but GCC versions at least through 4.4 generate this (GCC PR
13593 40573). */
13594 child_origin_die = child_die;
13595 child_origin_cu = cu;
13596 while (1)
13597 {
13598 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13599 child_origin_cu);
13600 if (attr == NULL)
13601 break;
13602 child_origin_die = follow_die_ref (child_origin_die, attr,
13603 &child_origin_cu);
13604 }
13605
13606 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13607 counterpart may exist. */
13608 if (child_origin_die != child_die)
13609 {
13610 if (child_die->tag != child_origin_die->tag
13611 && !(child_die->tag == DW_TAG_inlined_subroutine
13612 && child_origin_die->tag == DW_TAG_subprogram))
13613 complaint (_("Child DIE %s and its abstract origin %s have "
13614 "different tags"),
13615 sect_offset_str (child_die->sect_off),
13616 sect_offset_str (child_origin_die->sect_off));
13617 if (child_origin_die->parent != origin_die)
13618 complaint (_("Child DIE %s and its abstract origin %s have "
13619 "different parents"),
13620 sect_offset_str (child_die->sect_off),
13621 sect_offset_str (child_origin_die->sect_off));
13622 else
13623 offsets.push_back (child_origin_die->sect_off);
13624 }
13625 }
13626 std::sort (offsets.begin (), offsets.end ());
13627 sect_offset *offsets_end = offsets.data () + offsets.size ();
13628 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13629 if (offsetp[-1] == *offsetp)
13630 complaint (_("Multiple children of DIE %s refer "
13631 "to DIE %s as their abstract origin"),
13632 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13633
13634 offsetp = offsets.data ();
13635 origin_child_die = origin_die->child;
13636 while (origin_child_die && origin_child_die->tag)
13637 {
13638 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13639 while (offsetp < offsets_end
13640 && *offsetp < origin_child_die->sect_off)
13641 offsetp++;
13642 if (offsetp >= offsets_end
13643 || *offsetp > origin_child_die->sect_off)
13644 {
13645 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13646 Check whether we're already processing ORIGIN_CHILD_DIE.
13647 This can happen with mutually referenced abstract_origins.
13648 PR 16581. */
13649 if (!origin_child_die->in_process)
13650 process_die (origin_child_die, origin_cu);
13651 }
13652 origin_child_die = sibling_die (origin_child_die);
13653 }
13654 origin_cu->list_in_scope = origin_previous_list_in_scope;
13655 }
13656
13657 static void
13658 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13659 {
13660 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13661 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13662 struct context_stack *newobj;
13663 CORE_ADDR lowpc;
13664 CORE_ADDR highpc;
13665 struct die_info *child_die;
13666 struct attribute *attr, *call_line, *call_file;
13667 const char *name;
13668 CORE_ADDR baseaddr;
13669 struct block *block;
13670 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13671 std::vector<struct symbol *> template_args;
13672 struct template_symbol *templ_func = NULL;
13673
13674 if (inlined_func)
13675 {
13676 /* If we do not have call site information, we can't show the
13677 caller of this inlined function. That's too confusing, so
13678 only use the scope for local variables. */
13679 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13680 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13681 if (call_line == NULL || call_file == NULL)
13682 {
13683 read_lexical_block_scope (die, cu);
13684 return;
13685 }
13686 }
13687
13688 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13689
13690 name = dwarf2_name (die, cu);
13691
13692 /* Ignore functions with missing or empty names. These are actually
13693 illegal according to the DWARF standard. */
13694 if (name == NULL)
13695 {
13696 complaint (_("missing name for subprogram DIE at %s"),
13697 sect_offset_str (die->sect_off));
13698 return;
13699 }
13700
13701 /* Ignore functions with missing or invalid low and high pc attributes. */
13702 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13703 <= PC_BOUNDS_INVALID)
13704 {
13705 attr = dwarf2_attr (die, DW_AT_external, cu);
13706 if (!attr || !DW_UNSND (attr))
13707 complaint (_("cannot get low and high bounds "
13708 "for subprogram DIE at %s"),
13709 sect_offset_str (die->sect_off));
13710 return;
13711 }
13712
13713 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13714 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13715
13716 /* If we have any template arguments, then we must allocate a
13717 different sort of symbol. */
13718 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13719 {
13720 if (child_die->tag == DW_TAG_template_type_param
13721 || child_die->tag == DW_TAG_template_value_param)
13722 {
13723 templ_func = allocate_template_symbol (objfile);
13724 templ_func->subclass = SYMBOL_TEMPLATE;
13725 break;
13726 }
13727 }
13728
13729 newobj = cu->builder->push_context (0, lowpc);
13730 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13731 (struct symbol *) templ_func);
13732
13733 /* If there is a location expression for DW_AT_frame_base, record
13734 it. */
13735 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13736 if (attr)
13737 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13738
13739 /* If there is a location for the static link, record it. */
13740 newobj->static_link = NULL;
13741 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13742 if (attr)
13743 {
13744 newobj->static_link
13745 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13746 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13747 }
13748
13749 cu->list_in_scope = cu->builder->get_local_symbols ();
13750
13751 if (die->child != NULL)
13752 {
13753 child_die = die->child;
13754 while (child_die && child_die->tag)
13755 {
13756 if (child_die->tag == DW_TAG_template_type_param
13757 || child_die->tag == DW_TAG_template_value_param)
13758 {
13759 struct symbol *arg = new_symbol (child_die, NULL, cu);
13760
13761 if (arg != NULL)
13762 template_args.push_back (arg);
13763 }
13764 else
13765 process_die (child_die, cu);
13766 child_die = sibling_die (child_die);
13767 }
13768 }
13769
13770 inherit_abstract_dies (die, cu);
13771
13772 /* If we have a DW_AT_specification, we might need to import using
13773 directives from the context of the specification DIE. See the
13774 comment in determine_prefix. */
13775 if (cu->language == language_cplus
13776 && dwarf2_attr (die, DW_AT_specification, cu))
13777 {
13778 struct dwarf2_cu *spec_cu = cu;
13779 struct die_info *spec_die = die_specification (die, &spec_cu);
13780
13781 while (spec_die)
13782 {
13783 child_die = spec_die->child;
13784 while (child_die && child_die->tag)
13785 {
13786 if (child_die->tag == DW_TAG_imported_module)
13787 process_die (child_die, spec_cu);
13788 child_die = sibling_die (child_die);
13789 }
13790
13791 /* In some cases, GCC generates specification DIEs that
13792 themselves contain DW_AT_specification attributes. */
13793 spec_die = die_specification (spec_die, &spec_cu);
13794 }
13795 }
13796
13797 struct context_stack cstk = cu->builder->pop_context ();
13798 /* Make a block for the local symbols within. */
13799 block = cu->builder->finish_block (cstk.name, cstk.old_blocks,
13800 cstk.static_link, lowpc, highpc);
13801
13802 /* For C++, set the block's scope. */
13803 if ((cu->language == language_cplus
13804 || cu->language == language_fortran
13805 || cu->language == language_d
13806 || cu->language == language_rust)
13807 && cu->processing_has_namespace_info)
13808 block_set_scope (block, determine_prefix (die, cu),
13809 &objfile->objfile_obstack);
13810
13811 /* If we have address ranges, record them. */
13812 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13813
13814 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13815
13816 /* Attach template arguments to function. */
13817 if (!template_args.empty ())
13818 {
13819 gdb_assert (templ_func != NULL);
13820
13821 templ_func->n_template_arguments = template_args.size ();
13822 templ_func->template_arguments
13823 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13824 templ_func->n_template_arguments);
13825 memcpy (templ_func->template_arguments,
13826 template_args.data (),
13827 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13828
13829 /* Make sure that the symtab is set on the new symbols. Even
13830 though they don't appear in this symtab directly, other parts
13831 of gdb assume that symbols do, and this is reasonably
13832 true. */
13833 for (symbol *sym : template_args)
13834 symbol_set_symtab (sym, symbol_symtab (templ_func));
13835 }
13836
13837 /* In C++, we can have functions nested inside functions (e.g., when
13838 a function declares a class that has methods). This means that
13839 when we finish processing a function scope, we may need to go
13840 back to building a containing block's symbol lists. */
13841 *cu->builder->get_local_symbols () = cstk.locals;
13842 cu->builder->set_local_using_directives (cstk.local_using_directives);
13843
13844 /* If we've finished processing a top-level function, subsequent
13845 symbols go in the file symbol list. */
13846 if (cu->builder->outermost_context_p ())
13847 cu->list_in_scope = cu->builder->get_file_symbols ();
13848 }
13849
13850 /* Process all the DIES contained within a lexical block scope. Start
13851 a new scope, process the dies, and then close the scope. */
13852
13853 static void
13854 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13855 {
13856 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13857 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13858 CORE_ADDR lowpc, highpc;
13859 struct die_info *child_die;
13860 CORE_ADDR baseaddr;
13861
13862 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13863
13864 /* Ignore blocks with missing or invalid low and high pc attributes. */
13865 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13866 as multiple lexical blocks? Handling children in a sane way would
13867 be nasty. Might be easier to properly extend generic blocks to
13868 describe ranges. */
13869 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13870 {
13871 case PC_BOUNDS_NOT_PRESENT:
13872 /* DW_TAG_lexical_block has no attributes, process its children as if
13873 there was no wrapping by that DW_TAG_lexical_block.
13874 GCC does no longer produces such DWARF since GCC r224161. */
13875 for (child_die = die->child;
13876 child_die != NULL && child_die->tag;
13877 child_die = sibling_die (child_die))
13878 process_die (child_die, cu);
13879 return;
13880 case PC_BOUNDS_INVALID:
13881 return;
13882 }
13883 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13884 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13885
13886 cu->builder->push_context (0, lowpc);
13887 if (die->child != NULL)
13888 {
13889 child_die = die->child;
13890 while (child_die && child_die->tag)
13891 {
13892 process_die (child_die, cu);
13893 child_die = sibling_die (child_die);
13894 }
13895 }
13896 inherit_abstract_dies (die, cu);
13897 struct context_stack cstk = cu->builder->pop_context ();
13898
13899 if (*cu->builder->get_local_symbols () != NULL
13900 || (*cu->builder->get_local_using_directives ()) != NULL)
13901 {
13902 struct block *block
13903 = cu->builder->finish_block (0, cstk.old_blocks, NULL,
13904 cstk.start_addr, highpc);
13905
13906 /* Note that recording ranges after traversing children, as we
13907 do here, means that recording a parent's ranges entails
13908 walking across all its children's ranges as they appear in
13909 the address map, which is quadratic behavior.
13910
13911 It would be nicer to record the parent's ranges before
13912 traversing its children, simply overriding whatever you find
13913 there. But since we don't even decide whether to create a
13914 block until after we've traversed its children, that's hard
13915 to do. */
13916 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13917 }
13918 *cu->builder->get_local_symbols () = cstk.locals;
13919 cu->builder->set_local_using_directives (cstk.local_using_directives);
13920 }
13921
13922 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13923
13924 static void
13925 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13926 {
13927 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13928 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13929 CORE_ADDR pc, baseaddr;
13930 struct attribute *attr;
13931 struct call_site *call_site, call_site_local;
13932 void **slot;
13933 int nparams;
13934 struct die_info *child_die;
13935
13936 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13937
13938 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13939 if (attr == NULL)
13940 {
13941 /* This was a pre-DWARF-5 GNU extension alias
13942 for DW_AT_call_return_pc. */
13943 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13944 }
13945 if (!attr)
13946 {
13947 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13948 "DIE %s [in module %s]"),
13949 sect_offset_str (die->sect_off), objfile_name (objfile));
13950 return;
13951 }
13952 pc = attr_value_as_address (attr) + baseaddr;
13953 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13954
13955 if (cu->call_site_htab == NULL)
13956 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13957 NULL, &objfile->objfile_obstack,
13958 hashtab_obstack_allocate, NULL);
13959 call_site_local.pc = pc;
13960 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13961 if (*slot != NULL)
13962 {
13963 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13964 "DIE %s [in module %s]"),
13965 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13966 objfile_name (objfile));
13967 return;
13968 }
13969
13970 /* Count parameters at the caller. */
13971
13972 nparams = 0;
13973 for (child_die = die->child; child_die && child_die->tag;
13974 child_die = sibling_die (child_die))
13975 {
13976 if (child_die->tag != DW_TAG_call_site_parameter
13977 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13978 {
13979 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13980 "DW_TAG_call_site child DIE %s [in module %s]"),
13981 child_die->tag, sect_offset_str (child_die->sect_off),
13982 objfile_name (objfile));
13983 continue;
13984 }
13985
13986 nparams++;
13987 }
13988
13989 call_site
13990 = ((struct call_site *)
13991 obstack_alloc (&objfile->objfile_obstack,
13992 sizeof (*call_site)
13993 + (sizeof (*call_site->parameter) * (nparams - 1))));
13994 *slot = call_site;
13995 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13996 call_site->pc = pc;
13997
13998 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13999 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14000 {
14001 struct die_info *func_die;
14002
14003 /* Skip also over DW_TAG_inlined_subroutine. */
14004 for (func_die = die->parent;
14005 func_die && func_die->tag != DW_TAG_subprogram
14006 && func_die->tag != DW_TAG_subroutine_type;
14007 func_die = func_die->parent);
14008
14009 /* DW_AT_call_all_calls is a superset
14010 of DW_AT_call_all_tail_calls. */
14011 if (func_die
14012 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14013 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14014 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14015 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14016 {
14017 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14018 not complete. But keep CALL_SITE for look ups via call_site_htab,
14019 both the initial caller containing the real return address PC and
14020 the final callee containing the current PC of a chain of tail
14021 calls do not need to have the tail call list complete. But any
14022 function candidate for a virtual tail call frame searched via
14023 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14024 determined unambiguously. */
14025 }
14026 else
14027 {
14028 struct type *func_type = NULL;
14029
14030 if (func_die)
14031 func_type = get_die_type (func_die, cu);
14032 if (func_type != NULL)
14033 {
14034 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14035
14036 /* Enlist this call site to the function. */
14037 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14038 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14039 }
14040 else
14041 complaint (_("Cannot find function owning DW_TAG_call_site "
14042 "DIE %s [in module %s]"),
14043 sect_offset_str (die->sect_off), objfile_name (objfile));
14044 }
14045 }
14046
14047 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14048 if (attr == NULL)
14049 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14050 if (attr == NULL)
14051 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14052 if (attr == NULL)
14053 {
14054 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14055 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14056 }
14057 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14058 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14059 /* Keep NULL DWARF_BLOCK. */;
14060 else if (attr_form_is_block (attr))
14061 {
14062 struct dwarf2_locexpr_baton *dlbaton;
14063
14064 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14065 dlbaton->data = DW_BLOCK (attr)->data;
14066 dlbaton->size = DW_BLOCK (attr)->size;
14067 dlbaton->per_cu = cu->per_cu;
14068
14069 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14070 }
14071 else if (attr_form_is_ref (attr))
14072 {
14073 struct dwarf2_cu *target_cu = cu;
14074 struct die_info *target_die;
14075
14076 target_die = follow_die_ref (die, attr, &target_cu);
14077 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14078 if (die_is_declaration (target_die, target_cu))
14079 {
14080 const char *target_physname;
14081
14082 /* Prefer the mangled name; otherwise compute the demangled one. */
14083 target_physname = dw2_linkage_name (target_die, target_cu);
14084 if (target_physname == NULL)
14085 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14086 if (target_physname == NULL)
14087 complaint (_("DW_AT_call_target target DIE has invalid "
14088 "physname, for referencing DIE %s [in module %s]"),
14089 sect_offset_str (die->sect_off), objfile_name (objfile));
14090 else
14091 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14092 }
14093 else
14094 {
14095 CORE_ADDR lowpc;
14096
14097 /* DW_AT_entry_pc should be preferred. */
14098 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14099 <= PC_BOUNDS_INVALID)
14100 complaint (_("DW_AT_call_target target DIE has invalid "
14101 "low pc, for referencing DIE %s [in module %s]"),
14102 sect_offset_str (die->sect_off), objfile_name (objfile));
14103 else
14104 {
14105 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14106 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14107 }
14108 }
14109 }
14110 else
14111 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14112 "block nor reference, for DIE %s [in module %s]"),
14113 sect_offset_str (die->sect_off), objfile_name (objfile));
14114
14115 call_site->per_cu = cu->per_cu;
14116
14117 for (child_die = die->child;
14118 child_die && child_die->tag;
14119 child_die = sibling_die (child_die))
14120 {
14121 struct call_site_parameter *parameter;
14122 struct attribute *loc, *origin;
14123
14124 if (child_die->tag != DW_TAG_call_site_parameter
14125 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14126 {
14127 /* Already printed the complaint above. */
14128 continue;
14129 }
14130
14131 gdb_assert (call_site->parameter_count < nparams);
14132 parameter = &call_site->parameter[call_site->parameter_count];
14133
14134 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14135 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14136 register is contained in DW_AT_call_value. */
14137
14138 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14139 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14140 if (origin == NULL)
14141 {
14142 /* This was a pre-DWARF-5 GNU extension alias
14143 for DW_AT_call_parameter. */
14144 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14145 }
14146 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14147 {
14148 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14149
14150 sect_offset sect_off
14151 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14152 if (!offset_in_cu_p (&cu->header, sect_off))
14153 {
14154 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14155 binding can be done only inside one CU. Such referenced DIE
14156 therefore cannot be even moved to DW_TAG_partial_unit. */
14157 complaint (_("DW_AT_call_parameter offset is not in CU for "
14158 "DW_TAG_call_site child DIE %s [in module %s]"),
14159 sect_offset_str (child_die->sect_off),
14160 objfile_name (objfile));
14161 continue;
14162 }
14163 parameter->u.param_cu_off
14164 = (cu_offset) (sect_off - cu->header.sect_off);
14165 }
14166 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14167 {
14168 complaint (_("No DW_FORM_block* DW_AT_location for "
14169 "DW_TAG_call_site child DIE %s [in module %s]"),
14170 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14171 continue;
14172 }
14173 else
14174 {
14175 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14176 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14177 if (parameter->u.dwarf_reg != -1)
14178 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14179 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14180 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14181 &parameter->u.fb_offset))
14182 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14183 else
14184 {
14185 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14186 "for DW_FORM_block* DW_AT_location is supported for "
14187 "DW_TAG_call_site child DIE %s "
14188 "[in module %s]"),
14189 sect_offset_str (child_die->sect_off),
14190 objfile_name (objfile));
14191 continue;
14192 }
14193 }
14194
14195 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14196 if (attr == NULL)
14197 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14198 if (!attr_form_is_block (attr))
14199 {
14200 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14201 "DW_TAG_call_site child DIE %s [in module %s]"),
14202 sect_offset_str (child_die->sect_off),
14203 objfile_name (objfile));
14204 continue;
14205 }
14206 parameter->value = DW_BLOCK (attr)->data;
14207 parameter->value_size = DW_BLOCK (attr)->size;
14208
14209 /* Parameters are not pre-cleared by memset above. */
14210 parameter->data_value = NULL;
14211 parameter->data_value_size = 0;
14212 call_site->parameter_count++;
14213
14214 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14215 if (attr == NULL)
14216 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14217 if (attr)
14218 {
14219 if (!attr_form_is_block (attr))
14220 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14221 "DW_TAG_call_site child DIE %s [in module %s]"),
14222 sect_offset_str (child_die->sect_off),
14223 objfile_name (objfile));
14224 else
14225 {
14226 parameter->data_value = DW_BLOCK (attr)->data;
14227 parameter->data_value_size = DW_BLOCK (attr)->size;
14228 }
14229 }
14230 }
14231 }
14232
14233 /* Helper function for read_variable. If DIE represents a virtual
14234 table, then return the type of the concrete object that is
14235 associated with the virtual table. Otherwise, return NULL. */
14236
14237 static struct type *
14238 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14239 {
14240 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14241 if (attr == NULL)
14242 return NULL;
14243
14244 /* Find the type DIE. */
14245 struct die_info *type_die = NULL;
14246 struct dwarf2_cu *type_cu = cu;
14247
14248 if (attr_form_is_ref (attr))
14249 type_die = follow_die_ref (die, attr, &type_cu);
14250 if (type_die == NULL)
14251 return NULL;
14252
14253 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14254 return NULL;
14255 return die_containing_type (type_die, type_cu);
14256 }
14257
14258 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14259
14260 static void
14261 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14262 {
14263 struct rust_vtable_symbol *storage = NULL;
14264
14265 if (cu->language == language_rust)
14266 {
14267 struct type *containing_type = rust_containing_type (die, cu);
14268
14269 if (containing_type != NULL)
14270 {
14271 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14272
14273 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14274 struct rust_vtable_symbol);
14275 initialize_objfile_symbol (storage);
14276 storage->concrete_type = containing_type;
14277 storage->subclass = SYMBOL_RUST_VTABLE;
14278 }
14279 }
14280
14281 struct symbol *res = new_symbol (die, NULL, cu, storage);
14282 struct attribute *abstract_origin
14283 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14284 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14285 if (res == NULL && loc && abstract_origin)
14286 {
14287 /* We have a variable without a name, but with a location and an abstract
14288 origin. This may be a concrete instance of an abstract variable
14289 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14290 later. */
14291 struct dwarf2_cu *origin_cu = cu;
14292 struct die_info *origin_die
14293 = follow_die_ref (die, abstract_origin, &origin_cu);
14294 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14295 dpo->abstract_to_concrete[origin_die].push_back (die);
14296 }
14297 }
14298
14299 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14300 reading .debug_rnglists.
14301 Callback's type should be:
14302 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14303 Return true if the attributes are present and valid, otherwise,
14304 return false. */
14305
14306 template <typename Callback>
14307 static bool
14308 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14309 Callback &&callback)
14310 {
14311 struct dwarf2_per_objfile *dwarf2_per_objfile
14312 = cu->per_cu->dwarf2_per_objfile;
14313 struct objfile *objfile = dwarf2_per_objfile->objfile;
14314 bfd *obfd = objfile->obfd;
14315 /* Base address selection entry. */
14316 CORE_ADDR base;
14317 int found_base;
14318 const gdb_byte *buffer;
14319 CORE_ADDR baseaddr;
14320 bool overflow = false;
14321
14322 found_base = cu->base_known;
14323 base = cu->base_address;
14324
14325 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14326 if (offset >= dwarf2_per_objfile->rnglists.size)
14327 {
14328 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14329 offset);
14330 return false;
14331 }
14332 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14333
14334 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14335
14336 while (1)
14337 {
14338 /* Initialize it due to a false compiler warning. */
14339 CORE_ADDR range_beginning = 0, range_end = 0;
14340 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14341 + dwarf2_per_objfile->rnglists.size);
14342 unsigned int bytes_read;
14343
14344 if (buffer == buf_end)
14345 {
14346 overflow = true;
14347 break;
14348 }
14349 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14350 switch (rlet)
14351 {
14352 case DW_RLE_end_of_list:
14353 break;
14354 case DW_RLE_base_address:
14355 if (buffer + cu->header.addr_size > buf_end)
14356 {
14357 overflow = true;
14358 break;
14359 }
14360 base = read_address (obfd, buffer, cu, &bytes_read);
14361 found_base = 1;
14362 buffer += bytes_read;
14363 break;
14364 case DW_RLE_start_length:
14365 if (buffer + cu->header.addr_size > buf_end)
14366 {
14367 overflow = true;
14368 break;
14369 }
14370 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14371 buffer += bytes_read;
14372 range_end = (range_beginning
14373 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14374 buffer += bytes_read;
14375 if (buffer > buf_end)
14376 {
14377 overflow = true;
14378 break;
14379 }
14380 break;
14381 case DW_RLE_offset_pair:
14382 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14383 buffer += bytes_read;
14384 if (buffer > buf_end)
14385 {
14386 overflow = true;
14387 break;
14388 }
14389 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14390 buffer += bytes_read;
14391 if (buffer > buf_end)
14392 {
14393 overflow = true;
14394 break;
14395 }
14396 break;
14397 case DW_RLE_start_end:
14398 if (buffer + 2 * cu->header.addr_size > buf_end)
14399 {
14400 overflow = true;
14401 break;
14402 }
14403 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14404 buffer += bytes_read;
14405 range_end = read_address (obfd, buffer, cu, &bytes_read);
14406 buffer += bytes_read;
14407 break;
14408 default:
14409 complaint (_("Invalid .debug_rnglists data (no base address)"));
14410 return false;
14411 }
14412 if (rlet == DW_RLE_end_of_list || overflow)
14413 break;
14414 if (rlet == DW_RLE_base_address)
14415 continue;
14416
14417 if (!found_base)
14418 {
14419 /* We have no valid base address for the ranges
14420 data. */
14421 complaint (_("Invalid .debug_rnglists data (no base address)"));
14422 return false;
14423 }
14424
14425 if (range_beginning > range_end)
14426 {
14427 /* Inverted range entries are invalid. */
14428 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14429 return false;
14430 }
14431
14432 /* Empty range entries have no effect. */
14433 if (range_beginning == range_end)
14434 continue;
14435
14436 range_beginning += base;
14437 range_end += base;
14438
14439 /* A not-uncommon case of bad debug info.
14440 Don't pollute the addrmap with bad data. */
14441 if (range_beginning + baseaddr == 0
14442 && !dwarf2_per_objfile->has_section_at_zero)
14443 {
14444 complaint (_(".debug_rnglists entry has start address of zero"
14445 " [in module %s]"), objfile_name (objfile));
14446 continue;
14447 }
14448
14449 callback (range_beginning, range_end);
14450 }
14451
14452 if (overflow)
14453 {
14454 complaint (_("Offset %d is not terminated "
14455 "for DW_AT_ranges attribute"),
14456 offset);
14457 return false;
14458 }
14459
14460 return true;
14461 }
14462
14463 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14464 Callback's type should be:
14465 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14466 Return 1 if the attributes are present and valid, otherwise, return 0. */
14467
14468 template <typename Callback>
14469 static int
14470 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14471 Callback &&callback)
14472 {
14473 struct dwarf2_per_objfile *dwarf2_per_objfile
14474 = cu->per_cu->dwarf2_per_objfile;
14475 struct objfile *objfile = dwarf2_per_objfile->objfile;
14476 struct comp_unit_head *cu_header = &cu->header;
14477 bfd *obfd = objfile->obfd;
14478 unsigned int addr_size = cu_header->addr_size;
14479 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14480 /* Base address selection entry. */
14481 CORE_ADDR base;
14482 int found_base;
14483 unsigned int dummy;
14484 const gdb_byte *buffer;
14485 CORE_ADDR baseaddr;
14486
14487 if (cu_header->version >= 5)
14488 return dwarf2_rnglists_process (offset, cu, callback);
14489
14490 found_base = cu->base_known;
14491 base = cu->base_address;
14492
14493 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14494 if (offset >= dwarf2_per_objfile->ranges.size)
14495 {
14496 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14497 offset);
14498 return 0;
14499 }
14500 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14501
14502 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14503
14504 while (1)
14505 {
14506 CORE_ADDR range_beginning, range_end;
14507
14508 range_beginning = read_address (obfd, buffer, cu, &dummy);
14509 buffer += addr_size;
14510 range_end = read_address (obfd, buffer, cu, &dummy);
14511 buffer += addr_size;
14512 offset += 2 * addr_size;
14513
14514 /* An end of list marker is a pair of zero addresses. */
14515 if (range_beginning == 0 && range_end == 0)
14516 /* Found the end of list entry. */
14517 break;
14518
14519 /* Each base address selection entry is a pair of 2 values.
14520 The first is the largest possible address, the second is
14521 the base address. Check for a base address here. */
14522 if ((range_beginning & mask) == mask)
14523 {
14524 /* If we found the largest possible address, then we already
14525 have the base address in range_end. */
14526 base = range_end;
14527 found_base = 1;
14528 continue;
14529 }
14530
14531 if (!found_base)
14532 {
14533 /* We have no valid base address for the ranges
14534 data. */
14535 complaint (_("Invalid .debug_ranges data (no base address)"));
14536 return 0;
14537 }
14538
14539 if (range_beginning > range_end)
14540 {
14541 /* Inverted range entries are invalid. */
14542 complaint (_("Invalid .debug_ranges data (inverted range)"));
14543 return 0;
14544 }
14545
14546 /* Empty range entries have no effect. */
14547 if (range_beginning == range_end)
14548 continue;
14549
14550 range_beginning += base;
14551 range_end += base;
14552
14553 /* A not-uncommon case of bad debug info.
14554 Don't pollute the addrmap with bad data. */
14555 if (range_beginning + baseaddr == 0
14556 && !dwarf2_per_objfile->has_section_at_zero)
14557 {
14558 complaint (_(".debug_ranges entry has start address of zero"
14559 " [in module %s]"), objfile_name (objfile));
14560 continue;
14561 }
14562
14563 callback (range_beginning, range_end);
14564 }
14565
14566 return 1;
14567 }
14568
14569 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14570 Return 1 if the attributes are present and valid, otherwise, return 0.
14571 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14572
14573 static int
14574 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14575 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14576 struct partial_symtab *ranges_pst)
14577 {
14578 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14579 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14580 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14581 SECT_OFF_TEXT (objfile));
14582 int low_set = 0;
14583 CORE_ADDR low = 0;
14584 CORE_ADDR high = 0;
14585 int retval;
14586
14587 retval = dwarf2_ranges_process (offset, cu,
14588 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14589 {
14590 if (ranges_pst != NULL)
14591 {
14592 CORE_ADDR lowpc;
14593 CORE_ADDR highpc;
14594
14595 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14596 range_beginning + baseaddr)
14597 - baseaddr);
14598 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14599 range_end + baseaddr)
14600 - baseaddr);
14601 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14602 ranges_pst);
14603 }
14604
14605 /* FIXME: This is recording everything as a low-high
14606 segment of consecutive addresses. We should have a
14607 data structure for discontiguous block ranges
14608 instead. */
14609 if (! low_set)
14610 {
14611 low = range_beginning;
14612 high = range_end;
14613 low_set = 1;
14614 }
14615 else
14616 {
14617 if (range_beginning < low)
14618 low = range_beginning;
14619 if (range_end > high)
14620 high = range_end;
14621 }
14622 });
14623 if (!retval)
14624 return 0;
14625
14626 if (! low_set)
14627 /* If the first entry is an end-of-list marker, the range
14628 describes an empty scope, i.e. no instructions. */
14629 return 0;
14630
14631 if (low_return)
14632 *low_return = low;
14633 if (high_return)
14634 *high_return = high;
14635 return 1;
14636 }
14637
14638 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14639 definition for the return value. *LOWPC and *HIGHPC are set iff
14640 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14641
14642 static enum pc_bounds_kind
14643 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14644 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14645 struct partial_symtab *pst)
14646 {
14647 struct dwarf2_per_objfile *dwarf2_per_objfile
14648 = cu->per_cu->dwarf2_per_objfile;
14649 struct attribute *attr;
14650 struct attribute *attr_high;
14651 CORE_ADDR low = 0;
14652 CORE_ADDR high = 0;
14653 enum pc_bounds_kind ret;
14654
14655 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14656 if (attr_high)
14657 {
14658 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14659 if (attr)
14660 {
14661 low = attr_value_as_address (attr);
14662 high = attr_value_as_address (attr_high);
14663 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14664 high += low;
14665 }
14666 else
14667 /* Found high w/o low attribute. */
14668 return PC_BOUNDS_INVALID;
14669
14670 /* Found consecutive range of addresses. */
14671 ret = PC_BOUNDS_HIGH_LOW;
14672 }
14673 else
14674 {
14675 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14676 if (attr != NULL)
14677 {
14678 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14679 We take advantage of the fact that DW_AT_ranges does not appear
14680 in DW_TAG_compile_unit of DWO files. */
14681 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14682 unsigned int ranges_offset = (DW_UNSND (attr)
14683 + (need_ranges_base
14684 ? cu->ranges_base
14685 : 0));
14686
14687 /* Value of the DW_AT_ranges attribute is the offset in the
14688 .debug_ranges section. */
14689 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14690 return PC_BOUNDS_INVALID;
14691 /* Found discontinuous range of addresses. */
14692 ret = PC_BOUNDS_RANGES;
14693 }
14694 else
14695 return PC_BOUNDS_NOT_PRESENT;
14696 }
14697
14698 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14699 if (high <= low)
14700 return PC_BOUNDS_INVALID;
14701
14702 /* When using the GNU linker, .gnu.linkonce. sections are used to
14703 eliminate duplicate copies of functions and vtables and such.
14704 The linker will arbitrarily choose one and discard the others.
14705 The AT_*_pc values for such functions refer to local labels in
14706 these sections. If the section from that file was discarded, the
14707 labels are not in the output, so the relocs get a value of 0.
14708 If this is a discarded function, mark the pc bounds as invalid,
14709 so that GDB will ignore it. */
14710 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14711 return PC_BOUNDS_INVALID;
14712
14713 *lowpc = low;
14714 if (highpc)
14715 *highpc = high;
14716 return ret;
14717 }
14718
14719 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14720 its low and high PC addresses. Do nothing if these addresses could not
14721 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14722 and HIGHPC to the high address if greater than HIGHPC. */
14723
14724 static void
14725 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14726 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14727 struct dwarf2_cu *cu)
14728 {
14729 CORE_ADDR low, high;
14730 struct die_info *child = die->child;
14731
14732 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14733 {
14734 *lowpc = std::min (*lowpc, low);
14735 *highpc = std::max (*highpc, high);
14736 }
14737
14738 /* If the language does not allow nested subprograms (either inside
14739 subprograms or lexical blocks), we're done. */
14740 if (cu->language != language_ada)
14741 return;
14742
14743 /* Check all the children of the given DIE. If it contains nested
14744 subprograms, then check their pc bounds. Likewise, we need to
14745 check lexical blocks as well, as they may also contain subprogram
14746 definitions. */
14747 while (child && child->tag)
14748 {
14749 if (child->tag == DW_TAG_subprogram
14750 || child->tag == DW_TAG_lexical_block)
14751 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14752 child = sibling_die (child);
14753 }
14754 }
14755
14756 /* Get the low and high pc's represented by the scope DIE, and store
14757 them in *LOWPC and *HIGHPC. If the correct values can't be
14758 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14759
14760 static void
14761 get_scope_pc_bounds (struct die_info *die,
14762 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14763 struct dwarf2_cu *cu)
14764 {
14765 CORE_ADDR best_low = (CORE_ADDR) -1;
14766 CORE_ADDR best_high = (CORE_ADDR) 0;
14767 CORE_ADDR current_low, current_high;
14768
14769 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14770 >= PC_BOUNDS_RANGES)
14771 {
14772 best_low = current_low;
14773 best_high = current_high;
14774 }
14775 else
14776 {
14777 struct die_info *child = die->child;
14778
14779 while (child && child->tag)
14780 {
14781 switch (child->tag) {
14782 case DW_TAG_subprogram:
14783 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14784 break;
14785 case DW_TAG_namespace:
14786 case DW_TAG_module:
14787 /* FIXME: carlton/2004-01-16: Should we do this for
14788 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14789 that current GCC's always emit the DIEs corresponding
14790 to definitions of methods of classes as children of a
14791 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14792 the DIEs giving the declarations, which could be
14793 anywhere). But I don't see any reason why the
14794 standards says that they have to be there. */
14795 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14796
14797 if (current_low != ((CORE_ADDR) -1))
14798 {
14799 best_low = std::min (best_low, current_low);
14800 best_high = std::max (best_high, current_high);
14801 }
14802 break;
14803 default:
14804 /* Ignore. */
14805 break;
14806 }
14807
14808 child = sibling_die (child);
14809 }
14810 }
14811
14812 *lowpc = best_low;
14813 *highpc = best_high;
14814 }
14815
14816 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14817 in DIE. */
14818
14819 static void
14820 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14821 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14822 {
14823 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14824 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14825 struct attribute *attr;
14826 struct attribute *attr_high;
14827
14828 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14829 if (attr_high)
14830 {
14831 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14832 if (attr)
14833 {
14834 CORE_ADDR low = attr_value_as_address (attr);
14835 CORE_ADDR high = attr_value_as_address (attr_high);
14836
14837 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14838 high += low;
14839
14840 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14841 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14842 cu->builder->record_block_range (block, low, high - 1);
14843 }
14844 }
14845
14846 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14847 if (attr)
14848 {
14849 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14850 We take advantage of the fact that DW_AT_ranges does not appear
14851 in DW_TAG_compile_unit of DWO files. */
14852 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14853
14854 /* The value of the DW_AT_ranges attribute is the offset of the
14855 address range list in the .debug_ranges section. */
14856 unsigned long offset = (DW_UNSND (attr)
14857 + (need_ranges_base ? cu->ranges_base : 0));
14858
14859 std::vector<blockrange> blockvec;
14860 dwarf2_ranges_process (offset, cu,
14861 [&] (CORE_ADDR start, CORE_ADDR end)
14862 {
14863 start += baseaddr;
14864 end += baseaddr;
14865 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14866 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14867 cu->builder->record_block_range (block, start, end - 1);
14868 blockvec.emplace_back (start, end);
14869 });
14870
14871 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14872 }
14873 }
14874
14875 /* Check whether the producer field indicates either of GCC < 4.6, or the
14876 Intel C/C++ compiler, and cache the result in CU. */
14877
14878 static void
14879 check_producer (struct dwarf2_cu *cu)
14880 {
14881 int major, minor;
14882
14883 if (cu->producer == NULL)
14884 {
14885 /* For unknown compilers expect their behavior is DWARF version
14886 compliant.
14887
14888 GCC started to support .debug_types sections by -gdwarf-4 since
14889 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14890 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14891 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14892 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14893 }
14894 else if (producer_is_gcc (cu->producer, &major, &minor))
14895 {
14896 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14897 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14898 }
14899 else if (producer_is_icc (cu->producer, &major, &minor))
14900 cu->producer_is_icc_lt_14 = major < 14;
14901 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14902 cu->producer_is_codewarrior = true;
14903 else
14904 {
14905 /* For other non-GCC compilers, expect their behavior is DWARF version
14906 compliant. */
14907 }
14908
14909 cu->checked_producer = 1;
14910 }
14911
14912 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14913 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14914 during 4.6.0 experimental. */
14915
14916 static int
14917 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14918 {
14919 if (!cu->checked_producer)
14920 check_producer (cu);
14921
14922 return cu->producer_is_gxx_lt_4_6;
14923 }
14924
14925
14926 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14927 with incorrect is_stmt attributes. */
14928
14929 static bool
14930 producer_is_codewarrior (struct dwarf2_cu *cu)
14931 {
14932 if (!cu->checked_producer)
14933 check_producer (cu);
14934
14935 return cu->producer_is_codewarrior;
14936 }
14937
14938 /* Return the default accessibility type if it is not overriden by
14939 DW_AT_accessibility. */
14940
14941 static enum dwarf_access_attribute
14942 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14943 {
14944 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14945 {
14946 /* The default DWARF 2 accessibility for members is public, the default
14947 accessibility for inheritance is private. */
14948
14949 if (die->tag != DW_TAG_inheritance)
14950 return DW_ACCESS_public;
14951 else
14952 return DW_ACCESS_private;
14953 }
14954 else
14955 {
14956 /* DWARF 3+ defines the default accessibility a different way. The same
14957 rules apply now for DW_TAG_inheritance as for the members and it only
14958 depends on the container kind. */
14959
14960 if (die->parent->tag == DW_TAG_class_type)
14961 return DW_ACCESS_private;
14962 else
14963 return DW_ACCESS_public;
14964 }
14965 }
14966
14967 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14968 offset. If the attribute was not found return 0, otherwise return
14969 1. If it was found but could not properly be handled, set *OFFSET
14970 to 0. */
14971
14972 static int
14973 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14974 LONGEST *offset)
14975 {
14976 struct attribute *attr;
14977
14978 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14979 if (attr != NULL)
14980 {
14981 *offset = 0;
14982
14983 /* Note that we do not check for a section offset first here.
14984 This is because DW_AT_data_member_location is new in DWARF 4,
14985 so if we see it, we can assume that a constant form is really
14986 a constant and not a section offset. */
14987 if (attr_form_is_constant (attr))
14988 *offset = dwarf2_get_attr_constant_value (attr, 0);
14989 else if (attr_form_is_section_offset (attr))
14990 dwarf2_complex_location_expr_complaint ();
14991 else if (attr_form_is_block (attr))
14992 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14993 else
14994 dwarf2_complex_location_expr_complaint ();
14995
14996 return 1;
14997 }
14998
14999 return 0;
15000 }
15001
15002 /* Add an aggregate field to the field list. */
15003
15004 static void
15005 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15006 struct dwarf2_cu *cu)
15007 {
15008 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15009 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15010 struct nextfield *new_field;
15011 struct attribute *attr;
15012 struct field *fp;
15013 const char *fieldname = "";
15014
15015 if (die->tag == DW_TAG_inheritance)
15016 {
15017 fip->baseclasses.emplace_back ();
15018 new_field = &fip->baseclasses.back ();
15019 }
15020 else
15021 {
15022 fip->fields.emplace_back ();
15023 new_field = &fip->fields.back ();
15024 }
15025
15026 fip->nfields++;
15027
15028 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15029 if (attr)
15030 new_field->accessibility = DW_UNSND (attr);
15031 else
15032 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15033 if (new_field->accessibility != DW_ACCESS_public)
15034 fip->non_public_fields = 1;
15035
15036 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15037 if (attr)
15038 new_field->virtuality = DW_UNSND (attr);
15039 else
15040 new_field->virtuality = DW_VIRTUALITY_none;
15041
15042 fp = &new_field->field;
15043
15044 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15045 {
15046 LONGEST offset;
15047
15048 /* Data member other than a C++ static data member. */
15049
15050 /* Get type of field. */
15051 fp->type = die_type (die, cu);
15052
15053 SET_FIELD_BITPOS (*fp, 0);
15054
15055 /* Get bit size of field (zero if none). */
15056 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15057 if (attr)
15058 {
15059 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15060 }
15061 else
15062 {
15063 FIELD_BITSIZE (*fp) = 0;
15064 }
15065
15066 /* Get bit offset of field. */
15067 if (handle_data_member_location (die, cu, &offset))
15068 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15069 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15070 if (attr)
15071 {
15072 if (gdbarch_bits_big_endian (gdbarch))
15073 {
15074 /* For big endian bits, the DW_AT_bit_offset gives the
15075 additional bit offset from the MSB of the containing
15076 anonymous object to the MSB of the field. We don't
15077 have to do anything special since we don't need to
15078 know the size of the anonymous object. */
15079 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15080 }
15081 else
15082 {
15083 /* For little endian bits, compute the bit offset to the
15084 MSB of the anonymous object, subtract off the number of
15085 bits from the MSB of the field to the MSB of the
15086 object, and then subtract off the number of bits of
15087 the field itself. The result is the bit offset of
15088 the LSB of the field. */
15089 int anonymous_size;
15090 int bit_offset = DW_UNSND (attr);
15091
15092 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15093 if (attr)
15094 {
15095 /* The size of the anonymous object containing
15096 the bit field is explicit, so use the
15097 indicated size (in bytes). */
15098 anonymous_size = DW_UNSND (attr);
15099 }
15100 else
15101 {
15102 /* The size of the anonymous object containing
15103 the bit field must be inferred from the type
15104 attribute of the data member containing the
15105 bit field. */
15106 anonymous_size = TYPE_LENGTH (fp->type);
15107 }
15108 SET_FIELD_BITPOS (*fp,
15109 (FIELD_BITPOS (*fp)
15110 + anonymous_size * bits_per_byte
15111 - bit_offset - FIELD_BITSIZE (*fp)));
15112 }
15113 }
15114 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15115 if (attr != NULL)
15116 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15117 + dwarf2_get_attr_constant_value (attr, 0)));
15118
15119 /* Get name of field. */
15120 fieldname = dwarf2_name (die, cu);
15121 if (fieldname == NULL)
15122 fieldname = "";
15123
15124 /* The name is already allocated along with this objfile, so we don't
15125 need to duplicate it for the type. */
15126 fp->name = fieldname;
15127
15128 /* Change accessibility for artificial fields (e.g. virtual table
15129 pointer or virtual base class pointer) to private. */
15130 if (dwarf2_attr (die, DW_AT_artificial, cu))
15131 {
15132 FIELD_ARTIFICIAL (*fp) = 1;
15133 new_field->accessibility = DW_ACCESS_private;
15134 fip->non_public_fields = 1;
15135 }
15136 }
15137 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15138 {
15139 /* C++ static member. */
15140
15141 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15142 is a declaration, but all versions of G++ as of this writing
15143 (so through at least 3.2.1) incorrectly generate
15144 DW_TAG_variable tags. */
15145
15146 const char *physname;
15147
15148 /* Get name of field. */
15149 fieldname = dwarf2_name (die, cu);
15150 if (fieldname == NULL)
15151 return;
15152
15153 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15154 if (attr
15155 /* Only create a symbol if this is an external value.
