Reorder/reindent dw2_expand_symtabs_matching & friends
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73 #include "common/function-view.h"
74 #include "common/gdb_optional.h"
75 #include "common/underlying.h"
76 #include "common/byte-vector.h"
77 #include "filename-seen-cache.h"
78 #include "producer.h"
79 #include <fcntl.h>
80 #include <sys/types.h>
81 #include <algorithm>
82 #include <unordered_set>
83 #include <unordered_map>
84
85 typedef struct symbol *symbolp;
86 DEF_VEC_P (symbolp);
87
88 /* When == 1, print basic high level tracing messages.
89 When > 1, be more verbose.
90 This is in contrast to the low level DIE reading of dwarf_die_debug. */
91 static unsigned int dwarf_read_debug = 0;
92
93 /* When non-zero, dump DIEs after they are read in. */
94 static unsigned int dwarf_die_debug = 0;
95
96 /* When non-zero, dump line number entries as they are read in. */
97 static unsigned int dwarf_line_debug = 0;
98
99 /* When non-zero, cross-check physname against demangler. */
100 static int check_physname = 0;
101
102 /* When non-zero, do not reject deprecated .gdb_index sections. */
103 static int use_deprecated_index_sections = 0;
104
105 static const struct objfile_data *dwarf2_objfile_data_key;
106
107 /* The "aclass" indices for various kinds of computed DWARF symbols. */
108
109 static int dwarf2_locexpr_index;
110 static int dwarf2_loclist_index;
111 static int dwarf2_locexpr_block_index;
112 static int dwarf2_loclist_block_index;
113
114 /* A descriptor for dwarf sections.
115
116 S.ASECTION, SIZE are typically initialized when the objfile is first
117 scanned. BUFFER, READIN are filled in later when the section is read.
118 If the section contained compressed data then SIZE is updated to record
119 the uncompressed size of the section.
120
121 DWP file format V2 introduces a wrinkle that is easiest to handle by
122 creating the concept of virtual sections contained within a real section.
123 In DWP V2 the sections of the input DWO files are concatenated together
124 into one section, but section offsets are kept relative to the original
125 input section.
126 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
127 the real section this "virtual" section is contained in, and BUFFER,SIZE
128 describe the virtual section. */
129
130 struct dwarf2_section_info
131 {
132 union
133 {
134 /* If this is a real section, the bfd section. */
135 asection *section;
136 /* If this is a virtual section, pointer to the containing ("real")
137 section. */
138 struct dwarf2_section_info *containing_section;
139 } s;
140 /* Pointer to section data, only valid if readin. */
141 const gdb_byte *buffer;
142 /* The size of the section, real or virtual. */
143 bfd_size_type size;
144 /* If this is a virtual section, the offset in the real section.
145 Only valid if is_virtual. */
146 bfd_size_type virtual_offset;
147 /* True if we have tried to read this section. */
148 char readin;
149 /* True if this is a virtual section, False otherwise.
150 This specifies which of s.section and s.containing_section to use. */
151 char is_virtual;
152 };
153
154 typedef struct dwarf2_section_info dwarf2_section_info_def;
155 DEF_VEC_O (dwarf2_section_info_def);
156
157 /* All offsets in the index are of this type. It must be
158 architecture-independent. */
159 typedef uint32_t offset_type;
160
161 DEF_VEC_I (offset_type);
162
163 /* Ensure only legit values are used. */
164 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
165 do { \
166 gdb_assert ((unsigned int) (value) <= 1); \
167 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170 /* Ensure only legit values are used. */
171 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
174 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
175 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
176 } while (0)
177
178 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
179 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
180 do { \
181 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
182 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
183 } while (0)
184
185 #if WORDS_BIGENDIAN
186
187 /* Convert VALUE between big- and little-endian. */
188
189 static offset_type
190 byte_swap (offset_type value)
191 {
192 offset_type result;
193
194 result = (value & 0xff) << 24;
195 result |= (value & 0xff00) << 8;
196 result |= (value & 0xff0000) >> 8;
197 result |= (value & 0xff000000) >> 24;
198 return result;
199 }
200
201 #define MAYBE_SWAP(V) byte_swap (V)
202
203 #else
204 #define MAYBE_SWAP(V) static_cast<offset_type> (V)
205 #endif /* WORDS_BIGENDIAN */
206
207 /* An index into a (C++) symbol name component in a symbol name as
208 recorded in the mapped_index's symbol table. For each C++ symbol
209 in the symbol table, we record one entry for the start of each
210 component in the symbol in a table of name components, and then
211 sort the table, in order to be able to binary search symbol names,
212 ignoring leading namespaces, both completion and regular look up.
213 For example, for symbol "A::B::C", we'll have an entry that points
214 to "A::B::C", another that points to "B::C", and another for "C".
215 Note that function symbols in GDB index have no parameter
216 information, just the function/method names. You can convert a
217 name_component to a "const char *" using the
218 'mapped_index::symbol_name_at(offset_type)' method. */
219
220 struct name_component
221 {
222 /* Offset in the symbol name where the component starts. Stored as
223 a (32-bit) offset instead of a pointer to save memory and improve
224 locality on 64-bit architectures. */
225 offset_type name_offset;
226
227 /* The symbol's index in the symbol and constant pool tables of a
228 mapped_index. */
229 offset_type idx;
230 };
231
232 /* A description of the mapped index. The file format is described in
233 a comment by the code that writes the index. */
234 struct mapped_index
235 {
236 /* Index data format version. */
237 int version;
238
239 /* The total length of the buffer. */
240 off_t total_size;
241
242 /* A pointer to the address table data. */
243 const gdb_byte *address_table;
244
245 /* Size of the address table data in bytes. */
246 offset_type address_table_size;
247
248 /* The symbol table, implemented as a hash table. */
249 const offset_type *symbol_table;
250
251 /* Size in slots, each slot is 2 offset_types. */
252 offset_type symbol_table_slots;
253
254 /* A pointer to the constant pool. */
255 const char *constant_pool;
256
257 /* The name_component table (a sorted vector). See name_component's
258 description above. */
259 std::vector<name_component> name_components;
260
261 /* Convenience method to get at the name of the symbol at IDX in the
262 symbol table. */
263 const char *symbol_name_at (offset_type idx) const
264 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx]); }
265 };
266
267 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
268 DEF_VEC_P (dwarf2_per_cu_ptr);
269
270 struct tu_stats
271 {
272 int nr_uniq_abbrev_tables;
273 int nr_symtabs;
274 int nr_symtab_sharers;
275 int nr_stmt_less_type_units;
276 int nr_all_type_units_reallocs;
277 };
278
279 /* Collection of data recorded per objfile.
280 This hangs off of dwarf2_objfile_data_key. */
281
282 struct dwarf2_per_objfile
283 {
284 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
285 dwarf2 section names, or is NULL if the standard ELF names are
286 used. */
287 dwarf2_per_objfile (struct objfile *objfile,
288 const dwarf2_debug_sections *names);
289
290 ~dwarf2_per_objfile ();
291
292 DISABLE_COPY_AND_ASSIGN (dwarf2_per_objfile);
293
294 /* Free all cached compilation units. */
295 void free_cached_comp_units ();
296 private:
297 /* This function is mapped across the sections and remembers the
298 offset and size of each of the debugging sections we are
299 interested in. */
300 void locate_sections (bfd *abfd, asection *sectp,
301 const dwarf2_debug_sections &names);
302
303 public:
304 dwarf2_section_info info {};
305 dwarf2_section_info abbrev {};
306 dwarf2_section_info line {};
307 dwarf2_section_info loc {};
308 dwarf2_section_info loclists {};
309 dwarf2_section_info macinfo {};
310 dwarf2_section_info macro {};
311 dwarf2_section_info str {};
312 dwarf2_section_info line_str {};
313 dwarf2_section_info ranges {};
314 dwarf2_section_info rnglists {};
315 dwarf2_section_info addr {};
316 dwarf2_section_info frame {};
317 dwarf2_section_info eh_frame {};
318 dwarf2_section_info gdb_index {};
319
320 VEC (dwarf2_section_info_def) *types = NULL;
321
322 /* Back link. */
323 struct objfile *objfile = NULL;
324
325 /* Table of all the compilation units. This is used to locate
326 the target compilation unit of a particular reference. */
327 struct dwarf2_per_cu_data **all_comp_units = NULL;
328
329 /* The number of compilation units in ALL_COMP_UNITS. */
330 int n_comp_units = 0;
331
332 /* The number of .debug_types-related CUs. */
333 int n_type_units = 0;
334
335 /* The number of elements allocated in all_type_units.
336 If there are skeleton-less TUs, we add them to all_type_units lazily. */
337 int n_allocated_type_units = 0;
338
339 /* The .debug_types-related CUs (TUs).
340 This is stored in malloc space because we may realloc it. */
341 struct signatured_type **all_type_units = NULL;
342
343 /* Table of struct type_unit_group objects.
344 The hash key is the DW_AT_stmt_list value. */
345 htab_t type_unit_groups {};
346
347 /* A table mapping .debug_types signatures to its signatured_type entry.
348 This is NULL if the .debug_types section hasn't been read in yet. */
349 htab_t signatured_types {};
350
351 /* Type unit statistics, to see how well the scaling improvements
352 are doing. */
353 struct tu_stats tu_stats {};
354
355 /* A chain of compilation units that are currently read in, so that
356 they can be freed later. */
357 dwarf2_per_cu_data *read_in_chain = NULL;
358
359 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
360 This is NULL if the table hasn't been allocated yet. */
361 htab_t dwo_files {};
362
363 /* True if we've checked for whether there is a DWP file. */
364 bool dwp_checked = false;
365
366 /* The DWP file if there is one, or NULL. */
367 struct dwp_file *dwp_file = NULL;
368
369 /* The shared '.dwz' file, if one exists. This is used when the
370 original data was compressed using 'dwz -m'. */
371 struct dwz_file *dwz_file = NULL;
372
373 /* A flag indicating whether this objfile has a section loaded at a
374 VMA of 0. */
375 bool has_section_at_zero = false;
376
377 /* True if we are using the mapped index,
378 or we are faking it for OBJF_READNOW's sake. */
379 bool using_index = false;
380
381 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
382 mapped_index *index_table = NULL;
383
384 /* When using index_table, this keeps track of all quick_file_names entries.
385 TUs typically share line table entries with a CU, so we maintain a
386 separate table of all line table entries to support the sharing.
387 Note that while there can be way more TUs than CUs, we've already
388 sorted all the TUs into "type unit groups", grouped by their
389 DW_AT_stmt_list value. Therefore the only sharing done here is with a
390 CU and its associated TU group if there is one. */
391 htab_t quick_file_names_table {};
392
393 /* Set during partial symbol reading, to prevent queueing of full
394 symbols. */
395 bool reading_partial_symbols = false;
396
397 /* Table mapping type DIEs to their struct type *.
398 This is NULL if not allocated yet.
399 The mapping is done via (CU/TU + DIE offset) -> type. */
400 htab_t die_type_hash {};
401
402 /* The CUs we recently read. */
403 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
404
405 /* Table containing line_header indexed by offset and offset_in_dwz. */
406 htab_t line_header_hash {};
407
408 /* Table containing all filenames. This is an optional because the
409 table is lazily constructed on first access. */
410 gdb::optional<filename_seen_cache> filenames_cache;
411 };
412
413 static struct dwarf2_per_objfile *dwarf2_per_objfile;
414
415 /* Default names of the debugging sections. */
416
417 /* Note that if the debugging section has been compressed, it might
418 have a name like .zdebug_info. */
419
420 static const struct dwarf2_debug_sections dwarf2_elf_names =
421 {
422 { ".debug_info", ".zdebug_info" },
423 { ".debug_abbrev", ".zdebug_abbrev" },
424 { ".debug_line", ".zdebug_line" },
425 { ".debug_loc", ".zdebug_loc" },
426 { ".debug_loclists", ".zdebug_loclists" },
427 { ".debug_macinfo", ".zdebug_macinfo" },
428 { ".debug_macro", ".zdebug_macro" },
429 { ".debug_str", ".zdebug_str" },
430 { ".debug_line_str", ".zdebug_line_str" },
431 { ".debug_ranges", ".zdebug_ranges" },
432 { ".debug_rnglists", ".zdebug_rnglists" },
433 { ".debug_types", ".zdebug_types" },
434 { ".debug_addr", ".zdebug_addr" },
435 { ".debug_frame", ".zdebug_frame" },
436 { ".eh_frame", NULL },
437 { ".gdb_index", ".zgdb_index" },
438 23
439 };
440
441 /* List of DWO/DWP sections. */
442
443 static const struct dwop_section_names
444 {
445 struct dwarf2_section_names abbrev_dwo;
446 struct dwarf2_section_names info_dwo;
447 struct dwarf2_section_names line_dwo;
448 struct dwarf2_section_names loc_dwo;
449 struct dwarf2_section_names loclists_dwo;
450 struct dwarf2_section_names macinfo_dwo;
451 struct dwarf2_section_names macro_dwo;
452 struct dwarf2_section_names str_dwo;
453 struct dwarf2_section_names str_offsets_dwo;
454 struct dwarf2_section_names types_dwo;
455 struct dwarf2_section_names cu_index;
456 struct dwarf2_section_names tu_index;
457 }
458 dwop_section_names =
459 {
460 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
461 { ".debug_info.dwo", ".zdebug_info.dwo" },
462 { ".debug_line.dwo", ".zdebug_line.dwo" },
463 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
464 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
465 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
466 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
467 { ".debug_str.dwo", ".zdebug_str.dwo" },
468 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
469 { ".debug_types.dwo", ".zdebug_types.dwo" },
470 { ".debug_cu_index", ".zdebug_cu_index" },
471 { ".debug_tu_index", ".zdebug_tu_index" },
472 };
473
474 /* local data types */
475
476 /* The data in a compilation unit header, after target2host
477 translation, looks like this. */
478 struct comp_unit_head
479 {
480 unsigned int length;
481 short version;
482 unsigned char addr_size;
483 unsigned char signed_addr_p;
484 sect_offset abbrev_sect_off;
485
486 /* Size of file offsets; either 4 or 8. */
487 unsigned int offset_size;
488
489 /* Size of the length field; either 4 or 12. */
490 unsigned int initial_length_size;
491
492 enum dwarf_unit_type unit_type;
493
494 /* Offset to the first byte of this compilation unit header in the
495 .debug_info section, for resolving relative reference dies. */
496 sect_offset sect_off;
497
498 /* Offset to first die in this cu from the start of the cu.
499 This will be the first byte following the compilation unit header. */
500 cu_offset first_die_cu_offset;
501
502 /* 64-bit signature of this type unit - it is valid only for
503 UNIT_TYPE DW_UT_type. */
504 ULONGEST signature;
505
506 /* For types, offset in the type's DIE of the type defined by this TU. */
507 cu_offset type_cu_offset_in_tu;
508 };
509
510 /* Type used for delaying computation of method physnames.
511 See comments for compute_delayed_physnames. */
512 struct delayed_method_info
513 {
514 /* The type to which the method is attached, i.e., its parent class. */
515 struct type *type;
516
517 /* The index of the method in the type's function fieldlists. */
518 int fnfield_index;
519
520 /* The index of the method in the fieldlist. */
521 int index;
522
523 /* The name of the DIE. */
524 const char *name;
525
526 /* The DIE associated with this method. */
527 struct die_info *die;
528 };
529
530 typedef struct delayed_method_info delayed_method_info;
531 DEF_VEC_O (delayed_method_info);
532
533 /* Internal state when decoding a particular compilation unit. */
534 struct dwarf2_cu
535 {
536 /* The objfile containing this compilation unit. */
537 struct objfile *objfile;
538
539 /* The header of the compilation unit. */
540 struct comp_unit_head header;
541
542 /* Base address of this compilation unit. */
543 CORE_ADDR base_address;
544
545 /* Non-zero if base_address has been set. */
546 int base_known;
547
548 /* The language we are debugging. */
549 enum language language;
550 const struct language_defn *language_defn;
551
552 const char *producer;
553
554 /* The generic symbol table building routines have separate lists for
555 file scope symbols and all all other scopes (local scopes). So
556 we need to select the right one to pass to add_symbol_to_list().
557 We do it by keeping a pointer to the correct list in list_in_scope.
558
559 FIXME: The original dwarf code just treated the file scope as the
560 first local scope, and all other local scopes as nested local
561 scopes, and worked fine. Check to see if we really need to
562 distinguish these in buildsym.c. */
563 struct pending **list_in_scope;
564
565 /* The abbrev table for this CU.
566 Normally this points to the abbrev table in the objfile.
567 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
568 struct abbrev_table *abbrev_table;
569
570 /* Hash table holding all the loaded partial DIEs
571 with partial_die->offset.SECT_OFF as hash. */
572 htab_t partial_dies;
573
574 /* Storage for things with the same lifetime as this read-in compilation
575 unit, including partial DIEs. */
576 struct obstack comp_unit_obstack;
577
578 /* When multiple dwarf2_cu structures are living in memory, this field
579 chains them all together, so that they can be released efficiently.
580 We will probably also want a generation counter so that most-recently-used
581 compilation units are cached... */
582 struct dwarf2_per_cu_data *read_in_chain;
583
584 /* Backlink to our per_cu entry. */
585 struct dwarf2_per_cu_data *per_cu;
586
587 /* How many compilation units ago was this CU last referenced? */
588 int last_used;
589
590 /* A hash table of DIE cu_offset for following references with
591 die_info->offset.sect_off as hash. */
592 htab_t die_hash;
593
594 /* Full DIEs if read in. */
595 struct die_info *dies;
596
597 /* A set of pointers to dwarf2_per_cu_data objects for compilation
598 units referenced by this one. Only set during full symbol processing;
599 partial symbol tables do not have dependencies. */
600 htab_t dependencies;
601
602 /* Header data from the line table, during full symbol processing. */
603 struct line_header *line_header;
604 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
605 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
606 this is the DW_TAG_compile_unit die for this CU. We'll hold on
607 to the line header as long as this DIE is being processed. See
608 process_die_scope. */
609 die_info *line_header_die_owner;
610
611 /* A list of methods which need to have physnames computed
612 after all type information has been read. */
613 VEC (delayed_method_info) *method_list;
614
615 /* To be copied to symtab->call_site_htab. */
616 htab_t call_site_htab;
617
618 /* Non-NULL if this CU came from a DWO file.
619 There is an invariant here that is important to remember:
620 Except for attributes copied from the top level DIE in the "main"
621 (or "stub") file in preparation for reading the DWO file
622 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
623 Either there isn't a DWO file (in which case this is NULL and the point
624 is moot), or there is and either we're not going to read it (in which
625 case this is NULL) or there is and we are reading it (in which case this
626 is non-NULL). */
627 struct dwo_unit *dwo_unit;
628
629 /* The DW_AT_addr_base attribute if present, zero otherwise
630 (zero is a valid value though).
631 Note this value comes from the Fission stub CU/TU's DIE. */
632 ULONGEST addr_base;
633
634 /* The DW_AT_ranges_base attribute if present, zero otherwise
635 (zero is a valid value though).
636 Note this value comes from the Fission stub CU/TU's DIE.
637 Also note that the value is zero in the non-DWO case so this value can
638 be used without needing to know whether DWO files are in use or not.
639 N.B. This does not apply to DW_AT_ranges appearing in
640 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
641 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
642 DW_AT_ranges_base *would* have to be applied, and we'd have to care
643 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
644 ULONGEST ranges_base;
645
646 /* Mark used when releasing cached dies. */
647 unsigned int mark : 1;
648
649 /* This CU references .debug_loc. See the symtab->locations_valid field.
650 This test is imperfect as there may exist optimized debug code not using
651 any location list and still facing inlining issues if handled as
652 unoptimized code. For a future better test see GCC PR other/32998. */
653 unsigned int has_loclist : 1;
654
655 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
656 if all the producer_is_* fields are valid. This information is cached
657 because profiling CU expansion showed excessive time spent in
658 producer_is_gxx_lt_4_6. */
659 unsigned int checked_producer : 1;
660 unsigned int producer_is_gxx_lt_4_6 : 1;
661 unsigned int producer_is_gcc_lt_4_3 : 1;
662 unsigned int producer_is_icc_lt_14 : 1;
663
664 /* When set, the file that we're processing is known to have
665 debugging info for C++ namespaces. GCC 3.3.x did not produce
666 this information, but later versions do. */
667
668 unsigned int processing_has_namespace_info : 1;
669 };
670
671 /* Persistent data held for a compilation unit, even when not
672 processing it. We put a pointer to this structure in the
673 read_symtab_private field of the psymtab. */
674
675 struct dwarf2_per_cu_data
676 {
677 /* The start offset and length of this compilation unit.
678 NOTE: Unlike comp_unit_head.length, this length includes
679 initial_length_size.
680 If the DIE refers to a DWO file, this is always of the original die,
681 not the DWO file. */
682 sect_offset sect_off;
683 unsigned int length;
684
685 /* DWARF standard version this data has been read from (such as 4 or 5). */
686 short dwarf_version;
687
688 /* Flag indicating this compilation unit will be read in before
689 any of the current compilation units are processed. */
690 unsigned int queued : 1;
691
692 /* This flag will be set when reading partial DIEs if we need to load
693 absolutely all DIEs for this compilation unit, instead of just the ones
694 we think are interesting. It gets set if we look for a DIE in the
695 hash table and don't find it. */
696 unsigned int load_all_dies : 1;
697
698 /* Non-zero if this CU is from .debug_types.
699 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
700 this is non-zero. */
701 unsigned int is_debug_types : 1;
702
703 /* Non-zero if this CU is from the .dwz file. */
704 unsigned int is_dwz : 1;
705
706 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
707 This flag is only valid if is_debug_types is true.
708 We can't read a CU directly from a DWO file: There are required
709 attributes in the stub. */
710 unsigned int reading_dwo_directly : 1;
711
712 /* Non-zero if the TU has been read.
713 This is used to assist the "Stay in DWO Optimization" for Fission:
714 When reading a DWO, it's faster to read TUs from the DWO instead of
715 fetching them from random other DWOs (due to comdat folding).
716 If the TU has already been read, the optimization is unnecessary
717 (and unwise - we don't want to change where gdb thinks the TU lives
718 "midflight").
719 This flag is only valid if is_debug_types is true. */
720 unsigned int tu_read : 1;
721
722 /* The section this CU/TU lives in.
723 If the DIE refers to a DWO file, this is always the original die,
724 not the DWO file. */
725 struct dwarf2_section_info *section;
726
727 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
728 of the CU cache it gets reset to NULL again. This is left as NULL for
729 dummy CUs (a CU header, but nothing else). */
730 struct dwarf2_cu *cu;
731
732 /* The corresponding objfile.
733 Normally we can get the objfile from dwarf2_per_objfile.
734 However we can enter this file with just a "per_cu" handle. */
735 struct objfile *objfile;
736
737 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
738 is active. Otherwise, the 'psymtab' field is active. */
739 union
740 {
741 /* The partial symbol table associated with this compilation unit,
742 or NULL for unread partial units. */
743 struct partial_symtab *psymtab;
744
745 /* Data needed by the "quick" functions. */
746 struct dwarf2_per_cu_quick_data *quick;
747 } v;
748
749 /* The CUs we import using DW_TAG_imported_unit. This is filled in
750 while reading psymtabs, used to compute the psymtab dependencies,
751 and then cleared. Then it is filled in again while reading full
752 symbols, and only deleted when the objfile is destroyed.
753
754 This is also used to work around a difference between the way gold
755 generates .gdb_index version <=7 and the way gdb does. Arguably this
756 is a gold bug. For symbols coming from TUs, gold records in the index
757 the CU that includes the TU instead of the TU itself. This breaks
758 dw2_lookup_symbol: It assumes that if the index says symbol X lives
759 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
760 will find X. Alas TUs live in their own symtab, so after expanding CU Y
761 we need to look in TU Z to find X. Fortunately, this is akin to
762 DW_TAG_imported_unit, so we just use the same mechanism: For
763 .gdb_index version <=7 this also records the TUs that the CU referred
764 to. Concurrently with this change gdb was modified to emit version 8
765 indices so we only pay a price for gold generated indices.
766 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
767 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
768 };
769
770 /* Entry in the signatured_types hash table. */
771
772 struct signatured_type
773 {
774 /* The "per_cu" object of this type.
775 This struct is used iff per_cu.is_debug_types.
776 N.B.: This is the first member so that it's easy to convert pointers
777 between them. */
778 struct dwarf2_per_cu_data per_cu;
779
780 /* The type's signature. */
781 ULONGEST signature;
782
783 /* Offset in the TU of the type's DIE, as read from the TU header.
784 If this TU is a DWO stub and the definition lives in a DWO file
785 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
786 cu_offset type_offset_in_tu;
787
788 /* Offset in the section of the type's DIE.
789 If the definition lives in a DWO file, this is the offset in the
790 .debug_types.dwo section.
791 The value is zero until the actual value is known.
792 Zero is otherwise not a valid section offset. */
793 sect_offset type_offset_in_section;
794
795 /* Type units are grouped by their DW_AT_stmt_list entry so that they
796 can share them. This points to the containing symtab. */
797 struct type_unit_group *type_unit_group;
798
799 /* The type.
800 The first time we encounter this type we fully read it in and install it
801 in the symbol tables. Subsequent times we only need the type. */
802 struct type *type;
803
804 /* Containing DWO unit.
805 This field is valid iff per_cu.reading_dwo_directly. */
806 struct dwo_unit *dwo_unit;
807 };
808
809 typedef struct signatured_type *sig_type_ptr;
810 DEF_VEC_P (sig_type_ptr);
811
812 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
813 This includes type_unit_group and quick_file_names. */
814
815 struct stmt_list_hash
816 {
817 /* The DWO unit this table is from or NULL if there is none. */
818 struct dwo_unit *dwo_unit;
819
820 /* Offset in .debug_line or .debug_line.dwo. */
821 sect_offset line_sect_off;
822 };
823
824 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
825 an object of this type. */
826
827 struct type_unit_group
828 {
829 /* dwarf2read.c's main "handle" on a TU symtab.
830 To simplify things we create an artificial CU that "includes" all the
831 type units using this stmt_list so that the rest of the code still has
832 a "per_cu" handle on the symtab.
833 This PER_CU is recognized by having no section. */
834 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
835 struct dwarf2_per_cu_data per_cu;
836
837 /* The TUs that share this DW_AT_stmt_list entry.
838 This is added to while parsing type units to build partial symtabs,
839 and is deleted afterwards and not used again. */
840 VEC (sig_type_ptr) *tus;
841
842 /* The compunit symtab.
843 Type units in a group needn't all be defined in the same source file,
844 so we create an essentially anonymous symtab as the compunit symtab. */
845 struct compunit_symtab *compunit_symtab;
846
847 /* The data used to construct the hash key. */
848 struct stmt_list_hash hash;
849
850 /* The number of symtabs from the line header.
851 The value here must match line_header.num_file_names. */
852 unsigned int num_symtabs;
853
854 /* The symbol tables for this TU (obtained from the files listed in
855 DW_AT_stmt_list).
856 WARNING: The order of entries here must match the order of entries
857 in the line header. After the first TU using this type_unit_group, the
858 line header for the subsequent TUs is recreated from this. This is done
859 because we need to use the same symtabs for each TU using the same
860 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
861 there's no guarantee the line header doesn't have duplicate entries. */
862 struct symtab **symtabs;
863 };
864
865 /* These sections are what may appear in a (real or virtual) DWO file. */
866
867 struct dwo_sections
868 {
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info loclists;
873 struct dwarf2_section_info macinfo;
874 struct dwarf2_section_info macro;
875 struct dwarf2_section_info str;
876 struct dwarf2_section_info str_offsets;
877 /* In the case of a virtual DWO file, these two are unused. */
878 struct dwarf2_section_info info;
879 VEC (dwarf2_section_info_def) *types;
880 };
881
882 /* CUs/TUs in DWP/DWO files. */
883
884 struct dwo_unit
885 {
886 /* Backlink to the containing struct dwo_file. */
887 struct dwo_file *dwo_file;
888
889 /* The "id" that distinguishes this CU/TU.
890 .debug_info calls this "dwo_id", .debug_types calls this "signature".
891 Since signatures came first, we stick with it for consistency. */
892 ULONGEST signature;
893
894 /* The section this CU/TU lives in, in the DWO file. */
895 struct dwarf2_section_info *section;
896
897 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
898 sect_offset sect_off;
899 unsigned int length;
900
901 /* For types, offset in the type's DIE of the type defined by this TU. */
902 cu_offset type_offset_in_tu;
903 };
904
905 /* include/dwarf2.h defines the DWP section codes.
906 It defines a max value but it doesn't define a min value, which we
907 use for error checking, so provide one. */
908
909 enum dwp_v2_section_ids
910 {
911 DW_SECT_MIN = 1
912 };
913
914 /* Data for one DWO file.
915
916 This includes virtual DWO files (a virtual DWO file is a DWO file as it
917 appears in a DWP file). DWP files don't really have DWO files per se -
918 comdat folding of types "loses" the DWO file they came from, and from
919 a high level view DWP files appear to contain a mass of random types.
920 However, to maintain consistency with the non-DWP case we pretend DWP
921 files contain virtual DWO files, and we assign each TU with one virtual
922 DWO file (generally based on the line and abbrev section offsets -
923 a heuristic that seems to work in practice). */
924
925 struct dwo_file
926 {
927 /* The DW_AT_GNU_dwo_name attribute.
928 For virtual DWO files the name is constructed from the section offsets
929 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
930 from related CU+TUs. */
931 const char *dwo_name;
932
933 /* The DW_AT_comp_dir attribute. */
934 const char *comp_dir;
935
936 /* The bfd, when the file is open. Otherwise this is NULL.
937 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
938 bfd *dbfd;
939
940 /* The sections that make up this DWO file.
941 Remember that for virtual DWO files in DWP V2, these are virtual
942 sections (for lack of a better name). */
943 struct dwo_sections sections;
944
945 /* The CUs in the file.
946 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
947 an extension to handle LLVM's Link Time Optimization output (where
948 multiple source files may be compiled into a single object/dwo pair). */
949 htab_t cus;
950
951 /* Table of TUs in the file.
952 Each element is a struct dwo_unit. */
953 htab_t tus;
954 };
955
956 /* These sections are what may appear in a DWP file. */
957
958 struct dwp_sections
959 {
960 /* These are used by both DWP version 1 and 2. */
961 struct dwarf2_section_info str;
962 struct dwarf2_section_info cu_index;
963 struct dwarf2_section_info tu_index;
964
965 /* These are only used by DWP version 2 files.
966 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
967 sections are referenced by section number, and are not recorded here.
968 In DWP version 2 there is at most one copy of all these sections, each
969 section being (effectively) comprised of the concatenation of all of the
970 individual sections that exist in the version 1 format.
971 To keep the code simple we treat each of these concatenated pieces as a
972 section itself (a virtual section?). */
973 struct dwarf2_section_info abbrev;
974 struct dwarf2_section_info info;
975 struct dwarf2_section_info line;
976 struct dwarf2_section_info loc;
977 struct dwarf2_section_info macinfo;
978 struct dwarf2_section_info macro;
979 struct dwarf2_section_info str_offsets;
980 struct dwarf2_section_info types;
981 };
982
983 /* These sections are what may appear in a virtual DWO file in DWP version 1.
984 A virtual DWO file is a DWO file as it appears in a DWP file. */
985
986 struct virtual_v1_dwo_sections
987 {
988 struct dwarf2_section_info abbrev;
989 struct dwarf2_section_info line;
990 struct dwarf2_section_info loc;
991 struct dwarf2_section_info macinfo;
992 struct dwarf2_section_info macro;
993 struct dwarf2_section_info str_offsets;
994 /* Each DWP hash table entry records one CU or one TU.
995 That is recorded here, and copied to dwo_unit.section. */
996 struct dwarf2_section_info info_or_types;
997 };
998
999 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
1000 In version 2, the sections of the DWO files are concatenated together
1001 and stored in one section of that name. Thus each ELF section contains
1002 several "virtual" sections. */
1003
1004 struct virtual_v2_dwo_sections
1005 {
1006 bfd_size_type abbrev_offset;
1007 bfd_size_type abbrev_size;
1008
1009 bfd_size_type line_offset;
1010 bfd_size_type line_size;
1011
1012 bfd_size_type loc_offset;
1013 bfd_size_type loc_size;
1014
1015 bfd_size_type macinfo_offset;
1016 bfd_size_type macinfo_size;
1017
1018 bfd_size_type macro_offset;
1019 bfd_size_type macro_size;
1020
1021 bfd_size_type str_offsets_offset;
1022 bfd_size_type str_offsets_size;
1023
1024 /* Each DWP hash table entry records one CU or one TU.
1025 That is recorded here, and copied to dwo_unit.section. */
1026 bfd_size_type info_or_types_offset;
1027 bfd_size_type info_or_types_size;
1028 };
1029
1030 /* Contents of DWP hash tables. */
1031
1032 struct dwp_hash_table
1033 {
1034 uint32_t version, nr_columns;
1035 uint32_t nr_units, nr_slots;
1036 const gdb_byte *hash_table, *unit_table;
1037 union
1038 {
1039 struct
1040 {
1041 const gdb_byte *indices;
1042 } v1;
1043 struct
1044 {
1045 /* This is indexed by column number and gives the id of the section
1046 in that column. */
1047 #define MAX_NR_V2_DWO_SECTIONS \
1048 (1 /* .debug_info or .debug_types */ \
1049 + 1 /* .debug_abbrev */ \
1050 + 1 /* .debug_line */ \
1051 + 1 /* .debug_loc */ \
1052 + 1 /* .debug_str_offsets */ \
1053 + 1 /* .debug_macro or .debug_macinfo */)
1054 int section_ids[MAX_NR_V2_DWO_SECTIONS];
1055 const gdb_byte *offsets;
1056 const gdb_byte *sizes;
1057 } v2;
1058 } section_pool;
1059 };
1060
1061 /* Data for one DWP file. */
1062
1063 struct dwp_file
1064 {
1065 /* Name of the file. */
1066 const char *name;
1067
1068 /* File format version. */
1069 int version;
1070
1071 /* The bfd. */
1072 bfd *dbfd;
1073
1074 /* Section info for this file. */
1075 struct dwp_sections sections;
1076
1077 /* Table of CUs in the file. */
1078 const struct dwp_hash_table *cus;
1079
1080 /* Table of TUs in the file. */
1081 const struct dwp_hash_table *tus;
1082
1083 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1084 htab_t loaded_cus;
1085 htab_t loaded_tus;
1086
1087 /* Table to map ELF section numbers to their sections.
1088 This is only needed for the DWP V1 file format. */
1089 unsigned int num_sections;
1090 asection **elf_sections;
1091 };
1092
1093 /* This represents a '.dwz' file. */
1094
1095 struct dwz_file
1096 {
1097 /* A dwz file can only contain a few sections. */
1098 struct dwarf2_section_info abbrev;
1099 struct dwarf2_section_info info;
1100 struct dwarf2_section_info str;
1101 struct dwarf2_section_info line;
1102 struct dwarf2_section_info macro;
1103 struct dwarf2_section_info gdb_index;
1104
1105 /* The dwz's BFD. */
1106 bfd *dwz_bfd;
1107 };
1108
1109 /* Struct used to pass misc. parameters to read_die_and_children, et
1110 al. which are used for both .debug_info and .debug_types dies.
1111 All parameters here are unchanging for the life of the call. This
1112 struct exists to abstract away the constant parameters of die reading. */
1113
1114 struct die_reader_specs
1115 {
1116 /* The bfd of die_section. */
1117 bfd* abfd;
1118
1119 /* The CU of the DIE we are parsing. */
1120 struct dwarf2_cu *cu;
1121
1122 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1123 struct dwo_file *dwo_file;
1124
1125 /* The section the die comes from.
1126 This is either .debug_info or .debug_types, or the .dwo variants. */
1127 struct dwarf2_section_info *die_section;
1128
1129 /* die_section->buffer. */
1130 const gdb_byte *buffer;
1131
1132 /* The end of the buffer. */
1133 const gdb_byte *buffer_end;
1134
1135 /* The value of the DW_AT_comp_dir attribute. */
1136 const char *comp_dir;
1137 };
1138
1139 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1140 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1141 const gdb_byte *info_ptr,
1142 struct die_info *comp_unit_die,
1143 int has_children,
1144 void *data);
1145
1146 /* A 1-based directory index. This is a strong typedef to prevent
1147 accidentally using a directory index as a 0-based index into an
1148 array/vector. */
1149 enum class dir_index : unsigned int {};
1150
1151 /* Likewise, a 1-based file name index. */
1152 enum class file_name_index : unsigned int {};
1153
1154 struct file_entry
1155 {
1156 file_entry () = default;
1157
1158 file_entry (const char *name_, dir_index d_index_,
1159 unsigned int mod_time_, unsigned int length_)
1160 : name (name_),
1161 d_index (d_index_),
1162 mod_time (mod_time_),
1163 length (length_)
1164 {}
1165
1166 /* Return the include directory at D_INDEX stored in LH. Returns
1167 NULL if D_INDEX is out of bounds. */
1168 const char *include_dir (const line_header *lh) const;
1169
1170 /* The file name. Note this is an observing pointer. The memory is
1171 owned by debug_line_buffer. */
1172 const char *name {};
1173
1174 /* The directory index (1-based). */
1175 dir_index d_index {};
1176
1177 unsigned int mod_time {};
1178
1179 unsigned int length {};
1180
1181 /* True if referenced by the Line Number Program. */
1182 bool included_p {};
1183
1184 /* The associated symbol table, if any. */
1185 struct symtab *symtab {};
1186 };
1187
1188 /* The line number information for a compilation unit (found in the
1189 .debug_line section) begins with a "statement program header",
1190 which contains the following information. */
1191 struct line_header
1192 {
1193 line_header ()
1194 : offset_in_dwz {}
1195 {}
1196
1197 /* Add an entry to the include directory table. */
1198 void add_include_dir (const char *include_dir);
1199
1200 /* Add an entry to the file name table. */
1201 void add_file_name (const char *name, dir_index d_index,
1202 unsigned int mod_time, unsigned int length);
1203
1204 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1205 is out of bounds. */
1206 const char *include_dir_at (dir_index index) const
1207 {
1208 /* Convert directory index number (1-based) to vector index
1209 (0-based). */
1210 size_t vec_index = to_underlying (index) - 1;
1211
1212 if (vec_index >= include_dirs.size ())
1213 return NULL;
1214 return include_dirs[vec_index];
1215 }
1216
1217 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1218 is out of bounds. */
1219 file_entry *file_name_at (file_name_index index)
1220 {
1221 /* Convert file name index number (1-based) to vector index
1222 (0-based). */
1223 size_t vec_index = to_underlying (index) - 1;
1224
1225 if (vec_index >= file_names.size ())
1226 return NULL;
1227 return &file_names[vec_index];
1228 }
1229
1230 /* Const version of the above. */
1231 const file_entry *file_name_at (unsigned int index) const
1232 {
1233 if (index >= file_names.size ())
1234 return NULL;
1235 return &file_names[index];
1236 }
1237
1238 /* Offset of line number information in .debug_line section. */
1239 sect_offset sect_off {};
1240
1241 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1242 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1243
1244 unsigned int total_length {};
1245 unsigned short version {};
1246 unsigned int header_length {};
1247 unsigned char minimum_instruction_length {};
1248 unsigned char maximum_ops_per_instruction {};
1249 unsigned char default_is_stmt {};
1250 int line_base {};
1251 unsigned char line_range {};
1252 unsigned char opcode_base {};
1253
1254 /* standard_opcode_lengths[i] is the number of operands for the
1255 standard opcode whose value is i. This means that
1256 standard_opcode_lengths[0] is unused, and the last meaningful
1257 element is standard_opcode_lengths[opcode_base - 1]. */
1258 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1259
1260 /* The include_directories table. Note these are observing
1261 pointers. The memory is owned by debug_line_buffer. */
1262 std::vector<const char *> include_dirs;
1263
1264 /* The file_names table. */
1265 std::vector<file_entry> file_names;
1266
1267 /* The start and end of the statement program following this
1268 header. These point into dwarf2_per_objfile->line_buffer. */
1269 const gdb_byte *statement_program_start {}, *statement_program_end {};
1270 };
1271
1272 typedef std::unique_ptr<line_header> line_header_up;
1273
1274 const char *
1275 file_entry::include_dir (const line_header *lh) const
1276 {
1277 return lh->include_dir_at (d_index);
1278 }
1279
1280 /* When we construct a partial symbol table entry we only
1281 need this much information. */
1282 struct partial_die_info
1283 {
1284 /* Offset of this DIE. */
1285 sect_offset sect_off;
1286
1287 /* DWARF-2 tag for this DIE. */
1288 ENUM_BITFIELD(dwarf_tag) tag : 16;
1289
1290 /* Assorted flags describing the data found in this DIE. */
1291 unsigned int has_children : 1;
1292 unsigned int is_external : 1;
1293 unsigned int is_declaration : 1;
1294 unsigned int has_type : 1;
1295 unsigned int has_specification : 1;
1296 unsigned int has_pc_info : 1;
1297 unsigned int may_be_inlined : 1;
1298
1299 /* This DIE has been marked DW_AT_main_subprogram. */
1300 unsigned int main_subprogram : 1;
1301
1302 /* Flag set if the SCOPE field of this structure has been
1303 computed. */
1304 unsigned int scope_set : 1;
1305
1306 /* Flag set if the DIE has a byte_size attribute. */
1307 unsigned int has_byte_size : 1;
1308
1309 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1310 unsigned int has_const_value : 1;
1311
1312 /* Flag set if any of the DIE's children are template arguments. */
1313 unsigned int has_template_arguments : 1;
1314
1315 /* Flag set if fixup_partial_die has been called on this die. */
1316 unsigned int fixup_called : 1;
1317
1318 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1319 unsigned int is_dwz : 1;
1320
1321 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1322 unsigned int spec_is_dwz : 1;
1323
1324 /* The name of this DIE. Normally the value of DW_AT_name, but
1325 sometimes a default name for unnamed DIEs. */
1326 const char *name;
1327
1328 /* The linkage name, if present. */
1329 const char *linkage_name;
1330
1331 /* The scope to prepend to our children. This is generally
1332 allocated on the comp_unit_obstack, so will disappear
1333 when this compilation unit leaves the cache. */
1334 const char *scope;
1335
1336 /* Some data associated with the partial DIE. The tag determines
1337 which field is live. */
1338 union
1339 {
1340 /* The location description associated with this DIE, if any. */
1341 struct dwarf_block *locdesc;
1342 /* The offset of an import, for DW_TAG_imported_unit. */
1343 sect_offset sect_off;
1344 } d;
1345
1346 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1347 CORE_ADDR lowpc;
1348 CORE_ADDR highpc;
1349
1350 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1351 DW_AT_sibling, if any. */
1352 /* NOTE: This member isn't strictly necessary, read_partial_die could
1353 return DW_AT_sibling values to its caller load_partial_dies. */
1354 const gdb_byte *sibling;
1355
1356 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1357 DW_AT_specification (or DW_AT_abstract_origin or
1358 DW_AT_extension). */
1359 sect_offset spec_offset;
1360
1361 /* Pointers to this DIE's parent, first child, and next sibling,
1362 if any. */
1363 struct partial_die_info *die_parent, *die_child, *die_sibling;
1364 };
1365
1366 /* This data structure holds the information of an abbrev. */
1367 struct abbrev_info
1368 {
1369 unsigned int number; /* number identifying abbrev */
1370 enum dwarf_tag tag; /* dwarf tag */
1371 unsigned short has_children; /* boolean */
1372 unsigned short num_attrs; /* number of attributes */
1373 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1374 struct abbrev_info *next; /* next in chain */
1375 };
1376
1377 struct attr_abbrev
1378 {
1379 ENUM_BITFIELD(dwarf_attribute) name : 16;
1380 ENUM_BITFIELD(dwarf_form) form : 16;
1381
1382 /* It is valid only if FORM is DW_FORM_implicit_const. */
1383 LONGEST implicit_const;
1384 };
1385
1386 /* Size of abbrev_table.abbrev_hash_table. */
1387 #define ABBREV_HASH_SIZE 121
1388
1389 /* Top level data structure to contain an abbreviation table. */
1390
1391 struct abbrev_table
1392 {
1393 /* Where the abbrev table came from.
1394 This is used as a sanity check when the table is used. */
1395 sect_offset sect_off;
1396
1397 /* Storage for the abbrev table. */
1398 struct obstack abbrev_obstack;
1399
1400 /* Hash table of abbrevs.
1401 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1402 It could be statically allocated, but the previous code didn't so we
1403 don't either. */
1404 struct abbrev_info **abbrevs;
1405 };
1406
1407 /* Attributes have a name and a value. */
1408 struct attribute
1409 {
1410 ENUM_BITFIELD(dwarf_attribute) name : 16;
1411 ENUM_BITFIELD(dwarf_form) form : 15;
1412
1413 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1414 field should be in u.str (existing only for DW_STRING) but it is kept
1415 here for better struct attribute alignment. */
1416 unsigned int string_is_canonical : 1;
1417
1418 union
1419 {
1420 const char *str;
1421 struct dwarf_block *blk;
1422 ULONGEST unsnd;
1423 LONGEST snd;
1424 CORE_ADDR addr;
1425 ULONGEST signature;
1426 }
1427 u;
1428 };
1429
1430 /* This data structure holds a complete die structure. */
1431 struct die_info
1432 {
1433 /* DWARF-2 tag for this DIE. */
1434 ENUM_BITFIELD(dwarf_tag) tag : 16;
1435
1436 /* Number of attributes */
1437 unsigned char num_attrs;
1438
1439 /* True if we're presently building the full type name for the
1440 type derived from this DIE. */
1441 unsigned char building_fullname : 1;
1442
1443 /* True if this die is in process. PR 16581. */
1444 unsigned char in_process : 1;
1445
1446 /* Abbrev number */
1447 unsigned int abbrev;
1448
1449 /* Offset in .debug_info or .debug_types section. */
1450 sect_offset sect_off;
1451
1452 /* The dies in a compilation unit form an n-ary tree. PARENT
1453 points to this die's parent; CHILD points to the first child of
1454 this node; and all the children of a given node are chained
1455 together via their SIBLING fields. */
1456 struct die_info *child; /* Its first child, if any. */
1457 struct die_info *sibling; /* Its next sibling, if any. */
1458 struct die_info *parent; /* Its parent, if any. */
1459
1460 /* An array of attributes, with NUM_ATTRS elements. There may be
1461 zero, but it's not common and zero-sized arrays are not
1462 sufficiently portable C. */
1463 struct attribute attrs[1];
1464 };
1465
1466 /* Get at parts of an attribute structure. */
1467
1468 #define DW_STRING(attr) ((attr)->u.str)
1469 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1470 #define DW_UNSND(attr) ((attr)->u.unsnd)
1471 #define DW_BLOCK(attr) ((attr)->u.blk)
1472 #define DW_SND(attr) ((attr)->u.snd)
1473 #define DW_ADDR(attr) ((attr)->u.addr)
1474 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1475
1476 /* Blocks are a bunch of untyped bytes. */
1477 struct dwarf_block
1478 {
1479 size_t size;
1480
1481 /* Valid only if SIZE is not zero. */
1482 const gdb_byte *data;
1483 };
1484
1485 #ifndef ATTR_ALLOC_CHUNK
1486 #define ATTR_ALLOC_CHUNK 4
1487 #endif
1488
1489 /* Allocate fields for structs, unions and enums in this size. */
1490 #ifndef DW_FIELD_ALLOC_CHUNK
1491 #define DW_FIELD_ALLOC_CHUNK 4
1492 #endif
1493
1494 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1495 but this would require a corresponding change in unpack_field_as_long
1496 and friends. */
1497 static int bits_per_byte = 8;
1498
1499 struct nextfield
1500 {
1501 struct nextfield *next;
1502 int accessibility;
1503 int virtuality;
1504 struct field field;
1505 };
1506
1507 struct nextfnfield
1508 {
1509 struct nextfnfield *next;
1510 struct fn_field fnfield;
1511 };
1512
1513 struct fnfieldlist
1514 {
1515 const char *name;
1516 int length;
1517 struct nextfnfield *head;
1518 };
1519
1520 struct typedef_field_list
1521 {
1522 struct typedef_field field;
1523 struct typedef_field_list *next;
1524 };
1525
1526 /* The routines that read and process dies for a C struct or C++ class
1527 pass lists of data member fields and lists of member function fields
1528 in an instance of a field_info structure, as defined below. */
1529 struct field_info
1530 {
1531 /* List of data member and baseclasses fields. */
1532 struct nextfield *fields, *baseclasses;
1533
1534 /* Number of fields (including baseclasses). */
1535 int nfields;
1536
1537 /* Number of baseclasses. */
1538 int nbaseclasses;
1539
1540 /* Set if the accesibility of one of the fields is not public. */
1541 int non_public_fields;
1542
1543 /* Member function fieldlist array, contains name of possibly overloaded
1544 member function, number of overloaded member functions and a pointer
1545 to the head of the member function field chain. */
1546 struct fnfieldlist *fnfieldlists;
1547
1548 /* Number of entries in the fnfieldlists array. */
1549 int nfnfields;
1550
1551 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1552 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1553 struct typedef_field_list *typedef_field_list;
1554 unsigned typedef_field_list_count;
1555 };
1556
1557 /* One item on the queue of compilation units to read in full symbols
1558 for. */
1559 struct dwarf2_queue_item
1560 {
1561 struct dwarf2_per_cu_data *per_cu;
1562 enum language pretend_language;
1563 struct dwarf2_queue_item *next;
1564 };
1565
1566 /* The current queue. */
1567 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1568
1569 /* Loaded secondary compilation units are kept in memory until they
1570 have not been referenced for the processing of this many
1571 compilation units. Set this to zero to disable caching. Cache
1572 sizes of up to at least twenty will improve startup time for
1573 typical inter-CU-reference binaries, at an obvious memory cost. */
1574 static int dwarf_max_cache_age = 5;
1575 static void
1576 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1577 struct cmd_list_element *c, const char *value)
1578 {
1579 fprintf_filtered (file, _("The upper bound on the age of cached "
1580 "DWARF compilation units is %s.\n"),
1581 value);
1582 }
1583 \f
1584 /* local function prototypes */
1585
1586 static const char *get_section_name (const struct dwarf2_section_info *);
1587
1588 static const char *get_section_file_name (const struct dwarf2_section_info *);
1589
1590 static void dwarf2_find_base_address (struct die_info *die,
1591 struct dwarf2_cu *cu);
1592
1593 static struct partial_symtab *create_partial_symtab
1594 (struct dwarf2_per_cu_data *per_cu, const char *name);
1595
1596 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1597 const gdb_byte *info_ptr,
1598 struct die_info *type_unit_die,
1599 int has_children, void *data);
1600
1601 static void dwarf2_build_psymtabs_hard (struct objfile *);
1602
1603 static void scan_partial_symbols (struct partial_die_info *,
1604 CORE_ADDR *, CORE_ADDR *,
1605 int, struct dwarf2_cu *);
1606
1607 static void add_partial_symbol (struct partial_die_info *,
1608 struct dwarf2_cu *);
1609
1610 static void add_partial_namespace (struct partial_die_info *pdi,
1611 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1612 int set_addrmap, struct dwarf2_cu *cu);
1613
1614 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1615 CORE_ADDR *highpc, int set_addrmap,
1616 struct dwarf2_cu *cu);
1617
1618 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1619 struct dwarf2_cu *cu);
1620
1621 static void add_partial_subprogram (struct partial_die_info *pdi,
1622 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1623 int need_pc, struct dwarf2_cu *cu);
1624
1625 static void dwarf2_read_symtab (struct partial_symtab *,
1626 struct objfile *);
1627
1628 static void psymtab_to_symtab_1 (struct partial_symtab *);
1629
1630 static struct abbrev_info *abbrev_table_lookup_abbrev
1631 (const struct abbrev_table *, unsigned int);
1632
1633 static struct abbrev_table *abbrev_table_read_table
1634 (struct dwarf2_section_info *, sect_offset);
1635
1636 static void abbrev_table_free (struct abbrev_table *);
1637
1638 static void abbrev_table_free_cleanup (void *);
1639
1640 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1641 struct dwarf2_section_info *);
1642
1643 static void dwarf2_free_abbrev_table (void *);
1644
1645 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1646
1647 static struct partial_die_info *load_partial_dies
1648 (const struct die_reader_specs *, const gdb_byte *, int);
1649
1650 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1651 struct partial_die_info *,
1652 struct abbrev_info *,
1653 unsigned int,
1654 const gdb_byte *);
1655
1656 static struct partial_die_info *find_partial_die (sect_offset, int,
1657 struct dwarf2_cu *);
1658
1659 static void fixup_partial_die (struct partial_die_info *,
1660 struct dwarf2_cu *);
1661
1662 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1663 struct attribute *, struct attr_abbrev *,
1664 const gdb_byte *);
1665
1666 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1667
1668 static int read_1_signed_byte (bfd *, const gdb_byte *);
1669
1670 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1671
1672 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1673
1674 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1675
1676 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1677 unsigned int *);
1678
1679 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1680
1681 static LONGEST read_checked_initial_length_and_offset
1682 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1683 unsigned int *, unsigned int *);
1684
1685 static LONGEST read_offset (bfd *, const gdb_byte *,
1686 const struct comp_unit_head *,
1687 unsigned int *);
1688
1689 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1690
1691 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1692 sect_offset);
1693
1694 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1695
1696 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1697
1698 static const char *read_indirect_string (bfd *, const gdb_byte *,
1699 const struct comp_unit_head *,
1700 unsigned int *);
1701
1702 static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1703 const struct comp_unit_head *,
1704 unsigned int *);
1705
1706 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1707
1708 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1709
1710 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1711 const gdb_byte *,
1712 unsigned int *);
1713
1714 static const char *read_str_index (const struct die_reader_specs *reader,
1715 ULONGEST str_index);
1716
1717 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1718
1719 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1720 struct dwarf2_cu *);
1721
1722 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1723 unsigned int);
1724
1725 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1726 struct dwarf2_cu *cu);
1727
1728 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1729 struct dwarf2_cu *cu);
1730
1731 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1732
1733 static struct die_info *die_specification (struct die_info *die,
1734 struct dwarf2_cu **);
1735
1736 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1737 struct dwarf2_cu *cu);
1738
1739 static void dwarf_decode_lines (struct line_header *, const char *,
1740 struct dwarf2_cu *, struct partial_symtab *,
1741 CORE_ADDR, int decode_mapping);
1742
1743 static void dwarf2_start_subfile (const char *, const char *);
1744
1745 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1746 const char *, const char *,
1747 CORE_ADDR);
1748
1749 static struct symbol *new_symbol (struct die_info *, struct type *,
1750 struct dwarf2_cu *);
1751
1752 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1753 struct dwarf2_cu *, struct symbol *);
1754
1755 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1756 struct dwarf2_cu *);
1757
1758 static void dwarf2_const_value_attr (const struct attribute *attr,
1759 struct type *type,
1760 const char *name,
1761 struct obstack *obstack,
1762 struct dwarf2_cu *cu, LONGEST *value,
1763 const gdb_byte **bytes,
1764 struct dwarf2_locexpr_baton **baton);
1765
1766 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1767
1768 static int need_gnat_info (struct dwarf2_cu *);
1769
1770 static struct type *die_descriptive_type (struct die_info *,
1771 struct dwarf2_cu *);
1772
1773 static void set_descriptive_type (struct type *, struct die_info *,
1774 struct dwarf2_cu *);
1775
1776 static struct type *die_containing_type (struct die_info *,
1777 struct dwarf2_cu *);
1778
1779 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1780 struct dwarf2_cu *);
1781
1782 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1783
1784 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1785
1786 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1787
1788 static char *typename_concat (struct obstack *obs, const char *prefix,
1789 const char *suffix, int physname,
1790 struct dwarf2_cu *cu);
1791
1792 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1793
1794 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1795
1796 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1797
1798 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1799
1800 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1801
1802 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1803 struct dwarf2_cu *, struct partial_symtab *);
1804
1805 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1806 values. Keep the items ordered with increasing constraints compliance. */
1807 enum pc_bounds_kind
1808 {
1809 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1810 PC_BOUNDS_NOT_PRESENT,
1811
1812 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1813 were present but they do not form a valid range of PC addresses. */
1814 PC_BOUNDS_INVALID,
1815
1816 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1817 PC_BOUNDS_RANGES,
1818
1819 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1820 PC_BOUNDS_HIGH_LOW,
1821 };
1822
1823 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1824 CORE_ADDR *, CORE_ADDR *,
1825 struct dwarf2_cu *,
1826 struct partial_symtab *);
1827
1828 static void get_scope_pc_bounds (struct die_info *,
1829 CORE_ADDR *, CORE_ADDR *,
1830 struct dwarf2_cu *);
1831
1832 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1833 CORE_ADDR, struct dwarf2_cu *);
1834
1835 static void dwarf2_add_field (struct field_info *, struct die_info *,
1836 struct dwarf2_cu *);
1837
1838 static void dwarf2_attach_fields_to_type (struct field_info *,
1839 struct type *, struct dwarf2_cu *);
1840
1841 static void dwarf2_add_member_fn (struct field_info *,
1842 struct die_info *, struct type *,
1843 struct dwarf2_cu *);
1844
1845 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1846 struct type *,
1847 struct dwarf2_cu *);
1848
1849 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1850
1851 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1852
1853 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1854
1855 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1856
1857 static struct using_direct **using_directives (enum language);
1858
1859 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1860
1861 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1862
1863 static struct type *read_module_type (struct die_info *die,
1864 struct dwarf2_cu *cu);
1865
1866 static const char *namespace_name (struct die_info *die,
1867 int *is_anonymous, struct dwarf2_cu *);
1868
1869 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1870
1871 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1872
1873 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1874 struct dwarf2_cu *);
1875
1876 static struct die_info *read_die_and_siblings_1
1877 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1878 struct die_info *);
1879
1880 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1881 const gdb_byte *info_ptr,
1882 const gdb_byte **new_info_ptr,
1883 struct die_info *parent);
1884
1885 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1886 struct die_info **, const gdb_byte *,
1887 int *, int);
1888
1889 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1890 struct die_info **, const gdb_byte *,
1891 int *);
1892
1893 static void process_die (struct die_info *, struct dwarf2_cu *);
1894
1895 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1896 struct obstack *);
1897
1898 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1899
1900 static const char *dwarf2_full_name (const char *name,
1901 struct die_info *die,
1902 struct dwarf2_cu *cu);
1903
1904 static const char *dwarf2_physname (const char *name, struct die_info *die,
1905 struct dwarf2_cu *cu);
1906
1907 static struct die_info *dwarf2_extension (struct die_info *die,
1908 struct dwarf2_cu **);
1909
1910 static const char *dwarf_tag_name (unsigned int);
1911
1912 static const char *dwarf_attr_name (unsigned int);
1913
1914 static const char *dwarf_form_name (unsigned int);
1915
1916 static const char *dwarf_bool_name (unsigned int);
1917
1918 static const char *dwarf_type_encoding_name (unsigned int);
1919
1920 static struct die_info *sibling_die (struct die_info *);
1921
1922 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1923
1924 static void dump_die_for_error (struct die_info *);
1925
1926 static void dump_die_1 (struct ui_file *, int level, int max_level,
1927 struct die_info *);
1928
1929 /*static*/ void dump_die (struct die_info *, int max_level);
1930
1931 static void store_in_ref_table (struct die_info *,
1932 struct dwarf2_cu *);
1933
1934 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1935
1936 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1937
1938 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1939 const struct attribute *,
1940 struct dwarf2_cu **);
1941
1942 static struct die_info *follow_die_ref (struct die_info *,
1943 const struct attribute *,
1944 struct dwarf2_cu **);
1945
1946 static struct die_info *follow_die_sig (struct die_info *,
1947 const struct attribute *,
1948 struct dwarf2_cu **);
1949
1950 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1951 struct dwarf2_cu *);
1952
1953 static struct type *get_DW_AT_signature_type (struct die_info *,
1954 const struct attribute *,
1955 struct dwarf2_cu *);
1956
1957 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1958
1959 static void read_signatured_type (struct signatured_type *);
1960
1961 static int attr_to_dynamic_prop (const struct attribute *attr,
1962 struct die_info *die, struct dwarf2_cu *cu,
1963 struct dynamic_prop *prop);
1964
1965 /* memory allocation interface */
1966
1967 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1968
1969 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1970
1971 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1972
1973 static int attr_form_is_block (const struct attribute *);
1974
1975 static int attr_form_is_section_offset (const struct attribute *);
1976
1977 static int attr_form_is_constant (const struct attribute *);
1978
1979 static int attr_form_is_ref (const struct attribute *);
1980
1981 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1982 struct dwarf2_loclist_baton *baton,
1983 const struct attribute *attr);
1984
1985 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1986 struct symbol *sym,
1987 struct dwarf2_cu *cu,
1988 int is_block);
1989
1990 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1991 const gdb_byte *info_ptr,
1992 struct abbrev_info *abbrev);
1993
1994 static void free_stack_comp_unit (void *);
1995
1996 static hashval_t partial_die_hash (const void *item);
1997
1998 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1999
2000 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
2001 (sect_offset sect_off, unsigned int offset_in_dwz, struct objfile *objfile);
2002
2003 static void init_one_comp_unit (struct dwarf2_cu *cu,
2004 struct dwarf2_per_cu_data *per_cu);
2005
2006 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
2007 struct die_info *comp_unit_die,
2008 enum language pretend_language);
2009
2010 static void free_heap_comp_unit (void *);
2011
2012 static void free_cached_comp_units (void *);
2013
2014 static void age_cached_comp_units (void);
2015
2016 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
2017
2018 static struct type *set_die_type (struct die_info *, struct type *,
2019 struct dwarf2_cu *);
2020
2021 static void create_all_comp_units (struct objfile *);
2022
2023 static int create_all_type_units (struct objfile *);
2024
2025 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
2026 enum language);
2027
2028 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
2029 enum language);
2030
2031 static void process_full_type_unit (struct dwarf2_per_cu_data *,
2032 enum language);
2033
2034 static void dwarf2_add_dependence (struct dwarf2_cu *,
2035 struct dwarf2_per_cu_data *);
2036
2037 static void dwarf2_mark (struct dwarf2_cu *);
2038
2039 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
2040
2041 static struct type *get_die_type_at_offset (sect_offset,
2042 struct dwarf2_per_cu_data *);
2043
2044 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
2045
2046 static void dwarf2_release_queue (void *dummy);
2047
2048 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
2049 enum language pretend_language);
2050
2051 static void process_queue (void);
2052
2053 /* The return type of find_file_and_directory. Note, the enclosed
2054 string pointers are only valid while this object is valid. */
2055
2056 struct file_and_directory
2057 {
2058 /* The filename. This is never NULL. */
2059 const char *name;
2060
2061 /* The compilation directory. NULL if not known. If we needed to
2062 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2063 points directly to the DW_AT_comp_dir string attribute owned by
2064 the obstack that owns the DIE. */
2065 const char *comp_dir;
2066
2067 /* If we needed to build a new string for comp_dir, this is what
2068 owns the storage. */
2069 std::string comp_dir_storage;
2070 };
2071
2072 static file_and_directory find_file_and_directory (struct die_info *die,
2073 struct dwarf2_cu *cu);
2074
2075 static char *file_full_name (int file, struct line_header *lh,
2076 const char *comp_dir);
2077
2078 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
2079 enum class rcuh_kind { COMPILE, TYPE };
2080
2081 static const gdb_byte *read_and_check_comp_unit_head
2082 (struct comp_unit_head *header,
2083 struct dwarf2_section_info *section,
2084 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
2085 rcuh_kind section_kind);
2086
2087 static void init_cutu_and_read_dies
2088 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2089 int use_existing_cu, int keep,
2090 die_reader_func_ftype *die_reader_func, void *data);
2091
2092 static void init_cutu_and_read_dies_simple
2093 (struct dwarf2_per_cu_data *this_cu,
2094 die_reader_func_ftype *die_reader_func, void *data);
2095
2096 static htab_t allocate_signatured_type_table (struct objfile *objfile);
2097
2098 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2099
2100 static struct dwo_unit *lookup_dwo_unit_in_dwp
2101 (struct dwp_file *dwp_file, const char *comp_dir,
2102 ULONGEST signature, int is_debug_types);
2103
2104 static struct dwp_file *get_dwp_file (void);
2105
2106 static struct dwo_unit *lookup_dwo_comp_unit
2107 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2108
2109 static struct dwo_unit *lookup_dwo_type_unit
2110 (struct signatured_type *, const char *, const char *);
2111
2112 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2113
2114 static void free_dwo_file_cleanup (void *);
2115
2116 static void process_cu_includes (void);
2117
2118 static void check_producer (struct dwarf2_cu *cu);
2119
2120 static void free_line_header_voidp (void *arg);
2121 \f
2122 /* Various complaints about symbol reading that don't abort the process. */
2123
2124 static void
2125 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2126 {
2127 complaint (&symfile_complaints,
2128 _("statement list doesn't fit in .debug_line section"));
2129 }
2130
2131 static void
2132 dwarf2_debug_line_missing_file_complaint (void)
2133 {
2134 complaint (&symfile_complaints,
2135 _(".debug_line section has line data without a file"));
2136 }
2137
2138 static void
2139 dwarf2_debug_line_missing_end_sequence_complaint (void)
2140 {
2141 complaint (&symfile_complaints,
2142 _(".debug_line section has line "
2143 "program sequence without an end"));
2144 }
2145
2146 static void
2147 dwarf2_complex_location_expr_complaint (void)
2148 {
2149 complaint (&symfile_complaints, _("location expression too complex"));
2150 }
2151
2152 static void
2153 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2154 int arg3)
2155 {
2156 complaint (&symfile_complaints,
2157 _("const value length mismatch for '%s', got %d, expected %d"),
2158 arg1, arg2, arg3);
2159 }
2160
2161 static void
2162 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2163 {
2164 complaint (&symfile_complaints,
2165 _("debug info runs off end of %s section"
2166 " [in module %s]"),
2167 get_section_name (section),
2168 get_section_file_name (section));
2169 }
2170
2171 static void
2172 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2173 {
2174 complaint (&symfile_complaints,
2175 _("macro debug info contains a "
2176 "malformed macro definition:\n`%s'"),
2177 arg1);
2178 }
2179
2180 static void
2181 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2182 {
2183 complaint (&symfile_complaints,
2184 _("invalid attribute class or form for '%s' in '%s'"),
2185 arg1, arg2);
2186 }
2187
2188 /* Hash function for line_header_hash. */
2189
2190 static hashval_t
2191 line_header_hash (const struct line_header *ofs)
2192 {
2193 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2194 }
2195
2196 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2197
2198 static hashval_t
2199 line_header_hash_voidp (const void *item)
2200 {
2201 const struct line_header *ofs = (const struct line_header *) item;
2202
2203 return line_header_hash (ofs);
2204 }
2205
2206 /* Equality function for line_header_hash. */
2207
2208 static int
2209 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2210 {
2211 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2212 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2213
2214 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2215 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2216 }
2217
2218 \f
2219
2220 /* Read the given attribute value as an address, taking the attribute's
2221 form into account. */
2222
2223 static CORE_ADDR
2224 attr_value_as_address (struct attribute *attr)
2225 {
2226 CORE_ADDR addr;
2227
2228 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2229 {
2230 /* Aside from a few clearly defined exceptions, attributes that
2231 contain an address must always be in DW_FORM_addr form.
2232 Unfortunately, some compilers happen to be violating this
2233 requirement by encoding addresses using other forms, such
2234 as DW_FORM_data4 for example. For those broken compilers,
2235 we try to do our best, without any guarantee of success,
2236 to interpret the address correctly. It would also be nice
2237 to generate a complaint, but that would require us to maintain
2238 a list of legitimate cases where a non-address form is allowed,
2239 as well as update callers to pass in at least the CU's DWARF
2240 version. This is more overhead than what we're willing to
2241 expand for a pretty rare case. */
2242 addr = DW_UNSND (attr);
2243 }
2244 else
2245 addr = DW_ADDR (attr);
2246
2247 return addr;
2248 }
2249
2250 /* The suffix for an index file. */
2251 #define INDEX_SUFFIX ".gdb-index"
2252
2253 /* See declaration. */
2254
2255 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2256 const dwarf2_debug_sections *names)
2257 : objfile (objfile_)
2258 {
2259 if (names == NULL)
2260 names = &dwarf2_elf_names;
2261
2262 bfd *obfd = objfile->obfd;
2263
2264 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2265 locate_sections (obfd, sec, *names);
2266 }
2267
2268 dwarf2_per_objfile::~dwarf2_per_objfile ()
2269 {
2270 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2271 free_cached_comp_units ();
2272
2273 if (quick_file_names_table)
2274 htab_delete (quick_file_names_table);
2275
2276 if (line_header_hash)
2277 htab_delete (line_header_hash);
2278
2279 /* Everything else should be on the objfile obstack. */
2280 }
2281
2282 /* See declaration. */
2283
2284 void
2285 dwarf2_per_objfile::free_cached_comp_units ()
2286 {
2287 dwarf2_per_cu_data *per_cu = read_in_chain;
2288 dwarf2_per_cu_data **last_chain = &read_in_chain;
2289 while (per_cu != NULL)
2290 {
2291 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2292
2293 free_heap_comp_unit (per_cu->cu);
2294 *last_chain = next_cu;
2295 per_cu = next_cu;
2296 }
2297 }
2298
2299 /* Try to locate the sections we need for DWARF 2 debugging
2300 information and return true if we have enough to do something.
2301 NAMES points to the dwarf2 section names, or is NULL if the standard
2302 ELF names are used. */
2303
2304 int
2305 dwarf2_has_info (struct objfile *objfile,
2306 const struct dwarf2_debug_sections *names)
2307 {
2308 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2309 objfile_data (objfile, dwarf2_objfile_data_key));
2310 if (!dwarf2_per_objfile)
2311 {
2312 /* Initialize per-objfile state. */
2313 struct dwarf2_per_objfile *data
2314 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2315
2316 dwarf2_per_objfile = new (data) struct dwarf2_per_objfile (objfile, names);
2317 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
2318 }
2319 return (!dwarf2_per_objfile->info.is_virtual
2320 && dwarf2_per_objfile->info.s.section != NULL
2321 && !dwarf2_per_objfile->abbrev.is_virtual
2322 && dwarf2_per_objfile->abbrev.s.section != NULL);
2323 }
2324
2325 /* Return the containing section of virtual section SECTION. */
2326
2327 static struct dwarf2_section_info *
2328 get_containing_section (const struct dwarf2_section_info *section)
2329 {
2330 gdb_assert (section->is_virtual);
2331 return section->s.containing_section;
2332 }
2333
2334 /* Return the bfd owner of SECTION. */
2335
2336 static struct bfd *
2337 get_section_bfd_owner (const struct dwarf2_section_info *section)
2338 {
2339 if (section->is_virtual)
2340 {
2341 section = get_containing_section (section);
2342 gdb_assert (!section->is_virtual);
2343 }
2344 return section->s.section->owner;
2345 }
2346
2347 /* Return the bfd section of SECTION.
