dwarf2read.c (open_and_init_dwp_file): Fix typo in comment.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73
74 #include <fcntl.h>
75 #include <string.h>
76 #include "gdb_assert.h"
77 #include <sys/types.h>
78
79 typedef struct symbol *symbolp;
80 DEF_VEC_P (symbolp);
81
82 /* When == 1, print basic high level tracing messages.
83 When > 1, be more verbose.
84 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
85 static unsigned int dwarf2_read_debug = 0;
86
87 /* When non-zero, dump DIEs after they are read in. */
88 static unsigned int dwarf2_die_debug = 0;
89
90 /* When non-zero, cross-check physname against demangler. */
91 static int check_physname = 0;
92
93 /* When non-zero, do not reject deprecated .gdb_index sections. */
94 static int use_deprecated_index_sections = 0;
95
96 static const struct objfile_data *dwarf2_objfile_data_key;
97
98 /* The "aclass" indices for various kinds of computed DWARF symbols. */
99
100 static int dwarf2_locexpr_index;
101 static int dwarf2_loclist_index;
102 static int dwarf2_locexpr_block_index;
103 static int dwarf2_loclist_block_index;
104
105 /* A descriptor for dwarf sections.
106
107 S.ASECTION, SIZE are typically initialized when the objfile is first
108 scanned. BUFFER, READIN are filled in later when the section is read.
109 If the section contained compressed data then SIZE is updated to record
110 the uncompressed size of the section.
111
112 DWP file format V2 introduces a wrinkle that is easiest to handle by
113 creating the concept of virtual sections contained within a real section.
114 In DWP V2 the sections of the input DWO files are concatenated together
115 into one section, but section offsets are kept relative to the original
116 input section.
117 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
118 the real section this "virtual" section is contained in, and BUFFER,SIZE
119 describe the virtual section. */
120
121 struct dwarf2_section_info
122 {
123 union
124 {
125 /* If this is a real section, the bfd section. */
126 asection *asection;
127 /* If this is a virtual section, pointer to the containing ("real")
128 section. */
129 struct dwarf2_section_info *containing_section;
130 } s;
131 /* Pointer to section data, only valid if readin. */
132 const gdb_byte *buffer;
133 /* The size of the section, real or virtual. */
134 bfd_size_type size;
135 /* If this is a virtual section, the offset in the real section.
136 Only valid if is_virtual. */
137 bfd_size_type virtual_offset;
138 /* True if we have tried to read this section. */
139 char readin;
140 /* True if this is a virtual section, False otherwise.
141 This specifies which of s.asection and s.containing_section to use. */
142 char is_virtual;
143 };
144
145 typedef struct dwarf2_section_info dwarf2_section_info_def;
146 DEF_VEC_O (dwarf2_section_info_def);
147
148 /* All offsets in the index are of this type. It must be
149 architecture-independent. */
150 typedef uint32_t offset_type;
151
152 DEF_VEC_I (offset_type);
153
154 /* Ensure only legit values are used. */
155 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
156 do { \
157 gdb_assert ((unsigned int) (value) <= 1); \
158 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
159 } while (0)
160
161 /* Ensure only legit values are used. */
162 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
163 do { \
164 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
165 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
166 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
170 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
173 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
174 } while (0)
175
176 /* A description of the mapped index. The file format is described in
177 a comment by the code that writes the index. */
178 struct mapped_index
179 {
180 /* Index data format version. */
181 int version;
182
183 /* The total length of the buffer. */
184 off_t total_size;
185
186 /* A pointer to the address table data. */
187 const gdb_byte *address_table;
188
189 /* Size of the address table data in bytes. */
190 offset_type address_table_size;
191
192 /* The symbol table, implemented as a hash table. */
193 const offset_type *symbol_table;
194
195 /* Size in slots, each slot is 2 offset_types. */
196 offset_type symbol_table_slots;
197
198 /* A pointer to the constant pool. */
199 const char *constant_pool;
200 };
201
202 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
203 DEF_VEC_P (dwarf2_per_cu_ptr);
204
205 /* Collection of data recorded per objfile.
206 This hangs off of dwarf2_objfile_data_key. */
207
208 struct dwarf2_per_objfile
209 {
210 struct dwarf2_section_info info;
211 struct dwarf2_section_info abbrev;
212 struct dwarf2_section_info line;
213 struct dwarf2_section_info loc;
214 struct dwarf2_section_info macinfo;
215 struct dwarf2_section_info macro;
216 struct dwarf2_section_info str;
217 struct dwarf2_section_info ranges;
218 struct dwarf2_section_info addr;
219 struct dwarf2_section_info frame;
220 struct dwarf2_section_info eh_frame;
221 struct dwarf2_section_info gdb_index;
222
223 VEC (dwarf2_section_info_def) *types;
224
225 /* Back link. */
226 struct objfile *objfile;
227
228 /* Table of all the compilation units. This is used to locate
229 the target compilation unit of a particular reference. */
230 struct dwarf2_per_cu_data **all_comp_units;
231
232 /* The number of compilation units in ALL_COMP_UNITS. */
233 int n_comp_units;
234
235 /* The number of .debug_types-related CUs. */
236 int n_type_units;
237
238 /* The .debug_types-related CUs (TUs).
239 This is stored in malloc space because we may realloc it. */
240 struct signatured_type **all_type_units;
241
242 /* The number of entries in all_type_unit_groups. */
243 int n_type_unit_groups;
244
245 /* Table of type unit groups.
246 This exists to make it easy to iterate over all CUs and TU groups. */
247 struct type_unit_group **all_type_unit_groups;
248
249 /* Table of struct type_unit_group objects.
250 The hash key is the DW_AT_stmt_list value. */
251 htab_t type_unit_groups;
252
253 /* A table mapping .debug_types signatures to its signatured_type entry.
254 This is NULL if the .debug_types section hasn't been read in yet. */
255 htab_t signatured_types;
256
257 /* Type unit statistics, to see how well the scaling improvements
258 are doing. */
259 struct tu_stats
260 {
261 int nr_uniq_abbrev_tables;
262 int nr_symtabs;
263 int nr_symtab_sharers;
264 int nr_stmt_less_type_units;
265 } tu_stats;
266
267 /* A chain of compilation units that are currently read in, so that
268 they can be freed later. */
269 struct dwarf2_per_cu_data *read_in_chain;
270
271 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
272 This is NULL if the table hasn't been allocated yet. */
273 htab_t dwo_files;
274
275 /* Non-zero if we've check for whether there is a DWP file. */
276 int dwp_checked;
277
278 /* The DWP file if there is one, or NULL. */
279 struct dwp_file *dwp_file;
280
281 /* The shared '.dwz' file, if one exists. This is used when the
282 original data was compressed using 'dwz -m'. */
283 struct dwz_file *dwz_file;
284
285 /* A flag indicating wether this objfile has a section loaded at a
286 VMA of 0. */
287 int has_section_at_zero;
288
289 /* True if we are using the mapped index,
290 or we are faking it for OBJF_READNOW's sake. */
291 unsigned char using_index;
292
293 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
294 struct mapped_index *index_table;
295
296 /* When using index_table, this keeps track of all quick_file_names entries.
297 TUs typically share line table entries with a CU, so we maintain a
298 separate table of all line table entries to support the sharing.
299 Note that while there can be way more TUs than CUs, we've already
300 sorted all the TUs into "type unit groups", grouped by their
301 DW_AT_stmt_list value. Therefore the only sharing done here is with a
302 CU and its associated TU group if there is one. */
303 htab_t quick_file_names_table;
304
305 /* Set during partial symbol reading, to prevent queueing of full
306 symbols. */
307 int reading_partial_symbols;
308
309 /* Table mapping type DIEs to their struct type *.
310 This is NULL if not allocated yet.
311 The mapping is done via (CU/TU + DIE offset) -> type. */
312 htab_t die_type_hash;
313
314 /* The CUs we recently read. */
315 VEC (dwarf2_per_cu_ptr) *just_read_cus;
316 };
317
318 static struct dwarf2_per_objfile *dwarf2_per_objfile;
319
320 /* Default names of the debugging sections. */
321
322 /* Note that if the debugging section has been compressed, it might
323 have a name like .zdebug_info. */
324
325 static const struct dwarf2_debug_sections dwarf2_elf_names =
326 {
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_abbrev", ".zdebug_abbrev" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
332 { ".debug_macro", ".zdebug_macro" },
333 { ".debug_str", ".zdebug_str" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_types", ".zdebug_types" },
336 { ".debug_addr", ".zdebug_addr" },
337 { ".debug_frame", ".zdebug_frame" },
338 { ".eh_frame", NULL },
339 { ".gdb_index", ".zgdb_index" },
340 23
341 };
342
343 /* List of DWO/DWP sections. */
344
345 static const struct dwop_section_names
346 {
347 struct dwarf2_section_names abbrev_dwo;
348 struct dwarf2_section_names info_dwo;
349 struct dwarf2_section_names line_dwo;
350 struct dwarf2_section_names loc_dwo;
351 struct dwarf2_section_names macinfo_dwo;
352 struct dwarf2_section_names macro_dwo;
353 struct dwarf2_section_names str_dwo;
354 struct dwarf2_section_names str_offsets_dwo;
355 struct dwarf2_section_names types_dwo;
356 struct dwarf2_section_names cu_index;
357 struct dwarf2_section_names tu_index;
358 }
359 dwop_section_names =
360 {
361 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
362 { ".debug_info.dwo", ".zdebug_info.dwo" },
363 { ".debug_line.dwo", ".zdebug_line.dwo" },
364 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
365 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
366 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
367 { ".debug_str.dwo", ".zdebug_str.dwo" },
368 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
369 { ".debug_types.dwo", ".zdebug_types.dwo" },
370 { ".debug_cu_index", ".zdebug_cu_index" },
371 { ".debug_tu_index", ".zdebug_tu_index" },
372 };
373
374 /* local data types */
375
376 /* The data in a compilation unit header, after target2host
377 translation, looks like this. */
378 struct comp_unit_head
379 {
380 unsigned int length;
381 short version;
382 unsigned char addr_size;
383 unsigned char signed_addr_p;
384 sect_offset abbrev_offset;
385
386 /* Size of file offsets; either 4 or 8. */
387 unsigned int offset_size;
388
389 /* Size of the length field; either 4 or 12. */
390 unsigned int initial_length_size;
391
392 /* Offset to the first byte of this compilation unit header in the
393 .debug_info section, for resolving relative reference dies. */
394 sect_offset offset;
395
396 /* Offset to first die in this cu from the start of the cu.
397 This will be the first byte following the compilation unit header. */
398 cu_offset first_die_offset;
399 };
400
401 /* Type used for delaying computation of method physnames.
402 See comments for compute_delayed_physnames. */
403 struct delayed_method_info
404 {
405 /* The type to which the method is attached, i.e., its parent class. */
406 struct type *type;
407
408 /* The index of the method in the type's function fieldlists. */
409 int fnfield_index;
410
411 /* The index of the method in the fieldlist. */
412 int index;
413
414 /* The name of the DIE. */
415 const char *name;
416
417 /* The DIE associated with this method. */
418 struct die_info *die;
419 };
420
421 typedef struct delayed_method_info delayed_method_info;
422 DEF_VEC_O (delayed_method_info);
423
424 /* Internal state when decoding a particular compilation unit. */
425 struct dwarf2_cu
426 {
427 /* The objfile containing this compilation unit. */
428 struct objfile *objfile;
429
430 /* The header of the compilation unit. */
431 struct comp_unit_head header;
432
433 /* Base address of this compilation unit. */
434 CORE_ADDR base_address;
435
436 /* Non-zero if base_address has been set. */
437 int base_known;
438
439 /* The language we are debugging. */
440 enum language language;
441 const struct language_defn *language_defn;
442
443 const char *producer;
444
445 /* The generic symbol table building routines have separate lists for
446 file scope symbols and all all other scopes (local scopes). So
447 we need to select the right one to pass to add_symbol_to_list().
448 We do it by keeping a pointer to the correct list in list_in_scope.
449
450 FIXME: The original dwarf code just treated the file scope as the
451 first local scope, and all other local scopes as nested local
452 scopes, and worked fine. Check to see if we really need to
453 distinguish these in buildsym.c. */
454 struct pending **list_in_scope;
455
456 /* The abbrev table for this CU.
457 Normally this points to the abbrev table in the objfile.
458 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
459 struct abbrev_table *abbrev_table;
460
461 /* Hash table holding all the loaded partial DIEs
462 with partial_die->offset.SECT_OFF as hash. */
463 htab_t partial_dies;
464
465 /* Storage for things with the same lifetime as this read-in compilation
466 unit, including partial DIEs. */
467 struct obstack comp_unit_obstack;
468
469 /* When multiple dwarf2_cu structures are living in memory, this field
470 chains them all together, so that they can be released efficiently.
471 We will probably also want a generation counter so that most-recently-used
472 compilation units are cached... */
473 struct dwarf2_per_cu_data *read_in_chain;
474
475 /* Backlink to our per_cu entry. */
476 struct dwarf2_per_cu_data *per_cu;
477
478 /* How many compilation units ago was this CU last referenced? */
479 int last_used;
480
481 /* A hash table of DIE cu_offset for following references with
482 die_info->offset.sect_off as hash. */
483 htab_t die_hash;
484
485 /* Full DIEs if read in. */
486 struct die_info *dies;
487
488 /* A set of pointers to dwarf2_per_cu_data objects for compilation
489 units referenced by this one. Only set during full symbol processing;
490 partial symbol tables do not have dependencies. */
491 htab_t dependencies;
492
493 /* Header data from the line table, during full symbol processing. */
494 struct line_header *line_header;
495
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 VEC (delayed_method_info) *method_list;
499
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab;
502
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
511 is non-NULL). */
512 struct dwo_unit *dwo_unit;
513
514 /* The DW_AT_addr_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the stub CU/TU's DIE. */
517 ULONGEST addr_base;
518
519 /* The DW_AT_ranges_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the stub CU/TU's DIE.
522 Also note that the value is zero in the non-DWO case so this value can
523 be used without needing to know whether DWO files are in use or not.
524 N.B. This does not apply to DW_AT_ranges appearing in
525 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
526 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
527 DW_AT_ranges_base *would* have to be applied, and we'd have to care
528 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
529 ULONGEST ranges_base;
530
531 /* Mark used when releasing cached dies. */
532 unsigned int mark : 1;
533
534 /* This CU references .debug_loc. See the symtab->locations_valid field.
535 This test is imperfect as there may exist optimized debug code not using
536 any location list and still facing inlining issues if handled as
537 unoptimized code. For a future better test see GCC PR other/32998. */
538 unsigned int has_loclist : 1;
539
540 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
541 if all the producer_is_* fields are valid. This information is cached
542 because profiling CU expansion showed excessive time spent in
543 producer_is_gxx_lt_4_6. */
544 unsigned int checked_producer : 1;
545 unsigned int producer_is_gxx_lt_4_6 : 1;
546 unsigned int producer_is_gcc_lt_4_3 : 1;
547 unsigned int producer_is_icc : 1;
548
549 /* When set, the file that we're processing is known to have
550 debugging info for C++ namespaces. GCC 3.3.x did not produce
551 this information, but later versions do. */
552
553 unsigned int processing_has_namespace_info : 1;
554 };
555
556 /* Persistent data held for a compilation unit, even when not
557 processing it. We put a pointer to this structure in the
558 read_symtab_private field of the psymtab. */
559
560 struct dwarf2_per_cu_data
561 {
562 /* The start offset and length of this compilation unit.
563 NOTE: Unlike comp_unit_head.length, this length includes
564 initial_length_size.
565 If the DIE refers to a DWO file, this is always of the original die,
566 not the DWO file. */
567 sect_offset offset;
568 unsigned int length;
569
570 /* Flag indicating this compilation unit will be read in before
571 any of the current compilation units are processed. */
572 unsigned int queued : 1;
573
574 /* This flag will be set when reading partial DIEs if we need to load
575 absolutely all DIEs for this compilation unit, instead of just the ones
576 we think are interesting. It gets set if we look for a DIE in the
577 hash table and don't find it. */
578 unsigned int load_all_dies : 1;
579
580 /* Non-zero if this CU is from .debug_types.
581 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
582 this is non-zero. */
583 unsigned int is_debug_types : 1;
584
585 /* Non-zero if this CU is from the .dwz file. */
586 unsigned int is_dwz : 1;
587
588 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
589 This flag is only valid if is_debug_types is true.
590 We can't read a CU directly from a DWO file: There are required
591 attributes in the stub. */
592 unsigned int reading_dwo_directly : 1;
593
594 /* Non-zero if the TU has been read.
595 This is used to assist the "Stay in DWO Optimization" for Fission:
596 When reading a DWO, it's faster to read TUs from the DWO instead of
597 fetching them from random other DWOs (due to comdat folding).
598 If the TU has already been read, the optimization is unnecessary
599 (and unwise - we don't want to change where gdb thinks the TU lives
600 "midflight").
601 This flag is only valid if is_debug_types is true. */
602 unsigned int tu_read : 1;
603
604 /* The section this CU/TU lives in.
605 If the DIE refers to a DWO file, this is always the original die,
606 not the DWO file. */
607 struct dwarf2_section_info *section;
608
609 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
610 of the CU cache it gets reset to NULL again. */
611 struct dwarf2_cu *cu;
612
613 /* The corresponding objfile.
614 Normally we can get the objfile from dwarf2_per_objfile.
615 However we can enter this file with just a "per_cu" handle. */
616 struct objfile *objfile;
617
618 /* When using partial symbol tables, the 'psymtab' field is active.
619 Otherwise the 'quick' field is active. */
620 union
621 {
622 /* The partial symbol table associated with this compilation unit,
623 or NULL for unread partial units. */
624 struct partial_symtab *psymtab;
625
626 /* Data needed by the "quick" functions. */
627 struct dwarf2_per_cu_quick_data *quick;
628 } v;
629
630 /* The CUs we import using DW_TAG_imported_unit. This is filled in
631 while reading psymtabs, used to compute the psymtab dependencies,
632 and then cleared. Then it is filled in again while reading full
633 symbols, and only deleted when the objfile is destroyed.
634
635 This is also used to work around a difference between the way gold
636 generates .gdb_index version <=7 and the way gdb does. Arguably this
637 is a gold bug. For symbols coming from TUs, gold records in the index
638 the CU that includes the TU instead of the TU itself. This breaks
639 dw2_lookup_symbol: It assumes that if the index says symbol X lives
640 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
641 will find X. Alas TUs live in their own symtab, so after expanding CU Y
642 we need to look in TU Z to find X. Fortunately, this is akin to
643 DW_TAG_imported_unit, so we just use the same mechanism: For
644 .gdb_index version <=7 this also records the TUs that the CU referred
645 to. Concurrently with this change gdb was modified to emit version 8
646 indices so we only pay a price for gold generated indices.
647 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
648 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
649 };
650
651 /* Entry in the signatured_types hash table. */
652
653 struct signatured_type
654 {
655 /* The "per_cu" object of this type.
656 This struct is used iff per_cu.is_debug_types.
657 N.B.: This is the first member so that it's easy to convert pointers
658 between them. */
659 struct dwarf2_per_cu_data per_cu;
660
661 /* The type's signature. */
662 ULONGEST signature;
663
664 /* Offset in the TU of the type's DIE, as read from the TU header.
665 If this TU is a DWO stub and the definition lives in a DWO file
666 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
667 cu_offset type_offset_in_tu;
668
669 /* Offset in the section of the type's DIE.
670 If the definition lives in a DWO file, this is the offset in the
671 .debug_types.dwo section.
672 The value is zero until the actual value is known.
673 Zero is otherwise not a valid section offset. */
674 sect_offset type_offset_in_section;
675
676 /* Type units are grouped by their DW_AT_stmt_list entry so that they
677 can share them. This points to the containing symtab. */
678 struct type_unit_group *type_unit_group;
679
680 /* The type.
681 The first time we encounter this type we fully read it in and install it
682 in the symbol tables. Subsequent times we only need the type. */
683 struct type *type;
684
685 /* Containing DWO unit.
686 This field is valid iff per_cu.reading_dwo_directly. */
687 struct dwo_unit *dwo_unit;
688 };
689
690 typedef struct signatured_type *sig_type_ptr;
691 DEF_VEC_P (sig_type_ptr);
692
693 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
694 This includes type_unit_group and quick_file_names. */
695
696 struct stmt_list_hash
697 {
698 /* The DWO unit this table is from or NULL if there is none. */
699 struct dwo_unit *dwo_unit;
700
701 /* Offset in .debug_line or .debug_line.dwo. */
702 sect_offset line_offset;
703 };
704
705 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
706 an object of this type. */
707
708 struct type_unit_group
709 {
710 /* dwarf2read.c's main "handle" on a TU symtab.
711 To simplify things we create an artificial CU that "includes" all the
712 type units using this stmt_list so that the rest of the code still has
713 a "per_cu" handle on the symtab.
714 This PER_CU is recognized by having no section. */
715 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
716 struct dwarf2_per_cu_data per_cu;
717
718 /* The TUs that share this DW_AT_stmt_list entry.
719 This is added to while parsing type units to build partial symtabs,
720 and is deleted afterwards and not used again. */
721 VEC (sig_type_ptr) *tus;
722
723 /* The primary symtab.
724 Type units in a group needn't all be defined in the same source file,
725 so we create an essentially anonymous symtab as the primary symtab. */
726 struct symtab *primary_symtab;
727
728 /* The data used to construct the hash key. */
729 struct stmt_list_hash hash;
730
731 /* The number of symtabs from the line header.
732 The value here must match line_header.num_file_names. */
733 unsigned int num_symtabs;
734
735 /* The symbol tables for this TU (obtained from the files listed in
736 DW_AT_stmt_list).
737 WARNING: The order of entries here must match the order of entries
738 in the line header. After the first TU using this type_unit_group, the
739 line header for the subsequent TUs is recreated from this. This is done
740 because we need to use the same symtabs for each TU using the same
741 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
742 there's no guarantee the line header doesn't have duplicate entries. */
743 struct symtab **symtabs;
744 };
745
746 /* These sections are what may appear in a (real or virtual) DWO file. */
747
748 struct dwo_sections
749 {
750 struct dwarf2_section_info abbrev;
751 struct dwarf2_section_info line;
752 struct dwarf2_section_info loc;
753 struct dwarf2_section_info macinfo;
754 struct dwarf2_section_info macro;
755 struct dwarf2_section_info str;
756 struct dwarf2_section_info str_offsets;
757 /* In the case of a virtual DWO file, these two are unused. */
758 struct dwarf2_section_info info;
759 VEC (dwarf2_section_info_def) *types;
760 };
761
762 /* CUs/TUs in DWP/DWO files. */
763
764 struct dwo_unit
765 {
766 /* Backlink to the containing struct dwo_file. */
767 struct dwo_file *dwo_file;
768
769 /* The "id" that distinguishes this CU/TU.
770 .debug_info calls this "dwo_id", .debug_types calls this "signature".
771 Since signatures came first, we stick with it for consistency. */
772 ULONGEST signature;
773
774 /* The section this CU/TU lives in, in the DWO file. */
775 struct dwarf2_section_info *section;
776
777 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
778 sect_offset offset;
779 unsigned int length;
780
781 /* For types, offset in the type's DIE of the type defined by this TU. */
782 cu_offset type_offset_in_tu;
783 };
784
785 /* include/dwarf2.h defines the DWP section codes.
786 It defines a max value but it doesn't define a min value, which we
787 use for error checking, so provide one. */
788
789 enum dwp_v2_section_ids
790 {
791 DW_SECT_MIN = 1
792 };
793
794 /* Data for one DWO file.
795
796 This includes virtual DWO files (a virtual DWO file is a DWO file as it
797 appears in a DWP file). DWP files don't really have DWO files per se -
798 comdat folding of types "loses" the DWO file they came from, and from
799 a high level view DWP files appear to contain a mass of random types.
800 However, to maintain consistency with the non-DWP case we pretend DWP
801 files contain virtual DWO files, and we assign each TU with one virtual
802 DWO file (generally based on the line and abbrev section offsets -
803 a heuristic that seems to work in practice). */
804
805 struct dwo_file
806 {
807 /* The DW_AT_GNU_dwo_name attribute.
808 For virtual DWO files the name is constructed from the section offsets
809 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
810 from related CU+TUs. */
811 const char *dwo_name;
812
813 /* The DW_AT_comp_dir attribute. */
814 const char *comp_dir;
815
816 /* The bfd, when the file is open. Otherwise this is NULL.
817 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
818 bfd *dbfd;
819
820 /* The sections that make up this DWO file.
821 Remember that for virtual DWO files in DWP V2, these are virtual
822 sections (for lack of a better name). */
823 struct dwo_sections sections;
824
825 /* The CU in the file.
826 We only support one because having more than one requires hacking the
827 dwo_name of each to match, which is highly unlikely to happen.
828 Doing this means all TUs can share comp_dir: We also assume that
829 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
830 struct dwo_unit *cu;
831
832 /* Table of TUs in the file.
833 Each element is a struct dwo_unit. */
834 htab_t tus;
835 };
836
837 /* These sections are what may appear in a DWP file. */
838
839 struct dwp_sections
840 {
841 /* These are used by both DWP version 1 and 2. */
842 struct dwarf2_section_info str;
843 struct dwarf2_section_info cu_index;
844 struct dwarf2_section_info tu_index;
845
846 /* These are only used by DWP version 2 files.
847 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
848 sections are referenced by section number, and are not recorded here.
849 In DWP version 2 there is at most one copy of all these sections, each
850 section being (effectively) comprised of the concatenation of all of the
851 individual sections that exist in the version 1 format.
852 To keep the code simple we treat each of these concatenated pieces as a
853 section itself (a virtual section?). */
854 struct dwarf2_section_info abbrev;
855 struct dwarf2_section_info info;
856 struct dwarf2_section_info line;
857 struct dwarf2_section_info loc;
858 struct dwarf2_section_info macinfo;
859 struct dwarf2_section_info macro;
860 struct dwarf2_section_info str_offsets;
861 struct dwarf2_section_info types;
862 };
863
864 /* These sections are what may appear in a virtual DWO file in DWP version 1.
865 A virtual DWO file is a DWO file as it appears in a DWP file. */
866
867 struct virtual_v1_dwo_sections
868 {
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info macinfo;
873 struct dwarf2_section_info macro;
874 struct dwarf2_section_info str_offsets;
875 /* Each DWP hash table entry records one CU or one TU.
876 That is recorded here, and copied to dwo_unit.section. */
877 struct dwarf2_section_info info_or_types;
878 };
879
880 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
881 In version 2, the sections of the DWO files are concatenated together
882 and stored in one section of that name. Thus each ELF section contains
883 several "virtual" sections. */
884
885 struct virtual_v2_dwo_sections
886 {
887 bfd_size_type abbrev_offset;
888 bfd_size_type abbrev_size;
889
890 bfd_size_type line_offset;
891 bfd_size_type line_size;
892
893 bfd_size_type loc_offset;
894 bfd_size_type loc_size;
895
896 bfd_size_type macinfo_offset;
897 bfd_size_type macinfo_size;
898
899 bfd_size_type macro_offset;
900 bfd_size_type macro_size;
901
902 bfd_size_type str_offsets_offset;
903 bfd_size_type str_offsets_size;
904
905 /* Each DWP hash table entry records one CU or one TU.
906 That is recorded here, and copied to dwo_unit.section. */
907 bfd_size_type info_or_types_offset;
908 bfd_size_type info_or_types_size;
909 };
910
911 /* Contents of DWP hash tables. */
912
913 struct dwp_hash_table
914 {
915 uint32_t version, nr_columns;
916 uint32_t nr_units, nr_slots;
917 const gdb_byte *hash_table, *unit_table;
918 union
919 {
920 struct
921 {
922 const gdb_byte *indices;
923 } v1;
924 struct
925 {
926 /* This is indexed by column number and gives the id of the section
927 in that column. */
928 #define MAX_NR_V2_DWO_SECTIONS \
929 (1 /* .debug_info or .debug_types */ \
930 + 1 /* .debug_abbrev */ \
931 + 1 /* .debug_line */ \
932 + 1 /* .debug_loc */ \
933 + 1 /* .debug_str_offsets */ \
934 + 1 /* .debug_macro or .debug_macinfo */)
935 int section_ids[MAX_NR_V2_DWO_SECTIONS];
936 const gdb_byte *offsets;
937 const gdb_byte *sizes;
938 } v2;
939 } section_pool;
940 };
941
942 /* Data for one DWP file. */
943
944 struct dwp_file
945 {
946 /* Name of the file. */
947 const char *name;
948
949 /* File format version. */
950 int version;
951
952 /* The bfd. */
953 bfd *dbfd;
954
955 /* Section info for this file. */
956 struct dwp_sections sections;
957
958 /* Table of CUs in the file. */
959 const struct dwp_hash_table *cus;
960
961 /* Table of TUs in the file. */
962 const struct dwp_hash_table *tus;
963
964 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
965 htab_t loaded_cus;
966 htab_t loaded_tus;
967
968 /* Table to map ELF section numbers to their sections.
969 This is only needed for the DWP V1 file format. */
970 unsigned int num_sections;
971 asection **elf_sections;
972 };
973
974 /* This represents a '.dwz' file. */
975
976 struct dwz_file
977 {
978 /* A dwz file can only contain a few sections. */
979 struct dwarf2_section_info abbrev;
980 struct dwarf2_section_info info;
981 struct dwarf2_section_info str;
982 struct dwarf2_section_info line;
983 struct dwarf2_section_info macro;
984 struct dwarf2_section_info gdb_index;
985
986 /* The dwz's BFD. */
987 bfd *dwz_bfd;
988 };
989
990 /* Struct used to pass misc. parameters to read_die_and_children, et
991 al. which are used for both .debug_info and .debug_types dies.
992 All parameters here are unchanging for the life of the call. This
993 struct exists to abstract away the constant parameters of die reading. */
994
995 struct die_reader_specs
996 {
997 /* The bfd of die_section. */
998 bfd* abfd;
999
1000 /* The CU of the DIE we are parsing. */
1001 struct dwarf2_cu *cu;
1002
1003 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1004 struct dwo_file *dwo_file;
1005
1006 /* The section the die comes from.
1007 This is either .debug_info or .debug_types, or the .dwo variants. */
1008 struct dwarf2_section_info *die_section;
1009
1010 /* die_section->buffer. */
1011 const gdb_byte *buffer;
1012
1013 /* The end of the buffer. */
1014 const gdb_byte *buffer_end;
1015
1016 /* The value of the DW_AT_comp_dir attribute. */
1017 const char *comp_dir;
1018 };
1019
1020 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1021 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1022 const gdb_byte *info_ptr,
1023 struct die_info *comp_unit_die,
1024 int has_children,
1025 void *data);
1026
1027 /* The line number information for a compilation unit (found in the
1028 .debug_line section) begins with a "statement program header",
1029 which contains the following information. */
1030 struct line_header
1031 {
1032 unsigned int total_length;
1033 unsigned short version;
1034 unsigned int header_length;
1035 unsigned char minimum_instruction_length;
1036 unsigned char maximum_ops_per_instruction;
1037 unsigned char default_is_stmt;
1038 int line_base;
1039 unsigned char line_range;
1040 unsigned char opcode_base;
1041
1042 /* standard_opcode_lengths[i] is the number of operands for the
1043 standard opcode whose value is i. This means that
1044 standard_opcode_lengths[0] is unused, and the last meaningful
1045 element is standard_opcode_lengths[opcode_base - 1]. */
1046 unsigned char *standard_opcode_lengths;
1047
1048 /* The include_directories table. NOTE! These strings are not
1049 allocated with xmalloc; instead, they are pointers into
1050 debug_line_buffer. If you try to free them, `free' will get
1051 indigestion. */
1052 unsigned int num_include_dirs, include_dirs_size;
1053 const char **include_dirs;
1054
1055 /* The file_names table. NOTE! These strings are not allocated
1056 with xmalloc; instead, they are pointers into debug_line_buffer.
1057 Don't try to free them directly. */
1058 unsigned int num_file_names, file_names_size;
1059 struct file_entry
1060 {
1061 const char *name;
1062 unsigned int dir_index;
1063 unsigned int mod_time;
1064 unsigned int length;
1065 int included_p; /* Non-zero if referenced by the Line Number Program. */
1066 struct symtab *symtab; /* The associated symbol table, if any. */
1067 } *file_names;
1068
1069 /* The start and end of the statement program following this
1070 header. These point into dwarf2_per_objfile->line_buffer. */
1071 const gdb_byte *statement_program_start, *statement_program_end;
1072 };
1073
1074 /* When we construct a partial symbol table entry we only
1075 need this much information. */
1076 struct partial_die_info
1077 {
1078 /* Offset of this DIE. */
1079 sect_offset offset;
1080
1081 /* DWARF-2 tag for this DIE. */
1082 ENUM_BITFIELD(dwarf_tag) tag : 16;
1083
1084 /* Assorted flags describing the data found in this DIE. */
1085 unsigned int has_children : 1;
1086 unsigned int is_external : 1;
1087 unsigned int is_declaration : 1;
1088 unsigned int has_type : 1;
1089 unsigned int has_specification : 1;
1090 unsigned int has_pc_info : 1;
1091 unsigned int may_be_inlined : 1;
1092
1093 /* Flag set if the SCOPE field of this structure has been
1094 computed. */
1095 unsigned int scope_set : 1;
1096
1097 /* Flag set if the DIE has a byte_size attribute. */
1098 unsigned int has_byte_size : 1;
1099
1100 /* Flag set if any of the DIE's children are template arguments. */
1101 unsigned int has_template_arguments : 1;
1102
1103 /* Flag set if fixup_partial_die has been called on this die. */
1104 unsigned int fixup_called : 1;
1105
1106 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1107 unsigned int is_dwz : 1;
1108
1109 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1110 unsigned int spec_is_dwz : 1;
1111
1112 /* The name of this DIE. Normally the value of DW_AT_name, but
1113 sometimes a default name for unnamed DIEs. */
1114 const char *name;
1115
1116 /* The linkage name, if present. */
1117 const char *linkage_name;
1118
1119 /* The scope to prepend to our children. This is generally
1120 allocated on the comp_unit_obstack, so will disappear
1121 when this compilation unit leaves the cache. */
1122 const char *scope;
1123
1124 /* Some data associated with the partial DIE. The tag determines
1125 which field is live. */
1126 union
1127 {
1128 /* The location description associated with this DIE, if any. */
1129 struct dwarf_block *locdesc;
1130 /* The offset of an import, for DW_TAG_imported_unit. */
1131 sect_offset offset;
1132 } d;
1133
1134 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1135 CORE_ADDR lowpc;
1136 CORE_ADDR highpc;
1137
1138 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1139 DW_AT_sibling, if any. */
1140 /* NOTE: This member isn't strictly necessary, read_partial_die could
1141 return DW_AT_sibling values to its caller load_partial_dies. */
1142 const gdb_byte *sibling;
1143
1144 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1145 DW_AT_specification (or DW_AT_abstract_origin or
1146 DW_AT_extension). */
1147 sect_offset spec_offset;
1148
1149 /* Pointers to this DIE's parent, first child, and next sibling,
1150 if any. */
1151 struct partial_die_info *die_parent, *die_child, *die_sibling;
1152 };
1153
1154 /* This data structure holds the information of an abbrev. */
1155 struct abbrev_info
1156 {
1157 unsigned int number; /* number identifying abbrev */
1158 enum dwarf_tag tag; /* dwarf tag */
1159 unsigned short has_children; /* boolean */
1160 unsigned short num_attrs; /* number of attributes */
1161 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1162 struct abbrev_info *next; /* next in chain */
1163 };
1164
1165 struct attr_abbrev
1166 {
1167 ENUM_BITFIELD(dwarf_attribute) name : 16;
1168 ENUM_BITFIELD(dwarf_form) form : 16;
1169 };
1170
1171 /* Size of abbrev_table.abbrev_hash_table. */
1172 #define ABBREV_HASH_SIZE 121
1173
1174 /* Top level data structure to contain an abbreviation table. */
1175
1176 struct abbrev_table
1177 {
1178 /* Where the abbrev table came from.
1179 This is used as a sanity check when the table is used. */
1180 sect_offset offset;
1181
1182 /* Storage for the abbrev table. */
1183 struct obstack abbrev_obstack;
1184
1185 /* Hash table of abbrevs.
1186 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1187 It could be statically allocated, but the previous code didn't so we
1188 don't either. */
1189 struct abbrev_info **abbrevs;
1190 };
1191
1192 /* Attributes have a name and a value. */
1193 struct attribute
1194 {
1195 ENUM_BITFIELD(dwarf_attribute) name : 16;
1196 ENUM_BITFIELD(dwarf_form) form : 15;
1197
1198 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1199 field should be in u.str (existing only for DW_STRING) but it is kept
1200 here for better struct attribute alignment. */
1201 unsigned int string_is_canonical : 1;
1202
1203 union
1204 {
1205 const char *str;
1206 struct dwarf_block *blk;
1207 ULONGEST unsnd;
1208 LONGEST snd;
1209 CORE_ADDR addr;
1210 ULONGEST signature;
1211 }
1212 u;
1213 };
1214
1215 /* This data structure holds a complete die structure. */
1216 struct die_info
1217 {
1218 /* DWARF-2 tag for this DIE. */
1219 ENUM_BITFIELD(dwarf_tag) tag : 16;
1220
1221 /* Number of attributes */
1222 unsigned char num_attrs;
1223
1224 /* True if we're presently building the full type name for the
1225 type derived from this DIE. */
1226 unsigned char building_fullname : 1;
1227
1228 /* Abbrev number */
1229 unsigned int abbrev;
1230
1231 /* Offset in .debug_info or .debug_types section. */
1232 sect_offset offset;
1233
1234 /* The dies in a compilation unit form an n-ary tree. PARENT
1235 points to this die's parent; CHILD points to the first child of
1236 this node; and all the children of a given node are chained
1237 together via their SIBLING fields. */
1238 struct die_info *child; /* Its first child, if any. */
1239 struct die_info *sibling; /* Its next sibling, if any. */
1240 struct die_info *parent; /* Its parent, if any. */
1241
1242 /* An array of attributes, with NUM_ATTRS elements. There may be
1243 zero, but it's not common and zero-sized arrays are not
1244 sufficiently portable C. */
1245 struct attribute attrs[1];
1246 };
1247
1248 /* Get at parts of an attribute structure. */
1249
1250 #define DW_STRING(attr) ((attr)->u.str)
1251 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1252 #define DW_UNSND(attr) ((attr)->u.unsnd)
1253 #define DW_BLOCK(attr) ((attr)->u.blk)
1254 #define DW_SND(attr) ((attr)->u.snd)
1255 #define DW_ADDR(attr) ((attr)->u.addr)
1256 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1257
1258 /* Blocks are a bunch of untyped bytes. */
1259 struct dwarf_block
1260 {
1261 size_t size;
1262
1263 /* Valid only if SIZE is not zero. */
1264 const gdb_byte *data;
1265 };
1266
1267 #ifndef ATTR_ALLOC_CHUNK
1268 #define ATTR_ALLOC_CHUNK 4
1269 #endif
1270
1271 /* Allocate fields for structs, unions and enums in this size. */
1272 #ifndef DW_FIELD_ALLOC_CHUNK
1273 #define DW_FIELD_ALLOC_CHUNK 4
1274 #endif
1275
1276 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1277 but this would require a corresponding change in unpack_field_as_long
1278 and friends. */
1279 static int bits_per_byte = 8;
1280
1281 /* The routines that read and process dies for a C struct or C++ class
1282 pass lists of data member fields and lists of member function fields
1283 in an instance of a field_info structure, as defined below. */
1284 struct field_info
1285 {
1286 /* List of data member and baseclasses fields. */
1287 struct nextfield
1288 {
1289 struct nextfield *next;
1290 int accessibility;
1291 int virtuality;
1292 struct field field;
1293 }
1294 *fields, *baseclasses;
1295
1296 /* Number of fields (including baseclasses). */
1297 int nfields;
1298
1299 /* Number of baseclasses. */
1300 int nbaseclasses;
1301
1302 /* Set if the accesibility of one of the fields is not public. */
1303 int non_public_fields;
1304
1305 /* Member function fields array, entries are allocated in the order they
1306 are encountered in the object file. */
1307 struct nextfnfield
1308 {
1309 struct nextfnfield *next;
1310 struct fn_field fnfield;
1311 }
1312 *fnfields;
1313
1314 /* Member function fieldlist array, contains name of possibly overloaded
1315 member function, number of overloaded member functions and a pointer
1316 to the head of the member function field chain. */
1317 struct fnfieldlist
1318 {
1319 const char *name;
1320 int length;
1321 struct nextfnfield *head;
1322 }
1323 *fnfieldlists;
1324
1325 /* Number of entries in the fnfieldlists array. */
1326 int nfnfields;
1327
1328 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1329 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1330 struct typedef_field_list
1331 {
1332 struct typedef_field field;
1333 struct typedef_field_list *next;
1334 }
1335 *typedef_field_list;
1336 unsigned typedef_field_list_count;
1337 };
1338
1339 /* One item on the queue of compilation units to read in full symbols
1340 for. */
1341 struct dwarf2_queue_item
1342 {
1343 struct dwarf2_per_cu_data *per_cu;
1344 enum language pretend_language;
1345 struct dwarf2_queue_item *next;
1346 };
1347
1348 /* The current queue. */
1349 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1350
1351 /* Loaded secondary compilation units are kept in memory until they
1352 have not been referenced for the processing of this many
1353 compilation units. Set this to zero to disable caching. Cache
1354 sizes of up to at least twenty will improve startup time for
1355 typical inter-CU-reference binaries, at an obvious memory cost. */
1356 static int dwarf2_max_cache_age = 5;
1357 static void
1358 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1359 struct cmd_list_element *c, const char *value)
1360 {
1361 fprintf_filtered (file, _("The upper bound on the age of cached "
1362 "dwarf2 compilation units is %s.\n"),
1363 value);
1364 }
1365 \f
1366 /* local function prototypes */
1367
1368 static const char *get_section_name (const struct dwarf2_section_info *);
1369
1370 static const char *get_section_file_name (const struct dwarf2_section_info *);
1371
1372 static void dwarf2_locate_sections (bfd *, asection *, void *);
1373
1374 static void dwarf2_find_base_address (struct die_info *die,
1375 struct dwarf2_cu *cu);
1376
1377 static struct partial_symtab *create_partial_symtab
1378 (struct dwarf2_per_cu_data *per_cu, const char *name);
1379
1380 static void dwarf2_build_psymtabs_hard (struct objfile *);
1381
1382 static void scan_partial_symbols (struct partial_die_info *,
1383 CORE_ADDR *, CORE_ADDR *,
1384 int, struct dwarf2_cu *);
1385
1386 static void add_partial_symbol (struct partial_die_info *,
1387 struct dwarf2_cu *);
1388
1389 static void add_partial_namespace (struct partial_die_info *pdi,
1390 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1391 int need_pc, struct dwarf2_cu *cu);
1392
1393 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1394 CORE_ADDR *highpc, int need_pc,
1395 struct dwarf2_cu *cu);
1396
1397 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1398 struct dwarf2_cu *cu);
1399
1400 static void add_partial_subprogram (struct partial_die_info *pdi,
1401 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1402 int need_pc, struct dwarf2_cu *cu);
1403
1404 static void dwarf2_read_symtab (struct partial_symtab *,
1405 struct objfile *);
1406
1407 static void psymtab_to_symtab_1 (struct partial_symtab *);
1408
1409 static struct abbrev_info *abbrev_table_lookup_abbrev
1410 (const struct abbrev_table *, unsigned int);
1411
1412 static struct abbrev_table *abbrev_table_read_table
1413 (struct dwarf2_section_info *, sect_offset);
1414
1415 static void abbrev_table_free (struct abbrev_table *);
1416
1417 static void abbrev_table_free_cleanup (void *);
1418
1419 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1420 struct dwarf2_section_info *);
1421
1422 static void dwarf2_free_abbrev_table (void *);
1423
1424 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1425
1426 static struct partial_die_info *load_partial_dies
1427 (const struct die_reader_specs *, const gdb_byte *, int);
1428
1429 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1430 struct partial_die_info *,
1431 struct abbrev_info *,
1432 unsigned int,
1433 const gdb_byte *);
1434
1435 static struct partial_die_info *find_partial_die (sect_offset, int,
1436 struct dwarf2_cu *);
1437
1438 static void fixup_partial_die (struct partial_die_info *,
1439 struct dwarf2_cu *);
1440
1441 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1442 struct attribute *, struct attr_abbrev *,
1443 const gdb_byte *);
1444
1445 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1446
1447 static int read_1_signed_byte (bfd *, const gdb_byte *);
1448
1449 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1450
1451 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1452
1453 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1454
1455 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1456 unsigned int *);
1457
1458 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1459
1460 static LONGEST read_checked_initial_length_and_offset
1461 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1462 unsigned int *, unsigned int *);
1463
1464 static LONGEST read_offset (bfd *, const gdb_byte *,
1465 const struct comp_unit_head *,
1466 unsigned int *);
1467
1468 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1469
1470 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1471 sect_offset);
1472
1473 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1474
1475 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1476
1477 static const char *read_indirect_string (bfd *, const gdb_byte *,
1478 const struct comp_unit_head *,
1479 unsigned int *);
1480
1481 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1482
1483 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1486
1487 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1488 const gdb_byte *,
1489 unsigned int *);
1490
1491 static const char *read_str_index (const struct die_reader_specs *reader,
1492 struct dwarf2_cu *cu, ULONGEST str_index);
1493
1494 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1495
1496 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1497 struct dwarf2_cu *);
1498
1499 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1500 unsigned int);
1501
1502 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1503 struct dwarf2_cu *cu);
1504
1505 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1506
1507 static struct die_info *die_specification (struct die_info *die,
1508 struct dwarf2_cu **);
1509
1510 static void free_line_header (struct line_header *lh);
1511
1512 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1513 struct dwarf2_cu *cu);
1514
1515 static void dwarf_decode_lines (struct line_header *, const char *,
1516 struct dwarf2_cu *, struct partial_symtab *,
1517 int);
1518
1519 static void dwarf2_start_subfile (const char *, const char *, const char *);
1520
1521 static void dwarf2_start_symtab (struct dwarf2_cu *,
1522 const char *, const char *, CORE_ADDR);
1523
1524 static struct symbol *new_symbol (struct die_info *, struct type *,
1525 struct dwarf2_cu *);
1526
1527 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1528 struct dwarf2_cu *, struct symbol *);
1529
1530 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1531 struct dwarf2_cu *);
1532
1533 static void dwarf2_const_value_attr (const struct attribute *attr,
1534 struct type *type,
1535 const char *name,
1536 struct obstack *obstack,
1537 struct dwarf2_cu *cu, LONGEST *value,
1538 const gdb_byte **bytes,
1539 struct dwarf2_locexpr_baton **baton);
1540
1541 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1542
1543 static int need_gnat_info (struct dwarf2_cu *);
1544
1545 static struct type *die_descriptive_type (struct die_info *,
1546 struct dwarf2_cu *);
1547
1548 static void set_descriptive_type (struct type *, struct die_info *,
1549 struct dwarf2_cu *);
1550
1551 static struct type *die_containing_type (struct die_info *,
1552 struct dwarf2_cu *);
1553
1554 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1555 struct dwarf2_cu *);
1556
1557 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1558
1559 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1560
1561 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1562
1563 static char *typename_concat (struct obstack *obs, const char *prefix,
1564 const char *suffix, int physname,
1565 struct dwarf2_cu *cu);
1566
1567 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1568
1569 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1570
1571 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1572
1573 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1574
1575 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1576
1577 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1578 struct dwarf2_cu *, struct partial_symtab *);
1579
1580 static int dwarf2_get_pc_bounds (struct die_info *,
1581 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1582 struct partial_symtab *);
1583
1584 static void get_scope_pc_bounds (struct die_info *,
1585 CORE_ADDR *, CORE_ADDR *,
1586 struct dwarf2_cu *);
1587
1588 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1589 CORE_ADDR, struct dwarf2_cu *);
1590
1591 static void dwarf2_add_field (struct field_info *, struct die_info *,
1592 struct dwarf2_cu *);
1593
1594 static void dwarf2_attach_fields_to_type (struct field_info *,
1595 struct type *, struct dwarf2_cu *);
1596
1597 static void dwarf2_add_member_fn (struct field_info *,
1598 struct die_info *, struct type *,
1599 struct dwarf2_cu *);
1600
1601 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1602 struct type *,
1603 struct dwarf2_cu *);
1604
1605 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1606
1607 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1608
1609 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1610
1611 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1612
1613 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1614
1615 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1616
1617 static struct type *read_module_type (struct die_info *die,
1618 struct dwarf2_cu *cu);
1619
1620 static const char *namespace_name (struct die_info *die,
1621 int *is_anonymous, struct dwarf2_cu *);
1622
1623 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1624
1625 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1626
1627 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1628 struct dwarf2_cu *);
1629
1630 static struct die_info *read_die_and_siblings_1
1631 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1632 struct die_info *);
1633
1634 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1635 const gdb_byte *info_ptr,
1636 const gdb_byte **new_info_ptr,
1637 struct die_info *parent);
1638
1639 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1640 struct die_info **, const gdb_byte *,
1641 int *, int);
1642
1643 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1644 struct die_info **, const gdb_byte *,
1645 int *);
1646
1647 static void process_die (struct die_info *, struct dwarf2_cu *);
1648
1649 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1650 struct obstack *);
1651
1652 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1653
1654 static const char *dwarf2_full_name (const char *name,
1655 struct die_info *die,
1656 struct dwarf2_cu *cu);
1657
1658 static const char *dwarf2_physname (const char *name, struct die_info *die,
1659 struct dwarf2_cu *cu);
1660
1661 static struct die_info *dwarf2_extension (struct die_info *die,
1662 struct dwarf2_cu **);
1663
1664 static const char *dwarf_tag_name (unsigned int);
1665
1666 static const char *dwarf_attr_name (unsigned int);
1667
1668 static const char *dwarf_form_name (unsigned int);
1669
1670 static char *dwarf_bool_name (unsigned int);
1671
1672 static const char *dwarf_type_encoding_name (unsigned int);
1673
1674 static struct die_info *sibling_die (struct die_info *);
1675
1676 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1677
1678 static void dump_die_for_error (struct die_info *);
1679
1680 static void dump_die_1 (struct ui_file *, int level, int max_level,
1681 struct die_info *);
1682
1683 /*static*/ void dump_die (struct die_info *, int max_level);
1684
1685 static void store_in_ref_table (struct die_info *,
1686 struct dwarf2_cu *);
1687
1688 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1689
1690 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1691
1692 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1693 const struct attribute *,
1694 struct dwarf2_cu **);
1695
1696 static struct die_info *follow_die_ref (struct die_info *,
1697 const struct attribute *,
1698 struct dwarf2_cu **);
1699
1700 static struct die_info *follow_die_sig (struct die_info *,
1701 const struct attribute *,
1702 struct dwarf2_cu **);
1703
1704 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1705 struct dwarf2_cu *);
1706
1707 static struct type *get_DW_AT_signature_type (struct die_info *,
1708 const struct attribute *,
1709 struct dwarf2_cu *);
1710
1711 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1712
1713 static void read_signatured_type (struct signatured_type *);
1714
1715 static struct type_unit_group *get_type_unit_group
1716 (struct dwarf2_cu *, const struct attribute *);
1717
1718 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1719
1720 /* memory allocation interface */
1721
1722 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1723
1724 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1725
1726 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1727 const char *, int);
1728
1729 static int attr_form_is_block (const struct attribute *);
1730
1731 static int attr_form_is_section_offset (const struct attribute *);
1732
1733 static int attr_form_is_constant (const struct attribute *);
1734
1735 static int attr_form_is_ref (const struct attribute *);
1736
1737 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1738 struct dwarf2_loclist_baton *baton,
1739 const struct attribute *attr);
1740
1741 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1742 struct symbol *sym,
1743 struct dwarf2_cu *cu,
1744 int is_block);
1745
1746 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1747 const gdb_byte *info_ptr,
1748 struct abbrev_info *abbrev);
1749
1750 static void free_stack_comp_unit (void *);
1751
1752 static hashval_t partial_die_hash (const void *item);
1753
1754 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1755
1756 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1757 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1758
1759 static void init_one_comp_unit (struct dwarf2_cu *cu,
1760 struct dwarf2_per_cu_data *per_cu);
1761
1762 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1763 struct die_info *comp_unit_die,
1764 enum language pretend_language);
1765
1766 static void free_heap_comp_unit (void *);
1767
1768 static void free_cached_comp_units (void *);
1769
1770 static void age_cached_comp_units (void);
1771
1772 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1773
1774 static struct type *set_die_type (struct die_info *, struct type *,
1775 struct dwarf2_cu *);
1776
1777 static void create_all_comp_units (struct objfile *);
1778
1779 static int create_all_type_units (struct objfile *);
1780
1781 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1782 enum language);
1783
1784 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1785 enum language);
1786
1787 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1788 enum language);
1789
1790 static void dwarf2_add_dependence (struct dwarf2_cu *,
1791 struct dwarf2_per_cu_data *);
1792
1793 static void dwarf2_mark (struct dwarf2_cu *);
1794
1795 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1796
1797 static struct type *get_die_type_at_offset (sect_offset,
1798 struct dwarf2_per_cu_data *);
1799
1800 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1801
1802 static void dwarf2_release_queue (void *dummy);
1803
1804 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1805 enum language pretend_language);
1806
1807 static void process_queue (void);
1808
1809 static void find_file_and_directory (struct die_info *die,
1810 struct dwarf2_cu *cu,
1811 const char **name, const char **comp_dir);
1812
1813 static char *file_full_name (int file, struct line_header *lh,
1814 const char *comp_dir);
1815
1816 static const gdb_byte *read_and_check_comp_unit_head
1817 (struct comp_unit_head *header,
1818 struct dwarf2_section_info *section,
1819 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1820 int is_debug_types_section);
1821
1822 static void init_cutu_and_read_dies
1823 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1824 int use_existing_cu, int keep,
1825 die_reader_func_ftype *die_reader_func, void *data);
1826
1827 static void init_cutu_and_read_dies_simple
1828 (struct dwarf2_per_cu_data *this_cu,
1829 die_reader_func_ftype *die_reader_func, void *data);
1830
1831 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1832
1833 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1834
1835 static struct dwo_unit *lookup_dwo_unit_in_dwp
1836 (struct dwp_file *dwp_file, const char *comp_dir,
1837 ULONGEST signature, int is_debug_types);
1838
1839 static struct dwp_file *get_dwp_file (void);
1840
1841 static struct dwo_unit *lookup_dwo_comp_unit
1842 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1843
1844 static struct dwo_unit *lookup_dwo_type_unit
1845 (struct signatured_type *, const char *, const char *);
1846
1847 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1848
1849 static void free_dwo_file_cleanup (void *);
1850
1851 static void process_cu_includes (void);
1852
1853 static void check_producer (struct dwarf2_cu *cu);
1854 \f
1855 /* Various complaints about symbol reading that don't abort the process. */
1856
1857 static void
1858 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1859 {
1860 complaint (&symfile_complaints,
1861 _("statement list doesn't fit in .debug_line section"));
1862 }
1863
1864 static void
1865 dwarf2_debug_line_missing_file_complaint (void)
1866 {
1867 complaint (&symfile_complaints,
1868 _(".debug_line section has line data without a file"));
1869 }
1870
1871 static void
1872 dwarf2_debug_line_missing_end_sequence_complaint (void)
1873 {
1874 complaint (&symfile_complaints,
1875 _(".debug_line section has line "
1876 "program sequence without an end"));
1877 }
1878
1879 static void
1880 dwarf2_complex_location_expr_complaint (void)
1881 {
1882 complaint (&symfile_complaints, _("location expression too complex"));
1883 }
1884
1885 static void
1886 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1887 int arg3)
1888 {
1889 complaint (&symfile_complaints,
1890 _("const value length mismatch for '%s', got %d, expected %d"),
1891 arg1, arg2, arg3);
1892 }
1893
1894 static void
1895 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1896 {
1897 complaint (&symfile_complaints,
1898 _("debug info runs off end of %s section"
1899 " [in module %s]"),
1900 get_section_name (section),
1901 get_section_file_name (section));
1902 }
1903
1904 static void
1905 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1906 {
1907 complaint (&symfile_complaints,
1908 _("macro debug info contains a "
1909 "malformed macro definition:\n`%s'"),
1910 arg1);
1911 }
1912
1913 static void
1914 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1915 {
1916 complaint (&symfile_complaints,
1917 _("invalid attribute class or form for '%s' in '%s'"),
1918 arg1, arg2);
1919 }
1920 \f
1921 #if WORDS_BIGENDIAN
1922
1923 /* Convert VALUE between big- and little-endian. */
1924 static offset_type
1925 byte_swap (offset_type value)
1926 {
1927 offset_type result;
1928
1929 result = (value & 0xff) << 24;
1930 result |= (value & 0xff00) << 8;
1931 result |= (value & 0xff0000) >> 8;
1932 result |= (value & 0xff000000) >> 24;
1933 return result;
1934 }
1935
1936 #define MAYBE_SWAP(V) byte_swap (V)
1937
1938 #else
1939 #define MAYBE_SWAP(V) (V)
1940 #endif /* WORDS_BIGENDIAN */
1941
1942 /* The suffix for an index file. */
1943 #define INDEX_SUFFIX ".gdb-index"
1944
1945 /* Try to locate the sections we need for DWARF 2 debugging
1946 information and return true if we have enough to do something.
1947 NAMES points to the dwarf2 section names, or is NULL if the standard
1948 ELF names are used. */
1949
1950 int
1951 dwarf2_has_info (struct objfile *objfile,
1952 const struct dwarf2_debug_sections *names)
1953 {
1954 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1955 if (!dwarf2_per_objfile)
1956 {
1957 /* Initialize per-objfile state. */
1958 struct dwarf2_per_objfile *data
1959 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1960
1961 memset (data, 0, sizeof (*data));
1962 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1963 dwarf2_per_objfile = data;
1964
1965 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1966 (void *) names);
1967 dwarf2_per_objfile->objfile = objfile;
1968 }
1969 return (!dwarf2_per_objfile->info.is_virtual
1970 && dwarf2_per_objfile->info.s.asection != NULL
1971 && !dwarf2_per_objfile->abbrev.is_virtual
1972 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1973 }
1974
1975 /* Return the containing section of virtual section SECTION. */
1976
1977 static struct dwarf2_section_info *
1978 get_containing_section (const struct dwarf2_section_info *section)
1979 {
1980 gdb_assert (section->is_virtual);
1981 return section->s.containing_section;
1982 }
1983
1984 /* Return the bfd owner of SECTION. */
1985
1986 static struct bfd *
1987 get_section_bfd_owner (const struct dwarf2_section_info *section)
1988 {
1989 if (section->is_virtual)
1990 {
1991 section = get_containing_section (section);
1992 gdb_assert (!section->is_virtual);
1993 }
1994 return section->s.asection->owner;
1995 }
1996
1997 /* Return the bfd section of SECTION.
1998 Returns NULL if the section is not present. */
1999
2000 static asection *
2001 get_section_bfd_section (const struct dwarf2_section_info *section)
2002 {
2003 if (section->is_virtual)
2004 {
2005 section = get_containing_section (section);
2006 gdb_assert (!section->is_virtual);
2007 }
2008 return section->s.asection;
2009 }
2010
2011 /* Return the name of SECTION. */
2012
2013 static const char *
2014 get_section_name (const struct dwarf2_section_info *section)
2015 {
2016 asection *sectp = get_section_bfd_section (section);
2017
2018 gdb_assert (sectp != NULL);
2019 return bfd_section_name (get_section_bfd_owner (section), sectp);
2020 }
2021
2022 /* Return the name of the file SECTION is in. */
2023
2024 static const char *
2025 get_section_file_name (const struct dwarf2_section_info *section)
2026 {
2027 bfd *abfd = get_section_bfd_owner (section);
2028
2029 return bfd_get_filename (abfd);
2030 }
2031
2032 /* Return the id of SECTION.
2033 Returns 0 if SECTION doesn't exist. */
2034
2035 static int
2036 get_section_id (const struct dwarf2_section_info *section)
2037 {
2038 asection *sectp = get_section_bfd_section (section);
2039
2040 if (sectp == NULL)
2041 return 0;
2042 return sectp->id;
2043 }
2044
2045 /* Return the flags of SECTION.
2046 SECTION (or containing section if this is a virtual section) must exist. */
2047
2048 static int
2049 get_section_flags (const struct dwarf2_section_info *section)
2050 {
2051 asection *sectp = get_section_bfd_section (section);
2052
2053 gdb_assert (sectp != NULL);
2054 return bfd_get_section_flags (sectp->owner, sectp);
2055 }
2056
2057 /* When loading sections, we look either for uncompressed section or for
2058 compressed section names. */
2059
2060 static int
2061 section_is_p (const char *section_name,
2062 const struct dwarf2_section_names *names)
2063 {
2064 if (names->normal != NULL
2065 && strcmp (section_name, names->normal) == 0)
2066 return 1;
2067 if (names->compressed != NULL
2068 && strcmp (section_name, names->compressed) == 0)
2069 return 1;
2070 return 0;
2071 }
2072
2073 /* This function is mapped across the sections and remembers the
2074 offset and size of each of the debugging sections we are interested
2075 in. */
2076
2077 static void
2078 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2079 {
2080 const struct dwarf2_debug_sections *names;
2081 flagword aflag = bfd_get_section_flags (abfd, sectp);
2082
2083 if (vnames == NULL)
2084 names = &dwarf2_elf_names;
2085 else
2086 names = (const struct dwarf2_debug_sections *) vnames;
2087
2088 if ((aflag & SEC_HAS_CONTENTS) == 0)
2089 {
2090 }
2091 else if (section_is_p (sectp->name, &names->info))
2092 {
2093 dwarf2_per_objfile->info.s.asection = sectp;
2094 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2095 }
2096 else if (section_is_p (sectp->name, &names->abbrev))
2097 {
2098 dwarf2_per_objfile->abbrev.s.asection = sectp;
2099 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2100 }
2101 else if (section_is_p (sectp->name, &names->line))
2102 {
2103 dwarf2_per_objfile->line.s.asection = sectp;
2104 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2105 }
2106 else if (section_is_p (sectp->name, &names->loc))
2107 {
2108 dwarf2_per_objfile->loc.s.asection = sectp;
2109 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2110 }
2111 else if (section_is_p (sectp->name, &names->macinfo))
2112 {
2113 dwarf2_per_objfile->macinfo.s.asection = sectp;
2114 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2115 }
2116 else if (section_is_p (sectp->name, &names->macro))
2117 {
2118 dwarf2_per_objfile->macro.s.asection = sectp;
2119 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2120 }
2121 else if (section_is_p (sectp->name, &names->str))
2122 {
2123 dwarf2_per_objfile->str.s.asection = sectp;
2124 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2125 }
2126 else if (section_is_p (sectp->name, &names->addr))
2127 {
2128 dwarf2_per_objfile->addr.s.asection = sectp;
2129 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2130 }
2131 else if (section_is_p (sectp->name, &names->frame))
2132 {
2133 dwarf2_per_objfile->frame.s.asection = sectp;
2134 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2135 }
2136 else if (section_is_p (sectp->name, &names->eh_frame))
2137 {
2138 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2139 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2140 }
2141 else if (section_is_p (sectp->name, &names->ranges))
2142 {
2143 dwarf2_per_objfile->ranges.s.asection = sectp;
2144 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2145 }
2146 else if (section_is_p (sectp->name, &names->types))
2147 {
2148 struct dwarf2_section_info type_section;
2149
2150 memset (&type_section, 0, sizeof (type_section));
2151 type_section.s.asection = sectp;
2152 type_section.size = bfd_get_section_size (sectp);
2153
2154 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2155 &type_section);
2156 }
2157 else if (section_is_p (sectp->name, &names->gdb_index))
2158 {
2159 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2160 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2161 }
2162
2163 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2164 && bfd_section_vma (abfd, sectp) == 0)
2165 dwarf2_per_objfile->has_section_at_zero = 1;
2166 }
2167
2168 /* A helper function that decides whether a section is empty,
2169 or not present. */
2170
2171 static int
2172 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2173 {
2174 if (section->is_virtual)
2175 return section->size == 0;
2176 return section->s.asection == NULL || section->size == 0;
2177 }
2178
2179 /* Read the contents of the section INFO.
2180 OBJFILE is the main object file, but not necessarily the file where
2181 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2182 of the DWO file.
2183 If the section is compressed, uncompress it before returning. */
2184
2185 static void
2186 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2187 {
2188 asection *sectp;
2189 bfd *abfd;
2190 gdb_byte *buf, *retbuf;
2191
2192 if (info->readin)
2193 return;
2194 info->buffer = NULL;
2195 info->readin = 1;
2196
2197 if (dwarf2_section_empty_p (info))
2198 return;
2199
2200 sectp = get_section_bfd_section (info);
2201
2202 /* If this is a virtual section we need to read in the real one first. */
2203 if (info->is_virtual)
2204 {
2205 struct dwarf2_section_info *containing_section =
2206 get_containing_section (info);
2207
2208 gdb_assert (sectp != NULL);
2209 if ((sectp->flags & SEC_RELOC) != 0)
2210 {
2211 error (_("Dwarf Error: DWP format V2 with relocations is not"
2212 " supported in section %s [in module %s]"),
2213 get_section_name (info), get_section_file_name (info));
2214 }
2215 dwarf2_read_section (objfile, containing_section);
2216 /* Other code should have already caught virtual sections that don't
2217 fit. */
2218 gdb_assert (info->virtual_offset + info->size
2219 <= containing_section->size);
2220 /* If the real section is empty or there was a problem reading the
2221 section we shouldn't get here. */
2222 gdb_assert (containing_section->buffer != NULL);
2223 info->buffer = containing_section->buffer + info->virtual_offset;
2224 return;
2225 }
2226
2227 /* If the section has relocations, we must read it ourselves.
2228 Otherwise we attach it to the BFD. */
2229 if ((sectp->flags & SEC_RELOC) == 0)
2230 {
2231 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2232 return;
2233 }
2234
2235 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2236 info->buffer = buf;
2237
2238 /* When debugging .o files, we may need to apply relocations; see
2239 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2240 We never compress sections in .o files, so we only need to
2241 try this when the section is not compressed. */
2242 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2243 if (retbuf != NULL)
2244 {
2245 info->buffer = retbuf;
2246 return;
2247 }
2248
2249 abfd = get_section_bfd_owner (info);
2250 gdb_assert (abfd != NULL);
2251
2252 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2253 || bfd_bread (buf, info->size, abfd) != info->size)
2254 {
2255 error (_("Dwarf Error: Can't read DWARF data"
2256 " in section %s [in module %s]"),
2257 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2258 }
2259 }
2260
2261 /* A helper function that returns the size of a section in a safe way.
2262 If you are positive that the section has been read before using the
2263 size, then it is safe to refer to the dwarf2_section_info object's
2264 "size" field directly. In other cases, you must call this
2265 function, because for compressed sections the size field is not set
2266 correctly until the section has been read. */
2267
2268 static bfd_size_type
2269 dwarf2_section_size (struct objfile *objfile,
2270 struct dwarf2_section_info *info)
2271 {
2272 if (!info->readin)
2273 dwarf2_read_section (objfile, info);
2274 return info->size;
2275 }
2276
2277 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2278 SECTION_NAME. */
2279
2280 void
2281 dwarf2_get_section_info (struct objfile *objfile,
2282 enum dwarf2_section_enum sect,
2283 asection **sectp, const gdb_byte **bufp,
2284 bfd_size_type *sizep)
2285 {
2286 struct dwarf2_per_objfile *data
2287 = objfile_data (objfile, dwarf2_objfile_data_key);
2288 struct dwarf2_section_info *info;
2289
2290 /* We may see an objfile without any DWARF, in which case we just
2291 return nothing. */
2292 if (data == NULL)
2293 {
2294 *sectp = NULL;
2295 *bufp = NULL;
2296 *sizep = 0;
2297 return;
2298 }
2299 switch (sect)
2300 {
2301 case DWARF2_DEBUG_FRAME:
2302 info = &data->frame;
2303 break;
2304 case DWARF2_EH_FRAME:
2305 info = &data->eh_frame;
2306 break;
2307 default:
2308 gdb_assert_not_reached ("unexpected section");
2309 }
2310
2311 dwarf2_read_section (objfile, info);
2312
2313 *sectp = get_section_bfd_section (info);
2314 *bufp = info->buffer;
2315 *sizep = info->size;
2316 }
2317
2318 /* A helper function to find the sections for a .dwz file. */
2319
2320 static void
2321 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2322 {
2323 struct dwz_file *dwz_file = arg;
2324
2325 /* Note that we only support the standard ELF names, because .dwz
2326 is ELF-only (at the time of writing). */
2327 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2328 {
2329 dwz_file->abbrev.s.asection = sectp;
2330 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2331 }
2332 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2333 {
2334 dwz_file->info.s.asection = sectp;
2335 dwz_file->info.size = bfd_get_section_size (sectp);
2336 }
2337 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2338 {
2339 dwz_file->str.s.asection = sectp;
2340 dwz_file->str.size = bfd_get_section_size (sectp);
2341 }
2342 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2343 {
2344 dwz_file->line.s.asection = sectp;
2345 dwz_file->line.size = bfd_get_section_size (sectp);
2346 }
2347 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2348 {
2349 dwz_file->macro.s.asection = sectp;
2350 dwz_file->macro.size = bfd_get_section_size (sectp);
2351 }
2352 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2353 {
2354 dwz_file->gdb_index.s.asection = sectp;
2355 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2356 }
2357 }
2358
2359 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2360 there is no .gnu_debugaltlink section in the file. Error if there
2361 is such a section but the file cannot be found. */
2362
2363 static struct dwz_file *
2364 dwarf2_get_dwz_file (void)
2365 {
2366 bfd *dwz_bfd;
2367 char *data;
2368 struct cleanup *cleanup;
2369 const char *filename;
2370 struct dwz_file *result;
2371 bfd_size_type buildid_len_arg;
2372 size_t buildid_len;
2373 bfd_byte *buildid;
2374
2375 if (dwarf2_per_objfile->dwz_file != NULL)
2376 return dwarf2_per_objfile->dwz_file;
2377
2378 bfd_set_error (bfd_error_no_error);
2379 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2380 &buildid_len_arg, &buildid);
2381 if (data == NULL)
2382 {
2383 if (bfd_get_error () == bfd_error_no_error)
2384 return NULL;
2385 error (_("could not read '.gnu_debugaltlink' section: %s"),
2386 bfd_errmsg (bfd_get_error ()));
2387 }
2388 cleanup = make_cleanup (xfree, data);
2389 make_cleanup (xfree, buildid);
2390
2391 buildid_len = (size_t) buildid_len_arg;
2392
2393 filename = (const char *) data;
2394 if (!IS_ABSOLUTE_PATH (filename))
2395 {
2396 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2397 char *rel;
2398
2399 make_cleanup (xfree, abs);
2400 abs = ldirname (abs);
2401 make_cleanup (xfree, abs);
2402
2403 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2404 make_cleanup (xfree, rel);
2405 filename = rel;
2406 }
2407
2408 /* First try the file name given in the section. If that doesn't
2409 work, try to use the build-id instead. */
2410 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2411 if (dwz_bfd != NULL)
2412 {
2413 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2414 {
2415 gdb_bfd_unref (dwz_bfd);
2416 dwz_bfd = NULL;
2417 }
2418 }
2419
2420 if (dwz_bfd == NULL)
2421 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2422
2423 if (dwz_bfd == NULL)
2424 error (_("could not find '.gnu_debugaltlink' file for %s"),
2425 objfile_name (dwarf2_per_objfile->objfile));
2426
2427 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2428 struct dwz_file);
2429 result->dwz_bfd = dwz_bfd;
2430
2431 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2432
2433 do_cleanups (cleanup);
2434
2435 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2436 dwarf2_per_objfile->dwz_file = result;
2437 return result;
2438 }
2439 \f
2440 /* DWARF quick_symbols_functions support. */
2441
2442 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2443 unique line tables, so we maintain a separate table of all .debug_line
2444 derived entries to support the sharing.
2445 All the quick functions need is the list of file names. We discard the
2446 line_header when we're done and don't need to record it here. */
2447 struct quick_file_names
2448 {
2449 /* The data used to construct the hash key. */
2450 struct stmt_list_hash hash;
2451
2452 /* The number of entries in file_names, real_names. */
2453 unsigned int num_file_names;
2454
2455 /* The file names from the line table, after being run through
2456 file_full_name. */
2457 const char **file_names;
2458
2459 /* The file names from the line table after being run through
2460 gdb_realpath. These are computed lazily. */
2461 const char **real_names;
2462 };
2463
2464 /* When using the index (and thus not using psymtabs), each CU has an
2465 object of this type. This is used to hold information needed by
2466 the various "quick" methods. */
2467 struct dwarf2_per_cu_quick_data
2468 {
2469 /* The file table. This can be NULL if there was no file table
2470 or it's currently not read in.
2471 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2472 struct quick_file_names *file_names;
2473
2474 /* The corresponding symbol table. This is NULL if symbols for this
2475 CU have not yet been read. */
2476 struct symtab *symtab;
2477
2478 /* A temporary mark bit used when iterating over all CUs in
2479 expand_symtabs_matching. */
2480 unsigned int mark : 1;
2481
2482 /* True if we've tried to read the file table and found there isn't one.
2483 There will be no point in trying to read it again next time. */
2484 unsigned int no_file_data : 1;
2485 };
2486
2487 /* Utility hash function for a stmt_list_hash. */
2488
2489 static hashval_t
2490 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2491 {
2492 hashval_t v = 0;
2493
2494 if (stmt_list_hash->dwo_unit != NULL)
2495 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2496 v += stmt_list_hash->line_offset.sect_off;
2497 return v;
2498 }
2499
2500 /* Utility equality function for a stmt_list_hash. */
2501
2502 static int
2503 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2504 const struct stmt_list_hash *rhs)
2505 {
2506 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2507 return 0;
2508 if (lhs->dwo_unit != NULL
2509 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2510 return 0;
2511
2512 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2513 }
2514
2515 /* Hash function for a quick_file_names. */
2516
2517 static hashval_t
2518 hash_file_name_entry (const void *e)
2519 {
2520 const struct quick_file_names *file_data = e;
2521
2522 return hash_stmt_list_entry (&file_data->hash);
2523 }
2524
2525 /* Equality function for a quick_file_names. */
2526
2527 static int
2528 eq_file_name_entry (const void *a, const void *b)
2529 {
2530 const struct quick_file_names *ea = a;
2531 const struct quick_file_names *eb = b;
2532
2533 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2534 }
2535
2536 /* Delete function for a quick_file_names. */
2537
2538 static void
2539 delete_file_name_entry (void *e)
2540 {
2541 struct quick_file_names *file_data = e;
2542 int i;
2543
2544 for (i = 0; i < file_data->num_file_names; ++i)
2545 {
2546 xfree ((void*) file_data->file_names[i]);
2547 if (file_data->real_names)
2548 xfree ((void*) file_data->real_names[i]);
2549 }
2550
2551 /* The space for the struct itself lives on objfile_obstack,
2552 so we don't free it here. */
2553 }
2554
2555 /* Create a quick_file_names hash table. */
2556
2557 static htab_t
2558 create_quick_file_names_table (unsigned int nr_initial_entries)
2559 {
2560 return htab_create_alloc (nr_initial_entries,
2561 hash_file_name_entry, eq_file_name_entry,
2562 delete_file_name_entry, xcalloc, xfree);
2563 }
2564
2565 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2566 have to be created afterwards. You should call age_cached_comp_units after
2567 processing PER_CU->CU. dw2_setup must have been already called. */
2568
2569 static void
2570 load_cu (struct dwarf2_per_cu_data *per_cu)
2571 {
2572 if (per_cu->is_debug_types)
2573 load_full_type_unit (per_cu);
2574 else
2575 load_full_comp_unit (per_cu, language_minimal);
2576
2577 gdb_assert (per_cu->cu != NULL);
2578
2579 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2580 }
2581
2582 /* Read in the symbols for PER_CU. */
2583
2584 static void
2585 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2586 {
2587 struct cleanup *back_to;
2588
2589 /* Skip type_unit_groups, reading the type units they contain
2590 is handled elsewhere. */
2591 if (IS_TYPE_UNIT_GROUP (per_cu))
2592 return;
2593
2594 back_to = make_cleanup (dwarf2_release_queue, NULL);
2595
2596 if (dwarf2_per_objfile->using_index
2597 ? per_cu->v.quick->symtab == NULL
2598 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2599 {
2600 queue_comp_unit (per_cu, language_minimal);
2601 load_cu (per_cu);
2602
2603 /* If we just loaded a CU from a DWO, and we're working with an index
2604 that may badly handle TUs, load all the TUs in that DWO as well.
2605 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2606 if (!per_cu->is_debug_types
2607 && per_cu->cu->dwo_unit != NULL
2608 && dwarf2_per_objfile->index_table != NULL
2609 && dwarf2_per_objfile->index_table->version <= 7
2610 /* DWP files aren't supported yet. */
2611 && get_dwp_file () == NULL)
2612 queue_and_load_all_dwo_tus (per_cu);
2613 }
2614
2615 process_queue ();
2616
2617 /* Age the cache, releasing compilation units that have not
2618 been used recently. */
2619 age_cached_comp_units ();
2620
2621 do_cleanups (back_to);
2622 }
2623
2624 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2625 the objfile from which this CU came. Returns the resulting symbol
2626 table. */
2627
2628 static struct symtab *
2629 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2630 {
2631 gdb_assert (dwarf2_per_objfile->using_index);
2632 if (!per_cu->v.quick->symtab)
2633 {
2634 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2635 increment_reading_symtab ();
2636 dw2_do_instantiate_symtab (per_cu);
2637 process_cu_includes ();
2638 do_cleanups (back_to);
2639 }
2640 return per_cu->v.quick->symtab;
2641 }
2642
2643 /* Return the CU given its index.
2644
2645 This is intended for loops like:
2646
2647 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2648 + dwarf2_per_objfile->n_type_units); ++i)
2649 {
2650 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2651
2652 ...;
2653 }
2654 */
2655
2656 static struct dwarf2_per_cu_data *
2657 dw2_get_cu (int index)
2658 {
2659 if (index >= dwarf2_per_objfile->n_comp_units)
2660 {
2661 index -= dwarf2_per_objfile->n_comp_units;
2662 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2663 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2664 }
2665
2666 return dwarf2_per_objfile->all_comp_units[index];
2667 }
2668
2669 /* Return the primary CU given its index.
2670 The difference between this function and dw2_get_cu is in the handling
2671 of type units (TUs). Here we return the type_unit_group object.
2672
2673 This is intended for loops like:
2674
2675 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2676 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2677 {
2678 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2679
2680 ...;
2681 }
2682 */
2683
2684 static struct dwarf2_per_cu_data *
2685 dw2_get_primary_cu (int index)
2686 {
2687 if (index >= dwarf2_per_objfile->n_comp_units)
2688 {
2689 index -= dwarf2_per_objfile->n_comp_units;
2690 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2691 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2692 }
2693
2694 return dwarf2_per_objfile->all_comp_units[index];
2695 }
2696
2697 /* A helper for create_cus_from_index that handles a given list of
2698 CUs. */
2699
2700 static void
2701 create_cus_from_index_list (struct objfile *objfile,
2702 const gdb_byte *cu_list, offset_type n_elements,
2703 struct dwarf2_section_info *section,
2704 int is_dwz,
2705 int base_offset)
2706 {
2707 offset_type i;
2708
2709 for (i = 0; i < n_elements; i += 2)
2710 {
2711 struct dwarf2_per_cu_data *the_cu;
2712 ULONGEST offset, length;
2713
2714 gdb_static_assert (sizeof (ULONGEST) >= 8);
2715 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2716 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2717 cu_list += 2 * 8;
2718
2719 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2720 struct dwarf2_per_cu_data);
2721 the_cu->offset.sect_off = offset;
2722 the_cu->length = length;
2723 the_cu->objfile = objfile;
2724 the_cu->section = section;
2725 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2726 struct dwarf2_per_cu_quick_data);
2727 the_cu->is_dwz = is_dwz;
2728 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2729 }
2730 }
2731
2732 /* Read the CU list from the mapped index, and use it to create all
2733 the CU objects for this objfile. */
2734
2735 static void
2736 create_cus_from_index (struct objfile *objfile,
2737 const gdb_byte *cu_list, offset_type cu_list_elements,
2738 const gdb_byte *dwz_list, offset_type dwz_elements)
2739 {
2740 struct dwz_file *dwz;
2741
2742 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2743 dwarf2_per_objfile->all_comp_units
2744 = obstack_alloc (&objfile->objfile_obstack,
2745 dwarf2_per_objfile->n_comp_units
2746 * sizeof (struct dwarf2_per_cu_data *));
2747
2748 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2749 &dwarf2_per_objfile->info, 0, 0);
2750
2751 if (dwz_elements == 0)
2752 return;
2753
2754 dwz = dwarf2_get_dwz_file ();
2755 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2756 cu_list_elements / 2);
2757 }
2758
2759 /* Create the signatured type hash table from the index. */
2760
2761 static void
2762 create_signatured_type_table_from_index (struct objfile *objfile,
2763 struct dwarf2_section_info *section,
2764 const gdb_byte *bytes,
2765 offset_type elements)
2766 {
2767 offset_type i;
2768 htab_t sig_types_hash;
2769
2770 dwarf2_per_objfile->n_type_units = elements / 3;
2771 dwarf2_per_objfile->all_type_units
2772 = xmalloc (dwarf2_per_objfile->n_type_units
2773 * sizeof (struct signatured_type *));
2774
2775 sig_types_hash = allocate_signatured_type_table (objfile);
2776
2777 for (i = 0; i < elements; i += 3)
2778 {
2779 struct signatured_type *sig_type;
2780 ULONGEST offset, type_offset_in_tu, signature;
2781 void **slot;
2782
2783 gdb_static_assert (sizeof (ULONGEST) >= 8);
2784 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2785 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2786 BFD_ENDIAN_LITTLE);
2787 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2788 bytes += 3 * 8;
2789
2790 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2791 struct signatured_type);
2792 sig_type->signature = signature;
2793 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2794 sig_type->per_cu.is_debug_types = 1;
2795 sig_type->per_cu.section = section;
2796 sig_type->per_cu.offset.sect_off = offset;
2797 sig_type->per_cu.objfile = objfile;
2798 sig_type->per_cu.v.quick
2799 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2800 struct dwarf2_per_cu_quick_data);
2801
2802 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2803 *slot = sig_type;
2804
2805 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2806 }
2807
2808 dwarf2_per_objfile->signatured_types = sig_types_hash;
2809 }
2810
2811 /* Read the address map data from the mapped index, and use it to
2812 populate the objfile's psymtabs_addrmap. */
2813
2814 static void
2815 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2816 {
2817 const gdb_byte *iter, *end;
2818 struct obstack temp_obstack;
2819 struct addrmap *mutable_map;
2820 struct cleanup *cleanup;
2821 CORE_ADDR baseaddr;
2822
2823 obstack_init (&temp_obstack);
2824 cleanup = make_cleanup_obstack_free (&temp_obstack);
2825 mutable_map = addrmap_create_mutable (&temp_obstack);
2826
2827 iter = index->address_table;
2828 end = iter + index->address_table_size;
2829
2830 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2831
2832 while (iter < end)
2833 {
2834 ULONGEST hi, lo, cu_index;
2835 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2836 iter += 8;
2837 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2838 iter += 8;
2839 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2840 iter += 4;
2841
2842 if (lo > hi)
2843 {
2844 complaint (&symfile_complaints,
2845 _(".gdb_index address table has invalid range (%s - %s)"),
2846 hex_string (lo), hex_string (hi));
2847 continue;
2848 }
2849
2850 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2851 {
2852 complaint (&symfile_complaints,
2853 _(".gdb_index address table has invalid CU number %u"),
2854 (unsigned) cu_index);
2855 continue;
2856 }
2857
2858 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2859 dw2_get_cu (cu_index));
2860 }
2861
2862 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2863 &objfile->objfile_obstack);
2864 do_cleanups (cleanup);
2865 }
2866
2867 /* The hash function for strings in the mapped index. This is the same as
2868 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2869 implementation. This is necessary because the hash function is tied to the
2870 format of the mapped index file. The hash values do not have to match with
2871 SYMBOL_HASH_NEXT.
2872
2873 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2874
2875 static hashval_t
2876 mapped_index_string_hash (int index_version, const void *p)
2877 {
2878 const unsigned char *str = (const unsigned char *) p;
2879 hashval_t r = 0;
2880 unsigned char c;
2881
2882 while ((c = *str++) != 0)
2883 {
2884 if (index_version >= 5)
2885 c = tolower (c);
2886 r = r * 67 + c - 113;
2887 }
2888
2889 return r;
2890 }
2891
2892 /* Find a slot in the mapped index INDEX for the object named NAME.