15156 new_symbol checks this and puts the value in the global symbol
15157 table, which we want. If it is not external, new_symbol
15158 will try to put the value in cu->list_in_scope which is wrong. */
15159 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15160 {
15161 /* A static const member, not much different than an enum as far as
15162 we're concerned, except that we can support more types. */
15163 new_symbol (die, NULL, cu);
15164 }
15165
15166 /* Get physical name. */
15167 physname = dwarf2_physname (fieldname, die, cu);
15168
15169 /* The name is already allocated along with this objfile, so we don't
15170 need to duplicate it for the type. */
15171 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15172 FIELD_TYPE (*fp) = die_type (die, cu);
15173 FIELD_NAME (*fp) = fieldname;
15174 }
15175 else if (die->tag == DW_TAG_inheritance)
15176 {
15177 LONGEST offset;
15178
15179 /* C++ base class field. */
15180 if (handle_data_member_location (die, cu, &offset))
15181 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15182 FIELD_BITSIZE (*fp) = 0;
15183 FIELD_TYPE (*fp) = die_type (die, cu);
15184 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15185 }
15186 else if (die->tag == DW_TAG_variant_part)
15187 {
15188 /* process_structure_scope will treat this DIE as a union. */
15189 process_structure_scope (die, cu);
15190
15191 /* The variant part is relative to the start of the enclosing
15192 structure. */
15193 SET_FIELD_BITPOS (*fp, 0);
15194 fp->type = get_die_type (die, cu);
15195 fp->artificial = 1;
15196 fp->name = "<<variant>>";
15197
15198 /* Normally a DW_TAG_variant_part won't have a size, but our
15199 representation requires one, so set it to the maximum of the
15200 child sizes. */
15201 if (TYPE_LENGTH (fp->type) == 0)
15202 {
15203 unsigned max = 0;
15204 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15205 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15206 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15207 TYPE_LENGTH (fp->type) = max;
15208 }
15209 }
15210 else
15211 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15212 }
15213
15214 /* Can the type given by DIE define another type? */
15215
15216 static bool
15217 type_can_define_types (const struct die_info *die)
15218 {
15219 switch (die->tag)
15220 {
15221 case DW_TAG_typedef:
15222 case DW_TAG_class_type:
15223 case DW_TAG_structure_type:
15224 case DW_TAG_union_type:
15225 case DW_TAG_enumeration_type:
15226 return true;
15227
15228 default:
15229 return false;
15230 }
15231 }
15232
15233 /* Add a type definition defined in the scope of the FIP's class. */
15234
15235 static void
15236 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15237 struct dwarf2_cu *cu)
15238 {
15239 struct decl_field fp;
15240 memset (&fp, 0, sizeof (fp));
15241
15242 gdb_assert (type_can_define_types (die));
15243
15244 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15245 fp.name = dwarf2_name (die, cu);
15246 fp.type = read_type_die (die, cu);
15247
15248 /* Save accessibility. */
15249 enum dwarf_access_attribute accessibility;
15250 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15251 if (attr != NULL)
15252 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15253 else
15254 accessibility = dwarf2_default_access_attribute (die, cu);
15255 switch (accessibility)
15256 {
15257 case DW_ACCESS_public:
15258 /* The assumed value if neither private nor protected. */
15259 break;
15260 case DW_ACCESS_private:
15261 fp.is_private = 1;
15262 break;
15263 case DW_ACCESS_protected:
15264 fp.is_protected = 1;
15265 break;
15266 default:
15267 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15268 }
15269
15270 if (die->tag == DW_TAG_typedef)
15271 fip->typedef_field_list.push_back (fp);
15272 else
15273 fip->nested_types_list.push_back (fp);
15274 }
15275
15276 /* Create the vector of fields, and attach it to the type. */
15277
15278 static void
15279 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15280 struct dwarf2_cu *cu)
15281 {
15282 int nfields = fip->nfields;
15283
15284 /* Record the field count, allocate space for the array of fields,
15285 and create blank accessibility bitfields if necessary. */
15286 TYPE_NFIELDS (type) = nfields;
15287 TYPE_FIELDS (type) = (struct field *)
15288 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15289
15290 if (fip->non_public_fields && cu->language != language_ada)
15291 {
15292 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15293
15294 TYPE_FIELD_PRIVATE_BITS (type) =
15295 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15296 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15297
15298 TYPE_FIELD_PROTECTED_BITS (type) =
15299 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15300 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15301
15302 TYPE_FIELD_IGNORE_BITS (type) =
15303 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15304 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15305 }
15306
15307 /* If the type has baseclasses, allocate and clear a bit vector for
15308 TYPE_FIELD_VIRTUAL_BITS. */
15309 if (!fip->baseclasses.empty () && cu->language != language_ada)
15310 {
15311 int num_bytes = B_BYTES (fip->baseclasses.size ());
15312 unsigned char *pointer;
15313
15314 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15315 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15316 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15317 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15318 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15319 }
15320
15321 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15322 {
15323 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15324
15325 for (int index = 0; index < nfields; ++index)
15326 {
15327 struct nextfield &field = fip->fields[index];
15328
15329 if (field.variant.is_discriminant)
15330 di->discriminant_index = index;
15331 else if (field.variant.default_branch)
15332 di->default_index = index;
15333 else
15334 di->discriminants[index] = field.variant.discriminant_value;
15335 }
15336 }
15337
15338 /* Copy the saved-up fields into the field vector. */
15339 for (int i = 0; i < nfields; ++i)
15340 {
15341 struct nextfield &field
15342 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15343 : fip->fields[i - fip->baseclasses.size ()]);
15344
15345 TYPE_FIELD (type, i) = field.field;
15346 switch (field.accessibility)
15347 {
15348 case DW_ACCESS_private:
15349 if (cu->language != language_ada)
15350 SET_TYPE_FIELD_PRIVATE (type, i);
15351 break;
15352
15353 case DW_ACCESS_protected:
15354 if (cu->language != language_ada)
15355 SET_TYPE_FIELD_PROTECTED (type, i);
15356 break;
15357
15358 case DW_ACCESS_public:
15359 break;
15360
15361 default:
15362 /* Unknown accessibility. Complain and treat it as public. */
15363 {
15364 complaint (_("unsupported accessibility %d"),
15365 field.accessibility);
15366 }
15367 break;
15368 }
15369 if (i < fip->baseclasses.size ())
15370 {
15371 switch (field.virtuality)
15372 {
15373 case DW_VIRTUALITY_virtual:
15374 case DW_VIRTUALITY_pure_virtual:
15375 if (cu->language == language_ada)
15376 error (_("unexpected virtuality in component of Ada type"));
15377 SET_TYPE_FIELD_VIRTUAL (type, i);
15378 break;
15379 }
15380 }
15381 }
15382 }
15383
15384 /* Return true if this member function is a constructor, false
15385 otherwise. */
15386
15387 static int
15388 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15389 {
15390 const char *fieldname;
15391 const char *type_name;
15392 int len;
15393
15394 if (die->parent == NULL)
15395 return 0;
15396
15397 if (die->parent->tag != DW_TAG_structure_type
15398 && die->parent->tag != DW_TAG_union_type
15399 && die->parent->tag != DW_TAG_class_type)
15400 return 0;
15401
15402 fieldname = dwarf2_name (die, cu);
15403 type_name = dwarf2_name (die->parent, cu);
15404 if (fieldname == NULL || type_name == NULL)
15405 return 0;
15406
15407 len = strlen (fieldname);
15408 return (strncmp (fieldname, type_name, len) == 0
15409 && (type_name[len] == '\0' || type_name[len] == '<'));
15410 }
15411
15412 /* Add a member function to the proper fieldlist. */
15413
15414 static void
15415 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15416 struct type *type, struct dwarf2_cu *cu)
15417 {
15418 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15419 struct attribute *attr;
15420 int i;
15421 struct fnfieldlist *flp = nullptr;
15422 struct fn_field *fnp;
15423 const char *fieldname;
15424 struct type *this_type;
15425 enum dwarf_access_attribute accessibility;
15426
15427 if (cu->language == language_ada)
15428 error (_("unexpected member function in Ada type"));
15429
15430 /* Get name of member function. */
15431 fieldname = dwarf2_name (die, cu);
15432 if (fieldname == NULL)
15433 return;
15434
15435 /* Look up member function name in fieldlist. */
15436 for (i = 0; i < fip->fnfieldlists.size (); i++)
15437 {
15438 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15439 {
15440 flp = &fip->fnfieldlists[i];
15441 break;
15442 }
15443 }
15444
15445 /* Create a new fnfieldlist if necessary. */
15446 if (flp == nullptr)
15447 {
15448 fip->fnfieldlists.emplace_back ();
15449 flp = &fip->fnfieldlists.back ();
15450 flp->name = fieldname;
15451 i = fip->fnfieldlists.size () - 1;
15452 }
15453
15454 /* Create a new member function field and add it to the vector of
15455 fnfieldlists. */
15456 flp->fnfields.emplace_back ();
15457 fnp = &flp->fnfields.back ();
15458
15459 /* Delay processing of the physname until later. */
15460 if (cu->language == language_cplus)
15461 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15462 die, cu);
15463 else
15464 {
15465 const char *physname = dwarf2_physname (fieldname, die, cu);
15466 fnp->physname = physname ? physname : "";
15467 }
15468
15469 fnp->type = alloc_type (objfile);
15470 this_type = read_type_die (die, cu);
15471 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15472 {
15473 int nparams = TYPE_NFIELDS (this_type);
15474
15475 /* TYPE is the domain of this method, and THIS_TYPE is the type
15476 of the method itself (TYPE_CODE_METHOD). */
15477 smash_to_method_type (fnp->type, type,
15478 TYPE_TARGET_TYPE (this_type),
15479 TYPE_FIELDS (this_type),
15480 TYPE_NFIELDS (this_type),
15481 TYPE_VARARGS (this_type));
15482
15483 /* Handle static member functions.
15484 Dwarf2 has no clean way to discern C++ static and non-static
15485 member functions. G++ helps GDB by marking the first
15486 parameter for non-static member functions (which is the this
15487 pointer) as artificial. We obtain this information from
15488 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15489 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15490 fnp->voffset = VOFFSET_STATIC;
15491 }
15492 else
15493 complaint (_("member function type missing for '%s'"),
15494 dwarf2_full_name (fieldname, die, cu));
15495
15496 /* Get fcontext from DW_AT_containing_type if present. */
15497 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15498 fnp->fcontext = die_containing_type (die, cu);
15499
15500 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15501 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15502
15503 /* Get accessibility. */
15504 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15505 if (attr)
15506 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15507 else
15508 accessibility = dwarf2_default_access_attribute (die, cu);
15509 switch (accessibility)
15510 {
15511 case DW_ACCESS_private:
15512 fnp->is_private = 1;
15513 break;
15514 case DW_ACCESS_protected:
15515 fnp->is_protected = 1;
15516 break;
15517 }
15518
15519 /* Check for artificial methods. */
15520 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15521 if (attr && DW_UNSND (attr) != 0)
15522 fnp->is_artificial = 1;
15523
15524 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15525
15526 /* Get index in virtual function table if it is a virtual member
15527 function. For older versions of GCC, this is an offset in the
15528 appropriate virtual table, as specified by DW_AT_containing_type.
15529 For everyone else, it is an expression to be evaluated relative
15530 to the object address. */
15531
15532 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15533 if (attr)
15534 {
15535 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15536 {
15537 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15538 {
15539 /* Old-style GCC. */
15540 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15541 }
15542 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15543 || (DW_BLOCK (attr)->size > 1
15544 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15545 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15546 {
15547 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15548 if ((fnp->voffset % cu->header.addr_size) != 0)
15549 dwarf2_complex_location_expr_complaint ();
15550 else
15551 fnp->voffset /= cu->header.addr_size;
15552 fnp->voffset += 2;
15553 }
15554 else
15555 dwarf2_complex_location_expr_complaint ();
15556
15557 if (!fnp->fcontext)
15558 {
15559 /* If there is no `this' field and no DW_AT_containing_type,
15560 we cannot actually find a base class context for the
15561 vtable! */
15562 if (TYPE_NFIELDS (this_type) == 0
15563 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15564 {
15565 complaint (_("cannot determine context for virtual member "
15566 "function \"%s\" (offset %s)"),
15567 fieldname, sect_offset_str (die->sect_off));
15568 }
15569 else
15570 {
15571 fnp->fcontext
15572 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15573 }
15574 }
15575 }
15576 else if (attr_form_is_section_offset (attr))
15577 {
15578 dwarf2_complex_location_expr_complaint ();
15579 }
15580 else
15581 {
15582 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15583 fieldname);
15584 }
15585 }
15586 else
15587 {
15588 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15589 if (attr && DW_UNSND (attr))
15590 {
15591 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15592 complaint (_("Member function \"%s\" (offset %s) is virtual "
15593 "but the vtable offset is not specified"),
15594 fieldname, sect_offset_str (die->sect_off));
15595 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15596 TYPE_CPLUS_DYNAMIC (type) = 1;
15597 }
15598 }
15599 }
15600
15601 /* Create the vector of member function fields, and attach it to the type. */
15602
15603 static void
15604 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15605 struct dwarf2_cu *cu)
15606 {
15607 if (cu->language == language_ada)
15608 error (_("unexpected member functions in Ada type"));
15609
15610 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15611 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15612 TYPE_ALLOC (type,
15613 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15614
15615 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15616 {
15617 struct fnfieldlist &nf = fip->fnfieldlists[i];
15618 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15619
15620 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15621 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15622 fn_flp->fn_fields = (struct fn_field *)
15623 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15624
15625 for (int k = 0; k < nf.fnfields.size (); ++k)
15626 fn_flp->fn_fields[k] = nf.fnfields[k];
15627 }
15628
15629 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15630 }
15631
15632 /* Returns non-zero if NAME is the name of a vtable member in CU's
15633 language, zero otherwise. */
15634 static int
15635 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15636 {
15637 static const char vptr[] = "_vptr";
15638
15639 /* Look for the C++ form of the vtable. */
15640 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15641 return 1;
15642
15643 return 0;
15644 }
15645
15646 /* GCC outputs unnamed structures that are really pointers to member
15647 functions, with the ABI-specified layout. If TYPE describes
15648 such a structure, smash it into a member function type.
15649
15650 GCC shouldn't do this; it should just output pointer to member DIEs.
15651 This is GCC PR debug/28767. */
15652
15653 static void
15654 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15655 {
15656 struct type *pfn_type, *self_type, *new_type;
15657
15658 /* Check for a structure with no name and two children. */
15659 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15660 return;
15661
15662 /* Check for __pfn and __delta members. */
15663 if (TYPE_FIELD_NAME (type, 0) == NULL
15664 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15665 || TYPE_FIELD_NAME (type, 1) == NULL
15666 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15667 return;
15668
15669 /* Find the type of the method. */
15670 pfn_type = TYPE_FIELD_TYPE (type, 0);
15671 if (pfn_type == NULL
15672 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15673 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15674 return;
15675
15676 /* Look for the "this" argument. */
15677 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15678 if (TYPE_NFIELDS (pfn_type) == 0
15679 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15680 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15681 return;
15682
15683 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15684 new_type = alloc_type (objfile);
15685 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15686 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15687 TYPE_VARARGS (pfn_type));
15688 smash_to_methodptr_type (type, new_type);
15689 }
15690
15691 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15692 appropriate error checking and issuing complaints if there is a
15693 problem. */
15694
15695 static ULONGEST
15696 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15697 {
15698 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15699
15700 if (attr == nullptr)
15701 return 0;
15702
15703 if (!attr_form_is_constant (attr))
15704 {
15705 complaint (_("DW_AT_alignment must have constant form"
15706 " - DIE at %s [in module %s]"),
15707 sect_offset_str (die->sect_off),
15708 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15709 return 0;
15710 }
15711
15712 ULONGEST align;
15713 if (attr->form == DW_FORM_sdata)
15714 {
15715 LONGEST val = DW_SND (attr);
15716 if (val < 0)
15717 {
15718 complaint (_("DW_AT_alignment value must not be negative"
15719 " - DIE at %s [in module %s]"),
15720 sect_offset_str (die->sect_off),
15721 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15722 return 0;
15723 }
15724 align = val;
15725 }
15726 else
15727 align = DW_UNSND (attr);
15728
15729 if (align == 0)
15730 {
15731 complaint (_("DW_AT_alignment value must not be zero"
15732 " - DIE at %s [in module %s]"),
15733 sect_offset_str (die->sect_off),
15734 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15735 return 0;
15736 }
15737 if ((align & (align - 1)) != 0)
15738 {
15739 complaint (_("DW_AT_alignment value must be a power of 2"
15740 " - DIE at %s [in module %s]"),
15741 sect_offset_str (die->sect_off),
15742 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15743 return 0;
15744 }
15745
15746 return align;
15747 }
15748
15749 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15750 the alignment for TYPE. */
15751
15752 static void
15753 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15754 struct type *type)
15755 {
15756 if (!set_type_align (type, get_alignment (cu, die)))
15757 complaint (_("DW_AT_alignment value too large"
15758 " - DIE at %s [in module %s]"),
15759 sect_offset_str (die->sect_off),
15760 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15761 }
15762
15763 /* Called when we find the DIE that starts a structure or union scope
15764 (definition) to create a type for the structure or union. Fill in
15765 the type's name and general properties; the members will not be
15766 processed until process_structure_scope. A symbol table entry for
15767 the type will also not be done until process_structure_scope (assuming
15768 the type has a name).
15769
15770 NOTE: we need to call these functions regardless of whether or not the
15771 DIE has a DW_AT_name attribute, since it might be an anonymous
15772 structure or union. This gets the type entered into our set of
15773 user defined types. */
15774
15775 static struct type *
15776 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15777 {
15778 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15779 struct type *type;
15780 struct attribute *attr;
15781 const char *name;
15782
15783 /* If the definition of this type lives in .debug_types, read that type.
15784 Don't follow DW_AT_specification though, that will take us back up
15785 the chain and we want to go down. */
15786 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15787 if (attr)
15788 {
15789 type = get_DW_AT_signature_type (die, attr, cu);
15790
15791 /* The type's CU may not be the same as CU.
15792 Ensure TYPE is recorded with CU in die_type_hash. */
15793 return set_die_type (die, type, cu);
15794 }
15795
15796 type = alloc_type (objfile);
15797 INIT_CPLUS_SPECIFIC (type);
15798
15799 name = dwarf2_name (die, cu);
15800 if (name != NULL)
15801 {
15802 if (cu->language == language_cplus
15803 || cu->language == language_d
15804 || cu->language == language_rust)
15805 {
15806 const char *full_name = dwarf2_full_name (name, die, cu);
15807
15808 /* dwarf2_full_name might have already finished building the DIE's
15809 type. If so, there is no need to continue. */
15810 if (get_die_type (die, cu) != NULL)
15811 return get_die_type (die, cu);
15812
15813 TYPE_NAME (type) = full_name;
15814 }
15815 else
15816 {
15817 /* The name is already allocated along with this objfile, so
15818 we don't need to duplicate it for the type. */
15819 TYPE_NAME (type) = name;
15820 }
15821 }
15822
15823 if (die->tag == DW_TAG_structure_type)
15824 {
15825 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15826 }
15827 else if (die->tag == DW_TAG_union_type)
15828 {
15829 TYPE_CODE (type) = TYPE_CODE_UNION;
15830 }
15831 else if (die->tag == DW_TAG_variant_part)
15832 {
15833 TYPE_CODE (type) = TYPE_CODE_UNION;
15834 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15835 }
15836 else
15837 {
15838 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15839 }
15840
15841 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15842 TYPE_DECLARED_CLASS (type) = 1;
15843
15844 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15845 if (attr)
15846 {
15847 if (attr_form_is_constant (attr))
15848 TYPE_LENGTH (type) = DW_UNSND (attr);
15849 else
15850 {
15851 /* For the moment, dynamic type sizes are not supported
15852 by GDB's struct type. The actual size is determined
15853 on-demand when resolving the type of a given object,
15854 so set the type's length to zero for now. Otherwise,
15855 we record an expression as the length, and that expression
15856 could lead to a very large value, which could eventually
15857 lead to us trying to allocate that much memory when creating
15858 a value of that type. */
15859 TYPE_LENGTH (type) = 0;
15860 }
15861 }
15862 else
15863 {
15864 TYPE_LENGTH (type) = 0;
15865 }
15866
15867 maybe_set_alignment (cu, die, type);
15868
15869 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15870 {
15871 /* ICC<14 does not output the required DW_AT_declaration on
15872 incomplete types, but gives them a size of zero. */
15873 TYPE_STUB (type) = 1;
15874 }
15875 else
15876 TYPE_STUB_SUPPORTED (type) = 1;
15877
15878 if (die_is_declaration (die, cu))
15879 TYPE_STUB (type) = 1;
15880 else if (attr == NULL && die->child == NULL
15881 && producer_is_realview (cu->producer))
15882 /* RealView does not output the required DW_AT_declaration
15883 on incomplete types. */
15884 TYPE_STUB (type) = 1;
15885
15886 /* We need to add the type field to the die immediately so we don't
15887 infinitely recurse when dealing with pointers to the structure
15888 type within the structure itself. */
15889 set_die_type (die, type, cu);
15890
15891 /* set_die_type should be already done. */
15892 set_descriptive_type (type, die, cu);
15893
15894 return type;
15895 }
15896
15897 /* A helper for process_structure_scope that handles a single member
15898 DIE. */
15899
15900 static void
15901 handle_struct_member_die (struct die_info *child_die, struct type *type,
15902 struct field_info *fi,
15903 std::vector<struct symbol *> *template_args,
15904 struct dwarf2_cu *cu)
15905 {
15906 if (child_die->tag == DW_TAG_member
15907 || child_die->tag == DW_TAG_variable
15908 || child_die->tag == DW_TAG_variant_part)
15909 {
15910 /* NOTE: carlton/2002-11-05: A C++ static data member
15911 should be a DW_TAG_member that is a declaration, but
15912 all versions of G++ as of this writing (so through at
15913 least 3.2.1) incorrectly generate DW_TAG_variable
15914 tags for them instead. */
15915 dwarf2_add_field (fi, child_die, cu);
15916 }
15917 else if (child_die->tag == DW_TAG_subprogram)
15918 {
15919 /* Rust doesn't have member functions in the C++ sense.
15920 However, it does emit ordinary functions as children
15921 of a struct DIE. */
15922 if (cu->language == language_rust)
15923 read_func_scope (child_die, cu);
15924 else
15925 {
15926 /* C++ member function. */
15927 dwarf2_add_member_fn (fi, child_die, type, cu);
15928 }
15929 }
15930 else if (child_die->tag == DW_TAG_inheritance)
15931 {
15932 /* C++ base class field. */
15933 dwarf2_add_field (fi, child_die, cu);
15934 }
15935 else if (type_can_define_types (child_die))
15936 dwarf2_add_type_defn (fi, child_die, cu);
15937 else if (child_die->tag == DW_TAG_template_type_param
15938 || child_die->tag == DW_TAG_template_value_param)
15939 {
15940 struct symbol *arg = new_symbol (child_die, NULL, cu);
15941
15942 if (arg != NULL)
15943 template_args->push_back (arg);
15944 }
15945 else if (child_die->tag == DW_TAG_variant)
15946 {
15947 /* In a variant we want to get the discriminant and also add a
15948 field for our sole member child. */
15949 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15950
15951 for (struct die_info *variant_child = child_die->child;
15952 variant_child != NULL;
15953 variant_child = sibling_die (variant_child))
15954 {
15955 if (variant_child->tag == DW_TAG_member)
15956 {
15957 handle_struct_member_die (variant_child, type, fi,
15958 template_args, cu);
15959 /* Only handle the one. */
15960 break;
15961 }
15962 }
15963
15964 /* We don't handle this but we might as well report it if we see
15965 it. */
15966 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15967 complaint (_("DW_AT_discr_list is not supported yet"
15968 " - DIE at %s [in module %s]"),
15969 sect_offset_str (child_die->sect_off),
15970 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15971
15972 /* The first field was just added, so we can stash the
15973 discriminant there. */
15974 gdb_assert (!fi->fields.empty ());
15975 if (discr == NULL)
15976 fi->fields.back ().variant.default_branch = true;
15977 else
15978 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15979 }
15980 }
15981
15982 /* Finish creating a structure or union type, including filling in
15983 its members and creating a symbol for it. */
15984
15985 static void
15986 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15987 {
15988 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15989 struct die_info *child_die;
15990 struct type *type;
15991
15992 type = get_die_type (die, cu);
15993 if (type == NULL)
15994 type = read_structure_type (die, cu);
15995
15996 /* When reading a DW_TAG_variant_part, we need to notice when we
15997 read the discriminant member, so we can record it later in the
15998 discriminant_info. */
15999 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16000 sect_offset discr_offset;
16001 bool has_template_parameters = false;
16002
16003 if (is_variant_part)
16004 {
16005 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16006 if (discr == NULL)
16007 {
16008 /* Maybe it's a univariant form, an extension we support.
16009 In this case arrange not to check the offset. */
16010 is_variant_part = false;
16011 }
16012 else if (attr_form_is_ref (discr))
16013 {
16014 struct dwarf2_cu *target_cu = cu;
16015 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16016
16017 discr_offset = target_die->sect_off;
16018 }
16019 else
16020 {
16021 complaint (_("DW_AT_discr does not have DIE reference form"
16022 " - DIE at %s [in module %s]"),
16023 sect_offset_str (die->sect_off),
16024 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16025 is_variant_part = false;
16026 }
16027 }
16028
16029 if (die->child != NULL && ! die_is_declaration (die, cu))
16030 {
16031 struct field_info fi;
16032 std::vector<struct symbol *> template_args;
16033
16034 child_die = die->child;
16035
16036 while (child_die && child_die->tag)
16037 {
16038 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16039
16040 if (is_variant_part && discr_offset == child_die->sect_off)
16041 fi.fields.back ().variant.is_discriminant = true;
16042
16043 child_die = sibling_die (child_die);
16044 }
16045
16046 /* Attach template arguments to type. */
16047 if (!template_args.empty ())
16048 {
16049 has_template_parameters = true;
16050 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16051 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16052 TYPE_TEMPLATE_ARGUMENTS (type)
16053 = XOBNEWVEC (&objfile->objfile_obstack,
16054 struct symbol *,
16055 TYPE_N_TEMPLATE_ARGUMENTS (type));
16056 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16057 template_args.data (),
16058 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16059 * sizeof (struct symbol *)));
16060 }
16061
16062 /* Attach fields and member functions to the type. */
16063 if (fi.nfields)
16064 dwarf2_attach_fields_to_type (&fi, type, cu);
16065 if (!fi.fnfieldlists.empty ())
16066 {
16067 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16068
16069 /* Get the type which refers to the base class (possibly this
16070 class itself) which contains the vtable pointer for the current
16071 class from the DW_AT_containing_type attribute. This use of
16072 DW_AT_containing_type is a GNU extension. */
16073
16074 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16075 {
16076 struct type *t = die_containing_type (die, cu);
16077
16078 set_type_vptr_basetype (type, t);
16079 if (type == t)
16080 {
16081 int i;
16082
16083 /* Our own class provides vtbl ptr. */
16084 for (i = TYPE_NFIELDS (t) - 1;
16085 i >= TYPE_N_BASECLASSES (t);
16086 --i)
16087 {
16088 const char *fieldname = TYPE_FIELD_NAME (t, i);
16089
16090 if (is_vtable_name (fieldname, cu))
16091 {
16092 set_type_vptr_fieldno (type, i);
16093 break;
16094 }
16095 }
16096
16097 /* Complain if virtual function table field not found. */
16098 if (i < TYPE_N_BASECLASSES (t))
16099 complaint (_("virtual function table pointer "
16100 "not found when defining class '%s'"),
16101 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16102 }
16103 else
16104 {
16105 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16106 }
16107 }
16108 else if (cu->producer
16109 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16110 {
16111 /* The IBM XLC compiler does not provide direct indication
16112 of the containing type, but the vtable pointer is
16113 always named __vfp. */
16114
16115 int i;
16116
16117 for (i = TYPE_NFIELDS (type) - 1;
16118 i >= TYPE_N_BASECLASSES (type);
16119 --i)
16120 {
16121 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16122 {
16123 set_type_vptr_fieldno (type, i);
16124 set_type_vptr_basetype (type, type);
16125 break;
16126 }
16127 }
16128 }
16129 }
16130
16131 /* Copy fi.typedef_field_list linked list elements content into the
16132 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16133 if (!fi.typedef_field_list.empty ())
16134 {
16135 int count = fi.typedef_field_list.size ();
16136
16137 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16138 TYPE_TYPEDEF_FIELD_ARRAY (type)
16139 = ((struct decl_field *)
16140 TYPE_ALLOC (type,
16141 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16142 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16143
16144 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16145 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16146 }
16147
16148 /* Copy fi.nested_types_list linked list elements content into the
16149 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16150 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16151 {
16152 int count = fi.nested_types_list.size ();
16153
16154 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16155 TYPE_NESTED_TYPES_ARRAY (type)
16156 = ((struct decl_field *)
16157 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16158 TYPE_NESTED_TYPES_COUNT (type) = count;
16159
16160 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16161 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16162 }
16163 }
16164
16165 quirk_gcc_member_function_pointer (type, objfile);
16166 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16167 cu->rust_unions.push_back (type);
16168
16169 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16170 snapshots) has been known to create a die giving a declaration
16171 for a class that has, as a child, a die giving a definition for a
16172 nested class. So we have to process our children even if the
16173 current die is a declaration. Normally, of course, a declaration
16174 won't have any children at all. */
16175
16176 child_die = die->child;
16177
16178 while (child_die != NULL && child_die->tag)
16179 {
16180 if (child_die->tag == DW_TAG_member
16181 || child_die->tag == DW_TAG_variable
16182 || child_die->tag == DW_TAG_inheritance
16183 || child_die->tag == DW_TAG_template_value_param
16184 || child_die->tag == DW_TAG_template_type_param)
16185 {
16186 /* Do nothing. */
16187 }
16188 else
16189 process_die (child_die, cu);
16190
16191 child_die = sibling_die (child_die);
16192 }
16193
16194 /* Do not consider external references. According to the DWARF standard,
16195 these DIEs are identified by the fact that they have no byte_size
16196 attribute, and a declaration attribute. */
16197 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16198 || !die_is_declaration (die, cu))
16199 {
16200 struct symbol *sym = new_symbol (die, type, cu);
16201
16202 if (has_template_parameters)
16203 {
16204 /* Make sure that the symtab is set on the new symbols.
16205 Even though they don't appear in this symtab directly,
16206 other parts of gdb assume that symbols do, and this is
16207 reasonably true. */
16208 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16209 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i),
16210 symbol_symtab (sym));
16211 }
16212 }
16213 }
16214
16215 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16216 update TYPE using some information only available in DIE's children. */
16217
16218 static void
16219 update_enumeration_type_from_children (struct die_info *die,
16220 struct type *type,
16221 struct dwarf2_cu *cu)
16222 {
16223 struct die_info *child_die;
16224 int unsigned_enum = 1;
16225 int flag_enum = 1;
16226 ULONGEST mask = 0;
16227
16228 auto_obstack obstack;
16229
16230 for (child_die = die->child;
16231 child_die != NULL && child_die->tag;
16232 child_die = sibling_die (child_die))
16233 {
16234 struct attribute *attr;
16235 LONGEST value;
16236 const gdb_byte *bytes;
16237 struct dwarf2_locexpr_baton *baton;
16238 const char *name;
16239
16240 if (child_die->tag != DW_TAG_enumerator)
16241 continue;
16242
16243 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16244 if (attr == NULL)
16245 continue;
16246
16247 name = dwarf2_name (child_die, cu);
16248 if (name == NULL)
16249 name = "<anonymous enumerator>";
16250
16251 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16252 &value, &bytes, &baton);
16253 if (value < 0)
16254 {
16255 unsigned_enum = 0;
16256 flag_enum = 0;
16257 }
16258 else if ((mask & value) != 0)
16259 flag_enum = 0;
16260 else
16261 mask |= value;
16262
16263 /* If we already know that the enum type is neither unsigned, nor
16264 a flag type, no need to look at the rest of the enumerates. */
16265 if (!unsigned_enum && !flag_enum)
16266 break;
16267 }
16268
16269 if (unsigned_enum)
16270 TYPE_UNSIGNED (type) = 1;
16271 if (flag_enum)
16272 TYPE_FLAG_ENUM (type) = 1;
16273 }
16274
16275 /* Given a DW_AT_enumeration_type die, set its type. We do not
16276 complete the type's fields yet, or create any symbols. */
16277
16278 static struct type *
16279 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16280 {
16281 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16282 struct type *type;
16283 struct attribute *attr;
16284 const char *name;
16285
16286 /* If the definition of this type lives in .debug_types, read that type.
16287 Don't follow DW_AT_specification though, that will take us back up
16288 the chain and we want to go down. */
16289 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16290 if (attr)
16291 {
16292 type = get_DW_AT_signature_type (die, attr, cu);
16293
16294 /* The type's CU may not be the same as CU.
16295 Ensure TYPE is recorded with CU in die_type_hash. */
16296 return set_die_type (die, type, cu);
16297 }
16298
16299 type = alloc_type (objfile);
16300
16301 TYPE_CODE (type) = TYPE_CODE_ENUM;
16302 name = dwarf2_full_name (NULL, die, cu);
16303 if (name != NULL)
16304 TYPE_NAME (type) = name;
16305
16306 attr = dwarf2_attr (die, DW_AT_type, cu);
16307 if (attr != NULL)
16308 {
16309 struct type *underlying_type = die_type (die, cu);
16310
16311 TYPE_TARGET_TYPE (type) = underlying_type;
16312 }
16313
16314 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16315 if (attr)
16316 {
16317 TYPE_LENGTH (type) = DW_UNSND (attr);
16318 }
16319 else
16320 {
16321 TYPE_LENGTH (type) = 0;
16322 }
16323
16324 maybe_set_alignment (cu, die, type);
16325
16326 /* The enumeration DIE can be incomplete. In Ada, any type can be
16327 declared as private in the package spec, and then defined only
16328 inside the package body. Such types are known as Taft Amendment
16329 Types. When another package uses such a type, an incomplete DIE
16330 may be generated by the compiler. */
16331 if (die_is_declaration (die, cu))
16332 TYPE_STUB (type) = 1;
16333
16334 /* Finish the creation of this type by using the enum's children.
16335 We must call this even when the underlying type has been provided
16336 so that we can determine if we're looking at a "flag" enum. */
16337 update_enumeration_type_from_children (die, type, cu);
16338
16339 /* If this type has an underlying type that is not a stub, then we
16340 may use its attributes. We always use the "unsigned" attribute
16341 in this situation, because ordinarily we guess whether the type
16342 is unsigned -- but the guess can be wrong and the underlying type
16343 can tell us the reality. However, we defer to a local size
16344 attribute if one exists, because this lets the compiler override
16345 the underlying type if needed. */
16346 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16347 {
16348 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16349 if (TYPE_LENGTH (type) == 0)
16350 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16351 if (TYPE_RAW_ALIGN (type) == 0
16352 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16353 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16354 }
16355
16356 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16357
16358 return set_die_type (die, type, cu);
16359 }
16360
16361 /* Given a pointer to a die which begins an enumeration, process all
16362 the dies that define the members of the enumeration, and create the
16363 symbol for the enumeration type.
16364
16365 NOTE: We reverse the order of the element list. */
16366
16367 static void
16368 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16369 {
16370 struct type *this_type;
16371
16372 this_type = get_die_type (die, cu);
16373 if (this_type == NULL)
16374 this_type = read_enumeration_type (die, cu);
16375
16376 if (die->child != NULL)
16377 {
16378 struct die_info *child_die;
16379 struct symbol *sym;
16380 struct field *fields = NULL;
16381 int num_fields = 0;
16382 const char *name;
16383
16384 child_die = die->child;
16385 while (child_die && child_die->tag)
16386 {
16387 if (child_die->tag != DW_TAG_enumerator)
16388 {
16389 process_die (child_die, cu);
16390 }
16391 else
16392 {
16393 name = dwarf2_name (child_die, cu);
16394 if (name)
16395 {
16396 sym = new_symbol (child_die, this_type, cu);
16397
16398 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16399 {
16400 fields = (struct field *)
16401 xrealloc (fields,
16402 (num_fields + DW_FIELD_ALLOC_CHUNK)
16403 * sizeof (struct field));
16404 }
16405
16406 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16407 FIELD_TYPE (fields[num_fields]) = NULL;
16408 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16409 FIELD_BITSIZE (fields[num_fields]) = 0;
16410
16411 num_fields++;
16412 }
16413 }
16414
16415 child_die = sibling_die (child_die);
16416 }
16417
16418 if (num_fields)
16419 {
16420 TYPE_NFIELDS (this_type) = num_fields;
16421 TYPE_FIELDS (this_type) = (struct field *)
16422 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16423 memcpy (TYPE_FIELDS (this_type), fields,
16424 sizeof (struct field) * num_fields);
16425 xfree (fields);
16426 }
16427 }
16428
16429 /* If we are reading an enum from a .debug_types unit, and the enum
16430 is a declaration, and the enum is not the signatured type in the
16431 unit, then we do not want to add a symbol for it. Adding a
16432 symbol would in some cases obscure the true definition of the
16433 enum, giving users an incomplete type when the definition is
16434 actually available. Note that we do not want to do this for all
16435 enums which are just declarations, because C++0x allows forward
16436 enum declarations. */
16437 if (cu->per_cu->is_debug_types
16438 && die_is_declaration (die, cu))
16439 {
16440 struct signatured_type *sig_type;
16441
16442 sig_type = (struct signatured_type *) cu->per_cu;
16443 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16444 if (sig_type->type_offset_in_section != die->sect_off)
16445 return;
16446 }
16447
16448 new_symbol (die, this_type, cu);
16449 }
16450
16451 /* Extract all information from a DW_TAG_array_type DIE and put it in
16452 the DIE's type field. For now, this only handles one dimensional
16453 arrays. */
16454
16455 static struct type *
16456 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16457 {
16458 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16459 struct die_info *child_die;
16460 struct type *type;
16461 struct type *element_type, *range_type, *index_type;
16462 struct attribute *attr;
16463 const char *name;
16464 struct dynamic_prop *byte_stride_prop = NULL;
16465 unsigned int bit_stride = 0;
16466
16467 element_type = die_type (die, cu);
16468
16469 /* The die_type call above may have already set the type for this DIE. */
16470 type = get_die_type (die, cu);
16471 if (type)
16472 return type;
16473
16474 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16475 if (attr != NULL)
16476 {
16477 int stride_ok;
16478
16479 byte_stride_prop
16480 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16481 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16482 if (!stride_ok)
16483 {
16484 complaint (_("unable to read array DW_AT_byte_stride "
16485 " - DIE at %s [in module %s]"),
16486 sect_offset_str (die->sect_off),
16487 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16488 /* Ignore this attribute. We will likely not be able to print
16489 arrays of this type correctly, but there is little we can do
16490 to help if we cannot read the attribute's value. */
16491 byte_stride_prop = NULL;
16492 }
16493 }
16494
16495 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16496 if (attr != NULL)
16497 bit_stride = DW_UNSND (attr);
16498
16499 /* Irix 6.2 native cc creates array types without children for
16500 arrays with unspecified length. */
16501 if (die->child == NULL)
16502 {
16503 index_type = objfile_type (objfile)->builtin_int;
16504 range_type = create_static_range_type (NULL, index_type, 0, -1);
16505 type = create_array_type_with_stride (NULL, element_type, range_type,
16506 byte_stride_prop, bit_stride);
16507 return set_die_type (die, type, cu);
16508 }
16509
16510 std::vector<struct type *> range_types;
16511 child_die = die->child;
16512 while (child_die && child_die->tag)
16513 {
16514 if (child_die->tag == DW_TAG_subrange_type)
16515 {
16516 struct type *child_type = read_type_die (child_die, cu);
16517
16518 if (child_type != NULL)
16519 {
16520 /* The range type was succesfully read. Save it for the
16521 array type creation. */
16522 range_types.push_back (child_type);
16523 }
16524 }
16525 child_die = sibling_die (child_die);
16526 }
16527
16528 /* Dwarf2 dimensions are output from left to right, create the
16529 necessary array types in backwards order. */
16530
16531 type = element_type;
16532
16533 if (read_array_order (die, cu) == DW_ORD_col_major)
16534 {
16535 int i = 0;
16536
16537 while (i < range_types.size ())
16538 type = create_array_type_with_stride (NULL, type, range_types[i++],
16539 byte_stride_prop, bit_stride);
16540 }
16541 else
16542 {
16543 size_t ndim = range_types.size ();
16544 while (ndim-- > 0)
16545 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16546 byte_stride_prop, bit_stride);
16547 }
16548
16549 /* Understand Dwarf2 support for vector types (like they occur on
16550 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16551 array type. This is not part of the Dwarf2/3 standard yet, but a
16552 custom vendor extension. The main difference between a regular
16553 array and the vector variant is that vectors are passed by value
16554 to functions. */
16555 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16556 if (attr)
16557 make_vector_type (type);
16558
16559 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16560 implementation may choose to implement triple vectors using this
16561 attribute. */
16562 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16563 if (attr)
16564 {
16565 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16566 TYPE_LENGTH (type) = DW_UNSND (attr);
16567 else
16568 complaint (_("DW_AT_byte_size for array type smaller "
16569 "than the total size of elements"));
16570 }
16571
16572 name = dwarf2_name (die, cu);
16573 if (name)
16574 TYPE_NAME (type) = name;
16575
16576 maybe_set_alignment (cu, die, type);
16577
16578 /* Install the type in the die. */
16579 set_die_type (die, type, cu);
16580
16581 /* set_die_type should be already done. */
16582 set_descriptive_type (type, die, cu);
16583
16584 return type;
16585 }
16586
16587 static enum dwarf_array_dim_ordering
16588 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16589 {
16590 struct attribute *attr;
16591
16592 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16593
16594 if (attr)
16595 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16596
16597 /* GNU F77 is a special case, as at 08/2004 array type info is the
16598 opposite order to the dwarf2 specification, but data is still
16599 laid out as per normal fortran.
16600
16601 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16602 version checking. */
16603
16604 if (cu->language == language_fortran
16605 && cu->producer && strstr (cu->producer, "GNU F77"))
16606 {
16607 return DW_ORD_row_major;
16608 }
16609
16610 switch (cu->language_defn->la_array_ordering)
16611 {
16612 case array_column_major:
16613 return DW_ORD_col_major;
16614 case array_row_major:
16615 default:
16616 return DW_ORD_row_major;
16617 };
16618 }
16619
16620 /* Extract all information from a DW_TAG_set_type DIE and put it in
16621 the DIE's type field. */
16622
16623 static struct type *
16624 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16625 {
16626 struct type *domain_type, *set_type;
16627 struct attribute *attr;
16628
16629 domain_type = die_type (die, cu);
16630
16631 /* The die_type call above may have already set the type for this DIE. */
16632 set_type = get_die_type (die, cu);
16633 if (set_type)
16634 return set_type;
16635
16636 set_type = create_set_type (NULL, domain_type);
16637
16638 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16639 if (attr)
16640 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16641
16642 maybe_set_alignment (cu, die, set_type);
16643
16644 return set_die_type (die, set_type, cu);
16645 }
16646
16647 /* A helper for read_common_block that creates a locexpr baton.
16648 SYM is the symbol which we are marking as computed.
16649 COMMON_DIE is the DIE for the common block.
16650 COMMON_LOC is the location expression attribute for the common
16651 block itself.
16652 MEMBER_LOC is the location expression attribute for the particular
16653 member of the common block that we are processing.