2348 Returns NULL if the section is not present. */
2349
2350 static asection *
2351 get_section_bfd_section (const struct dwarf2_section_info *section)
2352 {
2353 if (section->is_virtual)
2354 {
2355 section = get_containing_section (section);
2356 gdb_assert (!section->is_virtual);
2357 }
2358 return section->s.section;
2359 }
2360
2361 /* Return the name of SECTION. */
2362
2363 static const char *
2364 get_section_name (const struct dwarf2_section_info *section)
2365 {
2366 asection *sectp = get_section_bfd_section (section);
2367
2368 gdb_assert (sectp != NULL);
2369 return bfd_section_name (get_section_bfd_owner (section), sectp);
2370 }
2371
2372 /* Return the name of the file SECTION is in. */
2373
2374 static const char *
2375 get_section_file_name (const struct dwarf2_section_info *section)
2376 {
2377 bfd *abfd = get_section_bfd_owner (section);
2378
2379 return bfd_get_filename (abfd);
2380 }
2381
2382 /* Return the id of SECTION.
2383 Returns 0 if SECTION doesn't exist. */
2384
2385 static int
2386 get_section_id (const struct dwarf2_section_info *section)
2387 {
2388 asection *sectp = get_section_bfd_section (section);
2389
2390 if (sectp == NULL)
2391 return 0;
2392 return sectp->id;
2393 }
2394
2395 /* Return the flags of SECTION.
2396 SECTION (or containing section if this is a virtual section) must exist. */
2397
2398 static int
2399 get_section_flags (const struct dwarf2_section_info *section)
2400 {
2401 asection *sectp = get_section_bfd_section (section);
2402
2403 gdb_assert (sectp != NULL);
2404 return bfd_get_section_flags (sectp->owner, sectp);
2405 }
2406
2407 /* When loading sections, we look either for uncompressed section or for
2408 compressed section names. */
2409
2410 static int
2411 section_is_p (const char *section_name,
2412 const struct dwarf2_section_names *names)
2413 {
2414 if (names->normal != NULL
2415 && strcmp (section_name, names->normal) == 0)
2416 return 1;
2417 if (names->compressed != NULL
2418 && strcmp (section_name, names->compressed) == 0)
2419 return 1;
2420 return 0;
2421 }
2422
2423 /* See declaration. */
2424
2425 void
2426 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2427 const dwarf2_debug_sections &names)
2428 {
2429 flagword aflag = bfd_get_section_flags (abfd, sectp);
2430
2431 if ((aflag & SEC_HAS_CONTENTS) == 0)
2432 {
2433 }
2434 else if (section_is_p (sectp->name, &names.info))
2435 {
2436 this->info.s.section = sectp;
2437 this->info.size = bfd_get_section_size (sectp);
2438 }
2439 else if (section_is_p (sectp->name, &names.abbrev))
2440 {
2441 this->abbrev.s.section = sectp;
2442 this->abbrev.size = bfd_get_section_size (sectp);
2443 }
2444 else if (section_is_p (sectp->name, &names.line))
2445 {
2446 this->line.s.section = sectp;
2447 this->line.size = bfd_get_section_size (sectp);
2448 }
2449 else if (section_is_p (sectp->name, &names.loc))
2450 {
2451 this->loc.s.section = sectp;
2452 this->loc.size = bfd_get_section_size (sectp);
2453 }
2454 else if (section_is_p (sectp->name, &names.loclists))
2455 {
2456 this->loclists.s.section = sectp;
2457 this->loclists.size = bfd_get_section_size (sectp);
2458 }
2459 else if (section_is_p (sectp->name, &names.macinfo))
2460 {
2461 this->macinfo.s.section = sectp;
2462 this->macinfo.size = bfd_get_section_size (sectp);
2463 }
2464 else if (section_is_p (sectp->name, &names.macro))
2465 {
2466 this->macro.s.section = sectp;
2467 this->macro.size = bfd_get_section_size (sectp);
2468 }
2469 else if (section_is_p (sectp->name, &names.str))
2470 {
2471 this->str.s.section = sectp;
2472 this->str.size = bfd_get_section_size (sectp);
2473 }
2474 else if (section_is_p (sectp->name, &names.line_str))
2475 {
2476 this->line_str.s.section = sectp;
2477 this->line_str.size = bfd_get_section_size (sectp);
2478 }
2479 else if (section_is_p (sectp->name, &names.addr))
2480 {
2481 this->addr.s.section = sectp;
2482 this->addr.size = bfd_get_section_size (sectp);
2483 }
2484 else if (section_is_p (sectp->name, &names.frame))
2485 {
2486 this->frame.s.section = sectp;
2487 this->frame.size = bfd_get_section_size (sectp);
2488 }
2489 else if (section_is_p (sectp->name, &names.eh_frame))
2490 {
2491 this->eh_frame.s.section = sectp;
2492 this->eh_frame.size = bfd_get_section_size (sectp);
2493 }
2494 else if (section_is_p (sectp->name, &names.ranges))
2495 {
2496 this->ranges.s.section = sectp;
2497 this->ranges.size = bfd_get_section_size (sectp);
2498 }
2499 else if (section_is_p (sectp->name, &names.rnglists))
2500 {
2501 this->rnglists.s.section = sectp;
2502 this->rnglists.size = bfd_get_section_size (sectp);
2503 }
2504 else if (section_is_p (sectp->name, &names.types))
2505 {
2506 struct dwarf2_section_info type_section;
2507
2508 memset (&type_section, 0, sizeof (type_section));
2509 type_section.s.section = sectp;
2510 type_section.size = bfd_get_section_size (sectp);
2511
2512 VEC_safe_push (dwarf2_section_info_def, this->types,
2513 &type_section);
2514 }
2515 else if (section_is_p (sectp->name, &names.gdb_index))
2516 {
2517 this->gdb_index.s.section = sectp;
2518 this->gdb_index.size = bfd_get_section_size (sectp);
2519 }
2520
2521 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2522 && bfd_section_vma (abfd, sectp) == 0)
2523 this->has_section_at_zero = true;
2524 }
2525
2526 /* A helper function that decides whether a section is empty,
2527 or not present. */
2528
2529 static int
2530 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2531 {
2532 if (section->is_virtual)
2533 return section->size == 0;
2534 return section->s.section == NULL || section->size == 0;
2535 }
2536
2537 /* Read the contents of the section INFO.
2538 OBJFILE is the main object file, but not necessarily the file where
2539 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2540 of the DWO file.
2541 If the section is compressed, uncompress it before returning. */
2542
2543 static void
2544 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2545 {
2546 asection *sectp;
2547 bfd *abfd;
2548 gdb_byte *buf, *retbuf;
2549
2550 if (info->readin)
2551 return;
2552 info->buffer = NULL;
2553 info->readin = 1;
2554
2555 if (dwarf2_section_empty_p (info))
2556 return;
2557
2558 sectp = get_section_bfd_section (info);
2559
2560 /* If this is a virtual section we need to read in the real one first. */
2561 if (info->is_virtual)
2562 {
2563 struct dwarf2_section_info *containing_section =
2564 get_containing_section (info);
2565
2566 gdb_assert (sectp != NULL);
2567 if ((sectp->flags & SEC_RELOC) != 0)
2568 {
2569 error (_("Dwarf Error: DWP format V2 with relocations is not"
2570 " supported in section %s [in module %s]"),
2571 get_section_name (info), get_section_file_name (info));
2572 }
2573 dwarf2_read_section (objfile, containing_section);
2574 /* Other code should have already caught virtual sections that don't
2575 fit. */
2576 gdb_assert (info->virtual_offset + info->size
2577 <= containing_section->size);
2578 /* If the real section is empty or there was a problem reading the
2579 section we shouldn't get here. */
2580 gdb_assert (containing_section->buffer != NULL);
2581 info->buffer = containing_section->buffer + info->virtual_offset;
2582 return;
2583 }
2584
2585 /* If the section has relocations, we must read it ourselves.
2586 Otherwise we attach it to the BFD. */
2587 if ((sectp->flags & SEC_RELOC) == 0)
2588 {
2589 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2590 return;
2591 }
2592
2593 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2594 info->buffer = buf;
2595
2596 /* When debugging .o files, we may need to apply relocations; see
2597 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2598 We never compress sections in .o files, so we only need to
2599 try this when the section is not compressed. */
2600 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2601 if (retbuf != NULL)
2602 {
2603 info->buffer = retbuf;
2604 return;
2605 }
2606
2607 abfd = get_section_bfd_owner (info);
2608 gdb_assert (abfd != NULL);
2609
2610 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2611 || bfd_bread (buf, info->size, abfd) != info->size)
2612 {
2613 error (_("Dwarf Error: Can't read DWARF data"
2614 " in section %s [in module %s]"),
2615 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2616 }
2617 }
2618
2619 /* A helper function that returns the size of a section in a safe way.
2620 If you are positive that the section has been read before using the
2621 size, then it is safe to refer to the dwarf2_section_info object's
2622 "size" field directly. In other cases, you must call this
2623 function, because for compressed sections the size field is not set
2624 correctly until the section has been read. */
2625
2626 static bfd_size_type
2627 dwarf2_section_size (struct objfile *objfile,
2628 struct dwarf2_section_info *info)
2629 {
2630 if (!info->readin)
2631 dwarf2_read_section (objfile, info);
2632 return info->size;
2633 }
2634
2635 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2636 SECTION_NAME. */
2637
2638 void
2639 dwarf2_get_section_info (struct objfile *objfile,
2640 enum dwarf2_section_enum sect,
2641 asection **sectp, const gdb_byte **bufp,
2642 bfd_size_type *sizep)
2643 {
2644 struct dwarf2_per_objfile *data
2645 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2646 dwarf2_objfile_data_key);
2647 struct dwarf2_section_info *info;
2648
2649 /* We may see an objfile without any DWARF, in which case we just
2650 return nothing. */
2651 if (data == NULL)
2652 {
2653 *sectp = NULL;
2654 *bufp = NULL;
2655 *sizep = 0;
2656 return;
2657 }
2658 switch (sect)
2659 {
2660 case DWARF2_DEBUG_FRAME:
2661 info = &data->frame;
2662 break;
2663 case DWARF2_EH_FRAME:
2664 info = &data->eh_frame;
2665 break;
2666 default:
2667 gdb_assert_not_reached ("unexpected section");
2668 }
2669
2670 dwarf2_read_section (objfile, info);
2671
2672 *sectp = get_section_bfd_section (info);
2673 *bufp = info->buffer;
2674 *sizep = info->size;
2675 }
2676
2677 /* A helper function to find the sections for a .dwz file. */
2678
2679 static void
2680 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2681 {
2682 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2683
2684 /* Note that we only support the standard ELF names, because .dwz
2685 is ELF-only (at the time of writing). */
2686 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2687 {
2688 dwz_file->abbrev.s.section = sectp;
2689 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2690 }
2691 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2692 {
2693 dwz_file->info.s.section = sectp;
2694 dwz_file->info.size = bfd_get_section_size (sectp);
2695 }
2696 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2697 {
2698 dwz_file->str.s.section = sectp;
2699 dwz_file->str.size = bfd_get_section_size (sectp);
2700 }
2701 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2702 {
2703 dwz_file->line.s.section = sectp;
2704 dwz_file->line.size = bfd_get_section_size (sectp);
2705 }
2706 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2707 {
2708 dwz_file->macro.s.section = sectp;
2709 dwz_file->macro.size = bfd_get_section_size (sectp);
2710 }
2711 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2712 {
2713 dwz_file->gdb_index.s.section = sectp;
2714 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2715 }
2716 }
2717
2718 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2719 there is no .gnu_debugaltlink section in the file. Error if there
2720 is such a section but the file cannot be found. */
2721
2722 static struct dwz_file *
2723 dwarf2_get_dwz_file (void)
2724 {
2725 const char *filename;
2726 struct dwz_file *result;
2727 bfd_size_type buildid_len_arg;
2728 size_t buildid_len;
2729 bfd_byte *buildid;
2730
2731 if (dwarf2_per_objfile->dwz_file != NULL)
2732 return dwarf2_per_objfile->dwz_file;
2733
2734 bfd_set_error (bfd_error_no_error);
2735 gdb::unique_xmalloc_ptr<char> data
2736 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2737 &buildid_len_arg, &buildid));
2738 if (data == NULL)
2739 {
2740 if (bfd_get_error () == bfd_error_no_error)
2741 return NULL;
2742 error (_("could not read '.gnu_debugaltlink' section: %s"),
2743 bfd_errmsg (bfd_get_error ()));
2744 }
2745
2746 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2747
2748 buildid_len = (size_t) buildid_len_arg;
2749
2750 filename = data.get ();
2751
2752 std::string abs_storage;
2753 if (!IS_ABSOLUTE_PATH (filename))
2754 {
2755 gdb::unique_xmalloc_ptr<char> abs
2756 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2757
2758 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2759 filename = abs_storage.c_str ();
2760 }
2761
2762 /* First try the file name given in the section. If that doesn't
2763 work, try to use the build-id instead. */
2764 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2765 if (dwz_bfd != NULL)
2766 {
2767 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2768 dwz_bfd.release ();
2769 }
2770
2771 if (dwz_bfd == NULL)
2772 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2773
2774 if (dwz_bfd == NULL)
2775 error (_("could not find '.gnu_debugaltlink' file for %s"),
2776 objfile_name (dwarf2_per_objfile->objfile));
2777
2778 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2779 struct dwz_file);
2780 result->dwz_bfd = dwz_bfd.release ();
2781
2782 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2783
2784 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2785 dwarf2_per_objfile->dwz_file = result;
2786 return result;
2787 }
2788 \f
2789 /* DWARF quick_symbols_functions support. */
2790
2791 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2792 unique line tables, so we maintain a separate table of all .debug_line
2793 derived entries to support the sharing.
2794 All the quick functions need is the list of file names. We discard the
2795 line_header when we're done and don't need to record it here. */
2796 struct quick_file_names
2797 {
2798 /* The data used to construct the hash key. */
2799 struct stmt_list_hash hash;
2800
2801 /* The number of entries in file_names, real_names. */
2802 unsigned int num_file_names;
2803
2804 /* The file names from the line table, after being run through
2805 file_full_name. */
2806 const char **file_names;
2807
2808 /* The file names from the line table after being run through
2809 gdb_realpath. These are computed lazily. */
2810 const char **real_names;
2811 };
2812
2813 /* When using the index (and thus not using psymtabs), each CU has an
2814 object of this type. This is used to hold information needed by
2815 the various "quick" methods. */
2816 struct dwarf2_per_cu_quick_data
2817 {
2818 /* The file table. This can be NULL if there was no file table
2819 or it's currently not read in.
2820 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2821 struct quick_file_names *file_names;
2822
2823 /* The corresponding symbol table. This is NULL if symbols for this
2824 CU have not yet been read. */
2825 struct compunit_symtab *compunit_symtab;
2826
2827 /* A temporary mark bit used when iterating over all CUs in
2828 expand_symtabs_matching. */
2829 unsigned int mark : 1;
2830
2831 /* True if we've tried to read the file table and found there isn't one.
2832 There will be no point in trying to read it again next time. */
2833 unsigned int no_file_data : 1;
2834 };
2835
2836 /* Utility hash function for a stmt_list_hash. */
2837
2838 static hashval_t
2839 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2840 {
2841 hashval_t v = 0;
2842
2843 if (stmt_list_hash->dwo_unit != NULL)
2844 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2845 v += to_underlying (stmt_list_hash->line_sect_off);
2846 return v;
2847 }
2848
2849 /* Utility equality function for a stmt_list_hash. */
2850
2851 static int
2852 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2853 const struct stmt_list_hash *rhs)
2854 {
2855 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2856 return 0;
2857 if (lhs->dwo_unit != NULL
2858 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2859 return 0;
2860
2861 return lhs->line_sect_off == rhs->line_sect_off;
2862 }
2863
2864 /* Hash function for a quick_file_names. */
2865
2866 static hashval_t
2867 hash_file_name_entry (const void *e)
2868 {
2869 const struct quick_file_names *file_data
2870 = (const struct quick_file_names *) e;
2871
2872 return hash_stmt_list_entry (&file_data->hash);
2873 }
2874
2875 /* Equality function for a quick_file_names. */
2876
2877 static int
2878 eq_file_name_entry (const void *a, const void *b)
2879 {
2880 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2881 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2882
2883 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2884 }
2885
2886 /* Delete function for a quick_file_names. */
2887
2888 static void
2889 delete_file_name_entry (void *e)
2890 {
2891 struct quick_file_names *file_data = (struct quick_file_names *) e;
2892 int i;
2893
2894 for (i = 0; i < file_data->num_file_names; ++i)
2895 {
2896 xfree ((void*) file_data->file_names[i]);
2897 if (file_data->real_names)
2898 xfree ((void*) file_data->real_names[i]);
2899 }
2900
2901 /* The space for the struct itself lives on objfile_obstack,
2902 so we don't free it here. */
2903 }
2904
2905 /* Create a quick_file_names hash table. */
2906
2907 static htab_t
2908 create_quick_file_names_table (unsigned int nr_initial_entries)
2909 {
2910 return htab_create_alloc (nr_initial_entries,
2911 hash_file_name_entry, eq_file_name_entry,
2912 delete_file_name_entry, xcalloc, xfree);
2913 }
2914
2915 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2916 have to be created afterwards. You should call age_cached_comp_units after
2917 processing PER_CU->CU. dw2_setup must have been already called. */
2918
2919 static void
2920 load_cu (struct dwarf2_per_cu_data *per_cu)
2921 {
2922 if (per_cu->is_debug_types)
2923 load_full_type_unit (per_cu);
2924 else
2925 load_full_comp_unit (per_cu, language_minimal);
2926
2927 if (per_cu->cu == NULL)
2928 return; /* Dummy CU. */
2929
2930 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2931 }
2932
2933 /* Read in the symbols for PER_CU. */
2934
2935 static void
2936 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2937 {
2938 struct cleanup *back_to;
2939
2940 /* Skip type_unit_groups, reading the type units they contain
2941 is handled elsewhere. */
2942 if (IS_TYPE_UNIT_GROUP (per_cu))
2943 return;
2944
2945 back_to = make_cleanup (dwarf2_release_queue, NULL);
2946
2947 if (dwarf2_per_objfile->using_index
2948 ? per_cu->v.quick->compunit_symtab == NULL
2949 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2950 {
2951 queue_comp_unit (per_cu, language_minimal);
2952 load_cu (per_cu);
2953
2954 /* If we just loaded a CU from a DWO, and we're working with an index
2955 that may badly handle TUs, load all the TUs in that DWO as well.
2956 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2957 if (!per_cu->is_debug_types
2958 && per_cu->cu != NULL
2959 && per_cu->cu->dwo_unit != NULL
2960 && dwarf2_per_objfile->index_table != NULL
2961 && dwarf2_per_objfile->index_table->version <= 7
2962 /* DWP files aren't supported yet. */
2963 && get_dwp_file () == NULL)
2964 queue_and_load_all_dwo_tus (per_cu);
2965 }
2966
2967 process_queue ();
2968
2969 /* Age the cache, releasing compilation units that have not
2970 been used recently. */
2971 age_cached_comp_units ();
2972
2973 do_cleanups (back_to);
2974 }
2975
2976 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2977 the objfile from which this CU came. Returns the resulting symbol
2978 table. */
2979
2980 static struct compunit_symtab *
2981 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2982 {
2983 gdb_assert (dwarf2_per_objfile->using_index);
2984 if (!per_cu->v.quick->compunit_symtab)
2985 {
2986 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2987 scoped_restore decrementer = increment_reading_symtab ();
2988 dw2_do_instantiate_symtab (per_cu);
2989 process_cu_includes ();
2990 do_cleanups (back_to);
2991 }
2992
2993 return per_cu->v.quick->compunit_symtab;
2994 }
2995
2996 /* Return the CU/TU given its index.
2997
2998 This is intended for loops like:
2999
3000 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3001 + dwarf2_per_objfile->n_type_units); ++i)
3002 {
3003 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3004
3005 ...;
3006 }
3007 */
3008
3009 static struct dwarf2_per_cu_data *
3010 dw2_get_cutu (int index)
3011 {
3012 if (index >= dwarf2_per_objfile->n_comp_units)
3013 {
3014 index -= dwarf2_per_objfile->n_comp_units;
3015 gdb_assert (index < dwarf2_per_objfile->n_type_units);
3016 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
3017 }
3018
3019 return dwarf2_per_objfile->all_comp_units[index];
3020 }
3021
3022 /* Return the CU given its index.
3023 This differs from dw2_get_cutu in that it's for when you know INDEX
3024 refers to a CU. */
3025
3026 static struct dwarf2_per_cu_data *
3027 dw2_get_cu (int index)
3028 {
3029 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
3030
3031 return dwarf2_per_objfile->all_comp_units[index];
3032 }
3033
3034 /* A helper for create_cus_from_index that handles a given list of
3035 CUs. */
3036
3037 static void
3038 create_cus_from_index_list (struct objfile *objfile,
3039 const gdb_byte *cu_list, offset_type n_elements,
3040 struct dwarf2_section_info *section,
3041 int is_dwz,
3042 int base_offset)
3043 {
3044 offset_type i;
3045
3046 for (i = 0; i < n_elements; i += 2)
3047 {
3048 gdb_static_assert (sizeof (ULONGEST) >= 8);
3049
3050 sect_offset sect_off
3051 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3052 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3053 cu_list += 2 * 8;
3054
3055 dwarf2_per_cu_data *the_cu
3056 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3057 struct dwarf2_per_cu_data);
3058 the_cu->sect_off = sect_off;
3059 the_cu->length = length;
3060 the_cu->objfile = objfile;
3061 the_cu->section = section;
3062 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3063 struct dwarf2_per_cu_quick_data);
3064 the_cu->is_dwz = is_dwz;
3065 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
3066 }
3067 }
3068
3069 /* Read the CU list from the mapped index, and use it to create all
3070 the CU objects for this objfile. */
3071
3072 static void
3073 create_cus_from_index (struct objfile *objfile,
3074 const gdb_byte *cu_list, offset_type cu_list_elements,
3075 const gdb_byte *dwz_list, offset_type dwz_elements)
3076 {
3077 struct dwz_file *dwz;
3078
3079 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
3080 dwarf2_per_objfile->all_comp_units =
3081 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3082 dwarf2_per_objfile->n_comp_units);
3083
3084 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3085 &dwarf2_per_objfile->info, 0, 0);
3086
3087 if (dwz_elements == 0)
3088 return;
3089
3090 dwz = dwarf2_get_dwz_file ();
3091 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3092 cu_list_elements / 2);
3093 }
3094
3095 /* Create the signatured type hash table from the index. */
3096
3097 static void
3098 create_signatured_type_table_from_index (struct objfile *objfile,
3099 struct dwarf2_section_info *section,
3100 const gdb_byte *bytes,
3101 offset_type elements)
3102 {
3103 offset_type i;
3104 htab_t sig_types_hash;
3105
3106 dwarf2_per_objfile->n_type_units
3107 = dwarf2_per_objfile->n_allocated_type_units
3108 = elements / 3;
3109 dwarf2_per_objfile->all_type_units =
3110 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3111
3112 sig_types_hash = allocate_signatured_type_table (objfile);
3113
3114 for (i = 0; i < elements; i += 3)
3115 {
3116 struct signatured_type *sig_type;
3117 ULONGEST signature;
3118 void **slot;
3119 cu_offset type_offset_in_tu;
3120
3121 gdb_static_assert (sizeof (ULONGEST) >= 8);
3122 sect_offset sect_off
3123 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3124 type_offset_in_tu
3125 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3126 BFD_ENDIAN_LITTLE);
3127 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3128 bytes += 3 * 8;
3129
3130 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3131 struct signatured_type);
3132 sig_type->signature = signature;
3133 sig_type->type_offset_in_tu = type_offset_in_tu;
3134 sig_type->per_cu.is_debug_types = 1;
3135 sig_type->per_cu.section = section;
3136 sig_type->per_cu.sect_off = sect_off;
3137 sig_type->per_cu.objfile = objfile;
3138 sig_type->per_cu.v.quick
3139 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3140 struct dwarf2_per_cu_quick_data);
3141
3142 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3143 *slot = sig_type;
3144
3145 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3146 }
3147
3148 dwarf2_per_objfile->signatured_types = sig_types_hash;
3149 }
3150
3151 /* Read the address map data from the mapped index, and use it to
3152 populate the objfile's psymtabs_addrmap. */
3153
3154 static void
3155 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
3156 {
3157 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3158 const gdb_byte *iter, *end;
3159 struct addrmap *mutable_map;
3160 CORE_ADDR baseaddr;
3161
3162 auto_obstack temp_obstack;
3163
3164 mutable_map = addrmap_create_mutable (&temp_obstack);
3165
3166 iter = index->address_table;
3167 end = iter + index->address_table_size;
3168
3169 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3170
3171 while (iter < end)
3172 {
3173 ULONGEST hi, lo, cu_index;
3174 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3175 iter += 8;
3176 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3177 iter += 8;
3178 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3179 iter += 4;
3180
3181 if (lo > hi)
3182 {
3183 complaint (&symfile_complaints,
3184 _(".gdb_index address table has invalid range (%s - %s)"),
3185 hex_string (lo), hex_string (hi));
3186 continue;
3187 }
3188
3189 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3190 {
3191 complaint (&symfile_complaints,
3192 _(".gdb_index address table has invalid CU number %u"),
3193 (unsigned) cu_index);
3194 continue;
3195 }
3196
3197 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3198 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3199 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
3200 }
3201
3202 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3203 &objfile->objfile_obstack);
3204 }
3205
3206 /* The hash function for strings in the mapped index. This is the same as
3207 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3208 implementation. This is necessary because the hash function is tied to the
3209 format of the mapped index file. The hash values do not have to match with
3210 SYMBOL_HASH_NEXT.
3211
3212 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3213
3214 static hashval_t
3215 mapped_index_string_hash (int index_version, const void *p)
3216 {
3217 const unsigned char *str = (const unsigned char *) p;
3218 hashval_t r = 0;
3219 unsigned char c;
3220
3221 while ((c = *str++) != 0)
3222 {
3223 if (index_version >= 5)
3224 c = tolower (c);
3225 r = r * 67 + c - 113;
3226 }
3227
3228 return r;
3229 }
3230
3231 /* Find a slot in the mapped index INDEX for the object named NAME.
3232 If NAME is found, set *VEC_OUT to point to the CU vector in the
3233 constant pool and return true. If NAME cannot be found, return
3234 false. */
3235
3236 static bool
3237 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3238 offset_type **vec_out)
3239 {
3240 offset_type hash;
3241 offset_type slot, step;
3242 int (*cmp) (const char *, const char *);
3243
3244 gdb::unique_xmalloc_ptr<char> without_params;
3245 if (current_language->la_language == language_cplus
3246 || current_language->la_language == language_fortran
3247 || current_language->la_language == language_d)
3248 {
3249 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3250 not contain any. */
3251
3252 if (strchr (name, '(') != NULL)
3253 {
3254 without_params = cp_remove_params (name);
3255
3256 if (without_params != NULL)
3257 name = without_params.get ();
3258 }
3259 }
3260
3261 /* Index version 4 did not support case insensitive searches. But the
3262 indices for case insensitive languages are built in lowercase, therefore
3263 simulate our NAME being searched is also lowercased. */
3264 hash = mapped_index_string_hash ((index->version == 4
3265 && case_sensitivity == case_sensitive_off
3266 ? 5 : index->version),
3267 name);
3268
3269 slot = hash & (index->symbol_table_slots - 1);
3270 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3271 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3272
3273 for (;;)
3274 {
3275 /* Convert a slot number to an offset into the table. */
3276 offset_type i = 2 * slot;
3277 const char *str;
3278 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3279 return false;
3280
3281 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3282 if (!cmp (name, str))
3283 {
3284 *vec_out = (offset_type *) (index->constant_pool
3285 + MAYBE_SWAP (index->symbol_table[i + 1]));
3286 return true;
3287 }
3288
3289 slot = (slot + step) & (index->symbol_table_slots - 1);
3290 }
3291 }
3292
3293 /* A helper function that reads the .gdb_index from SECTION and fills
3294 in MAP. FILENAME is the name of the file containing the section;
3295 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3296 ok to use deprecated sections.
3297
3298 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3299 out parameters that are filled in with information about the CU and
3300 TU lists in the section.
3301
3302 Returns 1 if all went well, 0 otherwise. */
3303
3304 static int
3305 read_index_from_section (struct objfile *objfile,
3306 const char *filename,
3307 int deprecated_ok,
3308 struct dwarf2_section_info *section,
3309 struct mapped_index *map,
3310 const gdb_byte **cu_list,
3311 offset_type *cu_list_elements,
3312 const gdb_byte **types_list,
3313 offset_type *types_list_elements)
3314 {
3315 const gdb_byte *addr;
3316 offset_type version;
3317 offset_type *metadata;
3318 int i;
3319
3320 if (dwarf2_section_empty_p (section))
3321 return 0;
3322
3323 /* Older elfutils strip versions could keep the section in the main
3324 executable while splitting it for the separate debug info file. */
3325 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3326 return 0;
3327
3328 dwarf2_read_section (objfile, section);
3329
3330 addr = section->buffer;
3331 /* Version check. */
3332 version = MAYBE_SWAP (*(offset_type *) addr);
3333 /* Versions earlier than 3 emitted every copy of a psymbol. This
3334 causes the index to behave very poorly for certain requests. Version 3
3335 contained incomplete addrmap. So, it seems better to just ignore such
3336 indices. */
3337 if (version < 4)
3338 {
3339 static int warning_printed = 0;
3340 if (!warning_printed)
3341 {
3342 warning (_("Skipping obsolete .gdb_index section in %s."),
3343 filename);
3344 warning_printed = 1;
3345 }
3346 return 0;
3347 }
3348 /* Index version 4 uses a different hash function than index version
3349 5 and later.
3350
3351 Versions earlier than 6 did not emit psymbols for inlined
3352 functions. Using these files will cause GDB not to be able to
3353 set breakpoints on inlined functions by name, so we ignore these
3354 indices unless the user has done
3355 "set use-deprecated-index-sections on". */
3356 if (version < 6 && !deprecated_ok)
3357 {
3358 static int warning_printed = 0;
3359 if (!warning_printed)
3360 {
3361 warning (_("\
3362 Skipping deprecated .gdb_index section in %s.\n\
3363 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3364 to use the section anyway."),
3365 filename);
3366 warning_printed = 1;
3367 }
3368 return 0;
3369 }
3370 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3371 of the TU (for symbols coming from TUs),
3372 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3373 Plus gold-generated indices can have duplicate entries for global symbols,
3374 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3375 These are just performance bugs, and we can't distinguish gdb-generated
3376 indices from gold-generated ones, so issue no warning here. */
3377
3378 /* Indexes with higher version than the one supported by GDB may be no
3379 longer backward compatible. */
3380 if (version > 8)
3381 return 0;
3382
3383 map->version = version;
3384 map->total_size = section->size;
3385
3386 metadata = (offset_type *) (addr + sizeof (offset_type));
3387
3388 i = 0;
3389 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3390 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3391 / 8);
3392 ++i;
3393
3394 *types_list = addr + MAYBE_SWAP (metadata[i]);
3395 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3396 - MAYBE_SWAP (metadata[i]))
3397 / 8);
3398 ++i;
3399
3400 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3401 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3402 - MAYBE_SWAP (metadata[i]));
3403 ++i;
3404
3405 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3406 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3407 - MAYBE_SWAP (metadata[i]))
3408 / (2 * sizeof (offset_type)));
3409 ++i;
3410
3411 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3412
3413 return 1;
3414 }
3415
3416
3417 /* Read the index file. If everything went ok, initialize the "quick"
3418 elements of all the CUs and return 1. Otherwise, return 0. */
3419
3420 static int
3421 dwarf2_read_index (struct objfile *objfile)
3422 {
3423 struct mapped_index local_map, *map;
3424 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3425 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3426 struct dwz_file *dwz;
3427
3428 if (!read_index_from_section (objfile, objfile_name (objfile),
3429 use_deprecated_index_sections,
3430 &dwarf2_per_objfile->gdb_index, &local_map,
3431 &cu_list, &cu_list_elements,
3432 &types_list, &types_list_elements))
3433 return 0;
3434
3435 /* Don't use the index if it's empty. */
3436 if (local_map.symbol_table_slots == 0)
3437 return 0;
3438
3439 /* If there is a .dwz file, read it so we can get its CU list as
3440 well. */
3441 dwz = dwarf2_get_dwz_file ();
3442 if (dwz != NULL)
3443 {
3444 struct mapped_index dwz_map;
3445 const gdb_byte *dwz_types_ignore;
3446 offset_type dwz_types_elements_ignore;
3447
3448 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3449 1,
3450 &dwz->gdb_index, &dwz_map,
3451 &dwz_list, &dwz_list_elements,
3452 &dwz_types_ignore,
3453 &dwz_types_elements_ignore))
3454 {
3455 warning (_("could not read '.gdb_index' section from %s; skipping"),
3456 bfd_get_filename (dwz->dwz_bfd));
3457 return 0;
3458 }
3459 }
3460
3461 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3462 dwz_list_elements);
3463
3464 if (types_list_elements)
3465 {
3466 struct dwarf2_section_info *section;
3467
3468 /* We can only handle a single .debug_types when we have an
3469 index. */
3470 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3471 return 0;
3472
3473 section = VEC_index (dwarf2_section_info_def,
3474 dwarf2_per_objfile->types, 0);
3475
3476 create_signatured_type_table_from_index (objfile, section, types_list,
3477 types_list_elements);
3478 }
3479
3480 create_addrmap_from_index (objfile, &local_map);
3481
3482 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3483 map = new (map) mapped_index ();
3484 *map = local_map;
3485
3486 dwarf2_per_objfile->index_table = map;
3487 dwarf2_per_objfile->using_index = 1;
3488 dwarf2_per_objfile->quick_file_names_table =
3489 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3490
3491 return 1;
3492 }
3493
3494 /* A helper for the "quick" functions which sets the global
3495 dwarf2_per_objfile according to OBJFILE. */
3496
3497 static void
3498 dw2_setup (struct objfile *objfile)
3499 {
3500 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3501 objfile_data (objfile, dwarf2_objfile_data_key));
3502 gdb_assert (dwarf2_per_objfile);
3503 }
3504
3505 /* die_reader_func for dw2_get_file_names. */
3506
3507 static void
3508 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3509 const gdb_byte *info_ptr,
3510 struct die_info *comp_unit_die,
3511 int has_children,
3512 void *data)
3513 {
3514 struct dwarf2_cu *cu = reader->cu;
3515 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3516 struct objfile *objfile = dwarf2_per_objfile->objfile;
3517 struct dwarf2_per_cu_data *lh_cu;
3518 struct attribute *attr;
3519 int i;
3520 void **slot;
3521 struct quick_file_names *qfn;
3522
3523 gdb_assert (! this_cu->is_debug_types);
3524
3525 /* Our callers never want to match partial units -- instead they
3526 will match the enclosing full CU. */
3527 if (comp_unit_die->tag == DW_TAG_partial_unit)
3528 {
3529 this_cu->v.quick->no_file_data = 1;
3530 return;
3531 }
3532
3533 lh_cu = this_cu;
3534 slot = NULL;
3535
3536 line_header_up lh;
3537 sect_offset line_offset {};
3538
3539 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3540 if (attr)
3541 {
3542 struct quick_file_names find_entry;
3543
3544 line_offset = (sect_offset) DW_UNSND (attr);
3545
3546 /* We may have already read in this line header (TU line header sharing).
3547 If we have we're done. */
3548 find_entry.hash.dwo_unit = cu->dwo_unit;
3549 find_entry.hash.line_sect_off = line_offset;
3550 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3551 &find_entry, INSERT);
3552 if (*slot != NULL)
3553 {
3554 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3555 return;
3556 }
3557
3558 lh = dwarf_decode_line_header (line_offset, cu);
3559 }
3560 if (lh == NULL)
3561 {
3562 lh_cu->v.quick->no_file_data = 1;
3563 return;
3564 }
3565
3566 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3567 qfn->hash.dwo_unit = cu->dwo_unit;
3568 qfn->hash.line_sect_off = line_offset;
3569 gdb_assert (slot != NULL);
3570 *slot = qfn;
3571
3572 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3573
3574 qfn->num_file_names = lh->file_names.size ();
3575 qfn->file_names =
3576 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3577 for (i = 0; i < lh->file_names.size (); ++i)
3578 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3579 qfn->real_names = NULL;
3580
3581 lh_cu->v.quick->file_names = qfn;
3582 }
3583
3584 /* A helper for the "quick" functions which attempts to read the line
3585 table for THIS_CU. */
3586
3587 static struct quick_file_names *
3588 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3589 {
3590 /* This should never be called for TUs. */
3591 gdb_assert (! this_cu->is_debug_types);
3592 /* Nor type unit groups. */
3593 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3594
3595 if (this_cu->v.quick->file_names != NULL)
3596 return this_cu->v.quick->file_names;
3597 /* If we know there is no line data, no point in looking again. */
3598 if (this_cu->v.quick->no_file_data)
3599 return NULL;
3600
3601 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3602
3603 if (this_cu->v.quick->no_file_data)
3604 return NULL;
3605 return this_cu->v.quick->file_names;
3606 }
3607
3608 /* A helper for the "quick" functions which computes and caches the
3609 real path for a given file name from the line table. */
3610
3611 static const char *
3612 dw2_get_real_path (struct objfile *objfile,
3613 struct quick_file_names *qfn, int index)
3614 {
3615 if (qfn->real_names == NULL)
3616 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3617 qfn->num_file_names, const char *);
3618
3619 if (qfn->real_names[index] == NULL)
3620 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3621
3622 return qfn->real_names[index];
3623 }
3624
3625 static struct symtab *
3626 dw2_find_last_source_symtab (struct objfile *objfile)
3627 {
3628 struct compunit_symtab *cust;
3629 int index;
3630
3631 dw2_setup (objfile);
3632 index = dwarf2_per_objfile->n_comp_units - 1;
3633 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3634 if (cust == NULL)
3635 return NULL;
3636 return compunit_primary_filetab (cust);
3637 }
3638
3639 /* Traversal function for dw2_forget_cached_source_info. */
3640
3641 static int
3642 dw2_free_cached_file_names (void **slot, void *info)
3643 {
3644 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3645
3646 if (file_data->real_names)
3647 {
3648 int i;
3649
3650 for (i = 0; i < file_data->num_file_names; ++i)
3651 {
3652 xfree ((void*) file_data->real_names[i]);
3653 file_data->real_names[i] = NULL;
3654 }
3655 }
3656
3657 return 1;
3658 }
3659
3660 static void
3661 dw2_forget_cached_source_info (struct objfile *objfile)
3662 {
3663 dw2_setup (objfile);
3664
3665 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3666 dw2_free_cached_file_names, NULL);
3667 }
3668
3669 /* Helper function for dw2_map_symtabs_matching_filename that expands
3670 the symtabs and calls the iterator. */
3671
3672 static int
3673 dw2_map_expand_apply (struct objfile *objfile,
3674 struct dwarf2_per_cu_data *per_cu,
3675 const char *name, const char *real_path,
3676 gdb::function_view<bool (symtab *)> callback)
3677 {
3678 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3679
3680 /* Don't visit already-expanded CUs. */
3681 if (per_cu->v.quick->compunit_symtab)
3682 return 0;
3683
3684 /* This may expand more than one symtab, and we want to iterate over
3685 all of them. */
3686 dw2_instantiate_symtab (per_cu);
3687
3688 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3689 last_made, callback);
3690 }
3691
3692 /* Implementation of the map_symtabs_matching_filename method. */
3693
3694 static bool
3695 dw2_map_symtabs_matching_filename
3696 (struct objfile *objfile, const char *name, const char *real_path,
3697 gdb::function_view<bool (symtab *)> callback)
3698 {
3699 int i;
3700 const char *name_basename = lbasename (name);
3701
3702 dw2_setup (objfile);
3703
3704 /* The rule is CUs specify all the files, including those used by
3705 any TU, so there's no need to scan TUs here. */
3706
3707 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3708 {
3709 int j;
3710 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3711 struct quick_file_names *file_data;
3712
3713 /* We only need to look at symtabs not already expanded. */
3714 if (per_cu->v.quick->compunit_symtab)
3715 continue;
3716
3717 file_data = dw2_get_file_names (per_cu);
3718 if (file_data == NULL)
3719 continue;
3720
3721 for (j = 0; j < file_data->num_file_names; ++j)
3722 {
3723 const char *this_name = file_data->file_names[j];
3724 const char *this_real_name;
3725
3726 if (compare_filenames_for_search (this_name, name))
3727 {
3728 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3729 callback))
3730 return true;
3731 continue;
3732 }
3733
3734 /* Before we invoke realpath, which can get expensive when many
3735 files are involved, do a quick comparison of the basenames. */
3736 if (! basenames_may_differ
3737 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3738 continue;
3739
3740 this_real_name = dw2_get_real_path (objfile, file_data, j);
3741 if (compare_filenames_for_search (this_real_name, name))
3742 {
3743 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3744 callback))
3745 return true;
3746 continue;
3747 }
3748
3749 if (real_path != NULL)
3750 {
3751 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3752 gdb_assert (IS_ABSOLUTE_PATH (name));
3753 if (this_real_name != NULL
3754 && FILENAME_CMP (real_path, this_real_name) == 0)
3755 {
3756 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3757 callback))
3758 return true;
3759 continue;
3760 }
3761 }
3762 }
3763 }
3764
3765 return false;
3766 }
3767
3768 /* Struct used to manage iterating over all CUs looking for a symbol. */
3769
3770 struct dw2_symtab_iterator
3771 {
3772 /* The internalized form of .gdb_index. */
3773 struct mapped_index *index;
3774 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3775 int want_specific_block;
3776 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3777 Unused if !WANT_SPECIFIC_BLOCK. */
3778 int block_index;
3779 /* The kind of symbol we're looking for. */
3780 domain_enum domain;
3781 /* The list of CUs from the index entry of the symbol,
3782 or NULL if not found. */
3783 offset_type *vec;
3784 /* The next element in VEC to look at. */
3785 int next;
3786 /* The number of elements in VEC, or zero if there is no match. */
3787 int length;
3788 /* Have we seen a global version of the symbol?
3789 If so we can ignore all further global instances.
3790 This is to work around gold/15646, inefficient gold-generated
3791 indices. */
3792 int global_seen;
3793 };
3794
3795 /* Initialize the index symtab iterator ITER.
3796 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3797 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3798
3799 static void
3800 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3801 struct mapped_index *index,
3802 int want_specific_block,
3803 int block_index,
3804 domain_enum domain,
3805 const char *name)
3806 {
3807 iter->index = index;
3808 iter->want_specific_block = want_specific_block;
3809 iter->block_index = block_index;
3810 iter->domain = domain;
3811 iter->next = 0;
3812 iter->global_seen = 0;
3813
3814 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3815 iter->length = MAYBE_SWAP (*iter->vec);
3816 else
3817 {
3818 iter->vec = NULL;
3819 iter->length = 0;
3820 }
3821 }
3822
3823 /* Return the next matching CU or NULL if there are no more. */
3824
3825 static struct dwarf2_per_cu_data *
3826 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3827 {
3828 for ( ; iter->next < iter->length; ++iter->next)
3829 {
3830 offset_type cu_index_and_attrs =
3831 MAYBE_SWAP (iter->vec[iter->next + 1]);
3832 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3833 struct dwarf2_per_cu_data *per_cu;
3834 int want_static = iter->block_index != GLOBAL_BLOCK;
3835 /* This value is only valid for index versions >= 7. */
3836 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3837 gdb_index_symbol_kind symbol_kind =
3838 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3839 /* Only check the symbol attributes if they're present.
3840 Indices prior to version 7 don't record them,
3841 and indices >= 7 may elide them for certain symbols
3842 (gold does this). */
3843 int attrs_valid =
3844 (iter->index->version >= 7
3845 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3846
3847 /* Don't crash on bad data. */
3848 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3849 + dwarf2_per_objfile->n_type_units))
3850 {
3851 complaint (&symfile_complaints,
3852 _(".gdb_index entry has bad CU index"
3853 " [in module %s]"),
3854 objfile_name (dwarf2_per_objfile->objfile));
3855 continue;
3856 }
3857
3858 per_cu = dw2_get_cutu (cu_index);
3859
3860 /* Skip if already read in. */
3861 if (per_cu->v.quick->compunit_symtab)
3862 continue;
3863
3864 /* Check static vs global. */
3865 if (attrs_valid)
3866 {
3867 if (iter->want_specific_block
3868 && want_static != is_static)
3869 continue;
3870 /* Work around gold/15646. */
3871 if (!is_static && iter->global_seen)
3872 continue;
3873 if (!is_static)
3874 iter->global_seen = 1;
3875 }
3876
3877 /* Only check the symbol's kind if it has one. */
3878 if (attrs_valid)
3879 {
3880 switch (iter->domain)
3881 {
3882 case VAR_DOMAIN:
3883 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3884 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3885 /* Some types are also in VAR_DOMAIN. */
3886 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3887 continue;
3888 break;
3889 case STRUCT_DOMAIN:
3890 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3891 continue;
3892 break;
3893 case LABEL_DOMAIN:
3894 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3895 continue;
3896 break;
3897 default:
3898 break;
3899 }
3900 }
3901
3902 ++iter->next;
3903 return per_cu;
3904 }
3905
3906 return NULL;
3907 }
3908
3909 static struct compunit_symtab *
3910 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3911 const char *name, domain_enum domain)
3912 {
3913 struct compunit_symtab *stab_best = NULL;
3914 struct mapped_index *index;
3915
3916 dw2_setup (objfile);
3917
3918 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3919
3920 index = dwarf2_per_objfile->index_table;
3921
3922 /* index is NULL if OBJF_READNOW. */
3923 if (index)
3924 {
3925 struct dw2_symtab_iterator iter;
3926 struct dwarf2_per_cu_data *per_cu;
3927
3928 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3929
3930 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3931 {
3932 struct symbol *sym, *with_opaque = NULL;
3933 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3934 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3935 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3936
3937 sym = block_find_symbol (block, name, domain,
3938 block_find_non_opaque_type_preferred,
3939 &with_opaque);
3940
3941 /* Some caution must be observed with overloaded functions
3942 and methods, since the index will not contain any overload
3943 information (but NAME might contain it). */
3944
3945 if (sym != NULL
3946 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3947 return stab;
3948 if (with_opaque != NULL
3949 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3950 stab_best = stab;
3951
3952 /* Keep looking through other CUs. */
3953 }
3954 }
3955
3956 return stab_best;
3957 }
3958
3959 static void
3960 dw2_print_stats (struct objfile *objfile)
3961 {
3962 int i, total, count;
3963
3964 dw2_setup (objfile);
3965 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3966 count = 0;
3967 for (i = 0; i < total; ++i)
3968 {
3969 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3970
3971 if (!per_cu->v.quick->compunit_symtab)
3972 ++count;
3973 }
3974 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3975 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3976 }
3977
3978 /* This dumps minimal information about the index.
3979 It is called via "mt print objfiles".
3980 One use is to verify .gdb_index has been loaded by the
3981 gdb.dwarf2/gdb-index.exp testcase. */
3982
3983 static void
3984 dw2_dump (struct objfile *objfile)
3985 {
3986 dw2_setup (objfile);
3987 gdb_assert (dwarf2_per_objfile->using_index);
3988 printf_filtered (".gdb_index:");
3989 if (dwarf2_per_objfile->index_table != NULL)
3990 {
3991 printf_filtered (" version %d\n",
3992 dwarf2_per_objfile->index_table->version);
3993 }
3994 else
3995 printf_filtered (" faked for \"readnow\"\n");
3996 printf_filtered ("\n");
3997 }
3998
3999 static void
4000 dw2_relocate (struct objfile *objfile,
4001 const struct section_offsets *new_offsets,
4002 const struct section_offsets *delta)
4003 {
4004 /* There's nothing to relocate here. */
4005 }
4006
4007 static void
4008 dw2_expand_symtabs_for_function (struct objfile *objfile,
4009 const char *func_name)
4010 {
4011 struct mapped_index *index;
4012
4013 dw2_setup (objfile);
4014
4015 index = dwarf2_per_objfile->index_table;
4016
4017 /* index is NULL if OBJF_READNOW. */
4018 if (index)
4019 {
4020 struct dw2_symtab_iterator iter;
4021 struct dwarf2_per_cu_data *per_cu;
4022
4023 /* Note: It doesn't matter what we pass for block_index here. */
4024 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4025 func_name);
4026
4027 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4028 dw2_instantiate_symtab (per_cu);
4029 }
4030 }
4031
4032 static void
4033 dw2_expand_all_symtabs (struct objfile *objfile)
4034 {
4035 int i;
4036
4037 dw2_setup (objfile);
4038
4039 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4040 + dwarf2_per_objfile->n_type_units); ++i)
4041 {
4042 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4043
4044 dw2_instantiate_symtab (per_cu);
4045 }
4046 }
4047
4048 static void
4049 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4050 const char *fullname)
4051 {
4052 int i;
4053
4054 dw2_setup (objfile);
4055
4056 /* We don't need to consider type units here.
4057 This is only called for examining code, e.g. expand_line_sal.
4058 There can be an order of magnitude (or more) more type units
4059 than comp units, and we avoid them if we can. */
4060
4061 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4062 {
4063 int j;
4064 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4065 struct quick_file_names *file_data;
4066
4067 /* We only need to look at symtabs not already expanded. */
4068 if (per_cu->v.quick->compunit_symtab)
4069 continue;
4070
4071 file_data = dw2_get_file_names (per_cu);
4072 if (file_data == NULL)
4073 continue;
4074
4075 for (j = 0; j < file_data->num_file_names; ++j)
4076 {
4077 const char *this_fullname = file_data->file_names[j];
4078
4079 if (filename_cmp (this_fullname, fullname) == 0)
4080 {
4081 dw2_instantiate_symtab (per_cu);
4082 break;
4083 }
4084 }
4085 }
4086 }
4087
4088 static void
4089 dw2_map_matching_symbols (struct objfile *objfile,
4090 const char * name, domain_enum domain,
4091 int global,
4092 int (*callback) (struct block *,
4093 struct symbol *, void *),
4094 void *data, symbol_name_match_type match,
4095 symbol_compare_ftype *ordered_compare)
4096 {
4097 /* Currently unimplemented; used for Ada. The function can be called if the
4098 current language is Ada for a non-Ada objfile using GNU index. As Ada
4099 does not look for non-Ada symbols this function should just return. */
4100 }
4101
4102 /* Symbol name matcher for .gdb_index names.
4103
4104 Symbol names in .gdb_index have a few particularities:
4105
4106 - There's no indication of which is the language of each symbol.
4107
4108 Since each language has its own symbol name matching algorithm,
4109 and we don't know which language is the right one, we must match
4110 each symbol against all languages. This would be a potential
4111 performance problem if it were not mitigated by the
4112 mapped_index::name_components lookup table, which significantly
4113 reduces the number of times we need to call into this matcher,
4114 making it a non-issue.
4115
4116 - Symbol names in the index have no overload (parameter)
4117 information. I.e., in C++, "foo(int)" and "foo(long)" both
4118 appear as "foo" in the index, for example.
4119
4120 This means that the lookup names passed to the symbol name
4121 matcher functions must have no parameter information either
4122 because (e.g.) symbol search name "foo" does not match
4123 lookup-name "foo(int)" [while swapping search name for lookup
4124 name would match].
4125 */
4126 class gdb_index_symbol_name_matcher
4127 {
4128 public:
4129 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4130 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4131
4132 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4133 Returns true if any matcher matches. */
4134 bool matches (const char *symbol_name);
4135
4136 private:
4137 /* A reference to the lookup name we're matching against. */
4138 const lookup_name_info &m_lookup_name;
4139
4140 /* A vector holding all the different symbol name matchers, for all
4141 languages. */
4142 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4143 };
4144
4145 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4146 (const lookup_name_info &lookup_name)
4147 : m_lookup_name (lookup_name)
4148 {
4149 /* Prepare the vector of comparison functions upfront, to avoid
4150 doing the same work for each symbol. Care is taken to avoid
4151 matching with the same matcher more than once if/when multiple
4152 languages use the same matcher function. */
4153 auto &matchers = m_symbol_name_matcher_funcs;
4154 matchers.reserve (nr_languages);
4155
4156 matchers.push_back (default_symbol_name_matcher);
4157
4158 for (int i = 0; i < nr_languages; i++)
4159 {
4160 const language_defn *lang = language_def ((enum language) i);
4161 if (lang->la_get_symbol_name_matcher != NULL)
4162 {
4163 symbol_name_matcher_ftype *name_matcher
4164 = lang->la_get_symbol_name_matcher (m_lookup_name);
4165
4166 /* Don't insert the same comparison routine more than once.
4167 Note that we do this linear walk instead of a cheaper
4168 sorted insert, or use a std::set or something like that,
4169 because relative order of function addresses is not
4170 stable. This is not a problem in practice because the
4171 number of supported languages is low, and the cost here
4172 is tiny compared to the number of searches we'll do
4173 afterwards using this object. */
4174 if (std::find (matchers.begin (), matchers.end (), name_matcher)
4175 == matchers.end ())
4176 matchers.push_back (name_matcher);
4177 }
4178 }
4179 }
4180
4181 bool
4182 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4183 {
4184 for (auto matches_name : m_symbol_name_matcher_funcs)
4185 if (matches_name (symbol_name, m_lookup_name, NULL))
4186 return true;
4187
4188 return false;
4189 }
4190
4191 /* Helper for dw2_expand_symtabs_matching that works with a
4192 mapped_index instead of the containing objfile. This is split to a
4193 separate function in order to be able to unit test the
4194 name_components matching using a mock mapped_index. For each
4195 symbol name that matches, calls MATCH_CALLBACK, passing it the
4196 symbol's index in the mapped_index symbol table. */
4197
4198 static void
4199 dw2_expand_symtabs_matching_symbol
4200 (mapped_index &index,
4201 const lookup_name_info &lookup_name,
4202 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4203 enum search_domain kind,
4204 gdb::function_view<void (offset_type)> match_callback)
4205 {
4206 gdb_index_symbol_name_matcher lookup_name_matcher
4207 (lookup_name);
4208
4209 auto *name_cmp = case_sensitivity == case_sensitive_on ? strcmp : strcasecmp;
4210
4211 /* Build the symbol name component sorted vector, if we haven't yet.
4212 The code below only knows how to break apart components of C++
4213 symbol names (and other languages that use '::' as
4214 namespace/module separator). If we add support for wild matching
4215 to some language that uses some other operator (E.g., Ada, Go and
4216 D use '.'), then we'll need to try splitting the symbol name
4217 according to that language too. Note that Ada does support wild
4218 matching, but doesn't currently support .gdb_index. */
4219 if (index.name_components.empty ())
4220 {
4221 for (size_t iter = 0; iter < index.symbol_table_slots; ++iter)
4222 {
4223 offset_type idx = 2 * iter;
4224
4225 if (index.symbol_table[idx] == 0
4226 && index.symbol_table[idx + 1] == 0)
4227 continue;
4228
4229 const char *name = index.symbol_name_at (idx);
4230
4231 /* Add each name component to the name component table. */
4232 unsigned int previous_len = 0;
4233 for (unsigned int current_len = cp_find_first_component (name);
4234 name[current_len] != '\0';
4235 current_len += cp_find_first_component (name + current_len))
4236 {
4237 gdb_assert (name[current_len] == ':');
4238 index.name_components.push_back ({previous_len, idx});
4239 /* Skip the '::'. */
4240 current_len += 2;
4241 previous_len = current_len;
4242 }
4243 index.name_components.push_back ({previous_len, idx});
4244 }
4245
4246 /* Sort name_components elements by name. */
4247 auto name_comp_compare = [&] (const name_component &left,
4248 const name_component &right)
4249 {
4250 const char *left_qualified = index.symbol_name_at (left.idx);
4251 const char *right_qualified = index.symbol_name_at (right.idx);
4252
4253 const char *left_name = left_qualified + left.name_offset;
4254 const char *right_name = right_qualified + right.name_offset;
4255
4256 return name_cmp (left_name, right_name) < 0;
4257 };
4258
4259 std::sort (index.name_components.begin (),
4260 index.name_components.end (),
4261 name_comp_compare);
4262 }
4263
4264 const char *cplus
4265 = lookup_name.cplus ().lookup_name ().c_str ();
4266
4267 /* Comparison function object for lower_bound that matches against a
4268 given symbol name. */
4269 auto lookup_compare_lower = [&] (const name_component &elem,
4270 const char *name)
4271 {
4272 const char *elem_qualified = index.symbol_name_at (elem.idx);
4273 const char *elem_name = elem_qualified + elem.name_offset;
4274 return name_cmp (elem_name, name) < 0;
4275 };
4276
4277 /* Comparison function object for upper_bound that matches against a
4278 given symbol name. */
4279 auto lookup_compare_upper = [&] (const char *name,
4280 const name_component &elem)
4281 {
4282 const char *elem_qualified = index.symbol_name_at (elem.idx);
4283 const char *elem_name = elem_qualified + elem.name_offset;
4284 return name_cmp (name, elem_name) < 0;
4285 };
4286
4287 auto begin = index.name_components.begin ();
4288 auto end = index.name_components.end ();
4289
4290 /* Find the lower bound. */
4291 auto lower = [&] ()
4292 {
4293 if (lookup_name.completion_mode () && cplus[0] == '\0')
4294 return begin;
4295 else
4296 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4297 } ();
4298
4299 /* Find the upper bound. */
4300 auto upper = [&] ()
4301 {
4302 if (lookup_name.completion_mode ())
4303 {
4304 /* The string frobbing below won't work if the string is
4305 empty. We don't need it then, anyway -- if we're
4306 completing an empty string, then we want to iterate over
4307 the whole range. */
4308 if (cplus[0] == '\0')
4309 return end;
4310
4311 /* In completion mode, increment the last character because
4312 we want UPPER to point past all symbols names that have
4313 the same prefix. */
4314 std::string after = cplus;
4315
4316 gdb_assert (after.back () != 0xff);
4317 after.back ()++;
4318
4319 return std::upper_bound (lower, end, after.c_str (),
4320 lookup_compare_upper);
4321 }
4322 else
4323 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4324 } ();
4325
4326 /* Now for each symbol name in range, check to see if we have a name
4327 match, and if so, call the MATCH_CALLBACK callback. */
4328
4329 /* The same symbol may appear more than once in the range though.
4330 E.g., if we're looking for symbols that complete "w", and we have
4331 a symbol named "w1::w2", we'll find the two name components for
4332 that same symbol in the range. To be sure we only call the
4333 callback once per symbol, we first collect the symbol name
4334 indexes that matched in a temporary vector and ignore
4335 duplicates. */
4336 std::vector<offset_type> matches;
4337 matches.reserve (std::distance (lower, upper));
4338
4339 for (;lower != upper; ++lower)
4340 {
4341 const char *qualified = index.symbol_name_at (lower->idx);
4342
4343 if (!lookup_name_matcher.matches (qualified)
4344 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4345 continue;
4346
4347 matches.push_back (lower->idx);
4348 }
4349
4350 std::sort (matches.begin (), matches.end ());
4351
4352 /* Finally call the callback, once per match. */
4353 ULONGEST prev = -1;
4354 for (offset_type idx : matches)
4355 {
4356 if (prev != idx)
4357 {
4358 match_callback (idx);
4359 prev = idx;
4360 }
4361 }
4362
4363 /* Above we use a type wider than idx's for 'prev', since 0 and
4364 (offset_type)-1 are both possible values. */
4365 static_assert (sizeof (prev) > sizeof (offset_type), "");
4366 }
4367
4368 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4369 matched, to expand corresponding CUs that were marked. IDX is the
4370 index of the symbol name that matched. */
4371
4372 static void
4373 dw2_expand_marked_cus
4374 (mapped_index &index, offset_type idx,
4375 struct objfile *objfile,
4376 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4377 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4378 search_domain kind)
4379 {
4380 const char *name;
4381 offset_type *vec, vec_len, vec_idx;
4382 bool global_seen = false;
4383
4384 vec = (offset_type *) (index.constant_pool
4385 + MAYBE_SWAP (index.symbol_table[idx + 1]));
4386 vec_len = MAYBE_SWAP (vec[0]);
4387 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4388 {
4389 struct dwarf2_per_cu_data *per_cu;
4390 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4391 /* This value is only valid for index versions >= 7. */
4392 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4393 gdb_index_symbol_kind symbol_kind =
4394 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4395 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4396 /* Only check the symbol attributes if they're present.
4397 Indices prior to version 7 don't record them,
4398 and indices >= 7 may elide them for certain symbols
4399 (gold does this). */
4400 int attrs_valid =
4401 (index.version >= 7
4402 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4403
4404 /* Work around gold/15646. */
4405 if (attrs_valid)
4406 {
4407 if (!is_static && global_seen)
4408 continue;
4409 if (!is_static)
4410 global_seen = true;
4411 }
4412
4413 /* Only check the symbol's kind if it has one. */
4414 if (attrs_valid)
4415 {
4416 switch (kind)
4417 {
4418 case VARIABLES_DOMAIN:
4419 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4420 continue;
4421 break;
4422 case FUNCTIONS_DOMAIN:
4423 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4424 continue;
4425 break;
4426 case TYPES_DOMAIN:
4427 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4428 continue;
4429 break;
4430 default:
4431 break;
4432 }
4433 }
4434
4435 /* Don't crash on bad data. */
4436 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4437 + dwarf2_per_objfile->n_type_units))
4438 {
4439 complaint (&symfile_complaints,
4440 _(".gdb_index entry has bad CU index"
4441 " [in module %s]"), objfile_name (objfile));
4442 continue;
4443 }
4444
4445 per_cu = dw2_get_cutu (cu_index);
4446 if (file_matcher == NULL || per_cu->v.quick->mark)
4447 {
4448 int symtab_was_null =
4449 (per_cu->v.quick->compunit_symtab == NULL);
4450
4451 dw2_instantiate_symtab (per_cu);
4452
4453 if (expansion_notify != NULL
4454 && symtab_was_null
4455 && per_cu->v.quick->compunit_symtab != NULL)
4456 expansion_notify (per_cu->v.quick->compunit_symtab);
4457 }
4458 }
4459 }
4460
4461 static void
4462 dw2_expand_symtabs_matching
4463 (struct objfile *objfile,
4464 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4465 const lookup_name_info &lookup_name,
4466 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4467 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4468 enum search_domain kind)
4469 {
4470 int i;
4471 offset_type iter;
4472
4473 dw2_setup (objfile);
4474
4475 /* index_table is NULL if OBJF_READNOW. */
4476 if (!dwarf2_per_objfile->index_table)
4477 return;
4478
4479 if (file_matcher != NULL)
4480 {
4481 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4482 htab_eq_pointer,
4483 NULL, xcalloc, xfree));
4484 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4485 htab_eq_pointer,
4486 NULL, xcalloc, xfree));
4487
4488 /* The rule is CUs specify all the files, including those used by
4489 any TU, so there's no need to scan TUs here. */
4490
4491 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4492 {
4493 int j;
4494 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4495 struct quick_file_names *file_data;
4496 void **slot;
4497
4498 QUIT;
4499
4500 per_cu->v.quick->mark = 0;
4501
4502 /* We only need to look at symtabs not already expanded. */
4503 if (per_cu->v.quick->compunit_symtab)
4504 continue;
4505
4506 file_data = dw2_get_file_names (per_cu);
4507 if (file_data == NULL)
4508 continue;
4509
4510 if (htab_find (visited_not_found.get (), file_data) != NULL)
4511 continue;
4512 else if (htab_find (visited_found.get (), file_data) != NULL)
4513 {
4514 per_cu->v.quick->mark = 1;
4515 continue;
4516 }
4517
4518 for (j = 0; j < file_data->num_file_names; ++j)
4519 {
4520 const char *this_real_name;
4521
4522 if (file_matcher (file_data->file_names[j], false))
4523 {
4524 per_cu->v.quick->mark = 1;
4525 break;
4526 }
4527
4528 /* Before we invoke realpath, which can get expensive when many
4529 files are involved, do a quick comparison of the basenames. */
4530 if (!basenames_may_differ
4531 && !file_matcher (lbasename (file_data->file_names[j]),
4532 true))
4533 continue;
4534
4535 this_real_name = dw2_get_real_path (objfile, file_data, j);
4536 if (file_matcher (this_real_name, false))
4537 {
4538 per_cu->v.quick->mark = 1;
4539 break;
4540 }
4541 }
4542
4543 slot = htab_find_slot (per_cu->v.quick->mark
4544 ? visited_found.get ()
4545 : visited_not_found.get (),
4546 file_data, INSERT);
4547 *slot = file_data;
4548 }
4549 }
4550
4551 mapped_index &index = *dwarf2_per_objfile->index_table;
4552
4553 dw2_expand_symtabs_matching_symbol (index, lookup_name,
4554 symbol_matcher,
4555 kind, [&] (offset_type idx)
4556 {
4557 dw2_expand_marked_cus (index, idx, objfile, file_matcher,
4558 expansion_notify, kind);
4559 });
4560 }
4561
4562 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4563 symtab. */
4564
4565 static struct compunit_symtab *
4566 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4567 CORE_ADDR pc)
4568 {
4569 int i;
4570
4571 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4572 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4573 return cust;
4574
4575 if (cust->includes == NULL)
4576 return NULL;
4577
4578 for (i = 0; cust->includes[i]; ++i)
4579 {
4580 struct compunit_symtab *s = cust->includes[i];
4581
4582 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4583 if (s != NULL)
4584 return s;
4585 }
4586
4587 return NULL;
4588 }
4589
4590 static struct compunit_symtab *
4591 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4592 struct bound_minimal_symbol msymbol,
4593 CORE_ADDR pc,
4594 struct obj_section *section,
4595 int warn_if_readin)
4596 {
4597 struct dwarf2_per_cu_data *data;
4598 struct compunit_symtab *result;
4599
4600 dw2_setup (objfile);
4601
4602 if (!objfile->psymtabs_addrmap)
4603 return NULL;
4604
4605 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4606 pc);
4607 if (!data)
4608 return NULL;
4609
4610 if (warn_if_readin && data->v.quick->compunit_symtab)
4611 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4612 paddress (get_objfile_arch (objfile), pc));
4613
4614 result
4615 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4616 pc);
4617 gdb_assert (result != NULL);
4618 return result;
4619 }
4620
4621 static void
4622 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4623 void *data, int need_fullname)
4624 {
4625 dw2_setup (objfile);
4626
4627 if (!dwarf2_per_objfile->filenames_cache)
4628 {
4629 dwarf2_per_objfile->filenames_cache.emplace ();
4630
4631 htab_up visited (htab_create_alloc (10,
4632 htab_hash_pointer, htab_eq_pointer,
4633 NULL, xcalloc, xfree));
4634
4635 /* The rule is CUs specify all the files, including those used
4636 by any TU, so there's no need to scan TUs here. We can
4637 ignore file names coming from already-expanded CUs. */
4638
4639 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4640 {
4641 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4642
4643 if (per_cu->v.quick->compunit_symtab)
4644 {
4645 void **slot = htab_find_slot (visited.get (),
4646 per_cu->v.quick->file_names,
4647 INSERT);
4648
4649 *slot = per_cu->v.quick->file_names;
4650 }
4651 }
4652
4653 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4654 {
4655 int j;
4656 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4657 struct quick_file_names *file_data;
4658 void **slot;
4659
4660 /* We only need to look at symtabs not already expanded. */
4661 if (per_cu->v.quick->compunit_symtab)
4662 continue;
4663
4664 file_data = dw2_get_file_names (per_cu);
4665 if (file_data == NULL)
4666 continue;
4667
4668 slot = htab_find_slot (visited.get (), file_data, INSERT);
4669 if (*slot)
4670 {
4671 /* Already visited. */
4672 continue;
4673 }
4674 *slot = file_data;
4675
4676 for (int j = 0; j < file_data->num_file_names; ++j)
4677 {
4678 const char *filename = file_data->file_names[j];
4679 dwarf2_per_objfile->filenames_cache->seen (filename);
4680 }
4681 }
4682 }
4683
4684 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4685 {
4686 gdb::unique_xmalloc_ptr<char> this_real_name;
4687
4688 if (need_fullname)
4689 this_real_name = gdb_realpath (filename);
4690 (*fun) (filename, this_real_name.get (), data);
4691 });
4692 }
4693
4694 static int
4695 dw2_has_symbols (struct objfile *objfile)
4696 {
4697 return 1;
4698 }
4699
4700 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4701 {
4702 dw2_has_symbols,
4703 dw2_find_last_source_symtab,
4704 dw2_forget_cached_source_info,
4705 dw2_map_symtabs_matching_filename,
4706 dw2_lookup_symbol,
4707 dw2_print_stats,
4708 dw2_dump,
4709 dw2_relocate,
4710 dw2_expand_symtabs_for_function,
4711 dw2_expand_all_symtabs,
4712 dw2_expand_symtabs_with_fullname,
4713 dw2_map_matching_symbols,
4714 dw2_expand_symtabs_matching,
4715 dw2_find_pc_sect_compunit_symtab,
4716 dw2_map_symbol_filenames
4717 };
4718
4719 /* Initialize for reading DWARF for this objfile. Return 0 if this
4720 file will use psymtabs, or 1 if using the GNU index. */
4721
4722 int
4723 dwarf2_initialize_objfile (struct objfile *objfile)
4724 {
4725 /* If we're about to read full symbols, don't bother with the
4726 indices. In this case we also don't care if some other debug
4727 format is making psymtabs, because they are all about to be
4728 expanded anyway. */
4729 if ((objfile->flags & OBJF_READNOW))
4730 {
4731 int i;
4732
4733 dwarf2_per_objfile->using_index = 1;
4734 create_all_comp_units (objfile);
4735 create_all_type_units (objfile);
4736 dwarf2_per_objfile->quick_file_names_table =
4737 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4738
4739 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4740 + dwarf2_per_objfile->n_type_units); ++i)
4741 {
4742 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4743
4744 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4745 struct dwarf2_per_cu_quick_data);
4746 }
4747
4748 /* Return 1 so that gdb sees the "quick" functions. However,
4749 these functions will be no-ops because we will have expanded
4750 all symtabs. */
4751 return 1;
4752 }
4753
4754 if (dwarf2_read_index (objfile))
4755 return 1;
4756
4757 return 0;
4758 }
4759
4760 \f
4761
4762 /* Build a partial symbol table. */
4763
4764 void
4765 dwarf2_build_psymtabs (struct objfile *objfile)
4766 {
4767
4768 if (objfile->global_psymbols.capacity () == 0
4769 && objfile->static_psymbols.capacity () == 0)
4770 init_psymbol_list (objfile, 1024);
4771
4772 TRY
4773 {
4774 /* This isn't really ideal: all the data we allocate on the
4775 objfile's obstack is still uselessly kept around. However,
4776 freeing it seems unsafe. */
4777 psymtab_discarder psymtabs (objfile);
4778 dwarf2_build_psymtabs_hard (objfile);
4779 psymtabs.keep ();
4780 }
4781 CATCH (except, RETURN_MASK_ERROR)
4782 {
4783 exception_print (gdb_stderr, except);
4784 }
4785 END_CATCH
4786 }
4787
4788 /* Return the total length of the CU described by HEADER. */
4789
4790 static unsigned int
4791 get_cu_length (const struct comp_unit_head *header)
4792 {
4793 return header->initial_length_size + header->length;
4794 }
4795
4796 /* Return TRUE if SECT_OFF is within CU_HEADER. */
4797
4798 static inline bool
4799 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
4800 {
4801 sect_offset bottom = cu_header->sect_off;
4802 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
4803
4804 return sect_off >= bottom && sect_off < top;
4805 }
4806
4807 /* Find the base address of the compilation unit for range lists and
4808 location lists. It will normally be specified by DW_AT_low_pc.