2893 If NAME is found, set *VEC_OUT to point to the CU vector in the
2894 constant pool and return 1. If NAME cannot be found, return 0. */
2895
2896 static int
2897 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2898 offset_type **vec_out)
2899 {
2900 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2901 offset_type hash;
2902 offset_type slot, step;
2903 int (*cmp) (const char *, const char *);
2904
2905 if (current_language->la_language == language_cplus
2906 || current_language->la_language == language_java
2907 || current_language->la_language == language_fortran)
2908 {
2909 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2910 not contain any. */
2911 const char *paren = strchr (name, '(');
2912
2913 if (paren)
2914 {
2915 char *dup;
2916
2917 dup = xmalloc (paren - name + 1);
2918 memcpy (dup, name, paren - name);
2919 dup[paren - name] = 0;
2920
2921 make_cleanup (xfree, dup);
2922 name = dup;
2923 }
2924 }
2925
2926 /* Index version 4 did not support case insensitive searches. But the
2927 indices for case insensitive languages are built in lowercase, therefore
2928 simulate our NAME being searched is also lowercased. */
2929 hash = mapped_index_string_hash ((index->version == 4
2930 && case_sensitivity == case_sensitive_off
2931 ? 5 : index->version),
2932 name);
2933
2934 slot = hash & (index->symbol_table_slots - 1);
2935 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2936 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2937
2938 for (;;)
2939 {
2940 /* Convert a slot number to an offset into the table. */
2941 offset_type i = 2 * slot;
2942 const char *str;
2943 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2944 {
2945 do_cleanups (back_to);
2946 return 0;
2947 }
2948
2949 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2950 if (!cmp (name, str))
2951 {
2952 *vec_out = (offset_type *) (index->constant_pool
2953 + MAYBE_SWAP (index->symbol_table[i + 1]));
2954 do_cleanups (back_to);
2955 return 1;
2956 }
2957
2958 slot = (slot + step) & (index->symbol_table_slots - 1);
2959 }
2960 }
2961
2962 /* A helper function that reads the .gdb_index from SECTION and fills
2963 in MAP. FILENAME is the name of the file containing the section;
2964 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2965 ok to use deprecated sections.
2966
2967 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2968 out parameters that are filled in with information about the CU and
2969 TU lists in the section.
2970
2971 Returns 1 if all went well, 0 otherwise. */
2972
2973 static int
2974 read_index_from_section (struct objfile *objfile,
2975 const char *filename,
2976 int deprecated_ok,
2977 struct dwarf2_section_info *section,
2978 struct mapped_index *map,
2979 const gdb_byte **cu_list,
2980 offset_type *cu_list_elements,
2981 const gdb_byte **types_list,
2982 offset_type *types_list_elements)
2983 {
2984 const gdb_byte *addr;
2985 offset_type version;
2986 offset_type *metadata;
2987 int i;
2988
2989 if (dwarf2_section_empty_p (section))
2990 return 0;
2991
2992 /* Older elfutils strip versions could keep the section in the main
2993 executable while splitting it for the separate debug info file. */
2994 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
2995 return 0;
2996
2997 dwarf2_read_section (objfile, section);
2998
2999 addr = section->buffer;
3000 /* Version check. */
3001 version = MAYBE_SWAP (*(offset_type *) addr);
3002 /* Versions earlier than 3 emitted every copy of a psymbol. This
3003 causes the index to behave very poorly for certain requests. Version 3
3004 contained incomplete addrmap. So, it seems better to just ignore such
3005 indices. */
3006 if (version < 4)
3007 {
3008 static int warning_printed = 0;
3009 if (!warning_printed)
3010 {
3011 warning (_("Skipping obsolete .gdb_index section in %s."),
3012 filename);
3013 warning_printed = 1;
3014 }
3015 return 0;
3016 }
3017 /* Index version 4 uses a different hash function than index version
3018 5 and later.
3019
3020 Versions earlier than 6 did not emit psymbols for inlined
3021 functions. Using these files will cause GDB not to be able to
3022 set breakpoints on inlined functions by name, so we ignore these
3023 indices unless the user has done
3024 "set use-deprecated-index-sections on". */
3025 if (version < 6 && !deprecated_ok)
3026 {
3027 static int warning_printed = 0;
3028 if (!warning_printed)
3029 {
3030 warning (_("\
3031 Skipping deprecated .gdb_index section in %s.\n\
3032 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3033 to use the section anyway."),
3034 filename);
3035 warning_printed = 1;
3036 }
3037 return 0;
3038 }
3039 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3040 of the TU (for symbols coming from TUs),
3041 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3042 Plus gold-generated indices can have duplicate entries for global symbols,
3043 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3044 These are just performance bugs, and we can't distinguish gdb-generated
3045 indices from gold-generated ones, so issue no warning here. */
3046
3047 /* Indexes with higher version than the one supported by GDB may be no
3048 longer backward compatible. */
3049 if (version > 8)
3050 return 0;
3051
3052 map->version = version;
3053 map->total_size = section->size;
3054
3055 metadata = (offset_type *) (addr + sizeof (offset_type));
3056
3057 i = 0;
3058 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3059 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3060 / 8);
3061 ++i;
3062
3063 *types_list = addr + MAYBE_SWAP (metadata[i]);
3064 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3065 - MAYBE_SWAP (metadata[i]))
3066 / 8);
3067 ++i;
3068
3069 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3070 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3071 - MAYBE_SWAP (metadata[i]));
3072 ++i;
3073
3074 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3075 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3076 - MAYBE_SWAP (metadata[i]))
3077 / (2 * sizeof (offset_type)));
3078 ++i;
3079
3080 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3081
3082 return 1;
3083 }
3084
3085
3086 /* Read the index file. If everything went ok, initialize the "quick"
3087 elements of all the CUs and return 1. Otherwise, return 0. */
3088
3089 static int
3090 dwarf2_read_index (struct objfile *objfile)
3091 {
3092 struct mapped_index local_map, *map;
3093 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3094 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3095 struct dwz_file *dwz;
3096
3097 if (!read_index_from_section (objfile, objfile_name (objfile),
3098 use_deprecated_index_sections,
3099 &dwarf2_per_objfile->gdb_index, &local_map,
3100 &cu_list, &cu_list_elements,
3101 &types_list, &types_list_elements))
3102 return 0;
3103
3104 /* Don't use the index if it's empty. */
3105 if (local_map.symbol_table_slots == 0)
3106 return 0;
3107
3108 /* If there is a .dwz file, read it so we can get its CU list as
3109 well. */
3110 dwz = dwarf2_get_dwz_file ();
3111 if (dwz != NULL)
3112 {
3113 struct mapped_index dwz_map;
3114 const gdb_byte *dwz_types_ignore;
3115 offset_type dwz_types_elements_ignore;
3116
3117 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3118 1,
3119 &dwz->gdb_index, &dwz_map,
3120 &dwz_list, &dwz_list_elements,
3121 &dwz_types_ignore,
3122 &dwz_types_elements_ignore))
3123 {
3124 warning (_("could not read '.gdb_index' section from %s; skipping"),
3125 bfd_get_filename (dwz->dwz_bfd));
3126 return 0;
3127 }
3128 }
3129
3130 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3131 dwz_list_elements);
3132
3133 if (types_list_elements)
3134 {
3135 struct dwarf2_section_info *section;
3136
3137 /* We can only handle a single .debug_types when we have an
3138 index. */
3139 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3140 return 0;
3141
3142 section = VEC_index (dwarf2_section_info_def,
3143 dwarf2_per_objfile->types, 0);
3144
3145 create_signatured_type_table_from_index (objfile, section, types_list,
3146 types_list_elements);
3147 }
3148
3149 create_addrmap_from_index (objfile, &local_map);
3150
3151 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3152 *map = local_map;
3153
3154 dwarf2_per_objfile->index_table = map;
3155 dwarf2_per_objfile->using_index = 1;
3156 dwarf2_per_objfile->quick_file_names_table =
3157 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3158
3159 return 1;
3160 }
3161
3162 /* A helper for the "quick" functions which sets the global
3163 dwarf2_per_objfile according to OBJFILE. */
3164
3165 static void
3166 dw2_setup (struct objfile *objfile)
3167 {
3168 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3169 gdb_assert (dwarf2_per_objfile);
3170 }
3171
3172 /* die_reader_func for dw2_get_file_names. */
3173
3174 static void
3175 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3176 const gdb_byte *info_ptr,
3177 struct die_info *comp_unit_die,
3178 int has_children,
3179 void *data)
3180 {
3181 struct dwarf2_cu *cu = reader->cu;
3182 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3183 struct objfile *objfile = dwarf2_per_objfile->objfile;
3184 struct dwarf2_per_cu_data *lh_cu;
3185 struct line_header *lh;
3186 struct attribute *attr;
3187 int i;
3188 const char *name, *comp_dir;
3189 void **slot;
3190 struct quick_file_names *qfn;
3191 unsigned int line_offset;
3192
3193 gdb_assert (! this_cu->is_debug_types);
3194
3195 /* Our callers never want to match partial units -- instead they
3196 will match the enclosing full CU. */
3197 if (comp_unit_die->tag == DW_TAG_partial_unit)
3198 {
3199 this_cu->v.quick->no_file_data = 1;
3200 return;
3201 }
3202
3203 lh_cu = this_cu;
3204 lh = NULL;
3205 slot = NULL;
3206 line_offset = 0;
3207
3208 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3209 if (attr)
3210 {
3211 struct quick_file_names find_entry;
3212
3213 line_offset = DW_UNSND (attr);
3214
3215 /* We may have already read in this line header (TU line header sharing).
3216 If we have we're done. */
3217 find_entry.hash.dwo_unit = cu->dwo_unit;
3218 find_entry.hash.line_offset.sect_off = line_offset;
3219 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3220 &find_entry, INSERT);
3221 if (*slot != NULL)
3222 {
3223 lh_cu->v.quick->file_names = *slot;
3224 return;
3225 }
3226
3227 lh = dwarf_decode_line_header (line_offset, cu);
3228 }
3229 if (lh == NULL)
3230 {
3231 lh_cu->v.quick->no_file_data = 1;
3232 return;
3233 }
3234
3235 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3236 qfn->hash.dwo_unit = cu->dwo_unit;
3237 qfn->hash.line_offset.sect_off = line_offset;
3238 gdb_assert (slot != NULL);
3239 *slot = qfn;
3240
3241 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3242
3243 qfn->num_file_names = lh->num_file_names;
3244 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3245 lh->num_file_names * sizeof (char *));
3246 for (i = 0; i < lh->num_file_names; ++i)
3247 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3248 qfn->real_names = NULL;
3249
3250 free_line_header (lh);
3251
3252 lh_cu->v.quick->file_names = qfn;
3253 }
3254
3255 /* A helper for the "quick" functions which attempts to read the line
3256 table for THIS_CU. */
3257
3258 static struct quick_file_names *
3259 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3260 {
3261 /* This should never be called for TUs. */
3262 gdb_assert (! this_cu->is_debug_types);
3263 /* Nor type unit groups. */
3264 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3265
3266 if (this_cu->v.quick->file_names != NULL)
3267 return this_cu->v.quick->file_names;
3268 /* If we know there is no line data, no point in looking again. */
3269 if (this_cu->v.quick->no_file_data)
3270 return NULL;
3271
3272 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3273
3274 if (this_cu->v.quick->no_file_data)
3275 return NULL;
3276 return this_cu->v.quick->file_names;
3277 }
3278
3279 /* A helper for the "quick" functions which computes and caches the
3280 real path for a given file name from the line table. */
3281
3282 static const char *
3283 dw2_get_real_path (struct objfile *objfile,
3284 struct quick_file_names *qfn, int index)
3285 {
3286 if (qfn->real_names == NULL)
3287 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3288 qfn->num_file_names, char *);
3289
3290 if (qfn->real_names[index] == NULL)
3291 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3292
3293 return qfn->real_names[index];
3294 }
3295
3296 static struct symtab *
3297 dw2_find_last_source_symtab (struct objfile *objfile)
3298 {
3299 int index;
3300
3301 dw2_setup (objfile);
3302 index = dwarf2_per_objfile->n_comp_units - 1;
3303 return dw2_instantiate_symtab (dw2_get_cu (index));
3304 }
3305
3306 /* Traversal function for dw2_forget_cached_source_info. */
3307
3308 static int
3309 dw2_free_cached_file_names (void **slot, void *info)
3310 {
3311 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3312
3313 if (file_data->real_names)
3314 {
3315 int i;
3316
3317 for (i = 0; i < file_data->num_file_names; ++i)
3318 {
3319 xfree ((void*) file_data->real_names[i]);
3320 file_data->real_names[i] = NULL;
3321 }
3322 }
3323
3324 return 1;
3325 }
3326
3327 static void
3328 dw2_forget_cached_source_info (struct objfile *objfile)
3329 {
3330 dw2_setup (objfile);
3331
3332 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3333 dw2_free_cached_file_names, NULL);
3334 }
3335
3336 /* Helper function for dw2_map_symtabs_matching_filename that expands
3337 the symtabs and calls the iterator. */
3338
3339 static int
3340 dw2_map_expand_apply (struct objfile *objfile,
3341 struct dwarf2_per_cu_data *per_cu,
3342 const char *name, const char *real_path,
3343 int (*callback) (struct symtab *, void *),
3344 void *data)
3345 {
3346 struct symtab *last_made = objfile->symtabs;
3347
3348 /* Don't visit already-expanded CUs. */
3349 if (per_cu->v.quick->symtab)
3350 return 0;
3351
3352 /* This may expand more than one symtab, and we want to iterate over
3353 all of them. */
3354 dw2_instantiate_symtab (per_cu);
3355
3356 return iterate_over_some_symtabs (name, real_path, callback, data,
3357 objfile->symtabs, last_made);
3358 }
3359
3360 /* Implementation of the map_symtabs_matching_filename method. */
3361
3362 static int
3363 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3364 const char *real_path,
3365 int (*callback) (struct symtab *, void *),
3366 void *data)
3367 {
3368 int i;
3369 const char *name_basename = lbasename (name);
3370
3371 dw2_setup (objfile);
3372
3373 /* The rule is CUs specify all the files, including those used by
3374 any TU, so there's no need to scan TUs here. */
3375
3376 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3377 {
3378 int j;
3379 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3380 struct quick_file_names *file_data;
3381
3382 /* We only need to look at symtabs not already expanded. */
3383 if (per_cu->v.quick->symtab)
3384 continue;
3385
3386 file_data = dw2_get_file_names (per_cu);
3387 if (file_data == NULL)
3388 continue;
3389
3390 for (j = 0; j < file_data->num_file_names; ++j)
3391 {
3392 const char *this_name = file_data->file_names[j];
3393 const char *this_real_name;
3394
3395 if (compare_filenames_for_search (this_name, name))
3396 {
3397 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3398 callback, data))
3399 return 1;
3400 continue;
3401 }
3402
3403 /* Before we invoke realpath, which can get expensive when many
3404 files are involved, do a quick comparison of the basenames. */
3405 if (! basenames_may_differ
3406 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3407 continue;
3408
3409 this_real_name = dw2_get_real_path (objfile, file_data, j);
3410 if (compare_filenames_for_search (this_real_name, name))
3411 {
3412 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3413 callback, data))
3414 return 1;
3415 continue;
3416 }
3417
3418 if (real_path != NULL)
3419 {
3420 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3421 gdb_assert (IS_ABSOLUTE_PATH (name));
3422 if (this_real_name != NULL
3423 && FILENAME_CMP (real_path, this_real_name) == 0)
3424 {
3425 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3426 callback, data))
3427 return 1;
3428 continue;
3429 }
3430 }
3431 }
3432 }
3433
3434 return 0;
3435 }
3436
3437 /* Struct used to manage iterating over all CUs looking for a symbol. */
3438
3439 struct dw2_symtab_iterator
3440 {
3441 /* The internalized form of .gdb_index. */
3442 struct mapped_index *index;
3443 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3444 int want_specific_block;
3445 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3446 Unused if !WANT_SPECIFIC_BLOCK. */
3447 int block_index;
3448 /* The kind of symbol we're looking for. */
3449 domain_enum domain;
3450 /* The list of CUs from the index entry of the symbol,
3451 or NULL if not found. */
3452 offset_type *vec;
3453 /* The next element in VEC to look at. */
3454 int next;
3455 /* The number of elements in VEC, or zero if there is no match. */
3456 int length;
3457 /* Have we seen a global version of the symbol?
3458 If so we can ignore all further global instances.
3459 This is to work around gold/15646, inefficient gold-generated
3460 indices. */
3461 int global_seen;
3462 };
3463
3464 /* Initialize the index symtab iterator ITER.
3465 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3466 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3467
3468 static void
3469 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3470 struct mapped_index *index,
3471 int want_specific_block,
3472 int block_index,
3473 domain_enum domain,
3474 const char *name)
3475 {
3476 iter->index = index;
3477 iter->want_specific_block = want_specific_block;
3478 iter->block_index = block_index;
3479 iter->domain = domain;
3480 iter->next = 0;
3481 iter->global_seen = 0;
3482
3483 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3484 iter->length = MAYBE_SWAP (*iter->vec);
3485 else
3486 {
3487 iter->vec = NULL;
3488 iter->length = 0;
3489 }
3490 }
3491
3492 /* Return the next matching CU or NULL if there are no more. */
3493
3494 static struct dwarf2_per_cu_data *
3495 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3496 {
3497 for ( ; iter->next < iter->length; ++iter->next)
3498 {
3499 offset_type cu_index_and_attrs =
3500 MAYBE_SWAP (iter->vec[iter->next + 1]);
3501 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3502 struct dwarf2_per_cu_data *per_cu;
3503 int want_static = iter->block_index != GLOBAL_BLOCK;
3504 /* This value is only valid for index versions >= 7. */
3505 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3506 gdb_index_symbol_kind symbol_kind =
3507 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3508 /* Only check the symbol attributes if they're present.
3509 Indices prior to version 7 don't record them,
3510 and indices >= 7 may elide them for certain symbols
3511 (gold does this). */
3512 int attrs_valid =
3513 (iter->index->version >= 7
3514 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3515
3516 /* Don't crash on bad data. */
3517 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3518 + dwarf2_per_objfile->n_type_units))
3519 {
3520 complaint (&symfile_complaints,
3521 _(".gdb_index entry has bad CU index"
3522 " [in module %s]"),
3523 objfile_name (dwarf2_per_objfile->objfile));
3524 continue;
3525 }
3526
3527 per_cu = dw2_get_cu (cu_index);
3528
3529 /* Skip if already read in. */
3530 if (per_cu->v.quick->symtab)
3531 continue;
3532
3533 /* Check static vs global. */
3534 if (attrs_valid)
3535 {
3536 if (iter->want_specific_block
3537 && want_static != is_static)
3538 continue;
3539 /* Work around gold/15646. */
3540 if (!is_static && iter->global_seen)
3541 continue;
3542 if (!is_static)
3543 iter->global_seen = 1;
3544 }
3545
3546 /* Only check the symbol's kind if it has one. */
3547 if (attrs_valid)
3548 {
3549 switch (iter->domain)
3550 {
3551 case VAR_DOMAIN:
3552 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3553 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3554 /* Some types are also in VAR_DOMAIN. */
3555 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3556 continue;
3557 break;
3558 case STRUCT_DOMAIN:
3559 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3560 continue;
3561 break;
3562 case LABEL_DOMAIN:
3563 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3564 continue;
3565 break;
3566 default:
3567 break;
3568 }
3569 }
3570
3571 ++iter->next;
3572 return per_cu;
3573 }
3574
3575 return NULL;
3576 }
3577
3578 static struct symtab *
3579 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3580 const char *name, domain_enum domain)
3581 {
3582 struct symtab *stab_best = NULL;
3583 struct mapped_index *index;
3584
3585 dw2_setup (objfile);
3586
3587 index = dwarf2_per_objfile->index_table;
3588
3589 /* index is NULL if OBJF_READNOW. */
3590 if (index)
3591 {
3592 struct dw2_symtab_iterator iter;
3593 struct dwarf2_per_cu_data *per_cu;
3594
3595 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3596
3597 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3598 {
3599 struct symbol *sym = NULL;
3600 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3601
3602 /* Some caution must be observed with overloaded functions
3603 and methods, since the index will not contain any overload
3604 information (but NAME might contain it). */
3605 if (stab->primary)
3606 {
3607 struct blockvector *bv = BLOCKVECTOR (stab);
3608 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3609
3610 sym = lookup_block_symbol (block, name, domain);
3611 }
3612
3613 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3614 {
3615 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3616 return stab;
3617
3618 stab_best = stab;
3619 }
3620
3621 /* Keep looking through other CUs. */
3622 }
3623 }
3624
3625 return stab_best;
3626 }
3627
3628 static void
3629 dw2_print_stats (struct objfile *objfile)
3630 {
3631 int i, total, count;
3632
3633 dw2_setup (objfile);
3634 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3635 count = 0;
3636 for (i = 0; i < total; ++i)
3637 {
3638 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3639
3640 if (!per_cu->v.quick->symtab)
3641 ++count;
3642 }
3643 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3644 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3645 }
3646
3647 /* This dumps minimal information about the index.
3648 It is called via "mt print objfiles".
3649 One use is to verify .gdb_index has been loaded by the
3650 gdb.dwarf2/gdb-index.exp testcase. */
3651
3652 static void
3653 dw2_dump (struct objfile *objfile)
3654 {
3655 dw2_setup (objfile);
3656 gdb_assert (dwarf2_per_objfile->using_index);
3657 printf_filtered (".gdb_index:");
3658 if (dwarf2_per_objfile->index_table != NULL)
3659 {
3660 printf_filtered (" version %d\n",
3661 dwarf2_per_objfile->index_table->version);
3662 }
3663 else
3664 printf_filtered (" faked for \"readnow\"\n");
3665 printf_filtered ("\n");
3666 }
3667
3668 static void
3669 dw2_relocate (struct objfile *objfile,
3670 const struct section_offsets *new_offsets,
3671 const struct section_offsets *delta)
3672 {
3673 /* There's nothing to relocate here. */
3674 }
3675
3676 static void
3677 dw2_expand_symtabs_for_function (struct objfile *objfile,
3678 const char *func_name)
3679 {
3680 struct mapped_index *index;
3681
3682 dw2_setup (objfile);
3683
3684 index = dwarf2_per_objfile->index_table;
3685
3686 /* index is NULL if OBJF_READNOW. */
3687 if (index)
3688 {
3689 struct dw2_symtab_iterator iter;
3690 struct dwarf2_per_cu_data *per_cu;
3691
3692 /* Note: It doesn't matter what we pass for block_index here. */
3693 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3694 func_name);
3695
3696 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3697 dw2_instantiate_symtab (per_cu);
3698 }
3699 }
3700
3701 static void
3702 dw2_expand_all_symtabs (struct objfile *objfile)
3703 {
3704 int i;
3705
3706 dw2_setup (objfile);
3707
3708 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3709 + dwarf2_per_objfile->n_type_units); ++i)
3710 {
3711 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3712
3713 dw2_instantiate_symtab (per_cu);
3714 }
3715 }
3716
3717 static void
3718 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3719 const char *fullname)
3720 {
3721 int i;
3722
3723 dw2_setup (objfile);
3724
3725 /* We don't need to consider type units here.
3726 This is only called for examining code, e.g. expand_line_sal.
3727 There can be an order of magnitude (or more) more type units
3728 than comp units, and we avoid them if we can. */
3729
3730 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3731 {
3732 int j;
3733 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3734 struct quick_file_names *file_data;
3735
3736 /* We only need to look at symtabs not already expanded. */
3737 if (per_cu->v.quick->symtab)
3738 continue;
3739
3740 file_data = dw2_get_file_names (per_cu);
3741 if (file_data == NULL)
3742 continue;
3743
3744 for (j = 0; j < file_data->num_file_names; ++j)
3745 {
3746 const char *this_fullname = file_data->file_names[j];
3747
3748 if (filename_cmp (this_fullname, fullname) == 0)
3749 {
3750 dw2_instantiate_symtab (per_cu);
3751 break;
3752 }
3753 }
3754 }
3755 }
3756
3757 static void
3758 dw2_map_matching_symbols (struct objfile *objfile,
3759 const char * name, domain_enum namespace,
3760 int global,
3761 int (*callback) (struct block *,
3762 struct symbol *, void *),
3763 void *data, symbol_compare_ftype *match,
3764 symbol_compare_ftype *ordered_compare)
3765 {
3766 /* Currently unimplemented; used for Ada. The function can be called if the
3767 current language is Ada for a non-Ada objfile using GNU index. As Ada
3768 does not look for non-Ada symbols this function should just return. */
3769 }
3770
3771 static void
3772 dw2_expand_symtabs_matching
3773 (struct objfile *objfile,
3774 expand_symtabs_file_matcher_ftype *file_matcher,
3775 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3776 enum search_domain kind,
3777 void *data)
3778 {
3779 int i;
3780 offset_type iter;
3781 struct mapped_index *index;
3782
3783 dw2_setup (objfile);
3784
3785 /* index_table is NULL if OBJF_READNOW. */
3786 if (!dwarf2_per_objfile->index_table)
3787 return;
3788 index = dwarf2_per_objfile->index_table;
3789
3790 if (file_matcher != NULL)
3791 {
3792 struct cleanup *cleanup;
3793 htab_t visited_found, visited_not_found;
3794
3795 visited_found = htab_create_alloc (10,
3796 htab_hash_pointer, htab_eq_pointer,
3797 NULL, xcalloc, xfree);
3798 cleanup = make_cleanup_htab_delete (visited_found);
3799 visited_not_found = htab_create_alloc (10,
3800 htab_hash_pointer, htab_eq_pointer,
3801 NULL, xcalloc, xfree);
3802 make_cleanup_htab_delete (visited_not_found);
3803
3804 /* The rule is CUs specify all the files, including those used by
3805 any TU, so there's no need to scan TUs here. */
3806
3807 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3808 {
3809 int j;
3810 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3811 struct quick_file_names *file_data;
3812 void **slot;
3813
3814 per_cu->v.quick->mark = 0;
3815
3816 /* We only need to look at symtabs not already expanded. */
3817 if (per_cu->v.quick->symtab)
3818 continue;
3819
3820 file_data = dw2_get_file_names (per_cu);
3821 if (file_data == NULL)
3822 continue;
3823
3824 if (htab_find (visited_not_found, file_data) != NULL)
3825 continue;
3826 else if (htab_find (visited_found, file_data) != NULL)
3827 {
3828 per_cu->v.quick->mark = 1;
3829 continue;
3830 }
3831
3832 for (j = 0; j < file_data->num_file_names; ++j)
3833 {
3834 const char *this_real_name;
3835
3836 if (file_matcher (file_data->file_names[j], data, 0))
3837 {
3838 per_cu->v.quick->mark = 1;
3839 break;
3840 }
3841
3842 /* Before we invoke realpath, which can get expensive when many
3843 files are involved, do a quick comparison of the basenames. */
3844 if (!basenames_may_differ
3845 && !file_matcher (lbasename (file_data->file_names[j]),
3846 data, 1))
3847 continue;
3848
3849 this_real_name = dw2_get_real_path (objfile, file_data, j);
3850 if (file_matcher (this_real_name, data, 0))
3851 {
3852 per_cu->v.quick->mark = 1;
3853 break;
3854 }
3855 }
3856
3857 slot = htab_find_slot (per_cu->v.quick->mark
3858 ? visited_found
3859 : visited_not_found,
3860 file_data, INSERT);
3861 *slot = file_data;
3862 }
3863
3864 do_cleanups (cleanup);
3865 }
3866
3867 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3868 {
3869 offset_type idx = 2 * iter;
3870 const char *name;
3871 offset_type *vec, vec_len, vec_idx;
3872 int global_seen = 0;
3873
3874 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3875 continue;
3876
3877 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3878
3879 if (! (*symbol_matcher) (name, data))
3880 continue;
3881
3882 /* The name was matched, now expand corresponding CUs that were
3883 marked. */
3884 vec = (offset_type *) (index->constant_pool
3885 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3886 vec_len = MAYBE_SWAP (vec[0]);
3887 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3888 {
3889 struct dwarf2_per_cu_data *per_cu;
3890 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3891 /* This value is only valid for index versions >= 7. */
3892 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3893 gdb_index_symbol_kind symbol_kind =
3894 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3895 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3896 /* Only check the symbol attributes if they're present.
3897 Indices prior to version 7 don't record them,
3898 and indices >= 7 may elide them for certain symbols
3899 (gold does this). */
3900 int attrs_valid =
3901 (index->version >= 7
3902 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3903
3904 /* Work around gold/15646. */
3905 if (attrs_valid)
3906 {
3907 if (!is_static && global_seen)
3908 continue;
3909 if (!is_static)
3910 global_seen = 1;
3911 }
3912
3913 /* Only check the symbol's kind if it has one. */
3914 if (attrs_valid)
3915 {
3916 switch (kind)
3917 {
3918 case VARIABLES_DOMAIN:
3919 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3920 continue;
3921 break;
3922 case FUNCTIONS_DOMAIN:
3923 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3924 continue;
3925 break;
3926 case TYPES_DOMAIN:
3927 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3928 continue;
3929 break;
3930 default:
3931 break;
3932 }
3933 }
3934
3935 /* Don't crash on bad data. */
3936 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3937 + dwarf2_per_objfile->n_type_units))
3938 {
3939 complaint (&symfile_complaints,
3940 _(".gdb_index entry has bad CU index"
3941 " [in module %s]"), objfile_name (objfile));
3942 continue;
3943 }
3944
3945 per_cu = dw2_get_cu (cu_index);
3946 if (file_matcher == NULL || per_cu->v.quick->mark)
3947 dw2_instantiate_symtab (per_cu);
3948 }
3949 }
3950 }
3951
3952 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3953 symtab. */
3954
3955 static struct symtab *
3956 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3957 {
3958 int i;
3959
3960 if (BLOCKVECTOR (symtab) != NULL
3961 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3962 return symtab;
3963
3964 if (symtab->includes == NULL)
3965 return NULL;
3966
3967 for (i = 0; symtab->includes[i]; ++i)
3968 {
3969 struct symtab *s = symtab->includes[i];
3970
3971 s = recursively_find_pc_sect_symtab (s, pc);
3972 if (s != NULL)
3973 return s;
3974 }
3975
3976 return NULL;
3977 }
3978
3979 static struct symtab *
3980 dw2_find_pc_sect_symtab (struct objfile *objfile,
3981 struct minimal_symbol *msymbol,
3982 CORE_ADDR pc,
3983 struct obj_section *section,
3984 int warn_if_readin)
3985 {
3986 struct dwarf2_per_cu_data *data;
3987 struct symtab *result;
3988
3989 dw2_setup (objfile);
3990
3991 if (!objfile->psymtabs_addrmap)
3992 return NULL;
3993
3994 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3995 if (!data)
3996 return NULL;
3997
3998 if (warn_if_readin && data->v.quick->symtab)
3999 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4000 paddress (get_objfile_arch (objfile), pc));
4001
4002 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4003 gdb_assert (result != NULL);
4004 return result;
4005 }
4006
4007 static void
4008 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4009 void *data, int need_fullname)
4010 {
4011 int i;
4012 struct cleanup *cleanup;
4013 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4014 NULL, xcalloc, xfree);
4015
4016 cleanup = make_cleanup_htab_delete (visited);
4017 dw2_setup (objfile);
4018
4019 /* The rule is CUs specify all the files, including those used by
4020 any TU, so there's no need to scan TUs here.
4021 We can ignore file names coming from already-expanded CUs. */
4022
4023 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4024 {
4025 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4026
4027 if (per_cu->v.quick->symtab)
4028 {
4029 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4030 INSERT);
4031
4032 *slot = per_cu->v.quick->file_names;
4033 }
4034 }
4035
4036 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4037 {
4038 int j;
4039 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
4040 struct quick_file_names *file_data;
4041 void **slot;
4042
4043 /* We only need to look at symtabs not already expanded. */
4044 if (per_cu->v.quick->symtab)
4045 continue;
4046
4047 file_data = dw2_get_file_names (per_cu);
4048 if (file_data == NULL)
4049 continue;
4050
4051 slot = htab_find_slot (visited, file_data, INSERT);
4052 if (*slot)
4053 {
4054 /* Already visited. */
4055 continue;
4056 }
4057 *slot = file_data;
4058
4059 for (j = 0; j < file_data->num_file_names; ++j)
4060 {
4061 const char *this_real_name;
4062
4063 if (need_fullname)
4064 this_real_name = dw2_get_real_path (objfile, file_data, j);
4065 else
4066 this_real_name = NULL;
4067 (*fun) (file_data->file_names[j], this_real_name, data);
4068 }
4069 }
4070
4071 do_cleanups (cleanup);
4072 }
4073
4074 static int
4075 dw2_has_symbols (struct objfile *objfile)
4076 {
4077 return 1;
4078 }
4079
4080 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4081 {
4082 dw2_has_symbols,
4083 dw2_find_last_source_symtab,
4084 dw2_forget_cached_source_info,
4085 dw2_map_symtabs_matching_filename,
4086 dw2_lookup_symbol,
4087 dw2_print_stats,
4088 dw2_dump,
4089 dw2_relocate,
4090 dw2_expand_symtabs_for_function,
4091 dw2_expand_all_symtabs,
4092 dw2_expand_symtabs_with_fullname,
4093 dw2_map_matching_symbols,
4094 dw2_expand_symtabs_matching,
4095 dw2_find_pc_sect_symtab,
4096 dw2_map_symbol_filenames
4097 };
4098
4099 /* Initialize for reading DWARF for this objfile. Return 0 if this
4100 file will use psymtabs, or 1 if using the GNU index. */
4101
4102 int
4103 dwarf2_initialize_objfile (struct objfile *objfile)
4104 {
4105 /* If we're about to read full symbols, don't bother with the
4106 indices. In this case we also don't care if some other debug
4107 format is making psymtabs, because they are all about to be
4108 expanded anyway. */
4109 if ((objfile->flags & OBJF_READNOW))
4110 {
4111 int i;
4112
4113 dwarf2_per_objfile->using_index = 1;
4114 create_all_comp_units (objfile);
4115 create_all_type_units (objfile);
4116 dwarf2_per_objfile->quick_file_names_table =
4117 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4118
4119 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4120 + dwarf2_per_objfile->n_type_units); ++i)
4121 {
4122 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4123
4124 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4125 struct dwarf2_per_cu_quick_data);
4126 }
4127
4128 /* Return 1 so that gdb sees the "quick" functions. However,
4129 these functions will be no-ops because we will have expanded
4130 all symtabs. */
4131 return 1;
4132 }
4133
4134 if (dwarf2_read_index (objfile))
4135 return 1;
4136
4137 return 0;
4138 }
4139
4140 \f
4141
4142 /* Build a partial symbol table. */
4143
4144 void
4145 dwarf2_build_psymtabs (struct objfile *objfile)
4146 {
4147 volatile struct gdb_exception except;
4148
4149 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4150 {
4151 init_psymbol_list (objfile, 1024);
4152 }
4153
4154 TRY_CATCH (except, RETURN_MASK_ERROR)
4155 {
4156 /* This isn't really ideal: all the data we allocate on the
4157 objfile's obstack is still uselessly kept around. However,
4158 freeing it seems unsafe. */
4159 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4160
4161 dwarf2_build_psymtabs_hard (objfile);
4162 discard_cleanups (cleanups);
4163 }
4164 if (except.reason < 0)
4165 exception_print (gdb_stderr, except);
4166 }
4167
4168 /* Return the total length of the CU described by HEADER. */
4169
4170 static unsigned int
4171 get_cu_length (const struct comp_unit_head *header)
4172 {
4173 return header->initial_length_size + header->length;
4174 }
4175
4176 /* Return TRUE if OFFSET is within CU_HEADER. */
4177
4178 static inline int
4179 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4180 {
4181 sect_offset bottom = { cu_header->offset.sect_off };
4182 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4183
4184 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4185 }
4186
4187 /* Find the base address of the compilation unit for range lists and
4188 location lists. It will normally be specified by DW_AT_low_pc.
4189 In DWARF-3 draft 4, the base address could be overridden by
4190 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4191 compilation units with discontinuous ranges. */
4192
4193 static void
4194 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4195 {
4196 struct attribute *attr;
4197
4198 cu->base_known = 0;
4199 cu->base_address = 0;
4200
4201 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4202 if (attr)
4203 {
4204 cu->base_address = DW_ADDR (attr);
4205 cu->base_known = 1;
4206 }
4207 else
4208 {
4209 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4210 if (attr)
4211 {
4212 cu->base_address = DW_ADDR (attr);
4213 cu->base_known = 1;
4214 }
4215 }
4216 }
4217
4218 /* Read in the comp unit header information from the debug_info at info_ptr.
4219 NOTE: This leaves members offset, first_die_offset to be filled in
4220 by the caller. */
4221
4222 static const gdb_byte *
4223 read_comp_unit_head (struct comp_unit_head *cu_header,
4224 const gdb_byte *info_ptr, bfd *abfd)
4225 {
4226 int signed_addr;
4227 unsigned int bytes_read;
4228
4229 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4230 cu_header->initial_length_size = bytes_read;
4231 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4232 info_ptr += bytes_read;
4233 cu_header->version = read_2_bytes (abfd, info_ptr);
4234 info_ptr += 2;
4235 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4236 &bytes_read);
4237 info_ptr += bytes_read;
4238 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4239 info_ptr += 1;
4240 signed_addr = bfd_get_sign_extend_vma (abfd);
4241 if (signed_addr < 0)
4242 internal_error (__FILE__, __LINE__,
4243 _("read_comp_unit_head: dwarf from non elf file"));
4244 cu_header->signed_addr_p = signed_addr;
4245
4246 return info_ptr;
4247 }
4248
4249 /* Helper function that returns the proper abbrev section for
4250 THIS_CU. */
4251
4252 static struct dwarf2_section_info *
4253 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4254 {
4255 struct dwarf2_section_info *abbrev;
4256
4257 if (this_cu->is_dwz)
4258 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4259 else
4260 abbrev = &dwarf2_per_objfile->abbrev;
4261
4262 return abbrev;
4263 }
4264
4265 /* Subroutine of read_and_check_comp_unit_head and
4266 read_and_check_type_unit_head to simplify them.
4267 Perform various error checking on the header. */
4268
4269 static void
4270 error_check_comp_unit_head (struct comp_unit_head *header,
4271 struct dwarf2_section_info *section,
4272 struct dwarf2_section_info *abbrev_section)
4273 {
4274 bfd *abfd = get_section_bfd_owner (section);
4275 const char *filename = get_section_file_name (section);
4276
4277 if (header->version != 2 && header->version != 3 && header->version != 4)
4278 error (_("Dwarf Error: wrong version in compilation unit header "
4279 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4280 filename);
4281
4282 if (header->abbrev_offset.sect_off
4283 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4284 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4285 "(offset 0x%lx + 6) [in module %s]"),
4286 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4287 filename);
4288
4289 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4290 avoid potential 32-bit overflow. */
4291 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4292 > section->size)
4293 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4294 "(offset 0x%lx + 0) [in module %s]"),
4295 (long) header->length, (long) header->offset.sect_off,
4296 filename);
4297 }
4298
4299 /* Read in a CU/TU header and perform some basic error checking.
4300 The contents of the header are stored in HEADER.
4301 The result is a pointer to the start of the first DIE. */
4302
4303 static const gdb_byte *
4304 read_and_check_comp_unit_head (struct comp_unit_head *header,
4305 struct dwarf2_section_info *section,
4306 struct dwarf2_section_info *abbrev_section,
4307 const gdb_byte *info_ptr,
4308 int is_debug_types_section)
4309 {
4310 const gdb_byte *beg_of_comp_unit = info_ptr;
4311 bfd *abfd = get_section_bfd_owner (section);
4312
4313 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4314
4315 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4316
4317 /* If we're reading a type unit, skip over the signature and
4318 type_offset fields. */
4319 if (is_debug_types_section)
4320 info_ptr += 8 /*signature*/ + header->offset_size;
4321
4322 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4323
4324 error_check_comp_unit_head (header, section, abbrev_section);
4325
4326 return info_ptr;
4327 }
4328
4329 /* Read in the types comp unit header information from .debug_types entry at
4330 types_ptr. The result is a pointer to one past the end of the header. */
4331
4332 static const gdb_byte *
4333 read_and_check_type_unit_head (struct comp_unit_head *header,
4334 struct dwarf2_section_info *section,
4335 struct dwarf2_section_info *abbrev_section,
4336 const gdb_byte *info_ptr,
4337 ULONGEST *signature,
4338 cu_offset *type_offset_in_tu)
4339 {
4340 const gdb_byte *beg_of_comp_unit = info_ptr;
4341 bfd *abfd = get_section_bfd_owner (section);
4342
4343 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4344
4345 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4346
4347 /* If we're reading a type unit, skip over the signature and
4348 type_offset fields. */
4349 if (signature != NULL)
4350 *signature = read_8_bytes (abfd, info_ptr);
4351 info_ptr += 8;
4352 if (type_offset_in_tu != NULL)
4353 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4354 header->offset_size);
4355 info_ptr += header->offset_size;
4356
4357 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4358
4359 error_check_comp_unit_head (header, section, abbrev_section);
4360
4361 return info_ptr;
4362 }
4363
4364 /* Fetch the abbreviation table offset from a comp or type unit header. */
4365
4366 static sect_offset
4367 read_abbrev_offset (struct dwarf2_section_info *section,
4368 sect_offset offset)
4369 {
4370 bfd *abfd = get_section_bfd_owner (section);
4371 const gdb_byte *info_ptr;
4372 unsigned int length, initial_length_size, offset_size;
4373 sect_offset abbrev_offset;
4374
4375 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4376 info_ptr = section->buffer + offset.sect_off;
4377 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4378 offset_size = initial_length_size == 4 ? 4 : 8;
4379 info_ptr += initial_length_size + 2 /*version*/;
4380 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4381 return abbrev_offset;
4382 }
4383
4384 /* Allocate a new partial symtab for file named NAME and mark this new
4385 partial symtab as being an include of PST. */
4386
4387 static void
4388 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4389 struct objfile *objfile)
4390 {
4391 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4392
4393 if (!IS_ABSOLUTE_PATH (subpst->filename))
4394 {
4395 /* It shares objfile->objfile_obstack. */
4396 subpst->dirname = pst->dirname;
4397 }
4398
4399 subpst->section_offsets = pst->section_offsets;
4400 subpst->textlow = 0;
4401 subpst->texthigh = 0;
4402
4403 subpst->dependencies = (struct partial_symtab **)
4404 obstack_alloc (&objfile->objfile_obstack,
4405 sizeof (struct partial_symtab *));
4406 subpst->dependencies[0] = pst;
4407 subpst->number_of_dependencies = 1;
4408
4409 subpst->globals_offset = 0;
4410 subpst->n_global_syms = 0;
4411 subpst->statics_offset = 0;
4412 subpst->n_static_syms = 0;
4413 subpst->symtab = NULL;
4414 subpst->read_symtab = pst->read_symtab;
4415 subpst->readin = 0;
4416
4417 /* No private part is necessary for include psymtabs. This property
4418 can be used to differentiate between such include psymtabs and
4419 the regular ones. */
4420 subpst->read_symtab_private = NULL;
4421 }
4422
4423 /* Read the Line Number Program data and extract the list of files
4424 included by the source file represented by PST. Build an include
4425 partial symtab for each of these included files. */
4426
4427 static void
4428 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4429 struct die_info *die,
4430 struct partial_symtab *pst)
4431 {
4432 struct line_header *lh = NULL;
4433 struct attribute *attr;
4434
4435 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4436 if (attr)
4437 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4438 if (lh == NULL)
4439 return; /* No linetable, so no includes. */
4440
4441 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4442 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4443
4444 free_line_header (lh);
4445 }
4446
4447 static hashval_t
4448 hash_signatured_type (const void *item)
4449 {
4450 const struct signatured_type *sig_type = item;
4451
4452 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4453 return sig_type->signature;
4454 }
4455
4456 static int
4457 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4458 {
4459 const struct signatured_type *lhs = item_lhs;
4460 const struct signatured_type *rhs = item_rhs;
4461
4462 return lhs->signature == rhs->signature;
4463 }
4464
4465 /* Allocate a hash table for signatured types. */
4466
4467 static htab_t
4468 allocate_signatured_type_table (struct objfile *objfile)
4469 {
4470 return htab_create_alloc_ex (41,
4471 hash_signatured_type,
4472 eq_signatured_type,
4473 NULL,
4474 &objfile->objfile_obstack,
4475 hashtab_obstack_allocate,
4476 dummy_obstack_deallocate);
4477 }
4478
4479 /* A helper function to add a signatured type CU to a table. */
4480
4481 static int
4482 add_signatured_type_cu_to_table (void **slot, void *datum)
4483 {
4484 struct signatured_type *sigt = *slot;
4485 struct signatured_type ***datap = datum;
4486
4487 **datap = sigt;
4488 ++*datap;
4489
4490 return 1;
4491 }
4492
4493 /* Create the hash table of all entries in the .debug_types
4494 (or .debug_types.dwo) section(s).
4495 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4496 otherwise it is NULL.
4497
4498 The result is a pointer to the hash table or NULL if there are no types.
4499
4500 Note: This function processes DWO files only, not DWP files. */
4501
4502 static htab_t
4503 create_debug_types_hash_table (struct dwo_file *dwo_file,
4504 VEC (dwarf2_section_info_def) *types)
4505 {
4506 struct objfile *objfile = dwarf2_per_objfile->objfile;
4507 htab_t types_htab = NULL;
4508 int ix;
4509 struct dwarf2_section_info *section;
4510 struct dwarf2_section_info *abbrev_section;
4511
4512 if (VEC_empty (dwarf2_section_info_def, types))
4513 return NULL;
4514
4515 abbrev_section = (dwo_file != NULL
4516 ? &dwo_file->sections.abbrev
4517 : &dwarf2_per_objfile->abbrev);
4518
4519 if (dwarf2_read_debug)
4520 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4521 dwo_file ? ".dwo" : "",
4522 get_section_file_name (abbrev_section));
4523
4524 for (ix = 0;
4525 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4526 ++ix)
4527 {
4528 bfd *abfd;
4529 const gdb_byte *info_ptr, *end_ptr;
4530
4531 dwarf2_read_section (objfile, section);
4532 info_ptr = section->buffer;
4533
4534 if (info_ptr == NULL)
4535 continue;
4536
4537 /* We can't set abfd until now because the section may be empty or
4538 not present, in which case the bfd is unknown. */
4539 abfd = get_section_bfd_owner (section);
4540
4541 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4542 because we don't need to read any dies: the signature is in the
4543 header. */
4544
4545 end_ptr = info_ptr + section->size;
4546 while (info_ptr < end_ptr)
4547 {
4548 sect_offset offset;
4549 cu_offset type_offset_in_tu;
4550 ULONGEST signature;
4551 struct signatured_type *sig_type;
4552 struct dwo_unit *dwo_tu;
4553 void **slot;
4554 const gdb_byte *ptr = info_ptr;
4555 struct comp_unit_head header;
4556 unsigned int length;
4557
4558 offset.sect_off = ptr - section->buffer;
4559
4560 /* We need to read the type's signature in order to build the hash
4561 table, but we don't need anything else just yet. */
4562
4563 ptr = read_and_check_type_unit_head (&header, section,
4564 abbrev_section, ptr,
4565 &signature, &type_offset_in_tu);
4566
4567 length = get_cu_length (&header);
4568
4569 /* Skip dummy type units. */
4570 if (ptr >= info_ptr + length
4571 || peek_abbrev_code (abfd, ptr) == 0)
4572 {
4573 info_ptr += length;
4574 continue;
4575 }
4576
4577 if (types_htab == NULL)
4578 {
4579 if (dwo_file)
4580 types_htab = allocate_dwo_unit_table (objfile);
4581 else
4582 types_htab = allocate_signatured_type_table (objfile);
4583 }
4584
4585 if (dwo_file)
4586 {
4587 sig_type = NULL;
4588 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4589 struct dwo_unit);
4590 dwo_tu->dwo_file = dwo_file;
4591 dwo_tu->signature = signature;
4592 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4593 dwo_tu->section = section;
4594 dwo_tu->offset = offset;
4595 dwo_tu->length = length;
4596 }
4597 else
4598 {
4599 /* N.B.: type_offset is not usable if this type uses a DWO file.
4600 The real type_offset is in the DWO file. */
4601 dwo_tu = NULL;
4602 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4603 struct signatured_type);
4604 sig_type->signature = signature;
4605 sig_type->type_offset_in_tu = type_offset_in_tu;
4606 sig_type->per_cu.objfile = objfile;
4607 sig_type->per_cu.is_debug_types = 1;
4608 sig_type->per_cu.section = section;
4609 sig_type->per_cu.offset = offset;
4610 sig_type->per_cu.length = length;
4611 }
4612
4613 slot = htab_find_slot (types_htab,
4614 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4615 INSERT);
4616 gdb_assert (slot != NULL);
4617 if (*slot != NULL)
4618 {
4619 sect_offset dup_offset;
4620
4621 if (dwo_file)
4622 {
4623 const struct dwo_unit *dup_tu = *slot;
4624
4625 dup_offset = dup_tu->offset;
4626 }
4627 else
4628 {
4629 const struct signatured_type *dup_tu = *slot;
4630
4631 dup_offset = dup_tu->per_cu.offset;
4632 }
4633
4634 complaint (&symfile_complaints,
4635 _("debug type entry at offset 0x%x is duplicate to"
4636 " the entry at offset 0x%x, signature %s"),
4637 offset.sect_off, dup_offset.sect_off,
4638 hex_string (signature));
4639 }
4640 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4641
4642 if (dwarf2_read_debug > 1)
4643 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4644 offset.sect_off,
4645 hex_string (signature));
4646
4647 info_ptr += length;
4648 }
4649 }
4650
4651 return types_htab;
4652 }
4653
4654 /* Create the hash table of all entries in the .debug_types section,
4655 and initialize all_type_units.
4656 The result is zero if there is an error (e.g. missing .debug_types section),
4657 otherwise non-zero. */
4658
4659 static int
4660 create_all_type_units (struct objfile *objfile)
4661 {
4662 htab_t types_htab;
4663 struct signatured_type **iter;
4664
4665 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4666 if (types_htab == NULL)
4667 {
4668 dwarf2_per_objfile->signatured_types = NULL;
4669 return 0;
4670 }
4671
4672 dwarf2_per_objfile->signatured_types = types_htab;
4673
4674 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4675 dwarf2_per_objfile->all_type_units
4676 = xmalloc (dwarf2_per_objfile->n_type_units
4677 * sizeof (struct signatured_type *));
4678 iter = &dwarf2_per_objfile->all_type_units[0];
4679 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4680 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4681 == dwarf2_per_objfile->n_type_units);
4682
4683 return 1;
4684 }
4685
4686 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4687 Fill in SIG_ENTRY with DWO_ENTRY. */
4688
4689 static void
4690 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4691 struct signatured_type *sig_entry,
4692 struct dwo_unit *dwo_entry)
4693 {
4694 /* Make sure we're not clobbering something we don't expect to. */
4695 gdb_assert (! sig_entry->per_cu.queued);
4696 gdb_assert (sig_entry->per_cu.cu == NULL);
4697 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4698 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4699 gdb_assert (sig_entry->signature == dwo_entry->signature);
4700 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4701 gdb_assert (sig_entry->type_unit_group == NULL);
4702 gdb_assert (sig_entry->dwo_unit == NULL);
4703
4704 sig_entry->per_cu.section = dwo_entry->section;
4705 sig_entry->per_cu.offset = dwo_entry->offset;
4706 sig_entry->per_cu.length = dwo_entry->length;
4707 sig_entry->per_cu.reading_dwo_directly = 1;
4708 sig_entry->per_cu.objfile = objfile;
4709 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4710 sig_entry->dwo_unit = dwo_entry;
4711 }
4712
4713 /* Subroutine of lookup_signatured_type.
4714 If we haven't read the TU yet, create the signatured_type data structure
4715 for a TU to be read in directly from a DWO file, bypassing the stub.
4716 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4717 using .gdb_index, then when reading a CU we want to stay in the DWO file
4718 containing that CU. Otherwise we could end up reading several other DWO
4719 files (due to comdat folding) to process the transitive closure of all the
4720 mentioned TUs, and that can be slow. The current DWO file will have every
4721 type signature that it needs.
4722 We only do this for .gdb_index because in the psymtab case we already have
4723 to read all the DWOs to build the type unit groups. */
4724
4725 static struct signatured_type *
4726 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4727 {
4728 struct objfile *objfile = dwarf2_per_objfile->objfile;
4729 struct dwo_file *dwo_file;
4730 struct dwo_unit find_dwo_entry, *dwo_entry;
4731 struct signatured_type find_sig_entry, *sig_entry;
4732
4733 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4734
4735 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4736 dwo_unit of the TU itself. */
4737 dwo_file = cu->dwo_unit->dwo_file;
4738
4739 /* We only ever need to read in one copy of a signatured type.
4740 Just use the global signatured_types array. If this is the first time
4741 we're reading this type, replace the recorded data from .gdb_index with
4742 this TU. */
4743
4744 if (dwarf2_per_objfile->signatured_types == NULL)
4745 return NULL;
4746 find_sig_entry.signature = sig;
4747 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4748 if (sig_entry == NULL)
4749 return NULL;
4750
4751 /* We can get here with the TU already read, *or* in the process of being
4752 read. Don't reassign it if that's the case. Also note that if the TU is
4753 already being read, it may not have come from a DWO, the program may be
4754 a mix of Fission-compiled code and non-Fission-compiled code. */
4755 /* Have we already tried to read this TU? */
4756 if (sig_entry->per_cu.tu_read)
4757 return sig_entry;
4758
4759 /* Ok, this is the first time we're reading this TU. */
4760 if (dwo_file->tus == NULL)
4761 return NULL;
4762 find_dwo_entry.signature = sig;
4763 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4764 if (dwo_entry == NULL)
4765 return NULL;
4766
4767 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4768 sig_entry->per_cu.tu_read = 1;
4769 return sig_entry;
4770 }
4771
4772 /* Subroutine of lookup_dwp_signatured_type.
4773 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4774
4775 static struct signatured_type *
4776 add_type_unit (ULONGEST sig)
4777 {
4778 struct objfile *objfile = dwarf2_per_objfile->objfile;
4779 int n_type_units = dwarf2_per_objfile->n_type_units;
4780 struct signatured_type *sig_type;
4781 void **slot;
4782
4783 ++n_type_units;
4784 dwarf2_per_objfile->all_type_units =
4785 xrealloc (dwarf2_per_objfile->all_type_units,
4786 n_type_units * sizeof (struct signatured_type *));
4787 dwarf2_per_objfile->n_type_units = n_type_units;
4788 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4789 struct signatured_type);
4790 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4791 sig_type->signature = sig;
4792 sig_type->per_cu.is_debug_types = 1;
4793 sig_type->per_cu.v.quick =
4794 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4795 struct dwarf2_per_cu_quick_data);
4796 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4797 sig_type, INSERT);
4798 gdb_assert (*slot == NULL);
4799 *slot = sig_type;
4800 /* The rest of sig_type must be filled in by the caller. */
4801 return sig_type;
4802 }
4803
4804 /* Subroutine of lookup_signatured_type.
4805 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4806 then try the DWP file.
4807 Normally this "can't happen", but if there's a bug in signature
4808 generation and/or the DWP file is built incorrectly, it can happen.
4809 Using the type directly from the DWP file means we don't have the stub
4810 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4811 not critical. [Eventually the stub may go away for type units anyway.] */
4812
4813 static struct signatured_type *
4814 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4815 {
4816 struct objfile *objfile = dwarf2_per_objfile->objfile;
4817 struct dwp_file *dwp_file = get_dwp_file ();
4818 struct dwo_unit *dwo_entry;
4819 struct signatured_type find_sig_entry, *sig_entry;
4820
4821 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4822 gdb_assert (dwp_file != NULL);
4823
4824 if (dwarf2_per_objfile->signatured_types != NULL)
4825 {
4826 find_sig_entry.signature = sig;
4827 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4828 &find_sig_entry);
4829 if (sig_entry != NULL)
4830 return sig_entry;
4831 }
4832
4833 /* This is the "shouldn't happen" case.
4834 Try the DWP file and hope for the best. */
4835 if (dwp_file->tus == NULL)
4836 return NULL;
4837 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4838 sig, 1 /* is_debug_types */);
4839 if (dwo_entry == NULL)
4840 return NULL;
4841
4842 sig_entry = add_type_unit (sig);
4843 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4844
4845 /* The caller will signal a complaint if we return NULL.
4846 Here we don't return NULL but we still want to complain. */
4847 complaint (&symfile_complaints,
4848 _("Bad type signature %s referenced by %s at 0x%x,"
4849 " coping by using copy in DWP [in module %s]"),
4850 hex_string (sig),
4851 cu->per_cu->is_debug_types ? "TU" : "CU",
4852 cu->per_cu->offset.sect_off,
4853 objfile_name (objfile));
4854
4855 return sig_entry;
4856 }
4857
4858 /* Lookup a signature based type for DW_FORM_ref_sig8.
4859 Returns NULL if signature SIG is not present in the table.
4860 It is up to the caller to complain about this. */
4861
4862 static struct signatured_type *
4863 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4864 {
4865 if (cu->dwo_unit
4866 && dwarf2_per_objfile->using_index)
4867 {
4868 /* We're in a DWO/DWP file, and we're using .gdb_index.
4869 These cases require special processing. */
4870 if (get_dwp_file () == NULL)
4871 return lookup_dwo_signatured_type (cu, sig);
4872 else
4873 return lookup_dwp_signatured_type (cu, sig);
4874 }
4875 else
4876 {
4877 struct signatured_type find_entry, *entry;
4878
4879 if (dwarf2_per_objfile->signatured_types == NULL)
4880 return NULL;
4881 find_entry.signature = sig;
4882 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4883 return entry;
4884 }
4885 }
4886 \f
4887 /* Low level DIE reading support. */
4888
4889 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4890
4891 static void
4892 init_cu_die_reader (struct die_reader_specs *reader,
4893 struct dwarf2_cu *cu,
4894 struct dwarf2_section_info *section,
4895 struct dwo_file *dwo_file)
4896 {
4897 gdb_assert (section->readin && section->buffer != NULL);
4898 reader->abfd = get_section_bfd_owner (section);
4899 reader->cu = cu;
4900 reader->dwo_file = dwo_file;
4901 reader->die_section = section;
4902 reader->buffer = section->buffer;
4903 reader->buffer_end = section->buffer + section->size;
4904 reader->comp_dir = NULL;
4905 }
4906
4907 /* Subroutine of init_cutu_and_read_dies to simplify it.
4908 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4909 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4910 already.
4911
4912 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4913 from it to the DIE in the DWO. If NULL we are skipping the stub.
4914 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4915 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4916 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4917 COMP_DIR must be non-NULL.
4918 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4919 are filled in with the info of the DIE from the DWO file.
4920 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4921 provided an abbrev table to use.
4922 The result is non-zero if a valid (non-dummy) DIE was found. */
4923
4924 static int
4925 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4926 struct dwo_unit *dwo_unit,
4927 int abbrev_table_provided,
4928 struct die_info *stub_comp_unit_die,
4929 const char *stub_comp_dir,
4930 struct die_reader_specs *result_reader,
4931 const gdb_byte **result_info_ptr,
4932 struct die_info **result_comp_unit_die,
4933 int *result_has_children)
4934 {
4935 struct objfile *objfile = dwarf2_per_objfile->objfile;
4936 struct dwarf2_cu *cu = this_cu->cu;
4937 struct dwarf2_section_info *section;
4938 bfd *abfd;
4939 const gdb_byte *begin_info_ptr, *info_ptr;
4940 const char *comp_dir_string;
4941 ULONGEST signature; /* Or dwo_id. */
4942 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4943 int i,num_extra_attrs;
4944 struct dwarf2_section_info *dwo_abbrev_section;
4945 struct attribute *attr;
4946 struct attribute comp_dir_attr;
4947 struct die_info *comp_unit_die;
4948
4949 /* Both can't be provided. */
4950 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4951
4952 /* These attributes aren't processed until later:
4953 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4954 However, the attribute is found in the stub which we won't have later.
4955 In order to not impose this complication on the rest of the code,
4956 we read them here and copy them to the DWO CU/TU die. */
4957
4958 stmt_list = NULL;
4959 low_pc = NULL;
4960 high_pc = NULL;
4961 ranges = NULL;
4962 comp_dir = NULL;
4963
4964 if (stub_comp_unit_die != NULL)
4965 {
4966 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4967 DWO file. */
4968 if (! this_cu->is_debug_types)
4969 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4970 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4971 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4972 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4973 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4974
4975 /* There should be a DW_AT_addr_base attribute here (if needed).
4976 We need the value before we can process DW_FORM_GNU_addr_index. */
4977 cu->addr_base = 0;
4978 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4979 if (attr)
4980 cu->addr_base = DW_UNSND (attr);
4981
4982 /* There should be a DW_AT_ranges_base attribute here (if needed).
4983 We need the value before we can process DW_AT_ranges. */
4984 cu->ranges_base = 0;
4985 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4986 if (attr)
4987 cu->ranges_base = DW_UNSND (attr);
4988 }
4989 else if (stub_comp_dir != NULL)
4990 {
4991 /* Reconstruct the comp_dir attribute to simplify the code below. */
4992 comp_dir = (struct attribute *)
4993 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4994 comp_dir->name = DW_AT_comp_dir;
4995 comp_dir->form = DW_FORM_string;
4996 DW_STRING_IS_CANONICAL (comp_dir) = 0;
4997 DW_STRING (comp_dir) = stub_comp_dir;
4998 }
4999
5000 /* Set up for reading the DWO CU/TU. */
5001 cu->dwo_unit = dwo_unit;
5002 section = dwo_unit->section;
5003 dwarf2_read_section (objfile, section);
5004 abfd = get_section_bfd_owner (section);
5005 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5006 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5007 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5008
5009 if (this_cu->is_debug_types)
5010 {
5011 ULONGEST header_signature;
5012 cu_offset type_offset_in_tu;
5013 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5014
5015 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5016 dwo_abbrev_section,
5017 info_ptr,
5018 &header_signature,
5019 &type_offset_in_tu);
5020 /* This is not an assert because it can be caused by bad debug info. */
5021 if (sig_type->signature != header_signature)
5022 {
5023 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5024 " TU at offset 0x%x [in module %s]"),
5025 hex_string (sig_type->signature),
5026 hex_string (header_signature),
5027 dwo_unit->offset.sect_off,
5028 bfd_get_filename (abfd));
5029 }
5030 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5031 /* For DWOs coming from DWP files, we don't know the CU length
5032 nor the type's offset in the TU until now. */
5033 dwo_unit->length = get_cu_length (&cu->header);
5034 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5035
5036 /* Establish the type offset that can be used to lookup the type.
5037 For DWO files, we don't know it until now. */
5038 sig_type->type_offset_in_section.sect_off =
5039 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5040 }
5041 else
5042 {
5043 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5044 dwo_abbrev_section,
5045 info_ptr, 0);
5046 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5047 /* For DWOs coming from DWP files, we don't know the CU length
5048 until now. */
5049 dwo_unit->length = get_cu_length (&cu->header);
5050 }
5051
5052 /* Replace the CU's original abbrev table with the DWO's.
5053 Reminder: We can't read the abbrev table until we've read the header. */
5054 if (abbrev_table_provided)
5055 {
5056 /* Don't free the provided abbrev table, the caller of
5057 init_cutu_and_read_dies owns it. */
5058 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5059 /* Ensure the DWO abbrev table gets freed. */
5060 make_cleanup (dwarf2_free_abbrev_table, cu);
5061 }
5062 else
5063 {
5064 dwarf2_free_abbrev_table (cu);
5065 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5066 /* Leave any existing abbrev table cleanup as is. */
5067 }
5068
5069 /* Read in the die, but leave space to copy over the attributes
5070 from the stub. This has the benefit of simplifying the rest of
5071 the code - all the work to maintain the illusion of a single
5072 DW_TAG_{compile,type}_unit DIE is done here. */
5073 num_extra_attrs = ((stmt_list != NULL)
5074 + (low_pc != NULL)
5075 + (high_pc != NULL)
5076 + (ranges != NULL)
5077 + (comp_dir != NULL));
5078 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5079 result_has_children, num_extra_attrs);
5080
5081 /* Copy over the attributes from the stub to the DIE we just read in. */
5082 comp_unit_die = *result_comp_unit_die;
5083 i = comp_unit_die->num_attrs;
5084 if (stmt_list != NULL)
5085 comp_unit_die->attrs[i++] = *stmt_list;
5086 if (low_pc != NULL)
5087 comp_unit_die->attrs[i++] = *low_pc;
5088 if (high_pc != NULL)
5089 comp_unit_die->attrs[i++] = *high_pc;
5090 if (ranges != NULL)
5091 comp_unit_die->attrs[i++] = *ranges;
5092 if (comp_dir != NULL)
5093 comp_unit_die->attrs[i++] = *comp_dir;
5094 comp_unit_die->num_attrs += num_extra_attrs;
5095
5096 if (dwarf2_die_debug)
5097 {
5098 fprintf_unfiltered (gdb_stdlog,
5099 "Read die from %s@0x%x of %s:\n",
5100 get_section_name (section),
5101 (unsigned) (begin_info_ptr - section->buffer),
5102 bfd_get_filename (abfd));
5103 dump_die (comp_unit_die, dwarf2_die_debug);
5104 }
5105
5106 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5107 TUs by skipping the stub and going directly to the entry in the DWO file.
5108 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5109 to get it via circuitous means. Blech. */
5110 if (comp_dir != NULL)
5111 result_reader->comp_dir = DW_STRING (comp_dir);
5112
5113 /* Skip dummy compilation units. */
5114 if (info_ptr >= begin_info_ptr + dwo_unit->length
5115 || peek_abbrev_code (abfd, info_ptr) == 0)
5116 return 0;
5117
5118 *result_info_ptr = info_ptr;
5119 return 1;
5120 }
5121
5122 /* Subroutine of init_cutu_and_read_dies to simplify it.
5123 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5124 Returns NULL if the specified DWO unit cannot be found. */
5125
5126 static struct dwo_unit *
5127 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5128 struct die_info *comp_unit_die)
5129 {
5130 struct dwarf2_cu *cu = this_cu->cu;
5131 struct attribute *attr;
5132 ULONGEST signature;
5133 struct dwo_unit *dwo_unit;
5134 const char *comp_dir, *dwo_name;
5135
5136 gdb_assert (cu != NULL);
5137
5138 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5139 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5140 gdb_assert (attr != NULL);
5141 dwo_name = DW_STRING (attr);
5142 comp_dir = NULL;
5143 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5144 if (attr)
5145 comp_dir = DW_STRING (attr);
5146
5147 if (this_cu->is_debug_types)
5148 {
5149 struct signatured_type *sig_type;
5150
5151 /* Since this_cu is the first member of struct signatured_type,
5152 we can go from a pointer to one to a pointer to the other. */
5153 sig_type = (struct signatured_type *) this_cu;
5154 signature = sig_type->signature;
5155 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5156 }
5157 else
5158 {
5159 struct attribute *attr;
5160
5161 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5162 if (! attr)
5163 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5164 " [in module %s]"),
5165 dwo_name, objfile_name (this_cu->objfile));
5166 signature = DW_UNSND (attr);
5167 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5168 signature);
5169 }
5170
5171 return dwo_unit;
5172 }
5173
5174 /* Subroutine of init_cutu_and_read_dies to simplify it.
5175 Read a TU directly from a DWO file, bypassing the stub. */
5176
5177 static void
5178 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
5179 die_reader_func_ftype *die_reader_func,
5180 void *data)
5181 {
5182 struct dwarf2_cu *cu;
5183 struct signatured_type *sig_type;
5184 struct cleanup *cleanups, *free_cu_cleanup;
5185 struct die_reader_specs reader;
5186 const gdb_byte *info_ptr;
5187 struct die_info *comp_unit_die;
5188 int has_children;
5189
5190 /* Verify we can do the following downcast, and that we have the
5191 data we need. */
5192 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5193 sig_type = (struct signatured_type *) this_cu;
5194 gdb_assert (sig_type->dwo_unit != NULL);
5195
5196 cleanups = make_cleanup (null_cleanup, NULL);
5197
5198 gdb_assert (this_cu->cu == NULL);
5199 cu = xmalloc (sizeof (*cu));
5200 init_one_comp_unit (cu, this_cu);
5201 /* If an error occurs while loading, release our storage. */
5202 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5203
5204 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5205 0 /* abbrev_table_provided */,
5206 NULL /* stub_comp_unit_die */,
5207 sig_type->dwo_unit->dwo_file->comp_dir,
5208 &reader, &info_ptr,
5209 &comp_unit_die, &has_children) == 0)
5210 {
5211 /* Dummy die. */
5212 do_cleanups (cleanups);
5213 return;
5214 }
5215
5216 /* All the "real" work is done here. */
5217 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5218
5219 /* This duplicates some code in init_cutu_and_read_dies,
5220 but the alternative is making the latter more complex.
5221 This function is only for the special case of using DWO files directly:
5222 no point in overly complicating the general case just to handle this. */
5223 if (keep)
5224 {
5225 /* We've successfully allocated this compilation unit. Let our
5226 caller clean it up when finished with it. */
5227 discard_cleanups (free_cu_cleanup);
5228
5229 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5230 So we have to manually free the abbrev table. */
5231 dwarf2_free_abbrev_table (cu);
5232
5233 /* Link this CU into read_in_chain. */
5234 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5235 dwarf2_per_objfile->read_in_chain = this_cu;
5236 }
5237 else
5238 do_cleanups (free_cu_cleanup);
5239
5240 do_cleanups (cleanups);
5241 }
5242
5243 /* Initialize a CU (or TU) and read its DIEs.
5244 If the CU defers to a DWO file, read the DWO file as well.
5245
5246 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5247 Otherwise the table specified in the comp unit header is read in and used.
5248 This is an optimization for when we already have the abbrev table.
5249
5250 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5251 Otherwise, a new CU is allocated with xmalloc.
5252
5253 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5254 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5255
5256 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5257 linker) then DIE_READER_FUNC will not get called. */
5258
5259 static void
5260 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5261 struct abbrev_table *abbrev_table,
5262 int use_existing_cu, int keep,
5263 die_reader_func_ftype *die_reader_func,
5264 void *data)
5265 {
5266 struct objfile *objfile = dwarf2_per_objfile->objfile;
5267 struct dwarf2_section_info *section = this_cu->section;
5268 bfd *abfd = get_section_bfd_owner (section);
5269 struct dwarf2_cu *cu;
5270 const gdb_byte *begin_info_ptr, *info_ptr;
5271 struct die_reader_specs reader;
5272 struct die_info *comp_unit_die;
5273 int has_children;
5274 struct attribute *attr;
5275 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5276 struct signatured_type *sig_type = NULL;
5277 struct dwarf2_section_info *abbrev_section;
5278 /* Non-zero if CU currently points to a DWO file and we need to
5279 reread it. When this happens we need to reread the skeleton die
5280 before we can reread the DWO file (this only applies to CUs, not TUs). */
5281 int rereading_dwo_cu = 0;
5282
5283 if (dwarf2_die_debug)
5284 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5285 this_cu->is_debug_types ? "type" : "comp",
5286 this_cu->offset.sect_off);
5287
5288 if (use_existing_cu)
5289 gdb_assert (keep);
5290
5291 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5292 file (instead of going through the stub), short-circuit all of this. */
5293 if (this_cu->reading_dwo_directly)
5294 {
5295 /* Narrow down the scope of possibilities to have to understand. */
5296 gdb_assert (this_cu->is_debug_types);
5297 gdb_assert (abbrev_table == NULL);
5298 gdb_assert (!use_existing_cu);
5299 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5300 return;
5301 }
5302
5303 cleanups = make_cleanup (null_cleanup, NULL);
5304
5305 /* This is cheap if the section is already read in. */
5306 dwarf2_read_section (objfile, section);
5307
5308 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5309
5310 abbrev_section = get_abbrev_section_for_cu (this_cu);
5311
5312 if (use_existing_cu && this_cu->cu != NULL)
5313 {
5314 cu = this_cu->cu;
5315
5316 /* If this CU is from a DWO file we need to start over, we need to
5317 refetch the attributes from the skeleton CU.
5318 This could be optimized by retrieving those attributes from when we
5319 were here the first time: the previous comp_unit_die was stored in
5320 comp_unit_obstack. But there's no data yet that we need this
5321 optimization. */
5322 if (cu->dwo_unit != NULL)
5323 rereading_dwo_cu = 1;
5324 }
5325 else
5326 {
5327 /* If !use_existing_cu, this_cu->cu must be NULL. */
5328 gdb_assert (this_cu->cu == NULL);
5329
5330 cu = xmalloc (sizeof (*cu));
5331 init_one_comp_unit (cu, this_cu);
5332
5333 /* If an error occurs while loading, release our storage. */
5334 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5335 }
5336
5337 /* Get the header. */
5338 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5339 {
5340 /* We already have the header, there's no need to read it in again. */
5341 info_ptr += cu->header.first_die_offset.cu_off;
5342 }
5343 else
5344 {
5345 if (this_cu->is_debug_types)
5346 {
5347 ULONGEST signature;
5348 cu_offset type_offset_in_tu;
5349
5350 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5351 abbrev_section, info_ptr,
5352 &signature,
5353 &type_offset_in_tu);
5354
5355 /* Since per_cu is the first member of struct signatured_type,
5356 we can go from a pointer to one to a pointer to the other. */
5357 sig_type = (struct signatured_type *) this_cu;
5358 gdb_assert (sig_type->signature == signature);
5359 gdb_assert (sig_type->type_offset_in_tu.cu_off
5360 == type_offset_in_tu.cu_off);
5361 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5362
5363 /* LENGTH has not been set yet for type units if we're
5364 using .gdb_index. */
5365 this_cu->length = get_cu_length (&cu->header);
5366
5367 /* Establish the type offset that can be used to lookup the type. */
5368 sig_type->type_offset_in_section.sect_off =
5369 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5370 }
5371 else
5372 {
5373 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5374 abbrev_section,
5375 info_ptr, 0);
5376
5377 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5378 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5379 }
5380 }
5381
5382 /* Skip dummy compilation units. */
5383 if (info_ptr >= begin_info_ptr + this_cu->length
5384 || peek_abbrev_code (abfd, info_ptr) == 0)
5385 {
5386 do_cleanups (cleanups);
5387 return;
5388 }
5389
5390 /* If we don't have them yet, read the abbrevs for this compilation unit.
5391 And if we need to read them now, make sure they're freed when we're
5392 done. Note that it's important that if the CU had an abbrev table
5393 on entry we don't free it when we're done: Somewhere up the call stack
5394 it may be in use. */
5395 if (abbrev_table != NULL)
5396 {
5397 gdb_assert (cu->abbrev_table == NULL);
5398 gdb_assert (cu->header.abbrev_offset.sect_off
5399 == abbrev_table->offset.sect_off);
5400 cu->abbrev_table = abbrev_table;
5401 }
5402 else if (cu->abbrev_table == NULL)
5403 {
5404 dwarf2_read_abbrevs (cu, abbrev_section);
5405 make_cleanup (dwarf2_free_abbrev_table, cu);
5406 }
5407 else if (rereading_dwo_cu)
5408 {
5409 dwarf2_free_abbrev_table (cu);
5410 dwarf2_read_abbrevs (cu, abbrev_section);
5411 }
5412
5413 /* Read the top level CU/TU die. */
5414 init_cu_die_reader (&reader, cu, section, NULL);
5415 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5416
5417 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5418 from the DWO file.
5419 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5420 DWO CU, that this test will fail (the attribute will not be present). */
5421 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5422 if (attr)
5423 {
5424 struct dwo_unit *dwo_unit;
5425 struct die_info *dwo_comp_unit_die;
5426
5427 if (has_children)
5428 {
5429 complaint (&symfile_complaints,
5430 _("compilation unit with DW_AT_GNU_dwo_name"
5431 " has children (offset 0x%x) [in module %s]"),
5432 this_cu->offset.sect_off, bfd_get_filename (abfd));
5433 }
5434 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5435 if (dwo_unit != NULL)
5436 {
5437 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5438 abbrev_table != NULL,
5439 comp_unit_die, NULL,
5440 &reader, &info_ptr,
5441 &dwo_comp_unit_die, &has_children) == 0)
5442 {
5443 /* Dummy die. */
5444 do_cleanups (cleanups);
5445 return;
5446 }
5447 comp_unit_die = dwo_comp_unit_die;
5448 }
5449 else
5450 {
5451 /* Yikes, we couldn't find the rest of the DIE, we only have
5452 the stub. A complaint has already been logged. There's
5453 not much more we can do except pass on the stub DIE to
5454 die_reader_func. We don't want to throw an error on bad
5455 debug info. */
5456 }
5457 }
5458
5459 /* All of the above is setup for this call. Yikes. */
5460 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5461
5462 /* Done, clean up. */
5463 if (free_cu_cleanup != NULL)
5464 {
5465 if (keep)
5466 {
5467 /* We've successfully allocated this compilation unit. Let our
5468 caller clean it up when finished with it. */
5469 discard_cleanups (free_cu_cleanup);
5470
5471 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5472 So we have to manually free the abbrev table. */
5473 dwarf2_free_abbrev_table (cu);
5474
5475 /* Link this CU into read_in_chain. */
5476 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5477 dwarf2_per_objfile->read_in_chain = this_cu;
5478 }
5479 else
5480 do_cleanups (free_cu_cleanup);
5481 }
5482
5483 do_cleanups (cleanups);
5484 }
5485
5486 /* Read CU/TU THIS_CU in section SECTION,
5487 but do not follow DW_AT_GNU_dwo_name if present.
5488 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5489 to have already done the lookup to find the DWO/DWP file).
5490
5491 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5492 THIS_CU->is_debug_types, but nothing else.
5493
5494 We fill in THIS_CU->length.
5495
5496 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5497 linker) then DIE_READER_FUNC will not get called.
5498
5499 THIS_CU->cu is always freed when done.
5500 This is done in order to not leave THIS_CU->cu in a state where we have
5501 to care whether it refers to the "main" CU or the DWO CU. */
5502
5503 static void
5504 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5505 struct dwarf2_section_info *abbrev_section,
5506 struct dwo_file *dwo_file,
5507 die_reader_func_ftype *die_reader_func,
5508 void *data)
5509 {
5510 struct objfile *objfile = dwarf2_per_objfile->objfile;
5511 struct dwarf2_section_info *section = this_cu->section;
5512 bfd *abfd = get_section_bfd_owner (section);
5513 struct dwarf2_cu cu;
5514 const gdb_byte *begin_info_ptr, *info_ptr;
5515 struct die_reader_specs reader;
5516 struct cleanup *cleanups;
5517 struct die_info *comp_unit_die;
5518 int has_children;
5519
5520 if (dwarf2_die_debug)
5521 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5522 this_cu->is_debug_types ? "type" : "comp",
5523 this_cu->offset.sect_off);
5524
5525 gdb_assert (this_cu->cu == NULL);
5526
5527 /* This is cheap if the section is already read in. */
5528 dwarf2_read_section (objfile, section);
5529
5530 init_one_comp_unit (&cu, this_cu);
5531
5532 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5533
5534 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5535 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5536 abbrev_section, info_ptr,
5537 this_cu->is_debug_types);
5538
5539 this_cu->length = get_cu_length (&cu.header);
5540
5541 /* Skip dummy compilation units. */
5542 if (info_ptr >= begin_info_ptr + this_cu->length
5543 || peek_abbrev_code (abfd, info_ptr) == 0)
5544 {
5545 do_cleanups (cleanups);
5546 return;
5547 }
5548
5549 dwarf2_read_abbrevs (&cu, abbrev_section);
5550 make_cleanup (dwarf2_free_abbrev_table, &cu);
5551
5552 init_cu_die_reader (&reader, &cu, section, dwo_file);
5553 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5554
5555 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5556
5557 do_cleanups (cleanups);
5558 }
5559
5560 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5561 does not lookup the specified DWO file.
5562 This cannot be used to read DWO files.
5563
5564 THIS_CU->cu is always freed when done.
5565 This is done in order to not leave THIS_CU->cu in a state where we have
5566 to care whether it refers to the "main" CU or the DWO CU.
5567 We can revisit this if the data shows there's a performance issue. */
5568
5569 static void
5570 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5571 die_reader_func_ftype *die_reader_func,
5572 void *data)
5573 {
5574 init_cutu_and_read_dies_no_follow (this_cu,
5575 get_abbrev_section_for_cu (this_cu),
5576 NULL,
5577 die_reader_func, data);
5578 }
5579 \f
5580 /* Type Unit Groups.
5581
5582 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5583 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5584 so that all types coming from the same compilation (.o file) are grouped
5585 together. A future step could be to put the types in the same symtab as
5586 the CU the types ultimately came from. */
5587
5588 static hashval_t
5589 hash_type_unit_group (const void *item)
5590 {
5591 const struct type_unit_group *tu_group = item;
5592
5593 return hash_stmt_list_entry (&tu_group->hash);
5594 }
5595
5596 static int
5597 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5598 {
5599 const struct type_unit_group *lhs = item_lhs;
5600 const struct type_unit_group *rhs = item_rhs;
5601
5602 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5603 }
5604
5605 /* Allocate a hash table for type unit groups. */
5606
5607 static htab_t
5608 allocate_type_unit_groups_table (void)
5609 {
5610 return htab_create_alloc_ex (3,
5611 hash_type_unit_group,
5612 eq_type_unit_group,
5613 NULL,
5614 &dwarf2_per_objfile->objfile->objfile_obstack,
5615 hashtab_obstack_allocate,
5616 dummy_obstack_deallocate);
5617 }
5618
5619 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5620 partial symtabs. We combine several TUs per psymtab to not let the size
5621 of any one psymtab grow too big. */
5622 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5623 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5624
5625 /* Helper routine for get_type_unit_group.
5626 Create the type_unit_group object used to hold one or more TUs. */
5627
5628 static struct type_unit_group *
5629 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5630 {
5631 struct objfile *objfile = dwarf2_per_objfile->objfile;
5632 struct dwarf2_per_cu_data *per_cu;
5633 struct type_unit_group *tu_group;
5634
5635 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5636 struct type_unit_group);
5637 per_cu = &tu_group->per_cu;
5638 per_cu->objfile = objfile;
5639
5640 if (dwarf2_per_objfile->using_index)
5641 {
5642 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5643 struct dwarf2_per_cu_quick_data);
5644 }
5645 else
5646 {
5647 unsigned int line_offset = line_offset_struct.sect_off;
5648 struct partial_symtab *pst;
5649 char *name;
5650
5651 /* Give the symtab a useful name for debug purposes. */
5652 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5653 name = xstrprintf ("<type_units_%d>",
5654 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5655 else
5656 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5657
5658 pst = create_partial_symtab (per_cu, name);
5659 pst->anonymous = 1;
5660
5661 xfree (name);
5662 }
5663
5664 tu_group->hash.dwo_unit = cu->dwo_unit;
5665 tu_group->hash.line_offset = line_offset_struct;
5666
5667 return tu_group;
5668 }
5669
5670 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5671 STMT_LIST is a DW_AT_stmt_list attribute. */
5672
5673 static struct type_unit_group *
5674 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5675 {
5676 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5677 struct type_unit_group *tu_group;
5678 void **slot;
5679 unsigned int line_offset;
5680 struct type_unit_group type_unit_group_for_lookup;
5681
5682 if (dwarf2_per_objfile->type_unit_groups == NULL)
5683 {
5684 dwarf2_per_objfile->type_unit_groups =
5685 allocate_type_unit_groups_table ();
5686 }
5687
5688 /* Do we need to create a new group, or can we use an existing one? */
5689
5690 if (stmt_list)
5691 {
5692 line_offset = DW_UNSND (stmt_list);
5693 ++tu_stats->nr_symtab_sharers;
5694 }
5695 else
5696 {
5697 /* Ugh, no stmt_list. Rare, but we have to handle it.
5698 We can do various things here like create one group per TU or
5699 spread them over multiple groups to split up the expansion work.
5700 To avoid worst case scenarios (too many groups or too large groups)
5701 we, umm, group them in bunches. */
5702 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5703 | (tu_stats->nr_stmt_less_type_units
5704 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5705 ++tu_stats->nr_stmt_less_type_units;
5706 }
5707
5708 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5709 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5710 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5711 &type_unit_group_for_lookup, INSERT);
5712 if (*slot != NULL)
5713 {
5714 tu_group = *slot;
5715 gdb_assert (tu_group != NULL);
5716 }
5717 else
5718 {
5719 sect_offset line_offset_struct;
5720
5721 line_offset_struct.sect_off = line_offset;
5722 tu_group = create_type_unit_group (cu, line_offset_struct);
5723 *slot = tu_group;
5724 ++tu_stats->nr_symtabs;
5725 }
5726
5727 return tu_group;
5728 }
5729
5730 /* Struct used to sort TUs by their abbreviation table offset. */
5731
5732 struct tu_abbrev_offset
5733 {
5734 struct signatured_type *sig_type;
5735 sect_offset abbrev_offset;
5736 };
5737
5738 /* Helper routine for build_type_unit_groups, passed to qsort. */
5739
5740 static int
5741 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5742 {
5743 const struct tu_abbrev_offset * const *a = ap;
5744 const struct tu_abbrev_offset * const *b = bp;
5745 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5746 unsigned int boff = (*b)->abbrev_offset.sect_off;
5747
5748 return (aoff > boff) - (aoff < boff);
5749 }
5750
5751 /* A helper function to add a type_unit_group to a table. */
5752
5753 static int
5754 add_type_unit_group_to_table (void **slot, void *datum)
5755 {
5756 struct type_unit_group *tu_group = *slot;
5757 struct type_unit_group ***datap = datum;
5758
5759 **datap = tu_group;
5760 ++*datap;
5761
5762 return 1;
5763 }
5764
5765 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5766 each one passing FUNC,DATA.
5767
5768 The efficiency is because we sort TUs by the abbrev table they use and
5769 only read each abbrev table once. In one program there are 200K TUs
5770 sharing 8K abbrev tables.
5771
5772 The main purpose of this function is to support building the
5773 dwarf2_per_objfile->type_unit_groups table.
5774 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5775 can collapse the search space by grouping them by stmt_list.
5776 The savings can be significant, in the same program from above the 200K TUs
5777 share 8K stmt_list tables.