16654 CU is the CU from which the above come. */
16655
16656 static void
16657 mark_common_block_symbol_computed (struct symbol *sym,
16658 struct die_info *common_die,
16659 struct attribute *common_loc,
16660 struct attribute *member_loc,
16661 struct dwarf2_cu *cu)
16662 {
16663 struct dwarf2_per_objfile *dwarf2_per_objfile
16664 = cu->per_cu->dwarf2_per_objfile;
16665 struct objfile *objfile = dwarf2_per_objfile->objfile;
16666 struct dwarf2_locexpr_baton *baton;
16667 gdb_byte *ptr;
16668 unsigned int cu_off;
16669 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16670 LONGEST offset = 0;
16671
16672 gdb_assert (common_loc && member_loc);
16673 gdb_assert (attr_form_is_block (common_loc));
16674 gdb_assert (attr_form_is_block (member_loc)
16675 || attr_form_is_constant (member_loc));
16676
16677 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16678 baton->per_cu = cu->per_cu;
16679 gdb_assert (baton->per_cu);
16680
16681 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16682
16683 if (attr_form_is_constant (member_loc))
16684 {
16685 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16686 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16687 }
16688 else
16689 baton->size += DW_BLOCK (member_loc)->size;
16690
16691 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16692 baton->data = ptr;
16693
16694 *ptr++ = DW_OP_call4;
16695 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16696 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16697 ptr += 4;
16698
16699 if (attr_form_is_constant (member_loc))
16700 {
16701 *ptr++ = DW_OP_addr;
16702 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16703 ptr += cu->header.addr_size;
16704 }
16705 else
16706 {
16707 /* We have to copy the data here, because DW_OP_call4 will only
16708 use a DW_AT_location attribute. */
16709 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16710 ptr += DW_BLOCK (member_loc)->size;
16711 }
16712
16713 *ptr++ = DW_OP_plus;
16714 gdb_assert (ptr - baton->data == baton->size);
16715
16716 SYMBOL_LOCATION_BATON (sym) = baton;
16717 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16718 }
16719
16720 /* Create appropriate locally-scoped variables for all the
16721 DW_TAG_common_block entries. Also create a struct common_block
16722 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16723 is used to sepate the common blocks name namespace from regular
16724 variable names. */
16725
16726 static void
16727 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16728 {
16729 struct attribute *attr;
16730
16731 attr = dwarf2_attr (die, DW_AT_location, cu);
16732 if (attr)
16733 {
16734 /* Support the .debug_loc offsets. */
16735 if (attr_form_is_block (attr))
16736 {
16737 /* Ok. */
16738 }
16739 else if (attr_form_is_section_offset (attr))
16740 {
16741 dwarf2_complex_location_expr_complaint ();
16742 attr = NULL;
16743 }
16744 else
16745 {
16746 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16747 "common block member");
16748 attr = NULL;
16749 }
16750 }
16751
16752 if (die->child != NULL)
16753 {
16754 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16755 struct die_info *child_die;
16756 size_t n_entries = 0, size;
16757 struct common_block *common_block;
16758 struct symbol *sym;
16759
16760 for (child_die = die->child;
16761 child_die && child_die->tag;
16762 child_die = sibling_die (child_die))
16763 ++n_entries;
16764
16765 size = (sizeof (struct common_block)
16766 + (n_entries - 1) * sizeof (struct symbol *));
16767 common_block
16768 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16769 size);
16770 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16771 common_block->n_entries = 0;
16772
16773 for (child_die = die->child;
16774 child_die && child_die->tag;
16775 child_die = sibling_die (child_die))
16776 {
16777 /* Create the symbol in the DW_TAG_common_block block in the current
16778 symbol scope. */
16779 sym = new_symbol (child_die, NULL, cu);
16780 if (sym != NULL)
16781 {
16782 struct attribute *member_loc;
16783
16784 common_block->contents[common_block->n_entries++] = sym;
16785
16786 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16787 cu);
16788 if (member_loc)
16789 {
16790 /* GDB has handled this for a long time, but it is
16791 not specified by DWARF. It seems to have been
16792 emitted by gfortran at least as recently as:
16793 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16794 complaint (_("Variable in common block has "
16795 "DW_AT_data_member_location "
16796 "- DIE at %s [in module %s]"),
16797 sect_offset_str (child_die->sect_off),
16798 objfile_name (objfile));
16799
16800 if (attr_form_is_section_offset (member_loc))
16801 dwarf2_complex_location_expr_complaint ();
16802 else if (attr_form_is_constant (member_loc)
16803 || attr_form_is_block (member_loc))
16804 {
16805 if (attr)
16806 mark_common_block_symbol_computed (sym, die, attr,
16807 member_loc, cu);
16808 }
16809 else
16810 dwarf2_complex_location_expr_complaint ();
16811 }
16812 }
16813 }
16814
16815 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16816 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16817 }
16818 }
16819
16820 /* Create a type for a C++ namespace. */
16821
16822 static struct type *
16823 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16824 {
16825 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16826 const char *previous_prefix, *name;
16827 int is_anonymous;
16828 struct type *type;
16829
16830 /* For extensions, reuse the type of the original namespace. */
16831 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16832 {
16833 struct die_info *ext_die;
16834 struct dwarf2_cu *ext_cu = cu;
16835
16836 ext_die = dwarf2_extension (die, &ext_cu);
16837 type = read_type_die (ext_die, ext_cu);
16838
16839 /* EXT_CU may not be the same as CU.
16840 Ensure TYPE is recorded with CU in die_type_hash. */
16841 return set_die_type (die, type, cu);
16842 }
16843
16844 name = namespace_name (die, &is_anonymous, cu);
16845
16846 /* Now build the name of the current namespace. */
16847
16848 previous_prefix = determine_prefix (die, cu);
16849 if (previous_prefix[0] != '\0')
16850 name = typename_concat (&objfile->objfile_obstack,
16851 previous_prefix, name, 0, cu);
16852
16853 /* Create the type. */
16854 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16855
16856 return set_die_type (die, type, cu);
16857 }
16858
16859 /* Read a namespace scope. */
16860
16861 static void
16862 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16863 {
16864 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16865 int is_anonymous;
16866
16867 /* Add a symbol associated to this if we haven't seen the namespace
16868 before. Also, add a using directive if it's an anonymous
16869 namespace. */
16870
16871 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16872 {
16873 struct type *type;
16874
16875 type = read_type_die (die, cu);
16876 new_symbol (die, type, cu);
16877
16878 namespace_name (die, &is_anonymous, cu);
16879 if (is_anonymous)
16880 {
16881 const char *previous_prefix = determine_prefix (die, cu);
16882
16883 std::vector<const char *> excludes;
16884 add_using_directive (using_directives (cu),
16885 previous_prefix, TYPE_NAME (type), NULL,
16886 NULL, excludes, 0, &objfile->objfile_obstack);
16887 }
16888 }
16889
16890 if (die->child != NULL)
16891 {
16892 struct die_info *child_die = die->child;
16893
16894 while (child_die && child_die->tag)
16895 {
16896 process_die (child_die, cu);
16897 child_die = sibling_die (child_die);
16898 }
16899 }
16900 }
16901
16902 /* Read a Fortran module as type. This DIE can be only a declaration used for
16903 imported module. Still we need that type as local Fortran "use ... only"
16904 declaration imports depend on the created type in determine_prefix. */
16905
16906 static struct type *
16907 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16908 {
16909 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16910 const char *module_name;
16911 struct type *type;
16912
16913 module_name = dwarf2_name (die, cu);
16914 if (!module_name)
16915 complaint (_("DW_TAG_module has no name, offset %s"),
16916 sect_offset_str (die->sect_off));
16917 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16918
16919 return set_die_type (die, type, cu);
16920 }
16921
16922 /* Read a Fortran module. */
16923
16924 static void
16925 read_module (struct die_info *die, struct dwarf2_cu *cu)
16926 {
16927 struct die_info *child_die = die->child;
16928 struct type *type;
16929
16930 type = read_type_die (die, cu);
16931 new_symbol (die, type, cu);
16932
16933 while (child_die && child_die->tag)
16934 {
16935 process_die (child_die, cu);
16936 child_die = sibling_die (child_die);
16937 }
16938 }
16939
16940 /* Return the name of the namespace represented by DIE. Set
16941 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16942 namespace. */
16943
16944 static const char *
16945 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16946 {
16947 struct die_info *current_die;
16948 const char *name = NULL;
16949
16950 /* Loop through the extensions until we find a name. */
16951
16952 for (current_die = die;
16953 current_die != NULL;
16954 current_die = dwarf2_extension (die, &cu))
16955 {
16956 /* We don't use dwarf2_name here so that we can detect the absence
16957 of a name -> anonymous namespace. */
16958 name = dwarf2_string_attr (die, DW_AT_name, cu);
16959
16960 if (name != NULL)
16961 break;
16962 }
16963
16964 /* Is it an anonymous namespace? */
16965
16966 *is_anonymous = (name == NULL);
16967 if (*is_anonymous)
16968 name = CP_ANONYMOUS_NAMESPACE_STR;
16969
16970 return name;
16971 }
16972
16973 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16974 the user defined type vector. */
16975
16976 static struct type *
16977 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16978 {
16979 struct gdbarch *gdbarch
16980 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16981 struct comp_unit_head *cu_header = &cu->header;
16982 struct type *type;
16983 struct attribute *attr_byte_size;
16984 struct attribute *attr_address_class;
16985 int byte_size, addr_class;
16986 struct type *target_type;
16987
16988 target_type = die_type (die, cu);
16989
16990 /* The die_type call above may have already set the type for this DIE. */
16991 type = get_die_type (die, cu);
16992 if (type)
16993 return type;
16994
16995 type = lookup_pointer_type (target_type);
16996
16997 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16998 if (attr_byte_size)
16999 byte_size = DW_UNSND (attr_byte_size);
17000 else
17001 byte_size = cu_header->addr_size;
17002
17003 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17004 if (attr_address_class)
17005 addr_class = DW_UNSND (attr_address_class);
17006 else
17007 addr_class = DW_ADDR_none;
17008
17009 ULONGEST alignment = get_alignment (cu, die);
17010
17011 /* If the pointer size, alignment, or address class is different
17012 than the default, create a type variant marked as such and set
17013 the length accordingly. */
17014 if (TYPE_LENGTH (type) != byte_size
17015 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17016 && alignment != TYPE_RAW_ALIGN (type))
17017 || addr_class != DW_ADDR_none)
17018 {
17019 if (gdbarch_address_class_type_flags_p (gdbarch))
17020 {
17021 int type_flags;
17022
17023 type_flags = gdbarch_address_class_type_flags
17024 (gdbarch, byte_size, addr_class);
17025 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17026 == 0);
17027 type = make_type_with_address_space (type, type_flags);
17028 }
17029 else if (TYPE_LENGTH (type) != byte_size)
17030 {
17031 complaint (_("invalid pointer size %d"), byte_size);
17032 }
17033 else if (TYPE_RAW_ALIGN (type) != alignment)
17034 {
17035 complaint (_("Invalid DW_AT_alignment"
17036 " - DIE at %s [in module %s]"),
17037 sect_offset_str (die->sect_off),
17038 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17039 }
17040 else
17041 {
17042 /* Should we also complain about unhandled address classes? */
17043 }
17044 }
17045
17046 TYPE_LENGTH (type) = byte_size;
17047 set_type_align (type, alignment);
17048 return set_die_type (die, type, cu);
17049 }
17050
17051 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17052 the user defined type vector. */
17053
17054 static struct type *
17055 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17056 {
17057 struct type *type;
17058 struct type *to_type;
17059 struct type *domain;
17060
17061 to_type = die_type (die, cu);
17062 domain = die_containing_type (die, cu);
17063
17064 /* The calls above may have already set the type for this DIE. */
17065 type = get_die_type (die, cu);
17066 if (type)
17067 return type;
17068
17069 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17070 type = lookup_methodptr_type (to_type);
17071 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17072 {
17073 struct type *new_type
17074 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17075
17076 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17077 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17078 TYPE_VARARGS (to_type));
17079 type = lookup_methodptr_type (new_type);
17080 }
17081 else
17082 type = lookup_memberptr_type (to_type, domain);
17083
17084 return set_die_type (die, type, cu);
17085 }
17086
17087 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17088 the user defined type vector. */
17089
17090 static struct type *
17091 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17092 enum type_code refcode)
17093 {
17094 struct comp_unit_head *cu_header = &cu->header;
17095 struct type *type, *target_type;
17096 struct attribute *attr;
17097
17098 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17099
17100 target_type = die_type (die, cu);
17101
17102 /* The die_type call above may have already set the type for this DIE. */
17103 type = get_die_type (die, cu);
17104 if (type)
17105 return type;
17106
17107 type = lookup_reference_type (target_type, refcode);
17108 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17109 if (attr)
17110 {
17111 TYPE_LENGTH (type) = DW_UNSND (attr);
17112 }
17113 else
17114 {
17115 TYPE_LENGTH (type) = cu_header->addr_size;
17116 }
17117 maybe_set_alignment (cu, die, type);
17118 return set_die_type (die, type, cu);
17119 }
17120
17121 /* Add the given cv-qualifiers to the element type of the array. GCC
17122 outputs DWARF type qualifiers that apply to an array, not the
17123 element type. But GDB relies on the array element type to carry
17124 the cv-qualifiers. This mimics section 6.7.3 of the C99
17125 specification. */
17126
17127 static struct type *
17128 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17129 struct type *base_type, int cnst, int voltl)
17130 {
17131 struct type *el_type, *inner_array;
17132
17133 base_type = copy_type (base_type);
17134 inner_array = base_type;
17135
17136 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17137 {
17138 TYPE_TARGET_TYPE (inner_array) =
17139 copy_type (TYPE_TARGET_TYPE (inner_array));
17140 inner_array = TYPE_TARGET_TYPE (inner_array);
17141 }
17142
17143 el_type = TYPE_TARGET_TYPE (inner_array);
17144 cnst |= TYPE_CONST (el_type);
17145 voltl |= TYPE_VOLATILE (el_type);
17146 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17147
17148 return set_die_type (die, base_type, cu);
17149 }
17150
17151 static struct type *
17152 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17153 {
17154 struct type *base_type, *cv_type;
17155
17156 base_type = die_type (die, cu);
17157
17158 /* The die_type call above may have already set the type for this DIE. */
17159 cv_type = get_die_type (die, cu);
17160 if (cv_type)
17161 return cv_type;
17162
17163 /* In case the const qualifier is applied to an array type, the element type
17164 is so qualified, not the array type (section 6.7.3 of C99). */
17165 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17166 return add_array_cv_type (die, cu, base_type, 1, 0);
17167
17168 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17169 return set_die_type (die, cv_type, cu);
17170 }
17171
17172 static struct type *
17173 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17174 {
17175 struct type *base_type, *cv_type;
17176
17177 base_type = die_type (die, cu);
17178
17179 /* The die_type call above may have already set the type for this DIE. */
17180 cv_type = get_die_type (die, cu);
17181 if (cv_type)
17182 return cv_type;
17183
17184 /* In case the volatile qualifier is applied to an array type, the
17185 element type is so qualified, not the array type (section 6.7.3
17186 of C99). */
17187 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17188 return add_array_cv_type (die, cu, base_type, 0, 1);
17189
17190 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17191 return set_die_type (die, cv_type, cu);
17192 }
17193
17194 /* Handle DW_TAG_restrict_type. */
17195
17196 static struct type *
17197 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17198 {
17199 struct type *base_type, *cv_type;
17200
17201 base_type = die_type (die, cu);
17202
17203 /* The die_type call above may have already set the type for this DIE. */
17204 cv_type = get_die_type (die, cu);
17205 if (cv_type)
17206 return cv_type;
17207
17208 cv_type = make_restrict_type (base_type);
17209 return set_die_type (die, cv_type, cu);
17210 }
17211
17212 /* Handle DW_TAG_atomic_type. */
17213
17214 static struct type *
17215 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17216 {
17217 struct type *base_type, *cv_type;
17218
17219 base_type = die_type (die, cu);
17220
17221 /* The die_type call above may have already set the type for this DIE. */
17222 cv_type = get_die_type (die, cu);
17223 if (cv_type)
17224 return cv_type;
17225
17226 cv_type = make_atomic_type (base_type);
17227 return set_die_type (die, cv_type, cu);
17228 }
17229
17230 /* Extract all information from a DW_TAG_string_type DIE and add to
17231 the user defined type vector. It isn't really a user defined type,
17232 but it behaves like one, with other DIE's using an AT_user_def_type
17233 attribute to reference it. */
17234
17235 static struct type *
17236 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17237 {
17238 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17239 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17240 struct type *type, *range_type, *index_type, *char_type;
17241 struct attribute *attr;
17242 unsigned int length;
17243
17244 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17245 if (attr)
17246 {
17247 length = DW_UNSND (attr);
17248 }
17249 else
17250 {
17251 /* Check for the DW_AT_byte_size attribute. */
17252 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17253 if (attr)
17254 {
17255 length = DW_UNSND (attr);
17256 }
17257 else
17258 {
17259 length = 1;
17260 }
17261 }
17262
17263 index_type = objfile_type (objfile)->builtin_int;
17264 range_type = create_static_range_type (NULL, index_type, 1, length);
17265 char_type = language_string_char_type (cu->language_defn, gdbarch);
17266 type = create_string_type (NULL, char_type, range_type);
17267
17268 return set_die_type (die, type, cu);
17269 }
17270
17271 /* Assuming that DIE corresponds to a function, returns nonzero
17272 if the function is prototyped. */
17273
17274 static int
17275 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17276 {
17277 struct attribute *attr;
17278
17279 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17280 if (attr && (DW_UNSND (attr) != 0))
17281 return 1;
17282
17283 /* The DWARF standard implies that the DW_AT_prototyped attribute
17284 is only meaninful for C, but the concept also extends to other
17285 languages that allow unprototyped functions (Eg: Objective C).
17286 For all other languages, assume that functions are always
17287 prototyped. */
17288 if (cu->language != language_c
17289 && cu->language != language_objc
17290 && cu->language != language_opencl)
17291 return 1;
17292
17293 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17294 prototyped and unprototyped functions; default to prototyped,
17295 since that is more common in modern code (and RealView warns
17296 about unprototyped functions). */
17297 if (producer_is_realview (cu->producer))
17298 return 1;
17299
17300 return 0;
17301 }
17302
17303 /* Handle DIES due to C code like:
17304
17305 struct foo
17306 {
17307 int (*funcp)(int a, long l);
17308 int b;
17309 };
17310
17311 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17312
17313 static struct type *
17314 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17315 {
17316 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17317 struct type *type; /* Type that this function returns. */
17318 struct type *ftype; /* Function that returns above type. */
17319 struct attribute *attr;
17320
17321 type = die_type (die, cu);
17322
17323 /* The die_type call above may have already set the type for this DIE. */
17324 ftype = get_die_type (die, cu);
17325 if (ftype)
17326 return ftype;
17327
17328 ftype = lookup_function_type (type);
17329
17330 if (prototyped_function_p (die, cu))
17331 TYPE_PROTOTYPED (ftype) = 1;
17332
17333 /* Store the calling convention in the type if it's available in
17334 the subroutine die. Otherwise set the calling convention to
17335 the default value DW_CC_normal. */
17336 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17337 if (attr)
17338 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17339 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17340 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17341 else
17342 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17343
17344 /* Record whether the function returns normally to its caller or not
17345 if the DWARF producer set that information. */
17346 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17347 if (attr && (DW_UNSND (attr) != 0))
17348 TYPE_NO_RETURN (ftype) = 1;
17349
17350 /* We need to add the subroutine type to the die immediately so
17351 we don't infinitely recurse when dealing with parameters
17352 declared as the same subroutine type. */
17353 set_die_type (die, ftype, cu);
17354
17355 if (die->child != NULL)
17356 {
17357 struct type *void_type = objfile_type (objfile)->builtin_void;
17358 struct die_info *child_die;
17359 int nparams, iparams;
17360
17361 /* Count the number of parameters.
17362 FIXME: GDB currently ignores vararg functions, but knows about
17363 vararg member functions. */
17364 nparams = 0;
17365 child_die = die->child;
17366 while (child_die && child_die->tag)
17367 {
17368 if (child_die->tag == DW_TAG_formal_parameter)
17369 nparams++;
17370 else if (child_die->tag == DW_TAG_unspecified_parameters)
17371 TYPE_VARARGS (ftype) = 1;
17372 child_die = sibling_die (child_die);
17373 }
17374
17375 /* Allocate storage for parameters and fill them in. */
17376 TYPE_NFIELDS (ftype) = nparams;
17377 TYPE_FIELDS (ftype) = (struct field *)
17378 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17379
17380 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17381 even if we error out during the parameters reading below. */
17382 for (iparams = 0; iparams < nparams; iparams++)
17383 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17384
17385 iparams = 0;
17386 child_die = die->child;
17387 while (child_die && child_die->tag)
17388 {
17389 if (child_die->tag == DW_TAG_formal_parameter)
17390 {
17391 struct type *arg_type;
17392
17393 /* DWARF version 2 has no clean way to discern C++
17394 static and non-static member functions. G++ helps
17395 GDB by marking the first parameter for non-static
17396 member functions (which is the this pointer) as
17397 artificial. We pass this information to
17398 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17399
17400 DWARF version 3 added DW_AT_object_pointer, which GCC
17401 4.5 does not yet generate. */
17402 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17403 if (attr)
17404 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17405 else
17406 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17407 arg_type = die_type (child_die, cu);
17408
17409 /* RealView does not mark THIS as const, which the testsuite
17410 expects. GCC marks THIS as const in method definitions,
17411 but not in the class specifications (GCC PR 43053). */
17412 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17413 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17414 {
17415 int is_this = 0;
17416 struct dwarf2_cu *arg_cu = cu;
17417 const char *name = dwarf2_name (child_die, cu);
17418
17419 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17420 if (attr)
17421 {
17422 /* If the compiler emits this, use it. */
17423 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17424 is_this = 1;
17425 }
17426 else if (name && strcmp (name, "this") == 0)
17427 /* Function definitions will have the argument names. */
17428 is_this = 1;
17429 else if (name == NULL && iparams == 0)
17430 /* Declarations may not have the names, so like
17431 elsewhere in GDB, assume an artificial first
17432 argument is "this". */
17433 is_this = 1;
17434
17435 if (is_this)
17436 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17437 arg_type, 0);
17438 }
17439
17440 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17441 iparams++;
17442 }
17443 child_die = sibling_die (child_die);
17444 }
17445 }
17446
17447 return ftype;
17448 }
17449
17450 static struct type *
17451 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17452 {
17453 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17454 const char *name = NULL;
17455 struct type *this_type, *target_type;
17456
17457 name = dwarf2_full_name (NULL, die, cu);
17458 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17459 TYPE_TARGET_STUB (this_type) = 1;
17460 set_die_type (die, this_type, cu);
17461 target_type = die_type (die, cu);
17462 if (target_type != this_type)
17463 TYPE_TARGET_TYPE (this_type) = target_type;
17464 else
17465 {
17466 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17467 spec and cause infinite loops in GDB. */
17468 complaint (_("Self-referential DW_TAG_typedef "
17469 "- DIE at %s [in module %s]"),
17470 sect_offset_str (die->sect_off), objfile_name (objfile));
17471 TYPE_TARGET_TYPE (this_type) = NULL;
17472 }
17473 return this_type;
17474 }
17475
17476 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17477 (which may be different from NAME) to the architecture back-end to allow
17478 it to guess the correct format if necessary. */
17479
17480 static struct type *
17481 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17482 const char *name_hint)
17483 {
17484 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17485 const struct floatformat **format;
17486 struct type *type;
17487
17488 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17489 if (format)
17490 type = init_float_type (objfile, bits, name, format);
17491 else
17492 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17493
17494 return type;
17495 }
17496
17497 /* Find a representation of a given base type and install
17498 it in the TYPE field of the die. */
17499
17500 static struct type *
17501 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17502 {
17503 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17504 struct type *type;
17505 struct attribute *attr;
17506 int encoding = 0, bits = 0;
17507 const char *name;
17508
17509 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17510 if (attr)
17511 {
17512 encoding = DW_UNSND (attr);
17513 }
17514 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17515 if (attr)
17516 {
17517 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17518 }
17519 name = dwarf2_name (die, cu);
17520 if (!name)
17521 {
17522 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17523 }
17524
17525 switch (encoding)
17526 {
17527 case DW_ATE_address:
17528 /* Turn DW_ATE_address into a void * pointer. */
17529 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17530 type = init_pointer_type (objfile, bits, name, type);
17531 break;
17532 case DW_ATE_boolean:
17533 type = init_boolean_type (objfile, bits, 1, name);
17534 break;
17535 case DW_ATE_complex_float:
17536 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17537 type = init_complex_type (objfile, name, type);
17538 break;
17539 case DW_ATE_decimal_float:
17540 type = init_decfloat_type (objfile, bits, name);
17541 break;
17542 case DW_ATE_float:
17543 type = dwarf2_init_float_type (objfile, bits, name, name);
17544 break;
17545 case DW_ATE_signed:
17546 type = init_integer_type (objfile, bits, 0, name);
17547 break;
17548 case DW_ATE_unsigned:
17549 if (cu->language == language_fortran
17550 && name
17551 && startswith (name, "character("))
17552 type = init_character_type (objfile, bits, 1, name);
17553 else
17554 type = init_integer_type (objfile, bits, 1, name);
17555 break;
17556 case DW_ATE_signed_char:
17557 if (cu->language == language_ada || cu->language == language_m2
17558 || cu->language == language_pascal
17559 || cu->language == language_fortran)
17560 type = init_character_type (objfile, bits, 0, name);
17561 else
17562 type = init_integer_type (objfile, bits, 0, name);
17563 break;
17564 case DW_ATE_unsigned_char:
17565 if (cu->language == language_ada || cu->language == language_m2
17566 || cu->language == language_pascal
17567 || cu->language == language_fortran
17568 || cu->language == language_rust)
17569 type = init_character_type (objfile, bits, 1, name);
17570 else
17571 type = init_integer_type (objfile, bits, 1, name);
17572 break;
17573 case DW_ATE_UTF:
17574 {
17575 gdbarch *arch = get_objfile_arch (objfile);
17576
17577 if (bits == 16)
17578 type = builtin_type (arch)->builtin_char16;
17579 else if (bits == 32)
17580 type = builtin_type (arch)->builtin_char32;
17581 else
17582 {
17583 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17584 bits);
17585 type = init_integer_type (objfile, bits, 1, name);
17586 }
17587 return set_die_type (die, type, cu);
17588 }
17589 break;
17590
17591 default:
17592 complaint (_("unsupported DW_AT_encoding: '%s'"),
17593 dwarf_type_encoding_name (encoding));
17594 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17595 break;
17596 }
17597
17598 if (name && strcmp (name, "char") == 0)
17599 TYPE_NOSIGN (type) = 1;
17600
17601 maybe_set_alignment (cu, die, type);
17602
17603 return set_die_type (die, type, cu);
17604 }
17605
17606 /* Parse dwarf attribute if it's a block, reference or constant and put the
17607 resulting value of the attribute into struct bound_prop.
17608 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17609
17610 static int
17611 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17612 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17613 {
17614 struct dwarf2_property_baton *baton;
17615 struct obstack *obstack
17616 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17617
17618 if (attr == NULL || prop == NULL)
17619 return 0;
17620
17621 if (attr_form_is_block (attr))
17622 {
17623 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17624 baton->referenced_type = NULL;
17625 baton->locexpr.per_cu = cu->per_cu;
17626 baton->locexpr.size = DW_BLOCK (attr)->size;
17627 baton->locexpr.data = DW_BLOCK (attr)->data;
17628 prop->data.baton = baton;
17629 prop->kind = PROP_LOCEXPR;
17630 gdb_assert (prop->data.baton != NULL);
17631 }
17632 else if (attr_form_is_ref (attr))
17633 {
17634 struct dwarf2_cu *target_cu = cu;
17635 struct die_info *target_die;
17636 struct attribute *target_attr;
17637
17638 target_die = follow_die_ref (die, attr, &target_cu);
17639 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17640 if (target_attr == NULL)
17641 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17642 target_cu);
17643 if (target_attr == NULL)
17644 return 0;
17645
17646 switch (target_attr->name)
17647 {
17648 case DW_AT_location:
17649 if (attr_form_is_section_offset (target_attr))
17650 {
17651 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17652 baton->referenced_type = die_type (target_die, target_cu);
17653 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17654 prop->data.baton = baton;
17655 prop->kind = PROP_LOCLIST;
17656 gdb_assert (prop->data.baton != NULL);
17657 }
17658 else if (attr_form_is_block (target_attr))
17659 {
17660 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17661 baton->referenced_type = die_type (target_die, target_cu);
17662 baton->locexpr.per_cu = cu->per_cu;
17663 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17664 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17665 prop->data.baton = baton;
17666 prop->kind = PROP_LOCEXPR;
17667 gdb_assert (prop->data.baton != NULL);
17668 }
17669 else
17670 {
17671 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17672 "dynamic property");
17673 return 0;
17674 }
17675 break;
17676 case DW_AT_data_member_location:
17677 {
17678 LONGEST offset;
17679
17680 if (!handle_data_member_location (target_die, target_cu,
17681 &offset))
17682 return 0;
17683
17684 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17685 baton->referenced_type = read_type_die (target_die->parent,
17686 target_cu);
17687 baton->offset_info.offset = offset;
17688 baton->offset_info.type = die_type (target_die, target_cu);
17689 prop->data.baton = baton;
17690 prop->kind = PROP_ADDR_OFFSET;
17691 break;
17692 }
17693 }
17694 }
17695 else if (attr_form_is_constant (attr))
17696 {
17697 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17698 prop->kind = PROP_CONST;
17699 }
17700 else
17701 {
17702 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17703 dwarf2_name (die, cu));
17704 return 0;
17705 }
17706
17707 return 1;
17708 }
17709
17710 /* Read the given DW_AT_subrange DIE. */
17711
17712 static struct type *
17713 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17714 {
17715 struct type *base_type, *orig_base_type;
17716 struct type *range_type;
17717 struct attribute *attr;
17718 struct dynamic_prop low, high;
17719 int low_default_is_valid;
17720 int high_bound_is_count = 0;
17721 const char *name;
17722 ULONGEST negative_mask;
17723
17724 orig_base_type = die_type (die, cu);
17725 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17726 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17727 creating the range type, but we use the result of check_typedef
17728 when examining properties of the type. */
17729 base_type = check_typedef (orig_base_type);
17730
17731 /* The die_type call above may have already set the type for this DIE. */
17732 range_type = get_die_type (die, cu);
17733 if (range_type)
17734 return range_type;
17735
17736 low.kind = PROP_CONST;
17737 high.kind = PROP_CONST;
17738 high.data.const_val = 0;
17739
17740 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17741 omitting DW_AT_lower_bound. */
17742 switch (cu->language)
17743 {
17744 case language_c:
17745 case language_cplus:
17746 low.data.const_val = 0;
17747 low_default_is_valid = 1;
17748 break;
17749 case language_fortran:
17750 low.data.const_val = 1;
17751 low_default_is_valid = 1;
17752 break;
17753 case language_d:
17754 case language_objc:
17755 case language_rust:
17756 low.data.const_val = 0;
17757 low_default_is_valid = (cu->header.version >= 4);
17758 break;
17759 case language_ada:
17760 case language_m2:
17761 case language_pascal:
17762 low.data.const_val = 1;
17763 low_default_is_valid = (cu->header.version >= 4);
17764 break;
17765 default:
17766 low.data.const_val = 0;
17767 low_default_is_valid = 0;
17768 break;
17769 }
17770
17771 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17772 if (attr)
17773 attr_to_dynamic_prop (attr, die, cu, &low);
17774 else if (!low_default_is_valid)
17775 complaint (_("Missing DW_AT_lower_bound "
17776 "- DIE at %s [in module %s]"),
17777 sect_offset_str (die->sect_off),
17778 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17779
17780 struct attribute *attr_ub, *attr_count;
17781 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17782 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17783 {
17784 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17785 if (attr_to_dynamic_prop (attr, die, cu, &high))
17786 {
17787 /* If bounds are constant do the final calculation here. */
17788 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17789 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17790 else
17791 high_bound_is_count = 1;
17792 }
17793 else
17794 {
17795 if (attr_ub != NULL)
17796 complaint (_("Unresolved DW_AT_upper_bound "
17797 "- DIE at %s [in module %s]"),
17798 sect_offset_str (die->sect_off),
17799 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17800 if (attr_count != NULL)
17801 complaint (_("Unresolved DW_AT_count "
17802 "- DIE at %s [in module %s]"),
17803 sect_offset_str (die->sect_off),
17804 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17805 }
17806
17807 }
17808
17809 /* Dwarf-2 specifications explicitly allows to create subrange types
17810 without specifying a base type.
17811 In that case, the base type must be set to the type of
17812 the lower bound, upper bound or count, in that order, if any of these
17813 three attributes references an object that has a type.
17814 If no base type is found, the Dwarf-2 specifications say that
17815 a signed integer type of size equal to the size of an address should
17816 be used.
17817 For the following C code: `extern char gdb_int [];'
17818 GCC produces an empty range DIE.
17819 FIXME: muller/2010-05-28: Possible references to object for low bound,
17820 high bound or count are not yet handled by this code. */
17821 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17822 {
17823 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17824 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17825 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17826 struct type *int_type = objfile_type (objfile)->builtin_int;
17827
17828 /* Test "int", "long int", and "long long int" objfile types,
17829 and select the first one having a size above or equal to the
17830 architecture address size. */
17831 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17832 base_type = int_type;
17833 else
17834 {
17835 int_type = objfile_type (objfile)->builtin_long;
17836 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17837 base_type = int_type;
17838 else
17839 {
17840 int_type = objfile_type (objfile)->builtin_long_long;
17841 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17842 base_type = int_type;
17843 }
17844 }
17845 }
17846
17847 /* Normally, the DWARF producers are expected to use a signed
17848 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17849 But this is unfortunately not always the case, as witnessed
17850 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17851 is used instead. To work around that ambiguity, we treat
17852 the bounds as signed, and thus sign-extend their values, when
17853 the base type is signed. */
17854 negative_mask =
17855 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17856 if (low.kind == PROP_CONST
17857 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17858 low.data.const_val |= negative_mask;
17859 if (high.kind == PROP_CONST
17860 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17861 high.data.const_val |= negative_mask;
17862
17863 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17864
17865 if (high_bound_is_count)
17866 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17867
17868 /* Ada expects an empty array on no boundary attributes. */
17869 if (attr == NULL && cu->language != language_ada)
17870 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17871
17872 name = dwarf2_name (die, cu);
17873 if (name)
17874 TYPE_NAME (range_type) = name;
17875
17876 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17877 if (attr)
17878 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17879
17880 maybe_set_alignment (cu, die, range_type);
17881
17882 set_die_type (die, range_type, cu);
17883
17884 /* set_die_type should be already done. */
17885 set_descriptive_type (range_type, die, cu);
17886
17887 return range_type;
17888 }
17889
17890 static struct type *
17891 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17892 {
17893 struct type *type;
17894
17895 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17896 NULL);
17897 TYPE_NAME (type) = dwarf2_name (die, cu);
17898
17899 /* In Ada, an unspecified type is typically used when the description
17900 of the type is defered to a different unit. When encountering
17901 such a type, we treat it as a stub, and try to resolve it later on,
17902 when needed. */
17903 if (cu->language == language_ada)
17904 TYPE_STUB (type) = 1;
17905
17906 return set_die_type (die, type, cu);
17907 }
17908
17909 /* Read a single die and all its descendents. Set the die's sibling
17910 field to NULL; set other fields in the die correctly, and set all
17911 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17912 location of the info_ptr after reading all of those dies. PARENT
17913 is the parent of the die in question. */
17914
17915 static struct die_info *
17916 read_die_and_children (const struct die_reader_specs *reader,
17917 const gdb_byte *info_ptr,
17918 const gdb_byte **new_info_ptr,
17919 struct die_info *parent)
17920 {
17921 struct die_info *die;
17922 const gdb_byte *cur_ptr;
17923 int has_children;
17924
17925 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17926 if (die == NULL)
17927 {
17928 *new_info_ptr = cur_ptr;
17929 return NULL;
17930 }
17931 store_in_ref_table (die, reader->cu);
17932
17933 if (has_children)
17934 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17935 else
17936 {
17937 die->child = NULL;
17938 *new_info_ptr = cur_ptr;
17939 }
17940
17941 die->sibling = NULL;
17942 die->parent = parent;
17943 return die;
17944 }
17945
17946 /* Read a die, all of its descendents, and all of its siblings; set
17947 all of the fields of all of the dies correctly. Arguments are as
17948 in read_die_and_children. */
17949
17950 static struct die_info *
17951 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17952 const gdb_byte *info_ptr,
17953 const gdb_byte **new_info_ptr,
17954 struct die_info *parent)
17955 {
17956 struct die_info *first_die, *last_sibling;
17957 const gdb_byte *cur_ptr;
17958
17959 cur_ptr = info_ptr;
17960 first_die = last_sibling = NULL;
17961
17962 while (1)
17963 {
17964 struct die_info *die
17965 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17966
17967 if (die == NULL)
17968 {
17969 *new_info_ptr = cur_ptr;
17970 return first_die;
17971 }
17972
17973 if (!first_die)
17974 first_die = die;
17975 else
17976 last_sibling->sibling = die;
17977
17978 last_sibling = die;
17979 }
17980 }
17981
17982 /* Read a die, all of its descendents, and all of its siblings; set
17983 all of the fields of all of the dies correctly. Arguments are as
17984 in read_die_and_children.
17985 This the main entry point for reading a DIE and all its children. */
17986
17987 static struct die_info *
17988 read_die_and_siblings (const struct die_reader_specs *reader,
17989 const gdb_byte *info_ptr,
17990 const gdb_byte **new_info_ptr,
17991 struct die_info *parent)
17992 {
17993 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17994 new_info_ptr, parent);
17995
17996 if (dwarf_die_debug)
17997 {
17998 fprintf_unfiltered (gdb_stdlog,
17999 "Read die from %s@0x%x of %s:\n",
18000 get_section_name (reader->die_section),
18001 (unsigned) (info_ptr - reader->die_section->buffer),
18002 bfd_get_filename (reader->abfd));
18003 dump_die (die, dwarf_die_debug);
18004 }
18005
18006 return die;
18007 }
18008
18009 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18010 attributes.
18011 The caller is responsible for filling in the extra attributes
18012 and updating (*DIEP)->num_attrs.
18013 Set DIEP to point to a newly allocated die with its information,
18014 except for its child, sibling, and parent fields.
18015 Set HAS_CHILDREN to tell whether the die has children or not. */
18016
18017 static const gdb_byte *
18018 read_full_die_1 (const struct die_reader_specs *reader,
18019 struct die_info **diep, const gdb_byte *info_ptr,
18020 int *has_children, int num_extra_attrs)
18021 {
18022 unsigned int abbrev_number, bytes_read, i;
18023 struct abbrev_info *abbrev;
18024 struct die_info *die;
18025 struct dwarf2_cu *cu = reader->cu;
18026 bfd *abfd = reader->abfd;
18027
18028 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18029 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18030 info_ptr += bytes_read;
18031 if (!abbrev_number)
18032 {
18033 *diep = NULL;
18034 *has_children = 0;
18035 return info_ptr;
18036 }
18037
18038 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18039 if (!abbrev)
18040 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18041 abbrev_number,
18042 bfd_get_filename (abfd));
18043
18044 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18045 die->sect_off = sect_off;
18046 die->tag = abbrev->tag;
18047 die->abbrev = abbrev_number;
18048
18049 /* Make the result usable.
18050 The caller needs to update num_attrs after adding the extra
18051 attributes. */
18052 die->num_attrs = abbrev->num_attrs;
18053
18054 for (i = 0; i < abbrev->num_attrs; ++i)
18055 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18056 info_ptr);
18057
18058 *diep = die;
18059 *has_children = abbrev->has_children;
18060 return info_ptr;
18061 }
18062
18063 /* Read a die and all its attributes.
18064 Set DIEP to point to a newly allocated die with its information,
18065 except for its child, sibling, and parent fields.
18066 Set HAS_CHILDREN to tell whether the die has children or not. */
18067
18068 static const gdb_byte *
18069 read_full_die (const struct die_reader_specs *reader,
18070 struct die_info **diep, const gdb_byte *info_ptr,
18071 int *has_children)
18072 {
18073 const gdb_byte *result;
18074
18075 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18076
18077 if (dwarf_die_debug)
18078 {
18079 fprintf_unfiltered (gdb_stdlog,
18080 "Read die from %s@0x%x of %s:\n",
18081 get_section_name (reader->die_section),
18082 (unsigned) (info_ptr - reader->die_section->buffer),
18083 bfd_get_filename (reader->abfd));
18084 dump_die (*diep, dwarf_die_debug);
18085 }
18086
18087 return result;
18088 }
18089 \f
18090 /* Abbreviation tables.
18091
18092 In DWARF version 2, the description of the debugging information is
18093 stored in a separate .debug_abbrev section. Before we read any
18094 dies from a section we read in all abbreviations and install them
18095 in a hash table. */
18096
18097 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18098
18099 struct abbrev_info *
18100 abbrev_table::alloc_abbrev ()
18101 {
18102 struct abbrev_info *abbrev;
18103
18104 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18105 memset (abbrev, 0, sizeof (struct abbrev_info));
18106
18107 return abbrev;
18108 }
18109
18110 /* Add an abbreviation to the table. */
18111
18112 void
18113 abbrev_table::add_abbrev (unsigned int abbrev_number,
18114 struct abbrev_info *abbrev)
18115 {
18116 unsigned int hash_number;
18117
18118 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18119 abbrev->next = m_abbrevs[hash_number];
18120 m_abbrevs[hash_number] = abbrev;
18121 }
18122
18123 /* Look up an abbrev in the table.
18124 Returns NULL if the abbrev is not found. */
18125
18126 struct abbrev_info *
18127 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18128 {
18129 unsigned int hash_number;
18130 struct abbrev_info *abbrev;
18131
18132 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18133 abbrev = m_abbrevs[hash_number];
18134
18135 while (abbrev)
18136 {
18137 if (abbrev->number == abbrev_number)
18138 return abbrev;
18139 abbrev = abbrev->next;
18140 }
18141 return NULL;
18142 }
18143
18144 /* Read in an abbrev table. */
18145
18146 static abbrev_table_up
18147 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18148 struct dwarf2_section_info *section,
18149 sect_offset sect_off)
18150 {
18151 struct objfile *objfile = dwarf2_per_objfile->objfile;
18152 bfd *abfd = get_section_bfd_owner (section);
18153 const gdb_byte *abbrev_ptr;
18154 struct abbrev_info *cur_abbrev;
18155 unsigned int abbrev_number, bytes_read, abbrev_name;
18156 unsigned int abbrev_form;
18157 struct attr_abbrev *cur_attrs;
18158 unsigned int allocated_attrs;
18159
18160 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18161
18162 dwarf2_read_section (objfile, section);
18163 abbrev_ptr = section->buffer + to_underlying (sect_off);
18164 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18165 abbrev_ptr += bytes_read;
18166
18167 allocated_attrs = ATTR_ALLOC_CHUNK;
18168 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18169
18170 /* Loop until we reach an abbrev number of 0. */
18171 while (abbrev_number)
18172 {
18173 cur_abbrev = abbrev_table->alloc_abbrev ();
18174
18175 /* read in abbrev header */
18176 cur_abbrev->number = abbrev_number;
18177 cur_abbrev->tag
18178 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18179 abbrev_ptr += bytes_read;
18180 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18181 abbrev_ptr += 1;
18182
18183 /* now read in declarations */
18184 for (;;)
18185 {
18186 LONGEST implicit_const;
18187
18188 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18189 abbrev_ptr += bytes_read;
18190 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18191 abbrev_ptr += bytes_read;
18192 if (abbrev_form == DW_FORM_implicit_const)
18193 {
18194 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18195 &bytes_read);
18196 abbrev_ptr += bytes_read;
18197 }
18198 else
18199 {
18200 /* Initialize it due to a false compiler warning. */
18201 implicit_const = -1;
18202 }
18203
18204 if (abbrev_name == 0)
18205 break;
18206
18207 if (cur_abbrev->num_attrs == allocated_attrs)
18208 {
18209 allocated_attrs += ATTR_ALLOC_CHUNK;
18210 cur_attrs
18211 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18212 }
18213
18214 cur_attrs[cur_abbrev->num_attrs].name
18215 = (enum dwarf_attribute) abbrev_name;
18216 cur_attrs[cur_abbrev->num_attrs].form
18217 = (enum dwarf_form) abbrev_form;
18218 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18219 ++cur_abbrev->num_attrs;
18220 }
18221
18222 cur_abbrev->attrs =
18223 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18224 cur_abbrev->num_attrs);
18225 memcpy (cur_abbrev->attrs, cur_attrs,
18226 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18227
18228 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18229
18230 /* Get next abbreviation.
18231 Under Irix6 the abbreviations for a compilation unit are not
18232 always properly terminated with an abbrev number of 0.