4809 In DWARF-3 draft 4, the base address could be overridden by
4810 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4811 compilation units with discontinuous ranges. */
4812
4813 static void
4814 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4815 {
4816 struct attribute *attr;
4817
4818 cu->base_known = 0;
4819 cu->base_address = 0;
4820
4821 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4822 if (attr)
4823 {
4824 cu->base_address = attr_value_as_address (attr);
4825 cu->base_known = 1;
4826 }
4827 else
4828 {
4829 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4830 if (attr)
4831 {
4832 cu->base_address = attr_value_as_address (attr);
4833 cu->base_known = 1;
4834 }
4835 }
4836 }
4837
4838 /* Read in the comp unit header information from the debug_info at info_ptr.
4839 Use rcuh_kind::COMPILE as the default type if not known by the caller.
4840 NOTE: This leaves members offset, first_die_offset to be filled in
4841 by the caller. */
4842
4843 static const gdb_byte *
4844 read_comp_unit_head (struct comp_unit_head *cu_header,
4845 const gdb_byte *info_ptr,
4846 struct dwarf2_section_info *section,
4847 rcuh_kind section_kind)
4848 {
4849 int signed_addr;
4850 unsigned int bytes_read;
4851 const char *filename = get_section_file_name (section);
4852 bfd *abfd = get_section_bfd_owner (section);
4853
4854 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4855 cu_header->initial_length_size = bytes_read;
4856 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4857 info_ptr += bytes_read;
4858 cu_header->version = read_2_bytes (abfd, info_ptr);
4859 info_ptr += 2;
4860 if (cu_header->version < 5)
4861 switch (section_kind)
4862 {
4863 case rcuh_kind::COMPILE:
4864 cu_header->unit_type = DW_UT_compile;
4865 break;
4866 case rcuh_kind::TYPE:
4867 cu_header->unit_type = DW_UT_type;
4868 break;
4869 default:
4870 internal_error (__FILE__, __LINE__,
4871 _("read_comp_unit_head: invalid section_kind"));
4872 }
4873 else
4874 {
4875 cu_header->unit_type = static_cast<enum dwarf_unit_type>
4876 (read_1_byte (abfd, info_ptr));
4877 info_ptr += 1;
4878 switch (cu_header->unit_type)
4879 {
4880 case DW_UT_compile:
4881 if (section_kind != rcuh_kind::COMPILE)
4882 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4883 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
4884 filename);
4885 break;
4886 case DW_UT_type:
4887 section_kind = rcuh_kind::TYPE;
4888 break;
4889 default:
4890 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4891 "(is %d, should be %d or %d) [in module %s]"),
4892 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
4893 }
4894
4895 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4896 info_ptr += 1;
4897 }
4898 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
4899 cu_header,
4900 &bytes_read);
4901 info_ptr += bytes_read;
4902 if (cu_header->version < 5)
4903 {
4904 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4905 info_ptr += 1;
4906 }
4907 signed_addr = bfd_get_sign_extend_vma (abfd);
4908 if (signed_addr < 0)
4909 internal_error (__FILE__, __LINE__,
4910 _("read_comp_unit_head: dwarf from non elf file"));
4911 cu_header->signed_addr_p = signed_addr;
4912
4913 if (section_kind == rcuh_kind::TYPE)
4914 {
4915 LONGEST type_offset;
4916
4917 cu_header->signature = read_8_bytes (abfd, info_ptr);
4918 info_ptr += 8;
4919
4920 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
4921 info_ptr += bytes_read;
4922 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
4923 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
4924 error (_("Dwarf Error: Too big type_offset in compilation unit "
4925 "header (is %s) [in module %s]"), plongest (type_offset),
4926 filename);
4927 }
4928
4929 return info_ptr;
4930 }
4931
4932 /* Helper function that returns the proper abbrev section for
4933 THIS_CU. */
4934
4935 static struct dwarf2_section_info *
4936 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4937 {
4938 struct dwarf2_section_info *abbrev;
4939
4940 if (this_cu->is_dwz)
4941 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4942 else
4943 abbrev = &dwarf2_per_objfile->abbrev;
4944
4945 return abbrev;
4946 }
4947
4948 /* Subroutine of read_and_check_comp_unit_head and
4949 read_and_check_type_unit_head to simplify them.
4950 Perform various error checking on the header. */
4951
4952 static void
4953 error_check_comp_unit_head (struct comp_unit_head *header,
4954 struct dwarf2_section_info *section,
4955 struct dwarf2_section_info *abbrev_section)
4956 {
4957 const char *filename = get_section_file_name (section);
4958
4959 if (header->version < 2 || header->version > 5)
4960 error (_("Dwarf Error: wrong version in compilation unit header "
4961 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
4962 filename);
4963
4964 if (to_underlying (header->abbrev_sect_off)
4965 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4966 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
4967 "(offset 0x%x + 6) [in module %s]"),
4968 to_underlying (header->abbrev_sect_off),
4969 to_underlying (header->sect_off),
4970 filename);
4971
4972 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
4973 avoid potential 32-bit overflow. */
4974 if (((ULONGEST) header->sect_off + get_cu_length (header))
4975 > section->size)
4976 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
4977 "(offset 0x%x + 0) [in module %s]"),
4978 header->length, to_underlying (header->sect_off),
4979 filename);
4980 }
4981
4982 /* Read in a CU/TU header and perform some basic error checking.
4983 The contents of the header are stored in HEADER.
4984 The result is a pointer to the start of the first DIE. */
4985
4986 static const gdb_byte *
4987 read_and_check_comp_unit_head (struct comp_unit_head *header,
4988 struct dwarf2_section_info *section,
4989 struct dwarf2_section_info *abbrev_section,
4990 const gdb_byte *info_ptr,
4991 rcuh_kind section_kind)
4992 {
4993 const gdb_byte *beg_of_comp_unit = info_ptr;
4994 bfd *abfd = get_section_bfd_owner (section);
4995
4996 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
4997
4998 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
4999
5000 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
5001
5002 error_check_comp_unit_head (header, section, abbrev_section);
5003
5004 return info_ptr;
5005 }
5006
5007 /* Fetch the abbreviation table offset from a comp or type unit header. */
5008
5009 static sect_offset
5010 read_abbrev_offset (struct dwarf2_section_info *section,
5011 sect_offset sect_off)
5012 {
5013 bfd *abfd = get_section_bfd_owner (section);
5014 const gdb_byte *info_ptr;
5015 unsigned int initial_length_size, offset_size;
5016 uint16_t version;
5017
5018 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
5019 info_ptr = section->buffer + to_underlying (sect_off);
5020 read_initial_length (abfd, info_ptr, &initial_length_size);
5021 offset_size = initial_length_size == 4 ? 4 : 8;
5022 info_ptr += initial_length_size;
5023
5024 version = read_2_bytes (abfd, info_ptr);
5025 info_ptr += 2;
5026 if (version >= 5)
5027 {
5028 /* Skip unit type and address size. */
5029 info_ptr += 2;
5030 }
5031
5032 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
5033 }
5034
5035 /* Allocate a new partial symtab for file named NAME and mark this new
5036 partial symtab as being an include of PST. */
5037
5038 static void
5039 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
5040 struct objfile *objfile)
5041 {
5042 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
5043
5044 if (!IS_ABSOLUTE_PATH (subpst->filename))
5045 {
5046 /* It shares objfile->objfile_obstack. */
5047 subpst->dirname = pst->dirname;
5048 }
5049
5050 subpst->textlow = 0;
5051 subpst->texthigh = 0;
5052
5053 subpst->dependencies
5054 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
5055 subpst->dependencies[0] = pst;
5056 subpst->number_of_dependencies = 1;
5057
5058 subpst->globals_offset = 0;
5059 subpst->n_global_syms = 0;
5060 subpst->statics_offset = 0;
5061 subpst->n_static_syms = 0;
5062 subpst->compunit_symtab = NULL;
5063 subpst->read_symtab = pst->read_symtab;
5064 subpst->readin = 0;
5065
5066 /* No private part is necessary for include psymtabs. This property
5067 can be used to differentiate between such include psymtabs and
5068 the regular ones. */
5069 subpst->read_symtab_private = NULL;
5070 }
5071
5072 /* Read the Line Number Program data and extract the list of files
5073 included by the source file represented by PST. Build an include
5074 partial symtab for each of these included files. */
5075
5076 static void
5077 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
5078 struct die_info *die,
5079 struct partial_symtab *pst)
5080 {
5081 line_header_up lh;
5082 struct attribute *attr;
5083
5084 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5085 if (attr)
5086 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
5087 if (lh == NULL)
5088 return; /* No linetable, so no includes. */
5089
5090 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
5091 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
5092 }
5093
5094 static hashval_t
5095 hash_signatured_type (const void *item)
5096 {
5097 const struct signatured_type *sig_type
5098 = (const struct signatured_type *) item;
5099
5100 /* This drops the top 32 bits of the signature, but is ok for a hash. */
5101 return sig_type->signature;
5102 }
5103
5104 static int
5105 eq_signatured_type (const void *item_lhs, const void *item_rhs)
5106 {
5107 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
5108 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
5109
5110 return lhs->signature == rhs->signature;
5111 }
5112
5113 /* Allocate a hash table for signatured types. */
5114
5115 static htab_t
5116 allocate_signatured_type_table (struct objfile *objfile)
5117 {
5118 return htab_create_alloc_ex (41,
5119 hash_signatured_type,
5120 eq_signatured_type,
5121 NULL,
5122 &objfile->objfile_obstack,
5123 hashtab_obstack_allocate,
5124 dummy_obstack_deallocate);
5125 }
5126
5127 /* A helper function to add a signatured type CU to a table. */
5128
5129 static int
5130 add_signatured_type_cu_to_table (void **slot, void *datum)
5131 {
5132 struct signatured_type *sigt = (struct signatured_type *) *slot;
5133 struct signatured_type ***datap = (struct signatured_type ***) datum;
5134
5135 **datap = sigt;
5136 ++*datap;
5137
5138 return 1;
5139 }
5140
5141 /* A helper for create_debug_types_hash_table. Read types from SECTION
5142 and fill them into TYPES_HTAB. It will process only type units,
5143 therefore DW_UT_type. */
5144
5145 static void
5146 create_debug_type_hash_table (struct dwo_file *dwo_file,
5147 dwarf2_section_info *section, htab_t &types_htab,
5148 rcuh_kind section_kind)
5149 {
5150 struct objfile *objfile = dwarf2_per_objfile->objfile;
5151 struct dwarf2_section_info *abbrev_section;
5152 bfd *abfd;
5153 const gdb_byte *info_ptr, *end_ptr;
5154
5155 abbrev_section = (dwo_file != NULL
5156 ? &dwo_file->sections.abbrev
5157 : &dwarf2_per_objfile->abbrev);
5158
5159 if (dwarf_read_debug)
5160 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
5161 get_section_name (section),
5162 get_section_file_name (abbrev_section));
5163
5164 dwarf2_read_section (objfile, section);
5165 info_ptr = section->buffer;
5166
5167 if (info_ptr == NULL)
5168 return;
5169
5170 /* We can't set abfd until now because the section may be empty or
5171 not present, in which case the bfd is unknown. */
5172 abfd = get_section_bfd_owner (section);
5173
5174 /* We don't use init_cutu_and_read_dies_simple, or some such, here
5175 because we don't need to read any dies: the signature is in the
5176 header. */
5177
5178 end_ptr = info_ptr + section->size;
5179 while (info_ptr < end_ptr)
5180 {
5181 struct signatured_type *sig_type;
5182 struct dwo_unit *dwo_tu;
5183 void **slot;
5184 const gdb_byte *ptr = info_ptr;
5185 struct comp_unit_head header;
5186 unsigned int length;
5187
5188 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
5189
5190 /* Initialize it due to a false compiler warning. */
5191 header.signature = -1;
5192 header.type_cu_offset_in_tu = (cu_offset) -1;
5193
5194 /* We need to read the type's signature in order to build the hash
5195 table, but we don't need anything else just yet. */
5196
5197 ptr = read_and_check_comp_unit_head (&header, section,
5198 abbrev_section, ptr, section_kind);
5199
5200 length = get_cu_length (&header);
5201
5202 /* Skip dummy type units. */
5203 if (ptr >= info_ptr + length
5204 || peek_abbrev_code (abfd, ptr) == 0
5205 || header.unit_type != DW_UT_type)
5206 {
5207 info_ptr += length;
5208 continue;
5209 }
5210
5211 if (types_htab == NULL)
5212 {
5213 if (dwo_file)
5214 types_htab = allocate_dwo_unit_table (objfile);
5215 else
5216 types_htab = allocate_signatured_type_table (objfile);
5217 }
5218
5219 if (dwo_file)
5220 {
5221 sig_type = NULL;
5222 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5223 struct dwo_unit);
5224 dwo_tu->dwo_file = dwo_file;
5225 dwo_tu->signature = header.signature;
5226 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
5227 dwo_tu->section = section;
5228 dwo_tu->sect_off = sect_off;
5229 dwo_tu->length = length;
5230 }
5231 else
5232 {
5233 /* N.B.: type_offset is not usable if this type uses a DWO file.
5234 The real type_offset is in the DWO file. */
5235 dwo_tu = NULL;
5236 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5237 struct signatured_type);
5238 sig_type->signature = header.signature;
5239 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
5240 sig_type->per_cu.objfile = objfile;
5241 sig_type->per_cu.is_debug_types = 1;
5242 sig_type->per_cu.section = section;
5243 sig_type->per_cu.sect_off = sect_off;
5244 sig_type->per_cu.length = length;
5245 }
5246
5247 slot = htab_find_slot (types_htab,
5248 dwo_file ? (void*) dwo_tu : (void *) sig_type,
5249 INSERT);
5250 gdb_assert (slot != NULL);
5251 if (*slot != NULL)
5252 {
5253 sect_offset dup_sect_off;
5254
5255 if (dwo_file)
5256 {
5257 const struct dwo_unit *dup_tu
5258 = (const struct dwo_unit *) *slot;
5259
5260 dup_sect_off = dup_tu->sect_off;
5261 }
5262 else
5263 {
5264 const struct signatured_type *dup_tu
5265 = (const struct signatured_type *) *slot;
5266
5267 dup_sect_off = dup_tu->per_cu.sect_off;
5268 }
5269
5270 complaint (&symfile_complaints,
5271 _("debug type entry at offset 0x%x is duplicate to"
5272 " the entry at offset 0x%x, signature %s"),
5273 to_underlying (sect_off), to_underlying (dup_sect_off),
5274 hex_string (header.signature));
5275 }
5276 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
5277
5278 if (dwarf_read_debug > 1)
5279 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
5280 to_underlying (sect_off),
5281 hex_string (header.signature));
5282
5283 info_ptr += length;
5284 }
5285 }
5286
5287 /* Create the hash table of all entries in the .debug_types
5288 (or .debug_types.dwo) section(s).
5289 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
5290 otherwise it is NULL.
5291
5292 The result is a pointer to the hash table or NULL if there are no types.
5293
5294 Note: This function processes DWO files only, not DWP files. */
5295
5296 static void
5297 create_debug_types_hash_table (struct dwo_file *dwo_file,
5298 VEC (dwarf2_section_info_def) *types,
5299 htab_t &types_htab)
5300 {
5301 int ix;
5302 struct dwarf2_section_info *section;
5303
5304 if (VEC_empty (dwarf2_section_info_def, types))
5305 return;
5306
5307 for (ix = 0;
5308 VEC_iterate (dwarf2_section_info_def, types, ix, section);
5309 ++ix)
5310 create_debug_type_hash_table (dwo_file, section, types_htab,
5311 rcuh_kind::TYPE);
5312 }
5313
5314 /* Create the hash table of all entries in the .debug_types section,
5315 and initialize all_type_units.
5316 The result is zero if there is an error (e.g. missing .debug_types section),
5317 otherwise non-zero. */
5318
5319 static int
5320 create_all_type_units (struct objfile *objfile)
5321 {
5322 htab_t types_htab = NULL;
5323 struct signatured_type **iter;
5324
5325 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
5326 rcuh_kind::COMPILE);
5327 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
5328 if (types_htab == NULL)
5329 {
5330 dwarf2_per_objfile->signatured_types = NULL;
5331 return 0;
5332 }
5333
5334 dwarf2_per_objfile->signatured_types = types_htab;
5335
5336 dwarf2_per_objfile->n_type_units
5337 = dwarf2_per_objfile->n_allocated_type_units
5338 = htab_elements (types_htab);
5339 dwarf2_per_objfile->all_type_units =
5340 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
5341 iter = &dwarf2_per_objfile->all_type_units[0];
5342 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
5343 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
5344 == dwarf2_per_objfile->n_type_units);
5345
5346 return 1;
5347 }
5348
5349 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
5350 If SLOT is non-NULL, it is the entry to use in the hash table.
5351 Otherwise we find one. */
5352
5353 static struct signatured_type *
5354 add_type_unit (ULONGEST sig, void **slot)
5355 {
5356 struct objfile *objfile = dwarf2_per_objfile->objfile;
5357 int n_type_units = dwarf2_per_objfile->n_type_units;
5358 struct signatured_type *sig_type;
5359
5360 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
5361 ++n_type_units;
5362 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
5363 {
5364 if (dwarf2_per_objfile->n_allocated_type_units == 0)
5365 dwarf2_per_objfile->n_allocated_type_units = 1;
5366 dwarf2_per_objfile->n_allocated_type_units *= 2;
5367 dwarf2_per_objfile->all_type_units
5368 = XRESIZEVEC (struct signatured_type *,
5369 dwarf2_per_objfile->all_type_units,
5370 dwarf2_per_objfile->n_allocated_type_units);
5371 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
5372 }
5373 dwarf2_per_objfile->n_type_units = n_type_units;
5374
5375 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5376 struct signatured_type);
5377 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
5378 sig_type->signature = sig;
5379 sig_type->per_cu.is_debug_types = 1;
5380 if (dwarf2_per_objfile->using_index)
5381 {
5382 sig_type->per_cu.v.quick =
5383 OBSTACK_ZALLOC (&objfile->objfile_obstack,
5384 struct dwarf2_per_cu_quick_data);
5385 }
5386
5387 if (slot == NULL)
5388 {
5389 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5390 sig_type, INSERT);
5391 }
5392 gdb_assert (*slot == NULL);
5393 *slot = sig_type;
5394 /* The rest of sig_type must be filled in by the caller. */
5395 return sig_type;
5396 }
5397
5398 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
5399 Fill in SIG_ENTRY with DWO_ENTRY. */
5400
5401 static void
5402 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
5403 struct signatured_type *sig_entry,
5404 struct dwo_unit *dwo_entry)
5405 {
5406 /* Make sure we're not clobbering something we don't expect to. */
5407 gdb_assert (! sig_entry->per_cu.queued);
5408 gdb_assert (sig_entry->per_cu.cu == NULL);
5409 if (dwarf2_per_objfile->using_index)
5410 {
5411 gdb_assert (sig_entry->per_cu.v.quick != NULL);
5412 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
5413 }
5414 else
5415 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
5416 gdb_assert (sig_entry->signature == dwo_entry->signature);
5417 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
5418 gdb_assert (sig_entry->type_unit_group == NULL);
5419 gdb_assert (sig_entry->dwo_unit == NULL);
5420
5421 sig_entry->per_cu.section = dwo_entry->section;
5422 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
5423 sig_entry->per_cu.length = dwo_entry->length;
5424 sig_entry->per_cu.reading_dwo_directly = 1;
5425 sig_entry->per_cu.objfile = objfile;
5426 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
5427 sig_entry->dwo_unit = dwo_entry;
5428 }
5429
5430 /* Subroutine of lookup_signatured_type.
5431 If we haven't read the TU yet, create the signatured_type data structure
5432 for a TU to be read in directly from a DWO file, bypassing the stub.
5433 This is the "Stay in DWO Optimization": When there is no DWP file and we're
5434 using .gdb_index, then when reading a CU we want to stay in the DWO file
5435 containing that CU. Otherwise we could end up reading several other DWO
5436 files (due to comdat folding) to process the transitive closure of all the
5437 mentioned TUs, and that can be slow. The current DWO file will have every
5438 type signature that it needs.
5439 We only do this for .gdb_index because in the psymtab case we already have
5440 to read all the DWOs to build the type unit groups. */
5441
5442 static struct signatured_type *
5443 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5444 {
5445 struct objfile *objfile = dwarf2_per_objfile->objfile;
5446 struct dwo_file *dwo_file;
5447 struct dwo_unit find_dwo_entry, *dwo_entry;
5448 struct signatured_type find_sig_entry, *sig_entry;
5449 void **slot;
5450
5451 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5452
5453 /* If TU skeletons have been removed then we may not have read in any
5454 TUs yet. */
5455 if (dwarf2_per_objfile->signatured_types == NULL)
5456 {
5457 dwarf2_per_objfile->signatured_types
5458 = allocate_signatured_type_table (objfile);
5459 }
5460
5461 /* We only ever need to read in one copy of a signatured type.
5462 Use the global signatured_types array to do our own comdat-folding
5463 of types. If this is the first time we're reading this TU, and
5464 the TU has an entry in .gdb_index, replace the recorded data from
5465 .gdb_index with this TU. */
5466
5467 find_sig_entry.signature = sig;
5468 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5469 &find_sig_entry, INSERT);
5470 sig_entry = (struct signatured_type *) *slot;
5471
5472 /* We can get here with the TU already read, *or* in the process of being
5473 read. Don't reassign the global entry to point to this DWO if that's
5474 the case. Also note that if the TU is already being read, it may not
5475 have come from a DWO, the program may be a mix of Fission-compiled
5476 code and non-Fission-compiled code. */
5477
5478 /* Have we already tried to read this TU?
5479 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5480 needn't exist in the global table yet). */
5481 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
5482 return sig_entry;
5483
5484 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5485 dwo_unit of the TU itself. */
5486 dwo_file = cu->dwo_unit->dwo_file;
5487
5488 /* Ok, this is the first time we're reading this TU. */
5489 if (dwo_file->tus == NULL)
5490 return NULL;
5491 find_dwo_entry.signature = sig;
5492 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
5493 if (dwo_entry == NULL)
5494 return NULL;
5495
5496 /* If the global table doesn't have an entry for this TU, add one. */
5497 if (sig_entry == NULL)
5498 sig_entry = add_type_unit (sig, slot);
5499
5500 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5501 sig_entry->per_cu.tu_read = 1;
5502 return sig_entry;
5503 }
5504
5505 /* Subroutine of lookup_signatured_type.
5506 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
5507 then try the DWP file. If the TU stub (skeleton) has been removed then
5508 it won't be in .gdb_index. */
5509
5510 static struct signatured_type *
5511 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5512 {
5513 struct objfile *objfile = dwarf2_per_objfile->objfile;
5514 struct dwp_file *dwp_file = get_dwp_file ();
5515 struct dwo_unit *dwo_entry;
5516 struct signatured_type find_sig_entry, *sig_entry;
5517 void **slot;
5518
5519 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5520 gdb_assert (dwp_file != NULL);
5521
5522 /* If TU skeletons have been removed then we may not have read in any
5523 TUs yet. */
5524 if (dwarf2_per_objfile->signatured_types == NULL)
5525 {
5526 dwarf2_per_objfile->signatured_types
5527 = allocate_signatured_type_table (objfile);
5528 }
5529
5530 find_sig_entry.signature = sig;
5531 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5532 &find_sig_entry, INSERT);
5533 sig_entry = (struct signatured_type *) *slot;
5534
5535 /* Have we already tried to read this TU?
5536 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5537 needn't exist in the global table yet). */
5538 if (sig_entry != NULL)
5539 return sig_entry;
5540
5541 if (dwp_file->tus == NULL)
5542 return NULL;
5543 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5544 sig, 1 /* is_debug_types */);
5545 if (dwo_entry == NULL)
5546 return NULL;
5547
5548 sig_entry = add_type_unit (sig, slot);
5549 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5550
5551 return sig_entry;
5552 }
5553
5554 /* Lookup a signature based type for DW_FORM_ref_sig8.
5555 Returns NULL if signature SIG is not present in the table.
5556 It is up to the caller to complain about this. */
5557
5558 static struct signatured_type *
5559 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5560 {
5561 if (cu->dwo_unit
5562 && dwarf2_per_objfile->using_index)
5563 {
5564 /* We're in a DWO/DWP file, and we're using .gdb_index.
5565 These cases require special processing. */
5566 if (get_dwp_file () == NULL)
5567 return lookup_dwo_signatured_type (cu, sig);
5568 else
5569 return lookup_dwp_signatured_type (cu, sig);
5570 }
5571 else
5572 {
5573 struct signatured_type find_entry, *entry;
5574
5575 if (dwarf2_per_objfile->signatured_types == NULL)
5576 return NULL;
5577 find_entry.signature = sig;
5578 entry = ((struct signatured_type *)
5579 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5580 return entry;
5581 }
5582 }
5583 \f
5584 /* Low level DIE reading support. */
5585
5586 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5587
5588 static void
5589 init_cu_die_reader (struct die_reader_specs *reader,
5590 struct dwarf2_cu *cu,
5591 struct dwarf2_section_info *section,
5592 struct dwo_file *dwo_file)
5593 {
5594 gdb_assert (section->readin && section->buffer != NULL);
5595 reader->abfd = get_section_bfd_owner (section);
5596 reader->cu = cu;
5597 reader->dwo_file = dwo_file;
5598 reader->die_section = section;
5599 reader->buffer = section->buffer;
5600 reader->buffer_end = section->buffer + section->size;
5601 reader->comp_dir = NULL;
5602 }
5603
5604 /* Subroutine of init_cutu_and_read_dies to simplify it.
5605 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5606 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5607 already.
5608
5609 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5610 from it to the DIE in the DWO. If NULL we are skipping the stub.
5611 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5612 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5613 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5614 STUB_COMP_DIR may be non-NULL.
5615 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5616 are filled in with the info of the DIE from the DWO file.
5617 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5618 provided an abbrev table to use.
5619 The result is non-zero if a valid (non-dummy) DIE was found. */
5620
5621 static int
5622 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5623 struct dwo_unit *dwo_unit,
5624 int abbrev_table_provided,
5625 struct die_info *stub_comp_unit_die,
5626 const char *stub_comp_dir,
5627 struct die_reader_specs *result_reader,
5628 const gdb_byte **result_info_ptr,
5629 struct die_info **result_comp_unit_die,
5630 int *result_has_children)
5631 {
5632 struct objfile *objfile = dwarf2_per_objfile->objfile;
5633 struct dwarf2_cu *cu = this_cu->cu;
5634 struct dwarf2_section_info *section;
5635 bfd *abfd;
5636 const gdb_byte *begin_info_ptr, *info_ptr;
5637 ULONGEST signature; /* Or dwo_id. */
5638 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5639 int i,num_extra_attrs;
5640 struct dwarf2_section_info *dwo_abbrev_section;
5641 struct attribute *attr;
5642 struct die_info *comp_unit_die;
5643
5644 /* At most one of these may be provided. */
5645 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5646
5647 /* These attributes aren't processed until later:
5648 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5649 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5650 referenced later. However, these attributes are found in the stub
5651 which we won't have later. In order to not impose this complication
5652 on the rest of the code, we read them here and copy them to the
5653 DWO CU/TU die. */
5654
5655 stmt_list = NULL;
5656 low_pc = NULL;
5657 high_pc = NULL;
5658 ranges = NULL;
5659 comp_dir = NULL;
5660
5661 if (stub_comp_unit_die != NULL)
5662 {
5663 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5664 DWO file. */
5665 if (! this_cu->is_debug_types)
5666 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5667 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5668 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5669 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5670 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5671
5672 /* There should be a DW_AT_addr_base attribute here (if needed).
5673 We need the value before we can process DW_FORM_GNU_addr_index. */
5674 cu->addr_base = 0;
5675 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5676 if (attr)
5677 cu->addr_base = DW_UNSND (attr);
5678
5679 /* There should be a DW_AT_ranges_base attribute here (if needed).
5680 We need the value before we can process DW_AT_ranges. */
5681 cu->ranges_base = 0;
5682 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5683 if (attr)
5684 cu->ranges_base = DW_UNSND (attr);
5685 }
5686 else if (stub_comp_dir != NULL)
5687 {
5688 /* Reconstruct the comp_dir attribute to simplify the code below. */
5689 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5690 comp_dir->name = DW_AT_comp_dir;
5691 comp_dir->form = DW_FORM_string;
5692 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5693 DW_STRING (comp_dir) = stub_comp_dir;
5694 }
5695
5696 /* Set up for reading the DWO CU/TU. */
5697 cu->dwo_unit = dwo_unit;
5698 section = dwo_unit->section;
5699 dwarf2_read_section (objfile, section);
5700 abfd = get_section_bfd_owner (section);
5701 begin_info_ptr = info_ptr = (section->buffer
5702 + to_underlying (dwo_unit->sect_off));
5703 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5704 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5705
5706 if (this_cu->is_debug_types)
5707 {
5708 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5709
5710 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5711 dwo_abbrev_section,
5712 info_ptr, rcuh_kind::TYPE);
5713 /* This is not an assert because it can be caused by bad debug info. */
5714 if (sig_type->signature != cu->header.signature)
5715 {
5716 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5717 " TU at offset 0x%x [in module %s]"),
5718 hex_string (sig_type->signature),
5719 hex_string (cu->header.signature),
5720 to_underlying (dwo_unit->sect_off),
5721 bfd_get_filename (abfd));
5722 }
5723 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
5724 /* For DWOs coming from DWP files, we don't know the CU length
5725 nor the type's offset in the TU until now. */
5726 dwo_unit->length = get_cu_length (&cu->header);
5727 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
5728
5729 /* Establish the type offset that can be used to lookup the type.
5730 For DWO files, we don't know it until now. */
5731 sig_type->type_offset_in_section
5732 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
5733 }
5734 else
5735 {
5736 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5737 dwo_abbrev_section,
5738 info_ptr, rcuh_kind::COMPILE);
5739 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
5740 /* For DWOs coming from DWP files, we don't know the CU length
5741 until now. */
5742 dwo_unit->length = get_cu_length (&cu->header);
5743 }
5744
5745 /* Replace the CU's original abbrev table with the DWO's.
5746 Reminder: We can't read the abbrev table until we've read the header. */
5747 if (abbrev_table_provided)
5748 {
5749 /* Don't free the provided abbrev table, the caller of
5750 init_cutu_and_read_dies owns it. */
5751 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5752 /* Ensure the DWO abbrev table gets freed. */
5753 make_cleanup (dwarf2_free_abbrev_table, cu);
5754 }
5755 else
5756 {
5757 dwarf2_free_abbrev_table (cu);
5758 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5759 /* Leave any existing abbrev table cleanup as is. */
5760 }
5761
5762 /* Read in the die, but leave space to copy over the attributes
5763 from the stub. This has the benefit of simplifying the rest of
5764 the code - all the work to maintain the illusion of a single
5765 DW_TAG_{compile,type}_unit DIE is done here. */
5766 num_extra_attrs = ((stmt_list != NULL)
5767 + (low_pc != NULL)
5768 + (high_pc != NULL)
5769 + (ranges != NULL)
5770 + (comp_dir != NULL));
5771 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5772 result_has_children, num_extra_attrs);
5773
5774 /* Copy over the attributes from the stub to the DIE we just read in. */
5775 comp_unit_die = *result_comp_unit_die;
5776 i = comp_unit_die->num_attrs;
5777 if (stmt_list != NULL)
5778 comp_unit_die->attrs[i++] = *stmt_list;
5779 if (low_pc != NULL)
5780 comp_unit_die->attrs[i++] = *low_pc;
5781 if (high_pc != NULL)
5782 comp_unit_die->attrs[i++] = *high_pc;
5783 if (ranges != NULL)
5784 comp_unit_die->attrs[i++] = *ranges;
5785 if (comp_dir != NULL)
5786 comp_unit_die->attrs[i++] = *comp_dir;
5787 comp_unit_die->num_attrs += num_extra_attrs;
5788
5789 if (dwarf_die_debug)
5790 {
5791 fprintf_unfiltered (gdb_stdlog,
5792 "Read die from %s@0x%x of %s:\n",
5793 get_section_name (section),
5794 (unsigned) (begin_info_ptr - section->buffer),
5795 bfd_get_filename (abfd));
5796 dump_die (comp_unit_die, dwarf_die_debug);
5797 }
5798
5799 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5800 TUs by skipping the stub and going directly to the entry in the DWO file.
5801 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5802 to get it via circuitous means. Blech. */
5803 if (comp_dir != NULL)
5804 result_reader->comp_dir = DW_STRING (comp_dir);
5805
5806 /* Skip dummy compilation units. */
5807 if (info_ptr >= begin_info_ptr + dwo_unit->length
5808 || peek_abbrev_code (abfd, info_ptr) == 0)
5809 return 0;
5810
5811 *result_info_ptr = info_ptr;
5812 return 1;
5813 }
5814
5815 /* Subroutine of init_cutu_and_read_dies to simplify it.
5816 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5817 Returns NULL if the specified DWO unit cannot be found. */
5818
5819 static struct dwo_unit *
5820 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5821 struct die_info *comp_unit_die)
5822 {
5823 struct dwarf2_cu *cu = this_cu->cu;
5824 struct attribute *attr;
5825 ULONGEST signature;
5826 struct dwo_unit *dwo_unit;
5827 const char *comp_dir, *dwo_name;
5828
5829 gdb_assert (cu != NULL);
5830
5831 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5832 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5833 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5834
5835 if (this_cu->is_debug_types)
5836 {
5837 struct signatured_type *sig_type;
5838
5839 /* Since this_cu is the first member of struct signatured_type,
5840 we can go from a pointer to one to a pointer to the other. */
5841 sig_type = (struct signatured_type *) this_cu;
5842 signature = sig_type->signature;
5843 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5844 }
5845 else
5846 {
5847 struct attribute *attr;
5848
5849 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5850 if (! attr)
5851 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5852 " [in module %s]"),
5853 dwo_name, objfile_name (this_cu->objfile));
5854 signature = DW_UNSND (attr);
5855 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5856 signature);
5857 }
5858
5859 return dwo_unit;
5860 }
5861
5862 /* Subroutine of init_cutu_and_read_dies to simplify it.
5863 See it for a description of the parameters.
5864 Read a TU directly from a DWO file, bypassing the stub.
5865
5866 Note: This function could be a little bit simpler if we shared cleanups
5867 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5868 to do, so we keep this function self-contained. Or we could move this
5869 into our caller, but it's complex enough already. */
5870
5871 static void
5872 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5873 int use_existing_cu, int keep,
5874 die_reader_func_ftype *die_reader_func,
5875 void *data)
5876 {
5877 struct dwarf2_cu *cu;
5878 struct signatured_type *sig_type;
5879 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5880 struct die_reader_specs reader;
5881 const gdb_byte *info_ptr;
5882 struct die_info *comp_unit_die;
5883 int has_children;
5884
5885 /* Verify we can do the following downcast, and that we have the
5886 data we need. */
5887 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5888 sig_type = (struct signatured_type *) this_cu;
5889 gdb_assert (sig_type->dwo_unit != NULL);
5890
5891 cleanups = make_cleanup (null_cleanup, NULL);
5892
5893 if (use_existing_cu && this_cu->cu != NULL)
5894 {
5895 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5896 cu = this_cu->cu;
5897 /* There's no need to do the rereading_dwo_cu handling that
5898 init_cutu_and_read_dies does since we don't read the stub. */
5899 }
5900 else
5901 {
5902 /* If !use_existing_cu, this_cu->cu must be NULL. */
5903 gdb_assert (this_cu->cu == NULL);
5904 cu = XNEW (struct dwarf2_cu);
5905 init_one_comp_unit (cu, this_cu);
5906 /* If an error occurs while loading, release our storage. */
5907 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5908 }
5909
5910 /* A future optimization, if needed, would be to use an existing
5911 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5912 could share abbrev tables. */
5913
5914 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5915 0 /* abbrev_table_provided */,
5916 NULL /* stub_comp_unit_die */,
5917 sig_type->dwo_unit->dwo_file->comp_dir,
5918 &reader, &info_ptr,
5919 &comp_unit_die, &has_children) == 0)
5920 {
5921 /* Dummy die. */
5922 do_cleanups (cleanups);
5923 return;
5924 }
5925
5926 /* All the "real" work is done here. */
5927 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5928
5929 /* This duplicates the code in init_cutu_and_read_dies,
5930 but the alternative is making the latter more complex.
5931 This function is only for the special case of using DWO files directly:
5932 no point in overly complicating the general case just to handle this. */
5933 if (free_cu_cleanup != NULL)
5934 {
5935 if (keep)
5936 {
5937 /* We've successfully allocated this compilation unit. Let our
5938 caller clean it up when finished with it. */
5939 discard_cleanups (free_cu_cleanup);
5940
5941 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5942 So we have to manually free the abbrev table. */
5943 dwarf2_free_abbrev_table (cu);
5944
5945 /* Link this CU into read_in_chain. */
5946 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5947 dwarf2_per_objfile->read_in_chain = this_cu;
5948 }
5949 else
5950 do_cleanups (free_cu_cleanup);
5951 }
5952
5953 do_cleanups (cleanups);
5954 }
5955
5956 /* Initialize a CU (or TU) and read its DIEs.
5957 If the CU defers to a DWO file, read the DWO file as well.
5958
5959 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5960 Otherwise the table specified in the comp unit header is read in and used.
5961 This is an optimization for when we already have the abbrev table.
5962
5963 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5964 Otherwise, a new CU is allocated with xmalloc.
5965
5966 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5967 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5968
5969 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5970 linker) then DIE_READER_FUNC will not get called. */
5971
5972 static void
5973 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5974 struct abbrev_table *abbrev_table,
5975 int use_existing_cu, int keep,
5976 die_reader_func_ftype *die_reader_func,
5977 void *data)
5978 {
5979 struct objfile *objfile = dwarf2_per_objfile->objfile;
5980 struct dwarf2_section_info *section = this_cu->section;
5981 bfd *abfd = get_section_bfd_owner (section);
5982 struct dwarf2_cu *cu;
5983 const gdb_byte *begin_info_ptr, *info_ptr;
5984 struct die_reader_specs reader;
5985 struct die_info *comp_unit_die;
5986 int has_children;
5987 struct attribute *attr;
5988 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5989 struct signatured_type *sig_type = NULL;
5990 struct dwarf2_section_info *abbrev_section;
5991 /* Non-zero if CU currently points to a DWO file and we need to
5992 reread it. When this happens we need to reread the skeleton die
5993 before we can reread the DWO file (this only applies to CUs, not TUs). */
5994 int rereading_dwo_cu = 0;
5995
5996 if (dwarf_die_debug)
5997 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5998 this_cu->is_debug_types ? "type" : "comp",
5999 to_underlying (this_cu->sect_off));
6000
6001 if (use_existing_cu)
6002 gdb_assert (keep);
6003
6004 /* If we're reading a TU directly from a DWO file, including a virtual DWO
6005 file (instead of going through the stub), short-circuit all of this. */
6006 if (this_cu->reading_dwo_directly)
6007 {
6008 /* Narrow down the scope of possibilities to have to understand. */
6009 gdb_assert (this_cu->is_debug_types);
6010 gdb_assert (abbrev_table == NULL);
6011 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
6012 die_reader_func, data);
6013 return;
6014 }
6015
6016 cleanups = make_cleanup (null_cleanup, NULL);
6017
6018 /* This is cheap if the section is already read in. */
6019 dwarf2_read_section (objfile, section);
6020
6021 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6022
6023 abbrev_section = get_abbrev_section_for_cu (this_cu);
6024
6025 if (use_existing_cu && this_cu->cu != NULL)
6026 {
6027 cu = this_cu->cu;
6028 /* If this CU is from a DWO file we need to start over, we need to
6029 refetch the attributes from the skeleton CU.
6030 This could be optimized by retrieving those attributes from when we
6031 were here the first time: the previous comp_unit_die was stored in
6032 comp_unit_obstack. But there's no data yet that we need this
6033 optimization. */
6034 if (cu->dwo_unit != NULL)
6035 rereading_dwo_cu = 1;
6036 }
6037 else
6038 {
6039 /* If !use_existing_cu, this_cu->cu must be NULL. */
6040 gdb_assert (this_cu->cu == NULL);
6041 cu = XNEW (struct dwarf2_cu);
6042 init_one_comp_unit (cu, this_cu);
6043 /* If an error occurs while loading, release our storage. */
6044 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
6045 }
6046
6047 /* Get the header. */
6048 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
6049 {
6050 /* We already have the header, there's no need to read it in again. */
6051 info_ptr += to_underlying (cu->header.first_die_cu_offset);
6052 }
6053 else
6054 {
6055 if (this_cu->is_debug_types)
6056 {
6057 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
6058 abbrev_section, info_ptr,
6059 rcuh_kind::TYPE);
6060
6061 /* Since per_cu is the first member of struct signatured_type,
6062 we can go from a pointer to one to a pointer to the other. */
6063 sig_type = (struct signatured_type *) this_cu;
6064 gdb_assert (sig_type->signature == cu->header.signature);
6065 gdb_assert (sig_type->type_offset_in_tu
6066 == cu->header.type_cu_offset_in_tu);
6067 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6068
6069 /* LENGTH has not been set yet for type units if we're
6070 using .gdb_index. */
6071 this_cu->length = get_cu_length (&cu->header);
6072
6073 /* Establish the type offset that can be used to lookup the type. */
6074 sig_type->type_offset_in_section =
6075 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
6076
6077 this_cu->dwarf_version = cu->header.version;
6078 }
6079 else
6080 {
6081 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
6082 abbrev_section,
6083 info_ptr,
6084 rcuh_kind::COMPILE);
6085
6086 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6087 gdb_assert (this_cu->length == get_cu_length (&cu->header));
6088 this_cu->dwarf_version = cu->header.version;
6089 }
6090 }
6091
6092 /* Skip dummy compilation units. */
6093 if (info_ptr >= begin_info_ptr + this_cu->length
6094 || peek_abbrev_code (abfd, info_ptr) == 0)
6095 {
6096 do_cleanups (cleanups);
6097 return;
6098 }
6099
6100 /* If we don't have them yet, read the abbrevs for this compilation unit.
6101 And if we need to read them now, make sure they're freed when we're
6102 done. Note that it's important that if the CU had an abbrev table
6103 on entry we don't free it when we're done: Somewhere up the call stack
6104 it may be in use. */
6105 if (abbrev_table != NULL)
6106 {
6107 gdb_assert (cu->abbrev_table == NULL);
6108 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
6109 cu->abbrev_table = abbrev_table;
6110 }
6111 else if (cu->abbrev_table == NULL)
6112 {
6113 dwarf2_read_abbrevs (cu, abbrev_section);
6114 make_cleanup (dwarf2_free_abbrev_table, cu);
6115 }
6116 else if (rereading_dwo_cu)
6117 {
6118 dwarf2_free_abbrev_table (cu);
6119 dwarf2_read_abbrevs (cu, abbrev_section);
6120 }
6121
6122 /* Read the top level CU/TU die. */
6123 init_cu_die_reader (&reader, cu, section, NULL);
6124 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
6125
6126 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
6127 from the DWO file.
6128 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
6129 DWO CU, that this test will fail (the attribute will not be present). */
6130 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
6131 if (attr)
6132 {
6133 struct dwo_unit *dwo_unit;
6134 struct die_info *dwo_comp_unit_die;
6135
6136 if (has_children)
6137 {
6138 complaint (&symfile_complaints,
6139 _("compilation unit with DW_AT_GNU_dwo_name"
6140 " has children (offset 0x%x) [in module %s]"),
6141 to_underlying (this_cu->sect_off), bfd_get_filename (abfd));
6142 }
6143 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6144 if (dwo_unit != NULL)
6145 {
6146 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
6147 abbrev_table != NULL,
6148 comp_unit_die, NULL,
6149 &reader, &info_ptr,
6150 &dwo_comp_unit_die, &has_children) == 0)
6151 {
6152 /* Dummy die. */
6153 do_cleanups (cleanups);
6154 return;
6155 }
6156 comp_unit_die = dwo_comp_unit_die;
6157 }
6158 else
6159 {
6160 /* Yikes, we couldn't find the rest of the DIE, we only have
6161 the stub. A complaint has already been logged. There's
6162 not much more we can do except pass on the stub DIE to
6163 die_reader_func. We don't want to throw an error on bad
6164 debug info. */
6165 }
6166 }
6167
6168 /* All of the above is setup for this call. Yikes. */
6169 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
6170
6171 /* Done, clean up. */
6172 if (free_cu_cleanup != NULL)
6173 {
6174 if (keep)
6175 {
6176 /* We've successfully allocated this compilation unit. Let our
6177 caller clean it up when finished with it. */
6178 discard_cleanups (free_cu_cleanup);
6179
6180 /* We can only discard free_cu_cleanup and all subsequent cleanups.
6181 So we have to manually free the abbrev table. */
6182 dwarf2_free_abbrev_table (cu);
6183
6184 /* Link this CU into read_in_chain. */
6185 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
6186 dwarf2_per_objfile->read_in_chain = this_cu;
6187 }
6188 else
6189 do_cleanups (free_cu_cleanup);
6190 }
6191
6192 do_cleanups (cleanups);
6193 }
6194
6195 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
6196 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
6197 to have already done the lookup to find the DWO file).
6198
6199 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
6200 THIS_CU->is_debug_types, but nothing else.
6201
6202 We fill in THIS_CU->length.
6203
6204 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
6205 linker) then DIE_READER_FUNC will not get called.
6206
6207 THIS_CU->cu is always freed when done.
6208 This is done in order to not leave THIS_CU->cu in a state where we have
6209 to care whether it refers to the "main" CU or the DWO CU. */
6210
6211 static void
6212 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
6213 struct dwo_file *dwo_file,
6214 die_reader_func_ftype *die_reader_func,
6215 void *data)
6216 {
6217 struct objfile *objfile = dwarf2_per_objfile->objfile;
6218 struct dwarf2_section_info *section = this_cu->section;
6219 bfd *abfd = get_section_bfd_owner (section);
6220 struct dwarf2_section_info *abbrev_section;
6221 struct dwarf2_cu cu;
6222 const gdb_byte *begin_info_ptr, *info_ptr;
6223 struct die_reader_specs reader;
6224 struct cleanup *cleanups;
6225 struct die_info *comp_unit_die;
6226 int has_children;
6227
6228 if (dwarf_die_debug)
6229 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
6230 this_cu->is_debug_types ? "type" : "comp",
6231 to_underlying (this_cu->sect_off));
6232
6233 gdb_assert (this_cu->cu == NULL);
6234
6235 abbrev_section = (dwo_file != NULL
6236 ? &dwo_file->sections.abbrev
6237 : get_abbrev_section_for_cu (this_cu));
6238
6239 /* This is cheap if the section is already read in. */
6240 dwarf2_read_section (objfile, section);
6241
6242 init_one_comp_unit (&cu, this_cu);
6243
6244 cleanups = make_cleanup (free_stack_comp_unit, &cu);
6245
6246 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6247 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
6248 abbrev_section, info_ptr,
6249 (this_cu->is_debug_types
6250 ? rcuh_kind::TYPE
6251 : rcuh_kind::COMPILE));
6252
6253 this_cu->length = get_cu_length (&cu.header);
6254
6255 /* Skip dummy compilation units. */
6256 if (info_ptr >= begin_info_ptr + this_cu->length
6257 || peek_abbrev_code (abfd, info_ptr) == 0)
6258 {
6259 do_cleanups (cleanups);
6260 return;
6261 }
6262
6263 dwarf2_read_abbrevs (&cu, abbrev_section);
6264 make_cleanup (dwarf2_free_abbrev_table, &cu);
6265
6266 init_cu_die_reader (&reader, &cu, section, dwo_file);
6267 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
6268
6269 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
6270
6271 do_cleanups (cleanups);
6272 }
6273
6274 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
6275 does not lookup the specified DWO file.
6276 This cannot be used to read DWO files.
6277
6278 THIS_CU->cu is always freed when done.
6279 This is done in order to not leave THIS_CU->cu in a state where we have
6280 to care whether it refers to the "main" CU or the DWO CU.
6281 We can revisit this if the data shows there's a performance issue. */
6282
6283 static void
6284 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
6285 die_reader_func_ftype *die_reader_func,
6286 void *data)
6287 {
6288 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
6289 }
6290 \f
6291 /* Type Unit Groups.
6292
6293 Type Unit Groups are a way to collapse the set of all TUs (type units) into
6294 a more manageable set. The grouping is done by DW_AT_stmt_list entry
6295 so that all types coming from the same compilation (.o file) are grouped
6296 together. A future step could be to put the types in the same symtab as
6297 the CU the types ultimately came from. */
6298
6299 static hashval_t
6300 hash_type_unit_group (const void *item)
6301 {
6302 const struct type_unit_group *tu_group
6303 = (const struct type_unit_group *) item;
6304
6305 return hash_stmt_list_entry (&tu_group->hash);
6306 }
6307
6308 static int
6309 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
6310 {
6311 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
6312 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
6313
6314 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
6315 }
6316
6317 /* Allocate a hash table for type unit groups. */
6318
6319 static htab_t
6320 allocate_type_unit_groups_table (void)
6321 {
6322 return htab_create_alloc_ex (3,
6323 hash_type_unit_group,
6324 eq_type_unit_group,
6325 NULL,
6326 &dwarf2_per_objfile->objfile->objfile_obstack,
6327 hashtab_obstack_allocate,
6328 dummy_obstack_deallocate);
6329 }
6330
6331 /* Type units that don't have DW_AT_stmt_list are grouped into their own
6332 partial symtabs. We combine several TUs per psymtab to not let the size
6333 of any one psymtab grow too big. */
6334 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
6335 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
6336
6337 /* Helper routine for get_type_unit_group.
6338 Create the type_unit_group object used to hold one or more TUs. */
6339
6340 static struct type_unit_group *
6341 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
6342 {
6343 struct objfile *objfile = dwarf2_per_objfile->objfile;
6344 struct dwarf2_per_cu_data *per_cu;
6345 struct type_unit_group *tu_group;
6346
6347 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6348 struct type_unit_group);
6349 per_cu = &tu_group->per_cu;
6350 per_cu->objfile = objfile;
6351
6352 if (dwarf2_per_objfile->using_index)
6353 {
6354 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6355 struct dwarf2_per_cu_quick_data);
6356 }
6357 else
6358 {
6359 unsigned int line_offset = to_underlying (line_offset_struct);
6360 struct partial_symtab *pst;
6361 char *name;
6362
6363 /* Give the symtab a useful name for debug purposes. */
6364 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
6365 name = xstrprintf ("<type_units_%d>",
6366 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
6367 else
6368 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
6369
6370 pst = create_partial_symtab (per_cu, name);
6371 pst->anonymous = 1;
6372
6373 xfree (name);
6374 }
6375
6376 tu_group->hash.dwo_unit = cu->dwo_unit;
6377 tu_group->hash.line_sect_off = line_offset_struct;
6378
6379 return tu_group;
6380 }
6381
6382 /* Look up the type_unit_group for type unit CU, and create it if necessary.
6383 STMT_LIST is a DW_AT_stmt_list attribute. */
6384
6385 static struct type_unit_group *
6386 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
6387 {
6388 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6389 struct type_unit_group *tu_group;
6390 void **slot;
6391 unsigned int line_offset;
6392 struct type_unit_group type_unit_group_for_lookup;
6393
6394 if (dwarf2_per_objfile->type_unit_groups == NULL)
6395 {
6396 dwarf2_per_objfile->type_unit_groups =
6397 allocate_type_unit_groups_table ();
6398 }
6399
6400 /* Do we need to create a new group, or can we use an existing one? */
6401
6402 if (stmt_list)
6403 {
6404 line_offset = DW_UNSND (stmt_list);
6405 ++tu_stats->nr_symtab_sharers;
6406 }
6407 else
6408 {
6409 /* Ugh, no stmt_list. Rare, but we have to handle it.
6410 We can do various things here like create one group per TU or
6411 spread them over multiple groups to split up the expansion work.
6412 To avoid worst case scenarios (too many groups or too large groups)
6413 we, umm, group them in bunches. */
6414 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
6415 | (tu_stats->nr_stmt_less_type_units
6416 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
6417 ++tu_stats->nr_stmt_less_type_units;
6418 }
6419
6420 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
6421 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
6422 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
6423 &type_unit_group_for_lookup, INSERT);
6424 if (*slot != NULL)
6425 {
6426 tu_group = (struct type_unit_group *) *slot;
6427 gdb_assert (tu_group != NULL);
6428 }
6429 else
6430 {
6431 sect_offset line_offset_struct = (sect_offset) line_offset;
6432 tu_group = create_type_unit_group (cu, line_offset_struct);
6433 *slot = tu_group;
6434 ++tu_stats->nr_symtabs;
6435 }
6436
6437 return tu_group;
6438 }
6439 \f
6440 /* Partial symbol tables. */
6441
6442 /* Create a psymtab named NAME and assign it to PER_CU.
6443
6444 The caller must fill in the following details:
6445 dirname, textlow, texthigh. */
6446
6447 static struct partial_symtab *
6448 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
6449 {
6450 struct objfile *objfile = per_cu->objfile;
6451 struct partial_symtab *pst;
6452
6453 pst = start_psymtab_common (objfile, name, 0,
6454 objfile->global_psymbols,
6455 objfile->static_psymbols);
6456
6457 pst->psymtabs_addrmap_supported = 1;
6458
6459 /* This is the glue that links PST into GDB's symbol API. */
6460 pst->read_symtab_private = per_cu;
6461 pst->read_symtab = dwarf2_read_symtab;
6462 per_cu->v.psymtab = pst;
6463
6464 return pst;
6465 }
6466
6467 /* The DATA object passed to process_psymtab_comp_unit_reader has this
6468 type. */
6469
6470 struct process_psymtab_comp_unit_data
6471 {
6472 /* True if we are reading a DW_TAG_partial_unit. */
6473
6474 int want_partial_unit;
6475
6476 /* The "pretend" language that is used if the CU doesn't declare a
6477 language. */
6478
6479 enum language pretend_language;
6480 };
6481
6482 /* die_reader_func for process_psymtab_comp_unit. */
6483
6484 static void
6485 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
6486 const gdb_byte *info_ptr,
6487 struct die_info *comp_unit_die,
6488 int has_children,
6489 void *data)
6490 {
6491 struct dwarf2_cu *cu = reader->cu;
6492 struct objfile *objfile = cu->objfile;
6493 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6494 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6495 CORE_ADDR baseaddr;
6496 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6497 struct partial_symtab *pst;
6498 enum pc_bounds_kind cu_bounds_kind;
6499 const char *filename;
6500 struct process_psymtab_comp_unit_data *info
6501 = (struct process_psymtab_comp_unit_data *) data;
6502
6503 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
6504 return;
6505
6506 gdb_assert (! per_cu->is_debug_types);
6507
6508 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
6509
6510 cu->list_in_scope = &file_symbols;
6511
6512 /* Allocate a new partial symbol table structure. */
6513 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6514 if (filename == NULL)
6515 filename = "";
6516
6517 pst = create_partial_symtab (per_cu, filename);
6518
6519 /* This must be done before calling dwarf2_build_include_psymtabs. */
6520 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6521
6522 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6523
6524 dwarf2_find_base_address (comp_unit_die, cu);
6525
6526 /* Possibly set the default values of LOWPC and HIGHPC from
6527 `DW_AT_ranges'. */
6528 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6529 &best_highpc, cu, pst);
6530 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
6531 /* Store the contiguous range if it is not empty; it can be empty for
6532 CUs with no code. */
6533 addrmap_set_empty (objfile->psymtabs_addrmap,
6534 gdbarch_adjust_dwarf2_addr (gdbarch,
6535 best_lowpc + baseaddr),
6536 gdbarch_adjust_dwarf2_addr (gdbarch,
6537 best_highpc + baseaddr) - 1,
6538 pst);
6539
6540 /* Check if comp unit has_children.
6541 If so, read the rest of the partial symbols from this comp unit.
6542 If not, there's no more debug_info for this comp unit. */
6543 if (has_children)
6544 {
6545 struct partial_die_info *first_die;
6546 CORE_ADDR lowpc, highpc;
6547
6548 lowpc = ((CORE_ADDR) -1);
6549 highpc = ((CORE_ADDR) 0);
6550
6551 first_die = load_partial_dies (reader, info_ptr, 1);
6552
6553 scan_partial_symbols (first_die, &lowpc, &highpc,
6554 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6555
6556 /* If we didn't find a lowpc, set it to highpc to avoid
6557 complaints from `maint check'. */
6558 if (lowpc == ((CORE_ADDR) -1))
6559 lowpc = highpc;
6560
6561 /* If the compilation unit didn't have an explicit address range,
6562 then use the information extracted from its child dies. */
6563 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6564 {
6565 best_lowpc = lowpc;
6566 best_highpc = highpc;
6567 }
6568 }
6569 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6570 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6571
6572 end_psymtab_common (objfile, pst);
6573
6574 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6575 {
6576 int i;
6577 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6578 struct dwarf2_per_cu_data *iter;
6579
6580 /* Fill in 'dependencies' here; we fill in 'users' in a
6581 post-pass. */
6582 pst->number_of_dependencies = len;
6583 pst->dependencies =
6584 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6585 for (i = 0;
6586 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6587 i, iter);
6588 ++i)
6589 pst->dependencies[i] = iter->v.psymtab;
6590
6591 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6592 }
6593
6594 /* Get the list of files included in the current compilation unit,
6595 and build a psymtab for each of them. */
6596 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6597
6598 if (dwarf_read_debug)
6599 {
6600 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6601
6602 fprintf_unfiltered (gdb_stdlog,
6603 "Psymtab for %s unit @0x%x: %s - %s"
6604 ", %d global, %d static syms\n",
6605 per_cu->is_debug_types ? "type" : "comp",
6606 to_underlying (per_cu->sect_off),
6607 paddress (gdbarch, pst->textlow),
6608 paddress (gdbarch, pst->texthigh),
6609 pst->n_global_syms, pst->n_static_syms);
6610 }
6611 }
6612
6613 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6614 Process compilation unit THIS_CU for a psymtab. */
6615
6616 static void
6617 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6618 int want_partial_unit,
6619 enum language pretend_language)
6620 {
6621 /* If this compilation unit was already read in, free the
6622 cached copy in order to read it in again. This is
6623 necessary because we skipped some symbols when we first
6624 read in the compilation unit (see load_partial_dies).
6625 This problem could be avoided, but the benefit is unclear. */
6626 if (this_cu->cu != NULL)
6627 free_one_cached_comp_unit (this_cu);
6628
6629 if (this_cu->is_debug_types)
6630 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
6631 NULL);
6632 else
6633 {
6634 process_psymtab_comp_unit_data info;
6635 info.want_partial_unit = want_partial_unit;
6636 info.pretend_language = pretend_language;
6637 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6638 process_psymtab_comp_unit_reader, &info);
6639 }
6640
6641 /* Age out any secondary CUs. */
6642 age_cached_comp_units ();
6643 }
6644
6645 /* Reader function for build_type_psymtabs. */
6646
6647 static void
6648 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6649 const gdb_byte *info_ptr,
6650 struct die_info *type_unit_die,
6651 int has_children,
6652 void *data)
6653 {
6654 struct objfile *objfile = dwarf2_per_objfile->objfile;
6655 struct dwarf2_cu *cu = reader->cu;
6656 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6657 struct signatured_type *sig_type;
6658 struct type_unit_group *tu_group;
6659 struct attribute *attr;
6660 struct partial_die_info *first_die;
6661 CORE_ADDR lowpc, highpc;
6662 struct partial_symtab *pst;
6663
6664 gdb_assert (data == NULL);
6665 gdb_assert (per_cu->is_debug_types);
6666 sig_type = (struct signatured_type *) per_cu;
6667
6668 if (! has_children)
6669 return;
6670
6671 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6672 tu_group = get_type_unit_group (cu, attr);
6673
6674 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6675
6676 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6677 cu->list_in_scope = &file_symbols;
6678 pst = create_partial_symtab (per_cu, "");
6679 pst->anonymous = 1;
6680
6681 first_die = load_partial_dies (reader, info_ptr, 1);
6682
6683 lowpc = (CORE_ADDR) -1;
6684 highpc = (CORE_ADDR) 0;
6685 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6686
6687 end_psymtab_common (objfile, pst);
6688 }
6689
6690 /* Struct used to sort TUs by their abbreviation table offset. */
6691
6692 struct tu_abbrev_offset
6693 {
6694 struct signatured_type *sig_type;
6695 sect_offset abbrev_offset;
6696 };
6697
6698 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6699
6700 static int
6701 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6702 {
6703 const struct tu_abbrev_offset * const *a
6704 = (const struct tu_abbrev_offset * const*) ap;
6705 const struct tu_abbrev_offset * const *b
6706 = (const struct tu_abbrev_offset * const*) bp;
6707 sect_offset aoff = (*a)->abbrev_offset;
6708 sect_offset boff = (*b)->abbrev_offset;
6709
6710 return (aoff > boff) - (aoff < boff);
6711 }
6712
6713 /* Efficiently read all the type units.
6714 This does the bulk of the work for build_type_psymtabs.
6715
6716 The efficiency is because we sort TUs by the abbrev table they use and
6717 only read each abbrev table once. In one program there are 200K TUs
6718 sharing 8K abbrev tables.
6719
6720 The main purpose of this function is to support building the
6721 dwarf2_per_objfile->type_unit_groups table.
6722 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6723 can collapse the search space by grouping them by stmt_list.
6724 The savings can be significant, in the same program from above the 200K TUs
6725 share 8K stmt_list tables.
6726
6727 FUNC is expected to call get_type_unit_group, which will create the
6728 struct type_unit_group if necessary and add it to
6729 dwarf2_per_objfile->type_unit_groups. */
6730
6731 static void
6732 build_type_psymtabs_1 (void)
6733 {
6734 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6735 struct cleanup *cleanups;
6736 struct abbrev_table *abbrev_table;
6737 sect_offset abbrev_offset;
6738 struct tu_abbrev_offset *sorted_by_abbrev;
6739 int i;
6740
6741 /* It's up to the caller to not call us multiple times. */
6742 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6743
6744 if (dwarf2_per_objfile->n_type_units == 0)
6745 return;
6746
6747 /* TUs typically share abbrev tables, and there can be way more TUs than
6748 abbrev tables. Sort by abbrev table to reduce the number of times we
6749 read each abbrev table in.
6750 Alternatives are to punt or to maintain a cache of abbrev tables.
6751 This is simpler and efficient enough for now.
6752
6753 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6754 symtab to use). Typically TUs with the same abbrev offset have the same
6755 stmt_list value too so in practice this should work well.
6756
6757 The basic algorithm here is:
6758
6759 sort TUs by abbrev table
6760 for each TU with same abbrev table:
6761 read abbrev table if first user
6762 read TU top level DIE
6763 [IWBN if DWO skeletons had DW_AT_stmt_list]
6764 call FUNC */
6765
6766 if (dwarf_read_debug)
6767 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6768
6769 /* Sort in a separate table to maintain the order of all_type_units
6770 for .gdb_index: TU indices directly index all_type_units. */
6771 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6772 dwarf2_per_objfile->n_type_units);
6773 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6774 {
6775 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6776
6777 sorted_by_abbrev[i].sig_type = sig_type;
6778 sorted_by_abbrev[i].abbrev_offset =
6779 read_abbrev_offset (sig_type->per_cu.section,
6780 sig_type->per_cu.sect_off);
6781 }
6782 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6783 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6784 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6785
6786 abbrev_offset = (sect_offset) ~(unsigned) 0;
6787 abbrev_table = NULL;
6788 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6789
6790 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6791 {
6792 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6793
6794 /* Switch to the next abbrev table if necessary. */
6795 if (abbrev_table == NULL
6796 || tu->abbrev_offset != abbrev_offset)
6797 {
6798 if (abbrev_table != NULL)
6799 {
6800 abbrev_table_free (abbrev_table);
6801 /* Reset to NULL in case abbrev_table_read_table throws
6802 an error: abbrev_table_free_cleanup will get called. */
6803 abbrev_table = NULL;
6804 }
6805 abbrev_offset = tu->abbrev_offset;
6806 abbrev_table =
6807 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6808 abbrev_offset);
6809 ++tu_stats->nr_uniq_abbrev_tables;
6810 }
6811
6812 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6813 build_type_psymtabs_reader, NULL);
6814 }
6815
6816 do_cleanups (cleanups);
6817 }
6818
6819 /* Print collected type unit statistics. */
6820
6821 static void
6822 print_tu_stats (void)
6823 {
6824 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6825
6826 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6827 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6828 dwarf2_per_objfile->n_type_units);
6829 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6830 tu_stats->nr_uniq_abbrev_tables);
6831 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6832 tu_stats->nr_symtabs);
6833 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6834 tu_stats->nr_symtab_sharers);
6835 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6836 tu_stats->nr_stmt_less_type_units);
6837 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6838 tu_stats->nr_all_type_units_reallocs);
6839 }
6840
6841 /* Traversal function for build_type_psymtabs. */
6842
6843 static int
6844 build_type_psymtab_dependencies (void **slot, void *info)
6845 {
6846 struct objfile *objfile = dwarf2_per_objfile->objfile;
6847 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6848 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6849 struct partial_symtab *pst = per_cu->v.psymtab;
6850 int len = VEC_length (sig_type_ptr, tu_group->tus);
6851 struct signatured_type *iter;
6852 int i;
6853
6854 gdb_assert (len > 0);
6855 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6856
6857 pst->number_of_dependencies = len;
6858 pst->dependencies =
6859 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6860 for (i = 0;
6861 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6862 ++i)
6863 {
6864 gdb_assert (iter->per_cu.is_debug_types);
6865 pst->dependencies[i] = iter->per_cu.v.psymtab;
6866 iter->type_unit_group = tu_group;
6867 }
6868
6869 VEC_free (sig_type_ptr, tu_group->tus);
6870
6871 return 1;
6872 }
6873
6874 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6875 Build partial symbol tables for the .debug_types comp-units. */
6876
6877 static void
6878 build_type_psymtabs (struct objfile *objfile)
6879 {
6880 if (! create_all_type_units (objfile))
6881 return;
6882
6883 build_type_psymtabs_1 ();
6884 }
6885
6886 /* Traversal function for process_skeletonless_type_unit.
6887 Read a TU in a DWO file and build partial symbols for it. */
6888
6889 static int
6890 process_skeletonless_type_unit (void **slot, void *info)
6891 {
6892 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6893 struct objfile *objfile = (struct objfile *) info;
6894 struct signatured_type find_entry, *entry;
6895
6896 /* If this TU doesn't exist in the global table, add it and read it in. */
6897
6898 if (dwarf2_per_objfile->signatured_types == NULL)
6899 {
6900 dwarf2_per_objfile->signatured_types
6901 = allocate_signatured_type_table (objfile);
6902 }
6903
6904 find_entry.signature = dwo_unit->signature;
6905 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6906 INSERT);
6907 /* If we've already seen this type there's nothing to do. What's happening
6908 is we're doing our own version of comdat-folding here. */
6909 if (*slot != NULL)
6910 return 1;
6911
6912 /* This does the job that create_all_type_units would have done for
6913 this TU. */
6914 entry = add_type_unit (dwo_unit->signature, slot);
6915 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6916 *slot = entry;
6917
6918 /* This does the job that build_type_psymtabs_1 would have done. */
6919 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6920 build_type_psymtabs_reader, NULL);
6921
6922 return 1;
6923 }
6924
6925 /* Traversal function for process_skeletonless_type_units. */
6926
6927 static int
6928 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6929 {
6930 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6931
6932 if (dwo_file->tus != NULL)
6933 {
6934 htab_traverse_noresize (dwo_file->tus,
6935 process_skeletonless_type_unit, info);
6936 }
6937
6938 return 1;
6939 }
6940
6941 /* Scan all TUs of DWO files, verifying we've processed them.
6942 This is needed in case a TU was emitted without its skeleton.
6943 Note: This can't be done until we know what all the DWO files are. */
6944
6945 static void
6946 process_skeletonless_type_units (struct objfile *objfile)
6947 {
6948 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6949 if (get_dwp_file () == NULL
6950 && dwarf2_per_objfile->dwo_files != NULL)
6951 {
6952 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6953 process_dwo_file_for_skeletonless_type_units,
6954 objfile);
6955 }
6956 }
6957
6958 /* Compute the 'user' field for each psymtab in OBJFILE. */
6959
6960 static void
6961 set_partial_user (struct objfile *objfile)
6962 {
6963 int i;
6964
6965 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6966 {
6967 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6968 struct partial_symtab *pst = per_cu->v.psymtab;
6969 int j;
6970
6971 if (pst == NULL)
6972 continue;
6973
6974 for (j = 0; j < pst->number_of_dependencies; ++j)
6975 {
6976 /* Set the 'user' field only if it is not already set. */
6977 if (pst->dependencies[j]->user == NULL)
6978 pst->dependencies[j]->user = pst;
6979 }
6980 }
6981 }
6982
6983 /* Build the partial symbol table by doing a quick pass through the
6984 .debug_info and .debug_abbrev sections. */
6985
6986 static void
6987 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6988 {
6989 struct cleanup *back_to;
6990 int i;
6991
6992 if (dwarf_read_debug)
6993 {
6994 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6995 objfile_name (objfile));
6996 }
6997
6998 dwarf2_per_objfile->reading_partial_symbols = 1;
6999
7000 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
7001
7002 /* Any cached compilation units will be linked by the per-objfile
7003 read_in_chain. Make sure to free them when we're done. */
7004 back_to = make_cleanup (free_cached_comp_units, NULL);
7005
7006 build_type_psymtabs (objfile);
7007
7008 create_all_comp_units (objfile);
7009
7010 /* Create a temporary address map on a temporary obstack. We later
7011 copy this to the final obstack. */
7012 auto_obstack temp_obstack;
7013
7014 scoped_restore save_psymtabs_addrmap
7015 = make_scoped_restore (&objfile->psymtabs_addrmap,
7016 addrmap_create_mutable (&temp_obstack));
7017
7018 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
7019 {
7020 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7021
7022 process_psymtab_comp_unit (per_cu, 0, language_minimal);
7023 }
7024
7025 /* This has to wait until we read the CUs, we need the list of DWOs. */
7026 process_skeletonless_type_units (objfile);
7027
7028 /* Now that all TUs have been processed we can fill in the dependencies. */
7029 if (dwarf2_per_objfile->type_unit_groups != NULL)
7030 {
7031 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
7032 build_type_psymtab_dependencies, NULL);
7033 }
7034
7035 if (dwarf_read_debug)
7036 print_tu_stats ();
7037
7038 set_partial_user (objfile);
7039
7040 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
7041 &objfile->objfile_obstack);
7042 /* At this point we want to keep the address map. */
7043 save_psymtabs_addrmap.release ();
7044
7045 do_cleanups (back_to);
7046
7047 if (dwarf_read_debug)
7048 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
7049 objfile_name (objfile));
7050 }
7051
7052 /* die_reader_func for load_partial_comp_unit. */
7053
7054 static void
7055 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
7056 const gdb_byte *info_ptr,
7057 struct die_info *comp_unit_die,
7058 int has_children,
7059 void *data)
7060 {
7061 struct dwarf2_cu *cu = reader->cu;
7062
7063 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
7064
7065 /* Check if comp unit has_children.