5778
5779 FUNC is expected to call get_type_unit_group, which will create the
5780 struct type_unit_group if necessary and add it to
5781 dwarf2_per_objfile->type_unit_groups. */
5782
5783 static void
5784 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5785 {
5786 struct objfile *objfile = dwarf2_per_objfile->objfile;
5787 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5788 struct cleanup *cleanups;
5789 struct abbrev_table *abbrev_table;
5790 sect_offset abbrev_offset;
5791 struct tu_abbrev_offset *sorted_by_abbrev;
5792 struct type_unit_group **iter;
5793 int i;
5794
5795 /* It's up to the caller to not call us multiple times. */
5796 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5797
5798 if (dwarf2_per_objfile->n_type_units == 0)
5799 return;
5800
5801 /* TUs typically share abbrev tables, and there can be way more TUs than
5802 abbrev tables. Sort by abbrev table to reduce the number of times we
5803 read each abbrev table in.
5804 Alternatives are to punt or to maintain a cache of abbrev tables.
5805 This is simpler and efficient enough for now.
5806
5807 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5808 symtab to use). Typically TUs with the same abbrev offset have the same
5809 stmt_list value too so in practice this should work well.
5810
5811 The basic algorithm here is:
5812
5813 sort TUs by abbrev table
5814 for each TU with same abbrev table:
5815 read abbrev table if first user
5816 read TU top level DIE
5817 [IWBN if DWO skeletons had DW_AT_stmt_list]
5818 call FUNC */
5819
5820 if (dwarf2_read_debug)
5821 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5822
5823 /* Sort in a separate table to maintain the order of all_type_units
5824 for .gdb_index: TU indices directly index all_type_units. */
5825 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5826 dwarf2_per_objfile->n_type_units);
5827 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5828 {
5829 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5830
5831 sorted_by_abbrev[i].sig_type = sig_type;
5832 sorted_by_abbrev[i].abbrev_offset =
5833 read_abbrev_offset (sig_type->per_cu.section,
5834 sig_type->per_cu.offset);
5835 }
5836 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5837 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5838 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5839
5840 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5841 called any number of times, so we don't reset tu_stats here. */
5842
5843 abbrev_offset.sect_off = ~(unsigned) 0;
5844 abbrev_table = NULL;
5845 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5846
5847 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5848 {
5849 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5850
5851 /* Switch to the next abbrev table if necessary. */
5852 if (abbrev_table == NULL
5853 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5854 {
5855 if (abbrev_table != NULL)
5856 {
5857 abbrev_table_free (abbrev_table);
5858 /* Reset to NULL in case abbrev_table_read_table throws
5859 an error: abbrev_table_free_cleanup will get called. */
5860 abbrev_table = NULL;
5861 }
5862 abbrev_offset = tu->abbrev_offset;
5863 abbrev_table =
5864 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5865 abbrev_offset);
5866 ++tu_stats->nr_uniq_abbrev_tables;
5867 }
5868
5869 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5870 func, data);
5871 }
5872
5873 /* type_unit_groups can be NULL if there is an error in the debug info.
5874 Just create an empty table so the rest of gdb doesn't have to watch
5875 for this error case. */
5876 if (dwarf2_per_objfile->type_unit_groups == NULL)
5877 {
5878 dwarf2_per_objfile->type_unit_groups =
5879 allocate_type_unit_groups_table ();
5880 dwarf2_per_objfile->n_type_unit_groups = 0;
5881 }
5882
5883 /* Create a vector of pointers to primary type units to make it easy to
5884 iterate over them and CUs. See dw2_get_primary_cu. */
5885 dwarf2_per_objfile->n_type_unit_groups =
5886 htab_elements (dwarf2_per_objfile->type_unit_groups);
5887 dwarf2_per_objfile->all_type_unit_groups =
5888 obstack_alloc (&objfile->objfile_obstack,
5889 dwarf2_per_objfile->n_type_unit_groups
5890 * sizeof (struct type_unit_group *));
5891 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5892 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5893 add_type_unit_group_to_table, &iter);
5894 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5895 == dwarf2_per_objfile->n_type_unit_groups);
5896
5897 do_cleanups (cleanups);
5898
5899 if (dwarf2_read_debug)
5900 {
5901 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5902 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5903 dwarf2_per_objfile->n_type_units);
5904 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5905 tu_stats->nr_uniq_abbrev_tables);
5906 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5907 tu_stats->nr_symtabs);
5908 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5909 tu_stats->nr_symtab_sharers);
5910 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5911 tu_stats->nr_stmt_less_type_units);
5912 }
5913 }
5914 \f
5915 /* Partial symbol tables. */
5916
5917 /* Create a psymtab named NAME and assign it to PER_CU.
5918
5919 The caller must fill in the following details:
5920 dirname, textlow, texthigh. */
5921
5922 static struct partial_symtab *
5923 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5924 {
5925 struct objfile *objfile = per_cu->objfile;
5926 struct partial_symtab *pst;
5927
5928 pst = start_psymtab_common (objfile, objfile->section_offsets,
5929 name, 0,
5930 objfile->global_psymbols.next,
5931 objfile->static_psymbols.next);
5932
5933 pst->psymtabs_addrmap_supported = 1;
5934
5935 /* This is the glue that links PST into GDB's symbol API. */
5936 pst->read_symtab_private = per_cu;
5937 pst->read_symtab = dwarf2_read_symtab;
5938 per_cu->v.psymtab = pst;
5939
5940 return pst;
5941 }
5942
5943 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5944 type. */
5945
5946 struct process_psymtab_comp_unit_data
5947 {
5948 /* True if we are reading a DW_TAG_partial_unit. */
5949
5950 int want_partial_unit;
5951
5952 /* The "pretend" language that is used if the CU doesn't declare a
5953 language. */
5954
5955 enum language pretend_language;
5956 };
5957
5958 /* die_reader_func for process_psymtab_comp_unit. */
5959
5960 static void
5961 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5962 const gdb_byte *info_ptr,
5963 struct die_info *comp_unit_die,
5964 int has_children,
5965 void *data)
5966 {
5967 struct dwarf2_cu *cu = reader->cu;
5968 struct objfile *objfile = cu->objfile;
5969 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5970 struct attribute *attr;
5971 CORE_ADDR baseaddr;
5972 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5973 struct partial_symtab *pst;
5974 int has_pc_info;
5975 const char *filename;
5976 struct process_psymtab_comp_unit_data *info = data;
5977
5978 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5979 return;
5980
5981 gdb_assert (! per_cu->is_debug_types);
5982
5983 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5984
5985 cu->list_in_scope = &file_symbols;
5986
5987 /* Allocate a new partial symbol table structure. */
5988 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5989 if (attr == NULL || !DW_STRING (attr))
5990 filename = "";
5991 else
5992 filename = DW_STRING (attr);
5993
5994 pst = create_partial_symtab (per_cu, filename);
5995
5996 /* This must be done before calling dwarf2_build_include_psymtabs. */
5997 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5998 if (attr != NULL)
5999 pst->dirname = DW_STRING (attr);
6000
6001 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6002
6003 dwarf2_find_base_address (comp_unit_die, cu);
6004
6005 /* Possibly set the default values of LOWPC and HIGHPC from
6006 `DW_AT_ranges'. */
6007 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6008 &best_highpc, cu, pst);
6009 if (has_pc_info == 1 && best_lowpc < best_highpc)
6010 /* Store the contiguous range if it is not empty; it can be empty for
6011 CUs with no code. */
6012 addrmap_set_empty (objfile->psymtabs_addrmap,
6013 best_lowpc + baseaddr,
6014 best_highpc + baseaddr - 1, pst);
6015
6016 /* Check if comp unit has_children.
6017 If so, read the rest of the partial symbols from this comp unit.
6018 If not, there's no more debug_info for this comp unit. */
6019 if (has_children)
6020 {
6021 struct partial_die_info *first_die;
6022 CORE_ADDR lowpc, highpc;
6023
6024 lowpc = ((CORE_ADDR) -1);
6025 highpc = ((CORE_ADDR) 0);
6026
6027 first_die = load_partial_dies (reader, info_ptr, 1);
6028
6029 scan_partial_symbols (first_die, &lowpc, &highpc,
6030 ! has_pc_info, cu);
6031
6032 /* If we didn't find a lowpc, set it to highpc to avoid
6033 complaints from `maint check'. */
6034 if (lowpc == ((CORE_ADDR) -1))
6035 lowpc = highpc;
6036
6037 /* If the compilation unit didn't have an explicit address range,
6038 then use the information extracted from its child dies. */
6039 if (! has_pc_info)
6040 {
6041 best_lowpc = lowpc;
6042 best_highpc = highpc;
6043 }
6044 }
6045 pst->textlow = best_lowpc + baseaddr;
6046 pst->texthigh = best_highpc + baseaddr;
6047
6048 pst->n_global_syms = objfile->global_psymbols.next -
6049 (objfile->global_psymbols.list + pst->globals_offset);
6050 pst->n_static_syms = objfile->static_psymbols.next -
6051 (objfile->static_psymbols.list + pst->statics_offset);
6052 sort_pst_symbols (objfile, pst);
6053
6054 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6055 {
6056 int i;
6057 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6058 struct dwarf2_per_cu_data *iter;
6059
6060 /* Fill in 'dependencies' here; we fill in 'users' in a
6061 post-pass. */
6062 pst->number_of_dependencies = len;
6063 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6064 len * sizeof (struct symtab *));
6065 for (i = 0;
6066 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6067 i, iter);
6068 ++i)
6069 pst->dependencies[i] = iter->v.psymtab;
6070
6071 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6072 }
6073
6074 /* Get the list of files included in the current compilation unit,
6075 and build a psymtab for each of them. */
6076 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6077
6078 if (dwarf2_read_debug)
6079 {
6080 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6081
6082 fprintf_unfiltered (gdb_stdlog,
6083 "Psymtab for %s unit @0x%x: %s - %s"
6084 ", %d global, %d static syms\n",
6085 per_cu->is_debug_types ? "type" : "comp",
6086 per_cu->offset.sect_off,
6087 paddress (gdbarch, pst->textlow),
6088 paddress (gdbarch, pst->texthigh),
6089 pst->n_global_syms, pst->n_static_syms);
6090 }
6091 }
6092
6093 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6094 Process compilation unit THIS_CU for a psymtab. */
6095
6096 static void
6097 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6098 int want_partial_unit,
6099 enum language pretend_language)
6100 {
6101 struct process_psymtab_comp_unit_data info;
6102
6103 /* If this compilation unit was already read in, free the
6104 cached copy in order to read it in again. This is
6105 necessary because we skipped some symbols when we first
6106 read in the compilation unit (see load_partial_dies).
6107 This problem could be avoided, but the benefit is unclear. */
6108 if (this_cu->cu != NULL)
6109 free_one_cached_comp_unit (this_cu);
6110
6111 gdb_assert (! this_cu->is_debug_types);
6112 info.want_partial_unit = want_partial_unit;
6113 info.pretend_language = pretend_language;
6114 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6115 process_psymtab_comp_unit_reader,
6116 &info);
6117
6118 /* Age out any secondary CUs. */
6119 age_cached_comp_units ();
6120 }
6121
6122 /* Reader function for build_type_psymtabs. */
6123
6124 static void
6125 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6126 const gdb_byte *info_ptr,
6127 struct die_info *type_unit_die,
6128 int has_children,
6129 void *data)
6130 {
6131 struct objfile *objfile = dwarf2_per_objfile->objfile;
6132 struct dwarf2_cu *cu = reader->cu;
6133 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6134 struct signatured_type *sig_type;
6135 struct type_unit_group *tu_group;
6136 struct attribute *attr;
6137 struct partial_die_info *first_die;
6138 CORE_ADDR lowpc, highpc;
6139 struct partial_symtab *pst;
6140
6141 gdb_assert (data == NULL);
6142 gdb_assert (per_cu->is_debug_types);
6143 sig_type = (struct signatured_type *) per_cu;
6144
6145 if (! has_children)
6146 return;
6147
6148 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6149 tu_group = get_type_unit_group (cu, attr);
6150
6151 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6152
6153 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6154 cu->list_in_scope = &file_symbols;
6155 pst = create_partial_symtab (per_cu, "");
6156 pst->anonymous = 1;
6157
6158 first_die = load_partial_dies (reader, info_ptr, 1);
6159
6160 lowpc = (CORE_ADDR) -1;
6161 highpc = (CORE_ADDR) 0;
6162 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6163
6164 pst->n_global_syms = objfile->global_psymbols.next -
6165 (objfile->global_psymbols.list + pst->globals_offset);
6166 pst->n_static_syms = objfile->static_psymbols.next -
6167 (objfile->static_psymbols.list + pst->statics_offset);
6168 sort_pst_symbols (objfile, pst);
6169 }
6170
6171 /* Traversal function for build_type_psymtabs. */
6172
6173 static int
6174 build_type_psymtab_dependencies (void **slot, void *info)
6175 {
6176 struct objfile *objfile = dwarf2_per_objfile->objfile;
6177 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6178 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6179 struct partial_symtab *pst = per_cu->v.psymtab;
6180 int len = VEC_length (sig_type_ptr, tu_group->tus);
6181 struct signatured_type *iter;
6182 int i;
6183
6184 gdb_assert (len > 0);
6185 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6186
6187 pst->number_of_dependencies = len;
6188 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6189 len * sizeof (struct psymtab *));
6190 for (i = 0;
6191 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6192 ++i)
6193 {
6194 gdb_assert (iter->per_cu.is_debug_types);
6195 pst->dependencies[i] = iter->per_cu.v.psymtab;
6196 iter->type_unit_group = tu_group;
6197 }
6198
6199 VEC_free (sig_type_ptr, tu_group->tus);
6200
6201 return 1;
6202 }
6203
6204 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6205 Build partial symbol tables for the .debug_types comp-units. */
6206
6207 static void
6208 build_type_psymtabs (struct objfile *objfile)
6209 {
6210 if (! create_all_type_units (objfile))
6211 return;
6212
6213 build_type_unit_groups (build_type_psymtabs_reader, NULL);
6214
6215 /* Now that all TUs have been processed we can fill in the dependencies. */
6216 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6217 build_type_psymtab_dependencies, NULL);
6218 }
6219
6220 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6221
6222 static void
6223 psymtabs_addrmap_cleanup (void *o)
6224 {
6225 struct objfile *objfile = o;
6226
6227 objfile->psymtabs_addrmap = NULL;
6228 }
6229
6230 /* Compute the 'user' field for each psymtab in OBJFILE. */
6231
6232 static void
6233 set_partial_user (struct objfile *objfile)
6234 {
6235 int i;
6236
6237 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6238 {
6239 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6240 struct partial_symtab *pst = per_cu->v.psymtab;
6241 int j;
6242
6243 if (pst == NULL)
6244 continue;
6245
6246 for (j = 0; j < pst->number_of_dependencies; ++j)
6247 {
6248 /* Set the 'user' field only if it is not already set. */
6249 if (pst->dependencies[j]->user == NULL)
6250 pst->dependencies[j]->user = pst;
6251 }
6252 }
6253 }
6254
6255 /* Build the partial symbol table by doing a quick pass through the
6256 .debug_info and .debug_abbrev sections. */
6257
6258 static void
6259 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6260 {
6261 struct cleanup *back_to, *addrmap_cleanup;
6262 struct obstack temp_obstack;
6263 int i;
6264
6265 if (dwarf2_read_debug)
6266 {
6267 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6268 objfile_name (objfile));
6269 }
6270
6271 dwarf2_per_objfile->reading_partial_symbols = 1;
6272
6273 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6274
6275 /* Any cached compilation units will be linked by the per-objfile
6276 read_in_chain. Make sure to free them when we're done. */
6277 back_to = make_cleanup (free_cached_comp_units, NULL);
6278
6279 build_type_psymtabs (objfile);
6280
6281 create_all_comp_units (objfile);
6282
6283 /* Create a temporary address map on a temporary obstack. We later
6284 copy this to the final obstack. */
6285 obstack_init (&temp_obstack);
6286 make_cleanup_obstack_free (&temp_obstack);
6287 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6288 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6289
6290 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6291 {
6292 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6293
6294 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6295 }
6296
6297 set_partial_user (objfile);
6298
6299 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6300 &objfile->objfile_obstack);
6301 discard_cleanups (addrmap_cleanup);
6302
6303 do_cleanups (back_to);
6304
6305 if (dwarf2_read_debug)
6306 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6307 objfile_name (objfile));
6308 }
6309
6310 /* die_reader_func for load_partial_comp_unit. */
6311
6312 static void
6313 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6314 const gdb_byte *info_ptr,
6315 struct die_info *comp_unit_die,
6316 int has_children,
6317 void *data)
6318 {
6319 struct dwarf2_cu *cu = reader->cu;
6320
6321 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6322
6323 /* Check if comp unit has_children.
6324 If so, read the rest of the partial symbols from this comp unit.
6325 If not, there's no more debug_info for this comp unit. */
6326 if (has_children)
6327 load_partial_dies (reader, info_ptr, 0);
6328 }
6329
6330 /* Load the partial DIEs for a secondary CU into memory.
6331 This is also used when rereading a primary CU with load_all_dies. */
6332
6333 static void
6334 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6335 {
6336 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6337 load_partial_comp_unit_reader, NULL);
6338 }
6339
6340 static void
6341 read_comp_units_from_section (struct objfile *objfile,
6342 struct dwarf2_section_info *section,
6343 unsigned int is_dwz,
6344 int *n_allocated,
6345 int *n_comp_units,
6346 struct dwarf2_per_cu_data ***all_comp_units)
6347 {
6348 const gdb_byte *info_ptr;
6349 bfd *abfd = get_section_bfd_owner (section);
6350
6351 if (dwarf2_read_debug)
6352 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6353 get_section_name (section),
6354 get_section_file_name (section));
6355
6356 dwarf2_read_section (objfile, section);
6357
6358 info_ptr = section->buffer;
6359
6360 while (info_ptr < section->buffer + section->size)
6361 {
6362 unsigned int length, initial_length_size;
6363 struct dwarf2_per_cu_data *this_cu;
6364 sect_offset offset;
6365
6366 offset.sect_off = info_ptr - section->buffer;
6367
6368 /* Read just enough information to find out where the next
6369 compilation unit is. */
6370 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6371
6372 /* Save the compilation unit for later lookup. */
6373 this_cu = obstack_alloc (&objfile->objfile_obstack,
6374 sizeof (struct dwarf2_per_cu_data));
6375 memset (this_cu, 0, sizeof (*this_cu));
6376 this_cu->offset = offset;
6377 this_cu->length = length + initial_length_size;
6378 this_cu->is_dwz = is_dwz;
6379 this_cu->objfile = objfile;
6380 this_cu->section = section;
6381
6382 if (*n_comp_units == *n_allocated)
6383 {
6384 *n_allocated *= 2;
6385 *all_comp_units = xrealloc (*all_comp_units,
6386 *n_allocated
6387 * sizeof (struct dwarf2_per_cu_data *));
6388 }
6389 (*all_comp_units)[*n_comp_units] = this_cu;
6390 ++*n_comp_units;
6391
6392 info_ptr = info_ptr + this_cu->length;
6393 }
6394 }
6395
6396 /* Create a list of all compilation units in OBJFILE.
6397 This is only done for -readnow and building partial symtabs. */
6398
6399 static void
6400 create_all_comp_units (struct objfile *objfile)
6401 {
6402 int n_allocated;
6403 int n_comp_units;
6404 struct dwarf2_per_cu_data **all_comp_units;
6405 struct dwz_file *dwz;
6406
6407 n_comp_units = 0;
6408 n_allocated = 10;
6409 all_comp_units = xmalloc (n_allocated
6410 * sizeof (struct dwarf2_per_cu_data *));
6411
6412 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6413 &n_allocated, &n_comp_units, &all_comp_units);
6414
6415 dwz = dwarf2_get_dwz_file ();
6416 if (dwz != NULL)
6417 read_comp_units_from_section (objfile, &dwz->info, 1,
6418 &n_allocated, &n_comp_units,
6419 &all_comp_units);
6420
6421 dwarf2_per_objfile->all_comp_units
6422 = obstack_alloc (&objfile->objfile_obstack,
6423 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6424 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6425 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6426 xfree (all_comp_units);
6427 dwarf2_per_objfile->n_comp_units = n_comp_units;
6428 }
6429
6430 /* Process all loaded DIEs for compilation unit CU, starting at
6431 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6432 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6433 DW_AT_ranges). If NEED_PC is set, then this function will set
6434 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6435 and record the covered ranges in the addrmap. */
6436
6437 static void
6438 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6439 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6440 {
6441 struct partial_die_info *pdi;
6442
6443 /* Now, march along the PDI's, descending into ones which have
6444 interesting children but skipping the children of the other ones,
6445 until we reach the end of the compilation unit. */
6446
6447 pdi = first_die;
6448
6449 while (pdi != NULL)
6450 {
6451 fixup_partial_die (pdi, cu);
6452
6453 /* Anonymous namespaces or modules have no name but have interesting
6454 children, so we need to look at them. Ditto for anonymous
6455 enums. */
6456
6457 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6458 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6459 || pdi->tag == DW_TAG_imported_unit)
6460 {
6461 switch (pdi->tag)
6462 {
6463 case DW_TAG_subprogram:
6464 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6465 break;
6466 case DW_TAG_constant:
6467 case DW_TAG_variable:
6468 case DW_TAG_typedef:
6469 case DW_TAG_union_type:
6470 if (!pdi->is_declaration)
6471 {
6472 add_partial_symbol (pdi, cu);
6473 }
6474 break;
6475 case DW_TAG_class_type:
6476 case DW_TAG_interface_type:
6477 case DW_TAG_structure_type:
6478 if (!pdi->is_declaration)
6479 {
6480 add_partial_symbol (pdi, cu);
6481 }
6482 break;
6483 case DW_TAG_enumeration_type:
6484 if (!pdi->is_declaration)
6485 add_partial_enumeration (pdi, cu);
6486 break;
6487 case DW_TAG_base_type:
6488 case DW_TAG_subrange_type:
6489 /* File scope base type definitions are added to the partial
6490 symbol table. */
6491 add_partial_symbol (pdi, cu);
6492 break;
6493 case DW_TAG_namespace:
6494 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6495 break;
6496 case DW_TAG_module:
6497 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6498 break;
6499 case DW_TAG_imported_unit:
6500 {
6501 struct dwarf2_per_cu_data *per_cu;
6502
6503 /* For now we don't handle imported units in type units. */
6504 if (cu->per_cu->is_debug_types)
6505 {
6506 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6507 " supported in type units [in module %s]"),
6508 objfile_name (cu->objfile));
6509 }
6510
6511 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6512 pdi->is_dwz,
6513 cu->objfile);
6514
6515 /* Go read the partial unit, if needed. */
6516 if (per_cu->v.psymtab == NULL)
6517 process_psymtab_comp_unit (per_cu, 1, cu->language);
6518
6519 VEC_safe_push (dwarf2_per_cu_ptr,
6520 cu->per_cu->imported_symtabs, per_cu);
6521 }
6522 break;
6523 case DW_TAG_imported_declaration:
6524 add_partial_symbol (pdi, cu);
6525 break;
6526 default:
6527 break;
6528 }
6529 }
6530
6531 /* If the die has a sibling, skip to the sibling. */
6532
6533 pdi = pdi->die_sibling;
6534 }
6535 }
6536
6537 /* Functions used to compute the fully scoped name of a partial DIE.
6538
6539 Normally, this is simple. For C++, the parent DIE's fully scoped
6540 name is concatenated with "::" and the partial DIE's name. For
6541 Java, the same thing occurs except that "." is used instead of "::".
6542 Enumerators are an exception; they use the scope of their parent
6543 enumeration type, i.e. the name of the enumeration type is not
6544 prepended to the enumerator.
6545
6546 There are two complexities. One is DW_AT_specification; in this
6547 case "parent" means the parent of the target of the specification,
6548 instead of the direct parent of the DIE. The other is compilers
6549 which do not emit DW_TAG_namespace; in this case we try to guess
6550 the fully qualified name of structure types from their members'
6551 linkage names. This must be done using the DIE's children rather
6552 than the children of any DW_AT_specification target. We only need
6553 to do this for structures at the top level, i.e. if the target of
6554 any DW_AT_specification (if any; otherwise the DIE itself) does not
6555 have a parent. */
6556
6557 /* Compute the scope prefix associated with PDI's parent, in
6558 compilation unit CU. The result will be allocated on CU's
6559 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6560 field. NULL is returned if no prefix is necessary. */
6561 static const char *
6562 partial_die_parent_scope (struct partial_die_info *pdi,
6563 struct dwarf2_cu *cu)
6564 {
6565 const char *grandparent_scope;
6566 struct partial_die_info *parent, *real_pdi;
6567
6568 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6569 then this means the parent of the specification DIE. */
6570
6571 real_pdi = pdi;
6572 while (real_pdi->has_specification)
6573 real_pdi = find_partial_die (real_pdi->spec_offset,
6574 real_pdi->spec_is_dwz, cu);
6575
6576 parent = real_pdi->die_parent;
6577 if (parent == NULL)
6578 return NULL;
6579
6580 if (parent->scope_set)
6581 return parent->scope;
6582
6583 fixup_partial_die (parent, cu);
6584
6585 grandparent_scope = partial_die_parent_scope (parent, cu);
6586
6587 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6588 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6589 Work around this problem here. */
6590 if (cu->language == language_cplus
6591 && parent->tag == DW_TAG_namespace
6592 && strcmp (parent->name, "::") == 0
6593 && grandparent_scope == NULL)
6594 {
6595 parent->scope = NULL;
6596 parent->scope_set = 1;
6597 return NULL;
6598 }
6599
6600 if (pdi->tag == DW_TAG_enumerator)
6601 /* Enumerators should not get the name of the enumeration as a prefix. */
6602 parent->scope = grandparent_scope;
6603 else if (parent->tag == DW_TAG_namespace
6604 || parent->tag == DW_TAG_module
6605 || parent->tag == DW_TAG_structure_type
6606 || parent->tag == DW_TAG_class_type
6607 || parent->tag == DW_TAG_interface_type
6608 || parent->tag == DW_TAG_union_type
6609 || parent->tag == DW_TAG_enumeration_type)
6610 {
6611 if (grandparent_scope == NULL)
6612 parent->scope = parent->name;
6613 else
6614 parent->scope = typename_concat (&cu->comp_unit_obstack,
6615 grandparent_scope,
6616 parent->name, 0, cu);
6617 }
6618 else
6619 {
6620 /* FIXME drow/2004-04-01: What should we be doing with
6621 function-local names? For partial symbols, we should probably be
6622 ignoring them. */
6623 complaint (&symfile_complaints,
6624 _("unhandled containing DIE tag %d for DIE at %d"),
6625 parent->tag, pdi->offset.sect_off);
6626 parent->scope = grandparent_scope;
6627 }
6628
6629 parent->scope_set = 1;
6630 return parent->scope;
6631 }
6632
6633 /* Return the fully scoped name associated with PDI, from compilation unit
6634 CU. The result will be allocated with malloc. */
6635
6636 static char *
6637 partial_die_full_name (struct partial_die_info *pdi,
6638 struct dwarf2_cu *cu)
6639 {
6640 const char *parent_scope;
6641
6642 /* If this is a template instantiation, we can not work out the
6643 template arguments from partial DIEs. So, unfortunately, we have
6644 to go through the full DIEs. At least any work we do building
6645 types here will be reused if full symbols are loaded later. */
6646 if (pdi->has_template_arguments)
6647 {
6648 fixup_partial_die (pdi, cu);
6649
6650 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6651 {
6652 struct die_info *die;
6653 struct attribute attr;
6654 struct dwarf2_cu *ref_cu = cu;
6655
6656 /* DW_FORM_ref_addr is using section offset. */
6657 attr.name = 0;
6658 attr.form = DW_FORM_ref_addr;
6659 attr.u.unsnd = pdi->offset.sect_off;
6660 die = follow_die_ref (NULL, &attr, &ref_cu);
6661
6662 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6663 }
6664 }
6665
6666 parent_scope = partial_die_parent_scope (pdi, cu);
6667 if (parent_scope == NULL)
6668 return NULL;
6669 else
6670 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6671 }
6672
6673 static void
6674 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6675 {
6676 struct objfile *objfile = cu->objfile;
6677 CORE_ADDR addr = 0;
6678 const char *actual_name = NULL;
6679 CORE_ADDR baseaddr;
6680 char *built_actual_name;
6681
6682 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6683
6684 built_actual_name = partial_die_full_name (pdi, cu);
6685 if (built_actual_name != NULL)
6686 actual_name = built_actual_name;
6687
6688 if (actual_name == NULL)
6689 actual_name = pdi->name;
6690
6691 switch (pdi->tag)
6692 {
6693 case DW_TAG_subprogram:
6694 if (pdi->is_external || cu->language == language_ada)
6695 {
6696 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6697 of the global scope. But in Ada, we want to be able to access
6698 nested procedures globally. So all Ada subprograms are stored
6699 in the global scope. */
6700 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6701 mst_text, objfile); */
6702 add_psymbol_to_list (actual_name, strlen (actual_name),
6703 built_actual_name != NULL,
6704 VAR_DOMAIN, LOC_BLOCK,
6705 &objfile->global_psymbols,
6706 0, pdi->lowpc + baseaddr,
6707 cu->language, objfile);
6708 }
6709 else
6710 {
6711 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6712 mst_file_text, objfile); */
6713 add_psymbol_to_list (actual_name, strlen (actual_name),
6714 built_actual_name != NULL,
6715 VAR_DOMAIN, LOC_BLOCK,
6716 &objfile->static_psymbols,
6717 0, pdi->lowpc + baseaddr,
6718 cu->language, objfile);
6719 }
6720 break;
6721 case DW_TAG_constant:
6722 {
6723 struct psymbol_allocation_list *list;
6724
6725 if (pdi->is_external)
6726 list = &objfile->global_psymbols;
6727 else
6728 list = &objfile->static_psymbols;
6729 add_psymbol_to_list (actual_name, strlen (actual_name),
6730 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6731 list, 0, 0, cu->language, objfile);
6732 }
6733 break;
6734 case DW_TAG_variable:
6735 if (pdi->d.locdesc)
6736 addr = decode_locdesc (pdi->d.locdesc, cu);
6737
6738 if (pdi->d.locdesc
6739 && addr == 0
6740 && !dwarf2_per_objfile->has_section_at_zero)
6741 {
6742 /* A global or static variable may also have been stripped
6743 out by the linker if unused, in which case its address
6744 will be nullified; do not add such variables into partial
6745 symbol table then. */
6746 }
6747 else if (pdi->is_external)
6748 {
6749 /* Global Variable.
6750 Don't enter into the minimal symbol tables as there is
6751 a minimal symbol table entry from the ELF symbols already.
6752 Enter into partial symbol table if it has a location
6753 descriptor or a type.
6754 If the location descriptor is missing, new_symbol will create
6755 a LOC_UNRESOLVED symbol, the address of the variable will then
6756 be determined from the minimal symbol table whenever the variable
6757 is referenced.
6758 The address for the partial symbol table entry is not
6759 used by GDB, but it comes in handy for debugging partial symbol
6760 table building. */
6761
6762 if (pdi->d.locdesc || pdi->has_type)
6763 add_psymbol_to_list (actual_name, strlen (actual_name),
6764 built_actual_name != NULL,
6765 VAR_DOMAIN, LOC_STATIC,
6766 &objfile->global_psymbols,
6767 0, addr + baseaddr,
6768 cu->language, objfile);
6769 }
6770 else
6771 {
6772 /* Static Variable. Skip symbols without location descriptors. */
6773 if (pdi->d.locdesc == NULL)
6774 {
6775 xfree (built_actual_name);
6776 return;
6777 }
6778 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6779 mst_file_data, objfile); */
6780 add_psymbol_to_list (actual_name, strlen (actual_name),
6781 built_actual_name != NULL,
6782 VAR_DOMAIN, LOC_STATIC,
6783 &objfile->static_psymbols,
6784 0, addr + baseaddr,
6785 cu->language, objfile);
6786 }
6787 break;
6788 case DW_TAG_typedef:
6789 case DW_TAG_base_type:
6790 case DW_TAG_subrange_type:
6791 add_psymbol_to_list (actual_name, strlen (actual_name),
6792 built_actual_name != NULL,
6793 VAR_DOMAIN, LOC_TYPEDEF,
6794 &objfile->static_psymbols,
6795 0, (CORE_ADDR) 0, cu->language, objfile);
6796 break;
6797 case DW_TAG_imported_declaration:
6798 case DW_TAG_namespace:
6799 add_psymbol_to_list (actual_name, strlen (actual_name),
6800 built_actual_name != NULL,
6801 VAR_DOMAIN, LOC_TYPEDEF,
6802 &objfile->global_psymbols,
6803 0, (CORE_ADDR) 0, cu->language, objfile);
6804 break;
6805 case DW_TAG_module:
6806 add_psymbol_to_list (actual_name, strlen (actual_name),
6807 built_actual_name != NULL,
6808 MODULE_DOMAIN, LOC_TYPEDEF,
6809 &objfile->global_psymbols,
6810 0, (CORE_ADDR) 0, cu->language, objfile);
6811 break;
6812 case DW_TAG_class_type:
6813 case DW_TAG_interface_type:
6814 case DW_TAG_structure_type:
6815 case DW_TAG_union_type:
6816 case DW_TAG_enumeration_type:
6817 /* Skip external references. The DWARF standard says in the section
6818 about "Structure, Union, and Class Type Entries": "An incomplete
6819 structure, union or class type is represented by a structure,
6820 union or class entry that does not have a byte size attribute
6821 and that has a DW_AT_declaration attribute." */
6822 if (!pdi->has_byte_size && pdi->is_declaration)
6823 {
6824 xfree (built_actual_name);
6825 return;
6826 }
6827
6828 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6829 static vs. global. */
6830 add_psymbol_to_list (actual_name, strlen (actual_name),
6831 built_actual_name != NULL,
6832 STRUCT_DOMAIN, LOC_TYPEDEF,
6833 (cu->language == language_cplus
6834 || cu->language == language_java)
6835 ? &objfile->global_psymbols
6836 : &objfile->static_psymbols,
6837 0, (CORE_ADDR) 0, cu->language, objfile);
6838
6839 break;
6840 case DW_TAG_enumerator:
6841 add_psymbol_to_list (actual_name, strlen (actual_name),
6842 built_actual_name != NULL,
6843 VAR_DOMAIN, LOC_CONST,
6844 (cu->language == language_cplus
6845 || cu->language == language_java)
6846 ? &objfile->global_psymbols
6847 : &objfile->static_psymbols,
6848 0, (CORE_ADDR) 0, cu->language, objfile);
6849 break;
6850 default:
6851 break;
6852 }
6853
6854 xfree (built_actual_name);
6855 }
6856
6857 /* Read a partial die corresponding to a namespace; also, add a symbol
6858 corresponding to that namespace to the symbol table. NAMESPACE is
6859 the name of the enclosing namespace. */
6860
6861 static void
6862 add_partial_namespace (struct partial_die_info *pdi,
6863 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6864 int need_pc, struct dwarf2_cu *cu)
6865 {
6866 /* Add a symbol for the namespace. */
6867
6868 add_partial_symbol (pdi, cu);
6869
6870 /* Now scan partial symbols in that namespace. */
6871
6872 if (pdi->has_children)
6873 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6874 }
6875
6876 /* Read a partial die corresponding to a Fortran module. */
6877
6878 static void
6879 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6880 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6881 {
6882 /* Add a symbol for the namespace. */
6883
6884 add_partial_symbol (pdi, cu);
6885
6886 /* Now scan partial symbols in that module. */
6887
6888 if (pdi->has_children)
6889 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6890 }
6891
6892 /* Read a partial die corresponding to a subprogram and create a partial
6893 symbol for that subprogram. When the CU language allows it, this
6894 routine also defines a partial symbol for each nested subprogram
6895 that this subprogram contains.
6896
6897 DIE my also be a lexical block, in which case we simply search
6898 recursively for suprograms defined inside that lexical block.
6899 Again, this is only performed when the CU language allows this
6900 type of definitions. */
6901
6902 static void
6903 add_partial_subprogram (struct partial_die_info *pdi,
6904 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6905 int need_pc, struct dwarf2_cu *cu)
6906 {
6907 if (pdi->tag == DW_TAG_subprogram)
6908 {
6909 if (pdi->has_pc_info)
6910 {
6911 if (pdi->lowpc < *lowpc)
6912 *lowpc = pdi->lowpc;
6913 if (pdi->highpc > *highpc)
6914 *highpc = pdi->highpc;
6915 if (need_pc)
6916 {
6917 CORE_ADDR baseaddr;
6918 struct objfile *objfile = cu->objfile;
6919
6920 baseaddr = ANOFFSET (objfile->section_offsets,
6921 SECT_OFF_TEXT (objfile));
6922 addrmap_set_empty (objfile->psymtabs_addrmap,
6923 pdi->lowpc + baseaddr,
6924 pdi->highpc - 1 + baseaddr,
6925 cu->per_cu->v.psymtab);
6926 }
6927 }
6928
6929 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6930 {
6931 if (!pdi->is_declaration)
6932 /* Ignore subprogram DIEs that do not have a name, they are
6933 illegal. Do not emit a complaint at this point, we will
6934 do so when we convert this psymtab into a symtab. */
6935 if (pdi->name)
6936 add_partial_symbol (pdi, cu);
6937 }
6938 }
6939
6940 if (! pdi->has_children)
6941 return;
6942
6943 if (cu->language == language_ada)
6944 {
6945 pdi = pdi->die_child;
6946 while (pdi != NULL)
6947 {
6948 fixup_partial_die (pdi, cu);
6949 if (pdi->tag == DW_TAG_subprogram
6950 || pdi->tag == DW_TAG_lexical_block)
6951 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6952 pdi = pdi->die_sibling;
6953 }
6954 }
6955 }
6956
6957 /* Read a partial die corresponding to an enumeration type. */
6958
6959 static void
6960 add_partial_enumeration (struct partial_die_info *enum_pdi,
6961 struct dwarf2_cu *cu)
6962 {
6963 struct partial_die_info *pdi;
6964
6965 if (enum_pdi->name != NULL)
6966 add_partial_symbol (enum_pdi, cu);
6967
6968 pdi = enum_pdi->die_child;
6969 while (pdi)
6970 {
6971 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6972 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6973 else
6974 add_partial_symbol (pdi, cu);
6975 pdi = pdi->die_sibling;
6976 }
6977 }
6978
6979 /* Return the initial uleb128 in the die at INFO_PTR. */
6980
6981 static unsigned int
6982 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6983 {
6984 unsigned int bytes_read;
6985
6986 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6987 }
6988
6989 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6990 Return the corresponding abbrev, or NULL if the number is zero (indicating
6991 an empty DIE). In either case *BYTES_READ will be set to the length of
6992 the initial number. */
6993
6994 static struct abbrev_info *
6995 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
6996 struct dwarf2_cu *cu)
6997 {
6998 bfd *abfd = cu->objfile->obfd;
6999 unsigned int abbrev_number;
7000 struct abbrev_info *abbrev;
7001
7002 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7003
7004 if (abbrev_number == 0)
7005 return NULL;
7006
7007 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7008 if (!abbrev)
7009 {
7010 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7011 abbrev_number, bfd_get_filename (abfd));
7012 }
7013
7014 return abbrev;
7015 }
7016
7017 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7018 Returns a pointer to the end of a series of DIEs, terminated by an empty
7019 DIE. Any children of the skipped DIEs will also be skipped. */
7020
7021 static const gdb_byte *
7022 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7023 {
7024 struct dwarf2_cu *cu = reader->cu;
7025 struct abbrev_info *abbrev;
7026 unsigned int bytes_read;
7027
7028 while (1)
7029 {
7030 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7031 if (abbrev == NULL)
7032 return info_ptr + bytes_read;
7033 else
7034 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7035 }
7036 }
7037
7038 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7039 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7040 abbrev corresponding to that skipped uleb128 should be passed in
7041 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7042 children. */
7043
7044 static const gdb_byte *
7045 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7046 struct abbrev_info *abbrev)
7047 {
7048 unsigned int bytes_read;
7049 struct attribute attr;
7050 bfd *abfd = reader->abfd;
7051 struct dwarf2_cu *cu = reader->cu;
7052 const gdb_byte *buffer = reader->buffer;
7053 const gdb_byte *buffer_end = reader->buffer_end;
7054 const gdb_byte *start_info_ptr = info_ptr;
7055 unsigned int form, i;
7056
7057 for (i = 0; i < abbrev->num_attrs; i++)
7058 {
7059 /* The only abbrev we care about is DW_AT_sibling. */
7060 if (abbrev->attrs[i].name == DW_AT_sibling)
7061 {
7062 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7063 if (attr.form == DW_FORM_ref_addr)
7064 complaint (&symfile_complaints,
7065 _("ignoring absolute DW_AT_sibling"));
7066 else
7067 {
7068 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7069 const gdb_byte *sibling_ptr = buffer + off;
7070
7071 if (sibling_ptr < info_ptr)
7072 complaint (&symfile_complaints,
7073 _("DW_AT_sibling points backwards"));
7074 else
7075 return sibling_ptr;
7076 }
7077 }
7078
7079 /* If it isn't DW_AT_sibling, skip this attribute. */
7080 form = abbrev->attrs[i].form;
7081 skip_attribute:
7082 switch (form)
7083 {
7084 case DW_FORM_ref_addr:
7085 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7086 and later it is offset sized. */
7087 if (cu->header.version == 2)
7088 info_ptr += cu->header.addr_size;
7089 else
7090 info_ptr += cu->header.offset_size;
7091 break;
7092 case DW_FORM_GNU_ref_alt:
7093 info_ptr += cu->header.offset_size;
7094 break;
7095 case DW_FORM_addr:
7096 info_ptr += cu->header.addr_size;
7097 break;
7098 case DW_FORM_data1:
7099 case DW_FORM_ref1:
7100 case DW_FORM_flag:
7101 info_ptr += 1;
7102 break;
7103 case DW_FORM_flag_present:
7104 break;
7105 case DW_FORM_data2:
7106 case DW_FORM_ref2:
7107 info_ptr += 2;
7108 break;
7109 case DW_FORM_data4:
7110 case DW_FORM_ref4:
7111 info_ptr += 4;
7112 break;
7113 case DW_FORM_data8:
7114 case DW_FORM_ref8:
7115 case DW_FORM_ref_sig8:
7116 info_ptr += 8;
7117 break;
7118 case DW_FORM_string:
7119 read_direct_string (abfd, info_ptr, &bytes_read);
7120 info_ptr += bytes_read;
7121 break;
7122 case DW_FORM_sec_offset:
7123 case DW_FORM_strp:
7124 case DW_FORM_GNU_strp_alt:
7125 info_ptr += cu->header.offset_size;
7126 break;
7127 case DW_FORM_exprloc:
7128 case DW_FORM_block:
7129 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7130 info_ptr += bytes_read;
7131 break;
7132 case DW_FORM_block1:
7133 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7134 break;
7135 case DW_FORM_block2:
7136 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7137 break;
7138 case DW_FORM_block4:
7139 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7140 break;
7141 case DW_FORM_sdata:
7142 case DW_FORM_udata:
7143 case DW_FORM_ref_udata:
7144 case DW_FORM_GNU_addr_index:
7145 case DW_FORM_GNU_str_index:
7146 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7147 break;
7148 case DW_FORM_indirect:
7149 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7150 info_ptr += bytes_read;
7151 /* We need to continue parsing from here, so just go back to
7152 the top. */
7153 goto skip_attribute;
7154
7155 default:
7156 error (_("Dwarf Error: Cannot handle %s "
7157 "in DWARF reader [in module %s]"),
7158 dwarf_form_name (form),
7159 bfd_get_filename (abfd));
7160 }
7161 }
7162
7163 if (abbrev->has_children)
7164 return skip_children (reader, info_ptr);
7165 else
7166 return info_ptr;
7167 }
7168
7169 /* Locate ORIG_PDI's sibling.
7170 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7171
7172 static const gdb_byte *
7173 locate_pdi_sibling (const struct die_reader_specs *reader,
7174 struct partial_die_info *orig_pdi,
7175 const gdb_byte *info_ptr)
7176 {
7177 /* Do we know the sibling already? */
7178
7179 if (orig_pdi->sibling)
7180 return orig_pdi->sibling;
7181
7182 /* Are there any children to deal with? */
7183
7184 if (!orig_pdi->has_children)
7185 return info_ptr;
7186
7187 /* Skip the children the long way. */
7188
7189 return skip_children (reader, info_ptr);
7190 }
7191
7192 /* Expand this partial symbol table into a full symbol table. SELF is
7193 not NULL. */
7194
7195 static void
7196 dwarf2_read_symtab (struct partial_symtab *self,
7197 struct objfile *objfile)
7198 {
7199 if (self->readin)
7200 {
7201 warning (_("bug: psymtab for %s is already read in."),
7202 self->filename);
7203 }
7204 else
7205 {
7206 if (info_verbose)
7207 {
7208 printf_filtered (_("Reading in symbols for %s..."),
7209 self->filename);
7210 gdb_flush (gdb_stdout);
7211 }
7212
7213 /* Restore our global data. */
7214 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7215
7216 /* If this psymtab is constructed from a debug-only objfile, the
7217 has_section_at_zero flag will not necessarily be correct. We
7218 can get the correct value for this flag by looking at the data
7219 associated with the (presumably stripped) associated objfile. */
7220 if (objfile->separate_debug_objfile_backlink)
7221 {
7222 struct dwarf2_per_objfile *dpo_backlink
7223 = objfile_data (objfile->separate_debug_objfile_backlink,
7224 dwarf2_objfile_data_key);
7225
7226 dwarf2_per_objfile->has_section_at_zero
7227 = dpo_backlink->has_section_at_zero;
7228 }
7229
7230 dwarf2_per_objfile->reading_partial_symbols = 0;
7231
7232 psymtab_to_symtab_1 (self);
7233
7234 /* Finish up the debug error message. */
7235 if (info_verbose)
7236 printf_filtered (_("done.\n"));
7237 }
7238
7239 process_cu_includes ();
7240 }
7241 \f
7242 /* Reading in full CUs. */
7243
7244 /* Add PER_CU to the queue. */
7245
7246 static void
7247 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7248 enum language pretend_language)
7249 {
7250 struct dwarf2_queue_item *item;
7251
7252 per_cu->queued = 1;
7253 item = xmalloc (sizeof (*item));
7254 item->per_cu = per_cu;
7255 item->pretend_language = pretend_language;
7256 item->next = NULL;
7257
7258 if (dwarf2_queue == NULL)
7259 dwarf2_queue = item;
7260 else
7261 dwarf2_queue_tail->next = item;
7262
7263 dwarf2_queue_tail = item;
7264 }
7265
7266 /* If PER_CU is not yet queued, add it to the queue.
7267 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7268 dependency.
7269 The result is non-zero if PER_CU was queued, otherwise the result is zero
7270 meaning either PER_CU is already queued or it is already loaded.
7271
7272 N.B. There is an invariant here that if a CU is queued then it is loaded.
7273 The caller is required to load PER_CU if we return non-zero. */
7274
7275 static int
7276 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7277 struct dwarf2_per_cu_data *per_cu,
7278 enum language pretend_language)
7279 {
7280 /* We may arrive here during partial symbol reading, if we need full
7281 DIEs to process an unusual case (e.g. template arguments). Do
7282 not queue PER_CU, just tell our caller to load its DIEs. */
7283 if (dwarf2_per_objfile->reading_partial_symbols)
7284 {
7285 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7286 return 1;
7287 return 0;
7288 }
7289
7290 /* Mark the dependence relation so that we don't flush PER_CU
7291 too early. */
7292 if (dependent_cu != NULL)
7293 dwarf2_add_dependence (dependent_cu, per_cu);
7294
7295 /* If it's already on the queue, we have nothing to do. */
7296 if (per_cu->queued)
7297 return 0;
7298
7299 /* If the compilation unit is already loaded, just mark it as
7300 used. */
7301 if (per_cu->cu != NULL)
7302 {
7303 per_cu->cu->last_used = 0;
7304 return 0;
7305 }
7306
7307 /* Add it to the queue. */
7308 queue_comp_unit (per_cu, pretend_language);
7309
7310 return 1;
7311 }
7312
7313 /* Process the queue. */
7314
7315 static void
7316 process_queue (void)
7317 {
7318 struct dwarf2_queue_item *item, *next_item;
7319
7320 if (dwarf2_read_debug)
7321 {
7322 fprintf_unfiltered (gdb_stdlog,
7323 "Expanding one or more symtabs of objfile %s ...\n",
7324 objfile_name (dwarf2_per_objfile->objfile));
7325 }
7326
7327 /* The queue starts out with one item, but following a DIE reference
7328 may load a new CU, adding it to the end of the queue. */
7329 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7330 {
7331 if (dwarf2_per_objfile->using_index
7332 ? !item->per_cu->v.quick->symtab
7333 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7334 {
7335 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7336 unsigned int debug_print_threshold;
7337 char buf[100];
7338
7339 if (per_cu->is_debug_types)
7340 {
7341 struct signatured_type *sig_type =
7342 (struct signatured_type *) per_cu;
7343
7344 sprintf (buf, "TU %s at offset 0x%x",
7345 hex_string (sig_type->signature),
7346 per_cu->offset.sect_off);
7347 /* There can be 100s of TUs.
7348 Only print them in verbose mode. */
7349 debug_print_threshold = 2;
7350 }
7351 else
7352 {
7353 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7354 debug_print_threshold = 1;
7355 }
7356
7357 if (dwarf2_read_debug >= debug_print_threshold)
7358 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7359
7360 if (per_cu->is_debug_types)
7361 process_full_type_unit (per_cu, item->pretend_language);
7362 else
7363 process_full_comp_unit (per_cu, item->pretend_language);
7364
7365 if (dwarf2_read_debug >= debug_print_threshold)
7366 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7367 }
7368
7369 item->per_cu->queued = 0;
7370 next_item = item->next;
7371 xfree (item);
7372 }
7373
7374 dwarf2_queue_tail = NULL;
7375
7376 if (dwarf2_read_debug)
7377 {
7378 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7379 objfile_name (dwarf2_per_objfile->objfile));
7380 }
7381 }
7382
7383 /* Free all allocated queue entries. This function only releases anything if
7384 an error was thrown; if the queue was processed then it would have been
7385 freed as we went along. */
7386
7387 static void
7388 dwarf2_release_queue (void *dummy)
7389 {
7390 struct dwarf2_queue_item *item, *last;
7391
7392 item = dwarf2_queue;
7393 while (item)
7394 {
7395 /* Anything still marked queued is likely to be in an
7396 inconsistent state, so discard it. */
7397 if (item->per_cu->queued)
7398 {
7399 if (item->per_cu->cu != NULL)
7400 free_one_cached_comp_unit (item->per_cu);
7401 item->per_cu->queued = 0;
7402 }
7403
7404 last = item;
7405 item = item->next;
7406 xfree (last);
7407 }
7408
7409 dwarf2_queue = dwarf2_queue_tail = NULL;
7410 }
7411
7412 /* Read in full symbols for PST, and anything it depends on. */
7413
7414 static void
7415 psymtab_to_symtab_1 (struct partial_symtab *pst)
7416 {
7417 struct dwarf2_per_cu_data *per_cu;
7418 int i;
7419
7420 if (pst->readin)
7421 return;
7422
7423 for (i = 0; i < pst->number_of_dependencies; i++)
7424 if (!pst->dependencies[i]->readin
7425 && pst->dependencies[i]->user == NULL)
7426 {
7427 /* Inform about additional files that need to be read in. */
7428 if (info_verbose)
7429 {
7430 /* FIXME: i18n: Need to make this a single string. */
7431 fputs_filtered (" ", gdb_stdout);
7432 wrap_here ("");
7433 fputs_filtered ("and ", gdb_stdout);
7434 wrap_here ("");
7435 printf_filtered ("%s...", pst->dependencies[i]->filename);
7436 wrap_here (""); /* Flush output. */
7437 gdb_flush (gdb_stdout);
7438 }
7439 psymtab_to_symtab_1 (pst->dependencies[i]);
7440 }
7441
7442 per_cu = pst->read_symtab_private;
7443
7444 if (per_cu == NULL)
7445 {
7446 /* It's an include file, no symbols to read for it.
7447 Everything is in the parent symtab. */
7448 pst->readin = 1;
7449 return;
7450 }
7451
7452 dw2_do_instantiate_symtab (per_cu);
7453 }
7454
7455 /* Trivial hash function for die_info: the hash value of a DIE
7456 is its offset in .debug_info for this objfile. */
7457
7458 static hashval_t
7459 die_hash (const void *item)
7460 {
7461 const struct die_info *die = item;
7462
7463 return die->offset.sect_off;
7464 }
7465
7466 /* Trivial comparison function for die_info structures: two DIEs
7467 are equal if they have the same offset. */
7468
7469 static int
7470 die_eq (const void *item_lhs, const void *item_rhs)
7471 {
7472 const struct die_info *die_lhs = item_lhs;
7473 const struct die_info *die_rhs = item_rhs;
7474
7475 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7476 }
7477
7478 /* die_reader_func for load_full_comp_unit.
7479 This is identical to read_signatured_type_reader,
7480 but is kept separate for now. */
7481
7482 static void
7483 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7484 const gdb_byte *info_ptr,
7485 struct die_info *comp_unit_die,
7486 int has_children,
7487 void *data)
7488 {
7489 struct dwarf2_cu *cu = reader->cu;
7490 enum language *language_ptr = data;
7491
7492 gdb_assert (cu->die_hash == NULL);
7493 cu->die_hash =
7494 htab_create_alloc_ex (cu->header.length / 12,
7495 die_hash,
7496 die_eq,
7497 NULL,
7498 &cu->comp_unit_obstack,
7499 hashtab_obstack_allocate,
7500 dummy_obstack_deallocate);
7501
7502 if (has_children)
7503 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7504 &info_ptr, comp_unit_die);
7505 cu->dies = comp_unit_die;
7506 /* comp_unit_die is not stored in die_hash, no need. */
7507
7508 /* We try not to read any attributes in this function, because not
7509 all CUs needed for references have been loaded yet, and symbol
7510 table processing isn't initialized. But we have to set the CU language,
7511 or we won't be able to build types correctly.
7512 Similarly, if we do not read the producer, we can not apply
7513 producer-specific interpretation. */
7514 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7515 }
7516
7517 /* Load the DIEs associated with PER_CU into memory. */
7518
7519 static void
7520 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7521 enum language pretend_language)
7522 {
7523 gdb_assert (! this_cu->is_debug_types);
7524
7525 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7526 load_full_comp_unit_reader, &pretend_language);
7527 }
7528
7529 /* Add a DIE to the delayed physname list. */
7530
7531 static void
7532 add_to_method_list (struct type *type, int fnfield_index, int index,
7533 const char *name, struct die_info *die,
7534 struct dwarf2_cu *cu)
7535 {
7536 struct delayed_method_info mi;
7537 mi.type = type;
7538 mi.fnfield_index = fnfield_index;
7539 mi.index = index;
7540 mi.name = name;
7541 mi.die = die;
7542 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7543 }
7544
7545 /* A cleanup for freeing the delayed method list. */
7546
7547 static void
7548 free_delayed_list (void *ptr)
7549 {
7550 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7551 if (cu->method_list != NULL)
7552 {
7553 VEC_free (delayed_method_info, cu->method_list);
7554 cu->method_list = NULL;
7555 }
7556 }
7557
7558 /* Compute the physnames of any methods on the CU's method list.
7559
7560 The computation of method physnames is delayed in order to avoid the
7561 (bad) condition that one of the method's formal parameters is of an as yet
7562 incomplete type. */
7563
7564 static void
7565 compute_delayed_physnames (struct dwarf2_cu *cu)
7566 {
7567 int i;
7568 struct delayed_method_info *mi;
7569 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7570 {
7571 const char *physname;
7572 struct fn_fieldlist *fn_flp
7573 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7574 physname = dwarf2_physname (mi->name, mi->die, cu);
7575 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7576 }
7577 }
7578
7579 /* Go objects should be embedded in a DW_TAG_module DIE,
7580 and it's not clear if/how imported objects will appear.
7581 To keep Go support simple until that's worked out,
7582 go back through what we've read and create something usable.
7583 We could do this while processing each DIE, and feels kinda cleaner,
7584 but that way is more invasive.
7585 This is to, for example, allow the user to type "p var" or "b main"
7586 without having to specify the package name, and allow lookups
7587 of module.object to work in contexts that use the expression
7588 parser. */
7589
7590 static void
7591 fixup_go_packaging (struct dwarf2_cu *cu)
7592 {
7593 char *package_name = NULL;
7594 struct pending *list;
7595 int i;
7596
7597 for (list = global_symbols; list != NULL; list = list->next)
7598 {
7599 for (i = 0; i < list->nsyms; ++i)
7600 {
7601 struct symbol *sym = list->symbol[i];
7602
7603 if (SYMBOL_LANGUAGE (sym) == language_go
7604 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7605 {
7606 char *this_package_name = go_symbol_package_name (sym);
7607
7608 if (this_package_name == NULL)
7609 continue;
7610 if (package_name == NULL)
7611 package_name = this_package_name;
7612 else
7613 {
7614 if (strcmp (package_name, this_package_name) != 0)
7615 complaint (&symfile_complaints,
7616 _("Symtab %s has objects from two different Go packages: %s and %s"),
7617 (SYMBOL_SYMTAB (sym)
7618 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7619 : objfile_name (cu->objfile)),
7620 this_package_name, package_name);
7621 xfree (this_package_name);
7622 }
7623 }
7624 }
7625 }
7626
7627 if (package_name != NULL)
7628 {
7629 struct objfile *objfile = cu->objfile;
7630 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7631 package_name,
7632 strlen (package_name));
7633 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7634 saved_package_name, objfile);
7635 struct symbol *sym;
7636
7637 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7638
7639 sym = allocate_symbol (objfile);
7640 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7641 SYMBOL_SET_NAMES (sym, saved_package_name,
7642 strlen (saved_package_name), 0, objfile);
7643 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7644 e.g., "main" finds the "main" module and not C's main(). */
7645 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7646 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7647 SYMBOL_TYPE (sym) = type;
7648
7649 add_symbol_to_list (sym, &global_symbols);
7650
7651 xfree (package_name);
7652 }
7653 }
7654
7655 /* Return the symtab for PER_CU. This works properly regardless of
7656 whether we're using the index or psymtabs. */
7657
7658 static struct symtab *
7659 get_symtab (struct dwarf2_per_cu_data *per_cu)
7660 {
7661 return (dwarf2_per_objfile->using_index
7662 ? per_cu->v.quick->symtab
7663 : per_cu->v.psymtab->symtab);
7664 }
7665
7666 /* A helper function for computing the list of all symbol tables
7667 included by PER_CU. */
7668
7669 static void
7670 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7671 htab_t all_children, htab_t all_type_symtabs,
7672 struct dwarf2_per_cu_data *per_cu,
7673 struct symtab *immediate_parent)
7674 {
7675 void **slot;
7676 int ix;
7677 struct symtab *symtab;
7678 struct dwarf2_per_cu_data *iter;
7679
7680 slot = htab_find_slot (all_children, per_cu, INSERT);
7681 if (*slot != NULL)
7682 {
7683 /* This inclusion and its children have been processed. */
7684 return;
7685 }
7686
7687 *slot = per_cu;
7688 /* Only add a CU if it has a symbol table. */
7689 symtab = get_symtab (per_cu);
7690 if (symtab != NULL)
7691 {
7692 /* If this is a type unit only add its symbol table if we haven't
7693 seen it yet (type unit per_cu's can share symtabs). */
7694 if (per_cu->is_debug_types)
7695 {
7696 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7697 if (*slot == NULL)
7698 {
7699 *slot = symtab;
7700 VEC_safe_push (symtab_ptr, *result, symtab);
7701 if (symtab->user == NULL)
7702 symtab->user = immediate_parent;
7703 }
7704 }
7705 else
7706 {
7707 VEC_safe_push (symtab_ptr, *result, symtab);
7708 if (symtab->user == NULL)
7709 symtab->user = immediate_parent;
7710 }
7711 }
7712
7713 for (ix = 0;
7714 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7715 ++ix)
7716 {
7717 recursively_compute_inclusions (result, all_children,
7718 all_type_symtabs, iter, symtab);
7719 }
7720 }
7721
7722 /* Compute the symtab 'includes' fields for the symtab related to
7723 PER_CU. */
7724
7725 static void
7726 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7727 {
7728 gdb_assert (! per_cu->is_debug_types);
7729
7730 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7731 {
7732 int ix, len;
7733 struct dwarf2_per_cu_data *per_cu_iter;
7734 struct symtab *symtab_iter;
7735 VEC (symtab_ptr) *result_symtabs = NULL;
7736 htab_t all_children, all_type_symtabs;
7737 struct symtab *symtab = get_symtab (per_cu);
7738
7739 /* If we don't have a symtab, we can just skip this case. */
7740 if (symtab == NULL)
7741 return;
7742
7743 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7744 NULL, xcalloc, xfree);
7745 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7746 NULL, xcalloc, xfree);
7747
7748 for (ix = 0;
7749 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7750 ix, per_cu_iter);
7751 ++ix)
7752 {
7753 recursively_compute_inclusions (&result_symtabs, all_children,
7754 all_type_symtabs, per_cu_iter,
7755 symtab);
7756 }
7757
7758 /* Now we have a transitive closure of all the included symtabs. */
7759 len = VEC_length (symtab_ptr, result_symtabs);
7760 symtab->includes
7761 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7762 (len + 1) * sizeof (struct symtab *));
7763 for (ix = 0;
7764 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7765 ++ix)
7766 symtab->includes[ix] = symtab_iter;
7767 symtab->includes[len] = NULL;
7768
7769 VEC_free (symtab_ptr, result_symtabs);
7770 htab_delete (all_children);
7771 htab_delete (all_type_symtabs);
7772 }
7773 }
7774
7775 /* Compute the 'includes' field for the symtabs of all the CUs we just
7776 read. */
7777
7778 static void
7779 process_cu_includes (void)
7780 {
7781 int ix;
7782 struct dwarf2_per_cu_data *iter;
7783
7784 for (ix = 0;
7785 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7786 ix, iter);
7787 ++ix)
7788 {
7789 if (! iter->is_debug_types)
7790 compute_symtab_includes (iter);
7791 }
7792
7793 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7794 }
7795
7796 /* Generate full symbol information for PER_CU, whose DIEs have
7797 already been loaded into memory. */
7798
7799 static void
7800 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7801 enum language pretend_language)
7802 {
7803 struct dwarf2_cu *cu = per_cu->cu;
7804 struct objfile *objfile = per_cu->objfile;
7805 CORE_ADDR lowpc, highpc;
7806 struct symtab *symtab;
7807 struct cleanup *back_to, *delayed_list_cleanup;
7808 CORE_ADDR baseaddr;
7809 struct block *static_block;
7810
7811 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7812
7813 buildsym_init ();
7814 back_to = make_cleanup (really_free_pendings, NULL);
7815 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7816
7817 cu->list_in_scope = &file_symbols;
7818
7819 cu->language = pretend_language;
7820 cu->language_defn = language_def (cu->language);
7821
7822 /* Do line number decoding in read_file_scope () */
7823 process_die (cu->dies, cu);
7824
7825 /* For now fudge the Go package. */
7826 if (cu->language == language_go)
7827 fixup_go_packaging (cu);
7828
7829 /* Now that we have processed all the DIEs in the CU, all the types
7830 should be complete, and it should now be safe to compute all of the
7831 physnames. */
7832 compute_delayed_physnames (cu);
7833 do_cleanups (delayed_list_cleanup);
7834
7835 /* Some compilers don't define a DW_AT_high_pc attribute for the
7836 compilation unit. If the DW_AT_high_pc is missing, synthesize
7837 it, by scanning the DIE's below the compilation unit. */
7838 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7839
7840 static_block
7841 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7842
7843 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7844 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7845 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7846 addrmap to help ensure it has an accurate map of pc values belonging to
7847 this comp unit. */
7848 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7849
7850 symtab = end_symtab_from_static_block (static_block, objfile,
7851 SECT_OFF_TEXT (objfile), 0);
7852
7853 if (symtab != NULL)
7854 {
7855 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7856
7857 /* Set symtab language to language from DW_AT_language. If the
7858 compilation is from a C file generated by language preprocessors, do
7859 not set the language if it was already deduced by start_subfile. */
7860 if (!(cu->language == language_c && symtab->language != language_c))
7861 symtab->language = cu->language;
7862
7863 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7864 produce DW_AT_location with location lists but it can be possibly
7865 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7866 there were bugs in prologue debug info, fixed later in GCC-4.5
7867 by "unwind info for epilogues" patch (which is not directly related).
7868
7869 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7870 needed, it would be wrong due to missing DW_AT_producer there.
7871
7872 Still one can confuse GDB by using non-standard GCC compilation
7873 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7874 */
7875 if (cu->has_loclist && gcc_4_minor >= 5)
7876 symtab->locations_valid = 1;
7877
7878 if (gcc_4_minor >= 5)
7879 symtab->epilogue_unwind_valid = 1;
7880
7881 symtab->call_site_htab = cu->call_site_htab;
7882 }
7883
7884 if (dwarf2_per_objfile->using_index)
7885 per_cu->v.quick->symtab = symtab;
7886 else
7887 {
7888 struct partial_symtab *pst = per_cu->v.psymtab;
7889 pst->symtab = symtab;
7890 pst->readin = 1;
7891 }
7892
7893 /* Push it for inclusion processing later. */
7894 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7895
7896 do_cleanups (back_to);
7897 }
7898
7899 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7900 already been loaded into memory. */
7901
7902 static void
7903 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7904 enum language pretend_language)
7905 {
7906 struct dwarf2_cu *cu = per_cu->cu;
7907 struct objfile *objfile = per_cu->objfile;
7908 struct symtab *symtab;
7909 struct cleanup *back_to, *delayed_list_cleanup;
7910 struct signatured_type *sig_type;
7911
7912 gdb_assert (per_cu->is_debug_types);
7913 sig_type = (struct signatured_type *) per_cu;
7914
7915 buildsym_init ();
7916 back_to = make_cleanup (really_free_pendings, NULL);
7917 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7918
7919 cu->list_in_scope = &file_symbols;
7920
7921 cu->language = pretend_language;
7922 cu->language_defn = language_def (cu->language);
7923
7924 /* The symbol tables are set up in read_type_unit_scope. */
7925 process_die (cu->dies, cu);
7926
7927 /* For now fudge the Go package. */
7928 if (cu->language == language_go)
7929 fixup_go_packaging (cu);
7930
7931 /* Now that we have processed all the DIEs in the CU, all the types
7932 should be complete, and it should now be safe to compute all of the
7933 physnames. */
7934 compute_delayed_physnames (cu);
7935 do_cleanups (delayed_list_cleanup);
7936
7937 /* TUs share symbol tables.
7938 If this is the first TU to use this symtab, complete the construction
7939 of it with end_expandable_symtab. Otherwise, complete the addition of
7940 this TU's symbols to the existing symtab. */
7941 if (sig_type->type_unit_group->primary_symtab == NULL)
7942 {
7943 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7944 sig_type->type_unit_group->primary_symtab = symtab;
7945
7946 if (symtab != NULL)
7947 {
7948 /* Set symtab language to language from DW_AT_language. If the
7949 compilation is from a C file generated by language preprocessors,
7950 do not set the language if it was already deduced by
7951 start_subfile. */
7952 if (!(cu->language == language_c && symtab->language != language_c))
7953 symtab->language = cu->language;
7954 }
7955 }
7956 else
7957 {
7958 augment_type_symtab (objfile,
7959 sig_type->type_unit_group->primary_symtab);
7960 symtab = sig_type->type_unit_group->primary_symtab;
7961 }
7962
7963 if (dwarf2_per_objfile->using_index)
7964 per_cu->v.quick->symtab = symtab;
7965 else
7966 {
7967 struct partial_symtab *pst = per_cu->v.psymtab;
7968 pst->symtab = symtab;
7969 pst->readin = 1;
7970 }
7971
7972 do_cleanups (back_to);
7973 }
7974
7975 /* Process an imported unit DIE. */
7976
7977 static void
7978 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7979 {
7980 struct attribute *attr;
7981
7982 /* For now we don't handle imported units in type units. */
7983 if (cu->per_cu->is_debug_types)
7984 {
7985 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7986 " supported in type units [in module %s]"),
7987 objfile_name (cu->objfile));
7988 }
7989
7990 attr = dwarf2_attr (die, DW_AT_import, cu);
7991 if (attr != NULL)
7992 {
7993 struct dwarf2_per_cu_data *per_cu;
7994 struct symtab *imported_symtab;
7995 sect_offset offset;
7996 int is_dwz;
7997
7998 offset = dwarf2_get_ref_die_offset (attr);
7999 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8000 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8001
8002 /* If necessary, add it to the queue and load its DIEs. */
8003 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8004 load_full_comp_unit (per_cu, cu->language);
8005
8006 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8007 per_cu);
8008 }
8009 }
8010
8011 /* Process a die and its children. */
8012
8013 static void
8014 process_die (struct die_info *die, struct dwarf2_cu *cu)
8015 {
8016 switch (die->tag)
8017 {
8018 case DW_TAG_padding:
8019 break;
8020 case DW_TAG_compile_unit:
8021 case DW_TAG_partial_unit:
8022 read_file_scope (die, cu);
8023 break;
8024 case DW_TAG_type_unit:
8025 read_type_unit_scope (die, cu);
8026 break;
8027 case DW_TAG_subprogram:
8028 case DW_TAG_inlined_subroutine:
8029 read_func_scope (die, cu);
8030 break;
8031 case DW_TAG_lexical_block:
8032 case DW_TAG_try_block:
8033 case DW_TAG_catch_block:
8034 read_lexical_block_scope (die, cu);
8035 break;
8036 case DW_TAG_GNU_call_site:
8037 read_call_site_scope (die, cu);
8038 break;
8039 case DW_TAG_class_type:
8040 case DW_TAG_interface_type:
8041 case DW_TAG_structure_type:
8042 case DW_TAG_union_type:
8043 process_structure_scope (die, cu);
8044 break;
8045 case DW_TAG_enumeration_type:
8046 process_enumeration_scope (die, cu);
8047 break;
8048
8049 /* These dies have a type, but processing them does not create
8050 a symbol or recurse to process the children. Therefore we can
8051 read them on-demand through read_type_die. */
8052 case DW_TAG_subroutine_type:
8053 case DW_TAG_set_type:
8054 case DW_TAG_array_type:
8055 case DW_TAG_pointer_type:
8056 case DW_TAG_ptr_to_member_type:
8057 case DW_TAG_reference_type:
8058 case DW_TAG_string_type:
8059 break;
8060
8061 case DW_TAG_base_type:
8062 case DW_TAG_subrange_type:
8063 case DW_TAG_typedef:
8064 /* Add a typedef symbol for the type definition, if it has a
8065 DW_AT_name. */
8066 new_symbol (die, read_type_die (die, cu), cu);
8067 break;
8068 case DW_TAG_common_block:
8069 read_common_block (die, cu);
8070 break;
8071 case DW_TAG_common_inclusion:
8072 break;
8073 case DW_TAG_namespace:
8074 cu->processing_has_namespace_info = 1;
8075 read_namespace (die, cu);
8076 break;
8077 case DW_TAG_module:
8078 cu->processing_has_namespace_info = 1;
8079 read_module (die, cu);
8080 break;
8081 case DW_TAG_imported_declaration:
8082 cu->processing_has_namespace_info = 1;
8083 if (read_namespace_alias (die, cu))
8084 break;
8085 /* The declaration is not a global namespace alias: fall through. */
8086 case DW_TAG_imported_module:
8087 cu->processing_has_namespace_info = 1;
8088 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8089 || cu->language != language_fortran))
8090 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8091 dwarf_tag_name (die->tag));
8092 read_import_statement (die, cu);
8093 break;
8094
8095 case DW_TAG_imported_unit:
8096 process_imported_unit_die (die, cu);
8097 break;
8098
8099 default:
8100 new_symbol (die, NULL, cu);
8101 break;
8102 }
8103 }
8104 \f
8105 /* DWARF name computation. */
8106
8107 /* A helper function for dwarf2_compute_name which determines whether DIE
8108 needs to have the name of the scope prepended to the name listed in the
8109 die. */
8110
8111 static int
8112 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8113 {
8114 struct attribute *attr;
8115
8116 switch (die->tag)
8117 {
8118 case DW_TAG_namespace:
8119 case DW_TAG_typedef:
8120 case DW_TAG_class_type:
8121 case DW_TAG_interface_type:
8122 case DW_TAG_structure_type:
8123 case DW_TAG_union_type:
8124 case DW_TAG_enumeration_type:
8125 case DW_TAG_enumerator:
8126 case DW_TAG_subprogram:
8127 case DW_TAG_member:
8128 case DW_TAG_imported_declaration:
8129 return 1;
8130
8131 case DW_TAG_variable:
8132 case DW_TAG_constant:
8133 /* We only need to prefix "globally" visible variables. These include
8134 any variable marked with DW_AT_external or any variable that
8135 lives in a namespace. [Variables in anonymous namespaces
8136 require prefixing, but they are not DW_AT_external.] */
8137
8138 if (dwarf2_attr (die, DW_AT_specification, cu))
8139 {
8140 struct dwarf2_cu *spec_cu = cu;
8141
8142 return die_needs_namespace (die_specification (die, &spec_cu),
8143 spec_cu);
8144 }
8145
8146 attr = dwarf2_attr (die, DW_AT_external, cu);
8147 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8148 && die->parent->tag != DW_TAG_module)
8149 return 0;
8150 /* A variable in a lexical block of some kind does not need a
8151 namespace, even though in C++ such variables may be external
8152 and have a mangled name. */
8153 if (die->parent->tag == DW_TAG_lexical_block
8154 || die->parent->tag == DW_TAG_try_block
8155 || die->parent->tag == DW_TAG_catch_block
8156 || die->parent->tag == DW_TAG_subprogram)
8157 return 0;
8158 return 1;
8159
8160 default:
8161 return 0;
8162 }
8163 }
8164
8165 /* Retrieve the last character from a mem_file. */
8166
8167 static void
8168 do_ui_file_peek_last (void *object, const char *buffer, long length)
8169 {
8170 char *last_char_p = (char *) object;
8171
8172 if (length > 0)
8173 *last_char_p = buffer[length - 1];
8174 }
8175
8176 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8177 compute the physname for the object, which include a method's:
8178 - formal parameters (C++/Java),
8179 - receiver type (Go),
8180 - return type (Java).
8181
8182 The term "physname" is a bit confusing.
8183 For C++, for example, it is the demangled name.
8184 For Go, for example, it's the mangled name.
8185
8186 For Ada, return the DIE's linkage name rather than the fully qualified
8187 name. PHYSNAME is ignored..
8188
8189 The result is allocated on the objfile_obstack and canonicalized. */
8190
8191 static const char *
8192 dwarf2_compute_name (const char *name,
8193 struct die_info *die, struct dwarf2_cu *cu,
8194 int physname)
8195 {
8196 struct objfile *objfile = cu->objfile;
8197
8198 if (name == NULL)
8199 name = dwarf2_name (die, cu);
8200
8201 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8202 compute it by typename_concat inside GDB. */
8203 if (cu->language == language_ada
8204 || (cu->language == language_fortran && physname))
8205 {
8206 /* For Ada unit, we prefer the linkage name over the name, as
8207 the former contains the exported name, which the user expects
8208 to be able to reference. Ideally, we want the user to be able
8209 to reference this entity using either natural or linkage name,
8210 but we haven't started looking at this enhancement yet. */
8211 struct attribute *attr;
8212
8213 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8214 if (attr == NULL)
8215 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8216 if (attr && DW_STRING (attr))
8217 return DW_STRING (attr);
8218 }
8219
8220 /* These are the only languages we know how to qualify names in. */
8221 if (name != NULL
8222 && (cu->language == language_cplus || cu->language == language_java
8223 || cu->language == language_fortran))
8224 {
8225 if (die_needs_namespace (die, cu))
8226 {
8227 long length;
8228 const char *prefix;
8229 struct ui_file *buf;
8230
8231 prefix = determine_prefix (die, cu);
8232 buf = mem_fileopen ();
8233 if (*prefix != '\0')
8234 {
8235 char *prefixed_name = typename_concat (NULL, prefix, name,
8236 physname, cu);
8237
8238 fputs_unfiltered (prefixed_name, buf);
8239 xfree (prefixed_name);
8240 }
8241 else
8242 fputs_unfiltered (name, buf);
8243
8244 /* Template parameters may be specified in the DIE's DW_AT_name, or
8245 as children with DW_TAG_template_type_param or
8246 DW_TAG_value_type_param. If the latter, add them to the name
8247 here. If the name already has template parameters, then
8248 skip this step; some versions of GCC emit both, and
8249 it is more efficient to use the pre-computed name.
8250
8251 Something to keep in mind about this process: it is very
8252 unlikely, or in some cases downright impossible, to produce
8253 something that will match the mangled name of a function.
8254 If the definition of the function has the same debug info,
8255 we should be able to match up with it anyway. But fallbacks
8256 using the minimal symbol, for instance to find a method
8257 implemented in a stripped copy of libstdc++, will not work.
8258 If we do not have debug info for the definition, we will have to
8259 match them up some other way.
8260
8261 When we do name matching there is a related problem with function
8262 templates; two instantiated function templates are allowed to
8263 differ only by their return types, which we do not add here. */
8264
8265 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8266 {
8267 struct attribute *attr;
8268 struct die_info *child;
8269 int first = 1;
8270
8271 die->building_fullname = 1;
8272
8273 for (child = die->child; child != NULL; child = child->sibling)
8274 {
8275 struct type *type;
8276 LONGEST value;
8277 const gdb_byte *bytes;
8278 struct dwarf2_locexpr_baton *baton;
8279 struct value *v;
8280
8281 if (child->tag != DW_TAG_template_type_param
8282 && child->tag != DW_TAG_template_value_param)
8283 continue;
8284
8285 if (first)
8286 {
8287 fputs_unfiltered ("<", buf);
8288 first = 0;
8289 }
8290 else
8291 fputs_unfiltered (", ", buf);
8292
8293 attr = dwarf2_attr (child, DW_AT_type, cu);
8294 if (attr == NULL)
8295 {
8296 complaint (&symfile_complaints,
8297 _("template parameter missing DW_AT_type"));
8298 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8299 continue;
8300 }
8301 type = die_type (child, cu);
8302
8303 if (child->tag == DW_TAG_template_type_param)
8304 {
8305 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8306 continue;
8307 }
8308
8309 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8310 if (attr == NULL)
8311 {
8312 complaint (&symfile_complaints,
8313 _("template parameter missing "
8314 "DW_AT_const_value"));
8315 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8316 continue;
8317 }
8318
8319 dwarf2_const_value_attr (attr, type, name,
8320 &cu->comp_unit_obstack, cu,
8321 &value, &bytes, &baton);
8322
8323 if (TYPE_NOSIGN (type))
8324 /* GDB prints characters as NUMBER 'CHAR'. If that's
8325 changed, this can use value_print instead. */
8326 c_printchar (value, type, buf);
8327 else
8328 {
8329 struct value_print_options opts;
8330
8331 if (baton != NULL)
8332 v = dwarf2_evaluate_loc_desc (type, NULL,
8333 baton->data,
8334 baton->size,
8335 baton->per_cu);
8336 else if (bytes != NULL)
8337 {
8338 v = allocate_value (type);
8339 memcpy (value_contents_writeable (v), bytes,
8340 TYPE_LENGTH (type));
8341 }
8342 else
8343 v = value_from_longest (type, value);
8344
8345 /* Specify decimal so that we do not depend on
8346 the radix. */
8347 get_formatted_print_options (&opts, 'd');
8348 opts.raw = 1;
8349 value_print (v, buf, &opts);
8350 release_value (v);
8351 value_free (v);
8352 }
8353 }
8354
8355 die->building_fullname = 0;
8356
8357 if (!first)
8358 {
8359 /* Close the argument list, with a space if necessary
8360 (nested templates). */
8361 char last_char = '\0';
8362 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8363 if (last_char == '>')
8364 fputs_unfiltered (" >", buf);
8365 else
8366 fputs_unfiltered (">", buf);
8367 }
8368 }
8369
8370 /* For Java and C++ methods, append formal parameter type
8371 information, if PHYSNAME. */
8372
8373 if (physname && die->tag == DW_TAG_subprogram
8374 && (cu->language == language_cplus
8375 || cu->language == language_java))
8376 {
8377 struct type *type = read_type_die (die, cu);
8378
8379 c_type_print_args (type, buf, 1, cu->language,
8380 &type_print_raw_options);
8381
8382 if (cu->language == language_java)
8383 {
8384 /* For java, we must append the return type to method
8385 names. */
8386 if (die->tag == DW_TAG_subprogram)
8387 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8388 0, 0, &type_print_raw_options);
8389 }
8390 else if (cu->language == language_cplus)
8391 {
8392 /* Assume that an artificial first parameter is
8393 "this", but do not crash if it is not. RealView
8394 marks unnamed (and thus unused) parameters as
8395 artificial; there is no way to differentiate
8396 the two cases. */
8397 if (TYPE_NFIELDS (type) > 0
8398 && TYPE_FIELD_ARTIFICIAL (type, 0)
8399 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8400 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8401 0))))
8402 fputs_unfiltered (" const", buf);
8403 }
8404 }
8405
8406 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
8407 &length);
8408 ui_file_delete (buf);
8409
8410 if (cu->language == language_cplus)
8411 {
8412 const char *cname
8413 = dwarf2_canonicalize_name (name, cu,
8414 &objfile->objfile_obstack);
8415
8416 if (cname != NULL)
8417 name = cname;
8418 }
8419 }
8420 }
8421
8422 return name;
8423 }
8424
8425 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8426 If scope qualifiers are appropriate they will be added. The result
8427 will be allocated on the objfile_obstack, or NULL if the DIE does
8428 not have a name. NAME may either be from a previous call to
8429 dwarf2_name or NULL.
8430
8431 The output string will be canonicalized (if C++/Java). */
8432
8433 static const char *
8434 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8435 {
8436 return dwarf2_compute_name (name, die, cu, 0);
8437 }
8438
8439 /* Construct a physname for the given DIE in CU. NAME may either be
8440 from a previous call to dwarf2_name or NULL. The result will be
8441 allocated on the objfile_objstack or NULL if the DIE does not have a
8442 name.
8443
8444 The output string will be canonicalized (if C++/Java). */
8445
8446 static const char *
8447 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8448 {
8449 struct objfile *objfile = cu->objfile;
8450 struct attribute *attr;
8451 const char *retval, *mangled = NULL, *canon = NULL;
8452 struct cleanup *back_to;
8453 int need_copy = 1;
8454
8455 /* In this case dwarf2_compute_name is just a shortcut not building anything
8456 on its own. */
8457 if (!die_needs_namespace (die, cu))
8458 return dwarf2_compute_name (name, die, cu, 1);
8459
8460 back_to = make_cleanup (null_cleanup, NULL);
8461
8462 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8463 if (!attr)
8464 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8465
8466 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8467 has computed. */
8468 if (attr && DW_STRING (attr))
8469 {
8470 char *demangled;
8471
8472 mangled = DW_STRING (attr);
8473
8474 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8475 type. It is easier for GDB users to search for such functions as
8476 `name(params)' than `long name(params)'. In such case the minimal
8477 symbol names do not match the full symbol names but for template
8478 functions there is never a need to look up their definition from their
8479 declaration so the only disadvantage remains the minimal symbol
8480 variant `long name(params)' does not have the proper inferior type.
8481 */
8482
8483 if (cu->language == language_go)
8484 {
8485 /* This is a lie, but we already lie to the caller new_symbol_full.
8486 new_symbol_full assumes we return the mangled name.
8487 This just undoes that lie until things are cleaned up. */
8488 demangled = NULL;
8489 }
8490 else
8491 {
8492 demangled = gdb_demangle (mangled,
8493 (DMGL_PARAMS | DMGL_ANSI
8494 | (cu->language == language_java
8495 ? DMGL_JAVA | DMGL_RET_POSTFIX
8496 : DMGL_RET_DROP)));
8497 }
8498 if (demangled)
8499 {
8500 make_cleanup (xfree, demangled);
8501 canon = demangled;
8502 }
8503 else
8504 {
8505 canon = mangled;
8506 need_copy = 0;
8507 }
8508 }
8509
8510 if (canon == NULL || check_physname)
8511 {
8512 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8513
8514 if (canon != NULL && strcmp (physname, canon) != 0)
8515 {
8516 /* It may not mean a bug in GDB. The compiler could also
8517 compute DW_AT_linkage_name incorrectly. But in such case
8518 GDB would need to be bug-to-bug compatible. */
8519
8520 complaint (&symfile_complaints,
8521 _("Computed physname <%s> does not match demangled <%s> "
8522 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8523 physname, canon, mangled, die->offset.sect_off,
8524 objfile_name (objfile));
8525
8526 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8527 is available here - over computed PHYSNAME. It is safer
8528 against both buggy GDB and buggy compilers. */
8529
8530 retval = canon;
8531 }
8532 else
8533 {
8534 retval = physname;
8535 need_copy = 0;
8536 }
8537 }
8538 else
8539 retval = canon;
8540
8541 if (need_copy)
8542 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
8543
8544 do_cleanups (back_to);
8545 return retval;
8546 }
8547
8548 /* Inspect DIE in CU for a namespace alias. If one exists, record
8549 a new symbol for it.