18233 Exit loop if we encounter an abbreviation which we have
18234 already read (which means we are about to read the abbreviations
18235 for the next compile unit) or if the end of the abbreviation
18236 table is reached. */
18237 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18238 break;
18239 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18240 abbrev_ptr += bytes_read;
18241 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18242 break;
18243 }
18244
18245 xfree (cur_attrs);
18246 return abbrev_table;
18247 }
18248
18249 /* Returns nonzero if TAG represents a type that we might generate a partial
18250 symbol for. */
18251
18252 static int
18253 is_type_tag_for_partial (int tag)
18254 {
18255 switch (tag)
18256 {
18257 #if 0
18258 /* Some types that would be reasonable to generate partial symbols for,
18259 that we don't at present. */
18260 case DW_TAG_array_type:
18261 case DW_TAG_file_type:
18262 case DW_TAG_ptr_to_member_type:
18263 case DW_TAG_set_type:
18264 case DW_TAG_string_type:
18265 case DW_TAG_subroutine_type:
18266 #endif
18267 case DW_TAG_base_type:
18268 case DW_TAG_class_type:
18269 case DW_TAG_interface_type:
18270 case DW_TAG_enumeration_type:
18271 case DW_TAG_structure_type:
18272 case DW_TAG_subrange_type:
18273 case DW_TAG_typedef:
18274 case DW_TAG_union_type:
18275 return 1;
18276 default:
18277 return 0;
18278 }
18279 }
18280
18281 /* Load all DIEs that are interesting for partial symbols into memory. */
18282
18283 static struct partial_die_info *
18284 load_partial_dies (const struct die_reader_specs *reader,
18285 const gdb_byte *info_ptr, int building_psymtab)
18286 {
18287 struct dwarf2_cu *cu = reader->cu;
18288 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18289 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18290 unsigned int bytes_read;
18291 unsigned int load_all = 0;
18292 int nesting_level = 1;
18293
18294 parent_die = NULL;
18295 last_die = NULL;
18296
18297 gdb_assert (cu->per_cu != NULL);
18298 if (cu->per_cu->load_all_dies)
18299 load_all = 1;
18300
18301 cu->partial_dies
18302 = htab_create_alloc_ex (cu->header.length / 12,
18303 partial_die_hash,
18304 partial_die_eq,
18305 NULL,
18306 &cu->comp_unit_obstack,
18307 hashtab_obstack_allocate,
18308 dummy_obstack_deallocate);
18309
18310 while (1)
18311 {
18312 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18313
18314 /* A NULL abbrev means the end of a series of children. */
18315 if (abbrev == NULL)
18316 {
18317 if (--nesting_level == 0)
18318 return first_die;
18319
18320 info_ptr += bytes_read;
18321 last_die = parent_die;
18322 parent_die = parent_die->die_parent;
18323 continue;
18324 }
18325
18326 /* Check for template arguments. We never save these; if
18327 they're seen, we just mark the parent, and go on our way. */
18328 if (parent_die != NULL
18329 && cu->language == language_cplus
18330 && (abbrev->tag == DW_TAG_template_type_param
18331 || abbrev->tag == DW_TAG_template_value_param))
18332 {
18333 parent_die->has_template_arguments = 1;
18334
18335 if (!load_all)
18336 {
18337 /* We don't need a partial DIE for the template argument. */
18338 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18339 continue;
18340 }
18341 }
18342
18343 /* We only recurse into c++ subprograms looking for template arguments.
18344 Skip their other children. */
18345 if (!load_all
18346 && cu->language == language_cplus
18347 && parent_die != NULL
18348 && parent_die->tag == DW_TAG_subprogram)
18349 {
18350 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18351 continue;
18352 }
18353
18354 /* Check whether this DIE is interesting enough to save. Normally
18355 we would not be interested in members here, but there may be
18356 later variables referencing them via DW_AT_specification (for
18357 static members). */
18358 if (!load_all
18359 && !is_type_tag_for_partial (abbrev->tag)
18360 && abbrev->tag != DW_TAG_constant
18361 && abbrev->tag != DW_TAG_enumerator
18362 && abbrev->tag != DW_TAG_subprogram
18363 && abbrev->tag != DW_TAG_inlined_subroutine
18364 && abbrev->tag != DW_TAG_lexical_block
18365 && abbrev->tag != DW_TAG_variable
18366 && abbrev->tag != DW_TAG_namespace
18367 && abbrev->tag != DW_TAG_module
18368 && abbrev->tag != DW_TAG_member
18369 && abbrev->tag != DW_TAG_imported_unit
18370 && abbrev->tag != DW_TAG_imported_declaration)
18371 {
18372 /* Otherwise we skip to the next sibling, if any. */
18373 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18374 continue;
18375 }
18376
18377 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18378 abbrev);
18379
18380 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18381
18382 /* This two-pass algorithm for processing partial symbols has a
18383 high cost in cache pressure. Thus, handle some simple cases
18384 here which cover the majority of C partial symbols. DIEs
18385 which neither have specification tags in them, nor could have
18386 specification tags elsewhere pointing at them, can simply be
18387 processed and discarded.
18388
18389 This segment is also optional; scan_partial_symbols and
18390 add_partial_symbol will handle these DIEs if we chain
18391 them in normally. When compilers which do not emit large
18392 quantities of duplicate debug information are more common,
18393 this code can probably be removed. */
18394
18395 /* Any complete simple types at the top level (pretty much all
18396 of them, for a language without namespaces), can be processed
18397 directly. */
18398 if (parent_die == NULL
18399 && pdi.has_specification == 0
18400 && pdi.is_declaration == 0
18401 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18402 || pdi.tag == DW_TAG_base_type
18403 || pdi.tag == DW_TAG_subrange_type))
18404 {
18405 if (building_psymtab && pdi.name != NULL)
18406 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18407 VAR_DOMAIN, LOC_TYPEDEF, -1,
18408 &objfile->static_psymbols,
18409 0, cu->language, objfile);
18410 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18411 continue;
18412 }
18413
18414 /* The exception for DW_TAG_typedef with has_children above is
18415 a workaround of GCC PR debug/47510. In the case of this complaint
18416 type_name_or_error will error on such types later.
18417
18418 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18419 it could not find the child DIEs referenced later, this is checked
18420 above. In correct DWARF DW_TAG_typedef should have no children. */
18421
18422 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18423 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18424 "- DIE at %s [in module %s]"),
18425 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18426
18427 /* If we're at the second level, and we're an enumerator, and
18428 our parent has no specification (meaning possibly lives in a
18429 namespace elsewhere), then we can add the partial symbol now
18430 instead of queueing it. */
18431 if (pdi.tag == DW_TAG_enumerator
18432 && parent_die != NULL
18433 && parent_die->die_parent == NULL
18434 && parent_die->tag == DW_TAG_enumeration_type
18435 && parent_die->has_specification == 0)
18436 {
18437 if (pdi.name == NULL)
18438 complaint (_("malformed enumerator DIE ignored"));
18439 else if (building_psymtab)
18440 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18441 VAR_DOMAIN, LOC_CONST, -1,
18442 cu->language == language_cplus
18443 ? &objfile->global_psymbols
18444 : &objfile->static_psymbols,
18445 0, cu->language, objfile);
18446
18447 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18448 continue;
18449 }
18450
18451 struct partial_die_info *part_die
18452 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18453
18454 /* We'll save this DIE so link it in. */
18455 part_die->die_parent = parent_die;
18456 part_die->die_sibling = NULL;
18457 part_die->die_child = NULL;
18458
18459 if (last_die && last_die == parent_die)
18460 last_die->die_child = part_die;
18461 else if (last_die)
18462 last_die->die_sibling = part_die;
18463
18464 last_die = part_die;
18465
18466 if (first_die == NULL)
18467 first_die = part_die;
18468
18469 /* Maybe add the DIE to the hash table. Not all DIEs that we
18470 find interesting need to be in the hash table, because we
18471 also have the parent/sibling/child chains; only those that we
18472 might refer to by offset later during partial symbol reading.
18473
18474 For now this means things that might have be the target of a
18475 DW_AT_specification, DW_AT_abstract_origin, or
18476 DW_AT_extension. DW_AT_extension will refer only to
18477 namespaces; DW_AT_abstract_origin refers to functions (and
18478 many things under the function DIE, but we do not recurse
18479 into function DIEs during partial symbol reading) and
18480 possibly variables as well; DW_AT_specification refers to
18481 declarations. Declarations ought to have the DW_AT_declaration
18482 flag. It happens that GCC forgets to put it in sometimes, but
18483 only for functions, not for types.
18484
18485 Adding more things than necessary to the hash table is harmless
18486 except for the performance cost. Adding too few will result in
18487 wasted time in find_partial_die, when we reread the compilation
18488 unit with load_all_dies set. */
18489
18490 if (load_all
18491 || abbrev->tag == DW_TAG_constant
18492 || abbrev->tag == DW_TAG_subprogram
18493 || abbrev->tag == DW_TAG_variable
18494 || abbrev->tag == DW_TAG_namespace
18495 || part_die->is_declaration)
18496 {
18497 void **slot;
18498
18499 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18500 to_underlying (part_die->sect_off),
18501 INSERT);
18502 *slot = part_die;
18503 }
18504
18505 /* For some DIEs we want to follow their children (if any). For C
18506 we have no reason to follow the children of structures; for other
18507 languages we have to, so that we can get at method physnames
18508 to infer fully qualified class names, for DW_AT_specification,
18509 and for C++ template arguments. For C++, we also look one level
18510 inside functions to find template arguments (if the name of the
18511 function does not already contain the template arguments).
18512
18513 For Ada, we need to scan the children of subprograms and lexical
18514 blocks as well because Ada allows the definition of nested
18515 entities that could be interesting for the debugger, such as
18516 nested subprograms for instance. */
18517 if (last_die->has_children
18518 && (load_all
18519 || last_die->tag == DW_TAG_namespace
18520 || last_die->tag == DW_TAG_module
18521 || last_die->tag == DW_TAG_enumeration_type
18522 || (cu->language == language_cplus
18523 && last_die->tag == DW_TAG_subprogram
18524 && (last_die->name == NULL
18525 || strchr (last_die->name, '<') == NULL))
18526 || (cu->language != language_c
18527 && (last_die->tag == DW_TAG_class_type
18528 || last_die->tag == DW_TAG_interface_type
18529 || last_die->tag == DW_TAG_structure_type
18530 || last_die->tag == DW_TAG_union_type))
18531 || (cu->language == language_ada
18532 && (last_die->tag == DW_TAG_subprogram
18533 || last_die->tag == DW_TAG_lexical_block))))
18534 {
18535 nesting_level++;
18536 parent_die = last_die;
18537 continue;
18538 }
18539
18540 /* Otherwise we skip to the next sibling, if any. */
18541 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18542
18543 /* Back to the top, do it again. */
18544 }
18545 }
18546
18547 partial_die_info::partial_die_info (sect_offset sect_off_,
18548 struct abbrev_info *abbrev)
18549 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18550 {
18551 }
18552
18553 /* Read a minimal amount of information into the minimal die structure.
18554 INFO_PTR should point just after the initial uleb128 of a DIE. */
18555
18556 const gdb_byte *
18557 partial_die_info::read (const struct die_reader_specs *reader,
18558 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18559 {
18560 struct dwarf2_cu *cu = reader->cu;
18561 struct dwarf2_per_objfile *dwarf2_per_objfile
18562 = cu->per_cu->dwarf2_per_objfile;
18563 unsigned int i;
18564 int has_low_pc_attr = 0;
18565 int has_high_pc_attr = 0;
18566 int high_pc_relative = 0;
18567
18568 for (i = 0; i < abbrev.num_attrs; ++i)
18569 {
18570 struct attribute attr;
18571
18572 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18573
18574 /* Store the data if it is of an attribute we want to keep in a
18575 partial symbol table. */
18576 switch (attr.name)
18577 {
18578 case DW_AT_name:
18579 switch (tag)
18580 {
18581 case DW_TAG_compile_unit:
18582 case DW_TAG_partial_unit:
18583 case DW_TAG_type_unit:
18584 /* Compilation units have a DW_AT_name that is a filename, not
18585 a source language identifier. */
18586 case DW_TAG_enumeration_type:
18587 case DW_TAG_enumerator:
18588 /* These tags always have simple identifiers already; no need
18589 to canonicalize them. */
18590 name = DW_STRING (&attr);
18591 break;
18592 default:
18593 {
18594 struct objfile *objfile = dwarf2_per_objfile->objfile;
18595
18596 name
18597 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18598 &objfile->per_bfd->storage_obstack);
18599 }
18600 break;
18601 }
18602 break;
18603 case DW_AT_linkage_name:
18604 case DW_AT_MIPS_linkage_name:
18605 /* Note that both forms of linkage name might appear. We
18606 assume they will be the same, and we only store the last
18607 one we see. */
18608 if (cu->language == language_ada)
18609 name = DW_STRING (&attr);
18610 linkage_name = DW_STRING (&attr);
18611 break;
18612 case DW_AT_low_pc:
18613 has_low_pc_attr = 1;
18614 lowpc = attr_value_as_address (&attr);
18615 break;
18616 case DW_AT_high_pc:
18617 has_high_pc_attr = 1;
18618 highpc = attr_value_as_address (&attr);
18619 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18620 high_pc_relative = 1;
18621 break;
18622 case DW_AT_location:
18623 /* Support the .debug_loc offsets. */
18624 if (attr_form_is_block (&attr))
18625 {
18626 d.locdesc = DW_BLOCK (&attr);
18627 }
18628 else if (attr_form_is_section_offset (&attr))
18629 {
18630 dwarf2_complex_location_expr_complaint ();
18631 }
18632 else
18633 {
18634 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18635 "partial symbol information");
18636 }
18637 break;
18638 case DW_AT_external:
18639 is_external = DW_UNSND (&attr);
18640 break;
18641 case DW_AT_declaration:
18642 is_declaration = DW_UNSND (&attr);
18643 break;
18644 case DW_AT_type:
18645 has_type = 1;
18646 break;
18647 case DW_AT_abstract_origin:
18648 case DW_AT_specification:
18649 case DW_AT_extension:
18650 has_specification = 1;
18651 spec_offset = dwarf2_get_ref_die_offset (&attr);
18652 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18653 || cu->per_cu->is_dwz);
18654 break;
18655 case DW_AT_sibling:
18656 /* Ignore absolute siblings, they might point outside of
18657 the current compile unit. */
18658 if (attr.form == DW_FORM_ref_addr)
18659 complaint (_("ignoring absolute DW_AT_sibling"));
18660 else
18661 {
18662 const gdb_byte *buffer = reader->buffer;
18663 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18664 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18665
18666 if (sibling_ptr < info_ptr)
18667 complaint (_("DW_AT_sibling points backwards"));
18668 else if (sibling_ptr > reader->buffer_end)
18669 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18670 else
18671 sibling = sibling_ptr;
18672 }
18673 break;
18674 case DW_AT_byte_size:
18675 has_byte_size = 1;
18676 break;
18677 case DW_AT_const_value:
18678 has_const_value = 1;
18679 break;
18680 case DW_AT_calling_convention:
18681 /* DWARF doesn't provide a way to identify a program's source-level
18682 entry point. DW_AT_calling_convention attributes are only meant
18683 to describe functions' calling conventions.
18684
18685 However, because it's a necessary piece of information in
18686 Fortran, and before DWARF 4 DW_CC_program was the only
18687 piece of debugging information whose definition refers to
18688 a 'main program' at all, several compilers marked Fortran
18689 main programs with DW_CC_program --- even when those
18690 functions use the standard calling conventions.
18691
18692 Although DWARF now specifies a way to provide this
18693 information, we support this practice for backward
18694 compatibility. */
18695 if (DW_UNSND (&attr) == DW_CC_program
18696 && cu->language == language_fortran)
18697 main_subprogram = 1;
18698 break;
18699 case DW_AT_inline:
18700 if (DW_UNSND (&attr) == DW_INL_inlined
18701 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18702 may_be_inlined = 1;
18703 break;
18704
18705 case DW_AT_import:
18706 if (tag == DW_TAG_imported_unit)
18707 {
18708 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18709 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18710 || cu->per_cu->is_dwz);
18711 }
18712 break;
18713
18714 case DW_AT_main_subprogram:
18715 main_subprogram = DW_UNSND (&attr);
18716 break;
18717
18718 default:
18719 break;
18720 }
18721 }
18722
18723 if (high_pc_relative)
18724 highpc += lowpc;
18725
18726 if (has_low_pc_attr && has_high_pc_attr)
18727 {
18728 /* When using the GNU linker, .gnu.linkonce. sections are used to
18729 eliminate duplicate copies of functions and vtables and such.
18730 The linker will arbitrarily choose one and discard the others.
18731 The AT_*_pc values for such functions refer to local labels in
18732 these sections. If the section from that file was discarded, the
18733 labels are not in the output, so the relocs get a value of 0.
18734 If this is a discarded function, mark the pc bounds as invalid,
18735 so that GDB will ignore it. */
18736 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18737 {
18738 struct objfile *objfile = dwarf2_per_objfile->objfile;
18739 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18740
18741 complaint (_("DW_AT_low_pc %s is zero "
18742 "for DIE at %s [in module %s]"),
18743 paddress (gdbarch, lowpc),
18744 sect_offset_str (sect_off),
18745 objfile_name (objfile));
18746 }
18747 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18748 else if (lowpc >= highpc)
18749 {
18750 struct objfile *objfile = dwarf2_per_objfile->objfile;
18751 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18752
18753 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18754 "for DIE at %s [in module %s]"),
18755 paddress (gdbarch, lowpc),
18756 paddress (gdbarch, highpc),
18757 sect_offset_str (sect_off),
18758 objfile_name (objfile));
18759 }
18760 else
18761 has_pc_info = 1;
18762 }
18763
18764 return info_ptr;
18765 }
18766
18767 /* Find a cached partial DIE at OFFSET in CU. */
18768
18769 struct partial_die_info *
18770 dwarf2_cu::find_partial_die (sect_offset sect_off)
18771 {
18772 struct partial_die_info *lookup_die = NULL;
18773 struct partial_die_info part_die (sect_off);
18774
18775 lookup_die = ((struct partial_die_info *)
18776 htab_find_with_hash (partial_dies, &part_die,
18777 to_underlying (sect_off)));
18778
18779 return lookup_die;
18780 }
18781
18782 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18783 except in the case of .debug_types DIEs which do not reference
18784 outside their CU (they do however referencing other types via
18785 DW_FORM_ref_sig8). */
18786
18787 static struct partial_die_info *
18788 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18789 {
18790 struct dwarf2_per_objfile *dwarf2_per_objfile
18791 = cu->per_cu->dwarf2_per_objfile;
18792 struct objfile *objfile = dwarf2_per_objfile->objfile;
18793 struct dwarf2_per_cu_data *per_cu = NULL;
18794 struct partial_die_info *pd = NULL;
18795
18796 if (offset_in_dwz == cu->per_cu->is_dwz
18797 && offset_in_cu_p (&cu->header, sect_off))
18798 {
18799 pd = cu->find_partial_die (sect_off);
18800 if (pd != NULL)
18801 return pd;
18802 /* We missed recording what we needed.
18803 Load all dies and try again. */
18804 per_cu = cu->per_cu;
18805 }
18806 else
18807 {
18808 /* TUs don't reference other CUs/TUs (except via type signatures). */
18809 if (cu->per_cu->is_debug_types)
18810 {
18811 error (_("Dwarf Error: Type Unit at offset %s contains"
18812 " external reference to offset %s [in module %s].\n"),
18813 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18814 bfd_get_filename (objfile->obfd));
18815 }
18816 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18817 dwarf2_per_objfile);
18818
18819 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18820 load_partial_comp_unit (per_cu);
18821
18822 per_cu->cu->last_used = 0;
18823 pd = per_cu->cu->find_partial_die (sect_off);
18824 }
18825
18826 /* If we didn't find it, and not all dies have been loaded,
18827 load them all and try again. */
18828
18829 if (pd == NULL && per_cu->load_all_dies == 0)
18830 {
18831 per_cu->load_all_dies = 1;
18832
18833 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18834 THIS_CU->cu may already be in use. So we can't just free it and
18835 replace its DIEs with the ones we read in. Instead, we leave those
18836 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18837 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18838 set. */
18839 load_partial_comp_unit (per_cu);
18840
18841 pd = per_cu->cu->find_partial_die (sect_off);
18842 }
18843
18844 if (pd == NULL)
18845 internal_error (__FILE__, __LINE__,
18846 _("could not find partial DIE %s "
18847 "in cache [from module %s]\n"),
18848 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18849 return pd;
18850 }
18851
18852 /* See if we can figure out if the class lives in a namespace. We do
18853 this by looking for a member function; its demangled name will
18854 contain namespace info, if there is any. */
18855
18856 static void
18857 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18858 struct dwarf2_cu *cu)
18859 {
18860 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18861 what template types look like, because the demangler
18862 frequently doesn't give the same name as the debug info. We
18863 could fix this by only using the demangled name to get the
18864 prefix (but see comment in read_structure_type). */
18865
18866 struct partial_die_info *real_pdi;
18867 struct partial_die_info *child_pdi;
18868
18869 /* If this DIE (this DIE's specification, if any) has a parent, then
18870 we should not do this. We'll prepend the parent's fully qualified
18871 name when we create the partial symbol. */
18872
18873 real_pdi = struct_pdi;
18874 while (real_pdi->has_specification)
18875 real_pdi = find_partial_die (real_pdi->spec_offset,
18876 real_pdi->spec_is_dwz, cu);
18877
18878 if (real_pdi->die_parent != NULL)
18879 return;
18880
18881 for (child_pdi = struct_pdi->die_child;
18882 child_pdi != NULL;
18883 child_pdi = child_pdi->die_sibling)
18884 {
18885 if (child_pdi->tag == DW_TAG_subprogram
18886 && child_pdi->linkage_name != NULL)
18887 {
18888 char *actual_class_name
18889 = language_class_name_from_physname (cu->language_defn,
18890 child_pdi->linkage_name);
18891 if (actual_class_name != NULL)
18892 {
18893 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18894 struct_pdi->name
18895 = ((const char *)
18896 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18897 actual_class_name,
18898 strlen (actual_class_name)));
18899 xfree (actual_class_name);
18900 }
18901 break;
18902 }
18903 }
18904 }
18905
18906 void
18907 partial_die_info::fixup (struct dwarf2_cu *cu)
18908 {
18909 /* Once we've fixed up a die, there's no point in doing so again.
18910 This also avoids a memory leak if we were to call
18911 guess_partial_die_structure_name multiple times. */
18912 if (fixup_called)
18913 return;
18914
18915 /* If we found a reference attribute and the DIE has no name, try
18916 to find a name in the referred to DIE. */
18917
18918 if (name == NULL && has_specification)
18919 {
18920 struct partial_die_info *spec_die;
18921
18922 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18923
18924 spec_die->fixup (cu);
18925
18926 if (spec_die->name)
18927 {
18928 name = spec_die->name;
18929
18930 /* Copy DW_AT_external attribute if it is set. */
18931 if (spec_die->is_external)
18932 is_external = spec_die->is_external;
18933 }
18934 }
18935
18936 /* Set default names for some unnamed DIEs. */
18937
18938 if (name == NULL && tag == DW_TAG_namespace)
18939 name = CP_ANONYMOUS_NAMESPACE_STR;
18940
18941 /* If there is no parent die to provide a namespace, and there are
18942 children, see if we can determine the namespace from their linkage
18943 name. */
18944 if (cu->language == language_cplus
18945 && !VEC_empty (dwarf2_section_info_def,
18946 cu->per_cu->dwarf2_per_objfile->types)
18947 && die_parent == NULL
18948 && has_children
18949 && (tag == DW_TAG_class_type
18950 || tag == DW_TAG_structure_type
18951 || tag == DW_TAG_union_type))
18952 guess_partial_die_structure_name (this, cu);
18953
18954 /* GCC might emit a nameless struct or union that has a linkage
18955 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18956 if (name == NULL
18957 && (tag == DW_TAG_class_type
18958 || tag == DW_TAG_interface_type
18959 || tag == DW_TAG_structure_type
18960 || tag == DW_TAG_union_type)
18961 && linkage_name != NULL)
18962 {
18963 char *demangled;
18964
18965 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18966 if (demangled)
18967 {
18968 const char *base;
18969
18970 /* Strip any leading namespaces/classes, keep only the base name.
18971 DW_AT_name for named DIEs does not contain the prefixes. */
18972 base = strrchr (demangled, ':');
18973 if (base && base > demangled && base[-1] == ':')
18974 base++;
18975 else
18976 base = demangled;
18977
18978 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18979 name
18980 = ((const char *)
18981 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18982 base, strlen (base)));
18983 xfree (demangled);
18984 }
18985 }
18986
18987 fixup_called = 1;
18988 }
18989
18990 /* Read an attribute value described by an attribute form. */
18991
18992 static const gdb_byte *
18993 read_attribute_value (const struct die_reader_specs *reader,
18994 struct attribute *attr, unsigned form,
18995 LONGEST implicit_const, const gdb_byte *info_ptr)
18996 {
18997 struct dwarf2_cu *cu = reader->cu;
18998 struct dwarf2_per_objfile *dwarf2_per_objfile
18999 = cu->per_cu->dwarf2_per_objfile;
19000 struct objfile *objfile = dwarf2_per_objfile->objfile;
19001 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19002 bfd *abfd = reader->abfd;
19003 struct comp_unit_head *cu_header = &cu->header;
19004 unsigned int bytes_read;
19005 struct dwarf_block *blk;
19006
19007 attr->form = (enum dwarf_form) form;
19008 switch (form)
19009 {
19010 case DW_FORM_ref_addr:
19011 if (cu->header.version == 2)
19012 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19013 else
19014 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19015 &cu->header, &bytes_read);
19016 info_ptr += bytes_read;
19017 break;
19018 case DW_FORM_GNU_ref_alt:
19019 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19020 info_ptr += bytes_read;
19021 break;
19022 case DW_FORM_addr:
19023 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19024 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19025 info_ptr += bytes_read;
19026 break;
19027 case DW_FORM_block2:
19028 blk = dwarf_alloc_block (cu);
19029 blk->size = read_2_bytes (abfd, info_ptr);
19030 info_ptr += 2;
19031 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19032 info_ptr += blk->size;
19033 DW_BLOCK (attr) = blk;
19034 break;
19035 case DW_FORM_block4:
19036 blk = dwarf_alloc_block (cu);
19037 blk->size = read_4_bytes (abfd, info_ptr);
19038 info_ptr += 4;
19039 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19040 info_ptr += blk->size;
19041 DW_BLOCK (attr) = blk;
19042 break;
19043 case DW_FORM_data2:
19044 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19045 info_ptr += 2;
19046 break;
19047 case DW_FORM_data4:
19048 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19049 info_ptr += 4;
19050 break;
19051 case DW_FORM_data8:
19052 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19053 info_ptr += 8;
19054 break;
19055 case DW_FORM_data16:
19056 blk = dwarf_alloc_block (cu);
19057 blk->size = 16;
19058 blk->data = read_n_bytes (abfd, info_ptr, 16);
19059 info_ptr += 16;
19060 DW_BLOCK (attr) = blk;
19061 break;
19062 case DW_FORM_sec_offset:
19063 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19064 info_ptr += bytes_read;
19065 break;
19066 case DW_FORM_string:
19067 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19068 DW_STRING_IS_CANONICAL (attr) = 0;
19069 info_ptr += bytes_read;
19070 break;
19071 case DW_FORM_strp:
19072 if (!cu->per_cu->is_dwz)
19073 {
19074 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19075 abfd, info_ptr, cu_header,
19076 &bytes_read);
19077 DW_STRING_IS_CANONICAL (attr) = 0;
19078 info_ptr += bytes_read;
19079 break;
19080 }
19081 /* FALLTHROUGH */
19082 case DW_FORM_line_strp:
19083 if (!cu->per_cu->is_dwz)
19084 {
19085 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19086 abfd, info_ptr,
19087 cu_header, &bytes_read);
19088 DW_STRING_IS_CANONICAL (attr) = 0;
19089 info_ptr += bytes_read;
19090 break;
19091 }
19092 /* FALLTHROUGH */
19093 case DW_FORM_GNU_strp_alt:
19094 {
19095 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19096 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19097 &bytes_read);
19098
19099 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19100 dwz, str_offset);
19101 DW_STRING_IS_CANONICAL (attr) = 0;
19102 info_ptr += bytes_read;
19103 }
19104 break;
19105 case DW_FORM_exprloc:
19106 case DW_FORM_block:
19107 blk = dwarf_alloc_block (cu);
19108 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19109 info_ptr += bytes_read;
19110 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19111 info_ptr += blk->size;
19112 DW_BLOCK (attr) = blk;
19113 break;
19114 case DW_FORM_block1:
19115 blk = dwarf_alloc_block (cu);
19116 blk->size = read_1_byte (abfd, info_ptr);
19117 info_ptr += 1;
19118 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19119 info_ptr += blk->size;
19120 DW_BLOCK (attr) = blk;
19121 break;
19122 case DW_FORM_data1:
19123 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19124 info_ptr += 1;
19125 break;
19126 case DW_FORM_flag:
19127 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19128 info_ptr += 1;
19129 break;
19130 case DW_FORM_flag_present:
19131 DW_UNSND (attr) = 1;
19132 break;
19133 case DW_FORM_sdata:
19134 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19135 info_ptr += bytes_read;
19136 break;
19137 case DW_FORM_udata:
19138 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19139 info_ptr += bytes_read;
19140 break;
19141 case DW_FORM_ref1:
19142 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19143 + read_1_byte (abfd, info_ptr));
19144 info_ptr += 1;
19145 break;
19146 case DW_FORM_ref2:
19147 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19148 + read_2_bytes (abfd, info_ptr));
19149 info_ptr += 2;
19150 break;
19151 case DW_FORM_ref4:
19152 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19153 + read_4_bytes (abfd, info_ptr));
19154 info_ptr += 4;
19155 break;
19156 case DW_FORM_ref8:
19157 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19158 + read_8_bytes (abfd, info_ptr));
19159 info_ptr += 8;
19160 break;
19161 case DW_FORM_ref_sig8:
19162 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19163 info_ptr += 8;
19164 break;
19165 case DW_FORM_ref_udata:
19166 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19167 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19168 info_ptr += bytes_read;
19169 break;
19170 case DW_FORM_indirect:
19171 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19172 info_ptr += bytes_read;
19173 if (form == DW_FORM_implicit_const)
19174 {
19175 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19176 info_ptr += bytes_read;
19177 }
19178 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19179 info_ptr);
19180 break;
19181 case DW_FORM_implicit_const:
19182 DW_SND (attr) = implicit_const;
19183 break;
19184 case DW_FORM_GNU_addr_index:
19185 if (reader->dwo_file == NULL)
19186 {
19187 /* For now flag a hard error.
19188 Later we can turn this into a complaint. */
19189 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19190 dwarf_form_name (form),
19191 bfd_get_filename (abfd));
19192 }
19193 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19194 info_ptr += bytes_read;
19195 break;
19196 case DW_FORM_GNU_str_index:
19197 if (reader->dwo_file == NULL)
19198 {
19199 /* For now flag a hard error.
19200 Later we can turn this into a complaint if warranted. */
19201 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19202 dwarf_form_name (form),
19203 bfd_get_filename (abfd));
19204 }
19205 {
19206 ULONGEST str_index =
19207 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19208
19209 DW_STRING (attr) = read_str_index (reader, str_index);
19210 DW_STRING_IS_CANONICAL (attr) = 0;
19211 info_ptr += bytes_read;
19212 }
19213 break;
19214 default:
19215 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19216 dwarf_form_name (form),
19217 bfd_get_filename (abfd));
19218 }
19219
19220 /* Super hack. */
19221 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19222 attr->form = DW_FORM_GNU_ref_alt;
19223
19224 /* We have seen instances where the compiler tried to emit a byte
19225 size attribute of -1 which ended up being encoded as an unsigned
19226 0xffffffff. Although 0xffffffff is technically a valid size value,
19227 an object of this size seems pretty unlikely so we can relatively
19228 safely treat these cases as if the size attribute was invalid and
19229 treat them as zero by default. */
19230 if (attr->name == DW_AT_byte_size
19231 && form == DW_FORM_data4
19232 && DW_UNSND (attr) >= 0xffffffff)
19233 {
19234 complaint
19235 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19236 hex_string (DW_UNSND (attr)));
19237 DW_UNSND (attr) = 0;
19238 }
19239
19240 return info_ptr;
19241 }
19242
19243 /* Read an attribute described by an abbreviated attribute. */
19244
19245 static const gdb_byte *
19246 read_attribute (const struct die_reader_specs *reader,
19247 struct attribute *attr, struct attr_abbrev *abbrev,
19248 const gdb_byte *info_ptr)
19249 {
19250 attr->name = abbrev->name;
19251 return read_attribute_value (reader, attr, abbrev->form,
19252 abbrev->implicit_const, info_ptr);
19253 }
19254
19255 /* Read dwarf information from a buffer. */
19256
19257 static unsigned int
19258 read_1_byte (bfd *abfd, const gdb_byte *buf)
19259 {
19260 return bfd_get_8 (abfd, buf);
19261 }
19262
19263 static int
19264 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19265 {
19266 return bfd_get_signed_8 (abfd, buf);
19267 }
19268
19269 static unsigned int
19270 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19271 {
19272 return bfd_get_16 (abfd, buf);
19273 }
19274
19275 static int
19276 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19277 {
19278 return bfd_get_signed_16 (abfd, buf);
19279 }
19280
19281 static unsigned int
19282 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19283 {
19284 return bfd_get_32 (abfd, buf);
19285 }
19286
19287 static int
19288 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19289 {
19290 return bfd_get_signed_32 (abfd, buf);
19291 }
19292
19293 static ULONGEST
19294 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19295 {
19296 return bfd_get_64 (abfd, buf);
19297 }
19298
19299 static CORE_ADDR
19300 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19301 unsigned int *bytes_read)
19302 {
19303 struct comp_unit_head *cu_header = &cu->header;
19304 CORE_ADDR retval = 0;
19305
19306 if (cu_header->signed_addr_p)
19307 {
19308 switch (cu_header->addr_size)
19309 {
19310 case 2:
19311 retval = bfd_get_signed_16 (abfd, buf);
19312 break;
19313 case 4:
19314 retval = bfd_get_signed_32 (abfd, buf);
19315 break;
19316 case 8:
19317 retval = bfd_get_signed_64 (abfd, buf);
19318 break;
19319 default:
19320 internal_error (__FILE__, __LINE__,
19321 _("read_address: bad switch, signed [in module %s]"),
19322 bfd_get_filename (abfd));
19323 }
19324 }
19325 else
19326 {
19327 switch (cu_header->addr_size)
19328 {
19329 case 2:
19330 retval = bfd_get_16 (abfd, buf);
19331 break;
19332 case 4:
19333 retval = bfd_get_32 (abfd, buf);
19334 break;
19335 case 8:
19336 retval = bfd_get_64 (abfd, buf);
19337 break;
19338 default:
19339 internal_error (__FILE__, __LINE__,
19340 _("read_address: bad switch, "
19341 "unsigned [in module %s]"),
19342 bfd_get_filename (abfd));
19343 }
19344 }
19345
19346 *bytes_read = cu_header->addr_size;
19347 return retval;
19348 }
19349
19350 /* Read the initial length from a section. The (draft) DWARF 3
19351 specification allows the initial length to take up either 4 bytes
19352 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19353 bytes describe the length and all offsets will be 8 bytes in length
19354 instead of 4.
19355
19356 An older, non-standard 64-bit format is also handled by this
19357 function. The older format in question stores the initial length
19358 as an 8-byte quantity without an escape value. Lengths greater
19359 than 2^32 aren't very common which means that the initial 4 bytes
19360 is almost always zero. Since a length value of zero doesn't make
19361 sense for the 32-bit format, this initial zero can be considered to
19362 be an escape value which indicates the presence of the older 64-bit
19363 format. As written, the code can't detect (old format) lengths
19364 greater than 4GB. If it becomes necessary to handle lengths
19365 somewhat larger than 4GB, we could allow other small values (such
19366 as the non-sensical values of 1, 2, and 3) to also be used as
19367 escape values indicating the presence of the old format.
19368
19369 The value returned via bytes_read should be used to increment the
19370 relevant pointer after calling read_initial_length().
19371
19372 [ Note: read_initial_length() and read_offset() are based on the
19373 document entitled "DWARF Debugging Information Format", revision
19374 3, draft 8, dated November 19, 2001. This document was obtained
19375 from:
19376
19377 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19378
19379 This document is only a draft and is subject to change. (So beware.)
19380
19381 Details regarding the older, non-standard 64-bit format were
19382 determined empirically by examining 64-bit ELF files produced by
19383 the SGI toolchain on an IRIX 6.5 machine.
19384
19385 - Kevin, July 16, 2002
19386 ] */
19387
19388 static LONGEST
19389 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19390 {
19391 LONGEST length = bfd_get_32 (abfd, buf);
19392
19393 if (length == 0xffffffff)
19394 {
19395 length = bfd_get_64 (abfd, buf + 4);
19396 *bytes_read = 12;
19397 }
19398 else if (length == 0)
19399 {
19400 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19401 length = bfd_get_64 (abfd, buf);
19402 *bytes_read = 8;
19403 }
19404 else
19405 {
19406 *bytes_read = 4;
19407 }
19408
19409 return length;
19410 }
19411
19412 /* Cover function for read_initial_length.
19413 Returns the length of the object at BUF, and stores the size of the
19414 initial length in *BYTES_READ and stores the size that offsets will be in
19415 *OFFSET_SIZE.
19416 If the initial length size is not equivalent to that specified in
19417 CU_HEADER then issue a complaint.
19418 This is useful when reading non-comp-unit headers. */
19419
19420 static LONGEST
19421 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19422 const struct comp_unit_head *cu_header,
19423 unsigned int *bytes_read,
19424 unsigned int *offset_size)
19425 {
19426 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19427
19428 gdb_assert (cu_header->initial_length_size == 4
19429 || cu_header->initial_length_size == 8
19430 || cu_header->initial_length_size == 12);
19431
19432 if (cu_header->initial_length_size != *bytes_read)
19433 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19434
19435 *offset_size = (*bytes_read == 4) ? 4 : 8;
19436 return length;
19437 }
19438
19439 /* Read an offset from the data stream. The size of the offset is
19440 given by cu_header->offset_size. */
19441
19442 static LONGEST
19443 read_offset (bfd *abfd, const gdb_byte *buf,
19444 const struct comp_unit_head *cu_header,
19445 unsigned int *bytes_read)
19446 {
19447 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19448
19449 *bytes_read = cu_header->offset_size;
19450 return offset;
19451 }
19452
19453 /* Read an offset from the data stream. */
19454
19455 static LONGEST
19456 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19457 {
19458 LONGEST retval = 0;
19459
19460 switch (offset_size)
19461 {
19462 case 4:
19463 retval = bfd_get_32 (abfd, buf);
19464 break;
19465 case 8:
19466 retval = bfd_get_64 (abfd, buf);
19467 break;
19468 default:
19469 internal_error (__FILE__, __LINE__,
19470 _("read_offset_1: bad switch [in module %s]"),
19471 bfd_get_filename (abfd));
19472 }
19473
19474 return retval;
19475 }
19476
19477 static const gdb_byte *
19478 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19479 {
19480 /* If the size of a host char is 8 bits, we can return a pointer
19481 to the buffer, otherwise we have to copy the data to a buffer
19482 allocated on the temporary obstack. */
19483 gdb_assert (HOST_CHAR_BIT == 8);
19484 return buf;
19485 }
19486
19487 static const char *
19488 read_direct_string (bfd *abfd, const gdb_byte *buf,
19489 unsigned int *bytes_read_ptr)
19490 {
19491 /* If the size of a host char is 8 bits, we can return a pointer
19492 to the string, otherwise we have to copy the string to a buffer
19493 allocated on the temporary obstack. */
19494 gdb_assert (HOST_CHAR_BIT == 8);
19495 if (*buf == '\0')
19496 {
19497 *bytes_read_ptr = 1;
19498 return NULL;
19499 }
19500 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19501 return (const char *) buf;
19502 }
19503
19504 /* Return pointer to string at section SECT offset STR_OFFSET with error
19505 reporting strings FORM_NAME and SECT_NAME. */
19506
19507 static const char *
19508 read_indirect_string_at_offset_from (struct objfile *objfile,
19509 bfd *abfd, LONGEST str_offset,
19510 struct dwarf2_section_info *sect,
19511 const char *form_name,
19512 const char *sect_name)
19513 {
19514 dwarf2_read_section (objfile, sect);
19515 if (sect->buffer == NULL)
19516 error (_("%s used without %s section [in module %s]"),
19517 form_name, sect_name, bfd_get_filename (abfd));
19518 if (str_offset >= sect->size)
19519 error (_("%s pointing outside of %s section [in module %s]"),
19520 form_name, sect_name, bfd_get_filename (abfd));
19521 gdb_assert (HOST_CHAR_BIT == 8);
19522 if (sect->buffer[str_offset] == '\0')
19523 return NULL;
19524 return (const char *) (sect->buffer + str_offset);
19525 }
19526
19527 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19528
19529 static const char *
19530 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19531 bfd *abfd, LONGEST str_offset)
19532 {
19533 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19534 abfd, str_offset,
19535 &dwarf2_per_objfile->str,
19536 "DW_FORM_strp", ".debug_str");
19537 }
19538
19539 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19540
19541 static const char *
19542 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19543 bfd *abfd, LONGEST str_offset)
19544 {
19545 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19546 abfd, str_offset,
19547 &dwarf2_per_objfile->line_str,
19548 "DW_FORM_line_strp",
19549 ".debug_line_str");
19550 }
19551
19552 /* Read a string at offset STR_OFFSET in the .debug_str section from
19553 the .dwz file DWZ. Throw an error if the offset is too large. If
19554 the string consists of a single NUL byte, return NULL; otherwise
19555 return a pointer to the string. */
19556
19557 static const char *
19558 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19559 LONGEST str_offset)
19560 {
19561 dwarf2_read_section (objfile, &dwz->str);
19562
19563 if (dwz->str.buffer == NULL)
19564 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19565 "section [in module %s]"),
19566 bfd_get_filename (dwz->dwz_bfd));
19567 if (str_offset >= dwz->str.size)
19568 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19569 ".debug_str section [in module %s]"),
19570 bfd_get_filename (dwz->dwz_bfd));
19571 gdb_assert (HOST_CHAR_BIT == 8);
19572 if (dwz->str.buffer[str_offset] == '\0')
19573 return NULL;
19574 return (const char *) (dwz->str.buffer + str_offset);
19575 }
19576
19577 /* Return pointer to string at .debug_str offset as read from BUF.
19578 BUF is assumed to be in a compilation unit described by CU_HEADER.
19579 Return *BYTES_READ_PTR count of bytes read from BUF. */
19580
19581 static const char *
19582 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19583 const gdb_byte *buf,
19584 const struct comp_unit_head *cu_header,
19585 unsigned int *bytes_read_ptr)
19586 {
19587 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19588
19589 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19590 }
19591
19592 /* Return pointer to string at .debug_line_str offset as read from BUF.
19593 BUF is assumed to be in a compilation unit described by CU_HEADER.
19594 Return *BYTES_READ_PTR count of bytes read from BUF. */
19595
19596 static const char *
19597 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19598 bfd *abfd, const gdb_byte *buf,
19599 const struct comp_unit_head *cu_header,
19600 unsigned int *bytes_read_ptr)
19601 {
19602 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19603
19604 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19605 str_offset);
19606 }
19607
19608 ULONGEST
19609 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19610 unsigned int *bytes_read_ptr)
19611 {
19612 ULONGEST result;
19613 unsigned int num_read;
19614 int shift;
19615 unsigned char byte;
19616
19617 result = 0;
19618 shift = 0;
19619 num_read = 0;
19620 while (1)
19621 {
19622 byte = bfd_get_8 (abfd, buf);
19623 buf++;
19624 num_read++;
19625 result |= ((ULONGEST) (byte & 127) << shift);
19626 if ((byte & 128) == 0)
19627 {
19628 break;
19629 }
19630 shift += 7;
19631 }
19632 *bytes_read_ptr = num_read;
19633 return result;
19634 }
19635
19636 static LONGEST
19637 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19638 unsigned int *bytes_read_ptr)
19639 {
19640 ULONGEST result;
19641 int shift, num_read;
19642 unsigned char byte;
19643
19644 result = 0;
19645 shift = 0;
19646 num_read = 0;
19647 while (1)
19648 {
19649 byte = bfd_get_8 (abfd, buf);
19650 buf++;
19651 num_read++;
19652 result |= ((ULONGEST) (byte & 127) << shift);
19653 shift += 7;
19654 if ((byte & 128) == 0)
19655 {
19656 break;
19657 }
19658 }
19659 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19660 result |= -(((ULONGEST) 1) << shift);
19661 *bytes_read_ptr = num_read;
19662 return result;
19663 }
19664
19665 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19666 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19667 ADDR_SIZE is the size of addresses from the CU header. */
19668
19669 static CORE_ADDR
19670 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19671 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19672 {
19673 struct objfile *objfile = dwarf2_per_objfile->objfile;
19674 bfd *abfd = objfile->obfd;
19675 const gdb_byte *info_ptr;
19676
19677 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19678 if (dwarf2_per_objfile->addr.buffer == NULL)
19679 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19680 objfile_name (objfile));
19681 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19682 error (_("DW_FORM_addr_index pointing outside of "
19683 ".debug_addr section [in module %s]"),
19684 objfile_name (objfile));
19685 info_ptr = (dwarf2_per_objfile->addr.buffer
19686 + addr_base + addr_index * addr_size);
19687 if (addr_size == 4)
19688 return bfd_get_32 (abfd, info_ptr);
19689 else
19690 return bfd_get_64 (abfd, info_ptr);
19691 }
19692
19693 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19694
19695 static CORE_ADDR
19696 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19697 {
19698 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19699 cu->addr_base, cu->header.addr_size);
19700 }
19701
19702 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19703
19704 static CORE_ADDR
19705 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19706 unsigned int *bytes_read)
19707 {
19708 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19709 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19710
19711 return read_addr_index (cu, addr_index);
19712 }
19713
19714 /* Data structure to pass results from dwarf2_read_addr_index_reader
19715 back to dwarf2_read_addr_index. */
19716
19717 struct dwarf2_read_addr_index_data
19718 {
19719 ULONGEST addr_base;
19720 int addr_size;
19721 };
19722
19723 /* die_reader_func for dwarf2_read_addr_index. */
19724
19725 static void
19726 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19727 const gdb_byte *info_ptr,
19728 struct die_info *comp_unit_die,
19729 int has_children,
19730 void *data)
19731 {
19732 struct dwarf2_cu *cu = reader->cu;
19733 struct dwarf2_read_addr_index_data *aidata =
19734 (struct dwarf2_read_addr_index_data *) data;
19735
19736 aidata->addr_base = cu->addr_base;
19737 aidata->addr_size = cu->header.addr_size;
19738 }
19739
19740 /* Given an index in .debug_addr, fetch the value.