7066 If so, read the rest of the partial symbols from this comp unit.
7067 If not, there's no more debug_info for this comp unit. */
7068 if (has_children)
7069 load_partial_dies (reader, info_ptr, 0);
7070 }
7071
7072 /* Load the partial DIEs for a secondary CU into memory.
7073 This is also used when rereading a primary CU with load_all_dies. */
7074
7075 static void
7076 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
7077 {
7078 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7079 load_partial_comp_unit_reader, NULL);
7080 }
7081
7082 static void
7083 read_comp_units_from_section (struct objfile *objfile,
7084 struct dwarf2_section_info *section,
7085 struct dwarf2_section_info *abbrev_section,
7086 unsigned int is_dwz,
7087 int *n_allocated,
7088 int *n_comp_units,
7089 struct dwarf2_per_cu_data ***all_comp_units)
7090 {
7091 const gdb_byte *info_ptr;
7092 bfd *abfd = get_section_bfd_owner (section);
7093
7094 if (dwarf_read_debug)
7095 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
7096 get_section_name (section),
7097 get_section_file_name (section));
7098
7099 dwarf2_read_section (objfile, section);
7100
7101 info_ptr = section->buffer;
7102
7103 while (info_ptr < section->buffer + section->size)
7104 {
7105 struct dwarf2_per_cu_data *this_cu;
7106
7107 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
7108
7109 comp_unit_head cu_header;
7110 read_and_check_comp_unit_head (&cu_header, section, abbrev_section,
7111 info_ptr, rcuh_kind::COMPILE);
7112
7113 /* Save the compilation unit for later lookup. */
7114 if (cu_header.unit_type != DW_UT_type)
7115 {
7116 this_cu = XOBNEW (&objfile->objfile_obstack,
7117 struct dwarf2_per_cu_data);
7118 memset (this_cu, 0, sizeof (*this_cu));
7119 }
7120 else
7121 {
7122 auto sig_type = XOBNEW (&objfile->objfile_obstack,
7123 struct signatured_type);
7124 memset (sig_type, 0, sizeof (*sig_type));
7125 sig_type->signature = cu_header.signature;
7126 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
7127 this_cu = &sig_type->per_cu;
7128 }
7129 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
7130 this_cu->sect_off = sect_off;
7131 this_cu->length = cu_header.length + cu_header.initial_length_size;
7132 this_cu->is_dwz = is_dwz;
7133 this_cu->objfile = objfile;
7134 this_cu->section = section;
7135
7136 if (*n_comp_units == *n_allocated)
7137 {
7138 *n_allocated *= 2;
7139 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
7140 *all_comp_units, *n_allocated);
7141 }
7142 (*all_comp_units)[*n_comp_units] = this_cu;
7143 ++*n_comp_units;
7144
7145 info_ptr = info_ptr + this_cu->length;
7146 }
7147 }
7148
7149 /* Create a list of all compilation units in OBJFILE.
7150 This is only done for -readnow and building partial symtabs. */
7151
7152 static void
7153 create_all_comp_units (struct objfile *objfile)
7154 {
7155 int n_allocated;
7156 int n_comp_units;
7157 struct dwarf2_per_cu_data **all_comp_units;
7158 struct dwz_file *dwz;
7159
7160 n_comp_units = 0;
7161 n_allocated = 10;
7162 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
7163
7164 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info,
7165 &dwarf2_per_objfile->abbrev, 0,
7166 &n_allocated, &n_comp_units, &all_comp_units);
7167
7168 dwz = dwarf2_get_dwz_file ();
7169 if (dwz != NULL)
7170 read_comp_units_from_section (objfile, &dwz->info, &dwz->abbrev, 1,
7171 &n_allocated, &n_comp_units,
7172 &all_comp_units);
7173
7174 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
7175 struct dwarf2_per_cu_data *,
7176 n_comp_units);
7177 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
7178 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
7179 xfree (all_comp_units);
7180 dwarf2_per_objfile->n_comp_units = n_comp_units;
7181 }
7182
7183 /* Process all loaded DIEs for compilation unit CU, starting at
7184 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
7185 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
7186 DW_AT_ranges). See the comments of add_partial_subprogram on how
7187 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
7188
7189 static void
7190 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
7191 CORE_ADDR *highpc, int set_addrmap,
7192 struct dwarf2_cu *cu)
7193 {
7194 struct partial_die_info *pdi;
7195
7196 /* Now, march along the PDI's, descending into ones which have
7197 interesting children but skipping the children of the other ones,
7198 until we reach the end of the compilation unit. */
7199
7200 pdi = first_die;
7201
7202 while (pdi != NULL)
7203 {
7204 fixup_partial_die (pdi, cu);
7205
7206 /* Anonymous namespaces or modules have no name but have interesting
7207 children, so we need to look at them. Ditto for anonymous
7208 enums. */
7209
7210 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
7211 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
7212 || pdi->tag == DW_TAG_imported_unit)
7213 {
7214 switch (pdi->tag)
7215 {
7216 case DW_TAG_subprogram:
7217 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7218 break;
7219 case DW_TAG_constant:
7220 case DW_TAG_variable:
7221 case DW_TAG_typedef:
7222 case DW_TAG_union_type:
7223 if (!pdi->is_declaration)
7224 {
7225 add_partial_symbol (pdi, cu);
7226 }
7227 break;
7228 case DW_TAG_class_type:
7229 case DW_TAG_interface_type:
7230 case DW_TAG_structure_type:
7231 if (!pdi->is_declaration)
7232 {
7233 add_partial_symbol (pdi, cu);
7234 }
7235 if (cu->language == language_rust && pdi->has_children)
7236 scan_partial_symbols (pdi->die_child, lowpc, highpc,
7237 set_addrmap, cu);
7238 break;
7239 case DW_TAG_enumeration_type:
7240 if (!pdi->is_declaration)
7241 add_partial_enumeration (pdi, cu);
7242 break;
7243 case DW_TAG_base_type:
7244 case DW_TAG_subrange_type:
7245 /* File scope base type definitions are added to the partial
7246 symbol table. */
7247 add_partial_symbol (pdi, cu);
7248 break;
7249 case DW_TAG_namespace:
7250 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
7251 break;
7252 case DW_TAG_module:
7253 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
7254 break;
7255 case DW_TAG_imported_unit:
7256 {
7257 struct dwarf2_per_cu_data *per_cu;
7258
7259 /* For now we don't handle imported units in type units. */
7260 if (cu->per_cu->is_debug_types)
7261 {
7262 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7263 " supported in type units [in module %s]"),
7264 objfile_name (cu->objfile));
7265 }
7266
7267 per_cu = dwarf2_find_containing_comp_unit (pdi->d.sect_off,
7268 pdi->is_dwz,
7269 cu->objfile);
7270
7271 /* Go read the partial unit, if needed. */
7272 if (per_cu->v.psymtab == NULL)
7273 process_psymtab_comp_unit (per_cu, 1, cu->language);
7274
7275 VEC_safe_push (dwarf2_per_cu_ptr,
7276 cu->per_cu->imported_symtabs, per_cu);
7277 }
7278 break;
7279 case DW_TAG_imported_declaration:
7280 add_partial_symbol (pdi, cu);
7281 break;
7282 default:
7283 break;
7284 }
7285 }
7286
7287 /* If the die has a sibling, skip to the sibling. */
7288
7289 pdi = pdi->die_sibling;
7290 }
7291 }
7292
7293 /* Functions used to compute the fully scoped name of a partial DIE.
7294
7295 Normally, this is simple. For C++, the parent DIE's fully scoped
7296 name is concatenated with "::" and the partial DIE's name.
7297 Enumerators are an exception; they use the scope of their parent
7298 enumeration type, i.e. the name of the enumeration type is not
7299 prepended to the enumerator.
7300
7301 There are two complexities. One is DW_AT_specification; in this
7302 case "parent" means the parent of the target of the specification,
7303 instead of the direct parent of the DIE. The other is compilers
7304 which do not emit DW_TAG_namespace; in this case we try to guess
7305 the fully qualified name of structure types from their members'
7306 linkage names. This must be done using the DIE's children rather
7307 than the children of any DW_AT_specification target. We only need
7308 to do this for structures at the top level, i.e. if the target of
7309 any DW_AT_specification (if any; otherwise the DIE itself) does not
7310 have a parent. */
7311
7312 /* Compute the scope prefix associated with PDI's parent, in
7313 compilation unit CU. The result will be allocated on CU's
7314 comp_unit_obstack, or a copy of the already allocated PDI->NAME
7315 field. NULL is returned if no prefix is necessary. */
7316 static const char *
7317 partial_die_parent_scope (struct partial_die_info *pdi,
7318 struct dwarf2_cu *cu)
7319 {
7320 const char *grandparent_scope;
7321 struct partial_die_info *parent, *real_pdi;
7322
7323 /* We need to look at our parent DIE; if we have a DW_AT_specification,
7324 then this means the parent of the specification DIE. */
7325
7326 real_pdi = pdi;
7327 while (real_pdi->has_specification)
7328 real_pdi = find_partial_die (real_pdi->spec_offset,
7329 real_pdi->spec_is_dwz, cu);
7330
7331 parent = real_pdi->die_parent;
7332 if (parent == NULL)
7333 return NULL;
7334
7335 if (parent->scope_set)
7336 return parent->scope;
7337
7338 fixup_partial_die (parent, cu);
7339
7340 grandparent_scope = partial_die_parent_scope (parent, cu);
7341
7342 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
7343 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
7344 Work around this problem here. */
7345 if (cu->language == language_cplus
7346 && parent->tag == DW_TAG_namespace
7347 && strcmp (parent->name, "::") == 0
7348 && grandparent_scope == NULL)
7349 {
7350 parent->scope = NULL;
7351 parent->scope_set = 1;
7352 return NULL;
7353 }
7354
7355 if (pdi->tag == DW_TAG_enumerator)
7356 /* Enumerators should not get the name of the enumeration as a prefix. */
7357 parent->scope = grandparent_scope;
7358 else if (parent->tag == DW_TAG_namespace
7359 || parent->tag == DW_TAG_module
7360 || parent->tag == DW_TAG_structure_type
7361 || parent->tag == DW_TAG_class_type
7362 || parent->tag == DW_TAG_interface_type
7363 || parent->tag == DW_TAG_union_type
7364 || parent->tag == DW_TAG_enumeration_type)
7365 {
7366 if (grandparent_scope == NULL)
7367 parent->scope = parent->name;
7368 else
7369 parent->scope = typename_concat (&cu->comp_unit_obstack,
7370 grandparent_scope,
7371 parent->name, 0, cu);
7372 }
7373 else
7374 {
7375 /* FIXME drow/2004-04-01: What should we be doing with
7376 function-local names? For partial symbols, we should probably be
7377 ignoring them. */
7378 complaint (&symfile_complaints,
7379 _("unhandled containing DIE tag %d for DIE at %d"),
7380 parent->tag, to_underlying (pdi->sect_off));
7381 parent->scope = grandparent_scope;
7382 }
7383
7384 parent->scope_set = 1;
7385 return parent->scope;
7386 }
7387
7388 /* Return the fully scoped name associated with PDI, from compilation unit
7389 CU. The result will be allocated with malloc. */
7390
7391 static char *
7392 partial_die_full_name (struct partial_die_info *pdi,
7393 struct dwarf2_cu *cu)
7394 {
7395 const char *parent_scope;
7396
7397 /* If this is a template instantiation, we can not work out the
7398 template arguments from partial DIEs. So, unfortunately, we have
7399 to go through the full DIEs. At least any work we do building
7400 types here will be reused if full symbols are loaded later. */
7401 if (pdi->has_template_arguments)
7402 {
7403 fixup_partial_die (pdi, cu);
7404
7405 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
7406 {
7407 struct die_info *die;
7408 struct attribute attr;
7409 struct dwarf2_cu *ref_cu = cu;
7410
7411 /* DW_FORM_ref_addr is using section offset. */
7412 attr.name = (enum dwarf_attribute) 0;
7413 attr.form = DW_FORM_ref_addr;
7414 attr.u.unsnd = to_underlying (pdi->sect_off);
7415 die = follow_die_ref (NULL, &attr, &ref_cu);
7416
7417 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
7418 }
7419 }
7420
7421 parent_scope = partial_die_parent_scope (pdi, cu);
7422 if (parent_scope == NULL)
7423 return NULL;
7424 else
7425 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
7426 }
7427
7428 static void
7429 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
7430 {
7431 struct objfile *objfile = cu->objfile;
7432 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7433 CORE_ADDR addr = 0;
7434 const char *actual_name = NULL;
7435 CORE_ADDR baseaddr;
7436 char *built_actual_name;
7437
7438 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7439
7440 built_actual_name = partial_die_full_name (pdi, cu);
7441 if (built_actual_name != NULL)
7442 actual_name = built_actual_name;
7443
7444 if (actual_name == NULL)
7445 actual_name = pdi->name;
7446
7447 switch (pdi->tag)
7448 {
7449 case DW_TAG_subprogram:
7450 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
7451 if (pdi->is_external || cu->language == language_ada)
7452 {
7453 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
7454 of the global scope. But in Ada, we want to be able to access
7455 nested procedures globally. So all Ada subprograms are stored
7456 in the global scope. */
7457 add_psymbol_to_list (actual_name, strlen (actual_name),
7458 built_actual_name != NULL,
7459 VAR_DOMAIN, LOC_BLOCK,
7460 &objfile->global_psymbols,
7461 addr, cu->language, objfile);
7462 }
7463 else
7464 {
7465 add_psymbol_to_list (actual_name, strlen (actual_name),
7466 built_actual_name != NULL,
7467 VAR_DOMAIN, LOC_BLOCK,
7468 &objfile->static_psymbols,
7469 addr, cu->language, objfile);
7470 }
7471
7472 if (pdi->main_subprogram && actual_name != NULL)
7473 set_objfile_main_name (objfile, actual_name, cu->language);
7474 break;
7475 case DW_TAG_constant:
7476 {
7477 std::vector<partial_symbol *> *list;
7478
7479 if (pdi->is_external)
7480 list = &objfile->global_psymbols;
7481 else
7482 list = &objfile->static_psymbols;
7483 add_psymbol_to_list (actual_name, strlen (actual_name),
7484 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
7485 list, 0, cu->language, objfile);
7486 }
7487 break;
7488 case DW_TAG_variable:
7489 if (pdi->d.locdesc)
7490 addr = decode_locdesc (pdi->d.locdesc, cu);
7491
7492 if (pdi->d.locdesc
7493 && addr == 0
7494 && !dwarf2_per_objfile->has_section_at_zero)
7495 {
7496 /* A global or static variable may also have been stripped
7497 out by the linker if unused, in which case its address
7498 will be nullified; do not add such variables into partial
7499 symbol table then. */
7500 }
7501 else if (pdi->is_external)
7502 {
7503 /* Global Variable.
7504 Don't enter into the minimal symbol tables as there is
7505 a minimal symbol table entry from the ELF symbols already.
7506 Enter into partial symbol table if it has a location
7507 descriptor or a type.
7508 If the location descriptor is missing, new_symbol will create
7509 a LOC_UNRESOLVED symbol, the address of the variable will then
7510 be determined from the minimal symbol table whenever the variable
7511 is referenced.
7512 The address for the partial symbol table entry is not
7513 used by GDB, but it comes in handy for debugging partial symbol
7514 table building. */
7515
7516 if (pdi->d.locdesc || pdi->has_type)
7517 add_psymbol_to_list (actual_name, strlen (actual_name),
7518 built_actual_name != NULL,
7519 VAR_DOMAIN, LOC_STATIC,
7520 &objfile->global_psymbols,
7521 addr + baseaddr,
7522 cu->language, objfile);
7523 }
7524 else
7525 {
7526 int has_loc = pdi->d.locdesc != NULL;
7527
7528 /* Static Variable. Skip symbols whose value we cannot know (those
7529 without location descriptors or constant values). */
7530 if (!has_loc && !pdi->has_const_value)
7531 {
7532 xfree (built_actual_name);
7533 return;
7534 }
7535
7536 add_psymbol_to_list (actual_name, strlen (actual_name),
7537 built_actual_name != NULL,
7538 VAR_DOMAIN, LOC_STATIC,
7539 &objfile->static_psymbols,
7540 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
7541 cu->language, objfile);
7542 }
7543 break;
7544 case DW_TAG_typedef:
7545 case DW_TAG_base_type:
7546 case DW_TAG_subrange_type:
7547 add_psymbol_to_list (actual_name, strlen (actual_name),
7548 built_actual_name != NULL,
7549 VAR_DOMAIN, LOC_TYPEDEF,
7550 &objfile->static_psymbols,
7551 0, cu->language, objfile);
7552 break;
7553 case DW_TAG_imported_declaration:
7554 case DW_TAG_namespace:
7555 add_psymbol_to_list (actual_name, strlen (actual_name),
7556 built_actual_name != NULL,
7557 VAR_DOMAIN, LOC_TYPEDEF,
7558 &objfile->global_psymbols,
7559 0, cu->language, objfile);
7560 break;
7561 case DW_TAG_module:
7562 add_psymbol_to_list (actual_name, strlen (actual_name),
7563 built_actual_name != NULL,
7564 MODULE_DOMAIN, LOC_TYPEDEF,
7565 &objfile->global_psymbols,
7566 0, cu->language, objfile);
7567 break;
7568 case DW_TAG_class_type:
7569 case DW_TAG_interface_type:
7570 case DW_TAG_structure_type:
7571 case DW_TAG_union_type:
7572 case DW_TAG_enumeration_type:
7573 /* Skip external references. The DWARF standard says in the section
7574 about "Structure, Union, and Class Type Entries": "An incomplete
7575 structure, union or class type is represented by a structure,
7576 union or class entry that does not have a byte size attribute
7577 and that has a DW_AT_declaration attribute." */
7578 if (!pdi->has_byte_size && pdi->is_declaration)
7579 {
7580 xfree (built_actual_name);
7581 return;
7582 }
7583
7584 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7585 static vs. global. */
7586 add_psymbol_to_list (actual_name, strlen (actual_name),
7587 built_actual_name != NULL,
7588 STRUCT_DOMAIN, LOC_TYPEDEF,
7589 cu->language == language_cplus
7590 ? &objfile->global_psymbols
7591 : &objfile->static_psymbols,
7592 0, cu->language, objfile);
7593
7594 break;
7595 case DW_TAG_enumerator:
7596 add_psymbol_to_list (actual_name, strlen (actual_name),
7597 built_actual_name != NULL,
7598 VAR_DOMAIN, LOC_CONST,
7599 cu->language == language_cplus
7600 ? &objfile->global_psymbols
7601 : &objfile->static_psymbols,
7602 0, cu->language, objfile);
7603 break;
7604 default:
7605 break;
7606 }
7607
7608 xfree (built_actual_name);
7609 }
7610
7611 /* Read a partial die corresponding to a namespace; also, add a symbol
7612 corresponding to that namespace to the symbol table. NAMESPACE is
7613 the name of the enclosing namespace. */
7614
7615 static void
7616 add_partial_namespace (struct partial_die_info *pdi,
7617 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7618 int set_addrmap, struct dwarf2_cu *cu)
7619 {
7620 /* Add a symbol for the namespace. */
7621
7622 add_partial_symbol (pdi, cu);
7623
7624 /* Now scan partial symbols in that namespace. */
7625
7626 if (pdi->has_children)
7627 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7628 }
7629
7630 /* Read a partial die corresponding to a Fortran module. */
7631
7632 static void
7633 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7634 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7635 {
7636 /* Add a symbol for the namespace. */
7637
7638 add_partial_symbol (pdi, cu);
7639
7640 /* Now scan partial symbols in that module. */
7641
7642 if (pdi->has_children)
7643 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7644 }
7645
7646 /* Read a partial die corresponding to a subprogram and create a partial
7647 symbol for that subprogram. When the CU language allows it, this
7648 routine also defines a partial symbol for each nested subprogram
7649 that this subprogram contains. If SET_ADDRMAP is true, record the
7650 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7651 and highest PC values found in PDI.
7652
7653 PDI may also be a lexical block, in which case we simply search
7654 recursively for subprograms defined inside that lexical block.
7655 Again, this is only performed when the CU language allows this
7656 type of definitions. */
7657
7658 static void
7659 add_partial_subprogram (struct partial_die_info *pdi,
7660 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7661 int set_addrmap, struct dwarf2_cu *cu)
7662 {
7663 if (pdi->tag == DW_TAG_subprogram)
7664 {
7665 if (pdi->has_pc_info)
7666 {
7667 if (pdi->lowpc < *lowpc)
7668 *lowpc = pdi->lowpc;
7669 if (pdi->highpc > *highpc)
7670 *highpc = pdi->highpc;
7671 if (set_addrmap)
7672 {
7673 struct objfile *objfile = cu->objfile;
7674 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7675 CORE_ADDR baseaddr;
7676 CORE_ADDR highpc;
7677 CORE_ADDR lowpc;
7678
7679 baseaddr = ANOFFSET (objfile->section_offsets,
7680 SECT_OFF_TEXT (objfile));
7681 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7682 pdi->lowpc + baseaddr);
7683 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7684 pdi->highpc + baseaddr);
7685 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7686 cu->per_cu->v.psymtab);
7687 }
7688 }
7689
7690 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7691 {
7692 if (!pdi->is_declaration)
7693 /* Ignore subprogram DIEs that do not have a name, they are
7694 illegal. Do not emit a complaint at this point, we will
7695 do so when we convert this psymtab into a symtab. */
7696 if (pdi->name)
7697 add_partial_symbol (pdi, cu);
7698 }
7699 }
7700
7701 if (! pdi->has_children)
7702 return;
7703
7704 if (cu->language == language_ada)
7705 {
7706 pdi = pdi->die_child;
7707 while (pdi != NULL)
7708 {
7709 fixup_partial_die (pdi, cu);
7710 if (pdi->tag == DW_TAG_subprogram
7711 || pdi->tag == DW_TAG_lexical_block)
7712 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7713 pdi = pdi->die_sibling;
7714 }
7715 }
7716 }
7717
7718 /* Read a partial die corresponding to an enumeration type. */
7719
7720 static void
7721 add_partial_enumeration (struct partial_die_info *enum_pdi,
7722 struct dwarf2_cu *cu)
7723 {
7724 struct partial_die_info *pdi;
7725
7726 if (enum_pdi->name != NULL)
7727 add_partial_symbol (enum_pdi, cu);
7728
7729 pdi = enum_pdi->die_child;
7730 while (pdi)
7731 {
7732 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7733 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7734 else
7735 add_partial_symbol (pdi, cu);
7736 pdi = pdi->die_sibling;
7737 }
7738 }
7739
7740 /* Return the initial uleb128 in the die at INFO_PTR. */
7741
7742 static unsigned int
7743 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7744 {
7745 unsigned int bytes_read;
7746
7747 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7748 }
7749
7750 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7751 Return the corresponding abbrev, or NULL if the number is zero (indicating
7752 an empty DIE). In either case *BYTES_READ will be set to the length of
7753 the initial number. */
7754
7755 static struct abbrev_info *
7756 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7757 struct dwarf2_cu *cu)
7758 {
7759 bfd *abfd = cu->objfile->obfd;
7760 unsigned int abbrev_number;
7761 struct abbrev_info *abbrev;
7762
7763 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7764
7765 if (abbrev_number == 0)
7766 return NULL;
7767
7768 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7769 if (!abbrev)
7770 {
7771 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7772 " at offset 0x%x [in module %s]"),
7773 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7774 to_underlying (cu->header.sect_off), bfd_get_filename (abfd));
7775 }
7776
7777 return abbrev;
7778 }
7779
7780 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7781 Returns a pointer to the end of a series of DIEs, terminated by an empty
7782 DIE. Any children of the skipped DIEs will also be skipped. */
7783
7784 static const gdb_byte *
7785 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7786 {
7787 struct dwarf2_cu *cu = reader->cu;
7788 struct abbrev_info *abbrev;
7789 unsigned int bytes_read;
7790
7791 while (1)
7792 {
7793 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7794 if (abbrev == NULL)
7795 return info_ptr + bytes_read;
7796 else
7797 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7798 }
7799 }
7800
7801 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7802 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7803 abbrev corresponding to that skipped uleb128 should be passed in
7804 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7805 children. */
7806
7807 static const gdb_byte *
7808 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7809 struct abbrev_info *abbrev)
7810 {
7811 unsigned int bytes_read;
7812 struct attribute attr;
7813 bfd *abfd = reader->abfd;
7814 struct dwarf2_cu *cu = reader->cu;
7815 const gdb_byte *buffer = reader->buffer;
7816 const gdb_byte *buffer_end = reader->buffer_end;
7817 unsigned int form, i;
7818
7819 for (i = 0; i < abbrev->num_attrs; i++)
7820 {
7821 /* The only abbrev we care about is DW_AT_sibling. */
7822 if (abbrev->attrs[i].name == DW_AT_sibling)
7823 {
7824 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7825 if (attr.form == DW_FORM_ref_addr)
7826 complaint (&symfile_complaints,
7827 _("ignoring absolute DW_AT_sibling"));
7828 else
7829 {
7830 sect_offset off = dwarf2_get_ref_die_offset (&attr);
7831 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
7832
7833 if (sibling_ptr < info_ptr)
7834 complaint (&symfile_complaints,
7835 _("DW_AT_sibling points backwards"));
7836 else if (sibling_ptr > reader->buffer_end)
7837 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7838 else
7839 return sibling_ptr;
7840 }
7841 }
7842
7843 /* If it isn't DW_AT_sibling, skip this attribute. */
7844 form = abbrev->attrs[i].form;
7845 skip_attribute:
7846 switch (form)
7847 {
7848 case DW_FORM_ref_addr:
7849 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7850 and later it is offset sized. */
7851 if (cu->header.version == 2)
7852 info_ptr += cu->header.addr_size;
7853 else
7854 info_ptr += cu->header.offset_size;
7855 break;
7856 case DW_FORM_GNU_ref_alt:
7857 info_ptr += cu->header.offset_size;
7858 break;
7859 case DW_FORM_addr:
7860 info_ptr += cu->header.addr_size;
7861 break;
7862 case DW_FORM_data1:
7863 case DW_FORM_ref1:
7864 case DW_FORM_flag:
7865 info_ptr += 1;
7866 break;
7867 case DW_FORM_flag_present:
7868 case DW_FORM_implicit_const:
7869 break;
7870 case DW_FORM_data2:
7871 case DW_FORM_ref2:
7872 info_ptr += 2;
7873 break;
7874 case DW_FORM_data4:
7875 case DW_FORM_ref4:
7876 info_ptr += 4;
7877 break;
7878 case DW_FORM_data8:
7879 case DW_FORM_ref8:
7880 case DW_FORM_ref_sig8:
7881 info_ptr += 8;
7882 break;
7883 case DW_FORM_data16:
7884 info_ptr += 16;
7885 break;
7886 case DW_FORM_string:
7887 read_direct_string (abfd, info_ptr, &bytes_read);
7888 info_ptr += bytes_read;
7889 break;
7890 case DW_FORM_sec_offset:
7891 case DW_FORM_strp:
7892 case DW_FORM_GNU_strp_alt:
7893 info_ptr += cu->header.offset_size;
7894 break;
7895 case DW_FORM_exprloc:
7896 case DW_FORM_block:
7897 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7898 info_ptr += bytes_read;
7899 break;
7900 case DW_FORM_block1:
7901 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7902 break;
7903 case DW_FORM_block2:
7904 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7905 break;
7906 case DW_FORM_block4:
7907 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7908 break;
7909 case DW_FORM_sdata:
7910 case DW_FORM_udata:
7911 case DW_FORM_ref_udata:
7912 case DW_FORM_GNU_addr_index:
7913 case DW_FORM_GNU_str_index:
7914 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7915 break;
7916 case DW_FORM_indirect:
7917 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7918 info_ptr += bytes_read;
7919 /* We need to continue parsing from here, so just go back to
7920 the top. */
7921 goto skip_attribute;
7922
7923 default:
7924 error (_("Dwarf Error: Cannot handle %s "
7925 "in DWARF reader [in module %s]"),
7926 dwarf_form_name (form),
7927 bfd_get_filename (abfd));
7928 }
7929 }
7930
7931 if (abbrev->has_children)
7932 return skip_children (reader, info_ptr);
7933 else
7934 return info_ptr;
7935 }
7936
7937 /* Locate ORIG_PDI's sibling.
7938 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7939
7940 static const gdb_byte *
7941 locate_pdi_sibling (const struct die_reader_specs *reader,
7942 struct partial_die_info *orig_pdi,
7943 const gdb_byte *info_ptr)
7944 {
7945 /* Do we know the sibling already? */
7946
7947 if (orig_pdi->sibling)
7948 return orig_pdi->sibling;
7949
7950 /* Are there any children to deal with? */
7951
7952 if (!orig_pdi->has_children)
7953 return info_ptr;
7954
7955 /* Skip the children the long way. */
7956
7957 return skip_children (reader, info_ptr);
7958 }
7959
7960 /* Expand this partial symbol table into a full symbol table. SELF is
7961 not NULL. */
7962
7963 static void
7964 dwarf2_read_symtab (struct partial_symtab *self,
7965 struct objfile *objfile)
7966 {
7967 if (self->readin)
7968 {
7969 warning (_("bug: psymtab for %s is already read in."),
7970 self->filename);
7971 }
7972 else
7973 {
7974 if (info_verbose)
7975 {
7976 printf_filtered (_("Reading in symbols for %s..."),
7977 self->filename);
7978 gdb_flush (gdb_stdout);
7979 }
7980
7981 /* Restore our global data. */
7982 dwarf2_per_objfile
7983 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7984 dwarf2_objfile_data_key);
7985
7986 /* If this psymtab is constructed from a debug-only objfile, the
7987 has_section_at_zero flag will not necessarily be correct. We
7988 can get the correct value for this flag by looking at the data
7989 associated with the (presumably stripped) associated objfile. */
7990 if (objfile->separate_debug_objfile_backlink)
7991 {
7992 struct dwarf2_per_objfile *dpo_backlink
7993 = ((struct dwarf2_per_objfile *)
7994 objfile_data (objfile->separate_debug_objfile_backlink,
7995 dwarf2_objfile_data_key));
7996
7997 dwarf2_per_objfile->has_section_at_zero
7998 = dpo_backlink->has_section_at_zero;
7999 }
8000
8001 dwarf2_per_objfile->reading_partial_symbols = 0;
8002
8003 psymtab_to_symtab_1 (self);
8004
8005 /* Finish up the debug error message. */
8006 if (info_verbose)
8007 printf_filtered (_("done.\n"));
8008 }
8009
8010 process_cu_includes ();
8011 }
8012 \f
8013 /* Reading in full CUs. */
8014
8015 /* Add PER_CU to the queue. */
8016
8017 static void
8018 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
8019 enum language pretend_language)
8020 {
8021 struct dwarf2_queue_item *item;
8022
8023 per_cu->queued = 1;
8024 item = XNEW (struct dwarf2_queue_item);
8025 item->per_cu = per_cu;
8026 item->pretend_language = pretend_language;
8027 item->next = NULL;
8028
8029 if (dwarf2_queue == NULL)
8030 dwarf2_queue = item;
8031 else
8032 dwarf2_queue_tail->next = item;
8033
8034 dwarf2_queue_tail = item;
8035 }
8036
8037 /* If PER_CU is not yet queued, add it to the queue.
8038 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
8039 dependency.
8040 The result is non-zero if PER_CU was queued, otherwise the result is zero
8041 meaning either PER_CU is already queued or it is already loaded.
8042
8043 N.B. There is an invariant here that if a CU is queued then it is loaded.
8044 The caller is required to load PER_CU if we return non-zero. */
8045
8046 static int
8047 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
8048 struct dwarf2_per_cu_data *per_cu,
8049 enum language pretend_language)
8050 {
8051 /* We may arrive here during partial symbol reading, if we need full
8052 DIEs to process an unusual case (e.g. template arguments). Do
8053 not queue PER_CU, just tell our caller to load its DIEs. */
8054 if (dwarf2_per_objfile->reading_partial_symbols)
8055 {
8056 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
8057 return 1;
8058 return 0;
8059 }
8060
8061 /* Mark the dependence relation so that we don't flush PER_CU
8062 too early. */
8063 if (dependent_cu != NULL)
8064 dwarf2_add_dependence (dependent_cu, per_cu);
8065
8066 /* If it's already on the queue, we have nothing to do. */
8067 if (per_cu->queued)
8068 return 0;
8069
8070 /* If the compilation unit is already loaded, just mark it as
8071 used. */
8072 if (per_cu->cu != NULL)
8073 {
8074 per_cu->cu->last_used = 0;
8075 return 0;
8076 }
8077
8078 /* Add it to the queue. */
8079 queue_comp_unit (per_cu, pretend_language);
8080
8081 return 1;
8082 }
8083
8084 /* Process the queue. */
8085
8086 static void
8087 process_queue (void)
8088 {
8089 struct dwarf2_queue_item *item, *next_item;
8090
8091 if (dwarf_read_debug)
8092 {
8093 fprintf_unfiltered (gdb_stdlog,
8094 "Expanding one or more symtabs of objfile %s ...\n",
8095 objfile_name (dwarf2_per_objfile->objfile));
8096 }
8097
8098 /* The queue starts out with one item, but following a DIE reference
8099 may load a new CU, adding it to the end of the queue. */
8100 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
8101 {
8102 if ((dwarf2_per_objfile->using_index
8103 ? !item->per_cu->v.quick->compunit_symtab
8104 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
8105 /* Skip dummy CUs. */
8106 && item->per_cu->cu != NULL)
8107 {
8108 struct dwarf2_per_cu_data *per_cu = item->per_cu;
8109 unsigned int debug_print_threshold;
8110 char buf[100];
8111
8112 if (per_cu->is_debug_types)
8113 {
8114 struct signatured_type *sig_type =
8115 (struct signatured_type *) per_cu;
8116
8117 sprintf (buf, "TU %s at offset 0x%x",
8118 hex_string (sig_type->signature),
8119 to_underlying (per_cu->sect_off));
8120 /* There can be 100s of TUs.
8121 Only print them in verbose mode. */
8122 debug_print_threshold = 2;
8123 }
8124 else
8125 {
8126 sprintf (buf, "CU at offset 0x%x",
8127 to_underlying (per_cu->sect_off));
8128 debug_print_threshold = 1;
8129 }
8130
8131 if (dwarf_read_debug >= debug_print_threshold)
8132 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
8133
8134 if (per_cu->is_debug_types)
8135 process_full_type_unit (per_cu, item->pretend_language);
8136 else
8137 process_full_comp_unit (per_cu, item->pretend_language);
8138
8139 if (dwarf_read_debug >= debug_print_threshold)
8140 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
8141 }
8142
8143 item->per_cu->queued = 0;
8144 next_item = item->next;
8145 xfree (item);
8146 }
8147
8148 dwarf2_queue_tail = NULL;
8149
8150 if (dwarf_read_debug)
8151 {
8152 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
8153 objfile_name (dwarf2_per_objfile->objfile));
8154 }
8155 }
8156
8157 /* Free all allocated queue entries. This function only releases anything if
8158 an error was thrown; if the queue was processed then it would have been
8159 freed as we went along. */
8160
8161 static void
8162 dwarf2_release_queue (void *dummy)
8163 {
8164 struct dwarf2_queue_item *item, *last;
8165
8166 item = dwarf2_queue;
8167 while (item)
8168 {
8169 /* Anything still marked queued is likely to be in an
8170 inconsistent state, so discard it. */
8171 if (item->per_cu->queued)
8172 {
8173 if (item->per_cu->cu != NULL)
8174 free_one_cached_comp_unit (item->per_cu);
8175 item->per_cu->queued = 0;
8176 }
8177
8178 last = item;
8179 item = item->next;
8180 xfree (last);
8181 }
8182
8183 dwarf2_queue = dwarf2_queue_tail = NULL;
8184 }
8185
8186 /* Read in full symbols for PST, and anything it depends on. */
8187
8188 static void
8189 psymtab_to_symtab_1 (struct partial_symtab *pst)
8190 {
8191 struct dwarf2_per_cu_data *per_cu;
8192 int i;
8193
8194 if (pst->readin)
8195 return;
8196
8197 for (i = 0; i < pst->number_of_dependencies; i++)
8198 if (!pst->dependencies[i]->readin
8199 && pst->dependencies[i]->user == NULL)
8200 {
8201 /* Inform about additional files that need to be read in. */
8202 if (info_verbose)
8203 {
8204 /* FIXME: i18n: Need to make this a single string. */
8205 fputs_filtered (" ", gdb_stdout);
8206 wrap_here ("");
8207 fputs_filtered ("and ", gdb_stdout);
8208 wrap_here ("");
8209 printf_filtered ("%s...", pst->dependencies[i]->filename);
8210 wrap_here (""); /* Flush output. */
8211 gdb_flush (gdb_stdout);
8212 }
8213 psymtab_to_symtab_1 (pst->dependencies[i]);
8214 }
8215
8216 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
8217
8218 if (per_cu == NULL)
8219 {
8220 /* It's an include file, no symbols to read for it.
8221 Everything is in the parent symtab. */
8222 pst->readin = 1;
8223 return;
8224 }
8225
8226 dw2_do_instantiate_symtab (per_cu);
8227 }
8228
8229 /* Trivial hash function for die_info: the hash value of a DIE
8230 is its offset in .debug_info for this objfile. */
8231
8232 static hashval_t
8233 die_hash (const void *item)
8234 {
8235 const struct die_info *die = (const struct die_info *) item;
8236
8237 return to_underlying (die->sect_off);
8238 }
8239
8240 /* Trivial comparison function for die_info structures: two DIEs
8241 are equal if they have the same offset. */
8242
8243 static int
8244 die_eq (const void *item_lhs, const void *item_rhs)
8245 {
8246 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
8247 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
8248
8249 return die_lhs->sect_off == die_rhs->sect_off;
8250 }
8251
8252 /* die_reader_func for load_full_comp_unit.
8253 This is identical to read_signatured_type_reader,
8254 but is kept separate for now. */
8255
8256 static void
8257 load_full_comp_unit_reader (const struct die_reader_specs *reader,
8258 const gdb_byte *info_ptr,
8259 struct die_info *comp_unit_die,
8260 int has_children,
8261 void *data)
8262 {
8263 struct dwarf2_cu *cu = reader->cu;
8264 enum language *language_ptr = (enum language *) data;
8265
8266 gdb_assert (cu->die_hash == NULL);
8267 cu->die_hash =
8268 htab_create_alloc_ex (cu->header.length / 12,
8269 die_hash,
8270 die_eq,
8271 NULL,
8272 &cu->comp_unit_obstack,
8273 hashtab_obstack_allocate,
8274 dummy_obstack_deallocate);
8275
8276 if (has_children)
8277 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
8278 &info_ptr, comp_unit_die);
8279 cu->dies = comp_unit_die;
8280 /* comp_unit_die is not stored in die_hash, no need. */
8281
8282 /* We try not to read any attributes in this function, because not
8283 all CUs needed for references have been loaded yet, and symbol
8284 table processing isn't initialized. But we have to set the CU language,
8285 or we won't be able to build types correctly.
8286 Similarly, if we do not read the producer, we can not apply
8287 producer-specific interpretation. */
8288 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
8289 }
8290
8291 /* Load the DIEs associated with PER_CU into memory. */
8292
8293 static void
8294 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
8295 enum language pretend_language)
8296 {
8297 gdb_assert (! this_cu->is_debug_types);
8298
8299 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8300 load_full_comp_unit_reader, &pretend_language);
8301 }
8302
8303 /* Add a DIE to the delayed physname list. */
8304
8305 static void
8306 add_to_method_list (struct type *type, int fnfield_index, int index,
8307 const char *name, struct die_info *die,
8308 struct dwarf2_cu *cu)
8309 {
8310 struct delayed_method_info mi;
8311 mi.type = type;
8312 mi.fnfield_index = fnfield_index;
8313 mi.index = index;
8314 mi.name = name;
8315 mi.die = die;
8316 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
8317 }
8318
8319 /* A cleanup for freeing the delayed method list. */
8320
8321 static void
8322 free_delayed_list (void *ptr)
8323 {
8324 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
8325 if (cu->method_list != NULL)
8326 {
8327 VEC_free (delayed_method_info, cu->method_list);
8328 cu->method_list = NULL;
8329 }
8330 }
8331
8332 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
8333 "const" / "volatile". If so, decrements LEN by the length of the
8334 modifier and return true. Otherwise return false. */
8335
8336 template<size_t N>
8337 static bool
8338 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
8339 {
8340 size_t mod_len = sizeof (mod) - 1;
8341 if (len > mod_len && startswith (physname + (len - mod_len), mod))
8342 {
8343 len -= mod_len;
8344 return true;
8345 }
8346 return false;
8347 }
8348
8349 /* Compute the physnames of any methods on the CU's method list.
8350
8351 The computation of method physnames is delayed in order to avoid the
8352 (bad) condition that one of the method's formal parameters is of an as yet
8353 incomplete type. */
8354
8355 static void
8356 compute_delayed_physnames (struct dwarf2_cu *cu)
8357 {
8358 int i;
8359 struct delayed_method_info *mi;
8360
8361 /* Only C++ delays computing physnames. */
8362 if (VEC_empty (delayed_method_info, cu->method_list))
8363 return;
8364 gdb_assert (cu->language == language_cplus);
8365
8366 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
8367 {
8368 const char *physname;
8369 struct fn_fieldlist *fn_flp
8370 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
8371 physname = dwarf2_physname (mi->name, mi->die, cu);
8372 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
8373 = physname ? physname : "";
8374
8375 /* Since there's no tag to indicate whether a method is a
8376 const/volatile overload, extract that information out of the
8377 demangled name. */
8378 if (physname != NULL)
8379 {
8380 size_t len = strlen (physname);
8381
8382 while (1)
8383 {
8384 if (physname[len] == ')') /* shortcut */
8385 break;
8386 else if (check_modifier (physname, len, " const"))
8387 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi->index) = 1;
8388 else if (check_modifier (physname, len, " volatile"))
8389 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi->index) = 1;
8390 else
8391 break;
8392 }
8393 }
8394 }
8395 }
8396
8397 /* Go objects should be embedded in a DW_TAG_module DIE,
8398 and it's not clear if/how imported objects will appear.
8399 To keep Go support simple until that's worked out,
8400 go back through what we've read and create something usable.
8401 We could do this while processing each DIE, and feels kinda cleaner,
8402 but that way is more invasive.
8403 This is to, for example, allow the user to type "p var" or "b main"
8404 without having to specify the package name, and allow lookups
8405 of module.object to work in contexts that use the expression
8406 parser. */
8407
8408 static void
8409 fixup_go_packaging (struct dwarf2_cu *cu)
8410 {
8411 char *package_name = NULL;
8412 struct pending *list;
8413 int i;
8414
8415 for (list = global_symbols; list != NULL; list = list->next)
8416 {
8417 for (i = 0; i < list->nsyms; ++i)
8418 {
8419 struct symbol *sym = list->symbol[i];
8420
8421 if (SYMBOL_LANGUAGE (sym) == language_go
8422 && SYMBOL_CLASS (sym) == LOC_BLOCK)
8423 {
8424 char *this_package_name = go_symbol_package_name (sym);
8425
8426 if (this_package_name == NULL)
8427 continue;
8428 if (package_name == NULL)
8429 package_name = this_package_name;
8430 else
8431 {
8432 if (strcmp (package_name, this_package_name) != 0)
8433 complaint (&symfile_complaints,
8434 _("Symtab %s has objects from two different Go packages: %s and %s"),
8435 (symbol_symtab (sym) != NULL
8436 ? symtab_to_filename_for_display
8437 (symbol_symtab (sym))
8438 : objfile_name (cu->objfile)),
8439 this_package_name, package_name);
8440 xfree (this_package_name);
8441 }
8442 }
8443 }
8444 }
8445
8446 if (package_name != NULL)
8447 {
8448 struct objfile *objfile = cu->objfile;
8449 const char *saved_package_name
8450 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
8451 package_name,
8452 strlen (package_name));
8453 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
8454 saved_package_name);
8455 struct symbol *sym;
8456
8457 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8458
8459 sym = allocate_symbol (objfile);
8460 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
8461 SYMBOL_SET_NAMES (sym, saved_package_name,
8462 strlen (saved_package_name), 0, objfile);
8463 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
8464 e.g., "main" finds the "main" module and not C's main(). */
8465 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
8466 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
8467 SYMBOL_TYPE (sym) = type;
8468
8469 add_symbol_to_list (sym, &global_symbols);
8470
8471 xfree (package_name);
8472 }
8473 }
8474
8475 /* Return the symtab for PER_CU. This works properly regardless of
8476 whether we're using the index or psymtabs. */
8477
8478 static struct compunit_symtab *
8479 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
8480 {
8481 return (dwarf2_per_objfile->using_index
8482 ? per_cu->v.quick->compunit_symtab
8483 : per_cu->v.psymtab->compunit_symtab);
8484 }
8485
8486 /* A helper function for computing the list of all symbol tables
8487 included by PER_CU. */
8488
8489 static void
8490 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
8491 htab_t all_children, htab_t all_type_symtabs,
8492 struct dwarf2_per_cu_data *per_cu,
8493 struct compunit_symtab *immediate_parent)
8494 {
8495 void **slot;
8496 int ix;
8497 struct compunit_symtab *cust;
8498 struct dwarf2_per_cu_data *iter;
8499
8500 slot = htab_find_slot (all_children, per_cu, INSERT);
8501 if (*slot != NULL)
8502 {
8503 /* This inclusion and its children have been processed. */
8504 return;
8505 }
8506
8507 *slot = per_cu;
8508 /* Only add a CU if it has a symbol table. */
8509 cust = get_compunit_symtab (per_cu);
8510 if (cust != NULL)
8511 {
8512 /* If this is a type unit only add its symbol table if we haven't
8513 seen it yet (type unit per_cu's can share symtabs). */
8514 if (per_cu->is_debug_types)
8515 {
8516 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
8517 if (*slot == NULL)
8518 {
8519 *slot = cust;
8520 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8521 if (cust->user == NULL)
8522 cust->user = immediate_parent;
8523 }
8524 }
8525 else
8526 {
8527 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8528 if (cust->user == NULL)
8529 cust->user = immediate_parent;
8530 }
8531 }
8532
8533 for (ix = 0;
8534 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
8535 ++ix)
8536 {
8537 recursively_compute_inclusions (result, all_children,
8538 all_type_symtabs, iter, cust);
8539 }
8540 }
8541
8542 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
8543 PER_CU. */
8544
8545 static void
8546 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
8547 {
8548 gdb_assert (! per_cu->is_debug_types);
8549
8550 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
8551 {
8552 int ix, len;
8553 struct dwarf2_per_cu_data *per_cu_iter;
8554 struct compunit_symtab *compunit_symtab_iter;
8555 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
8556 htab_t all_children, all_type_symtabs;
8557 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
8558
8559 /* If we don't have a symtab, we can just skip this case. */
8560 if (cust == NULL)
8561 return;
8562
8563 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8564 NULL, xcalloc, xfree);
8565 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8566 NULL, xcalloc, xfree);
8567
8568 for (ix = 0;
8569 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
8570 ix, per_cu_iter);
8571 ++ix)
8572 {
8573 recursively_compute_inclusions (&result_symtabs, all_children,
8574 all_type_symtabs, per_cu_iter,
8575 cust);
8576 }
8577
8578 /* Now we have a transitive closure of all the included symtabs. */
8579 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8580 cust->includes
8581 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8582 struct compunit_symtab *, len + 1);
8583 for (ix = 0;
8584 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8585 compunit_symtab_iter);
8586 ++ix)
8587 cust->includes[ix] = compunit_symtab_iter;
8588 cust->includes[len] = NULL;
8589
8590 VEC_free (compunit_symtab_ptr, result_symtabs);
8591 htab_delete (all_children);
8592 htab_delete (all_type_symtabs);
8593 }
8594 }
8595
8596 /* Compute the 'includes' field for the symtabs of all the CUs we just
8597 read. */
8598
8599 static void
8600 process_cu_includes (void)
8601 {
8602 int ix;
8603 struct dwarf2_per_cu_data *iter;
8604
8605 for (ix = 0;
8606 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8607 ix, iter);
8608 ++ix)
8609 {
8610 if (! iter->is_debug_types)
8611 compute_compunit_symtab_includes (iter);
8612 }
8613
8614 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8615 }
8616
8617 /* Generate full symbol information for PER_CU, whose DIEs have
8618 already been loaded into memory. */
8619
8620 static void
8621 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8622 enum language pretend_language)
8623 {
8624 struct dwarf2_cu *cu = per_cu->cu;
8625 struct objfile *objfile = per_cu->objfile;
8626 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8627 CORE_ADDR lowpc, highpc;
8628 struct compunit_symtab *cust;
8629 struct cleanup *delayed_list_cleanup;
8630 CORE_ADDR baseaddr;
8631 struct block *static_block;
8632 CORE_ADDR addr;
8633
8634 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8635
8636 buildsym_init ();
8637 scoped_free_pendings free_pending;
8638 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8639
8640 cu->list_in_scope = &file_symbols;
8641
8642 cu->language = pretend_language;
8643 cu->language_defn = language_def (cu->language);
8644
8645 /* Do line number decoding in read_file_scope () */
8646 process_die (cu->dies, cu);
8647
8648 /* For now fudge the Go package. */
8649 if (cu->language == language_go)
8650 fixup_go_packaging (cu);
8651
8652 /* Now that we have processed all the DIEs in the CU, all the types
8653 should be complete, and it should now be safe to compute all of the
8654 physnames. */
8655 compute_delayed_physnames (cu);
8656 do_cleanups (delayed_list_cleanup);
8657
8658 /* Some compilers don't define a DW_AT_high_pc attribute for the
8659 compilation unit. If the DW_AT_high_pc is missing, synthesize
8660 it, by scanning the DIE's below the compilation unit. */
8661 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8662
8663 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8664 static_block = end_symtab_get_static_block (addr, 0, 1);
8665
8666 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8667 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8668 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8669 addrmap to help ensure it has an accurate map of pc values belonging to
8670 this comp unit. */
8671 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8672
8673 cust = end_symtab_from_static_block (static_block,
8674 SECT_OFF_TEXT (objfile), 0);
8675
8676 if (cust != NULL)
8677 {
8678 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8679
8680 /* Set symtab language to language from DW_AT_language. If the
8681 compilation is from a C file generated by language preprocessors, do
8682 not set the language if it was already deduced by start_subfile. */
8683 if (!(cu->language == language_c
8684 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8685 COMPUNIT_FILETABS (cust)->language = cu->language;
8686
8687 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8688 produce DW_AT_location with location lists but it can be possibly
8689 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8690 there were bugs in prologue debug info, fixed later in GCC-4.5
8691 by "unwind info for epilogues" patch (which is not directly related).
8692
8693 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8694 needed, it would be wrong due to missing DW_AT_producer there.
8695
8696 Still one can confuse GDB by using non-standard GCC compilation
8697 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8698 */
8699 if (cu->has_loclist && gcc_4_minor >= 5)
8700 cust->locations_valid = 1;
8701
8702 if (gcc_4_minor >= 5)
8703 cust->epilogue_unwind_valid = 1;
8704
8705 cust->call_site_htab = cu->call_site_htab;
8706 }
8707
8708 if (dwarf2_per_objfile->using_index)
8709 per_cu->v.quick->compunit_symtab = cust;
8710 else
8711 {
8712 struct partial_symtab *pst = per_cu->v.psymtab;
8713 pst->compunit_symtab = cust;
8714 pst->readin = 1;
8715 }
8716
8717 /* Push it for inclusion processing later. */
8718 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8719 }
8720
8721 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8722 already been loaded into memory. */
8723
8724 static void
8725 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8726 enum language pretend_language)
8727 {
8728 struct dwarf2_cu *cu = per_cu->cu;
8729 struct objfile *objfile = per_cu->objfile;
8730 struct compunit_symtab *cust;
8731 struct cleanup *delayed_list_cleanup;
8732 struct signatured_type *sig_type;
8733
8734 gdb_assert (per_cu->is_debug_types);
8735 sig_type = (struct signatured_type *) per_cu;
8736
8737 buildsym_init ();
8738 scoped_free_pendings free_pending;
8739 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8740
8741 cu->list_in_scope = &file_symbols;
8742
8743 cu->language = pretend_language;
8744 cu->language_defn = language_def (cu->language);
8745
8746 /* The symbol tables are set up in read_type_unit_scope. */
8747 process_die (cu->dies, cu);
8748
8749 /* For now fudge the Go package. */
8750 if (cu->language == language_go)
8751 fixup_go_packaging (cu);
8752
8753 /* Now that we have processed all the DIEs in the CU, all the types
8754 should be complete, and it should now be safe to compute all of the
8755 physnames. */
8756 compute_delayed_physnames (cu);
8757 do_cleanups (delayed_list_cleanup);
8758
8759 /* TUs share symbol tables.
8760 If this is the first TU to use this symtab, complete the construction
8761 of it with end_expandable_symtab. Otherwise, complete the addition of
8762 this TU's symbols to the existing symtab. */
8763 if (sig_type->type_unit_group->compunit_symtab == NULL)
8764 {
8765 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8766 sig_type->type_unit_group->compunit_symtab = cust;
8767
8768 if (cust != NULL)
8769 {
8770 /* Set symtab language to language from DW_AT_language. If the
8771 compilation is from a C file generated by language preprocessors,
8772 do not set the language if it was already deduced by
8773 start_subfile. */
8774 if (!(cu->language == language_c
8775 && COMPUNIT_FILETABS (cust)->language != language_c))
8776 COMPUNIT_FILETABS (cust)->language = cu->language;
8777 }
8778 }
8779 else
8780 {
8781 augment_type_symtab ();
8782 cust = sig_type->type_unit_group->compunit_symtab;
8783 }
8784
8785 if (dwarf2_per_objfile->using_index)
8786 per_cu->v.quick->compunit_symtab = cust;
8787 else
8788 {
8789 struct partial_symtab *pst = per_cu->v.psymtab;
8790 pst->compunit_symtab = cust;
8791 pst->readin = 1;
8792 }
8793 }
8794
8795 /* Process an imported unit DIE. */
8796
8797 static void
8798 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8799 {
8800 struct attribute *attr;
8801
8802 /* For now we don't handle imported units in type units. */
8803 if (cu->per_cu->is_debug_types)
8804 {
8805 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8806 " supported in type units [in module %s]"),
8807 objfile_name (cu->objfile));
8808 }
8809
8810 attr = dwarf2_attr (die, DW_AT_import, cu);
8811 if (attr != NULL)
8812 {
8813 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
8814 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8815 dwarf2_per_cu_data *per_cu
8816 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, cu->objfile);
8817
8818 /* If necessary, add it to the queue and load its DIEs. */
8819 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8820 load_full_comp_unit (per_cu, cu->language);
8821
8822 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8823 per_cu);
8824 }
8825 }
8826
8827 /* RAII object that represents a process_die scope: i.e.,
8828 starts/finishes processing a DIE. */
8829 class process_die_scope
8830 {
8831 public:
8832 process_die_scope (die_info *die, dwarf2_cu *cu)
8833 : m_die (die), m_cu (cu)
8834 {
8835 /* We should only be processing DIEs not already in process. */
8836 gdb_assert (!m_die->in_process);
8837 m_die->in_process = true;
8838 }
8839
8840 ~process_die_scope ()
8841 {
8842 m_die->in_process = false;
8843
8844 /* If we're done processing the DIE for the CU that owns the line
8845 header, we don't need the line header anymore. */
8846 if (m_cu->line_header_die_owner == m_die)
8847 {
8848 delete m_cu->line_header;
8849 m_cu->line_header = NULL;
8850 m_cu->line_header_die_owner = NULL;
8851 }
8852 }
8853
8854 private:
8855 die_info *m_die;
8856 dwarf2_cu *m_cu;
8857 };
8858
8859 /* Process a die and its children. */
8860
8861 static void
8862 process_die (struct die_info *die, struct dwarf2_cu *cu)
8863 {
8864 process_die_scope scope (die, cu);
8865
8866 switch (die->tag)
8867 {
8868 case DW_TAG_padding:
8869 break;
8870 case DW_TAG_compile_unit:
8871 case DW_TAG_partial_unit:
8872 read_file_scope (die, cu);
8873 break;
8874 case DW_TAG_type_unit:
8875 read_type_unit_scope (die, cu);
8876 break;
8877 case DW_TAG_subprogram:
8878 case DW_TAG_inlined_subroutine:
8879 read_func_scope (die, cu);
8880 break;
8881 case DW_TAG_lexical_block:
8882 case DW_TAG_try_block:
8883 case DW_TAG_catch_block:
8884 read_lexical_block_scope (die, cu);
8885 break;
8886 case DW_TAG_call_site:
8887 case DW_TAG_GNU_call_site:
8888 read_call_site_scope (die, cu);
8889 break;
8890 case DW_TAG_class_type:
8891 case DW_TAG_interface_type:
8892 case DW_TAG_structure_type:
8893 case DW_TAG_union_type:
8894 process_structure_scope (die, cu);
8895 break;
8896 case DW_TAG_enumeration_type:
8897 process_enumeration_scope (die, cu);
8898 break;
8899
8900 /* These dies have a type, but processing them does not create
8901 a symbol or recurse to process the children. Therefore we can
8902 read them on-demand through read_type_die. */
8903 case DW_TAG_subroutine_type:
8904 case DW_TAG_set_type:
8905 case DW_TAG_array_type:
8906 case DW_TAG_pointer_type:
8907 case DW_TAG_ptr_to_member_type:
8908 case DW_TAG_reference_type:
8909 case DW_TAG_rvalue_reference_type:
8910 case DW_TAG_string_type:
8911 break;
8912
8913 case DW_TAG_base_type:
8914 case DW_TAG_subrange_type:
8915 case DW_TAG_typedef:
8916 /* Add a typedef symbol for the type definition, if it has a
8917 DW_AT_name. */
8918 new_symbol (die, read_type_die (die, cu), cu);
8919 break;
8920 case DW_TAG_common_block:
8921 read_common_block (die, cu);
8922 break;
8923 case DW_TAG_common_inclusion:
8924 break;
8925 case DW_TAG_namespace:
8926 cu->processing_has_namespace_info = 1;
8927 read_namespace (die, cu);
8928 break;
8929 case DW_TAG_module:
8930 cu->processing_has_namespace_info = 1;
8931 read_module (die, cu);
8932 break;
8933 case DW_TAG_imported_declaration:
8934 cu->processing_has_namespace_info = 1;
8935 if (read_namespace_alias (die, cu))
8936 break;
8937 /* The declaration is not a global namespace alias: fall through. */
8938 case DW_TAG_imported_module:
8939 cu->processing_has_namespace_info = 1;
8940 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8941 || cu->language != language_fortran))
8942 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8943 dwarf_tag_name (die->tag));
8944 read_import_statement (die, cu);
8945 break;
8946
8947 case DW_TAG_imported_unit:
8948 process_imported_unit_die (die, cu);
8949 break;
8950
8951 default:
8952 new_symbol (die, NULL, cu);
8953 break;
8954 }
8955 }
8956 \f
8957 /* DWARF name computation. */
8958
8959 /* A helper function for dwarf2_compute_name which determines whether DIE
8960 needs to have the name of the scope prepended to the name listed in the
8961 die. */
8962
8963 static int
8964 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8965 {
8966 struct attribute *attr;
8967
8968 switch (die->tag)
8969 {
8970 case DW_TAG_namespace:
8971 case DW_TAG_typedef:
8972 case DW_TAG_class_type:
8973 case DW_TAG_interface_type:
8974 case DW_TAG_structure_type:
8975 case DW_TAG_union_type:
8976 case DW_TAG_enumeration_type:
8977 case DW_TAG_enumerator:
8978 case DW_TAG_subprogram:
8979 case DW_TAG_inlined_subroutine:
8980 case DW_TAG_member:
8981 case DW_TAG_imported_declaration:
8982 return 1;
8983
8984 case DW_TAG_variable:
8985 case DW_TAG_constant:
8986 /* We only need to prefix "globally" visible variables. These include
8987 any variable marked with DW_AT_external or any variable that
8988 lives in a namespace. [Variables in anonymous namespaces
8989 require prefixing, but they are not DW_AT_external.] */
8990
8991 if (dwarf2_attr (die, DW_AT_specification, cu))
8992 {
8993 struct dwarf2_cu *spec_cu = cu;
8994
8995 return die_needs_namespace (die_specification (die, &spec_cu),
8996 spec_cu);
8997 }
8998
8999 attr = dwarf2_attr (die, DW_AT_external, cu);
9000 if (attr == NULL && die->parent->tag != DW_TAG_namespace
9001 && die->parent->tag != DW_TAG_module)
9002 return 0;
9003 /* A variable in a lexical block of some kind does not need a
9004 namespace, even though in C++ such variables may be external
9005 and have a mangled name. */
9006 if (die->parent->tag == DW_TAG_lexical_block
9007 || die->parent->tag == DW_TAG_try_block
9008 || die->parent->tag == DW_TAG_catch_block
9009 || die->parent->tag == DW_TAG_subprogram)
9010 return 0;
9011 return 1;
9012
9013 default:
9014 return 0;
9015 }
9016 }
9017
9018 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
9019 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9020 defined for the given DIE. */
9021
9022 static struct attribute *
9023 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
9024 {
9025 struct attribute *attr;
9026
9027 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
9028 if (attr == NULL)
9029 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
9030
9031 return attr;
9032 }
9033
9034 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
9035 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9036 defined for the given DIE. */
9037
9038 static const char *
9039 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
9040 {
9041 const char *linkage_name;
9042
9043 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
9044 if (linkage_name == NULL)
9045 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
9046
9047 return linkage_name;
9048 }
9049
9050 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
9051 compute the physname for the object, which include a method's:
9052 - formal parameters (C++),
9053 - receiver type (Go),
9054
9055 The term "physname" is a bit confusing.
9056 For C++, for example, it is the demangled name.
9057 For Go, for example, it's the mangled name.
9058
9059 For Ada, return the DIE's linkage name rather than the fully qualified
9060 name. PHYSNAME is ignored..
9061
9062 The result is allocated on the objfile_obstack and canonicalized. */
9063
9064 static const char *
9065 dwarf2_compute_name (const char *name,
9066 struct die_info *die, struct dwarf2_cu *cu,
9067 int physname)
9068 {
9069 struct objfile *objfile = cu->objfile;
9070
9071 if (name == NULL)
9072 name = dwarf2_name (die, cu);
9073
9074 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
9075 but otherwise compute it by typename_concat inside GDB.
9076 FIXME: Actually this is not really true, or at least not always true.
9077 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
9078 Fortran names because there is no mangling standard. So new_symbol_full
9079 will set the demangled name to the result of dwarf2_full_name, and it is
9080 the demangled name that GDB uses if it exists. */
9081 if (cu->language == language_ada
9082 || (cu->language == language_fortran && physname))
9083 {
9084 /* For Ada unit, we prefer the linkage name over the name, as
9085 the former contains the exported name, which the user expects
9086 to be able to reference. Ideally, we want the user to be able
9087 to reference this entity using either natural or linkage name,
9088 but we haven't started looking at this enhancement yet. */
9089 const char *linkage_name = dw2_linkage_name (die, cu);
9090
9091 if (linkage_name != NULL)
9092 return linkage_name;
9093 }
9094
9095 /* These are the only languages we know how to qualify names in. */
9096 if (name != NULL
9097 && (cu->language == language_cplus
9098 || cu->language == language_fortran || cu->language == language_d
9099 || cu->language == language_rust))
9100 {
9101 if (die_needs_namespace (die, cu))
9102 {
9103 long length;
9104 const char *prefix;
9105 const char *canonical_name = NULL;
9106
9107 string_file buf;
9108
9109 prefix = determine_prefix (die, cu);
9110 if (*prefix != '\0')
9111 {
9112 char *prefixed_name = typename_concat (NULL, prefix, name,
9113 physname, cu);
9114
9115 buf.puts (prefixed_name);
9116 xfree (prefixed_name);
9117 }
9118 else
9119 buf.puts (name);
9120
9121 /* Template parameters may be specified in the DIE's DW_AT_name, or
9122 as children with DW_TAG_template_type_param or
9123 DW_TAG_value_type_param. If the latter, add them to the name
9124 here. If the name already has template parameters, then
9125 skip this step; some versions of GCC emit both, and
9126 it is more efficient to use the pre-computed name.
9127
9128 Something to keep in mind about this process: it is very
9129 unlikely, or in some cases downright impossible, to produce
9130 something that will match the mangled name of a function.
9131 If the definition of the function has the same debug info,
9132 we should be able to match up with it anyway. But fallbacks
9133 using the minimal symbol, for instance to find a method
9134 implemented in a stripped copy of libstdc++, will not work.
9135 If we do not have debug info for the definition, we will have to
9136 match them up some other way.
9137
9138 When we do name matching there is a related problem with function
9139 templates; two instantiated function templates are allowed to
9140 differ only by their return types, which we do not add here. */
9141
9142 if (cu->language == language_cplus && strchr (name, '<') == NULL)
9143 {
9144 struct attribute *attr;
9145 struct die_info *child;
9146 int first = 1;
9147
9148 die->building_fullname = 1;
9149
9150 for (child = die->child; child != NULL; child = child->sibling)
9151 {
9152 struct type *type;
9153 LONGEST value;
9154 const gdb_byte *bytes;
9155 struct dwarf2_locexpr_baton *baton;
9156 struct value *v;
9157
9158 if (child->tag != DW_TAG_template_type_param
9159 && child->tag != DW_TAG_template_value_param)
9160 continue;
9161
9162 if (first)
9163 {
9164 buf.puts ("<");
9165 first = 0;
9166 }
9167 else
9168 buf.puts (", ");
9169
9170 attr = dwarf2_attr (child, DW_AT_type, cu);
9171 if (attr == NULL)
9172 {
9173 complaint (&symfile_complaints,
9174 _("template parameter missing DW_AT_type"));
9175 buf.puts ("UNKNOWN_TYPE");
9176 continue;
9177 }
9178 type = die_type (child, cu);
9179
9180 if (child->tag == DW_TAG_template_type_param)
9181 {
9182 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
9183 continue;
9184 }
9185
9186 attr = dwarf2_attr (child, DW_AT_const_value, cu);
9187 if (attr == NULL)
9188 {
9189 complaint (&symfile_complaints,
9190 _("template parameter missing "
9191 "DW_AT_const_value"));
9192 buf.puts ("UNKNOWN_VALUE");
9193 continue;
9194 }
9195
9196 dwarf2_const_value_attr (attr, type, name,
9197 &cu->comp_unit_obstack, cu,
9198 &value, &bytes, &baton);
9199
9200 if (TYPE_NOSIGN (type))
9201 /* GDB prints characters as NUMBER 'CHAR'. If that's
9202 changed, this can use value_print instead. */
9203 c_printchar (value, type, &buf);
9204 else
9205 {
9206 struct value_print_options opts;
9207
9208 if (baton != NULL)
9209 v = dwarf2_evaluate_loc_desc (type, NULL,
9210 baton->data,
9211 baton->size,
9212 baton->per_cu);
9213 else if (bytes != NULL)
9214 {
9215 v = allocate_value (type);
9216 memcpy (value_contents_writeable (v), bytes,
9217 TYPE_LENGTH (type));
9218 }
9219 else
9220 v = value_from_longest (type, value);
9221
9222 /* Specify decimal so that we do not depend on
9223 the radix. */
9224 get_formatted_print_options (&opts, 'd');
9225 opts.raw = 1;
9226 value_print (v, &buf, &opts);
9227 release_value (v);
9228 value_free (v);
9229 }
9230 }
9231
9232 die->building_fullname = 0;
9233
9234 if (!first)
9235 {
9236 /* Close the argument list, with a space if necessary
9237 (nested templates). */
9238 if (!buf.empty () && buf.string ().back () == '>')
9239 buf.puts (" >");
9240 else
9241 buf.puts (">");
9242 }
9243 }
9244
9245 /* For C++ methods, append formal parameter type
9246 information, if PHYSNAME. */
9247
9248 if (physname && die->tag == DW_TAG_subprogram
9249 && cu->language == language_cplus)
9250 {
9251 struct type *type = read_type_die (die, cu);
9252
9253 c_type_print_args (type, &buf, 1, cu->language,
9254 &type_print_raw_options);
9255
9256 if (cu->language == language_cplus)
9257 {
9258 /* Assume that an artificial first parameter is
9259 "this", but do not crash if it is not. RealView
9260 marks unnamed (and thus unused) parameters as
9261 artificial; there is no way to differentiate
9262 the two cases. */
9263 if (TYPE_NFIELDS (type) > 0
9264 && TYPE_FIELD_ARTIFICIAL (type, 0)
9265 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
9266 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
9267 0))))
9268 buf.puts (" const");
9269 }
9270 }
9271
9272 const std::string &intermediate_name = buf.string ();
9273
9274 if (cu->language == language_cplus)
9275 canonical_name
9276 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
9277 &objfile->per_bfd->storage_obstack);
9278
9279 /* If we only computed INTERMEDIATE_NAME, or if
9280 INTERMEDIATE_NAME is already canonical, then we need to
9281 copy it to the appropriate obstack. */
9282 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
9283 name = ((const char *)
9284 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9285 intermediate_name.c_str (),
9286 intermediate_name.length ()));
9287 else
9288 name = canonical_name;
9289 }
9290 }
9291
9292 return name;
9293 }
9294
9295 /* Return the fully qualified name of DIE, based on its DW_AT_name.
9296 If scope qualifiers are appropriate they will be added. The result
9297 will be allocated on the storage_obstack, or NULL if the DIE does
9298 not have a name. NAME may either be from a previous call to
9299 dwarf2_name or NULL.
9300
9301 The output string will be canonicalized (if C++). */
9302
9303 static const char *
9304 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
9305 {
9306 return dwarf2_compute_name (name, die, cu, 0);
9307 }
9308
9309 /* Construct a physname for the given DIE in CU. NAME may either be
9310 from a previous call to dwarf2_name or NULL. The result will be
9311 allocated on the objfile_objstack or NULL if the DIE does not have a
9312 name.
9313
9314 The output string will be canonicalized (if C++). */
9315
9316 static const char *
9317 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
9318 {
9319 struct objfile *objfile = cu->objfile;
9320 const char *retval, *mangled = NULL, *canon = NULL;
9321 int need_copy = 1;
9322
9323 /* In this case dwarf2_compute_name is just a shortcut not building anything
9324 on its own. */
9325 if (!die_needs_namespace (die, cu))
9326 return dwarf2_compute_name (name, die, cu, 1);
9327
9328 mangled = dw2_linkage_name (die, cu);
9329
9330 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
9331 See https://github.com/rust-lang/rust/issues/32925. */
9332 if (cu->language == language_rust && mangled != NULL
9333 && strchr (mangled, '{') != NULL)
9334 mangled = NULL;
9335
9336 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
9337 has computed. */
9338 gdb::unique_xmalloc_ptr<char> demangled;
9339 if (mangled != NULL)
9340 {
9341 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
9342 type. It is easier for GDB users to search for such functions as
9343 `name(params)' than `long name(params)'. In such case the minimal
9344 symbol names do not match the full symbol names but for template
9345 functions there is never a need to look up their definition from their
9346 declaration so the only disadvantage remains the minimal symbol
9347 variant `long name(params)' does not have the proper inferior type.
9348 */
9349
9350 if (cu->language == language_go)
9351 {
9352 /* This is a lie, but we already lie to the caller new_symbol_full.