8550
8551 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8552
8553 static int
8554 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8555 {
8556 struct attribute *attr;
8557
8558 /* If the die does not have a name, this is not a namespace
8559 alias. */
8560 attr = dwarf2_attr (die, DW_AT_name, cu);
8561 if (attr != NULL)
8562 {
8563 int num;
8564 struct die_info *d = die;
8565 struct dwarf2_cu *imported_cu = cu;
8566
8567 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8568 keep inspecting DIEs until we hit the underlying import. */
8569 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8570 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8571 {
8572 attr = dwarf2_attr (d, DW_AT_import, cu);
8573 if (attr == NULL)
8574 break;
8575
8576 d = follow_die_ref (d, attr, &imported_cu);
8577 if (d->tag != DW_TAG_imported_declaration)
8578 break;
8579 }
8580
8581 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8582 {
8583 complaint (&symfile_complaints,
8584 _("DIE at 0x%x has too many recursively imported "
8585 "declarations"), d->offset.sect_off);
8586 return 0;
8587 }
8588
8589 if (attr != NULL)
8590 {
8591 struct type *type;
8592 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8593
8594 type = get_die_type_at_offset (offset, cu->per_cu);
8595 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8596 {
8597 /* This declaration is a global namespace alias. Add
8598 a symbol for it whose type is the aliased namespace. */
8599 new_symbol (die, type, cu);
8600 return 1;
8601 }
8602 }
8603 }
8604
8605 return 0;
8606 }
8607
8608 /* Read the import statement specified by the given die and record it. */
8609
8610 static void
8611 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8612 {
8613 struct objfile *objfile = cu->objfile;
8614 struct attribute *import_attr;
8615 struct die_info *imported_die, *child_die;
8616 struct dwarf2_cu *imported_cu;
8617 const char *imported_name;
8618 const char *imported_name_prefix;
8619 const char *canonical_name;
8620 const char *import_alias;
8621 const char *imported_declaration = NULL;
8622 const char *import_prefix;
8623 VEC (const_char_ptr) *excludes = NULL;
8624 struct cleanup *cleanups;
8625
8626 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8627 if (import_attr == NULL)
8628 {
8629 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8630 dwarf_tag_name (die->tag));
8631 return;
8632 }
8633
8634 imported_cu = cu;
8635 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8636 imported_name = dwarf2_name (imported_die, imported_cu);
8637 if (imported_name == NULL)
8638 {
8639 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8640
8641 The import in the following code:
8642 namespace A
8643 {
8644 typedef int B;
8645 }
8646
8647 int main ()
8648 {
8649 using A::B;
8650 B b;
8651 return b;
8652 }
8653
8654 ...
8655 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8656 <52> DW_AT_decl_file : 1
8657 <53> DW_AT_decl_line : 6
8658 <54> DW_AT_import : <0x75>
8659 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8660 <59> DW_AT_name : B
8661 <5b> DW_AT_decl_file : 1
8662 <5c> DW_AT_decl_line : 2
8663 <5d> DW_AT_type : <0x6e>
8664 ...
8665 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8666 <76> DW_AT_byte_size : 4
8667 <77> DW_AT_encoding : 5 (signed)
8668
8669 imports the wrong die ( 0x75 instead of 0x58 ).
8670 This case will be ignored until the gcc bug is fixed. */
8671 return;
8672 }
8673
8674 /* Figure out the local name after import. */
8675 import_alias = dwarf2_name (die, cu);
8676
8677 /* Figure out where the statement is being imported to. */
8678 import_prefix = determine_prefix (die, cu);
8679
8680 /* Figure out what the scope of the imported die is and prepend it
8681 to the name of the imported die. */
8682 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8683
8684 if (imported_die->tag != DW_TAG_namespace
8685 && imported_die->tag != DW_TAG_module)
8686 {
8687 imported_declaration = imported_name;
8688 canonical_name = imported_name_prefix;
8689 }
8690 else if (strlen (imported_name_prefix) > 0)
8691 canonical_name = obconcat (&objfile->objfile_obstack,
8692 imported_name_prefix, "::", imported_name,
8693 (char *) NULL);
8694 else
8695 canonical_name = imported_name;
8696
8697 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8698
8699 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8700 for (child_die = die->child; child_die && child_die->tag;
8701 child_die = sibling_die (child_die))
8702 {
8703 /* DWARF-4: A Fortran use statement with a “rename list” may be
8704 represented by an imported module entry with an import attribute
8705 referring to the module and owned entries corresponding to those
8706 entities that are renamed as part of being imported. */
8707
8708 if (child_die->tag != DW_TAG_imported_declaration)
8709 {
8710 complaint (&symfile_complaints,
8711 _("child DW_TAG_imported_declaration expected "
8712 "- DIE at 0x%x [in module %s]"),
8713 child_die->offset.sect_off, objfile_name (objfile));
8714 continue;
8715 }
8716
8717 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8718 if (import_attr == NULL)
8719 {
8720 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8721 dwarf_tag_name (child_die->tag));
8722 continue;
8723 }
8724
8725 imported_cu = cu;
8726 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8727 &imported_cu);
8728 imported_name = dwarf2_name (imported_die, imported_cu);
8729 if (imported_name == NULL)
8730 {
8731 complaint (&symfile_complaints,
8732 _("child DW_TAG_imported_declaration has unknown "
8733 "imported name - DIE at 0x%x [in module %s]"),
8734 child_die->offset.sect_off, objfile_name (objfile));
8735 continue;
8736 }
8737
8738 VEC_safe_push (const_char_ptr, excludes, imported_name);
8739
8740 process_die (child_die, cu);
8741 }
8742
8743 cp_add_using_directive (import_prefix,
8744 canonical_name,
8745 import_alias,
8746 imported_declaration,
8747 excludes,
8748 0,
8749 &objfile->objfile_obstack);
8750
8751 do_cleanups (cleanups);
8752 }
8753
8754 /* Cleanup function for handle_DW_AT_stmt_list. */
8755
8756 static void
8757 free_cu_line_header (void *arg)
8758 {
8759 struct dwarf2_cu *cu = arg;
8760
8761 free_line_header (cu->line_header);
8762 cu->line_header = NULL;
8763 }
8764
8765 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8766 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8767 this, it was first present in GCC release 4.3.0. */
8768
8769 static int
8770 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8771 {
8772 if (!cu->checked_producer)
8773 check_producer (cu);
8774
8775 return cu->producer_is_gcc_lt_4_3;
8776 }
8777
8778 static void
8779 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8780 const char **name, const char **comp_dir)
8781 {
8782 struct attribute *attr;
8783
8784 *name = NULL;
8785 *comp_dir = NULL;
8786
8787 /* Find the filename. Do not use dwarf2_name here, since the filename
8788 is not a source language identifier. */
8789 attr = dwarf2_attr (die, DW_AT_name, cu);
8790 if (attr)
8791 {
8792 *name = DW_STRING (attr);
8793 }
8794
8795 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8796 if (attr)
8797 *comp_dir = DW_STRING (attr);
8798 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8799 && IS_ABSOLUTE_PATH (*name))
8800 {
8801 char *d = ldirname (*name);
8802
8803 *comp_dir = d;
8804 if (d != NULL)
8805 make_cleanup (xfree, d);
8806 }
8807 if (*comp_dir != NULL)
8808 {
8809 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8810 directory, get rid of it. */
8811 char *cp = strchr (*comp_dir, ':');
8812
8813 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8814 *comp_dir = cp + 1;
8815 }
8816
8817 if (*name == NULL)
8818 *name = "<unknown>";
8819 }
8820
8821 /* Handle DW_AT_stmt_list for a compilation unit.
8822 DIE is the DW_TAG_compile_unit die for CU.
8823 COMP_DIR is the compilation directory.
8824 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8825
8826 static void
8827 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8828 const char *comp_dir) /* ARI: editCase function */
8829 {
8830 struct attribute *attr;
8831
8832 gdb_assert (! cu->per_cu->is_debug_types);
8833
8834 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8835 if (attr)
8836 {
8837 unsigned int line_offset = DW_UNSND (attr);
8838 struct line_header *line_header
8839 = dwarf_decode_line_header (line_offset, cu);
8840
8841 if (line_header)
8842 {
8843 cu->line_header = line_header;
8844 make_cleanup (free_cu_line_header, cu);
8845 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8846 }
8847 }
8848 }
8849
8850 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8851
8852 static void
8853 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8854 {
8855 struct objfile *objfile = dwarf2_per_objfile->objfile;
8856 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8857 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8858 CORE_ADDR highpc = ((CORE_ADDR) 0);
8859 struct attribute *attr;
8860 const char *name = NULL;
8861 const char *comp_dir = NULL;
8862 struct die_info *child_die;
8863 bfd *abfd = objfile->obfd;
8864 CORE_ADDR baseaddr;
8865
8866 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8867
8868 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8869
8870 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8871 from finish_block. */
8872 if (lowpc == ((CORE_ADDR) -1))
8873 lowpc = highpc;
8874 lowpc += baseaddr;
8875 highpc += baseaddr;
8876
8877 find_file_and_directory (die, cu, &name, &comp_dir);
8878
8879 prepare_one_comp_unit (cu, die, cu->language);
8880
8881 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8882 standardised yet. As a workaround for the language detection we fall
8883 back to the DW_AT_producer string. */
8884 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8885 cu->language = language_opencl;
8886
8887 /* Similar hack for Go. */
8888 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8889 set_cu_language (DW_LANG_Go, cu);
8890
8891 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8892
8893 /* Decode line number information if present. We do this before
8894 processing child DIEs, so that the line header table is available
8895 for DW_AT_decl_file. */
8896 handle_DW_AT_stmt_list (die, cu, comp_dir);
8897
8898 /* Process all dies in compilation unit. */
8899 if (die->child != NULL)
8900 {
8901 child_die = die->child;
8902 while (child_die && child_die->tag)
8903 {
8904 process_die (child_die, cu);
8905 child_die = sibling_die (child_die);
8906 }
8907 }
8908
8909 /* Decode macro information, if present. Dwarf 2 macro information
8910 refers to information in the line number info statement program
8911 header, so we can only read it if we've read the header
8912 successfully. */
8913 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8914 if (attr && cu->line_header)
8915 {
8916 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8917 complaint (&symfile_complaints,
8918 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8919
8920 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8921 }
8922 else
8923 {
8924 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8925 if (attr && cu->line_header)
8926 {
8927 unsigned int macro_offset = DW_UNSND (attr);
8928
8929 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8930 }
8931 }
8932
8933 do_cleanups (back_to);
8934 }
8935
8936 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8937 Create the set of symtabs used by this TU, or if this TU is sharing
8938 symtabs with another TU and the symtabs have already been created
8939 then restore those symtabs in the line header.
8940 We don't need the pc/line-number mapping for type units. */
8941
8942 static void
8943 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8944 {
8945 struct objfile *objfile = dwarf2_per_objfile->objfile;
8946 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8947 struct type_unit_group *tu_group;
8948 int first_time;
8949 struct line_header *lh;
8950 struct attribute *attr;
8951 unsigned int i, line_offset;
8952 struct signatured_type *sig_type;
8953
8954 gdb_assert (per_cu->is_debug_types);
8955 sig_type = (struct signatured_type *) per_cu;
8956
8957 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8958
8959 /* If we're using .gdb_index (includes -readnow) then
8960 per_cu->type_unit_group may not have been set up yet. */
8961 if (sig_type->type_unit_group == NULL)
8962 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8963 tu_group = sig_type->type_unit_group;
8964
8965 /* If we've already processed this stmt_list there's no real need to
8966 do it again, we could fake it and just recreate the part we need
8967 (file name,index -> symtab mapping). If data shows this optimization
8968 is useful we can do it then. */
8969 first_time = tu_group->primary_symtab == NULL;
8970
8971 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8972 debug info. */
8973 lh = NULL;
8974 if (attr != NULL)
8975 {
8976 line_offset = DW_UNSND (attr);
8977 lh = dwarf_decode_line_header (line_offset, cu);
8978 }
8979 if (lh == NULL)
8980 {
8981 if (first_time)
8982 dwarf2_start_symtab (cu, "", NULL, 0);
8983 else
8984 {
8985 gdb_assert (tu_group->symtabs == NULL);
8986 restart_symtab (0);
8987 }
8988 /* Note: The primary symtab will get allocated at the end. */
8989 return;
8990 }
8991
8992 cu->line_header = lh;
8993 make_cleanup (free_cu_line_header, cu);
8994
8995 if (first_time)
8996 {
8997 dwarf2_start_symtab (cu, "", NULL, 0);
8998
8999 tu_group->num_symtabs = lh->num_file_names;
9000 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9001
9002 for (i = 0; i < lh->num_file_names; ++i)
9003 {
9004 const char *dir = NULL;
9005 struct file_entry *fe = &lh->file_names[i];
9006
9007 if (fe->dir_index)
9008 dir = lh->include_dirs[fe->dir_index - 1];
9009 dwarf2_start_subfile (fe->name, dir, NULL);
9010
9011 /* Note: We don't have to watch for the main subfile here, type units
9012 don't have DW_AT_name. */
9013
9014 if (current_subfile->symtab == NULL)
9015 {
9016 /* NOTE: start_subfile will recognize when it's been passed
9017 a file it has already seen. So we can't assume there's a
9018 simple mapping from lh->file_names to subfiles,
9019 lh->file_names may contain dups. */
9020 current_subfile->symtab = allocate_symtab (current_subfile->name,
9021 objfile);
9022 }
9023
9024 fe->symtab = current_subfile->symtab;
9025 tu_group->symtabs[i] = fe->symtab;
9026 }
9027 }
9028 else
9029 {
9030 restart_symtab (0);
9031
9032 for (i = 0; i < lh->num_file_names; ++i)
9033 {
9034 struct file_entry *fe = &lh->file_names[i];
9035
9036 fe->symtab = tu_group->symtabs[i];
9037 }
9038 }
9039
9040 /* The main symtab is allocated last. Type units don't have DW_AT_name
9041 so they don't have a "real" (so to speak) symtab anyway.
9042 There is later code that will assign the main symtab to all symbols
9043 that don't have one. We need to handle the case of a symbol with a
9044 missing symtab (DW_AT_decl_file) anyway. */
9045 }
9046
9047 /* Process DW_TAG_type_unit.
9048 For TUs we want to skip the first top level sibling if it's not the
9049 actual type being defined by this TU. In this case the first top
9050 level sibling is there to provide context only. */
9051
9052 static void
9053 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9054 {
9055 struct die_info *child_die;
9056
9057 prepare_one_comp_unit (cu, die, language_minimal);
9058
9059 /* Initialize (or reinitialize) the machinery for building symtabs.
9060 We do this before processing child DIEs, so that the line header table
9061 is available for DW_AT_decl_file. */
9062 setup_type_unit_groups (die, cu);
9063
9064 if (die->child != NULL)
9065 {
9066 child_die = die->child;
9067 while (child_die && child_die->tag)
9068 {
9069 process_die (child_die, cu);
9070 child_die = sibling_die (child_die);
9071 }
9072 }
9073 }
9074 \f
9075 /* DWO/DWP files.
9076
9077 http://gcc.gnu.org/wiki/DebugFission
9078 http://gcc.gnu.org/wiki/DebugFissionDWP
9079
9080 To simplify handling of both DWO files ("object" files with the DWARF info)
9081 and DWP files (a file with the DWOs packaged up into one file), we treat
9082 DWP files as having a collection of virtual DWO files. */
9083
9084 static hashval_t
9085 hash_dwo_file (const void *item)
9086 {
9087 const struct dwo_file *dwo_file = item;
9088 hashval_t hash;
9089
9090 hash = htab_hash_string (dwo_file->dwo_name);
9091 if (dwo_file->comp_dir != NULL)
9092 hash += htab_hash_string (dwo_file->comp_dir);
9093 return hash;
9094 }
9095
9096 static int
9097 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9098 {
9099 const struct dwo_file *lhs = item_lhs;
9100 const struct dwo_file *rhs = item_rhs;
9101
9102 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9103 return 0;
9104 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9105 return lhs->comp_dir == rhs->comp_dir;
9106 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9107 }
9108
9109 /* Allocate a hash table for DWO files. */
9110
9111 static htab_t
9112 allocate_dwo_file_hash_table (void)
9113 {
9114 struct objfile *objfile = dwarf2_per_objfile->objfile;
9115
9116 return htab_create_alloc_ex (41,
9117 hash_dwo_file,
9118 eq_dwo_file,
9119 NULL,
9120 &objfile->objfile_obstack,
9121 hashtab_obstack_allocate,
9122 dummy_obstack_deallocate);
9123 }
9124
9125 /* Lookup DWO file DWO_NAME. */
9126
9127 static void **
9128 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9129 {
9130 struct dwo_file find_entry;
9131 void **slot;
9132
9133 if (dwarf2_per_objfile->dwo_files == NULL)
9134 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9135
9136 memset (&find_entry, 0, sizeof (find_entry));
9137 find_entry.dwo_name = dwo_name;
9138 find_entry.comp_dir = comp_dir;
9139 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9140
9141 return slot;
9142 }
9143
9144 static hashval_t
9145 hash_dwo_unit (const void *item)
9146 {
9147 const struct dwo_unit *dwo_unit = item;
9148
9149 /* This drops the top 32 bits of the id, but is ok for a hash. */
9150 return dwo_unit->signature;
9151 }
9152
9153 static int
9154 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9155 {
9156 const struct dwo_unit *lhs = item_lhs;
9157 const struct dwo_unit *rhs = item_rhs;
9158
9159 /* The signature is assumed to be unique within the DWO file.
9160 So while object file CU dwo_id's always have the value zero,
9161 that's OK, assuming each object file DWO file has only one CU,
9162 and that's the rule for now. */
9163 return lhs->signature == rhs->signature;
9164 }
9165
9166 /* Allocate a hash table for DWO CUs,TUs.
9167 There is one of these tables for each of CUs,TUs for each DWO file. */
9168
9169 static htab_t
9170 allocate_dwo_unit_table (struct objfile *objfile)
9171 {
9172 /* Start out with a pretty small number.
9173 Generally DWO files contain only one CU and maybe some TUs. */
9174 return htab_create_alloc_ex (3,
9175 hash_dwo_unit,
9176 eq_dwo_unit,
9177 NULL,
9178 &objfile->objfile_obstack,
9179 hashtab_obstack_allocate,
9180 dummy_obstack_deallocate);
9181 }
9182
9183 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9184
9185 struct create_dwo_cu_data
9186 {
9187 struct dwo_file *dwo_file;
9188 struct dwo_unit dwo_unit;
9189 };
9190
9191 /* die_reader_func for create_dwo_cu. */
9192
9193 static void
9194 create_dwo_cu_reader (const struct die_reader_specs *reader,
9195 const gdb_byte *info_ptr,
9196 struct die_info *comp_unit_die,
9197 int has_children,
9198 void *datap)
9199 {
9200 struct dwarf2_cu *cu = reader->cu;
9201 struct objfile *objfile = dwarf2_per_objfile->objfile;
9202 sect_offset offset = cu->per_cu->offset;
9203 struct dwarf2_section_info *section = cu->per_cu->section;
9204 struct create_dwo_cu_data *data = datap;
9205 struct dwo_file *dwo_file = data->dwo_file;
9206 struct dwo_unit *dwo_unit = &data->dwo_unit;
9207 struct attribute *attr;
9208
9209 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9210 if (attr == NULL)
9211 {
9212 complaint (&symfile_complaints,
9213 _("Dwarf Error: debug entry at offset 0x%x is missing"
9214 " its dwo_id [in module %s]"),
9215 offset.sect_off, dwo_file->dwo_name);
9216 return;
9217 }
9218
9219 dwo_unit->dwo_file = dwo_file;
9220 dwo_unit->signature = DW_UNSND (attr);
9221 dwo_unit->section = section;
9222 dwo_unit->offset = offset;
9223 dwo_unit->length = cu->per_cu->length;
9224
9225 if (dwarf2_read_debug)
9226 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9227 offset.sect_off, hex_string (dwo_unit->signature));
9228 }
9229
9230 /* Create the dwo_unit for the lone CU in DWO_FILE.
9231 Note: This function processes DWO files only, not DWP files. */
9232
9233 static struct dwo_unit *
9234 create_dwo_cu (struct dwo_file *dwo_file)
9235 {
9236 struct objfile *objfile = dwarf2_per_objfile->objfile;
9237 struct dwarf2_section_info *section = &dwo_file->sections.info;
9238 bfd *abfd;
9239 htab_t cu_htab;
9240 const gdb_byte *info_ptr, *end_ptr;
9241 struct create_dwo_cu_data create_dwo_cu_data;
9242 struct dwo_unit *dwo_unit;
9243
9244 dwarf2_read_section (objfile, section);
9245 info_ptr = section->buffer;
9246
9247 if (info_ptr == NULL)
9248 return NULL;
9249
9250 /* We can't set abfd until now because the section may be empty or
9251 not present, in which case section->asection will be NULL. */
9252 abfd = get_section_bfd_owner (section);
9253
9254 if (dwarf2_read_debug)
9255 {
9256 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9257 get_section_name (section),
9258 get_section_file_name (section));
9259 }
9260
9261 create_dwo_cu_data.dwo_file = dwo_file;
9262 dwo_unit = NULL;
9263
9264 end_ptr = info_ptr + section->size;
9265 while (info_ptr < end_ptr)
9266 {
9267 struct dwarf2_per_cu_data per_cu;
9268
9269 memset (&create_dwo_cu_data.dwo_unit, 0,
9270 sizeof (create_dwo_cu_data.dwo_unit));
9271 memset (&per_cu, 0, sizeof (per_cu));
9272 per_cu.objfile = objfile;
9273 per_cu.is_debug_types = 0;
9274 per_cu.offset.sect_off = info_ptr - section->buffer;
9275 per_cu.section = section;
9276
9277 init_cutu_and_read_dies_no_follow (&per_cu,
9278 &dwo_file->sections.abbrev,
9279 dwo_file,
9280 create_dwo_cu_reader,
9281 &create_dwo_cu_data);
9282
9283 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9284 {
9285 /* If we've already found one, complain. We only support one
9286 because having more than one requires hacking the dwo_name of
9287 each to match, which is highly unlikely to happen. */
9288 if (dwo_unit != NULL)
9289 {
9290 complaint (&symfile_complaints,
9291 _("Multiple CUs in DWO file %s [in module %s]"),
9292 dwo_file->dwo_name, objfile_name (objfile));
9293 break;
9294 }
9295
9296 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9297 *dwo_unit = create_dwo_cu_data.dwo_unit;
9298 }
9299
9300 info_ptr += per_cu.length;
9301 }
9302
9303 return dwo_unit;
9304 }
9305
9306 /* DWP file .debug_{cu,tu}_index section format:
9307 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9308
9309 DWP Version 1:
9310
9311 Both index sections have the same format, and serve to map a 64-bit
9312 signature to a set of section numbers. Each section begins with a header,
9313 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9314 indexes, and a pool of 32-bit section numbers. The index sections will be
9315 aligned at 8-byte boundaries in the file.
9316
9317 The index section header consists of:
9318
9319 V, 32 bit version number
9320 -, 32 bits unused
9321 N, 32 bit number of compilation units or type units in the index
9322 M, 32 bit number of slots in the hash table
9323
9324 Numbers are recorded using the byte order of the application binary.
9325
9326 The hash table begins at offset 16 in the section, and consists of an array
9327 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9328 order of the application binary). Unused slots in the hash table are 0.
9329 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9330
9331 The parallel table begins immediately after the hash table
9332 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9333 array of 32-bit indexes (using the byte order of the application binary),
9334 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9335 table contains a 32-bit index into the pool of section numbers. For unused
9336 hash table slots, the corresponding entry in the parallel table will be 0.
9337
9338 The pool of section numbers begins immediately following the hash table
9339 (at offset 16 + 12 * M from the beginning of the section). The pool of
9340 section numbers consists of an array of 32-bit words (using the byte order
9341 of the application binary). Each item in the array is indexed starting
9342 from 0. The hash table entry provides the index of the first section
9343 number in the set. Additional section numbers in the set follow, and the
9344 set is terminated by a 0 entry (section number 0 is not used in ELF).
9345
9346 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9347 section must be the first entry in the set, and the .debug_abbrev.dwo must
9348 be the second entry. Other members of the set may follow in any order.
9349
9350 ---
9351
9352 DWP Version 2:
9353
9354 DWP Version 2 combines all the .debug_info, etc. sections into one,
9355 and the entries in the index tables are now offsets into these sections.
9356 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9357 section.
9358
9359 Index Section Contents:
9360 Header
9361 Hash Table of Signatures dwp_hash_table.hash_table
9362 Parallel Table of Indices dwp_hash_table.unit_table
9363 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9364 Table of Section Sizes dwp_hash_table.v2.sizes
9365
9366 The index section header consists of:
9367
9368 V, 32 bit version number
9369 L, 32 bit number of columns in the table of section offsets
9370 N, 32 bit number of compilation units or type units in the index
9371 M, 32 bit number of slots in the hash table
9372
9373 Numbers are recorded using the byte order of the application binary.
9374
9375 The hash table has the same format as version 1.
9376 The parallel table of indices has the same format as version 1,
9377 except that the entries are origin-1 indices into the table of sections
9378 offsets and the table of section sizes.
9379
9380 The table of offsets begins immediately following the parallel table
9381 (at offset 16 + 12 * M from the beginning of the section). The table is
9382 a two-dimensional array of 32-bit words (using the byte order of the
9383 application binary), with L columns and N+1 rows, in row-major order.
9384 Each row in the array is indexed starting from 0. The first row provides
9385 a key to the remaining rows: each column in this row provides an identifier
9386 for a debug section, and the offsets in the same column of subsequent rows
9387 refer to that section. The section identifiers are:
9388
9389 DW_SECT_INFO 1 .debug_info.dwo
9390 DW_SECT_TYPES 2 .debug_types.dwo
9391 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9392 DW_SECT_LINE 4 .debug_line.dwo
9393 DW_SECT_LOC 5 .debug_loc.dwo
9394 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9395 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9396 DW_SECT_MACRO 8 .debug_macro.dwo
9397
9398 The offsets provided by the CU and TU index sections are the base offsets
9399 for the contributions made by each CU or TU to the corresponding section
9400 in the package file. Each CU and TU header contains an abbrev_offset
9401 field, used to find the abbreviations table for that CU or TU within the
9402 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9403 be interpreted as relative to the base offset given in the index section.
9404 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9405 should be interpreted as relative to the base offset for .debug_line.dwo,
9406 and offsets into other debug sections obtained from DWARF attributes should
9407 also be interpreted as relative to the corresponding base offset.
9408
9409 The table of sizes begins immediately following the table of offsets.
9410 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9411 with L columns and N rows, in row-major order. Each row in the array is
9412 indexed starting from 1 (row 0 is shared by the two tables).
9413
9414 ---
9415
9416 Hash table lookup is handled the same in version 1 and 2:
9417
9418 We assume that N and M will not exceed 2^32 - 1.
9419 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9420
9421 Given a 64-bit compilation unit signature or a type signature S, an entry
9422 in the hash table is located as follows:
9423
9424 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9425 the low-order k bits all set to 1.
9426
9427 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9428
9429 3) If the hash table entry at index H matches the signature, use that
9430 entry. If the hash table entry at index H is unused (all zeroes),
9431 terminate the search: the signature is not present in the table.
9432
9433 4) Let H = (H + H') modulo M. Repeat at Step 3.
9434
9435 Because M > N and H' and M are relatively prime, the search is guaranteed
9436 to stop at an unused slot or find the match. */
9437
9438 /* Create a hash table to map DWO IDs to their CU/TU entry in
9439 .debug_{info,types}.dwo in DWP_FILE.
9440 Returns NULL if there isn't one.
9441 Note: This function processes DWP files only, not DWO files. */
9442
9443 static struct dwp_hash_table *
9444 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9445 {
9446 struct objfile *objfile = dwarf2_per_objfile->objfile;
9447 bfd *dbfd = dwp_file->dbfd;
9448 const gdb_byte *index_ptr, *index_end;
9449 struct dwarf2_section_info *index;
9450 uint32_t version, nr_columns, nr_units, nr_slots;
9451 struct dwp_hash_table *htab;
9452
9453 if (is_debug_types)
9454 index = &dwp_file->sections.tu_index;
9455 else
9456 index = &dwp_file->sections.cu_index;
9457
9458 if (dwarf2_section_empty_p (index))
9459 return NULL;
9460 dwarf2_read_section (objfile, index);
9461
9462 index_ptr = index->buffer;
9463 index_end = index_ptr + index->size;
9464
9465 version = read_4_bytes (dbfd, index_ptr);
9466 index_ptr += 4;
9467 if (version == 2)
9468 nr_columns = read_4_bytes (dbfd, index_ptr);
9469 else
9470 nr_columns = 0;
9471 index_ptr += 4;
9472 nr_units = read_4_bytes (dbfd, index_ptr);
9473 index_ptr += 4;
9474 nr_slots = read_4_bytes (dbfd, index_ptr);
9475 index_ptr += 4;
9476
9477 if (version != 1 && version != 2)
9478 {
9479 error (_("Dwarf Error: unsupported DWP file version (%s)"
9480 " [in module %s]"),
9481 pulongest (version), dwp_file->name);
9482 }
9483 if (nr_slots != (nr_slots & -nr_slots))
9484 {
9485 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9486 " is not power of 2 [in module %s]"),
9487 pulongest (nr_slots), dwp_file->name);
9488 }
9489
9490 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9491 htab->version = version;
9492 htab->nr_columns = nr_columns;
9493 htab->nr_units = nr_units;
9494 htab->nr_slots = nr_slots;
9495 htab->hash_table = index_ptr;
9496 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9497
9498 /* Exit early if the table is empty. */
9499 if (nr_slots == 0 || nr_units == 0
9500 || (version == 2 && nr_columns == 0))
9501 {
9502 /* All must be zero. */
9503 if (nr_slots != 0 || nr_units != 0
9504 || (version == 2 && nr_columns != 0))
9505 {
9506 complaint (&symfile_complaints,
9507 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9508 " all zero [in modules %s]"),
9509 dwp_file->name);
9510 }
9511 return htab;
9512 }
9513
9514 if (version == 1)
9515 {
9516 htab->section_pool.v1.indices =
9517 htab->unit_table + sizeof (uint32_t) * nr_slots;
9518 /* It's harder to decide whether the section is too small in v1.
9519 V1 is deprecated anyway so we punt. */
9520 }
9521 else
9522 {
9523 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9524 int *ids = htab->section_pool.v2.section_ids;
9525 /* Reverse map for error checking. */
9526 int ids_seen[DW_SECT_MAX + 1];
9527 int i;
9528
9529 if (nr_columns < 2)
9530 {
9531 error (_("Dwarf Error: bad DWP hash table, too few columns"
9532 " in section table [in module %s]"),
9533 dwp_file->name);
9534 }
9535 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9536 {
9537 error (_("Dwarf Error: bad DWP hash table, too many columns"
9538 " in section table [in module %s]"),
9539 dwp_file->name);
9540 }
9541 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9542 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9543 for (i = 0; i < nr_columns; ++i)
9544 {
9545 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9546
9547 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9548 {
9549 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9550 " in section table [in module %s]"),
9551 id, dwp_file->name);
9552 }
9553 if (ids_seen[id] != -1)
9554 {
9555 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9556 " id %d in section table [in module %s]"),
9557 id, dwp_file->name);
9558 }
9559 ids_seen[id] = i;
9560 ids[i] = id;
9561 }
9562 /* Must have exactly one info or types section. */
9563 if (((ids_seen[DW_SECT_INFO] != -1)
9564 + (ids_seen[DW_SECT_TYPES] != -1))
9565 != 1)
9566 {
9567 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9568 " DWO info/types section [in module %s]"),
9569 dwp_file->name);
9570 }
9571 /* Must have an abbrev section. */
9572 if (ids_seen[DW_SECT_ABBREV] == -1)
9573 {
9574 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9575 " section [in module %s]"),
9576 dwp_file->name);
9577 }
9578 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9579 htab->section_pool.v2.sizes =
9580 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9581 * nr_units * nr_columns);
9582 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9583 * nr_units * nr_columns))
9584 > index_end)
9585 {
9586 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9587 " [in module %s]"),
9588 dwp_file->name);
9589 }
9590 }
9591
9592 return htab;
9593 }
9594
9595 /* Update SECTIONS with the data from SECTP.
9596
9597 This function is like the other "locate" section routines that are
9598 passed to bfd_map_over_sections, but in this context the sections to
9599 read comes from the DWP V1 hash table, not the full ELF section table.
9600
9601 The result is non-zero for success, or zero if an error was found. */
9602
9603 static int
9604 locate_v1_virtual_dwo_sections (asection *sectp,
9605 struct virtual_v1_dwo_sections *sections)
9606 {
9607 const struct dwop_section_names *names = &dwop_section_names;
9608
9609 if (section_is_p (sectp->name, &names->abbrev_dwo))
9610 {
9611 /* There can be only one. */
9612 if (sections->abbrev.s.asection != NULL)
9613 return 0;
9614 sections->abbrev.s.asection = sectp;
9615 sections->abbrev.size = bfd_get_section_size (sectp);
9616 }
9617 else if (section_is_p (sectp->name, &names->info_dwo)
9618 || section_is_p (sectp->name, &names->types_dwo))
9619 {
9620 /* There can be only one. */
9621 if (sections->info_or_types.s.asection != NULL)
9622 return 0;
9623 sections->info_or_types.s.asection = sectp;
9624 sections->info_or_types.size = bfd_get_section_size (sectp);
9625 }
9626 else if (section_is_p (sectp->name, &names->line_dwo))
9627 {
9628 /* There can be only one. */
9629 if (sections->line.s.asection != NULL)
9630 return 0;
9631 sections->line.s.asection = sectp;
9632 sections->line.size = bfd_get_section_size (sectp);
9633 }
9634 else if (section_is_p (sectp->name, &names->loc_dwo))
9635 {
9636 /* There can be only one. */
9637 if (sections->loc.s.asection != NULL)
9638 return 0;
9639 sections->loc.s.asection = sectp;
9640 sections->loc.size = bfd_get_section_size (sectp);
9641 }
9642 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9643 {
9644 /* There can be only one. */
9645 if (sections->macinfo.s.asection != NULL)
9646 return 0;
9647 sections->macinfo.s.asection = sectp;
9648 sections->macinfo.size = bfd_get_section_size (sectp);
9649 }
9650 else if (section_is_p (sectp->name, &names->macro_dwo))
9651 {
9652 /* There can be only one. */
9653 if (sections->macro.s.asection != NULL)
9654 return 0;
9655 sections->macro.s.asection = sectp;
9656 sections->macro.size = bfd_get_section_size (sectp);
9657 }
9658 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9659 {
9660 /* There can be only one. */
9661 if (sections->str_offsets.s.asection != NULL)
9662 return 0;
9663 sections->str_offsets.s.asection = sectp;
9664 sections->str_offsets.size = bfd_get_section_size (sectp);
9665 }
9666 else
9667 {
9668 /* No other kind of section is valid. */
9669 return 0;
9670 }
9671
9672 return 1;
9673 }
9674
9675 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9676 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9677 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9678 This is for DWP version 1 files. */
9679
9680 static struct dwo_unit *
9681 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9682 uint32_t unit_index,
9683 const char *comp_dir,
9684 ULONGEST signature, int is_debug_types)
9685 {
9686 struct objfile *objfile = dwarf2_per_objfile->objfile;
9687 const struct dwp_hash_table *dwp_htab =
9688 is_debug_types ? dwp_file->tus : dwp_file->cus;
9689 bfd *dbfd = dwp_file->dbfd;
9690 const char *kind = is_debug_types ? "TU" : "CU";
9691 struct dwo_file *dwo_file;
9692 struct dwo_unit *dwo_unit;
9693 struct virtual_v1_dwo_sections sections;
9694 void **dwo_file_slot;
9695 char *virtual_dwo_name;
9696 struct dwarf2_section_info *cutu;
9697 struct cleanup *cleanups;
9698 int i;
9699
9700 gdb_assert (dwp_file->version == 1);
9701
9702 if (dwarf2_read_debug)
9703 {
9704 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9705 kind,
9706 pulongest (unit_index), hex_string (signature),
9707 dwp_file->name);
9708 }
9709
9710 /* Fetch the sections of this DWO unit.
9711 Put a limit on the number of sections we look for so that bad data
9712 doesn't cause us to loop forever. */
9713
9714 #define MAX_NR_V1_DWO_SECTIONS \
9715 (1 /* .debug_info or .debug_types */ \
9716 + 1 /* .debug_abbrev */ \
9717 + 1 /* .debug_line */ \
9718 + 1 /* .debug_loc */ \
9719 + 1 /* .debug_str_offsets */ \
9720 + 1 /* .debug_macro or .debug_macinfo */ \
9721 + 1 /* trailing zero */)
9722
9723 memset (&sections, 0, sizeof (sections));
9724 cleanups = make_cleanup (null_cleanup, 0);
9725
9726 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9727 {
9728 asection *sectp;
9729 uint32_t section_nr =
9730 read_4_bytes (dbfd,
9731 dwp_htab->section_pool.v1.indices
9732 + (unit_index + i) * sizeof (uint32_t));
9733
9734 if (section_nr == 0)
9735 break;
9736 if (section_nr >= dwp_file->num_sections)
9737 {
9738 error (_("Dwarf Error: bad DWP hash table, section number too large"
9739 " [in module %s]"),
9740 dwp_file->name);
9741 }
9742
9743 sectp = dwp_file->elf_sections[section_nr];
9744 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
9745 {
9746 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9747 " [in module %s]"),
9748 dwp_file->name);
9749 }
9750 }
9751
9752 if (i < 2
9753 || dwarf2_section_empty_p (&sections.info_or_types)
9754 || dwarf2_section_empty_p (&sections.abbrev))
9755 {
9756 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9757 " [in module %s]"),
9758 dwp_file->name);
9759 }
9760 if (i == MAX_NR_V1_DWO_SECTIONS)
9761 {
9762 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9763 " [in module %s]"),
9764 dwp_file->name);
9765 }
9766
9767 /* It's easier for the rest of the code if we fake a struct dwo_file and
9768 have dwo_unit "live" in that. At least for now.
9769
9770 The DWP file can be made up of a random collection of CUs and TUs.
9771 However, for each CU + set of TUs that came from the same original DWO
9772 file, we can combine them back into a virtual DWO file to save space
9773 (fewer struct dwo_file objects to allocate). Remember that for really
9774 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9775
9776 virtual_dwo_name =
9777 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9778 get_section_id (&sections.abbrev),
9779 get_section_id (&sections.line),
9780 get_section_id (&sections.loc),
9781 get_section_id (&sections.str_offsets));
9782 make_cleanup (xfree, virtual_dwo_name);
9783 /* Can we use an existing virtual DWO file? */
9784 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9785 /* Create one if necessary. */
9786 if (*dwo_file_slot == NULL)
9787 {
9788 if (dwarf2_read_debug)
9789 {
9790 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9791 virtual_dwo_name);
9792 }
9793 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9794 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9795 virtual_dwo_name,
9796 strlen (virtual_dwo_name));
9797 dwo_file->comp_dir = comp_dir;
9798 dwo_file->sections.abbrev = sections.abbrev;
9799 dwo_file->sections.line = sections.line;
9800 dwo_file->sections.loc = sections.loc;
9801 dwo_file->sections.macinfo = sections.macinfo;
9802 dwo_file->sections.macro = sections.macro;
9803 dwo_file->sections.str_offsets = sections.str_offsets;
9804 /* The "str" section is global to the entire DWP file. */
9805 dwo_file->sections.str = dwp_file->sections.str;
9806 /* The info or types section is assigned below to dwo_unit,
9807 there's no need to record it in dwo_file.
9808 Also, we can't simply record type sections in dwo_file because
9809 we record a pointer into the vector in dwo_unit. As we collect more
9810 types we'll grow the vector and eventually have to reallocate space
9811 for it, invalidating all copies of pointers into the previous
9812 contents. */
9813 *dwo_file_slot = dwo_file;
9814 }
9815 else
9816 {
9817 if (dwarf2_read_debug)
9818 {
9819 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9820 virtual_dwo_name);
9821 }
9822 dwo_file = *dwo_file_slot;
9823 }
9824 do_cleanups (cleanups);
9825
9826 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9827 dwo_unit->dwo_file = dwo_file;
9828 dwo_unit->signature = signature;
9829 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9830 sizeof (struct dwarf2_section_info));
9831 *dwo_unit->section = sections.info_or_types;
9832 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9833
9834 return dwo_unit;
9835 }
9836
9837 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9838 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9839 piece within that section used by a TU/CU, return a virtual section
9840 of just that piece. */
9841
9842 static struct dwarf2_section_info
9843 create_dwp_v2_section (struct dwarf2_section_info *section,
9844 bfd_size_type offset, bfd_size_type size)
9845 {
9846 struct dwarf2_section_info result;
9847 asection *sectp;
9848
9849 gdb_assert (section != NULL);
9850 gdb_assert (!section->is_virtual);
9851
9852 memset (&result, 0, sizeof (result));
9853 result.s.containing_section = section;
9854 result.is_virtual = 1;
9855
9856 if (size == 0)
9857 return result;
9858
9859 sectp = get_section_bfd_section (section);
9860
9861 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
9862 bounds of the real section. This is a pretty-rare event, so just
9863 flag an error (easier) instead of a warning and trying to cope. */
9864 if (sectp == NULL
9865 || offset + size > bfd_get_section_size (sectp))
9866 {
9867 bfd *abfd = sectp->owner;
9868
9869 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
9870 " in section %s [in module %s]"),
9871 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
9872 objfile_name (dwarf2_per_objfile->objfile));
9873 }
9874
9875 result.virtual_offset = offset;
9876 result.size = size;
9877 return result;
9878 }
9879
9880 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9881 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9882 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9883 This is for DWP version 2 files. */
9884
9885 static struct dwo_unit *
9886 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
9887 uint32_t unit_index,
9888 const char *comp_dir,
9889 ULONGEST signature, int is_debug_types)
9890 {
9891 struct objfile *objfile = dwarf2_per_objfile->objfile;
9892 const struct dwp_hash_table *dwp_htab =
9893 is_debug_types ? dwp_file->tus : dwp_file->cus;
9894 bfd *dbfd = dwp_file->dbfd;
9895 const char *kind = is_debug_types ? "TU" : "CU";
9896 struct dwo_file *dwo_file;
9897 struct dwo_unit *dwo_unit;
9898 struct virtual_v2_dwo_sections sections;
9899 void **dwo_file_slot;
9900 char *virtual_dwo_name;
9901 struct dwarf2_section_info *cutu;
9902 struct cleanup *cleanups;
9903 int i;
9904
9905 gdb_assert (dwp_file->version == 2);
9906
9907 if (dwarf2_read_debug)
9908 {
9909 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
9910 kind,
9911 pulongest (unit_index), hex_string (signature),
9912 dwp_file->name);
9913 }
9914
9915 /* Fetch the section offsets of this DWO unit. */
9916
9917 memset (&sections, 0, sizeof (sections));
9918 cleanups = make_cleanup (null_cleanup, 0);
9919
9920 for (i = 0; i < dwp_htab->nr_columns; ++i)
9921 {
9922 uint32_t offset = read_4_bytes (dbfd,
9923 dwp_htab->section_pool.v2.offsets
9924 + (((unit_index - 1) * dwp_htab->nr_columns
9925 + i)
9926 * sizeof (uint32_t)));
9927 uint32_t size = read_4_bytes (dbfd,
9928 dwp_htab->section_pool.v2.sizes
9929 + (((unit_index - 1) * dwp_htab->nr_columns
9930 + i)
9931 * sizeof (uint32_t)));
9932
9933 switch (dwp_htab->section_pool.v2.section_ids[i])
9934 {
9935 case DW_SECT_INFO:
9936 case DW_SECT_TYPES:
9937 sections.info_or_types_offset = offset;
9938 sections.info_or_types_size = size;
9939 break;
9940 case DW_SECT_ABBREV:
9941 sections.abbrev_offset = offset;
9942 sections.abbrev_size = size;
9943 break;
9944 case DW_SECT_LINE:
9945 sections.line_offset = offset;
9946 sections.line_size = size;
9947 break;
9948 case DW_SECT_LOC:
9949 sections.loc_offset = offset;
9950 sections.loc_size = size;
9951 break;
9952 case DW_SECT_STR_OFFSETS:
9953 sections.str_offsets_offset = offset;
9954 sections.str_offsets_size = size;
9955 break;
9956 case DW_SECT_MACINFO:
9957 sections.macinfo_offset = offset;
9958 sections.macinfo_size = size;
9959 break;
9960 case DW_SECT_MACRO:
9961 sections.macro_offset = offset;
9962 sections.macro_size = size;
9963 break;
9964 }
9965 }
9966
9967 /* It's easier for the rest of the code if we fake a struct dwo_file and
9968 have dwo_unit "live" in that. At least for now.
9969
9970 The DWP file can be made up of a random collection of CUs and TUs.
9971 However, for each CU + set of TUs that came from the same original DWO
9972 file, we can combine them back into a virtual DWO file to save space
9973 (fewer struct dwo_file objects to allocate). Remember that for really
9974 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9975
9976 virtual_dwo_name =
9977 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
9978 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
9979 (long) (sections.line_size ? sections.line_offset : 0),
9980 (long) (sections.loc_size ? sections.loc_offset : 0),
9981 (long) (sections.str_offsets_size
9982 ? sections.str_offsets_offset : 0));
9983 make_cleanup (xfree, virtual_dwo_name);
9984 /* Can we use an existing virtual DWO file? */
9985 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9986 /* Create one if necessary. */
9987 if (*dwo_file_slot == NULL)
9988 {
9989 if (dwarf2_read_debug)
9990 {
9991 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9992 virtual_dwo_name);
9993 }
9994 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9995 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9996 virtual_dwo_name,
9997 strlen (virtual_dwo_name));
9998 dwo_file->comp_dir = comp_dir;
9999 dwo_file->sections.abbrev =
10000 create_dwp_v2_section (&dwp_file->sections.abbrev,
10001 sections.abbrev_offset, sections.abbrev_size);
10002 dwo_file->sections.line =
10003 create_dwp_v2_section (&dwp_file->sections.line,
10004 sections.line_offset, sections.line_size);
10005 dwo_file->sections.loc =
10006 create_dwp_v2_section (&dwp_file->sections.loc,
10007 sections.loc_offset, sections.loc_size);
10008 dwo_file->sections.macinfo =
10009 create_dwp_v2_section (&dwp_file->sections.macinfo,
10010 sections.macinfo_offset, sections.macinfo_size);
10011 dwo_file->sections.macro =
10012 create_dwp_v2_section (&dwp_file->sections.macro,
10013 sections.macro_offset, sections.macro_size);
10014 dwo_file->sections.str_offsets =
10015 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10016 sections.str_offsets_offset,
10017 sections.str_offsets_size);
10018 /* The "str" section is global to the entire DWP file. */
10019 dwo_file->sections.str = dwp_file->sections.str;
10020 /* The info or types section is assigned below to dwo_unit,
10021 there's no need to record it in dwo_file.
10022 Also, we can't simply record type sections in dwo_file because
10023 we record a pointer into the vector in dwo_unit. As we collect more
10024 types we'll grow the vector and eventually have to reallocate space
10025 for it, invalidating all copies of pointers into the previous
10026 contents. */
10027 *dwo_file_slot = dwo_file;
10028 }
10029 else
10030 {
10031 if (dwarf2_read_debug)
10032 {
10033 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10034 virtual_dwo_name);
10035 }
10036 dwo_file = *dwo_file_slot;
10037 }
10038 do_cleanups (cleanups);
10039
10040 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10041 dwo_unit->dwo_file = dwo_file;
10042 dwo_unit->signature = signature;
10043 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10044 sizeof (struct dwarf2_section_info));
10045 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10046 ? &dwp_file->sections.types
10047 : &dwp_file->sections.info,
10048 sections.info_or_types_offset,
10049 sections.info_or_types_size);
10050 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10051
10052 return dwo_unit;
10053 }
10054
10055 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10056 Returns NULL if the signature isn't found. */
10057
10058 static struct dwo_unit *
10059 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10060 ULONGEST signature, int is_debug_types)
10061 {
10062 const struct dwp_hash_table *dwp_htab =
10063 is_debug_types ? dwp_file->tus : dwp_file->cus;
10064 bfd *dbfd = dwp_file->dbfd;
10065 uint32_t mask = dwp_htab->nr_slots - 1;
10066 uint32_t hash = signature & mask;
10067 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10068 unsigned int i;
10069 void **slot;
10070 struct dwo_unit find_dwo_cu, *dwo_cu;
10071
10072 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10073 find_dwo_cu.signature = signature;
10074 slot = htab_find_slot (is_debug_types
10075 ? dwp_file->loaded_tus
10076 : dwp_file->loaded_cus,
10077 &find_dwo_cu, INSERT);
10078
10079 if (*slot != NULL)
10080 return *slot;
10081
10082 /* Use a for loop so that we don't loop forever on bad debug info. */
10083 for (i = 0; i < dwp_htab->nr_slots; ++i)
10084 {
10085 ULONGEST signature_in_table;
10086
10087 signature_in_table =
10088 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10089 if (signature_in_table == signature)
10090 {
10091 uint32_t unit_index =
10092 read_4_bytes (dbfd,
10093 dwp_htab->unit_table + hash * sizeof (uint32_t));
10094
10095 if (dwp_file->version == 1)
10096 {
10097 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10098 comp_dir, signature,
10099 is_debug_types);
10100 }
10101 else
10102 {
10103 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10104 comp_dir, signature,
10105 is_debug_types);
10106 }
10107 return *slot;
10108 }
10109 if (signature_in_table == 0)
10110 return NULL;
10111 hash = (hash + hash2) & mask;
10112 }
10113
10114 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10115 " [in module %s]"),
10116 dwp_file->name);
10117 }
10118
10119 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10120 Open the file specified by FILE_NAME and hand it off to BFD for
10121 preliminary analysis. Return a newly initialized bfd *, which
10122 includes a canonicalized copy of FILE_NAME.
10123 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10124 SEARCH_CWD is true if the current directory is to be searched.
10125 It will be searched before debug-file-directory.
10126 If successful, the file is added to the bfd include table of the
10127 objfile's bfd (see gdb_bfd_record_inclusion).
10128 If unable to find/open the file, return NULL.
10129 NOTE: This function is derived from symfile_bfd_open. */
10130
10131 static bfd *
10132 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10133 {
10134 bfd *sym_bfd;
10135 int desc, flags;
10136 char *absolute_name;
10137 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10138 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10139 to debug_file_directory. */
10140 char *search_path;
10141 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10142
10143 if (search_cwd)
10144 {
10145 if (*debug_file_directory != '\0')
10146 search_path = concat (".", dirname_separator_string,
10147 debug_file_directory, NULL);
10148 else
10149 search_path = xstrdup (".");
10150 }
10151 else
10152 search_path = xstrdup (debug_file_directory);
10153
10154 flags = OPF_RETURN_REALPATH;
10155 if (is_dwp)
10156 flags |= OPF_SEARCH_IN_PATH;
10157 desc = openp (search_path, flags, file_name,
10158 O_RDONLY | O_BINARY, &absolute_name);
10159 xfree (search_path);
10160 if (desc < 0)
10161 return NULL;
10162
10163 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10164 xfree (absolute_name);
10165 if (sym_bfd == NULL)
10166 return NULL;
10167 bfd_set_cacheable (sym_bfd, 1);
10168
10169 if (!bfd_check_format (sym_bfd, bfd_object))
10170 {
10171 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10172 return NULL;
10173 }
10174
10175 /* Success. Record the bfd as having been included by the objfile's bfd.
10176 This is important because things like demangled_names_hash lives in the
10177 objfile's per_bfd space and may have references to things like symbol
10178 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10179 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10180
10181 return sym_bfd;
10182 }
10183
10184 /* Try to open DWO file FILE_NAME.
10185 COMP_DIR is the DW_AT_comp_dir attribute.
10186 The result is the bfd handle of the file.
10187 If there is a problem finding or opening the file, return NULL.
10188 Upon success, the canonicalized path of the file is stored in the bfd,
10189 same as symfile_bfd_open. */
10190
10191 static bfd *
10192 open_dwo_file (const char *file_name, const char *comp_dir)
10193 {
10194 bfd *abfd;
10195
10196 if (IS_ABSOLUTE_PATH (file_name))
10197 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10198
10199 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10200
10201 if (comp_dir != NULL)
10202 {
10203 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10204
10205 /* NOTE: If comp_dir is a relative path, this will also try the
10206 search path, which seems useful. */
10207 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10208 xfree (path_to_try);
10209 if (abfd != NULL)
10210 return abfd;
10211 }
10212
10213 /* That didn't work, try debug-file-directory, which, despite its name,
10214 is a list of paths. */
10215
10216 if (*debug_file_directory == '\0')
10217 return NULL;
10218
10219 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10220 }
10221
10222 /* This function is mapped across the sections and remembers the offset and
10223 size of each of the DWO debugging sections we are interested in. */
10224
10225 static void
10226 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10227 {
10228 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10229 const struct dwop_section_names *names = &dwop_section_names;
10230
10231 if (section_is_p (sectp->name, &names->abbrev_dwo))
10232 {
10233 dwo_sections->abbrev.s.asection = sectp;
10234 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10235 }
10236 else if (section_is_p (sectp->name, &names->info_dwo))
10237 {
10238 dwo_sections->info.s.asection = sectp;
10239 dwo_sections->info.size = bfd_get_section_size (sectp);
10240 }
10241 else if (section_is_p (sectp->name, &names->line_dwo))
10242 {
10243 dwo_sections->line.s.asection = sectp;
10244 dwo_sections->line.size = bfd_get_section_size (sectp);
10245 }
10246 else if (section_is_p (sectp->name, &names->loc_dwo))
10247 {
10248 dwo_sections->loc.s.asection = sectp;
10249 dwo_sections->loc.size = bfd_get_section_size (sectp);
10250 }
10251 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10252 {
10253 dwo_sections->macinfo.s.asection = sectp;
10254 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10255 }
10256 else if (section_is_p (sectp->name, &names->macro_dwo))
10257 {
10258 dwo_sections->macro.s.asection = sectp;
10259 dwo_sections->macro.size = bfd_get_section_size (sectp);
10260 }
10261 else if (section_is_p (sectp->name, &names->str_dwo))
10262 {
10263 dwo_sections->str.s.asection = sectp;
10264 dwo_sections->str.size = bfd_get_section_size (sectp);
10265 }
10266 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10267 {
10268 dwo_sections->str_offsets.s.asection = sectp;
10269 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10270 }
10271 else if (section_is_p (sectp->name, &names->types_dwo))
10272 {
10273 struct dwarf2_section_info type_section;
10274
10275 memset (&type_section, 0, sizeof (type_section));
10276 type_section.s.asection = sectp;
10277 type_section.size = bfd_get_section_size (sectp);
10278 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10279 &type_section);
10280 }
10281 }
10282
10283 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10284 by PER_CU. This is for the non-DWP case.
10285 The result is NULL if DWO_NAME can't be found. */
10286
10287 static struct dwo_file *
10288 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10289 const char *dwo_name, const char *comp_dir)
10290 {
10291 struct objfile *objfile = dwarf2_per_objfile->objfile;
10292 struct dwo_file *dwo_file;
10293 bfd *dbfd;
10294 struct cleanup *cleanups;
10295
10296 dbfd = open_dwo_file (dwo_name, comp_dir);
10297 if (dbfd == NULL)
10298 {
10299 if (dwarf2_read_debug)
10300 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10301 return NULL;
10302 }
10303 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10304 dwo_file->dwo_name = dwo_name;
10305 dwo_file->comp_dir = comp_dir;
10306 dwo_file->dbfd = dbfd;
10307
10308 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10309
10310 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10311
10312 dwo_file->cu = create_dwo_cu (dwo_file);
10313
10314 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10315 dwo_file->sections.types);
10316
10317 discard_cleanups (cleanups);
10318
10319 if (dwarf2_read_debug)
10320 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10321
10322 return dwo_file;
10323 }
10324
10325 /* This function is mapped across the sections and remembers the offset and
10326 size of each of the DWP debugging sections common to version 1 and 2 that
10327 we are interested in. */
10328
10329 static void
10330 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10331 void *dwp_file_ptr)
10332 {
10333 struct dwp_file *dwp_file = dwp_file_ptr;
10334 const struct dwop_section_names *names = &dwop_section_names;
10335 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10336
10337 /* Record the ELF section number for later lookup: this is what the
10338 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10339 gdb_assert (elf_section_nr < dwp_file->num_sections);
10340 dwp_file->elf_sections[elf_section_nr] = sectp;
10341
10342 /* Look for specific sections that we need. */
10343 if (section_is_p (sectp->name, &names->str_dwo))
10344 {
10345 dwp_file->sections.str.s.asection = sectp;
10346 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10347 }
10348 else if (section_is_p (sectp->name, &names->cu_index))
10349 {
10350 dwp_file->sections.cu_index.s.asection = sectp;
10351 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10352 }
10353 else if (section_is_p (sectp->name, &names->tu_index))
10354 {
10355 dwp_file->sections.tu_index.s.asection = sectp;
10356 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10357 }
10358 }
10359
10360 /* This function is mapped across the sections and remembers the offset and
10361 size of each of the DWP version 2 debugging sections that we are interested
10362 in. This is split into a separate function because we don't know if we
10363 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10364
10365 static void
10366 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10367 {
10368 struct dwp_file *dwp_file = dwp_file_ptr;
10369 const struct dwop_section_names *names = &dwop_section_names;
10370 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10371
10372 /* Record the ELF section number for later lookup: this is what the
10373 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10374 gdb_assert (elf_section_nr < dwp_file->num_sections);
10375 dwp_file->elf_sections[elf_section_nr] = sectp;
10376
10377 /* Look for specific sections that we need. */
10378 if (section_is_p (sectp->name, &names->abbrev_dwo))
10379 {
10380 dwp_file->sections.abbrev.s.asection = sectp;
10381 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10382 }
10383 else if (section_is_p (sectp->name, &names->info_dwo))
10384 {
10385 dwp_file->sections.info.s.asection = sectp;
10386 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10387 }
10388 else if (section_is_p (sectp->name, &names->line_dwo))
10389 {
10390 dwp_file->sections.line.s.asection = sectp;
10391 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10392 }
10393 else if (section_is_p (sectp->name, &names->loc_dwo))
10394 {
10395 dwp_file->sections.loc.s.asection = sectp;
10396 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10397 }
10398 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10399 {
10400 dwp_file->sections.macinfo.s.asection = sectp;
10401 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10402 }
10403 else if (section_is_p (sectp->name, &names->macro_dwo))
10404 {
10405 dwp_file->sections.macro.s.asection = sectp;
10406 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10407 }
10408 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10409 {
10410 dwp_file->sections.str_offsets.s.asection = sectp;
10411 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10412 }
10413 else if (section_is_p (sectp->name, &names->types_dwo))
10414 {
10415 dwp_file->sections.types.s.asection = sectp;
10416 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10417 }
10418 }
10419
10420 /* Hash function for dwp_file loaded CUs/TUs. */
10421
10422 static hashval_t
10423 hash_dwp_loaded_cutus (const void *item)
10424 {
10425 const struct dwo_unit *dwo_unit = item;
10426
10427 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10428 return dwo_unit->signature;
10429 }
10430
10431 /* Equality function for dwp_file loaded CUs/TUs. */
10432
10433 static int
10434 eq_dwp_loaded_cutus (const void *a, const void *b)
10435 {
10436 const struct dwo_unit *dua = a;
10437 const struct dwo_unit *dub = b;
10438
10439 return dua->signature == dub->signature;
10440 }
10441
10442 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10443
10444 static htab_t
10445 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10446 {
10447 return htab_create_alloc_ex (3,
10448 hash_dwp_loaded_cutus,
10449 eq_dwp_loaded_cutus,
10450 NULL,
10451 &objfile->objfile_obstack,
10452 hashtab_obstack_allocate,
10453 dummy_obstack_deallocate);
10454 }
10455
10456 /* Try to open DWP file FILE_NAME.
10457 The result is the bfd handle of the file.
10458 If there is a problem finding or opening the file, return NULL.
10459 Upon success, the canonicalized path of the file is stored in the bfd,
10460 same as symfile_bfd_open. */
10461
10462 static bfd *
10463 open_dwp_file (const char *file_name)
10464 {
10465 bfd *abfd;
10466
10467 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10468 if (abfd != NULL)
10469 return abfd;
10470
10471 /* Work around upstream bug 15652.
10472 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10473 [Whether that's a "bug" is debatable, but it is getting in our way.]
10474 We have no real idea where the dwp file is, because gdb's realpath-ing
10475 of the executable's path may have discarded the needed info.
10476 [IWBN if the dwp file name was recorded in the executable, akin to
10477 .gnu_debuglink, but that doesn't exist yet.]
10478 Strip the directory from FILE_NAME and search again. */
10479 if (*debug_file_directory != '\0')
10480 {
10481 /* Don't implicitly search the current directory here.
10482 If the user wants to search "." to handle this case,
10483 it must be added to debug-file-directory. */
10484 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10485 0 /*search_cwd*/);
10486 }
10487
10488 return NULL;
10489 }
10490
10491 /* Initialize the use of the DWP file for the current objfile.
10492 By convention the name of the DWP file is ${objfile}.dwp.
10493 The result is NULL if it can't be found. */
10494
10495 static struct dwp_file *
10496 open_and_init_dwp_file (void)
10497 {
10498 struct objfile *objfile = dwarf2_per_objfile->objfile;
10499 struct dwp_file *dwp_file;
10500 char *dwp_name;
10501 bfd *dbfd;
10502 struct cleanup *cleanups;
10503
10504 /* Try to find first .dwp for the binary file before any symbolic links
10505 resolving. */
10506 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10507 cleanups = make_cleanup (xfree, dwp_name);
10508
10509 dbfd = open_dwp_file (dwp_name);
10510 if (dbfd == NULL
10511 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10512 {
10513 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10514 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10515 make_cleanup (xfree, dwp_name);
10516 dbfd = open_dwp_file (dwp_name);
10517 }
10518
10519 if (dbfd == NULL)
10520 {
10521 if (dwarf2_read_debug)
10522 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10523 do_cleanups (cleanups);
10524 return NULL;
10525 }
10526 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10527 dwp_file->name = bfd_get_filename (dbfd);
10528 dwp_file->dbfd = dbfd;
10529 do_cleanups (cleanups);
10530
10531 /* +1: section 0 is unused */
10532 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10533 dwp_file->elf_sections =
10534 OBSTACK_CALLOC (&objfile->objfile_obstack,
10535 dwp_file->num_sections, asection *);
10536
10537 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10538
10539 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10540
10541 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10542
10543 /* The DWP file version is stored in the hash table. Oh well. */
10544 if (dwp_file->cus->version != dwp_file->tus->version)
10545 {
10546 /* Technically speaking, we should try to limp along, but this is
10547 pretty bizarre. We use pulongest here because that's the established
10548 portability solution (e.g, we cannot use %u for uint32_t). */
10549 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10550 " TU version %s [in DWP file %s]"),
10551 pulongest (dwp_file->cus->version),
10552 pulongest (dwp_file->tus->version), dwp_name);
10553 }
10554 dwp_file->version = dwp_file->cus->version;
10555
10556 if (dwp_file->version == 2)
10557 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10558
10559 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10560 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10561
10562 if (dwarf2_read_debug)
10563 {
10564 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10565 fprintf_unfiltered (gdb_stdlog,
10566 " %s CUs, %s TUs\n",
10567 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10568 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10569 }
10570
10571 return dwp_file;
10572 }
10573
10574 /* Wrapper around open_and_init_dwp_file, only open it once. */
10575
10576 static struct dwp_file *
10577 get_dwp_file (void)
10578 {
10579 if (! dwarf2_per_objfile->dwp_checked)
10580 {
10581 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10582 dwarf2_per_objfile->dwp_checked = 1;
10583 }
10584 return dwarf2_per_objfile->dwp_file;
10585 }
10586
10587 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10588 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10589 or in the DWP file for the objfile, referenced by THIS_UNIT.
10590 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10591 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10592
10593 This is called, for example, when wanting to read a variable with a
10594 complex location. Therefore we don't want to do file i/o for every call.
10595 Therefore we don't want to look for a DWO file on every call.
10596 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10597 then we check if we've already seen DWO_NAME, and only THEN do we check
10598 for a DWO file.
10599
10600 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10601 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10602
10603 static struct dwo_unit *
10604 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10605 const char *dwo_name, const char *comp_dir,
10606 ULONGEST signature, int is_debug_types)
10607 {
10608 struct objfile *objfile = dwarf2_per_objfile->objfile;
10609 const char *kind = is_debug_types ? "TU" : "CU";
10610 void **dwo_file_slot;
10611 struct dwo_file *dwo_file;
10612 struct dwp_file *dwp_file;
10613
10614 /* First see if there's a DWP file.
10615 If we have a DWP file but didn't find the DWO inside it, don't
10616 look for the original DWO file. It makes gdb behave differently
10617 depending on whether one is debugging in the build tree. */
10618
10619 dwp_file = get_dwp_file ();
10620 if (dwp_file != NULL)
10621 {
10622 const struct dwp_hash_table *dwp_htab =
10623 is_debug_types ? dwp_file->tus : dwp_file->cus;
10624
10625 if (dwp_htab != NULL)
10626 {
10627 struct dwo_unit *dwo_cutu =
10628 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10629 signature, is_debug_types);
10630
10631 if (dwo_cutu != NULL)
10632 {
10633 if (dwarf2_read_debug)
10634 {
10635 fprintf_unfiltered (gdb_stdlog,
10636 "Virtual DWO %s %s found: @%s\n",
10637 kind, hex_string (signature),
10638 host_address_to_string (dwo_cutu));
10639 }
10640 return dwo_cutu;
10641 }
10642 }
10643 }
10644 else
10645 {
10646 /* No DWP file, look for the DWO file. */
10647
10648 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10649 if (*dwo_file_slot == NULL)
10650 {
10651 /* Read in the file and build a table of the CUs/TUs it contains. */
10652 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10653 }
10654 /* NOTE: This will be NULL if unable to open the file. */
10655 dwo_file = *dwo_file_slot;
10656
10657 if (dwo_file != NULL)
10658 {
10659 struct dwo_unit *dwo_cutu = NULL;
10660
10661 if (is_debug_types && dwo_file->tus)
10662 {
10663 struct dwo_unit find_dwo_cutu;
10664
10665 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10666 find_dwo_cutu.signature = signature;
10667 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10668 }
10669 else if (!is_debug_types && dwo_file->cu)
10670 {
10671 if (signature == dwo_file->cu->signature)
10672 dwo_cutu = dwo_file->cu;
10673 }
10674
10675 if (dwo_cutu != NULL)
10676 {
10677 if (dwarf2_read_debug)
10678 {
10679 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10680 kind, dwo_name, hex_string (signature),
10681 host_address_to_string (dwo_cutu));
10682 }
10683 return dwo_cutu;
10684 }
10685 }
10686 }
10687
10688 /* We didn't find it. This could mean a dwo_id mismatch, or
10689 someone deleted the DWO/DWP file, or the search path isn't set up
10690 correctly to find the file. */
10691
10692 if (dwarf2_read_debug)
10693 {
10694 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10695 kind, dwo_name, hex_string (signature));
10696 }
10697
10698 /* This is a warning and not a complaint because it can be caused by
10699 pilot error (e.g., user accidentally deleting the DWO). */
10700 {
10701 /* Print the name of the DWP file if we looked there, helps the user
10702 better diagnose the problem. */
10703 char *dwp_text = NULL;
10704 struct cleanup *cleanups;
10705
10706 if (dwp_file != NULL)
10707 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10708 cleanups = make_cleanup (xfree, dwp_text);
10709
10710 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10711 " [in module %s]"),
10712 kind, dwo_name, hex_string (signature),
10713 dwp_text != NULL ? dwp_text : "",
10714 this_unit->is_debug_types ? "TU" : "CU",
10715 this_unit->offset.sect_off, objfile_name (objfile));
10716
10717 do_cleanups (cleanups);
10718 }
10719 return NULL;
10720 }
10721
10722 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10723 See lookup_dwo_cutu_unit for details. */
10724
10725 static struct dwo_unit *
10726 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10727 const char *dwo_name, const char *comp_dir,
10728 ULONGEST signature)
10729 {
10730 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10731 }
10732
10733 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10734 See lookup_dwo_cutu_unit for details. */
10735
10736 static struct dwo_unit *
10737 lookup_dwo_type_unit (struct signatured_type *this_tu,
10738 const char *dwo_name, const char *comp_dir)
10739 {
10740 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10741 }
10742
10743 /* Traversal function for queue_and_load_all_dwo_tus. */
10744
10745 static int
10746 queue_and_load_dwo_tu (void **slot, void *info)
10747 {
10748 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10749 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10750 ULONGEST signature = dwo_unit->signature;
10751 struct signatured_type *sig_type =
10752 lookup_dwo_signatured_type (per_cu->cu, signature);
10753
10754 if (sig_type != NULL)
10755 {
10756 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10757
10758 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10759 a real dependency of PER_CU on SIG_TYPE. That is detected later
10760 while processing PER_CU. */
10761 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10762 load_full_type_unit (sig_cu);
10763 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10764 }
10765
10766 return 1;
10767 }
10768
10769 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10770 The DWO may have the only definition of the type, though it may not be
10771 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10772 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10773
10774 static void
10775 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10776 {
10777 struct dwo_unit *dwo_unit;
10778 struct dwo_file *dwo_file;
10779
10780 gdb_assert (!per_cu->is_debug_types);
10781 gdb_assert (get_dwp_file () == NULL);
10782 gdb_assert (per_cu->cu != NULL);
10783
10784 dwo_unit = per_cu->cu->dwo_unit;
10785 gdb_assert (dwo_unit != NULL);
10786
10787 dwo_file = dwo_unit->dwo_file;
10788 if (dwo_file->tus != NULL)
10789 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10790 }
10791
10792 /* Free all resources associated with DWO_FILE.
10793 Close the DWO file and munmap the sections.
10794 All memory should be on the objfile obstack. */
10795
10796 static void
10797 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10798 {
10799 int ix;
10800 struct dwarf2_section_info *section;
10801
10802 /* Note: dbfd is NULL for virtual DWO files. */
10803 gdb_bfd_unref (dwo_file->dbfd);
10804
10805 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10806 }
10807
10808 /* Wrapper for free_dwo_file for use in cleanups. */
10809
10810 static void
10811 free_dwo_file_cleanup (void *arg)
10812 {
10813 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10814 struct objfile *objfile = dwarf2_per_objfile->objfile;
10815
10816 free_dwo_file (dwo_file, objfile);
10817 }
10818
10819 /* Traversal function for free_dwo_files. */
10820
10821 static int
10822 free_dwo_file_from_slot (void **slot, void *info)
10823 {
10824 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10825 struct objfile *objfile = (struct objfile *) info;
10826
10827 free_dwo_file (dwo_file, objfile);
10828
10829 return 1;
10830 }
10831
10832 /* Free all resources associated with DWO_FILES. */
10833
10834 static void
10835 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10836 {
10837 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10838 }
10839 \f
10840 /* Read in various DIEs. */
10841
10842 /* qsort helper for inherit_abstract_dies. */
10843
10844 static int
10845 unsigned_int_compar (const void *ap, const void *bp)
10846 {
10847 unsigned int a = *(unsigned int *) ap;
10848 unsigned int b = *(unsigned int *) bp;
10849
10850 return (a > b) - (b > a);
10851 }
10852
10853 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
10854 Inherit only the children of the DW_AT_abstract_origin DIE not being
10855 already referenced by DW_AT_abstract_origin from the children of the
10856 current DIE. */
10857
10858 static void
10859 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
10860 {
10861 struct die_info *child_die;
10862 unsigned die_children_count;
10863 /* CU offsets which were referenced by children of the current DIE. */
10864 sect_offset *offsets;
10865 sect_offset *offsets_end, *offsetp;
10866 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
10867 struct die_info *origin_die;
10868 /* Iterator of the ORIGIN_DIE children. */
10869 struct die_info *origin_child_die;
10870 struct cleanup *cleanups;
10871 struct attribute *attr;
10872 struct dwarf2_cu *origin_cu;
10873 struct pending **origin_previous_list_in_scope;
10874
10875 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10876 if (!attr)
10877 return;
10878
10879 /* Note that following die references may follow to a die in a
10880 different cu. */
10881
10882 origin_cu = cu;
10883 origin_die = follow_die_ref (die, attr, &origin_cu);
10884
10885 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
10886 symbols in. */
10887 origin_previous_list_in_scope = origin_cu->list_in_scope;
10888 origin_cu->list_in_scope = cu->list_in_scope;
10889
10890 if (die->tag != origin_die->tag
10891 && !(die->tag == DW_TAG_inlined_subroutine
10892 && origin_die->tag == DW_TAG_subprogram))
10893 complaint (&symfile_complaints,
10894 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
10895 die->offset.sect_off, origin_die->offset.sect_off);
10896
10897 child_die = die->child;
10898 die_children_count = 0;
10899 while (child_die && child_die->tag)
10900 {
10901 child_die = sibling_die (child_die);
10902 die_children_count++;
10903 }
10904 offsets = xmalloc (sizeof (*offsets) * die_children_count);
10905 cleanups = make_cleanup (xfree, offsets);
10906
10907 offsets_end = offsets;
10908 child_die = die->child;
10909 while (child_die && child_die->tag)
10910 {
10911 /* For each CHILD_DIE, find the corresponding child of
10912 ORIGIN_DIE. If there is more than one layer of
10913 DW_AT_abstract_origin, follow them all; there shouldn't be,
10914 but GCC versions at least through 4.4 generate this (GCC PR
10915 40573). */
10916 struct die_info *child_origin_die = child_die;
10917 struct dwarf2_cu *child_origin_cu = cu;
10918
10919 while (1)
10920 {
10921 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
10922 child_origin_cu);
10923 if (attr == NULL)
10924 break;
10925 child_origin_die = follow_die_ref (child_origin_die, attr,
10926 &child_origin_cu);
10927 }
10928
10929 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
10930 counterpart may exist. */
10931 if (child_origin_die != child_die)
10932 {
10933 if (child_die->tag != child_origin_die->tag
10934 && !(child_die->tag == DW_TAG_inlined_subroutine
10935 && child_origin_die->tag == DW_TAG_subprogram))
10936 complaint (&symfile_complaints,
10937 _("Child DIE 0x%x and its abstract origin 0x%x have "
10938 "different tags"), child_die->offset.sect_off,
10939 child_origin_die->offset.sect_off);
10940 if (child_origin_die->parent != origin_die)
10941 complaint (&symfile_complaints,
10942 _("Child DIE 0x%x and its abstract origin 0x%x have "
10943 "different parents"), child_die->offset.sect_off,
10944 child_origin_die->offset.sect_off);
10945 else
10946 *offsets_end++ = child_origin_die->offset;
10947 }
10948 child_die = sibling_die (child_die);
10949 }
10950 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
10951 unsigned_int_compar);
10952 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
10953 if (offsetp[-1].sect_off == offsetp->sect_off)
10954 complaint (&symfile_complaints,
10955 _("Multiple children of DIE 0x%x refer "
10956 "to DIE 0x%x as their abstract origin"),
10957 die->offset.sect_off, offsetp->sect_off);
10958
10959 offsetp = offsets;
10960 origin_child_die = origin_die->child;
10961 while (origin_child_die && origin_child_die->tag)
10962 {
10963 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
10964 while (offsetp < offsets_end
10965 && offsetp->sect_off < origin_child_die->offset.sect_off)
10966 offsetp++;
10967 if (offsetp >= offsets_end
10968 || offsetp->sect_off > origin_child_die->offset.sect_off)
10969 {
10970 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
10971 process_die (origin_child_die, origin_cu);
10972 }
10973 origin_child_die = sibling_die (origin_child_die);
10974 }
10975 origin_cu->list_in_scope = origin_previous_list_in_scope;
10976
10977 do_cleanups (cleanups);
10978 }
10979
10980 static void
10981 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
10982 {
10983 struct objfile *objfile = cu->objfile;
10984 struct context_stack *new;
10985 CORE_ADDR lowpc;
10986 CORE_ADDR highpc;
10987 struct die_info *child_die;
10988 struct attribute *attr, *call_line, *call_file;
10989 const char *name;
10990 CORE_ADDR baseaddr;
10991 struct block *block;
10992 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
10993 VEC (symbolp) *template_args = NULL;
10994 struct template_symbol *templ_func = NULL;
10995
10996 if (inlined_func)
10997 {
10998 /* If we do not have call site information, we can't show the
10999 caller of this inlined function. That's too confusing, so
11000 only use the scope for local variables. */
11001 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11002 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11003 if (call_line == NULL || call_file == NULL)
11004 {
11005 read_lexical_block_scope (die, cu);
11006 return;
11007 }
11008 }
11009
11010 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11011
11012 name = dwarf2_name (die, cu);
11013
11014 /* Ignore functions with missing or empty names. These are actually
11015 illegal according to the DWARF standard. */
11016 if (name == NULL)
11017 {
11018 complaint (&symfile_complaints,
11019 _("missing name for subprogram DIE at %d"),
11020 die->offset.sect_off);
11021 return;
11022 }
11023
11024 /* Ignore functions with missing or invalid low and high pc attributes. */
11025 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11026 {
11027 attr = dwarf2_attr (die, DW_AT_external, cu);
11028 if (!attr || !DW_UNSND (attr))
11029 complaint (&symfile_complaints,
11030 _("cannot get low and high bounds "
11031 "for subprogram DIE at %d"),
11032 die->offset.sect_off);
11033 return;
11034 }
11035
11036 lowpc += baseaddr;
11037 highpc += baseaddr;
11038
11039 /* If we have any template arguments, then we must allocate a
11040 different sort of symbol. */
11041 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11042 {
11043 if (child_die->tag == DW_TAG_template_type_param
11044 || child_die->tag == DW_TAG_template_value_param)
11045 {
11046 templ_func = allocate_template_symbol (objfile);
11047 templ_func->base.is_cplus_template_function = 1;
11048 break;
11049 }
11050 }
11051
11052 new = push_context (0, lowpc);
11053 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11054 (struct symbol *) templ_func);
11055
11056 /* If there is a location expression for DW_AT_frame_base, record
11057 it. */
11058 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11059 if (attr)
11060 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11061
11062 cu->list_in_scope = &local_symbols;
11063
11064 if (die->child != NULL)
11065 {
11066 child_die = die->child;
11067 while (child_die && child_die->tag)
11068 {
11069 if (child_die->tag == DW_TAG_template_type_param
11070 || child_die->tag == DW_TAG_template_value_param)
11071 {
11072 struct symbol *arg = new_symbol (child_die, NULL, cu);
11073
11074 if (arg != NULL)
11075 VEC_safe_push (symbolp, template_args, arg);
11076 }
11077 else
11078 process_die (child_die, cu);
11079 child_die = sibling_die (child_die);
11080 }
11081 }
11082
11083 inherit_abstract_dies (die, cu);
11084
11085 /* If we have a DW_AT_specification, we might need to import using
11086 directives from the context of the specification DIE. See the
11087 comment in determine_prefix. */
11088 if (cu->language == language_cplus
11089 && dwarf2_attr (die, DW_AT_specification, cu))
11090 {
11091 struct dwarf2_cu *spec_cu = cu;
11092 struct die_info *spec_die = die_specification (die, &spec_cu);
11093
11094 while (spec_die)
11095 {
11096 child_die = spec_die->child;
11097 while (child_die && child_die->tag)
11098 {
11099 if (child_die->tag == DW_TAG_imported_module)
11100 process_die (child_die, spec_cu);
11101 child_die = sibling_die (child_die);
11102 }
11103
11104 /* In some cases, GCC generates specification DIEs that
11105 themselves contain DW_AT_specification attributes. */
11106 spec_die = die_specification (spec_die, &spec_cu);
11107 }
11108 }
11109
11110 new = pop_context ();
11111 /* Make a block for the local symbols within. */
11112 block = finish_block (new->name, &local_symbols, new->old_blocks,
11113 lowpc, highpc, objfile);
11114
11115 /* For C++, set the block's scope. */
11116 if ((cu->language == language_cplus || cu->language == language_fortran)
11117 && cu->processing_has_namespace_info)
11118 block_set_scope (block, determine_prefix (die, cu),
11119 &objfile->objfile_obstack);
11120
11121 /* If we have address ranges, record them. */
11122 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11123
11124 /* Attach template arguments to function. */
11125 if (! VEC_empty (symbolp, template_args))
11126 {
11127 gdb_assert (templ_func != NULL);
11128
11129 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11130 templ_func->template_arguments
11131 = obstack_alloc (&objfile->objfile_obstack,
11132 (templ_func->n_template_arguments
11133 * sizeof (struct symbol *)));
11134 memcpy (templ_func->template_arguments,
11135 VEC_address (symbolp, template_args),
11136 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11137 VEC_free (symbolp, template_args);
11138 }
11139
11140 /* In C++, we can have functions nested inside functions (e.g., when
11141 a function declares a class that has methods). This means that
11142 when we finish processing a function scope, we may need to go
11143 back to building a containing block's symbol lists. */
11144 local_symbols = new->locals;
11145 using_directives = new->using_directives;
11146
11147 /* If we've finished processing a top-level function, subsequent
11148 symbols go in the file symbol list. */
11149 if (outermost_context_p ())
11150 cu->list_in_scope = &file_symbols;
11151 }
11152
11153 /* Process all the DIES contained within a lexical block scope. Start
11154 a new scope, process the dies, and then close the scope. */
11155
11156 static void
11157 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11158 {
11159 struct objfile *objfile = cu->objfile;
11160 struct context_stack *new;
11161 CORE_ADDR lowpc, highpc;
11162 struct die_info *child_die;
11163 CORE_ADDR baseaddr;
11164
11165 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11166
11167 /* Ignore blocks with missing or invalid low and high pc attributes. */
11168 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11169 as multiple lexical blocks? Handling children in a sane way would
11170 be nasty. Might be easier to properly extend generic blocks to
11171 describe ranges. */
11172 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11173 return;
11174 lowpc += baseaddr;
11175 highpc += baseaddr;
11176
11177 push_context (0, lowpc);
11178 if (die->child != NULL)
11179 {
11180 child_die = die->child;
11181 while (child_die && child_die->tag)
11182 {
11183 process_die (child_die, cu);
11184 child_die = sibling_die (child_die);
11185 }
11186 }
11187 new = pop_context ();
11188
11189 if (local_symbols != NULL || using_directives != NULL)
11190 {
11191 struct block *block
11192 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11193 highpc, objfile);
11194
11195 /* Note that recording ranges after traversing children, as we
11196 do here, means that recording a parent's ranges entails
11197 walking across all its children's ranges as they appear in
11198 the address map, which is quadratic behavior.