19741 NOTE: This can be called during dwarf expression evaluation,
19742 long after the debug information has been read, and thus per_cu->cu
19743 may no longer exist. */
19744
19745 CORE_ADDR
19746 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19747 unsigned int addr_index)
19748 {
19749 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19750 struct dwarf2_cu *cu = per_cu->cu;
19751 ULONGEST addr_base;
19752 int addr_size;
19753
19754 /* We need addr_base and addr_size.
19755 If we don't have PER_CU->cu, we have to get it.
19756 Nasty, but the alternative is storing the needed info in PER_CU,
19757 which at this point doesn't seem justified: it's not clear how frequently
19758 it would get used and it would increase the size of every PER_CU.
19759 Entry points like dwarf2_per_cu_addr_size do a similar thing
19760 so we're not in uncharted territory here.
19761 Alas we need to be a bit more complicated as addr_base is contained
19762 in the DIE.
19763
19764 We don't need to read the entire CU(/TU).
19765 We just need the header and top level die.
19766
19767 IWBN to use the aging mechanism to let us lazily later discard the CU.
19768 For now we skip this optimization. */
19769
19770 if (cu != NULL)
19771 {
19772 addr_base = cu->addr_base;
19773 addr_size = cu->header.addr_size;
19774 }
19775 else
19776 {
19777 struct dwarf2_read_addr_index_data aidata;
19778
19779 /* Note: We can't use init_cutu_and_read_dies_simple here,
19780 we need addr_base. */
19781 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19782 dwarf2_read_addr_index_reader, &aidata);
19783 addr_base = aidata.addr_base;
19784 addr_size = aidata.addr_size;
19785 }
19786
19787 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19788 addr_size);
19789 }
19790
19791 /* Given a DW_FORM_GNU_str_index, fetch the string.
19792 This is only used by the Fission support. */
19793
19794 static const char *
19795 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19796 {
19797 struct dwarf2_cu *cu = reader->cu;
19798 struct dwarf2_per_objfile *dwarf2_per_objfile
19799 = cu->per_cu->dwarf2_per_objfile;
19800 struct objfile *objfile = dwarf2_per_objfile->objfile;
19801 const char *objf_name = objfile_name (objfile);
19802 bfd *abfd = objfile->obfd;
19803 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19804 struct dwarf2_section_info *str_offsets_section =
19805 &reader->dwo_file->sections.str_offsets;
19806 const gdb_byte *info_ptr;
19807 ULONGEST str_offset;
19808 static const char form_name[] = "DW_FORM_GNU_str_index";
19809
19810 dwarf2_read_section (objfile, str_section);
19811 dwarf2_read_section (objfile, str_offsets_section);
19812 if (str_section->buffer == NULL)
19813 error (_("%s used without .debug_str.dwo section"
19814 " in CU at offset %s [in module %s]"),
19815 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19816 if (str_offsets_section->buffer == NULL)
19817 error (_("%s used without .debug_str_offsets.dwo section"
19818 " in CU at offset %s [in module %s]"),
19819 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19820 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19821 error (_("%s pointing outside of .debug_str_offsets.dwo"
19822 " section in CU at offset %s [in module %s]"),
19823 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19824 info_ptr = (str_offsets_section->buffer
19825 + str_index * cu->header.offset_size);
19826 if (cu->header.offset_size == 4)
19827 str_offset = bfd_get_32 (abfd, info_ptr);
19828 else
19829 str_offset = bfd_get_64 (abfd, info_ptr);
19830 if (str_offset >= str_section->size)
19831 error (_("Offset from %s pointing outside of"
19832 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19833 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19834 return (const char *) (str_section->buffer + str_offset);
19835 }
19836
19837 /* Return the length of an LEB128 number in BUF. */
19838
19839 static int
19840 leb128_size (const gdb_byte *buf)
19841 {
19842 const gdb_byte *begin = buf;
19843 gdb_byte byte;
19844
19845 while (1)
19846 {
19847 byte = *buf++;
19848 if ((byte & 128) == 0)
19849 return buf - begin;
19850 }
19851 }
19852
19853 static void
19854 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19855 {
19856 switch (lang)
19857 {
19858 case DW_LANG_C89:
19859 case DW_LANG_C99:
19860 case DW_LANG_C11:
19861 case DW_LANG_C:
19862 case DW_LANG_UPC:
19863 cu->language = language_c;
19864 break;
19865 case DW_LANG_Java:
19866 case DW_LANG_C_plus_plus:
19867 case DW_LANG_C_plus_plus_11:
19868 case DW_LANG_C_plus_plus_14:
19869 cu->language = language_cplus;
19870 break;
19871 case DW_LANG_D:
19872 cu->language = language_d;
19873 break;
19874 case DW_LANG_Fortran77:
19875 case DW_LANG_Fortran90:
19876 case DW_LANG_Fortran95:
19877 case DW_LANG_Fortran03:
19878 case DW_LANG_Fortran08:
19879 cu->language = language_fortran;
19880 break;
19881 case DW_LANG_Go:
19882 cu->language = language_go;
19883 break;
19884 case DW_LANG_Mips_Assembler:
19885 cu->language = language_asm;
19886 break;
19887 case DW_LANG_Ada83:
19888 case DW_LANG_Ada95:
19889 cu->language = language_ada;
19890 break;
19891 case DW_LANG_Modula2:
19892 cu->language = language_m2;
19893 break;
19894 case DW_LANG_Pascal83:
19895 cu->language = language_pascal;
19896 break;
19897 case DW_LANG_ObjC:
19898 cu->language = language_objc;
19899 break;
19900 case DW_LANG_Rust:
19901 case DW_LANG_Rust_old:
19902 cu->language = language_rust;
19903 break;
19904 case DW_LANG_Cobol74:
19905 case DW_LANG_Cobol85:
19906 default:
19907 cu->language = language_minimal;
19908 break;
19909 }
19910 cu->language_defn = language_def (cu->language);
19911 }
19912
19913 /* Return the named attribute or NULL if not there. */
19914
19915 static struct attribute *
19916 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19917 {
19918 for (;;)
19919 {
19920 unsigned int i;
19921 struct attribute *spec = NULL;
19922
19923 for (i = 0; i < die->num_attrs; ++i)
19924 {
19925 if (die->attrs[i].name == name)
19926 return &die->attrs[i];
19927 if (die->attrs[i].name == DW_AT_specification
19928 || die->attrs[i].name == DW_AT_abstract_origin)
19929 spec = &die->attrs[i];
19930 }
19931
19932 if (!spec)
19933 break;
19934
19935 die = follow_die_ref (die, spec, &cu);
19936 }
19937
19938 return NULL;
19939 }
19940
19941 /* Return the named attribute or NULL if not there,
19942 but do not follow DW_AT_specification, etc.
19943 This is for use in contexts where we're reading .debug_types dies.
19944 Following DW_AT_specification, DW_AT_abstract_origin will take us
19945 back up the chain, and we want to go down. */
19946
19947 static struct attribute *
19948 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19949 {
19950 unsigned int i;
19951
19952 for (i = 0; i < die->num_attrs; ++i)
19953 if (die->attrs[i].name == name)
19954 return &die->attrs[i];
19955
19956 return NULL;
19957 }
19958
19959 /* Return the string associated with a string-typed attribute, or NULL if it
19960 is either not found or is of an incorrect type. */
19961
19962 static const char *
19963 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19964 {
19965 struct attribute *attr;
19966 const char *str = NULL;
19967
19968 attr = dwarf2_attr (die, name, cu);
19969
19970 if (attr != NULL)
19971 {
19972 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19973 || attr->form == DW_FORM_string
19974 || attr->form == DW_FORM_GNU_str_index
19975 || attr->form == DW_FORM_GNU_strp_alt)
19976 str = DW_STRING (attr);
19977 else
19978 complaint (_("string type expected for attribute %s for "
19979 "DIE at %s in module %s"),
19980 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19981 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19982 }
19983
19984 return str;
19985 }
19986
19987 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19988 and holds a non-zero value. This function should only be used for
19989 DW_FORM_flag or DW_FORM_flag_present attributes. */
19990
19991 static int
19992 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19993 {
19994 struct attribute *attr = dwarf2_attr (die, name, cu);
19995
19996 return (attr && DW_UNSND (attr));
19997 }
19998
19999 static int
20000 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20001 {
20002 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20003 which value is non-zero. However, we have to be careful with
20004 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20005 (via dwarf2_flag_true_p) follows this attribute. So we may
20006 end up accidently finding a declaration attribute that belongs
20007 to a different DIE referenced by the specification attribute,
20008 even though the given DIE does not have a declaration attribute. */
20009 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20010 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20011 }
20012
20013 /* Return the die giving the specification for DIE, if there is
20014 one. *SPEC_CU is the CU containing DIE on input, and the CU
20015 containing the return value on output. If there is no
20016 specification, but there is an abstract origin, that is
20017 returned. */
20018
20019 static struct die_info *
20020 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20021 {
20022 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20023 *spec_cu);
20024
20025 if (spec_attr == NULL)
20026 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20027
20028 if (spec_attr == NULL)
20029 return NULL;
20030 else
20031 return follow_die_ref (die, spec_attr, spec_cu);
20032 }
20033
20034 /* Stub for free_line_header to match void * callback types. */
20035
20036 static void
20037 free_line_header_voidp (void *arg)
20038 {
20039 struct line_header *lh = (struct line_header *) arg;
20040
20041 delete lh;
20042 }
20043
20044 void
20045 line_header::add_include_dir (const char *include_dir)
20046 {
20047 if (dwarf_line_debug >= 2)
20048 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20049 include_dirs.size () + 1, include_dir);
20050
20051 include_dirs.push_back (include_dir);
20052 }
20053
20054 void
20055 line_header::add_file_name (const char *name,
20056 dir_index d_index,
20057 unsigned int mod_time,
20058 unsigned int length)
20059 {
20060 if (dwarf_line_debug >= 2)
20061 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20062 (unsigned) file_names.size () + 1, name);
20063
20064 file_names.emplace_back (name, d_index, mod_time, length);
20065 }
20066
20067 /* A convenience function to find the proper .debug_line section for a CU. */
20068
20069 static struct dwarf2_section_info *
20070 get_debug_line_section (struct dwarf2_cu *cu)
20071 {
20072 struct dwarf2_section_info *section;
20073 struct dwarf2_per_objfile *dwarf2_per_objfile
20074 = cu->per_cu->dwarf2_per_objfile;
20075
20076 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20077 DWO file. */
20078 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20079 section = &cu->dwo_unit->dwo_file->sections.line;
20080 else if (cu->per_cu->is_dwz)
20081 {
20082 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20083
20084 section = &dwz->line;
20085 }
20086 else
20087 section = &dwarf2_per_objfile->line;
20088
20089 return section;
20090 }
20091
20092 /* Read directory or file name entry format, starting with byte of
20093 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20094 entries count and the entries themselves in the described entry
20095 format. */
20096
20097 static void
20098 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20099 bfd *abfd, const gdb_byte **bufp,
20100 struct line_header *lh,
20101 const struct comp_unit_head *cu_header,
20102 void (*callback) (struct line_header *lh,
20103 const char *name,
20104 dir_index d_index,
20105 unsigned int mod_time,
20106 unsigned int length))
20107 {
20108 gdb_byte format_count, formati;
20109 ULONGEST data_count, datai;
20110 const gdb_byte *buf = *bufp;
20111 const gdb_byte *format_header_data;
20112 unsigned int bytes_read;
20113
20114 format_count = read_1_byte (abfd, buf);
20115 buf += 1;
20116 format_header_data = buf;
20117 for (formati = 0; formati < format_count; formati++)
20118 {
20119 read_unsigned_leb128 (abfd, buf, &bytes_read);
20120 buf += bytes_read;
20121 read_unsigned_leb128 (abfd, buf, &bytes_read);
20122 buf += bytes_read;
20123 }
20124
20125 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20126 buf += bytes_read;
20127 for (datai = 0; datai < data_count; datai++)
20128 {
20129 const gdb_byte *format = format_header_data;
20130 struct file_entry fe;
20131
20132 for (formati = 0; formati < format_count; formati++)
20133 {
20134 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20135 format += bytes_read;
20136
20137 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20138 format += bytes_read;
20139
20140 gdb::optional<const char *> string;
20141 gdb::optional<unsigned int> uint;
20142
20143 switch (form)
20144 {
20145 case DW_FORM_string:
20146 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20147 buf += bytes_read;
20148 break;
20149
20150 case DW_FORM_line_strp:
20151 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20152 abfd, buf,
20153 cu_header,
20154 &bytes_read));
20155 buf += bytes_read;
20156 break;
20157
20158 case DW_FORM_data1:
20159 uint.emplace (read_1_byte (abfd, buf));
20160 buf += 1;
20161 break;
20162
20163 case DW_FORM_data2:
20164 uint.emplace (read_2_bytes (abfd, buf));
20165 buf += 2;
20166 break;
20167
20168 case DW_FORM_data4:
20169 uint.emplace (read_4_bytes (abfd, buf));
20170 buf += 4;
20171 break;
20172
20173 case DW_FORM_data8:
20174 uint.emplace (read_8_bytes (abfd, buf));
20175 buf += 8;
20176 break;
20177
20178 case DW_FORM_udata:
20179 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20180 buf += bytes_read;
20181 break;
20182
20183 case DW_FORM_block:
20184 /* It is valid only for DW_LNCT_timestamp which is ignored by
20185 current GDB. */
20186 break;
20187 }
20188
20189 switch (content_type)
20190 {
20191 case DW_LNCT_path:
20192 if (string.has_value ())
20193 fe.name = *string;
20194 break;
20195 case DW_LNCT_directory_index:
20196 if (uint.has_value ())
20197 fe.d_index = (dir_index) *uint;
20198 break;
20199 case DW_LNCT_timestamp:
20200 if (uint.has_value ())
20201 fe.mod_time = *uint;
20202 break;
20203 case DW_LNCT_size:
20204 if (uint.has_value ())
20205 fe.length = *uint;
20206 break;
20207 case DW_LNCT_MD5:
20208 break;
20209 default:
20210 complaint (_("Unknown format content type %s"),
20211 pulongest (content_type));
20212 }
20213 }
20214
20215 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20216 }
20217
20218 *bufp = buf;
20219 }
20220
20221 /* Read the statement program header starting at OFFSET in
20222 .debug_line, or .debug_line.dwo. Return a pointer
20223 to a struct line_header, allocated using xmalloc.
20224 Returns NULL if there is a problem reading the header, e.g., if it
20225 has a version we don't understand.
20226
20227 NOTE: the strings in the include directory and file name tables of
20228 the returned object point into the dwarf line section buffer,
20229 and must not be freed. */
20230
20231 static line_header_up
20232 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20233 {
20234 const gdb_byte *line_ptr;
20235 unsigned int bytes_read, offset_size;
20236 int i;
20237 const char *cur_dir, *cur_file;
20238 struct dwarf2_section_info *section;
20239 bfd *abfd;
20240 struct dwarf2_per_objfile *dwarf2_per_objfile
20241 = cu->per_cu->dwarf2_per_objfile;
20242
20243 section = get_debug_line_section (cu);
20244 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20245 if (section->buffer == NULL)
20246 {
20247 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20248 complaint (_("missing .debug_line.dwo section"));
20249 else
20250 complaint (_("missing .debug_line section"));
20251 return 0;
20252 }
20253
20254 /* We can't do this until we know the section is non-empty.
20255 Only then do we know we have such a section. */
20256 abfd = get_section_bfd_owner (section);
20257
20258 /* Make sure that at least there's room for the total_length field.
20259 That could be 12 bytes long, but we're just going to fudge that. */
20260 if (to_underlying (sect_off) + 4 >= section->size)
20261 {
20262 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20263 return 0;
20264 }
20265
20266 line_header_up lh (new line_header ());
20267
20268 lh->sect_off = sect_off;
20269 lh->offset_in_dwz = cu->per_cu->is_dwz;
20270
20271 line_ptr = section->buffer + to_underlying (sect_off);
20272
20273 /* Read in the header. */
20274 lh->total_length =
20275 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20276 &bytes_read, &offset_size);
20277 line_ptr += bytes_read;
20278 if (line_ptr + lh->total_length > (section->buffer + section->size))
20279 {
20280 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20281 return 0;
20282 }
20283 lh->statement_program_end = line_ptr + lh->total_length;
20284 lh->version = read_2_bytes (abfd, line_ptr);
20285 line_ptr += 2;
20286 if (lh->version > 5)
20287 {
20288 /* This is a version we don't understand. The format could have
20289 changed in ways we don't handle properly so just punt. */
20290 complaint (_("unsupported version in .debug_line section"));
20291 return NULL;
20292 }
20293 if (lh->version >= 5)
20294 {
20295 gdb_byte segment_selector_size;
20296
20297 /* Skip address size. */
20298 read_1_byte (abfd, line_ptr);
20299 line_ptr += 1;
20300
20301 segment_selector_size = read_1_byte (abfd, line_ptr);
20302 line_ptr += 1;
20303 if (segment_selector_size != 0)
20304 {
20305 complaint (_("unsupported segment selector size %u "
20306 "in .debug_line section"),
20307 segment_selector_size);
20308 return NULL;
20309 }
20310 }
20311 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20312 line_ptr += offset_size;
20313 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20314 line_ptr += 1;
20315 if (lh->version >= 4)
20316 {
20317 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20318 line_ptr += 1;
20319 }
20320 else
20321 lh->maximum_ops_per_instruction = 1;
20322
20323 if (lh->maximum_ops_per_instruction == 0)
20324 {
20325 lh->maximum_ops_per_instruction = 1;
20326 complaint (_("invalid maximum_ops_per_instruction "
20327 "in `.debug_line' section"));
20328 }
20329
20330 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20331 line_ptr += 1;
20332 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20333 line_ptr += 1;
20334 lh->line_range = read_1_byte (abfd, line_ptr);
20335 line_ptr += 1;
20336 lh->opcode_base = read_1_byte (abfd, line_ptr);
20337 line_ptr += 1;
20338 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20339
20340 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20341 for (i = 1; i < lh->opcode_base; ++i)
20342 {
20343 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20344 line_ptr += 1;
20345 }
20346
20347 if (lh->version >= 5)
20348 {
20349 /* Read directory table. */
20350 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20351 &cu->header,
20352 [] (struct line_header *header, const char *name,
20353 dir_index d_index, unsigned int mod_time,
20354 unsigned int length)
20355 {
20356 header->add_include_dir (name);
20357 });
20358
20359 /* Read file name table. */
20360 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20361 &cu->header,
20362 [] (struct line_header *header, const char *name,
20363 dir_index d_index, unsigned int mod_time,
20364 unsigned int length)
20365 {
20366 header->add_file_name (name, d_index, mod_time, length);
20367 });
20368 }
20369 else
20370 {
20371 /* Read directory table. */
20372 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20373 {
20374 line_ptr += bytes_read;
20375 lh->add_include_dir (cur_dir);
20376 }
20377 line_ptr += bytes_read;
20378
20379 /* Read file name table. */
20380 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20381 {
20382 unsigned int mod_time, length;
20383 dir_index d_index;
20384
20385 line_ptr += bytes_read;
20386 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20387 line_ptr += bytes_read;
20388 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20389 line_ptr += bytes_read;
20390 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20391 line_ptr += bytes_read;
20392
20393 lh->add_file_name (cur_file, d_index, mod_time, length);
20394 }
20395 line_ptr += bytes_read;
20396 }
20397 lh->statement_program_start = line_ptr;
20398
20399 if (line_ptr > (section->buffer + section->size))
20400 complaint (_("line number info header doesn't "
20401 "fit in `.debug_line' section"));
20402
20403 return lh;
20404 }
20405
20406 /* Subroutine of dwarf_decode_lines to simplify it.
20407 Return the file name of the psymtab for included file FILE_INDEX
20408 in line header LH of PST.
20409 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20410 If space for the result is malloc'd, *NAME_HOLDER will be set.
20411 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20412
20413 static const char *
20414 psymtab_include_file_name (const struct line_header *lh, int file_index,
20415 const struct partial_symtab *pst,
20416 const char *comp_dir,
20417 gdb::unique_xmalloc_ptr<char> *name_holder)
20418 {
20419 const file_entry &fe = lh->file_names[file_index];
20420 const char *include_name = fe.name;
20421 const char *include_name_to_compare = include_name;
20422 const char *pst_filename;
20423 int file_is_pst;
20424
20425 const char *dir_name = fe.include_dir (lh);
20426
20427 gdb::unique_xmalloc_ptr<char> hold_compare;
20428 if (!IS_ABSOLUTE_PATH (include_name)
20429 && (dir_name != NULL || comp_dir != NULL))
20430 {
20431 /* Avoid creating a duplicate psymtab for PST.
20432 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20433 Before we do the comparison, however, we need to account
20434 for DIR_NAME and COMP_DIR.
20435 First prepend dir_name (if non-NULL). If we still don't
20436 have an absolute path prepend comp_dir (if non-NULL).
20437 However, the directory we record in the include-file's
20438 psymtab does not contain COMP_DIR (to match the
20439 corresponding symtab(s)).
20440
20441 Example:
20442
20443 bash$ cd /tmp
20444 bash$ gcc -g ./hello.c
20445 include_name = "hello.c"
20446 dir_name = "."
20447 DW_AT_comp_dir = comp_dir = "/tmp"
20448 DW_AT_name = "./hello.c"
20449
20450 */
20451
20452 if (dir_name != NULL)
20453 {
20454 name_holder->reset (concat (dir_name, SLASH_STRING,
20455 include_name, (char *) NULL));
20456 include_name = name_holder->get ();
20457 include_name_to_compare = include_name;
20458 }
20459 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20460 {
20461 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20462 include_name, (char *) NULL));
20463 include_name_to_compare = hold_compare.get ();
20464 }
20465 }
20466
20467 pst_filename = pst->filename;
20468 gdb::unique_xmalloc_ptr<char> copied_name;
20469 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20470 {
20471 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20472 pst_filename, (char *) NULL));
20473 pst_filename = copied_name.get ();
20474 }
20475
20476 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20477
20478 if (file_is_pst)
20479 return NULL;
20480 return include_name;
20481 }
20482
20483 /* State machine to track the state of the line number program. */
20484
20485 class lnp_state_machine
20486 {
20487 public:
20488 /* Initialize a machine state for the start of a line number
20489 program. */
20490 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20491 bool record_lines_p);
20492
20493 file_entry *current_file ()
20494 {
20495 /* lh->file_names is 0-based, but the file name numbers in the
20496 statement program are 1-based. */
20497 return m_line_header->file_name_at (m_file);
20498 }
20499
20500 /* Record the line in the state machine. END_SEQUENCE is true if
20501 we're processing the end of a sequence. */
20502 void record_line (bool end_sequence);
20503
20504 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20505 nop-out rest of the lines in this sequence. */
20506 void check_line_address (struct dwarf2_cu *cu,
20507 const gdb_byte *line_ptr,
20508 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20509
20510 void handle_set_discriminator (unsigned int discriminator)
20511 {
20512 m_discriminator = discriminator;
20513 m_line_has_non_zero_discriminator |= discriminator != 0;
20514 }
20515
20516 /* Handle DW_LNE_set_address. */
20517 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20518 {
20519 m_op_index = 0;
20520 address += baseaddr;
20521 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20522 }
20523
20524 /* Handle DW_LNS_advance_pc. */
20525 void handle_advance_pc (CORE_ADDR adjust);
20526
20527 /* Handle a special opcode. */
20528 void handle_special_opcode (unsigned char op_code);
20529
20530 /* Handle DW_LNS_advance_line. */
20531 void handle_advance_line (int line_delta)
20532 {
20533 advance_line (line_delta);
20534 }
20535
20536 /* Handle DW_LNS_set_file. */
20537 void handle_set_file (file_name_index file);
20538
20539 /* Handle DW_LNS_negate_stmt. */
20540 void handle_negate_stmt ()
20541 {
20542 m_is_stmt = !m_is_stmt;
20543 }
20544
20545 /* Handle DW_LNS_const_add_pc. */
20546 void handle_const_add_pc ();
20547
20548 /* Handle DW_LNS_fixed_advance_pc. */
20549 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20550 {
20551 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20552 m_op_index = 0;
20553 }
20554
20555 /* Handle DW_LNS_copy. */
20556 void handle_copy ()
20557 {
20558 record_line (false);
20559 m_discriminator = 0;
20560 }
20561
20562 /* Handle DW_LNE_end_sequence. */
20563 void handle_end_sequence ()
20564 {
20565 m_currently_recording_lines = true;
20566 }
20567
20568 private:
20569 /* Advance the line by LINE_DELTA. */
20570 void advance_line (int line_delta)
20571 {
20572 m_line += line_delta;
20573
20574 if (line_delta != 0)
20575 m_line_has_non_zero_discriminator = m_discriminator != 0;
20576 }
20577
20578 struct dwarf2_cu *m_cu;
20579
20580 gdbarch *m_gdbarch;
20581
20582 /* True if we're recording lines.
20583 Otherwise we're building partial symtabs and are just interested in
20584 finding include files mentioned by the line number program. */
20585 bool m_record_lines_p;
20586
20587 /* The line number header. */
20588 line_header *m_line_header;
20589
20590 /* These are part of the standard DWARF line number state machine,
20591 and initialized according to the DWARF spec. */
20592
20593 unsigned char m_op_index = 0;
20594 /* The line table index (1-based) of the current file. */
20595 file_name_index m_file = (file_name_index) 1;
20596 unsigned int m_line = 1;
20597
20598 /* These are initialized in the constructor. */
20599
20600 CORE_ADDR m_address;
20601 bool m_is_stmt;
20602 unsigned int m_discriminator;
20603
20604 /* Additional bits of state we need to track. */
20605
20606 /* The last file that we called dwarf2_start_subfile for.
20607 This is only used for TLLs. */
20608 unsigned int m_last_file = 0;
20609 /* The last file a line number was recorded for. */
20610 struct subfile *m_last_subfile = NULL;
20611
20612 /* When true, record the lines we decode. */
20613 bool m_currently_recording_lines = false;
20614
20615 /* The last line number that was recorded, used to coalesce
20616 consecutive entries for the same line. This can happen, for
20617 example, when discriminators are present. PR 17276. */
20618 unsigned int m_last_line = 0;
20619 bool m_line_has_non_zero_discriminator = false;
20620 };
20621
20622 void
20623 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20624 {
20625 CORE_ADDR addr_adj = (((m_op_index + adjust)
20626 / m_line_header->maximum_ops_per_instruction)
20627 * m_line_header->minimum_instruction_length);
20628 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20629 m_op_index = ((m_op_index + adjust)
20630 % m_line_header->maximum_ops_per_instruction);
20631 }
20632
20633 void
20634 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20635 {
20636 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20637 CORE_ADDR addr_adj = (((m_op_index
20638 + (adj_opcode / m_line_header->line_range))
20639 / m_line_header->maximum_ops_per_instruction)
20640 * m_line_header->minimum_instruction_length);
20641 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20642 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20643 % m_line_header->maximum_ops_per_instruction);
20644
20645 int line_delta = (m_line_header->line_base
20646 + (adj_opcode % m_line_header->line_range));
20647 advance_line (line_delta);
20648 record_line (false);
20649 m_discriminator = 0;
20650 }
20651
20652 void
20653 lnp_state_machine::handle_set_file (file_name_index file)
20654 {
20655 m_file = file;
20656
20657 const file_entry *fe = current_file ();
20658 if (fe == NULL)
20659 dwarf2_debug_line_missing_file_complaint ();
20660 else if (m_record_lines_p)
20661 {
20662 const char *dir = fe->include_dir (m_line_header);
20663
20664 m_last_subfile = m_cu->builder->get_current_subfile ();
20665 m_line_has_non_zero_discriminator = m_discriminator != 0;
20666 dwarf2_start_subfile (m_cu, fe->name, dir);
20667 }
20668 }
20669
20670 void
20671 lnp_state_machine::handle_const_add_pc ()
20672 {
20673 CORE_ADDR adjust
20674 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20675
20676 CORE_ADDR addr_adj
20677 = (((m_op_index + adjust)
20678 / m_line_header->maximum_ops_per_instruction)
20679 * m_line_header->minimum_instruction_length);
20680
20681 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20682 m_op_index = ((m_op_index + adjust)
20683 % m_line_header->maximum_ops_per_instruction);
20684 }
20685
20686 /* Return non-zero if we should add LINE to the line number table.
20687 LINE is the line to add, LAST_LINE is the last line that was added,
20688 LAST_SUBFILE is the subfile for LAST_LINE.
20689 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20690 had a non-zero discriminator.
20691
20692 We have to be careful in the presence of discriminators.
20693 E.g., for this line:
20694
20695 for (i = 0; i < 100000; i++);
20696
20697 clang can emit four line number entries for that one line,
20698 each with a different discriminator.
20699 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20700
20701 However, we want gdb to coalesce all four entries into one.
20702 Otherwise the user could stepi into the middle of the line and
20703 gdb would get confused about whether the pc really was in the
20704 middle of the line.
20705
20706 Things are further complicated by the fact that two consecutive
20707 line number entries for the same line is a heuristic used by gcc
20708 to denote the end of the prologue. So we can't just discard duplicate
20709 entries, we have to be selective about it. The heuristic we use is
20710 that we only collapse consecutive entries for the same line if at least
20711 one of those entries has a non-zero discriminator. PR 17276.
20712
20713 Note: Addresses in the line number state machine can never go backwards
20714 within one sequence, thus this coalescing is ok. */
20715
20716 static int
20717 dwarf_record_line_p (struct dwarf2_cu *cu,
20718 unsigned int line, unsigned int last_line,
20719 int line_has_non_zero_discriminator,
20720 struct subfile *last_subfile)
20721 {
20722 if (cu->builder->get_current_subfile () != last_subfile)
20723 return 1;
20724 if (line != last_line)
20725 return 1;
20726 /* Same line for the same file that we've seen already.
20727 As a last check, for pr 17276, only record the line if the line
20728 has never had a non-zero discriminator. */
20729 if (!line_has_non_zero_discriminator)
20730 return 1;
20731 return 0;
20732 }
20733
20734 /* Use the CU's builder to record line number LINE beginning at
20735 address ADDRESS in the line table of subfile SUBFILE. */
20736
20737 static void
20738 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20739 unsigned int line, CORE_ADDR address,
20740 struct dwarf2_cu *cu)
20741 {
20742 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20743
20744 if (dwarf_line_debug)
20745 {
20746 fprintf_unfiltered (gdb_stdlog,
20747 "Recording line %u, file %s, address %s\n",
20748 line, lbasename (subfile->name),
20749 paddress (gdbarch, address));
20750 }
20751
20752 if (cu != nullptr)
20753 cu->builder->record_line (subfile, line, addr);
20754 }
20755
20756 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20757 Mark the end of a set of line number records.
20758 The arguments are the same as for dwarf_record_line_1.
20759 If SUBFILE is NULL the request is ignored. */
20760
20761 static void
20762 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20763 CORE_ADDR address, struct dwarf2_cu *cu)
20764 {
20765 if (subfile == NULL)
20766 return;
20767
20768 if (dwarf_line_debug)
20769 {
20770 fprintf_unfiltered (gdb_stdlog,
20771 "Finishing current line, file %s, address %s\n",
20772 lbasename (subfile->name),
20773 paddress (gdbarch, address));
20774 }
20775
20776 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20777 }
20778
20779 void
20780 lnp_state_machine::record_line (bool end_sequence)
20781 {
20782 if (dwarf_line_debug)
20783 {
20784 fprintf_unfiltered (gdb_stdlog,
20785 "Processing actual line %u: file %u,"
20786 " address %s, is_stmt %u, discrim %u\n",
20787 m_line, to_underlying (m_file),
20788 paddress (m_gdbarch, m_address),
20789 m_is_stmt, m_discriminator);
20790 }
20791
20792 file_entry *fe = current_file ();
20793
20794 if (fe == NULL)
20795 dwarf2_debug_line_missing_file_complaint ();
20796 /* For now we ignore lines not starting on an instruction boundary.
20797 But not when processing end_sequence for compatibility with the
20798 previous version of the code. */
20799 else if (m_op_index == 0 || end_sequence)
20800 {
20801 fe->included_p = 1;
20802 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20803 {
20804 if (m_last_subfile != m_cu->builder->get_current_subfile ()
20805 || end_sequence)
20806 {
20807 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20808 m_currently_recording_lines ? m_cu : nullptr);
20809 }
20810
20811 if (!end_sequence)
20812 {
20813 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20814 m_line_has_non_zero_discriminator,
20815 m_last_subfile))
20816 {
20817 dwarf_record_line_1 (m_gdbarch,
20818 m_cu->builder->get_current_subfile (),
20819 m_line, m_address,
20820 m_currently_recording_lines ? m_cu : nullptr);
20821 }
20822 m_last_subfile = m_cu->builder->get_current_subfile ();
20823 m_last_line = m_line;
20824 }
20825 }
20826 }
20827 }
20828
20829 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20830 line_header *lh, bool record_lines_p)
20831 {
20832 m_cu = cu;
20833 m_gdbarch = arch;
20834 m_record_lines_p = record_lines_p;
20835 m_line_header = lh;
20836
20837 m_currently_recording_lines = true;
20838
20839 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20840 was a line entry for it so that the backend has a chance to adjust it
20841 and also record it in case it needs it. This is currently used by MIPS
20842 code, cf. `mips_adjust_dwarf2_line'. */
20843 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20844 m_is_stmt = lh->default_is_stmt;
20845 m_discriminator = 0;
20846 }
20847
20848 void
20849 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20850 const gdb_byte *line_ptr,
20851 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20852 {
20853 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20854 the pc range of the CU. However, we restrict the test to only ADDRESS
20855 values of zero to preserve GDB's previous behaviour which is to handle
20856 the specific case of a function being GC'd by the linker. */
20857
20858 if (address == 0 && address < unrelocated_lowpc)
20859 {
20860 /* This line table is for a function which has been
20861 GCd by the linker. Ignore it. PR gdb/12528 */
20862
20863 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20864 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20865
20866 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20867 line_offset, objfile_name (objfile));
20868 m_currently_recording_lines = false;
20869 /* Note: m_currently_recording_lines is left as false until we see
20870 DW_LNE_end_sequence. */
20871 }
20872 }
20873
20874 /* Subroutine of dwarf_decode_lines to simplify it.
20875 Process the line number information in LH.
20876 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20877 program in order to set included_p for every referenced header. */
20878
20879 static void
20880 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20881 const int decode_for_pst_p, CORE_ADDR lowpc)
20882 {
20883 const gdb_byte *line_ptr, *extended_end;
20884 const gdb_byte *line_end;
20885 unsigned int bytes_read, extended_len;
20886 unsigned char op_code, extended_op;
20887 CORE_ADDR baseaddr;
20888 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20889 bfd *abfd = objfile->obfd;
20890 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20891 /* True if we're recording line info (as opposed to building partial
20892 symtabs and just interested in finding include files mentioned by
20893 the line number program). */
20894 bool record_lines_p = !decode_for_pst_p;
20895
20896 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20897
20898 line_ptr = lh->statement_program_start;
20899 line_end = lh->statement_program_end;
20900
20901 /* Read the statement sequences until there's nothing left. */
20902 while (line_ptr < line_end)
20903 {
20904 /* The DWARF line number program state machine. Reset the state
20905 machine at the start of each sequence. */
20906 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20907 bool end_sequence = false;
20908
20909 if (record_lines_p)
20910 {
20911 /* Start a subfile for the current file of the state
20912 machine. */
20913 const file_entry *fe = state_machine.current_file ();
20914
20915 if (fe != NULL)
20916 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20917 }
20918
20919 /* Decode the table. */
20920 while (line_ptr < line_end && !end_sequence)
20921 {
20922 op_code = read_1_byte (abfd, line_ptr);
20923 line_ptr += 1;
20924
20925 if (op_code >= lh->opcode_base)
20926 {
20927 /* Special opcode. */
20928 state_machine.handle_special_opcode (op_code);
20929 }
20930 else switch (op_code)
20931 {
20932 case DW_LNS_extended_op:
20933 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20934 &bytes_read);
20935 line_ptr += bytes_read;
20936 extended_end = line_ptr + extended_len;
20937 extended_op = read_1_byte (abfd, line_ptr);
20938 line_ptr += 1;
20939 switch (extended_op)
20940 {
20941 case DW_LNE_end_sequence:
20942 state_machine.handle_end_sequence ();
20943 end_sequence = true;
20944 break;
20945 case DW_LNE_set_address:
20946 {
20947 CORE_ADDR address
20948 = read_address (abfd, line_ptr, cu, &bytes_read);
20949 line_ptr += bytes_read;
20950
20951 state_machine.check_line_address (cu, line_ptr,
20952 lowpc - baseaddr, address);
20953 state_machine.handle_set_address (baseaddr, address);
20954 }
20955 break;
20956 case DW_LNE_define_file:
20957 {
20958 const char *cur_file;
20959 unsigned int mod_time, length;
20960 dir_index dindex;
20961
20962 cur_file = read_direct_string (abfd, line_ptr,
20963 &bytes_read);
20964 line_ptr += bytes_read;
20965 dindex = (dir_index)
20966 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20967 line_ptr += bytes_read;
20968 mod_time =
20969 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20970 line_ptr += bytes_read;
20971 length =
20972 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20973 line_ptr += bytes_read;
20974 lh->add_file_name (cur_file, dindex, mod_time, length);
20975 }
20976 break;
20977 case DW_LNE_set_discriminator:
20978 {
20979 /* The discriminator is not interesting to the
20980 debugger; just ignore it. We still need to
20981 check its value though:
20982 if there are consecutive entries for the same
20983 (non-prologue) line we want to coalesce them.
20984 PR 17276. */
20985 unsigned int discr
20986 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20987 line_ptr += bytes_read;
20988
20989 state_machine.handle_set_discriminator (discr);
20990 }
20991 break;
20992 default:
20993 complaint (_("mangled .debug_line section"));
20994 return;
20995 }
20996 /* Make sure that we parsed the extended op correctly. If e.g.
20997 we expected a different address size than the producer used,
20998 we may have read the wrong number of bytes. */
20999 if (line_ptr != extended_end)
21000 {
21001 complaint (_("mangled .debug_line section"));
21002 return;
21003 }
21004 break;
21005 case DW_LNS_copy:
21006 state_machine.handle_copy ();
21007 break;
21008 case DW_LNS_advance_pc:
21009 {
21010 CORE_ADDR adjust
21011 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21012 line_ptr += bytes_read;
21013
21014 state_machine.handle_advance_pc (adjust);
21015 }
21016 break;
21017 case DW_LNS_advance_line:
21018 {
21019 int line_delta
21020 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21021 line_ptr += bytes_read;
21022
21023 state_machine.handle_advance_line (line_delta);
21024 }
21025 break;
21026 case DW_LNS_set_file:
21027 {
21028 file_name_index file
21029 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21030 &bytes_read);
21031 line_ptr += bytes_read;
21032
21033 state_machine.handle_set_file (file);
21034 }
21035 break;
21036 case DW_LNS_set_column:
21037 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21038 line_ptr += bytes_read;
21039 break;
21040 case DW_LNS_negate_stmt:
21041 state_machine.handle_negate_stmt ();
21042 break;
21043 case DW_LNS_set_basic_block:
21044 break;
21045 /* Add to the address register of the state machine the
21046 address increment value corresponding to special opcode
21047 255. I.e., this value is scaled by the minimum
21048 instruction length since special opcode 255 would have
21049 scaled the increment. */
21050 case DW_LNS_const_add_pc:
21051 state_machine.handle_const_add_pc ();
21052 break;
21053 case DW_LNS_fixed_advance_pc:
21054 {
21055 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21056 line_ptr += 2;
21057
21058 state_machine.handle_fixed_advance_pc (addr_adj);
21059 }
21060 break;
21061 default:
21062 {
21063 /* Unknown standard opcode, ignore it. */
21064 int i;
21065
21066 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21067 {
21068 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21069 line_ptr += bytes_read;
21070 }
21071 }
21072 }
21073 }
21074
21075 if (!end_sequence)
21076 dwarf2_debug_line_missing_end_sequence_complaint ();
21077
21078 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21079 in which case we still finish recording the last line). */
21080 state_machine.record_line (true);
21081 }
21082 }
21083
21084 /* Decode the Line Number Program (LNP) for the given line_header
21085 structure and CU. The actual information extracted and the type
21086 of structures created from the LNP depends on the value of PST.
21087
21088 1. If PST is NULL, then this procedure uses the data from the program
21089 to create all necessary symbol tables, and their linetables.
21090
21091 2. If PST is not NULL, this procedure reads the program to determine
21092 the list of files included by the unit represented by PST, and
21093 builds all the associated partial symbol tables.
21094
21095 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21096 It is used for relative paths in the line table.
21097 NOTE: When processing partial symtabs (pst != NULL),
21098 comp_dir == pst->dirname.
21099
21100 NOTE: It is important that psymtabs have the same file name (via strcmp)
21101 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21102 symtab we don't use it in the name of the psymtabs we create.
21103 E.g. expand_line_sal requires this when finding psymtabs to expand.
21104 A good testcase for this is mb-inline.exp.
21105
21106 LOWPC is the lowest address in CU (or 0 if not known).
21107
21108 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21109 for its PC<->lines mapping information. Otherwise only the filename
21110 table is read in. */
21111
21112 static void
21113 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21114 struct dwarf2_cu *cu, struct partial_symtab *pst,
21115 CORE_ADDR lowpc, int decode_mapping)
21116 {
21117 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21118 const int decode_for_pst_p = (pst != NULL);
21119
21120 if (decode_mapping)
21121 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21122
21123 if (decode_for_pst_p)
21124 {
21125 int file_index;
21126
21127 /* Now that we're done scanning the Line Header Program, we can
21128 create the psymtab of each included file. */
21129 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21130 if (lh->file_names[file_index].included_p == 1)
21131 {
21132 gdb::unique_xmalloc_ptr<char> name_holder;
21133 const char *include_name =
21134 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21135 &name_holder);
21136 if (include_name != NULL)
21137 dwarf2_create_include_psymtab (include_name, pst, objfile);
21138 }
21139 }
21140 else
21141 {
21142 /* Make sure a symtab is created for every file, even files
21143 which contain only variables (i.e. no code with associated
21144 line numbers). */
21145 struct compunit_symtab *cust = cu->builder->get_compunit_symtab ();
21146 int i;
21147
21148 for (i = 0; i < lh->file_names.size (); i++)
21149 {
21150 file_entry &fe = lh->file_names[i];
21151
21152 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21153
21154 if (cu->builder->get_current_subfile ()->symtab == NULL)
21155 {
21156 cu->builder->get_current_subfile ()->symtab
21157 = allocate_symtab (cust,
21158 cu->builder->get_current_subfile ()->name);
21159 }
21160 fe.symtab = cu->builder->get_current_subfile ()->symtab;
21161 }
21162 }
21163 }
21164
21165 /* Start a subfile for DWARF. FILENAME is the name of the file and
21166 DIRNAME the name of the source directory which contains FILENAME
21167 or NULL if not known.
21168 This routine tries to keep line numbers from identical absolute and
21169 relative file names in a common subfile.