9353 new_symbol_full assumes we return the mangled name.
9354 This just undoes that lie until things are cleaned up. */
9355 }
9356 else
9357 {
9358 demangled.reset (gdb_demangle (mangled,
9359 (DMGL_PARAMS | DMGL_ANSI
9360 | DMGL_RET_DROP)));
9361 }
9362 if (demangled)
9363 canon = demangled.get ();
9364 else
9365 {
9366 canon = mangled;
9367 need_copy = 0;
9368 }
9369 }
9370
9371 if (canon == NULL || check_physname)
9372 {
9373 const char *physname = dwarf2_compute_name (name, die, cu, 1);
9374
9375 if (canon != NULL && strcmp (physname, canon) != 0)
9376 {
9377 /* It may not mean a bug in GDB. The compiler could also
9378 compute DW_AT_linkage_name incorrectly. But in such case
9379 GDB would need to be bug-to-bug compatible. */
9380
9381 complaint (&symfile_complaints,
9382 _("Computed physname <%s> does not match demangled <%s> "
9383 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
9384 physname, canon, mangled, to_underlying (die->sect_off),
9385 objfile_name (objfile));
9386
9387 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
9388 is available here - over computed PHYSNAME. It is safer
9389 against both buggy GDB and buggy compilers. */
9390
9391 retval = canon;
9392 }
9393 else
9394 {
9395 retval = physname;
9396 need_copy = 0;
9397 }
9398 }
9399 else
9400 retval = canon;
9401
9402 if (need_copy)
9403 retval = ((const char *)
9404 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9405 retval, strlen (retval)));
9406
9407 return retval;
9408 }
9409
9410 /* Inspect DIE in CU for a namespace alias. If one exists, record
9411 a new symbol for it.
9412
9413 Returns 1 if a namespace alias was recorded, 0 otherwise. */
9414
9415 static int
9416 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
9417 {
9418 struct attribute *attr;
9419
9420 /* If the die does not have a name, this is not a namespace
9421 alias. */
9422 attr = dwarf2_attr (die, DW_AT_name, cu);
9423 if (attr != NULL)
9424 {
9425 int num;
9426 struct die_info *d = die;
9427 struct dwarf2_cu *imported_cu = cu;
9428
9429 /* If the compiler has nested DW_AT_imported_declaration DIEs,
9430 keep inspecting DIEs until we hit the underlying import. */
9431 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
9432 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
9433 {
9434 attr = dwarf2_attr (d, DW_AT_import, cu);
9435 if (attr == NULL)
9436 break;
9437
9438 d = follow_die_ref (d, attr, &imported_cu);
9439 if (d->tag != DW_TAG_imported_declaration)
9440 break;
9441 }
9442
9443 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
9444 {
9445 complaint (&symfile_complaints,
9446 _("DIE at 0x%x has too many recursively imported "
9447 "declarations"), to_underlying (d->sect_off));
9448 return 0;
9449 }
9450
9451 if (attr != NULL)
9452 {
9453 struct type *type;
9454 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
9455
9456 type = get_die_type_at_offset (sect_off, cu->per_cu);
9457 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
9458 {
9459 /* This declaration is a global namespace alias. Add
9460 a symbol for it whose type is the aliased namespace. */
9461 new_symbol (die, type, cu);
9462 return 1;
9463 }
9464 }
9465 }
9466
9467 return 0;
9468 }
9469
9470 /* Return the using directives repository (global or local?) to use in the
9471 current context for LANGUAGE.
9472
9473 For Ada, imported declarations can materialize renamings, which *may* be
9474 global. However it is impossible (for now?) in DWARF to distinguish
9475 "external" imported declarations and "static" ones. As all imported
9476 declarations seem to be static in all other languages, make them all CU-wide
9477 global only in Ada. */
9478
9479 static struct using_direct **
9480 using_directives (enum language language)
9481 {
9482 if (language == language_ada && context_stack_depth == 0)
9483 return &global_using_directives;
9484 else
9485 return &local_using_directives;
9486 }
9487
9488 /* Read the import statement specified by the given die and record it. */
9489
9490 static void
9491 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
9492 {
9493 struct objfile *objfile = cu->objfile;
9494 struct attribute *import_attr;
9495 struct die_info *imported_die, *child_die;
9496 struct dwarf2_cu *imported_cu;
9497 const char *imported_name;
9498 const char *imported_name_prefix;
9499 const char *canonical_name;
9500 const char *import_alias;
9501 const char *imported_declaration = NULL;
9502 const char *import_prefix;
9503 std::vector<const char *> excludes;
9504
9505 import_attr = dwarf2_attr (die, DW_AT_import, cu);
9506 if (import_attr == NULL)
9507 {
9508 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9509 dwarf_tag_name (die->tag));
9510 return;
9511 }
9512
9513 imported_cu = cu;
9514 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
9515 imported_name = dwarf2_name (imported_die, imported_cu);
9516 if (imported_name == NULL)
9517 {
9518 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
9519
9520 The import in the following code:
9521 namespace A
9522 {
9523 typedef int B;
9524 }
9525
9526 int main ()
9527 {
9528 using A::B;
9529 B b;
9530 return b;
9531 }
9532
9533 ...
9534 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
9535 <52> DW_AT_decl_file : 1
9536 <53> DW_AT_decl_line : 6
9537 <54> DW_AT_import : <0x75>
9538 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
9539 <59> DW_AT_name : B
9540 <5b> DW_AT_decl_file : 1
9541 <5c> DW_AT_decl_line : 2
9542 <5d> DW_AT_type : <0x6e>
9543 ...
9544 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9545 <76> DW_AT_byte_size : 4
9546 <77> DW_AT_encoding : 5 (signed)
9547
9548 imports the wrong die ( 0x75 instead of 0x58 ).
9549 This case will be ignored until the gcc bug is fixed. */
9550 return;
9551 }
9552
9553 /* Figure out the local name after import. */
9554 import_alias = dwarf2_name (die, cu);
9555
9556 /* Figure out where the statement is being imported to. */
9557 import_prefix = determine_prefix (die, cu);
9558
9559 /* Figure out what the scope of the imported die is and prepend it
9560 to the name of the imported die. */
9561 imported_name_prefix = determine_prefix (imported_die, imported_cu);
9562
9563 if (imported_die->tag != DW_TAG_namespace
9564 && imported_die->tag != DW_TAG_module)
9565 {
9566 imported_declaration = imported_name;
9567 canonical_name = imported_name_prefix;
9568 }
9569 else if (strlen (imported_name_prefix) > 0)
9570 canonical_name = obconcat (&objfile->objfile_obstack,
9571 imported_name_prefix,
9572 (cu->language == language_d ? "." : "::"),
9573 imported_name, (char *) NULL);
9574 else
9575 canonical_name = imported_name;
9576
9577 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9578 for (child_die = die->child; child_die && child_die->tag;
9579 child_die = sibling_die (child_die))
9580 {
9581 /* DWARF-4: A Fortran use statement with a “rename list” may be
9582 represented by an imported module entry with an import attribute
9583 referring to the module and owned entries corresponding to those
9584 entities that are renamed as part of being imported. */
9585
9586 if (child_die->tag != DW_TAG_imported_declaration)
9587 {
9588 complaint (&symfile_complaints,
9589 _("child DW_TAG_imported_declaration expected "
9590 "- DIE at 0x%x [in module %s]"),
9591 to_underlying (child_die->sect_off), objfile_name (objfile));
9592 continue;
9593 }
9594
9595 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9596 if (import_attr == NULL)
9597 {
9598 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9599 dwarf_tag_name (child_die->tag));
9600 continue;
9601 }
9602
9603 imported_cu = cu;
9604 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9605 &imported_cu);
9606 imported_name = dwarf2_name (imported_die, imported_cu);
9607 if (imported_name == NULL)
9608 {
9609 complaint (&symfile_complaints,
9610 _("child DW_TAG_imported_declaration has unknown "
9611 "imported name - DIE at 0x%x [in module %s]"),
9612 to_underlying (child_die->sect_off), objfile_name (objfile));
9613 continue;
9614 }
9615
9616 excludes.push_back (imported_name);
9617
9618 process_die (child_die, cu);
9619 }
9620
9621 add_using_directive (using_directives (cu->language),
9622 import_prefix,
9623 canonical_name,
9624 import_alias,
9625 imported_declaration,
9626 excludes,
9627 0,
9628 &objfile->objfile_obstack);
9629 }
9630
9631 /* ICC<14 does not output the required DW_AT_declaration on incomplete
9632 types, but gives them a size of zero. Starting with version 14,
9633 ICC is compatible with GCC. */
9634
9635 static int
9636 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
9637 {
9638 if (!cu->checked_producer)
9639 check_producer (cu);
9640
9641 return cu->producer_is_icc_lt_14;
9642 }
9643
9644 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9645 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9646 this, it was first present in GCC release 4.3.0. */
9647
9648 static int
9649 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9650 {
9651 if (!cu->checked_producer)
9652 check_producer (cu);
9653
9654 return cu->producer_is_gcc_lt_4_3;
9655 }
9656
9657 static file_and_directory
9658 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9659 {
9660 file_and_directory res;
9661
9662 /* Find the filename. Do not use dwarf2_name here, since the filename
9663 is not a source language identifier. */
9664 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
9665 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9666
9667 if (res.comp_dir == NULL
9668 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
9669 && IS_ABSOLUTE_PATH (res.name))
9670 {
9671 res.comp_dir_storage = ldirname (res.name);
9672 if (!res.comp_dir_storage.empty ())
9673 res.comp_dir = res.comp_dir_storage.c_str ();
9674 }
9675 if (res.comp_dir != NULL)
9676 {
9677 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9678 directory, get rid of it. */
9679 const char *cp = strchr (res.comp_dir, ':');
9680
9681 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
9682 res.comp_dir = cp + 1;
9683 }
9684
9685 if (res.name == NULL)
9686 res.name = "<unknown>";
9687
9688 return res;
9689 }
9690
9691 /* Handle DW_AT_stmt_list for a compilation unit.
9692 DIE is the DW_TAG_compile_unit die for CU.
9693 COMP_DIR is the compilation directory. LOWPC is passed to
9694 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9695
9696 static void
9697 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9698 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9699 {
9700 struct objfile *objfile = dwarf2_per_objfile->objfile;
9701 struct attribute *attr;
9702 struct line_header line_header_local;
9703 hashval_t line_header_local_hash;
9704 unsigned u;
9705 void **slot;
9706 int decode_mapping;
9707
9708 gdb_assert (! cu->per_cu->is_debug_types);
9709
9710 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9711 if (attr == NULL)
9712 return;
9713
9714 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9715
9716 /* The line header hash table is only created if needed (it exists to
9717 prevent redundant reading of the line table for partial_units).
9718 If we're given a partial_unit, we'll need it. If we're given a
9719 compile_unit, then use the line header hash table if it's already
9720 created, but don't create one just yet. */
9721
9722 if (dwarf2_per_objfile->line_header_hash == NULL
9723 && die->tag == DW_TAG_partial_unit)
9724 {
9725 dwarf2_per_objfile->line_header_hash
9726 = htab_create_alloc_ex (127, line_header_hash_voidp,
9727 line_header_eq_voidp,
9728 free_line_header_voidp,
9729 &objfile->objfile_obstack,
9730 hashtab_obstack_allocate,
9731 dummy_obstack_deallocate);
9732 }
9733
9734 line_header_local.sect_off = line_offset;
9735 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9736 line_header_local_hash = line_header_hash (&line_header_local);
9737 if (dwarf2_per_objfile->line_header_hash != NULL)
9738 {
9739 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9740 &line_header_local,
9741 line_header_local_hash, NO_INSERT);
9742
9743 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9744 is not present in *SLOT (since if there is something in *SLOT then
9745 it will be for a partial_unit). */
9746 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9747 {
9748 gdb_assert (*slot != NULL);
9749 cu->line_header = (struct line_header *) *slot;
9750 return;
9751 }
9752 }
9753
9754 /* dwarf_decode_line_header does not yet provide sufficient information.
9755 We always have to call also dwarf_decode_lines for it. */
9756 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
9757 if (lh == NULL)
9758 return;
9759
9760 cu->line_header = lh.release ();
9761 cu->line_header_die_owner = die;
9762
9763 if (dwarf2_per_objfile->line_header_hash == NULL)
9764 slot = NULL;
9765 else
9766 {
9767 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9768 &line_header_local,
9769 line_header_local_hash, INSERT);
9770 gdb_assert (slot != NULL);
9771 }
9772 if (slot != NULL && *slot == NULL)
9773 {
9774 /* This newly decoded line number information unit will be owned
9775 by line_header_hash hash table. */
9776 *slot = cu->line_header;
9777 cu->line_header_die_owner = NULL;
9778 }
9779 else
9780 {
9781 /* We cannot free any current entry in (*slot) as that struct line_header
9782 may be already used by multiple CUs. Create only temporary decoded
9783 line_header for this CU - it may happen at most once for each line
9784 number information unit. And if we're not using line_header_hash
9785 then this is what we want as well. */
9786 gdb_assert (die->tag != DW_TAG_partial_unit);
9787 }
9788 decode_mapping = (die->tag != DW_TAG_partial_unit);
9789 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9790 decode_mapping);
9791
9792 }
9793
9794 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9795
9796 static void
9797 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9798 {
9799 struct objfile *objfile = dwarf2_per_objfile->objfile;
9800 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9801 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9802 CORE_ADDR highpc = ((CORE_ADDR) 0);
9803 struct attribute *attr;
9804 struct die_info *child_die;
9805 CORE_ADDR baseaddr;
9806
9807 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9808
9809 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9810
9811 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9812 from finish_block. */
9813 if (lowpc == ((CORE_ADDR) -1))
9814 lowpc = highpc;
9815 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9816
9817 file_and_directory fnd = find_file_and_directory (die, cu);
9818
9819 prepare_one_comp_unit (cu, die, cu->language);
9820
9821 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9822 standardised yet. As a workaround for the language detection we fall
9823 back to the DW_AT_producer string. */
9824 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9825 cu->language = language_opencl;
9826
9827 /* Similar hack for Go. */
9828 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9829 set_cu_language (DW_LANG_Go, cu);
9830
9831 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
9832
9833 /* Decode line number information if present. We do this before
9834 processing child DIEs, so that the line header table is available
9835 for DW_AT_decl_file. */
9836 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
9837
9838 /* Process all dies in compilation unit. */
9839 if (die->child != NULL)
9840 {
9841 child_die = die->child;
9842 while (child_die && child_die->tag)
9843 {
9844 process_die (child_die, cu);
9845 child_die = sibling_die (child_die);
9846 }
9847 }
9848
9849 /* Decode macro information, if present. Dwarf 2 macro information
9850 refers to information in the line number info statement program
9851 header, so we can only read it if we've read the header
9852 successfully. */
9853 attr = dwarf2_attr (die, DW_AT_macros, cu);
9854 if (attr == NULL)
9855 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9856 if (attr && cu->line_header)
9857 {
9858 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9859 complaint (&symfile_complaints,
9860 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
9861
9862 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9863 }
9864 else
9865 {
9866 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9867 if (attr && cu->line_header)
9868 {
9869 unsigned int macro_offset = DW_UNSND (attr);
9870
9871 dwarf_decode_macros (cu, macro_offset, 0);
9872 }
9873 }
9874 }
9875
9876 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9877 Create the set of symtabs used by this TU, or if this TU is sharing
9878 symtabs with another TU and the symtabs have already been created
9879 then restore those symtabs in the line header.
9880 We don't need the pc/line-number mapping for type units. */
9881
9882 static void
9883 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9884 {
9885 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9886 struct type_unit_group *tu_group;
9887 int first_time;
9888 struct attribute *attr;
9889 unsigned int i;
9890 struct signatured_type *sig_type;
9891
9892 gdb_assert (per_cu->is_debug_types);
9893 sig_type = (struct signatured_type *) per_cu;
9894
9895 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9896
9897 /* If we're using .gdb_index (includes -readnow) then
9898 per_cu->type_unit_group may not have been set up yet. */
9899 if (sig_type->type_unit_group == NULL)
9900 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9901 tu_group = sig_type->type_unit_group;
9902
9903 /* If we've already processed this stmt_list there's no real need to
9904 do it again, we could fake it and just recreate the part we need
9905 (file name,index -> symtab mapping). If data shows this optimization
9906 is useful we can do it then. */
9907 first_time = tu_group->compunit_symtab == NULL;
9908
9909 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9910 debug info. */
9911 line_header_up lh;
9912 if (attr != NULL)
9913 {
9914 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9915 lh = dwarf_decode_line_header (line_offset, cu);
9916 }
9917 if (lh == NULL)
9918 {
9919 if (first_time)
9920 dwarf2_start_symtab (cu, "", NULL, 0);
9921 else
9922 {
9923 gdb_assert (tu_group->symtabs == NULL);
9924 restart_symtab (tu_group->compunit_symtab, "", 0);
9925 }
9926 return;
9927 }
9928
9929 cu->line_header = lh.release ();
9930 cu->line_header_die_owner = die;
9931
9932 if (first_time)
9933 {
9934 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9935
9936 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9937 still initializing it, and our caller (a few levels up)
9938 process_full_type_unit still needs to know if this is the first
9939 time. */
9940
9941 tu_group->num_symtabs = cu->line_header->file_names.size ();
9942 tu_group->symtabs = XNEWVEC (struct symtab *,
9943 cu->line_header->file_names.size ());
9944
9945 for (i = 0; i < cu->line_header->file_names.size (); ++i)
9946 {
9947 file_entry &fe = cu->line_header->file_names[i];
9948
9949 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
9950
9951 if (current_subfile->symtab == NULL)
9952 {
9953 /* NOTE: start_subfile will recognize when it's been
9954 passed a file it has already seen. So we can't
9955 assume there's a simple mapping from
9956 cu->line_header->file_names to subfiles, plus
9957 cu->line_header->file_names may contain dups. */
9958 current_subfile->symtab
9959 = allocate_symtab (cust, current_subfile->name);
9960 }
9961
9962 fe.symtab = current_subfile->symtab;
9963 tu_group->symtabs[i] = fe.symtab;
9964 }
9965 }
9966 else
9967 {
9968 restart_symtab (tu_group->compunit_symtab, "", 0);
9969
9970 for (i = 0; i < cu->line_header->file_names.size (); ++i)
9971 {
9972 file_entry &fe = cu->line_header->file_names[i];
9973
9974 fe.symtab = tu_group->symtabs[i];
9975 }
9976 }
9977
9978 /* The main symtab is allocated last. Type units don't have DW_AT_name
9979 so they don't have a "real" (so to speak) symtab anyway.
9980 There is later code that will assign the main symtab to all symbols
9981 that don't have one. We need to handle the case of a symbol with a
9982 missing symtab (DW_AT_decl_file) anyway. */
9983 }
9984
9985 /* Process DW_TAG_type_unit.
9986 For TUs we want to skip the first top level sibling if it's not the
9987 actual type being defined by this TU. In this case the first top
9988 level sibling is there to provide context only. */
9989
9990 static void
9991 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9992 {
9993 struct die_info *child_die;
9994
9995 prepare_one_comp_unit (cu, die, language_minimal);
9996
9997 /* Initialize (or reinitialize) the machinery for building symtabs.
9998 We do this before processing child DIEs, so that the line header table
9999 is available for DW_AT_decl_file. */
10000 setup_type_unit_groups (die, cu);
10001
10002 if (die->child != NULL)
10003 {
10004 child_die = die->child;
10005 while (child_die && child_die->tag)
10006 {
10007 process_die (child_die, cu);
10008 child_die = sibling_die (child_die);
10009 }
10010 }
10011 }
10012 \f
10013 /* DWO/DWP files.
10014
10015 http://gcc.gnu.org/wiki/DebugFission
10016 http://gcc.gnu.org/wiki/DebugFissionDWP
10017
10018 To simplify handling of both DWO files ("object" files with the DWARF info)
10019 and DWP files (a file with the DWOs packaged up into one file), we treat
10020 DWP files as having a collection of virtual DWO files. */
10021
10022 static hashval_t
10023 hash_dwo_file (const void *item)
10024 {
10025 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
10026 hashval_t hash;
10027
10028 hash = htab_hash_string (dwo_file->dwo_name);
10029 if (dwo_file->comp_dir != NULL)
10030 hash += htab_hash_string (dwo_file->comp_dir);
10031 return hash;
10032 }
10033
10034 static int
10035 eq_dwo_file (const void *item_lhs, const void *item_rhs)
10036 {
10037 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
10038 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
10039
10040 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
10041 return 0;
10042 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
10043 return lhs->comp_dir == rhs->comp_dir;
10044 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
10045 }
10046
10047 /* Allocate a hash table for DWO files. */
10048
10049 static htab_t
10050 allocate_dwo_file_hash_table (void)
10051 {
10052 struct objfile *objfile = dwarf2_per_objfile->objfile;
10053
10054 return htab_create_alloc_ex (41,
10055 hash_dwo_file,
10056 eq_dwo_file,
10057 NULL,
10058 &objfile->objfile_obstack,
10059 hashtab_obstack_allocate,
10060 dummy_obstack_deallocate);
10061 }
10062
10063 /* Lookup DWO file DWO_NAME. */
10064
10065 static void **
10066 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
10067 {
10068 struct dwo_file find_entry;
10069 void **slot;
10070
10071 if (dwarf2_per_objfile->dwo_files == NULL)
10072 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
10073
10074 memset (&find_entry, 0, sizeof (find_entry));
10075 find_entry.dwo_name = dwo_name;
10076 find_entry.comp_dir = comp_dir;
10077 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
10078
10079 return slot;
10080 }
10081
10082 static hashval_t
10083 hash_dwo_unit (const void *item)
10084 {
10085 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10086
10087 /* This drops the top 32 bits of the id, but is ok for a hash. */
10088 return dwo_unit->signature;
10089 }
10090
10091 static int
10092 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
10093 {
10094 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
10095 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
10096
10097 /* The signature is assumed to be unique within the DWO file.
10098 So while object file CU dwo_id's always have the value zero,
10099 that's OK, assuming each object file DWO file has only one CU,
10100 and that's the rule for now. */
10101 return lhs->signature == rhs->signature;
10102 }
10103
10104 /* Allocate a hash table for DWO CUs,TUs.
10105 There is one of these tables for each of CUs,TUs for each DWO file. */
10106
10107 static htab_t
10108 allocate_dwo_unit_table (struct objfile *objfile)
10109 {
10110 /* Start out with a pretty small number.
10111 Generally DWO files contain only one CU and maybe some TUs. */
10112 return htab_create_alloc_ex (3,
10113 hash_dwo_unit,
10114 eq_dwo_unit,
10115 NULL,
10116 &objfile->objfile_obstack,
10117 hashtab_obstack_allocate,
10118 dummy_obstack_deallocate);
10119 }
10120
10121 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
10122
10123 struct create_dwo_cu_data
10124 {
10125 struct dwo_file *dwo_file;
10126 struct dwo_unit dwo_unit;
10127 };
10128
10129 /* die_reader_func for create_dwo_cu. */
10130
10131 static void
10132 create_dwo_cu_reader (const struct die_reader_specs *reader,
10133 const gdb_byte *info_ptr,
10134 struct die_info *comp_unit_die,
10135 int has_children,
10136 void *datap)
10137 {
10138 struct dwarf2_cu *cu = reader->cu;
10139 sect_offset sect_off = cu->per_cu->sect_off;
10140 struct dwarf2_section_info *section = cu->per_cu->section;
10141 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
10142 struct dwo_file *dwo_file = data->dwo_file;
10143 struct dwo_unit *dwo_unit = &data->dwo_unit;
10144 struct attribute *attr;
10145
10146 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
10147 if (attr == NULL)
10148 {
10149 complaint (&symfile_complaints,
10150 _("Dwarf Error: debug entry at offset 0x%x is missing"
10151 " its dwo_id [in module %s]"),
10152 to_underlying (sect_off), dwo_file->dwo_name);
10153 return;
10154 }
10155
10156 dwo_unit->dwo_file = dwo_file;
10157 dwo_unit->signature = DW_UNSND (attr);
10158 dwo_unit->section = section;
10159 dwo_unit->sect_off = sect_off;
10160 dwo_unit->length = cu->per_cu->length;
10161
10162 if (dwarf_read_debug)
10163 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
10164 to_underlying (sect_off),
10165 hex_string (dwo_unit->signature));
10166 }
10167
10168 /* Create the dwo_units for the CUs in a DWO_FILE.
10169 Note: This function processes DWO files only, not DWP files. */
10170
10171 static void
10172 create_cus_hash_table (struct dwo_file &dwo_file, dwarf2_section_info &section,
10173 htab_t &cus_htab)
10174 {
10175 struct objfile *objfile = dwarf2_per_objfile->objfile;
10176 const struct dwarf2_section_info *abbrev_section = &dwo_file.sections.abbrev;
10177 const gdb_byte *info_ptr, *end_ptr;
10178
10179 dwarf2_read_section (objfile, &section);
10180 info_ptr = section.buffer;
10181
10182 if (info_ptr == NULL)
10183 return;
10184
10185 if (dwarf_read_debug)
10186 {
10187 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
10188 get_section_name (&section),
10189 get_section_file_name (&section));
10190 }
10191
10192 end_ptr = info_ptr + section.size;
10193 while (info_ptr < end_ptr)
10194 {
10195 struct dwarf2_per_cu_data per_cu;
10196 struct create_dwo_cu_data create_dwo_cu_data;
10197 struct dwo_unit *dwo_unit;
10198 void **slot;
10199 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
10200
10201 memset (&create_dwo_cu_data.dwo_unit, 0,
10202 sizeof (create_dwo_cu_data.dwo_unit));
10203 memset (&per_cu, 0, sizeof (per_cu));
10204 per_cu.objfile = objfile;
10205 per_cu.is_debug_types = 0;
10206 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
10207 per_cu.section = &section;
10208 create_dwo_cu_data.dwo_file = &dwo_file;
10209
10210 init_cutu_and_read_dies_no_follow (
10211 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
10212 info_ptr += per_cu.length;
10213
10214 // If the unit could not be parsed, skip it.
10215 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
10216 continue;
10217
10218 if (cus_htab == NULL)
10219 cus_htab = allocate_dwo_unit_table (objfile);
10220
10221 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10222 *dwo_unit = create_dwo_cu_data.dwo_unit;
10223 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
10224 gdb_assert (slot != NULL);
10225 if (*slot != NULL)
10226 {
10227 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
10228 sect_offset dup_sect_off = dup_cu->sect_off;
10229
10230 complaint (&symfile_complaints,
10231 _("debug cu entry at offset 0x%x is duplicate to"
10232 " the entry at offset 0x%x, signature %s"),
10233 to_underlying (sect_off), to_underlying (dup_sect_off),
10234 hex_string (dwo_unit->signature));
10235 }
10236 *slot = (void *)dwo_unit;
10237 }
10238 }
10239
10240 /* DWP file .debug_{cu,tu}_index section format:
10241 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
10242
10243 DWP Version 1:
10244
10245 Both index sections have the same format, and serve to map a 64-bit
10246 signature to a set of section numbers. Each section begins with a header,
10247 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
10248 indexes, and a pool of 32-bit section numbers. The index sections will be
10249 aligned at 8-byte boundaries in the file.
10250
10251 The index section header consists of:
10252
10253 V, 32 bit version number
10254 -, 32 bits unused
10255 N, 32 bit number of compilation units or type units in the index
10256 M, 32 bit number of slots in the hash table
10257
10258 Numbers are recorded using the byte order of the application binary.
10259
10260 The hash table begins at offset 16 in the section, and consists of an array
10261 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
10262 order of the application binary). Unused slots in the hash table are 0.
10263 (We rely on the extreme unlikeliness of a signature being exactly 0.)
10264
10265 The parallel table begins immediately after the hash table
10266 (at offset 16 + 8 * M from the beginning of the section), and consists of an
10267 array of 32-bit indexes (using the byte order of the application binary),
10268 corresponding 1-1 with slots in the hash table. Each entry in the parallel
10269 table contains a 32-bit index into the pool of section numbers. For unused
10270 hash table slots, the corresponding entry in the parallel table will be 0.
10271
10272 The pool of section numbers begins immediately following the hash table
10273 (at offset 16 + 12 * M from the beginning of the section). The pool of
10274 section numbers consists of an array of 32-bit words (using the byte order
10275 of the application binary). Each item in the array is indexed starting
10276 from 0. The hash table entry provides the index of the first section
10277 number in the set. Additional section numbers in the set follow, and the
10278 set is terminated by a 0 entry (section number 0 is not used in ELF).
10279
10280 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
10281 section must be the first entry in the set, and the .debug_abbrev.dwo must
10282 be the second entry. Other members of the set may follow in any order.
10283
10284 ---
10285
10286 DWP Version 2:
10287
10288 DWP Version 2 combines all the .debug_info, etc. sections into one,
10289 and the entries in the index tables are now offsets into these sections.
10290 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
10291 section.
10292
10293 Index Section Contents:
10294 Header
10295 Hash Table of Signatures dwp_hash_table.hash_table
10296 Parallel Table of Indices dwp_hash_table.unit_table
10297 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
10298 Table of Section Sizes dwp_hash_table.v2.sizes
10299
10300 The index section header consists of:
10301
10302 V, 32 bit version number
10303 L, 32 bit number of columns in the table of section offsets
10304 N, 32 bit number of compilation units or type units in the index
10305 M, 32 bit number of slots in the hash table
10306
10307 Numbers are recorded using the byte order of the application binary.
10308
10309 The hash table has the same format as version 1.
10310 The parallel table of indices has the same format as version 1,
10311 except that the entries are origin-1 indices into the table of sections
10312 offsets and the table of section sizes.
10313
10314 The table of offsets begins immediately following the parallel table
10315 (at offset 16 + 12 * M from the beginning of the section). The table is
10316 a two-dimensional array of 32-bit words (using the byte order of the
10317 application binary), with L columns and N+1 rows, in row-major order.
10318 Each row in the array is indexed starting from 0. The first row provides
10319 a key to the remaining rows: each column in this row provides an identifier
10320 for a debug section, and the offsets in the same column of subsequent rows
10321 refer to that section. The section identifiers are:
10322
10323 DW_SECT_INFO 1 .debug_info.dwo
10324 DW_SECT_TYPES 2 .debug_types.dwo
10325 DW_SECT_ABBREV 3 .debug_abbrev.dwo
10326 DW_SECT_LINE 4 .debug_line.dwo
10327 DW_SECT_LOC 5 .debug_loc.dwo
10328 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
10329 DW_SECT_MACINFO 7 .debug_macinfo.dwo
10330 DW_SECT_MACRO 8 .debug_macro.dwo
10331
10332 The offsets provided by the CU and TU index sections are the base offsets
10333 for the contributions made by each CU or TU to the corresponding section
10334 in the package file. Each CU and TU header contains an abbrev_offset
10335 field, used to find the abbreviations table for that CU or TU within the
10336 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
10337 be interpreted as relative to the base offset given in the index section.
10338 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
10339 should be interpreted as relative to the base offset for .debug_line.dwo,
10340 and offsets into other debug sections obtained from DWARF attributes should
10341 also be interpreted as relative to the corresponding base offset.
10342
10343 The table of sizes begins immediately following the table of offsets.
10344 Like the table of offsets, it is a two-dimensional array of 32-bit words,
10345 with L columns and N rows, in row-major order. Each row in the array is
10346 indexed starting from 1 (row 0 is shared by the two tables).
10347
10348 ---
10349
10350 Hash table lookup is handled the same in version 1 and 2:
10351
10352 We assume that N and M will not exceed 2^32 - 1.
10353 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
10354
10355 Given a 64-bit compilation unit signature or a type signature S, an entry
10356 in the hash table is located as follows:
10357
10358 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
10359 the low-order k bits all set to 1.
10360
10361 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
10362
10363 3) If the hash table entry at index H matches the signature, use that
10364 entry. If the hash table entry at index H is unused (all zeroes),
10365 terminate the search: the signature is not present in the table.
10366
10367 4) Let H = (H + H') modulo M. Repeat at Step 3.
10368
10369 Because M > N and H' and M are relatively prime, the search is guaranteed
10370 to stop at an unused slot or find the match. */
10371
10372 /* Create a hash table to map DWO IDs to their CU/TU entry in
10373 .debug_{info,types}.dwo in DWP_FILE.
10374 Returns NULL if there isn't one.
10375 Note: This function processes DWP files only, not DWO files. */
10376
10377 static struct dwp_hash_table *
10378 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
10379 {
10380 struct objfile *objfile = dwarf2_per_objfile->objfile;
10381 bfd *dbfd = dwp_file->dbfd;
10382 const gdb_byte *index_ptr, *index_end;
10383 struct dwarf2_section_info *index;
10384 uint32_t version, nr_columns, nr_units, nr_slots;
10385 struct dwp_hash_table *htab;
10386
10387 if (is_debug_types)
10388 index = &dwp_file->sections.tu_index;
10389 else
10390 index = &dwp_file->sections.cu_index;
10391
10392 if (dwarf2_section_empty_p (index))
10393 return NULL;
10394 dwarf2_read_section (objfile, index);
10395
10396 index_ptr = index->buffer;
10397 index_end = index_ptr + index->size;
10398
10399 version = read_4_bytes (dbfd, index_ptr);
10400 index_ptr += 4;
10401 if (version == 2)
10402 nr_columns = read_4_bytes (dbfd, index_ptr);
10403 else
10404 nr_columns = 0;
10405 index_ptr += 4;
10406 nr_units = read_4_bytes (dbfd, index_ptr);
10407 index_ptr += 4;
10408 nr_slots = read_4_bytes (dbfd, index_ptr);
10409 index_ptr += 4;
10410
10411 if (version != 1 && version != 2)
10412 {
10413 error (_("Dwarf Error: unsupported DWP file version (%s)"
10414 " [in module %s]"),
10415 pulongest (version), dwp_file->name);
10416 }
10417 if (nr_slots != (nr_slots & -nr_slots))
10418 {
10419 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
10420 " is not power of 2 [in module %s]"),
10421 pulongest (nr_slots), dwp_file->name);
10422 }
10423
10424 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
10425 htab->version = version;
10426 htab->nr_columns = nr_columns;
10427 htab->nr_units = nr_units;
10428 htab->nr_slots = nr_slots;
10429 htab->hash_table = index_ptr;
10430 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
10431
10432 /* Exit early if the table is empty. */
10433 if (nr_slots == 0 || nr_units == 0
10434 || (version == 2 && nr_columns == 0))
10435 {
10436 /* All must be zero. */
10437 if (nr_slots != 0 || nr_units != 0
10438 || (version == 2 && nr_columns != 0))
10439 {
10440 complaint (&symfile_complaints,
10441 _("Empty DWP but nr_slots,nr_units,nr_columns not"
10442 " all zero [in modules %s]"),
10443 dwp_file->name);
10444 }
10445 return htab;
10446 }
10447
10448 if (version == 1)
10449 {
10450 htab->section_pool.v1.indices =
10451 htab->unit_table + sizeof (uint32_t) * nr_slots;
10452 /* It's harder to decide whether the section is too small in v1.
10453 V1 is deprecated anyway so we punt. */
10454 }
10455 else
10456 {
10457 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
10458 int *ids = htab->section_pool.v2.section_ids;
10459 /* Reverse map for error checking. */
10460 int ids_seen[DW_SECT_MAX + 1];
10461 int i;
10462
10463 if (nr_columns < 2)
10464 {
10465 error (_("Dwarf Error: bad DWP hash table, too few columns"
10466 " in section table [in module %s]"),
10467 dwp_file->name);
10468 }
10469 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
10470 {
10471 error (_("Dwarf Error: bad DWP hash table, too many columns"
10472 " in section table [in module %s]"),
10473 dwp_file->name);
10474 }
10475 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10476 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10477 for (i = 0; i < nr_columns; ++i)
10478 {
10479 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
10480
10481 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
10482 {
10483 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
10484 " in section table [in module %s]"),
10485 id, dwp_file->name);
10486 }
10487 if (ids_seen[id] != -1)
10488 {
10489 error (_("Dwarf Error: bad DWP hash table, duplicate section"
10490 " id %d in section table [in module %s]"),
10491 id, dwp_file->name);
10492 }
10493 ids_seen[id] = i;
10494 ids[i] = id;
10495 }
10496 /* Must have exactly one info or types section. */
10497 if (((ids_seen[DW_SECT_INFO] != -1)
10498 + (ids_seen[DW_SECT_TYPES] != -1))
10499 != 1)
10500 {
10501 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
10502 " DWO info/types section [in module %s]"),
10503 dwp_file->name);
10504 }
10505 /* Must have an abbrev section. */
10506 if (ids_seen[DW_SECT_ABBREV] == -1)
10507 {
10508 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
10509 " section [in module %s]"),
10510 dwp_file->name);
10511 }
10512 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
10513 htab->section_pool.v2.sizes =
10514 htab->section_pool.v2.offsets + (sizeof (uint32_t)
10515 * nr_units * nr_columns);
10516 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
10517 * nr_units * nr_columns))
10518 > index_end)
10519 {
10520 error (_("Dwarf Error: DWP index section is corrupt (too small)"
10521 " [in module %s]"),
10522 dwp_file->name);
10523 }
10524 }
10525
10526 return htab;
10527 }
10528
10529 /* Update SECTIONS with the data from SECTP.
10530
10531 This function is like the other "locate" section routines that are
10532 passed to bfd_map_over_sections, but in this context the sections to
10533 read comes from the DWP V1 hash table, not the full ELF section table.
10534
10535 The result is non-zero for success, or zero if an error was found. */
10536
10537 static int
10538 locate_v1_virtual_dwo_sections (asection *sectp,
10539 struct virtual_v1_dwo_sections *sections)
10540 {
10541 const struct dwop_section_names *names = &dwop_section_names;
10542
10543 if (section_is_p (sectp->name, &names->abbrev_dwo))
10544 {
10545 /* There can be only one. */
10546 if (sections->abbrev.s.section != NULL)
10547 return 0;
10548 sections->abbrev.s.section = sectp;
10549 sections->abbrev.size = bfd_get_section_size (sectp);
10550 }
10551 else if (section_is_p (sectp->name, &names->info_dwo)
10552 || section_is_p (sectp->name, &names->types_dwo))
10553 {
10554 /* There can be only one. */
10555 if (sections->info_or_types.s.section != NULL)
10556 return 0;
10557 sections->info_or_types.s.section = sectp;
10558 sections->info_or_types.size = bfd_get_section_size (sectp);
10559 }
10560 else if (section_is_p (sectp->name, &names->line_dwo))
10561 {
10562 /* There can be only one. */
10563 if (sections->line.s.section != NULL)
10564 return 0;
10565 sections->line.s.section = sectp;
10566 sections->line.size = bfd_get_section_size (sectp);
10567 }
10568 else if (section_is_p (sectp->name, &names->loc_dwo))
10569 {
10570 /* There can be only one. */
10571 if (sections->loc.s.section != NULL)
10572 return 0;
10573 sections->loc.s.section = sectp;
10574 sections->loc.size = bfd_get_section_size (sectp);
10575 }
10576 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10577 {
10578 /* There can be only one. */
10579 if (sections->macinfo.s.section != NULL)
10580 return 0;
10581 sections->macinfo.s.section = sectp;
10582 sections->macinfo.size = bfd_get_section_size (sectp);
10583 }
10584 else if (section_is_p (sectp->name, &names->macro_dwo))
10585 {
10586 /* There can be only one. */
10587 if (sections->macro.s.section != NULL)
10588 return 0;
10589 sections->macro.s.section = sectp;
10590 sections->macro.size = bfd_get_section_size (sectp);
10591 }
10592 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10593 {
10594 /* There can be only one. */
10595 if (sections->str_offsets.s.section != NULL)
10596 return 0;
10597 sections->str_offsets.s.section = sectp;
10598 sections->str_offsets.size = bfd_get_section_size (sectp);
10599 }
10600 else
10601 {
10602 /* No other kind of section is valid. */
10603 return 0;
10604 }
10605
10606 return 1;
10607 }
10608
10609 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10610 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10611 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10612 This is for DWP version 1 files. */
10613
10614 static struct dwo_unit *
10615 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10616 uint32_t unit_index,
10617 const char *comp_dir,
10618 ULONGEST signature, int is_debug_types)
10619 {
10620 struct objfile *objfile = dwarf2_per_objfile->objfile;
10621 const struct dwp_hash_table *dwp_htab =
10622 is_debug_types ? dwp_file->tus : dwp_file->cus;
10623 bfd *dbfd = dwp_file->dbfd;
10624 const char *kind = is_debug_types ? "TU" : "CU";
10625 struct dwo_file *dwo_file;
10626 struct dwo_unit *dwo_unit;
10627 struct virtual_v1_dwo_sections sections;
10628 void **dwo_file_slot;
10629 int i;
10630
10631 gdb_assert (dwp_file->version == 1);
10632
10633 if (dwarf_read_debug)
10634 {
10635 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10636 kind,
10637 pulongest (unit_index), hex_string (signature),
10638 dwp_file->name);
10639 }
10640
10641 /* Fetch the sections of this DWO unit.
10642 Put a limit on the number of sections we look for so that bad data
10643 doesn't cause us to loop forever. */
10644
10645 #define MAX_NR_V1_DWO_SECTIONS \
10646 (1 /* .debug_info or .debug_types */ \
10647 + 1 /* .debug_abbrev */ \
10648 + 1 /* .debug_line */ \
10649 + 1 /* .debug_loc */ \
10650 + 1 /* .debug_str_offsets */ \
10651 + 1 /* .debug_macro or .debug_macinfo */ \
10652 + 1 /* trailing zero */)
10653
10654 memset (&sections, 0, sizeof (sections));
10655
10656 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10657 {
10658 asection *sectp;
10659 uint32_t section_nr =
10660 read_4_bytes (dbfd,
10661 dwp_htab->section_pool.v1.indices
10662 + (unit_index + i) * sizeof (uint32_t));
10663
10664 if (section_nr == 0)
10665 break;
10666 if (section_nr >= dwp_file->num_sections)
10667 {
10668 error (_("Dwarf Error: bad DWP hash table, section number too large"
10669 " [in module %s]"),
10670 dwp_file->name);
10671 }
10672
10673 sectp = dwp_file->elf_sections[section_nr];
10674 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10675 {
10676 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10677 " [in module %s]"),
10678 dwp_file->name);
10679 }
10680 }
10681
10682 if (i < 2
10683 || dwarf2_section_empty_p (&sections.info_or_types)
10684 || dwarf2_section_empty_p (&sections.abbrev))
10685 {
10686 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10687 " [in module %s]"),
10688 dwp_file->name);
10689 }
10690 if (i == MAX_NR_V1_DWO_SECTIONS)
10691 {
10692 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10693 " [in module %s]"),
10694 dwp_file->name);
10695 }
10696
10697 /* It's easier for the rest of the code if we fake a struct dwo_file and
10698 have dwo_unit "live" in that. At least for now.
10699
10700 The DWP file can be made up of a random collection of CUs and TUs.
10701 However, for each CU + set of TUs that came from the same original DWO
10702 file, we can combine them back into a virtual DWO file to save space
10703 (fewer struct dwo_file objects to allocate). Remember that for really
10704 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10705
10706 std::string virtual_dwo_name =
10707 string_printf ("virtual-dwo/%d-%d-%d-%d",
10708 get_section_id (&sections.abbrev),
10709 get_section_id (&sections.line),
10710 get_section_id (&sections.loc),
10711 get_section_id (&sections.str_offsets));
10712 /* Can we use an existing virtual DWO file? */
10713 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name.c_str (), comp_dir);
10714 /* Create one if necessary. */
10715 if (*dwo_file_slot == NULL)
10716 {
10717 if (dwarf_read_debug)
10718 {
10719 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10720 virtual_dwo_name.c_str ());
10721 }
10722 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10723 dwo_file->dwo_name
10724 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10725 virtual_dwo_name.c_str (),
10726 virtual_dwo_name.size ());
10727 dwo_file->comp_dir = comp_dir;
10728 dwo_file->sections.abbrev = sections.abbrev;
10729 dwo_file->sections.line = sections.line;
10730 dwo_file->sections.loc = sections.loc;
10731 dwo_file->sections.macinfo = sections.macinfo;
10732 dwo_file->sections.macro = sections.macro;
10733 dwo_file->sections.str_offsets = sections.str_offsets;
10734 /* The "str" section is global to the entire DWP file. */
10735 dwo_file->sections.str = dwp_file->sections.str;
10736 /* The info or types section is assigned below to dwo_unit,
10737 there's no need to record it in dwo_file.
10738 Also, we can't simply record type sections in dwo_file because
10739 we record a pointer into the vector in dwo_unit. As we collect more
10740 types we'll grow the vector and eventually have to reallocate space
10741 for it, invalidating all copies of pointers into the previous
10742 contents. */
10743 *dwo_file_slot = dwo_file;
10744 }
10745 else
10746 {
10747 if (dwarf_read_debug)
10748 {
10749 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10750 virtual_dwo_name.c_str ());
10751 }
10752 dwo_file = (struct dwo_file *) *dwo_file_slot;
10753 }
10754
10755 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10756 dwo_unit->dwo_file = dwo_file;
10757 dwo_unit->signature = signature;
10758 dwo_unit->section =
10759 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10760 *dwo_unit->section = sections.info_or_types;
10761 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10762
10763 return dwo_unit;
10764 }
10765
10766 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10767 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10768 piece within that section used by a TU/CU, return a virtual section
10769 of just that piece. */
10770
10771 static struct dwarf2_section_info
10772 create_dwp_v2_section (struct dwarf2_section_info *section,
10773 bfd_size_type offset, bfd_size_type size)
10774 {
10775 struct dwarf2_section_info result;
10776 asection *sectp;
10777
10778 gdb_assert (section != NULL);
10779 gdb_assert (!section->is_virtual);
10780
10781 memset (&result, 0, sizeof (result));
10782 result.s.containing_section = section;
10783 result.is_virtual = 1;
10784
10785 if (size == 0)
10786 return result;
10787
10788 sectp = get_section_bfd_section (section);
10789
10790 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10791 bounds of the real section. This is a pretty-rare event, so just
10792 flag an error (easier) instead of a warning and trying to cope. */
10793 if (sectp == NULL
10794 || offset + size > bfd_get_section_size (sectp))
10795 {
10796 bfd *abfd = sectp->owner;
10797
10798 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10799 " in section %s [in module %s]"),
10800 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10801 objfile_name (dwarf2_per_objfile->objfile));
10802 }
10803
10804 result.virtual_offset = offset;
10805 result.size = size;
10806 return result;
10807 }
10808
10809 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10810 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10811 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10812 This is for DWP version 2 files. */
10813
10814 static struct dwo_unit *
10815 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10816 uint32_t unit_index,
10817 const char *comp_dir,
10818 ULONGEST signature, int is_debug_types)
10819 {
10820 struct objfile *objfile = dwarf2_per_objfile->objfile;
10821 const struct dwp_hash_table *dwp_htab =
10822 is_debug_types ? dwp_file->tus : dwp_file->cus;
10823 bfd *dbfd = dwp_file->dbfd;
10824 const char *kind = is_debug_types ? "TU" : "CU";
10825 struct dwo_file *dwo_file;
10826 struct dwo_unit *dwo_unit;
10827 struct virtual_v2_dwo_sections sections;
10828 void **dwo_file_slot;
10829 int i;
10830
10831 gdb_assert (dwp_file->version == 2);
10832
10833 if (dwarf_read_debug)
10834 {
10835 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10836 kind,
10837 pulongest (unit_index), hex_string (signature),
10838 dwp_file->name);
10839 }
10840
10841 /* Fetch the section offsets of this DWO unit. */
10842
10843 memset (&sections, 0, sizeof (sections));
10844
10845 for (i = 0; i < dwp_htab->nr_columns; ++i)
10846 {
10847 uint32_t offset = read_4_bytes (dbfd,
10848 dwp_htab->section_pool.v2.offsets
10849 + (((unit_index - 1) * dwp_htab->nr_columns
10850 + i)
10851 * sizeof (uint32_t)));
10852 uint32_t size = read_4_bytes (dbfd,
10853 dwp_htab->section_pool.v2.sizes
10854 + (((unit_index - 1) * dwp_htab->nr_columns
10855 + i)
10856 * sizeof (uint32_t)));
10857
10858 switch (dwp_htab->section_pool.v2.section_ids[i])
10859 {
10860 case DW_SECT_INFO:
10861 case DW_SECT_TYPES:
10862 sections.info_or_types_offset = offset;
10863 sections.info_or_types_size = size;
10864 break;
10865 case DW_SECT_ABBREV:
10866 sections.abbrev_offset = offset;
10867 sections.abbrev_size = size;
10868 break;
10869 case DW_SECT_LINE:
10870 sections.line_offset = offset;
10871 sections.line_size = size;
10872 break;
10873 case DW_SECT_LOC:
10874 sections.loc_offset = offset;
10875 sections.loc_size = size;
10876 break;
10877 case DW_SECT_STR_OFFSETS:
10878 sections.str_offsets_offset = offset;
10879 sections.str_offsets_size = size;
10880 break;
10881 case DW_SECT_MACINFO:
10882 sections.macinfo_offset = offset;
10883 sections.macinfo_size = size;
10884 break;
10885 case DW_SECT_MACRO:
10886 sections.macro_offset = offset;
10887 sections.macro_size = size;
10888 break;
10889 }
10890 }
10891
10892 /* It's easier for the rest of the code if we fake a struct dwo_file and
10893 have dwo_unit "live" in that. At least for now.
10894
10895 The DWP file can be made up of a random collection of CUs and TUs.
10896 However, for each CU + set of TUs that came from the same original DWO
10897 file, we can combine them back into a virtual DWO file to save space
10898 (fewer struct dwo_file objects to allocate). Remember that for really
10899 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10900
10901 std::string virtual_dwo_name =
10902 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
10903 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10904 (long) (sections.line_size ? sections.line_offset : 0),
10905 (long) (sections.loc_size ? sections.loc_offset : 0),
10906 (long) (sections.str_offsets_size
10907 ? sections.str_offsets_offset : 0));
10908 /* Can we use an existing virtual DWO file? */
10909 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name.c_str (), comp_dir);
10910 /* Create one if necessary. */
10911 if (*dwo_file_slot == NULL)
10912 {
10913 if (dwarf_read_debug)
10914 {
10915 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10916 virtual_dwo_name.c_str ());
10917 }
10918 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10919 dwo_file->dwo_name
10920 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10921 virtual_dwo_name.c_str (),
10922 virtual_dwo_name.size ());
10923 dwo_file->comp_dir = comp_dir;
10924 dwo_file->sections.abbrev =
10925 create_dwp_v2_section (&dwp_file->sections.abbrev,
10926 sections.abbrev_offset, sections.abbrev_size);
10927 dwo_file->sections.line =
10928 create_dwp_v2_section (&dwp_file->sections.line,
10929 sections.line_offset, sections.line_size);
10930 dwo_file->sections.loc =
10931 create_dwp_v2_section (&dwp_file->sections.loc,
10932 sections.loc_offset, sections.loc_size);
10933 dwo_file->sections.macinfo =
10934 create_dwp_v2_section (&dwp_file->sections.macinfo,
10935 sections.macinfo_offset, sections.macinfo_size);
10936 dwo_file->sections.macro =
10937 create_dwp_v2_section (&dwp_file->sections.macro,
10938 sections.macro_offset, sections.macro_size);
10939 dwo_file->sections.str_offsets =
10940 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10941 sections.str_offsets_offset,
10942 sections.str_offsets_size);
10943 /* The "str" section is global to the entire DWP file. */
10944 dwo_file->sections.str = dwp_file->sections.str;
10945 /* The info or types section is assigned below to dwo_unit,
10946 there's no need to record it in dwo_file.
10947 Also, we can't simply record type sections in dwo_file because
10948 we record a pointer into the vector in dwo_unit. As we collect more
10949 types we'll grow the vector and eventually have to reallocate space
10950 for it, invalidating all copies of pointers into the previous
10951 contents. */
10952 *dwo_file_slot = dwo_file;
10953 }
10954 else
10955 {
10956 if (dwarf_read_debug)
10957 {
10958 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10959 virtual_dwo_name.c_str ());
10960 }
10961 dwo_file = (struct dwo_file *) *dwo_file_slot;
10962 }
10963
10964 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10965 dwo_unit->dwo_file = dwo_file;
10966 dwo_unit->signature = signature;
10967 dwo_unit->section =
10968 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10969 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10970 ? &dwp_file->sections.types
10971 : &dwp_file->sections.info,
10972 sections.info_or_types_offset,
10973 sections.info_or_types_size);
10974 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10975
10976 return dwo_unit;
10977 }
10978
10979 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10980 Returns NULL if the signature isn't found. */
10981
10982 static struct dwo_unit *
10983 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10984 ULONGEST signature, int is_debug_types)
10985 {
10986 const struct dwp_hash_table *dwp_htab =
10987 is_debug_types ? dwp_file->tus : dwp_file->cus;
10988 bfd *dbfd = dwp_file->dbfd;
10989 uint32_t mask = dwp_htab->nr_slots - 1;
10990 uint32_t hash = signature & mask;
10991 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10992 unsigned int i;
10993 void **slot;
10994 struct dwo_unit find_dwo_cu;
10995
10996 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10997 find_dwo_cu.signature = signature;
10998 slot = htab_find_slot (is_debug_types
10999 ? dwp_file->loaded_tus
11000 : dwp_file->loaded_cus,
11001 &find_dwo_cu, INSERT);
11002
11003 if (*slot != NULL)
11004 return (struct dwo_unit *) *slot;
11005
11006 /* Use a for loop so that we don't loop forever on bad debug info. */
11007 for (i = 0; i < dwp_htab->nr_slots; ++i)
11008 {
11009 ULONGEST signature_in_table;
11010
11011 signature_in_table =
11012 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
11013 if (signature_in_table == signature)
11014 {
11015 uint32_t unit_index =
11016 read_4_bytes (dbfd,
11017 dwp_htab->unit_table + hash * sizeof (uint32_t));
11018
11019 if (dwp_file->version == 1)
11020 {
11021 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
11022 comp_dir, signature,
11023 is_debug_types);
11024 }
11025 else
11026 {
11027 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
11028 comp_dir, signature,
11029 is_debug_types);
11030 }
11031 return (struct dwo_unit *) *slot;
11032 }
11033 if (signature_in_table == 0)
11034 return NULL;
11035 hash = (hash + hash2) & mask;
11036 }
11037
11038 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
11039 " [in module %s]"),
11040 dwp_file->name);
11041 }
11042
11043 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
11044 Open the file specified by FILE_NAME and hand it off to BFD for
11045 preliminary analysis. Return a newly initialized bfd *, which
11046 includes a canonicalized copy of FILE_NAME.
11047 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
11048 SEARCH_CWD is true if the current directory is to be searched.
11049 It will be searched before debug-file-directory.
11050 If successful, the file is added to the bfd include table of the
11051 objfile's bfd (see gdb_bfd_record_inclusion).
11052 If unable to find/open the file, return NULL.
11053 NOTE: This function is derived from symfile_bfd_open. */
11054
11055 static gdb_bfd_ref_ptr
11056 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
11057 {
11058 int desc, flags;
11059 char *absolute_name;
11060 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
11061 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
11062 to debug_file_directory. */
11063 char *search_path;
11064 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
11065
11066 if (search_cwd)
11067 {
11068 if (*debug_file_directory != '\0')
11069 search_path = concat (".", dirname_separator_string,
11070 debug_file_directory, (char *) NULL);
11071 else
11072 search_path = xstrdup (".");
11073 }
11074 else
11075 search_path = xstrdup (debug_file_directory);
11076
11077 flags = OPF_RETURN_REALPATH;
11078 if (is_dwp)
11079 flags |= OPF_SEARCH_IN_PATH;
11080 desc = openp (search_path, flags, file_name,
11081 O_RDONLY | O_BINARY, &absolute_name);
11082 xfree (search_path);
11083 if (desc < 0)
11084 return NULL;
11085
11086 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
11087 xfree (absolute_name);
11088 if (sym_bfd == NULL)
11089 return NULL;
11090 bfd_set_cacheable (sym_bfd.get (), 1);
11091
11092 if (!bfd_check_format (sym_bfd.get (), bfd_object))
11093 return NULL;
11094
11095 /* Success. Record the bfd as having been included by the objfile's bfd.
11096 This is important because things like demangled_names_hash lives in the
11097 objfile's per_bfd space and may have references to things like symbol
11098 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
11099 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
11100
11101 return sym_bfd;
11102 }
11103
11104 /* Try to open DWO file FILE_NAME.
11105 COMP_DIR is the DW_AT_comp_dir attribute.
11106 The result is the bfd handle of the file.
11107 If there is a problem finding or opening the file, return NULL.
11108 Upon success, the canonicalized path of the file is stored in the bfd,
11109 same as symfile_bfd_open. */
11110
11111 static gdb_bfd_ref_ptr
11112 open_dwo_file (const char *file_name, const char *comp_dir)
11113 {
11114 if (IS_ABSOLUTE_PATH (file_name))
11115 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
11116
11117 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
11118
11119 if (comp_dir != NULL)
11120 {
11121 char *path_to_try = concat (comp_dir, SLASH_STRING,
11122 file_name, (char *) NULL);
11123
11124 /* NOTE: If comp_dir is a relative path, this will also try the
11125 search path, which seems useful. */
11126 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
11127 1 /*search_cwd*/));
11128 xfree (path_to_try);
11129 if (abfd != NULL)
11130 return abfd;
11131 }
11132
11133 /* That didn't work, try debug-file-directory, which, despite its name,
11134 is a list of paths. */
11135
11136 if (*debug_file_directory == '\0')
11137 return NULL;
11138
11139 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
11140 }
11141
11142 /* This function is mapped across the sections and remembers the offset and
11143 size of each of the DWO debugging sections we are interested in. */
11144
11145 static void
11146 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
11147 {
11148 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
11149 const struct dwop_section_names *names = &dwop_section_names;
11150
11151 if (section_is_p (sectp->name, &names->abbrev_dwo))
11152 {
11153 dwo_sections->abbrev.s.section = sectp;
11154 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
11155 }
11156 else if (section_is_p (sectp->name, &names->info_dwo))
11157 {
11158 dwo_sections->info.s.section = sectp;
11159 dwo_sections->info.size = bfd_get_section_size (sectp);
11160 }
11161 else if (section_is_p (sectp->name, &names->line_dwo))
11162 {
11163 dwo_sections->line.s.section = sectp;
11164 dwo_sections->line.size = bfd_get_section_size (sectp);
11165 }
11166 else if (section_is_p (sectp->name, &names->loc_dwo))
11167 {
11168 dwo_sections->loc.s.section = sectp;
11169 dwo_sections->loc.size = bfd_get_section_size (sectp);
11170 }
11171 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11172 {
11173 dwo_sections->macinfo.s.section = sectp;
11174 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
11175 }
11176 else if (section_is_p (sectp->name, &names->macro_dwo))
11177 {
11178 dwo_sections->macro.s.section = sectp;
11179 dwo_sections->macro.size = bfd_get_section_size (sectp);
11180 }
11181 else if (section_is_p (sectp->name, &names->str_dwo))
11182 {
11183 dwo_sections->str.s.section = sectp;
11184 dwo_sections->str.size = bfd_get_section_size (sectp);
11185 }
11186 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11187 {
11188 dwo_sections->str_offsets.s.section = sectp;
11189 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
11190 }
11191 else if (section_is_p (sectp->name, &names->types_dwo))
11192 {
11193 struct dwarf2_section_info type_section;
11194
11195 memset (&type_section, 0, sizeof (type_section));
11196 type_section.s.section = sectp;
11197 type_section.size = bfd_get_section_size (sectp);
11198 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
11199 &type_section);
11200 }
11201 }
11202
11203 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
11204 by PER_CU. This is for the non-DWP case.
11205 The result is NULL if DWO_NAME can't be found. */
11206
11207 static struct dwo_file *
11208 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
11209 const char *dwo_name, const char *comp_dir)
11210 {
11211 struct objfile *objfile = dwarf2_per_objfile->objfile;
11212 struct dwo_file *dwo_file;
11213 struct cleanup *cleanups;
11214
11215 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
11216 if (dbfd == NULL)
11217 {
11218 if (dwarf_read_debug)
11219 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
11220 return NULL;
11221 }
11222 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
11223 dwo_file->dwo_name = dwo_name;
11224 dwo_file->comp_dir = comp_dir;
11225 dwo_file->dbfd = dbfd.release ();
11226
11227 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
11228
11229 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
11230 &dwo_file->sections);
11231
11232 create_cus_hash_table (*dwo_file, dwo_file->sections.info, dwo_file->cus);
11233
11234 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
11235 dwo_file->tus);
11236
11237 discard_cleanups (cleanups);
11238
11239 if (dwarf_read_debug)
11240 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
11241
11242 return dwo_file;
11243 }
11244
11245 /* This function is mapped across the sections and remembers the offset and
11246 size of each of the DWP debugging sections common to version 1 and 2 that
11247 we are interested in. */
11248
11249 static void
11250 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
11251 void *dwp_file_ptr)
11252 {
11253 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
11254 const struct dwop_section_names *names = &dwop_section_names;
11255 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
11256
11257 /* Record the ELF section number for later lookup: this is what the
11258 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
11259 gdb_assert (elf_section_nr < dwp_file->num_sections);
11260 dwp_file->elf_sections[elf_section_nr] = sectp;
11261
11262 /* Look for specific sections that we need. */
11263 if (section_is_p (sectp->name, &names->str_dwo))
11264 {
11265 dwp_file->sections.str.s.section = sectp;
11266 dwp_file->sections.str.size = bfd_get_section_size (sectp);
11267 }
11268 else if (section_is_p (sectp->name, &names->cu_index))
11269 {
11270 dwp_file->sections.cu_index.s.section = sectp;
11271 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
11272 }
11273 else if (section_is_p (sectp->name, &names->tu_index))
11274 {
11275 dwp_file->sections.tu_index.s.section = sectp;
11276 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
11277 }
11278 }
11279
11280 /* This function is mapped across the sections and remembers the offset and
11281 size of each of the DWP version 2 debugging sections that we are interested
11282 in. This is split into a separate function because we don't know if we
11283 have version 1 or 2 until we parse the cu_index/tu_index sections. */
11284
11285 static void
11286 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
11287 {
11288 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
11289 const struct dwop_section_names *names = &dwop_section_names;
11290 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
11291
11292 /* Record the ELF section number for later lookup: this is what the
11293 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
11294 gdb_assert (elf_section_nr < dwp_file->num_sections);
11295 dwp_file->elf_sections[elf_section_nr] = sectp;
11296
11297 /* Look for specific sections that we need. */
11298 if (section_is_p (sectp->name, &names->abbrev_dwo))
11299 {
11300 dwp_file->sections.abbrev.s.section = sectp;
11301 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
11302 }
11303 else if (section_is_p (sectp->name, &names->info_dwo))
11304 {
11305 dwp_file->sections.info.s.section = sectp;
11306 dwp_file->sections.info.size = bfd_get_section_size (sectp);
11307 }
11308 else if (section_is_p (sectp->name, &names->line_dwo))
11309 {
11310 dwp_file->sections.line.s.section = sectp;
11311 dwp_file->sections.line.size = bfd_get_section_size (sectp);
11312 }
11313 else if (section_is_p (sectp->name, &names->loc_dwo))
11314 {
11315 dwp_file->sections.loc.s.section = sectp;
11316 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
11317 }
11318 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11319 {
11320 dwp_file->sections.macinfo.s.section = sectp;
11321 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
11322 }
11323 else if (section_is_p (sectp->name, &names->macro_dwo))
11324 {
11325 dwp_file->sections.macro.s.section = sectp;
11326 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
11327 }
11328 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11329 {
11330 dwp_file->sections.str_offsets.s.section = sectp;
11331 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
11332 }
11333 else if (section_is_p (sectp->name, &names->types_dwo))
11334 {
11335 dwp_file->sections.types.s.section = sectp;
11336 dwp_file->sections.types.size = bfd_get_section_size (sectp);
11337 }
11338 }
11339
11340 /* Hash function for dwp_file loaded CUs/TUs. */
11341
11342 static hashval_t
11343 hash_dwp_loaded_cutus (const void *item)
11344 {
11345 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11346
11347 /* This drops the top 32 bits of the signature, but is ok for a hash. */
11348 return dwo_unit->signature;
11349 }
11350
11351 /* Equality function for dwp_file loaded CUs/TUs. */
11352
11353 static int
11354 eq_dwp_loaded_cutus (const void *a, const void *b)
11355 {
11356 const struct dwo_unit *dua = (const struct dwo_unit *) a;
11357 const struct dwo_unit *dub = (const struct dwo_unit *) b;
11358
11359 return dua->signature == dub->signature;
11360 }
11361
11362 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
11363
11364 static htab_t
11365 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
11366 {
11367 return htab_create_alloc_ex (3,
11368 hash_dwp_loaded_cutus,
11369 eq_dwp_loaded_cutus,
11370 NULL,
11371 &objfile->objfile_obstack,
11372 hashtab_obstack_allocate,
11373 dummy_obstack_deallocate);
11374 }
11375
11376 /* Try to open DWP file FILE_NAME.
11377 The result is the bfd handle of the file.
11378 If there is a problem finding or opening the file, return NULL.
11379 Upon success, the canonicalized path of the file is stored in the bfd,
11380 same as symfile_bfd_open. */
11381
11382 static gdb_bfd_ref_ptr
11383 open_dwp_file (const char *file_name)
11384 {
11385 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
11386 1 /*search_cwd*/));
11387 if (abfd != NULL)
11388 return abfd;
11389
11390 /* Work around upstream bug 15652.
11391 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
11392 [Whether that's a "bug" is debatable, but it is getting in our way.]
11393 We have no real idea where the dwp file is, because gdb's realpath-ing
11394 of the executable's path may have discarded the needed info.
11395 [IWBN if the dwp file name was recorded in the executable, akin to
11396 .gnu_debuglink, but that doesn't exist yet.]
11397 Strip the directory from FILE_NAME and search again. */
11398 if (*debug_file_directory != '\0')
11399 {
11400 /* Don't implicitly search the current directory here.
11401 If the user wants to search "." to handle this case,
11402 it must be added to debug-file-directory. */
11403 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
11404 0 /*search_cwd*/);
11405 }
11406
11407 return NULL;
11408 }
11409
11410 /* Initialize the use of the DWP file for the current objfile.
11411 By convention the name of the DWP file is ${objfile}.dwp.
11412 The result is NULL if it can't be found. */
11413
11414 static struct dwp_file *
11415 open_and_init_dwp_file (void)
11416 {
11417 struct objfile *objfile = dwarf2_per_objfile->objfile;
11418 struct dwp_file *dwp_file;
11419
11420 /* Try to find first .dwp for the binary file before any symbolic links
11421 resolving. */
11422
11423 /* If the objfile is a debug file, find the name of the real binary
11424 file and get the name of dwp file from there. */
11425 std::string dwp_name;
11426 if (objfile->separate_debug_objfile_backlink != NULL)
11427 {
11428 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
11429 const char *backlink_basename = lbasename (backlink->original_name);
11430
11431 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
11432 }
11433 else
11434 dwp_name = objfile->original_name;
11435
11436 dwp_name += ".dwp";
11437
11438 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name.c_str ()));
11439 if (dbfd == NULL
11440 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
11441 {
11442 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
11443 dwp_name = objfile_name (objfile);
11444 dwp_name += ".dwp";
11445 dbfd = open_dwp_file (dwp_name.c_str ());
11446 }
11447
11448 if (dbfd == NULL)
11449 {
11450 if (dwarf_read_debug)
11451 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
11452 return NULL;
11453 }
11454 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
11455 dwp_file->name = bfd_get_filename (dbfd.get ());
11456 dwp_file->dbfd = dbfd.release ();
11457
11458 /* +1: section 0 is unused */
11459 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
11460 dwp_file->elf_sections =
11461 OBSTACK_CALLOC (&objfile->objfile_obstack,
11462 dwp_file->num_sections, asection *);
11463
11464 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
11465 dwp_file);
11466
11467 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
11468
11469 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
11470
11471 /* The DWP file version is stored in the hash table. Oh well. */
11472 if (dwp_file->cus && dwp_file->tus
11473 && dwp_file->cus->version != dwp_file->tus->version)
11474 {
11475 /* Technically speaking, we should try to limp along, but this is
11476 pretty bizarre. We use pulongest here because that's the established
11477 portability solution (e.g, we cannot use %u for uint32_t). */
11478 error (_("Dwarf Error: DWP file CU version %s doesn't match"
11479 " TU version %s [in DWP file %s]"),
11480 pulongest (dwp_file->cus->version),
11481 pulongest (dwp_file->tus->version), dwp_name.c_str ());
11482 }
11483
11484 if (dwp_file->cus)
11485 dwp_file->version = dwp_file->cus->version;
11486 else if (dwp_file->tus)
11487 dwp_file->version = dwp_file->tus->version;
11488 else
11489 dwp_file->version = 2;
11490
11491 if (dwp_file->version == 2)
11492 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
11493 dwp_file);
11494
11495 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
11496 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
11497
11498 if (dwarf_read_debug)
11499 {
11500 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
11501 fprintf_unfiltered (gdb_stdlog,
11502 " %s CUs, %s TUs\n",
11503 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
11504 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
11505 }
11506
11507 return dwp_file;
11508 }
11509
11510 /* Wrapper around open_and_init_dwp_file, only open it once. */
11511
11512 static struct dwp_file *
11513 get_dwp_file (void)
11514 {
11515 if (! dwarf2_per_objfile->dwp_checked)
11516 {
11517 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
11518 dwarf2_per_objfile->dwp_checked = 1;
11519 }
11520 return dwarf2_per_objfile->dwp_file;
11521 }
11522
11523 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
11524 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
11525 or in the DWP file for the objfile, referenced by THIS_UNIT.
11526 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
11527 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
11528
11529 This is called, for example, when wanting to read a variable with a
11530 complex location. Therefore we don't want to do file i/o for every call.
11531 Therefore we don't want to look for a DWO file on every call.
11532 Therefore we first see if we've already seen SIGNATURE in a DWP file,
11533 then we check if we've already seen DWO_NAME, and only THEN do we check
11534 for a DWO file.
11535
11536 The result is a pointer to the dwo_unit object or NULL if we didn't find it
11537 (dwo_id mismatch or couldn't find the DWO/DWP file). */
11538
11539 static struct dwo_unit *
11540 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11541 const char *dwo_name, const char *comp_dir,
11542 ULONGEST signature, int is_debug_types)
11543 {
11544 struct objfile *objfile = dwarf2_per_objfile->objfile;
11545 const char *kind = is_debug_types ? "TU" : "CU";
11546 void **dwo_file_slot;
11547 struct dwo_file *dwo_file;
11548 struct dwp_file *dwp_file;
11549
11550 /* First see if there's a DWP file.