11199
11200 It would be nicer to record the parent's ranges before
11201 traversing its children, simply overriding whatever you find
11202 there. But since we don't even decide whether to create a
11203 block until after we've traversed its children, that's hard
11204 to do. */
11205 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11206 }
11207 local_symbols = new->locals;
11208 using_directives = new->using_directives;
11209 }
11210
11211 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11212
11213 static void
11214 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11215 {
11216 struct objfile *objfile = cu->objfile;
11217 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11218 CORE_ADDR pc, baseaddr;
11219 struct attribute *attr;
11220 struct call_site *call_site, call_site_local;
11221 void **slot;
11222 int nparams;
11223 struct die_info *child_die;
11224
11225 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11226
11227 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11228 if (!attr)
11229 {
11230 complaint (&symfile_complaints,
11231 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11232 "DIE 0x%x [in module %s]"),
11233 die->offset.sect_off, objfile_name (objfile));
11234 return;
11235 }
11236 pc = DW_ADDR (attr) + baseaddr;
11237
11238 if (cu->call_site_htab == NULL)
11239 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11240 NULL, &objfile->objfile_obstack,
11241 hashtab_obstack_allocate, NULL);
11242 call_site_local.pc = pc;
11243 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11244 if (*slot != NULL)
11245 {
11246 complaint (&symfile_complaints,
11247 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11248 "DIE 0x%x [in module %s]"),
11249 paddress (gdbarch, pc), die->offset.sect_off,
11250 objfile_name (objfile));
11251 return;
11252 }
11253
11254 /* Count parameters at the caller. */
11255
11256 nparams = 0;
11257 for (child_die = die->child; child_die && child_die->tag;
11258 child_die = sibling_die (child_die))
11259 {
11260 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11261 {
11262 complaint (&symfile_complaints,
11263 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11264 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11265 child_die->tag, child_die->offset.sect_off,
11266 objfile_name (objfile));
11267 continue;
11268 }
11269
11270 nparams++;
11271 }
11272
11273 call_site = obstack_alloc (&objfile->objfile_obstack,
11274 (sizeof (*call_site)
11275 + (sizeof (*call_site->parameter)
11276 * (nparams - 1))));
11277 *slot = call_site;
11278 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11279 call_site->pc = pc;
11280
11281 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11282 {
11283 struct die_info *func_die;
11284
11285 /* Skip also over DW_TAG_inlined_subroutine. */
11286 for (func_die = die->parent;
11287 func_die && func_die->tag != DW_TAG_subprogram
11288 && func_die->tag != DW_TAG_subroutine_type;
11289 func_die = func_die->parent);
11290
11291 /* DW_AT_GNU_all_call_sites is a superset
11292 of DW_AT_GNU_all_tail_call_sites. */
11293 if (func_die
11294 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11295 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11296 {
11297 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11298 not complete. But keep CALL_SITE for look ups via call_site_htab,
11299 both the initial caller containing the real return address PC and
11300 the final callee containing the current PC of a chain of tail
11301 calls do not need to have the tail call list complete. But any
11302 function candidate for a virtual tail call frame searched via
11303 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11304 determined unambiguously. */
11305 }
11306 else
11307 {
11308 struct type *func_type = NULL;
11309
11310 if (func_die)
11311 func_type = get_die_type (func_die, cu);
11312 if (func_type != NULL)
11313 {
11314 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11315
11316 /* Enlist this call site to the function. */
11317 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11318 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11319 }
11320 else
11321 complaint (&symfile_complaints,
11322 _("Cannot find function owning DW_TAG_GNU_call_site "
11323 "DIE 0x%x [in module %s]"),
11324 die->offset.sect_off, objfile_name (objfile));
11325 }
11326 }
11327
11328 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11329 if (attr == NULL)
11330 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11331 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11332 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11333 /* Keep NULL DWARF_BLOCK. */;
11334 else if (attr_form_is_block (attr))
11335 {
11336 struct dwarf2_locexpr_baton *dlbaton;
11337
11338 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11339 dlbaton->data = DW_BLOCK (attr)->data;
11340 dlbaton->size = DW_BLOCK (attr)->size;
11341 dlbaton->per_cu = cu->per_cu;
11342
11343 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11344 }
11345 else if (attr_form_is_ref (attr))
11346 {
11347 struct dwarf2_cu *target_cu = cu;
11348 struct die_info *target_die;
11349
11350 target_die = follow_die_ref (die, attr, &target_cu);
11351 gdb_assert (target_cu->objfile == objfile);
11352 if (die_is_declaration (target_die, target_cu))
11353 {
11354 const char *target_physname = NULL;
11355 struct attribute *target_attr;
11356
11357 /* Prefer the mangled name; otherwise compute the demangled one. */
11358 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11359 if (target_attr == NULL)
11360 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11361 target_cu);
11362 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11363 target_physname = DW_STRING (target_attr);
11364 else
11365 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11366 if (target_physname == NULL)
11367 complaint (&symfile_complaints,
11368 _("DW_AT_GNU_call_site_target target DIE has invalid "
11369 "physname, for referencing DIE 0x%x [in module %s]"),
11370 die->offset.sect_off, objfile_name (objfile));
11371 else
11372 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11373 }
11374 else
11375 {
11376 CORE_ADDR lowpc;
11377
11378 /* DW_AT_entry_pc should be preferred. */
11379 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11380 complaint (&symfile_complaints,
11381 _("DW_AT_GNU_call_site_target target DIE has invalid "
11382 "low pc, for referencing DIE 0x%x [in module %s]"),
11383 die->offset.sect_off, objfile_name (objfile));
11384 else
11385 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11386 }
11387 }
11388 else
11389 complaint (&symfile_complaints,
11390 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11391 "block nor reference, for DIE 0x%x [in module %s]"),
11392 die->offset.sect_off, objfile_name (objfile));
11393
11394 call_site->per_cu = cu->per_cu;
11395
11396 for (child_die = die->child;
11397 child_die && child_die->tag;
11398 child_die = sibling_die (child_die))
11399 {
11400 struct call_site_parameter *parameter;
11401 struct attribute *loc, *origin;
11402
11403 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11404 {
11405 /* Already printed the complaint above. */
11406 continue;
11407 }
11408
11409 gdb_assert (call_site->parameter_count < nparams);
11410 parameter = &call_site->parameter[call_site->parameter_count];
11411
11412 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11413 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11414 register is contained in DW_AT_GNU_call_site_value. */
11415
11416 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11417 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11418 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11419 {
11420 sect_offset offset;
11421
11422 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11423 offset = dwarf2_get_ref_die_offset (origin);
11424 if (!offset_in_cu_p (&cu->header, offset))
11425 {
11426 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11427 binding can be done only inside one CU. Such referenced DIE
11428 therefore cannot be even moved to DW_TAG_partial_unit. */
11429 complaint (&symfile_complaints,
11430 _("DW_AT_abstract_origin offset is not in CU for "
11431 "DW_TAG_GNU_call_site child DIE 0x%x "
11432 "[in module %s]"),
11433 child_die->offset.sect_off, objfile_name (objfile));
11434 continue;
11435 }
11436 parameter->u.param_offset.cu_off = (offset.sect_off
11437 - cu->header.offset.sect_off);
11438 }
11439 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11440 {
11441 complaint (&symfile_complaints,
11442 _("No DW_FORM_block* DW_AT_location for "
11443 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11444 child_die->offset.sect_off, objfile_name (objfile));
11445 continue;
11446 }
11447 else
11448 {
11449 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11450 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11451 if (parameter->u.dwarf_reg != -1)
11452 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11453 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11454 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11455 &parameter->u.fb_offset))
11456 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11457 else
11458 {
11459 complaint (&symfile_complaints,
11460 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11461 "for DW_FORM_block* DW_AT_location is supported for "
11462 "DW_TAG_GNU_call_site child DIE 0x%x "
11463 "[in module %s]"),
11464 child_die->offset.sect_off, objfile_name (objfile));
11465 continue;
11466 }
11467 }
11468
11469 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11470 if (!attr_form_is_block (attr))
11471 {
11472 complaint (&symfile_complaints,
11473 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11474 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11475 child_die->offset.sect_off, objfile_name (objfile));
11476 continue;
11477 }
11478 parameter->value = DW_BLOCK (attr)->data;
11479 parameter->value_size = DW_BLOCK (attr)->size;
11480
11481 /* Parameters are not pre-cleared by memset above. */
11482 parameter->data_value = NULL;
11483 parameter->data_value_size = 0;
11484 call_site->parameter_count++;
11485
11486 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11487 if (attr)
11488 {
11489 if (!attr_form_is_block (attr))
11490 complaint (&symfile_complaints,
11491 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11492 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11493 child_die->offset.sect_off, objfile_name (objfile));
11494 else
11495 {
11496 parameter->data_value = DW_BLOCK (attr)->data;
11497 parameter->data_value_size = DW_BLOCK (attr)->size;
11498 }
11499 }
11500 }
11501 }
11502
11503 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11504 Return 1 if the attributes are present and valid, otherwise, return 0.
11505 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11506
11507 static int
11508 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11509 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11510 struct partial_symtab *ranges_pst)
11511 {
11512 struct objfile *objfile = cu->objfile;
11513 struct comp_unit_head *cu_header = &cu->header;
11514 bfd *obfd = objfile->obfd;
11515 unsigned int addr_size = cu_header->addr_size;
11516 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11517 /* Base address selection entry. */
11518 CORE_ADDR base;
11519 int found_base;
11520 unsigned int dummy;
11521 const gdb_byte *buffer;
11522 CORE_ADDR marker;
11523 int low_set;
11524 CORE_ADDR low = 0;
11525 CORE_ADDR high = 0;
11526 CORE_ADDR baseaddr;
11527
11528 found_base = cu->base_known;
11529 base = cu->base_address;
11530
11531 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11532 if (offset >= dwarf2_per_objfile->ranges.size)
11533 {
11534 complaint (&symfile_complaints,
11535 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11536 offset);
11537 return 0;
11538 }
11539 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11540
11541 /* Read in the largest possible address. */
11542 marker = read_address (obfd, buffer, cu, &dummy);
11543 if ((marker & mask) == mask)
11544 {
11545 /* If we found the largest possible address, then
11546 read the base address. */
11547 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11548 buffer += 2 * addr_size;
11549 offset += 2 * addr_size;
11550 found_base = 1;
11551 }
11552
11553 low_set = 0;
11554
11555 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11556
11557 while (1)
11558 {
11559 CORE_ADDR range_beginning, range_end;
11560
11561 range_beginning = read_address (obfd, buffer, cu, &dummy);
11562 buffer += addr_size;
11563 range_end = read_address (obfd, buffer, cu, &dummy);
11564 buffer += addr_size;
11565 offset += 2 * addr_size;
11566
11567 /* An end of list marker is a pair of zero addresses. */
11568 if (range_beginning == 0 && range_end == 0)
11569 /* Found the end of list entry. */
11570 break;
11571
11572 /* Each base address selection entry is a pair of 2 values.
11573 The first is the largest possible address, the second is
11574 the base address. Check for a base address here. */
11575 if ((range_beginning & mask) == mask)
11576 {
11577 /* If we found the largest possible address, then
11578 read the base address. */
11579 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11580 found_base = 1;
11581 continue;
11582 }
11583
11584 if (!found_base)
11585 {
11586 /* We have no valid base address for the ranges
11587 data. */
11588 complaint (&symfile_complaints,
11589 _("Invalid .debug_ranges data (no base address)"));
11590 return 0;
11591 }
11592
11593 if (range_beginning > range_end)
11594 {
11595 /* Inverted range entries are invalid. */
11596 complaint (&symfile_complaints,
11597 _("Invalid .debug_ranges data (inverted range)"));
11598 return 0;
11599 }
11600
11601 /* Empty range entries have no effect. */
11602 if (range_beginning == range_end)
11603 continue;
11604
11605 range_beginning += base;
11606 range_end += base;
11607
11608 /* A not-uncommon case of bad debug info.
11609 Don't pollute the addrmap with bad data. */
11610 if (range_beginning + baseaddr == 0
11611 && !dwarf2_per_objfile->has_section_at_zero)
11612 {
11613 complaint (&symfile_complaints,
11614 _(".debug_ranges entry has start address of zero"
11615 " [in module %s]"), objfile_name (objfile));
11616 continue;
11617 }
11618
11619 if (ranges_pst != NULL)
11620 addrmap_set_empty (objfile->psymtabs_addrmap,
11621 range_beginning + baseaddr,
11622 range_end - 1 + baseaddr,
11623 ranges_pst);
11624
11625 /* FIXME: This is recording everything as a low-high
11626 segment of consecutive addresses. We should have a
11627 data structure for discontiguous block ranges
11628 instead. */
11629 if (! low_set)
11630 {
11631 low = range_beginning;
11632 high = range_end;
11633 low_set = 1;
11634 }
11635 else
11636 {
11637 if (range_beginning < low)
11638 low = range_beginning;
11639 if (range_end > high)
11640 high = range_end;
11641 }
11642 }
11643
11644 if (! low_set)
11645 /* If the first entry is an end-of-list marker, the range
11646 describes an empty scope, i.e. no instructions. */
11647 return 0;
11648
11649 if (low_return)
11650 *low_return = low;
11651 if (high_return)
11652 *high_return = high;
11653 return 1;
11654 }
11655
11656 /* Get low and high pc attributes from a die. Return 1 if the attributes
11657 are present and valid, otherwise, return 0. Return -1 if the range is
11658 discontinuous, i.e. derived from DW_AT_ranges information. */
11659
11660 static int
11661 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11662 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11663 struct partial_symtab *pst)
11664 {
11665 struct attribute *attr;
11666 struct attribute *attr_high;
11667 CORE_ADDR low = 0;
11668 CORE_ADDR high = 0;
11669 int ret = 0;
11670
11671 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11672 if (attr_high)
11673 {
11674 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11675 if (attr)
11676 {
11677 low = DW_ADDR (attr);
11678 if (attr_high->form == DW_FORM_addr
11679 || attr_high->form == DW_FORM_GNU_addr_index)
11680 high = DW_ADDR (attr_high);
11681 else
11682 high = low + DW_UNSND (attr_high);
11683 }
11684 else
11685 /* Found high w/o low attribute. */
11686 return 0;
11687
11688 /* Found consecutive range of addresses. */
11689 ret = 1;
11690 }
11691 else
11692 {
11693 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11694 if (attr != NULL)
11695 {
11696 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11697 We take advantage of the fact that DW_AT_ranges does not appear
11698 in DW_TAG_compile_unit of DWO files. */
11699 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11700 unsigned int ranges_offset = (DW_UNSND (attr)
11701 + (need_ranges_base
11702 ? cu->ranges_base
11703 : 0));
11704
11705 /* Value of the DW_AT_ranges attribute is the offset in the
11706 .debug_ranges section. */
11707 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11708 return 0;
11709 /* Found discontinuous range of addresses. */
11710 ret = -1;
11711 }
11712 }
11713
11714 /* read_partial_die has also the strict LOW < HIGH requirement. */
11715 if (high <= low)
11716 return 0;
11717
11718 /* When using the GNU linker, .gnu.linkonce. sections are used to
11719 eliminate duplicate copies of functions and vtables and such.
11720 The linker will arbitrarily choose one and discard the others.
11721 The AT_*_pc values for such functions refer to local labels in
11722 these sections. If the section from that file was discarded, the
11723 labels are not in the output, so the relocs get a value of 0.
11724 If this is a discarded function, mark the pc bounds as invalid,
11725 so that GDB will ignore it. */
11726 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11727 return 0;
11728
11729 *lowpc = low;
11730 if (highpc)
11731 *highpc = high;
11732 return ret;
11733 }
11734
11735 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11736 its low and high PC addresses. Do nothing if these addresses could not
11737 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11738 and HIGHPC to the high address if greater than HIGHPC. */
11739
11740 static void
11741 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11742 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11743 struct dwarf2_cu *cu)
11744 {
11745 CORE_ADDR low, high;
11746 struct die_info *child = die->child;
11747
11748 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11749 {
11750 *lowpc = min (*lowpc, low);
11751 *highpc = max (*highpc, high);
11752 }
11753
11754 /* If the language does not allow nested subprograms (either inside
11755 subprograms or lexical blocks), we're done. */
11756 if (cu->language != language_ada)
11757 return;
11758
11759 /* Check all the children of the given DIE. If it contains nested
11760 subprograms, then check their pc bounds. Likewise, we need to
11761 check lexical blocks as well, as they may also contain subprogram
11762 definitions. */
11763 while (child && child->tag)
11764 {
11765 if (child->tag == DW_TAG_subprogram
11766 || child->tag == DW_TAG_lexical_block)
11767 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11768 child = sibling_die (child);
11769 }
11770 }
11771
11772 /* Get the low and high pc's represented by the scope DIE, and store
11773 them in *LOWPC and *HIGHPC. If the correct values can't be
11774 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11775
11776 static void
11777 get_scope_pc_bounds (struct die_info *die,
11778 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11779 struct dwarf2_cu *cu)
11780 {
11781 CORE_ADDR best_low = (CORE_ADDR) -1;
11782 CORE_ADDR best_high = (CORE_ADDR) 0;
11783 CORE_ADDR current_low, current_high;
11784
11785 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
11786 {
11787 best_low = current_low;
11788 best_high = current_high;
11789 }
11790 else
11791 {
11792 struct die_info *child = die->child;
11793
11794 while (child && child->tag)
11795 {
11796 switch (child->tag) {
11797 case DW_TAG_subprogram:
11798 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11799 break;
11800 case DW_TAG_namespace:
11801 case DW_TAG_module:
11802 /* FIXME: carlton/2004-01-16: Should we do this for
11803 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11804 that current GCC's always emit the DIEs corresponding
11805 to definitions of methods of classes as children of a
11806 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11807 the DIEs giving the declarations, which could be
11808 anywhere). But I don't see any reason why the
11809 standards says that they have to be there. */
11810 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11811
11812 if (current_low != ((CORE_ADDR) -1))
11813 {
11814 best_low = min (best_low, current_low);
11815 best_high = max (best_high, current_high);
11816 }
11817 break;
11818 default:
11819 /* Ignore. */
11820 break;
11821 }
11822
11823 child = sibling_die (child);
11824 }
11825 }
11826
11827 *lowpc = best_low;
11828 *highpc = best_high;
11829 }
11830
11831 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
11832 in DIE. */
11833
11834 static void
11835 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11836 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11837 {
11838 struct objfile *objfile = cu->objfile;
11839 struct attribute *attr;
11840 struct attribute *attr_high;
11841
11842 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11843 if (attr_high)
11844 {
11845 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11846 if (attr)
11847 {
11848 CORE_ADDR low = DW_ADDR (attr);
11849 CORE_ADDR high;
11850 if (attr_high->form == DW_FORM_addr
11851 || attr_high->form == DW_FORM_GNU_addr_index)
11852 high = DW_ADDR (attr_high);
11853 else
11854 high = low + DW_UNSND (attr_high);
11855
11856 record_block_range (block, baseaddr + low, baseaddr + high - 1);
11857 }
11858 }
11859
11860 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11861 if (attr)
11862 {
11863 bfd *obfd = objfile->obfd;
11864 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11865 We take advantage of the fact that DW_AT_ranges does not appear
11866 in DW_TAG_compile_unit of DWO files. */
11867 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11868
11869 /* The value of the DW_AT_ranges attribute is the offset of the
11870 address range list in the .debug_ranges section. */
11871 unsigned long offset = (DW_UNSND (attr)
11872 + (need_ranges_base ? cu->ranges_base : 0));
11873 const gdb_byte *buffer;
11874
11875 /* For some target architectures, but not others, the
11876 read_address function sign-extends the addresses it returns.
11877 To recognize base address selection entries, we need a
11878 mask. */
11879 unsigned int addr_size = cu->header.addr_size;
11880 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11881
11882 /* The base address, to which the next pair is relative. Note
11883 that this 'base' is a DWARF concept: most entries in a range
11884 list are relative, to reduce the number of relocs against the
11885 debugging information. This is separate from this function's
11886 'baseaddr' argument, which GDB uses to relocate debugging
11887 information from a shared library based on the address at
11888 which the library was loaded. */
11889 CORE_ADDR base = cu->base_address;
11890 int base_known = cu->base_known;
11891
11892 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11893 if (offset >= dwarf2_per_objfile->ranges.size)
11894 {
11895 complaint (&symfile_complaints,
11896 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
11897 offset);
11898 return;
11899 }
11900 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11901
11902 for (;;)
11903 {
11904 unsigned int bytes_read;
11905 CORE_ADDR start, end;
11906
11907 start = read_address (obfd, buffer, cu, &bytes_read);
11908 buffer += bytes_read;
11909 end = read_address (obfd, buffer, cu, &bytes_read);
11910 buffer += bytes_read;
11911
11912 /* Did we find the end of the range list? */
11913 if (start == 0 && end == 0)
11914 break;
11915
11916 /* Did we find a base address selection entry? */
11917 else if ((start & base_select_mask) == base_select_mask)
11918 {
11919 base = end;
11920 base_known = 1;
11921 }
11922
11923 /* We found an ordinary address range. */
11924 else
11925 {
11926 if (!base_known)
11927 {
11928 complaint (&symfile_complaints,
11929 _("Invalid .debug_ranges data "
11930 "(no base address)"));
11931 return;
11932 }
11933
11934 if (start > end)
11935 {
11936 /* Inverted range entries are invalid. */
11937 complaint (&symfile_complaints,
11938 _("Invalid .debug_ranges data "
11939 "(inverted range)"));
11940 return;
11941 }
11942
11943 /* Empty range entries have no effect. */
11944 if (start == end)
11945 continue;
11946
11947 start += base + baseaddr;
11948 end += base + baseaddr;
11949
11950 /* A not-uncommon case of bad debug info.
11951 Don't pollute the addrmap with bad data. */
11952 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
11953 {
11954 complaint (&symfile_complaints,
11955 _(".debug_ranges entry has start address of zero"
11956 " [in module %s]"), objfile_name (objfile));
11957 continue;
11958 }
11959
11960 record_block_range (block, start, end - 1);
11961 }
11962 }
11963 }
11964 }
11965
11966 /* Check whether the producer field indicates either of GCC < 4.6, or the
11967 Intel C/C++ compiler, and cache the result in CU. */
11968
11969 static void
11970 check_producer (struct dwarf2_cu *cu)
11971 {
11972 const char *cs;
11973 int major, minor, release;
11974
11975 if (cu->producer == NULL)
11976 {
11977 /* For unknown compilers expect their behavior is DWARF version
11978 compliant.
11979
11980 GCC started to support .debug_types sections by -gdwarf-4 since
11981 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
11982 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
11983 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
11984 interpreted incorrectly by GDB now - GCC PR debug/48229. */
11985 }
11986 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
11987 {
11988 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
11989
11990 cs = &cu->producer[strlen ("GNU ")];
11991 while (*cs && !isdigit (*cs))
11992 cs++;
11993 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
11994 {
11995 /* Not recognized as GCC. */
11996 }
11997 else
11998 {
11999 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12000 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12001 }
12002 }
12003 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12004 cu->producer_is_icc = 1;
12005 else
12006 {
12007 /* For other non-GCC compilers, expect their behavior is DWARF version
12008 compliant. */
12009 }
12010
12011 cu->checked_producer = 1;
12012 }
12013
12014 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12015 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12016 during 4.6.0 experimental. */
12017
12018 static int
12019 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12020 {
12021 if (!cu->checked_producer)
12022 check_producer (cu);
12023
12024 return cu->producer_is_gxx_lt_4_6;
12025 }
12026
12027 /* Return the default accessibility type if it is not overriden by
12028 DW_AT_accessibility. */
12029
12030 static enum dwarf_access_attribute
12031 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12032 {
12033 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12034 {
12035 /* The default DWARF 2 accessibility for members is public, the default
12036 accessibility for inheritance is private. */
12037
12038 if (die->tag != DW_TAG_inheritance)
12039 return DW_ACCESS_public;
12040 else
12041 return DW_ACCESS_private;
12042 }
12043 else
12044 {
12045 /* DWARF 3+ defines the default accessibility a different way. The same
12046 rules apply now for DW_TAG_inheritance as for the members and it only
12047 depends on the container kind. */
12048
12049 if (die->parent->tag == DW_TAG_class_type)
12050 return DW_ACCESS_private;
12051 else
12052 return DW_ACCESS_public;
12053 }
12054 }
12055
12056 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12057 offset. If the attribute was not found return 0, otherwise return
12058 1. If it was found but could not properly be handled, set *OFFSET
12059 to 0. */
12060
12061 static int
12062 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12063 LONGEST *offset)
12064 {
12065 struct attribute *attr;
12066
12067 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12068 if (attr != NULL)
12069 {
12070 *offset = 0;
12071
12072 /* Note that we do not check for a section offset first here.
12073 This is because DW_AT_data_member_location is new in DWARF 4,
12074 so if we see it, we can assume that a constant form is really
12075 a constant and not a section offset. */
12076 if (attr_form_is_constant (attr))
12077 *offset = dwarf2_get_attr_constant_value (attr, 0);
12078 else if (attr_form_is_section_offset (attr))
12079 dwarf2_complex_location_expr_complaint ();
12080 else if (attr_form_is_block (attr))
12081 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12082 else
12083 dwarf2_complex_location_expr_complaint ();
12084
12085 return 1;
12086 }
12087
12088 return 0;
12089 }
12090
12091 /* Add an aggregate field to the field list. */
12092
12093 static void
12094 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12095 struct dwarf2_cu *cu)
12096 {
12097 struct objfile *objfile = cu->objfile;
12098 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12099 struct nextfield *new_field;
12100 struct attribute *attr;
12101 struct field *fp;
12102 const char *fieldname = "";
12103
12104 /* Allocate a new field list entry and link it in. */
12105 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12106 make_cleanup (xfree, new_field);
12107 memset (new_field, 0, sizeof (struct nextfield));
12108
12109 if (die->tag == DW_TAG_inheritance)
12110 {
12111 new_field->next = fip->baseclasses;
12112 fip->baseclasses = new_field;
12113 }
12114 else
12115 {
12116 new_field->next = fip->fields;
12117 fip->fields = new_field;
12118 }
12119 fip->nfields++;
12120
12121 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12122 if (attr)
12123 new_field->accessibility = DW_UNSND (attr);
12124 else
12125 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12126 if (new_field->accessibility != DW_ACCESS_public)
12127 fip->non_public_fields = 1;
12128
12129 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12130 if (attr)
12131 new_field->virtuality = DW_UNSND (attr);
12132 else
12133 new_field->virtuality = DW_VIRTUALITY_none;
12134
12135 fp = &new_field->field;
12136
12137 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12138 {
12139 LONGEST offset;
12140
12141 /* Data member other than a C++ static data member. */
12142
12143 /* Get type of field. */
12144 fp->type = die_type (die, cu);
12145
12146 SET_FIELD_BITPOS (*fp, 0);
12147
12148 /* Get bit size of field (zero if none). */
12149 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12150 if (attr)
12151 {
12152 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12153 }
12154 else
12155 {
12156 FIELD_BITSIZE (*fp) = 0;
12157 }
12158
12159 /* Get bit offset of field. */
12160 if (handle_data_member_location (die, cu, &offset))
12161 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12162 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12163 if (attr)
12164 {
12165 if (gdbarch_bits_big_endian (gdbarch))
12166 {
12167 /* For big endian bits, the DW_AT_bit_offset gives the
12168 additional bit offset from the MSB of the containing
12169 anonymous object to the MSB of the field. We don't
12170 have to do anything special since we don't need to
12171 know the size of the anonymous object. */
12172 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12173 }
12174 else
12175 {
12176 /* For little endian bits, compute the bit offset to the
12177 MSB of the anonymous object, subtract off the number of
12178 bits from the MSB of the field to the MSB of the
12179 object, and then subtract off the number of bits of
12180 the field itself. The result is the bit offset of
12181 the LSB of the field. */
12182 int anonymous_size;
12183 int bit_offset = DW_UNSND (attr);
12184
12185 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12186 if (attr)
12187 {
12188 /* The size of the anonymous object containing
12189 the bit field is explicit, so use the
12190 indicated size (in bytes). */
12191 anonymous_size = DW_UNSND (attr);
12192 }
12193 else
12194 {
12195 /* The size of the anonymous object containing
12196 the bit field must be inferred from the type
12197 attribute of the data member containing the
12198 bit field. */
12199 anonymous_size = TYPE_LENGTH (fp->type);
12200 }
12201 SET_FIELD_BITPOS (*fp,
12202 (FIELD_BITPOS (*fp)
12203 + anonymous_size * bits_per_byte
12204 - bit_offset - FIELD_BITSIZE (*fp)));
12205 }
12206 }
12207
12208 /* Get name of field. */
12209 fieldname = dwarf2_name (die, cu);
12210 if (fieldname == NULL)
12211 fieldname = "";
12212
12213 /* The name is already allocated along with this objfile, so we don't
12214 need to duplicate it for the type. */
12215 fp->name = fieldname;
12216
12217 /* Change accessibility for artificial fields (e.g. virtual table
12218 pointer or virtual base class pointer) to private. */
12219 if (dwarf2_attr (die, DW_AT_artificial, cu))
12220 {
12221 FIELD_ARTIFICIAL (*fp) = 1;
12222 new_field->accessibility = DW_ACCESS_private;
12223 fip->non_public_fields = 1;
12224 }
12225 }
12226 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12227 {
12228 /* C++ static member. */
12229
12230 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12231 is a declaration, but all versions of G++ as of this writing
12232 (so through at least 3.2.1) incorrectly generate
12233 DW_TAG_variable tags. */
12234
12235 const char *physname;
12236
12237 /* Get name of field. */
12238 fieldname = dwarf2_name (die, cu);
12239 if (fieldname == NULL)
12240 return;
12241
12242 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12243 if (attr
12244 /* Only create a symbol if this is an external value.
12245 new_symbol checks this and puts the value in the global symbol
12246 table, which we want. If it is not external, new_symbol
12247 will try to put the value in cu->list_in_scope which is wrong. */
12248 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12249 {
12250 /* A static const member, not much different than an enum as far as
12251 we're concerned, except that we can support more types. */
12252 new_symbol (die, NULL, cu);
12253 }
12254
12255 /* Get physical name. */
12256 physname = dwarf2_physname (fieldname, die, cu);
12257
12258 /* The name is already allocated along with this objfile, so we don't
12259 need to duplicate it for the type. */
12260 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12261 FIELD_TYPE (*fp) = die_type (die, cu);
12262 FIELD_NAME (*fp) = fieldname;
12263 }
12264 else if (die->tag == DW_TAG_inheritance)
12265 {
12266 LONGEST offset;
12267
12268 /* C++ base class field. */
12269 if (handle_data_member_location (die, cu, &offset))
12270 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12271 FIELD_BITSIZE (*fp) = 0;
12272 FIELD_TYPE (*fp) = die_type (die, cu);
12273 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12274 fip->nbaseclasses++;
12275 }
12276 }
12277
12278 /* Add a typedef defined in the scope of the FIP's class. */
12279
12280 static void
12281 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12282 struct dwarf2_cu *cu)
12283 {
12284 struct objfile *objfile = cu->objfile;
12285 struct typedef_field_list *new_field;
12286 struct attribute *attr;
12287 struct typedef_field *fp;
12288 char *fieldname = "";
12289
12290 /* Allocate a new field list entry and link it in. */
12291 new_field = xzalloc (sizeof (*new_field));
12292 make_cleanup (xfree, new_field);
12293
12294 gdb_assert (die->tag == DW_TAG_typedef);
12295
12296 fp = &new_field->field;
12297
12298 /* Get name of field. */
12299 fp->name = dwarf2_name (die, cu);
12300 if (fp->name == NULL)
12301 return;
12302
12303 fp->type = read_type_die (die, cu);
12304
12305 new_field->next = fip->typedef_field_list;
12306 fip->typedef_field_list = new_field;
12307 fip->typedef_field_list_count++;
12308 }
12309
12310 /* Create the vector of fields, and attach it to the type. */
12311
12312 static void
12313 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12314 struct dwarf2_cu *cu)
12315 {
12316 int nfields = fip->nfields;
12317
12318 /* Record the field count, allocate space for the array of fields,
12319 and create blank accessibility bitfields if necessary. */
12320 TYPE_NFIELDS (type) = nfields;
12321 TYPE_FIELDS (type) = (struct field *)
12322 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12323 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12324
12325 if (fip->non_public_fields && cu->language != language_ada)
12326 {
12327 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12328
12329 TYPE_FIELD_PRIVATE_BITS (type) =
12330 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12331 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12332
12333 TYPE_FIELD_PROTECTED_BITS (type) =
12334 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12335 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12336
12337 TYPE_FIELD_IGNORE_BITS (type) =
12338 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12339 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12340 }
12341
12342 /* If the type has baseclasses, allocate and clear a bit vector for
12343 TYPE_FIELD_VIRTUAL_BITS. */
12344 if (fip->nbaseclasses && cu->language != language_ada)
12345 {
12346 int num_bytes = B_BYTES (fip->nbaseclasses);
12347 unsigned char *pointer;
12348
12349 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12350 pointer = TYPE_ALLOC (type, num_bytes);
12351 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12352 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12353 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12354 }
12355
12356 /* Copy the saved-up fields into the field vector. Start from the head of
12357 the list, adding to the tail of the field array, so that they end up in
12358 the same order in the array in which they were added to the list. */
12359 while (nfields-- > 0)
12360 {
12361 struct nextfield *fieldp;
12362
12363 if (fip->fields)
12364 {
12365 fieldp = fip->fields;
12366 fip->fields = fieldp->next;
12367 }
12368 else
12369 {
12370 fieldp = fip->baseclasses;
12371 fip->baseclasses = fieldp->next;
12372 }
12373
12374 TYPE_FIELD (type, nfields) = fieldp->field;
12375 switch (fieldp->accessibility)
12376 {
12377 case DW_ACCESS_private:
12378 if (cu->language != language_ada)
12379 SET_TYPE_FIELD_PRIVATE (type, nfields);
12380 break;
12381
12382 case DW_ACCESS_protected:
12383 if (cu->language != language_ada)
12384 SET_TYPE_FIELD_PROTECTED (type, nfields);
12385 break;
12386
12387 case DW_ACCESS_public:
12388 break;
12389
12390 default:
12391 /* Unknown accessibility. Complain and treat it as public. */
12392 {
12393 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12394 fieldp->accessibility);
12395 }
12396 break;
12397 }
12398 if (nfields < fip->nbaseclasses)
12399 {
12400 switch (fieldp->virtuality)
12401 {
12402 case DW_VIRTUALITY_virtual:
12403 case DW_VIRTUALITY_pure_virtual:
12404 if (cu->language == language_ada)
12405 error (_("unexpected virtuality in component of Ada type"));
12406 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12407 break;
12408 }
12409 }
12410 }
12411 }
12412
12413 /* Return true if this member function is a constructor, false
12414 otherwise. */
12415
12416 static int
12417 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12418 {
12419 const char *fieldname;
12420 const char *typename;
12421 int len;
12422
12423 if (die->parent == NULL)
12424 return 0;
12425
12426 if (die->parent->tag != DW_TAG_structure_type
12427 && die->parent->tag != DW_TAG_union_type
12428 && die->parent->tag != DW_TAG_class_type)
12429 return 0;
12430
12431 fieldname = dwarf2_name (die, cu);
12432 typename = dwarf2_name (die->parent, cu);
12433 if (fieldname == NULL || typename == NULL)
12434 return 0;
12435
12436 len = strlen (fieldname);
12437 return (strncmp (fieldname, typename, len) == 0
12438 && (typename[len] == '\0' || typename[len] == '<'));
12439 }
12440
12441 /* Add a member function to the proper fieldlist. */
12442
12443 static void
12444 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12445 struct type *type, struct dwarf2_cu *cu)
12446 {
12447 struct objfile *objfile = cu->objfile;
12448 struct attribute *attr;
12449 struct fnfieldlist *flp;
12450 int i;
12451 struct fn_field *fnp;
12452 const char *fieldname;
12453 struct nextfnfield *new_fnfield;
12454 struct type *this_type;
12455 enum dwarf_access_attribute accessibility;
12456
12457 if (cu->language == language_ada)
12458 error (_("unexpected member function in Ada type"));
12459
12460 /* Get name of member function. */
12461 fieldname = dwarf2_name (die, cu);
12462 if (fieldname == NULL)
12463 return;
12464
12465 /* Look up member function name in fieldlist. */
12466 for (i = 0; i < fip->nfnfields; i++)
12467 {
12468 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12469 break;
12470 }
12471
12472 /* Create new list element if necessary. */
12473 if (i < fip->nfnfields)
12474 flp = &fip->fnfieldlists[i];
12475 else
12476 {
12477 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12478 {
12479 fip->fnfieldlists = (struct fnfieldlist *)
12480 xrealloc (fip->fnfieldlists,
12481 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12482 * sizeof (struct fnfieldlist));
12483 if (fip->nfnfields == 0)
12484 make_cleanup (free_current_contents, &fip->fnfieldlists);
12485 }
12486 flp = &fip->fnfieldlists[fip->nfnfields];
12487 flp->name = fieldname;
12488 flp->length = 0;
12489 flp->head = NULL;
12490 i = fip->nfnfields++;
12491 }
12492
12493 /* Create a new member function field and chain it to the field list
12494 entry. */
12495 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12496 make_cleanup (xfree, new_fnfield);
12497 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12498 new_fnfield->next = flp->head;
12499 flp->head = new_fnfield;
12500 flp->length++;
12501
12502 /* Fill in the member function field info. */
12503 fnp = &new_fnfield->fnfield;
12504
12505 /* Delay processing of the physname until later. */
12506 if (cu->language == language_cplus || cu->language == language_java)
12507 {
12508 add_to_method_list (type, i, flp->length - 1, fieldname,
12509 die, cu);
12510 }
12511 else
12512 {
12513 const char *physname = dwarf2_physname (fieldname, die, cu);
12514 fnp->physname = physname ? physname : "";
12515 }
12516
12517 fnp->type = alloc_type (objfile);
12518 this_type = read_type_die (die, cu);
12519 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12520 {
12521 int nparams = TYPE_NFIELDS (this_type);
12522
12523 /* TYPE is the domain of this method, and THIS_TYPE is the type
12524 of the method itself (TYPE_CODE_METHOD). */
12525 smash_to_method_type (fnp->type, type,
12526 TYPE_TARGET_TYPE (this_type),
12527 TYPE_FIELDS (this_type),
12528 TYPE_NFIELDS (this_type),
12529 TYPE_VARARGS (this_type));
12530
12531 /* Handle static member functions.
12532 Dwarf2 has no clean way to discern C++ static and non-static
12533 member functions. G++ helps GDB by marking the first
12534 parameter for non-static member functions (which is the this
12535 pointer) as artificial. We obtain this information from
12536 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12537 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12538 fnp->voffset = VOFFSET_STATIC;
12539 }
12540 else
12541 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12542 dwarf2_full_name (fieldname, die, cu));
12543
12544 /* Get fcontext from DW_AT_containing_type if present. */
12545 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12546 fnp->fcontext = die_containing_type (die, cu);
12547
12548 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12549 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12550
12551 /* Get accessibility. */
12552 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12553 if (attr)
12554 accessibility = DW_UNSND (attr);
12555 else
12556 accessibility = dwarf2_default_access_attribute (die, cu);
12557 switch (accessibility)
12558 {
12559 case DW_ACCESS_private:
12560 fnp->is_private = 1;
12561 break;
12562 case DW_ACCESS_protected:
12563 fnp->is_protected = 1;
12564 break;
12565 }
12566
12567 /* Check for artificial methods. */
12568 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12569 if (attr && DW_UNSND (attr) != 0)
12570 fnp->is_artificial = 1;
12571
12572 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12573
12574 /* Get index in virtual function table if it is a virtual member
12575 function. For older versions of GCC, this is an offset in the
12576 appropriate virtual table, as specified by DW_AT_containing_type.
12577 For everyone else, it is an expression to be evaluated relative
12578 to the object address. */
12579
12580 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12581 if (attr)
12582 {
12583 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12584 {
12585 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12586 {
12587 /* Old-style GCC. */
12588 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12589 }
12590 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12591 || (DW_BLOCK (attr)->size > 1
12592 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12593 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12594 {
12595 struct dwarf_block blk;
12596 int offset;
12597
12598 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12599 ? 1 : 2);
12600 blk.size = DW_BLOCK (attr)->size - offset;
12601 blk.data = DW_BLOCK (attr)->data + offset;
12602 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12603 if ((fnp->voffset % cu->header.addr_size) != 0)
12604 dwarf2_complex_location_expr_complaint ();
12605 else
12606 fnp->voffset /= cu->header.addr_size;
12607 fnp->voffset += 2;
12608 }
12609 else
12610 dwarf2_complex_location_expr_complaint ();
12611
12612 if (!fnp->fcontext)
12613 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12614 }
12615 else if (attr_form_is_section_offset (attr))
12616 {
12617 dwarf2_complex_location_expr_complaint ();
12618 }
12619 else
12620 {
12621 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12622 fieldname);
12623 }
12624 }
12625 else
12626 {
12627 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12628 if (attr && DW_UNSND (attr))
12629 {
12630 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12631 complaint (&symfile_complaints,
12632 _("Member function \"%s\" (offset %d) is virtual "
12633 "but the vtable offset is not specified"),
12634 fieldname, die->offset.sect_off);
12635 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12636 TYPE_CPLUS_DYNAMIC (type) = 1;
12637 }
12638 }
12639 }
12640
12641 /* Create the vector of member function fields, and attach it to the type. */
12642
12643 static void
12644 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12645 struct dwarf2_cu *cu)
12646 {
12647 struct fnfieldlist *flp;
12648 int i;
12649
12650 if (cu->language == language_ada)
12651 error (_("unexpected member functions in Ada type"));
12652
12653 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12654 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12655 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12656
12657 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12658 {
12659 struct nextfnfield *nfp = flp->head;
12660 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12661 int k;
12662
12663 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12664 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12665 fn_flp->fn_fields = (struct fn_field *)
12666 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12667 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12668 fn_flp->fn_fields[k] = nfp->fnfield;
12669 }
12670
12671 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12672 }
12673
12674 /* Returns non-zero if NAME is the name of a vtable member in CU's
12675 language, zero otherwise. */
12676 static int
12677 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12678 {
12679 static const char vptr[] = "_vptr";
12680 static const char vtable[] = "vtable";
12681
12682 /* Look for the C++ and Java forms of the vtable. */
12683 if ((cu->language == language_java
12684 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12685 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12686 && is_cplus_marker (name[sizeof (vptr) - 1])))
12687 return 1;
12688
12689 return 0;
12690 }
12691
12692 /* GCC outputs unnamed structures that are really pointers to member
12693 functions, with the ABI-specified layout. If TYPE describes
12694 such a structure, smash it into a member function type.
12695
12696 GCC shouldn't do this; it should just output pointer to member DIEs.
12697 This is GCC PR debug/28767. */
12698
12699 static void
12700 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12701 {
12702 struct type *pfn_type, *domain_type, *new_type;
12703
12704 /* Check for a structure with no name and two children. */
12705 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12706 return;
12707
12708 /* Check for __pfn and __delta members. */
12709 if (TYPE_FIELD_NAME (type, 0) == NULL
12710 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12711 || TYPE_FIELD_NAME (type, 1) == NULL
12712 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12713 return;
12714
12715 /* Find the type of the method. */
12716 pfn_type = TYPE_FIELD_TYPE (type, 0);
12717 if (pfn_type == NULL
12718 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12719 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12720 return;
12721
12722 /* Look for the "this" argument. */
12723 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12724 if (TYPE_NFIELDS (pfn_type) == 0
12725 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12726 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12727 return;
12728
12729 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12730 new_type = alloc_type (objfile);
12731 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12732 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12733 TYPE_VARARGS (pfn_type));
12734 smash_to_methodptr_type (type, new_type);
12735 }
12736
12737 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12738 (icc). */
12739
12740 static int
12741 producer_is_icc (struct dwarf2_cu *cu)
12742 {
12743 if (!cu->checked_producer)
12744 check_producer (cu);
12745
12746 return cu->producer_is_icc;
12747 }
12748
12749 /* Called when we find the DIE that starts a structure or union scope
12750 (definition) to create a type for the structure or union. Fill in
12751 the type's name and general properties; the members will not be
12752 processed until process_structure_scope.
12753
12754 NOTE: we need to call these functions regardless of whether or not the
12755 DIE has a DW_AT_name attribute, since it might be an anonymous
12756 structure or union. This gets the type entered into our set of
12757 user defined types.
12758
12759 However, if the structure is incomplete (an opaque struct/union)
12760 then suppress creating a symbol table entry for it since gdb only
12761 wants to find the one with the complete definition. Note that if
12762 it is complete, we just call new_symbol, which does it's own
12763 checking about whether the struct/union is anonymous or not (and
12764 suppresses creating a symbol table entry itself). */
12765
12766 static struct type *
12767 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12768 {
12769 struct objfile *objfile = cu->objfile;
12770 struct type *type;
12771 struct attribute *attr;
12772 const char *name;
12773
12774 /* If the definition of this type lives in .debug_types, read that type.
12775 Don't follow DW_AT_specification though, that will take us back up
12776 the chain and we want to go down. */
12777 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12778 if (attr)
12779 {
12780 type = get_DW_AT_signature_type (die, attr, cu);
12781
12782 /* The type's CU may not be the same as CU.
12783 Ensure TYPE is recorded with CU in die_type_hash. */
12784 return set_die_type (die, type, cu);
12785 }
12786
12787 type = alloc_type (objfile);
12788 INIT_CPLUS_SPECIFIC (type);
12789
12790 name = dwarf2_name (die, cu);
12791 if (name != NULL)
12792 {
12793 if (cu->language == language_cplus
12794 || cu->language == language_java)
12795 {
12796 const char *full_name = dwarf2_full_name (name, die, cu);
12797
12798 /* dwarf2_full_name might have already finished building the DIE's
12799 type. If so, there is no need to continue. */
12800 if (get_die_type (die, cu) != NULL)
12801 return get_die_type (die, cu);
12802
12803 TYPE_TAG_NAME (type) = full_name;
12804 if (die->tag == DW_TAG_structure_type
12805 || die->tag == DW_TAG_class_type)
12806 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12807 }
12808 else
12809 {
12810 /* The name is already allocated along with this objfile, so
12811 we don't need to duplicate it for the type. */
12812 TYPE_TAG_NAME (type) = name;
12813 if (die->tag == DW_TAG_class_type)
12814 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12815 }
12816 }
12817
12818 if (die->tag == DW_TAG_structure_type)
12819 {
12820 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12821 }
12822 else if (die->tag == DW_TAG_union_type)
12823 {
12824 TYPE_CODE (type) = TYPE_CODE_UNION;
12825 }
12826 else
12827 {
12828 TYPE_CODE (type) = TYPE_CODE_CLASS;
12829 }
12830
12831 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12832 TYPE_DECLARED_CLASS (type) = 1;
12833
12834 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12835 if (attr)
12836 {
12837 TYPE_LENGTH (type) = DW_UNSND (attr);
12838 }
12839 else
12840 {
12841 TYPE_LENGTH (type) = 0;
12842 }
12843
12844 if (producer_is_icc (cu))
12845 {
12846 /* ICC does not output the required DW_AT_declaration
12847 on incomplete types, but gives them a size of zero. */
12848 }
12849 else
12850 TYPE_STUB_SUPPORTED (type) = 1;
12851
12852 if (die_is_declaration (die, cu))
12853 TYPE_STUB (type) = 1;
12854 else if (attr == NULL && die->child == NULL
12855 && producer_is_realview (cu->producer))
12856 /* RealView does not output the required DW_AT_declaration
12857 on incomplete types. */
12858 TYPE_STUB (type) = 1;
12859
12860 /* We need to add the type field to the die immediately so we don't
12861 infinitely recurse when dealing with pointers to the structure
12862 type within the structure itself. */
12863 set_die_type (die, type, cu);
12864
12865 /* set_die_type should be already done. */
12866 set_descriptive_type (type, die, cu);
12867
12868 return type;
12869 }
12870
12871 /* Finish creating a structure or union type, including filling in
12872 its members and creating a symbol for it. */
12873
12874 static void
12875 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
12876 {
12877 struct objfile *objfile = cu->objfile;
12878 struct die_info *child_die = die->child;
12879 struct type *type;
12880
12881 type = get_die_type (die, cu);
12882 if (type == NULL)
12883 type = read_structure_type (die, cu);
12884
12885 if (die->child != NULL && ! die_is_declaration (die, cu))
12886 {
12887 struct field_info fi;
12888 struct die_info *child_die;
12889 VEC (symbolp) *template_args = NULL;
12890 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
12891
12892 memset (&fi, 0, sizeof (struct field_info));
12893
12894 child_die = die->child;
12895
12896 while (child_die && child_die->tag)
12897 {
12898 if (child_die->tag == DW_TAG_member
12899 || child_die->tag == DW_TAG_variable)
12900 {
12901 /* NOTE: carlton/2002-11-05: A C++ static data member
12902 should be a DW_TAG_member that is a declaration, but
12903 all versions of G++ as of this writing (so through at
12904 least 3.2.1) incorrectly generate DW_TAG_variable
12905 tags for them instead. */
12906 dwarf2_add_field (&fi, child_die, cu);
12907 }
12908 else if (child_die->tag == DW_TAG_subprogram)
12909 {
12910 /* C++ member function. */
12911 dwarf2_add_member_fn (&fi, child_die, type, cu);
12912 }
12913 else if (child_die->tag == DW_TAG_inheritance)
12914 {
12915 /* C++ base class field. */
12916 dwarf2_add_field (&fi, child_die, cu);
12917 }
12918 else if (child_die->tag == DW_TAG_typedef)
12919 dwarf2_add_typedef (&fi, child_die, cu);
12920 else if (child_die->tag == DW_TAG_template_type_param
12921 || child_die->tag == DW_TAG_template_value_param)
12922 {
12923 struct symbol *arg = new_symbol (child_die, NULL, cu);
12924
12925 if (arg != NULL)
12926 VEC_safe_push (symbolp, template_args, arg);
12927 }
12928
12929 child_die = sibling_die (child_die);
12930 }
12931
12932 /* Attach template arguments to type. */
12933 if (! VEC_empty (symbolp, template_args))
12934 {
12935 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12936 TYPE_N_TEMPLATE_ARGUMENTS (type)
12937 = VEC_length (symbolp, template_args);
12938 TYPE_TEMPLATE_ARGUMENTS (type)
12939 = obstack_alloc (&objfile->objfile_obstack,
12940 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12941 * sizeof (struct symbol *)));
12942 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
12943 VEC_address (symbolp, template_args),
12944 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12945 * sizeof (struct symbol *)));
12946 VEC_free (symbolp, template_args);
12947 }
12948
12949 /* Attach fields and member functions to the type. */
12950 if (fi.nfields)
12951 dwarf2_attach_fields_to_type (&fi, type, cu);
12952 if (fi.nfnfields)
12953 {
12954 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
12955
12956 /* Get the type which refers to the base class (possibly this
12957 class itself) which contains the vtable pointer for the current
12958 class from the DW_AT_containing_type attribute. This use of
12959 DW_AT_containing_type is a GNU extension. */
12960
12961 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12962 {
12963 struct type *t = die_containing_type (die, cu);
12964
12965 TYPE_VPTR_BASETYPE (type) = t;
12966 if (type == t)
12967 {
12968 int i;
12969
12970 /* Our own class provides vtbl ptr. */
12971 for (i = TYPE_NFIELDS (t) - 1;
12972 i >= TYPE_N_BASECLASSES (t);
12973 --i)
12974 {
12975 const char *fieldname = TYPE_FIELD_NAME (t, i);
12976
12977 if (is_vtable_name (fieldname, cu))
12978 {
12979 TYPE_VPTR_FIELDNO (type) = i;
12980 break;
12981 }
12982 }
12983
12984 /* Complain if virtual function table field not found. */
12985 if (i < TYPE_N_BASECLASSES (t))
12986 complaint (&symfile_complaints,
12987 _("virtual function table pointer "
12988 "not found when defining class '%s'"),
12989 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
12990 "");
12991 }
12992 else
12993 {
12994 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
12995 }
12996 }
12997 else if (cu->producer
12998 && strncmp (cu->producer,
12999 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13000 {
13001 /* The IBM XLC compiler does not provide direct indication
13002 of the containing type, but the vtable pointer is
13003 always named __vfp. */
13004
13005 int i;
13006
13007 for (i = TYPE_NFIELDS (type) - 1;
13008 i >= TYPE_N_BASECLASSES (type);
13009 --i)
13010 {
13011 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13012 {
13013 TYPE_VPTR_FIELDNO (type) = i;
13014 TYPE_VPTR_BASETYPE (type) = type;
13015 break;
13016 }
13017 }
13018 }
13019 }
13020
13021 /* Copy fi.typedef_field_list linked list elements content into the
13022 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13023 if (fi.typedef_field_list)
13024 {
13025 int i = fi.typedef_field_list_count;
13026
13027 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13028 TYPE_TYPEDEF_FIELD_ARRAY (type)
13029 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13030 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13031
13032 /* Reverse the list order to keep the debug info elements order. */
13033 while (--i >= 0)
13034 {
13035 struct typedef_field *dest, *src;
13036
13037 dest = &TYPE_TYPEDEF_FIELD (type, i);
13038 src = &fi.typedef_field_list->field;
13039 fi.typedef_field_list = fi.typedef_field_list->next;
13040 *dest = *src;
13041 }
13042 }
13043
13044 do_cleanups (back_to);
13045
13046 if (HAVE_CPLUS_STRUCT (type))
13047 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13048 }
13049
13050 quirk_gcc_member_function_pointer (type, objfile);
13051
13052 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13053 snapshots) has been known to create a die giving a declaration
13054 for a class that has, as a child, a die giving a definition for a
13055 nested class. So we have to process our children even if the
13056 current die is a declaration. Normally, of course, a declaration
13057 won't have any children at all. */
13058
13059 while (child_die != NULL && child_die->tag)
13060 {
13061 if (child_die->tag == DW_TAG_member
13062 || child_die->tag == DW_TAG_variable
13063 || child_die->tag == DW_TAG_inheritance
13064 || child_die->tag == DW_TAG_template_value_param
13065 || child_die->tag == DW_TAG_template_type_param)
13066 {
13067 /* Do nothing. */
13068 }
13069 else
13070 process_die (child_die, cu);
13071
13072 child_die = sibling_die (child_die);
13073 }
13074
13075 /* Do not consider external references. According to the DWARF standard,
13076 these DIEs are identified by the fact that they have no byte_size
13077 attribute, and a declaration attribute. */
13078 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13079 || !die_is_declaration (die, cu))
13080 new_symbol (die, type, cu);
13081 }
13082
13083 /* Given a DW_AT_enumeration_type die, set its type. We do not
13084 complete the type's fields yet, or create any symbols. */
13085
13086 static struct type *
13087 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13088 {
13089 struct objfile *objfile = cu->objfile;
13090 struct type *type;
13091 struct attribute *attr;
13092 const char *name;
13093
13094 /* If the definition of this type lives in .debug_types, read that type.
13095 Don't follow DW_AT_specification though, that will take us back up
13096 the chain and we want to go down. */
13097 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13098 if (attr)
13099 {
13100 type = get_DW_AT_signature_type (die, attr, cu);
13101
13102 /* The type's CU may not be the same as CU.
13103 Ensure TYPE is recorded with CU in die_type_hash. */
13104 return set_die_type (die, type, cu);
13105 }
13106
13107 type = alloc_type (objfile);
13108
13109 TYPE_CODE (type) = TYPE_CODE_ENUM;
13110 name = dwarf2_full_name (NULL, die, cu);
13111 if (name != NULL)
13112 TYPE_TAG_NAME (type) = name;
13113
13114 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13115 if (attr)
13116 {
13117 TYPE_LENGTH (type) = DW_UNSND (attr);
13118 }
13119 else
13120 {
13121 TYPE_LENGTH (type) = 0;
13122 }
13123
13124 /* The enumeration DIE can be incomplete. In Ada, any type can be
13125 declared as private in the package spec, and then defined only
13126 inside the package body. Such types are known as Taft Amendment
13127 Types. When another package uses such a type, an incomplete DIE
13128 may be generated by the compiler. */
13129 if (die_is_declaration (die, cu))
13130 TYPE_STUB (type) = 1;
13131
13132 return set_die_type (die, type, cu);
13133 }
13134
13135 /* Given a pointer to a die which begins an enumeration, process all
13136 the dies that define the members of the enumeration, and create the
13137 symbol for the enumeration type.
13138
13139 NOTE: We reverse the order of the element list. */
13140
13141 static void
13142 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13143 {
13144 struct type *this_type;
13145
13146 this_type = get_die_type (die, cu);
13147 if (this_type == NULL)
13148 this_type = read_enumeration_type (die, cu);
13149
13150 if (die->child != NULL)
13151 {
13152 struct die_info *child_die;
13153 struct symbol *sym;
13154 struct field *fields = NULL;
13155 int num_fields = 0;
13156 int unsigned_enum = 1;
13157 const char *name;
13158 int flag_enum = 1;
13159 ULONGEST mask = 0;
13160
13161 child_die = die->child;
13162 while (child_die && child_die->tag)
13163 {
13164 if (child_die->tag != DW_TAG_enumerator)
13165 {
13166 process_die (child_die, cu);
13167 }
13168 else
13169 {
13170 name = dwarf2_name (child_die, cu);
13171 if (name)
13172 {
13173 sym = new_symbol (child_die, this_type, cu);
13174 if (SYMBOL_VALUE (sym) < 0)
13175 {
13176 unsigned_enum = 0;
13177 flag_enum = 0;
13178 }
13179 else if ((mask & SYMBOL_VALUE (sym)) != 0)
13180 flag_enum = 0;
13181 else
13182 mask |= SYMBOL_VALUE (sym);
13183
13184 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13185 {
13186 fields = (struct field *)
13187 xrealloc (fields,
13188 (num_fields + DW_FIELD_ALLOC_CHUNK)
13189 * sizeof (struct field));
13190 }
13191
13192 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13193 FIELD_TYPE (fields[num_fields]) = NULL;
13194 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13195 FIELD_BITSIZE (fields[num_fields]) = 0;
13196
13197 num_fields++;
13198 }
13199 }
13200
13201 child_die = sibling_die (child_die);
13202 }
13203
13204 if (num_fields)
13205 {
13206 TYPE_NFIELDS (this_type) = num_fields;
13207 TYPE_FIELDS (this_type) = (struct field *)
13208 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13209 memcpy (TYPE_FIELDS (this_type), fields,
13210 sizeof (struct field) * num_fields);
13211 xfree (fields);
13212 }
13213 if (unsigned_enum)
13214 TYPE_UNSIGNED (this_type) = 1;
13215 if (flag_enum)
13216 TYPE_FLAG_ENUM (this_type) = 1;
13217 }
13218
13219 /* If we are reading an enum from a .debug_types unit, and the enum
13220 is a declaration, and the enum is not the signatured type in the
13221 unit, then we do not want to add a symbol for it. Adding a
13222 symbol would in some cases obscure the true definition of the
13223 enum, giving users an incomplete type when the definition is
13224 actually available. Note that we do not want to do this for all
13225 enums which are just declarations, because C++0x allows forward
13226 enum declarations. */
13227 if (cu->per_cu->is_debug_types
13228 && die_is_declaration (die, cu))
13229 {
13230 struct signatured_type *sig_type;
13231
13232 sig_type = (struct signatured_type *) cu->per_cu;
13233 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13234 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13235 return;
13236 }
13237
13238 new_symbol (die, this_type, cu);
13239 }
13240
13241 /* Extract all information from a DW_TAG_array_type DIE and put it in
13242 the DIE's type field. For now, this only handles one dimensional
13243 arrays. */
13244
13245 static struct type *
13246 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13247 {
13248 struct objfile *objfile = cu->objfile;
13249 struct die_info *child_die;
13250 struct type *type;
13251 struct type *element_type, *range_type, *index_type;
13252 struct type **range_types = NULL;
13253 struct attribute *attr;
13254 int ndim = 0;
13255 struct cleanup *back_to;
13256 const char *name;
13257
13258 element_type = die_type (die, cu);
13259
13260 /* The die_type call above may have already set the type for this DIE. */
13261 type = get_die_type (die, cu);
13262 if (type)
13263 return type;
13264
13265 /* Irix 6.2 native cc creates array types without children for
13266 arrays with unspecified length. */
13267 if (die->child == NULL)
13268 {
13269 index_type = objfile_type (objfile)->builtin_int;
13270 range_type = create_range_type (NULL, index_type, 0, -1);
13271 type = create_array_type (NULL, element_type, range_type);
13272 return set_die_type (die, type, cu);
13273 }
13274
13275 back_to = make_cleanup (null_cleanup, NULL);
13276 child_die = die->child;
13277 while (child_die && child_die->tag)
13278 {
13279 if (child_die->tag == DW_TAG_subrange_type)
13280 {
13281 struct type *child_type = read_type_die (child_die, cu);
13282
13283 if (child_type != NULL)
13284 {
13285 /* The range type was succesfully read. Save it for the
13286 array type creation. */
13287 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13288 {
13289 range_types = (struct type **)
13290 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13291 * sizeof (struct type *));
13292 if (ndim == 0)
13293 make_cleanup (free_current_contents, &range_types);
13294 }
13295 range_types[ndim++] = child_type;
13296 }
13297 }
13298 child_die = sibling_die (child_die);
13299 }
13300
13301 /* Dwarf2 dimensions are output from left to right, create the
13302 necessary array types in backwards order. */
13303
13304 type = element_type;
13305
13306 if (read_array_order (die, cu) == DW_ORD_col_major)
13307 {
13308 int i = 0;
13309
13310 while (i < ndim)
13311 type = create_array_type (NULL, type, range_types[i++]);
13312 }
13313 else
13314 {
13315 while (ndim-- > 0)
13316 type = create_array_type (NULL, type, range_types[ndim]);
13317 }
13318
13319 /* Understand Dwarf2 support for vector types (like they occur on
13320 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13321 array type. This is not part of the Dwarf2/3 standard yet, but a
13322 custom vendor extension. The main difference between a regular
13323 array and the vector variant is that vectors are passed by value
13324 to functions. */
13325 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13326 if (attr)
13327 make_vector_type (type);
13328
13329 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13330 implementation may choose to implement triple vectors using this
13331 attribute. */
13332 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13333 if (attr)
13334 {
13335 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13336 TYPE_LENGTH (type) = DW_UNSND (attr);
13337 else
13338 complaint (&symfile_complaints,
13339 _("DW_AT_byte_size for array type smaller "
13340 "than the total size of elements"));
13341 }
13342
13343 name = dwarf2_name (die, cu);
13344 if (name)
13345 TYPE_NAME (type) = name;
13346
13347 /* Install the type in the die. */
13348 set_die_type (die, type, cu);
13349
13350 /* set_die_type should be already done. */
13351 set_descriptive_type (type, die, cu);
13352
13353 do_cleanups (back_to);
13354
13355 return type;
13356 }
13357
13358 static enum dwarf_array_dim_ordering
13359 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13360 {
13361 struct attribute *attr;
13362
13363 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13364
13365 if (attr) return DW_SND (attr);
13366
13367 /* GNU F77 is a special case, as at 08/2004 array type info is the
13368 opposite order to the dwarf2 specification, but data is still
13369 laid out as per normal fortran.
13370
13371 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13372 version checking. */
13373
13374 if (cu->language == language_fortran
13375 && cu->producer && strstr (cu->producer, "GNU F77"))
13376 {
13377 return DW_ORD_row_major;
13378 }
13379
13380 switch (cu->language_defn->la_array_ordering)
13381 {
13382 case array_column_major:
13383 return DW_ORD_col_major;
13384 case array_row_major:
13385 default:
13386 return DW_ORD_row_major;
13387 };
13388 }
13389
13390 /* Extract all information from a DW_TAG_set_type DIE and put it in
13391 the DIE's type field. */
13392
13393 static struct type *
13394 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13395 {
13396 struct type *domain_type, *set_type;
13397 struct attribute *attr;
13398
13399 domain_type = die_type (die, cu);
13400
13401 /* The die_type call above may have already set the type for this DIE. */
13402 set_type = get_die_type (die, cu);
13403 if (set_type)
13404 return set_type;
13405
13406 set_type = create_set_type (NULL, domain_type);
13407
13408 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13409 if (attr)
13410 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13411
13412 return set_die_type (die, set_type, cu);
13413 }
13414
13415 /* A helper for read_common_block that creates a locexpr baton.
13416 SYM is the symbol which we are marking as computed.
13417 COMMON_DIE is the DIE for the common block.
13418 COMMON_LOC is the location expression attribute for the common
13419 block itself.
13420 MEMBER_LOC is the location expression attribute for the particular
13421 member of the common block that we are processing.
13422 CU is the CU from which the above come. */
13423
13424 static void
13425 mark_common_block_symbol_computed (struct symbol *sym,
13426 struct die_info *common_die,
13427 struct attribute *common_loc,
13428 struct attribute *member_loc,
13429 struct dwarf2_cu *cu)
13430 {
13431 struct objfile *objfile = dwarf2_per_objfile->objfile;
13432 struct dwarf2_locexpr_baton *baton;
13433 gdb_byte *ptr;
13434 unsigned int cu_off;
13435 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13436 LONGEST offset = 0;
13437
13438 gdb_assert (common_loc && member_loc);
13439 gdb_assert (attr_form_is_block (common_loc));
13440 gdb_assert (attr_form_is_block (member_loc)
13441 || attr_form_is_constant (member_loc));
13442
13443 baton = obstack_alloc (&objfile->objfile_obstack,
13444 sizeof (struct dwarf2_locexpr_baton));
13445 baton->per_cu = cu->per_cu;
13446 gdb_assert (baton->per_cu);
13447
13448 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13449
13450 if (attr_form_is_constant (member_loc))
13451 {
13452 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13453 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13454 }
13455 else
13456 baton->size += DW_BLOCK (member_loc)->size;
13457
13458 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13459 baton->data = ptr;
13460
13461 *ptr++ = DW_OP_call4;
13462 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13463 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13464 ptr += 4;
13465
13466 if (attr_form_is_constant (member_loc))
13467 {
13468 *ptr++ = DW_OP_addr;
13469 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13470 ptr += cu->header.addr_size;
13471 }
13472 else
13473 {
13474 /* We have to copy the data here, because DW_OP_call4 will only
13475 use a DW_AT_location attribute. */
13476 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13477 ptr += DW_BLOCK (member_loc)->size;
13478 }
13479
13480 *ptr++ = DW_OP_plus;
13481 gdb_assert (ptr - baton->data == baton->size);
13482
13483 SYMBOL_LOCATION_BATON (sym) = baton;
13484 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13485 }
13486
13487 /* Create appropriate locally-scoped variables for all the
13488 DW_TAG_common_block entries. Also create a struct common_block
13489 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13490 is used to sepate the common blocks name namespace from regular
13491 variable names. */
13492
13493 static void
13494 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13495 {
13496 struct attribute *attr;
13497
13498 attr = dwarf2_attr (die, DW_AT_location, cu);
13499 if (attr)
13500 {
13501 /* Support the .debug_loc offsets. */
13502 if (attr_form_is_block (attr))
13503 {
13504 /* Ok. */
13505 }
13506 else if (attr_form_is_section_offset (attr))
13507 {
13508 dwarf2_complex_location_expr_complaint ();
13509 attr = NULL;
13510 }
13511 else
13512 {
13513 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13514 "common block member");
13515 attr = NULL;
13516 }
13517 }
13518
13519 if (die->child != NULL)
13520 {
13521 struct objfile *objfile = cu->objfile;
13522 struct die_info *child_die;
13523 size_t n_entries = 0, size;
13524 struct common_block *common_block;
13525 struct symbol *sym;
13526
13527 for (child_die = die->child;
13528 child_die && child_die->tag;
13529 child_die = sibling_die (child_die))
13530 ++n_entries;
13531
13532 size = (sizeof (struct common_block)
13533 + (n_entries - 1) * sizeof (struct symbol *));
13534 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13535 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13536 common_block->n_entries = 0;
13537
13538 for (child_die = die->child;
13539 child_die && child_die->tag;
13540 child_die = sibling_die (child_die))
13541 {
13542 /* Create the symbol in the DW_TAG_common_block block in the current
13543 symbol scope. */
13544 sym = new_symbol (child_die, NULL, cu);
13545 if (sym != NULL)
13546 {
13547 struct attribute *member_loc;
13548
13549 common_block->contents[common_block->n_entries++] = sym;
13550
13551 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13552 cu);
13553 if (member_loc)
13554 {
13555 /* GDB has handled this for a long time, but it is
13556 not specified by DWARF. It seems to have been
13557 emitted by gfortran at least as recently as:
13558 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13559 complaint (&symfile_complaints,
13560 _("Variable in common block has "
13561 "DW_AT_data_member_location "
13562 "- DIE at 0x%x [in module %s]"),
13563 child_die->offset.sect_off,
13564 objfile_name (cu->objfile));
13565
13566 if (attr_form_is_section_offset (member_loc))
13567 dwarf2_complex_location_expr_complaint ();
13568 else if (attr_form_is_constant (member_loc)
13569 || attr_form_is_block (member_loc))
13570 {
13571 if (attr)
13572 mark_common_block_symbol_computed (sym, die, attr,
13573 member_loc, cu);
13574 }
13575 else
13576 dwarf2_complex_location_expr_complaint ();
13577 }
13578 }
13579 }
13580
13581 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13582 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13583 }
13584 }
13585
13586 /* Create a type for a C++ namespace. */
13587
13588 static struct type *
13589 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13590 {
13591 struct objfile *objfile = cu->objfile;
13592 const char *previous_prefix, *name;
13593 int is_anonymous;
13594 struct type *type;
13595
13596 /* For extensions, reuse the type of the original namespace. */
13597 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13598 {
13599 struct die_info *ext_die;
13600 struct dwarf2_cu *ext_cu = cu;
13601
13602 ext_die = dwarf2_extension (die, &ext_cu);
13603 type = read_type_die (ext_die, ext_cu);
13604
13605 /* EXT_CU may not be the same as CU.
13606 Ensure TYPE is recorded with CU in die_type_hash. */
13607 return set_die_type (die, type, cu);
13608 }
13609
13610 name = namespace_name (die, &is_anonymous, cu);
13611
13612 /* Now build the name of the current namespace. */
13613
13614 previous_prefix = determine_prefix (die, cu);
13615 if (previous_prefix[0] != '\0')
13616 name = typename_concat (&objfile->objfile_obstack,
13617 previous_prefix, name, 0, cu);
13618
13619 /* Create the type. */
13620 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13621 objfile);
13622 TYPE_NAME (type) = name;
13623 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13624
13625 return set_die_type (die, type, cu);
13626 }
13627
13628 /* Read a C++ namespace. */
13629
13630 static void
13631 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13632 {
13633 struct objfile *objfile = cu->objfile;
13634 int is_anonymous;
13635
13636 /* Add a symbol associated to this if we haven't seen the namespace
13637 before. Also, add a using directive if it's an anonymous
13638 namespace. */
13639
13640 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13641 {
13642 struct type *type;
13643
13644 type = read_type_die (die, cu);
13645 new_symbol (die, type, cu);
13646
13647 namespace_name (die, &is_anonymous, cu);
13648 if (is_anonymous)
13649 {
13650 const char *previous_prefix = determine_prefix (die, cu);
13651
13652 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13653 NULL, NULL, 0, &objfile->objfile_obstack);
13654 }
13655 }
13656
13657 if (die->child != NULL)
13658 {
13659 struct die_info *child_die = die->child;
13660
13661 while (child_die && child_die->tag)
13662 {
13663 process_die (child_die, cu);
13664 child_die = sibling_die (child_die);
13665 }
13666 }
13667 }
13668
13669 /* Read a Fortran module as type. This DIE can be only a declaration used for
13670 imported module. Still we need that type as local Fortran "use ... only"
13671 declaration imports depend on the created type in determine_prefix. */
13672
13673 static struct type *
13674 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13675 {
13676 struct objfile *objfile = cu->objfile;
13677 const char *module_name;
13678 struct type *type;
13679
13680 module_name = dwarf2_name (die, cu);
13681 if (!module_name)
13682 complaint (&symfile_complaints,
13683 _("DW_TAG_module has no name, offset 0x%x"),
13684 die->offset.sect_off);
13685 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13686
13687 /* determine_prefix uses TYPE_TAG_NAME. */
13688 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13689
13690 return set_die_type (die, type, cu);
13691 }
13692
13693 /* Read a Fortran module. */
13694
13695 static void
13696 read_module (struct die_info *die, struct dwarf2_cu *cu)
13697 {
13698 struct die_info *child_die = die->child;
13699 struct type *type;
13700
13701 type = read_type_die (die, cu);
13702 new_symbol (die, type, cu);
13703
13704 while (child_die && child_die->tag)
13705 {
13706 process_die (child_die, cu);
13707 child_die = sibling_die (child_die);
13708 }
13709 }
13710
13711 /* Return the name of the namespace represented by DIE. Set
13712 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13713 namespace. */
13714
13715 static const char *
13716 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13717 {
13718 struct die_info *current_die;
13719 const char *name = NULL;
13720
13721 /* Loop through the extensions until we find a name. */
13722
13723 for (current_die = die;
13724 current_die != NULL;
13725 current_die = dwarf2_extension (die, &cu))
13726 {
13727 name = dwarf2_name (current_die, cu);
13728 if (name != NULL)
13729 break;
13730 }
13731
13732 /* Is it an anonymous namespace? */
13733
13734 *is_anonymous = (name == NULL);
13735 if (*is_anonymous)
13736 name = CP_ANONYMOUS_NAMESPACE_STR;
13737
13738 return name;
13739 }
13740
13741 /* Extract all information from a DW_TAG_pointer_type DIE and add to
13742 the user defined type vector. */
13743
13744 static struct type *
13745 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
13746 {
13747 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
13748 struct comp_unit_head *cu_header = &cu->header;
13749 struct type *type;
13750 struct attribute *attr_byte_size;
13751 struct attribute *attr_address_class;
13752 int byte_size, addr_class;
13753 struct type *target_type;
13754
13755 target_type = die_type (die, cu);
13756
13757 /* The die_type call above may have already set the type for this DIE. */
13758 type = get_die_type (die, cu);
13759 if (type)
13760 return type;
13761
13762 type = lookup_pointer_type (target_type);
13763
13764 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
13765 if (attr_byte_size)
13766 byte_size = DW_UNSND (attr_byte_size);
13767 else
13768 byte_size = cu_header->addr_size;
13769
13770 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
13771 if (attr_address_class)
13772 addr_class = DW_UNSND (attr_address_class);
13773 else
13774 addr_class = DW_ADDR_none;
13775
13776 /* If the pointer size or address class is different than the
13777 default, create a type variant marked as such and set the
13778 length accordingly. */
13779 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
13780 {
13781 if (gdbarch_address_class_type_flags_p (gdbarch))
13782 {
13783 int type_flags;
13784
13785 type_flags = gdbarch_address_class_type_flags
13786 (gdbarch, byte_size, addr_class);
13787 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
13788 == 0);
13789 type = make_type_with_address_space (type, type_flags);
13790 }
13791 else if (TYPE_LENGTH (type) != byte_size)
13792 {
13793 complaint (&symfile_complaints,
13794 _("invalid pointer size %d"), byte_size);
13795 }
13796 else
13797 {
13798 /* Should we also complain about unhandled address classes? */
13799 }
13800 }
13801
13802 TYPE_LENGTH (type) = byte_size;
13803 return set_die_type (die, type, cu);
13804 }
13805
13806 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
13807 the user defined type vector. */
13808
13809 static struct type *
13810 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
13811 {
13812 struct type *type;
13813 struct type *to_type;
13814 struct type *domain;
13815
13816 to_type = die_type (die, cu);
13817 domain = die_containing_type (die, cu);
13818
13819 /* The calls above may have already set the type for this DIE. */
13820 type = get_die_type (die, cu);
13821 if (type)
13822 return type;
13823
13824 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
13825 type = lookup_methodptr_type (to_type);
13826 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
13827 {
13828 struct type *new_type = alloc_type (cu->objfile);
13829
13830 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
13831 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
13832 TYPE_VARARGS (to_type));
13833 type = lookup_methodptr_type (new_type);
13834 }
13835 else
13836 type = lookup_memberptr_type (to_type, domain);
13837
13838 return set_die_type (die, type, cu);
13839 }
13840
13841 /* Extract all information from a DW_TAG_reference_type DIE and add to
13842 the user defined type vector. */
13843
13844 static struct type *
13845 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
13846 {
13847 struct comp_unit_head *cu_header = &cu->header;
13848 struct type *type, *target_type;
13849 struct attribute *attr;
13850
13851 target_type = die_type (die, cu);
13852
13853 /* The die_type call above may have already set the type for this DIE. */
13854 type = get_die_type (die, cu);
13855 if (type)
13856 return type;
13857
13858 type = lookup_reference_type (target_type);
13859 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13860 if (attr)
13861 {
13862 TYPE_LENGTH (type) = DW_UNSND (attr);
13863 }
13864 else
13865 {
13866 TYPE_LENGTH (type) = cu_header->addr_size;
13867 }
13868 return set_die_type (die, type, cu);
13869 }
13870
13871 static struct type *
13872 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
13873 {
13874 struct type *base_type, *cv_type;
13875
13876 base_type = die_type (die, cu);
13877
13878 /* The die_type call above may have already set the type for this DIE. */
13879 cv_type = get_die_type (die, cu);
13880 if (cv_type)
13881 return cv_type;
13882
13883 /* In case the const qualifier is applied to an array type, the element type
13884 is so qualified, not the array type (section 6.7.3 of C99). */
13885 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
13886 {
13887 struct type *el_type, *inner_array;
13888
13889 base_type = copy_type (base_type);
13890 inner_array = base_type;
13891
13892 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
13893 {
13894 TYPE_TARGET_TYPE (inner_array) =
13895 copy_type (TYPE_TARGET_TYPE (inner_array));
13896 inner_array = TYPE_TARGET_TYPE (inner_array);
13897 }
13898
13899 el_type = TYPE_TARGET_TYPE (inner_array);
13900 TYPE_TARGET_TYPE (inner_array) =
13901 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
13902
13903 return set_die_type (die, base_type, cu);
13904 }
13905
13906 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
13907 return set_die_type (die, cv_type, cu);
13908 }
13909
13910 static struct type *
13911 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
13912 {
13913 struct type *base_type, *cv_type;
13914
13915 base_type = die_type (die, cu);
13916
13917 /* The die_type call above may have already set the type for this DIE. */
13918 cv_type = get_die_type (die, cu);
13919 if (cv_type)
13920 return cv_type;
13921
13922 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
13923 return set_die_type (die, cv_type, cu);
13924 }
13925
13926 /* Handle DW_TAG_restrict_type. */
13927
13928 static struct type *
13929 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
13930 {
13931 struct type *base_type, *cv_type;
13932
13933 base_type = die_type (die, cu);
13934
13935 /* The die_type call above may have already set the type for this DIE. */
13936 cv_type = get_die_type (die, cu);
13937 if (cv_type)
13938 return cv_type;
13939
13940 cv_type = make_restrict_type (base_type);
13941 return set_die_type (die, cv_type, cu);
13942 }
13943
13944 /* Extract all information from a DW_TAG_string_type DIE and add to
13945 the user defined type vector. It isn't really a user defined type,
13946 but it behaves like one, with other DIE's using an AT_user_def_type
13947 attribute to reference it. */
13948
13949 static struct type *
13950 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
13951 {
13952 struct objfile *objfile = cu->objfile;
13953 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13954 struct type *type, *range_type, *index_type, *char_type;
13955 struct attribute *attr;
13956 unsigned int length;
13957
13958 attr = dwarf2_attr (die, DW_AT_string_length, cu);
13959 if (attr)
13960 {
13961 length = DW_UNSND (attr);
13962 }
13963 else
13964 {
13965 /* Check for the DW_AT_byte_size attribute. */
13966 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13967 if (attr)
13968 {
13969 length = DW_UNSND (attr);
13970 }
13971 else
13972 {
13973 length = 1;
13974 }
13975 }
13976
13977 index_type = objfile_type (objfile)->builtin_int;
13978 range_type = create_range_type (NULL, index_type, 1, length);
13979 char_type = language_string_char_type (cu->language_defn, gdbarch);
13980 type = create_string_type (NULL, char_type, range_type);
13981
13982 return set_die_type (die, type, cu);
13983 }
13984
13985 /* Assuming that DIE corresponds to a function, returns nonzero
13986 if the function is prototyped. */
13987
13988 static int
13989 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
13990 {
13991 struct attribute *attr;
13992
13993 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
13994 if (attr && (DW_UNSND (attr) != 0))
13995 return 1;
13996
13997 /* The DWARF standard implies that the DW_AT_prototyped attribute
13998 is only meaninful for C, but the concept also extends to other
13999 languages that allow unprototyped functions (Eg: Objective C).
14000 For all other languages, assume that functions are always
14001 prototyped. */
14002 if (cu->language != language_c
14003 && cu->language != language_objc
14004 && cu->language != language_opencl)
14005 return 1;
14006
14007 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14008 prototyped and unprototyped functions; default to prototyped,
14009 since that is more common in modern code (and RealView warns
14010 about unprototyped functions). */
14011 if (producer_is_realview (cu->producer))
14012 return 1;
14013
14014 return 0;
14015 }
14016
14017 /* Handle DIES due to C code like:
14018
14019 struct foo
14020 {
14021 int (*funcp)(int a, long l);
14022 int b;
14023 };
14024
14025 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14026
14027 static struct type *
14028 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14029 {
14030 struct objfile *objfile = cu->objfile;
14031 struct type *type; /* Type that this function returns. */
14032 struct type *ftype; /* Function that returns above type. */
14033 struct attribute *attr;
14034
14035 type = die_type (die, cu);
14036
14037 /* The die_type call above may have already set the type for this DIE. */
14038 ftype = get_die_type (die, cu);
14039 if (ftype)
14040 return ftype;
14041
14042 ftype = lookup_function_type (type);
14043
14044 if (prototyped_function_p (die, cu))
14045 TYPE_PROTOTYPED (ftype) = 1;
14046
14047 /* Store the calling convention in the type if it's available in
14048 the subroutine die. Otherwise set the calling convention to
14049 the default value DW_CC_normal. */
14050 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14051 if (attr)
14052 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14053 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14054 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14055 else
14056 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14057
14058 /* We need to add the subroutine type to the die immediately so
14059 we don't infinitely recurse when dealing with parameters
14060 declared as the same subroutine type. */
14061 set_die_type (die, ftype, cu);
14062
14063 if (die->child != NULL)
14064 {
14065 struct type *void_type = objfile_type (objfile)->builtin_void;
14066 struct die_info *child_die;
14067 int nparams, iparams;
14068
14069 /* Count the number of parameters.
14070 FIXME: GDB currently ignores vararg functions, but knows about
14071 vararg member functions. */
14072 nparams = 0;
14073 child_die = die->child;
14074 while (child_die && child_die->tag)
14075 {
14076 if (child_die->tag == DW_TAG_formal_parameter)
14077 nparams++;
14078 else if (child_die->tag == DW_TAG_unspecified_parameters)
14079 TYPE_VARARGS (ftype) = 1;
14080 child_die = sibling_die (child_die);
14081 }
14082
14083 /* Allocate storage for parameters and fill them in. */
14084 TYPE_NFIELDS (ftype) = nparams;
14085 TYPE_FIELDS (ftype) = (struct field *)
14086 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14087
14088 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14089 even if we error out during the parameters reading below. */
14090 for (iparams = 0; iparams < nparams; iparams++)
14091 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14092
14093 iparams = 0;
14094 child_die = die->child;
14095 while (child_die && child_die->tag)
14096 {
14097 if (child_die->tag == DW_TAG_formal_parameter)
14098 {
14099 struct type *arg_type;
14100
14101 /* DWARF version 2 has no clean way to discern C++
14102 static and non-static member functions. G++ helps
14103 GDB by marking the first parameter for non-static
14104 member functions (which is the this pointer) as
14105 artificial. We pass this information to
14106 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14107
14108 DWARF version 3 added DW_AT_object_pointer, which GCC
14109 4.5 does not yet generate. */
14110 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14111 if (attr)
14112 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14113 else
14114 {
14115 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14116
14117 /* GCC/43521: In java, the formal parameter
14118 "this" is sometimes not marked with DW_AT_artificial. */
14119 if (cu->language == language_java)
14120 {
14121 const char *name = dwarf2_name (child_die, cu);
14122
14123 if (name && !strcmp (name, "this"))
14124 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14125 }
14126 }
14127 arg_type = die_type (child_die, cu);
14128
14129 /* RealView does not mark THIS as const, which the testsuite
14130 expects. GCC marks THIS as const in method definitions,
14131 but not in the class specifications (GCC PR 43053). */
14132 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14133 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14134 {
14135 int is_this = 0;
14136 struct dwarf2_cu *arg_cu = cu;
14137 const char *name = dwarf2_name (child_die, cu);
14138
14139 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14140 if (attr)
14141 {
14142 /* If the compiler emits this, use it. */
14143 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14144 is_this = 1;
14145 }
14146 else if (name && strcmp (name, "this") == 0)
14147 /* Function definitions will have the argument names. */
14148 is_this = 1;
14149 else if (name == NULL && iparams == 0)
14150 /* Declarations may not have the names, so like
14151 elsewhere in GDB, assume an artificial first
14152 argument is "this". */
14153 is_this = 1;
14154
14155 if (is_this)
14156 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14157 arg_type, 0);
14158 }
14159
14160 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14161 iparams++;
14162 }
14163 child_die = sibling_die (child_die);
14164 }
14165 }
14166
14167 return ftype;
14168 }
14169
14170 static struct type *
14171 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14172 {
14173 struct objfile *objfile = cu->objfile;
14174 const char *name = NULL;
14175 struct type *this_type, *target_type;
14176
14177 name = dwarf2_full_name (NULL, die, cu);
14178 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14179 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14180 TYPE_NAME (this_type) = name;
14181 set_die_type (die, this_type, cu);
14182 target_type = die_type (die, cu);
14183 if (target_type != this_type)
14184 TYPE_TARGET_TYPE (this_type) = target_type;
14185 else
14186 {
14187 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14188 spec and cause infinite loops in GDB. */
14189 complaint (&symfile_complaints,
14190 _("Self-referential DW_TAG_typedef "
14191 "- DIE at 0x%x [in module %s]"),
14192 die->offset.sect_off, objfile_name (objfile));
14193 TYPE_TARGET_TYPE (this_type) = NULL;
14194 }
14195 return this_type;
14196 }
14197
14198 /* Find a representation of a given base type and install
14199 it in the TYPE field of the die. */
14200
14201 static struct type *
14202 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14203 {
14204 struct objfile *objfile = cu->objfile;
14205 struct type *type;
14206 struct attribute *attr;
14207 int encoding = 0, size = 0;
14208 const char *name;
14209 enum type_code code = TYPE_CODE_INT;
14210 int type_flags = 0;
14211 struct type *target_type = NULL;
14212
14213 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14214 if (attr)
14215 {
14216 encoding = DW_UNSND (attr);
14217 }
14218 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14219 if (attr)
14220 {
14221 size = DW_UNSND (attr);
14222 }
14223 name = dwarf2_name (die, cu);
14224 if (!name)
14225 {
14226 complaint (&symfile_complaints,
14227 _("DW_AT_name missing from DW_TAG_base_type"));
14228 }
14229
14230 switch (encoding)
14231 {
14232 case DW_ATE_address:
14233 /* Turn DW_ATE_address into a void * pointer. */
14234 code = TYPE_CODE_PTR;
14235 type_flags |= TYPE_FLAG_UNSIGNED;
14236 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14237 break;
14238 case DW_ATE_boolean:
14239 code = TYPE_CODE_BOOL;
14240 type_flags |= TYPE_FLAG_UNSIGNED;
14241 break;
14242 case DW_ATE_complex_float:
14243 code = TYPE_CODE_COMPLEX;
14244 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14245 break;
14246 case DW_ATE_decimal_float:
14247 code = TYPE_CODE_DECFLOAT;
14248 break;
14249 case DW_ATE_float:
14250 code = TYPE_CODE_FLT;
14251 break;
14252 case DW_ATE_signed:
14253 break;
14254 case DW_ATE_unsigned:
14255 type_flags |= TYPE_FLAG_UNSIGNED;
14256 if (cu->language == language_fortran
14257 && name
14258 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14259 code = TYPE_CODE_CHAR;
14260 break;
14261 case DW_ATE_signed_char:
14262 if (cu->language == language_ada || cu->language == language_m2
14263 || cu->language == language_pascal
14264 || cu->language == language_fortran)
14265 code = TYPE_CODE_CHAR;
14266 break;
14267 case DW_ATE_unsigned_char:
14268 if (cu->language == language_ada || cu->language == language_m2
14269 || cu->language == language_pascal
14270 || cu->language == language_fortran)
14271 code = TYPE_CODE_CHAR;
14272 type_flags |= TYPE_FLAG_UNSIGNED;
14273 break;
14274 case DW_ATE_UTF:
14275 /* We just treat this as an integer and then recognize the
14276 type by name elsewhere. */
14277 break;
14278
14279 default:
14280 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14281 dwarf_type_encoding_name (encoding));
14282 break;
14283 }
14284
14285 type = init_type (code, size, type_flags, NULL, objfile);
14286 TYPE_NAME (type) = name;
14287 TYPE_TARGET_TYPE (type) = target_type;
14288
14289 if (name && strcmp (name, "char") == 0)
14290 TYPE_NOSIGN (type) = 1;
14291
14292 return set_die_type (die, type, cu);
14293 }
14294
14295 /* Read the given DW_AT_subrange DIE. */
14296
14297 static struct type *
14298 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14299 {
14300 struct type *base_type, *orig_base_type;
14301 struct type *range_type;
14302 struct attribute *attr;
14303 LONGEST low, high;
14304 int low_default_is_valid;
14305 const char *name;
14306 LONGEST negative_mask;
14307
14308 orig_base_type = die_type (die, cu);
14309 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14310 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14311 creating the range type, but we use the result of check_typedef
14312 when examining properties of the type. */
14313 base_type = check_typedef (orig_base_type);
14314
14315 /* The die_type call above may have already set the type for this DIE. */
14316 range_type = get_die_type (die, cu);
14317 if (range_type)
14318 return range_type;
14319
14320 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14321 omitting DW_AT_lower_bound. */
14322 switch (cu->language)
14323 {
14324 case language_c:
14325 case language_cplus:
14326 low = 0;
14327 low_default_is_valid = 1;
14328 break;
14329 case language_fortran:
14330 low = 1;
14331 low_default_is_valid = 1;
14332 break;
14333 case language_d:
14334 case language_java:
14335 case language_objc:
14336 low = 0;
14337 low_default_is_valid = (cu->header.version >= 4);
14338 break;
14339 case language_ada:
14340 case language_m2:
14341 case language_pascal:
14342 low = 1;
14343 low_default_is_valid = (cu->header.version >= 4);
14344 break;
14345 default:
14346 low = 0;
14347 low_default_is_valid = 0;
14348 break;
14349 }
14350
14351 /* FIXME: For variable sized arrays either of these could be
14352 a variable rather than a constant value. We'll allow it,
14353 but we don't know how to handle it. */
14354 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14355 if (attr)
14356 low = dwarf2_get_attr_constant_value (attr, low);
14357 else if (!low_default_is_valid)
14358 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14359 "- DIE at 0x%x [in module %s]"),
14360 die->offset.sect_off, objfile_name (cu->objfile));
14361
14362 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14363 if (attr)
14364 {
14365 if (attr_form_is_block (attr) || attr_form_is_ref (attr))
14366 {
14367 /* GCC encodes arrays with unspecified or dynamic length
14368 with a DW_FORM_block1 attribute or a reference attribute.