21170
21171 Using the `list' example from the GDB testsuite, which resides in
21172 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21173 of /srcdir/list0.c yields the following debugging information for list0.c:
21174
21175 DW_AT_name: /srcdir/list0.c
21176 DW_AT_comp_dir: /compdir
21177 files.files[0].name: list0.h
21178 files.files[0].dir: /srcdir
21179 files.files[1].name: list0.c
21180 files.files[1].dir: /srcdir
21181
21182 The line number information for list0.c has to end up in a single
21183 subfile, so that `break /srcdir/list0.c:1' works as expected.
21184 start_subfile will ensure that this happens provided that we pass the
21185 concatenation of files.files[1].dir and files.files[1].name as the
21186 subfile's name. */
21187
21188 static void
21189 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21190 const char *dirname)
21191 {
21192 char *copy = NULL;
21193
21194 /* In order not to lose the line information directory,
21195 we concatenate it to the filename when it makes sense.
21196 Note that the Dwarf3 standard says (speaking of filenames in line
21197 information): ``The directory index is ignored for file names
21198 that represent full path names''. Thus ignoring dirname in the
21199 `else' branch below isn't an issue. */
21200
21201 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21202 {
21203 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21204 filename = copy;
21205 }
21206
21207 cu->builder->start_subfile (filename);
21208
21209 if (copy != NULL)
21210 xfree (copy);
21211 }
21212
21213 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21214 buildsym_compunit constructor. */
21215
21216 static struct compunit_symtab *
21217 dwarf2_start_symtab (struct dwarf2_cu *cu,
21218 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21219 {
21220 gdb_assert (cu->builder == nullptr);
21221
21222 cu->builder.reset (new struct buildsym_compunit
21223 (cu->per_cu->dwarf2_per_objfile->objfile,
21224 name, comp_dir, cu->language, low_pc));
21225
21226 cu->list_in_scope = cu->builder->get_file_symbols ();
21227
21228 cu->builder->record_debugformat ("DWARF 2");
21229 cu->builder->record_producer (cu->producer);
21230
21231 cu->processing_has_namespace_info = 0;
21232
21233 return cu->builder->get_compunit_symtab ();
21234 }
21235
21236 static void
21237 var_decode_location (struct attribute *attr, struct symbol *sym,
21238 struct dwarf2_cu *cu)
21239 {
21240 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21241 struct comp_unit_head *cu_header = &cu->header;
21242
21243 /* NOTE drow/2003-01-30: There used to be a comment and some special
21244 code here to turn a symbol with DW_AT_external and a
21245 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21246 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21247 with some versions of binutils) where shared libraries could have
21248 relocations against symbols in their debug information - the
21249 minimal symbol would have the right address, but the debug info
21250 would not. It's no longer necessary, because we will explicitly
21251 apply relocations when we read in the debug information now. */
21252
21253 /* A DW_AT_location attribute with no contents indicates that a
21254 variable has been optimized away. */
21255 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21256 {
21257 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21258 return;
21259 }
21260
21261 /* Handle one degenerate form of location expression specially, to
21262 preserve GDB's previous behavior when section offsets are
21263 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21264 then mark this symbol as LOC_STATIC. */
21265
21266 if (attr_form_is_block (attr)
21267 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21268 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21269 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21270 && (DW_BLOCK (attr)->size
21271 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21272 {
21273 unsigned int dummy;
21274
21275 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21276 SYMBOL_VALUE_ADDRESS (sym) =
21277 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21278 else
21279 SYMBOL_VALUE_ADDRESS (sym) =
21280 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21281 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21282 fixup_symbol_section (sym, objfile);
21283 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21284 SYMBOL_SECTION (sym));
21285 return;
21286 }
21287
21288 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21289 expression evaluator, and use LOC_COMPUTED only when necessary
21290 (i.e. when the value of a register or memory location is
21291 referenced, or a thread-local block, etc.). Then again, it might
21292 not be worthwhile. I'm assuming that it isn't unless performance
21293 or memory numbers show me otherwise. */
21294
21295 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21296
21297 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21298 cu->has_loclist = 1;
21299 }
21300
21301 /* Given a pointer to a DWARF information entry, figure out if we need
21302 to make a symbol table entry for it, and if so, create a new entry
21303 and return a pointer to it.
21304 If TYPE is NULL, determine symbol type from the die, otherwise
21305 used the passed type.
21306 If SPACE is not NULL, use it to hold the new symbol. If it is
21307 NULL, allocate a new symbol on the objfile's obstack. */
21308
21309 static struct symbol *
21310 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21311 struct symbol *space)
21312 {
21313 struct dwarf2_per_objfile *dwarf2_per_objfile
21314 = cu->per_cu->dwarf2_per_objfile;
21315 struct objfile *objfile = dwarf2_per_objfile->objfile;
21316 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21317 struct symbol *sym = NULL;
21318 const char *name;
21319 struct attribute *attr = NULL;
21320 struct attribute *attr2 = NULL;
21321 CORE_ADDR baseaddr;
21322 struct pending **list_to_add = NULL;
21323
21324 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21325
21326 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21327
21328 name = dwarf2_name (die, cu);
21329 if (name)
21330 {
21331 const char *linkagename;
21332 int suppress_add = 0;
21333
21334 if (space)
21335 sym = space;
21336 else
21337 sym = allocate_symbol (objfile);
21338 OBJSTAT (objfile, n_syms++);
21339
21340 /* Cache this symbol's name and the name's demangled form (if any). */
21341 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21342 linkagename = dwarf2_physname (name, die, cu);
21343 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21344
21345 /* Fortran does not have mangling standard and the mangling does differ
21346 between gfortran, iFort etc. */
21347 if (cu->language == language_fortran
21348 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21349 symbol_set_demangled_name (&(sym->ginfo),
21350 dwarf2_full_name (name, die, cu),
21351 NULL);
21352
21353 /* Default assumptions.
21354 Use the passed type or decode it from the die. */
21355 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21356 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21357 if (type != NULL)
21358 SYMBOL_TYPE (sym) = type;
21359 else
21360 SYMBOL_TYPE (sym) = die_type (die, cu);
21361 attr = dwarf2_attr (die,
21362 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21363 cu);
21364 if (attr)
21365 {
21366 SYMBOL_LINE (sym) = DW_UNSND (attr);
21367 }
21368
21369 attr = dwarf2_attr (die,
21370 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21371 cu);
21372 if (attr)
21373 {
21374 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21375 struct file_entry *fe;
21376
21377 if (cu->line_header != NULL)
21378 fe = cu->line_header->file_name_at (file_index);
21379 else
21380 fe = NULL;
21381
21382 if (fe == NULL)
21383 complaint (_("file index out of range"));
21384 else
21385 symbol_set_symtab (sym, fe->symtab);
21386 }
21387
21388 switch (die->tag)
21389 {
21390 case DW_TAG_label:
21391 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21392 if (attr)
21393 {
21394 CORE_ADDR addr;
21395
21396 addr = attr_value_as_address (attr);
21397 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21398 SYMBOL_VALUE_ADDRESS (sym) = addr;
21399 }
21400 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21401 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21402 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21403 dw2_add_symbol_to_list (sym, cu->list_in_scope);
21404 break;
21405 case DW_TAG_subprogram:
21406 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21407 finish_block. */
21408 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21409 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21410 if ((attr2 && (DW_UNSND (attr2) != 0))
21411 || cu->language == language_ada)
21412 {
21413 /* Subprograms marked external are stored as a global symbol.
21414 Ada subprograms, whether marked external or not, are always
21415 stored as a global symbol, because we want to be able to
21416 access them globally. For instance, we want to be able
21417 to break on a nested subprogram without having to
21418 specify the context. */
21419 list_to_add = cu->builder->get_global_symbols ();
21420 }
21421 else
21422 {
21423 list_to_add = cu->list_in_scope;
21424 }
21425 break;
21426 case DW_TAG_inlined_subroutine:
21427 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21428 finish_block. */
21429 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21430 SYMBOL_INLINED (sym) = 1;
21431 list_to_add = cu->list_in_scope;
21432 break;
21433 case DW_TAG_template_value_param:
21434 suppress_add = 1;
21435 /* Fall through. */
21436 case DW_TAG_constant:
21437 case DW_TAG_variable:
21438 case DW_TAG_member:
21439 /* Compilation with minimal debug info may result in
21440 variables with missing type entries. Change the
21441 misleading `void' type to something sensible. */
21442 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21443 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21444
21445 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21446 /* In the case of DW_TAG_member, we should only be called for
21447 static const members. */
21448 if (die->tag == DW_TAG_member)
21449 {
21450 /* dwarf2_add_field uses die_is_declaration,
21451 so we do the same. */
21452 gdb_assert (die_is_declaration (die, cu));
21453 gdb_assert (attr);
21454 }
21455 if (attr)
21456 {
21457 dwarf2_const_value (attr, sym, cu);
21458 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21459 if (!suppress_add)
21460 {
21461 if (attr2 && (DW_UNSND (attr2) != 0))
21462 list_to_add = cu->builder->get_global_symbols ();
21463 else
21464 list_to_add = cu->list_in_scope;
21465 }
21466 break;
21467 }
21468 attr = dwarf2_attr (die, DW_AT_location, cu);
21469 if (attr)
21470 {
21471 var_decode_location (attr, sym, cu);
21472 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21473
21474 /* Fortran explicitly imports any global symbols to the local
21475 scope by DW_TAG_common_block. */
21476 if (cu->language == language_fortran && die->parent
21477 && die->parent->tag == DW_TAG_common_block)
21478 attr2 = NULL;
21479
21480 if (SYMBOL_CLASS (sym) == LOC_STATIC
21481 && SYMBOL_VALUE_ADDRESS (sym) == 0
21482 && !dwarf2_per_objfile->has_section_at_zero)
21483 {
21484 /* When a static variable is eliminated by the linker,
21485 the corresponding debug information is not stripped
21486 out, but the variable address is set to null;
21487 do not add such variables into symbol table. */
21488 }
21489 else if (attr2 && (DW_UNSND (attr2) != 0))
21490 {
21491 /* Workaround gfortran PR debug/40040 - it uses
21492 DW_AT_location for variables in -fPIC libraries which may
21493 get overriden by other libraries/executable and get
21494 a different address. Resolve it by the minimal symbol
21495 which may come from inferior's executable using copy
21496 relocation. Make this workaround only for gfortran as for
21497 other compilers GDB cannot guess the minimal symbol
21498 Fortran mangling kind. */
21499 if (cu->language == language_fortran && die->parent
21500 && die->parent->tag == DW_TAG_module
21501 && cu->producer
21502 && startswith (cu->producer, "GNU Fortran"))
21503 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21504
21505 /* A variable with DW_AT_external is never static,
21506 but it may be block-scoped. */
21507 list_to_add
21508 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21509 ? cu->builder->get_global_symbols ()
21510 : cu->list_in_scope);
21511 }
21512 else
21513 list_to_add = cu->list_in_scope;
21514 }
21515 else
21516 {
21517 /* We do not know the address of this symbol.
21518 If it is an external symbol and we have type information
21519 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21520 The address of the variable will then be determined from
21521 the minimal symbol table whenever the variable is
21522 referenced. */
21523 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21524
21525 /* Fortran explicitly imports any global symbols to the local
21526 scope by DW_TAG_common_block. */
21527 if (cu->language == language_fortran && die->parent
21528 && die->parent->tag == DW_TAG_common_block)
21529 {
21530 /* SYMBOL_CLASS doesn't matter here because
21531 read_common_block is going to reset it. */
21532 if (!suppress_add)
21533 list_to_add = cu->list_in_scope;
21534 }
21535 else if (attr2 && (DW_UNSND (attr2) != 0)
21536 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21537 {
21538 /* A variable with DW_AT_external is never static, but it
21539 may be block-scoped. */
21540 list_to_add
21541 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21542 ? cu->builder->get_global_symbols ()
21543 : cu->list_in_scope);
21544
21545 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21546 }
21547 else if (!die_is_declaration (die, cu))
21548 {
21549 /* Use the default LOC_OPTIMIZED_OUT class. */
21550 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21551 if (!suppress_add)
21552 list_to_add = cu->list_in_scope;
21553 }
21554 }
21555 break;
21556 case DW_TAG_formal_parameter:
21557 {
21558 /* If we are inside a function, mark this as an argument. If
21559 not, we might be looking at an argument to an inlined function
21560 when we do not have enough information to show inlined frames;
21561 pretend it's a local variable in that case so that the user can
21562 still see it. */
21563 struct context_stack *curr
21564 = cu->builder->get_current_context_stack ();
21565 if (curr != nullptr && curr->name != nullptr)
21566 SYMBOL_IS_ARGUMENT (sym) = 1;
21567 attr = dwarf2_attr (die, DW_AT_location, cu);
21568 if (attr)
21569 {
21570 var_decode_location (attr, sym, cu);
21571 }
21572 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21573 if (attr)
21574 {
21575 dwarf2_const_value (attr, sym, cu);
21576 }
21577
21578 list_to_add = cu->list_in_scope;
21579 }
21580 break;
21581 case DW_TAG_unspecified_parameters:
21582 /* From varargs functions; gdb doesn't seem to have any
21583 interest in this information, so just ignore it for now.
21584 (FIXME?) */
21585 break;
21586 case DW_TAG_template_type_param:
21587 suppress_add = 1;
21588 /* Fall through. */
21589 case DW_TAG_class_type:
21590 case DW_TAG_interface_type:
21591 case DW_TAG_structure_type:
21592 case DW_TAG_union_type:
21593 case DW_TAG_set_type:
21594 case DW_TAG_enumeration_type:
21595 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21596 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21597
21598 {
21599 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21600 really ever be static objects: otherwise, if you try
21601 to, say, break of a class's method and you're in a file
21602 which doesn't mention that class, it won't work unless
21603 the check for all static symbols in lookup_symbol_aux
21604 saves you. See the OtherFileClass tests in
21605 gdb.c++/namespace.exp. */
21606
21607 if (!suppress_add)
21608 {
21609 list_to_add
21610 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21611 && cu->language == language_cplus
21612 ? cu->builder->get_global_symbols ()
21613 : cu->list_in_scope);
21614
21615 /* The semantics of C++ state that "struct foo {
21616 ... }" also defines a typedef for "foo". */
21617 if (cu->language == language_cplus
21618 || cu->language == language_ada
21619 || cu->language == language_d
21620 || cu->language == language_rust)
21621 {
21622 /* The symbol's name is already allocated along
21623 with this objfile, so we don't need to
21624 duplicate it for the type. */
21625 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21626 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21627 }
21628 }
21629 }
21630 break;
21631 case DW_TAG_typedef:
21632 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21633 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21634 list_to_add = cu->list_in_scope;
21635 break;
21636 case DW_TAG_base_type:
21637 case DW_TAG_subrange_type:
21638 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21639 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21640 list_to_add = cu->list_in_scope;
21641 break;
21642 case DW_TAG_enumerator:
21643 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21644 if (attr)
21645 {
21646 dwarf2_const_value (attr, sym, cu);
21647 }
21648 {
21649 /* NOTE: carlton/2003-11-10: See comment above in the
21650 DW_TAG_class_type, etc. block. */
21651
21652 list_to_add
21653 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21654 && cu->language == language_cplus
21655 ? cu->builder->get_global_symbols ()
21656 : cu->list_in_scope);
21657 }
21658 break;
21659 case DW_TAG_imported_declaration:
21660 case DW_TAG_namespace:
21661 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21662 list_to_add = cu->builder->get_global_symbols ();
21663 break;
21664 case DW_TAG_module:
21665 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21666 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21667 list_to_add = cu->builder->get_global_symbols ();
21668 break;
21669 case DW_TAG_common_block:
21670 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21671 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21672 dw2_add_symbol_to_list (sym, cu->list_in_scope);
21673 break;
21674 default:
21675 /* Not a tag we recognize. Hopefully we aren't processing
21676 trash data, but since we must specifically ignore things
21677 we don't recognize, there is nothing else we should do at
21678 this point. */
21679 complaint (_("unsupported tag: '%s'"),
21680 dwarf_tag_name (die->tag));
21681 break;
21682 }
21683
21684 if (suppress_add)
21685 {
21686 sym->hash_next = objfile->template_symbols;
21687 objfile->template_symbols = sym;
21688 list_to_add = NULL;
21689 }
21690
21691 if (list_to_add != NULL)
21692 dw2_add_symbol_to_list (sym, list_to_add);
21693
21694 /* For the benefit of old versions of GCC, check for anonymous
21695 namespaces based on the demangled name. */
21696 if (!cu->processing_has_namespace_info
21697 && cu->language == language_cplus)
21698 cp_scan_for_anonymous_namespaces (cu->builder.get (), sym, objfile);
21699 }
21700 return (sym);
21701 }
21702
21703 /* Given an attr with a DW_FORM_dataN value in host byte order,
21704 zero-extend it as appropriate for the symbol's type. The DWARF
21705 standard (v4) is not entirely clear about the meaning of using
21706 DW_FORM_dataN for a constant with a signed type, where the type is
21707 wider than the data. The conclusion of a discussion on the DWARF
21708 list was that this is unspecified. We choose to always zero-extend
21709 because that is the interpretation long in use by GCC. */
21710
21711 static gdb_byte *
21712 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21713 struct dwarf2_cu *cu, LONGEST *value, int bits)
21714 {
21715 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21716 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21717 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21718 LONGEST l = DW_UNSND (attr);
21719
21720 if (bits < sizeof (*value) * 8)
21721 {
21722 l &= ((LONGEST) 1 << bits) - 1;
21723 *value = l;
21724 }
21725 else if (bits == sizeof (*value) * 8)
21726 *value = l;
21727 else
21728 {
21729 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21730 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21731 return bytes;
21732 }
21733
21734 return NULL;
21735 }
21736
21737 /* Read a constant value from an attribute. Either set *VALUE, or if
21738 the value does not fit in *VALUE, set *BYTES - either already
21739 allocated on the objfile obstack, or newly allocated on OBSTACK,
21740 or, set *BATON, if we translated the constant to a location
21741 expression. */
21742
21743 static void
21744 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21745 const char *name, struct obstack *obstack,
21746 struct dwarf2_cu *cu,
21747 LONGEST *value, const gdb_byte **bytes,
21748 struct dwarf2_locexpr_baton **baton)
21749 {
21750 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21751 struct comp_unit_head *cu_header = &cu->header;
21752 struct dwarf_block *blk;
21753 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21754 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21755
21756 *value = 0;
21757 *bytes = NULL;
21758 *baton = NULL;
21759
21760 switch (attr->form)
21761 {
21762 case DW_FORM_addr:
21763 case DW_FORM_GNU_addr_index:
21764 {
21765 gdb_byte *data;
21766
21767 if (TYPE_LENGTH (type) != cu_header->addr_size)
21768 dwarf2_const_value_length_mismatch_complaint (name,
21769 cu_header->addr_size,
21770 TYPE_LENGTH (type));
21771 /* Symbols of this form are reasonably rare, so we just
21772 piggyback on the existing location code rather than writing
21773 a new implementation of symbol_computed_ops. */
21774 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21775 (*baton)->per_cu = cu->per_cu;
21776 gdb_assert ((*baton)->per_cu);
21777
21778 (*baton)->size = 2 + cu_header->addr_size;
21779 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21780 (*baton)->data = data;
21781
21782 data[0] = DW_OP_addr;
21783 store_unsigned_integer (&data[1], cu_header->addr_size,
21784 byte_order, DW_ADDR (attr));
21785 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21786 }
21787 break;
21788 case DW_FORM_string:
21789 case DW_FORM_strp:
21790 case DW_FORM_GNU_str_index:
21791 case DW_FORM_GNU_strp_alt:
21792 /* DW_STRING is already allocated on the objfile obstack, point
21793 directly to it. */
21794 *bytes = (const gdb_byte *) DW_STRING (attr);
21795 break;
21796 case DW_FORM_block1:
21797 case DW_FORM_block2:
21798 case DW_FORM_block4:
21799 case DW_FORM_block:
21800 case DW_FORM_exprloc:
21801 case DW_FORM_data16:
21802 blk = DW_BLOCK (attr);
21803 if (TYPE_LENGTH (type) != blk->size)
21804 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21805 TYPE_LENGTH (type));
21806 *bytes = blk->data;
21807 break;
21808
21809 /* The DW_AT_const_value attributes are supposed to carry the
21810 symbol's value "represented as it would be on the target
21811 architecture." By the time we get here, it's already been
21812 converted to host endianness, so we just need to sign- or
21813 zero-extend it as appropriate. */
21814 case DW_FORM_data1:
21815 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21816 break;
21817 case DW_FORM_data2:
21818 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21819 break;
21820 case DW_FORM_data4:
21821 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21822 break;
21823 case DW_FORM_data8:
21824 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21825 break;
21826
21827 case DW_FORM_sdata:
21828 case DW_FORM_implicit_const:
21829 *value = DW_SND (attr);
21830 break;
21831
21832 case DW_FORM_udata:
21833 *value = DW_UNSND (attr);
21834 break;
21835
21836 default:
21837 complaint (_("unsupported const value attribute form: '%s'"),
21838 dwarf_form_name (attr->form));
21839 *value = 0;
21840 break;
21841 }
21842 }
21843
21844
21845 /* Copy constant value from an attribute to a symbol. */
21846
21847 static void
21848 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21849 struct dwarf2_cu *cu)
21850 {
21851 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21852 LONGEST value;
21853 const gdb_byte *bytes;
21854 struct dwarf2_locexpr_baton *baton;
21855
21856 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21857 SYMBOL_PRINT_NAME (sym),
21858 &objfile->objfile_obstack, cu,
21859 &value, &bytes, &baton);
21860
21861 if (baton != NULL)
21862 {
21863 SYMBOL_LOCATION_BATON (sym) = baton;
21864 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21865 }
21866 else if (bytes != NULL)
21867 {
21868 SYMBOL_VALUE_BYTES (sym) = bytes;
21869 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21870 }
21871 else
21872 {
21873 SYMBOL_VALUE (sym) = value;
21874 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21875 }
21876 }
21877
21878 /* Return the type of the die in question using its DW_AT_type attribute. */
21879
21880 static struct type *
21881 die_type (struct die_info *die, struct dwarf2_cu *cu)
21882 {
21883 struct attribute *type_attr;
21884
21885 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21886 if (!type_attr)
21887 {
21888 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21889 /* A missing DW_AT_type represents a void type. */
21890 return objfile_type (objfile)->builtin_void;
21891 }
21892
21893 return lookup_die_type (die, type_attr, cu);
21894 }
21895
21896 /* True iff CU's producer generates GNAT Ada auxiliary information
21897 that allows to find parallel types through that information instead
21898 of having to do expensive parallel lookups by type name. */
21899
21900 static int
21901 need_gnat_info (struct dwarf2_cu *cu)
21902 {
21903 /* Assume that the Ada compiler was GNAT, which always produces
21904 the auxiliary information. */
21905 return (cu->language == language_ada);
21906 }
21907
21908 /* Return the auxiliary type of the die in question using its
21909 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21910 attribute is not present. */
21911
21912 static struct type *
21913 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21914 {
21915 struct attribute *type_attr;
21916
21917 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21918 if (!type_attr)
21919 return NULL;
21920
21921 return lookup_die_type (die, type_attr, cu);
21922 }
21923
21924 /* If DIE has a descriptive_type attribute, then set the TYPE's
21925 descriptive type accordingly. */
21926
21927 static void
21928 set_descriptive_type (struct type *type, struct die_info *die,
21929 struct dwarf2_cu *cu)
21930 {
21931 struct type *descriptive_type = die_descriptive_type (die, cu);
21932
21933 if (descriptive_type)
21934 {
21935 ALLOCATE_GNAT_AUX_TYPE (type);
21936 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21937 }
21938 }
21939
21940 /* Return the containing type of the die in question using its
21941 DW_AT_containing_type attribute. */
21942
21943 static struct type *
21944 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21945 {
21946 struct attribute *type_attr;
21947 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21948
21949 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21950 if (!type_attr)
21951 error (_("Dwarf Error: Problem turning containing type into gdb type "
21952 "[in module %s]"), objfile_name (objfile));
21953
21954 return lookup_die_type (die, type_attr, cu);
21955 }
21956
21957 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21958
21959 static struct type *
21960 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21961 {
21962 struct dwarf2_per_objfile *dwarf2_per_objfile
21963 = cu->per_cu->dwarf2_per_objfile;
21964 struct objfile *objfile = dwarf2_per_objfile->objfile;
21965 char *saved;
21966
21967 std::string message
21968 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21969 objfile_name (objfile),
21970 sect_offset_str (cu->header.sect_off),
21971 sect_offset_str (die->sect_off));
21972 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21973 message.c_str (), message.length ());
21974
21975 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21976 }
21977
21978 /* Look up the type of DIE in CU using its type attribute ATTR.
21979 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21980 DW_AT_containing_type.
21981 If there is no type substitute an error marker. */
21982
21983 static struct type *
21984 lookup_die_type (struct die_info *die, const struct attribute *attr,
21985 struct dwarf2_cu *cu)
21986 {
21987 struct dwarf2_per_objfile *dwarf2_per_objfile
21988 = cu->per_cu->dwarf2_per_objfile;
21989 struct objfile *objfile = dwarf2_per_objfile->objfile;
21990 struct type *this_type;
21991
21992 gdb_assert (attr->name == DW_AT_type
21993 || attr->name == DW_AT_GNAT_descriptive_type
21994 || attr->name == DW_AT_containing_type);
21995
21996 /* First see if we have it cached. */
21997
21998 if (attr->form == DW_FORM_GNU_ref_alt)
21999 {
22000 struct dwarf2_per_cu_data *per_cu;
22001 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22002
22003 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22004 dwarf2_per_objfile);
22005 this_type = get_die_type_at_offset (sect_off, per_cu);
22006 }
22007 else if (attr_form_is_ref (attr))
22008 {
22009 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22010
22011 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22012 }
22013 else if (attr->form == DW_FORM_ref_sig8)
22014 {
22015 ULONGEST signature = DW_SIGNATURE (attr);
22016
22017 return get_signatured_type (die, signature, cu);
22018 }
22019 else
22020 {
22021 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22022 " at %s [in module %s]"),
22023 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22024 objfile_name (objfile));
22025 return build_error_marker_type (cu, die);
22026 }
22027
22028 /* If not cached we need to read it in. */
22029
22030 if (this_type == NULL)
22031 {
22032 struct die_info *type_die = NULL;
22033 struct dwarf2_cu *type_cu = cu;
22034
22035 if (attr_form_is_ref (attr))
22036 type_die = follow_die_ref (die, attr, &type_cu);
22037 if (type_die == NULL)
22038 return build_error_marker_type (cu, die);
22039 /* If we find the type now, it's probably because the type came
22040 from an inter-CU reference and the type's CU got expanded before
22041 ours. */
22042 this_type = read_type_die (type_die, type_cu);
22043 }
22044
22045 /* If we still don't have a type use an error marker. */
22046
22047 if (this_type == NULL)
22048 return build_error_marker_type (cu, die);
22049
22050 return this_type;
22051 }
22052
22053 /* Return the type in DIE, CU.
22054 Returns NULL for invalid types.
22055
22056 This first does a lookup in die_type_hash,
22057 and only reads the die in if necessary.
22058
22059 NOTE: This can be called when reading in partial or full symbols. */
22060
22061 static struct type *
22062 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22063 {
22064 struct type *this_type;
22065
22066 this_type = get_die_type (die, cu);
22067 if (this_type)
22068 return this_type;
22069
22070 return read_type_die_1 (die, cu);
22071 }
22072
22073 /* Read the type in DIE, CU.
22074 Returns NULL for invalid types. */
22075
22076 static struct type *
22077 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22078 {
22079 struct type *this_type = NULL;
22080
22081 switch (die->tag)
22082 {
22083 case DW_TAG_class_type:
22084 case DW_TAG_interface_type:
22085 case DW_TAG_structure_type:
22086 case DW_TAG_union_type:
22087 this_type = read_structure_type (die, cu);
22088 break;
22089 case DW_TAG_enumeration_type:
22090 this_type = read_enumeration_type (die, cu);
22091 break;
22092 case DW_TAG_subprogram:
22093 case DW_TAG_subroutine_type:
22094 case DW_TAG_inlined_subroutine:
22095 this_type = read_subroutine_type (die, cu);
22096 break;
22097 case DW_TAG_array_type:
22098 this_type = read_array_type (die, cu);
22099 break;
22100 case DW_TAG_set_type:
22101 this_type = read_set_type (die, cu);
22102 break;
22103 case DW_TAG_pointer_type:
22104 this_type = read_tag_pointer_type (die, cu);
22105 break;
22106 case DW_TAG_ptr_to_member_type:
22107 this_type = read_tag_ptr_to_member_type (die, cu);
22108 break;
22109 case DW_TAG_reference_type:
22110 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22111 break;
22112 case DW_TAG_rvalue_reference_type:
22113 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22114 break;
22115 case DW_TAG_const_type:
22116 this_type = read_tag_const_type (die, cu);
22117 break;
22118 case DW_TAG_volatile_type:
22119 this_type = read_tag_volatile_type (die, cu);
22120 break;
22121 case DW_TAG_restrict_type:
22122 this_type = read_tag_restrict_type (die, cu);
22123 break;
22124 case DW_TAG_string_type:
22125 this_type = read_tag_string_type (die, cu);
22126 break;
22127 case DW_TAG_typedef:
22128 this_type = read_typedef (die, cu);
22129 break;
22130 case DW_TAG_subrange_type:
22131 this_type = read_subrange_type (die, cu);
22132 break;
22133 case DW_TAG_base_type:
22134 this_type = read_base_type (die, cu);
22135 break;
22136 case DW_TAG_unspecified_type:
22137 this_type = read_unspecified_type (die, cu);
22138 break;
22139 case DW_TAG_namespace:
22140 this_type = read_namespace_type (die, cu);
22141 break;
22142 case DW_TAG_module:
22143 this_type = read_module_type (die, cu);
22144 break;
22145 case DW_TAG_atomic_type:
22146 this_type = read_tag_atomic_type (die, cu);
22147 break;
22148 default:
22149 complaint (_("unexpected tag in read_type_die: '%s'"),
22150 dwarf_tag_name (die->tag));
22151 break;
22152 }
22153
22154 return this_type;
22155 }
22156
22157 /* See if we can figure out if the class lives in a namespace. We do
22158 this by looking for a member function; its demangled name will
22159 contain namespace info, if there is any.
22160 Return the computed name or NULL.
22161 Space for the result is allocated on the objfile's obstack.
22162 This is the full-die version of guess_partial_die_structure_name.
22163 In this case we know DIE has no useful parent. */
22164
22165 static char *
22166 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22167 {
22168 struct die_info *spec_die;
22169 struct dwarf2_cu *spec_cu;
22170 struct die_info *child;
22171 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22172
22173 spec_cu = cu;
22174 spec_die = die_specification (die, &spec_cu);
22175 if (spec_die != NULL)
22176 {
22177 die = spec_die;
22178 cu = spec_cu;
22179 }
22180
22181 for (child = die->child;
22182 child != NULL;
22183 child = child->sibling)
22184 {
22185 if (child->tag == DW_TAG_subprogram)
22186 {
22187 const char *linkage_name = dw2_linkage_name (child, cu);
22188
22189 if (linkage_name != NULL)
22190 {
22191 char *actual_name
22192 = language_class_name_from_physname (cu->language_defn,
22193 linkage_name);
22194 char *name = NULL;
22195
22196 if (actual_name != NULL)
22197 {
22198 const char *die_name = dwarf2_name (die, cu);
22199
22200 if (die_name != NULL
22201 && strcmp (die_name, actual_name) != 0)
22202 {
22203 /* Strip off the class name from the full name.
22204 We want the prefix. */
22205 int die_name_len = strlen (die_name);
22206 int actual_name_len = strlen (actual_name);
22207
22208 /* Test for '::' as a sanity check. */
22209 if (actual_name_len > die_name_len + 2
22210 && actual_name[actual_name_len
22211 - die_name_len - 1] == ':')
22212 name = (char *) obstack_copy0 (
22213 &objfile->per_bfd->storage_obstack,
22214 actual_name, actual_name_len - die_name_len - 2);
22215 }
22216 }
22217 xfree (actual_name);
22218 return name;
22219 }
22220 }
22221 }
22222
22223 return NULL;
22224 }
22225
22226 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22227 prefix part in such case. See
22228 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22229
22230 static const char *
22231 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22232 {
22233 struct attribute *attr;
22234 const char *base;
22235
22236 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22237 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22238 return NULL;
22239
22240 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22241 return NULL;
22242
22243 attr = dw2_linkage_name_attr (die, cu);
22244 if (attr == NULL || DW_STRING (attr) == NULL)
22245 return NULL;
22246
22247 /* dwarf2_name had to be already called. */
22248 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22249
22250 /* Strip the base name, keep any leading namespaces/classes. */
22251 base = strrchr (DW_STRING (attr), ':');
22252 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22253 return "";
22254
22255 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22256 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22257 DW_STRING (attr),
22258 &base[-1] - DW_STRING (attr));
22259 }
22260
22261 /* Return the name of the namespace/class that DIE is defined within,
22262 or "" if we can't tell. The caller should not xfree the result.
22263
22264 For example, if we're within the method foo() in the following
22265 code:
22266
22267 namespace N {
22268 class C {
22269 void foo () {
22270 }
22271 };
22272 }
22273
22274 then determine_prefix on foo's die will return "N::C". */
22275
22276 static const char *
22277 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22278 {
22279 struct dwarf2_per_objfile *dwarf2_per_objfile
22280 = cu->per_cu->dwarf2_per_objfile;
22281 struct die_info *parent, *spec_die;
22282 struct dwarf2_cu *spec_cu;
22283 struct type *parent_type;
22284 const char *retval;
22285
22286 if (cu->language != language_cplus
22287 && cu->language != language_fortran && cu->language != language_d
22288 && cu->language != language_rust)
22289 return "";
22290
22291 retval = anonymous_struct_prefix (die, cu);
22292 if (retval)
22293 return retval;
22294
22295 /* We have to be careful in the presence of DW_AT_specification.
22296 For example, with GCC 3.4, given the code
22297
22298 namespace N {
22299 void foo() {
22300 // Definition of N::foo.
22301 }
22302 }
22303
22304 then we'll have a tree of DIEs like this:
22305
22306 1: DW_TAG_compile_unit
22307 2: DW_TAG_namespace // N
22308 3: DW_TAG_subprogram // declaration of N::foo
22309 4: DW_TAG_subprogram // definition of N::foo
22310 DW_AT_specification // refers to die #3
22311
22312 Thus, when processing die #4, we have to pretend that we're in
22313 the context of its DW_AT_specification, namely the contex of die
22314 #3. */
22315 spec_cu = cu;
22316 spec_die = die_specification (die, &spec_cu);
22317 if (spec_die == NULL)
22318 parent = die->parent;
22319 else
22320 {
22321 parent = spec_die->parent;
22322 cu = spec_cu;
22323 }
22324
22325 if (parent == NULL)
22326 return "";
22327 else if (parent->building_fullname)
22328 {
22329 const char *name;
22330 const char *parent_name;
22331
22332 /* It has been seen on RealView 2.2 built binaries,
22333 DW_TAG_template_type_param types actually _defined_ as
22334 children of the parent class:
22335
22336 enum E {};
22337 template class <class Enum> Class{};
22338 Class<enum E> class_e;
22339
22340 1: DW_TAG_class_type (Class)
22341 2: DW_TAG_enumeration_type (E)
22342 3: DW_TAG_enumerator (enum1:0)
22343 3: DW_TAG_enumerator (enum2:1)
22344 ...
22345 2: DW_TAG_template_type_param
22346 DW_AT_type DW_FORM_ref_udata (E)
22347
22348 Besides being broken debug info, it can put GDB into an
22349 infinite loop. Consider:
22350
22351 When we're building the full name for Class<E>, we'll start
22352 at Class, and go look over its template type parameters,
22353 finding E. We'll then try to build the full name of E, and
22354 reach here. We're now trying to build the full name of E,
22355 and look over the parent DIE for containing scope. In the
22356 broken case, if we followed the parent DIE of E, we'd again
22357 find Class, and once again go look at its template type
22358 arguments, etc., etc. Simply don't consider such parent die
22359 as source-level parent of this die (it can't be, the language
22360 doesn't allow it), and break the loop here. */
22361 name = dwarf2_name (die, cu);
22362 parent_name = dwarf2_name (parent, cu);
22363 complaint (_("template param type '%s' defined within parent '%s'"),
22364 name ? name : "<unknown>",
22365 parent_name ? parent_name : "<unknown>");
22366 return "";
22367 }
22368 else
22369 switch (parent->tag)
22370 {
22371 case DW_TAG_namespace:
22372 parent_type = read_type_die (parent, cu);
22373 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22374 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22375 Work around this problem here. */
22376 if (cu->language == language_cplus
22377 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22378 return "";
22379 /* We give a name to even anonymous namespaces. */
22380 return TYPE_NAME (parent_type);
22381 case DW_TAG_class_type:
22382 case DW_TAG_interface_type:
22383 case DW_TAG_structure_type:
22384 case DW_TAG_union_type:
22385 case DW_TAG_module:
22386 parent_type = read_type_die (parent, cu);
22387 if (TYPE_NAME (parent_type) != NULL)
22388 return TYPE_NAME (parent_type);
22389 else
22390 /* An anonymous structure is only allowed non-static data
22391 members; no typedefs, no member functions, et cetera.
22392 So it does not need a prefix. */
22393 return "";
22394 case DW_TAG_compile_unit:
22395 case DW_TAG_partial_unit:
22396 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22397 if (cu->language == language_cplus
22398 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22399 && die->child != NULL
22400 && (die->tag == DW_TAG_class_type
22401 || die->tag == DW_TAG_structure_type
22402 || die->tag == DW_TAG_union_type))
22403 {
22404 char *name = guess_full_die_structure_name (die, cu);
22405 if (name != NULL)
22406 return name;
22407 }
22408 return "";
22409 case DW_TAG_enumeration_type:
22410 parent_type = read_type_die (parent, cu);
22411 if (TYPE_DECLARED_CLASS (parent_type))
22412 {
22413 if (TYPE_NAME (parent_type) != NULL)
22414 return TYPE_NAME (parent_type);
22415 return "";
22416 }
22417 /* Fall through. */
22418 default:
22419 return determine_prefix (parent, cu);
22420 }
22421 }
22422
22423 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22424 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22425 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22426 an obconcat, otherwise allocate storage for the result. The CU argument is
22427 used to determine the language and hence, the appropriate separator. */
22428
22429 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22430
22431 static char *
22432 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22433 int physname, struct dwarf2_cu *cu)
22434 {
22435 const char *lead = "";
22436 const char *sep;
22437
22438 if (suffix == NULL || suffix[0] == '\0'
22439 || prefix == NULL || prefix[0] == '\0')
22440 sep = "";
22441 else if (cu->language == language_d)
22442 {
22443 /* For D, the 'main' function could be defined in any module, but it
22444 should never be prefixed. */
22445 if (strcmp (suffix, "D main") == 0)
22446 {
22447 prefix = "";
22448 sep = "";
22449 }
22450 else
22451 sep = ".";
22452 }
22453 else if (cu->language == language_fortran && physname)
22454 {
22455 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22456 DW_AT_MIPS_linkage_name is preferred and used instead. */
22457
22458 lead = "__";
22459 sep = "_MOD_";
22460 }
22461 else
22462 sep = "::";
22463
22464 if (prefix == NULL)
22465 prefix = "";
22466 if (suffix == NULL)
22467 suffix = "";
22468
22469 if (obs == NULL)
22470 {
22471 char *retval
22472 = ((char *)
22473 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22474
22475 strcpy (retval, lead);
22476 strcat (retval, prefix);
22477 strcat (retval, sep);
22478 strcat (retval, suffix);
22479 return retval;
22480 }
22481 else
22482 {
22483 /* We have an obstack. */
22484 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22485 }
22486 }
22487
22488 /* Return sibling of die, NULL if no sibling. */
22489
22490 static struct die_info *
22491 sibling_die (struct die_info *die)
22492 {
22493 return die->sibling;
22494 }
22495
22496 /* Get name of a die, return NULL if not found. */
22497
22498 static const char *
22499 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22500 struct obstack *obstack)
22501 {
22502 if (name && cu->language == language_cplus)
22503 {
22504 std::string canon_name = cp_canonicalize_string (name);
22505
22506 if (!canon_name.empty ())
22507 {
22508 if (canon_name != name)
22509 name = (const char *) obstack_copy0 (obstack,
22510 canon_name.c_str (),
22511 canon_name.length ());
22512 }
22513 }
22514
22515 return name;
22516 }
22517
22518 /* Get name of a die, return NULL if not found.
22519 Anonymous namespaces are converted to their magic string. */
22520
22521 static const char *
22522 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22523 {
22524 struct attribute *attr;
22525 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22526
22527 attr = dwarf2_attr (die, DW_AT_name, cu);
22528 if ((!attr || !DW_STRING (attr))
22529 && die->tag != DW_TAG_namespace
22530 && die->tag != DW_TAG_class_type
22531 && die->tag != DW_TAG_interface_type
22532 && die->tag != DW_TAG_structure_type
22533 && die->tag != DW_TAG_union_type)
22534 return NULL;
22535
22536 switch (die->tag)
22537 {
22538 case DW_TAG_compile_unit:
22539 case DW_TAG_partial_unit:
22540 /* Compilation units have a DW_AT_name that is a filename, not
22541 a source language identifier. */
22542 case DW_TAG_enumeration_type:
22543 case DW_TAG_enumerator:
22544 /* These tags always have simple identifiers already; no need
22545 to canonicalize them. */
22546 return DW_STRING (attr);
22547
22548 case DW_TAG_namespace:
22549 if (attr != NULL && DW_STRING (attr) != NULL)
22550 return DW_STRING (attr);
22551 return CP_ANONYMOUS_NAMESPACE_STR;
22552
22553 case DW_TAG_class_type:
22554 case DW_TAG_interface_type:
22555 case DW_TAG_structure_type:
22556 case DW_TAG_union_type:
22557 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22558 structures or unions. These were of the form "._%d" in GCC 4.1,
22559 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22560 and GCC 4.4. We work around this problem by ignoring these. */
22561 if (attr && DW_STRING (attr)
22562 && (startswith (DW_STRING (attr), "._")
22563 || startswith (DW_STRING (attr), "<anonymous")))
22564 return NULL;
22565
22566 /* GCC might emit a nameless typedef that has a linkage name. See
22567 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22568 if (!attr || DW_STRING (attr) == NULL)
22569 {
22570 char *demangled = NULL;
22571
22572 attr = dw2_linkage_name_attr (die, cu);
22573 if (attr == NULL || DW_STRING (attr) == NULL)
22574 return NULL;
22575
22576 /* Avoid demangling DW_STRING (attr) the second time on a second
22577 call for the same DIE. */
22578 if (!DW_STRING_IS_CANONICAL (attr))
22579 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22580
22581 if (demangled)
22582 {
22583 const char *base;
22584
22585 /* FIXME: we already did this for the partial symbol... */
22586 DW_STRING (attr)
22587 = ((const char *)
22588 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22589 demangled, strlen (demangled)));
22590 DW_STRING_IS_CANONICAL (attr) = 1;
22591 xfree (demangled);
22592
22593 /* Strip any leading namespaces/classes, keep only the base name.