11551 If we have a DWP file but didn't find the DWO inside it, don't
11552 look for the original DWO file. It makes gdb behave differently
11553 depending on whether one is debugging in the build tree. */
11554
11555 dwp_file = get_dwp_file ();
11556 if (dwp_file != NULL)
11557 {
11558 const struct dwp_hash_table *dwp_htab =
11559 is_debug_types ? dwp_file->tus : dwp_file->cus;
11560
11561 if (dwp_htab != NULL)
11562 {
11563 struct dwo_unit *dwo_cutu =
11564 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11565 signature, is_debug_types);
11566
11567 if (dwo_cutu != NULL)
11568 {
11569 if (dwarf_read_debug)
11570 {
11571 fprintf_unfiltered (gdb_stdlog,
11572 "Virtual DWO %s %s found: @%s\n",
11573 kind, hex_string (signature),
11574 host_address_to_string (dwo_cutu));
11575 }
11576 return dwo_cutu;
11577 }
11578 }
11579 }
11580 else
11581 {
11582 /* No DWP file, look for the DWO file. */
11583
11584 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11585 if (*dwo_file_slot == NULL)
11586 {
11587 /* Read in the file and build a table of the CUs/TUs it contains. */
11588 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
11589 }
11590 /* NOTE: This will be NULL if unable to open the file. */
11591 dwo_file = (struct dwo_file *) *dwo_file_slot;
11592
11593 if (dwo_file != NULL)
11594 {
11595 struct dwo_unit *dwo_cutu = NULL;
11596
11597 if (is_debug_types && dwo_file->tus)
11598 {
11599 struct dwo_unit find_dwo_cutu;
11600
11601 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11602 find_dwo_cutu.signature = signature;
11603 dwo_cutu
11604 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11605 }
11606 else if (!is_debug_types && dwo_file->cus)
11607 {
11608 struct dwo_unit find_dwo_cutu;
11609
11610 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11611 find_dwo_cutu.signature = signature;
11612 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
11613 &find_dwo_cutu);
11614 }
11615
11616 if (dwo_cutu != NULL)
11617 {
11618 if (dwarf_read_debug)
11619 {
11620 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11621 kind, dwo_name, hex_string (signature),
11622 host_address_to_string (dwo_cutu));
11623 }
11624 return dwo_cutu;
11625 }
11626 }
11627 }
11628
11629 /* We didn't find it. This could mean a dwo_id mismatch, or
11630 someone deleted the DWO/DWP file, or the search path isn't set up
11631 correctly to find the file. */
11632
11633 if (dwarf_read_debug)
11634 {
11635 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11636 kind, dwo_name, hex_string (signature));
11637 }
11638
11639 /* This is a warning and not a complaint because it can be caused by
11640 pilot error (e.g., user accidentally deleting the DWO). */
11641 {
11642 /* Print the name of the DWP file if we looked there, helps the user
11643 better diagnose the problem. */
11644 std::string dwp_text;
11645
11646 if (dwp_file != NULL)
11647 dwp_text = string_printf (" [in DWP file %s]",
11648 lbasename (dwp_file->name));
11649
11650 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11651 " [in module %s]"),
11652 kind, dwo_name, hex_string (signature),
11653 dwp_text.c_str (),
11654 this_unit->is_debug_types ? "TU" : "CU",
11655 to_underlying (this_unit->sect_off), objfile_name (objfile));
11656 }
11657 return NULL;
11658 }
11659
11660 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11661 See lookup_dwo_cutu_unit for details. */
11662
11663 static struct dwo_unit *
11664 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11665 const char *dwo_name, const char *comp_dir,
11666 ULONGEST signature)
11667 {
11668 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11669 }
11670
11671 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11672 See lookup_dwo_cutu_unit for details. */
11673
11674 static struct dwo_unit *
11675 lookup_dwo_type_unit (struct signatured_type *this_tu,
11676 const char *dwo_name, const char *comp_dir)
11677 {
11678 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11679 }
11680
11681 /* Traversal function for queue_and_load_all_dwo_tus. */
11682
11683 static int
11684 queue_and_load_dwo_tu (void **slot, void *info)
11685 {
11686 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11687 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11688 ULONGEST signature = dwo_unit->signature;
11689 struct signatured_type *sig_type =
11690 lookup_dwo_signatured_type (per_cu->cu, signature);
11691
11692 if (sig_type != NULL)
11693 {
11694 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11695
11696 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11697 a real dependency of PER_CU on SIG_TYPE. That is detected later
11698 while processing PER_CU. */
11699 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11700 load_full_type_unit (sig_cu);
11701 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11702 }
11703
11704 return 1;
11705 }
11706
11707 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11708 The DWO may have the only definition of the type, though it may not be
11709 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11710 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11711
11712 static void
11713 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11714 {
11715 struct dwo_unit *dwo_unit;
11716 struct dwo_file *dwo_file;
11717
11718 gdb_assert (!per_cu->is_debug_types);
11719 gdb_assert (get_dwp_file () == NULL);
11720 gdb_assert (per_cu->cu != NULL);
11721
11722 dwo_unit = per_cu->cu->dwo_unit;
11723 gdb_assert (dwo_unit != NULL);
11724
11725 dwo_file = dwo_unit->dwo_file;
11726 if (dwo_file->tus != NULL)
11727 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11728 }
11729
11730 /* Free all resources associated with DWO_FILE.
11731 Close the DWO file and munmap the sections.
11732 All memory should be on the objfile obstack. */
11733
11734 static void
11735 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11736 {
11737
11738 /* Note: dbfd is NULL for virtual DWO files. */
11739 gdb_bfd_unref (dwo_file->dbfd);
11740
11741 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11742 }
11743
11744 /* Wrapper for free_dwo_file for use in cleanups. */
11745
11746 static void
11747 free_dwo_file_cleanup (void *arg)
11748 {
11749 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11750 struct objfile *objfile = dwarf2_per_objfile->objfile;
11751
11752 free_dwo_file (dwo_file, objfile);
11753 }
11754
11755 /* Traversal function for free_dwo_files. */
11756
11757 static int
11758 free_dwo_file_from_slot (void **slot, void *info)
11759 {
11760 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11761 struct objfile *objfile = (struct objfile *) info;
11762
11763 free_dwo_file (dwo_file, objfile);
11764
11765 return 1;
11766 }
11767
11768 /* Free all resources associated with DWO_FILES. */
11769
11770 static void
11771 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11772 {
11773 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11774 }
11775 \f
11776 /* Read in various DIEs. */
11777
11778 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11779 Inherit only the children of the DW_AT_abstract_origin DIE not being
11780 already referenced by DW_AT_abstract_origin from the children of the
11781 current DIE. */
11782
11783 static void
11784 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11785 {
11786 struct die_info *child_die;
11787 sect_offset *offsetp;
11788 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11789 struct die_info *origin_die;
11790 /* Iterator of the ORIGIN_DIE children. */
11791 struct die_info *origin_child_die;
11792 struct attribute *attr;
11793 struct dwarf2_cu *origin_cu;
11794 struct pending **origin_previous_list_in_scope;
11795
11796 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11797 if (!attr)
11798 return;
11799
11800 /* Note that following die references may follow to a die in a
11801 different cu. */
11802
11803 origin_cu = cu;
11804 origin_die = follow_die_ref (die, attr, &origin_cu);
11805
11806 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11807 symbols in. */
11808 origin_previous_list_in_scope = origin_cu->list_in_scope;
11809 origin_cu->list_in_scope = cu->list_in_scope;
11810
11811 if (die->tag != origin_die->tag
11812 && !(die->tag == DW_TAG_inlined_subroutine
11813 && origin_die->tag == DW_TAG_subprogram))
11814 complaint (&symfile_complaints,
11815 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11816 to_underlying (die->sect_off),
11817 to_underlying (origin_die->sect_off));
11818
11819 std::vector<sect_offset> offsets;
11820
11821 for (child_die = die->child;
11822 child_die && child_die->tag;
11823 child_die = sibling_die (child_die))
11824 {
11825 struct die_info *child_origin_die;
11826 struct dwarf2_cu *child_origin_cu;
11827
11828 /* We are trying to process concrete instance entries:
11829 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11830 it's not relevant to our analysis here. i.e. detecting DIEs that are
11831 present in the abstract instance but not referenced in the concrete
11832 one. */
11833 if (child_die->tag == DW_TAG_call_site
11834 || child_die->tag == DW_TAG_GNU_call_site)
11835 continue;
11836
11837 /* For each CHILD_DIE, find the corresponding child of
11838 ORIGIN_DIE. If there is more than one layer of
11839 DW_AT_abstract_origin, follow them all; there shouldn't be,
11840 but GCC versions at least through 4.4 generate this (GCC PR
11841 40573). */
11842 child_origin_die = child_die;
11843 child_origin_cu = cu;
11844 while (1)
11845 {
11846 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11847 child_origin_cu);
11848 if (attr == NULL)
11849 break;
11850 child_origin_die = follow_die_ref (child_origin_die, attr,
11851 &child_origin_cu);
11852 }
11853
11854 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11855 counterpart may exist. */
11856 if (child_origin_die != child_die)
11857 {
11858 if (child_die->tag != child_origin_die->tag
11859 && !(child_die->tag == DW_TAG_inlined_subroutine
11860 && child_origin_die->tag == DW_TAG_subprogram))
11861 complaint (&symfile_complaints,
11862 _("Child DIE 0x%x and its abstract origin 0x%x have "
11863 "different tags"),
11864 to_underlying (child_die->sect_off),
11865 to_underlying (child_origin_die->sect_off));
11866 if (child_origin_die->parent != origin_die)
11867 complaint (&symfile_complaints,
11868 _("Child DIE 0x%x and its abstract origin 0x%x have "
11869 "different parents"),
11870 to_underlying (child_die->sect_off),
11871 to_underlying (child_origin_die->sect_off));
11872 else
11873 offsets.push_back (child_origin_die->sect_off);
11874 }
11875 }
11876 std::sort (offsets.begin (), offsets.end ());
11877 sect_offset *offsets_end = offsets.data () + offsets.size ();
11878 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
11879 if (offsetp[-1] == *offsetp)
11880 complaint (&symfile_complaints,
11881 _("Multiple children of DIE 0x%x refer "
11882 "to DIE 0x%x as their abstract origin"),
11883 to_underlying (die->sect_off), to_underlying (*offsetp));
11884
11885 offsetp = offsets.data ();
11886 origin_child_die = origin_die->child;
11887 while (origin_child_die && origin_child_die->tag)
11888 {
11889 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11890 while (offsetp < offsets_end
11891 && *offsetp < origin_child_die->sect_off)
11892 offsetp++;
11893 if (offsetp >= offsets_end
11894 || *offsetp > origin_child_die->sect_off)
11895 {
11896 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11897 Check whether we're already processing ORIGIN_CHILD_DIE.
11898 This can happen with mutually referenced abstract_origins.
11899 PR 16581. */
11900 if (!origin_child_die->in_process)
11901 process_die (origin_child_die, origin_cu);
11902 }
11903 origin_child_die = sibling_die (origin_child_die);
11904 }
11905 origin_cu->list_in_scope = origin_previous_list_in_scope;
11906 }
11907
11908 static void
11909 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11910 {
11911 struct objfile *objfile = cu->objfile;
11912 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11913 struct context_stack *newobj;
11914 CORE_ADDR lowpc;
11915 CORE_ADDR highpc;
11916 struct die_info *child_die;
11917 struct attribute *attr, *call_line, *call_file;
11918 const char *name;
11919 CORE_ADDR baseaddr;
11920 struct block *block;
11921 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11922 VEC (symbolp) *template_args = NULL;
11923 struct template_symbol *templ_func = NULL;
11924
11925 if (inlined_func)
11926 {
11927 /* If we do not have call site information, we can't show the
11928 caller of this inlined function. That's too confusing, so
11929 only use the scope for local variables. */
11930 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11931 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11932 if (call_line == NULL || call_file == NULL)
11933 {
11934 read_lexical_block_scope (die, cu);
11935 return;
11936 }
11937 }
11938
11939 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11940
11941 name = dwarf2_name (die, cu);
11942
11943 /* Ignore functions with missing or empty names. These are actually
11944 illegal according to the DWARF standard. */
11945 if (name == NULL)
11946 {
11947 complaint (&symfile_complaints,
11948 _("missing name for subprogram DIE at %d"),
11949 to_underlying (die->sect_off));
11950 return;
11951 }
11952
11953 /* Ignore functions with missing or invalid low and high pc attributes. */
11954 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
11955 <= PC_BOUNDS_INVALID)
11956 {
11957 attr = dwarf2_attr (die, DW_AT_external, cu);
11958 if (!attr || !DW_UNSND (attr))
11959 complaint (&symfile_complaints,
11960 _("cannot get low and high bounds "
11961 "for subprogram DIE at %d"),
11962 to_underlying (die->sect_off));
11963 return;
11964 }
11965
11966 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11967 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11968
11969 /* If we have any template arguments, then we must allocate a
11970 different sort of symbol. */
11971 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11972 {
11973 if (child_die->tag == DW_TAG_template_type_param
11974 || child_die->tag == DW_TAG_template_value_param)
11975 {
11976 templ_func = allocate_template_symbol (objfile);
11977 templ_func->base.is_cplus_template_function = 1;
11978 break;
11979 }
11980 }
11981
11982 newobj = push_context (0, lowpc);
11983 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11984 (struct symbol *) templ_func);
11985
11986 /* If there is a location expression for DW_AT_frame_base, record
11987 it. */
11988 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11989 if (attr)
11990 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11991
11992 /* If there is a location for the static link, record it. */
11993 newobj->static_link = NULL;
11994 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11995 if (attr)
11996 {
11997 newobj->static_link
11998 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11999 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
12000 }
12001
12002 cu->list_in_scope = &local_symbols;
12003
12004 if (die->child != NULL)
12005 {
12006 child_die = die->child;
12007 while (child_die && child_die->tag)
12008 {
12009 if (child_die->tag == DW_TAG_template_type_param
12010 || child_die->tag == DW_TAG_template_value_param)
12011 {
12012 struct symbol *arg = new_symbol (child_die, NULL, cu);
12013
12014 if (arg != NULL)
12015 VEC_safe_push (symbolp, template_args, arg);
12016 }
12017 else
12018 process_die (child_die, cu);
12019 child_die = sibling_die (child_die);
12020 }
12021 }
12022
12023 inherit_abstract_dies (die, cu);
12024
12025 /* If we have a DW_AT_specification, we might need to import using
12026 directives from the context of the specification DIE. See the
12027 comment in determine_prefix. */
12028 if (cu->language == language_cplus
12029 && dwarf2_attr (die, DW_AT_specification, cu))
12030 {
12031 struct dwarf2_cu *spec_cu = cu;
12032 struct die_info *spec_die = die_specification (die, &spec_cu);
12033
12034 while (spec_die)
12035 {
12036 child_die = spec_die->child;
12037 while (child_die && child_die->tag)
12038 {
12039 if (child_die->tag == DW_TAG_imported_module)
12040 process_die (child_die, spec_cu);
12041 child_die = sibling_die (child_die);
12042 }
12043
12044 /* In some cases, GCC generates specification DIEs that
12045 themselves contain DW_AT_specification attributes. */
12046 spec_die = die_specification (spec_die, &spec_cu);
12047 }
12048 }
12049
12050 newobj = pop_context ();
12051 /* Make a block for the local symbols within. */
12052 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
12053 newobj->static_link, lowpc, highpc);
12054
12055 /* For C++, set the block's scope. */
12056 if ((cu->language == language_cplus
12057 || cu->language == language_fortran
12058 || cu->language == language_d
12059 || cu->language == language_rust)
12060 && cu->processing_has_namespace_info)
12061 block_set_scope (block, determine_prefix (die, cu),
12062 &objfile->objfile_obstack);
12063
12064 /* If we have address ranges, record them. */
12065 dwarf2_record_block_ranges (die, block, baseaddr, cu);
12066
12067 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
12068
12069 /* Attach template arguments to function. */
12070 if (! VEC_empty (symbolp, template_args))
12071 {
12072 gdb_assert (templ_func != NULL);
12073
12074 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
12075 templ_func->template_arguments
12076 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
12077 templ_func->n_template_arguments);
12078 memcpy (templ_func->template_arguments,
12079 VEC_address (symbolp, template_args),
12080 (templ_func->n_template_arguments * sizeof (struct symbol *)));
12081 VEC_free (symbolp, template_args);
12082 }
12083
12084 /* In C++, we can have functions nested inside functions (e.g., when
12085 a function declares a class that has methods). This means that
12086 when we finish processing a function scope, we may need to go
12087 back to building a containing block's symbol lists. */
12088 local_symbols = newobj->locals;
12089 local_using_directives = newobj->local_using_directives;
12090
12091 /* If we've finished processing a top-level function, subsequent
12092 symbols go in the file symbol list. */
12093 if (outermost_context_p ())
12094 cu->list_in_scope = &file_symbols;
12095 }
12096
12097 /* Process all the DIES contained within a lexical block scope. Start
12098 a new scope, process the dies, and then close the scope. */
12099
12100 static void
12101 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
12102 {
12103 struct objfile *objfile = cu->objfile;
12104 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12105 struct context_stack *newobj;
12106 CORE_ADDR lowpc, highpc;
12107 struct die_info *child_die;
12108 CORE_ADDR baseaddr;
12109
12110 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12111
12112 /* Ignore blocks with missing or invalid low and high pc attributes. */
12113 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
12114 as multiple lexical blocks? Handling children in a sane way would
12115 be nasty. Might be easier to properly extend generic blocks to
12116 describe ranges. */
12117 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
12118 {
12119 case PC_BOUNDS_NOT_PRESENT:
12120 /* DW_TAG_lexical_block has no attributes, process its children as if
12121 there was no wrapping by that DW_TAG_lexical_block.
12122 GCC does no longer produces such DWARF since GCC r224161. */
12123 for (child_die = die->child;
12124 child_die != NULL && child_die->tag;
12125 child_die = sibling_die (child_die))
12126 process_die (child_die, cu);
12127 return;
12128 case PC_BOUNDS_INVALID:
12129 return;
12130 }
12131 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12132 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
12133
12134 push_context (0, lowpc);
12135 if (die->child != NULL)
12136 {
12137 child_die = die->child;
12138 while (child_die && child_die->tag)
12139 {
12140 process_die (child_die, cu);
12141 child_die = sibling_die (child_die);
12142 }
12143 }
12144 inherit_abstract_dies (die, cu);
12145 newobj = pop_context ();
12146
12147 if (local_symbols != NULL || local_using_directives != NULL)
12148 {
12149 struct block *block
12150 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
12151 newobj->start_addr, highpc);
12152
12153 /* Note that recording ranges after traversing children, as we
12154 do here, means that recording a parent's ranges entails
12155 walking across all its children's ranges as they appear in
12156 the address map, which is quadratic behavior.
12157
12158 It would be nicer to record the parent's ranges before
12159 traversing its children, simply overriding whatever you find
12160 there. But since we don't even decide whether to create a
12161 block until after we've traversed its children, that's hard
12162 to do. */
12163 dwarf2_record_block_ranges (die, block, baseaddr, cu);
12164 }
12165 local_symbols = newobj->locals;
12166 local_using_directives = newobj->local_using_directives;
12167 }
12168
12169 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
12170
12171 static void
12172 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
12173 {
12174 struct objfile *objfile = cu->objfile;
12175 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12176 CORE_ADDR pc, baseaddr;
12177 struct attribute *attr;
12178 struct call_site *call_site, call_site_local;
12179 void **slot;
12180 int nparams;
12181 struct die_info *child_die;
12182
12183 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12184
12185 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
12186 if (attr == NULL)
12187 {
12188 /* This was a pre-DWARF-5 GNU extension alias
12189 for DW_AT_call_return_pc. */
12190 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12191 }
12192 if (!attr)
12193 {
12194 complaint (&symfile_complaints,
12195 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
12196 "DIE 0x%x [in module %s]"),
12197 to_underlying (die->sect_off), objfile_name (objfile));
12198 return;
12199 }
12200 pc = attr_value_as_address (attr) + baseaddr;
12201 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
12202
12203 if (cu->call_site_htab == NULL)
12204 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
12205 NULL, &objfile->objfile_obstack,
12206 hashtab_obstack_allocate, NULL);
12207 call_site_local.pc = pc;
12208 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
12209 if (*slot != NULL)
12210 {
12211 complaint (&symfile_complaints,
12212 _("Duplicate PC %s for DW_TAG_call_site "
12213 "DIE 0x%x [in module %s]"),
12214 paddress (gdbarch, pc), to_underlying (die->sect_off),
12215 objfile_name (objfile));
12216 return;
12217 }
12218
12219 /* Count parameters at the caller. */
12220
12221 nparams = 0;
12222 for (child_die = die->child; child_die && child_die->tag;
12223 child_die = sibling_die (child_die))
12224 {
12225 if (child_die->tag != DW_TAG_call_site_parameter
12226 && child_die->tag != DW_TAG_GNU_call_site_parameter)
12227 {
12228 complaint (&symfile_complaints,
12229 _("Tag %d is not DW_TAG_call_site_parameter in "
12230 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12231 child_die->tag, to_underlying (child_die->sect_off),
12232 objfile_name (objfile));
12233 continue;
12234 }
12235
12236 nparams++;
12237 }
12238
12239 call_site
12240 = ((struct call_site *)
12241 obstack_alloc (&objfile->objfile_obstack,
12242 sizeof (*call_site)
12243 + (sizeof (*call_site->parameter) * (nparams - 1))));
12244 *slot = call_site;
12245 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
12246 call_site->pc = pc;
12247
12248 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
12249 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
12250 {
12251 struct die_info *func_die;
12252
12253 /* Skip also over DW_TAG_inlined_subroutine. */
12254 for (func_die = die->parent;
12255 func_die && func_die->tag != DW_TAG_subprogram
12256 && func_die->tag != DW_TAG_subroutine_type;
12257 func_die = func_die->parent);
12258
12259 /* DW_AT_call_all_calls is a superset
12260 of DW_AT_call_all_tail_calls. */
12261 if (func_die
12262 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
12263 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
12264 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
12265 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
12266 {
12267 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
12268 not complete. But keep CALL_SITE for look ups via call_site_htab,
12269 both the initial caller containing the real return address PC and
12270 the final callee containing the current PC of a chain of tail
12271 calls do not need to have the tail call list complete. But any
12272 function candidate for a virtual tail call frame searched via
12273 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
12274 determined unambiguously. */
12275 }
12276 else
12277 {
12278 struct type *func_type = NULL;
12279
12280 if (func_die)
12281 func_type = get_die_type (func_die, cu);
12282 if (func_type != NULL)
12283 {
12284 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
12285
12286 /* Enlist this call site to the function. */
12287 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
12288 TYPE_TAIL_CALL_LIST (func_type) = call_site;
12289 }
12290 else
12291 complaint (&symfile_complaints,
12292 _("Cannot find function owning DW_TAG_call_site "
12293 "DIE 0x%x [in module %s]"),
12294 to_underlying (die->sect_off), objfile_name (objfile));
12295 }
12296 }
12297
12298 attr = dwarf2_attr (die, DW_AT_call_target, cu);
12299 if (attr == NULL)
12300 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
12301 if (attr == NULL)
12302 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
12303 if (attr == NULL)
12304 {
12305 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
12306 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12307 }
12308 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
12309 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
12310 /* Keep NULL DWARF_BLOCK. */;
12311 else if (attr_form_is_block (attr))
12312 {
12313 struct dwarf2_locexpr_baton *dlbaton;
12314
12315 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
12316 dlbaton->data = DW_BLOCK (attr)->data;
12317 dlbaton->size = DW_BLOCK (attr)->size;
12318 dlbaton->per_cu = cu->per_cu;
12319
12320 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
12321 }
12322 else if (attr_form_is_ref (attr))
12323 {
12324 struct dwarf2_cu *target_cu = cu;
12325 struct die_info *target_die;
12326
12327 target_die = follow_die_ref (die, attr, &target_cu);
12328 gdb_assert (target_cu->objfile == objfile);
12329 if (die_is_declaration (target_die, target_cu))
12330 {
12331 const char *target_physname;
12332
12333 /* Prefer the mangled name; otherwise compute the demangled one. */
12334 target_physname = dw2_linkage_name (target_die, target_cu);
12335 if (target_physname == NULL)
12336 target_physname = dwarf2_physname (NULL, target_die, target_cu);
12337 if (target_physname == NULL)
12338 complaint (&symfile_complaints,
12339 _("DW_AT_call_target target DIE has invalid "
12340 "physname, for referencing DIE 0x%x [in module %s]"),
12341 to_underlying (die->sect_off), objfile_name (objfile));
12342 else
12343 SET_FIELD_PHYSNAME (call_site->target, target_physname);
12344 }
12345 else
12346 {
12347 CORE_ADDR lowpc;
12348
12349 /* DW_AT_entry_pc should be preferred. */
12350 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
12351 <= PC_BOUNDS_INVALID)
12352 complaint (&symfile_complaints,
12353 _("DW_AT_call_target target DIE has invalid "
12354 "low pc, for referencing DIE 0x%x [in module %s]"),
12355 to_underlying (die->sect_off), objfile_name (objfile));
12356 else
12357 {
12358 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12359 SET_FIELD_PHYSADDR (call_site->target, lowpc);
12360 }
12361 }
12362 }
12363 else
12364 complaint (&symfile_complaints,
12365 _("DW_TAG_call_site DW_AT_call_target is neither "
12366 "block nor reference, for DIE 0x%x [in module %s]"),
12367 to_underlying (die->sect_off), objfile_name (objfile));
12368
12369 call_site->per_cu = cu->per_cu;
12370
12371 for (child_die = die->child;
12372 child_die && child_die->tag;
12373 child_die = sibling_die (child_die))
12374 {
12375 struct call_site_parameter *parameter;
12376 struct attribute *loc, *origin;
12377
12378 if (child_die->tag != DW_TAG_call_site_parameter
12379 && child_die->tag != DW_TAG_GNU_call_site_parameter)
12380 {
12381 /* Already printed the complaint above. */
12382 continue;
12383 }
12384
12385 gdb_assert (call_site->parameter_count < nparams);
12386 parameter = &call_site->parameter[call_site->parameter_count];
12387
12388 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
12389 specifies DW_TAG_formal_parameter. Value of the data assumed for the
12390 register is contained in DW_AT_call_value. */
12391
12392 loc = dwarf2_attr (child_die, DW_AT_location, cu);
12393 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
12394 if (origin == NULL)
12395 {
12396 /* This was a pre-DWARF-5 GNU extension alias
12397 for DW_AT_call_parameter. */
12398 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
12399 }
12400 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
12401 {
12402 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
12403
12404 sect_offset sect_off
12405 = (sect_offset) dwarf2_get_ref_die_offset (origin);
12406 if (!offset_in_cu_p (&cu->header, sect_off))
12407 {
12408 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
12409 binding can be done only inside one CU. Such referenced DIE
12410 therefore cannot be even moved to DW_TAG_partial_unit. */
12411 complaint (&symfile_complaints,
12412 _("DW_AT_call_parameter offset is not in CU for "
12413 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12414 to_underlying (child_die->sect_off),
12415 objfile_name (objfile));
12416 continue;
12417 }
12418 parameter->u.param_cu_off
12419 = (cu_offset) (sect_off - cu->header.sect_off);
12420 }
12421 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
12422 {
12423 complaint (&symfile_complaints,
12424 _("No DW_FORM_block* DW_AT_location for "
12425 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12426 to_underlying (child_die->sect_off), objfile_name (objfile));
12427 continue;
12428 }
12429 else
12430 {
12431 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
12432 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
12433 if (parameter->u.dwarf_reg != -1)
12434 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
12435 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
12436 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
12437 &parameter->u.fb_offset))
12438 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
12439 else
12440 {
12441 complaint (&symfile_complaints,
12442 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
12443 "for DW_FORM_block* DW_AT_location is supported for "
12444 "DW_TAG_call_site child DIE 0x%x "
12445 "[in module %s]"),
12446 to_underlying (child_die->sect_off),
12447 objfile_name (objfile));
12448 continue;
12449 }
12450 }
12451
12452 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
12453 if (attr == NULL)
12454 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
12455 if (!attr_form_is_block (attr))
12456 {
12457 complaint (&symfile_complaints,
12458 _("No DW_FORM_block* DW_AT_call_value for "
12459 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12460 to_underlying (child_die->sect_off),
12461 objfile_name (objfile));
12462 continue;
12463 }
12464 parameter->value = DW_BLOCK (attr)->data;
12465 parameter->value_size = DW_BLOCK (attr)->size;
12466
12467 /* Parameters are not pre-cleared by memset above. */
12468 parameter->data_value = NULL;
12469 parameter->data_value_size = 0;
12470 call_site->parameter_count++;
12471
12472 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
12473 if (attr == NULL)
12474 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
12475 if (attr)
12476 {
12477 if (!attr_form_is_block (attr))
12478 complaint (&symfile_complaints,
12479 _("No DW_FORM_block* DW_AT_call_data_value for "
12480 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12481 to_underlying (child_die->sect_off),
12482 objfile_name (objfile));
12483 else
12484 {
12485 parameter->data_value = DW_BLOCK (attr)->data;
12486 parameter->data_value_size = DW_BLOCK (attr)->size;
12487 }
12488 }
12489 }
12490 }
12491
12492 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
12493 reading .debug_rnglists.
12494 Callback's type should be:
12495 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12496 Return true if the attributes are present and valid, otherwise,
12497 return false. */
12498
12499 template <typename Callback>
12500 static bool
12501 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
12502 Callback &&callback)
12503 {
12504 struct objfile *objfile = cu->objfile;
12505 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12506 struct comp_unit_head *cu_header = &cu->header;
12507 bfd *obfd = objfile->obfd;
12508 unsigned int addr_size = cu_header->addr_size;
12509 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12510 /* Base address selection entry. */
12511 CORE_ADDR base;
12512 int found_base;
12513 unsigned int dummy;
12514 const gdb_byte *buffer;
12515 CORE_ADDR low = 0;
12516 CORE_ADDR high = 0;
12517 CORE_ADDR baseaddr;
12518 bool overflow = false;
12519
12520 found_base = cu->base_known;
12521 base = cu->base_address;
12522
12523 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
12524 if (offset >= dwarf2_per_objfile->rnglists.size)
12525 {
12526 complaint (&symfile_complaints,
12527 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12528 offset);
12529 return false;
12530 }
12531 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
12532
12533 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12534
12535 while (1)
12536 {
12537 /* Initialize it due to a false compiler warning. */
12538 CORE_ADDR range_beginning = 0, range_end = 0;
12539 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12540 + dwarf2_per_objfile->rnglists.size);
12541 unsigned int bytes_read;
12542
12543 if (buffer == buf_end)
12544 {
12545 overflow = true;
12546 break;
12547 }
12548 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12549 switch (rlet)
12550 {
12551 case DW_RLE_end_of_list:
12552 break;
12553 case DW_RLE_base_address:
12554 if (buffer + cu->header.addr_size > buf_end)
12555 {
12556 overflow = true;
12557 break;
12558 }
12559 base = read_address (obfd, buffer, cu, &bytes_read);
12560 found_base = 1;
12561 buffer += bytes_read;
12562 break;
12563 case DW_RLE_start_length:
12564 if (buffer + cu->header.addr_size > buf_end)
12565 {
12566 overflow = true;
12567 break;
12568 }
12569 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12570 buffer += bytes_read;
12571 range_end = (range_beginning
12572 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12573 buffer += bytes_read;
12574 if (buffer > buf_end)
12575 {
12576 overflow = true;
12577 break;
12578 }
12579 break;
12580 case DW_RLE_offset_pair:
12581 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12582 buffer += bytes_read;
12583 if (buffer > buf_end)
12584 {
12585 overflow = true;
12586 break;
12587 }
12588 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12589 buffer += bytes_read;
12590 if (buffer > buf_end)
12591 {
12592 overflow = true;
12593 break;
12594 }
12595 break;
12596 case DW_RLE_start_end:
12597 if (buffer + 2 * cu->header.addr_size > buf_end)
12598 {
12599 overflow = true;
12600 break;
12601 }
12602 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12603 buffer += bytes_read;
12604 range_end = read_address (obfd, buffer, cu, &bytes_read);
12605 buffer += bytes_read;
12606 break;
12607 default:
12608 complaint (&symfile_complaints,
12609 _("Invalid .debug_rnglists data (no base address)"));
12610 return false;
12611 }
12612 if (rlet == DW_RLE_end_of_list || overflow)
12613 break;
12614 if (rlet == DW_RLE_base_address)
12615 continue;
12616
12617 if (!found_base)
12618 {
12619 /* We have no valid base address for the ranges
12620 data. */
12621 complaint (&symfile_complaints,
12622 _("Invalid .debug_rnglists data (no base address)"));
12623 return false;
12624 }
12625
12626 if (range_beginning > range_end)
12627 {
12628 /* Inverted range entries are invalid. */
12629 complaint (&symfile_complaints,
12630 _("Invalid .debug_rnglists data (inverted range)"));
12631 return false;
12632 }
12633
12634 /* Empty range entries have no effect. */
12635 if (range_beginning == range_end)
12636 continue;
12637
12638 range_beginning += base;
12639 range_end += base;
12640
12641 /* A not-uncommon case of bad debug info.
12642 Don't pollute the addrmap with bad data. */
12643 if (range_beginning + baseaddr == 0
12644 && !dwarf2_per_objfile->has_section_at_zero)
12645 {
12646 complaint (&symfile_complaints,
12647 _(".debug_rnglists entry has start address of zero"
12648 " [in module %s]"), objfile_name (objfile));
12649 continue;
12650 }
12651
12652 callback (range_beginning, range_end);
12653 }
12654
12655 if (overflow)
12656 {
12657 complaint (&symfile_complaints,
12658 _("Offset %d is not terminated "
12659 "for DW_AT_ranges attribute"),
12660 offset);
12661 return false;
12662 }
12663
12664 return true;
12665 }
12666
12667 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
12668 Callback's type should be:
12669 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12670 Return 1 if the attributes are present and valid, otherwise, return 0. */
12671
12672 template <typename Callback>
12673 static int
12674 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
12675 Callback &&callback)
12676 {
12677 struct objfile *objfile = cu->objfile;
12678 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12679 struct comp_unit_head *cu_header = &cu->header;
12680 bfd *obfd = objfile->obfd;
12681 unsigned int addr_size = cu_header->addr_size;
12682 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12683 /* Base address selection entry. */
12684 CORE_ADDR base;
12685 int found_base;
12686 unsigned int dummy;
12687 const gdb_byte *buffer;
12688 CORE_ADDR baseaddr;
12689
12690 if (cu_header->version >= 5)
12691 return dwarf2_rnglists_process (offset, cu, callback);
12692
12693 found_base = cu->base_known;
12694 base = cu->base_address;
12695
12696 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12697 if (offset >= dwarf2_per_objfile->ranges.size)
12698 {
12699 complaint (&symfile_complaints,
12700 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12701 offset);
12702 return 0;
12703 }
12704 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12705
12706 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12707
12708 while (1)
12709 {
12710 CORE_ADDR range_beginning, range_end;
12711
12712 range_beginning = read_address (obfd, buffer, cu, &dummy);
12713 buffer += addr_size;
12714 range_end = read_address (obfd, buffer, cu, &dummy);
12715 buffer += addr_size;
12716 offset += 2 * addr_size;
12717
12718 /* An end of list marker is a pair of zero addresses. */
12719 if (range_beginning == 0 && range_end == 0)
12720 /* Found the end of list entry. */
12721 break;
12722
12723 /* Each base address selection entry is a pair of 2 values.
12724 The first is the largest possible address, the second is
12725 the base address. Check for a base address here. */
12726 if ((range_beginning & mask) == mask)
12727 {
12728 /* If we found the largest possible address, then we already
12729 have the base address in range_end. */
12730 base = range_end;
12731 found_base = 1;
12732 continue;
12733 }
12734
12735 if (!found_base)
12736 {
12737 /* We have no valid base address for the ranges
12738 data. */
12739 complaint (&symfile_complaints,
12740 _("Invalid .debug_ranges data (no base address)"));
12741 return 0;
12742 }
12743
12744 if (range_beginning > range_end)
12745 {
12746 /* Inverted range entries are invalid. */
12747 complaint (&symfile_complaints,
12748 _("Invalid .debug_ranges data (inverted range)"));
12749 return 0;
12750 }
12751
12752 /* Empty range entries have no effect. */
12753 if (range_beginning == range_end)
12754 continue;
12755
12756 range_beginning += base;
12757 range_end += base;
12758
12759 /* A not-uncommon case of bad debug info.
12760 Don't pollute the addrmap with bad data. */
12761 if (range_beginning + baseaddr == 0
12762 && !dwarf2_per_objfile->has_section_at_zero)
12763 {
12764 complaint (&symfile_complaints,
12765 _(".debug_ranges entry has start address of zero"
12766 " [in module %s]"), objfile_name (objfile));
12767 continue;
12768 }
12769
12770 callback (range_beginning, range_end);
12771 }
12772
12773 return 1;
12774 }
12775
12776 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
12777 Return 1 if the attributes are present and valid, otherwise, return 0.
12778 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
12779
12780 static int
12781 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
12782 CORE_ADDR *high_return, struct dwarf2_cu *cu,
12783 struct partial_symtab *ranges_pst)
12784 {
12785 struct objfile *objfile = cu->objfile;
12786 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12787 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
12788 SECT_OFF_TEXT (objfile));
12789 int low_set = 0;
12790 CORE_ADDR low = 0;
12791 CORE_ADDR high = 0;
12792 int retval;
12793
12794 retval = dwarf2_ranges_process (offset, cu,
12795 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12796 {
12797 if (ranges_pst != NULL)
12798 {
12799 CORE_ADDR lowpc;
12800 CORE_ADDR highpc;
12801
12802 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12803 range_beginning + baseaddr);
12804 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12805 range_end + baseaddr);
12806 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12807 ranges_pst);
12808 }
12809
12810 /* FIXME: This is recording everything as a low-high
12811 segment of consecutive addresses. We should have a
12812 data structure for discontiguous block ranges
12813 instead. */
12814 if (! low_set)
12815 {
12816 low = range_beginning;
12817 high = range_end;
12818 low_set = 1;
12819 }
12820 else
12821 {
12822 if (range_beginning < low)
12823 low = range_beginning;
12824 if (range_end > high)
12825 high = range_end;
12826 }
12827 });
12828 if (!retval)
12829 return 0;
12830
12831 if (! low_set)
12832 /* If the first entry is an end-of-list marker, the range
12833 describes an empty scope, i.e. no instructions. */
12834 return 0;
12835
12836 if (low_return)
12837 *low_return = low;
12838 if (high_return)
12839 *high_return = high;
12840 return 1;
12841 }
12842
12843 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
12844 definition for the return value. *LOWPC and *HIGHPC are set iff
12845 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
12846
12847 static enum pc_bounds_kind
12848 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12849 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12850 struct partial_symtab *pst)
12851 {
12852 struct attribute *attr;
12853 struct attribute *attr_high;
12854 CORE_ADDR low = 0;
12855 CORE_ADDR high = 0;
12856 enum pc_bounds_kind ret;
12857
12858 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12859 if (attr_high)
12860 {
12861 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12862 if (attr)
12863 {
12864 low = attr_value_as_address (attr);
12865 high = attr_value_as_address (attr_high);
12866 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12867 high += low;
12868 }
12869 else
12870 /* Found high w/o low attribute. */
12871 return PC_BOUNDS_INVALID;
12872
12873 /* Found consecutive range of addresses. */
12874 ret = PC_BOUNDS_HIGH_LOW;
12875 }
12876 else
12877 {
12878 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12879 if (attr != NULL)
12880 {
12881 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12882 We take advantage of the fact that DW_AT_ranges does not appear
12883 in DW_TAG_compile_unit of DWO files. */
12884 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12885 unsigned int ranges_offset = (DW_UNSND (attr)
12886 + (need_ranges_base
12887 ? cu->ranges_base
12888 : 0));
12889
12890 /* Value of the DW_AT_ranges attribute is the offset in the
12891 .debug_ranges section. */
12892 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12893 return PC_BOUNDS_INVALID;
12894 /* Found discontinuous range of addresses. */
12895 ret = PC_BOUNDS_RANGES;
12896 }
12897 else
12898 return PC_BOUNDS_NOT_PRESENT;
12899 }
12900
12901 /* read_partial_die has also the strict LOW < HIGH requirement. */
12902 if (high <= low)
12903 return PC_BOUNDS_INVALID;
12904
12905 /* When using the GNU linker, .gnu.linkonce. sections are used to
12906 eliminate duplicate copies of functions and vtables and such.
12907 The linker will arbitrarily choose one and discard the others.
12908 The AT_*_pc values for such functions refer to local labels in
12909 these sections. If the section from that file was discarded, the
12910 labels are not in the output, so the relocs get a value of 0.
12911 If this is a discarded function, mark the pc bounds as invalid,
12912 so that GDB will ignore it. */
12913 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12914 return PC_BOUNDS_INVALID;
12915
12916 *lowpc = low;
12917 if (highpc)
12918 *highpc = high;
12919 return ret;
12920 }
12921
12922 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12923 its low and high PC addresses. Do nothing if these addresses could not
12924 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12925 and HIGHPC to the high address if greater than HIGHPC. */
12926
12927 static void
12928 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12929 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12930 struct dwarf2_cu *cu)
12931 {
12932 CORE_ADDR low, high;
12933 struct die_info *child = die->child;
12934
12935 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
12936 {
12937 *lowpc = std::min (*lowpc, low);
12938 *highpc = std::max (*highpc, high);
12939 }
12940
12941 /* If the language does not allow nested subprograms (either inside
12942 subprograms or lexical blocks), we're done. */
12943 if (cu->language != language_ada)
12944 return;
12945
12946 /* Check all the children of the given DIE. If it contains nested
12947 subprograms, then check their pc bounds. Likewise, we need to
12948 check lexical blocks as well, as they may also contain subprogram
12949 definitions. */
12950 while (child && child->tag)
12951 {
12952 if (child->tag == DW_TAG_subprogram
12953 || child->tag == DW_TAG_lexical_block)
12954 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12955 child = sibling_die (child);
12956 }
12957 }
12958
12959 /* Get the low and high pc's represented by the scope DIE, and store
12960 them in *LOWPC and *HIGHPC. If the correct values can't be
12961 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12962
12963 static void
12964 get_scope_pc_bounds (struct die_info *die,
12965 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12966 struct dwarf2_cu *cu)
12967 {
12968 CORE_ADDR best_low = (CORE_ADDR) -1;
12969 CORE_ADDR best_high = (CORE_ADDR) 0;
12970 CORE_ADDR current_low, current_high;
12971
12972 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
12973 >= PC_BOUNDS_RANGES)
12974 {
12975 best_low = current_low;
12976 best_high = current_high;
12977 }
12978 else
12979 {
12980 struct die_info *child = die->child;
12981
12982 while (child && child->tag)
12983 {
12984 switch (child->tag) {
12985 case DW_TAG_subprogram:
12986 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12987 break;
12988 case DW_TAG_namespace:
12989 case DW_TAG_module:
12990 /* FIXME: carlton/2004-01-16: Should we do this for
12991 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12992 that current GCC's always emit the DIEs corresponding
12993 to definitions of methods of classes as children of a
12994 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12995 the DIEs giving the declarations, which could be
12996 anywhere). But I don't see any reason why the
12997 standards says that they have to be there. */
12998 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12999
13000 if (current_low != ((CORE_ADDR) -1))
13001 {
13002 best_low = std::min (best_low, current_low);
13003 best_high = std::max (best_high, current_high);
13004 }
13005 break;
13006 default:
13007 /* Ignore. */
13008 break;
13009 }
13010
13011 child = sibling_die (child);
13012 }
13013 }
13014
13015 *lowpc = best_low;
13016 *highpc = best_high;
13017 }
13018
13019 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
13020 in DIE. */
13021
13022 static void
13023 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
13024 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
13025 {
13026 struct objfile *objfile = cu->objfile;
13027 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13028 struct attribute *attr;
13029 struct attribute *attr_high;
13030
13031 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13032 if (attr_high)
13033 {
13034 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13035 if (attr)
13036 {
13037 CORE_ADDR low = attr_value_as_address (attr);
13038 CORE_ADDR high = attr_value_as_address (attr_high);
13039
13040 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
13041 high += low;
13042
13043 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
13044 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
13045 record_block_range (block, low, high - 1);
13046 }
13047 }
13048
13049 attr = dwarf2_attr (die, DW_AT_ranges, cu);
13050 if (attr)
13051 {
13052 bfd *obfd = objfile->obfd;
13053 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
13054 We take advantage of the fact that DW_AT_ranges does not appear
13055 in DW_TAG_compile_unit of DWO files. */
13056 int need_ranges_base = die->tag != DW_TAG_compile_unit;
13057
13058 /* The value of the DW_AT_ranges attribute is the offset of the
13059 address range list in the .debug_ranges section. */
13060 unsigned long offset = (DW_UNSND (attr)
13061 + (need_ranges_base ? cu->ranges_base : 0));
13062 const gdb_byte *buffer;
13063
13064 /* For some target architectures, but not others, the
13065 read_address function sign-extends the addresses it returns.
13066 To recognize base address selection entries, we need a
13067 mask. */
13068 unsigned int addr_size = cu->header.addr_size;
13069 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13070
13071 /* The base address, to which the next pair is relative. Note
13072 that this 'base' is a DWARF concept: most entries in a range
13073 list are relative, to reduce the number of relocs against the
13074 debugging information. This is separate from this function's
13075 'baseaddr' argument, which GDB uses to relocate debugging
13076 information from a shared library based on the address at
13077 which the library was loaded. */
13078 CORE_ADDR base = cu->base_address;
13079 int base_known = cu->base_known;
13080
13081 dwarf2_ranges_process (offset, cu,
13082 [&] (CORE_ADDR start, CORE_ADDR end)
13083 {
13084 start += baseaddr;
13085 end += baseaddr;
13086 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
13087 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
13088 record_block_range (block, start, end - 1);
13089 });
13090 }
13091 }
13092
13093 /* Check whether the producer field indicates either of GCC < 4.6, or the
13094 Intel C/C++ compiler, and cache the result in CU. */
13095
13096 static void
13097 check_producer (struct dwarf2_cu *cu)
13098 {
13099 int major, minor;
13100
13101 if (cu->producer == NULL)
13102 {
13103 /* For unknown compilers expect their behavior is DWARF version
13104 compliant.
13105
13106 GCC started to support .debug_types sections by -gdwarf-4 since
13107 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
13108 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
13109 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
13110 interpreted incorrectly by GDB now - GCC PR debug/48229. */
13111 }
13112 else if (producer_is_gcc (cu->producer, &major, &minor))
13113 {
13114 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
13115 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
13116 }
13117 else if (producer_is_icc (cu->producer, &major, &minor))
13118 cu->producer_is_icc_lt_14 = major < 14;
13119 else
13120 {
13121 /* For other non-GCC compilers, expect their behavior is DWARF version
13122 compliant. */
13123 }
13124
13125 cu->checked_producer = 1;
13126 }
13127
13128 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
13129 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
13130 during 4.6.0 experimental. */
13131
13132 static int
13133 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
13134 {
13135 if (!cu->checked_producer)
13136 check_producer (cu);
13137
13138 return cu->producer_is_gxx_lt_4_6;
13139 }
13140
13141 /* Return the default accessibility type if it is not overriden by
13142 DW_AT_accessibility. */
13143
13144 static enum dwarf_access_attribute
13145 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
13146 {
13147 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
13148 {
13149 /* The default DWARF 2 accessibility for members is public, the default
13150 accessibility for inheritance is private. */
13151
13152 if (die->tag != DW_TAG_inheritance)
13153 return DW_ACCESS_public;
13154 else
13155 return DW_ACCESS_private;
13156 }
13157 else
13158 {
13159 /* DWARF 3+ defines the default accessibility a different way. The same
13160 rules apply now for DW_TAG_inheritance as for the members and it only
13161 depends on the container kind. */
13162
13163 if (die->parent->tag == DW_TAG_class_type)
13164 return DW_ACCESS_private;
13165 else
13166 return DW_ACCESS_public;
13167 }
13168 }
13169
13170 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
13171 offset. If the attribute was not found return 0, otherwise return
13172 1. If it was found but could not properly be handled, set *OFFSET
13173 to 0. */
13174
13175 static int
13176 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
13177 LONGEST *offset)
13178 {
13179 struct attribute *attr;
13180
13181 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
13182 if (attr != NULL)
13183 {
13184 *offset = 0;
13185
13186 /* Note that we do not check for a section offset first here.
13187 This is because DW_AT_data_member_location is new in DWARF 4,
13188 so if we see it, we can assume that a constant form is really
13189 a constant and not a section offset. */
13190 if (attr_form_is_constant (attr))
13191 *offset = dwarf2_get_attr_constant_value (attr, 0);
13192 else if (attr_form_is_section_offset (attr))
13193 dwarf2_complex_location_expr_complaint ();
13194 else if (attr_form_is_block (attr))
13195 *offset = decode_locdesc (DW_BLOCK (attr), cu);
13196 else
13197 dwarf2_complex_location_expr_complaint ();
13198
13199 return 1;
13200 }
13201
13202 return 0;
13203 }
13204
13205 /* Add an aggregate field to the field list. */
13206
13207 static void
13208 dwarf2_add_field (struct field_info *fip, struct die_info *die,
13209 struct dwarf2_cu *cu)
13210 {
13211 struct objfile *objfile = cu->objfile;
13212 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13213 struct nextfield *new_field;
13214 struct attribute *attr;
13215 struct field *fp;
13216 const char *fieldname = "";
13217
13218 /* Allocate a new field list entry and link it in. */
13219 new_field = XNEW (struct nextfield);
13220 make_cleanup (xfree, new_field);
13221 memset (new_field, 0, sizeof (struct nextfield));
13222
13223 if (die->tag == DW_TAG_inheritance)
13224 {
13225 new_field->next = fip->baseclasses;
13226 fip->baseclasses = new_field;
13227 }
13228 else
13229 {
13230 new_field->next = fip->fields;
13231 fip->fields = new_field;
13232 }
13233 fip->nfields++;
13234
13235 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13236 if (attr)
13237 new_field->accessibility = DW_UNSND (attr);
13238 else
13239 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
13240 if (new_field->accessibility != DW_ACCESS_public)
13241 fip->non_public_fields = 1;
13242
13243 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13244 if (attr)
13245 new_field->virtuality = DW_UNSND (attr);
13246 else
13247 new_field->virtuality = DW_VIRTUALITY_none;
13248
13249 fp = &new_field->field;
13250
13251 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
13252 {
13253 LONGEST offset;
13254
13255 /* Data member other than a C++ static data member. */
13256
13257 /* Get type of field. */
13258 fp->type = die_type (die, cu);
13259
13260 SET_FIELD_BITPOS (*fp, 0);
13261
13262 /* Get bit size of field (zero if none). */
13263 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
13264 if (attr)
13265 {
13266 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
13267 }
13268 else
13269 {
13270 FIELD_BITSIZE (*fp) = 0;
13271 }
13272
13273 /* Get bit offset of field. */
13274 if (handle_data_member_location (die, cu, &offset))
13275 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
13276 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
13277 if (attr)
13278 {
13279 if (gdbarch_bits_big_endian (gdbarch))
13280 {
13281 /* For big endian bits, the DW_AT_bit_offset gives the
13282 additional bit offset from the MSB of the containing
13283 anonymous object to the MSB of the field. We don't
13284 have to do anything special since we don't need to
13285 know the size of the anonymous object. */
13286 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
13287 }
13288 else
13289 {
13290 /* For little endian bits, compute the bit offset to the
13291 MSB of the anonymous object, subtract off the number of
13292 bits from the MSB of the field to the MSB of the
13293 object, and then subtract off the number of bits of
13294 the field itself. The result is the bit offset of
13295 the LSB of the field. */
13296 int anonymous_size;
13297 int bit_offset = DW_UNSND (attr);
13298
13299 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13300 if (attr)
13301 {
13302 /* The size of the anonymous object containing
13303 the bit field is explicit, so use the
13304 indicated size (in bytes). */
13305 anonymous_size = DW_UNSND (attr);
13306 }
13307 else
13308 {
13309 /* The size of the anonymous object containing
13310 the bit field must be inferred from the type
13311 attribute of the data member containing the
13312 bit field. */
13313 anonymous_size = TYPE_LENGTH (fp->type);
13314 }
13315 SET_FIELD_BITPOS (*fp,
13316 (FIELD_BITPOS (*fp)
13317 + anonymous_size * bits_per_byte
13318 - bit_offset - FIELD_BITSIZE (*fp)));
13319 }
13320 }
13321 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
13322 if (attr != NULL)
13323 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
13324 + dwarf2_get_attr_constant_value (attr, 0)));
13325
13326 /* Get name of field. */
13327 fieldname = dwarf2_name (die, cu);
13328 if (fieldname == NULL)
13329 fieldname = "";
13330
13331 /* The name is already allocated along with this objfile, so we don't
13332 need to duplicate it for the type. */
13333 fp->name = fieldname;
13334
13335 /* Change accessibility for artificial fields (e.g. virtual table
13336 pointer or virtual base class pointer) to private. */
13337 if (dwarf2_attr (die, DW_AT_artificial, cu))
13338 {
13339 FIELD_ARTIFICIAL (*fp) = 1;
13340 new_field->accessibility = DW_ACCESS_private;
13341 fip->non_public_fields = 1;
13342 }
13343 }
13344 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
13345 {
13346 /* C++ static member. */
13347
13348 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
13349 is a declaration, but all versions of G++ as of this writing
13350 (so through at least 3.2.1) incorrectly generate
13351 DW_TAG_variable tags. */
13352
13353 const char *physname;
13354
13355 /* Get name of field. */
13356 fieldname = dwarf2_name (die, cu);
13357 if (fieldname == NULL)
13358 return;
13359
13360 attr = dwarf2_attr (die, DW_AT_const_value, cu);
13361 if (attr
13362 /* Only create a symbol if this is an external value.
13363 new_symbol checks this and puts the value in the global symbol
13364 table, which we want. If it is not external, new_symbol
13365 will try to put the value in cu->list_in_scope which is wrong. */
13366 && dwarf2_flag_true_p (die, DW_AT_external, cu))
13367 {
13368 /* A static const member, not much different than an enum as far as
13369 we're concerned, except that we can support more types. */
13370 new_symbol (die, NULL, cu);
13371 }
13372
13373 /* Get physical name. */
13374 physname = dwarf2_physname (fieldname, die, cu);
13375
13376 /* The name is already allocated along with this objfile, so we don't
13377 need to duplicate it for the type. */
13378 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
13379 FIELD_TYPE (*fp) = die_type (die, cu);
13380 FIELD_NAME (*fp) = fieldname;
13381 }
13382 else if (die->tag == DW_TAG_inheritance)
13383 {
13384 LONGEST offset;
13385
13386 /* C++ base class field. */
13387 if (handle_data_member_location (die, cu, &offset))
13388 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
13389 FIELD_BITSIZE (*fp) = 0;
13390 FIELD_TYPE (*fp) = die_type (die, cu);
13391 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
13392 fip->nbaseclasses++;
13393 }
13394 }
13395
13396 /* Add a typedef defined in the scope of the FIP's class. */
13397
13398 static void
13399 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
13400 struct dwarf2_cu *cu)
13401 {
13402 struct typedef_field_list *new_field;
13403 struct typedef_field *fp;
13404
13405 /* Allocate a new field list entry and link it in. */
13406 new_field = XCNEW (struct typedef_field_list);
13407 make_cleanup (xfree, new_field);
13408
13409 gdb_assert (die->tag == DW_TAG_typedef);
13410
13411 fp = &new_field->field;
13412
13413 /* Get name of field. */
13414 fp->name = dwarf2_name (die, cu);
13415 if (fp->name == NULL)
13416 return;
13417
13418 fp->type = read_type_die (die, cu);
13419
13420 /* Save accessibility. */
13421 enum dwarf_access_attribute accessibility;
13422 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13423 if (attr != NULL)
13424 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
13425 else
13426 accessibility = dwarf2_default_access_attribute (die, cu);
13427 switch (accessibility)
13428 {
13429 case DW_ACCESS_public:
13430 /* The assumed value if neither private nor protected. */
13431 break;
13432 case DW_ACCESS_private:
13433 fp->is_private = 1;
13434 break;
13435 case DW_ACCESS_protected:
13436 fp->is_protected = 1;
13437 break;
13438 default:
13439 complaint (&symfile_complaints,
13440 _("Unhandled DW_AT_accessibility value (%x)"), accessibility);
13441 }
13442
13443 new_field->next = fip->typedef_field_list;
13444 fip->typedef_field_list = new_field;
13445 fip->typedef_field_list_count++;
13446 }
13447
13448 /* Create the vector of fields, and attach it to the type. */
13449
13450 static void
13451 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
13452 struct dwarf2_cu *cu)
13453 {
13454 int nfields = fip->nfields;
13455
13456 /* Record the field count, allocate space for the array of fields,
13457 and create blank accessibility bitfields if necessary. */
13458 TYPE_NFIELDS (type) = nfields;
13459 TYPE_FIELDS (type) = (struct field *)
13460 TYPE_ALLOC (type, sizeof (struct field) * nfields);
13461 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
13462
13463 if (fip->non_public_fields && cu->language != language_ada)
13464 {
13465 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13466
13467 TYPE_FIELD_PRIVATE_BITS (type) =
13468 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13469 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
13470
13471 TYPE_FIELD_PROTECTED_BITS (type) =
13472 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13473 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
13474
13475 TYPE_FIELD_IGNORE_BITS (type) =
13476 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13477 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
13478 }
13479
13480 /* If the type has baseclasses, allocate and clear a bit vector for
13481 TYPE_FIELD_VIRTUAL_BITS. */
13482 if (fip->nbaseclasses && cu->language != language_ada)
13483 {
13484 int num_bytes = B_BYTES (fip->nbaseclasses);
13485 unsigned char *pointer;
13486
13487 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13488 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
13489 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
13490 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
13491 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
13492 }
13493
13494 /* Copy the saved-up fields into the field vector. Start from the head of
13495 the list, adding to the tail of the field array, so that they end up in
13496 the same order in the array in which they were added to the list. */
13497 while (nfields-- > 0)
13498 {
13499 struct nextfield *fieldp;
13500
13501 if (fip->fields)
13502 {
13503 fieldp = fip->fields;
13504 fip->fields = fieldp->next;
13505 }
13506 else
13507 {
13508 fieldp = fip->baseclasses;
13509 fip->baseclasses = fieldp->next;
13510 }
13511
13512 TYPE_FIELD (type, nfields) = fieldp->field;
13513 switch (fieldp->accessibility)
13514 {
13515 case DW_ACCESS_private:
13516 if (cu->language != language_ada)
13517 SET_TYPE_FIELD_PRIVATE (type, nfields);
13518 break;
13519
13520 case DW_ACCESS_protected:
13521 if (cu->language != language_ada)
13522 SET_TYPE_FIELD_PROTECTED (type, nfields);
13523 break;
13524
13525 case DW_ACCESS_public:
13526 break;
13527
13528 default:
13529 /* Unknown accessibility. Complain and treat it as public. */
13530 {
13531 complaint (&symfile_complaints, _("unsupported accessibility %d"),
13532 fieldp->accessibility);
13533 }
13534 break;
13535 }
13536 if (nfields < fip->nbaseclasses)
13537 {
13538 switch (fieldp->virtuality)
13539 {
13540 case DW_VIRTUALITY_virtual:
13541 case DW_VIRTUALITY_pure_virtual:
13542 if (cu->language == language_ada)
13543 error (_("unexpected virtuality in component of Ada type"));
13544 SET_TYPE_FIELD_VIRTUAL (type, nfields);
13545 break;
13546 }
13547 }
13548 }
13549 }
13550
13551 /* Return true if this member function is a constructor, false
13552 otherwise. */
13553
13554 static int
13555 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
13556 {
13557 const char *fieldname;
13558 const char *type_name;
13559 int len;
13560
13561 if (die->parent == NULL)
13562 return 0;
13563
13564 if (die->parent->tag != DW_TAG_structure_type
13565 && die->parent->tag != DW_TAG_union_type
13566 && die->parent->tag != DW_TAG_class_type)
13567 return 0;
13568
13569 fieldname = dwarf2_name (die, cu);
13570 type_name = dwarf2_name (die->parent, cu);
13571 if (fieldname == NULL || type_name == NULL)
13572 return 0;
13573
13574 len = strlen (fieldname);
13575 return (strncmp (fieldname, type_name, len) == 0
13576 && (type_name[len] == '\0' || type_name[len] == '<'));
13577 }
13578
13579 /* Add a member function to the proper fieldlist. */
13580
13581 static void
13582 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
13583 struct type *type, struct dwarf2_cu *cu)
13584 {
13585 struct objfile *objfile = cu->objfile;
13586 struct attribute *attr;
13587 struct fnfieldlist *flp;
13588 int i;
13589 struct fn_field *fnp;
13590 const char *fieldname;
13591 struct nextfnfield *new_fnfield;
13592 struct type *this_type;
13593 enum dwarf_access_attribute accessibility;
13594
13595 if (cu->language == language_ada)
13596 error (_("unexpected member function in Ada type"));
13597
13598 /* Get name of member function. */
13599 fieldname = dwarf2_name (die, cu);
13600 if (fieldname == NULL)
13601 return;
13602
13603 /* Look up member function name in fieldlist. */
13604 for (i = 0; i < fip->nfnfields; i++)
13605 {
13606 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
13607 break;
13608 }
13609
13610 /* Create new list element if necessary. */
13611 if (i < fip->nfnfields)
13612 flp = &fip->fnfieldlists[i];
13613 else
13614 {
13615 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13616 {
13617 fip->fnfieldlists = (struct fnfieldlist *)
13618 xrealloc (fip->fnfieldlists,
13619 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
13620 * sizeof (struct fnfieldlist));
13621 if (fip->nfnfields == 0)
13622 make_cleanup (free_current_contents, &fip->fnfieldlists);
13623 }
13624 flp = &fip->fnfieldlists[fip->nfnfields];
13625 flp->name = fieldname;
13626 flp->length = 0;
13627 flp->head = NULL;
13628 i = fip->nfnfields++;
13629 }
13630
13631 /* Create a new member function field and chain it to the field list
13632 entry. */
13633 new_fnfield = XNEW (struct nextfnfield);
13634 make_cleanup (xfree, new_fnfield);
13635 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13636 new_fnfield->next = flp->head;
13637 flp->head = new_fnfield;
13638 flp->length++;
13639
13640 /* Fill in the member function field info. */
13641 fnp = &new_fnfield->fnfield;
13642
13643 /* Delay processing of the physname until later. */
13644 if (cu->language == language_cplus)
13645 {
13646 add_to_method_list (type, i, flp->length - 1, fieldname,
13647 die, cu);
13648 }
13649 else
13650 {
13651 const char *physname = dwarf2_physname (fieldname, die, cu);
13652 fnp->physname = physname ? physname : "";
13653 }
13654
13655 fnp->type = alloc_type (objfile);
13656 this_type = read_type_die (die, cu);
13657 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
13658 {
13659 int nparams = TYPE_NFIELDS (this_type);
13660
13661 /* TYPE is the domain of this method, and THIS_TYPE is the type
13662 of the method itself (TYPE_CODE_METHOD). */
13663 smash_to_method_type (fnp->type, type,
13664 TYPE_TARGET_TYPE (this_type),
13665 TYPE_FIELDS (this_type),
13666 TYPE_NFIELDS (this_type),
13667 TYPE_VARARGS (this_type));
13668
13669 /* Handle static member functions.
13670 Dwarf2 has no clean way to discern C++ static and non-static
13671 member functions. G++ helps GDB by marking the first
13672 parameter for non-static member functions (which is the this
13673 pointer) as artificial. We obtain this information from
13674 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
13675 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
13676 fnp->voffset = VOFFSET_STATIC;
13677 }
13678 else
13679 complaint (&symfile_complaints, _("member function type missing for '%s'"),
13680 dwarf2_full_name (fieldname, die, cu));
13681
13682 /* Get fcontext from DW_AT_containing_type if present. */
13683 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13684 fnp->fcontext = die_containing_type (die, cu);
13685
13686 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
13687 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
13688
13689 /* Get accessibility. */
13690 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13691 if (attr)
13692 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
13693 else
13694 accessibility = dwarf2_default_access_attribute (die, cu);
13695 switch (accessibility)
13696 {
13697 case DW_ACCESS_private:
13698 fnp->is_private = 1;
13699 break;
13700 case DW_ACCESS_protected:
13701 fnp->is_protected = 1;
13702 break;
13703 }
13704
13705 /* Check for artificial methods. */
13706 attr = dwarf2_attr (die, DW_AT_artificial, cu);
13707 if (attr && DW_UNSND (attr) != 0)
13708 fnp->is_artificial = 1;
13709
13710 fnp->is_constructor = dwarf2_is_constructor (die, cu);
13711
13712 /* Get index in virtual function table if it is a virtual member
13713 function. For older versions of GCC, this is an offset in the
13714 appropriate virtual table, as specified by DW_AT_containing_type.
13715 For everyone else, it is an expression to be evaluated relative
13716 to the object address. */
13717
13718 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
13719 if (attr)
13720 {
13721 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
13722 {
13723 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
13724 {
13725 /* Old-style GCC. */
13726 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
13727 }
13728 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
13729 || (DW_BLOCK (attr)->size > 1
13730 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
13731 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
13732 {
13733 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
13734 if ((fnp->voffset % cu->header.addr_size) != 0)
13735 dwarf2_complex_location_expr_complaint ();
13736 else
13737 fnp->voffset /= cu->header.addr_size;
13738 fnp->voffset += 2;
13739 }
13740 else
13741 dwarf2_complex_location_expr_complaint ();
13742
13743 if (!fnp->fcontext)
13744 {
13745 /* If there is no `this' field and no DW_AT_containing_type,
13746 we cannot actually find a base class context for the
13747 vtable! */
13748 if (TYPE_NFIELDS (this_type) == 0
13749 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13750 {
13751 complaint (&symfile_complaints,
13752 _("cannot determine context for virtual member "
13753 "function \"%s\" (offset %d)"),
13754 fieldname, to_underlying (die->sect_off));
13755 }
13756 else
13757 {
13758 fnp->fcontext
13759 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13760 }
13761 }
13762 }
13763 else if (attr_form_is_section_offset (attr))
13764 {
13765 dwarf2_complex_location_expr_complaint ();
13766 }
13767 else
13768 {
13769 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13770 fieldname);
13771 }
13772 }
13773 else
13774 {
13775 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13776 if (attr && DW_UNSND (attr))
13777 {
13778 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13779 complaint (&symfile_complaints,
13780 _("Member function \"%s\" (offset %d) is virtual "
13781 "but the vtable offset is not specified"),
13782 fieldname, to_underlying (die->sect_off));
13783 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13784 TYPE_CPLUS_DYNAMIC (type) = 1;
13785 }
13786 }
13787 }
13788
13789 /* Create the vector of member function fields, and attach it to the type. */
13790
13791 static void
13792 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13793 struct dwarf2_cu *cu)
13794 {
13795 struct fnfieldlist *flp;
13796 int i;
13797
13798 if (cu->language == language_ada)
13799 error (_("unexpected member functions in Ada type"));
13800
13801 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13802 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13803 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13804
13805 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13806 {
13807 struct nextfnfield *nfp = flp->head;
13808 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13809 int k;
13810
13811 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13812 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13813 fn_flp->fn_fields = (struct fn_field *)
13814 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13815 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13816 fn_flp->fn_fields[k] = nfp->fnfield;
13817 }
13818
13819 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13820 }
13821
13822 /* Returns non-zero if NAME is the name of a vtable member in CU's
13823 language, zero otherwise. */
13824 static int
13825 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13826 {
13827 static const char vptr[] = "_vptr";
13828 static const char vtable[] = "vtable";
13829
13830 /* Look for the C++ form of the vtable. */
13831 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
13832 return 1;
13833
13834 return 0;
13835 }
13836
13837 /* GCC outputs unnamed structures that are really pointers to member
13838 functions, with the ABI-specified layout. If TYPE describes
13839 such a structure, smash it into a member function type.
13840
13841 GCC shouldn't do this; it should just output pointer to member DIEs.
13842 This is GCC PR debug/28767. */
13843
13844 static void
13845 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13846 {
13847 struct type *pfn_type, *self_type, *new_type;
13848
13849 /* Check for a structure with no name and two children. */
13850 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13851 return;
13852
13853 /* Check for __pfn and __delta members. */
13854 if (TYPE_FIELD_NAME (type, 0) == NULL
13855 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13856 || TYPE_FIELD_NAME (type, 1) == NULL
13857 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13858 return;
13859
13860 /* Find the type of the method. */
13861 pfn_type = TYPE_FIELD_TYPE (type, 0);
13862 if (pfn_type == NULL
13863 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13864 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13865 return;
13866
13867 /* Look for the "this" argument. */
13868 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13869 if (TYPE_NFIELDS (pfn_type) == 0
13870 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13871 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13872 return;
13873
13874 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13875 new_type = alloc_type (objfile);
13876 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13877 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13878 TYPE_VARARGS (pfn_type));
13879 smash_to_methodptr_type (type, new_type);
13880 }
13881
13882
13883 /* Called when we find the DIE that starts a structure or union scope
13884 (definition) to create a type for the structure or union. Fill in
13885 the type's name and general properties; the members will not be
13886 processed until process_structure_scope. A symbol table entry for
13887 the type will also not be done until process_structure_scope (assuming
13888 the type has a name).
13889
13890 NOTE: we need to call these functions regardless of whether or not the
13891 DIE has a DW_AT_name attribute, since it might be an anonymous
13892 structure or union. This gets the type entered into our set of
13893 user defined types. */
13894
13895 static struct type *
13896 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13897 {
13898 struct objfile *objfile = cu->objfile;
13899 struct type *type;
13900 struct attribute *attr;
13901 const char *name;
13902
13903 /* If the definition of this type lives in .debug_types, read that type.
13904 Don't follow DW_AT_specification though, that will take us back up
13905 the chain and we want to go down. */
13906 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13907 if (attr)
13908 {
13909 type = get_DW_AT_signature_type (die, attr, cu);
13910
13911 /* The type's CU may not be the same as CU.