14369 FIXME: GDB does not yet know how to handle dynamic
14370 arrays properly, treat them as arrays with unspecified
14371 length for now.
14372
14373 FIXME: jimb/2003-09-22: GDB does not really know
14374 how to handle arrays of unspecified length
14375 either; we just represent them as zero-length
14376 arrays. Choose an appropriate upper bound given
14377 the lower bound we've computed above. */
14378 high = low - 1;
14379 }
14380 else
14381 high = dwarf2_get_attr_constant_value (attr, 1);
14382 }
14383 else
14384 {
14385 attr = dwarf2_attr (die, DW_AT_count, cu);
14386 if (attr)
14387 {
14388 int count = dwarf2_get_attr_constant_value (attr, 1);
14389 high = low + count - 1;
14390 }
14391 else
14392 {
14393 /* Unspecified array length. */
14394 high = low - 1;
14395 }
14396 }
14397
14398 /* Dwarf-2 specifications explicitly allows to create subrange types
14399 without specifying a base type.
14400 In that case, the base type must be set to the type of
14401 the lower bound, upper bound or count, in that order, if any of these
14402 three attributes references an object that has a type.
14403 If no base type is found, the Dwarf-2 specifications say that
14404 a signed integer type of size equal to the size of an address should
14405 be used.
14406 For the following C code: `extern char gdb_int [];'
14407 GCC produces an empty range DIE.
14408 FIXME: muller/2010-05-28: Possible references to object for low bound,
14409 high bound or count are not yet handled by this code. */
14410 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14411 {
14412 struct objfile *objfile = cu->objfile;
14413 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14414 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14415 struct type *int_type = objfile_type (objfile)->builtin_int;
14416
14417 /* Test "int", "long int", and "long long int" objfile types,
14418 and select the first one having a size above or equal to the
14419 architecture address size. */
14420 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14421 base_type = int_type;
14422 else
14423 {
14424 int_type = objfile_type (objfile)->builtin_long;
14425 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14426 base_type = int_type;
14427 else
14428 {
14429 int_type = objfile_type (objfile)->builtin_long_long;
14430 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14431 base_type = int_type;
14432 }
14433 }
14434 }
14435
14436 negative_mask =
14437 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14438 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
14439 low |= negative_mask;
14440 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
14441 high |= negative_mask;
14442
14443 range_type = create_range_type (NULL, orig_base_type, low, high);
14444
14445 /* Mark arrays with dynamic length at least as an array of unspecified
14446 length. GDB could check the boundary but before it gets implemented at
14447 least allow accessing the array elements. */
14448 if (attr && attr_form_is_block (attr))
14449 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14450
14451 /* Ada expects an empty array on no boundary attributes. */
14452 if (attr == NULL && cu->language != language_ada)
14453 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14454
14455 name = dwarf2_name (die, cu);
14456 if (name)
14457 TYPE_NAME (range_type) = name;
14458
14459 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14460 if (attr)
14461 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14462
14463 set_die_type (die, range_type, cu);
14464
14465 /* set_die_type should be already done. */
14466 set_descriptive_type (range_type, die, cu);
14467
14468 return range_type;
14469 }
14470
14471 static struct type *
14472 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14473 {
14474 struct type *type;
14475
14476 /* For now, we only support the C meaning of an unspecified type: void. */
14477
14478 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14479 TYPE_NAME (type) = dwarf2_name (die, cu);
14480
14481 return set_die_type (die, type, cu);
14482 }
14483
14484 /* Read a single die and all its descendents. Set the die's sibling
14485 field to NULL; set other fields in the die correctly, and set all
14486 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14487 location of the info_ptr after reading all of those dies. PARENT
14488 is the parent of the die in question. */
14489
14490 static struct die_info *
14491 read_die_and_children (const struct die_reader_specs *reader,
14492 const gdb_byte *info_ptr,
14493 const gdb_byte **new_info_ptr,
14494 struct die_info *parent)
14495 {
14496 struct die_info *die;
14497 const gdb_byte *cur_ptr;
14498 int has_children;
14499
14500 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14501 if (die == NULL)
14502 {
14503 *new_info_ptr = cur_ptr;
14504 return NULL;
14505 }
14506 store_in_ref_table (die, reader->cu);
14507
14508 if (has_children)
14509 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14510 else
14511 {
14512 die->child = NULL;
14513 *new_info_ptr = cur_ptr;
14514 }
14515
14516 die->sibling = NULL;
14517 die->parent = parent;
14518 return die;
14519 }
14520
14521 /* Read a die, all of its descendents, and all of its siblings; set
14522 all of the fields of all of the dies correctly. Arguments are as
14523 in read_die_and_children. */
14524
14525 static struct die_info *
14526 read_die_and_siblings_1 (const struct die_reader_specs *reader,
14527 const gdb_byte *info_ptr,
14528 const gdb_byte **new_info_ptr,
14529 struct die_info *parent)
14530 {
14531 struct die_info *first_die, *last_sibling;
14532 const gdb_byte *cur_ptr;
14533
14534 cur_ptr = info_ptr;
14535 first_die = last_sibling = NULL;
14536
14537 while (1)
14538 {
14539 struct die_info *die
14540 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14541
14542 if (die == NULL)
14543 {
14544 *new_info_ptr = cur_ptr;
14545 return first_die;
14546 }
14547
14548 if (!first_die)
14549 first_die = die;
14550 else
14551 last_sibling->sibling = die;
14552
14553 last_sibling = die;
14554 }
14555 }
14556
14557 /* Read a die, all of its descendents, and all of its siblings; set
14558 all of the fields of all of the dies correctly. Arguments are as
14559 in read_die_and_children.
14560 This the main entry point for reading a DIE and all its children. */
14561
14562 static struct die_info *
14563 read_die_and_siblings (const struct die_reader_specs *reader,
14564 const gdb_byte *info_ptr,
14565 const gdb_byte **new_info_ptr,
14566 struct die_info *parent)
14567 {
14568 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14569 new_info_ptr, parent);
14570
14571 if (dwarf2_die_debug)
14572 {
14573 fprintf_unfiltered (gdb_stdlog,
14574 "Read die from %s@0x%x of %s:\n",
14575 get_section_name (reader->die_section),
14576 (unsigned) (info_ptr - reader->die_section->buffer),
14577 bfd_get_filename (reader->abfd));
14578 dump_die (die, dwarf2_die_debug);
14579 }
14580
14581 return die;
14582 }
14583
14584 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14585 attributes.
14586 The caller is responsible for filling in the extra attributes
14587 and updating (*DIEP)->num_attrs.
14588 Set DIEP to point to a newly allocated die with its information,
14589 except for its child, sibling, and parent fields.
14590 Set HAS_CHILDREN to tell whether the die has children or not. */
14591
14592 static const gdb_byte *
14593 read_full_die_1 (const struct die_reader_specs *reader,
14594 struct die_info **diep, const gdb_byte *info_ptr,
14595 int *has_children, int num_extra_attrs)
14596 {
14597 unsigned int abbrev_number, bytes_read, i;
14598 sect_offset offset;
14599 struct abbrev_info *abbrev;
14600 struct die_info *die;
14601 struct dwarf2_cu *cu = reader->cu;
14602 bfd *abfd = reader->abfd;
14603
14604 offset.sect_off = info_ptr - reader->buffer;
14605 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14606 info_ptr += bytes_read;
14607 if (!abbrev_number)
14608 {
14609 *diep = NULL;
14610 *has_children = 0;
14611 return info_ptr;
14612 }
14613
14614 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14615 if (!abbrev)
14616 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14617 abbrev_number,
14618 bfd_get_filename (abfd));
14619
14620 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14621 die->offset = offset;
14622 die->tag = abbrev->tag;
14623 die->abbrev = abbrev_number;
14624
14625 /* Make the result usable.
14626 The caller needs to update num_attrs after adding the extra
14627 attributes. */
14628 die->num_attrs = abbrev->num_attrs;
14629
14630 for (i = 0; i < abbrev->num_attrs; ++i)
14631 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14632 info_ptr);
14633
14634 *diep = die;
14635 *has_children = abbrev->has_children;
14636 return info_ptr;
14637 }
14638
14639 /* Read a die and all its attributes.
14640 Set DIEP to point to a newly allocated die with its information,
14641 except for its child, sibling, and parent fields.
14642 Set HAS_CHILDREN to tell whether the die has children or not. */
14643
14644 static const gdb_byte *
14645 read_full_die (const struct die_reader_specs *reader,
14646 struct die_info **diep, const gdb_byte *info_ptr,
14647 int *has_children)
14648 {
14649 const gdb_byte *result;
14650
14651 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14652
14653 if (dwarf2_die_debug)
14654 {
14655 fprintf_unfiltered (gdb_stdlog,
14656 "Read die from %s@0x%x of %s:\n",
14657 get_section_name (reader->die_section),
14658 (unsigned) (info_ptr - reader->die_section->buffer),
14659 bfd_get_filename (reader->abfd));
14660 dump_die (*diep, dwarf2_die_debug);
14661 }
14662
14663 return result;
14664 }
14665 \f
14666 /* Abbreviation tables.
14667
14668 In DWARF version 2, the description of the debugging information is
14669 stored in a separate .debug_abbrev section. Before we read any
14670 dies from a section we read in all abbreviations and install them
14671 in a hash table. */
14672
14673 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14674
14675 static struct abbrev_info *
14676 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14677 {
14678 struct abbrev_info *abbrev;
14679
14680 abbrev = (struct abbrev_info *)
14681 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14682 memset (abbrev, 0, sizeof (struct abbrev_info));
14683 return abbrev;
14684 }
14685
14686 /* Add an abbreviation to the table. */
14687
14688 static void
14689 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
14690 unsigned int abbrev_number,
14691 struct abbrev_info *abbrev)
14692 {
14693 unsigned int hash_number;
14694
14695 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14696 abbrev->next = abbrev_table->abbrevs[hash_number];
14697 abbrev_table->abbrevs[hash_number] = abbrev;
14698 }
14699
14700 /* Look up an abbrev in the table.
14701 Returns NULL if the abbrev is not found. */
14702
14703 static struct abbrev_info *
14704 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
14705 unsigned int abbrev_number)
14706 {
14707 unsigned int hash_number;
14708 struct abbrev_info *abbrev;
14709
14710 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14711 abbrev = abbrev_table->abbrevs[hash_number];
14712
14713 while (abbrev)
14714 {
14715 if (abbrev->number == abbrev_number)
14716 return abbrev;
14717 abbrev = abbrev->next;
14718 }
14719 return NULL;
14720 }
14721
14722 /* Read in an abbrev table. */
14723
14724 static struct abbrev_table *
14725 abbrev_table_read_table (struct dwarf2_section_info *section,
14726 sect_offset offset)
14727 {
14728 struct objfile *objfile = dwarf2_per_objfile->objfile;
14729 bfd *abfd = get_section_bfd_owner (section);
14730 struct abbrev_table *abbrev_table;
14731 const gdb_byte *abbrev_ptr;
14732 struct abbrev_info *cur_abbrev;
14733 unsigned int abbrev_number, bytes_read, abbrev_name;
14734 unsigned int abbrev_form;
14735 struct attr_abbrev *cur_attrs;
14736 unsigned int allocated_attrs;
14737
14738 abbrev_table = XNEW (struct abbrev_table);
14739 abbrev_table->offset = offset;
14740 obstack_init (&abbrev_table->abbrev_obstack);
14741 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
14742 (ABBREV_HASH_SIZE
14743 * sizeof (struct abbrev_info *)));
14744 memset (abbrev_table->abbrevs, 0,
14745 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
14746
14747 dwarf2_read_section (objfile, section);
14748 abbrev_ptr = section->buffer + offset.sect_off;
14749 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14750 abbrev_ptr += bytes_read;
14751
14752 allocated_attrs = ATTR_ALLOC_CHUNK;
14753 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
14754
14755 /* Loop until we reach an abbrev number of 0. */
14756 while (abbrev_number)
14757 {
14758 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
14759
14760 /* read in abbrev header */
14761 cur_abbrev->number = abbrev_number;
14762 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14763 abbrev_ptr += bytes_read;
14764 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
14765 abbrev_ptr += 1;
14766
14767 /* now read in declarations */
14768 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14769 abbrev_ptr += bytes_read;
14770 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14771 abbrev_ptr += bytes_read;
14772 while (abbrev_name)
14773 {
14774 if (cur_abbrev->num_attrs == allocated_attrs)
14775 {
14776 allocated_attrs += ATTR_ALLOC_CHUNK;
14777 cur_attrs
14778 = xrealloc (cur_attrs, (allocated_attrs
14779 * sizeof (struct attr_abbrev)));
14780 }
14781
14782 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
14783 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
14784 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14785 abbrev_ptr += bytes_read;
14786 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14787 abbrev_ptr += bytes_read;
14788 }
14789
14790 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
14791 (cur_abbrev->num_attrs
14792 * sizeof (struct attr_abbrev)));
14793 memcpy (cur_abbrev->attrs, cur_attrs,
14794 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
14795
14796 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
14797
14798 /* Get next abbreviation.
14799 Under Irix6 the abbreviations for a compilation unit are not
14800 always properly terminated with an abbrev number of 0.
14801 Exit loop if we encounter an abbreviation which we have
14802 already read (which means we are about to read the abbreviations
14803 for the next compile unit) or if the end of the abbreviation
14804 table is reached. */
14805 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
14806 break;
14807 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14808 abbrev_ptr += bytes_read;
14809 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
14810 break;
14811 }
14812
14813 xfree (cur_attrs);
14814 return abbrev_table;
14815 }
14816
14817 /* Free the resources held by ABBREV_TABLE. */
14818
14819 static void
14820 abbrev_table_free (struct abbrev_table *abbrev_table)
14821 {
14822 obstack_free (&abbrev_table->abbrev_obstack, NULL);
14823 xfree (abbrev_table);
14824 }
14825
14826 /* Same as abbrev_table_free but as a cleanup.
14827 We pass in a pointer to the pointer to the table so that we can
14828 set the pointer to NULL when we're done. It also simplifies
14829 build_type_unit_groups. */
14830
14831 static void
14832 abbrev_table_free_cleanup (void *table_ptr)
14833 {
14834 struct abbrev_table **abbrev_table_ptr = table_ptr;
14835
14836 if (*abbrev_table_ptr != NULL)
14837 abbrev_table_free (*abbrev_table_ptr);
14838 *abbrev_table_ptr = NULL;
14839 }
14840
14841 /* Read the abbrev table for CU from ABBREV_SECTION. */
14842
14843 static void
14844 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
14845 struct dwarf2_section_info *abbrev_section)
14846 {
14847 cu->abbrev_table =
14848 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
14849 }
14850
14851 /* Release the memory used by the abbrev table for a compilation unit. */
14852
14853 static void
14854 dwarf2_free_abbrev_table (void *ptr_to_cu)
14855 {
14856 struct dwarf2_cu *cu = ptr_to_cu;
14857
14858 if (cu->abbrev_table != NULL)
14859 abbrev_table_free (cu->abbrev_table);
14860 /* Set this to NULL so that we SEGV if we try to read it later,
14861 and also because free_comp_unit verifies this is NULL. */
14862 cu->abbrev_table = NULL;
14863 }
14864 \f
14865 /* Returns nonzero if TAG represents a type that we might generate a partial
14866 symbol for. */
14867
14868 static int
14869 is_type_tag_for_partial (int tag)
14870 {
14871 switch (tag)
14872 {
14873 #if 0
14874 /* Some types that would be reasonable to generate partial symbols for,
14875 that we don't at present. */
14876 case DW_TAG_array_type:
14877 case DW_TAG_file_type:
14878 case DW_TAG_ptr_to_member_type:
14879 case DW_TAG_set_type:
14880 case DW_TAG_string_type:
14881 case DW_TAG_subroutine_type:
14882 #endif
14883 case DW_TAG_base_type:
14884 case DW_TAG_class_type:
14885 case DW_TAG_interface_type:
14886 case DW_TAG_enumeration_type:
14887 case DW_TAG_structure_type:
14888 case DW_TAG_subrange_type:
14889 case DW_TAG_typedef:
14890 case DW_TAG_union_type:
14891 return 1;
14892 default:
14893 return 0;
14894 }
14895 }
14896
14897 /* Load all DIEs that are interesting for partial symbols into memory. */
14898
14899 static struct partial_die_info *
14900 load_partial_dies (const struct die_reader_specs *reader,
14901 const gdb_byte *info_ptr, int building_psymtab)
14902 {
14903 struct dwarf2_cu *cu = reader->cu;
14904 struct objfile *objfile = cu->objfile;
14905 struct partial_die_info *part_die;
14906 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
14907 struct abbrev_info *abbrev;
14908 unsigned int bytes_read;
14909 unsigned int load_all = 0;
14910 int nesting_level = 1;
14911
14912 parent_die = NULL;
14913 last_die = NULL;
14914
14915 gdb_assert (cu->per_cu != NULL);
14916 if (cu->per_cu->load_all_dies)
14917 load_all = 1;
14918
14919 cu->partial_dies
14920 = htab_create_alloc_ex (cu->header.length / 12,
14921 partial_die_hash,
14922 partial_die_eq,
14923 NULL,
14924 &cu->comp_unit_obstack,
14925 hashtab_obstack_allocate,
14926 dummy_obstack_deallocate);
14927
14928 part_die = obstack_alloc (&cu->comp_unit_obstack,
14929 sizeof (struct partial_die_info));
14930
14931 while (1)
14932 {
14933 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
14934
14935 /* A NULL abbrev means the end of a series of children. */
14936 if (abbrev == NULL)
14937 {
14938 if (--nesting_level == 0)
14939 {
14940 /* PART_DIE was probably the last thing allocated on the
14941 comp_unit_obstack, so we could call obstack_free
14942 here. We don't do that because the waste is small,
14943 and will be cleaned up when we're done with this
14944 compilation unit. This way, we're also more robust
14945 against other users of the comp_unit_obstack. */
14946 return first_die;
14947 }
14948 info_ptr += bytes_read;
14949 last_die = parent_die;
14950 parent_die = parent_die->die_parent;
14951 continue;
14952 }
14953
14954 /* Check for template arguments. We never save these; if
14955 they're seen, we just mark the parent, and go on our way. */
14956 if (parent_die != NULL
14957 && cu->language == language_cplus
14958 && (abbrev->tag == DW_TAG_template_type_param
14959 || abbrev->tag == DW_TAG_template_value_param))
14960 {
14961 parent_die->has_template_arguments = 1;
14962
14963 if (!load_all)
14964 {
14965 /* We don't need a partial DIE for the template argument. */
14966 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14967 continue;
14968 }
14969 }
14970
14971 /* We only recurse into c++ subprograms looking for template arguments.
14972 Skip their other children. */
14973 if (!load_all
14974 && cu->language == language_cplus
14975 && parent_die != NULL
14976 && parent_die->tag == DW_TAG_subprogram)
14977 {
14978 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14979 continue;
14980 }
14981
14982 /* Check whether this DIE is interesting enough to save. Normally
14983 we would not be interested in members here, but there may be
14984 later variables referencing them via DW_AT_specification (for
14985 static members). */
14986 if (!load_all
14987 && !is_type_tag_for_partial (abbrev->tag)
14988 && abbrev->tag != DW_TAG_constant
14989 && abbrev->tag != DW_TAG_enumerator
14990 && abbrev->tag != DW_TAG_subprogram
14991 && abbrev->tag != DW_TAG_lexical_block
14992 && abbrev->tag != DW_TAG_variable
14993 && abbrev->tag != DW_TAG_namespace
14994 && abbrev->tag != DW_TAG_module
14995 && abbrev->tag != DW_TAG_member
14996 && abbrev->tag != DW_TAG_imported_unit
14997 && abbrev->tag != DW_TAG_imported_declaration)
14998 {
14999 /* Otherwise we skip to the next sibling, if any. */
15000 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15001 continue;
15002 }
15003
15004 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15005 info_ptr);
15006
15007 /* This two-pass algorithm for processing partial symbols has a
15008 high cost in cache pressure. Thus, handle some simple cases
15009 here which cover the majority of C partial symbols. DIEs
15010 which neither have specification tags in them, nor could have
15011 specification tags elsewhere pointing at them, can simply be
15012 processed and discarded.
15013
15014 This segment is also optional; scan_partial_symbols and
15015 add_partial_symbol will handle these DIEs if we chain
15016 them in normally. When compilers which do not emit large
15017 quantities of duplicate debug information are more common,
15018 this code can probably be removed. */
15019
15020 /* Any complete simple types at the top level (pretty much all
15021 of them, for a language without namespaces), can be processed
15022 directly. */
15023 if (parent_die == NULL
15024 && part_die->has_specification == 0
15025 && part_die->is_declaration == 0
15026 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15027 || part_die->tag == DW_TAG_base_type
15028 || part_die->tag == DW_TAG_subrange_type))
15029 {
15030 if (building_psymtab && part_die->name != NULL)
15031 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15032 VAR_DOMAIN, LOC_TYPEDEF,
15033 &objfile->static_psymbols,
15034 0, (CORE_ADDR) 0, cu->language, objfile);
15035 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15036 continue;
15037 }
15038
15039 /* The exception for DW_TAG_typedef with has_children above is
15040 a workaround of GCC PR debug/47510. In the case of this complaint
15041 type_name_no_tag_or_error will error on such types later.
15042
15043 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15044 it could not find the child DIEs referenced later, this is checked
15045 above. In correct DWARF DW_TAG_typedef should have no children. */
15046
15047 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15048 complaint (&symfile_complaints,
15049 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15050 "- DIE at 0x%x [in module %s]"),
15051 part_die->offset.sect_off, objfile_name (objfile));
15052
15053 /* If we're at the second level, and we're an enumerator, and
15054 our parent has no specification (meaning possibly lives in a
15055 namespace elsewhere), then we can add the partial symbol now
15056 instead of queueing it. */
15057 if (part_die->tag == DW_TAG_enumerator
15058 && parent_die != NULL
15059 && parent_die->die_parent == NULL
15060 && parent_die->tag == DW_TAG_enumeration_type
15061 && parent_die->has_specification == 0)
15062 {
15063 if (part_die->name == NULL)
15064 complaint (&symfile_complaints,
15065 _("malformed enumerator DIE ignored"));
15066 else if (building_psymtab)
15067 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15068 VAR_DOMAIN, LOC_CONST,
15069 (cu->language == language_cplus
15070 || cu->language == language_java)
15071 ? &objfile->global_psymbols
15072 : &objfile->static_psymbols,
15073 0, (CORE_ADDR) 0, cu->language, objfile);
15074
15075 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15076 continue;
15077 }
15078
15079 /* We'll save this DIE so link it in. */
15080 part_die->die_parent = parent_die;
15081 part_die->die_sibling = NULL;
15082 part_die->die_child = NULL;
15083
15084 if (last_die && last_die == parent_die)
15085 last_die->die_child = part_die;
15086 else if (last_die)
15087 last_die->die_sibling = part_die;
15088
15089 last_die = part_die;
15090
15091 if (first_die == NULL)
15092 first_die = part_die;
15093
15094 /* Maybe add the DIE to the hash table. Not all DIEs that we
15095 find interesting need to be in the hash table, because we
15096 also have the parent/sibling/child chains; only those that we
15097 might refer to by offset later during partial symbol reading.
15098
15099 For now this means things that might have be the target of a
15100 DW_AT_specification, DW_AT_abstract_origin, or
15101 DW_AT_extension. DW_AT_extension will refer only to
15102 namespaces; DW_AT_abstract_origin refers to functions (and
15103 many things under the function DIE, but we do not recurse
15104 into function DIEs during partial symbol reading) and
15105 possibly variables as well; DW_AT_specification refers to
15106 declarations. Declarations ought to have the DW_AT_declaration
15107 flag. It happens that GCC forgets to put it in sometimes, but
15108 only for functions, not for types.
15109
15110 Adding more things than necessary to the hash table is harmless
15111 except for the performance cost. Adding too few will result in
15112 wasted time in find_partial_die, when we reread the compilation
15113 unit with load_all_dies set. */
15114
15115 if (load_all
15116 || abbrev->tag == DW_TAG_constant
15117 || abbrev->tag == DW_TAG_subprogram
15118 || abbrev->tag == DW_TAG_variable
15119 || abbrev->tag == DW_TAG_namespace
15120 || part_die->is_declaration)
15121 {
15122 void **slot;
15123
15124 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15125 part_die->offset.sect_off, INSERT);
15126 *slot = part_die;
15127 }
15128
15129 part_die = obstack_alloc (&cu->comp_unit_obstack,
15130 sizeof (struct partial_die_info));
15131
15132 /* For some DIEs we want to follow their children (if any). For C
15133 we have no reason to follow the children of structures; for other
15134 languages we have to, so that we can get at method physnames
15135 to infer fully qualified class names, for DW_AT_specification,
15136 and for C++ template arguments. For C++, we also look one level
15137 inside functions to find template arguments (if the name of the
15138 function does not already contain the template arguments).
15139
15140 For Ada, we need to scan the children of subprograms and lexical
15141 blocks as well because Ada allows the definition of nested
15142 entities that could be interesting for the debugger, such as
15143 nested subprograms for instance. */
15144 if (last_die->has_children
15145 && (load_all
15146 || last_die->tag == DW_TAG_namespace
15147 || last_die->tag == DW_TAG_module
15148 || last_die->tag == DW_TAG_enumeration_type
15149 || (cu->language == language_cplus
15150 && last_die->tag == DW_TAG_subprogram
15151 && (last_die->name == NULL
15152 || strchr (last_die->name, '<') == NULL))
15153 || (cu->language != language_c
15154 && (last_die->tag == DW_TAG_class_type
15155 || last_die->tag == DW_TAG_interface_type
15156 || last_die->tag == DW_TAG_structure_type
15157 || last_die->tag == DW_TAG_union_type))
15158 || (cu->language == language_ada
15159 && (last_die->tag == DW_TAG_subprogram
15160 || last_die->tag == DW_TAG_lexical_block))))
15161 {
15162 nesting_level++;
15163 parent_die = last_die;
15164 continue;
15165 }
15166
15167 /* Otherwise we skip to the next sibling, if any. */
15168 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15169
15170 /* Back to the top, do it again. */
15171 }
15172 }
15173
15174 /* Read a minimal amount of information into the minimal die structure. */
15175
15176 static const gdb_byte *
15177 read_partial_die (const struct die_reader_specs *reader,
15178 struct partial_die_info *part_die,
15179 struct abbrev_info *abbrev, unsigned int abbrev_len,
15180 const gdb_byte *info_ptr)
15181 {
15182 struct dwarf2_cu *cu = reader->cu;
15183 struct objfile *objfile = cu->objfile;
15184 const gdb_byte *buffer = reader->buffer;
15185 unsigned int i;
15186 struct attribute attr;
15187 int has_low_pc_attr = 0;
15188 int has_high_pc_attr = 0;
15189 int high_pc_relative = 0;
15190
15191 memset (part_die, 0, sizeof (struct partial_die_info));
15192
15193 part_die->offset.sect_off = info_ptr - buffer;
15194
15195 info_ptr += abbrev_len;
15196
15197 if (abbrev == NULL)
15198 return info_ptr;
15199
15200 part_die->tag = abbrev->tag;
15201 part_die->has_children = abbrev->has_children;
15202
15203 for (i = 0; i < abbrev->num_attrs; ++i)
15204 {
15205 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15206
15207 /* Store the data if it is of an attribute we want to keep in a
15208 partial symbol table. */
15209 switch (attr.name)
15210 {
15211 case DW_AT_name:
15212 switch (part_die->tag)
15213 {
15214 case DW_TAG_compile_unit:
15215 case DW_TAG_partial_unit:
15216 case DW_TAG_type_unit:
15217 /* Compilation units have a DW_AT_name that is a filename, not
15218 a source language identifier. */
15219 case DW_TAG_enumeration_type:
15220 case DW_TAG_enumerator:
15221 /* These tags always have simple identifiers already; no need
15222 to canonicalize them. */
15223 part_die->name = DW_STRING (&attr);
15224 break;
15225 default:
15226 part_die->name
15227 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15228 &objfile->objfile_obstack);
15229 break;
15230 }
15231 break;
15232 case DW_AT_linkage_name:
15233 case DW_AT_MIPS_linkage_name:
15234 /* Note that both forms of linkage name might appear. We
15235 assume they will be the same, and we only store the last
15236 one we see. */
15237 if (cu->language == language_ada)
15238 part_die->name = DW_STRING (&attr);
15239 part_die->linkage_name = DW_STRING (&attr);
15240 break;
15241 case DW_AT_low_pc:
15242 has_low_pc_attr = 1;
15243 part_die->lowpc = DW_ADDR (&attr);
15244 break;
15245 case DW_AT_high_pc:
15246 has_high_pc_attr = 1;
15247 if (attr.form == DW_FORM_addr
15248 || attr.form == DW_FORM_GNU_addr_index)
15249 part_die->highpc = DW_ADDR (&attr);
15250 else
15251 {
15252 high_pc_relative = 1;
15253 part_die->highpc = DW_UNSND (&attr);
15254 }
15255 break;
15256 case DW_AT_location:
15257 /* Support the .debug_loc offsets. */
15258 if (attr_form_is_block (&attr))
15259 {
15260 part_die->d.locdesc = DW_BLOCK (&attr);
15261 }
15262 else if (attr_form_is_section_offset (&attr))
15263 {
15264 dwarf2_complex_location_expr_complaint ();
15265 }
15266 else
15267 {
15268 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15269 "partial symbol information");
15270 }
15271 break;
15272 case DW_AT_external:
15273 part_die->is_external = DW_UNSND (&attr);
15274 break;
15275 case DW_AT_declaration:
15276 part_die->is_declaration = DW_UNSND (&attr);
15277 break;
15278 case DW_AT_type:
15279 part_die->has_type = 1;
15280 break;
15281 case DW_AT_abstract_origin:
15282 case DW_AT_specification:
15283 case DW_AT_extension:
15284 part_die->has_specification = 1;
15285 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15286 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15287 || cu->per_cu->is_dwz);
15288 break;
15289 case DW_AT_sibling:
15290 /* Ignore absolute siblings, they might point outside of
15291 the current compile unit. */
15292 if (attr.form == DW_FORM_ref_addr)
15293 complaint (&symfile_complaints,
15294 _("ignoring absolute DW_AT_sibling"));
15295 else
15296 {
15297 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15298 const gdb_byte *sibling_ptr = buffer + off;
15299
15300 if (sibling_ptr < info_ptr)
15301 complaint (&symfile_complaints,
15302 _("DW_AT_sibling points backwards"));
15303 else
15304 part_die->sibling = sibling_ptr;
15305 }
15306 break;
15307 case DW_AT_byte_size:
15308 part_die->has_byte_size = 1;
15309 break;
15310 case DW_AT_calling_convention:
15311 /* DWARF doesn't provide a way to identify a program's source-level
15312 entry point. DW_AT_calling_convention attributes are only meant
15313 to describe functions' calling conventions.
15314
15315 However, because it's a necessary piece of information in
15316 Fortran, and because DW_CC_program is the only piece of debugging
15317 information whose definition refers to a 'main program' at all,
15318 several compilers have begun marking Fortran main programs with
15319 DW_CC_program --- even when those functions use the standard
15320 calling conventions.
15321
15322 So until DWARF specifies a way to provide this information and
15323 compilers pick up the new representation, we'll support this
15324 practice. */
15325 if (DW_UNSND (&attr) == DW_CC_program
15326 && cu->language == language_fortran)
15327 set_objfile_main_name (objfile, part_die->name, language_fortran);
15328 break;
15329 case DW_AT_inline:
15330 if (DW_UNSND (&attr) == DW_INL_inlined
15331 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15332 part_die->may_be_inlined = 1;
15333 break;
15334
15335 case DW_AT_import:
15336 if (part_die->tag == DW_TAG_imported_unit)
15337 {
15338 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15339 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15340 || cu->per_cu->is_dwz);
15341 }
15342 break;
15343
15344 default:
15345 break;
15346 }
15347 }
15348
15349 if (high_pc_relative)
15350 part_die->highpc += part_die->lowpc;
15351
15352 if (has_low_pc_attr && has_high_pc_attr)
15353 {
15354 /* When using the GNU linker, .gnu.linkonce. sections are used to
15355 eliminate duplicate copies of functions and vtables and such.
15356 The linker will arbitrarily choose one and discard the others.
15357 The AT_*_pc values for such functions refer to local labels in
15358 these sections. If the section from that file was discarded, the
15359 labels are not in the output, so the relocs get a value of 0.
15360 If this is a discarded function, mark the pc bounds as invalid,
15361 so that GDB will ignore it. */
15362 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15363 {
15364 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15365
15366 complaint (&symfile_complaints,
15367 _("DW_AT_low_pc %s is zero "
15368 "for DIE at 0x%x [in module %s]"),
15369 paddress (gdbarch, part_die->lowpc),
15370 part_die->offset.sect_off, objfile_name (objfile));
15371 }
15372 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15373 else if (part_die->lowpc >= part_die->highpc)
15374 {
15375 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15376
15377 complaint (&symfile_complaints,
15378 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15379 "for DIE at 0x%x [in module %s]"),
15380 paddress (gdbarch, part_die->lowpc),
15381 paddress (gdbarch, part_die->highpc),
15382 part_die->offset.sect_off, objfile_name (objfile));
15383 }
15384 else
15385 part_die->has_pc_info = 1;
15386 }
15387
15388 return info_ptr;
15389 }
15390
15391 /* Find a cached partial DIE at OFFSET in CU. */
15392
15393 static struct partial_die_info *
15394 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15395 {
15396 struct partial_die_info *lookup_die = NULL;
15397 struct partial_die_info part_die;
15398
15399 part_die.offset = offset;
15400 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15401 offset.sect_off);
15402
15403 return lookup_die;
15404 }
15405
15406 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15407 except in the case of .debug_types DIEs which do not reference
15408 outside their CU (they do however referencing other types via
15409 DW_FORM_ref_sig8). */
15410
15411 static struct partial_die_info *
15412 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15413 {
15414 struct objfile *objfile = cu->objfile;
15415 struct dwarf2_per_cu_data *per_cu = NULL;
15416 struct partial_die_info *pd = NULL;
15417
15418 if (offset_in_dwz == cu->per_cu->is_dwz
15419 && offset_in_cu_p (&cu->header, offset))
15420 {
15421 pd = find_partial_die_in_comp_unit (offset, cu);
15422 if (pd != NULL)
15423 return pd;
15424 /* We missed recording what we needed.
15425 Load all dies and try again. */
15426 per_cu = cu->per_cu;
15427 }
15428 else
15429 {
15430 /* TUs don't reference other CUs/TUs (except via type signatures). */
15431 if (cu->per_cu->is_debug_types)
15432 {
15433 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15434 " external reference to offset 0x%lx [in module %s].\n"),
15435 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15436 bfd_get_filename (objfile->obfd));
15437 }
15438 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15439 objfile);
15440
15441 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15442 load_partial_comp_unit (per_cu);
15443
15444 per_cu->cu->last_used = 0;
15445 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15446 }
15447
15448 /* If we didn't find it, and not all dies have been loaded,
15449 load them all and try again. */
15450
15451 if (pd == NULL && per_cu->load_all_dies == 0)
15452 {
15453 per_cu->load_all_dies = 1;
15454
15455 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15456 THIS_CU->cu may already be in use. So we can't just free it and
15457 replace its DIEs with the ones we read in. Instead, we leave those
15458 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15459 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15460 set. */
15461 load_partial_comp_unit (per_cu);
15462
15463 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15464 }
15465
15466 if (pd == NULL)
15467 internal_error (__FILE__, __LINE__,
15468 _("could not find partial DIE 0x%x "
15469 "in cache [from module %s]\n"),
15470 offset.sect_off, bfd_get_filename (objfile->obfd));
15471 return pd;
15472 }
15473
15474 /* See if we can figure out if the class lives in a namespace. We do
15475 this by looking for a member function; its demangled name will
15476 contain namespace info, if there is any. */
15477
15478 static void
15479 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15480 struct dwarf2_cu *cu)
15481 {
15482 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15483 what template types look like, because the demangler
15484 frequently doesn't give the same name as the debug info. We
15485 could fix this by only using the demangled name to get the
15486 prefix (but see comment in read_structure_type). */
15487
15488 struct partial_die_info *real_pdi;
15489 struct partial_die_info *child_pdi;
15490
15491 /* If this DIE (this DIE's specification, if any) has a parent, then
15492 we should not do this. We'll prepend the parent's fully qualified
15493 name when we create the partial symbol. */
15494
15495 real_pdi = struct_pdi;
15496 while (real_pdi->has_specification)
15497 real_pdi = find_partial_die (real_pdi->spec_offset,
15498 real_pdi->spec_is_dwz, cu);
15499
15500 if (real_pdi->die_parent != NULL)
15501 return;
15502
15503 for (child_pdi = struct_pdi->die_child;
15504 child_pdi != NULL;
15505 child_pdi = child_pdi->die_sibling)
15506 {
15507 if (child_pdi->tag == DW_TAG_subprogram
15508 && child_pdi->linkage_name != NULL)
15509 {
15510 char *actual_class_name
15511 = language_class_name_from_physname (cu->language_defn,
15512 child_pdi->linkage_name);
15513 if (actual_class_name != NULL)
15514 {
15515 struct_pdi->name
15516 = obstack_copy0 (&cu->objfile->objfile_obstack,
15517 actual_class_name,
15518 strlen (actual_class_name));
15519 xfree (actual_class_name);
15520 }
15521 break;
15522 }
15523 }
15524 }
15525
15526 /* Adjust PART_DIE before generating a symbol for it. This function
15527 may set the is_external flag or change the DIE's name. */
15528
15529 static void
15530 fixup_partial_die (struct partial_die_info *part_die,
15531 struct dwarf2_cu *cu)
15532 {
15533 /* Once we've fixed up a die, there's no point in doing so again.
15534 This also avoids a memory leak if we were to call
15535 guess_partial_die_structure_name multiple times. */
15536 if (part_die->fixup_called)
15537 return;
15538
15539 /* If we found a reference attribute and the DIE has no name, try
15540 to find a name in the referred to DIE. */
15541
15542 if (part_die->name == NULL && part_die->has_specification)
15543 {
15544 struct partial_die_info *spec_die;
15545
15546 spec_die = find_partial_die (part_die->spec_offset,
15547 part_die->spec_is_dwz, cu);
15548
15549 fixup_partial_die (spec_die, cu);
15550
15551 if (spec_die->name)
15552 {
15553 part_die->name = spec_die->name;
15554
15555 /* Copy DW_AT_external attribute if it is set. */
15556 if (spec_die->is_external)
15557 part_die->is_external = spec_die->is_external;
15558 }
15559 }
15560
15561 /* Set default names for some unnamed DIEs. */
15562
15563 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15564 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15565
15566 /* If there is no parent die to provide a namespace, and there are
15567 children, see if we can determine the namespace from their linkage
15568 name. */
15569 if (cu->language == language_cplus
15570 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15571 && part_die->die_parent == NULL
15572 && part_die->has_children
15573 && (part_die->tag == DW_TAG_class_type
15574 || part_die->tag == DW_TAG_structure_type
15575 || part_die->tag == DW_TAG_union_type))
15576 guess_partial_die_structure_name (part_die, cu);
15577
15578 /* GCC might emit a nameless struct or union that has a linkage
15579 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15580 if (part_die->name == NULL
15581 && (part_die->tag == DW_TAG_class_type
15582 || part_die->tag == DW_TAG_interface_type
15583 || part_die->tag == DW_TAG_structure_type
15584 || part_die->tag == DW_TAG_union_type)
15585 && part_die->linkage_name != NULL)
15586 {
15587 char *demangled;
15588
15589 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15590 if (demangled)
15591 {
15592 const char *base;
15593
15594 /* Strip any leading namespaces/classes, keep only the base name.
15595 DW_AT_name for named DIEs does not contain the prefixes. */
15596 base = strrchr (demangled, ':');
15597 if (base && base > demangled && base[-1] == ':')
15598 base++;
15599 else
15600 base = demangled;
15601
15602 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
15603 base, strlen (base));
15604 xfree (demangled);
15605 }
15606 }
15607
15608 part_die->fixup_called = 1;
15609 }
15610
15611 /* Read an attribute value described by an attribute form. */
15612
15613 static const gdb_byte *
15614 read_attribute_value (const struct die_reader_specs *reader,
15615 struct attribute *attr, unsigned form,
15616 const gdb_byte *info_ptr)
15617 {
15618 struct dwarf2_cu *cu = reader->cu;
15619 bfd *abfd = reader->abfd;
15620 struct comp_unit_head *cu_header = &cu->header;
15621 unsigned int bytes_read;
15622 struct dwarf_block *blk;
15623
15624 attr->form = form;
15625 switch (form)
15626 {
15627 case DW_FORM_ref_addr:
15628 if (cu->header.version == 2)
15629 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15630 else
15631 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15632 &cu->header, &bytes_read);
15633 info_ptr += bytes_read;
15634 break;
15635 case DW_FORM_GNU_ref_alt:
15636 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15637 info_ptr += bytes_read;
15638 break;
15639 case DW_FORM_addr:
15640 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15641 info_ptr += bytes_read;
15642 break;
15643 case DW_FORM_block2:
15644 blk = dwarf_alloc_block (cu);
15645 blk->size = read_2_bytes (abfd, info_ptr);
15646 info_ptr += 2;
15647 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15648 info_ptr += blk->size;
15649 DW_BLOCK (attr) = blk;
15650 break;
15651 case DW_FORM_block4:
15652 blk = dwarf_alloc_block (cu);
15653 blk->size = read_4_bytes (abfd, info_ptr);
15654 info_ptr += 4;
15655 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15656 info_ptr += blk->size;
15657 DW_BLOCK (attr) = blk;
15658 break;
15659 case DW_FORM_data2:
15660 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15661 info_ptr += 2;
15662 break;
15663 case DW_FORM_data4:
15664 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15665 info_ptr += 4;
15666 break;
15667 case DW_FORM_data8:
15668 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15669 info_ptr += 8;
15670 break;
15671 case DW_FORM_sec_offset:
15672 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15673 info_ptr += bytes_read;
15674 break;
15675 case DW_FORM_string:
15676 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
15677 DW_STRING_IS_CANONICAL (attr) = 0;
15678 info_ptr += bytes_read;
15679 break;
15680 case DW_FORM_strp:
15681 if (!cu->per_cu->is_dwz)
15682 {
15683 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15684 &bytes_read);
15685 DW_STRING_IS_CANONICAL (attr) = 0;
15686 info_ptr += bytes_read;
15687 break;
15688 }
15689 /* FALLTHROUGH */
15690 case DW_FORM_GNU_strp_alt:
15691 {
15692 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15693 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
15694 &bytes_read);
15695
15696 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
15697 DW_STRING_IS_CANONICAL (attr) = 0;
15698 info_ptr += bytes_read;
15699 }
15700 break;
15701 case DW_FORM_exprloc:
15702 case DW_FORM_block:
15703 blk = dwarf_alloc_block (cu);
15704 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15705 info_ptr += bytes_read;
15706 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15707 info_ptr += blk->size;
15708 DW_BLOCK (attr) = blk;
15709 break;
15710 case DW_FORM_block1:
15711 blk = dwarf_alloc_block (cu);
15712 blk->size = read_1_byte (abfd, info_ptr);
15713 info_ptr += 1;
15714 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15715 info_ptr += blk->size;
15716 DW_BLOCK (attr) = blk;
15717 break;
15718 case DW_FORM_data1:
15719 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15720 info_ptr += 1;
15721 break;
15722 case DW_FORM_flag:
15723 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15724 info_ptr += 1;
15725 break;
15726 case DW_FORM_flag_present:
15727 DW_UNSND (attr) = 1;
15728 break;
15729 case DW_FORM_sdata:
15730 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
15731 info_ptr += bytes_read;
15732 break;
15733 case DW_FORM_udata:
15734 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15735 info_ptr += bytes_read;
15736 break;
15737 case DW_FORM_ref1:
15738 DW_UNSND (attr) = (cu->header.offset.sect_off
15739 + read_1_byte (abfd, info_ptr));
15740 info_ptr += 1;
15741 break;
15742 case DW_FORM_ref2:
15743 DW_UNSND (attr) = (cu->header.offset.sect_off
15744 + read_2_bytes (abfd, info_ptr));
15745 info_ptr += 2;
15746 break;
15747 case DW_FORM_ref4:
15748 DW_UNSND (attr) = (cu->header.offset.sect_off
15749 + read_4_bytes (abfd, info_ptr));
15750 info_ptr += 4;
15751 break;
15752 case DW_FORM_ref8:
15753 DW_UNSND (attr) = (cu->header.offset.sect_off
15754 + read_8_bytes (abfd, info_ptr));
15755 info_ptr += 8;
15756 break;
15757 case DW_FORM_ref_sig8:
15758 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
15759 info_ptr += 8;
15760 break;
15761 case DW_FORM_ref_udata:
15762 DW_UNSND (attr) = (cu->header.offset.sect_off
15763 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
15764 info_ptr += bytes_read;
15765 break;
15766 case DW_FORM_indirect:
15767 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15768 info_ptr += bytes_read;
15769 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
15770 break;
15771 case DW_FORM_GNU_addr_index:
15772 if (reader->dwo_file == NULL)
15773 {
15774 /* For now flag a hard error.
15775 Later we can turn this into a complaint. */
15776 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15777 dwarf_form_name (form),
15778 bfd_get_filename (abfd));
15779 }
15780 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
15781 info_ptr += bytes_read;
15782 break;
15783 case DW_FORM_GNU_str_index:
15784 if (reader->dwo_file == NULL)
15785 {
15786 /* For now flag a hard error.
15787 Later we can turn this into a complaint if warranted. */
15788 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15789 dwarf_form_name (form),
15790 bfd_get_filename (abfd));
15791 }
15792 {
15793 ULONGEST str_index =
15794 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15795
15796 DW_STRING (attr) = read_str_index (reader, cu, str_index);
15797 DW_STRING_IS_CANONICAL (attr) = 0;
15798 info_ptr += bytes_read;
15799 }
15800 break;
15801 default:
15802 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
15803 dwarf_form_name (form),
15804 bfd_get_filename (abfd));
15805 }
15806
15807 /* Super hack. */
15808 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
15809 attr->form = DW_FORM_GNU_ref_alt;
15810
15811 /* We have seen instances where the compiler tried to emit a byte
15812 size attribute of -1 which ended up being encoded as an unsigned
15813 0xffffffff. Although 0xffffffff is technically a valid size value,
15814 an object of this size seems pretty unlikely so we can relatively
15815 safely treat these cases as if the size attribute was invalid and
15816 treat them as zero by default. */
15817 if (attr->name == DW_AT_byte_size
15818 && form == DW_FORM_data4
15819 && DW_UNSND (attr) >= 0xffffffff)
15820 {
15821 complaint
15822 (&symfile_complaints,
15823 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
15824 hex_string (DW_UNSND (attr)));
15825 DW_UNSND (attr) = 0;
15826 }
15827
15828 return info_ptr;
15829 }
15830
15831 /* Read an attribute described by an abbreviated attribute. */
15832
15833 static const gdb_byte *
15834 read_attribute (const struct die_reader_specs *reader,
15835 struct attribute *attr, struct attr_abbrev *abbrev,
15836 const gdb_byte *info_ptr)
15837 {
15838 attr->name = abbrev->name;
15839 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
15840 }
15841
15842 /* Read dwarf information from a buffer. */
15843
15844 static unsigned int
15845 read_1_byte (bfd *abfd, const gdb_byte *buf)
15846 {
15847 return bfd_get_8 (abfd, buf);
15848 }
15849
15850 static int
15851 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
15852 {
15853 return bfd_get_signed_8 (abfd, buf);
15854 }
15855
15856 static unsigned int
15857 read_2_bytes (bfd *abfd, const gdb_byte *buf)
15858 {
15859 return bfd_get_16 (abfd, buf);
15860 }
15861
15862 static int
15863 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
15864 {
15865 return bfd_get_signed_16 (abfd, buf);
15866 }
15867
15868 static unsigned int
15869 read_4_bytes (bfd *abfd, const gdb_byte *buf)
15870 {
15871 return bfd_get_32 (abfd, buf);
15872 }
15873
15874 static int
15875 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
15876 {
15877 return bfd_get_signed_32 (abfd, buf);
15878 }
15879
15880 static ULONGEST
15881 read_8_bytes (bfd *abfd, const gdb_byte *buf)
15882 {
15883 return bfd_get_64 (abfd, buf);
15884 }
15885
15886 static CORE_ADDR
15887 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
15888 unsigned int *bytes_read)
15889 {
15890 struct comp_unit_head *cu_header = &cu->header;
15891 CORE_ADDR retval = 0;
15892
15893 if (cu_header->signed_addr_p)
15894 {
15895 switch (cu_header->addr_size)
15896 {
15897 case 2:
15898 retval = bfd_get_signed_16 (abfd, buf);
15899 break;
15900 case 4:
15901 retval = bfd_get_signed_32 (abfd, buf);
15902 break;
15903 case 8:
15904 retval = bfd_get_signed_64 (abfd, buf);
15905 break;
15906 default:
15907 internal_error (__FILE__, __LINE__,
15908 _("read_address: bad switch, signed [in module %s]"),
15909 bfd_get_filename (abfd));
15910 }
15911 }
15912 else
15913 {
15914 switch (cu_header->addr_size)
15915 {
15916 case 2:
15917 retval = bfd_get_16 (abfd, buf);
15918 break;
15919 case 4:
15920 retval = bfd_get_32 (abfd, buf);
15921 break;
15922 case 8:
15923 retval = bfd_get_64 (abfd, buf);
15924 break;
15925 default:
15926 internal_error (__FILE__, __LINE__,
15927 _("read_address: bad switch, "
15928 "unsigned [in module %s]"),
15929 bfd_get_filename (abfd));
15930 }
15931 }
15932
15933 *bytes_read = cu_header->addr_size;
15934 return retval;
15935 }
15936
15937 /* Read the initial length from a section. The (draft) DWARF 3
15938 specification allows the initial length to take up either 4 bytes
15939 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
15940 bytes describe the length and all offsets will be 8 bytes in length
15941 instead of 4.
15942
15943 An older, non-standard 64-bit format is also handled by this
15944 function. The older format in question stores the initial length
15945 as an 8-byte quantity without an escape value. Lengths greater
15946 than 2^32 aren't very common which means that the initial 4 bytes
15947 is almost always zero. Since a length value of zero doesn't make
15948 sense for the 32-bit format, this initial zero can be considered to
15949 be an escape value which indicates the presence of the older 64-bit
15950 format. As written, the code can't detect (old format) lengths
15951 greater than 4GB. If it becomes necessary to handle lengths
15952 somewhat larger than 4GB, we could allow other small values (such
15953 as the non-sensical values of 1, 2, and 3) to also be used as
15954 escape values indicating the presence of the old format.
15955
15956 The value returned via bytes_read should be used to increment the
15957 relevant pointer after calling read_initial_length().
15958
15959 [ Note: read_initial_length() and read_offset() are based on the
15960 document entitled "DWARF Debugging Information Format", revision
15961 3, draft 8, dated November 19, 2001. This document was obtained
15962 from:
15963
15964 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
15965
15966 This document is only a draft and is subject to change. (So beware.)
15967
15968 Details regarding the older, non-standard 64-bit format were
15969 determined empirically by examining 64-bit ELF files produced by
15970 the SGI toolchain on an IRIX 6.5 machine.
15971
15972 - Kevin, July 16, 2002
15973 ] */
15974
15975 static LONGEST
15976 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
15977 {
15978 LONGEST length = bfd_get_32 (abfd, buf);
15979
15980 if (length == 0xffffffff)
15981 {
15982 length = bfd_get_64 (abfd, buf + 4);
15983 *bytes_read = 12;
15984 }
15985 else if (length == 0)
15986 {
15987 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
15988 length = bfd_get_64 (abfd, buf);
15989 *bytes_read = 8;
15990 }
15991 else
15992 {
15993 *bytes_read = 4;
15994 }
15995
15996 return length;
15997 }
15998
15999 /* Cover function for read_initial_length.
16000 Returns the length of the object at BUF, and stores the size of the
16001 initial length in *BYTES_READ and stores the size that offsets will be in
16002 *OFFSET_SIZE.
16003 If the initial length size is not equivalent to that specified in
16004 CU_HEADER then issue a complaint.
16005 This is useful when reading non-comp-unit headers. */
16006
16007 static LONGEST
16008 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16009 const struct comp_unit_head *cu_header,
16010 unsigned int *bytes_read,
16011 unsigned int *offset_size)
16012 {
16013 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16014
16015 gdb_assert (cu_header->initial_length_size == 4
16016 || cu_header->initial_length_size == 8
16017 || cu_header->initial_length_size == 12);
16018
16019 if (cu_header->initial_length_size != *bytes_read)
16020 complaint (&symfile_complaints,
16021 _("intermixed 32-bit and 64-bit DWARF sections"));
16022
16023 *offset_size = (*bytes_read == 4) ? 4 : 8;
16024 return length;
16025 }
16026
16027 /* Read an offset from the data stream. The size of the offset is
16028 given by cu_header->offset_size. */
16029
16030 static LONGEST
16031 read_offset (bfd *abfd, const gdb_byte *buf,
16032 const struct comp_unit_head *cu_header,
16033 unsigned int *bytes_read)
16034 {
16035 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16036
16037 *bytes_read = cu_header->offset_size;
16038 return offset;
16039 }
16040
16041 /* Read an offset from the data stream. */
16042
16043 static LONGEST
16044 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16045 {
16046 LONGEST retval = 0;
16047
16048 switch (offset_size)
16049 {
16050 case 4:
16051 retval = bfd_get_32 (abfd, buf);
16052 break;
16053 case 8:
16054 retval = bfd_get_64 (abfd, buf);
16055 break;
16056 default:
16057 internal_error (__FILE__, __LINE__,
16058 _("read_offset_1: bad switch [in module %s]"),
16059 bfd_get_filename (abfd));
16060 }
16061
16062 return retval;
16063 }
16064
16065 static const gdb_byte *
16066 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16067 {
16068 /* If the size of a host char is 8 bits, we can return a pointer
16069 to the buffer, otherwise we have to copy the data to a buffer
16070 allocated on the temporary obstack. */
16071 gdb_assert (HOST_CHAR_BIT == 8);
16072 return buf;
16073 }
16074
16075 static const char *
16076 read_direct_string (bfd *abfd, const gdb_byte *buf,
16077 unsigned int *bytes_read_ptr)
16078 {
16079 /* If the size of a host char is 8 bits, we can return a pointer
16080 to the string, otherwise we have to copy the string to a buffer
16081 allocated on the temporary obstack. */
16082 gdb_assert (HOST_CHAR_BIT == 8);
16083 if (*buf == '\0')
16084 {
16085 *bytes_read_ptr = 1;
16086 return NULL;
16087 }
16088 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16089 return (const char *) buf;
16090 }
16091
16092 static const char *
16093 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16094 {
16095 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16096 if (dwarf2_per_objfile->str.buffer == NULL)
16097 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16098 bfd_get_filename (abfd));
16099 if (str_offset >= dwarf2_per_objfile->str.size)
16100 error (_("DW_FORM_strp pointing outside of "
16101 ".debug_str section [in module %s]"),
16102 bfd_get_filename (abfd));
16103 gdb_assert (HOST_CHAR_BIT == 8);
16104 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16105 return NULL;
16106 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16107 }
16108
16109 /* Read a string at offset STR_OFFSET in the .debug_str section from
16110 the .dwz file DWZ. Throw an error if the offset is too large. If
16111 the string consists of a single NUL byte, return NULL; otherwise
16112 return a pointer to the string. */
16113
16114 static const char *
16115 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16116 {
16117 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16118
16119 if (dwz->str.buffer == NULL)
16120 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16121 "section [in module %s]"),
16122 bfd_get_filename (dwz->dwz_bfd));
16123 if (str_offset >= dwz->str.size)
16124 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16125 ".debug_str section [in module %s]"),
16126 bfd_get_filename (dwz->dwz_bfd));
16127 gdb_assert (HOST_CHAR_BIT == 8);
16128 if (dwz->str.buffer[str_offset] == '\0')
16129 return NULL;
16130 return (const char *) (dwz->str.buffer + str_offset);
16131 }
16132
16133 static const char *
16134 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16135 const struct comp_unit_head *cu_header,
16136 unsigned int *bytes_read_ptr)
16137 {
16138 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16139
16140 return read_indirect_string_at_offset (abfd, str_offset);
16141 }
16142
16143 static ULONGEST
16144 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16145 unsigned int *bytes_read_ptr)
16146 {
16147 ULONGEST result;
16148 unsigned int num_read;
16149 int i, shift;
16150 unsigned char byte;
16151
16152 result = 0;
16153 shift = 0;
16154 num_read = 0;
16155 i = 0;
16156 while (1)
16157 {
16158 byte = bfd_get_8 (abfd, buf);
16159 buf++;
16160 num_read++;
16161 result |= ((ULONGEST) (byte & 127) << shift);
16162 if ((byte & 128) == 0)
16163 {
16164 break;
16165 }
16166 shift += 7;
16167 }
16168 *bytes_read_ptr = num_read;
16169 return result;
16170 }
16171
16172 static LONGEST
16173 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16174 unsigned int *bytes_read_ptr)
16175 {
16176 LONGEST result;
16177 int i, shift, num_read;
16178 unsigned char byte;
16179
16180 result = 0;
16181 shift = 0;
16182 num_read = 0;
16183 i = 0;
16184 while (1)
16185 {
16186 byte = bfd_get_8 (abfd, buf);
16187 buf++;
16188 num_read++;
16189 result |= ((LONGEST) (byte & 127) << shift);
16190 shift += 7;
16191 if ((byte & 128) == 0)
16192 {
16193 break;
16194 }
16195 }
16196 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16197 result |= -(((LONGEST) 1) << shift);
16198 *bytes_read_ptr = num_read;
16199 return result;
16200 }
16201
16202 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16203 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16204 ADDR_SIZE is the size of addresses from the CU header. */
16205
16206 static CORE_ADDR
16207 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16208 {
16209 struct objfile *objfile = dwarf2_per_objfile->objfile;
16210 bfd *abfd = objfile->obfd;
16211 const gdb_byte *info_ptr;
16212
16213 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16214 if (dwarf2_per_objfile->addr.buffer == NULL)
16215 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16216 objfile_name (objfile));
16217 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16218 error (_("DW_FORM_addr_index pointing outside of "
16219 ".debug_addr section [in module %s]"),
16220 objfile_name (objfile));
16221 info_ptr = (dwarf2_per_objfile->addr.buffer
16222 + addr_base + addr_index * addr_size);
16223 if (addr_size == 4)
16224 return bfd_get_32 (abfd, info_ptr);
16225 else
16226 return bfd_get_64 (abfd, info_ptr);
16227 }
16228
16229 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16230
16231 static CORE_ADDR
16232 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16233 {
16234 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16235 }
16236
16237 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16238
16239 static CORE_ADDR
16240 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16241 unsigned int *bytes_read)
16242 {
16243 bfd *abfd = cu->objfile->obfd;
16244 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16245
16246 return read_addr_index (cu, addr_index);
16247 }
16248
16249 /* Data structure to pass results from dwarf2_read_addr_index_reader
16250 back to dwarf2_read_addr_index. */
16251
16252 struct dwarf2_read_addr_index_data
16253 {
16254 ULONGEST addr_base;
16255 int addr_size;
16256 };
16257
16258 /* die_reader_func for dwarf2_read_addr_index. */
16259
16260 static void
16261 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16262 const gdb_byte *info_ptr,
16263 struct die_info *comp_unit_die,
16264 int has_children,
16265 void *data)
16266 {
16267 struct dwarf2_cu *cu = reader->cu;
16268 struct dwarf2_read_addr_index_data *aidata =
16269 (struct dwarf2_read_addr_index_data *) data;
16270
16271 aidata->addr_base = cu->addr_base;
16272 aidata->addr_size = cu->header.addr_size;
16273 }
16274
16275 /* Given an index in .debug_addr, fetch the value.
16276 NOTE: This can be called during dwarf expression evaluation,
16277 long after the debug information has been read, and thus per_cu->cu
16278 may no longer exist. */
16279
16280 CORE_ADDR
16281 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16282 unsigned int addr_index)
16283 {
16284 struct objfile *objfile = per_cu->objfile;
16285 struct dwarf2_cu *cu = per_cu->cu;
16286 ULONGEST addr_base;
16287 int addr_size;
16288
16289 /* This is intended to be called from outside this file. */
16290 dw2_setup (objfile);
16291
16292 /* We need addr_base and addr_size.
16293 If we don't have PER_CU->cu, we have to get it.
16294 Nasty, but the alternative is storing the needed info in PER_CU,
16295 which at this point doesn't seem justified: it's not clear how frequently
16296 it would get used and it would increase the size of every PER_CU.
16297 Entry points like dwarf2_per_cu_addr_size do a similar thing
16298 so we're not in uncharted territory here.
16299 Alas we need to be a bit more complicated as addr_base is contained
16300 in the DIE.
16301
16302 We don't need to read the entire CU(/TU).
16303 We just need the header and top level die.
16304
16305 IWBN to use the aging mechanism to let us lazily later discard the CU.
16306 For now we skip this optimization. */
16307
16308 if (cu != NULL)
16309 {
16310 addr_base = cu->addr_base;
16311 addr_size = cu->header.addr_size;
16312 }
16313 else
16314 {
16315 struct dwarf2_read_addr_index_data aidata;
16316
16317 /* Note: We can't use init_cutu_and_read_dies_simple here,
16318 we need addr_base. */
16319 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16320 dwarf2_read_addr_index_reader, &aidata);
16321 addr_base = aidata.addr_base;
16322 addr_size = aidata.addr_size;
16323 }
16324
16325 return read_addr_index_1 (addr_index, addr_base, addr_size);
16326 }
16327
16328 /* Given a DW_FORM_GNU_str_index, fetch the string.
16329 This is only used by the Fission support. */
16330
16331 static const char *
16332 read_str_index (const struct die_reader_specs *reader,
16333 struct dwarf2_cu *cu, ULONGEST str_index)
16334 {
16335 struct objfile *objfile = dwarf2_per_objfile->objfile;
16336 const char *dwo_name = objfile_name (objfile);
16337 bfd *abfd = objfile->obfd;
16338 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16339 struct dwarf2_section_info *str_offsets_section =
16340 &reader->dwo_file->sections.str_offsets;
16341 const gdb_byte *info_ptr;
16342 ULONGEST str_offset;
16343 static const char form_name[] = "DW_FORM_GNU_str_index";
16344
16345 dwarf2_read_section (objfile, str_section);
16346 dwarf2_read_section (objfile, str_offsets_section);
16347 if (str_section->buffer == NULL)
16348 error (_("%s used without .debug_str.dwo section"
16349 " in CU at offset 0x%lx [in module %s]"),
16350 form_name, (long) cu->header.offset.sect_off, dwo_name);
16351 if (str_offsets_section->buffer == NULL)
16352 error (_("%s used without .debug_str_offsets.dwo section"
16353 " in CU at offset 0x%lx [in module %s]"),
16354 form_name, (long) cu->header.offset.sect_off, dwo_name);
16355 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16356 error (_("%s pointing outside of .debug_str_offsets.dwo"
16357 " section in CU at offset 0x%lx [in module %s]"),
16358 form_name, (long) cu->header.offset.sect_off, dwo_name);
16359 info_ptr = (str_offsets_section->buffer
16360 + str_index * cu->header.offset_size);
16361 if (cu->header.offset_size == 4)
16362 str_offset = bfd_get_32 (abfd, info_ptr);
16363 else
16364 str_offset = bfd_get_64 (abfd, info_ptr);
16365 if (str_offset >= str_section->size)
16366 error (_("Offset from %s pointing outside of"
16367 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16368 form_name, (long) cu->header.offset.sect_off, dwo_name);
16369 return (const char *) (str_section->buffer + str_offset);
16370 }
16371
16372 /* Return the length of an LEB128 number in BUF. */
16373
16374 static int
16375 leb128_size (const gdb_byte *buf)
16376 {
16377 const gdb_byte *begin = buf;
16378 gdb_byte byte;
16379
16380 while (1)
16381 {
16382 byte = *buf++;
16383 if ((byte & 128) == 0)
16384 return buf - begin;
16385 }
16386 }
16387
16388 static void
16389 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16390 {
16391 switch (lang)
16392 {
16393 case DW_LANG_C89:
16394 case DW_LANG_C99:
16395 case DW_LANG_C:
16396 case DW_LANG_UPC:
16397 cu->language = language_c;
16398 break;
16399 case DW_LANG_C_plus_plus:
16400 cu->language = language_cplus;
16401 break;
16402 case DW_LANG_D:
16403 cu->language = language_d;
16404 break;
16405 case DW_LANG_Fortran77:
16406 case DW_LANG_Fortran90:
16407 case DW_LANG_Fortran95:
16408 cu->language = language_fortran;
16409 break;
16410 case DW_LANG_Go:
16411 cu->language = language_go;
16412 break;
16413 case DW_LANG_Mips_Assembler:
16414 cu->language = language_asm;
16415 break;
16416 case DW_LANG_Java:
16417 cu->language = language_java;
16418 break;
16419 case DW_LANG_Ada83:
16420 case DW_LANG_Ada95:
16421 cu->language = language_ada;
16422 break;
16423 case DW_LANG_Modula2:
16424 cu->language = language_m2;
16425 break;
16426 case DW_LANG_Pascal83:
16427 cu->language = language_pascal;
16428 break;
16429 case DW_LANG_ObjC:
16430 cu->language = language_objc;
16431 break;
16432 case DW_LANG_Cobol74:
16433 case DW_LANG_Cobol85:
16434 default:
16435 cu->language = language_minimal;
16436 break;
16437 }
16438 cu->language_defn = language_def (cu->language);
16439 }
16440
16441 /* Return the named attribute or NULL if not there. */
16442
16443 static struct attribute *
16444 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16445 {
16446 for (;;)
16447 {
16448 unsigned int i;
16449 struct attribute *spec = NULL;
16450
16451 for (i = 0; i < die->num_attrs; ++i)
16452 {
16453 if (die->attrs[i].name == name)
16454 return &die->attrs[i];
16455 if (die->attrs[i].name == DW_AT_specification
16456 || die->attrs[i].name == DW_AT_abstract_origin)
16457 spec = &die->attrs[i];
16458 }
16459
16460 if (!spec)
16461 break;
16462
16463 die = follow_die_ref (die, spec, &cu);
16464 }
16465
16466 return NULL;
16467 }
16468
16469 /* Return the named attribute or NULL if not there,
16470 but do not follow DW_AT_specification, etc.
16471 This is for use in contexts where we're reading .debug_types dies.
16472 Following DW_AT_specification, DW_AT_abstract_origin will take us
16473 back up the chain, and we want to go down. */
16474
16475 static struct attribute *
16476 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16477 {
16478 unsigned int i;
16479
16480 for (i = 0; i < die->num_attrs; ++i)
16481 if (die->attrs[i].name == name)
16482 return &die->attrs[i];
16483
16484 return NULL;
16485 }
16486
16487 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16488 and holds a non-zero value. This function should only be used for
16489 DW_FORM_flag or DW_FORM_flag_present attributes. */
16490
16491 static int
16492 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16493 {
16494 struct attribute *attr = dwarf2_attr (die, name, cu);
16495
16496 return (attr && DW_UNSND (attr));
16497 }
16498
16499 static int
16500 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16501 {
16502 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16503 which value is non-zero. However, we have to be careful with
16504 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16505 (via dwarf2_flag_true_p) follows this attribute. So we may
16506 end up accidently finding a declaration attribute that belongs
16507 to a different DIE referenced by the specification attribute,
16508 even though the given DIE does not have a declaration attribute. */
16509 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16510 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16511 }
16512
16513 /* Return the die giving the specification for DIE, if there is
16514 one. *SPEC_CU is the CU containing DIE on input, and the CU
16515 containing the return value on output. If there is no
16516 specification, but there is an abstract origin, that is
16517 returned. */
16518
16519 static struct die_info *
16520 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16521 {
16522 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16523 *spec_cu);
16524
16525 if (spec_attr == NULL)
16526 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16527
16528 if (spec_attr == NULL)
16529 return NULL;
16530 else
16531 return follow_die_ref (die, spec_attr, spec_cu);
16532 }
16533
16534 /* Free the line_header structure *LH, and any arrays and strings it
16535 refers to.
16536 NOTE: This is also used as a "cleanup" function. */
16537
16538 static void
16539 free_line_header (struct line_header *lh)
16540 {
16541 if (lh->standard_opcode_lengths)
16542 xfree (lh->standard_opcode_lengths);
16543
16544 /* Remember that all the lh->file_names[i].name pointers are
16545 pointers into debug_line_buffer, and don't need to be freed. */
16546 if (lh->file_names)
16547 xfree (lh->file_names);
16548
16549 /* Similarly for the include directory names. */
16550 if (lh->include_dirs)
16551 xfree (lh->include_dirs);
16552
16553 xfree (lh);
16554 }
16555
16556 /* Add an entry to LH's include directory table. */
16557
16558 static void
16559 add_include_dir (struct line_header *lh, const char *include_dir)
16560 {
16561 /* Grow the array if necessary. */
16562 if (lh->include_dirs_size == 0)
16563 {
16564 lh->include_dirs_size = 1; /* for testing */
16565 lh->include_dirs = xmalloc (lh->include_dirs_size
16566 * sizeof (*lh->include_dirs));
16567 }
16568 else if (lh->num_include_dirs >= lh->include_dirs_size)
16569 {
16570 lh->include_dirs_size *= 2;
16571 lh->include_dirs = xrealloc (lh->include_dirs,
16572 (lh->include_dirs_size
16573 * sizeof (*lh->include_dirs)));
16574 }
16575
16576 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16577 }
16578
16579 /* Add an entry to LH's file name table. */
16580
16581 static void
16582 add_file_name (struct line_header *lh,
16583 const char *name,
16584 unsigned int dir_index,
16585 unsigned int mod_time,
16586 unsigned int length)
16587 {
16588 struct file_entry *fe;
16589
16590 /* Grow the array if necessary. */
16591 if (lh->file_names_size == 0)
16592 {
16593 lh->file_names_size = 1; /* for testing */
16594 lh->file_names = xmalloc (lh->file_names_size
16595 * sizeof (*lh->file_names));
16596 }
16597 else if (lh->num_file_names >= lh->file_names_size)
16598 {
16599 lh->file_names_size *= 2;
16600 lh->file_names = xrealloc (lh->file_names,
16601 (lh->file_names_size
16602 * sizeof (*lh->file_names)));
16603 }
16604
16605 fe = &lh->file_names[lh->num_file_names++];
16606 fe->name = name;
16607 fe->dir_index = dir_index;
16608 fe->mod_time = mod_time;
16609 fe->length = length;
16610 fe->included_p = 0;
16611 fe->symtab = NULL;
16612 }
16613
16614 /* A convenience function to find the proper .debug_line section for a
16615 CU. */
16616
16617 static struct dwarf2_section_info *
16618 get_debug_line_section (struct dwarf2_cu *cu)
16619 {
16620 struct dwarf2_section_info *section;
16621
16622 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16623 DWO file. */
16624 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16625 section = &cu->dwo_unit->dwo_file->sections.line;
16626 else if (cu->per_cu->is_dwz)
16627 {
16628 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16629
16630 section = &dwz->line;
16631 }
16632 else
16633 section = &dwarf2_per_objfile->line;
16634
16635 return section;
16636 }
16637
16638 /* Read the statement program header starting at OFFSET in
16639 .debug_line, or .debug_line.dwo. Return a pointer
16640 to a struct line_header, allocated using xmalloc.
16641
16642 NOTE: the strings in the include directory and file name tables of
16643 the returned object point into the dwarf line section buffer,
16644 and must not be freed. */
16645
16646 static struct line_header *
16647 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
16648 {
16649 struct cleanup *back_to;
16650 struct line_header *lh;
16651 const gdb_byte *line_ptr;
16652 unsigned int bytes_read, offset_size;
16653 int i;
16654 const char *cur_dir, *cur_file;
16655 struct dwarf2_section_info *section;
16656 bfd *abfd;
16657
16658 section = get_debug_line_section (cu);
16659 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16660 if (section->buffer == NULL)
16661 {
16662 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16663 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16664 else
16665 complaint (&symfile_complaints, _("missing .debug_line section"));
16666 return 0;
16667 }
16668
16669 /* We can't do this until we know the section is non-empty.
16670 Only then do we know we have such a section. */
16671 abfd = get_section_bfd_owner (section);
16672
16673 /* Make sure that at least there's room for the total_length field.
16674 That could be 12 bytes long, but we're just going to fudge that. */
16675 if (offset + 4 >= section->size)
16676 {
16677 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16678 return 0;
16679 }
16680
16681 lh = xmalloc (sizeof (*lh));
16682 memset (lh, 0, sizeof (*lh));
16683 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16684 (void *) lh);
16685
16686 line_ptr = section->buffer + offset;
16687
16688 /* Read in the header. */
16689 lh->total_length =
16690 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
16691 &bytes_read, &offset_size);
16692 line_ptr += bytes_read;
16693 if (line_ptr + lh->total_length > (section->buffer + section->size))
16694 {
16695 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16696 do_cleanups (back_to);
16697 return 0;
16698 }
16699 lh->statement_program_end = line_ptr + lh->total_length;
16700 lh->version = read_2_bytes (abfd, line_ptr);
16701 line_ptr += 2;
16702 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
16703 line_ptr += offset_size;
16704 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
16705 line_ptr += 1;
16706 if (lh->version >= 4)
16707 {
16708 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
16709 line_ptr += 1;
16710 }
16711 else
16712 lh->maximum_ops_per_instruction = 1;
16713
16714 if (lh->maximum_ops_per_instruction == 0)
16715 {
16716 lh->maximum_ops_per_instruction = 1;
16717 complaint (&symfile_complaints,
16718 _("invalid maximum_ops_per_instruction "
16719 "in `.debug_line' section"));
16720 }
16721
16722 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
16723 line_ptr += 1;
16724 lh->line_base = read_1_signed_byte (abfd, line_ptr);
16725 line_ptr += 1;
16726 lh->line_range = read_1_byte (abfd, line_ptr);
16727 line_ptr += 1;
16728 lh->opcode_base = read_1_byte (abfd, line_ptr);
16729 line_ptr += 1;
16730 lh->standard_opcode_lengths
16731 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
16732
16733 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
16734 for (i = 1; i < lh->opcode_base; ++i)
16735 {
16736 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
16737 line_ptr += 1;
16738 }
16739
16740 /* Read directory table. */
16741 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
16742 {
16743 line_ptr += bytes_read;
16744 add_include_dir (lh, cur_dir);
16745 }
16746 line_ptr += bytes_read;
16747
16748 /* Read file name table. */
16749 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
16750 {
16751 unsigned int dir_index, mod_time, length;
16752
16753 line_ptr += bytes_read;
16754 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16755 line_ptr += bytes_read;
16756 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16757 line_ptr += bytes_read;
16758 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16759 line_ptr += bytes_read;
16760
16761 add_file_name (lh, cur_file, dir_index, mod_time, length);
16762 }
16763 line_ptr += bytes_read;
16764 lh->statement_program_start = line_ptr;
16765
16766 if (line_ptr > (section->buffer + section->size))
16767 complaint (&symfile_complaints,
16768 _("line number info header doesn't "
16769 "fit in `.debug_line' section"));
16770
16771 discard_cleanups (back_to);
16772 return lh;
16773 }
16774
16775 /* Subroutine of dwarf_decode_lines to simplify it.
16776 Return the file name of the psymtab for included file FILE_INDEX
16777 in line header LH of PST.
16778 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16779 If space for the result is malloc'd, it will be freed by a cleanup.
16780 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
16781
16782 The function creates dangling cleanup registration. */
16783
16784 static const char *
16785 psymtab_include_file_name (const struct line_header *lh, int file_index,
16786 const struct partial_symtab *pst,
16787 const char *comp_dir)
16788 {
16789 const struct file_entry fe = lh->file_names [file_index];
16790 const char *include_name = fe.name;
16791 const char *include_name_to_compare = include_name;
16792 const char *dir_name = NULL;
16793 const char *pst_filename;
16794 char *copied_name = NULL;
16795 int file_is_pst;
16796
16797 if (fe.dir_index)
16798 dir_name = lh->include_dirs[fe.dir_index - 1];
16799
16800 if (!IS_ABSOLUTE_PATH (include_name)
16801 && (dir_name != NULL || comp_dir != NULL))
16802 {
16803 /* Avoid creating a duplicate psymtab for PST.
16804 We do this by comparing INCLUDE_NAME and PST_FILENAME.
16805 Before we do the comparison, however, we need to account
16806 for DIR_NAME and COMP_DIR.
16807 First prepend dir_name (if non-NULL). If we still don't
16808 have an absolute path prepend comp_dir (if non-NULL).
16809 However, the directory we record in the include-file's
16810 psymtab does not contain COMP_DIR (to match the
16811 corresponding symtab(s)).
16812
16813 Example:
16814
16815 bash$ cd /tmp
16816 bash$ gcc -g ./hello.c
16817 include_name = "hello.c"
16818 dir_name = "."
16819 DW_AT_comp_dir = comp_dir = "/tmp"
16820 DW_AT_name = "./hello.c" */
16821
16822 if (dir_name != NULL)
16823 {
16824 char *tem = concat (dir_name, SLASH_STRING,
16825 include_name, (char *)NULL);
16826
16827 make_cleanup (xfree, tem);
16828 include_name = tem;
16829 include_name_to_compare = include_name;
16830 }
16831 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
16832 {
16833 char *tem = concat (comp_dir, SLASH_STRING,
16834 include_name, (char *)NULL);
16835
16836 make_cleanup (xfree, tem);
16837 include_name_to_compare = tem;
16838 }
16839 }
16840
16841 pst_filename = pst->filename;
16842 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
16843 {
16844 copied_name = concat (pst->dirname, SLASH_STRING,
16845 pst_filename, (char *)NULL);
16846 pst_filename = copied_name;
16847 }
16848
16849 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
16850
16851 if (copied_name != NULL)
16852 xfree (copied_name);
16853
16854 if (file_is_pst)
16855 return NULL;
16856 return include_name;
16857 }
16858
16859 /* Ignore this record_line request. */
16860
16861 static void
16862 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
16863 {
16864 return;
16865 }
16866
16867 /* Subroutine of dwarf_decode_lines to simplify it.
16868 Process the line number information in LH. */
16869
16870 static void
16871 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
16872 struct dwarf2_cu *cu, struct partial_symtab *pst)
16873 {
16874 const gdb_byte *line_ptr, *extended_end;
16875 const gdb_byte *line_end;
16876 unsigned int bytes_read, extended_len;
16877 unsigned char op_code, extended_op, adj_opcode;
16878 CORE_ADDR baseaddr;
16879 struct objfile *objfile = cu->objfile;
16880 bfd *abfd = objfile->obfd;
16881 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16882 const int decode_for_pst_p = (pst != NULL);
16883 struct subfile *last_subfile = NULL;
16884 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
16885 = record_line;
16886
16887 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16888
16889 line_ptr = lh->statement_program_start;
16890 line_end = lh->statement_program_end;
16891
16892 /* Read the statement sequences until there's nothing left. */
16893 while (line_ptr < line_end)
16894 {
16895 /* state machine registers */
16896 CORE_ADDR address = 0;
16897 unsigned int file = 1;
16898 unsigned int line = 1;
16899 unsigned int column = 0;
16900 int is_stmt = lh->default_is_stmt;
16901 int basic_block = 0;
16902 int end_sequence = 0;
16903 CORE_ADDR addr;
16904 unsigned char op_index = 0;
16905
16906 if (!decode_for_pst_p && lh->num_file_names >= file)
16907 {
16908 /* Start a subfile for the current file of the state machine. */
16909 /* lh->include_dirs and lh->file_names are 0-based, but the
16910 directory and file name numbers in the statement program
16911 are 1-based. */
16912 struct file_entry *fe = &lh->file_names[file - 1];
16913 const char *dir = NULL;
16914
16915 if (fe->dir_index)
16916 dir = lh->include_dirs[fe->dir_index - 1];
16917
16918 dwarf2_start_subfile (fe->name, dir, comp_dir);
16919 }
16920
16921 /* Decode the table. */
16922 while (!end_sequence)
16923 {
16924 op_code = read_1_byte (abfd, line_ptr);
16925 line_ptr += 1;
16926 if (line_ptr > line_end)
16927 {
16928 dwarf2_debug_line_missing_end_sequence_complaint ();
16929 break;
16930 }
16931
16932 if (op_code >= lh->opcode_base)
16933 {
16934 /* Special operand. */
16935 adj_opcode = op_code - lh->opcode_base;
16936 address += (((op_index + (adj_opcode / lh->line_range))
16937 / lh->maximum_ops_per_instruction)
16938 * lh->minimum_instruction_length);
16939 op_index = ((op_index + (adj_opcode / lh->line_range))
16940 % lh->maximum_ops_per_instruction);
16941 line += lh->line_base + (adj_opcode % lh->line_range);
16942 if (lh->num_file_names < file || file == 0)
16943 dwarf2_debug_line_missing_file_complaint ();
16944 /* For now we ignore lines not starting on an
16945 instruction boundary. */
16946 else if (op_index == 0)
16947 {
16948 lh->file_names[file - 1].included_p = 1;
16949 if (!decode_for_pst_p && is_stmt)
16950 {
16951 if (last_subfile != current_subfile)
16952 {
16953 addr = gdbarch_addr_bits_remove (gdbarch, address);
16954 if (last_subfile)
16955 (*p_record_line) (last_subfile, 0, addr);
16956 last_subfile = current_subfile;
16957 }
16958 /* Append row to matrix using current values. */
16959 addr = gdbarch_addr_bits_remove (gdbarch, address);
16960 (*p_record_line) (current_subfile, line, addr);
16961 }
16962 }
16963 basic_block = 0;
16964 }
16965 else switch (op_code)
16966 {
16967 case DW_LNS_extended_op:
16968 extended_len = read_unsigned_leb128 (abfd, line_ptr,
16969 &bytes_read);
16970 line_ptr += bytes_read;
16971 extended_end = line_ptr + extended_len;
16972 extended_op = read_1_byte (abfd, line_ptr);
16973 line_ptr += 1;
16974 switch (extended_op)
16975 {
16976 case DW_LNE_end_sequence:
16977 p_record_line = record_line;
16978 end_sequence = 1;
16979 break;
16980 case DW_LNE_set_address:
16981 address = read_address (abfd, line_ptr, cu, &bytes_read);
16982
16983 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
16984 {
16985 /* This line table is for a function which has been
16986 GCd by the linker. Ignore it. PR gdb/12528 */
16987
16988 long line_offset
16989 = line_ptr - get_debug_line_section (cu)->buffer;
16990
16991 complaint (&symfile_complaints,
16992 _(".debug_line address at offset 0x%lx is 0 "
16993 "[in module %s]"),
16994 line_offset, objfile_name (objfile));
16995 p_record_line = noop_record_line;
16996 }
16997
16998 op_index = 0;
16999 line_ptr += bytes_read;
17000 address += baseaddr;
17001 break;
17002 case DW_LNE_define_file:
17003 {
17004 const char *cur_file;
17005 unsigned int dir_index, mod_time, length;
17006
17007 cur_file = read_direct_string (abfd, line_ptr,
17008 &bytes_read);
17009 line_ptr += bytes_read;
17010 dir_index =
17011 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17012 line_ptr += bytes_read;
17013 mod_time =
17014 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17015 line_ptr += bytes_read;
17016 length =
17017 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17018 line_ptr += bytes_read;
17019 add_file_name (lh, cur_file, dir_index, mod_time, length);
17020 }
17021 break;
17022 case DW_LNE_set_discriminator:
17023 /* The discriminator is not interesting to the debugger;
17024 just ignore it. */
17025 line_ptr = extended_end;
17026 break;
17027 default:
17028 complaint (&symfile_complaints,
17029 _("mangled .debug_line section"));
17030 return;
17031 }
17032 /* Make sure that we parsed the extended op correctly. If e.g.