22594 DW_AT_name for named DIEs does not contain the prefixes. */
22595 base = strrchr (DW_STRING (attr), ':');
22596 if (base && base > DW_STRING (attr) && base[-1] == ':')
22597 return &base[1];
22598 else
22599 return DW_STRING (attr);
22600 }
22601 }
22602 break;
22603
22604 default:
22605 break;
22606 }
22607
22608 if (!DW_STRING_IS_CANONICAL (attr))
22609 {
22610 DW_STRING (attr)
22611 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22612 &objfile->per_bfd->storage_obstack);
22613 DW_STRING_IS_CANONICAL (attr) = 1;
22614 }
22615 return DW_STRING (attr);
22616 }
22617
22618 /* Return the die that this die in an extension of, or NULL if there
22619 is none. *EXT_CU is the CU containing DIE on input, and the CU
22620 containing the return value on output. */
22621
22622 static struct die_info *
22623 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22624 {
22625 struct attribute *attr;
22626
22627 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22628 if (attr == NULL)
22629 return NULL;
22630
22631 return follow_die_ref (die, attr, ext_cu);
22632 }
22633
22634 /* Convert a DIE tag into its string name. */
22635
22636 static const char *
22637 dwarf_tag_name (unsigned tag)
22638 {
22639 const char *name = get_DW_TAG_name (tag);
22640
22641 if (name == NULL)
22642 return "DW_TAG_<unknown>";
22643
22644 return name;
22645 }
22646
22647 /* Convert a DWARF attribute code into its string name. */
22648
22649 static const char *
22650 dwarf_attr_name (unsigned attr)
22651 {
22652 const char *name;
22653
22654 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22655 if (attr == DW_AT_MIPS_fde)
22656 return "DW_AT_MIPS_fde";
22657 #else
22658 if (attr == DW_AT_HP_block_index)
22659 return "DW_AT_HP_block_index";
22660 #endif
22661
22662 name = get_DW_AT_name (attr);
22663
22664 if (name == NULL)
22665 return "DW_AT_<unknown>";
22666
22667 return name;
22668 }
22669
22670 /* Convert a DWARF value form code into its string name. */
22671
22672 static const char *
22673 dwarf_form_name (unsigned form)
22674 {
22675 const char *name = get_DW_FORM_name (form);
22676
22677 if (name == NULL)
22678 return "DW_FORM_<unknown>";
22679
22680 return name;
22681 }
22682
22683 static const char *
22684 dwarf_bool_name (unsigned mybool)
22685 {
22686 if (mybool)
22687 return "TRUE";
22688 else
22689 return "FALSE";
22690 }
22691
22692 /* Convert a DWARF type code into its string name. */
22693
22694 static const char *
22695 dwarf_type_encoding_name (unsigned enc)
22696 {
22697 const char *name = get_DW_ATE_name (enc);
22698
22699 if (name == NULL)
22700 return "DW_ATE_<unknown>";
22701
22702 return name;
22703 }
22704
22705 static void
22706 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22707 {
22708 unsigned int i;
22709
22710 print_spaces (indent, f);
22711 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22712 dwarf_tag_name (die->tag), die->abbrev,
22713 sect_offset_str (die->sect_off));
22714
22715 if (die->parent != NULL)
22716 {
22717 print_spaces (indent, f);
22718 fprintf_unfiltered (f, " parent at offset: %s\n",
22719 sect_offset_str (die->parent->sect_off));
22720 }
22721
22722 print_spaces (indent, f);
22723 fprintf_unfiltered (f, " has children: %s\n",
22724 dwarf_bool_name (die->child != NULL));
22725
22726 print_spaces (indent, f);
22727 fprintf_unfiltered (f, " attributes:\n");
22728
22729 for (i = 0; i < die->num_attrs; ++i)
22730 {
22731 print_spaces (indent, f);
22732 fprintf_unfiltered (f, " %s (%s) ",
22733 dwarf_attr_name (die->attrs[i].name),
22734 dwarf_form_name (die->attrs[i].form));
22735
22736 switch (die->attrs[i].form)
22737 {
22738 case DW_FORM_addr:
22739 case DW_FORM_GNU_addr_index:
22740 fprintf_unfiltered (f, "address: ");
22741 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22742 break;
22743 case DW_FORM_block2:
22744 case DW_FORM_block4:
22745 case DW_FORM_block:
22746 case DW_FORM_block1:
22747 fprintf_unfiltered (f, "block: size %s",
22748 pulongest (DW_BLOCK (&die->attrs[i])->size));
22749 break;
22750 case DW_FORM_exprloc:
22751 fprintf_unfiltered (f, "expression: size %s",
22752 pulongest (DW_BLOCK (&die->attrs[i])->size));
22753 break;
22754 case DW_FORM_data16:
22755 fprintf_unfiltered (f, "constant of 16 bytes");
22756 break;
22757 case DW_FORM_ref_addr:
22758 fprintf_unfiltered (f, "ref address: ");
22759 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22760 break;
22761 case DW_FORM_GNU_ref_alt:
22762 fprintf_unfiltered (f, "alt ref address: ");
22763 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22764 break;
22765 case DW_FORM_ref1:
22766 case DW_FORM_ref2:
22767 case DW_FORM_ref4:
22768 case DW_FORM_ref8:
22769 case DW_FORM_ref_udata:
22770 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22771 (long) (DW_UNSND (&die->attrs[i])));
22772 break;
22773 case DW_FORM_data1:
22774 case DW_FORM_data2:
22775 case DW_FORM_data4:
22776 case DW_FORM_data8:
22777 case DW_FORM_udata:
22778 case DW_FORM_sdata:
22779 fprintf_unfiltered (f, "constant: %s",
22780 pulongest (DW_UNSND (&die->attrs[i])));
22781 break;
22782 case DW_FORM_sec_offset:
22783 fprintf_unfiltered (f, "section offset: %s",
22784 pulongest (DW_UNSND (&die->attrs[i])));
22785 break;
22786 case DW_FORM_ref_sig8:
22787 fprintf_unfiltered (f, "signature: %s",
22788 hex_string (DW_SIGNATURE (&die->attrs[i])));
22789 break;
22790 case DW_FORM_string:
22791 case DW_FORM_strp:
22792 case DW_FORM_line_strp:
22793 case DW_FORM_GNU_str_index:
22794 case DW_FORM_GNU_strp_alt:
22795 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22796 DW_STRING (&die->attrs[i])
22797 ? DW_STRING (&die->attrs[i]) : "",
22798 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22799 break;
22800 case DW_FORM_flag:
22801 if (DW_UNSND (&die->attrs[i]))
22802 fprintf_unfiltered (f, "flag: TRUE");
22803 else
22804 fprintf_unfiltered (f, "flag: FALSE");
22805 break;
22806 case DW_FORM_flag_present:
22807 fprintf_unfiltered (f, "flag: TRUE");
22808 break;
22809 case DW_FORM_indirect:
22810 /* The reader will have reduced the indirect form to
22811 the "base form" so this form should not occur. */
22812 fprintf_unfiltered (f,
22813 "unexpected attribute form: DW_FORM_indirect");
22814 break;
22815 case DW_FORM_implicit_const:
22816 fprintf_unfiltered (f, "constant: %s",
22817 plongest (DW_SND (&die->attrs[i])));
22818 break;
22819 default:
22820 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22821 die->attrs[i].form);
22822 break;
22823 }
22824 fprintf_unfiltered (f, "\n");
22825 }
22826 }
22827
22828 static void
22829 dump_die_for_error (struct die_info *die)
22830 {
22831 dump_die_shallow (gdb_stderr, 0, die);
22832 }
22833
22834 static void
22835 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22836 {
22837 int indent = level * 4;
22838
22839 gdb_assert (die != NULL);
22840
22841 if (level >= max_level)
22842 return;
22843
22844 dump_die_shallow (f, indent, die);
22845
22846 if (die->child != NULL)
22847 {
22848 print_spaces (indent, f);
22849 fprintf_unfiltered (f, " Children:");
22850 if (level + 1 < max_level)
22851 {
22852 fprintf_unfiltered (f, "\n");
22853 dump_die_1 (f, level + 1, max_level, die->child);
22854 }
22855 else
22856 {
22857 fprintf_unfiltered (f,
22858 " [not printed, max nesting level reached]\n");
22859 }
22860 }
22861
22862 if (die->sibling != NULL && level > 0)
22863 {
22864 dump_die_1 (f, level, max_level, die->sibling);
22865 }
22866 }
22867
22868 /* This is called from the pdie macro in gdbinit.in.
22869 It's not static so gcc will keep a copy callable from gdb. */
22870
22871 void
22872 dump_die (struct die_info *die, int max_level)
22873 {
22874 dump_die_1 (gdb_stdlog, 0, max_level, die);
22875 }
22876
22877 static void
22878 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22879 {
22880 void **slot;
22881
22882 slot = htab_find_slot_with_hash (cu->die_hash, die,
22883 to_underlying (die->sect_off),
22884 INSERT);
22885
22886 *slot = die;
22887 }
22888
22889 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22890 required kind. */
22891
22892 static sect_offset
22893 dwarf2_get_ref_die_offset (const struct attribute *attr)
22894 {
22895 if (attr_form_is_ref (attr))
22896 return (sect_offset) DW_UNSND (attr);
22897
22898 complaint (_("unsupported die ref attribute form: '%s'"),
22899 dwarf_form_name (attr->form));
22900 return {};
22901 }
22902
22903 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22904 * the value held by the attribute is not constant. */
22905
22906 static LONGEST
22907 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22908 {
22909 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22910 return DW_SND (attr);
22911 else if (attr->form == DW_FORM_udata
22912 || attr->form == DW_FORM_data1
22913 || attr->form == DW_FORM_data2
22914 || attr->form == DW_FORM_data4
22915 || attr->form == DW_FORM_data8)
22916 return DW_UNSND (attr);
22917 else
22918 {
22919 /* For DW_FORM_data16 see attr_form_is_constant. */
22920 complaint (_("Attribute value is not a constant (%s)"),
22921 dwarf_form_name (attr->form));
22922 return default_value;
22923 }
22924 }
22925
22926 /* Follow reference or signature attribute ATTR of SRC_DIE.
22927 On entry *REF_CU is the CU of SRC_DIE.
22928 On exit *REF_CU is the CU of the result. */
22929
22930 static struct die_info *
22931 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22932 struct dwarf2_cu **ref_cu)
22933 {
22934 struct die_info *die;
22935
22936 if (attr_form_is_ref (attr))
22937 die = follow_die_ref (src_die, attr, ref_cu);
22938 else if (attr->form == DW_FORM_ref_sig8)
22939 die = follow_die_sig (src_die, attr, ref_cu);
22940 else
22941 {
22942 dump_die_for_error (src_die);
22943 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22944 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22945 }
22946
22947 return die;
22948 }
22949
22950 /* Follow reference OFFSET.
22951 On entry *REF_CU is the CU of the source die referencing OFFSET.
22952 On exit *REF_CU is the CU of the result.
22953 Returns NULL if OFFSET is invalid. */
22954
22955 static struct die_info *
22956 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22957 struct dwarf2_cu **ref_cu)
22958 {
22959 struct die_info temp_die;
22960 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22961 struct dwarf2_per_objfile *dwarf2_per_objfile
22962 = cu->per_cu->dwarf2_per_objfile;
22963
22964 gdb_assert (cu->per_cu != NULL);
22965
22966 target_cu = cu;
22967
22968 if (cu->per_cu->is_debug_types)
22969 {
22970 /* .debug_types CUs cannot reference anything outside their CU.
22971 If they need to, they have to reference a signatured type via
22972 DW_FORM_ref_sig8. */
22973 if (!offset_in_cu_p (&cu->header, sect_off))
22974 return NULL;
22975 }
22976 else if (offset_in_dwz != cu->per_cu->is_dwz
22977 || !offset_in_cu_p (&cu->header, sect_off))
22978 {
22979 struct dwarf2_per_cu_data *per_cu;
22980
22981 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22982 dwarf2_per_objfile);
22983
22984 /* If necessary, add it to the queue and load its DIEs. */
22985 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22986 load_full_comp_unit (per_cu, false, cu->language);
22987
22988 target_cu = per_cu->cu;
22989 }
22990 else if (cu->dies == NULL)
22991 {
22992 /* We're loading full DIEs during partial symbol reading. */
22993 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22994 load_full_comp_unit (cu->per_cu, false, language_minimal);
22995 }
22996
22997 *ref_cu = target_cu;
22998 temp_die.sect_off = sect_off;
22999 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23000 &temp_die,
23001 to_underlying (sect_off));
23002 }
23003
23004 /* Follow reference attribute ATTR of SRC_DIE.
23005 On entry *REF_CU is the CU of SRC_DIE.
23006 On exit *REF_CU is the CU of the result. */
23007
23008 static struct die_info *
23009 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23010 struct dwarf2_cu **ref_cu)
23011 {
23012 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23013 struct dwarf2_cu *cu = *ref_cu;
23014 struct die_info *die;
23015
23016 die = follow_die_offset (sect_off,
23017 (attr->form == DW_FORM_GNU_ref_alt
23018 || cu->per_cu->is_dwz),
23019 ref_cu);
23020 if (!die)
23021 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23022 "at %s [in module %s]"),
23023 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23024 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23025
23026 return die;
23027 }
23028
23029 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23030 Returned value is intended for DW_OP_call*. Returned
23031 dwarf2_locexpr_baton->data has lifetime of
23032 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23033
23034 struct dwarf2_locexpr_baton
23035 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23036 struct dwarf2_per_cu_data *per_cu,
23037 CORE_ADDR (*get_frame_pc) (void *baton),
23038 void *baton, bool resolve_abstract_p)
23039 {
23040 struct dwarf2_cu *cu;
23041 struct die_info *die;
23042 struct attribute *attr;
23043 struct dwarf2_locexpr_baton retval;
23044 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23045 struct objfile *objfile = dwarf2_per_objfile->objfile;
23046
23047 if (per_cu->cu == NULL)
23048 load_cu (per_cu, false);
23049 cu = per_cu->cu;
23050 if (cu == NULL)
23051 {
23052 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23053 Instead just throw an error, not much else we can do. */
23054 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23055 sect_offset_str (sect_off), objfile_name (objfile));
23056 }
23057
23058 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23059 if (!die)
23060 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23061 sect_offset_str (sect_off), objfile_name (objfile));
23062
23063 attr = dwarf2_attr (die, DW_AT_location, cu);
23064 if (!attr && resolve_abstract_p
23065 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23066 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23067 {
23068 CORE_ADDR pc = (*get_frame_pc) (baton);
23069
23070 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23071 {
23072 if (!cand->parent
23073 || cand->parent->tag != DW_TAG_subprogram)
23074 continue;
23075
23076 CORE_ADDR pc_low, pc_high;
23077 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23078 if (pc_low == ((CORE_ADDR) -1)
23079 || !(pc_low <= pc && pc < pc_high))
23080 continue;
23081
23082 die = cand;
23083 attr = dwarf2_attr (die, DW_AT_location, cu);
23084 break;
23085 }
23086 }
23087
23088 if (!attr)
23089 {
23090 /* DWARF: "If there is no such attribute, then there is no effect.".
23091 DATA is ignored if SIZE is 0. */
23092
23093 retval.data = NULL;
23094 retval.size = 0;
23095 }
23096 else if (attr_form_is_section_offset (attr))
23097 {
23098 struct dwarf2_loclist_baton loclist_baton;
23099 CORE_ADDR pc = (*get_frame_pc) (baton);
23100 size_t size;
23101
23102 fill_in_loclist_baton (cu, &loclist_baton, attr);
23103
23104 retval.data = dwarf2_find_location_expression (&loclist_baton,
23105 &size, pc);
23106 retval.size = size;
23107 }
23108 else
23109 {
23110 if (!attr_form_is_block (attr))
23111 error (_("Dwarf Error: DIE at %s referenced in module %s "
23112 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23113 sect_offset_str (sect_off), objfile_name (objfile));
23114
23115 retval.data = DW_BLOCK (attr)->data;
23116 retval.size = DW_BLOCK (attr)->size;
23117 }
23118 retval.per_cu = cu->per_cu;
23119
23120 age_cached_comp_units (dwarf2_per_objfile);
23121
23122 return retval;
23123 }
23124
23125 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23126 offset. */
23127
23128 struct dwarf2_locexpr_baton
23129 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23130 struct dwarf2_per_cu_data *per_cu,
23131 CORE_ADDR (*get_frame_pc) (void *baton),
23132 void *baton)
23133 {
23134 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23135
23136 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23137 }
23138
23139 /* Write a constant of a given type as target-ordered bytes into
23140 OBSTACK. */
23141
23142 static const gdb_byte *
23143 write_constant_as_bytes (struct obstack *obstack,
23144 enum bfd_endian byte_order,
23145 struct type *type,
23146 ULONGEST value,
23147 LONGEST *len)
23148 {
23149 gdb_byte *result;
23150
23151 *len = TYPE_LENGTH (type);
23152 result = (gdb_byte *) obstack_alloc (obstack, *len);
23153 store_unsigned_integer (result, *len, byte_order, value);
23154
23155 return result;
23156 }
23157
23158 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23159 pointer to the constant bytes and set LEN to the length of the
23160 data. If memory is needed, allocate it on OBSTACK. If the DIE
23161 does not have a DW_AT_const_value, return NULL. */
23162
23163 const gdb_byte *
23164 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23165 struct dwarf2_per_cu_data *per_cu,
23166 struct obstack *obstack,
23167 LONGEST *len)
23168 {
23169 struct dwarf2_cu *cu;
23170 struct die_info *die;
23171 struct attribute *attr;
23172 const gdb_byte *result = NULL;
23173 struct type *type;
23174 LONGEST value;
23175 enum bfd_endian byte_order;
23176 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23177
23178 if (per_cu->cu == NULL)
23179 load_cu (per_cu, false);
23180 cu = per_cu->cu;
23181 if (cu == NULL)
23182 {
23183 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23184 Instead just throw an error, not much else we can do. */
23185 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23186 sect_offset_str (sect_off), objfile_name (objfile));
23187 }
23188
23189 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23190 if (!die)
23191 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23192 sect_offset_str (sect_off), objfile_name (objfile));
23193
23194 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23195 if (attr == NULL)
23196 return NULL;
23197
23198 byte_order = (bfd_big_endian (objfile->obfd)
23199 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23200
23201 switch (attr->form)
23202 {
23203 case DW_FORM_addr:
23204 case DW_FORM_GNU_addr_index:
23205 {
23206 gdb_byte *tem;
23207
23208 *len = cu->header.addr_size;
23209 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23210 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23211 result = tem;
23212 }
23213 break;
23214 case DW_FORM_string:
23215 case DW_FORM_strp:
23216 case DW_FORM_GNU_str_index:
23217 case DW_FORM_GNU_strp_alt:
23218 /* DW_STRING is already allocated on the objfile obstack, point
23219 directly to it. */
23220 result = (const gdb_byte *) DW_STRING (attr);
23221 *len = strlen (DW_STRING (attr));
23222 break;
23223 case DW_FORM_block1:
23224 case DW_FORM_block2:
23225 case DW_FORM_block4:
23226 case DW_FORM_block:
23227 case DW_FORM_exprloc:
23228 case DW_FORM_data16:
23229 result = DW_BLOCK (attr)->data;
23230 *len = DW_BLOCK (attr)->size;
23231 break;
23232
23233 /* The DW_AT_const_value attributes are supposed to carry the
23234 symbol's value "represented as it would be on the target
23235 architecture." By the time we get here, it's already been
23236 converted to host endianness, so we just need to sign- or
23237 zero-extend it as appropriate. */
23238 case DW_FORM_data1:
23239 type = die_type (die, cu);
23240 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23241 if (result == NULL)
23242 result = write_constant_as_bytes (obstack, byte_order,
23243 type, value, len);
23244 break;
23245 case DW_FORM_data2:
23246 type = die_type (die, cu);
23247 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23248 if (result == NULL)
23249 result = write_constant_as_bytes (obstack, byte_order,
23250 type, value, len);
23251 break;
23252 case DW_FORM_data4:
23253 type = die_type (die, cu);
23254 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23255 if (result == NULL)
23256 result = write_constant_as_bytes (obstack, byte_order,
23257 type, value, len);
23258 break;
23259 case DW_FORM_data8:
23260 type = die_type (die, cu);
23261 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23262 if (result == NULL)
23263 result = write_constant_as_bytes (obstack, byte_order,
23264 type, value, len);
23265 break;
23266
23267 case DW_FORM_sdata:
23268 case DW_FORM_implicit_const:
23269 type = die_type (die, cu);
23270 result = write_constant_as_bytes (obstack, byte_order,
23271 type, DW_SND (attr), len);
23272 break;
23273
23274 case DW_FORM_udata:
23275 type = die_type (die, cu);
23276 result = write_constant_as_bytes (obstack, byte_order,
23277 type, DW_UNSND (attr), len);
23278 break;
23279
23280 default:
23281 complaint (_("unsupported const value attribute form: '%s'"),
23282 dwarf_form_name (attr->form));
23283 break;
23284 }
23285
23286 return result;
23287 }
23288
23289 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23290 valid type for this die is found. */
23291
23292 struct type *
23293 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23294 struct dwarf2_per_cu_data *per_cu)
23295 {
23296 struct dwarf2_cu *cu;
23297 struct die_info *die;
23298
23299 if (per_cu->cu == NULL)
23300 load_cu (per_cu, false);
23301 cu = per_cu->cu;
23302 if (!cu)
23303 return NULL;
23304
23305 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23306 if (!die)
23307 return NULL;
23308
23309 return die_type (die, cu);
23310 }
23311
23312 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23313 PER_CU. */
23314
23315 struct type *
23316 dwarf2_get_die_type (cu_offset die_offset,
23317 struct dwarf2_per_cu_data *per_cu)
23318 {
23319 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23320 return get_die_type_at_offset (die_offset_sect, per_cu);
23321 }
23322
23323 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23324 On entry *REF_CU is the CU of SRC_DIE.
23325 On exit *REF_CU is the CU of the result.
23326 Returns NULL if the referenced DIE isn't found. */
23327
23328 static struct die_info *
23329 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23330 struct dwarf2_cu **ref_cu)
23331 {
23332 struct die_info temp_die;
23333 struct dwarf2_cu *sig_cu;
23334 struct die_info *die;
23335
23336 /* While it might be nice to assert sig_type->type == NULL here,
23337 we can get here for DW_AT_imported_declaration where we need
23338 the DIE not the type. */
23339
23340 /* If necessary, add it to the queue and load its DIEs. */
23341
23342 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23343 read_signatured_type (sig_type);
23344
23345 sig_cu = sig_type->per_cu.cu;
23346 gdb_assert (sig_cu != NULL);
23347 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23348 temp_die.sect_off = sig_type->type_offset_in_section;
23349 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23350 to_underlying (temp_die.sect_off));
23351 if (die)
23352 {
23353 struct dwarf2_per_objfile *dwarf2_per_objfile
23354 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23355
23356 /* For .gdb_index version 7 keep track of included TUs.
23357 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23358 if (dwarf2_per_objfile->index_table != NULL
23359 && dwarf2_per_objfile->index_table->version <= 7)
23360 {
23361 VEC_safe_push (dwarf2_per_cu_ptr,
23362 (*ref_cu)->per_cu->imported_symtabs,
23363 sig_cu->per_cu);
23364 }
23365
23366 *ref_cu = sig_cu;
23367 return die;
23368 }
23369
23370 return NULL;
23371 }
23372
23373 /* Follow signatured type referenced by ATTR in SRC_DIE.
23374 On entry *REF_CU is the CU of SRC_DIE.
23375 On exit *REF_CU is the CU of the result.
23376 The result is the DIE of the type.
23377 If the referenced type cannot be found an error is thrown. */
23378
23379 static struct die_info *
23380 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23381 struct dwarf2_cu **ref_cu)
23382 {
23383 ULONGEST signature = DW_SIGNATURE (attr);
23384 struct signatured_type *sig_type;
23385 struct die_info *die;
23386
23387 gdb_assert (attr->form == DW_FORM_ref_sig8);
23388
23389 sig_type = lookup_signatured_type (*ref_cu, signature);
23390 /* sig_type will be NULL if the signatured type is missing from
23391 the debug info. */
23392 if (sig_type == NULL)
23393 {
23394 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23395 " from DIE at %s [in module %s]"),
23396 hex_string (signature), sect_offset_str (src_die->sect_off),
23397 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23398 }
23399
23400 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23401 if (die == NULL)
23402 {
23403 dump_die_for_error (src_die);
23404 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23405 " from DIE at %s [in module %s]"),
23406 hex_string (signature), sect_offset_str (src_die->sect_off),
23407 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23408 }
23409
23410 return die;
23411 }
23412
23413 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23414 reading in and processing the type unit if necessary. */
23415
23416 static struct type *
23417 get_signatured_type (struct die_info *die, ULONGEST signature,
23418 struct dwarf2_cu *cu)
23419 {
23420 struct dwarf2_per_objfile *dwarf2_per_objfile
23421 = cu->per_cu->dwarf2_per_objfile;
23422 struct signatured_type *sig_type;
23423 struct dwarf2_cu *type_cu;
23424 struct die_info *type_die;
23425 struct type *type;
23426
23427 sig_type = lookup_signatured_type (cu, signature);
23428 /* sig_type will be NULL if the signatured type is missing from
23429 the debug info. */
23430 if (sig_type == NULL)
23431 {
23432 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23433 " from DIE at %s [in module %s]"),
23434 hex_string (signature), sect_offset_str (die->sect_off),
23435 objfile_name (dwarf2_per_objfile->objfile));
23436 return build_error_marker_type (cu, die);
23437 }
23438
23439 /* If we already know the type we're done. */
23440 if (sig_type->type != NULL)
23441 return sig_type->type;
23442
23443 type_cu = cu;
23444 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23445 if (type_die != NULL)
23446 {
23447 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23448 is created. This is important, for example, because for c++ classes
23449 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23450 type = read_type_die (type_die, type_cu);
23451 if (type == NULL)
23452 {
23453 complaint (_("Dwarf Error: Cannot build signatured type %s"
23454 " referenced from DIE at %s [in module %s]"),
23455 hex_string (signature), sect_offset_str (die->sect_off),
23456 objfile_name (dwarf2_per_objfile->objfile));
23457 type = build_error_marker_type (cu, die);
23458 }
23459 }
23460 else
23461 {
23462 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23463 " from DIE at %s [in module %s]"),
23464 hex_string (signature), sect_offset_str (die->sect_off),
23465 objfile_name (dwarf2_per_objfile->objfile));
23466 type = build_error_marker_type (cu, die);
23467 }
23468 sig_type->type = type;
23469
23470 return type;
23471 }
23472
23473 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23474 reading in and processing the type unit if necessary. */
23475
23476 static struct type *
23477 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23478 struct dwarf2_cu *cu) /* ARI: editCase function */
23479 {
23480 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23481 if (attr_form_is_ref (attr))
23482 {
23483 struct dwarf2_cu *type_cu = cu;
23484 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23485
23486 return read_type_die (type_die, type_cu);
23487 }
23488 else if (attr->form == DW_FORM_ref_sig8)
23489 {
23490 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23491 }
23492 else
23493 {
23494 struct dwarf2_per_objfile *dwarf2_per_objfile
23495 = cu->per_cu->dwarf2_per_objfile;
23496
23497 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23498 " at %s [in module %s]"),
23499 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23500 objfile_name (dwarf2_per_objfile->objfile));
23501 return build_error_marker_type (cu, die);
23502 }
23503 }
23504
23505 /* Load the DIEs associated with type unit PER_CU into memory. */
23506
23507 static void
23508 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23509 {
23510 struct signatured_type *sig_type;
23511
23512 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23513 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23514
23515 /* We have the per_cu, but we need the signatured_type.
23516 Fortunately this is an easy translation. */
23517 gdb_assert (per_cu->is_debug_types);
23518 sig_type = (struct signatured_type *) per_cu;
23519
23520 gdb_assert (per_cu->cu == NULL);
23521
23522 read_signatured_type (sig_type);
23523
23524 gdb_assert (per_cu->cu != NULL);
23525 }
23526
23527 /* die_reader_func for read_signatured_type.
23528 This is identical to load_full_comp_unit_reader,
23529 but is kept separate for now. */
23530
23531 static void
23532 read_signatured_type_reader (const struct die_reader_specs *reader,
23533 const gdb_byte *info_ptr,
23534 struct die_info *comp_unit_die,
23535 int has_children,
23536 void *data)
23537 {
23538 struct dwarf2_cu *cu = reader->cu;
23539
23540 gdb_assert (cu->die_hash == NULL);
23541 cu->die_hash =
23542 htab_create_alloc_ex (cu->header.length / 12,
23543 die_hash,
23544 die_eq,
23545 NULL,
23546 &cu->comp_unit_obstack,
23547 hashtab_obstack_allocate,
23548 dummy_obstack_deallocate);
23549
23550 if (has_children)
23551 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23552 &info_ptr, comp_unit_die);
23553 cu->dies = comp_unit_die;
23554 /* comp_unit_die is not stored in die_hash, no need. */
23555
23556 /* We try not to read any attributes in this function, because not
23557 all CUs needed for references have been loaded yet, and symbol
23558 table processing isn't initialized. But we have to set the CU language,
23559 or we won't be able to build types correctly.
23560 Similarly, if we do not read the producer, we can not apply
23561 producer-specific interpretation. */
23562 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23563 }
23564
23565 /* Read in a signatured type and build its CU and DIEs.
23566 If the type is a stub for the real type in a DWO file,
23567 read in the real type from the DWO file as well. */
23568
23569 static void
23570 read_signatured_type (struct signatured_type *sig_type)
23571 {
23572 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23573
23574 gdb_assert (per_cu->is_debug_types);
23575 gdb_assert (per_cu->cu == NULL);
23576
23577 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23578 read_signatured_type_reader, NULL);
23579 sig_type->per_cu.tu_read = 1;
23580 }
23581
23582 /* Decode simple location descriptions.
23583 Given a pointer to a dwarf block that defines a location, compute
23584 the location and return the value.
23585
23586 NOTE drow/2003-11-18: This function is called in two situations
23587 now: for the address of static or global variables (partial symbols
23588 only) and for offsets into structures which are expected to be
23589 (more or less) constant. The partial symbol case should go away,
23590 and only the constant case should remain. That will let this
23591 function complain more accurately. A few special modes are allowed
23592 without complaint for global variables (for instance, global
23593 register values and thread-local values).
23594
23595 A location description containing no operations indicates that the
23596 object is optimized out. The return value is 0 for that case.
23597 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23598 callers will only want a very basic result and this can become a
23599 complaint.
23600
23601 Note that stack[0] is unused except as a default error return. */
23602
23603 static CORE_ADDR
23604 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23605 {
23606 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23607 size_t i;
23608 size_t size = blk->size;
23609 const gdb_byte *data = blk->data;
23610 CORE_ADDR stack[64];
23611 int stacki;
23612 unsigned int bytes_read, unsnd;
23613 gdb_byte op;
23614
23615 i = 0;
23616 stacki = 0;
23617 stack[stacki] = 0;
23618 stack[++stacki] = 0;
23619
23620 while (i < size)
23621 {
23622 op = data[i++];
23623 switch (op)
23624 {
23625 case DW_OP_lit0:
23626 case DW_OP_lit1:
23627 case DW_OP_lit2:
23628 case DW_OP_lit3:
23629 case DW_OP_lit4:
23630 case DW_OP_lit5:
23631 case DW_OP_lit6:
23632 case DW_OP_lit7:
23633 case DW_OP_lit8:
23634 case DW_OP_lit9:
23635 case DW_OP_lit10:
23636 case DW_OP_lit11:
23637 case DW_OP_lit12:
23638 case DW_OP_lit13:
23639 case DW_OP_lit14:
23640 case DW_OP_lit15:
23641 case DW_OP_lit16:
23642 case DW_OP_lit17:
23643 case DW_OP_lit18:
23644 case DW_OP_lit19:
23645 case DW_OP_lit20:
23646 case DW_OP_lit21:
23647 case DW_OP_lit22:
23648 case DW_OP_lit23:
23649 case DW_OP_lit24:
23650 case DW_OP_lit25:
23651 case DW_OP_lit26:
23652 case DW_OP_lit27:
23653 case DW_OP_lit28:
23654 case DW_OP_lit29:
23655 case DW_OP_lit30:
23656 case DW_OP_lit31:
23657 stack[++stacki] = op - DW_OP_lit0;
23658 break;
23659
23660 case DW_OP_reg0:
23661 case DW_OP_reg1:
23662 case DW_OP_reg2:
23663 case DW_OP_reg3:
23664 case DW_OP_reg4:
23665 case DW_OP_reg5:
23666 case DW_OP_reg6:
23667 case DW_OP_reg7:
23668 case DW_OP_reg8:
23669 case DW_OP_reg9:
23670 case DW_OP_reg10:
23671 case DW_OP_reg11:
23672 case DW_OP_reg12:
23673 case DW_OP_reg13:
23674 case DW_OP_reg14:
23675 case DW_OP_reg15:
23676 case DW_OP_reg16:
23677 case DW_OP_reg17:
23678 case DW_OP_reg18:
23679 case DW_OP_reg19:
23680 case DW_OP_reg20:
23681 case DW_OP_reg21:
23682 case DW_OP_reg22:
23683 case DW_OP_reg23:
23684 case DW_OP_reg24:
23685 case DW_OP_reg25:
23686 case DW_OP_reg26:
23687 case DW_OP_reg27:
23688 case DW_OP_reg28:
23689 case DW_OP_reg29:
23690 case DW_OP_reg30:
23691 case DW_OP_reg31:
23692 stack[++stacki] = op - DW_OP_reg0;
23693 if (i < size)
23694 dwarf2_complex_location_expr_complaint ();
23695 break;
23696
23697 case DW_OP_regx:
23698 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23699 i += bytes_read;
23700 stack[++stacki] = unsnd;
23701 if (i < size)
23702 dwarf2_complex_location_expr_complaint ();
23703 break;
23704
23705 case DW_OP_addr:
23706 stack[++stacki] = read_address (objfile->obfd, &data[i],
23707 cu, &bytes_read);
23708 i += bytes_read;
23709 break;
23710
23711 case DW_OP_const1u:
23712 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23713 i += 1;
23714 break;
23715
23716 case DW_OP_const1s:
23717 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23718 i += 1;
23719 break;
23720
23721 case DW_OP_const2u:
23722 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23723 i += 2;
23724 break;
23725
23726 case DW_OP_const2s:
23727 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23728 i += 2;
23729 break;
23730
23731 case DW_OP_const4u:
23732 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23733 i += 4;
23734 break;
23735
23736 case DW_OP_const4s:
23737 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23738 i += 4;
23739 break;
23740
23741 case DW_OP_const8u:
23742 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23743 i += 8;
23744 break;
23745
23746 case DW_OP_constu:
23747 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23748 &bytes_read);
23749 i += bytes_read;
23750 break;
23751
23752 case DW_OP_consts:
23753 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23754 i += bytes_read;
23755 break;
23756
23757 case DW_OP_dup:
23758 stack[stacki + 1] = stack[stacki];
23759 stacki++;
23760 break;
23761
23762 case DW_OP_plus:
23763 stack[stacki - 1] += stack[stacki];
23764 stacki--;
23765 break;
23766
23767 case DW_OP_plus_uconst:
23768 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23769 &bytes_read);
23770 i += bytes_read;
23771 break;
23772
23773 case DW_OP_minus:
23774 stack[stacki - 1] -= stack[stacki];
23775 stacki--;
23776 break;
23777
23778 case DW_OP_deref:
23779 /* If we're not the last op, then we definitely can't encode
23780 this using GDB's address_class enum. This is valid for partial
23781 global symbols, although the variable's address will be bogus
23782 in the psymtab. */
23783 if (i < size)
23784 dwarf2_complex_location_expr_complaint ();
23785 break;
23786
23787 case DW_OP_GNU_push_tls_address:
23788 case DW_OP_form_tls_address:
23789 /* The top of the stack has the offset from the beginning
23790 of the thread control block at which the variable is located. */
23791 /* Nothing should follow this operator, so the top of stack would
23792 be returned. */
23793 /* This is valid for partial global symbols, but the variable's
23794 address will be bogus in the psymtab. Make it always at least
23795 non-zero to not look as a variable garbage collected by linker
23796 which have DW_OP_addr 0. */
23797 if (i < size)
23798 dwarf2_complex_location_expr_complaint ();
23799 stack[stacki]++;
23800 break;
23801
23802 case DW_OP_GNU_uninit:
23803 break;
23804
23805 case DW_OP_GNU_addr_index:
23806 case DW_OP_GNU_const_index:
23807 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23808 &bytes_read);
23809 i += bytes_read;
23810 break;
23811
23812 default:
23813 {
23814 const char *name = get_DW_OP_name (op);
23815
23816 if (name)
23817 complaint (_("unsupported stack op: '%s'"),
23818 name);
23819 else
23820 complaint (_("unsupported stack op: '%02x'"),
23821 op);
23822 }
23823
23824 return (stack[stacki]);
23825 }
23826
23827 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23828 outside of the allocated space. Also enforce minimum>0. */
23829 if (stacki >= ARRAY_SIZE (stack) - 1)
23830 {
23831 complaint (_("location description stack overflow"));
23832 return 0;
23833 }
23834
23835 if (stacki <= 0)
23836 {
23837 complaint (_("location description stack underflow"));
23838 return 0;
23839 }
23840 }
23841 return (stack[stacki]);
23842 }
23843
23844 /* memory allocation interface */
23845
23846 static struct dwarf_block *
23847 dwarf_alloc_block (struct dwarf2_cu *cu)
23848 {
23849 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23850 }
23851
23852 static struct die_info *
23853 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23854 {
23855 struct die_info *die;
23856 size_t size = sizeof (struct die_info);
23857
23858 if (num_attrs > 1)
23859 size += (num_attrs - 1) * sizeof (struct attribute);
23860
23861 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23862 memset (die, 0, sizeof (struct die_info));
23863 return (die);
23864 }
23865
23866 \f
23867 /* Macro support. */
23868
23869 /* Return file name relative to the compilation directory of file number I in
23870 *LH's file name table. The result is allocated using xmalloc; the caller is
23871 responsible for freeing it. */
23872
23873 static char *
23874 file_file_name (int file, struct line_header *lh)
23875 {
23876 /* Is the file number a valid index into the line header's file name
23877 table? Remember that file numbers start with one, not zero. */
23878 if (1 <= file && file <= lh->file_names.size ())
23879 {
23880 const file_entry &fe = lh->file_names[file - 1];
23881
23882 if (!IS_ABSOLUTE_PATH (fe.name))
23883 {
23884 const char *dir = fe.include_dir (lh);
23885 if (dir != NULL)
23886 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23887 }
23888 return xstrdup (fe.name);
23889 }
23890 else
23891 {
23892 /* The compiler produced a bogus file number. We can at least
23893 record the macro definitions made in the file, even if we
23894 won't be able to find the file by name. */
23895 char fake_name[80];
23896
23897 xsnprintf (fake_name, sizeof (fake_name),
23898 "<bad macro file number %d>", file);
23899
23900 complaint (_("bad file number in macro information (%d)"),
23901 file);
23902
23903 return xstrdup (fake_name);
23904 }
23905 }
23906
23907 /* Return the full name of file number I in *LH's file name table.
23908 Use COMP_DIR as the name of the current directory of the
23909 compilation. The result is allocated using xmalloc; the caller is
23910 responsible for freeing it. */
23911 static char *
23912 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23913 {
23914 /* Is the file number a valid index into the line header's file name
23915 table? Remember that file numbers start with one, not zero. */
23916 if (1 <= file && file <= lh->file_names.size ())
23917 {
23918 char *relative = file_file_name (file, lh);
23919
23920 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23921 return relative;
23922 return reconcat (relative, comp_dir, SLASH_STRING,
23923 relative, (char *) NULL);
23924 }
23925 else
23926 return file_file_name (file, lh);
23927 }
23928
23929
23930 static struct macro_source_file *
23931 macro_start_file (struct dwarf2_cu *cu,
23932 int file, int line,
23933 struct macro_source_file *current_file,
23934 struct line_header *lh)
23935 {
23936 /* File name relative to the compilation directory of this source file. */
23937 char *file_name = file_file_name (file, lh);
23938
23939 if (! current_file)
23940 {
23941 /* Note: We don't create a macro table for this compilation unit
23942 at all until we actually get a filename. */
23943 struct macro_table *macro_table = cu->builder->get_macro_table ();
23944
23945 /* If we have no current file, then this must be the start_file
23946 directive for the compilation unit's main source file. */
23947 current_file = macro_set_main (macro_table, file_name);
23948 macro_define_special (macro_table);
23949 }
23950 else
23951 current_file = macro_include (current_file, line, file_name);
23952
23953 xfree (file_name);
23954
23955 return current_file;
23956 }
23957
23958 static const char *
23959 consume_improper_spaces (const char *p, const char *body)
23960 {
23961 if (*p == ' ')
23962 {
23963 complaint (_("macro definition contains spaces "
23964 "in formal argument list:\n`%s'"),
23965 body);
23966
23967 while (*p == ' ')
23968 p++;
23969 }
23970
23971 return p;
23972 }
23973
23974
23975 static void
23976 parse_macro_definition (struct macro_source_file *file, int line,
23977 const char *body)
23978 {
23979 const char *p;
23980
23981 /* The body string takes one of two forms. For object-like macro
23982 definitions, it should be:
23983
23984 <macro name> " " <definition>
23985
23986 For function-like macro definitions, it should be:
23987
23988 <macro name> "() " <definition>
23989 or
23990 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23991
23992 Spaces may appear only where explicitly indicated, and in the
23993 <definition>.
23994
23995 The Dwarf 2 spec says that an object-like macro's name is always
23996 followed by a space, but versions of GCC around March 2002 omit
23997 the space when the macro's definition is the empty string.
23998
23999 The Dwarf 2 spec says that there should be no spaces between the
24000 formal arguments in a function-like macro's formal argument list,
24001 but versions of GCC around March 2002 include spaces after the
24002 commas. */
24003
24004
24005 /* Find the extent of the macro name. The macro name is terminated
24006 by either a space or null character (for an object-like macro) or
24007 an opening paren (for a function-like macro). */
24008 for (p = body; *p; p++)
24009 if (*p == ' ' || *p == '(')
24010 break;
24011
24012 if (*p == ' ' || *p == '\0')
24013 {
24014 /* It's an object-like macro. */
24015 int name_len = p - body;
24016 char *name = savestring (body, name_len);
24017 const char *replacement;
24018
24019 if (*p == ' ')
24020 replacement = body + name_len + 1;
24021 else
24022 {
24023 dwarf2_macro_malformed_definition_complaint (body);
24024 replacement = body + name_len;
24025 }
24026
24027 macro_define_object (file, line, name, replacement);
24028
24029 xfree (name);
24030 }
24031 else if (*p == '(')
24032 {
24033 /* It's a function-like macro. */
24034 char *name = savestring (body, p - body);
24035 int argc = 0;
24036 int argv_size = 1;
24037 char **argv = XNEWVEC (char *, argv_size);
24038
24039 p++;
24040
24041 p = consume_improper_spaces (p, body);
24042
24043 /* Parse the formal argument list. */
24044 while (*p && *p != ')')
24045 {
24046 /* Find the extent of the current argument name. */
24047 const char *arg_start = p;
24048
24049 while (*p && *p != ',' && *p != ')' && *p != ' ')
24050 p++;
24051
24052 if (! *p || p == arg_start)
24053 dwarf2_macro_malformed_definition_complaint (body);
24054 else
24055 {
24056 /* Make sure argv has room for the new argument. */
24057 if (argc >= argv_size)
24058 {
24059 argv_size *= 2;
24060 argv = XRESIZEVEC (char *, argv, argv_size);
24061 }
24062
24063 argv[argc++] = savestring (arg_start, p - arg_start);
24064 }
24065
24066 p = consume_improper_spaces (p, body);
24067
24068 /* Consume the comma, if present. */
24069 if (*p == ',')
24070 {
24071 p++;
24072
24073 p = consume_improper_spaces (p, body);
24074 }
24075 }
24076
24077 if (*p == ')')
24078 {
24079 p++;
24080
24081 if (*p == ' ')
24082 /* Perfectly formed definition, no complaints. */
24083 macro_define_function (file, line, name,
24084 argc, (const char **) argv,
24085 p + 1);
24086 else if (*p == '\0')
24087 {
24088 /* Complain, but do define it. */
24089 dwarf2_macro_malformed_definition_complaint (body);
24090 macro_define_function (file, line, name,
24091 argc, (const char **) argv,
24092 p);
24093 }
24094 else
24095 /* Just complain. */
24096 dwarf2_macro_malformed_definition_complaint (body);
24097 }
24098 else
24099 /* Just complain. */
24100 dwarf2_macro_malformed_definition_complaint (body);
24101
24102 xfree (name);
24103 {
24104 int i;
24105
24106 for (i = 0; i < argc; i++)
24107 xfree (argv[i]);
24108 }
24109 xfree (argv);
24110 }
24111 else
24112 dwarf2_macro_malformed_definition_complaint (body);
24113 }
24114
24115 /* Skip some bytes from BYTES according to the form given in FORM.