13912 Ensure TYPE is recorded with CU in die_type_hash. */
13913 return set_die_type (die, type, cu);
13914 }
13915
13916 type = alloc_type (objfile);
13917 INIT_CPLUS_SPECIFIC (type);
13918
13919 name = dwarf2_name (die, cu);
13920 if (name != NULL)
13921 {
13922 if (cu->language == language_cplus
13923 || cu->language == language_d
13924 || cu->language == language_rust)
13925 {
13926 const char *full_name = dwarf2_full_name (name, die, cu);
13927
13928 /* dwarf2_full_name might have already finished building the DIE's
13929 type. If so, there is no need to continue. */
13930 if (get_die_type (die, cu) != NULL)
13931 return get_die_type (die, cu);
13932
13933 TYPE_TAG_NAME (type) = full_name;
13934 if (die->tag == DW_TAG_structure_type
13935 || die->tag == DW_TAG_class_type)
13936 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13937 }
13938 else
13939 {
13940 /* The name is already allocated along with this objfile, so
13941 we don't need to duplicate it for the type. */
13942 TYPE_TAG_NAME (type) = name;
13943 if (die->tag == DW_TAG_class_type)
13944 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13945 }
13946 }
13947
13948 if (die->tag == DW_TAG_structure_type)
13949 {
13950 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13951 }
13952 else if (die->tag == DW_TAG_union_type)
13953 {
13954 TYPE_CODE (type) = TYPE_CODE_UNION;
13955 }
13956 else
13957 {
13958 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13959 }
13960
13961 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13962 TYPE_DECLARED_CLASS (type) = 1;
13963
13964 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13965 if (attr)
13966 {
13967 if (attr_form_is_constant (attr))
13968 TYPE_LENGTH (type) = DW_UNSND (attr);
13969 else
13970 {
13971 /* For the moment, dynamic type sizes are not supported
13972 by GDB's struct type. The actual size is determined
13973 on-demand when resolving the type of a given object,
13974 so set the type's length to zero for now. Otherwise,
13975 we record an expression as the length, and that expression
13976 could lead to a very large value, which could eventually
13977 lead to us trying to allocate that much memory when creating
13978 a value of that type. */
13979 TYPE_LENGTH (type) = 0;
13980 }
13981 }
13982 else
13983 {
13984 TYPE_LENGTH (type) = 0;
13985 }
13986
13987 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
13988 {
13989 /* ICC<14 does not output the required DW_AT_declaration on
13990 incomplete types, but gives them a size of zero. */
13991 TYPE_STUB (type) = 1;
13992 }
13993 else
13994 TYPE_STUB_SUPPORTED (type) = 1;
13995
13996 if (die_is_declaration (die, cu))
13997 TYPE_STUB (type) = 1;
13998 else if (attr == NULL && die->child == NULL
13999 && producer_is_realview (cu->producer))
14000 /* RealView does not output the required DW_AT_declaration
14001 on incomplete types. */
14002 TYPE_STUB (type) = 1;
14003
14004 /* We need to add the type field to the die immediately so we don't
14005 infinitely recurse when dealing with pointers to the structure
14006 type within the structure itself. */
14007 set_die_type (die, type, cu);
14008
14009 /* set_die_type should be already done. */
14010 set_descriptive_type (type, die, cu);
14011
14012 return type;
14013 }
14014
14015 /* Finish creating a structure or union type, including filling in
14016 its members and creating a symbol for it. */
14017
14018 static void
14019 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
14020 {
14021 struct objfile *objfile = cu->objfile;
14022 struct die_info *child_die;
14023 struct type *type;
14024
14025 type = get_die_type (die, cu);
14026 if (type == NULL)
14027 type = read_structure_type (die, cu);
14028
14029 if (die->child != NULL && ! die_is_declaration (die, cu))
14030 {
14031 struct field_info fi;
14032 VEC (symbolp) *template_args = NULL;
14033 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
14034
14035 memset (&fi, 0, sizeof (struct field_info));
14036
14037 child_die = die->child;
14038
14039 while (child_die && child_die->tag)
14040 {
14041 if (child_die->tag == DW_TAG_member
14042 || child_die->tag == DW_TAG_variable)
14043 {
14044 /* NOTE: carlton/2002-11-05: A C++ static data member
14045 should be a DW_TAG_member that is a declaration, but
14046 all versions of G++ as of this writing (so through at
14047 least 3.2.1) incorrectly generate DW_TAG_variable
14048 tags for them instead. */
14049 dwarf2_add_field (&fi, child_die, cu);
14050 }
14051 else if (child_die->tag == DW_TAG_subprogram)
14052 {
14053 /* Rust doesn't have member functions in the C++ sense.
14054 However, it does emit ordinary functions as children
14055 of a struct DIE. */
14056 if (cu->language == language_rust)
14057 read_func_scope (child_die, cu);
14058 else
14059 {
14060 /* C++ member function. */
14061 dwarf2_add_member_fn (&fi, child_die, type, cu);
14062 }
14063 }
14064 else if (child_die->tag == DW_TAG_inheritance)
14065 {
14066 /* C++ base class field. */
14067 dwarf2_add_field (&fi, child_die, cu);
14068 }
14069 else if (child_die->tag == DW_TAG_typedef)
14070 dwarf2_add_typedef (&fi, child_die, cu);
14071 else if (child_die->tag == DW_TAG_template_type_param
14072 || child_die->tag == DW_TAG_template_value_param)
14073 {
14074 struct symbol *arg = new_symbol (child_die, NULL, cu);
14075
14076 if (arg != NULL)
14077 VEC_safe_push (symbolp, template_args, arg);
14078 }
14079
14080 child_die = sibling_die (child_die);
14081 }
14082
14083 /* Attach template arguments to type. */
14084 if (! VEC_empty (symbolp, template_args))
14085 {
14086 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14087 TYPE_N_TEMPLATE_ARGUMENTS (type)
14088 = VEC_length (symbolp, template_args);
14089 TYPE_TEMPLATE_ARGUMENTS (type)
14090 = XOBNEWVEC (&objfile->objfile_obstack,
14091 struct symbol *,
14092 TYPE_N_TEMPLATE_ARGUMENTS (type));
14093 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
14094 VEC_address (symbolp, template_args),
14095 (TYPE_N_TEMPLATE_ARGUMENTS (type)
14096 * sizeof (struct symbol *)));
14097 VEC_free (symbolp, template_args);
14098 }
14099
14100 /* Attach fields and member functions to the type. */
14101 if (fi.nfields)
14102 dwarf2_attach_fields_to_type (&fi, type, cu);
14103 if (fi.nfnfields)
14104 {
14105 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
14106
14107 /* Get the type which refers to the base class (possibly this
14108 class itself) which contains the vtable pointer for the current
14109 class from the DW_AT_containing_type attribute. This use of
14110 DW_AT_containing_type is a GNU extension. */
14111
14112 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
14113 {
14114 struct type *t = die_containing_type (die, cu);
14115
14116 set_type_vptr_basetype (type, t);
14117 if (type == t)
14118 {
14119 int i;
14120
14121 /* Our own class provides vtbl ptr. */
14122 for (i = TYPE_NFIELDS (t) - 1;
14123 i >= TYPE_N_BASECLASSES (t);
14124 --i)
14125 {
14126 const char *fieldname = TYPE_FIELD_NAME (t, i);
14127
14128 if (is_vtable_name (fieldname, cu))
14129 {
14130 set_type_vptr_fieldno (type, i);
14131 break;
14132 }
14133 }
14134
14135 /* Complain if virtual function table field not found. */
14136 if (i < TYPE_N_BASECLASSES (t))
14137 complaint (&symfile_complaints,
14138 _("virtual function table pointer "
14139 "not found when defining class '%s'"),
14140 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
14141 "");
14142 }
14143 else
14144 {
14145 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
14146 }
14147 }
14148 else if (cu->producer
14149 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
14150 {
14151 /* The IBM XLC compiler does not provide direct indication
14152 of the containing type, but the vtable pointer is
14153 always named __vfp. */
14154
14155 int i;
14156
14157 for (i = TYPE_NFIELDS (type) - 1;
14158 i >= TYPE_N_BASECLASSES (type);
14159 --i)
14160 {
14161 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
14162 {
14163 set_type_vptr_fieldno (type, i);
14164 set_type_vptr_basetype (type, type);
14165 break;
14166 }
14167 }
14168 }
14169 }
14170
14171 /* Copy fi.typedef_field_list linked list elements content into the
14172 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
14173 if (fi.typedef_field_list)
14174 {
14175 int i = fi.typedef_field_list_count;
14176
14177 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14178 TYPE_TYPEDEF_FIELD_ARRAY (type)
14179 = ((struct typedef_field *)
14180 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
14181 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
14182
14183 /* Reverse the list order to keep the debug info elements order. */
14184 while (--i >= 0)
14185 {
14186 struct typedef_field *dest, *src;
14187
14188 dest = &TYPE_TYPEDEF_FIELD (type, i);
14189 src = &fi.typedef_field_list->field;
14190 fi.typedef_field_list = fi.typedef_field_list->next;
14191 *dest = *src;
14192 }
14193 }
14194
14195 do_cleanups (back_to);
14196 }
14197
14198 quirk_gcc_member_function_pointer (type, objfile);
14199
14200 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
14201 snapshots) has been known to create a die giving a declaration
14202 for a class that has, as a child, a die giving a definition for a
14203 nested class. So we have to process our children even if the
14204 current die is a declaration. Normally, of course, a declaration
14205 won't have any children at all. */
14206
14207 child_die = die->child;
14208
14209 while (child_die != NULL && child_die->tag)
14210 {
14211 if (child_die->tag == DW_TAG_member
14212 || child_die->tag == DW_TAG_variable
14213 || child_die->tag == DW_TAG_inheritance
14214 || child_die->tag == DW_TAG_template_value_param
14215 || child_die->tag == DW_TAG_template_type_param)
14216 {
14217 /* Do nothing. */
14218 }
14219 else
14220 process_die (child_die, cu);
14221
14222 child_die = sibling_die (child_die);
14223 }
14224
14225 /* Do not consider external references. According to the DWARF standard,
14226 these DIEs are identified by the fact that they have no byte_size
14227 attribute, and a declaration attribute. */
14228 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
14229 || !die_is_declaration (die, cu))
14230 new_symbol (die, type, cu);
14231 }
14232
14233 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
14234 update TYPE using some information only available in DIE's children. */
14235
14236 static void
14237 update_enumeration_type_from_children (struct die_info *die,
14238 struct type *type,
14239 struct dwarf2_cu *cu)
14240 {
14241 struct die_info *child_die;
14242 int unsigned_enum = 1;
14243 int flag_enum = 1;
14244 ULONGEST mask = 0;
14245
14246 auto_obstack obstack;
14247
14248 for (child_die = die->child;
14249 child_die != NULL && child_die->tag;
14250 child_die = sibling_die (child_die))
14251 {
14252 struct attribute *attr;
14253 LONGEST value;
14254 const gdb_byte *bytes;
14255 struct dwarf2_locexpr_baton *baton;
14256 const char *name;
14257
14258 if (child_die->tag != DW_TAG_enumerator)
14259 continue;
14260
14261 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
14262 if (attr == NULL)
14263 continue;
14264
14265 name = dwarf2_name (child_die, cu);
14266 if (name == NULL)
14267 name = "<anonymous enumerator>";
14268
14269 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
14270 &value, &bytes, &baton);
14271 if (value < 0)
14272 {
14273 unsigned_enum = 0;
14274 flag_enum = 0;
14275 }
14276 else if ((mask & value) != 0)
14277 flag_enum = 0;
14278 else
14279 mask |= value;
14280
14281 /* If we already know that the enum type is neither unsigned, nor
14282 a flag type, no need to look at the rest of the enumerates. */
14283 if (!unsigned_enum && !flag_enum)
14284 break;
14285 }
14286
14287 if (unsigned_enum)
14288 TYPE_UNSIGNED (type) = 1;
14289 if (flag_enum)
14290 TYPE_FLAG_ENUM (type) = 1;
14291 }
14292
14293 /* Given a DW_AT_enumeration_type die, set its type. We do not
14294 complete the type's fields yet, or create any symbols. */
14295
14296 static struct type *
14297 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
14298 {
14299 struct objfile *objfile = cu->objfile;
14300 struct type *type;
14301 struct attribute *attr;
14302 const char *name;
14303
14304 /* If the definition of this type lives in .debug_types, read that type.
14305 Don't follow DW_AT_specification though, that will take us back up
14306 the chain and we want to go down. */
14307 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
14308 if (attr)
14309 {
14310 type = get_DW_AT_signature_type (die, attr, cu);
14311
14312 /* The type's CU may not be the same as CU.
14313 Ensure TYPE is recorded with CU in die_type_hash. */
14314 return set_die_type (die, type, cu);
14315 }
14316
14317 type = alloc_type (objfile);
14318
14319 TYPE_CODE (type) = TYPE_CODE_ENUM;
14320 name = dwarf2_full_name (NULL, die, cu);
14321 if (name != NULL)
14322 TYPE_TAG_NAME (type) = name;
14323
14324 attr = dwarf2_attr (die, DW_AT_type, cu);
14325 if (attr != NULL)
14326 {
14327 struct type *underlying_type = die_type (die, cu);
14328
14329 TYPE_TARGET_TYPE (type) = underlying_type;
14330 }
14331
14332 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14333 if (attr)
14334 {
14335 TYPE_LENGTH (type) = DW_UNSND (attr);
14336 }
14337 else
14338 {
14339 TYPE_LENGTH (type) = 0;
14340 }
14341
14342 /* The enumeration DIE can be incomplete. In Ada, any type can be
14343 declared as private in the package spec, and then defined only
14344 inside the package body. Such types are known as Taft Amendment
14345 Types. When another package uses such a type, an incomplete DIE
14346 may be generated by the compiler. */
14347 if (die_is_declaration (die, cu))
14348 TYPE_STUB (type) = 1;
14349
14350 /* Finish the creation of this type by using the enum's children.
14351 We must call this even when the underlying type has been provided
14352 so that we can determine if we're looking at a "flag" enum. */
14353 update_enumeration_type_from_children (die, type, cu);
14354
14355 /* If this type has an underlying type that is not a stub, then we
14356 may use its attributes. We always use the "unsigned" attribute
14357 in this situation, because ordinarily we guess whether the type
14358 is unsigned -- but the guess can be wrong and the underlying type
14359 can tell us the reality. However, we defer to a local size
14360 attribute if one exists, because this lets the compiler override
14361 the underlying type if needed. */
14362 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
14363 {
14364 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
14365 if (TYPE_LENGTH (type) == 0)
14366 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
14367 }
14368
14369 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
14370
14371 return set_die_type (die, type, cu);
14372 }
14373
14374 /* Given a pointer to a die which begins an enumeration, process all
14375 the dies that define the members of the enumeration, and create the
14376 symbol for the enumeration type.
14377
14378 NOTE: We reverse the order of the element list. */
14379
14380 static void
14381 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
14382 {
14383 struct type *this_type;
14384
14385 this_type = get_die_type (die, cu);
14386 if (this_type == NULL)
14387 this_type = read_enumeration_type (die, cu);
14388
14389 if (die->child != NULL)
14390 {
14391 struct die_info *child_die;
14392 struct symbol *sym;
14393 struct field *fields = NULL;
14394 int num_fields = 0;
14395 const char *name;
14396
14397 child_die = die->child;
14398 while (child_die && child_die->tag)
14399 {
14400 if (child_die->tag != DW_TAG_enumerator)
14401 {
14402 process_die (child_die, cu);
14403 }
14404 else
14405 {
14406 name = dwarf2_name (child_die, cu);
14407 if (name)
14408 {
14409 sym = new_symbol (child_die, this_type, cu);
14410
14411 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
14412 {
14413 fields = (struct field *)
14414 xrealloc (fields,
14415 (num_fields + DW_FIELD_ALLOC_CHUNK)
14416 * sizeof (struct field));
14417 }
14418
14419 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
14420 FIELD_TYPE (fields[num_fields]) = NULL;
14421 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
14422 FIELD_BITSIZE (fields[num_fields]) = 0;
14423
14424 num_fields++;
14425 }
14426 }
14427
14428 child_die = sibling_die (child_die);
14429 }
14430
14431 if (num_fields)
14432 {
14433 TYPE_NFIELDS (this_type) = num_fields;
14434 TYPE_FIELDS (this_type) = (struct field *)
14435 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
14436 memcpy (TYPE_FIELDS (this_type), fields,
14437 sizeof (struct field) * num_fields);
14438 xfree (fields);
14439 }
14440 }
14441
14442 /* If we are reading an enum from a .debug_types unit, and the enum
14443 is a declaration, and the enum is not the signatured type in the
14444 unit, then we do not want to add a symbol for it. Adding a
14445 symbol would in some cases obscure the true definition of the
14446 enum, giving users an incomplete type when the definition is
14447 actually available. Note that we do not want to do this for all
14448 enums which are just declarations, because C++0x allows forward
14449 enum declarations. */
14450 if (cu->per_cu->is_debug_types
14451 && die_is_declaration (die, cu))
14452 {
14453 struct signatured_type *sig_type;
14454
14455 sig_type = (struct signatured_type *) cu->per_cu;
14456 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
14457 if (sig_type->type_offset_in_section != die->sect_off)
14458 return;
14459 }
14460
14461 new_symbol (die, this_type, cu);
14462 }
14463
14464 /* Extract all information from a DW_TAG_array_type DIE and put it in
14465 the DIE's type field. For now, this only handles one dimensional
14466 arrays. */
14467
14468 static struct type *
14469 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
14470 {
14471 struct objfile *objfile = cu->objfile;
14472 struct die_info *child_die;
14473 struct type *type;
14474 struct type *element_type, *range_type, *index_type;
14475 struct attribute *attr;
14476 const char *name;
14477 unsigned int bit_stride = 0;
14478
14479 element_type = die_type (die, cu);
14480
14481 /* The die_type call above may have already set the type for this DIE. */
14482 type = get_die_type (die, cu);
14483 if (type)
14484 return type;
14485
14486 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
14487 if (attr != NULL)
14488 bit_stride = DW_UNSND (attr) * 8;
14489
14490 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
14491 if (attr != NULL)
14492 bit_stride = DW_UNSND (attr);
14493
14494 /* Irix 6.2 native cc creates array types without children for
14495 arrays with unspecified length. */
14496 if (die->child == NULL)
14497 {
14498 index_type = objfile_type (objfile)->builtin_int;
14499 range_type = create_static_range_type (NULL, index_type, 0, -1);
14500 type = create_array_type_with_stride (NULL, element_type, range_type,
14501 bit_stride);
14502 return set_die_type (die, type, cu);
14503 }
14504
14505 std::vector<struct type *> range_types;
14506 child_die = die->child;
14507 while (child_die && child_die->tag)
14508 {
14509 if (child_die->tag == DW_TAG_subrange_type)
14510 {
14511 struct type *child_type = read_type_die (child_die, cu);
14512
14513 if (child_type != NULL)
14514 {
14515 /* The range type was succesfully read. Save it for the
14516 array type creation. */
14517 range_types.push_back (child_type);
14518 }
14519 }
14520 child_die = sibling_die (child_die);
14521 }
14522
14523 /* Dwarf2 dimensions are output from left to right, create the
14524 necessary array types in backwards order. */
14525
14526 type = element_type;
14527
14528 if (read_array_order (die, cu) == DW_ORD_col_major)
14529 {
14530 int i = 0;
14531
14532 while (i < range_types.size ())
14533 type = create_array_type_with_stride (NULL, type, range_types[i++],
14534 bit_stride);
14535 }
14536 else
14537 {
14538 size_t ndim = range_types.size ();
14539 while (ndim-- > 0)
14540 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14541 bit_stride);
14542 }
14543
14544 /* Understand Dwarf2 support for vector types (like they occur on
14545 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14546 array type. This is not part of the Dwarf2/3 standard yet, but a
14547 custom vendor extension. The main difference between a regular
14548 array and the vector variant is that vectors are passed by value
14549 to functions. */
14550 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
14551 if (attr)
14552 make_vector_type (type);
14553
14554 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14555 implementation may choose to implement triple vectors using this
14556 attribute. */
14557 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14558 if (attr)
14559 {
14560 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14561 TYPE_LENGTH (type) = DW_UNSND (attr);
14562 else
14563 complaint (&symfile_complaints,
14564 _("DW_AT_byte_size for array type smaller "
14565 "than the total size of elements"));
14566 }
14567
14568 name = dwarf2_name (die, cu);
14569 if (name)
14570 TYPE_NAME (type) = name;
14571
14572 /* Install the type in the die. */
14573 set_die_type (die, type, cu);
14574
14575 /* set_die_type should be already done. */
14576 set_descriptive_type (type, die, cu);
14577
14578 return type;
14579 }
14580
14581 static enum dwarf_array_dim_ordering
14582 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
14583 {
14584 struct attribute *attr;
14585
14586 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14587
14588 if (attr)
14589 return (enum dwarf_array_dim_ordering) DW_SND (attr);
14590
14591 /* GNU F77 is a special case, as at 08/2004 array type info is the
14592 opposite order to the dwarf2 specification, but data is still
14593 laid out as per normal fortran.
14594
14595 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14596 version checking. */
14597
14598 if (cu->language == language_fortran
14599 && cu->producer && strstr (cu->producer, "GNU F77"))
14600 {
14601 return DW_ORD_row_major;
14602 }
14603
14604 switch (cu->language_defn->la_array_ordering)
14605 {
14606 case array_column_major:
14607 return DW_ORD_col_major;
14608 case array_row_major:
14609 default:
14610 return DW_ORD_row_major;
14611 };
14612 }
14613
14614 /* Extract all information from a DW_TAG_set_type DIE and put it in
14615 the DIE's type field. */
14616
14617 static struct type *
14618 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14619 {
14620 struct type *domain_type, *set_type;
14621 struct attribute *attr;
14622
14623 domain_type = die_type (die, cu);
14624
14625 /* The die_type call above may have already set the type for this DIE. */
14626 set_type = get_die_type (die, cu);
14627 if (set_type)
14628 return set_type;
14629
14630 set_type = create_set_type (NULL, domain_type);
14631
14632 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14633 if (attr)
14634 TYPE_LENGTH (set_type) = DW_UNSND (attr);
14635
14636 return set_die_type (die, set_type, cu);
14637 }
14638
14639 /* A helper for read_common_block that creates a locexpr baton.
14640 SYM is the symbol which we are marking as computed.
14641 COMMON_DIE is the DIE for the common block.
14642 COMMON_LOC is the location expression attribute for the common
14643 block itself.
14644 MEMBER_LOC is the location expression attribute for the particular
14645 member of the common block that we are processing.
14646 CU is the CU from which the above come. */
14647
14648 static void
14649 mark_common_block_symbol_computed (struct symbol *sym,
14650 struct die_info *common_die,
14651 struct attribute *common_loc,
14652 struct attribute *member_loc,
14653 struct dwarf2_cu *cu)
14654 {
14655 struct objfile *objfile = dwarf2_per_objfile->objfile;
14656 struct dwarf2_locexpr_baton *baton;
14657 gdb_byte *ptr;
14658 unsigned int cu_off;
14659 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14660 LONGEST offset = 0;
14661
14662 gdb_assert (common_loc && member_loc);
14663 gdb_assert (attr_form_is_block (common_loc));
14664 gdb_assert (attr_form_is_block (member_loc)
14665 || attr_form_is_constant (member_loc));
14666
14667 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14668 baton->per_cu = cu->per_cu;
14669 gdb_assert (baton->per_cu);
14670
14671 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
14672
14673 if (attr_form_is_constant (member_loc))
14674 {
14675 offset = dwarf2_get_attr_constant_value (member_loc, 0);
14676 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
14677 }
14678 else
14679 baton->size += DW_BLOCK (member_loc)->size;
14680
14681 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
14682 baton->data = ptr;
14683
14684 *ptr++ = DW_OP_call4;
14685 cu_off = common_die->sect_off - cu->per_cu->sect_off;
14686 store_unsigned_integer (ptr, 4, byte_order, cu_off);
14687 ptr += 4;
14688
14689 if (attr_form_is_constant (member_loc))
14690 {
14691 *ptr++ = DW_OP_addr;
14692 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
14693 ptr += cu->header.addr_size;
14694 }
14695 else
14696 {
14697 /* We have to copy the data here, because DW_OP_call4 will only
14698 use a DW_AT_location attribute. */
14699 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
14700 ptr += DW_BLOCK (member_loc)->size;
14701 }
14702
14703 *ptr++ = DW_OP_plus;
14704 gdb_assert (ptr - baton->data == baton->size);
14705
14706 SYMBOL_LOCATION_BATON (sym) = baton;
14707 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
14708 }
14709
14710 /* Create appropriate locally-scoped variables for all the
14711 DW_TAG_common_block entries. Also create a struct common_block
14712 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14713 is used to sepate the common blocks name namespace from regular
14714 variable names. */
14715
14716 static void
14717 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
14718 {
14719 struct attribute *attr;
14720
14721 attr = dwarf2_attr (die, DW_AT_location, cu);
14722 if (attr)
14723 {
14724 /* Support the .debug_loc offsets. */
14725 if (attr_form_is_block (attr))
14726 {
14727 /* Ok. */
14728 }
14729 else if (attr_form_is_section_offset (attr))
14730 {
14731 dwarf2_complex_location_expr_complaint ();
14732 attr = NULL;
14733 }
14734 else
14735 {
14736 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14737 "common block member");
14738 attr = NULL;
14739 }
14740 }
14741
14742 if (die->child != NULL)
14743 {
14744 struct objfile *objfile = cu->objfile;
14745 struct die_info *child_die;
14746 size_t n_entries = 0, size;
14747 struct common_block *common_block;
14748 struct symbol *sym;
14749
14750 for (child_die = die->child;
14751 child_die && child_die->tag;
14752 child_die = sibling_die (child_die))
14753 ++n_entries;
14754
14755 size = (sizeof (struct common_block)
14756 + (n_entries - 1) * sizeof (struct symbol *));
14757 common_block
14758 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14759 size);
14760 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14761 common_block->n_entries = 0;
14762
14763 for (child_die = die->child;
14764 child_die && child_die->tag;
14765 child_die = sibling_die (child_die))
14766 {
14767 /* Create the symbol in the DW_TAG_common_block block in the current
14768 symbol scope. */
14769 sym = new_symbol (child_die, NULL, cu);
14770 if (sym != NULL)
14771 {
14772 struct attribute *member_loc;
14773
14774 common_block->contents[common_block->n_entries++] = sym;
14775
14776 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14777 cu);
14778 if (member_loc)
14779 {
14780 /* GDB has handled this for a long time, but it is
14781 not specified by DWARF. It seems to have been
14782 emitted by gfortran at least as recently as:
14783 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14784 complaint (&symfile_complaints,
14785 _("Variable in common block has "
14786 "DW_AT_data_member_location "
14787 "- DIE at 0x%x [in module %s]"),
14788 to_underlying (child_die->sect_off),
14789 objfile_name (cu->objfile));
14790
14791 if (attr_form_is_section_offset (member_loc))
14792 dwarf2_complex_location_expr_complaint ();
14793 else if (attr_form_is_constant (member_loc)
14794 || attr_form_is_block (member_loc))
14795 {
14796 if (attr)
14797 mark_common_block_symbol_computed (sym, die, attr,
14798 member_loc, cu);
14799 }
14800 else
14801 dwarf2_complex_location_expr_complaint ();
14802 }
14803 }
14804 }
14805
14806 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14807 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14808 }
14809 }
14810
14811 /* Create a type for a C++ namespace. */
14812
14813 static struct type *
14814 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14815 {
14816 struct objfile *objfile = cu->objfile;
14817 const char *previous_prefix, *name;
14818 int is_anonymous;
14819 struct type *type;
14820
14821 /* For extensions, reuse the type of the original namespace. */
14822 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14823 {
14824 struct die_info *ext_die;
14825 struct dwarf2_cu *ext_cu = cu;
14826
14827 ext_die = dwarf2_extension (die, &ext_cu);
14828 type = read_type_die (ext_die, ext_cu);
14829
14830 /* EXT_CU may not be the same as CU.
14831 Ensure TYPE is recorded with CU in die_type_hash. */
14832 return set_die_type (die, type, cu);
14833 }
14834
14835 name = namespace_name (die, &is_anonymous, cu);
14836
14837 /* Now build the name of the current namespace. */
14838
14839 previous_prefix = determine_prefix (die, cu);
14840 if (previous_prefix[0] != '\0')
14841 name = typename_concat (&objfile->objfile_obstack,
14842 previous_prefix, name, 0, cu);
14843
14844 /* Create the type. */
14845 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
14846 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14847
14848 return set_die_type (die, type, cu);
14849 }
14850
14851 /* Read a namespace scope. */
14852
14853 static void
14854 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14855 {
14856 struct objfile *objfile = cu->objfile;
14857 int is_anonymous;
14858
14859 /* Add a symbol associated to this if we haven't seen the namespace
14860 before. Also, add a using directive if it's an anonymous
14861 namespace. */
14862
14863 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14864 {
14865 struct type *type;
14866
14867 type = read_type_die (die, cu);
14868 new_symbol (die, type, cu);
14869
14870 namespace_name (die, &is_anonymous, cu);
14871 if (is_anonymous)
14872 {
14873 const char *previous_prefix = determine_prefix (die, cu);
14874
14875 std::vector<const char *> excludes;
14876 add_using_directive (using_directives (cu->language),
14877 previous_prefix, TYPE_NAME (type), NULL,
14878 NULL, excludes, 0, &objfile->objfile_obstack);
14879 }
14880 }
14881
14882 if (die->child != NULL)
14883 {
14884 struct die_info *child_die = die->child;
14885
14886 while (child_die && child_die->tag)
14887 {
14888 process_die (child_die, cu);
14889 child_die = sibling_die (child_die);
14890 }
14891 }
14892 }
14893
14894 /* Read a Fortran module as type. This DIE can be only a declaration used for
14895 imported module. Still we need that type as local Fortran "use ... only"
14896 declaration imports depend on the created type in determine_prefix. */
14897
14898 static struct type *
14899 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14900 {
14901 struct objfile *objfile = cu->objfile;
14902 const char *module_name;
14903 struct type *type;
14904
14905 module_name = dwarf2_name (die, cu);
14906 if (!module_name)
14907 complaint (&symfile_complaints,
14908 _("DW_TAG_module has no name, offset 0x%x"),
14909 to_underlying (die->sect_off));
14910 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
14911
14912 /* determine_prefix uses TYPE_TAG_NAME. */
14913 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14914
14915 return set_die_type (die, type, cu);
14916 }
14917
14918 /* Read a Fortran module. */
14919
14920 static void
14921 read_module (struct die_info *die, struct dwarf2_cu *cu)
14922 {
14923 struct die_info *child_die = die->child;
14924 struct type *type;
14925
14926 type = read_type_die (die, cu);
14927 new_symbol (die, type, cu);
14928
14929 while (child_die && child_die->tag)
14930 {
14931 process_die (child_die, cu);
14932 child_die = sibling_die (child_die);
14933 }
14934 }
14935
14936 /* Return the name of the namespace represented by DIE. Set
14937 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14938 namespace. */
14939
14940 static const char *
14941 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14942 {
14943 struct die_info *current_die;
14944 const char *name = NULL;
14945
14946 /* Loop through the extensions until we find a name. */
14947
14948 for (current_die = die;
14949 current_die != NULL;
14950 current_die = dwarf2_extension (die, &cu))
14951 {
14952 /* We don't use dwarf2_name here so that we can detect the absence
14953 of a name -> anonymous namespace. */
14954 name = dwarf2_string_attr (die, DW_AT_name, cu);
14955
14956 if (name != NULL)
14957 break;
14958 }
14959
14960 /* Is it an anonymous namespace? */
14961
14962 *is_anonymous = (name == NULL);
14963 if (*is_anonymous)
14964 name = CP_ANONYMOUS_NAMESPACE_STR;
14965
14966 return name;
14967 }
14968
14969 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14970 the user defined type vector. */
14971
14972 static struct type *
14973 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14974 {
14975 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14976 struct comp_unit_head *cu_header = &cu->header;
14977 struct type *type;
14978 struct attribute *attr_byte_size;
14979 struct attribute *attr_address_class;
14980 int byte_size, addr_class;
14981 struct type *target_type;
14982
14983 target_type = die_type (die, cu);
14984
14985 /* The die_type call above may have already set the type for this DIE. */
14986 type = get_die_type (die, cu);
14987 if (type)
14988 return type;
14989
14990 type = lookup_pointer_type (target_type);
14991
14992 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14993 if (attr_byte_size)
14994 byte_size = DW_UNSND (attr_byte_size);
14995 else
14996 byte_size = cu_header->addr_size;
14997
14998 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14999 if (attr_address_class)
15000 addr_class = DW_UNSND (attr_address_class);
15001 else
15002 addr_class = DW_ADDR_none;
15003
15004 /* If the pointer size or address class is different than the
15005 default, create a type variant marked as such and set the
15006 length accordingly. */
15007 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
15008 {
15009 if (gdbarch_address_class_type_flags_p (gdbarch))
15010 {
15011 int type_flags;
15012
15013 type_flags = gdbarch_address_class_type_flags
15014 (gdbarch, byte_size, addr_class);
15015 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
15016 == 0);
15017 type = make_type_with_address_space (type, type_flags);
15018 }
15019 else if (TYPE_LENGTH (type) != byte_size)
15020 {
15021 complaint (&symfile_complaints,
15022 _("invalid pointer size %d"), byte_size);
15023 }
15024 else
15025 {
15026 /* Should we also complain about unhandled address classes? */
15027 }
15028 }
15029
15030 TYPE_LENGTH (type) = byte_size;
15031 return set_die_type (die, type, cu);
15032 }
15033
15034 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
15035 the user defined type vector. */
15036
15037 static struct type *
15038 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
15039 {
15040 struct type *type;
15041 struct type *to_type;
15042 struct type *domain;
15043
15044 to_type = die_type (die, cu);
15045 domain = die_containing_type (die, cu);
15046
15047 /* The calls above may have already set the type for this DIE. */
15048 type = get_die_type (die, cu);
15049 if (type)
15050 return type;
15051
15052 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
15053 type = lookup_methodptr_type (to_type);
15054 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
15055 {
15056 struct type *new_type = alloc_type (cu->objfile);
15057
15058 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
15059 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
15060 TYPE_VARARGS (to_type));
15061 type = lookup_methodptr_type (new_type);
15062 }
15063 else
15064 type = lookup_memberptr_type (to_type, domain);
15065
15066 return set_die_type (die, type, cu);
15067 }
15068
15069 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
15070 the user defined type vector. */
15071
15072 static struct type *
15073 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
15074 enum type_code refcode)
15075 {
15076 struct comp_unit_head *cu_header = &cu->header;
15077 struct type *type, *target_type;
15078 struct attribute *attr;
15079
15080 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
15081
15082 target_type = die_type (die, cu);
15083
15084 /* The die_type call above may have already set the type for this DIE. */
15085 type = get_die_type (die, cu);
15086 if (type)
15087 return type;
15088
15089 type = lookup_reference_type (target_type, refcode);
15090 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15091 if (attr)
15092 {
15093 TYPE_LENGTH (type) = DW_UNSND (attr);
15094 }
15095 else
15096 {
15097 TYPE_LENGTH (type) = cu_header->addr_size;
15098 }
15099 return set_die_type (die, type, cu);
15100 }
15101
15102 /* Add the given cv-qualifiers to the element type of the array. GCC
15103 outputs DWARF type qualifiers that apply to an array, not the
15104 element type. But GDB relies on the array element type to carry
15105 the cv-qualifiers. This mimics section 6.7.3 of the C99
15106 specification. */
15107
15108 static struct type *
15109 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
15110 struct type *base_type, int cnst, int voltl)
15111 {
15112 struct type *el_type, *inner_array;
15113
15114 base_type = copy_type (base_type);
15115 inner_array = base_type;
15116
15117 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
15118 {
15119 TYPE_TARGET_TYPE (inner_array) =
15120 copy_type (TYPE_TARGET_TYPE (inner_array));
15121 inner_array = TYPE_TARGET_TYPE (inner_array);
15122 }
15123
15124 el_type = TYPE_TARGET_TYPE (inner_array);
15125 cnst |= TYPE_CONST (el_type);
15126 voltl |= TYPE_VOLATILE (el_type);
15127 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
15128
15129 return set_die_type (die, base_type, cu);
15130 }
15131
15132 static struct type *
15133 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
15134 {
15135 struct type *base_type, *cv_type;
15136
15137 base_type = die_type (die, cu);
15138
15139 /* The die_type call above may have already set the type for this DIE. */
15140 cv_type = get_die_type (die, cu);
15141 if (cv_type)
15142 return cv_type;
15143
15144 /* In case the const qualifier is applied to an array type, the element type
15145 is so qualified, not the array type (section 6.7.3 of C99). */
15146 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
15147 return add_array_cv_type (die, cu, base_type, 1, 0);
15148
15149 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
15150 return set_die_type (die, cv_type, cu);
15151 }
15152
15153 static struct type *
15154 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
15155 {
15156 struct type *base_type, *cv_type;
15157
15158 base_type = die_type (die, cu);
15159
15160 /* The die_type call above may have already set the type for this DIE. */
15161 cv_type = get_die_type (die, cu);
15162 if (cv_type)
15163 return cv_type;
15164
15165 /* In case the volatile qualifier is applied to an array type, the
15166 element type is so qualified, not the array type (section 6.7.3
15167 of C99). */
15168 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
15169 return add_array_cv_type (die, cu, base_type, 0, 1);
15170
15171 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
15172 return set_die_type (die, cv_type, cu);
15173 }
15174
15175 /* Handle DW_TAG_restrict_type. */
15176
15177 static struct type *
15178 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
15179 {
15180 struct type *base_type, *cv_type;
15181
15182 base_type = die_type (die, cu);
15183
15184 /* The die_type call above may have already set the type for this DIE. */
15185 cv_type = get_die_type (die, cu);
15186 if (cv_type)
15187 return cv_type;
15188
15189 cv_type = make_restrict_type (base_type);
15190 return set_die_type (die, cv_type, cu);
15191 }
15192
15193 /* Handle DW_TAG_atomic_type. */
15194
15195 static struct type *
15196 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
15197 {
15198 struct type *base_type, *cv_type;
15199
15200 base_type = die_type (die, cu);
15201
15202 /* The die_type call above may have already set the type for this DIE. */
15203 cv_type = get_die_type (die, cu);
15204 if (cv_type)
15205 return cv_type;
15206
15207 cv_type = make_atomic_type (base_type);
15208 return set_die_type (die, cv_type, cu);
15209 }
15210
15211 /* Extract all information from a DW_TAG_string_type DIE and add to
15212 the user defined type vector. It isn't really a user defined type,
15213 but it behaves like one, with other DIE's using an AT_user_def_type
15214 attribute to reference it. */
15215
15216 static struct type *
15217 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
15218 {
15219 struct objfile *objfile = cu->objfile;
15220 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15221 struct type *type, *range_type, *index_type, *char_type;
15222 struct attribute *attr;
15223 unsigned int length;
15224
15225 attr = dwarf2_attr (die, DW_AT_string_length, cu);
15226 if (attr)
15227 {
15228 length = DW_UNSND (attr);
15229 }
15230 else
15231 {
15232 /* Check for the DW_AT_byte_size attribute. */
15233 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15234 if (attr)
15235 {
15236 length = DW_UNSND (attr);
15237 }
15238 else
15239 {
15240 length = 1;
15241 }
15242 }
15243
15244 index_type = objfile_type (objfile)->builtin_int;
15245 range_type = create_static_range_type (NULL, index_type, 1, length);
15246 char_type = language_string_char_type (cu->language_defn, gdbarch);
15247 type = create_string_type (NULL, char_type, range_type);
15248
15249 return set_die_type (die, type, cu);
15250 }
15251
15252 /* Assuming that DIE corresponds to a function, returns nonzero
15253 if the function is prototyped. */
15254
15255 static int
15256 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
15257 {
15258 struct attribute *attr;
15259
15260 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
15261 if (attr && (DW_UNSND (attr) != 0))
15262 return 1;
15263
15264 /* The DWARF standard implies that the DW_AT_prototyped attribute
15265 is only meaninful for C, but the concept also extends to other
15266 languages that allow unprototyped functions (Eg: Objective C).
15267 For all other languages, assume that functions are always
15268 prototyped. */
15269 if (cu->language != language_c
15270 && cu->language != language_objc
15271 && cu->language != language_opencl)
15272 return 1;
15273
15274 /* RealView does not emit DW_AT_prototyped. We can not distinguish
15275 prototyped and unprototyped functions; default to prototyped,
15276 since that is more common in modern code (and RealView warns
15277 about unprototyped functions). */
15278 if (producer_is_realview (cu->producer))
15279 return 1;
15280
15281 return 0;
15282 }
15283
15284 /* Handle DIES due to C code like:
15285
15286 struct foo
15287 {
15288 int (*funcp)(int a, long l);
15289 int b;
15290 };
15291
15292 ('funcp' generates a DW_TAG_subroutine_type DIE). */
15293
15294 static struct type *
15295 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
15296 {
15297 struct objfile *objfile = cu->objfile;
15298 struct type *type; /* Type that this function returns. */
15299 struct type *ftype; /* Function that returns above type. */
15300 struct attribute *attr;
15301
15302 type = die_type (die, cu);
15303
15304 /* The die_type call above may have already set the type for this DIE. */
15305 ftype = get_die_type (die, cu);
15306 if (ftype)
15307 return ftype;
15308
15309 ftype = lookup_function_type (type);
15310
15311 if (prototyped_function_p (die, cu))
15312 TYPE_PROTOTYPED (ftype) = 1;
15313
15314 /* Store the calling convention in the type if it's available in
15315 the subroutine die. Otherwise set the calling convention to
15316 the default value DW_CC_normal. */
15317 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15318 if (attr)
15319 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
15320 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
15321 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
15322 else
15323 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
15324
15325 /* Record whether the function returns normally to its caller or not
15326 if the DWARF producer set that information. */
15327 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
15328 if (attr && (DW_UNSND (attr) != 0))
15329 TYPE_NO_RETURN (ftype) = 1;
15330
15331 /* We need to add the subroutine type to the die immediately so
15332 we don't infinitely recurse when dealing with parameters
15333 declared as the same subroutine type. */
15334 set_die_type (die, ftype, cu);
15335
15336 if (die->child != NULL)
15337 {
15338 struct type *void_type = objfile_type (objfile)->builtin_void;
15339 struct die_info *child_die;
15340 int nparams, iparams;
15341
15342 /* Count the number of parameters.
15343 FIXME: GDB currently ignores vararg functions, but knows about
15344 vararg member functions. */
15345 nparams = 0;
15346 child_die = die->child;
15347 while (child_die && child_die->tag)
15348 {
15349 if (child_die->tag == DW_TAG_formal_parameter)
15350 nparams++;
15351 else if (child_die->tag == DW_TAG_unspecified_parameters)
15352 TYPE_VARARGS (ftype) = 1;
15353 child_die = sibling_die (child_die);
15354 }
15355
15356 /* Allocate storage for parameters and fill them in. */
15357 TYPE_NFIELDS (ftype) = nparams;
15358 TYPE_FIELDS (ftype) = (struct field *)
15359 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
15360
15361 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
15362 even if we error out during the parameters reading below. */
15363 for (iparams = 0; iparams < nparams; iparams++)
15364 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
15365
15366 iparams = 0;
15367 child_die = die->child;
15368 while (child_die && child_die->tag)
15369 {
15370 if (child_die->tag == DW_TAG_formal_parameter)
15371 {
15372 struct type *arg_type;
15373
15374 /* DWARF version 2 has no clean way to discern C++
15375 static and non-static member functions. G++ helps
15376 GDB by marking the first parameter for non-static
15377 member functions (which is the this pointer) as
15378 artificial. We pass this information to
15379 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
15380
15381 DWARF version 3 added DW_AT_object_pointer, which GCC
15382 4.5 does not yet generate. */
15383 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
15384 if (attr)
15385 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
15386 else
15387 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
15388 arg_type = die_type (child_die, cu);
15389
15390 /* RealView does not mark THIS as const, which the testsuite
15391 expects. GCC marks THIS as const in method definitions,
15392 but not in the class specifications (GCC PR 43053). */
15393 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
15394 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
15395 {
15396 int is_this = 0;
15397 struct dwarf2_cu *arg_cu = cu;
15398 const char *name = dwarf2_name (child_die, cu);
15399
15400 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
15401 if (attr)
15402 {
15403 /* If the compiler emits this, use it. */
15404 if (follow_die_ref (die, attr, &arg_cu) == child_die)
15405 is_this = 1;
15406 }
15407 else if (name && strcmp (name, "this") == 0)
15408 /* Function definitions will have the argument names. */
15409 is_this = 1;
15410 else if (name == NULL && iparams == 0)
15411 /* Declarations may not have the names, so like
15412 elsewhere in GDB, assume an artificial first
15413 argument is "this". */
15414 is_this = 1;
15415
15416 if (is_this)
15417 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
15418 arg_type, 0);
15419 }
15420
15421 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
15422 iparams++;
15423 }
15424 child_die = sibling_die (child_die);
15425 }
15426 }
15427
15428 return ftype;
15429 }
15430
15431 static struct type *
15432 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
15433 {
15434 struct objfile *objfile = cu->objfile;
15435 const char *name = NULL;
15436 struct type *this_type, *target_type;
15437
15438 name = dwarf2_full_name (NULL, die, cu);
15439 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
15440 TYPE_TARGET_STUB (this_type) = 1;
15441 set_die_type (die, this_type, cu);
15442 target_type = die_type (die, cu);
15443 if (target_type != this_type)
15444 TYPE_TARGET_TYPE (this_type) = target_type;
15445 else
15446 {
15447 /* Self-referential typedefs are, it seems, not allowed by the DWARF
15448 spec and cause infinite loops in GDB. */
15449 complaint (&symfile_complaints,
15450 _("Self-referential DW_TAG_typedef "
15451 "- DIE at 0x%x [in module %s]"),
15452 to_underlying (die->sect_off), objfile_name (objfile));
15453 TYPE_TARGET_TYPE (this_type) = NULL;
15454 }
15455 return this_type;
15456 }
15457
15458 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
15459 (which may be different from NAME) to the architecture back-end to allow
15460 it to guess the correct format if necessary. */
15461
15462 static struct type *
15463 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
15464 const char *name_hint)
15465 {
15466 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15467 const struct floatformat **format;
15468 struct type *type;
15469
15470 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
15471 if (format)
15472 type = init_float_type (objfile, bits, name, format);
15473 else
15474 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
15475
15476 return type;
15477 }
15478
15479 /* Find a representation of a given base type and install
15480 it in the TYPE field of the die. */
15481
15482 static struct type *
15483 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
15484 {
15485 struct objfile *objfile = cu->objfile;
15486 struct type *type;
15487 struct attribute *attr;
15488 int encoding = 0, bits = 0;
15489 const char *name;
15490
15491 attr = dwarf2_attr (die, DW_AT_encoding, cu);
15492 if (attr)
15493 {
15494 encoding = DW_UNSND (attr);
15495 }
15496 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15497 if (attr)
15498 {
15499 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
15500 }
15501 name = dwarf2_name (die, cu);
15502 if (!name)
15503 {
15504 complaint (&symfile_complaints,
15505 _("DW_AT_name missing from DW_TAG_base_type"));
15506 }
15507
15508 switch (encoding)
15509 {
15510 case DW_ATE_address:
15511 /* Turn DW_ATE_address into a void * pointer. */
15512 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
15513 type = init_pointer_type (objfile, bits, name, type);
15514 break;
15515 case DW_ATE_boolean:
15516 type = init_boolean_type (objfile, bits, 1, name);
15517 break;
15518 case DW_ATE_complex_float:
15519 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
15520 type = init_complex_type (objfile, name, type);
15521 break;
15522 case DW_ATE_decimal_float:
15523 type = init_decfloat_type (objfile, bits, name);
15524 break;
15525 case DW_ATE_float:
15526 type = dwarf2_init_float_type (objfile, bits, name, name);
15527 break;
15528 case DW_ATE_signed:
15529 type = init_integer_type (objfile, bits, 0, name);
15530 break;
15531 case DW_ATE_unsigned:
15532 if (cu->language == language_fortran
15533 && name
15534 && startswith (name, "character("))
15535 type = init_character_type (objfile, bits, 1, name);
15536 else
15537 type = init_integer_type (objfile, bits, 1, name);
15538 break;
15539 case DW_ATE_signed_char:
15540 if (cu->language == language_ada || cu->language == language_m2
15541 || cu->language == language_pascal
15542 || cu->language == language_fortran)
15543 type = init_character_type (objfile, bits, 0, name);
15544 else
15545 type = init_integer_type (objfile, bits, 0, name);
15546 break;
15547 case DW_ATE_unsigned_char:
15548 if (cu->language == language_ada || cu->language == language_m2
15549 || cu->language == language_pascal
15550 || cu->language == language_fortran
15551 || cu->language == language_rust)
15552 type = init_character_type (objfile, bits, 1, name);
15553 else
15554 type = init_integer_type (objfile, bits, 1, name);
15555 break;
15556 case DW_ATE_UTF:
15557 {
15558 gdbarch *arch = get_objfile_arch (objfile);
15559
15560 if (bits == 16)
15561 type = builtin_type (arch)->builtin_char16;
15562 else if (bits == 32)
15563 type = builtin_type (arch)->builtin_char32;
15564 else
15565 {
15566 complaint (&symfile_complaints,
15567 _("unsupported DW_ATE_UTF bit size: '%d'"),
15568 bits);
15569 type = init_integer_type (objfile, bits, 1, name);
15570 }
15571 return set_die_type (die, type, cu);
15572 }
15573 break;
15574
15575 default:
15576 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15577 dwarf_type_encoding_name (encoding));
15578 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
15579 break;
15580 }
15581
15582 if (name && strcmp (name, "char") == 0)
15583 TYPE_NOSIGN (type) = 1;
15584
15585 return set_die_type (die, type, cu);
15586 }
15587
15588 /* Parse dwarf attribute if it's a block, reference or constant and put the
15589 resulting value of the attribute into struct bound_prop.
15590 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15591
15592 static int
15593 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15594 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15595 {
15596 struct dwarf2_property_baton *baton;
15597 struct obstack *obstack = &cu->objfile->objfile_obstack;
15598
15599 if (attr == NULL || prop == NULL)
15600 return 0;
15601
15602 if (attr_form_is_block (attr))
15603 {
15604 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15605 baton->referenced_type = NULL;
15606 baton->locexpr.per_cu = cu->per_cu;
15607 baton->locexpr.size = DW_BLOCK (attr)->size;
15608 baton->locexpr.data = DW_BLOCK (attr)->data;
15609 prop->data.baton = baton;
15610 prop->kind = PROP_LOCEXPR;
15611 gdb_assert (prop->data.baton != NULL);
15612 }
15613 else if (attr_form_is_ref (attr))
15614 {
15615 struct dwarf2_cu *target_cu = cu;
15616 struct die_info *target_die;
15617 struct attribute *target_attr;
15618
15619 target_die = follow_die_ref (die, attr, &target_cu);
15620 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
15621 if (target_attr == NULL)
15622 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15623 target_cu);
15624 if (target_attr == NULL)
15625 return 0;
15626
15627 switch (target_attr->name)
15628 {
15629 case DW_AT_location:
15630 if (attr_form_is_section_offset (target_attr))
15631 {
15632 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15633 baton->referenced_type = die_type (target_die, target_cu);
15634 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15635 prop->data.baton = baton;
15636 prop->kind = PROP_LOCLIST;
15637 gdb_assert (prop->data.baton != NULL);
15638 }
15639 else if (attr_form_is_block (target_attr))
15640 {
15641 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15642 baton->referenced_type = die_type (target_die, target_cu);
15643 baton->locexpr.per_cu = cu->per_cu;
15644 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15645 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15646 prop->data.baton = baton;
15647 prop->kind = PROP_LOCEXPR;
15648 gdb_assert (prop->data.baton != NULL);
15649 }
15650 else
15651 {
15652 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15653 "dynamic property");
15654 return 0;
15655 }
15656 break;
15657 case DW_AT_data_member_location:
15658 {
15659 LONGEST offset;
15660
15661 if (!handle_data_member_location (target_die, target_cu,
15662 &offset))
15663 return 0;
15664
15665 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15666 baton->referenced_type = read_type_die (target_die->parent,
15667 target_cu);
15668 baton->offset_info.offset = offset;
15669 baton->offset_info.type = die_type (target_die, target_cu);
15670 prop->data.baton = baton;
15671 prop->kind = PROP_ADDR_OFFSET;
15672 break;
15673 }
15674 }
15675 }
15676 else if (attr_form_is_constant (attr))
15677 {
15678 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
15679 prop->kind = PROP_CONST;
15680 }
15681 else
15682 {
15683 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
15684 dwarf2_name (die, cu));
15685 return 0;
15686 }
15687
15688 return 1;
15689 }
15690
15691 /* Read the given DW_AT_subrange DIE. */
15692
15693 static struct type *
15694 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
15695 {
15696 struct type *base_type, *orig_base_type;
15697 struct type *range_type;
15698 struct attribute *attr;
15699 struct dynamic_prop low, high;
15700 int low_default_is_valid;
15701 int high_bound_is_count = 0;
15702 const char *name;
15703 LONGEST negative_mask;
15704
15705 orig_base_type = die_type (die, cu);
15706 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
15707 whereas the real type might be. So, we use ORIG_BASE_TYPE when
15708 creating the range type, but we use the result of check_typedef
15709 when examining properties of the type. */
15710 base_type = check_typedef (orig_base_type);
15711
15712 /* The die_type call above may have already set the type for this DIE. */
15713 range_type = get_die_type (die, cu);
15714 if (range_type)
15715 return range_type;
15716
15717 low.kind = PROP_CONST;
15718 high.kind = PROP_CONST;
15719 high.data.const_val = 0;
15720
15721 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15722 omitting DW_AT_lower_bound. */
15723 switch (cu->language)
15724 {
15725 case language_c:
15726 case language_cplus:
15727 low.data.const_val = 0;
15728 low_default_is_valid = 1;
15729 break;
15730 case language_fortran:
15731 low.data.const_val = 1;
15732 low_default_is_valid = 1;
15733 break;
15734 case language_d:
15735 case language_objc:
15736 case language_rust:
15737 low.data.const_val = 0;
15738 low_default_is_valid = (cu->header.version >= 4);
15739 break;
15740 case language_ada:
15741 case language_m2:
15742 case language_pascal:
15743 low.data.const_val = 1;
15744 low_default_is_valid = (cu->header.version >= 4);
15745 break;
15746 default:
15747 low.data.const_val = 0;
15748 low_default_is_valid = 0;
15749 break;
15750 }
15751
15752 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
15753 if (attr)
15754 attr_to_dynamic_prop (attr, die, cu, &low);
15755 else if (!low_default_is_valid)
15756 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15757 "- DIE at 0x%x [in module %s]"),
15758 to_underlying (die->sect_off), objfile_name (cu->objfile));
15759
15760 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
15761 if (!attr_to_dynamic_prop (attr, die, cu, &high))
15762 {
15763 attr = dwarf2_attr (die, DW_AT_count, cu);
15764 if (attr_to_dynamic_prop (attr, die, cu, &high))
15765 {
15766 /* If bounds are constant do the final calculation here. */
15767 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15768 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15769 else
15770 high_bound_is_count = 1;
15771 }
15772 }
15773
15774 /* Dwarf-2 specifications explicitly allows to create subrange types
15775 without specifying a base type.
15776 In that case, the base type must be set to the type of
15777 the lower bound, upper bound or count, in that order, if any of these
15778 three attributes references an object that has a type.
15779 If no base type is found, the Dwarf-2 specifications say that
15780 a signed integer type of size equal to the size of an address should
15781 be used.
15782 For the following C code: `extern char gdb_int [];'
15783 GCC produces an empty range DIE.
15784 FIXME: muller/2010-05-28: Possible references to object for low bound,
15785 high bound or count are not yet handled by this code. */
15786 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15787 {
15788 struct objfile *objfile = cu->objfile;
15789 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15790 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15791 struct type *int_type = objfile_type (objfile)->builtin_int;
15792
15793 /* Test "int", "long int", and "long long int" objfile types,
15794 and select the first one having a size above or equal to the
15795 architecture address size. */
15796 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15797 base_type = int_type;
15798 else
15799 {
15800 int_type = objfile_type (objfile)->builtin_long;
15801 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15802 base_type = int_type;
15803 else
15804 {
15805 int_type = objfile_type (objfile)->builtin_long_long;
15806 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15807 base_type = int_type;
15808 }
15809 }
15810 }
15811
15812 /* Normally, the DWARF producers are expected to use a signed
15813 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15814 But this is unfortunately not always the case, as witnessed
15815 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15816 is used instead. To work around that ambiguity, we treat
15817 the bounds as signed, and thus sign-extend their values, when
15818 the base type is signed. */
15819 negative_mask =
15820 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15821 if (low.kind == PROP_CONST
15822 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15823 low.data.const_val |= negative_mask;
15824 if (high.kind == PROP_CONST
15825 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15826 high.data.const_val |= negative_mask;
15827
15828 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15829
15830 if (high_bound_is_count)
15831 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15832
15833 /* Ada expects an empty array on no boundary attributes. */
15834 if (attr == NULL && cu->language != language_ada)
15835 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15836
15837 name = dwarf2_name (die, cu);
15838 if (name)
15839 TYPE_NAME (range_type) = name;
15840
15841 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15842 if (attr)
15843 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15844
15845 set_die_type (die, range_type, cu);
15846
15847 /* set_die_type should be already done. */
15848 set_descriptive_type (range_type, die, cu);
15849
15850 return range_type;
15851 }
15852
15853 static struct type *
15854 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15855 {
15856 struct type *type;
15857
15858 /* For now, we only support the C meaning of an unspecified type: void. */
15859
15860 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
15861 TYPE_NAME (type) = dwarf2_name (die, cu);
15862
15863 return set_die_type (die, type, cu);
15864 }
15865
15866 /* Read a single die and all its descendents. Set the die's sibling
15867 field to NULL; set other fields in the die correctly, and set all
15868 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15869 location of the info_ptr after reading all of those dies. PARENT
15870 is the parent of the die in question. */
15871
15872 static struct die_info *
15873 read_die_and_children (const struct die_reader_specs *reader,
15874 const gdb_byte *info_ptr,
15875 const gdb_byte **new_info_ptr,
15876 struct die_info *parent)
15877 {
15878 struct die_info *die;
15879 const gdb_byte *cur_ptr;
15880 int has_children;
15881
15882 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15883 if (die == NULL)
15884 {
15885 *new_info_ptr = cur_ptr;
15886 return NULL;
15887 }
15888 store_in_ref_table (die, reader->cu);
15889
15890 if (has_children)
15891 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15892 else
15893 {
15894 die->child = NULL;
15895 *new_info_ptr = cur_ptr;
15896 }
15897
15898 die->sibling = NULL;
15899 die->parent = parent;
15900 return die;
15901 }
15902
15903 /* Read a die, all of its descendents, and all of its siblings; set
15904 all of the fields of all of the dies correctly. Arguments are as
15905 in read_die_and_children. */
15906
15907 static struct die_info *
15908 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15909 const gdb_byte *info_ptr,
15910 const gdb_byte **new_info_ptr,
15911 struct die_info *parent)
15912 {
15913 struct die_info *first_die, *last_sibling;
15914 const gdb_byte *cur_ptr;
15915
15916 cur_ptr = info_ptr;
15917 first_die = last_sibling = NULL;
15918
15919 while (1)
15920 {
15921 struct die_info *die
15922 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15923
15924 if (die == NULL)
15925 {
15926 *new_info_ptr = cur_ptr;
15927 return first_die;
15928 }
15929
15930 if (!first_die)
15931 first_die = die;
15932 else
15933 last_sibling->sibling = die;
15934
15935 last_sibling = die;
15936 }
15937 }
15938
15939 /* Read a die, all of its descendents, and all of its siblings; set
15940 all of the fields of all of the dies correctly. Arguments are as
15941 in read_die_and_children.
15942 This the main entry point for reading a DIE and all its children. */
15943
15944 static struct die_info *
15945 read_die_and_siblings (const struct die_reader_specs *reader,
15946 const gdb_byte *info_ptr,
15947 const gdb_byte **new_info_ptr,
15948 struct die_info *parent)
15949 {
15950 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15951 new_info_ptr, parent);
15952
15953 if (dwarf_die_debug)
15954 {
15955 fprintf_unfiltered (gdb_stdlog,
15956 "Read die from %s@0x%x of %s:\n",
15957 get_section_name (reader->die_section),
15958 (unsigned) (info_ptr - reader->die_section->buffer),
15959 bfd_get_filename (reader->abfd));
15960 dump_die (die, dwarf_die_debug);
15961 }
15962
15963 return die;
15964 }
15965
15966 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15967 attributes.
15968 The caller is responsible for filling in the extra attributes
15969 and updating (*DIEP)->num_attrs.
15970 Set DIEP to point to a newly allocated die with its information,
15971 except for its child, sibling, and parent fields.
15972 Set HAS_CHILDREN to tell whether the die has children or not. */
15973
15974 static const gdb_byte *
15975 read_full_die_1 (const struct die_reader_specs *reader,
15976 struct die_info **diep, const gdb_byte *info_ptr,
15977 int *has_children, int num_extra_attrs)
15978 {
15979 unsigned int abbrev_number, bytes_read, i;
15980 struct abbrev_info *abbrev;
15981 struct die_info *die;
15982 struct dwarf2_cu *cu = reader->cu;
15983 bfd *abfd = reader->abfd;
15984
15985 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
15986 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15987 info_ptr += bytes_read;
15988 if (!abbrev_number)
15989 {
15990 *diep = NULL;
15991 *has_children = 0;
15992 return info_ptr;
15993 }
15994
15995 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15996 if (!abbrev)
15997 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15998 abbrev_number,
15999 bfd_get_filename (abfd));
16000
16001 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
16002 die->sect_off = sect_off;
16003 die->tag = abbrev->tag;
16004 die->abbrev = abbrev_number;
16005
16006 /* Make the result usable.
16007 The caller needs to update num_attrs after adding the extra
16008 attributes. */
16009 die->num_attrs = abbrev->num_attrs;
16010
16011 for (i = 0; i < abbrev->num_attrs; ++i)
16012 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
16013 info_ptr);
16014
16015 *diep = die;
16016 *has_children = abbrev->has_children;
16017 return info_ptr;
16018 }
16019
16020 /* Read a die and all its attributes.
16021 Set DIEP to point to a newly allocated die with its information,
16022 except for its child, sibling, and parent fields.
16023 Set HAS_CHILDREN to tell whether the die has children or not. */
16024
16025 static const gdb_byte *
16026 read_full_die (const struct die_reader_specs *reader,
16027 struct die_info **diep, const gdb_byte *info_ptr,
16028 int *has_children)
16029 {
16030 const gdb_byte *result;
16031
16032 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
16033
16034 if (dwarf_die_debug)
16035 {
16036 fprintf_unfiltered (gdb_stdlog,
16037 "Read die from %s@0x%x of %s:\n",
16038 get_section_name (reader->die_section),
16039 (unsigned) (info_ptr - reader->die_section->buffer),
16040 bfd_get_filename (reader->abfd));
16041 dump_die (*diep, dwarf_die_debug);
16042 }
16043
16044 return result;
16045 }
16046 \f
16047 /* Abbreviation tables.
16048
16049 In DWARF version 2, the description of the debugging information is
16050 stored in a separate .debug_abbrev section. Before we read any
16051 dies from a section we read in all abbreviations and install them
16052 in a hash table. */
16053
16054 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
16055
16056 static struct abbrev_info *
16057 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
16058 {
16059 struct abbrev_info *abbrev;
16060
16061 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
16062 memset (abbrev, 0, sizeof (struct abbrev_info));
16063
16064 return abbrev;
16065 }
16066
16067 /* Add an abbreviation to the table. */
16068
16069 static void
16070 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
16071 unsigned int abbrev_number,
16072 struct abbrev_info *abbrev)
16073 {
16074 unsigned int hash_number;
16075
16076 hash_number = abbrev_number % ABBREV_HASH_SIZE;
16077 abbrev->next = abbrev_table->abbrevs[hash_number];
16078 abbrev_table->abbrevs[hash_number] = abbrev;
16079 }
16080
16081 /* Look up an abbrev in the table.
16082 Returns NULL if the abbrev is not found. */
16083
16084 static struct abbrev_info *
16085 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
16086 unsigned int abbrev_number)
16087 {
16088 unsigned int hash_number;
16089 struct abbrev_info *abbrev;
16090
16091 hash_number = abbrev_number % ABBREV_HASH_SIZE;
16092 abbrev = abbrev_table->abbrevs[hash_number];
16093
16094 while (abbrev)
16095 {
16096 if (abbrev->number == abbrev_number)
16097 return abbrev;
16098 abbrev = abbrev->next;
16099 }
16100 return NULL;
16101 }
16102
16103 /* Read in an abbrev table. */
16104
16105 static struct abbrev_table *
16106 abbrev_table_read_table (struct dwarf2_section_info *section,
16107 sect_offset sect_off)
16108 {
16109 struct objfile *objfile = dwarf2_per_objfile->objfile;
16110 bfd *abfd = get_section_bfd_owner (section);
16111 struct abbrev_table *abbrev_table;
16112 const gdb_byte *abbrev_ptr;
16113 struct abbrev_info *cur_abbrev;
16114 unsigned int abbrev_number, bytes_read, abbrev_name;
16115 unsigned int abbrev_form;
16116 struct attr_abbrev *cur_attrs;
16117 unsigned int allocated_attrs;
16118
16119 abbrev_table = XNEW (struct abbrev_table);
16120 abbrev_table->sect_off = sect_off;
16121 obstack_init (&abbrev_table->abbrev_obstack);
16122 abbrev_table->abbrevs =
16123 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
16124 ABBREV_HASH_SIZE);
16125 memset (abbrev_table->abbrevs, 0,
16126 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
16127
16128 dwarf2_read_section (objfile, section);
16129 abbrev_ptr = section->buffer + to_underlying (sect_off);
16130 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16131 abbrev_ptr += bytes_read;
16132
16133 allocated_attrs = ATTR_ALLOC_CHUNK;
16134 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
16135
16136 /* Loop until we reach an abbrev number of 0. */
16137 while (abbrev_number)
16138 {
16139 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
16140
16141 /* read in abbrev header */
16142 cur_abbrev->number = abbrev_number;
16143 cur_abbrev->tag
16144 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16145 abbrev_ptr += bytes_read;
16146 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
16147 abbrev_ptr += 1;
16148
16149 /* now read in declarations */
16150 for (;;)
16151 {
16152 LONGEST implicit_const;
16153
16154 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16155 abbrev_ptr += bytes_read;
16156 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16157 abbrev_ptr += bytes_read;
16158 if (abbrev_form == DW_FORM_implicit_const)
16159 {
16160 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
16161 &bytes_read);
16162 abbrev_ptr += bytes_read;
16163 }
16164 else
16165 {
16166 /* Initialize it due to a false compiler warning. */
16167 implicit_const = -1;
16168 }
16169
16170 if (abbrev_name == 0)
16171 break;
16172
16173 if (cur_abbrev->num_attrs == allocated_attrs)
16174 {
16175 allocated_attrs += ATTR_ALLOC_CHUNK;
16176 cur_attrs
16177 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
16178 }
16179
16180 cur_attrs[cur_abbrev->num_attrs].name
16181 = (enum dwarf_attribute) abbrev_name;
16182 cur_attrs[cur_abbrev->num_attrs].form
16183 = (enum dwarf_form) abbrev_form;
16184 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
16185 ++cur_abbrev->num_attrs;
16186 }
16187
16188 cur_abbrev->attrs =
16189 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
16190 cur_abbrev->num_attrs);
16191 memcpy (cur_abbrev->attrs, cur_attrs,
16192 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
16193
16194 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
16195
16196 /* Get next abbreviation.
16197 Under Irix6 the abbreviations for a compilation unit are not
16198 always properly terminated with an abbrev number of 0.
16199 Exit loop if we encounter an abbreviation which we have
16200 already read (which means we are about to read the abbreviations
16201 for the next compile unit) or if the end of the abbreviation
16202 table is reached. */
16203 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
16204 break;
16205 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16206 abbrev_ptr += bytes_read;
16207 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
16208 break;
16209 }
16210
16211 xfree (cur_attrs);
16212 return abbrev_table;
16213 }
16214
16215 /* Free the resources held by ABBREV_TABLE. */
16216
16217 static void
16218 abbrev_table_free (struct abbrev_table *abbrev_table)
16219 {
16220 obstack_free (&abbrev_table->abbrev_obstack, NULL);
16221 xfree (abbrev_table);
16222 }
16223
16224 /* Same as abbrev_table_free but as a cleanup.
16225 We pass in a pointer to the pointer to the table so that we can
16226 set the pointer to NULL when we're done. It also simplifies
16227 build_type_psymtabs_1. */
16228
16229 static void
16230 abbrev_table_free_cleanup (void *table_ptr)
16231 {
16232 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
16233
16234 if (*abbrev_table_ptr != NULL)
16235 abbrev_table_free (*abbrev_table_ptr);
16236 *abbrev_table_ptr = NULL;
16237 }
16238
16239 /* Read the abbrev table for CU from ABBREV_SECTION. */
16240
16241 static void
16242 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
16243 struct dwarf2_section_info *abbrev_section)
16244 {
16245 cu->abbrev_table =
16246 abbrev_table_read_table (abbrev_section, cu->header.abbrev_sect_off);
16247 }
16248
16249 /* Release the memory used by the abbrev table for a compilation unit. */
16250
16251 static void
16252 dwarf2_free_abbrev_table (void *ptr_to_cu)
16253 {
16254 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
16255
16256 if (cu->abbrev_table != NULL)
16257 abbrev_table_free (cu->abbrev_table);
16258 /* Set this to NULL so that we SEGV if we try to read it later,
16259 and also because free_comp_unit verifies this is NULL. */
16260 cu->abbrev_table = NULL;
16261 }
16262 \f
16263 /* Returns nonzero if TAG represents a type that we might generate a partial
16264 symbol for. */
16265
16266 static int
16267 is_type_tag_for_partial (int tag)
16268 {
16269 switch (tag)
16270 {
16271 #if 0
16272 /* Some types that would be reasonable to generate partial symbols for,
16273 that we don't at present. */
16274 case DW_TAG_array_type:
16275 case DW_TAG_file_type:
16276 case DW_TAG_ptr_to_member_type:
16277 case DW_TAG_set_type:
16278 case DW_TAG_string_type:
16279 case DW_TAG_subroutine_type:
16280 #endif
16281 case DW_TAG_base_type:
16282 case DW_TAG_class_type:
16283 case DW_TAG_interface_type:
16284 case DW_TAG_enumeration_type:
16285 case DW_TAG_structure_type:
16286 case DW_TAG_subrange_type:
16287 case DW_TAG_typedef:
16288 case DW_TAG_union_type:
16289 return 1;
16290 default:
16291 return 0;
16292 }
16293 }
16294
16295 /* Load all DIEs that are interesting for partial symbols into memory. */
16296
16297 static struct partial_die_info *
16298 load_partial_dies (const struct die_reader_specs *reader,
16299 const gdb_byte *info_ptr, int building_psymtab)
16300 {
16301 struct dwarf2_cu *cu = reader->cu;
16302 struct objfile *objfile = cu->objfile;
16303 struct partial_die_info *part_die;
16304 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
16305 struct abbrev_info *abbrev;
16306 unsigned int bytes_read;
16307 unsigned int load_all = 0;
16308 int nesting_level = 1;
16309
16310 parent_die = NULL;
16311 last_die = NULL;
16312
16313 gdb_assert (cu->per_cu != NULL);
16314 if (cu->per_cu->load_all_dies)
16315 load_all = 1;
16316
16317 cu->partial_dies
16318 = htab_create_alloc_ex (cu->header.length / 12,
16319 partial_die_hash,
16320 partial_die_eq,
16321 NULL,
16322 &cu->comp_unit_obstack,
16323 hashtab_obstack_allocate,
16324 dummy_obstack_deallocate);
16325
16326 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16327
16328 while (1)
16329 {
16330 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
16331
16332 /* A NULL abbrev means the end of a series of children. */
16333 if (abbrev == NULL)
16334 {
16335 if (--nesting_level == 0)
16336 {
16337 /* PART_DIE was probably the last thing allocated on the
16338 comp_unit_obstack, so we could call obstack_free
16339 here. We don't do that because the waste is small,
16340 and will be cleaned up when we're done with this
16341 compilation unit. This way, we're also more robust
16342 against other users of the comp_unit_obstack. */
16343 return first_die;
16344 }
16345 info_ptr += bytes_read;
16346 last_die = parent_die;
16347 parent_die = parent_die->die_parent;
16348 continue;
16349 }
16350
16351 /* Check for template arguments. We never save these; if
16352 they're seen, we just mark the parent, and go on our way. */
16353 if (parent_die != NULL
16354 && cu->language == language_cplus
16355 && (abbrev->tag == DW_TAG_template_type_param
16356 || abbrev->tag == DW_TAG_template_value_param))
16357 {
16358 parent_die->has_template_arguments = 1;
16359
16360 if (!load_all)
16361 {
16362 /* We don't need a partial DIE for the template argument. */
16363 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16364 continue;
16365 }
16366 }
16367
16368 /* We only recurse into c++ subprograms looking for template arguments.