17033 we expected a different address size than the producer used,
17034 we may have read the wrong number of bytes. */
17035 if (line_ptr != extended_end)
17036 {
17037 complaint (&symfile_complaints,
17038 _("mangled .debug_line section"));
17039 return;
17040 }
17041 break;
17042 case DW_LNS_copy:
17043 if (lh->num_file_names < file || file == 0)
17044 dwarf2_debug_line_missing_file_complaint ();
17045 else
17046 {
17047 lh->file_names[file - 1].included_p = 1;
17048 if (!decode_for_pst_p && is_stmt)
17049 {
17050 if (last_subfile != current_subfile)
17051 {
17052 addr = gdbarch_addr_bits_remove (gdbarch, address);
17053 if (last_subfile)
17054 (*p_record_line) (last_subfile, 0, addr);
17055 last_subfile = current_subfile;
17056 }
17057 addr = gdbarch_addr_bits_remove (gdbarch, address);
17058 (*p_record_line) (current_subfile, line, addr);
17059 }
17060 }
17061 basic_block = 0;
17062 break;
17063 case DW_LNS_advance_pc:
17064 {
17065 CORE_ADDR adjust
17066 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17067
17068 address += (((op_index + adjust)
17069 / lh->maximum_ops_per_instruction)
17070 * lh->minimum_instruction_length);
17071 op_index = ((op_index + adjust)
17072 % lh->maximum_ops_per_instruction);
17073 line_ptr += bytes_read;
17074 }
17075 break;
17076 case DW_LNS_advance_line:
17077 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
17078 line_ptr += bytes_read;
17079 break;
17080 case DW_LNS_set_file:
17081 {
17082 /* The arrays lh->include_dirs and lh->file_names are
17083 0-based, but the directory and file name numbers in
17084 the statement program are 1-based. */
17085 struct file_entry *fe;
17086 const char *dir = NULL;
17087
17088 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17089 line_ptr += bytes_read;
17090 if (lh->num_file_names < file || file == 0)
17091 dwarf2_debug_line_missing_file_complaint ();
17092 else
17093 {
17094 fe = &lh->file_names[file - 1];
17095 if (fe->dir_index)
17096 dir = lh->include_dirs[fe->dir_index - 1];
17097 if (!decode_for_pst_p)
17098 {
17099 last_subfile = current_subfile;
17100 dwarf2_start_subfile (fe->name, dir, comp_dir);
17101 }
17102 }
17103 }
17104 break;
17105 case DW_LNS_set_column:
17106 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17107 line_ptr += bytes_read;
17108 break;
17109 case DW_LNS_negate_stmt:
17110 is_stmt = (!is_stmt);
17111 break;
17112 case DW_LNS_set_basic_block:
17113 basic_block = 1;
17114 break;
17115 /* Add to the address register of the state machine the
17116 address increment value corresponding to special opcode
17117 255. I.e., this value is scaled by the minimum
17118 instruction length since special opcode 255 would have
17119 scaled the increment. */
17120 case DW_LNS_const_add_pc:
17121 {
17122 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17123
17124 address += (((op_index + adjust)
17125 / lh->maximum_ops_per_instruction)
17126 * lh->minimum_instruction_length);
17127 op_index = ((op_index + adjust)
17128 % lh->maximum_ops_per_instruction);
17129 }
17130 break;
17131 case DW_LNS_fixed_advance_pc:
17132 address += read_2_bytes (abfd, line_ptr);
17133 op_index = 0;
17134 line_ptr += 2;
17135 break;
17136 default:
17137 {
17138 /* Unknown standard opcode, ignore it. */
17139 int i;
17140
17141 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17142 {
17143 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17144 line_ptr += bytes_read;
17145 }
17146 }
17147 }
17148 }
17149 if (lh->num_file_names < file || file == 0)
17150 dwarf2_debug_line_missing_file_complaint ();
17151 else
17152 {
17153 lh->file_names[file - 1].included_p = 1;
17154 if (!decode_for_pst_p)
17155 {
17156 addr = gdbarch_addr_bits_remove (gdbarch, address);
17157 (*p_record_line) (current_subfile, 0, addr);
17158 }
17159 }
17160 }
17161 }
17162
17163 /* Decode the Line Number Program (LNP) for the given line_header
17164 structure and CU. The actual information extracted and the type
17165 of structures created from the LNP depends on the value of PST.
17166
17167 1. If PST is NULL, then this procedure uses the data from the program
17168 to create all necessary symbol tables, and their linetables.
17169
17170 2. If PST is not NULL, this procedure reads the program to determine
17171 the list of files included by the unit represented by PST, and
17172 builds all the associated partial symbol tables.
17173
17174 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17175 It is used for relative paths in the line table.
17176 NOTE: When processing partial symtabs (pst != NULL),
17177 comp_dir == pst->dirname.
17178
17179 NOTE: It is important that psymtabs have the same file name (via strcmp)
17180 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17181 symtab we don't use it in the name of the psymtabs we create.
17182 E.g. expand_line_sal requires this when finding psymtabs to expand.
17183 A good testcase for this is mb-inline.exp. */
17184
17185 static void
17186 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17187 struct dwarf2_cu *cu, struct partial_symtab *pst,
17188 int want_line_info)
17189 {
17190 struct objfile *objfile = cu->objfile;
17191 const int decode_for_pst_p = (pst != NULL);
17192 struct subfile *first_subfile = current_subfile;
17193
17194 if (want_line_info)
17195 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
17196
17197 if (decode_for_pst_p)
17198 {
17199 int file_index;
17200
17201 /* Now that we're done scanning the Line Header Program, we can
17202 create the psymtab of each included file. */
17203 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17204 if (lh->file_names[file_index].included_p == 1)
17205 {
17206 const char *include_name =
17207 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17208 if (include_name != NULL)
17209 dwarf2_create_include_psymtab (include_name, pst, objfile);
17210 }
17211 }
17212 else
17213 {
17214 /* Make sure a symtab is created for every file, even files
17215 which contain only variables (i.e. no code with associated
17216 line numbers). */
17217 int i;
17218
17219 for (i = 0; i < lh->num_file_names; i++)
17220 {
17221 const char *dir = NULL;
17222 struct file_entry *fe;
17223
17224 fe = &lh->file_names[i];
17225 if (fe->dir_index)
17226 dir = lh->include_dirs[fe->dir_index - 1];
17227 dwarf2_start_subfile (fe->name, dir, comp_dir);
17228
17229 /* Skip the main file; we don't need it, and it must be
17230 allocated last, so that it will show up before the
17231 non-primary symtabs in the objfile's symtab list. */
17232 if (current_subfile == first_subfile)
17233 continue;
17234
17235 if (current_subfile->symtab == NULL)
17236 current_subfile->symtab = allocate_symtab (current_subfile->name,
17237 objfile);
17238 fe->symtab = current_subfile->symtab;
17239 }
17240 }
17241 }
17242
17243 /* Start a subfile for DWARF. FILENAME is the name of the file and
17244 DIRNAME the name of the source directory which contains FILENAME
17245 or NULL if not known. COMP_DIR is the compilation directory for the
17246 linetable's compilation unit or NULL if not known.
17247 This routine tries to keep line numbers from identical absolute and
17248 relative file names in a common subfile.
17249
17250 Using the `list' example from the GDB testsuite, which resides in
17251 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17252 of /srcdir/list0.c yields the following debugging information for list0.c:
17253
17254 DW_AT_name: /srcdir/list0.c
17255 DW_AT_comp_dir: /compdir
17256 files.files[0].name: list0.h
17257 files.files[0].dir: /srcdir
17258 files.files[1].name: list0.c
17259 files.files[1].dir: /srcdir
17260
17261 The line number information for list0.c has to end up in a single
17262 subfile, so that `break /srcdir/list0.c:1' works as expected.
17263 start_subfile will ensure that this happens provided that we pass the
17264 concatenation of files.files[1].dir and files.files[1].name as the
17265 subfile's name. */
17266
17267 static void
17268 dwarf2_start_subfile (const char *filename, const char *dirname,
17269 const char *comp_dir)
17270 {
17271 char *copy = NULL;
17272
17273 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17274 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17275 second argument to start_subfile. To be consistent, we do the
17276 same here. In order not to lose the line information directory,
17277 we concatenate it to the filename when it makes sense.
17278 Note that the Dwarf3 standard says (speaking of filenames in line
17279 information): ``The directory index is ignored for file names
17280 that represent full path names''. Thus ignoring dirname in the
17281 `else' branch below isn't an issue. */
17282
17283 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17284 {
17285 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17286 filename = copy;
17287 }
17288
17289 start_subfile (filename, comp_dir);
17290
17291 if (copy != NULL)
17292 xfree (copy);
17293 }
17294
17295 /* Start a symtab for DWARF.
17296 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17297
17298 static void
17299 dwarf2_start_symtab (struct dwarf2_cu *cu,
17300 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17301 {
17302 start_symtab (name, comp_dir, low_pc);
17303 record_debugformat ("DWARF 2");
17304 record_producer (cu->producer);
17305
17306 /* We assume that we're processing GCC output. */
17307 processing_gcc_compilation = 2;
17308
17309 cu->processing_has_namespace_info = 0;
17310 }
17311
17312 static void
17313 var_decode_location (struct attribute *attr, struct symbol *sym,
17314 struct dwarf2_cu *cu)
17315 {
17316 struct objfile *objfile = cu->objfile;
17317 struct comp_unit_head *cu_header = &cu->header;
17318
17319 /* NOTE drow/2003-01-30: There used to be a comment and some special
17320 code here to turn a symbol with DW_AT_external and a
17321 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17322 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17323 with some versions of binutils) where shared libraries could have
17324 relocations against symbols in their debug information - the
17325 minimal symbol would have the right address, but the debug info
17326 would not. It's no longer necessary, because we will explicitly
17327 apply relocations when we read in the debug information now. */
17328
17329 /* A DW_AT_location attribute with no contents indicates that a
17330 variable has been optimized away. */
17331 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17332 {
17333 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17334 return;
17335 }
17336
17337 /* Handle one degenerate form of location expression specially, to
17338 preserve GDB's previous behavior when section offsets are
17339 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17340 then mark this symbol as LOC_STATIC. */
17341
17342 if (attr_form_is_block (attr)
17343 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17344 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17345 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17346 && (DW_BLOCK (attr)->size
17347 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17348 {
17349 unsigned int dummy;
17350
17351 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17352 SYMBOL_VALUE_ADDRESS (sym) =
17353 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17354 else
17355 SYMBOL_VALUE_ADDRESS (sym) =
17356 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17357 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17358 fixup_symbol_section (sym, objfile);
17359 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17360 SYMBOL_SECTION (sym));
17361 return;
17362 }
17363
17364 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17365 expression evaluator, and use LOC_COMPUTED only when necessary
17366 (i.e. when the value of a register or memory location is
17367 referenced, or a thread-local block, etc.). Then again, it might
17368 not be worthwhile. I'm assuming that it isn't unless performance
17369 or memory numbers show me otherwise. */
17370
17371 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17372
17373 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17374 cu->has_loclist = 1;
17375 }
17376
17377 /* Given a pointer to a DWARF information entry, figure out if we need
17378 to make a symbol table entry for it, and if so, create a new entry
17379 and return a pointer to it.
17380 If TYPE is NULL, determine symbol type from the die, otherwise
17381 used the passed type.
17382 If SPACE is not NULL, use it to hold the new symbol. If it is
17383 NULL, allocate a new symbol on the objfile's obstack. */
17384
17385 static struct symbol *
17386 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17387 struct symbol *space)
17388 {
17389 struct objfile *objfile = cu->objfile;
17390 struct symbol *sym = NULL;
17391 const char *name;
17392 struct attribute *attr = NULL;
17393 struct attribute *attr2 = NULL;
17394 CORE_ADDR baseaddr;
17395 struct pending **list_to_add = NULL;
17396
17397 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17398
17399 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17400
17401 name = dwarf2_name (die, cu);
17402 if (name)
17403 {
17404 const char *linkagename;
17405 int suppress_add = 0;
17406
17407 if (space)
17408 sym = space;
17409 else
17410 sym = allocate_symbol (objfile);
17411 OBJSTAT (objfile, n_syms++);
17412
17413 /* Cache this symbol's name and the name's demangled form (if any). */
17414 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17415 linkagename = dwarf2_physname (name, die, cu);
17416 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17417
17418 /* Fortran does not have mangling standard and the mangling does differ
17419 between gfortran, iFort etc. */
17420 if (cu->language == language_fortran
17421 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17422 symbol_set_demangled_name (&(sym->ginfo),
17423 dwarf2_full_name (name, die, cu),
17424 NULL);
17425
17426 /* Default assumptions.
17427 Use the passed type or decode it from the die. */
17428 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17429 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17430 if (type != NULL)
17431 SYMBOL_TYPE (sym) = type;
17432 else
17433 SYMBOL_TYPE (sym) = die_type (die, cu);
17434 attr = dwarf2_attr (die,
17435 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17436 cu);
17437 if (attr)
17438 {
17439 SYMBOL_LINE (sym) = DW_UNSND (attr);
17440 }
17441
17442 attr = dwarf2_attr (die,
17443 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17444 cu);
17445 if (attr)
17446 {
17447 int file_index = DW_UNSND (attr);
17448
17449 if (cu->line_header == NULL
17450 || file_index > cu->line_header->num_file_names)
17451 complaint (&symfile_complaints,
17452 _("file index out of range"));
17453 else if (file_index > 0)
17454 {
17455 struct file_entry *fe;
17456
17457 fe = &cu->line_header->file_names[file_index - 1];
17458 SYMBOL_SYMTAB (sym) = fe->symtab;
17459 }
17460 }
17461
17462 switch (die->tag)
17463 {
17464 case DW_TAG_label:
17465 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17466 if (attr)
17467 {
17468 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
17469 }
17470 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17471 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17472 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17473 add_symbol_to_list (sym, cu->list_in_scope);
17474 break;
17475 case DW_TAG_subprogram:
17476 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17477 finish_block. */
17478 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17479 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17480 if ((attr2 && (DW_UNSND (attr2) != 0))
17481 || cu->language == language_ada)
17482 {
17483 /* Subprograms marked external are stored as a global symbol.
17484 Ada subprograms, whether marked external or not, are always
17485 stored as a global symbol, because we want to be able to
17486 access them globally. For instance, we want to be able
17487 to break on a nested subprogram without having to
17488 specify the context. */
17489 list_to_add = &global_symbols;
17490 }
17491 else
17492 {
17493 list_to_add = cu->list_in_scope;
17494 }
17495 break;
17496 case DW_TAG_inlined_subroutine:
17497 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17498 finish_block. */
17499 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17500 SYMBOL_INLINED (sym) = 1;
17501 list_to_add = cu->list_in_scope;
17502 break;
17503 case DW_TAG_template_value_param:
17504 suppress_add = 1;
17505 /* Fall through. */
17506 case DW_TAG_constant:
17507 case DW_TAG_variable:
17508 case DW_TAG_member:
17509 /* Compilation with minimal debug info may result in
17510 variables with missing type entries. Change the
17511 misleading `void' type to something sensible. */
17512 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17513 SYMBOL_TYPE (sym)
17514 = objfile_type (objfile)->nodebug_data_symbol;
17515
17516 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17517 /* In the case of DW_TAG_member, we should only be called for
17518 static const members. */
17519 if (die->tag == DW_TAG_member)
17520 {
17521 /* dwarf2_add_field uses die_is_declaration,
17522 so we do the same. */
17523 gdb_assert (die_is_declaration (die, cu));
17524 gdb_assert (attr);
17525 }
17526 if (attr)
17527 {
17528 dwarf2_const_value (attr, sym, cu);
17529 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17530 if (!suppress_add)
17531 {
17532 if (attr2 && (DW_UNSND (attr2) != 0))
17533 list_to_add = &global_symbols;
17534 else
17535 list_to_add = cu->list_in_scope;
17536 }
17537 break;
17538 }
17539 attr = dwarf2_attr (die, DW_AT_location, cu);
17540 if (attr)
17541 {
17542 var_decode_location (attr, sym, cu);
17543 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17544
17545 /* Fortran explicitly imports any global symbols to the local
17546 scope by DW_TAG_common_block. */
17547 if (cu->language == language_fortran && die->parent
17548 && die->parent->tag == DW_TAG_common_block)
17549 attr2 = NULL;
17550
17551 if (SYMBOL_CLASS (sym) == LOC_STATIC
17552 && SYMBOL_VALUE_ADDRESS (sym) == 0
17553 && !dwarf2_per_objfile->has_section_at_zero)
17554 {
17555 /* When a static variable is eliminated by the linker,
17556 the corresponding debug information is not stripped
17557 out, but the variable address is set to null;
17558 do not add such variables into symbol table. */
17559 }
17560 else if (attr2 && (DW_UNSND (attr2) != 0))
17561 {
17562 /* Workaround gfortran PR debug/40040 - it uses
17563 DW_AT_location for variables in -fPIC libraries which may
17564 get overriden by other libraries/executable and get
17565 a different address. Resolve it by the minimal symbol
17566 which may come from inferior's executable using copy
17567 relocation. Make this workaround only for gfortran as for
17568 other compilers GDB cannot guess the minimal symbol
17569 Fortran mangling kind. */
17570 if (cu->language == language_fortran && die->parent
17571 && die->parent->tag == DW_TAG_module
17572 && cu->producer
17573 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
17574 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17575
17576 /* A variable with DW_AT_external is never static,
17577 but it may be block-scoped. */
17578 list_to_add = (cu->list_in_scope == &file_symbols
17579 ? &global_symbols : cu->list_in_scope);
17580 }
17581 else
17582 list_to_add = cu->list_in_scope;
17583 }
17584 else
17585 {
17586 /* We do not know the address of this symbol.
17587 If it is an external symbol and we have type information
17588 for it, enter the symbol as a LOC_UNRESOLVED symbol.
17589 The address of the variable will then be determined from
17590 the minimal symbol table whenever the variable is
17591 referenced. */
17592 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17593
17594 /* Fortran explicitly imports any global symbols to the local
17595 scope by DW_TAG_common_block. */
17596 if (cu->language == language_fortran && die->parent
17597 && die->parent->tag == DW_TAG_common_block)
17598 {
17599 /* SYMBOL_CLASS doesn't matter here because
17600 read_common_block is going to reset it. */
17601 if (!suppress_add)
17602 list_to_add = cu->list_in_scope;
17603 }
17604 else if (attr2 && (DW_UNSND (attr2) != 0)
17605 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
17606 {
17607 /* A variable with DW_AT_external is never static, but it
17608 may be block-scoped. */
17609 list_to_add = (cu->list_in_scope == &file_symbols
17610 ? &global_symbols : cu->list_in_scope);
17611
17612 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17613 }
17614 else if (!die_is_declaration (die, cu))
17615 {
17616 /* Use the default LOC_OPTIMIZED_OUT class. */
17617 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
17618 if (!suppress_add)
17619 list_to_add = cu->list_in_scope;
17620 }
17621 }
17622 break;
17623 case DW_TAG_formal_parameter:
17624 /* If we are inside a function, mark this as an argument. If
17625 not, we might be looking at an argument to an inlined function
17626 when we do not have enough information to show inlined frames;
17627 pretend it's a local variable in that case so that the user can
17628 still see it. */
17629 if (context_stack_depth > 0
17630 && context_stack[context_stack_depth - 1].name != NULL)
17631 SYMBOL_IS_ARGUMENT (sym) = 1;
17632 attr = dwarf2_attr (die, DW_AT_location, cu);
17633 if (attr)
17634 {
17635 var_decode_location (attr, sym, cu);
17636 }
17637 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17638 if (attr)
17639 {
17640 dwarf2_const_value (attr, sym, cu);
17641 }
17642
17643 list_to_add = cu->list_in_scope;
17644 break;
17645 case DW_TAG_unspecified_parameters:
17646 /* From varargs functions; gdb doesn't seem to have any
17647 interest in this information, so just ignore it for now.
17648 (FIXME?) */
17649 break;
17650 case DW_TAG_template_type_param:
17651 suppress_add = 1;
17652 /* Fall through. */
17653 case DW_TAG_class_type:
17654 case DW_TAG_interface_type:
17655 case DW_TAG_structure_type:
17656 case DW_TAG_union_type:
17657 case DW_TAG_set_type:
17658 case DW_TAG_enumeration_type:
17659 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17660 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
17661
17662 {
17663 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
17664 really ever be static objects: otherwise, if you try
17665 to, say, break of a class's method and you're in a file
17666 which doesn't mention that class, it won't work unless
17667 the check for all static symbols in lookup_symbol_aux
17668 saves you. See the OtherFileClass tests in
17669 gdb.c++/namespace.exp. */
17670
17671 if (!suppress_add)
17672 {
17673 list_to_add = (cu->list_in_scope == &file_symbols
17674 && (cu->language == language_cplus
17675 || cu->language == language_java)
17676 ? &global_symbols : cu->list_in_scope);
17677
17678 /* The semantics of C++ state that "struct foo {
17679 ... }" also defines a typedef for "foo". A Java
17680 class declaration also defines a typedef for the
17681 class. */
17682 if (cu->language == language_cplus
17683 || cu->language == language_java
17684 || cu->language == language_ada)
17685 {
17686 /* The symbol's name is already allocated along
17687 with this objfile, so we don't need to
17688 duplicate it for the type. */
17689 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
17690 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
17691 }
17692 }
17693 }
17694 break;
17695 case DW_TAG_typedef:
17696 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17697 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17698 list_to_add = cu->list_in_scope;
17699 break;
17700 case DW_TAG_base_type:
17701 case DW_TAG_subrange_type:
17702 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17703 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17704 list_to_add = cu->list_in_scope;
17705 break;
17706 case DW_TAG_enumerator:
17707 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17708 if (attr)
17709 {
17710 dwarf2_const_value (attr, sym, cu);
17711 }
17712 {
17713 /* NOTE: carlton/2003-11-10: See comment above in the
17714 DW_TAG_class_type, etc. block. */
17715
17716 list_to_add = (cu->list_in_scope == &file_symbols
17717 && (cu->language == language_cplus
17718 || cu->language == language_java)
17719 ? &global_symbols : cu->list_in_scope);
17720 }
17721 break;
17722 case DW_TAG_imported_declaration:
17723 case DW_TAG_namespace:
17724 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17725 list_to_add = &global_symbols;
17726 break;
17727 case DW_TAG_module:
17728 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17729 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
17730 list_to_add = &global_symbols;
17731 break;
17732 case DW_TAG_common_block:
17733 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
17734 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
17735 add_symbol_to_list (sym, cu->list_in_scope);
17736 break;
17737 default:
17738 /* Not a tag we recognize. Hopefully we aren't processing
17739 trash data, but since we must specifically ignore things
17740 we don't recognize, there is nothing else we should do at
17741 this point. */
17742 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
17743 dwarf_tag_name (die->tag));
17744 break;
17745 }
17746
17747 if (suppress_add)
17748 {
17749 sym->hash_next = objfile->template_symbols;
17750 objfile->template_symbols = sym;
17751 list_to_add = NULL;
17752 }
17753
17754 if (list_to_add != NULL)
17755 add_symbol_to_list (sym, list_to_add);
17756
17757 /* For the benefit of old versions of GCC, check for anonymous
17758 namespaces based on the demangled name. */
17759 if (!cu->processing_has_namespace_info
17760 && cu->language == language_cplus)
17761 cp_scan_for_anonymous_namespaces (sym, objfile);
17762 }
17763 return (sym);
17764 }
17765
17766 /* A wrapper for new_symbol_full that always allocates a new symbol. */
17767
17768 static struct symbol *
17769 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
17770 {
17771 return new_symbol_full (die, type, cu, NULL);
17772 }
17773
17774 /* Given an attr with a DW_FORM_dataN value in host byte order,
17775 zero-extend it as appropriate for the symbol's type. The DWARF
17776 standard (v4) is not entirely clear about the meaning of using
17777 DW_FORM_dataN for a constant with a signed type, where the type is
17778 wider than the data. The conclusion of a discussion on the DWARF
17779 list was that this is unspecified. We choose to always zero-extend
17780 because that is the interpretation long in use by GCC. */
17781
17782 static gdb_byte *
17783 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
17784 struct dwarf2_cu *cu, LONGEST *value, int bits)
17785 {
17786 struct objfile *objfile = cu->objfile;
17787 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
17788 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
17789 LONGEST l = DW_UNSND (attr);
17790
17791 if (bits < sizeof (*value) * 8)
17792 {
17793 l &= ((LONGEST) 1 << bits) - 1;
17794 *value = l;
17795 }
17796 else if (bits == sizeof (*value) * 8)
17797 *value = l;
17798 else
17799 {
17800 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
17801 store_unsigned_integer (bytes, bits / 8, byte_order, l);
17802 return bytes;
17803 }
17804
17805 return NULL;
17806 }
17807
17808 /* Read a constant value from an attribute. Either set *VALUE, or if
17809 the value does not fit in *VALUE, set *BYTES - either already
17810 allocated on the objfile obstack, or newly allocated on OBSTACK,
17811 or, set *BATON, if we translated the constant to a location
17812 expression. */
17813
17814 static void
17815 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
17816 const char *name, struct obstack *obstack,
17817 struct dwarf2_cu *cu,
17818 LONGEST *value, const gdb_byte **bytes,
17819 struct dwarf2_locexpr_baton **baton)
17820 {
17821 struct objfile *objfile = cu->objfile;
17822 struct comp_unit_head *cu_header = &cu->header;
17823 struct dwarf_block *blk;
17824 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
17825 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
17826
17827 *value = 0;
17828 *bytes = NULL;
17829 *baton = NULL;
17830
17831 switch (attr->form)
17832 {
17833 case DW_FORM_addr:
17834 case DW_FORM_GNU_addr_index:
17835 {
17836 gdb_byte *data;
17837
17838 if (TYPE_LENGTH (type) != cu_header->addr_size)
17839 dwarf2_const_value_length_mismatch_complaint (name,
17840 cu_header->addr_size,
17841 TYPE_LENGTH (type));
17842 /* Symbols of this form are reasonably rare, so we just
17843 piggyback on the existing location code rather than writing
17844 a new implementation of symbol_computed_ops. */
17845 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
17846 (*baton)->per_cu = cu->per_cu;
17847 gdb_assert ((*baton)->per_cu);
17848
17849 (*baton)->size = 2 + cu_header->addr_size;
17850 data = obstack_alloc (obstack, (*baton)->size);
17851 (*baton)->data = data;
17852
17853 data[0] = DW_OP_addr;
17854 store_unsigned_integer (&data[1], cu_header->addr_size,
17855 byte_order, DW_ADDR (attr));
17856 data[cu_header->addr_size + 1] = DW_OP_stack_value;
17857 }
17858 break;
17859 case DW_FORM_string:
17860 case DW_FORM_strp:
17861 case DW_FORM_GNU_str_index:
17862 case DW_FORM_GNU_strp_alt:
17863 /* DW_STRING is already allocated on the objfile obstack, point
17864 directly to it. */
17865 *bytes = (const gdb_byte *) DW_STRING (attr);
17866 break;
17867 case DW_FORM_block1:
17868 case DW_FORM_block2:
17869 case DW_FORM_block4:
17870 case DW_FORM_block:
17871 case DW_FORM_exprloc:
17872 blk = DW_BLOCK (attr);
17873 if (TYPE_LENGTH (type) != blk->size)
17874 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
17875 TYPE_LENGTH (type));
17876 *bytes = blk->data;
17877 break;
17878
17879 /* The DW_AT_const_value attributes are supposed to carry the
17880 symbol's value "represented as it would be on the target
17881 architecture." By the time we get here, it's already been
17882 converted to host endianness, so we just need to sign- or
17883 zero-extend it as appropriate. */
17884 case DW_FORM_data1:
17885 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
17886 break;
17887 case DW_FORM_data2:
17888 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
17889 break;
17890 case DW_FORM_data4:
17891 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
17892 break;
17893 case DW_FORM_data8:
17894 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
17895 break;
17896
17897 case DW_FORM_sdata:
17898 *value = DW_SND (attr);
17899 break;
17900
17901 case DW_FORM_udata:
17902 *value = DW_UNSND (attr);
17903 break;
17904
17905 default:
17906 complaint (&symfile_complaints,
17907 _("unsupported const value attribute form: '%s'"),
17908 dwarf_form_name (attr->form));
17909 *value = 0;
17910 break;
17911 }
17912 }
17913
17914
17915 /* Copy constant value from an attribute to a symbol. */
17916
17917 static void
17918 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
17919 struct dwarf2_cu *cu)
17920 {
17921 struct objfile *objfile = cu->objfile;
17922 struct comp_unit_head *cu_header = &cu->header;
17923 LONGEST value;
17924 const gdb_byte *bytes;
17925 struct dwarf2_locexpr_baton *baton;
17926
17927 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
17928 SYMBOL_PRINT_NAME (sym),
17929 &objfile->objfile_obstack, cu,
17930 &value, &bytes, &baton);
17931
17932 if (baton != NULL)
17933 {
17934 SYMBOL_LOCATION_BATON (sym) = baton;
17935 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
17936 }
17937 else if (bytes != NULL)
17938 {
17939 SYMBOL_VALUE_BYTES (sym) = bytes;
17940 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
17941 }
17942 else
17943 {
17944 SYMBOL_VALUE (sym) = value;
17945 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
17946 }
17947 }
17948
17949 /* Return the type of the die in question using its DW_AT_type attribute. */
17950
17951 static struct type *
17952 die_type (struct die_info *die, struct dwarf2_cu *cu)
17953 {
17954 struct attribute *type_attr;
17955
17956 type_attr = dwarf2_attr (die, DW_AT_type, cu);
17957 if (!type_attr)
17958 {
17959 /* A missing DW_AT_type represents a void type. */
17960 return objfile_type (cu->objfile)->builtin_void;
17961 }
17962
17963 return lookup_die_type (die, type_attr, cu);
17964 }
17965
17966 /* True iff CU's producer generates GNAT Ada auxiliary information
17967 that allows to find parallel types through that information instead
17968 of having to do expensive parallel lookups by type name. */
17969
17970 static int
17971 need_gnat_info (struct dwarf2_cu *cu)
17972 {
17973 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
17974 of GNAT produces this auxiliary information, without any indication
17975 that it is produced. Part of enhancing the FSF version of GNAT
17976 to produce that information will be to put in place an indicator
17977 that we can use in order to determine whether the descriptive type
17978 info is available or not. One suggestion that has been made is
17979 to use a new attribute, attached to the CU die. For now, assume
17980 that the descriptive type info is not available. */
17981 return 0;
17982 }
17983
17984 /* Return the auxiliary type of the die in question using its
17985 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
17986 attribute is not present. */
17987
17988 static struct type *
17989 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
17990 {
17991 struct attribute *type_attr;
17992
17993 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
17994 if (!type_attr)
17995 return NULL;
17996
17997 return lookup_die_type (die, type_attr, cu);
17998 }
17999
18000 /* If DIE has a descriptive_type attribute, then set the TYPE's
18001 descriptive type accordingly. */
18002
18003 static void
18004 set_descriptive_type (struct type *type, struct die_info *die,
18005 struct dwarf2_cu *cu)
18006 {
18007 struct type *descriptive_type = die_descriptive_type (die, cu);
18008
18009 if (descriptive_type)
18010 {
18011 ALLOCATE_GNAT_AUX_TYPE (type);
18012 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18013 }
18014 }
18015
18016 /* Return the containing type of the die in question using its
18017 DW_AT_containing_type attribute. */
18018
18019 static struct type *
18020 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18021 {
18022 struct attribute *type_attr;
18023
18024 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18025 if (!type_attr)
18026 error (_("Dwarf Error: Problem turning containing type into gdb type "
18027 "[in module %s]"), objfile_name (cu->objfile));
18028
18029 return lookup_die_type (die, type_attr, cu);
18030 }
18031
18032 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18033
18034 static struct type *
18035 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18036 {
18037 struct objfile *objfile = dwarf2_per_objfile->objfile;
18038 char *message, *saved;
18039
18040 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18041 objfile_name (objfile),
18042 cu->header.offset.sect_off,
18043 die->offset.sect_off);
18044 saved = obstack_copy0 (&objfile->objfile_obstack,
18045 message, strlen (message));
18046 xfree (message);
18047
18048 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18049 }
18050
18051 /* Look up the type of DIE in CU using its type attribute ATTR.
18052 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18053 DW_AT_containing_type.
18054 If there is no type substitute an error marker. */
18055
18056 static struct type *
18057 lookup_die_type (struct die_info *die, const struct attribute *attr,
18058 struct dwarf2_cu *cu)
18059 {
18060 struct objfile *objfile = cu->objfile;
18061 struct type *this_type;
18062
18063 gdb_assert (attr->name == DW_AT_type
18064 || attr->name == DW_AT_GNAT_descriptive_type
18065 || attr->name == DW_AT_containing_type);
18066
18067 /* First see if we have it cached. */
18068
18069 if (attr->form == DW_FORM_GNU_ref_alt)
18070 {
18071 struct dwarf2_per_cu_data *per_cu;
18072 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18073
18074 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18075 this_type = get_die_type_at_offset (offset, per_cu);
18076 }
18077 else if (attr_form_is_ref (attr))
18078 {
18079 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18080
18081 this_type = get_die_type_at_offset (offset, cu->per_cu);
18082 }
18083 else if (attr->form == DW_FORM_ref_sig8)
18084 {
18085 ULONGEST signature = DW_SIGNATURE (attr);
18086
18087 return get_signatured_type (die, signature, cu);
18088 }
18089 else
18090 {
18091 complaint (&symfile_complaints,
18092 _("Dwarf Error: Bad type attribute %s in DIE"
18093 " at 0x%x [in module %s]"),
18094 dwarf_attr_name (attr->name), die->offset.sect_off,
18095 objfile_name (objfile));
18096 return build_error_marker_type (cu, die);
18097 }
18098
18099 /* If not cached we need to read it in. */
18100
18101 if (this_type == NULL)
18102 {
18103 struct die_info *type_die = NULL;
18104 struct dwarf2_cu *type_cu = cu;
18105
18106 if (attr_form_is_ref (attr))
18107 type_die = follow_die_ref (die, attr, &type_cu);
18108 if (type_die == NULL)
18109 return build_error_marker_type (cu, die);
18110 /* If we find the type now, it's probably because the type came
18111 from an inter-CU reference and the type's CU got expanded before
18112 ours. */
18113 this_type = read_type_die (type_die, type_cu);
18114 }
18115
18116 /* If we still don't have a type use an error marker. */
18117
18118 if (this_type == NULL)
18119 return build_error_marker_type (cu, die);
18120
18121 return this_type;
18122 }
18123
18124 /* Return the type in DIE, CU.
18125 Returns NULL for invalid types.
18126
18127 This first does a lookup in die_type_hash,
18128 and only reads the die in if necessary.
18129
18130 NOTE: This can be called when reading in partial or full symbols. */
18131
18132 static struct type *
18133 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18134 {
18135 struct type *this_type;
18136
18137 this_type = get_die_type (die, cu);
18138 if (this_type)
18139 return this_type;
18140
18141 return read_type_die_1 (die, cu);
18142 }
18143
18144 /* Read the type in DIE, CU.
18145 Returns NULL for invalid types. */
18146
18147 static struct type *
18148 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18149 {
18150 struct type *this_type = NULL;
18151
18152 switch (die->tag)
18153 {
18154 case DW_TAG_class_type:
18155 case DW_TAG_interface_type:
18156 case DW_TAG_structure_type:
18157 case DW_TAG_union_type:
18158 this_type = read_structure_type (die, cu);
18159 break;
18160 case DW_TAG_enumeration_type:
18161 this_type = read_enumeration_type (die, cu);
18162 break;
18163 case DW_TAG_subprogram:
18164 case DW_TAG_subroutine_type:
18165 case DW_TAG_inlined_subroutine:
18166 this_type = read_subroutine_type (die, cu);
18167 break;
18168 case DW_TAG_array_type:
18169 this_type = read_array_type (die, cu);
18170 break;
18171 case DW_TAG_set_type:
18172 this_type = read_set_type (die, cu);
18173 break;
18174 case DW_TAG_pointer_type:
18175 this_type = read_tag_pointer_type (die, cu);
18176 break;
18177 case DW_TAG_ptr_to_member_type:
18178 this_type = read_tag_ptr_to_member_type (die, cu);
18179 break;
18180 case DW_TAG_reference_type:
18181 this_type = read_tag_reference_type (die, cu);
18182 break;
18183 case DW_TAG_const_type:
18184 this_type = read_tag_const_type (die, cu);
18185 break;
18186 case DW_TAG_volatile_type:
18187 this_type = read_tag_volatile_type (die, cu);
18188 break;
18189 case DW_TAG_restrict_type:
18190 this_type = read_tag_restrict_type (die, cu);
18191 break;
18192 case DW_TAG_string_type:
18193 this_type = read_tag_string_type (die, cu);
18194 break;
18195 case DW_TAG_typedef:
18196 this_type = read_typedef (die, cu);
18197 break;
18198 case DW_TAG_subrange_type:
18199 this_type = read_subrange_type (die, cu);
18200 break;
18201 case DW_TAG_base_type:
18202 this_type = read_base_type (die, cu);
18203 break;
18204 case DW_TAG_unspecified_type:
18205 this_type = read_unspecified_type (die, cu);
18206 break;
18207 case DW_TAG_namespace:
18208 this_type = read_namespace_type (die, cu);
18209 break;
18210 case DW_TAG_module:
18211 this_type = read_module_type (die, cu);
18212 break;
18213 default:
18214 complaint (&symfile_complaints,
18215 _("unexpected tag in read_type_die: '%s'"),
18216 dwarf_tag_name (die->tag));
18217 break;
18218 }
18219
18220 return this_type;
18221 }
18222
18223 /* See if we can figure out if the class lives in a namespace. We do
18224 this by looking for a member function; its demangled name will
18225 contain namespace info, if there is any.
18226 Return the computed name or NULL.
18227 Space for the result is allocated on the objfile's obstack.
18228 This is the full-die version of guess_partial_die_structure_name.
18229 In this case we know DIE has no useful parent. */
18230
18231 static char *
18232 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18233 {
18234 struct die_info *spec_die;
18235 struct dwarf2_cu *spec_cu;
18236 struct die_info *child;
18237
18238 spec_cu = cu;
18239 spec_die = die_specification (die, &spec_cu);
18240 if (spec_die != NULL)
18241 {
18242 die = spec_die;
18243 cu = spec_cu;
18244 }
18245
18246 for (child = die->child;
18247 child != NULL;
18248 child = child->sibling)
18249 {
18250 if (child->tag == DW_TAG_subprogram)
18251 {
18252 struct attribute *attr;
18253
18254 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18255 if (attr == NULL)
18256 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18257 if (attr != NULL)
18258 {
18259 char *actual_name
18260 = language_class_name_from_physname (cu->language_defn,
18261 DW_STRING (attr));
18262 char *name = NULL;
18263
18264 if (actual_name != NULL)
18265 {
18266 const char *die_name = dwarf2_name (die, cu);
18267
18268 if (die_name != NULL
18269 && strcmp (die_name, actual_name) != 0)
18270 {
18271 /* Strip off the class name from the full name.
18272 We want the prefix. */
18273 int die_name_len = strlen (die_name);
18274 int actual_name_len = strlen (actual_name);
18275
18276 /* Test for '::' as a sanity check. */
18277 if (actual_name_len > die_name_len + 2
18278 && actual_name[actual_name_len
18279 - die_name_len - 1] == ':')
18280 name =
18281 obstack_copy0 (&cu->objfile->objfile_obstack,
18282 actual_name,
18283 actual_name_len - die_name_len - 2);
18284 }
18285 }
18286 xfree (actual_name);
18287 return name;
18288 }
18289 }
18290 }
18291
18292 return NULL;
18293 }
18294
18295 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18296 prefix part in such case. See
18297 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18298
18299 static char *
18300 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18301 {
18302 struct attribute *attr;
18303 char *base;
18304
18305 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18306 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18307 return NULL;
18308
18309 attr = dwarf2_attr (die, DW_AT_name, cu);
18310 if (attr != NULL && DW_STRING (attr) != NULL)
18311 return NULL;
18312
18313 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18314 if (attr == NULL)
18315 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18316 if (attr == NULL || DW_STRING (attr) == NULL)
18317 return NULL;
18318
18319 /* dwarf2_name had to be already called. */
18320 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18321
18322 /* Strip the base name, keep any leading namespaces/classes. */
18323 base = strrchr (DW_STRING (attr), ':');
18324 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18325 return "";
18326
18327 return obstack_copy0 (&cu->objfile->objfile_obstack,
18328 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18329 }
18330
18331 /* Return the name of the namespace/class that DIE is defined within,
18332 or "" if we can't tell. The caller should not xfree the result.
18333
18334 For example, if we're within the method foo() in the following
18335 code:
18336
18337 namespace N {
18338 class C {
18339 void foo () {
18340 }
18341 };
18342 }
18343
18344 then determine_prefix on foo's die will return "N::C". */
18345
18346 static const char *
18347 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18348 {
18349 struct die_info *parent, *spec_die;
18350 struct dwarf2_cu *spec_cu;
18351 struct type *parent_type;
18352 char *retval;
18353
18354 if (cu->language != language_cplus && cu->language != language_java
18355 && cu->language != language_fortran)
18356 return "";
18357
18358 retval = anonymous_struct_prefix (die, cu);
18359 if (retval)
18360 return retval;
18361
18362 /* We have to be careful in the presence of DW_AT_specification.
18363 For example, with GCC 3.4, given the code
18364
18365 namespace N {
18366 void foo() {
18367 // Definition of N::foo.
18368 }
18369 }
18370
18371 then we'll have a tree of DIEs like this:
18372
18373 1: DW_TAG_compile_unit
18374 2: DW_TAG_namespace // N
18375 3: DW_TAG_subprogram // declaration of N::foo
18376 4: DW_TAG_subprogram // definition of N::foo
18377 DW_AT_specification // refers to die #3
18378
18379 Thus, when processing die #4, we have to pretend that we're in
18380 the context of its DW_AT_specification, namely the contex of die
18381 #3. */
18382 spec_cu = cu;
18383 spec_die = die_specification (die, &spec_cu);
18384 if (spec_die == NULL)
18385 parent = die->parent;
18386 else
18387 {
18388 parent = spec_die->parent;
18389 cu = spec_cu;
18390 }
18391
18392 if (parent == NULL)
18393 return "";
18394 else if (parent->building_fullname)
18395 {
18396 const char *name;
18397 const char *parent_name;
18398
18399 /* It has been seen on RealView 2.2 built binaries,
18400 DW_TAG_template_type_param types actually _defined_ as
18401 children of the parent class:
18402
18403 enum E {};
18404 template class <class Enum> Class{};
18405 Class<enum E> class_e;
18406
18407 1: DW_TAG_class_type (Class)
18408 2: DW_TAG_enumeration_type (E)
18409 3: DW_TAG_enumerator (enum1:0)
18410 3: DW_TAG_enumerator (enum2:1)
18411 ...
18412 2: DW_TAG_template_type_param
18413 DW_AT_type DW_FORM_ref_udata (E)
18414
18415 Besides being broken debug info, it can put GDB into an
18416 infinite loop. Consider:
18417
18418 When we're building the full name for Class<E>, we'll start
18419 at Class, and go look over its template type parameters,
18420 finding E. We'll then try to build the full name of E, and
18421 reach here. We're now trying to build the full name of E,
18422 and look over the parent DIE for containing scope. In the
18423 broken case, if we followed the parent DIE of E, we'd again
18424 find Class, and once again go look at its template type
18425 arguments, etc., etc. Simply don't consider such parent die
18426 as source-level parent of this die (it can't be, the language
18427 doesn't allow it), and break the loop here. */
18428 name = dwarf2_name (die, cu);
18429 parent_name = dwarf2_name (parent, cu);
18430 complaint (&symfile_complaints,
18431 _("template param type '%s' defined within parent '%s'"),
18432 name ? name : "<unknown>",
18433 parent_name ? parent_name : "<unknown>");
18434 return "";
18435 }
18436 else
18437 switch (parent->tag)
18438 {
18439 case DW_TAG_namespace:
18440 parent_type = read_type_die (parent, cu);
18441 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18442 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18443 Work around this problem here. */
18444 if (cu->language == language_cplus
18445 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18446 return "";
18447 /* We give a name to even anonymous namespaces. */
18448 return TYPE_TAG_NAME (parent_type);
18449 case DW_TAG_class_type:
18450 case DW_TAG_interface_type:
18451 case DW_TAG_structure_type:
18452 case DW_TAG_union_type:
18453 case DW_TAG_module:
18454 parent_type = read_type_die (parent, cu);
18455 if (TYPE_TAG_NAME (parent_type) != NULL)
18456 return TYPE_TAG_NAME (parent_type);
18457 else
18458 /* An anonymous structure is only allowed non-static data
18459 members; no typedefs, no member functions, et cetera.
18460 So it does not need a prefix. */
18461 return "";
18462 case DW_TAG_compile_unit:
18463 case DW_TAG_partial_unit:
18464 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18465 if (cu->language == language_cplus
18466 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18467 && die->child != NULL
18468 && (die->tag == DW_TAG_class_type
18469 || die->tag == DW_TAG_structure_type
18470 || die->tag == DW_TAG_union_type))
18471 {
18472 char *name = guess_full_die_structure_name (die, cu);
18473 if (name != NULL)
18474 return name;
18475 }
18476 return "";
18477 default:
18478 return determine_prefix (parent, cu);
18479 }
18480 }
18481
18482 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18483 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18484 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18485 an obconcat, otherwise allocate storage for the result. The CU argument is
18486 used to determine the language and hence, the appropriate separator. */
18487
18488 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18489
18490 static char *
18491 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18492 int physname, struct dwarf2_cu *cu)
18493 {
18494 const char *lead = "";
18495 const char *sep;
18496
18497 if (suffix == NULL || suffix[0] == '\0'
18498 || prefix == NULL || prefix[0] == '\0')
18499 sep = "";
18500 else if (cu->language == language_java)
18501 sep = ".";
18502 else if (cu->language == language_fortran && physname)
18503 {
18504 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18505 DW_AT_MIPS_linkage_name is preferred and used instead. */
18506
18507 lead = "__";
18508 sep = "_MOD_";
18509 }
18510 else
18511 sep = "::";
18512
18513 if (prefix == NULL)
18514 prefix = "";
18515 if (suffix == NULL)
18516 suffix = "";
18517
18518 if (obs == NULL)
18519 {
18520 char *retval
18521 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
18522
18523 strcpy (retval, lead);
18524 strcat (retval, prefix);
18525 strcat (retval, sep);
18526 strcat (retval, suffix);
18527 return retval;
18528 }
18529 else
18530 {
18531 /* We have an obstack. */
18532 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
18533 }
18534 }
18535
18536 /* Return sibling of die, NULL if no sibling. */
18537
18538 static struct die_info *
18539 sibling_die (struct die_info *die)
18540 {
18541 return die->sibling;
18542 }
18543
18544 /* Get name of a die, return NULL if not found. */
18545
18546 static const char *
18547 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
18548 struct obstack *obstack)
18549 {
18550 if (name && cu->language == language_cplus)
18551 {
18552 char *canon_name = cp_canonicalize_string (name);
18553
18554 if (canon_name != NULL)
18555 {
18556 if (strcmp (canon_name, name) != 0)
18557 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
18558 xfree (canon_name);
18559 }
18560 }
18561
18562 return name;
18563 }
18564
18565 /* Get name of a die, return NULL if not found. */
18566
18567 static const char *
18568 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
18569 {
18570 struct attribute *attr;
18571
18572 attr = dwarf2_attr (die, DW_AT_name, cu);
18573 if ((!attr || !DW_STRING (attr))
18574 && die->tag != DW_TAG_class_type
18575 && die->tag != DW_TAG_interface_type
18576 && die->tag != DW_TAG_structure_type
18577 && die->tag != DW_TAG_union_type)
18578 return NULL;
18579
18580 switch (die->tag)
18581 {
18582 case DW_TAG_compile_unit:
18583 case DW_TAG_partial_unit:
18584 /* Compilation units have a DW_AT_name that is a filename, not
18585 a source language identifier. */
18586 case DW_TAG_enumeration_type:
18587 case DW_TAG_enumerator:
18588 /* These tags always have simple identifiers already; no need
18589 to canonicalize them. */
18590 return DW_STRING (attr);
18591
18592 case DW_TAG_subprogram:
18593 /* Java constructors will all be named "<init>", so return
18594 the class name when we see this special case. */
18595 if (cu->language == language_java
18596 && DW_STRING (attr) != NULL
18597 && strcmp (DW_STRING (attr), "<init>") == 0)
18598 {
18599 struct dwarf2_cu *spec_cu = cu;
18600 struct die_info *spec_die;
18601
18602 /* GCJ will output '<init>' for Java constructor names.
18603 For this special case, return the name of the parent class. */
18604
18605 /* GCJ may output suprogram DIEs with AT_specification set.
18606 If so, use the name of the specified DIE. */
18607 spec_die = die_specification (die, &spec_cu);
18608 if (spec_die != NULL)
18609 return dwarf2_name (spec_die, spec_cu);
18610
18611 do
18612 {
18613 die = die->parent;
18614 if (die->tag == DW_TAG_class_type)
18615 return dwarf2_name (die, cu);
18616 }
18617 while (die->tag != DW_TAG_compile_unit
18618 && die->tag != DW_TAG_partial_unit);
18619 }
18620 break;
18621
18622 case DW_TAG_class_type:
18623 case DW_TAG_interface_type:
18624 case DW_TAG_structure_type:
18625 case DW_TAG_union_type:
18626 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
18627 structures or unions. These were of the form "._%d" in GCC 4.1,
18628 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
18629 and GCC 4.4. We work around this problem by ignoring these. */
18630 if (attr && DW_STRING (attr)
18631 && (strncmp (DW_STRING (attr), "._", 2) == 0
18632 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
18633 return NULL;
18634
18635 /* GCC might emit a nameless typedef that has a linkage name. See
18636 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18637 if (!attr || DW_STRING (attr) == NULL)
18638 {
18639 char *demangled = NULL;
18640
18641 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18642 if (attr == NULL)
18643 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18644
18645 if (attr == NULL || DW_STRING (attr) == NULL)
18646 return NULL;
18647
18648 /* Avoid demangling DW_STRING (attr) the second time on a second
18649 call for the same DIE. */
18650 if (!DW_STRING_IS_CANONICAL (attr))
18651 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
18652
18653 if (demangled)
18654 {
18655 char *base;
18656
18657 /* FIXME: we already did this for the partial symbol... */
18658 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
18659 demangled, strlen (demangled));
18660 DW_STRING_IS_CANONICAL (attr) = 1;
18661 xfree (demangled);
18662
18663 /* Strip any leading namespaces/classes, keep only the base name.
18664 DW_AT_name for named DIEs does not contain the prefixes. */
18665 base = strrchr (DW_STRING (attr), ':');
18666 if (base && base > DW_STRING (attr) && base[-1] == ':')
18667 return &base[1];
18668 else
18669 return DW_STRING (attr);
18670 }
18671 }
18672 break;
18673
18674 default:
18675 break;
18676 }
18677
18678 if (!DW_STRING_IS_CANONICAL (attr))
18679 {
18680 DW_STRING (attr)
18681 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
18682 &cu->objfile->objfile_obstack);
18683 DW_STRING_IS_CANONICAL (attr) = 1;
18684 }
18685 return DW_STRING (attr);
18686 }
18687
18688 /* Return the die that this die in an extension of, or NULL if there
18689 is none. *EXT_CU is the CU containing DIE on input, and the CU
18690 containing the return value on output. */
18691
18692 static struct die_info *
18693 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
18694 {
18695 struct attribute *attr;
18696
18697 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
18698 if (attr == NULL)
18699 return NULL;
18700
18701 return follow_die_ref (die, attr, ext_cu);
18702 }
18703
18704 /* Convert a DIE tag into its string name. */
18705
18706 static const char *
18707 dwarf_tag_name (unsigned tag)
18708 {
18709 const char *name = get_DW_TAG_name (tag);
18710
18711 if (name == NULL)
18712 return "DW_TAG_<unknown>";
18713
18714 return name;
18715 }
18716
18717 /* Convert a DWARF attribute code into its string name. */
18718
18719 static const char *
18720 dwarf_attr_name (unsigned attr)
18721 {
18722 const char *name;
18723
18724 #ifdef MIPS /* collides with DW_AT_HP_block_index */
18725 if (attr == DW_AT_MIPS_fde)
18726 return "DW_AT_MIPS_fde";
18727 #else
18728 if (attr == DW_AT_HP_block_index)
18729 return "DW_AT_HP_block_index";
18730 #endif
18731
18732 name = get_DW_AT_name (attr);
18733
18734 if (name == NULL)
18735 return "DW_AT_<unknown>";
18736
18737 return name;
18738 }
18739
18740 /* Convert a DWARF value form code into its string name. */
18741
18742 static const char *
18743 dwarf_form_name (unsigned form)
18744 {
18745 const char *name = get_DW_FORM_name (form);
18746
18747 if (name == NULL)
18748 return "DW_FORM_<unknown>";
18749
18750 return name;
18751 }
18752
18753 static char *
18754 dwarf_bool_name (unsigned mybool)
18755 {
18756 if (mybool)
18757 return "TRUE";
18758 else
18759 return "FALSE";
18760 }
18761
18762 /* Convert a DWARF type code into its string name. */
18763
18764 static const char *
18765 dwarf_type_encoding_name (unsigned enc)
18766 {
18767 const char *name = get_DW_ATE_name (enc);
18768
18769 if (name == NULL)
18770 return "DW_ATE_<unknown>";
18771
18772 return name;
18773 }
18774
18775 static void
18776 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
18777 {
18778 unsigned int i;
18779
18780 print_spaces (indent, f);
18781 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
18782 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
18783
18784 if (die->parent != NULL)
18785 {
18786 print_spaces (indent, f);
18787 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
18788 die->parent->offset.sect_off);
18789 }
18790
18791 print_spaces (indent, f);
18792 fprintf_unfiltered (f, " has children: %s\n",
18793 dwarf_bool_name (die->child != NULL));
18794
18795 print_spaces (indent, f);
18796 fprintf_unfiltered (f, " attributes:\n");
18797
18798 for (i = 0; i < die->num_attrs; ++i)
18799 {
18800 print_spaces (indent, f);
18801 fprintf_unfiltered (f, " %s (%s) ",
18802 dwarf_attr_name (die->attrs[i].name),
18803 dwarf_form_name (die->attrs[i].form));
18804
18805 switch (die->attrs[i].form)
18806 {
18807 case DW_FORM_addr:
18808 case DW_FORM_GNU_addr_index:
18809 fprintf_unfiltered (f, "address: ");
18810 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
18811 break;
18812 case DW_FORM_block2:
18813 case DW_FORM_block4:
18814 case DW_FORM_block:
18815 case DW_FORM_block1:
18816 fprintf_unfiltered (f, "block: size %s",
18817 pulongest (DW_BLOCK (&die->attrs[i])->size));
18818 break;
18819 case DW_FORM_exprloc:
18820 fprintf_unfiltered (f, "expression: size %s",
18821 pulongest (DW_BLOCK (&die->attrs[i])->size));
18822 break;
18823 case DW_FORM_ref_addr:
18824 fprintf_unfiltered (f, "ref address: ");
18825 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18826 break;
18827 case DW_FORM_GNU_ref_alt:
18828 fprintf_unfiltered (f, "alt ref address: ");
18829 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18830 break;
18831 case DW_FORM_ref1:
18832 case DW_FORM_ref2:
18833 case DW_FORM_ref4:
18834 case DW_FORM_ref8:
18835 case DW_FORM_ref_udata:
18836 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
18837 (long) (DW_UNSND (&die->attrs[i])));
18838 break;
18839 case DW_FORM_data1:
18840 case DW_FORM_data2:
18841 case DW_FORM_data4:
18842 case DW_FORM_data8:
18843 case DW_FORM_udata:
18844 case DW_FORM_sdata:
18845 fprintf_unfiltered (f, "constant: %s",
18846 pulongest (DW_UNSND (&die->attrs[i])));
18847 break;
18848 case DW_FORM_sec_offset:
18849 fprintf_unfiltered (f, "section offset: %s",
18850 pulongest (DW_UNSND (&die->attrs[i])));
18851 break;
18852 case DW_FORM_ref_sig8:
18853 fprintf_unfiltered (f, "signature: %s",
18854 hex_string (DW_SIGNATURE (&die->attrs[i])));
18855 break;
18856 case DW_FORM_string:
18857 case DW_FORM_strp:
18858 case DW_FORM_GNU_str_index:
18859 case DW_FORM_GNU_strp_alt:
18860 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
18861 DW_STRING (&die->attrs[i])
18862 ? DW_STRING (&die->attrs[i]) : "",
18863 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
18864 break;
18865 case DW_FORM_flag:
18866 if (DW_UNSND (&die->attrs[i]))
18867 fprintf_unfiltered (f, "flag: TRUE");
18868 else
18869 fprintf_unfiltered (f, "flag: FALSE");
18870 break;
18871 case DW_FORM_flag_present:
18872 fprintf_unfiltered (f, "flag: TRUE");
18873 break;
18874 case DW_FORM_indirect:
18875 /* The reader will have reduced the indirect form to
18876 the "base form" so this form should not occur. */
18877 fprintf_unfiltered (f,
18878 "unexpected attribute form: DW_FORM_indirect");
18879 break;
18880 default:
18881 fprintf_unfiltered (f, "unsupported attribute form: %d.",
18882 die->attrs[i].form);
18883 break;
18884 }
18885 fprintf_unfiltered (f, "\n");
18886 }
18887 }
18888
18889 static void
18890 dump_die_for_error (struct die_info *die)
18891 {
18892 dump_die_shallow (gdb_stderr, 0, die);
18893 }
18894
18895 static void
18896 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
18897 {
18898 int indent = level * 4;
18899
18900 gdb_assert (die != NULL);
18901
18902 if (level >= max_level)
18903 return;
18904
18905 dump_die_shallow (f, indent, die);
18906
18907 if (die->child != NULL)
18908 {
18909 print_spaces (indent, f);
18910 fprintf_unfiltered (f, " Children:");
18911 if (level + 1 < max_level)
18912 {
18913 fprintf_unfiltered (f, "\n");
18914 dump_die_1 (f, level + 1, max_level, die->child);
18915 }
18916 else
18917 {
18918 fprintf_unfiltered (f,
18919 " [not printed, max nesting level reached]\n");
18920 }
18921 }
18922
18923 if (die->sibling != NULL && level > 0)
18924 {
18925 dump_die_1 (f, level, max_level, die->sibling);
18926 }
18927 }
18928
18929 /* This is called from the pdie macro in gdbinit.in.
18930 It's not static so gcc will keep a copy callable from gdb. */
18931
18932 void
18933 dump_die (struct die_info *die, int max_level)
18934 {
18935 dump_die_1 (gdb_stdlog, 0, max_level, die);
18936 }
18937
18938 static void
18939 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
18940 {
18941 void **slot;
18942
18943 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
18944 INSERT);
18945
18946 *slot = die;
18947 }
18948
18949 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
18950 required kind. */
18951
18952 static sect_offset
18953 dwarf2_get_ref_die_offset (const struct attribute *attr)
18954 {
18955 sect_offset retval = { DW_UNSND (attr) };
18956
18957 if (attr_form_is_ref (attr))
18958 return retval;
18959
18960 retval.sect_off = 0;
18961 complaint (&symfile_complaints,
18962 _("unsupported die ref attribute form: '%s'"),
18963 dwarf_form_name (attr->form));
18964 return retval;
18965 }
18966
18967 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
18968 * the value held by the attribute is not constant. */
18969
18970 static LONGEST
18971 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
18972 {
18973 if (attr->form == DW_FORM_sdata)
18974 return DW_SND (attr);
18975 else if (attr->form == DW_FORM_udata
18976 || attr->form == DW_FORM_data1
18977 || attr->form == DW_FORM_data2
18978 || attr->form == DW_FORM_data4
18979 || attr->form == DW_FORM_data8)
18980 return DW_UNSND (attr);
18981 else
18982 {
18983 complaint (&symfile_complaints,
18984 _("Attribute value is not a constant (%s)"),
18985 dwarf_form_name (attr->form));
18986 return default_value;
18987 }
18988 }
18989
18990 /* Follow reference or signature attribute ATTR of SRC_DIE.
18991 On entry *REF_CU is the CU of SRC_DIE.
18992 On exit *REF_CU is the CU of the result. */
18993
18994 static struct die_info *
18995 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
18996 struct dwarf2_cu **ref_cu)
18997 {
18998 struct die_info *die;
18999
19000 if (attr_form_is_ref (attr))
19001 die = follow_die_ref (src_die, attr, ref_cu);
19002 else if (attr->form == DW_FORM_ref_sig8)
19003 die = follow_die_sig (src_die, attr, ref_cu);
19004 else
19005 {
19006 dump_die_for_error (src_die);
19007 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19008 objfile_name ((*ref_cu)->objfile));
19009 }
19010
19011 return die;
19012 }
19013
19014 /* Follow reference OFFSET.
19015 On entry *REF_CU is the CU of the source die referencing OFFSET.
19016 On exit *REF_CU is the CU of the result.
19017 Returns NULL if OFFSET is invalid. */
19018
19019 static struct die_info *
19020 follow_die_offset (sect_offset offset, int offset_in_dwz,
19021 struct dwarf2_cu **ref_cu)
19022 {
19023 struct die_info temp_die;
19024 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19025
19026 gdb_assert (cu->per_cu != NULL);
19027
19028 target_cu = cu;
19029
19030 if (cu->per_cu->is_debug_types)
19031 {
19032 /* .debug_types CUs cannot reference anything outside their CU.
19033 If they need to, they have to reference a signatured type via
19034 DW_FORM_ref_sig8. */
19035 if (! offset_in_cu_p (&cu->header, offset))
19036 return NULL;
19037 }
19038 else if (offset_in_dwz != cu->per_cu->is_dwz
19039 || ! offset_in_cu_p (&cu->header, offset))
19040 {
19041 struct dwarf2_per_cu_data *per_cu;
19042
19043 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19044 cu->objfile);
19045
19046 /* If necessary, add it to the queue and load its DIEs. */
19047 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19048 load_full_comp_unit (per_cu, cu->language);
19049
19050 target_cu = per_cu->cu;
19051 }
19052 else if (cu->dies == NULL)
19053 {
19054 /* We're loading full DIEs during partial symbol reading. */
19055 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19056 load_full_comp_unit (cu->per_cu, language_minimal);
19057 }
19058
19059 *ref_cu = target_cu;
19060 temp_die.offset = offset;
19061 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19062 }
19063
19064 /* Follow reference attribute ATTR of SRC_DIE.
19065 On entry *REF_CU is the CU of SRC_DIE.
19066 On exit *REF_CU is the CU of the result. */
19067
19068 static struct die_info *
19069 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19070 struct dwarf2_cu **ref_cu)
19071 {
19072 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19073 struct dwarf2_cu *cu = *ref_cu;
19074 struct die_info *die;
19075
19076 die = follow_die_offset (offset,
19077 (attr->form == DW_FORM_GNU_ref_alt
19078 || cu->per_cu->is_dwz),
19079 ref_cu);
19080 if (!die)
19081 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19082 "at 0x%x [in module %s]"),
19083 offset.sect_off, src_die->offset.sect_off,
19084 objfile_name (cu->objfile));
19085
19086 return die;
19087 }
19088
19089 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19090 Returned value is intended for DW_OP_call*. Returned
19091 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19092
19093 struct dwarf2_locexpr_baton
19094 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19095 struct dwarf2_per_cu_data *per_cu,
19096 CORE_ADDR (*get_frame_pc) (void *baton),
19097 void *baton)
19098 {
19099 struct dwarf2_cu *cu;
19100 struct die_info *die;
19101 struct attribute *attr;
19102 struct dwarf2_locexpr_baton retval;
19103
19104 dw2_setup (per_cu->objfile);
19105
19106 if (per_cu->cu == NULL)
19107 load_cu (per_cu);
19108 cu = per_cu->cu;
19109
19110 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19111 if (!die)
19112 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19113 offset.sect_off, objfile_name (per_cu->objfile));
19114
19115 attr = dwarf2_attr (die, DW_AT_location, cu);
19116 if (!attr)
19117 {
19118 /* DWARF: "If there is no such attribute, then there is no effect.".
19119 DATA is ignored if SIZE is 0. */
19120
19121 retval.data = NULL;
19122 retval.size = 0;
19123 }
19124 else if (attr_form_is_section_offset (attr))
19125 {
19126 struct dwarf2_loclist_baton loclist_baton;
19127 CORE_ADDR pc = (*get_frame_pc) (baton);
19128 size_t size;
19129
19130 fill_in_loclist_baton (cu, &loclist_baton, attr);
19131
19132 retval.data = dwarf2_find_location_expression (&loclist_baton,
19133 &size, pc);
19134 retval.size = size;
19135 }
19136 else
19137 {
19138 if (!attr_form_is_block (attr))
19139 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19140 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19141 offset.sect_off, objfile_name (per_cu->objfile));
19142
19143 retval.data = DW_BLOCK (attr)->data;
19144 retval.size = DW_BLOCK (attr)->size;
19145 }
19146 retval.per_cu = cu->per_cu;
19147
19148 age_cached_comp_units ();
19149
19150 return retval;
19151 }
19152
19153 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19154 offset. */
19155
19156 struct dwarf2_locexpr_baton
19157 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19158 struct dwarf2_per_cu_data *per_cu,
19159 CORE_ADDR (*get_frame_pc) (void *baton),
19160 void *baton)
19161 {
19162 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19163
19164 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19165 }
19166
19167 /* Write a constant of a given type as target-ordered bytes into
19168 OBSTACK. */
19169
19170 static const gdb_byte *
19171 write_constant_as_bytes (struct obstack *obstack,
19172 enum bfd_endian byte_order,
19173 struct type *type,
19174 ULONGEST value,
19175 LONGEST *len)
19176 {
19177 gdb_byte *result;
19178
19179 *len = TYPE_LENGTH (type);
19180 result = obstack_alloc (obstack, *len);
19181 store_unsigned_integer (result, *len, byte_order, value);
19182
19183 return result;
19184 }
19185
19186 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19187 pointer to the constant bytes and set LEN to the length of the
19188 data. If memory is needed, allocate it on OBSTACK. If the DIE
19189 does not have a DW_AT_const_value, return NULL. */
19190
19191 const gdb_byte *
19192 dwarf2_fetch_constant_bytes (sect_offset offset,
19193 struct dwarf2_per_cu_data *per_cu,
19194 struct obstack *obstack,
19195 LONGEST *len)
19196 {
19197 struct dwarf2_cu *cu;
19198 struct die_info *die;
19199 struct attribute *attr;
19200 const gdb_byte *result = NULL;
19201 struct type *type;
19202 LONGEST value;
19203 enum bfd_endian byte_order;
19204
19205 dw2_setup (per_cu->objfile);
19206
19207 if (per_cu->cu == NULL)
19208 load_cu (per_cu);
19209 cu = per_cu->cu;
19210
19211 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19212 if (!die)
19213 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19214 offset.sect_off, objfile_name (per_cu->objfile));
19215
19216
19217 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19218 if (attr == NULL)
19219 return NULL;
19220
19221 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19222 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19223
19224 switch (attr->form)
19225 {
19226 case DW_FORM_addr:
19227 case DW_FORM_GNU_addr_index:
19228 {
19229 gdb_byte *tem;
19230
19231 *len = cu->header.addr_size;
19232 tem = obstack_alloc (obstack, *len);
19233 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19234 result = tem;
19235 }
19236 break;
19237 case DW_FORM_string:
19238 case DW_FORM_strp:
19239 case DW_FORM_GNU_str_index:
19240 case DW_FORM_GNU_strp_alt:
19241 /* DW_STRING is already allocated on the objfile obstack, point
19242 directly to it. */
19243 result = (const gdb_byte *) DW_STRING (attr);
19244 *len = strlen (DW_STRING (attr));
19245 break;
19246 case DW_FORM_block1:
19247 case DW_FORM_block2:
19248 case DW_FORM_block4:
19249 case DW_FORM_block:
19250 case DW_FORM_exprloc:
19251 result = DW_BLOCK (attr)->data;
19252 *len = DW_BLOCK (attr)->size;
19253 break;
19254
19255 /* The DW_AT_const_value attributes are supposed to carry the
19256 symbol's value "represented as it would be on the target
19257 architecture." By the time we get here, it's already been
19258 converted to host endianness, so we just need to sign- or
19259 zero-extend it as appropriate. */
19260 case DW_FORM_data1:
19261 type = die_type (die, cu);
19262 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19263 if (result == NULL)
19264 result = write_constant_as_bytes (obstack, byte_order,
19265 type, value, len);
19266 break;
19267 case DW_FORM_data2:
19268 type = die_type (die, cu);
19269 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19270 if (result == NULL)
19271 result = write_constant_as_bytes (obstack, byte_order,
19272 type, value, len);
19273 break;
19274 case DW_FORM_data4:
19275 type = die_type (die, cu);
19276 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19277 if (result == NULL)
19278 result = write_constant_as_bytes (obstack, byte_order,
19279 type, value, len);
19280 break;
19281 case DW_FORM_data8:
19282 type = die_type (die, cu);
19283 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19284 if (result == NULL)
19285 result = write_constant_as_bytes (obstack, byte_order,
19286 type, value, len);
19287 break;
19288
19289 case DW_FORM_sdata:
19290 type = die_type (die, cu);
19291 result = write_constant_as_bytes (obstack, byte_order,
19292 type, DW_SND (attr), len);
19293 break;
19294
19295 case DW_FORM_udata:
19296 type = die_type (die, cu);
19297 result = write_constant_as_bytes (obstack, byte_order,
19298 type, DW_UNSND (attr), len);
19299 break;
19300
19301 default:
19302 complaint (&symfile_complaints,
19303 _("unsupported const value attribute form: '%s'"),
19304 dwarf_form_name (attr->form));
19305 break;
19306 }
19307
19308 return result;
19309 }
19310
19311 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19312 PER_CU. */
19313
19314 struct type *
19315 dwarf2_get_die_type (cu_offset die_offset,
19316 struct dwarf2_per_cu_data *per_cu)
19317 {
19318 sect_offset die_offset_sect;
19319
19320 dw2_setup (per_cu->objfile);
19321
19322 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19323 return get_die_type_at_offset (die_offset_sect, per_cu);
19324 }
19325
19326 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19327 On entry *REF_CU is the CU of SRC_DIE.
19328 On exit *REF_CU is the CU of the result.
19329 Returns NULL if the referenced DIE isn't found. */
19330
19331 static struct die_info *
19332 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19333 struct dwarf2_cu **ref_cu)
19334 {
19335 struct objfile *objfile = (*ref_cu)->objfile;
19336 struct die_info temp_die;
19337 struct dwarf2_cu *sig_cu;
19338 struct die_info *die;
19339
19340 /* While it might be nice to assert sig_type->type == NULL here,
19341 we can get here for DW_AT_imported_declaration where we need
19342 the DIE not the type. */
19343
19344 /* If necessary, add it to the queue and load its DIEs. */
19345
19346 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19347 read_signatured_type (sig_type);
19348
19349 sig_cu = sig_type->per_cu.cu;
19350 gdb_assert (sig_cu != NULL);
19351 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19352 temp_die.offset = sig_type->type_offset_in_section;
19353 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19354 temp_die.offset.sect_off);
19355 if (die)
19356 {
19357 /* For .gdb_index version 7 keep track of included TUs.
19358 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19359 if (dwarf2_per_objfile->index_table != NULL
19360 && dwarf2_per_objfile->index_table->version <= 7)
19361 {
19362 VEC_safe_push (dwarf2_per_cu_ptr,
19363 (*ref_cu)->per_cu->imported_symtabs,
19364 sig_cu->per_cu);
19365 }
19366
19367 *ref_cu = sig_cu;
19368 return die;
19369 }
19370
19371 return NULL;
19372 }
19373
19374 /* Follow signatured type referenced by ATTR in SRC_DIE.
19375 On entry *REF_CU is the CU of SRC_DIE.
19376 On exit *REF_CU is the CU of the result.
19377 The result is the DIE of the type.
19378 If the referenced type cannot be found an error is thrown. */
19379
19380 static struct die_info *
19381 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19382 struct dwarf2_cu **ref_cu)
19383 {
19384 ULONGEST signature = DW_SIGNATURE (attr);
19385 struct signatured_type *sig_type;
19386 struct die_info *die;
19387
19388 gdb_assert (attr->form == DW_FORM_ref_sig8);
19389
19390 sig_type = lookup_signatured_type (*ref_cu, signature);
19391 /* sig_type will be NULL if the signatured type is missing from
19392 the debug info. */
19393 if (sig_type == NULL)
19394 {
19395 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19396 " from DIE at 0x%x [in module %s]"),
19397 hex_string (signature), src_die->offset.sect_off,
19398 objfile_name ((*ref_cu)->objfile));
19399 }
19400
19401 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19402 if (die == NULL)
19403 {
19404 dump_die_for_error (src_die);
19405 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19406 " from DIE at 0x%x [in module %s]"),
19407 hex_string (signature), src_die->offset.sect_off,
19408 objfile_name ((*ref_cu)->objfile));
19409 }
19410
19411 return die;
19412 }
19413
19414 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19415 reading in and processing the type unit if necessary. */
19416
19417 static struct type *
19418 get_signatured_type (struct die_info *die, ULONGEST signature,
19419 struct dwarf2_cu *cu)
19420 {
19421 struct signatured_type *sig_type;
19422 struct dwarf2_cu *type_cu;
19423 struct die_info *type_die;
19424 struct type *type;
19425
19426 sig_type = lookup_signatured_type (cu, signature);
19427 /* sig_type will be NULL if the signatured type is missing from
19428 the debug info. */
19429 if (sig_type == NULL)
19430 {
19431 complaint (&symfile_complaints,
19432 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19433 " from DIE at 0x%x [in module %s]"),
19434 hex_string (signature), die->offset.sect_off,
19435 objfile_name (dwarf2_per_objfile->objfile));
19436 return build_error_marker_type (cu, die);
19437 }
19438
19439 /* If we already know the type we're done. */
19440 if (sig_type->type != NULL)
19441 return sig_type->type;
19442
19443 type_cu = cu;
19444 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19445 if (type_die != NULL)
19446 {
19447 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19448 is created. This is important, for example, because for c++ classes
19449 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19450 type = read_type_die (type_die, type_cu);
19451 if (type == NULL)
19452 {
19453 complaint (&symfile_complaints,
19454 _("Dwarf Error: Cannot build signatured type %s"
19455 " referenced from DIE at 0x%x [in module %s]"),
19456 hex_string (signature), die->offset.sect_off,
19457 objfile_name (dwarf2_per_objfile->objfile));
19458 type = build_error_marker_type (cu, die);
19459 }
19460 }
19461 else
19462 {
19463 complaint (&symfile_complaints,
19464 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19465 " from DIE at 0x%x [in module %s]"),
19466 hex_string (signature), die->offset.sect_off,
19467 objfile_name (dwarf2_per_objfile->objfile));
19468 type = build_error_marker_type (cu, die);
19469 }
19470 sig_type->type = type;
19471
19472 return type;
19473 }
19474
19475 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19476 reading in and processing the type unit if necessary. */
19477
19478 static struct type *
19479 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19480 struct dwarf2_cu *cu) /* ARI: editCase function */
19481 {
19482 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19483 if (attr_form_is_ref (attr))
19484 {
19485 struct dwarf2_cu *type_cu = cu;
19486 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19487
19488 return read_type_die (type_die, type_cu);
19489 }
19490 else if (attr->form == DW_FORM_ref_sig8)
19491 {
19492 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19493 }
19494 else
19495 {
19496 complaint (&symfile_complaints,
19497 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19498 " at 0x%x [in module %s]"),
19499 dwarf_form_name (attr->form), die->offset.sect_off,
19500 objfile_name (dwarf2_per_objfile->objfile));
19501 return build_error_marker_type (cu, die);
19502 }
19503 }
19504
19505 /* Load the DIEs associated with type unit PER_CU into memory. */
19506
19507 static void
19508 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
19509 {
19510 struct signatured_type *sig_type;
19511
19512 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19513 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19514
19515 /* We have the per_cu, but we need the signatured_type.
19516 Fortunately this is an easy translation. */
19517 gdb_assert (per_cu->is_debug_types);
19518 sig_type = (struct signatured_type *) per_cu;
19519
19520 gdb_assert (per_cu->cu == NULL);
19521
19522 read_signatured_type (sig_type);
19523
19524 gdb_assert (per_cu->cu != NULL);
19525 }
19526
19527 /* die_reader_func for read_signatured_type.
19528 This is identical to load_full_comp_unit_reader,
19529 but is kept separate for now. */
19530
19531 static void
19532 read_signatured_type_reader (const struct die_reader_specs *reader,
19533 const gdb_byte *info_ptr,
19534 struct die_info *comp_unit_die,
19535 int has_children,
19536 void *data)
19537 {
19538 struct dwarf2_cu *cu = reader->cu;
19539
19540 gdb_assert (cu->die_hash == NULL);
19541 cu->die_hash =
19542 htab_create_alloc_ex (cu->header.length / 12,
19543 die_hash,
19544 die_eq,
19545 NULL,
19546 &cu->comp_unit_obstack,
19547 hashtab_obstack_allocate,
19548 dummy_obstack_deallocate);
19549
19550 if (has_children)
19551 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19552 &info_ptr, comp_unit_die);
19553 cu->dies = comp_unit_die;
19554 /* comp_unit_die is not stored in die_hash, no need. */
19555
19556 /* We try not to read any attributes in this function, because not
19557 all CUs needed for references have been loaded yet, and symbol
19558 table processing isn't initialized. But we have to set the CU language,
19559 or we won't be able to build types correctly.
19560 Similarly, if we do not read the producer, we can not apply
19561 producer-specific interpretation. */
19562 prepare_one_comp_unit (cu, cu->dies, language_minimal);
19563 }
19564
19565 /* Read in a signatured type and build its CU and DIEs.
19566 If the type is a stub for the real type in a DWO file,
19567 read in the real type from the DWO file as well. */
19568
19569 static void
19570 read_signatured_type (struct signatured_type *sig_type)
19571 {
19572 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
19573
19574 gdb_assert (per_cu->is_debug_types);
19575 gdb_assert (per_cu->cu == NULL);
19576
19577 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
19578 read_signatured_type_reader, NULL);
19579 sig_type->per_cu.tu_read = 1;
19580 }
19581
19582 /* Decode simple location descriptions.
19583 Given a pointer to a dwarf block that defines a location, compute
19584 the location and return the value.
19585
19586 NOTE drow/2003-11-18: This function is called in two situations
19587 now: for the address of static or global variables (partial symbols
19588 only) and for offsets into structures which are expected to be
19589 (more or less) constant. The partial symbol case should go away,
19590 and only the constant case should remain. That will let this
19591 function complain more accurately. A few special modes are allowed
19592 without complaint for global variables (for instance, global
19593 register values and thread-local values).
19594
19595 A location description containing no operations indicates that the
19596 object is optimized out. The return value is 0 for that case.
19597 FIXME drow/2003-11-16: No callers check for this case any more; soon all
19598 callers will only want a very basic result and this can become a
19599 complaint.
19600
19601 Note that stack[0] is unused except as a default error return. */
19602
19603 static CORE_ADDR
19604 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
19605 {
19606 struct objfile *objfile = cu->objfile;
19607 size_t i;
19608 size_t size = blk->size;
19609 const gdb_byte *data = blk->data;
19610 CORE_ADDR stack[64];
19611 int stacki;
19612 unsigned int bytes_read, unsnd;
19613 gdb_byte op;
19614
19615 i = 0;
19616 stacki = 0;
19617 stack[stacki] = 0;
19618 stack[++stacki] = 0;
19619
19620 while (i < size)
19621 {
19622 op = data[i++];
19623 switch (op)
19624 {
19625 case DW_OP_lit0:
19626 case DW_OP_lit1:
19627 case DW_OP_lit2:
19628 case DW_OP_lit3:
19629 case DW_OP_lit4:
19630 case DW_OP_lit5:
19631 case DW_OP_lit6:
19632 case DW_OP_lit7:
19633 case DW_OP_lit8:
19634 case DW_OP_lit9:
19635 case DW_OP_lit10:
19636 case DW_OP_lit11:
19637 case DW_OP_lit12:
19638 case DW_OP_lit13:
19639 case DW_OP_lit14:
19640 case DW_OP_lit15:
19641 case DW_OP_lit16:
19642 case DW_OP_lit17:
19643 case DW_OP_lit18:
19644 case DW_OP_lit19:
19645 case DW_OP_lit20:
19646 case DW_OP_lit21:
19647 case DW_OP_lit22:
19648 case DW_OP_lit23:
19649 case DW_OP_lit24:
19650 case DW_OP_lit25:
19651 case DW_OP_lit26:
19652 case DW_OP_lit27:
19653 case DW_OP_lit28:
19654 case DW_OP_lit29:
19655 case DW_OP_lit30:
19656 case DW_OP_lit31:
19657 stack[++stacki] = op - DW_OP_lit0;
19658 break;
19659
19660 case DW_OP_reg0:
19661 case DW_OP_reg1:
19662 case DW_OP_reg2:
19663 case DW_OP_reg3:
19664 case DW_OP_reg4:
19665 case DW_OP_reg5:
19666 case DW_OP_reg6:
19667 case DW_OP_reg7:
19668 case DW_OP_reg8:
19669 case DW_OP_reg9:
19670 case DW_OP_reg10:
19671 case DW_OP_reg11:
19672 case DW_OP_reg12:
19673 case DW_OP_reg13:
19674 case DW_OP_reg14:
19675 case DW_OP_reg15:
19676 case DW_OP_reg16:
19677 case DW_OP_reg17:
19678 case DW_OP_reg18:
19679 case DW_OP_reg19:
19680 case DW_OP_reg20:
19681 case DW_OP_reg21:
19682 case DW_OP_reg22:
19683 case DW_OP_reg23:
19684 case DW_OP_reg24:
19685 case DW_OP_reg25:
19686 case DW_OP_reg26:
19687 case DW_OP_reg27:
19688 case DW_OP_reg28:
19689 case DW_OP_reg29:
19690 case DW_OP_reg30:
19691 case DW_OP_reg31:
19692 stack[++stacki] = op - DW_OP_reg0;
19693 if (i < size)
19694 dwarf2_complex_location_expr_complaint ();
19695 break;
19696
19697 case DW_OP_regx:
19698 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
19699 i += bytes_read;
19700 stack[++stacki] = unsnd;
19701 if (i < size)
19702 dwarf2_complex_location_expr_complaint ();
19703 break;
19704
19705 case DW_OP_addr:
19706 stack[++stacki] = read_address (objfile->obfd, &data[i],
19707 cu, &bytes_read);
19708 i += bytes_read;
19709 break;
19710
19711 case DW_OP_const1u:
19712 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
19713 i += 1;
19714 break;
19715
19716 case DW_OP_const1s:
19717 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
19718 i += 1;
19719 break;
19720
19721 case DW_OP_const2u:
19722 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
19723 i += 2;
19724 break;
19725
19726 case DW_OP_const2s:
19727 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
19728 i += 2;
19729 break;
19730
19731 case DW_OP_const4u:
19732 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
19733 i += 4;
19734 break;
19735
19736 case DW_OP_const4s:
19737 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
19738 i += 4;
19739 break;
19740
19741 case DW_OP_const8u:
19742 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
19743 i += 8;
19744 break;
19745
19746 case DW_OP_constu:
19747 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
19748 &bytes_read);
19749 i += bytes_read;
19750 break;
19751
19752 case DW_OP_consts:
19753 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
19754 i += bytes_read;
19755 break;
19756
19757 case DW_OP_dup:
19758 stack[stacki + 1] = stack[stacki];
19759 stacki++;
19760 break;
19761
19762 case DW_OP_plus:
19763 stack[stacki - 1] += stack[stacki];
19764 stacki--;
19765 break;
19766
19767 case DW_OP_plus_uconst:
19768 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
19769 &bytes_read);
19770 i += bytes_read;
19771 break;
19772
19773 case DW_OP_minus:
19774 stack[stacki - 1] -= stack[stacki];
19775 stacki--;
19776 break;
19777
19778 case DW_OP_deref:
19779 /* If we're not the last op, then we definitely can't encode
19780 this using GDB's address_class enum. This is valid for partial
19781 global symbols, although the variable's address will be bogus
19782 in the psymtab. */
19783 if (i < size)
19784 dwarf2_complex_location_expr_complaint ();
19785 break;
19786
19787 case DW_OP_GNU_push_tls_address:
19788 /* The top of the stack has the offset from the beginning
19789 of the thread control block at which the variable is located. */
19790 /* Nothing should follow this operator, so the top of stack would
19791 be returned. */
19792 /* This is valid for partial global symbols, but the variable's
19793 address will be bogus in the psymtab. Make it always at least
19794 non-zero to not look as a variable garbage collected by linker
19795 which have DW_OP_addr 0. */
19796 if (i < size)
19797 dwarf2_complex_location_expr_complaint ();
19798 stack[stacki]++;
19799 break;
19800
19801 case DW_OP_GNU_uninit:
19802 break;
19803
19804 case DW_OP_GNU_addr_index:
19805 case DW_OP_GNU_const_index:
19806 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
19807 &bytes_read);
19808 i += bytes_read;
19809 break;
19810
19811 default:
19812 {
19813 const char *name = get_DW_OP_name (op);
19814
19815 if (name)
19816 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
19817 name);
19818 else
19819 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
19820 op);
19821 }
19822
19823 return (stack[stacki]);
19824 }
19825
19826 /* Enforce maximum stack depth of SIZE-1 to avoid writing
19827 outside of the allocated space. Also enforce minimum>0. */
19828 if (stacki >= ARRAY_SIZE (stack) - 1)
19829 {
19830 complaint (&symfile_complaints,
19831 _("location description stack overflow"));
19832 return 0;
19833 }
19834
19835 if (stacki <= 0)
19836 {
19837 complaint (&symfile_complaints,
19838 _("location description stack underflow"));
19839 return 0;
19840 }
19841 }
19842 return (stack[stacki]);
19843 }
19844
19845 /* memory allocation interface */
19846
19847 static struct dwarf_block *
19848 dwarf_alloc_block (struct dwarf2_cu *cu)
19849 {
19850 struct dwarf_block *blk;
19851
19852 blk = (struct dwarf_block *)
19853 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
19854 return (blk);
19855 }
19856
19857 static struct die_info *
19858 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
19859 {
19860 struct die_info *die;
19861 size_t size = sizeof (struct die_info);
19862
19863 if (num_attrs > 1)
19864 size += (num_attrs - 1) * sizeof (struct attribute);
19865
19866 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
19867 memset (die, 0, sizeof (struct die_info));
19868 return (die);
19869 }
19870
19871 \f
19872 /* Macro support. */
19873
19874 /* Return file name relative to the compilation directory of file number I in
19875 *LH's file name table. The result is allocated using xmalloc; the caller is
19876 responsible for freeing it. */
19877
19878 static char *
19879 file_file_name (int file, struct line_header *lh)
19880 {
19881 /* Is the file number a valid index into the line header's file name
19882 table? Remember that file numbers start with one, not zero. */
19883 if (1 <= file && file <= lh->num_file_names)
19884 {
19885 struct file_entry *fe = &lh->file_names[file - 1];
19886
19887 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
19888 return xstrdup (fe->name);
19889 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
19890 fe->name, NULL);
19891 }
19892 else
19893 {
19894 /* The compiler produced a bogus file number. We can at least
19895 record the macro definitions made in the file, even if we
19896 won't be able to find the file by name. */
19897 char fake_name[80];
19898
19899 xsnprintf (fake_name, sizeof (fake_name),
19900 "<bad macro file number %d>", file);
19901
19902 complaint (&symfile_complaints,
19903 _("bad file number in macro information (%d)"),
19904 file);
19905
19906 return xstrdup (fake_name);
19907 }
19908 }
19909
19910 /* Return the full name of file number I in *LH's file name table.