24116 Returns the new pointer. */
24117
24118 static const gdb_byte *
24119 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24120 enum dwarf_form form,
24121 unsigned int offset_size,
24122 struct dwarf2_section_info *section)
24123 {
24124 unsigned int bytes_read;
24125
24126 switch (form)
24127 {
24128 case DW_FORM_data1:
24129 case DW_FORM_flag:
24130 ++bytes;
24131 break;
24132
24133 case DW_FORM_data2:
24134 bytes += 2;
24135 break;
24136
24137 case DW_FORM_data4:
24138 bytes += 4;
24139 break;
24140
24141 case DW_FORM_data8:
24142 bytes += 8;
24143 break;
24144
24145 case DW_FORM_data16:
24146 bytes += 16;
24147 break;
24148
24149 case DW_FORM_string:
24150 read_direct_string (abfd, bytes, &bytes_read);
24151 bytes += bytes_read;
24152 break;
24153
24154 case DW_FORM_sec_offset:
24155 case DW_FORM_strp:
24156 case DW_FORM_GNU_strp_alt:
24157 bytes += offset_size;
24158 break;
24159
24160 case DW_FORM_block:
24161 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24162 bytes += bytes_read;
24163 break;
24164
24165 case DW_FORM_block1:
24166 bytes += 1 + read_1_byte (abfd, bytes);
24167 break;
24168 case DW_FORM_block2:
24169 bytes += 2 + read_2_bytes (abfd, bytes);
24170 break;
24171 case DW_FORM_block4:
24172 bytes += 4 + read_4_bytes (abfd, bytes);
24173 break;
24174
24175 case DW_FORM_sdata:
24176 case DW_FORM_udata:
24177 case DW_FORM_GNU_addr_index:
24178 case DW_FORM_GNU_str_index:
24179 bytes = gdb_skip_leb128 (bytes, buffer_end);
24180 if (bytes == NULL)
24181 {
24182 dwarf2_section_buffer_overflow_complaint (section);
24183 return NULL;
24184 }
24185 break;
24186
24187 case DW_FORM_implicit_const:
24188 break;
24189
24190 default:
24191 {
24192 complaint (_("invalid form 0x%x in `%s'"),
24193 form, get_section_name (section));
24194 return NULL;
24195 }
24196 }
24197
24198 return bytes;
24199 }
24200
24201 /* A helper for dwarf_decode_macros that handles skipping an unknown
24202 opcode. Returns an updated pointer to the macro data buffer; or,
24203 on error, issues a complaint and returns NULL. */
24204
24205 static const gdb_byte *
24206 skip_unknown_opcode (unsigned int opcode,
24207 const gdb_byte **opcode_definitions,
24208 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24209 bfd *abfd,
24210 unsigned int offset_size,
24211 struct dwarf2_section_info *section)
24212 {
24213 unsigned int bytes_read, i;
24214 unsigned long arg;
24215 const gdb_byte *defn;
24216
24217 if (opcode_definitions[opcode] == NULL)
24218 {
24219 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24220 opcode);
24221 return NULL;
24222 }
24223
24224 defn = opcode_definitions[opcode];
24225 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24226 defn += bytes_read;
24227
24228 for (i = 0; i < arg; ++i)
24229 {
24230 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24231 (enum dwarf_form) defn[i], offset_size,
24232 section);
24233 if (mac_ptr == NULL)
24234 {
24235 /* skip_form_bytes already issued the complaint. */
24236 return NULL;
24237 }
24238 }
24239
24240 return mac_ptr;
24241 }
24242
24243 /* A helper function which parses the header of a macro section.
24244 If the macro section is the extended (for now called "GNU") type,
24245 then this updates *OFFSET_SIZE. Returns a pointer to just after
24246 the header, or issues a complaint and returns NULL on error. */
24247
24248 static const gdb_byte *
24249 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24250 bfd *abfd,
24251 const gdb_byte *mac_ptr,
24252 unsigned int *offset_size,
24253 int section_is_gnu)
24254 {
24255 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24256
24257 if (section_is_gnu)
24258 {
24259 unsigned int version, flags;
24260
24261 version = read_2_bytes (abfd, mac_ptr);
24262 if (version != 4 && version != 5)
24263 {
24264 complaint (_("unrecognized version `%d' in .debug_macro section"),
24265 version);
24266 return NULL;
24267 }
24268 mac_ptr += 2;
24269
24270 flags = read_1_byte (abfd, mac_ptr);
24271 ++mac_ptr;
24272 *offset_size = (flags & 1) ? 8 : 4;
24273
24274 if ((flags & 2) != 0)
24275 /* We don't need the line table offset. */
24276 mac_ptr += *offset_size;
24277
24278 /* Vendor opcode descriptions. */
24279 if ((flags & 4) != 0)
24280 {
24281 unsigned int i, count;
24282
24283 count = read_1_byte (abfd, mac_ptr);
24284 ++mac_ptr;
24285 for (i = 0; i < count; ++i)
24286 {
24287 unsigned int opcode, bytes_read;
24288 unsigned long arg;
24289
24290 opcode = read_1_byte (abfd, mac_ptr);
24291 ++mac_ptr;
24292 opcode_definitions[opcode] = mac_ptr;
24293 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24294 mac_ptr += bytes_read;
24295 mac_ptr += arg;
24296 }
24297 }
24298 }
24299
24300 return mac_ptr;
24301 }
24302
24303 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24304 including DW_MACRO_import. */
24305
24306 static void
24307 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24308 bfd *abfd,
24309 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24310 struct macro_source_file *current_file,
24311 struct line_header *lh,
24312 struct dwarf2_section_info *section,
24313 int section_is_gnu, int section_is_dwz,
24314 unsigned int offset_size,
24315 htab_t include_hash)
24316 {
24317 struct dwarf2_per_objfile *dwarf2_per_objfile
24318 = cu->per_cu->dwarf2_per_objfile;
24319 struct objfile *objfile = dwarf2_per_objfile->objfile;
24320 enum dwarf_macro_record_type macinfo_type;
24321 int at_commandline;
24322 const gdb_byte *opcode_definitions[256];
24323
24324 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24325 &offset_size, section_is_gnu);
24326 if (mac_ptr == NULL)
24327 {
24328 /* We already issued a complaint. */
24329 return;
24330 }
24331
24332 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24333 GDB is still reading the definitions from command line. First
24334 DW_MACINFO_start_file will need to be ignored as it was already executed
24335 to create CURRENT_FILE for the main source holding also the command line
24336 definitions. On first met DW_MACINFO_start_file this flag is reset to
24337 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24338
24339 at_commandline = 1;
24340
24341 do
24342 {
24343 /* Do we at least have room for a macinfo type byte? */
24344 if (mac_ptr >= mac_end)
24345 {
24346 dwarf2_section_buffer_overflow_complaint (section);
24347 break;
24348 }
24349
24350 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24351 mac_ptr++;
24352
24353 /* Note that we rely on the fact that the corresponding GNU and
24354 DWARF constants are the same. */
24355 DIAGNOSTIC_PUSH
24356 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24357 switch (macinfo_type)
24358 {
24359 /* A zero macinfo type indicates the end of the macro
24360 information. */
24361 case 0:
24362 break;
24363
24364 case DW_MACRO_define:
24365 case DW_MACRO_undef:
24366 case DW_MACRO_define_strp:
24367 case DW_MACRO_undef_strp:
24368 case DW_MACRO_define_sup:
24369 case DW_MACRO_undef_sup:
24370 {
24371 unsigned int bytes_read;
24372 int line;
24373 const char *body;
24374 int is_define;
24375
24376 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24377 mac_ptr += bytes_read;
24378
24379 if (macinfo_type == DW_MACRO_define
24380 || macinfo_type == DW_MACRO_undef)
24381 {
24382 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24383 mac_ptr += bytes_read;
24384 }
24385 else
24386 {
24387 LONGEST str_offset;
24388
24389 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24390 mac_ptr += offset_size;
24391
24392 if (macinfo_type == DW_MACRO_define_sup
24393 || macinfo_type == DW_MACRO_undef_sup
24394 || section_is_dwz)
24395 {
24396 struct dwz_file *dwz
24397 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24398
24399 body = read_indirect_string_from_dwz (objfile,
24400 dwz, str_offset);
24401 }
24402 else
24403 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24404 abfd, str_offset);
24405 }
24406
24407 is_define = (macinfo_type == DW_MACRO_define
24408 || macinfo_type == DW_MACRO_define_strp
24409 || macinfo_type == DW_MACRO_define_sup);
24410 if (! current_file)
24411 {
24412 /* DWARF violation as no main source is present. */
24413 complaint (_("debug info with no main source gives macro %s "
24414 "on line %d: %s"),
24415 is_define ? _("definition") : _("undefinition"),
24416 line, body);
24417 break;
24418 }
24419 if ((line == 0 && !at_commandline)
24420 || (line != 0 && at_commandline))
24421 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24422 at_commandline ? _("command-line") : _("in-file"),
24423 is_define ? _("definition") : _("undefinition"),
24424 line == 0 ? _("zero") : _("non-zero"), line, body);
24425
24426 if (is_define)
24427 parse_macro_definition (current_file, line, body);
24428 else
24429 {
24430 gdb_assert (macinfo_type == DW_MACRO_undef
24431 || macinfo_type == DW_MACRO_undef_strp
24432 || macinfo_type == DW_MACRO_undef_sup);
24433 macro_undef (current_file, line, body);
24434 }
24435 }
24436 break;
24437
24438 case DW_MACRO_start_file:
24439 {
24440 unsigned int bytes_read;
24441 int line, file;
24442
24443 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24444 mac_ptr += bytes_read;
24445 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24446 mac_ptr += bytes_read;
24447
24448 if ((line == 0 && !at_commandline)
24449 || (line != 0 && at_commandline))
24450 complaint (_("debug info gives source %d included "
24451 "from %s at %s line %d"),
24452 file, at_commandline ? _("command-line") : _("file"),
24453 line == 0 ? _("zero") : _("non-zero"), line);
24454
24455 if (at_commandline)
24456 {
24457 /* This DW_MACRO_start_file was executed in the
24458 pass one. */
24459 at_commandline = 0;
24460 }
24461 else
24462 current_file = macro_start_file (cu, file, line, current_file,
24463 lh);
24464 }
24465 break;
24466
24467 case DW_MACRO_end_file:
24468 if (! current_file)
24469 complaint (_("macro debug info has an unmatched "
24470 "`close_file' directive"));
24471 else
24472 {
24473 current_file = current_file->included_by;
24474 if (! current_file)
24475 {
24476 enum dwarf_macro_record_type next_type;
24477
24478 /* GCC circa March 2002 doesn't produce the zero
24479 type byte marking the end of the compilation
24480 unit. Complain if it's not there, but exit no
24481 matter what. */
24482
24483 /* Do we at least have room for a macinfo type byte? */
24484 if (mac_ptr >= mac_end)
24485 {
24486 dwarf2_section_buffer_overflow_complaint (section);
24487 return;
24488 }
24489
24490 /* We don't increment mac_ptr here, so this is just
24491 a look-ahead. */
24492 next_type
24493 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24494 mac_ptr);
24495 if (next_type != 0)
24496 complaint (_("no terminating 0-type entry for "
24497 "macros in `.debug_macinfo' section"));
24498
24499 return;
24500 }
24501 }
24502 break;
24503
24504 case DW_MACRO_import:
24505 case DW_MACRO_import_sup:
24506 {
24507 LONGEST offset;
24508 void **slot;
24509 bfd *include_bfd = abfd;
24510 struct dwarf2_section_info *include_section = section;
24511 const gdb_byte *include_mac_end = mac_end;
24512 int is_dwz = section_is_dwz;
24513 const gdb_byte *new_mac_ptr;
24514
24515 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24516 mac_ptr += offset_size;
24517
24518 if (macinfo_type == DW_MACRO_import_sup)
24519 {
24520 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24521
24522 dwarf2_read_section (objfile, &dwz->macro);
24523
24524 include_section = &dwz->macro;
24525 include_bfd = get_section_bfd_owner (include_section);
24526 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24527 is_dwz = 1;
24528 }
24529
24530 new_mac_ptr = include_section->buffer + offset;
24531 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24532
24533 if (*slot != NULL)
24534 {
24535 /* This has actually happened; see
24536 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24537 complaint (_("recursive DW_MACRO_import in "
24538 ".debug_macro section"));
24539 }
24540 else
24541 {
24542 *slot = (void *) new_mac_ptr;
24543
24544 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24545 include_mac_end, current_file, lh,
24546 section, section_is_gnu, is_dwz,
24547 offset_size, include_hash);
24548
24549 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24550 }
24551 }
24552 break;
24553
24554 case DW_MACINFO_vendor_ext:
24555 if (!section_is_gnu)
24556 {
24557 unsigned int bytes_read;
24558
24559 /* This reads the constant, but since we don't recognize
24560 any vendor extensions, we ignore it. */
24561 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24562 mac_ptr += bytes_read;
24563 read_direct_string (abfd, mac_ptr, &bytes_read);
24564 mac_ptr += bytes_read;
24565
24566 /* We don't recognize any vendor extensions. */
24567 break;
24568 }
24569 /* FALLTHROUGH */
24570
24571 default:
24572 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24573 mac_ptr, mac_end, abfd, offset_size,
24574 section);
24575 if (mac_ptr == NULL)
24576 return;
24577 break;
24578 }
24579 DIAGNOSTIC_POP
24580 } while (macinfo_type != 0);
24581 }
24582
24583 static void
24584 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24585 int section_is_gnu)
24586 {
24587 struct dwarf2_per_objfile *dwarf2_per_objfile
24588 = cu->per_cu->dwarf2_per_objfile;
24589 struct objfile *objfile = dwarf2_per_objfile->objfile;
24590 struct line_header *lh = cu->line_header;
24591 bfd *abfd;
24592 const gdb_byte *mac_ptr, *mac_end;
24593 struct macro_source_file *current_file = 0;
24594 enum dwarf_macro_record_type macinfo_type;
24595 unsigned int offset_size = cu->header.offset_size;
24596 const gdb_byte *opcode_definitions[256];
24597 void **slot;
24598 struct dwarf2_section_info *section;
24599 const char *section_name;
24600
24601 if (cu->dwo_unit != NULL)
24602 {
24603 if (section_is_gnu)
24604 {
24605 section = &cu->dwo_unit->dwo_file->sections.macro;
24606 section_name = ".debug_macro.dwo";
24607 }
24608 else
24609 {
24610 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24611 section_name = ".debug_macinfo.dwo";
24612 }
24613 }
24614 else
24615 {
24616 if (section_is_gnu)
24617 {
24618 section = &dwarf2_per_objfile->macro;
24619 section_name = ".debug_macro";
24620 }
24621 else
24622 {
24623 section = &dwarf2_per_objfile->macinfo;
24624 section_name = ".debug_macinfo";
24625 }
24626 }
24627
24628 dwarf2_read_section (objfile, section);
24629 if (section->buffer == NULL)
24630 {
24631 complaint (_("missing %s section"), section_name);
24632 return;
24633 }
24634 abfd = get_section_bfd_owner (section);
24635
24636 /* First pass: Find the name of the base filename.
24637 This filename is needed in order to process all macros whose definition
24638 (or undefinition) comes from the command line. These macros are defined
24639 before the first DW_MACINFO_start_file entry, and yet still need to be
24640 associated to the base file.
24641
24642 To determine the base file name, we scan the macro definitions until we
24643 reach the first DW_MACINFO_start_file entry. We then initialize
24644 CURRENT_FILE accordingly so that any macro definition found before the
24645 first DW_MACINFO_start_file can still be associated to the base file. */
24646
24647 mac_ptr = section->buffer + offset;
24648 mac_end = section->buffer + section->size;
24649
24650 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24651 &offset_size, section_is_gnu);
24652 if (mac_ptr == NULL)
24653 {
24654 /* We already issued a complaint. */
24655 return;
24656 }
24657
24658 do
24659 {
24660 /* Do we at least have room for a macinfo type byte? */
24661 if (mac_ptr >= mac_end)
24662 {
24663 /* Complaint is printed during the second pass as GDB will probably
24664 stop the first pass earlier upon finding
24665 DW_MACINFO_start_file. */
24666 break;
24667 }
24668
24669 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24670 mac_ptr++;
24671
24672 /* Note that we rely on the fact that the corresponding GNU and
24673 DWARF constants are the same. */
24674 DIAGNOSTIC_PUSH
24675 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24676 switch (macinfo_type)
24677 {
24678 /* A zero macinfo type indicates the end of the macro
24679 information. */
24680 case 0:
24681 break;
24682
24683 case DW_MACRO_define:
24684 case DW_MACRO_undef:
24685 /* Only skip the data by MAC_PTR. */
24686 {
24687 unsigned int bytes_read;
24688
24689 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24690 mac_ptr += bytes_read;
24691 read_direct_string (abfd, mac_ptr, &bytes_read);
24692 mac_ptr += bytes_read;
24693 }
24694 break;
24695
24696 case DW_MACRO_start_file:
24697 {
24698 unsigned int bytes_read;
24699 int line, file;
24700
24701 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24702 mac_ptr += bytes_read;
24703 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24704 mac_ptr += bytes_read;
24705
24706 current_file = macro_start_file (cu, file, line, current_file, lh);
24707 }
24708 break;
24709
24710 case DW_MACRO_end_file:
24711 /* No data to skip by MAC_PTR. */
24712 break;
24713
24714 case DW_MACRO_define_strp:
24715 case DW_MACRO_undef_strp:
24716 case DW_MACRO_define_sup:
24717 case DW_MACRO_undef_sup:
24718 {
24719 unsigned int bytes_read;
24720
24721 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24722 mac_ptr += bytes_read;
24723 mac_ptr += offset_size;
24724 }
24725 break;
24726
24727 case DW_MACRO_import:
24728 case DW_MACRO_import_sup:
24729 /* Note that, according to the spec, a transparent include
24730 chain cannot call DW_MACRO_start_file. So, we can just
24731 skip this opcode. */
24732 mac_ptr += offset_size;
24733 break;
24734
24735 case DW_MACINFO_vendor_ext:
24736 /* Only skip the data by MAC_PTR. */
24737 if (!section_is_gnu)
24738 {
24739 unsigned int bytes_read;
24740
24741 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24742 mac_ptr += bytes_read;
24743 read_direct_string (abfd, mac_ptr, &bytes_read);
24744 mac_ptr += bytes_read;
24745 }
24746 /* FALLTHROUGH */
24747
24748 default:
24749 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24750 mac_ptr, mac_end, abfd, offset_size,
24751 section);
24752 if (mac_ptr == NULL)
24753 return;
24754 break;
24755 }
24756 DIAGNOSTIC_POP
24757 } while (macinfo_type != 0 && current_file == NULL);
24758
24759 /* Second pass: Process all entries.
24760
24761 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24762 command-line macro definitions/undefinitions. This flag is unset when we
24763 reach the first DW_MACINFO_start_file entry. */
24764
24765 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24766 htab_eq_pointer,
24767 NULL, xcalloc, xfree));
24768 mac_ptr = section->buffer + offset;
24769 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24770 *slot = (void *) mac_ptr;
24771 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24772 current_file, lh, section,
24773 section_is_gnu, 0, offset_size,
24774 include_hash.get ());
24775 }
24776
24777 /* Check if the attribute's form is a DW_FORM_block*
24778 if so return true else false. */
24779
24780 static int
24781 attr_form_is_block (const struct attribute *attr)
24782 {
24783 return (attr == NULL ? 0 :
24784 attr->form == DW_FORM_block1
24785 || attr->form == DW_FORM_block2
24786 || attr->form == DW_FORM_block4
24787 || attr->form == DW_FORM_block
24788 || attr->form == DW_FORM_exprloc);
24789 }
24790
24791 /* Return non-zero if ATTR's value is a section offset --- classes
24792 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24793 You may use DW_UNSND (attr) to retrieve such offsets.
24794
24795 Section 7.5.4, "Attribute Encodings", explains that no attribute
24796 may have a value that belongs to more than one of these classes; it
24797 would be ambiguous if we did, because we use the same forms for all
24798 of them. */
24799
24800 static int
24801 attr_form_is_section_offset (const struct attribute *attr)
24802 {
24803 return (attr->form == DW_FORM_data4
24804 || attr->form == DW_FORM_data8
24805 || attr->form == DW_FORM_sec_offset);
24806 }
24807
24808 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24809 zero otherwise. When this function returns true, you can apply
24810 dwarf2_get_attr_constant_value to it.
24811
24812 However, note that for some attributes you must check
24813 attr_form_is_section_offset before using this test. DW_FORM_data4
24814 and DW_FORM_data8 are members of both the constant class, and of
24815 the classes that contain offsets into other debug sections
24816 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24817 that, if an attribute's can be either a constant or one of the
24818 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24819 taken as section offsets, not constants.
24820
24821 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24822 cannot handle that. */
24823
24824 static int
24825 attr_form_is_constant (const struct attribute *attr)
24826 {
24827 switch (attr->form)
24828 {
24829 case DW_FORM_sdata:
24830 case DW_FORM_udata:
24831 case DW_FORM_data1:
24832 case DW_FORM_data2:
24833 case DW_FORM_data4:
24834 case DW_FORM_data8:
24835 case DW_FORM_implicit_const:
24836 return 1;
24837 default:
24838 return 0;
24839 }
24840 }
24841
24842
24843 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24844 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24845
24846 static int
24847 attr_form_is_ref (const struct attribute *attr)
24848 {
24849 switch (attr->form)
24850 {
24851 case DW_FORM_ref_addr:
24852 case DW_FORM_ref1:
24853 case DW_FORM_ref2:
24854 case DW_FORM_ref4:
24855 case DW_FORM_ref8:
24856 case DW_FORM_ref_udata:
24857 case DW_FORM_GNU_ref_alt:
24858 return 1;
24859 default:
24860 return 0;
24861 }
24862 }
24863
24864 /* Return the .debug_loc section to use for CU.
24865 For DWO files use .debug_loc.dwo. */
24866
24867 static struct dwarf2_section_info *
24868 cu_debug_loc_section (struct dwarf2_cu *cu)
24869 {
24870 struct dwarf2_per_objfile *dwarf2_per_objfile
24871 = cu->per_cu->dwarf2_per_objfile;
24872
24873 if (cu->dwo_unit)
24874 {
24875 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24876
24877 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24878 }
24879 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24880 : &dwarf2_per_objfile->loc);
24881 }
24882
24883 /* A helper function that fills in a dwarf2_loclist_baton. */
24884
24885 static void
24886 fill_in_loclist_baton (struct dwarf2_cu *cu,
24887 struct dwarf2_loclist_baton *baton,
24888 const struct attribute *attr)
24889 {
24890 struct dwarf2_per_objfile *dwarf2_per_objfile
24891 = cu->per_cu->dwarf2_per_objfile;
24892 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24893
24894 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24895
24896 baton->per_cu = cu->per_cu;
24897 gdb_assert (baton->per_cu);
24898 /* We don't know how long the location list is, but make sure we
24899 don't run off the edge of the section. */
24900 baton->size = section->size - DW_UNSND (attr);
24901 baton->data = section->buffer + DW_UNSND (attr);
24902 baton->base_address = cu->base_address;
24903 baton->from_dwo = cu->dwo_unit != NULL;
24904 }
24905
24906 static void
24907 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24908 struct dwarf2_cu *cu, int is_block)
24909 {
24910 struct dwarf2_per_objfile *dwarf2_per_objfile
24911 = cu->per_cu->dwarf2_per_objfile;
24912 struct objfile *objfile = dwarf2_per_objfile->objfile;
24913 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24914
24915 if (attr_form_is_section_offset (attr)
24916 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24917 the section. If so, fall through to the complaint in the
24918 other branch. */
24919 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24920 {
24921 struct dwarf2_loclist_baton *baton;
24922
24923 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24924
24925 fill_in_loclist_baton (cu, baton, attr);
24926
24927 if (cu->base_known == 0)
24928 complaint (_("Location list used without "
24929 "specifying the CU base address."));
24930
24931 SYMBOL_ACLASS_INDEX (sym) = (is_block
24932 ? dwarf2_loclist_block_index
24933 : dwarf2_loclist_index);
24934 SYMBOL_LOCATION_BATON (sym) = baton;
24935 }
24936 else
24937 {
24938 struct dwarf2_locexpr_baton *baton;
24939
24940 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24941 baton->per_cu = cu->per_cu;
24942 gdb_assert (baton->per_cu);
24943
24944 if (attr_form_is_block (attr))
24945 {
24946 /* Note that we're just copying the block's data pointer
24947 here, not the actual data. We're still pointing into the
24948 info_buffer for SYM's objfile; right now we never release
24949 that buffer, but when we do clean up properly this may
24950 need to change. */
24951 baton->size = DW_BLOCK (attr)->size;
24952 baton->data = DW_BLOCK (attr)->data;
24953 }
24954 else
24955 {
24956 dwarf2_invalid_attrib_class_complaint ("location description",
24957 SYMBOL_NATURAL_NAME (sym));
24958 baton->size = 0;
24959 }
24960
24961 SYMBOL_ACLASS_INDEX (sym) = (is_block
24962 ? dwarf2_locexpr_block_index
24963 : dwarf2_locexpr_index);
24964 SYMBOL_LOCATION_BATON (sym) = baton;
24965 }
24966 }
24967
24968 /* Return the OBJFILE associated with the compilation unit CU. If CU
24969 came from a separate debuginfo file, then the master objfile is
24970 returned. */
24971
24972 struct objfile *
24973 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24974 {
24975 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24976
24977 /* Return the master objfile, so that we can report and look up the
24978 correct file containing this variable. */
24979 if (objfile->separate_debug_objfile_backlink)
24980 objfile = objfile->separate_debug_objfile_backlink;
24981
24982 return objfile;
24983 }
24984
24985 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24986 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24987 CU_HEADERP first. */
24988
24989 static const struct comp_unit_head *
24990 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24991 struct dwarf2_per_cu_data *per_cu)
24992 {
24993 const gdb_byte *info_ptr;
24994
24995 if (per_cu->cu)
24996 return &per_cu->cu->header;
24997
24998 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24999
25000 memset (cu_headerp, 0, sizeof (*cu_headerp));
25001 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25002 rcuh_kind::COMPILE);
25003
25004 return cu_headerp;
25005 }
25006
25007 /* Return the address size given in the compilation unit header for CU. */
25008
25009 int
25010 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25011 {
25012 struct comp_unit_head cu_header_local;
25013 const struct comp_unit_head *cu_headerp;
25014
25015 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25016
25017 return cu_headerp->addr_size;
25018 }
25019
25020 /* Return the offset size given in the compilation unit header for CU. */
25021
25022 int
25023 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25024 {
25025 struct comp_unit_head cu_header_local;
25026 const struct comp_unit_head *cu_headerp;
25027
25028 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25029
25030 return cu_headerp->offset_size;
25031 }
25032
25033 /* See its dwarf2loc.h declaration. */
25034
25035 int
25036 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25037 {
25038 struct comp_unit_head cu_header_local;
25039 const struct comp_unit_head *cu_headerp;
25040
25041 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25042
25043 if (cu_headerp->version == 2)
25044 return cu_headerp->addr_size;
25045 else
25046 return cu_headerp->offset_size;
25047 }
25048
25049 /* Return the text offset of the CU. The returned offset comes from
25050 this CU's objfile. If this objfile came from a separate debuginfo
25051 file, then the offset may be different from the corresponding
25052 offset in the parent objfile. */
25053
25054 CORE_ADDR
25055 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25056 {
25057 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25058
25059 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25060 }
25061
25062 /* Return DWARF version number of PER_CU. */
25063
25064 short
25065 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25066 {
25067 return per_cu->dwarf_version;
25068 }
25069
25070 /* Locate the .debug_info compilation unit from CU's objfile which contains
25071 the DIE at OFFSET. Raises an error on failure. */
25072
25073 static struct dwarf2_per_cu_data *
25074 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25075 unsigned int offset_in_dwz,
25076 struct dwarf2_per_objfile *dwarf2_per_objfile)
25077 {
25078 struct dwarf2_per_cu_data *this_cu;
25079 int low, high;
25080 const sect_offset *cu_off;
25081
25082 low = 0;
25083 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25084 while (high > low)
25085 {
25086 struct dwarf2_per_cu_data *mid_cu;
25087 int mid = low + (high - low) / 2;
25088
25089 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25090 cu_off = &mid_cu->sect_off;
25091 if (mid_cu->is_dwz > offset_in_dwz
25092 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
25093 high = mid;
25094 else
25095 low = mid + 1;
25096 }
25097 gdb_assert (low == high);
25098 this_cu = dwarf2_per_objfile->all_comp_units[low];
25099 cu_off = &this_cu->sect_off;
25100 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
25101 {
25102 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25103 error (_("Dwarf Error: could not find partial DIE containing "
25104 "offset %s [in module %s]"),
25105 sect_offset_str (sect_off),
25106 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25107
25108 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25109 <= sect_off);
25110 return dwarf2_per_objfile->all_comp_units[low-1];
25111 }
25112 else
25113 {
25114 this_cu = dwarf2_per_objfile->all_comp_units[low];
25115 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25116 && sect_off >= this_cu->sect_off + this_cu->length)
25117 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25118 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25119 return this_cu;
25120 }
25121 }
25122
25123 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25124
25125 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25126 : per_cu (per_cu_),
25127 mark (0),
25128 has_loclist (0),
25129 checked_producer (0),
25130 producer_is_gxx_lt_4_6 (0),
25131 producer_is_gcc_lt_4_3 (0),
25132 producer_is_icc_lt_14 (0),
25133 producer_is_codewarrior (false),
25134 processing_has_namespace_info (0)
25135 {
25136 per_cu->cu = this;
25137 }
25138
25139 /* Destroy a dwarf2_cu. */
25140
25141 dwarf2_cu::~dwarf2_cu ()
25142 {
25143 per_cu->cu = NULL;
25144 }
25145
25146 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25147
25148 static void
25149 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25150 enum language pretend_language)
25151 {
25152 struct attribute *attr;
25153
25154 /* Set the language we're debugging. */
25155 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25156 if (attr)
25157 set_cu_language (DW_UNSND (attr), cu);
25158 else
25159 {
25160 cu->language = pretend_language;
25161 cu->language_defn = language_def (cu->language);
25162 }
25163
25164 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25165 }
25166
25167 /* Increase the age counter on each cached compilation unit, and free
25168 any that are too old. */
25169
25170 static void
25171 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25172 {
25173 struct dwarf2_per_cu_data *per_cu, **last_chain;
25174
25175 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25176 per_cu = dwarf2_per_objfile->read_in_chain;
25177 while (per_cu != NULL)
25178 {
25179 per_cu->cu->last_used ++;
25180 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25181 dwarf2_mark (per_cu->cu);
25182 per_cu = per_cu->cu->read_in_chain;
25183 }
25184
25185 per_cu = dwarf2_per_objfile->read_in_chain;
25186 last_chain = &dwarf2_per_objfile->read_in_chain;
25187 while (per_cu != NULL)
25188 {
25189 struct dwarf2_per_cu_data *next_cu;
25190
25191 next_cu = per_cu->cu->read_in_chain;
25192
25193 if (!per_cu->cu->mark)
25194 {
25195 delete per_cu->cu;
25196 *last_chain = next_cu;
25197 }
25198 else
25199 last_chain = &per_cu->cu->read_in_chain;
25200
25201 per_cu = next_cu;
25202 }
25203 }
25204
25205 /* Remove a single compilation unit from the cache. */
25206
25207 static void
25208 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25209 {
25210 struct dwarf2_per_cu_data *per_cu, **last_chain;
25211 struct dwarf2_per_objfile *dwarf2_per_objfile
25212 = target_per_cu->dwarf2_per_objfile;
25213
25214 per_cu = dwarf2_per_objfile->read_in_chain;
25215 last_chain = &dwarf2_per_objfile->read_in_chain;
25216 while (per_cu != NULL)
25217 {
25218 struct dwarf2_per_cu_data *next_cu;
25219
25220 next_cu = per_cu->cu->read_in_chain;
25221
25222 if (per_cu == target_per_cu)
25223 {
25224 delete per_cu->cu;
25225 per_cu->cu = NULL;
25226 *last_chain = next_cu;
25227 break;
25228 }
25229 else
25230 last_chain = &per_cu->cu->read_in_chain;
25231
25232 per_cu = next_cu;
25233 }
25234 }
25235
25236 /* Cleanup function for the dwarf2_per_objfile data. */
25237
25238 static void
25239 dwarf2_free_objfile (struct objfile *objfile, void *datum)
25240 {
25241 struct dwarf2_per_objfile *dwarf2_per_objfile
25242 = static_cast<struct dwarf2_per_objfile *> (datum);
25243
25244 delete dwarf2_per_objfile;
25245 }
25246
25247 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25248 We store these in a hash table separate from the DIEs, and preserve them
25249 when the DIEs are flushed out of cache.
25250
25251 The CU "per_cu" pointer is needed because offset alone is not enough to
25252 uniquely identify the type. A file may have multiple .debug_types sections,
25253 or the type may come from a DWO file. Furthermore, while it's more logical
25254 to use per_cu->section+offset, with Fission the section with the data is in
25255 the DWO file but we don't know that section at the point we need it.
25256 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25257 because we can enter the lookup routine, get_die_type_at_offset, from
25258 outside this file, and thus won't necessarily have PER_CU->cu.
25259 Fortunately, PER_CU is stable for the life of the objfile. */
25260
25261 struct dwarf2_per_cu_offset_and_type
25262 {
25263 const struct dwarf2_per_cu_data *per_cu;
25264 sect_offset sect_off;
25265 struct type *type;
25266 };
25267
25268 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25269
25270 static hashval_t
25271 per_cu_offset_and_type_hash (const void *item)
25272 {
25273 const struct dwarf2_per_cu_offset_and_type *ofs
25274 = (const struct dwarf2_per_cu_offset_and_type *) item;
25275
25276 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25277 }
25278
25279 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25280
25281 static int
25282 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25283 {
25284 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25285 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25286 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25287 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25288
25289 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25290 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25291 }
25292
25293 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25294 table if necessary. For convenience, return TYPE.
25295
25296 The DIEs reading must have careful ordering to:
25297 * Not cause infite loops trying to read in DIEs as a prerequisite for
25298 reading current DIE.
25299 * Not trying to dereference contents of still incompletely read in types
25300 while reading in other DIEs.
25301 * Enable referencing still incompletely read in types just by a pointer to
25302 the type without accessing its fields.
25303
25304 Therefore caller should follow these rules:
25305 * Try to fetch any prerequisite types we may need to build this DIE type
25306 before building the type and calling set_die_type.
25307 * After building type call set_die_type for current DIE as soon as
25308 possible before fetching more types to complete the current type.
25309 * Make the type as complete as possible before fetching more types. */
25310
25311 static struct type *
25312 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25313 {
25314 struct dwarf2_per_objfile *dwarf2_per_objfile
25315 = cu->per_cu->dwarf2_per_objfile;
25316 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25317 struct objfile *objfile = dwarf2_per_objfile->objfile;
25318 struct attribute *attr;
25319 struct dynamic_prop prop;
25320
25321 /* For Ada types, make sure that the gnat-specific data is always
25322 initialized (if not already set). There are a few types where
25323 we should not be doing so, because the type-specific area is
25324 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25325 where the type-specific area is used to store the floatformat).
25326 But this is not a problem, because the gnat-specific information
25327 is actually not needed for these types. */
25328 if (need_gnat_info (cu)
25329 && TYPE_CODE (type) != TYPE_CODE_FUNC
25330 && TYPE_CODE (type) != TYPE_CODE_FLT
25331 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25332 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25333 && TYPE_CODE (type) != TYPE_CODE_METHOD
25334 && !HAVE_GNAT_AUX_INFO (type))
25335 INIT_GNAT_SPECIFIC (type);
25336
25337 /* Read DW_AT_allocated and set in type. */
25338 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25339 if (attr_form_is_block (attr))
25340 {
25341 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25342 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25343 }
25344 else if (attr != NULL)
25345 {
25346 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25347 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25348 sect_offset_str (die->sect_off));
25349 }
25350
25351 /* Read DW_AT_associated and set in type. */
25352 attr = dwarf2_attr (die, DW_AT_associated, cu);
25353 if (attr_form_is_block (attr))
25354 {
25355 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25356 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25357 }
25358 else if (attr != NULL)
25359 {
25360 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25361 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25362 sect_offset_str (die->sect_off));
25363 }
25364
25365 /* Read DW_AT_data_location and set in type. */
25366 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25367 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25368 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25369
25370 if (dwarf2_per_objfile->die_type_hash == NULL)
25371 {
25372 dwarf2_per_objfile->die_type_hash =
25373 htab_create_alloc_ex (127,
25374 per_cu_offset_and_type_hash,
25375 per_cu_offset_and_type_eq,
25376 NULL,
25377 &objfile->objfile_obstack,
25378 hashtab_obstack_allocate,
25379 dummy_obstack_deallocate);
25380 }
25381
25382 ofs.per_cu = cu->per_cu;
25383 ofs.sect_off = die->sect_off;
25384 ofs.type = type;
25385 slot = (struct dwarf2_per_cu_offset_and_type **)
25386 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25387 if (*slot)
25388 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25389 sect_offset_str (die->sect_off));
25390 *slot = XOBNEW (&objfile->objfile_obstack,
25391 struct dwarf2_per_cu_offset_and_type);
25392 **slot = ofs;
25393 return type;
25394 }
25395
25396 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25397 or return NULL if the die does not have a saved type. */
25398
25399 static struct type *
25400 get_die_type_at_offset (sect_offset sect_off,
25401 struct dwarf2_per_cu_data *per_cu)
25402 {
25403 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25404 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25405
25406 if (dwarf2_per_objfile->die_type_hash == NULL)
25407 return NULL;
25408
25409 ofs.per_cu = per_cu;
25410 ofs.sect_off = sect_off;
25411 slot = ((struct dwarf2_per_cu_offset_and_type *)
25412 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25413 if (slot)
25414 return slot->type;
25415 else
25416 return NULL;
25417 }
25418
25419 /* Look up the type for DIE in CU in die_type_hash,
25420 or return NULL if DIE does not have a saved type. */
25421
25422 static struct type *
25423 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25424 {
25425 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25426 }
25427
25428 /* Add a dependence relationship from CU to REF_PER_CU. */
25429
25430 static void
25431 dwarf2_add_dependence (struct dwarf2_cu *cu,
25432 struct dwarf2_per_cu_data *ref_per_cu)
25433 {
25434 void **slot;
25435
25436 if (cu->dependencies == NULL)
25437 cu->dependencies
25438 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25439 NULL, &cu->comp_unit_obstack,
25440 hashtab_obstack_allocate,
25441 dummy_obstack_deallocate);
25442
25443 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25444 if (*slot == NULL)
25445 *slot = ref_per_cu;
25446 }
25447
25448 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25449 Set the mark field in every compilation unit in the
25450 cache that we must keep because we are keeping CU. */
25451
25452 static int
25453 dwarf2_mark_helper (void **slot, void *data)
25454 {
25455 struct dwarf2_per_cu_data *per_cu;
25456
25457 per_cu = (struct dwarf2_per_cu_data *) *slot;
25458
25459 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25460 reading of the chain. As such dependencies remain valid it is not much
25461 useful to track and undo them during QUIT cleanups. */
25462 if (per_cu->cu == NULL)
25463 return 1;
25464
25465 if (per_cu->cu->mark)
25466 return 1;
25467 per_cu->cu->mark = 1;
25468
25469 if (per_cu->cu->dependencies != NULL)
25470 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25471
25472 return 1;
25473 }
25474
25475 /* Set the mark field in CU and in every other compilation unit in the
25476 cache that we must keep because we are keeping CU. */
25477
25478 static void
25479 dwarf2_mark (struct dwarf2_cu *cu)
25480 {
25481 if (cu->mark)
25482 return;
25483 cu->mark = 1;
25484 if (cu->dependencies != NULL)
25485 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25486 }
25487
25488 static void
25489 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25490 {
25491 while (per_cu)
25492 {
25493 per_cu->cu->mark = 0;
25494 per_cu = per_cu->cu->read_in_chain;
25495 }
25496 }
25497
25498 /* Trivial hash function for partial_die_info: the hash value of a DIE
25499 is its offset in .debug_info for this objfile. */
25500
25501 static hashval_t
25502 partial_die_hash (const void *item)
25503 {
25504 const struct partial_die_info *part_die
25505 = (const struct partial_die_info *) item;
25506
25507 return to_underlying (part_die->sect_off);
25508 }
25509
25510 /* Trivial comparison function for partial_die_info structures: two DIEs
25511 are equal if they have the same offset. */
25512
25513 static int
25514 partial_die_eq (const void *item_lhs, const void *item_rhs)
25515 {
25516 const struct partial_die_info *part_die_lhs
25517 = (const struct partial_die_info *) item_lhs;
25518 const struct partial_die_info *part_die_rhs
25519 = (const struct partial_die_info *) item_rhs;
25520
25521 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25522 }
25523
25524 struct cmd_list_element *set_dwarf_cmdlist;
25525 struct cmd_list_element *show_dwarf_cmdlist;
25526
25527 static void
25528 set_dwarf_cmd (const char *args, int from_tty)
25529 {
25530 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25531 gdb_stdout);
25532 }
25533
25534 static void
25535 show_dwarf_cmd (const char *args, int from_tty)
25536 {
25537 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25538 }
25539
25540 int dwarf_always_disassemble;
25541
25542 static void
25543 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25544 struct cmd_list_element *c, const char *value)
25545 {
25546 fprintf_filtered (file,
25547 _("Whether to always disassemble "
25548 "DWARF expressions is %s.\n"),
25549 value);
25550 }
25551
25552 static void
25553 show_check_physname (struct ui_file *file, int from_tty,
25554 struct cmd_list_element *c, const char *value)
25555 {
25556 fprintf_filtered (file,
25557 _("Whether to check \"physname\" is %s.\n"),
25558 value);
25559 }
25560
25561 void
25562 _initialize_dwarf2_read (void)
25563 {
25564 dwarf2_objfile_data_key
25565 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
25566
25567 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25568 Set DWARF specific variables.\n\
25569 Configure DWARF variables such as the cache size"),
25570 &set_dwarf_cmdlist, "maintenance set dwarf ",
25571 0/*allow-unknown*/, &maintenance_set_cmdlist);
25572
25573 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25574 Show DWARF specific variables\n\
25575 Show DWARF variables such as the cache size"),
25576 &show_dwarf_cmdlist, "maintenance show dwarf ",
25577 0/*allow-unknown*/, &maintenance_show_cmdlist);
25578
25579 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25580 &dwarf_max_cache_age, _("\
25581 Set the upper bound on the age of cached DWARF compilation units."), _("\
25582 Show the upper bound on the age of cached DWARF compilation units."), _("\
25583 A higher limit means that cached compilation units will be stored\n\
25584 in memory longer, and more total memory will be used. Zero disables\n\
25585 caching, which can slow down startup."),
25586 NULL,
25587 show_dwarf_max_cache_age,
25588 &set_dwarf_cmdlist,
25589 &show_dwarf_cmdlist);
25590
25591 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25592 &dwarf_always_disassemble, _("\
25593 Set whether `info address' always disassembles DWARF expressions."), _("\
25594 Show whether `info address' always disassembles DWARF expressions."), _("\
25595 When enabled, DWARF expressions are always printed in an assembly-like\n\
25596 syntax. When disabled, expressions will be printed in a more\n\
25597 conversational style, when possible."),
25598 NULL,
25599 show_dwarf_always_disassemble,
25600 &set_dwarf_cmdlist,
25601 &show_dwarf_cmdlist);
25602
25603 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25604 Set debugging of the DWARF reader."), _("\
25605 Show debugging of the DWARF reader."), _("\
25606 When enabled (non-zero), debugging messages are printed during DWARF\n\
25607 reading and symtab expansion. A value of 1 (one) provides basic\n\
25608 information. A value greater than 1 provides more verbose information."),
25609 NULL,
25610 NULL,
25611 &setdebuglist, &showdebuglist);
25612
25613 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25614 Set debugging of the DWARF DIE reader."), _("\
25615 Show debugging of the DWARF DIE reader."), _("\
25616 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25617 The value is the maximum depth to print."),
25618 NULL,
25619 NULL,
25620 &setdebuglist, &showdebuglist);
25621
25622 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25623 Set debugging of the dwarf line reader."), _("\
25624 Show debugging of the dwarf line reader."), _("\
25625 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25626 A value of 1 (one) provides basic information.\n\
25627 A value greater than 1 provides more verbose information."),
25628 NULL,
25629 NULL,
25630 &setdebuglist, &showdebuglist);
25631
25632 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25633 Set cross-checking of \"physname\" code against demangler."), _("\
25634 Show cross-checking of \"physname\" code against demangler."), _("\
25635 When enabled, GDB's internal \"physname\" code is checked against\n\
25636 the demangler."),
25637 NULL, show_check_physname,
25638 &setdebuglist, &showdebuglist);
25639
25640 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25641 no_class, &use_deprecated_index_sections, _("\
25642 Set whether to use deprecated gdb_index sections."), _("\
25643 Show whether to use deprecated gdb_index sections."), _("\
25644 When enabled, deprecated .gdb_index sections are used anyway.\n\
25645 Normally they are ignored either because of a missing feature or\n\
25646 performance issue.\n\
25647 Warning: This option must be enabled before gdb reads the file."),
25648 NULL,
25649 NULL,
25650 &setlist, &showlist);
25651
25652 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25653 &dwarf2_locexpr_funcs);
25654 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25655 &dwarf2_loclist_funcs);
25656
25657 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25658 &dwarf2_block_frame_base_locexpr_funcs);
25659 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25660 &dwarf2_block_frame_base_loclist_funcs);
25661
25662 #if GDB_SELF_TEST
25663 selftests::register_test ("dw2_expand_symtabs_matching",
25664 selftests::dw2_expand_symtabs_matching::run_test);
25665 #endif
25666 }
This page took 0.573145 seconds and 5 git commands to generate.