19911 Use COMP_DIR as the name of the current directory of the
19912 compilation. The result is allocated using xmalloc; the caller is
19913 responsible for freeing it. */
19914 static char *
19915 file_full_name (int file, struct line_header *lh, const char *comp_dir)
19916 {
19917 /* Is the file number a valid index into the line header's file name
19918 table? Remember that file numbers start with one, not zero. */
19919 if (1 <= file && file <= lh->num_file_names)
19920 {
19921 char *relative = file_file_name (file, lh);
19922
19923 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
19924 return relative;
19925 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
19926 }
19927 else
19928 return file_file_name (file, lh);
19929 }
19930
19931
19932 static struct macro_source_file *
19933 macro_start_file (int file, int line,
19934 struct macro_source_file *current_file,
19935 const char *comp_dir,
19936 struct line_header *lh, struct objfile *objfile)
19937 {
19938 /* File name relative to the compilation directory of this source file. */
19939 char *file_name = file_file_name (file, lh);
19940
19941 if (! current_file)
19942 {
19943 /* Note: We don't create a macro table for this compilation unit
19944 at all until we actually get a filename. */
19945 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
19946
19947 /* If we have no current file, then this must be the start_file
19948 directive for the compilation unit's main source file. */
19949 current_file = macro_set_main (macro_table, file_name);
19950 macro_define_special (macro_table);
19951 }
19952 else
19953 current_file = macro_include (current_file, line, file_name);
19954
19955 xfree (file_name);
19956
19957 return current_file;
19958 }
19959
19960
19961 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
19962 followed by a null byte. */
19963 static char *
19964 copy_string (const char *buf, int len)
19965 {
19966 char *s = xmalloc (len + 1);
19967
19968 memcpy (s, buf, len);
19969 s[len] = '\0';
19970 return s;
19971 }
19972
19973
19974 static const char *
19975 consume_improper_spaces (const char *p, const char *body)
19976 {
19977 if (*p == ' ')
19978 {
19979 complaint (&symfile_complaints,
19980 _("macro definition contains spaces "
19981 "in formal argument list:\n`%s'"),
19982 body);
19983
19984 while (*p == ' ')
19985 p++;
19986 }
19987
19988 return p;
19989 }
19990
19991
19992 static void
19993 parse_macro_definition (struct macro_source_file *file, int line,
19994 const char *body)
19995 {
19996 const char *p;
19997
19998 /* The body string takes one of two forms. For object-like macro
19999 definitions, it should be:
20000
20001 <macro name> " " <definition>
20002
20003 For function-like macro definitions, it should be:
20004
20005 <macro name> "() " <definition>
20006 or
20007 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20008
20009 Spaces may appear only where explicitly indicated, and in the
20010 <definition>.
20011
20012 The Dwarf 2 spec says that an object-like macro's name is always
20013 followed by a space, but versions of GCC around March 2002 omit
20014 the space when the macro's definition is the empty string.
20015
20016 The Dwarf 2 spec says that there should be no spaces between the
20017 formal arguments in a function-like macro's formal argument list,
20018 but versions of GCC around March 2002 include spaces after the
20019 commas. */
20020
20021
20022 /* Find the extent of the macro name. The macro name is terminated
20023 by either a space or null character (for an object-like macro) or
20024 an opening paren (for a function-like macro). */
20025 for (p = body; *p; p++)
20026 if (*p == ' ' || *p == '(')
20027 break;
20028
20029 if (*p == ' ' || *p == '\0')
20030 {
20031 /* It's an object-like macro. */
20032 int name_len = p - body;
20033 char *name = copy_string (body, name_len);
20034 const char *replacement;
20035
20036 if (*p == ' ')
20037 replacement = body + name_len + 1;
20038 else
20039 {
20040 dwarf2_macro_malformed_definition_complaint (body);
20041 replacement = body + name_len;
20042 }
20043
20044 macro_define_object (file, line, name, replacement);
20045
20046 xfree (name);
20047 }
20048 else if (*p == '(')
20049 {
20050 /* It's a function-like macro. */
20051 char *name = copy_string (body, p - body);
20052 int argc = 0;
20053 int argv_size = 1;
20054 char **argv = xmalloc (argv_size * sizeof (*argv));
20055
20056 p++;
20057
20058 p = consume_improper_spaces (p, body);
20059
20060 /* Parse the formal argument list. */
20061 while (*p && *p != ')')
20062 {
20063 /* Find the extent of the current argument name. */
20064 const char *arg_start = p;
20065
20066 while (*p && *p != ',' && *p != ')' && *p != ' ')
20067 p++;
20068
20069 if (! *p || p == arg_start)
20070 dwarf2_macro_malformed_definition_complaint (body);
20071 else
20072 {
20073 /* Make sure argv has room for the new argument. */
20074 if (argc >= argv_size)
20075 {
20076 argv_size *= 2;
20077 argv = xrealloc (argv, argv_size * sizeof (*argv));
20078 }
20079
20080 argv[argc++] = copy_string (arg_start, p - arg_start);
20081 }
20082
20083 p = consume_improper_spaces (p, body);
20084
20085 /* Consume the comma, if present. */
20086 if (*p == ',')
20087 {
20088 p++;
20089
20090 p = consume_improper_spaces (p, body);
20091 }
20092 }
20093
20094 if (*p == ')')
20095 {
20096 p++;
20097
20098 if (*p == ' ')
20099 /* Perfectly formed definition, no complaints. */
20100 macro_define_function (file, line, name,
20101 argc, (const char **) argv,
20102 p + 1);
20103 else if (*p == '\0')
20104 {
20105 /* Complain, but do define it. */
20106 dwarf2_macro_malformed_definition_complaint (body);
20107 macro_define_function (file, line, name,
20108 argc, (const char **) argv,
20109 p);
20110 }
20111 else
20112 /* Just complain. */
20113 dwarf2_macro_malformed_definition_complaint (body);
20114 }
20115 else
20116 /* Just complain. */
20117 dwarf2_macro_malformed_definition_complaint (body);
20118
20119 xfree (name);
20120 {
20121 int i;
20122
20123 for (i = 0; i < argc; i++)
20124 xfree (argv[i]);
20125 }
20126 xfree (argv);
20127 }
20128 else
20129 dwarf2_macro_malformed_definition_complaint (body);
20130 }
20131
20132 /* Skip some bytes from BYTES according to the form given in FORM.
20133 Returns the new pointer. */
20134
20135 static const gdb_byte *
20136 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20137 enum dwarf_form form,
20138 unsigned int offset_size,
20139 struct dwarf2_section_info *section)
20140 {
20141 unsigned int bytes_read;
20142
20143 switch (form)
20144 {
20145 case DW_FORM_data1:
20146 case DW_FORM_flag:
20147 ++bytes;
20148 break;
20149
20150 case DW_FORM_data2:
20151 bytes += 2;
20152 break;
20153
20154 case DW_FORM_data4:
20155 bytes += 4;
20156 break;
20157
20158 case DW_FORM_data8:
20159 bytes += 8;
20160 break;
20161
20162 case DW_FORM_string:
20163 read_direct_string (abfd, bytes, &bytes_read);
20164 bytes += bytes_read;
20165 break;
20166
20167 case DW_FORM_sec_offset:
20168 case DW_FORM_strp:
20169 case DW_FORM_GNU_strp_alt:
20170 bytes += offset_size;
20171 break;
20172
20173 case DW_FORM_block:
20174 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20175 bytes += bytes_read;
20176 break;
20177
20178 case DW_FORM_block1:
20179 bytes += 1 + read_1_byte (abfd, bytes);
20180 break;
20181 case DW_FORM_block2:
20182 bytes += 2 + read_2_bytes (abfd, bytes);
20183 break;
20184 case DW_FORM_block4:
20185 bytes += 4 + read_4_bytes (abfd, bytes);
20186 break;
20187
20188 case DW_FORM_sdata:
20189 case DW_FORM_udata:
20190 case DW_FORM_GNU_addr_index:
20191 case DW_FORM_GNU_str_index:
20192 bytes = gdb_skip_leb128 (bytes, buffer_end);
20193 if (bytes == NULL)
20194 {
20195 dwarf2_section_buffer_overflow_complaint (section);
20196 return NULL;
20197 }
20198 break;
20199
20200 default:
20201 {
20202 complain:
20203 complaint (&symfile_complaints,
20204 _("invalid form 0x%x in `%s'"),
20205 form, get_section_name (section));
20206 return NULL;
20207 }
20208 }
20209
20210 return bytes;
20211 }
20212
20213 /* A helper for dwarf_decode_macros that handles skipping an unknown
20214 opcode. Returns an updated pointer to the macro data buffer; or,
20215 on error, issues a complaint and returns NULL. */
20216
20217 static const gdb_byte *
20218 skip_unknown_opcode (unsigned int opcode,
20219 const gdb_byte **opcode_definitions,
20220 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20221 bfd *abfd,
20222 unsigned int offset_size,
20223 struct dwarf2_section_info *section)
20224 {
20225 unsigned int bytes_read, i;
20226 unsigned long arg;
20227 const gdb_byte *defn;
20228
20229 if (opcode_definitions[opcode] == NULL)
20230 {
20231 complaint (&symfile_complaints,
20232 _("unrecognized DW_MACFINO opcode 0x%x"),
20233 opcode);
20234 return NULL;
20235 }
20236
20237 defn = opcode_definitions[opcode];
20238 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20239 defn += bytes_read;
20240
20241 for (i = 0; i < arg; ++i)
20242 {
20243 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20244 section);
20245 if (mac_ptr == NULL)
20246 {
20247 /* skip_form_bytes already issued the complaint. */
20248 return NULL;
20249 }
20250 }
20251
20252 return mac_ptr;
20253 }
20254
20255 /* A helper function which parses the header of a macro section.
20256 If the macro section is the extended (for now called "GNU") type,
20257 then this updates *OFFSET_SIZE. Returns a pointer to just after
20258 the header, or issues a complaint and returns NULL on error. */
20259
20260 static const gdb_byte *
20261 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20262 bfd *abfd,
20263 const gdb_byte *mac_ptr,
20264 unsigned int *offset_size,
20265 int section_is_gnu)
20266 {
20267 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20268
20269 if (section_is_gnu)
20270 {
20271 unsigned int version, flags;
20272
20273 version = read_2_bytes (abfd, mac_ptr);
20274 if (version != 4)
20275 {
20276 complaint (&symfile_complaints,
20277 _("unrecognized version `%d' in .debug_macro section"),
20278 version);
20279 return NULL;
20280 }
20281 mac_ptr += 2;
20282
20283 flags = read_1_byte (abfd, mac_ptr);
20284 ++mac_ptr;
20285 *offset_size = (flags & 1) ? 8 : 4;
20286
20287 if ((flags & 2) != 0)
20288 /* We don't need the line table offset. */
20289 mac_ptr += *offset_size;
20290
20291 /* Vendor opcode descriptions. */
20292 if ((flags & 4) != 0)
20293 {
20294 unsigned int i, count;
20295
20296 count = read_1_byte (abfd, mac_ptr);
20297 ++mac_ptr;
20298 for (i = 0; i < count; ++i)
20299 {
20300 unsigned int opcode, bytes_read;
20301 unsigned long arg;
20302
20303 opcode = read_1_byte (abfd, mac_ptr);
20304 ++mac_ptr;
20305 opcode_definitions[opcode] = mac_ptr;
20306 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20307 mac_ptr += bytes_read;
20308 mac_ptr += arg;
20309 }
20310 }
20311 }
20312
20313 return mac_ptr;
20314 }
20315
20316 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20317 including DW_MACRO_GNU_transparent_include. */
20318
20319 static void
20320 dwarf_decode_macro_bytes (bfd *abfd,
20321 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20322 struct macro_source_file *current_file,
20323 struct line_header *lh, const char *comp_dir,
20324 struct dwarf2_section_info *section,
20325 int section_is_gnu, int section_is_dwz,
20326 unsigned int offset_size,
20327 struct objfile *objfile,
20328 htab_t include_hash)
20329 {
20330 enum dwarf_macro_record_type macinfo_type;
20331 int at_commandline;
20332 const gdb_byte *opcode_definitions[256];
20333
20334 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20335 &offset_size, section_is_gnu);
20336 if (mac_ptr == NULL)
20337 {
20338 /* We already issued a complaint. */
20339 return;
20340 }
20341
20342 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20343 GDB is still reading the definitions from command line. First
20344 DW_MACINFO_start_file will need to be ignored as it was already executed
20345 to create CURRENT_FILE for the main source holding also the command line
20346 definitions. On first met DW_MACINFO_start_file this flag is reset to
20347 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20348
20349 at_commandline = 1;
20350
20351 do
20352 {
20353 /* Do we at least have room for a macinfo type byte? */
20354 if (mac_ptr >= mac_end)
20355 {
20356 dwarf2_section_buffer_overflow_complaint (section);
20357 break;
20358 }
20359
20360 macinfo_type = read_1_byte (abfd, mac_ptr);
20361 mac_ptr++;
20362
20363 /* Note that we rely on the fact that the corresponding GNU and
20364 DWARF constants are the same. */
20365 switch (macinfo_type)
20366 {
20367 /* A zero macinfo type indicates the end of the macro
20368 information. */
20369 case 0:
20370 break;
20371
20372 case DW_MACRO_GNU_define:
20373 case DW_MACRO_GNU_undef:
20374 case DW_MACRO_GNU_define_indirect:
20375 case DW_MACRO_GNU_undef_indirect:
20376 case DW_MACRO_GNU_define_indirect_alt:
20377 case DW_MACRO_GNU_undef_indirect_alt:
20378 {
20379 unsigned int bytes_read;
20380 int line;
20381 const char *body;
20382 int is_define;
20383
20384 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20385 mac_ptr += bytes_read;
20386
20387 if (macinfo_type == DW_MACRO_GNU_define
20388 || macinfo_type == DW_MACRO_GNU_undef)
20389 {
20390 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20391 mac_ptr += bytes_read;
20392 }
20393 else
20394 {
20395 LONGEST str_offset;
20396
20397 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20398 mac_ptr += offset_size;
20399
20400 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20401 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20402 || section_is_dwz)
20403 {
20404 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20405
20406 body = read_indirect_string_from_dwz (dwz, str_offset);
20407 }
20408 else
20409 body = read_indirect_string_at_offset (abfd, str_offset);
20410 }
20411
20412 is_define = (macinfo_type == DW_MACRO_GNU_define
20413 || macinfo_type == DW_MACRO_GNU_define_indirect
20414 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20415 if (! current_file)
20416 {
20417 /* DWARF violation as no main source is present. */
20418 complaint (&symfile_complaints,
20419 _("debug info with no main source gives macro %s "
20420 "on line %d: %s"),
20421 is_define ? _("definition") : _("undefinition"),
20422 line, body);
20423 break;
20424 }
20425 if ((line == 0 && !at_commandline)
20426 || (line != 0 && at_commandline))
20427 complaint (&symfile_complaints,
20428 _("debug info gives %s macro %s with %s line %d: %s"),
20429 at_commandline ? _("command-line") : _("in-file"),
20430 is_define ? _("definition") : _("undefinition"),
20431 line == 0 ? _("zero") : _("non-zero"), line, body);
20432
20433 if (is_define)
20434 parse_macro_definition (current_file, line, body);
20435 else
20436 {
20437 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20438 || macinfo_type == DW_MACRO_GNU_undef_indirect
20439 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20440 macro_undef (current_file, line, body);
20441 }
20442 }
20443 break;
20444
20445 case DW_MACRO_GNU_start_file:
20446 {
20447 unsigned int bytes_read;
20448 int line, file;
20449
20450 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20451 mac_ptr += bytes_read;
20452 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20453 mac_ptr += bytes_read;
20454
20455 if ((line == 0 && !at_commandline)
20456 || (line != 0 && at_commandline))
20457 complaint (&symfile_complaints,
20458 _("debug info gives source %d included "
20459 "from %s at %s line %d"),
20460 file, at_commandline ? _("command-line") : _("file"),
20461 line == 0 ? _("zero") : _("non-zero"), line);
20462
20463 if (at_commandline)
20464 {
20465 /* This DW_MACRO_GNU_start_file was executed in the
20466 pass one. */
20467 at_commandline = 0;
20468 }
20469 else
20470 current_file = macro_start_file (file, line,
20471 current_file, comp_dir,
20472 lh, objfile);
20473 }
20474 break;
20475
20476 case DW_MACRO_GNU_end_file:
20477 if (! current_file)
20478 complaint (&symfile_complaints,
20479 _("macro debug info has an unmatched "
20480 "`close_file' directive"));
20481 else
20482 {
20483 current_file = current_file->included_by;
20484 if (! current_file)
20485 {
20486 enum dwarf_macro_record_type next_type;
20487
20488 /* GCC circa March 2002 doesn't produce the zero
20489 type byte marking the end of the compilation
20490 unit. Complain if it's not there, but exit no
20491 matter what. */
20492
20493 /* Do we at least have room for a macinfo type byte? */
20494 if (mac_ptr >= mac_end)
20495 {
20496 dwarf2_section_buffer_overflow_complaint (section);
20497 return;
20498 }
20499
20500 /* We don't increment mac_ptr here, so this is just
20501 a look-ahead. */
20502 next_type = read_1_byte (abfd, mac_ptr);
20503 if (next_type != 0)
20504 complaint (&symfile_complaints,
20505 _("no terminating 0-type entry for "
20506 "macros in `.debug_macinfo' section"));
20507
20508 return;
20509 }
20510 }
20511 break;
20512
20513 case DW_MACRO_GNU_transparent_include:
20514 case DW_MACRO_GNU_transparent_include_alt:
20515 {
20516 LONGEST offset;
20517 void **slot;
20518 bfd *include_bfd = abfd;
20519 struct dwarf2_section_info *include_section = section;
20520 struct dwarf2_section_info alt_section;
20521 const gdb_byte *include_mac_end = mac_end;
20522 int is_dwz = section_is_dwz;
20523 const gdb_byte *new_mac_ptr;
20524
20525 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20526 mac_ptr += offset_size;
20527
20528 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20529 {
20530 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20531
20532 dwarf2_read_section (dwarf2_per_objfile->objfile,
20533 &dwz->macro);
20534
20535 include_section = &dwz->macro;
20536 include_bfd = get_section_bfd_owner (include_section);
20537 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20538 is_dwz = 1;
20539 }
20540
20541 new_mac_ptr = include_section->buffer + offset;
20542 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20543
20544 if (*slot != NULL)
20545 {
20546 /* This has actually happened; see
20547 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20548 complaint (&symfile_complaints,
20549 _("recursive DW_MACRO_GNU_transparent_include in "
20550 ".debug_macro section"));
20551 }
20552 else
20553 {
20554 *slot = (void *) new_mac_ptr;
20555
20556 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
20557 include_mac_end, current_file,
20558 lh, comp_dir,
20559 section, section_is_gnu, is_dwz,
20560 offset_size, objfile, include_hash);
20561
20562 htab_remove_elt (include_hash, (void *) new_mac_ptr);
20563 }
20564 }
20565 break;
20566
20567 case DW_MACINFO_vendor_ext:
20568 if (!section_is_gnu)
20569 {
20570 unsigned int bytes_read;
20571 int constant;
20572
20573 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20574 mac_ptr += bytes_read;
20575 read_direct_string (abfd, mac_ptr, &bytes_read);
20576 mac_ptr += bytes_read;
20577
20578 /* We don't recognize any vendor extensions. */
20579 break;
20580 }
20581 /* FALLTHROUGH */
20582
20583 default:
20584 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20585 mac_ptr, mac_end, abfd, offset_size,
20586 section);
20587 if (mac_ptr == NULL)
20588 return;
20589 break;
20590 }
20591 } while (macinfo_type != 0);
20592 }
20593
20594 static void
20595 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
20596 const char *comp_dir, int section_is_gnu)
20597 {
20598 struct objfile *objfile = dwarf2_per_objfile->objfile;
20599 struct line_header *lh = cu->line_header;
20600 bfd *abfd;
20601 const gdb_byte *mac_ptr, *mac_end;
20602 struct macro_source_file *current_file = 0;
20603 enum dwarf_macro_record_type macinfo_type;
20604 unsigned int offset_size = cu->header.offset_size;
20605 const gdb_byte *opcode_definitions[256];
20606 struct cleanup *cleanup;
20607 htab_t include_hash;
20608 void **slot;
20609 struct dwarf2_section_info *section;
20610 const char *section_name;
20611
20612 if (cu->dwo_unit != NULL)
20613 {
20614 if (section_is_gnu)
20615 {
20616 section = &cu->dwo_unit->dwo_file->sections.macro;
20617 section_name = ".debug_macro.dwo";
20618 }
20619 else
20620 {
20621 section = &cu->dwo_unit->dwo_file->sections.macinfo;
20622 section_name = ".debug_macinfo.dwo";
20623 }
20624 }
20625 else
20626 {
20627 if (section_is_gnu)
20628 {
20629 section = &dwarf2_per_objfile->macro;
20630 section_name = ".debug_macro";
20631 }
20632 else
20633 {
20634 section = &dwarf2_per_objfile->macinfo;
20635 section_name = ".debug_macinfo";
20636 }
20637 }
20638
20639 dwarf2_read_section (objfile, section);
20640 if (section->buffer == NULL)
20641 {
20642 complaint (&symfile_complaints, _("missing %s section"), section_name);
20643 return;
20644 }
20645 abfd = get_section_bfd_owner (section);
20646
20647 /* First pass: Find the name of the base filename.
20648 This filename is needed in order to process all macros whose definition
20649 (or undefinition) comes from the command line. These macros are defined
20650 before the first DW_MACINFO_start_file entry, and yet still need to be
20651 associated to the base file.
20652
20653 To determine the base file name, we scan the macro definitions until we
20654 reach the first DW_MACINFO_start_file entry. We then initialize
20655 CURRENT_FILE accordingly so that any macro definition found before the
20656 first DW_MACINFO_start_file can still be associated to the base file. */
20657
20658 mac_ptr = section->buffer + offset;
20659 mac_end = section->buffer + section->size;
20660
20661 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20662 &offset_size, section_is_gnu);
20663 if (mac_ptr == NULL)
20664 {
20665 /* We already issued a complaint. */
20666 return;
20667 }
20668
20669 do
20670 {
20671 /* Do we at least have room for a macinfo type byte? */
20672 if (mac_ptr >= mac_end)
20673 {
20674 /* Complaint is printed during the second pass as GDB will probably
20675 stop the first pass earlier upon finding
20676 DW_MACINFO_start_file. */
20677 break;
20678 }
20679
20680 macinfo_type = read_1_byte (abfd, mac_ptr);
20681 mac_ptr++;
20682
20683 /* Note that we rely on the fact that the corresponding GNU and
20684 DWARF constants are the same. */
20685 switch (macinfo_type)
20686 {
20687 /* A zero macinfo type indicates the end of the macro
20688 information. */
20689 case 0:
20690 break;
20691
20692 case DW_MACRO_GNU_define:
20693 case DW_MACRO_GNU_undef:
20694 /* Only skip the data by MAC_PTR. */
20695 {
20696 unsigned int bytes_read;
20697
20698 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20699 mac_ptr += bytes_read;
20700 read_direct_string (abfd, mac_ptr, &bytes_read);
20701 mac_ptr += bytes_read;
20702 }
20703 break;
20704
20705 case DW_MACRO_GNU_start_file:
20706 {
20707 unsigned int bytes_read;
20708 int line, file;
20709
20710 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20711 mac_ptr += bytes_read;
20712 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20713 mac_ptr += bytes_read;
20714
20715 current_file = macro_start_file (file, line, current_file,
20716 comp_dir, lh, objfile);
20717 }
20718 break;
20719
20720 case DW_MACRO_GNU_end_file:
20721 /* No data to skip by MAC_PTR. */
20722 break;
20723
20724 case DW_MACRO_GNU_define_indirect:
20725 case DW_MACRO_GNU_undef_indirect:
20726 case DW_MACRO_GNU_define_indirect_alt:
20727 case DW_MACRO_GNU_undef_indirect_alt:
20728 {
20729 unsigned int bytes_read;
20730
20731 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20732 mac_ptr += bytes_read;
20733 mac_ptr += offset_size;
20734 }
20735 break;
20736
20737 case DW_MACRO_GNU_transparent_include:
20738 case DW_MACRO_GNU_transparent_include_alt:
20739 /* Note that, according to the spec, a transparent include
20740 chain cannot call DW_MACRO_GNU_start_file. So, we can just
20741 skip this opcode. */
20742 mac_ptr += offset_size;
20743 break;
20744
20745 case DW_MACINFO_vendor_ext:
20746 /* Only skip the data by MAC_PTR. */
20747 if (!section_is_gnu)
20748 {
20749 unsigned int bytes_read;
20750
20751 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20752 mac_ptr += bytes_read;
20753 read_direct_string (abfd, mac_ptr, &bytes_read);
20754 mac_ptr += bytes_read;
20755 }
20756 /* FALLTHROUGH */
20757
20758 default:
20759 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20760 mac_ptr, mac_end, abfd, offset_size,
20761 section);
20762 if (mac_ptr == NULL)
20763 return;
20764 break;
20765 }
20766 } while (macinfo_type != 0 && current_file == NULL);
20767
20768 /* Second pass: Process all entries.
20769
20770 Use the AT_COMMAND_LINE flag to determine whether we are still processing
20771 command-line macro definitions/undefinitions. This flag is unset when we
20772 reach the first DW_MACINFO_start_file entry. */
20773
20774 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
20775 NULL, xcalloc, xfree);
20776 cleanup = make_cleanup_htab_delete (include_hash);
20777 mac_ptr = section->buffer + offset;
20778 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
20779 *slot = (void *) mac_ptr;
20780 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
20781 current_file, lh, comp_dir, section,
20782 section_is_gnu, 0,
20783 offset_size, objfile, include_hash);
20784 do_cleanups (cleanup);
20785 }
20786
20787 /* Check if the attribute's form is a DW_FORM_block*
20788 if so return true else false. */
20789
20790 static int
20791 attr_form_is_block (const struct attribute *attr)
20792 {
20793 return (attr == NULL ? 0 :
20794 attr->form == DW_FORM_block1
20795 || attr->form == DW_FORM_block2
20796 || attr->form == DW_FORM_block4
20797 || attr->form == DW_FORM_block
20798 || attr->form == DW_FORM_exprloc);
20799 }
20800
20801 /* Return non-zero if ATTR's value is a section offset --- classes
20802 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
20803 You may use DW_UNSND (attr) to retrieve such offsets.
20804
20805 Section 7.5.4, "Attribute Encodings", explains that no attribute
20806 may have a value that belongs to more than one of these classes; it
20807 would be ambiguous if we did, because we use the same forms for all
20808 of them. */
20809
20810 static int
20811 attr_form_is_section_offset (const struct attribute *attr)
20812 {
20813 return (attr->form == DW_FORM_data4
20814 || attr->form == DW_FORM_data8
20815 || attr->form == DW_FORM_sec_offset);
20816 }
20817
20818 /* Return non-zero if ATTR's value falls in the 'constant' class, or
20819 zero otherwise. When this function returns true, you can apply
20820 dwarf2_get_attr_constant_value to it.
20821
20822 However, note that for some attributes you must check
20823 attr_form_is_section_offset before using this test. DW_FORM_data4
20824 and DW_FORM_data8 are members of both the constant class, and of
20825 the classes that contain offsets into other debug sections
20826 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
20827 that, if an attribute's can be either a constant or one of the
20828 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
20829 taken as section offsets, not constants. */
20830
20831 static int
20832 attr_form_is_constant (const struct attribute *attr)
20833 {
20834 switch (attr->form)
20835 {
20836 case DW_FORM_sdata:
20837 case DW_FORM_udata:
20838 case DW_FORM_data1:
20839 case DW_FORM_data2:
20840 case DW_FORM_data4:
20841 case DW_FORM_data8:
20842 return 1;
20843 default:
20844 return 0;
20845 }
20846 }
20847
20848
20849 /* DW_ADDR is always stored already as sect_offset; despite for the forms
20850 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
20851
20852 static int
20853 attr_form_is_ref (const struct attribute *attr)
20854 {
20855 switch (attr->form)
20856 {
20857 case DW_FORM_ref_addr:
20858 case DW_FORM_ref1:
20859 case DW_FORM_ref2:
20860 case DW_FORM_ref4:
20861 case DW_FORM_ref8:
20862 case DW_FORM_ref_udata:
20863 case DW_FORM_GNU_ref_alt:
20864 return 1;
20865 default:
20866 return 0;
20867 }
20868 }
20869
20870 /* Return the .debug_loc section to use for CU.
20871 For DWO files use .debug_loc.dwo. */
20872
20873 static struct dwarf2_section_info *
20874 cu_debug_loc_section (struct dwarf2_cu *cu)
20875 {
20876 if (cu->dwo_unit)
20877 return &cu->dwo_unit->dwo_file->sections.loc;
20878 return &dwarf2_per_objfile->loc;
20879 }
20880
20881 /* A helper function that fills in a dwarf2_loclist_baton. */
20882
20883 static void
20884 fill_in_loclist_baton (struct dwarf2_cu *cu,
20885 struct dwarf2_loclist_baton *baton,
20886 const struct attribute *attr)
20887 {
20888 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
20889
20890 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20891
20892 baton->per_cu = cu->per_cu;
20893 gdb_assert (baton->per_cu);
20894 /* We don't know how long the location list is, but make sure we
20895 don't run off the edge of the section. */
20896 baton->size = section->size - DW_UNSND (attr);
20897 baton->data = section->buffer + DW_UNSND (attr);
20898 baton->base_address = cu->base_address;
20899 baton->from_dwo = cu->dwo_unit != NULL;
20900 }
20901
20902 static void
20903 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
20904 struct dwarf2_cu *cu, int is_block)
20905 {
20906 struct objfile *objfile = dwarf2_per_objfile->objfile;
20907 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
20908
20909 if (attr_form_is_section_offset (attr)
20910 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
20911 the section. If so, fall through to the complaint in the
20912 other branch. */
20913 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
20914 {
20915 struct dwarf2_loclist_baton *baton;
20916
20917 baton = obstack_alloc (&objfile->objfile_obstack,
20918 sizeof (struct dwarf2_loclist_baton));
20919
20920 fill_in_loclist_baton (cu, baton, attr);
20921
20922 if (cu->base_known == 0)
20923 complaint (&symfile_complaints,
20924 _("Location list used without "
20925 "specifying the CU base address."));
20926
20927 SYMBOL_ACLASS_INDEX (sym) = (is_block
20928 ? dwarf2_loclist_block_index
20929 : dwarf2_loclist_index);
20930 SYMBOL_LOCATION_BATON (sym) = baton;
20931 }
20932 else
20933 {
20934 struct dwarf2_locexpr_baton *baton;
20935
20936 baton = obstack_alloc (&objfile->objfile_obstack,
20937 sizeof (struct dwarf2_locexpr_baton));
20938 baton->per_cu = cu->per_cu;
20939 gdb_assert (baton->per_cu);
20940
20941 if (attr_form_is_block (attr))
20942 {
20943 /* Note that we're just copying the block's data pointer
20944 here, not the actual data. We're still pointing into the
20945 info_buffer for SYM's objfile; right now we never release
20946 that buffer, but when we do clean up properly this may
20947 need to change. */
20948 baton->size = DW_BLOCK (attr)->size;
20949 baton->data = DW_BLOCK (attr)->data;
20950 }
20951 else
20952 {
20953 dwarf2_invalid_attrib_class_complaint ("location description",
20954 SYMBOL_NATURAL_NAME (sym));
20955 baton->size = 0;
20956 }
20957
20958 SYMBOL_ACLASS_INDEX (sym) = (is_block
20959 ? dwarf2_locexpr_block_index
20960 : dwarf2_locexpr_index);
20961 SYMBOL_LOCATION_BATON (sym) = baton;
20962 }
20963 }
20964
20965 /* Return the OBJFILE associated with the compilation unit CU. If CU
20966 came from a separate debuginfo file, then the master objfile is
20967 returned. */
20968
20969 struct objfile *
20970 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
20971 {
20972 struct objfile *objfile = per_cu->objfile;
20973
20974 /* Return the master objfile, so that we can report and look up the
20975 correct file containing this variable. */
20976 if (objfile->separate_debug_objfile_backlink)
20977 objfile = objfile->separate_debug_objfile_backlink;
20978
20979 return objfile;
20980 }
20981
20982 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
20983 (CU_HEADERP is unused in such case) or prepare a temporary copy at
20984 CU_HEADERP first. */
20985
20986 static const struct comp_unit_head *
20987 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
20988 struct dwarf2_per_cu_data *per_cu)
20989 {
20990 const gdb_byte *info_ptr;
20991
20992 if (per_cu->cu)
20993 return &per_cu->cu->header;
20994
20995 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
20996
20997 memset (cu_headerp, 0, sizeof (*cu_headerp));
20998 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
20999
21000 return cu_headerp;
21001 }
21002
21003 /* Return the address size given in the compilation unit header for CU. */
21004
21005 int
21006 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21007 {
21008 struct comp_unit_head cu_header_local;
21009 const struct comp_unit_head *cu_headerp;
21010
21011 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21012
21013 return cu_headerp->addr_size;
21014 }
21015
21016 /* Return the offset size given in the compilation unit header for CU. */
21017
21018 int
21019 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21020 {
21021 struct comp_unit_head cu_header_local;
21022 const struct comp_unit_head *cu_headerp;
21023
21024 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21025
21026 return cu_headerp->offset_size;
21027 }
21028
21029 /* See its dwarf2loc.h declaration. */
21030
21031 int
21032 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21033 {
21034 struct comp_unit_head cu_header_local;
21035 const struct comp_unit_head *cu_headerp;
21036
21037 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21038
21039 if (cu_headerp->version == 2)
21040 return cu_headerp->addr_size;
21041 else
21042 return cu_headerp->offset_size;
21043 }
21044
21045 /* Return the text offset of the CU. The returned offset comes from
21046 this CU's objfile. If this objfile came from a separate debuginfo
21047 file, then the offset may be different from the corresponding
21048 offset in the parent objfile. */
21049
21050 CORE_ADDR
21051 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21052 {
21053 struct objfile *objfile = per_cu->objfile;
21054
21055 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21056 }
21057
21058 /* Locate the .debug_info compilation unit from CU's objfile which contains
21059 the DIE at OFFSET. Raises an error on failure. */
21060
21061 static struct dwarf2_per_cu_data *
21062 dwarf2_find_containing_comp_unit (sect_offset offset,
21063 unsigned int offset_in_dwz,
21064 struct objfile *objfile)
21065 {
21066 struct dwarf2_per_cu_data *this_cu;
21067 int low, high;
21068 const sect_offset *cu_off;
21069
21070 low = 0;
21071 high = dwarf2_per_objfile->n_comp_units - 1;
21072 while (high > low)
21073 {
21074 struct dwarf2_per_cu_data *mid_cu;
21075 int mid = low + (high - low) / 2;
21076
21077 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21078 cu_off = &mid_cu->offset;
21079 if (mid_cu->is_dwz > offset_in_dwz
21080 || (mid_cu->is_dwz == offset_in_dwz
21081 && cu_off->sect_off >= offset.sect_off))
21082 high = mid;
21083 else
21084 low = mid + 1;
21085 }
21086 gdb_assert (low == high);
21087 this_cu = dwarf2_per_objfile->all_comp_units[low];
21088 cu_off = &this_cu->offset;
21089 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21090 {
21091 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21092 error (_("Dwarf Error: could not find partial DIE containing "
21093 "offset 0x%lx [in module %s]"),
21094 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21095
21096 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21097 <= offset.sect_off);
21098 return dwarf2_per_objfile->all_comp_units[low-1];
21099 }
21100 else
21101 {
21102 this_cu = dwarf2_per_objfile->all_comp_units[low];
21103 if (low == dwarf2_per_objfile->n_comp_units - 1
21104 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21105 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21106 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21107 return this_cu;
21108 }
21109 }
21110
21111 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21112
21113 static void
21114 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21115 {
21116 memset (cu, 0, sizeof (*cu));
21117 per_cu->cu = cu;
21118 cu->per_cu = per_cu;
21119 cu->objfile = per_cu->objfile;
21120 obstack_init (&cu->comp_unit_obstack);
21121 }
21122
21123 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21124
21125 static void
21126 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21127 enum language pretend_language)
21128 {
21129 struct attribute *attr;
21130
21131 /* Set the language we're debugging. */
21132 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21133 if (attr)
21134 set_cu_language (DW_UNSND (attr), cu);
21135 else
21136 {
21137 cu->language = pretend_language;
21138 cu->language_defn = language_def (cu->language);
21139 }
21140
21141 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21142 if (attr)
21143 cu->producer = DW_STRING (attr);
21144 }
21145
21146 /* Release one cached compilation unit, CU. We unlink it from the tree
21147 of compilation units, but we don't remove it from the read_in_chain;
21148 the caller is responsible for that.
21149 NOTE: DATA is a void * because this function is also used as a
21150 cleanup routine. */
21151
21152 static void
21153 free_heap_comp_unit (void *data)
21154 {
21155 struct dwarf2_cu *cu = data;
21156
21157 gdb_assert (cu->per_cu != NULL);
21158 cu->per_cu->cu = NULL;
21159 cu->per_cu = NULL;
21160
21161 obstack_free (&cu->comp_unit_obstack, NULL);
21162
21163 xfree (cu);
21164 }
21165
21166 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21167 when we're finished with it. We can't free the pointer itself, but be
21168 sure to unlink it from the cache. Also release any associated storage. */
21169
21170 static void
21171 free_stack_comp_unit (void *data)
21172 {
21173 struct dwarf2_cu *cu = data;
21174
21175 gdb_assert (cu->per_cu != NULL);
21176 cu->per_cu->cu = NULL;
21177 cu->per_cu = NULL;
21178
21179 obstack_free (&cu->comp_unit_obstack, NULL);
21180 cu->partial_dies = NULL;
21181 }
21182
21183 /* Free all cached compilation units. */
21184
21185 static void
21186 free_cached_comp_units (void *data)
21187 {
21188 struct dwarf2_per_cu_data *per_cu, **last_chain;
21189
21190 per_cu = dwarf2_per_objfile->read_in_chain;
21191 last_chain = &dwarf2_per_objfile->read_in_chain;
21192 while (per_cu != NULL)
21193 {
21194 struct dwarf2_per_cu_data *next_cu;
21195
21196 next_cu = per_cu->cu->read_in_chain;
21197
21198 free_heap_comp_unit (per_cu->cu);
21199 *last_chain = next_cu;
21200
21201 per_cu = next_cu;
21202 }
21203 }
21204
21205 /* Increase the age counter on each cached compilation unit, and free
21206 any that are too old. */
21207
21208 static void
21209 age_cached_comp_units (void)
21210 {
21211 struct dwarf2_per_cu_data *per_cu, **last_chain;
21212
21213 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21214 per_cu = dwarf2_per_objfile->read_in_chain;
21215 while (per_cu != NULL)
21216 {
21217 per_cu->cu->last_used ++;
21218 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21219 dwarf2_mark (per_cu->cu);
21220 per_cu = per_cu->cu->read_in_chain;
21221 }
21222
21223 per_cu = dwarf2_per_objfile->read_in_chain;
21224 last_chain = &dwarf2_per_objfile->read_in_chain;
21225 while (per_cu != NULL)
21226 {
21227 struct dwarf2_per_cu_data *next_cu;
21228
21229 next_cu = per_cu->cu->read_in_chain;
21230
21231 if (!per_cu->cu->mark)
21232 {
21233 free_heap_comp_unit (per_cu->cu);
21234 *last_chain = next_cu;
21235 }
21236 else
21237 last_chain = &per_cu->cu->read_in_chain;
21238
21239 per_cu = next_cu;
21240 }
21241 }
21242
21243 /* Remove a single compilation unit from the cache. */
21244
21245 static void
21246 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21247 {
21248 struct dwarf2_per_cu_data *per_cu, **last_chain;
21249
21250 per_cu = dwarf2_per_objfile->read_in_chain;
21251 last_chain = &dwarf2_per_objfile->read_in_chain;
21252 while (per_cu != NULL)
21253 {
21254 struct dwarf2_per_cu_data *next_cu;
21255
21256 next_cu = per_cu->cu->read_in_chain;
21257
21258 if (per_cu == target_per_cu)
21259 {
21260 free_heap_comp_unit (per_cu->cu);
21261 per_cu->cu = NULL;
21262 *last_chain = next_cu;
21263 break;
21264 }
21265 else
21266 last_chain = &per_cu->cu->read_in_chain;
21267
21268 per_cu = next_cu;
21269 }
21270 }
21271
21272 /* Release all extra memory associated with OBJFILE. */
21273
21274 void
21275 dwarf2_free_objfile (struct objfile *objfile)
21276 {
21277 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21278
21279 if (dwarf2_per_objfile == NULL)
21280 return;
21281
21282 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21283 free_cached_comp_units (NULL);
21284
21285 if (dwarf2_per_objfile->quick_file_names_table)
21286 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21287
21288 /* Everything else should be on the objfile obstack. */
21289 }
21290
21291 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21292 We store these in a hash table separate from the DIEs, and preserve them
21293 when the DIEs are flushed out of cache.
21294
21295 The CU "per_cu" pointer is needed because offset alone is not enough to
21296 uniquely identify the type. A file may have multiple .debug_types sections,
21297 or the type may come from a DWO file. Furthermore, while it's more logical
21298 to use per_cu->section+offset, with Fission the section with the data is in
21299 the DWO file but we don't know that section at the point we need it.
21300 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21301 because we can enter the lookup routine, get_die_type_at_offset, from
21302 outside this file, and thus won't necessarily have PER_CU->cu.
21303 Fortunately, PER_CU is stable for the life of the objfile. */
21304
21305 struct dwarf2_per_cu_offset_and_type
21306 {
21307 const struct dwarf2_per_cu_data *per_cu;
21308 sect_offset offset;
21309 struct type *type;
21310 };
21311
21312 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21313
21314 static hashval_t
21315 per_cu_offset_and_type_hash (const void *item)
21316 {
21317 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21318
21319 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21320 }
21321
21322 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21323
21324 static int
21325 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21326 {
21327 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21328 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21329
21330 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21331 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21332 }
21333
21334 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21335 table if necessary. For convenience, return TYPE.
21336
21337 The DIEs reading must have careful ordering to:
21338 * Not cause infite loops trying to read in DIEs as a prerequisite for
21339 reading current DIE.
21340 * Not trying to dereference contents of still incompletely read in types
21341 while reading in other DIEs.
21342 * Enable referencing still incompletely read in types just by a pointer to
21343 the type without accessing its fields.
21344
21345 Therefore caller should follow these rules:
21346 * Try to fetch any prerequisite types we may need to build this DIE type
21347 before building the type and calling set_die_type.
21348 * After building type call set_die_type for current DIE as soon as
21349 possible before fetching more types to complete the current type.
21350 * Make the type as complete as possible before fetching more types. */
21351
21352 static struct type *
21353 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21354 {
21355 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21356 struct objfile *objfile = cu->objfile;
21357
21358 /* For Ada types, make sure that the gnat-specific data is always
21359 initialized (if not already set). There are a few types where
21360 we should not be doing so, because the type-specific area is
21361 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21362 where the type-specific area is used to store the floatformat).
21363 But this is not a problem, because the gnat-specific information
21364 is actually not needed for these types. */
21365 if (need_gnat_info (cu)
21366 && TYPE_CODE (type) != TYPE_CODE_FUNC
21367 && TYPE_CODE (type) != TYPE_CODE_FLT
21368 && !HAVE_GNAT_AUX_INFO (type))
21369 INIT_GNAT_SPECIFIC (type);
21370
21371 if (dwarf2_per_objfile->die_type_hash == NULL)
21372 {
21373 dwarf2_per_objfile->die_type_hash =
21374 htab_create_alloc_ex (127,
21375 per_cu_offset_and_type_hash,
21376 per_cu_offset_and_type_eq,
21377 NULL,
21378 &objfile->objfile_obstack,
21379 hashtab_obstack_allocate,
21380 dummy_obstack_deallocate);
21381 }
21382
21383 ofs.per_cu = cu->per_cu;
21384 ofs.offset = die->offset;
21385 ofs.type = type;
21386 slot = (struct dwarf2_per_cu_offset_and_type **)
21387 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21388 if (*slot)
21389 complaint (&symfile_complaints,
21390 _("A problem internal to GDB: DIE 0x%x has type already set"),
21391 die->offset.sect_off);
21392 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21393 **slot = ofs;
21394 return type;
21395 }
21396
21397 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21398 or return NULL if the die does not have a saved type. */
21399
21400 static struct type *
21401 get_die_type_at_offset (sect_offset offset,
21402 struct dwarf2_per_cu_data *per_cu)
21403 {
21404 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21405
21406 if (dwarf2_per_objfile->die_type_hash == NULL)
21407 return NULL;
21408
21409 ofs.per_cu = per_cu;
21410 ofs.offset = offset;
21411 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21412 if (slot)
21413 return slot->type;
21414 else
21415 return NULL;
21416 }
21417
21418 /* Look up the type for DIE in CU in die_type_hash,
21419 or return NULL if DIE does not have a saved type. */
21420
21421 static struct type *
21422 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21423 {
21424 return get_die_type_at_offset (die->offset, cu->per_cu);
21425 }
21426
21427 /* Add a dependence relationship from CU to REF_PER_CU. */
21428
21429 static void
21430 dwarf2_add_dependence (struct dwarf2_cu *cu,
21431 struct dwarf2_per_cu_data *ref_per_cu)
21432 {
21433 void **slot;
21434
21435 if (cu->dependencies == NULL)
21436 cu->dependencies
21437 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21438 NULL, &cu->comp_unit_obstack,
21439 hashtab_obstack_allocate,
21440 dummy_obstack_deallocate);
21441
21442 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21443 if (*slot == NULL)
21444 *slot = ref_per_cu;
21445 }
21446
21447 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21448 Set the mark field in every compilation unit in the
21449 cache that we must keep because we are keeping CU. */
21450
21451 static int
21452 dwarf2_mark_helper (void **slot, void *data)
21453 {
21454 struct dwarf2_per_cu_data *per_cu;
21455
21456 per_cu = (struct dwarf2_per_cu_data *) *slot;
21457
21458 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21459 reading of the chain. As such dependencies remain valid it is not much
21460 useful to track and undo them during QUIT cleanups. */
21461 if (per_cu->cu == NULL)
21462 return 1;
21463
21464 if (per_cu->cu->mark)
21465 return 1;
21466 per_cu->cu->mark = 1;
21467
21468 if (per_cu->cu->dependencies != NULL)
21469 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21470
21471 return 1;
21472 }
21473
21474 /* Set the mark field in CU and in every other compilation unit in the
21475 cache that we must keep because we are keeping CU. */
21476
21477 static void
21478 dwarf2_mark (struct dwarf2_cu *cu)
21479 {
21480 if (cu->mark)
21481 return;
21482 cu->mark = 1;
21483 if (cu->dependencies != NULL)
21484 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21485 }
21486
21487 static void
21488 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21489 {
21490 while (per_cu)
21491 {
21492 per_cu->cu->mark = 0;
21493 per_cu = per_cu->cu->read_in_chain;
21494 }
21495 }
21496
21497 /* Trivial hash function for partial_die_info: the hash value of a DIE
21498 is its offset in .debug_info for this objfile. */
21499
21500 static hashval_t
21501 partial_die_hash (const void *item)
21502 {
21503 const struct partial_die_info *part_die = item;
21504
21505 return part_die->offset.sect_off;
21506 }
21507
21508 /* Trivial comparison function for partial_die_info structures: two DIEs
21509 are equal if they have the same offset. */
21510
21511 static int
21512 partial_die_eq (const void *item_lhs, const void *item_rhs)
21513 {
21514 const struct partial_die_info *part_die_lhs = item_lhs;
21515 const struct partial_die_info *part_die_rhs = item_rhs;
21516
21517 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
21518 }
21519
21520 static struct cmd_list_element *set_dwarf2_cmdlist;
21521 static struct cmd_list_element *show_dwarf2_cmdlist;
21522
21523 static void
21524 set_dwarf2_cmd (char *args, int from_tty)
21525 {
21526 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
21527 }
21528
21529 static void
21530 show_dwarf2_cmd (char *args, int from_tty)
21531 {
21532 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21533 }
21534
21535 /* Free data associated with OBJFILE, if necessary. */
21536
21537 static void
21538 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
21539 {
21540 struct dwarf2_per_objfile *data = d;
21541 int ix;
21542
21543 /* Make sure we don't accidentally use dwarf2_per_objfile while
21544 cleaning up. */
21545 dwarf2_per_objfile = NULL;
21546
21547 for (ix = 0; ix < data->n_comp_units; ++ix)
21548 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
21549
21550 for (ix = 0; ix < data->n_type_units; ++ix)
21551 VEC_free (dwarf2_per_cu_ptr,
21552 data->all_type_units[ix]->per_cu.imported_symtabs);
21553 xfree (data->all_type_units);
21554
21555 VEC_free (dwarf2_section_info_def, data->types);
21556
21557 if (data->dwo_files)
21558 free_dwo_files (data->dwo_files, objfile);
21559 if (data->dwp_file)
21560 gdb_bfd_unref (data->dwp_file->dbfd);
21561
21562 if (data->dwz_file && data->dwz_file->dwz_bfd)
21563 gdb_bfd_unref (data->dwz_file->dwz_bfd);
21564 }
21565
21566 \f
21567 /* The "save gdb-index" command. */
21568
21569 /* The contents of the hash table we create when building the string
21570 table. */
21571 struct strtab_entry
21572 {
21573 offset_type offset;
21574 const char *str;
21575 };
21576
21577 /* Hash function for a strtab_entry.
21578
21579 Function is used only during write_hash_table so no index format backward
21580 compatibility is needed. */
21581
21582 static hashval_t
21583 hash_strtab_entry (const void *e)
21584 {
21585 const struct strtab_entry *entry = e;
21586 return mapped_index_string_hash (INT_MAX, entry->str);
21587 }
21588
21589 /* Equality function for a strtab_entry. */
21590
21591 static int
21592 eq_strtab_entry (const void *a, const void *b)
21593 {
21594 const struct strtab_entry *ea = a;
21595 const struct strtab_entry *eb = b;
21596 return !strcmp (ea->str, eb->str);
21597 }
21598
21599 /* Create a strtab_entry hash table. */
21600
21601 static htab_t
21602 create_strtab (void)
21603 {
21604 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
21605 xfree, xcalloc, xfree);
21606 }
21607
21608 /* Add a string to the constant pool. Return the string's offset in
21609 host order. */
21610
21611 static offset_type
21612 add_string (htab_t table, struct obstack *cpool, const char *str)
21613 {
21614 void **slot;
21615 struct strtab_entry entry;
21616 struct strtab_entry *result;
21617
21618 entry.str = str;
21619 slot = htab_find_slot (table, &entry, INSERT);
21620 if (*slot)
21621 result = *slot;
21622 else
21623 {
21624 result = XNEW (struct strtab_entry);
21625 result->offset = obstack_object_size (cpool);
21626 result->str = str;
21627 obstack_grow_str0 (cpool, str);
21628 *slot = result;
21629 }
21630 return result->offset;
21631 }
21632
21633 /* An entry in the symbol table. */
21634 struct symtab_index_entry
21635 {
21636 /* The name of the symbol. */
21637 const char *name;
21638 /* The offset of the name in the constant pool. */
21639 offset_type index_offset;
21640 /* A sorted vector of the indices of all the CUs that hold an object
21641 of this name. */
21642 VEC (offset_type) *cu_indices;
21643 };
21644
21645 /* The symbol table. This is a power-of-2-sized hash table. */
21646 struct mapped_symtab
21647 {
21648 offset_type n_elements;
21649 offset_type size;
21650 struct symtab_index_entry **data;
21651 };
21652
21653 /* Hash function for a symtab_index_entry. */
21654
21655 static hashval_t
21656 hash_symtab_entry (const void *e)
21657 {
21658 const struct symtab_index_entry *entry = e;
21659 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
21660 sizeof (offset_type) * VEC_length (offset_type,
21661 entry->cu_indices),
21662 0);
21663 }
21664
21665 /* Equality function for a symtab_index_entry. */
21666
21667 static int
21668 eq_symtab_entry (const void *a, const void *b)
21669 {
21670 const struct symtab_index_entry *ea = a;
21671 const struct symtab_index_entry *eb = b;
21672 int len = VEC_length (offset_type, ea->cu_indices);
21673 if (len != VEC_length (offset_type, eb->cu_indices))
21674 return 0;
21675 return !memcmp (VEC_address (offset_type, ea->cu_indices),
21676 VEC_address (offset_type, eb->cu_indices),
21677 sizeof (offset_type) * len);
21678 }
21679
21680 /* Destroy a symtab_index_entry. */
21681
21682 static void
21683 delete_symtab_entry (void *p)
21684 {
21685 struct symtab_index_entry *entry = p;
21686 VEC_free (offset_type, entry->cu_indices);
21687 xfree (entry);
21688 }
21689
21690 /* Create a hash table holding symtab_index_entry objects. */
21691
21692 static htab_t
21693 create_symbol_hash_table (void)
21694 {
21695 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
21696 delete_symtab_entry, xcalloc, xfree);
21697 }
21698
21699 /* Create a new mapped symtab object. */
21700
21701 static struct mapped_symtab *
21702 create_mapped_symtab (void)
21703 {
21704 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
21705 symtab->n_elements = 0;
21706 symtab->size = 1024;
21707 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21708 return symtab;
21709 }
21710
21711 /* Destroy a mapped_symtab. */
21712
21713 static void
21714 cleanup_mapped_symtab (void *p)
21715 {
21716 struct mapped_symtab *symtab = p;
21717 /* The contents of the array are freed when the other hash table is
21718 destroyed. */
21719 xfree (symtab->data);
21720 xfree (symtab);
21721 }
21722
21723 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
21724 the slot.
21725
21726 Function is used only during write_hash_table so no index format backward
21727 compatibility is needed. */
21728
21729 static struct symtab_index_entry **
21730 find_slot (struct mapped_symtab *symtab, const char *name)
21731 {
21732 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
21733
21734 index = hash & (symtab->size - 1);
21735 step = ((hash * 17) & (symtab->size - 1)) | 1;
21736
21737 for (;;)
21738 {
21739 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
21740 return &symtab->data[index];
21741 index = (index + step) & (symtab->size - 1);
21742 }
21743 }
21744
21745 /* Expand SYMTAB's hash table. */
21746
21747 static void
21748 hash_expand (struct mapped_symtab *symtab)
21749 {
21750 offset_type old_size = symtab->size;
21751 offset_type i;
21752 struct symtab_index_entry **old_entries = symtab->data;
21753
21754 symtab->size *= 2;
21755 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21756
21757 for (i = 0; i < old_size; ++i)
21758 {
21759 if (old_entries[i])
21760 {
21761 struct symtab_index_entry **slot = find_slot (symtab,
21762 old_entries[i]->name);
21763 *slot = old_entries[i];
21764 }
21765 }
21766
21767 xfree (old_entries);
21768 }
21769
21770 /* Add an entry to SYMTAB. NAME is the name of the symbol.
21771 CU_INDEX is the index of the CU in which the symbol appears.
21772 IS_STATIC is one if the symbol is static, otherwise zero (global). */
21773
21774 static void
21775 add_index_entry (struct mapped_symtab *symtab, const char *name,
21776 int is_static, gdb_index_symbol_kind kind,
21777 offset_type cu_index)
21778 {
21779 struct symtab_index_entry **slot;
21780 offset_type cu_index_and_attrs;
21781
21782 ++symtab->n_elements;
21783 if (4 * symtab->n_elements / 3 >= symtab->size)
21784 hash_expand (symtab);
21785
21786 slot = find_slot (symtab, name);
21787 if (!*slot)
21788 {
21789 *slot = XNEW (struct symtab_index_entry);
21790 (*slot)->name = name;
21791 /* index_offset is set later. */
21792 (*slot)->cu_indices = NULL;
21793 }
21794
21795 cu_index_and_attrs = 0;
21796 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
21797 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
21798 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
21799
21800 /* We don't want to record an index value twice as we want to avoid the
21801 duplication.
21802 We process all global symbols and then all static symbols
21803 (which would allow us to avoid the duplication by only having to check
21804 the last entry pushed), but a symbol could have multiple kinds in one CU.
21805 To keep things simple we don't worry about the duplication here and
21806 sort and uniqufy the list after we've processed all symbols. */
21807 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
21808 }
21809
21810 /* qsort helper routine for uniquify_cu_indices. */
21811
21812 static int
21813 offset_type_compare (const void *ap, const void *bp)
21814 {
21815 offset_type a = *(offset_type *) ap;
21816 offset_type b = *(offset_type *) bp;
21817
21818 return (a > b) - (b > a);
21819 }
21820
21821 /* Sort and remove duplicates of all symbols' cu_indices lists. */
21822
21823 static void
21824 uniquify_cu_indices (struct mapped_symtab *symtab)
21825 {
21826 int i;
21827
21828 for (i = 0; i < symtab->size; ++i)
21829 {
21830 struct symtab_index_entry *entry = symtab->data[i];
21831
21832 if (entry
21833 && entry->cu_indices != NULL)
21834 {
21835 unsigned int next_to_insert, next_to_check;
21836 offset_type last_value;
21837
21838 qsort (VEC_address (offset_type, entry->cu_indices),
21839 VEC_length (offset_type, entry->cu_indices),
21840 sizeof (offset_type), offset_type_compare);
21841
21842 last_value = VEC_index (offset_type, entry->cu_indices, 0);
21843 next_to_insert = 1;
21844 for (next_to_check = 1;
21845 next_to_check < VEC_length (offset_type, entry->cu_indices);
21846 ++next_to_check)
21847 {
21848 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
21849 != last_value)
21850 {
21851 last_value = VEC_index (offset_type, entry->cu_indices,
21852 next_to_check);
21853 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
21854 last_value);
21855 ++next_to_insert;
21856 }
21857 }
21858 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
21859 }
21860 }
21861 }
21862
21863 /* Add a vector of indices to the constant pool. */
21864
21865 static offset_type
21866 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
21867 struct symtab_index_entry *entry)
21868 {
21869 void **slot;
21870
21871 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
21872 if (!*slot)
21873 {
21874 offset_type len = VEC_length (offset_type, entry->cu_indices);
21875 offset_type val = MAYBE_SWAP (len);
21876 offset_type iter;
21877 int i;
21878
21879 *slot = entry;
21880 entry->index_offset = obstack_object_size (cpool);
21881
21882 obstack_grow (cpool, &val, sizeof (val));
21883 for (i = 0;
21884 VEC_iterate (offset_type, entry->cu_indices, i, iter);
21885 ++i)
21886 {
21887 val = MAYBE_SWAP (iter);
21888 obstack_grow (cpool, &val, sizeof (val));
21889 }
21890 }
21891 else
21892 {
21893 struct symtab_index_entry *old_entry = *slot;
21894 entry->index_offset = old_entry->index_offset;
21895 entry = old_entry;
21896 }
21897 return entry->index_offset;
21898 }
21899
21900 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
21901 constant pool entries going into the obstack CPOOL. */
21902
21903 static void
21904 write_hash_table (struct mapped_symtab *symtab,
21905 struct obstack *output, struct obstack *cpool)
21906 {
21907 offset_type i;
21908 htab_t symbol_hash_table;
21909 htab_t str_table;
21910
21911 symbol_hash_table = create_symbol_hash_table ();
21912 str_table = create_strtab ();
21913
21914 /* We add all the index vectors to the constant pool first, to
21915 ensure alignment is ok. */
21916 for (i = 0; i < symtab->size; ++i)
21917 {
21918 if (symtab->data[i])
21919 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
21920 }
21921
21922 /* Now write out the hash table. */
21923 for (i = 0; i < symtab->size; ++i)
21924 {
21925 offset_type str_off, vec_off;
21926
21927 if (symtab->data[i])
21928 {
21929 str_off = add_string (str_table, cpool, symtab->data[i]->name);
21930 vec_off = symtab->data[i]->index_offset;
21931 }
21932 else
21933 {
21934 /* While 0 is a valid constant pool index, it is not valid
21935 to have 0 for both offsets. */
21936 str_off = 0;
21937 vec_off = 0;
21938 }
21939
21940 str_off = MAYBE_SWAP (str_off);
21941 vec_off = MAYBE_SWAP (vec_off);
21942
21943 obstack_grow (output, &str_off, sizeof (str_off));
21944 obstack_grow (output, &vec_off, sizeof (vec_off));
21945 }
21946
21947 htab_delete (str_table);
21948 htab_delete (symbol_hash_table);
21949 }
21950
21951 /* Struct to map psymtab to CU index in the index file. */
21952 struct psymtab_cu_index_map
21953 {
21954 struct partial_symtab *psymtab;
21955 unsigned int cu_index;
21956 };
21957
21958 static hashval_t
21959 hash_psymtab_cu_index (const void *item)
21960 {
21961 const struct psymtab_cu_index_map *map = item;
21962
21963 return htab_hash_pointer (map->psymtab);
21964 }
21965
21966 static int
21967 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
21968 {
21969 const struct psymtab_cu_index_map *lhs = item_lhs;
21970 const struct psymtab_cu_index_map *rhs = item_rhs;
21971
21972 return lhs->psymtab == rhs->psymtab;
21973 }
21974
21975 /* Helper struct for building the address table. */
21976 struct addrmap_index_data
21977 {
21978 struct objfile *objfile;
21979 struct obstack *addr_obstack;
21980 htab_t cu_index_htab;
21981
21982 /* Non-zero if the previous_* fields are valid.
21983 We can't write an entry until we see the next entry (since it is only then
21984 that we know the end of the entry). */
21985 int previous_valid;
21986 /* Index of the CU in the table of all CUs in the index file. */
21987 unsigned int previous_cu_index;
21988 /* Start address of the CU. */
21989 CORE_ADDR previous_cu_start;
21990 };
21991
21992 /* Write an address entry to OBSTACK. */
21993
21994 static void
21995 add_address_entry (struct objfile *objfile, struct obstack *obstack,
21996 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
21997 {
21998 offset_type cu_index_to_write;
21999 gdb_byte addr[8];
22000 CORE_ADDR baseaddr;
22001
22002 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22003
22004 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22005 obstack_grow (obstack, addr, 8);
22006 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22007 obstack_grow (obstack, addr, 8);
22008 cu_index_to_write = MAYBE_SWAP (cu_index);
22009 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22010 }
22011
22012 /* Worker function for traversing an addrmap to build the address table. */
22013
22014 static int
22015 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22016 {
22017 struct addrmap_index_data *data = datap;
22018 struct partial_symtab *pst = obj;
22019
22020 if (data->previous_valid)
22021 add_address_entry (data->objfile, data->addr_obstack,
22022 data->previous_cu_start, start_addr,
22023 data->previous_cu_index);
22024
22025 data->previous_cu_start = start_addr;
22026 if (pst != NULL)
22027 {
22028 struct psymtab_cu_index_map find_map, *map;
22029 find_map.psymtab = pst;
22030 map = htab_find (data->cu_index_htab, &find_map);
22031 gdb_assert (map != NULL);
22032 data->previous_cu_index = map->cu_index;
22033 data->previous_valid = 1;
22034 }
22035 else
22036 data->previous_valid = 0;
22037
22038 return 0;
22039 }
22040
22041 /* Write OBJFILE's address map to OBSTACK.
22042 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22043 in the index file. */
22044
22045 static void
22046 write_address_map (struct objfile *objfile, struct obstack *obstack,
22047 htab_t cu_index_htab)
22048 {
22049 struct addrmap_index_data addrmap_index_data;
22050
22051 /* When writing the address table, we have to cope with the fact that
22052 the addrmap iterator only provides the start of a region; we have to
22053 wait until the next invocation to get the start of the next region. */
22054
22055 addrmap_index_data.objfile = objfile;
22056 addrmap_index_data.addr_obstack = obstack;
22057 addrmap_index_data.cu_index_htab = cu_index_htab;
22058 addrmap_index_data.previous_valid = 0;
22059
22060 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22061 &addrmap_index_data);
22062
22063 /* It's highly unlikely the last entry (end address = 0xff...ff)
22064 is valid, but we should still handle it.
22065 The end address is recorded as the start of the next region, but that
22066 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22067 anyway. */
22068 if (addrmap_index_data.previous_valid)
22069 add_address_entry (objfile, obstack,
22070 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22071 addrmap_index_data.previous_cu_index);
22072 }
22073
22074 /* Return the symbol kind of PSYM. */
22075
22076 static gdb_index_symbol_kind
22077 symbol_kind (struct partial_symbol *psym)
22078 {
22079 domain_enum domain = PSYMBOL_DOMAIN (psym);
22080 enum address_class aclass = PSYMBOL_CLASS (psym);
22081
22082 switch (domain)
22083 {
22084 case VAR_DOMAIN:
22085 switch (aclass)
22086 {
22087 case LOC_BLOCK:
22088 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22089 case LOC_TYPEDEF:
22090 return GDB_INDEX_SYMBOL_KIND_TYPE;
22091 case LOC_COMPUTED:
22092 case LOC_CONST_BYTES:
22093 case LOC_OPTIMIZED_OUT:
22094 case LOC_STATIC:
22095 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22096 case LOC_CONST:
22097 /* Note: It's currently impossible to recognize psyms as enum values
22098 short of reading the type info. For now punt. */
22099 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22100 default:
22101 /* There are other LOC_FOO values that one might want to classify
22102 as variables, but dwarf2read.c doesn't currently use them. */
22103 return GDB_INDEX_SYMBOL_KIND_OTHER;
22104 }
22105 case STRUCT_DOMAIN:
22106 return GDB_INDEX_SYMBOL_KIND_TYPE;
22107 default:
22108 return GDB_INDEX_SYMBOL_KIND_OTHER;
22109 }
22110 }
22111
22112 /* Add a list of partial symbols to SYMTAB. */
22113
22114 static void
22115 write_psymbols (struct mapped_symtab *symtab,
22116 htab_t psyms_seen,
22117 struct partial_symbol **psymp,
22118 int count,
22119 offset_type cu_index,
22120 int is_static)
22121 {
22122 for (; count-- > 0; ++psymp)
22123 {
22124 struct partial_symbol *psym = *psymp;
22125 void **slot;
22126
22127 if (SYMBOL_LANGUAGE (psym) == language_ada)
22128 error (_("Ada is not currently supported by the index"));
22129
22130 /* Only add a given psymbol once. */
22131 slot = htab_find_slot (psyms_seen, psym, INSERT);
22132 if (!*slot)
22133 {
22134 gdb_index_symbol_kind kind = symbol_kind (psym);
22135
22136 *slot = psym;
22137 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22138 is_static, kind, cu_index);
22139 }
22140 }
22141 }
22142
22143 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22144 exception if there is an error. */
22145
22146 static void
22147 write_obstack (FILE *file, struct obstack *obstack)
22148 {
22149 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22150 file)
22151 != obstack_object_size (obstack))
22152 error (_("couldn't data write to file"));
22153 }
22154
22155 /* Unlink a file if the argument is not NULL. */
22156
22157 static void
22158 unlink_if_set (void *p)
22159 {
22160 char **filename = p;
22161 if (*filename)
22162 unlink (*filename);
22163 }
22164
22165 /* A helper struct used when iterating over debug_types. */
22166 struct signatured_type_index_data
22167 {
22168 struct objfile *objfile;
22169 struct mapped_symtab *symtab;
22170 struct obstack *types_list;
22171 htab_t psyms_seen;
22172 int cu_index;
22173 };
22174
22175 /* A helper function that writes a single signatured_type to an
22176 obstack. */
22177
22178 static int
22179 write_one_signatured_type (void **slot, void *d)
22180 {
22181 struct signatured_type_index_data *info = d;
22182 struct signatured_type *entry = (struct signatured_type *) *slot;
22183 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22184 gdb_byte val[8];
22185
22186 write_psymbols (info->symtab,
22187 info->psyms_seen,
22188 info->objfile->global_psymbols.list
22189 + psymtab->globals_offset,
22190 psymtab->n_global_syms, info->cu_index,
22191 0);
22192 write_psymbols (info->symtab,
22193 info->psyms_seen,
22194 info->objfile->static_psymbols.list
22195 + psymtab->statics_offset,
22196 psymtab->n_static_syms, info->cu_index,
22197 1);
22198
22199 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22200 entry->per_cu.offset.sect_off);
22201 obstack_grow (info->types_list, val, 8);
22202 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22203 entry->type_offset_in_tu.cu_off);
22204 obstack_grow (info->types_list, val, 8);
22205 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22206 obstack_grow (info->types_list, val, 8);
22207
22208 ++info->cu_index;
22209
22210 return 1;
22211 }
22212
22213 /* Recurse into all "included" dependencies and write their symbols as
22214 if they appeared in this psymtab. */
22215
22216 static void
22217 recursively_write_psymbols (struct objfile *objfile,
22218 struct partial_symtab *psymtab,
22219 struct mapped_symtab *symtab,
22220 htab_t psyms_seen,
22221 offset_type cu_index)
22222 {
22223 int i;
22224
22225 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22226 if (psymtab->dependencies[i]->user != NULL)
22227 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22228 symtab, psyms_seen, cu_index);
22229
22230 write_psymbols (symtab,
22231 psyms_seen,
22232 objfile->global_psymbols.list + psymtab->globals_offset,
22233 psymtab->n_global_syms, cu_index,
22234 0);
22235 write_psymbols (symtab,
22236 psyms_seen,
22237 objfile->static_psymbols.list + psymtab->statics_offset,
22238 psymtab->n_static_syms, cu_index,
22239 1);
22240 }
22241
22242 /* Create an index file for OBJFILE in the directory DIR. */
22243
22244 static void
22245 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22246 {
22247 struct cleanup *cleanup;
22248 char *filename, *cleanup_filename;
22249 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22250 struct obstack cu_list, types_cu_list;
22251 int i;
22252 FILE *out_file;
22253 struct mapped_symtab *symtab;
22254 offset_type val, size_of_contents, total_len;
22255 struct stat st;
22256 htab_t psyms_seen;
22257 htab_t cu_index_htab;
22258 struct psymtab_cu_index_map *psymtab_cu_index_map;
22259
22260 if (dwarf2_per_objfile->using_index)
22261 error (_("Cannot use an index to create the index"));
22262
22263 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22264 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22265
22266 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22267 return;
22268
22269 if (stat (objfile_name (objfile), &st) < 0)
22270 perror_with_name (objfile_name (objfile));
22271
22272 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22273 INDEX_SUFFIX, (char *) NULL);
22274 cleanup = make_cleanup (xfree, filename);
22275
22276 out_file = gdb_fopen_cloexec (filename, "wb");
22277 if (!out_file)
22278 error (_("Can't open `%s' for writing"), filename);
22279
22280 cleanup_filename = filename;
22281 make_cleanup (unlink_if_set, &cleanup_filename);
22282
22283 symtab = create_mapped_symtab ();
22284 make_cleanup (cleanup_mapped_symtab, symtab);
22285
22286 obstack_init (&addr_obstack);
22287 make_cleanup_obstack_free (&addr_obstack);
22288
22289 obstack_init (&cu_list);
22290 make_cleanup_obstack_free (&cu_list);
22291
22292 obstack_init (&types_cu_list);
22293 make_cleanup_obstack_free (&types_cu_list);
22294
22295 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22296 NULL, xcalloc, xfree);
22297 make_cleanup_htab_delete (psyms_seen);
22298
22299 /* While we're scanning CU's create a table that maps a psymtab pointer
22300 (which is what addrmap records) to its index (which is what is recorded
22301 in the index file). This will later be needed to write the address
22302 table. */
22303 cu_index_htab = htab_create_alloc (100,
22304 hash_psymtab_cu_index,
22305 eq_psymtab_cu_index,
22306 NULL, xcalloc, xfree);
22307 make_cleanup_htab_delete (cu_index_htab);
22308 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22309 xmalloc (sizeof (struct psymtab_cu_index_map)
22310 * dwarf2_per_objfile->n_comp_units);
22311 make_cleanup (xfree, psymtab_cu_index_map);
22312
22313 /* The CU list is already sorted, so we don't need to do additional
22314 work here. Also, the debug_types entries do not appear in
22315 all_comp_units, but only in their own hash table. */
22316 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22317 {
22318 struct dwarf2_per_cu_data *per_cu
22319 = dwarf2_per_objfile->all_comp_units[i];
22320 struct partial_symtab *psymtab = per_cu->v.psymtab;
22321 gdb_byte val[8];
22322 struct psymtab_cu_index_map *map;
22323 void **slot;
22324
22325 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22326 It may be referenced from a local scope but in such case it does not
22327 need to be present in .gdb_index. */
22328 if (psymtab == NULL)
22329 continue;
22330
22331 if (psymtab->user == NULL)
22332 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22333
22334 map = &psymtab_cu_index_map[i];
22335 map->psymtab = psymtab;
22336 map->cu_index = i;
22337 slot = htab_find_slot (cu_index_htab, map, INSERT);
22338 gdb_assert (slot != NULL);
22339 gdb_assert (*slot == NULL);
22340 *slot = map;
22341
22342 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22343 per_cu->offset.sect_off);
22344 obstack_grow (&cu_list, val, 8);
22345 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22346 obstack_grow (&cu_list, val, 8);
22347 }
22348
22349 /* Dump the address map. */
22350 write_address_map (objfile, &addr_obstack, cu_index_htab);
22351
22352 /* Write out the .debug_type entries, if any. */
22353 if (dwarf2_per_objfile->signatured_types)
22354 {
22355 struct signatured_type_index_data sig_data;
22356
22357 sig_data.objfile = objfile;
22358 sig_data.symtab = symtab;
22359 sig_data.types_list = &types_cu_list;
22360 sig_data.psyms_seen = psyms_seen;
22361 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22362 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22363 write_one_signatured_type, &sig_data);
22364 }
22365
22366 /* Now that we've processed all symbols we can shrink their cu_indices
22367 lists. */
22368 uniquify_cu_indices (symtab);
22369
22370 obstack_init (&constant_pool);
22371 make_cleanup_obstack_free (&constant_pool);
22372 obstack_init (&symtab_obstack);
22373 make_cleanup_obstack_free (&symtab_obstack);
22374 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22375
22376 obstack_init (&contents);
22377 make_cleanup_obstack_free (&contents);
22378 size_of_contents = 6 * sizeof (offset_type);
22379 total_len = size_of_contents;
22380
22381 /* The version number. */
22382 val = MAYBE_SWAP (8);
22383 obstack_grow (&contents, &val, sizeof (val));
22384
22385 /* The offset of the CU list from the start of the file. */
22386 val = MAYBE_SWAP (total_len);
22387 obstack_grow (&contents, &val, sizeof (val));
22388 total_len += obstack_object_size (&cu_list);
22389
22390 /* The offset of the types CU list from the start of the file. */
22391 val = MAYBE_SWAP (total_len);
22392 obstack_grow (&contents, &val, sizeof (val));
22393 total_len += obstack_object_size (&types_cu_list);
22394
22395 /* The offset of the address table from the start of the file. */
22396 val = MAYBE_SWAP (total_len);
22397 obstack_grow (&contents, &val, sizeof (val));
22398 total_len += obstack_object_size (&addr_obstack);
22399
22400 /* The offset of the symbol table from the start of the file. */
22401 val = MAYBE_SWAP (total_len);
22402 obstack_grow (&contents, &val, sizeof (val));
22403 total_len += obstack_object_size (&symtab_obstack);
22404
22405 /* The offset of the constant pool from the start of the file. */
22406 val = MAYBE_SWAP (total_len);
22407 obstack_grow (&contents, &val, sizeof (val));
22408 total_len += obstack_object_size (&constant_pool);
22409
22410 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22411
22412 write_obstack (out_file, &contents);
22413 write_obstack (out_file, &cu_list);
22414 write_obstack (out_file, &types_cu_list);
22415 write_obstack (out_file, &addr_obstack);
22416 write_obstack (out_file, &symtab_obstack);
22417 write_obstack (out_file, &constant_pool);
22418
22419 fclose (out_file);
22420
22421 /* We want to keep the file, so we set cleanup_filename to NULL
22422 here. See unlink_if_set. */
22423 cleanup_filename = NULL;
22424
22425 do_cleanups (cleanup);
22426 }
22427
22428 /* Implementation of the `save gdb-index' command.
22429
22430 Note that the file format used by this command is documented in the
22431 GDB manual. Any changes here must be documented there. */
22432
22433 static void
22434 save_gdb_index_command (char *arg, int from_tty)
22435 {
22436 struct objfile *objfile;
22437
22438 if (!arg || !*arg)
22439 error (_("usage: save gdb-index DIRECTORY"));
22440
22441 ALL_OBJFILES (objfile)
22442 {
22443 struct stat st;
22444
22445 /* If the objfile does not correspond to an actual file, skip it. */
22446 if (stat (objfile_name (objfile), &st) < 0)
22447 continue;
22448
22449 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22450 if (dwarf2_per_objfile)
22451 {
22452 volatile struct gdb_exception except;
22453
22454 TRY_CATCH (except, RETURN_MASK_ERROR)
22455 {
22456 write_psymtabs_to_index (objfile, arg);
22457 }
22458 if (except.reason < 0)
22459 exception_fprintf (gdb_stderr, except,
22460 _("Error while writing index for `%s': "),
22461 objfile_name (objfile));
22462 }
22463 }
22464 }
22465
22466 \f
22467
22468 int dwarf2_always_disassemble;
22469
22470 static void
22471 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22472 struct cmd_list_element *c, const char *value)
22473 {
22474 fprintf_filtered (file,
22475 _("Whether to always disassemble "
22476 "DWARF expressions is %s.\n"),
22477 value);
22478 }
22479
22480 static void
22481 show_check_physname (struct ui_file *file, int from_tty,
22482 struct cmd_list_element *c, const char *value)
22483 {
22484 fprintf_filtered (file,
22485 _("Whether to check \"physname\" is %s.\n"),
22486 value);
22487 }
22488
22489 void _initialize_dwarf2_read (void);
22490
22491 void
22492 _initialize_dwarf2_read (void)
22493 {
22494 struct cmd_list_element *c;
22495
22496 dwarf2_objfile_data_key
22497 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22498
22499 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22500 Set DWARF 2 specific variables.\n\
22501 Configure DWARF 2 variables such as the cache size"),
22502 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22503 0/*allow-unknown*/, &maintenance_set_cmdlist);
22504
22505 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22506 Show DWARF 2 specific variables\n\
22507 Show DWARF 2 variables such as the cache size"),
22508 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22509 0/*allow-unknown*/, &maintenance_show_cmdlist);
22510
22511 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
22512 &dwarf2_max_cache_age, _("\
22513 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22514 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22515 A higher limit means that cached compilation units will be stored\n\
22516 in memory longer, and more total memory will be used. Zero disables\n\
22517 caching, which can slow down startup."),
22518 NULL,
22519 show_dwarf2_max_cache_age,
22520 &set_dwarf2_cmdlist,
22521 &show_dwarf2_cmdlist);
22522
22523 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22524 &dwarf2_always_disassemble, _("\
22525 Set whether `info address' always disassembles DWARF expressions."), _("\
22526 Show whether `info address' always disassembles DWARF expressions."), _("\
22527 When enabled, DWARF expressions are always printed in an assembly-like\n\
22528 syntax. When disabled, expressions will be printed in a more\n\
22529 conversational style, when possible."),
22530 NULL,
22531 show_dwarf2_always_disassemble,
22532 &set_dwarf2_cmdlist,
22533 &show_dwarf2_cmdlist);
22534
22535 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
22536 Set debugging of the dwarf2 reader."), _("\
22537 Show debugging of the dwarf2 reader."), _("\
22538 When enabled (non-zero), debugging messages are printed during dwarf2\n\
22539 reading and symtab expansion. A value of 1 (one) provides basic\n\
22540 information. A value greater than 1 provides more verbose information."),
22541 NULL,
22542 NULL,
22543 &setdebuglist, &showdebuglist);
22544
22545 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
22546 Set debugging of the dwarf2 DIE reader."), _("\
22547 Show debugging of the dwarf2 DIE reader."), _("\
22548 When enabled (non-zero), DIEs are dumped after they are read in.\n\
22549 The value is the maximum depth to print."),
22550 NULL,
22551 NULL,
22552 &setdebuglist, &showdebuglist);
22553
22554 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22555 Set cross-checking of \"physname\" code against demangler."), _("\
22556 Show cross-checking of \"physname\" code against demangler."), _("\
22557 When enabled, GDB's internal \"physname\" code is checked against\n\
22558 the demangler."),
22559 NULL, show_check_physname,
22560 &setdebuglist, &showdebuglist);
22561
22562 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22563 no_class, &use_deprecated_index_sections, _("\
22564 Set whether to use deprecated gdb_index sections."), _("\
22565 Show whether to use deprecated gdb_index sections."), _("\
22566 When enabled, deprecated .gdb_index sections are used anyway.\n\
22567 Normally they are ignored either because of a missing feature or\n\
22568 performance issue.\n\
22569 Warning: This option must be enabled before gdb reads the file."),
22570 NULL,
22571 NULL,
22572 &setlist, &showlist);
22573
22574 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
22575 _("\
22576 Save a gdb-index file.\n\
22577 Usage: save gdb-index DIRECTORY"),
22578 &save_cmdlist);
22579 set_cmd_completer (c, filename_completer);
22580
22581 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
22582 &dwarf2_locexpr_funcs);
22583 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
22584 &dwarf2_loclist_funcs);
22585
22586 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
22587 &dwarf2_block_frame_base_locexpr_funcs);
22588 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
22589 &dwarf2_block_frame_base_loclist_funcs);
22590 }
This page took 0.471475 seconds and 5 git commands to generate.