16369 Skip their other children. */
16370 if (!load_all
16371 && cu->language == language_cplus
16372 && parent_die != NULL
16373 && parent_die->tag == DW_TAG_subprogram)
16374 {
16375 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16376 continue;
16377 }
16378
16379 /* Check whether this DIE is interesting enough to save. Normally
16380 we would not be interested in members here, but there may be
16381 later variables referencing them via DW_AT_specification (for
16382 static members). */
16383 if (!load_all
16384 && !is_type_tag_for_partial (abbrev->tag)
16385 && abbrev->tag != DW_TAG_constant
16386 && abbrev->tag != DW_TAG_enumerator
16387 && abbrev->tag != DW_TAG_subprogram
16388 && abbrev->tag != DW_TAG_lexical_block
16389 && abbrev->tag != DW_TAG_variable
16390 && abbrev->tag != DW_TAG_namespace
16391 && abbrev->tag != DW_TAG_module
16392 && abbrev->tag != DW_TAG_member
16393 && abbrev->tag != DW_TAG_imported_unit
16394 && abbrev->tag != DW_TAG_imported_declaration)
16395 {
16396 /* Otherwise we skip to the next sibling, if any. */
16397 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16398 continue;
16399 }
16400
16401 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
16402 info_ptr);
16403
16404 /* This two-pass algorithm for processing partial symbols has a
16405 high cost in cache pressure. Thus, handle some simple cases
16406 here which cover the majority of C partial symbols. DIEs
16407 which neither have specification tags in them, nor could have
16408 specification tags elsewhere pointing at them, can simply be
16409 processed and discarded.
16410
16411 This segment is also optional; scan_partial_symbols and
16412 add_partial_symbol will handle these DIEs if we chain
16413 them in normally. When compilers which do not emit large
16414 quantities of duplicate debug information are more common,
16415 this code can probably be removed. */
16416
16417 /* Any complete simple types at the top level (pretty much all
16418 of them, for a language without namespaces), can be processed
16419 directly. */
16420 if (parent_die == NULL
16421 && part_die->has_specification == 0
16422 && part_die->is_declaration == 0
16423 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
16424 || part_die->tag == DW_TAG_base_type
16425 || part_die->tag == DW_TAG_subrange_type))
16426 {
16427 if (building_psymtab && part_die->name != NULL)
16428 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16429 VAR_DOMAIN, LOC_TYPEDEF,
16430 &objfile->static_psymbols,
16431 0, cu->language, objfile);
16432 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16433 continue;
16434 }
16435
16436 /* The exception for DW_TAG_typedef with has_children above is
16437 a workaround of GCC PR debug/47510. In the case of this complaint
16438 type_name_no_tag_or_error will error on such types later.
16439
16440 GDB skipped children of DW_TAG_typedef by the shortcut above and then
16441 it could not find the child DIEs referenced later, this is checked
16442 above. In correct DWARF DW_TAG_typedef should have no children. */
16443
16444 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
16445 complaint (&symfile_complaints,
16446 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
16447 "- DIE at 0x%x [in module %s]"),
16448 to_underlying (part_die->sect_off), objfile_name (objfile));
16449
16450 /* If we're at the second level, and we're an enumerator, and
16451 our parent has no specification (meaning possibly lives in a
16452 namespace elsewhere), then we can add the partial symbol now
16453 instead of queueing it. */
16454 if (part_die->tag == DW_TAG_enumerator
16455 && parent_die != NULL
16456 && parent_die->die_parent == NULL
16457 && parent_die->tag == DW_TAG_enumeration_type
16458 && parent_die->has_specification == 0)
16459 {
16460 if (part_die->name == NULL)
16461 complaint (&symfile_complaints,
16462 _("malformed enumerator DIE ignored"));
16463 else if (building_psymtab)
16464 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16465 VAR_DOMAIN, LOC_CONST,
16466 cu->language == language_cplus
16467 ? &objfile->global_psymbols
16468 : &objfile->static_psymbols,
16469 0, cu->language, objfile);
16470
16471 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16472 continue;
16473 }
16474
16475 /* We'll save this DIE so link it in. */
16476 part_die->die_parent = parent_die;
16477 part_die->die_sibling = NULL;
16478 part_die->die_child = NULL;
16479
16480 if (last_die && last_die == parent_die)
16481 last_die->die_child = part_die;
16482 else if (last_die)
16483 last_die->die_sibling = part_die;
16484
16485 last_die = part_die;
16486
16487 if (first_die == NULL)
16488 first_die = part_die;
16489
16490 /* Maybe add the DIE to the hash table. Not all DIEs that we
16491 find interesting need to be in the hash table, because we
16492 also have the parent/sibling/child chains; only those that we
16493 might refer to by offset later during partial symbol reading.
16494
16495 For now this means things that might have be the target of a
16496 DW_AT_specification, DW_AT_abstract_origin, or
16497 DW_AT_extension. DW_AT_extension will refer only to
16498 namespaces; DW_AT_abstract_origin refers to functions (and
16499 many things under the function DIE, but we do not recurse
16500 into function DIEs during partial symbol reading) and
16501 possibly variables as well; DW_AT_specification refers to
16502 declarations. Declarations ought to have the DW_AT_declaration
16503 flag. It happens that GCC forgets to put it in sometimes, but
16504 only for functions, not for types.
16505
16506 Adding more things than necessary to the hash table is harmless
16507 except for the performance cost. Adding too few will result in
16508 wasted time in find_partial_die, when we reread the compilation
16509 unit with load_all_dies set. */
16510
16511 if (load_all
16512 || abbrev->tag == DW_TAG_constant
16513 || abbrev->tag == DW_TAG_subprogram
16514 || abbrev->tag == DW_TAG_variable
16515 || abbrev->tag == DW_TAG_namespace
16516 || part_die->is_declaration)
16517 {
16518 void **slot;
16519
16520 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
16521 to_underlying (part_die->sect_off),
16522 INSERT);
16523 *slot = part_die;
16524 }
16525
16526 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16527
16528 /* For some DIEs we want to follow their children (if any). For C
16529 we have no reason to follow the children of structures; for other
16530 languages we have to, so that we can get at method physnames
16531 to infer fully qualified class names, for DW_AT_specification,
16532 and for C++ template arguments. For C++, we also look one level
16533 inside functions to find template arguments (if the name of the
16534 function does not already contain the template arguments).
16535
16536 For Ada, we need to scan the children of subprograms and lexical
16537 blocks as well because Ada allows the definition of nested
16538 entities that could be interesting for the debugger, such as
16539 nested subprograms for instance. */
16540 if (last_die->has_children
16541 && (load_all
16542 || last_die->tag == DW_TAG_namespace
16543 || last_die->tag == DW_TAG_module
16544 || last_die->tag == DW_TAG_enumeration_type
16545 || (cu->language == language_cplus
16546 && last_die->tag == DW_TAG_subprogram
16547 && (last_die->name == NULL
16548 || strchr (last_die->name, '<') == NULL))
16549 || (cu->language != language_c
16550 && (last_die->tag == DW_TAG_class_type
16551 || last_die->tag == DW_TAG_interface_type
16552 || last_die->tag == DW_TAG_structure_type
16553 || last_die->tag == DW_TAG_union_type))
16554 || (cu->language == language_ada
16555 && (last_die->tag == DW_TAG_subprogram
16556 || last_die->tag == DW_TAG_lexical_block))))
16557 {
16558 nesting_level++;
16559 parent_die = last_die;
16560 continue;
16561 }
16562
16563 /* Otherwise we skip to the next sibling, if any. */
16564 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
16565
16566 /* Back to the top, do it again. */
16567 }
16568 }
16569
16570 /* Read a minimal amount of information into the minimal die structure. */
16571
16572 static const gdb_byte *
16573 read_partial_die (const struct die_reader_specs *reader,
16574 struct partial_die_info *part_die,
16575 struct abbrev_info *abbrev, unsigned int abbrev_len,
16576 const gdb_byte *info_ptr)
16577 {
16578 struct dwarf2_cu *cu = reader->cu;
16579 struct objfile *objfile = cu->objfile;
16580 const gdb_byte *buffer = reader->buffer;
16581 unsigned int i;
16582 struct attribute attr;
16583 int has_low_pc_attr = 0;
16584 int has_high_pc_attr = 0;
16585 int high_pc_relative = 0;
16586
16587 memset (part_die, 0, sizeof (struct partial_die_info));
16588
16589 part_die->sect_off = (sect_offset) (info_ptr - buffer);
16590
16591 info_ptr += abbrev_len;
16592
16593 if (abbrev == NULL)
16594 return info_ptr;
16595
16596 part_die->tag = abbrev->tag;
16597 part_die->has_children = abbrev->has_children;
16598
16599 for (i = 0; i < abbrev->num_attrs; ++i)
16600 {
16601 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
16602
16603 /* Store the data if it is of an attribute we want to keep in a
16604 partial symbol table. */
16605 switch (attr.name)
16606 {
16607 case DW_AT_name:
16608 switch (part_die->tag)
16609 {
16610 case DW_TAG_compile_unit:
16611 case DW_TAG_partial_unit:
16612 case DW_TAG_type_unit:
16613 /* Compilation units have a DW_AT_name that is a filename, not
16614 a source language identifier. */
16615 case DW_TAG_enumeration_type:
16616 case DW_TAG_enumerator:
16617 /* These tags always have simple identifiers already; no need
16618 to canonicalize them. */
16619 part_die->name = DW_STRING (&attr);
16620 break;
16621 default:
16622 part_die->name
16623 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
16624 &objfile->per_bfd->storage_obstack);
16625 break;
16626 }
16627 break;
16628 case DW_AT_linkage_name:
16629 case DW_AT_MIPS_linkage_name:
16630 /* Note that both forms of linkage name might appear. We
16631 assume they will be the same, and we only store the last
16632 one we see. */
16633 if (cu->language == language_ada)
16634 part_die->name = DW_STRING (&attr);
16635 part_die->linkage_name = DW_STRING (&attr);
16636 break;
16637 case DW_AT_low_pc:
16638 has_low_pc_attr = 1;
16639 part_die->lowpc = attr_value_as_address (&attr);
16640 break;
16641 case DW_AT_high_pc:
16642 has_high_pc_attr = 1;
16643 part_die->highpc = attr_value_as_address (&attr);
16644 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16645 high_pc_relative = 1;
16646 break;
16647 case DW_AT_location:
16648 /* Support the .debug_loc offsets. */
16649 if (attr_form_is_block (&attr))
16650 {
16651 part_die->d.locdesc = DW_BLOCK (&attr);
16652 }
16653 else if (attr_form_is_section_offset (&attr))
16654 {
16655 dwarf2_complex_location_expr_complaint ();
16656 }
16657 else
16658 {
16659 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16660 "partial symbol information");
16661 }
16662 break;
16663 case DW_AT_external:
16664 part_die->is_external = DW_UNSND (&attr);
16665 break;
16666 case DW_AT_declaration:
16667 part_die->is_declaration = DW_UNSND (&attr);
16668 break;
16669 case DW_AT_type:
16670 part_die->has_type = 1;
16671 break;
16672 case DW_AT_abstract_origin:
16673 case DW_AT_specification:
16674 case DW_AT_extension:
16675 part_die->has_specification = 1;
16676 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
16677 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16678 || cu->per_cu->is_dwz);
16679 break;
16680 case DW_AT_sibling:
16681 /* Ignore absolute siblings, they might point outside of
16682 the current compile unit. */
16683 if (attr.form == DW_FORM_ref_addr)
16684 complaint (&symfile_complaints,
16685 _("ignoring absolute DW_AT_sibling"));
16686 else
16687 {
16688 sect_offset off = dwarf2_get_ref_die_offset (&attr);
16689 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
16690
16691 if (sibling_ptr < info_ptr)
16692 complaint (&symfile_complaints,
16693 _("DW_AT_sibling points backwards"));
16694 else if (sibling_ptr > reader->buffer_end)
16695 dwarf2_section_buffer_overflow_complaint (reader->die_section);
16696 else
16697 part_die->sibling = sibling_ptr;
16698 }
16699 break;
16700 case DW_AT_byte_size:
16701 part_die->has_byte_size = 1;
16702 break;
16703 case DW_AT_const_value:
16704 part_die->has_const_value = 1;
16705 break;
16706 case DW_AT_calling_convention:
16707 /* DWARF doesn't provide a way to identify a program's source-level
16708 entry point. DW_AT_calling_convention attributes are only meant
16709 to describe functions' calling conventions.
16710
16711 However, because it's a necessary piece of information in
16712 Fortran, and before DWARF 4 DW_CC_program was the only
16713 piece of debugging information whose definition refers to
16714 a 'main program' at all, several compilers marked Fortran
16715 main programs with DW_CC_program --- even when those
16716 functions use the standard calling conventions.
16717
16718 Although DWARF now specifies a way to provide this
16719 information, we support this practice for backward
16720 compatibility. */
16721 if (DW_UNSND (&attr) == DW_CC_program
16722 && cu->language == language_fortran)
16723 part_die->main_subprogram = 1;
16724 break;
16725 case DW_AT_inline:
16726 if (DW_UNSND (&attr) == DW_INL_inlined
16727 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16728 part_die->may_be_inlined = 1;
16729 break;
16730
16731 case DW_AT_import:
16732 if (part_die->tag == DW_TAG_imported_unit)
16733 {
16734 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
16735 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16736 || cu->per_cu->is_dwz);
16737 }
16738 break;
16739
16740 case DW_AT_main_subprogram:
16741 part_die->main_subprogram = DW_UNSND (&attr);
16742 break;
16743
16744 default:
16745 break;
16746 }
16747 }
16748
16749 if (high_pc_relative)
16750 part_die->highpc += part_die->lowpc;
16751
16752 if (has_low_pc_attr && has_high_pc_attr)
16753 {
16754 /* When using the GNU linker, .gnu.linkonce. sections are used to
16755 eliminate duplicate copies of functions and vtables and such.
16756 The linker will arbitrarily choose one and discard the others.
16757 The AT_*_pc values for such functions refer to local labels in
16758 these sections. If the section from that file was discarded, the
16759 labels are not in the output, so the relocs get a value of 0.
16760 If this is a discarded function, mark the pc bounds as invalid,
16761 so that GDB will ignore it. */
16762 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16763 {
16764 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16765
16766 complaint (&symfile_complaints,
16767 _("DW_AT_low_pc %s is zero "
16768 "for DIE at 0x%x [in module %s]"),
16769 paddress (gdbarch, part_die->lowpc),
16770 to_underlying (part_die->sect_off), objfile_name (objfile));
16771 }
16772 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16773 else if (part_die->lowpc >= part_die->highpc)
16774 {
16775 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16776
16777 complaint (&symfile_complaints,
16778 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16779 "for DIE at 0x%x [in module %s]"),
16780 paddress (gdbarch, part_die->lowpc),
16781 paddress (gdbarch, part_die->highpc),
16782 to_underlying (part_die->sect_off),
16783 objfile_name (objfile));
16784 }
16785 else
16786 part_die->has_pc_info = 1;
16787 }
16788
16789 return info_ptr;
16790 }
16791
16792 /* Find a cached partial DIE at OFFSET in CU. */
16793
16794 static struct partial_die_info *
16795 find_partial_die_in_comp_unit (sect_offset sect_off, struct dwarf2_cu *cu)
16796 {
16797 struct partial_die_info *lookup_die = NULL;
16798 struct partial_die_info part_die;
16799
16800 part_die.sect_off = sect_off;
16801 lookup_die = ((struct partial_die_info *)
16802 htab_find_with_hash (cu->partial_dies, &part_die,
16803 to_underlying (sect_off)));
16804
16805 return lookup_die;
16806 }
16807
16808 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16809 except in the case of .debug_types DIEs which do not reference
16810 outside their CU (they do however referencing other types via
16811 DW_FORM_ref_sig8). */
16812
16813 static struct partial_die_info *
16814 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
16815 {
16816 struct objfile *objfile = cu->objfile;
16817 struct dwarf2_per_cu_data *per_cu = NULL;
16818 struct partial_die_info *pd = NULL;
16819
16820 if (offset_in_dwz == cu->per_cu->is_dwz
16821 && offset_in_cu_p (&cu->header, sect_off))
16822 {
16823 pd = find_partial_die_in_comp_unit (sect_off, cu);
16824 if (pd != NULL)
16825 return pd;
16826 /* We missed recording what we needed.
16827 Load all dies and try again. */
16828 per_cu = cu->per_cu;
16829 }
16830 else
16831 {
16832 /* TUs don't reference other CUs/TUs (except via type signatures). */
16833 if (cu->per_cu->is_debug_types)
16834 {
16835 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
16836 " external reference to offset 0x%x [in module %s].\n"),
16837 to_underlying (cu->header.sect_off), to_underlying (sect_off),
16838 bfd_get_filename (objfile->obfd));
16839 }
16840 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
16841 objfile);
16842
16843 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16844 load_partial_comp_unit (per_cu);
16845
16846 per_cu->cu->last_used = 0;
16847 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
16848 }
16849
16850 /* If we didn't find it, and not all dies have been loaded,
16851 load them all and try again. */
16852
16853 if (pd == NULL && per_cu->load_all_dies == 0)
16854 {
16855 per_cu->load_all_dies = 1;
16856
16857 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16858 THIS_CU->cu may already be in use. So we can't just free it and
16859 replace its DIEs with the ones we read in. Instead, we leave those
16860 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16861 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16862 set. */
16863 load_partial_comp_unit (per_cu);
16864
16865 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
16866 }
16867
16868 if (pd == NULL)
16869 internal_error (__FILE__, __LINE__,
16870 _("could not find partial DIE 0x%x "
16871 "in cache [from module %s]\n"),
16872 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
16873 return pd;
16874 }
16875
16876 /* See if we can figure out if the class lives in a namespace. We do
16877 this by looking for a member function; its demangled name will
16878 contain namespace info, if there is any. */
16879
16880 static void
16881 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16882 struct dwarf2_cu *cu)
16883 {
16884 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16885 what template types look like, because the demangler
16886 frequently doesn't give the same name as the debug info. We
16887 could fix this by only using the demangled name to get the
16888 prefix (but see comment in read_structure_type). */
16889
16890 struct partial_die_info *real_pdi;
16891 struct partial_die_info *child_pdi;
16892
16893 /* If this DIE (this DIE's specification, if any) has a parent, then
16894 we should not do this. We'll prepend the parent's fully qualified
16895 name when we create the partial symbol. */
16896
16897 real_pdi = struct_pdi;
16898 while (real_pdi->has_specification)
16899 real_pdi = find_partial_die (real_pdi->spec_offset,
16900 real_pdi->spec_is_dwz, cu);
16901
16902 if (real_pdi->die_parent != NULL)
16903 return;
16904
16905 for (child_pdi = struct_pdi->die_child;
16906 child_pdi != NULL;
16907 child_pdi = child_pdi->die_sibling)
16908 {
16909 if (child_pdi->tag == DW_TAG_subprogram
16910 && child_pdi->linkage_name != NULL)
16911 {
16912 char *actual_class_name
16913 = language_class_name_from_physname (cu->language_defn,
16914 child_pdi->linkage_name);
16915 if (actual_class_name != NULL)
16916 {
16917 struct_pdi->name
16918 = ((const char *)
16919 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16920 actual_class_name,
16921 strlen (actual_class_name)));
16922 xfree (actual_class_name);
16923 }
16924 break;
16925 }
16926 }
16927 }
16928
16929 /* Adjust PART_DIE before generating a symbol for it. This function
16930 may set the is_external flag or change the DIE's name. */
16931
16932 static void
16933 fixup_partial_die (struct partial_die_info *part_die,
16934 struct dwarf2_cu *cu)
16935 {
16936 /* Once we've fixed up a die, there's no point in doing so again.
16937 This also avoids a memory leak if we were to call
16938 guess_partial_die_structure_name multiple times. */
16939 if (part_die->fixup_called)
16940 return;
16941
16942 /* If we found a reference attribute and the DIE has no name, try
16943 to find a name in the referred to DIE. */
16944
16945 if (part_die->name == NULL && part_die->has_specification)
16946 {
16947 struct partial_die_info *spec_die;
16948
16949 spec_die = find_partial_die (part_die->spec_offset,
16950 part_die->spec_is_dwz, cu);
16951
16952 fixup_partial_die (spec_die, cu);
16953
16954 if (spec_die->name)
16955 {
16956 part_die->name = spec_die->name;
16957
16958 /* Copy DW_AT_external attribute if it is set. */
16959 if (spec_die->is_external)
16960 part_die->is_external = spec_die->is_external;
16961 }
16962 }
16963
16964 /* Set default names for some unnamed DIEs. */
16965
16966 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16967 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16968
16969 /* If there is no parent die to provide a namespace, and there are
16970 children, see if we can determine the namespace from their linkage
16971 name. */
16972 if (cu->language == language_cplus
16973 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16974 && part_die->die_parent == NULL
16975 && part_die->has_children
16976 && (part_die->tag == DW_TAG_class_type
16977 || part_die->tag == DW_TAG_structure_type
16978 || part_die->tag == DW_TAG_union_type))
16979 guess_partial_die_structure_name (part_die, cu);
16980
16981 /* GCC might emit a nameless struct or union that has a linkage
16982 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16983 if (part_die->name == NULL
16984 && (part_die->tag == DW_TAG_class_type
16985 || part_die->tag == DW_TAG_interface_type
16986 || part_die->tag == DW_TAG_structure_type
16987 || part_die->tag == DW_TAG_union_type)
16988 && part_die->linkage_name != NULL)
16989 {
16990 char *demangled;
16991
16992 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16993 if (demangled)
16994 {
16995 const char *base;
16996
16997 /* Strip any leading namespaces/classes, keep only the base name.
16998 DW_AT_name for named DIEs does not contain the prefixes. */
16999 base = strrchr (demangled, ':');
17000 if (base && base > demangled && base[-1] == ':')
17001 base++;
17002 else
17003 base = demangled;
17004
17005 part_die->name
17006 = ((const char *)
17007 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
17008 base, strlen (base)));
17009 xfree (demangled);
17010 }
17011 }
17012
17013 part_die->fixup_called = 1;
17014 }
17015
17016 /* Read an attribute value described by an attribute form. */
17017
17018 static const gdb_byte *
17019 read_attribute_value (const struct die_reader_specs *reader,
17020 struct attribute *attr, unsigned form,
17021 LONGEST implicit_const, const gdb_byte *info_ptr)
17022 {
17023 struct dwarf2_cu *cu = reader->cu;
17024 struct objfile *objfile = cu->objfile;
17025 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17026 bfd *abfd = reader->abfd;
17027 struct comp_unit_head *cu_header = &cu->header;
17028 unsigned int bytes_read;
17029 struct dwarf_block *blk;
17030
17031 attr->form = (enum dwarf_form) form;
17032 switch (form)
17033 {
17034 case DW_FORM_ref_addr:
17035 if (cu->header.version == 2)
17036 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
17037 else
17038 DW_UNSND (attr) = read_offset (abfd, info_ptr,
17039 &cu->header, &bytes_read);
17040 info_ptr += bytes_read;
17041 break;
17042 case DW_FORM_GNU_ref_alt:
17043 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
17044 info_ptr += bytes_read;
17045 break;
17046 case DW_FORM_addr:
17047 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
17048 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
17049 info_ptr += bytes_read;
17050 break;
17051 case DW_FORM_block2:
17052 blk = dwarf_alloc_block (cu);
17053 blk->size = read_2_bytes (abfd, info_ptr);
17054 info_ptr += 2;
17055 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
17056 info_ptr += blk->size;
17057 DW_BLOCK (attr) = blk;
17058 break;
17059 case DW_FORM_block4:
17060 blk = dwarf_alloc_block (cu);
17061 blk->size = read_4_bytes (abfd, info_ptr);
17062 info_ptr += 4;
17063 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
17064 info_ptr += blk->size;
17065 DW_BLOCK (attr) = blk;
17066 break;
17067 case DW_FORM_data2:
17068 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
17069 info_ptr += 2;
17070 break;
17071 case DW_FORM_data4:
17072 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
17073 info_ptr += 4;
17074 break;
17075 case DW_FORM_data8:
17076 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
17077 info_ptr += 8;
17078 break;
17079 case DW_FORM_data16:
17080 blk = dwarf_alloc_block (cu);
17081 blk->size = 16;
17082 blk->data = read_n_bytes (abfd, info_ptr, 16);
17083 info_ptr += 16;
17084 DW_BLOCK (attr) = blk;
17085 break;
17086 case DW_FORM_sec_offset:
17087 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
17088 info_ptr += bytes_read;
17089 break;
17090 case DW_FORM_string:
17091 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
17092 DW_STRING_IS_CANONICAL (attr) = 0;
17093 info_ptr += bytes_read;
17094 break;
17095 case DW_FORM_strp:
17096 if (!cu->per_cu->is_dwz)
17097 {
17098 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
17099 &bytes_read);
17100 DW_STRING_IS_CANONICAL (attr) = 0;
17101 info_ptr += bytes_read;
17102 break;
17103 }
17104 /* FALLTHROUGH */
17105 case DW_FORM_line_strp:
17106 if (!cu->per_cu->is_dwz)
17107 {
17108 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
17109 cu_header, &bytes_read);
17110 DW_STRING_IS_CANONICAL (attr) = 0;
17111 info_ptr += bytes_read;
17112 break;
17113 }
17114 /* FALLTHROUGH */
17115 case DW_FORM_GNU_strp_alt:
17116 {
17117 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17118 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
17119 &bytes_read);
17120
17121 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
17122 DW_STRING_IS_CANONICAL (attr) = 0;
17123 info_ptr += bytes_read;
17124 }
17125 break;
17126 case DW_FORM_exprloc:
17127 case DW_FORM_block:
17128 blk = dwarf_alloc_block (cu);
17129 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17130 info_ptr += bytes_read;
17131 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
17132 info_ptr += blk->size;
17133 DW_BLOCK (attr) = blk;
17134 break;
17135 case DW_FORM_block1:
17136 blk = dwarf_alloc_block (cu);
17137 blk->size = read_1_byte (abfd, info_ptr);
17138 info_ptr += 1;
17139 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
17140 info_ptr += blk->size;
17141 DW_BLOCK (attr) = blk;
17142 break;
17143 case DW_FORM_data1:
17144 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
17145 info_ptr += 1;
17146 break;
17147 case DW_FORM_flag:
17148 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
17149 info_ptr += 1;
17150 break;
17151 case DW_FORM_flag_present:
17152 DW_UNSND (attr) = 1;
17153 break;
17154 case DW_FORM_sdata:
17155 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
17156 info_ptr += bytes_read;
17157 break;
17158 case DW_FORM_udata:
17159 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17160 info_ptr += bytes_read;
17161 break;
17162 case DW_FORM_ref1:
17163 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17164 + read_1_byte (abfd, info_ptr));
17165 info_ptr += 1;
17166 break;
17167 case DW_FORM_ref2:
17168 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17169 + read_2_bytes (abfd, info_ptr));
17170 info_ptr += 2;
17171 break;
17172 case DW_FORM_ref4:
17173 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17174 + read_4_bytes (abfd, info_ptr));
17175 info_ptr += 4;
17176 break;
17177 case DW_FORM_ref8:
17178 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17179 + read_8_bytes (abfd, info_ptr));
17180 info_ptr += 8;
17181 break;
17182 case DW_FORM_ref_sig8:
17183 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
17184 info_ptr += 8;
17185 break;
17186 case DW_FORM_ref_udata:
17187 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17188 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
17189 info_ptr += bytes_read;
17190 break;
17191 case DW_FORM_indirect:
17192 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17193 info_ptr += bytes_read;
17194 if (form == DW_FORM_implicit_const)
17195 {
17196 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
17197 info_ptr += bytes_read;
17198 }
17199 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
17200 info_ptr);
17201 break;
17202 case DW_FORM_implicit_const:
17203 DW_SND (attr) = implicit_const;
17204 break;
17205 case DW_FORM_GNU_addr_index:
17206 if (reader->dwo_file == NULL)
17207 {
17208 /* For now flag a hard error.
17209 Later we can turn this into a complaint. */
17210 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
17211 dwarf_form_name (form),
17212 bfd_get_filename (abfd));
17213 }
17214 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
17215 info_ptr += bytes_read;
17216 break;
17217 case DW_FORM_GNU_str_index:
17218 if (reader->dwo_file == NULL)
17219 {
17220 /* For now flag a hard error.
17221 Later we can turn this into a complaint if warranted. */
17222 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
17223 dwarf_form_name (form),
17224 bfd_get_filename (abfd));
17225 }
17226 {
17227 ULONGEST str_index =
17228 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17229
17230 DW_STRING (attr) = read_str_index (reader, str_index);
17231 DW_STRING_IS_CANONICAL (attr) = 0;
17232 info_ptr += bytes_read;
17233 }
17234 break;
17235 default:
17236 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
17237 dwarf_form_name (form),
17238 bfd_get_filename (abfd));
17239 }
17240
17241 /* Super hack. */
17242 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
17243 attr->form = DW_FORM_GNU_ref_alt;
17244
17245 /* We have seen instances where the compiler tried to emit a byte
17246 size attribute of -1 which ended up being encoded as an unsigned
17247 0xffffffff. Although 0xffffffff is technically a valid size value,
17248 an object of this size seems pretty unlikely so we can relatively
17249 safely treat these cases as if the size attribute was invalid and
17250 treat them as zero by default. */
17251 if (attr->name == DW_AT_byte_size
17252 && form == DW_FORM_data4
17253 && DW_UNSND (attr) >= 0xffffffff)
17254 {
17255 complaint
17256 (&symfile_complaints,
17257 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
17258 hex_string (DW_UNSND (attr)));
17259 DW_UNSND (attr) = 0;
17260 }
17261
17262 return info_ptr;
17263 }
17264
17265 /* Read an attribute described by an abbreviated attribute. */
17266
17267 static const gdb_byte *
17268 read_attribute (const struct die_reader_specs *reader,
17269 struct attribute *attr, struct attr_abbrev *abbrev,
17270 const gdb_byte *info_ptr)
17271 {
17272 attr->name = abbrev->name;
17273 return read_attribute_value (reader, attr, abbrev->form,
17274 abbrev->implicit_const, info_ptr);
17275 }
17276
17277 /* Read dwarf information from a buffer. */
17278
17279 static unsigned int
17280 read_1_byte (bfd *abfd, const gdb_byte *buf)
17281 {
17282 return bfd_get_8 (abfd, buf);
17283 }
17284
17285 static int
17286 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
17287 {
17288 return bfd_get_signed_8 (abfd, buf);
17289 }
17290
17291 static unsigned int
17292 read_2_bytes (bfd *abfd, const gdb_byte *buf)
17293 {
17294 return bfd_get_16 (abfd, buf);
17295 }
17296
17297 static int
17298 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
17299 {
17300 return bfd_get_signed_16 (abfd, buf);
17301 }
17302
17303 static unsigned int
17304 read_4_bytes (bfd *abfd, const gdb_byte *buf)
17305 {
17306 return bfd_get_32 (abfd, buf);
17307 }
17308
17309 static int
17310 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
17311 {
17312 return bfd_get_signed_32 (abfd, buf);
17313 }
17314
17315 static ULONGEST
17316 read_8_bytes (bfd *abfd, const gdb_byte *buf)
17317 {
17318 return bfd_get_64 (abfd, buf);
17319 }
17320
17321 static CORE_ADDR
17322 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
17323 unsigned int *bytes_read)
17324 {
17325 struct comp_unit_head *cu_header = &cu->header;
17326 CORE_ADDR retval = 0;
17327
17328 if (cu_header->signed_addr_p)
17329 {
17330 switch (cu_header->addr_size)
17331 {
17332 case 2:
17333 retval = bfd_get_signed_16 (abfd, buf);
17334 break;
17335 case 4:
17336 retval = bfd_get_signed_32 (abfd, buf);
17337 break;
17338 case 8:
17339 retval = bfd_get_signed_64 (abfd, buf);
17340 break;
17341 default:
17342 internal_error (__FILE__, __LINE__,
17343 _("read_address: bad switch, signed [in module %s]"),
17344 bfd_get_filename (abfd));
17345 }
17346 }
17347 else
17348 {
17349 switch (cu_header->addr_size)
17350 {
17351 case 2:
17352 retval = bfd_get_16 (abfd, buf);
17353 break;
17354 case 4:
17355 retval = bfd_get_32 (abfd, buf);
17356 break;
17357 case 8:
17358 retval = bfd_get_64 (abfd, buf);
17359 break;
17360 default:
17361 internal_error (__FILE__, __LINE__,
17362 _("read_address: bad switch, "
17363 "unsigned [in module %s]"),
17364 bfd_get_filename (abfd));
17365 }
17366 }
17367
17368 *bytes_read = cu_header->addr_size;
17369 return retval;
17370 }
17371
17372 /* Read the initial length from a section. The (draft) DWARF 3
17373 specification allows the initial length to take up either 4 bytes
17374 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
17375 bytes describe the length and all offsets will be 8 bytes in length
17376 instead of 4.
17377
17378 An older, non-standard 64-bit format is also handled by this
17379 function. The older format in question stores the initial length
17380 as an 8-byte quantity without an escape value. Lengths greater
17381 than 2^32 aren't very common which means that the initial 4 bytes
17382 is almost always zero. Since a length value of zero doesn't make
17383 sense for the 32-bit format, this initial zero can be considered to
17384 be an escape value which indicates the presence of the older 64-bit
17385 format. As written, the code can't detect (old format) lengths
17386 greater than 4GB. If it becomes necessary to handle lengths
17387 somewhat larger than 4GB, we could allow other small values (such
17388 as the non-sensical values of 1, 2, and 3) to also be used as
17389 escape values indicating the presence of the old format.
17390
17391 The value returned via bytes_read should be used to increment the
17392 relevant pointer after calling read_initial_length().
17393
17394 [ Note: read_initial_length() and read_offset() are based on the
17395 document entitled "DWARF Debugging Information Format", revision
17396 3, draft 8, dated November 19, 2001. This document was obtained
17397 from:
17398
17399 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
17400
17401 This document is only a draft and is subject to change. (So beware.)
17402
17403 Details regarding the older, non-standard 64-bit format were
17404 determined empirically by examining 64-bit ELF files produced by
17405 the SGI toolchain on an IRIX 6.5 machine.
17406
17407 - Kevin, July 16, 2002
17408 ] */
17409
17410 static LONGEST
17411 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
17412 {
17413 LONGEST length = bfd_get_32 (abfd, buf);
17414
17415 if (length == 0xffffffff)
17416 {
17417 length = bfd_get_64 (abfd, buf + 4);
17418 *bytes_read = 12;
17419 }
17420 else if (length == 0)
17421 {
17422 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
17423 length = bfd_get_64 (abfd, buf);
17424 *bytes_read = 8;
17425 }
17426 else
17427 {
17428 *bytes_read = 4;
17429 }
17430
17431 return length;
17432 }
17433
17434 /* Cover function for read_initial_length.
17435 Returns the length of the object at BUF, and stores the size of the
17436 initial length in *BYTES_READ and stores the size that offsets will be in
17437 *OFFSET_SIZE.
17438 If the initial length size is not equivalent to that specified in
17439 CU_HEADER then issue a complaint.
17440 This is useful when reading non-comp-unit headers. */
17441
17442 static LONGEST
17443 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
17444 const struct comp_unit_head *cu_header,
17445 unsigned int *bytes_read,
17446 unsigned int *offset_size)
17447 {
17448 LONGEST length = read_initial_length (abfd, buf, bytes_read);
17449
17450 gdb_assert (cu_header->initial_length_size == 4
17451 || cu_header->initial_length_size == 8
17452 || cu_header->initial_length_size == 12);
17453
17454 if (cu_header->initial_length_size != *bytes_read)
17455 complaint (&symfile_complaints,
17456 _("intermixed 32-bit and 64-bit DWARF sections"));
17457
17458 *offset_size = (*bytes_read == 4) ? 4 : 8;
17459 return length;
17460 }
17461
17462 /* Read an offset from the data stream. The size of the offset is
17463 given by cu_header->offset_size. */
17464
17465 static LONGEST
17466 read_offset (bfd *abfd, const gdb_byte *buf,
17467 const struct comp_unit_head *cu_header,
17468 unsigned int *bytes_read)
17469 {
17470 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
17471
17472 *bytes_read = cu_header->offset_size;
17473 return offset;
17474 }
17475
17476 /* Read an offset from the data stream. */
17477
17478 static LONGEST
17479 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
17480 {
17481 LONGEST retval = 0;
17482
17483 switch (offset_size)
17484 {
17485 case 4:
17486 retval = bfd_get_32 (abfd, buf);
17487 break;
17488 case 8:
17489 retval = bfd_get_64 (abfd, buf);
17490 break;
17491 default:
17492 internal_error (__FILE__, __LINE__,
17493 _("read_offset_1: bad switch [in module %s]"),
17494 bfd_get_filename (abfd));
17495 }
17496
17497 return retval;
17498 }
17499
17500 static const gdb_byte *
17501 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
17502 {
17503 /* If the size of a host char is 8 bits, we can return a pointer
17504 to the buffer, otherwise we have to copy the data to a buffer
17505 allocated on the temporary obstack. */
17506 gdb_assert (HOST_CHAR_BIT == 8);
17507 return buf;
17508 }
17509
17510 static const char *
17511 read_direct_string (bfd *abfd, const gdb_byte *buf,
17512 unsigned int *bytes_read_ptr)
17513 {
17514 /* If the size of a host char is 8 bits, we can return a pointer
17515 to the string, otherwise we have to copy the string to a buffer
17516 allocated on the temporary obstack. */
17517 gdb_assert (HOST_CHAR_BIT == 8);
17518 if (*buf == '\0')
17519 {
17520 *bytes_read_ptr = 1;
17521 return NULL;
17522 }
17523 *bytes_read_ptr = strlen ((const char *) buf) + 1;
17524 return (const char *) buf;
17525 }
17526
17527 /* Return pointer to string at section SECT offset STR_OFFSET with error
17528 reporting strings FORM_NAME and SECT_NAME. */
17529
17530 static const char *
17531 read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
17532 struct dwarf2_section_info *sect,
17533 const char *form_name,
17534 const char *sect_name)
17535 {
17536 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
17537 if (sect->buffer == NULL)
17538 error (_("%s used without %s section [in module %s]"),
17539 form_name, sect_name, bfd_get_filename (abfd));
17540 if (str_offset >= sect->size)
17541 error (_("%s pointing outside of %s section [in module %s]"),
17542 form_name, sect_name, bfd_get_filename (abfd));
17543 gdb_assert (HOST_CHAR_BIT == 8);
17544 if (sect->buffer[str_offset] == '\0')
17545 return NULL;
17546 return (const char *) (sect->buffer + str_offset);
17547 }
17548
17549 /* Return pointer to string at .debug_str offset STR_OFFSET. */
17550
17551 static const char *
17552 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
17553 {
17554 return read_indirect_string_at_offset_from (abfd, str_offset,
17555 &dwarf2_per_objfile->str,
17556 "DW_FORM_strp", ".debug_str");
17557 }
17558
17559 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17560
17561 static const char *
17562 read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17563 {
17564 return read_indirect_string_at_offset_from (abfd, str_offset,
17565 &dwarf2_per_objfile->line_str,
17566 "DW_FORM_line_strp",
17567 ".debug_line_str");
17568 }
17569
17570 /* Read a string at offset STR_OFFSET in the .debug_str section from
17571 the .dwz file DWZ. Throw an error if the offset is too large. If
17572 the string consists of a single NUL byte, return NULL; otherwise
17573 return a pointer to the string. */
17574
17575 static const char *
17576 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17577 {
17578 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17579
17580 if (dwz->str.buffer == NULL)
17581 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17582 "section [in module %s]"),
17583 bfd_get_filename (dwz->dwz_bfd));
17584 if (str_offset >= dwz->str.size)
17585 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17586 ".debug_str section [in module %s]"),
17587 bfd_get_filename (dwz->dwz_bfd));
17588 gdb_assert (HOST_CHAR_BIT == 8);
17589 if (dwz->str.buffer[str_offset] == '\0')
17590 return NULL;
17591 return (const char *) (dwz->str.buffer + str_offset);
17592 }
17593
17594 /* Return pointer to string at .debug_str offset as read from BUF.
17595 BUF is assumed to be in a compilation unit described by CU_HEADER.
17596 Return *BYTES_READ_PTR count of bytes read from BUF. */
17597
17598 static const char *
17599 read_indirect_string (bfd *abfd, const gdb_byte *buf,
17600 const struct comp_unit_head *cu_header,
17601 unsigned int *bytes_read_ptr)
17602 {
17603 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17604
17605 return read_indirect_string_at_offset (abfd, str_offset);
17606 }
17607
17608 /* Return pointer to string at .debug_line_str offset as read from BUF.
17609 BUF is assumed to be in a compilation unit described by CU_HEADER.
17610 Return *BYTES_READ_PTR count of bytes read from BUF. */
17611
17612 static const char *
17613 read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17614 const struct comp_unit_head *cu_header,
17615 unsigned int *bytes_read_ptr)
17616 {
17617 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17618
17619 return read_indirect_line_string_at_offset (abfd, str_offset);
17620 }
17621
17622 ULONGEST
17623 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
17624 unsigned int *bytes_read_ptr)
17625 {
17626 ULONGEST result;
17627 unsigned int num_read;
17628 int shift;
17629 unsigned char byte;
17630
17631 result = 0;
17632 shift = 0;
17633 num_read = 0;
17634 while (1)
17635 {
17636 byte = bfd_get_8 (abfd, buf);
17637 buf++;
17638 num_read++;
17639 result |= ((ULONGEST) (byte & 127) << shift);
17640 if ((byte & 128) == 0)
17641 {
17642 break;
17643 }
17644 shift += 7;
17645 }
17646 *bytes_read_ptr = num_read;
17647 return result;
17648 }
17649
17650 static LONGEST
17651 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17652 unsigned int *bytes_read_ptr)
17653 {
17654 LONGEST result;
17655 int shift, num_read;
17656 unsigned char byte;
17657
17658 result = 0;
17659 shift = 0;
17660 num_read = 0;
17661 while (1)
17662 {
17663 byte = bfd_get_8 (abfd, buf);
17664 buf++;
17665 num_read++;
17666 result |= ((LONGEST) (byte & 127) << shift);
17667 shift += 7;
17668 if ((byte & 128) == 0)
17669 {
17670 break;
17671 }
17672 }
17673 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
17674 result |= -(((LONGEST) 1) << shift);
17675 *bytes_read_ptr = num_read;
17676 return result;
17677 }
17678
17679 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
17680 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
17681 ADDR_SIZE is the size of addresses from the CU header. */
17682
17683 static CORE_ADDR
17684 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
17685 {
17686 struct objfile *objfile = dwarf2_per_objfile->objfile;
17687 bfd *abfd = objfile->obfd;
17688 const gdb_byte *info_ptr;
17689
17690 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
17691 if (dwarf2_per_objfile->addr.buffer == NULL)
17692 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
17693 objfile_name (objfile));
17694 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
17695 error (_("DW_FORM_addr_index pointing outside of "
17696 ".debug_addr section [in module %s]"),
17697 objfile_name (objfile));
17698 info_ptr = (dwarf2_per_objfile->addr.buffer
17699 + addr_base + addr_index * addr_size);
17700 if (addr_size == 4)
17701 return bfd_get_32 (abfd, info_ptr);
17702 else
17703 return bfd_get_64 (abfd, info_ptr);
17704 }
17705
17706 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
17707
17708 static CORE_ADDR
17709 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
17710 {
17711 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
17712 }
17713
17714 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
17715
17716 static CORE_ADDR
17717 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
17718 unsigned int *bytes_read)
17719 {
17720 bfd *abfd = cu->objfile->obfd;
17721 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
17722
17723 return read_addr_index (cu, addr_index);
17724 }
17725
17726 /* Data structure to pass results from dwarf2_read_addr_index_reader
17727 back to dwarf2_read_addr_index. */
17728
17729 struct dwarf2_read_addr_index_data
17730 {
17731 ULONGEST addr_base;
17732 int addr_size;
17733 };
17734
17735 /* die_reader_func for dwarf2_read_addr_index. */
17736
17737 static void
17738 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
17739 const gdb_byte *info_ptr,
17740 struct die_info *comp_unit_die,
17741 int has_children,
17742 void *data)
17743 {
17744 struct dwarf2_cu *cu = reader->cu;
17745 struct dwarf2_read_addr_index_data *aidata =
17746 (struct dwarf2_read_addr_index_data *) data;
17747
17748 aidata->addr_base = cu->addr_base;
17749 aidata->addr_size = cu->header.addr_size;
17750 }
17751
17752 /* Given an index in .debug_addr, fetch the value.
17753 NOTE: This can be called during dwarf expression evaluation,
17754 long after the debug information has been read, and thus per_cu->cu
17755 may no longer exist. */
17756
17757 CORE_ADDR
17758 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
17759 unsigned int addr_index)
17760 {
17761 struct objfile *objfile = per_cu->objfile;
17762 struct dwarf2_cu *cu = per_cu->cu;
17763 ULONGEST addr_base;
17764 int addr_size;
17765
17766 /* This is intended to be called from outside this file. */
17767 dw2_setup (objfile);
17768
17769 /* We need addr_base and addr_size.
17770 If we don't have PER_CU->cu, we have to get it.
17771 Nasty, but the alternative is storing the needed info in PER_CU,
17772 which at this point doesn't seem justified: it's not clear how frequently
17773 it would get used and it would increase the size of every PER_CU.
17774 Entry points like dwarf2_per_cu_addr_size do a similar thing
17775 so we're not in uncharted territory here.
17776 Alas we need to be a bit more complicated as addr_base is contained
17777 in the DIE.
17778
17779 We don't need to read the entire CU(/TU).
17780 We just need the header and top level die.
17781
17782 IWBN to use the aging mechanism to let us lazily later discard the CU.
17783 For now we skip this optimization. */
17784
17785 if (cu != NULL)
17786 {
17787 addr_base = cu->addr_base;
17788 addr_size = cu->header.addr_size;
17789 }
17790 else
17791 {
17792 struct dwarf2_read_addr_index_data aidata;
17793
17794 /* Note: We can't use init_cutu_and_read_dies_simple here,
17795 we need addr_base. */
17796 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
17797 dwarf2_read_addr_index_reader, &aidata);
17798 addr_base = aidata.addr_base;
17799 addr_size = aidata.addr_size;
17800 }
17801
17802 return read_addr_index_1 (addr_index, addr_base, addr_size);
17803 }
17804
17805 /* Given a DW_FORM_GNU_str_index, fetch the string.
17806 This is only used by the Fission support. */
17807
17808 static const char *
17809 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
17810 {
17811 struct objfile *objfile = dwarf2_per_objfile->objfile;
17812 const char *objf_name = objfile_name (objfile);
17813 bfd *abfd = objfile->obfd;
17814 struct dwarf2_cu *cu = reader->cu;
17815 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17816 struct dwarf2_section_info *str_offsets_section =
17817 &reader->dwo_file->sections.str_offsets;
17818 const gdb_byte *info_ptr;
17819 ULONGEST str_offset;
17820 static const char form_name[] = "DW_FORM_GNU_str_index";
17821
17822 dwarf2_read_section (objfile, str_section);
17823 dwarf2_read_section (objfile, str_offsets_section);
17824 if (str_section->buffer == NULL)
17825 error (_("%s used without .debug_str.dwo section"
17826 " in CU at offset 0x%x [in module %s]"),
17827 form_name, to_underlying (cu->header.sect_off), objf_name);
17828 if (str_offsets_section->buffer == NULL)
17829 error (_("%s used without .debug_str_offsets.dwo section"
17830 " in CU at offset 0x%x [in module %s]"),
17831 form_name, to_underlying (cu->header.sect_off), objf_name);
17832 if (str_index * cu->header.offset_size >= str_offsets_section->size)
17833 error (_("%s pointing outside of .debug_str_offsets.dwo"
17834 " section in CU at offset 0x%x [in module %s]"),
17835 form_name, to_underlying (cu->header.sect_off), objf_name);
17836 info_ptr = (str_offsets_section->buffer
17837 + str_index * cu->header.offset_size);
17838 if (cu->header.offset_size == 4)
17839 str_offset = bfd_get_32 (abfd, info_ptr);
17840 else
17841 str_offset = bfd_get_64 (abfd, info_ptr);
17842 if (str_offset >= str_section->size)
17843 error (_("Offset from %s pointing outside of"
17844 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
17845 form_name, to_underlying (cu->header.sect_off), objf_name);
17846 return (const char *) (str_section->buffer + str_offset);
17847 }
17848
17849 /* Return the length of an LEB128 number in BUF. */
17850
17851 static int
17852 leb128_size (const gdb_byte *buf)
17853 {
17854 const gdb_byte *begin = buf;
17855 gdb_byte byte;
17856
17857 while (1)
17858 {
17859 byte = *buf++;
17860 if ((byte & 128) == 0)
17861 return buf - begin;
17862 }
17863 }
17864
17865 static void
17866 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17867 {
17868 switch (lang)
17869 {
17870 case DW_LANG_C89:
17871 case DW_LANG_C99:
17872 case DW_LANG_C11:
17873 case DW_LANG_C:
17874 case DW_LANG_UPC:
17875 cu->language = language_c;
17876 break;
17877 case DW_LANG_Java:
17878 case DW_LANG_C_plus_plus:
17879 case DW_LANG_C_plus_plus_11:
17880 case DW_LANG_C_plus_plus_14:
17881 cu->language = language_cplus;
17882 break;
17883 case DW_LANG_D:
17884 cu->language = language_d;
17885 break;
17886 case DW_LANG_Fortran77:
17887 case DW_LANG_Fortran90:
17888 case DW_LANG_Fortran95:
17889 case DW_LANG_Fortran03:
17890 case DW_LANG_Fortran08:
17891 cu->language = language_fortran;
17892 break;
17893 case DW_LANG_Go:
17894 cu->language = language_go;
17895 break;
17896 case DW_LANG_Mips_Assembler:
17897 cu->language = language_asm;
17898 break;
17899 case DW_LANG_Ada83:
17900 case DW_LANG_Ada95:
17901 cu->language = language_ada;
17902 break;
17903 case DW_LANG_Modula2:
17904 cu->language = language_m2;
17905 break;
17906 case DW_LANG_Pascal83:
17907 cu->language = language_pascal;
17908 break;
17909 case DW_LANG_ObjC:
17910 cu->language = language_objc;
17911 break;
17912 case DW_LANG_Rust:
17913 case DW_LANG_Rust_old:
17914 cu->language = language_rust;
17915 break;
17916 case DW_LANG_Cobol74:
17917 case DW_LANG_Cobol85:
17918 default:
17919 cu->language = language_minimal;
17920 break;
17921 }
17922 cu->language_defn = language_def (cu->language);
17923 }
17924
17925 /* Return the named attribute or NULL if not there. */
17926
17927 static struct attribute *
17928 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17929 {
17930 for (;;)
17931 {
17932 unsigned int i;
17933 struct attribute *spec = NULL;
17934
17935 for (i = 0; i < die->num_attrs; ++i)
17936 {
17937 if (die->attrs[i].name == name)
17938 return &die->attrs[i];
17939 if (die->attrs[i].name == DW_AT_specification
17940 || die->attrs[i].name == DW_AT_abstract_origin)
17941 spec = &die->attrs[i];
17942 }
17943
17944 if (!spec)
17945 break;
17946
17947 die = follow_die_ref (die, spec, &cu);
17948 }
17949
17950 return NULL;
17951 }
17952
17953 /* Return the named attribute or NULL if not there,
17954 but do not follow DW_AT_specification, etc.
17955 This is for use in contexts where we're reading .debug_types dies.
17956 Following DW_AT_specification, DW_AT_abstract_origin will take us
17957 back up the chain, and we want to go down. */
17958
17959 static struct attribute *
17960 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17961 {
17962 unsigned int i;
17963
17964 for (i = 0; i < die->num_attrs; ++i)
17965 if (die->attrs[i].name == name)
17966 return &die->attrs[i];
17967
17968 return NULL;
17969 }
17970
17971 /* Return the string associated with a string-typed attribute, or NULL if it
17972 is either not found or is of an incorrect type. */
17973
17974 static const char *
17975 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17976 {
17977 struct attribute *attr;
17978 const char *str = NULL;
17979
17980 attr = dwarf2_attr (die, name, cu);
17981
17982 if (attr != NULL)
17983 {
17984 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
17985 || attr->form == DW_FORM_string
17986 || attr->form == DW_FORM_GNU_str_index
17987 || attr->form == DW_FORM_GNU_strp_alt)
17988 str = DW_STRING (attr);
17989 else
17990 complaint (&symfile_complaints,
17991 _("string type expected for attribute %s for "
17992 "DIE at 0x%x in module %s"),
17993 dwarf_attr_name (name), to_underlying (die->sect_off),
17994 objfile_name (cu->objfile));
17995 }
17996
17997 return str;
17998 }
17999
18000 /* Return non-zero iff the attribute NAME is defined for the given DIE,
18001 and holds a non-zero value. This function should only be used for
18002 DW_FORM_flag or DW_FORM_flag_present attributes. */
18003
18004 static int
18005 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
18006 {
18007 struct attribute *attr = dwarf2_attr (die, name, cu);
18008
18009 return (attr && DW_UNSND (attr));
18010 }
18011
18012 static int
18013 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
18014 {
18015 /* A DIE is a declaration if it has a DW_AT_declaration attribute
18016 which value is non-zero. However, we have to be careful with
18017 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
18018 (via dwarf2_flag_true_p) follows this attribute. So we may
18019 end up accidently finding a declaration attribute that belongs
18020 to a different DIE referenced by the specification attribute,
18021 even though the given DIE does not have a declaration attribute. */
18022 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
18023 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
18024 }
18025
18026 /* Return the die giving the specification for DIE, if there is
18027 one. *SPEC_CU is the CU containing DIE on input, and the CU
18028 containing the return value on output. If there is no
18029 specification, but there is an abstract origin, that is
18030 returned. */
18031
18032 static struct die_info *
18033 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
18034 {
18035 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
18036 *spec_cu);
18037
18038 if (spec_attr == NULL)
18039 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
18040
18041 if (spec_attr == NULL)
18042 return NULL;
18043 else
18044 return follow_die_ref (die, spec_attr, spec_cu);
18045 }
18046
18047 /* Stub for free_line_header to match void * callback types. */
18048
18049 static void
18050 free_line_header_voidp (void *arg)
18051 {
18052 struct line_header *lh = (struct line_header *) arg;
18053
18054 delete lh;
18055 }
18056
18057 void
18058 line_header::add_include_dir (const char *include_dir)
18059 {
18060 if (dwarf_line_debug >= 2)
18061 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
18062 include_dirs.size () + 1, include_dir);
18063
18064 include_dirs.push_back (include_dir);
18065 }
18066
18067 void
18068 line_header::add_file_name (const char *name,
18069 dir_index d_index,
18070 unsigned int mod_time,
18071 unsigned int length)
18072 {
18073 if (dwarf_line_debug >= 2)
18074 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
18075 (unsigned) file_names.size () + 1, name);
18076
18077 file_names.emplace_back (name, d_index, mod_time, length);
18078 }
18079
18080 /* A convenience function to find the proper .debug_line section for a CU. */
18081
18082 static struct dwarf2_section_info *
18083 get_debug_line_section (struct dwarf2_cu *cu)
18084 {
18085 struct dwarf2_section_info *section;
18086
18087 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
18088 DWO file. */
18089 if (cu->dwo_unit && cu->per_cu->is_debug_types)
18090 section = &cu->dwo_unit->dwo_file->sections.line;
18091 else if (cu->per_cu->is_dwz)
18092 {
18093 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18094
18095 section = &dwz->line;
18096 }
18097 else
18098 section = &dwarf2_per_objfile->line;
18099
18100 return section;
18101 }
18102
18103 /* Read directory or file name entry format, starting with byte of
18104 format count entries, ULEB128 pairs of entry formats, ULEB128 of
18105 entries count and the entries themselves in the described entry
18106 format. */
18107
18108 static void
18109 read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
18110 struct line_header *lh,
18111 const struct comp_unit_head *cu_header,
18112 void (*callback) (struct line_header *lh,
18113 const char *name,
18114 dir_index d_index,
18115 unsigned int mod_time,
18116 unsigned int length))
18117 {
18118 gdb_byte format_count, formati;
18119 ULONGEST data_count, datai;
18120 const gdb_byte *buf = *bufp;
18121 const gdb_byte *format_header_data;
18122 int i;
18123 unsigned int bytes_read;
18124
18125 format_count = read_1_byte (abfd, buf);
18126 buf += 1;
18127 format_header_data = buf;
18128 for (formati = 0; formati < format_count; formati++)
18129 {
18130 read_unsigned_leb128 (abfd, buf, &bytes_read);
18131 buf += bytes_read;
18132 read_unsigned_leb128 (abfd, buf, &bytes_read);
18133 buf += bytes_read;
18134 }
18135
18136 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
18137 buf += bytes_read;
18138 for (datai = 0; datai < data_count; datai++)
18139 {
18140 const gdb_byte *format = format_header_data;
18141 struct file_entry fe;
18142
18143 for (formati = 0; formati < format_count; formati++)
18144 {
18145 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
18146 format += bytes_read;
18147
18148 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
18149 format += bytes_read;
18150
18151 gdb::optional<const char *> string;
18152 gdb::optional<unsigned int> uint;
18153
18154 switch (form)
18155 {
18156 case DW_FORM_string:
18157 string.emplace (read_direct_string (abfd, buf, &bytes_read));
18158 buf += bytes_read;
18159 break;
18160
18161 case DW_FORM_line_strp:
18162 string.emplace (read_indirect_line_string (abfd, buf,
18163 cu_header,
18164 &bytes_read));
18165 buf += bytes_read;
18166 break;
18167
18168 case DW_FORM_data1:
18169 uint.emplace (read_1_byte (abfd, buf));
18170 buf += 1;
18171 break;
18172
18173 case DW_FORM_data2:
18174 uint.emplace (read_2_bytes (abfd, buf));
18175 buf += 2;
18176 break;
18177
18178 case DW_FORM_data4:
18179 uint.emplace (read_4_bytes (abfd, buf));
18180 buf += 4;
18181 break;
18182
18183 case DW_FORM_data8:
18184 uint.emplace (read_8_bytes (abfd, buf));
18185 buf += 8;
18186 break;
18187
18188 case DW_FORM_udata:
18189 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
18190 buf += bytes_read;
18191 break;
18192
18193 case DW_FORM_block:
18194 /* It is valid only for DW_LNCT_timestamp which is ignored by
18195 current GDB. */
18196 break;
18197 }
18198
18199 switch (content_type)
18200 {
18201 case DW_LNCT_path:
18202 if (string.has_value ())
18203 fe.name = *string;
18204 break;
18205 case DW_LNCT_directory_index:
18206 if (uint.has_value ())
18207 fe.d_index = (dir_index) *uint;
18208 break;
18209 case DW_LNCT_timestamp:
18210 if (uint.has_value ())
18211 fe.mod_time = *uint;
18212 break;
18213 case DW_LNCT_size:
18214 if (uint.has_value ())
18215 fe.length = *uint;
18216 break;
18217 case DW_LNCT_MD5:
18218 break;
18219 default:
18220 complaint (&symfile_complaints,
18221 _("Unknown format content type %s"),
18222 pulongest (content_type));
18223 }
18224 }
18225
18226 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
18227 }
18228
18229 *bufp = buf;
18230 }
18231
18232 /* Read the statement program header starting at OFFSET in
18233 .debug_line, or .debug_line.dwo. Return a pointer
18234 to a struct line_header, allocated using xmalloc.
18235 Returns NULL if there is a problem reading the header, e.g., if it
18236 has a version we don't understand.
18237
18238 NOTE: the strings in the include directory and file name tables of
18239 the returned object point into the dwarf line section buffer,
18240 and must not be freed. */
18241
18242 static line_header_up
18243 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
18244 {
18245 const gdb_byte *line_ptr;
18246 unsigned int bytes_read, offset_size;
18247 int i;
18248 const char *cur_dir, *cur_file;
18249 struct dwarf2_section_info *section;
18250 bfd *abfd;
18251
18252 section = get_debug_line_section (cu);
18253 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
18254 if (section->buffer == NULL)
18255 {
18256 if (cu->dwo_unit && cu->per_cu->is_debug_types)
18257 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
18258 else
18259 complaint (&symfile_complaints, _("missing .debug_line section"));
18260 return 0;
18261 }
18262
18263 /* We can't do this until we know the section is non-empty.
18264 Only then do we know we have such a section. */
18265 abfd = get_section_bfd_owner (section);
18266
18267 /* Make sure that at least there's room for the total_length field.
18268 That could be 12 bytes long, but we're just going to fudge that. */
18269 if (to_underlying (sect_off) + 4 >= section->size)
18270 {
18271 dwarf2_statement_list_fits_in_line_number_section_complaint ();
18272 return 0;
18273 }
18274
18275 line_header_up lh (new line_header ());
18276
18277 lh->sect_off = sect_off;
18278 lh->offset_in_dwz = cu->per_cu->is_dwz;
18279
18280 line_ptr = section->buffer + to_underlying (sect_off);
18281
18282 /* Read in the header. */
18283 lh->total_length =
18284 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
18285 &bytes_read, &offset_size);
18286 line_ptr += bytes_read;
18287 if (line_ptr + lh->total_length > (section->buffer + section->size))
18288 {
18289 dwarf2_statement_list_fits_in_line_number_section_complaint ();
18290 return 0;
18291 }
18292 lh->statement_program_end = line_ptr + lh->total_length;
18293 lh->version = read_2_bytes (abfd, line_ptr);
18294 line_ptr += 2;
18295 if (lh->version > 5)
18296 {
18297 /* This is a version we don't understand. The format could have
18298 changed in ways we don't handle properly so just punt. */
18299 complaint (&symfile_complaints,
18300 _("unsupported version in .debug_line section"));
18301 return NULL;
18302 }
18303 if (lh->version >= 5)
18304 {
18305 gdb_byte segment_selector_size;
18306
18307 /* Skip address size. */
18308 read_1_byte (abfd, line_ptr);
18309 line_ptr += 1;
18310
18311 segment_selector_size = read_1_byte (abfd, line_ptr);
18312 line_ptr += 1;
18313 if (segment_selector_size != 0)
18314 {
18315 complaint (&symfile_complaints,
18316 _("unsupported segment selector size %u "
18317 "in .debug_line section"),
18318 segment_selector_size);
18319 return NULL;
18320 }
18321 }
18322 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
18323 line_ptr += offset_size;
18324 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
18325 line_ptr += 1;
18326 if (lh->version >= 4)
18327 {
18328 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
18329 line_ptr += 1;
18330 }
18331 else
18332 lh->maximum_ops_per_instruction = 1;
18333
18334 if (lh->maximum_ops_per_instruction == 0)
18335 {
18336 lh->maximum_ops_per_instruction = 1;
18337 complaint (&symfile_complaints,
18338 _("invalid maximum_ops_per_instruction "
18339 "in `.debug_line' section"));
18340 }
18341
18342 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
18343 line_ptr += 1;
18344 lh->line_base = read_1_signed_byte (abfd, line_ptr);
18345 line_ptr += 1;
18346 lh->line_range = read_1_byte (abfd, line_ptr);
18347 line_ptr += 1;
18348 lh->opcode_base = read_1_byte (abfd, line_ptr);
18349 line_ptr += 1;
18350 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
18351
18352 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
18353 for (i = 1; i < lh->opcode_base; ++i)
18354 {
18355 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
18356 line_ptr += 1;
18357 }
18358
18359 if (lh->version >= 5)
18360 {
18361 /* Read directory table. */
18362 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18363 [] (struct line_header *lh, const char *name,
18364 dir_index d_index, unsigned int mod_time,
18365 unsigned int length)
18366 {
18367 lh->add_include_dir (name);
18368 });
18369
18370 /* Read file name table. */
18371 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18372 [] (struct line_header *lh, const char *name,
18373 dir_index d_index, unsigned int mod_time,
18374 unsigned int length)
18375 {
18376 lh->add_file_name (name, d_index, mod_time, length);
18377 });
18378 }
18379 else
18380 {
18381 /* Read directory table. */
18382 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18383 {
18384 line_ptr += bytes_read;
18385 lh->add_include_dir (cur_dir);
18386 }
18387 line_ptr += bytes_read;
18388
18389 /* Read file name table. */
18390 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18391 {
18392 unsigned int mod_time, length;
18393 dir_index d_index;
18394
18395 line_ptr += bytes_read;
18396 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18397 line_ptr += bytes_read;
18398 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18399 line_ptr += bytes_read;
18400 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18401 line_ptr += bytes_read;
18402
18403 lh->add_file_name (cur_file, d_index, mod_time, length);
18404 }
18405 line_ptr += bytes_read;
18406 }
18407 lh->statement_program_start = line_ptr;
18408
18409 if (line_ptr > (section->buffer + section->size))
18410 complaint (&symfile_complaints,
18411 _("line number info header doesn't "
18412 "fit in `.debug_line' section"));
18413
18414 return lh;
18415 }
18416
18417 /* Subroutine of dwarf_decode_lines to simplify it.
18418 Return the file name of the psymtab for included file FILE_INDEX
18419 in line header LH of PST.
18420 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18421 If space for the result is malloc'd, it will be freed by a cleanup.
18422 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
18423
18424 The function creates dangling cleanup registration. */
18425
18426 static const char *
18427 psymtab_include_file_name (const struct line_header *lh, int file_index,
18428 const struct partial_symtab *pst,
18429 const char *comp_dir)
18430 {
18431 const file_entry &fe = lh->file_names[file_index];
18432 const char *include_name = fe.name;
18433 const char *include_name_to_compare = include_name;
18434 const char *pst_filename;
18435 char *copied_name = NULL;
18436 int file_is_pst;
18437
18438 const char *dir_name = fe.include_dir (lh);
18439
18440 if (!IS_ABSOLUTE_PATH (include_name)
18441 && (dir_name != NULL || comp_dir != NULL))
18442 {
18443 /* Avoid creating a duplicate psymtab for PST.
18444 We do this by comparing INCLUDE_NAME and PST_FILENAME.
18445 Before we do the comparison, however, we need to account
18446 for DIR_NAME and COMP_DIR.
18447 First prepend dir_name (if non-NULL). If we still don't
18448 have an absolute path prepend comp_dir (if non-NULL).
18449 However, the directory we record in the include-file's
18450 psymtab does not contain COMP_DIR (to match the
18451 corresponding symtab(s)).
18452
18453 Example:
18454
18455 bash$ cd /tmp
18456 bash$ gcc -g ./hello.c
18457 include_name = "hello.c"
18458 dir_name = "."
18459 DW_AT_comp_dir = comp_dir = "/tmp"
18460 DW_AT_name = "./hello.c"
18461
18462 */
18463
18464 if (dir_name != NULL)
18465 {
18466 char *tem = concat (dir_name, SLASH_STRING,
18467 include_name, (char *)NULL);
18468
18469 make_cleanup (xfree, tem);
18470 include_name = tem;
18471 include_name_to_compare = include_name;
18472 }
18473 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
18474 {
18475 char *tem = concat (comp_dir, SLASH_STRING,
18476 include_name, (char *)NULL);
18477
18478 make_cleanup (xfree, tem);
18479 include_name_to_compare = tem;
18480 }
18481 }
18482
18483 pst_filename = pst->filename;
18484 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
18485 {
18486 copied_name = concat (pst->dirname, SLASH_STRING,
18487 pst_filename, (char *)NULL);
18488 pst_filename = copied_name;
18489 }
18490
18491 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
18492
18493 if (copied_name != NULL)
18494 xfree (copied_name);
18495
18496 if (file_is_pst)
18497 return NULL;
18498 return include_name;
18499 }
18500
18501 /* State machine to track the state of the line number program. */
18502
18503 class lnp_state_machine
18504 {
18505 public:
18506 /* Initialize a machine state for the start of a line number
18507 program. */
18508 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
18509
18510 file_entry *current_file ()
18511 {
18512 /* lh->file_names is 0-based, but the file name numbers in the
18513 statement program are 1-based. */
18514 return m_line_header->file_name_at (m_file);
18515 }
18516
18517 /* Record the line in the state machine. END_SEQUENCE is true if
18518 we're processing the end of a sequence. */
18519 void record_line (bool end_sequence);
18520
18521 /* Check address and if invalid nop-out the rest of the lines in this
18522 sequence. */
18523 void check_line_address (struct dwarf2_cu *cu,
18524 const gdb_byte *line_ptr,
18525 CORE_ADDR lowpc, CORE_ADDR address);
18526
18527 void handle_set_discriminator (unsigned int discriminator)
18528 {
18529 m_discriminator = discriminator;
18530 m_line_has_non_zero_discriminator |= discriminator != 0;
18531 }
18532
18533 /* Handle DW_LNE_set_address. */
18534 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
18535 {
18536 m_op_index = 0;
18537 address += baseaddr;
18538 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
18539 }
18540
18541 /* Handle DW_LNS_advance_pc. */
18542 void handle_advance_pc (CORE_ADDR adjust);
18543
18544 /* Handle a special opcode. */
18545 void handle_special_opcode (unsigned char op_code);
18546
18547 /* Handle DW_LNS_advance_line. */
18548 void handle_advance_line (int line_delta)
18549 {
18550 advance_line (line_delta);
18551 }
18552
18553 /* Handle DW_LNS_set_file. */
18554 void handle_set_file (file_name_index file);
18555
18556 /* Handle DW_LNS_negate_stmt. */
18557 void handle_negate_stmt ()
18558 {
18559 m_is_stmt = !m_is_stmt;
18560 }
18561
18562 /* Handle DW_LNS_const_add_pc. */
18563 void handle_const_add_pc ();
18564
18565 /* Handle DW_LNS_fixed_advance_pc. */
18566 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
18567 {
18568 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18569 m_op_index = 0;
18570 }
18571
18572 /* Handle DW_LNS_copy. */
18573 void handle_copy ()
18574 {
18575 record_line (false);
18576 m_discriminator = 0;
18577 }
18578
18579 /* Handle DW_LNE_end_sequence. */
18580 void handle_end_sequence ()
18581 {
18582 m_record_line_callback = ::record_line;
18583 }
18584
18585 private:
18586 /* Advance the line by LINE_DELTA. */
18587 void advance_line (int line_delta)
18588 {
18589 m_line += line_delta;
18590
18591 if (line_delta != 0)
18592 m_line_has_non_zero_discriminator = m_discriminator != 0;
18593 }
18594
18595 gdbarch *m_gdbarch;
18596
18597 /* True if we're recording lines.
18598 Otherwise we're building partial symtabs and are just interested in
18599 finding include files mentioned by the line number program. */
18600 bool m_record_lines_p;
18601
18602 /* The line number header. */
18603 line_header *m_line_header;
18604
18605 /* These are part of the standard DWARF line number state machine,
18606 and initialized according to the DWARF spec. */
18607
18608 unsigned char m_op_index = 0;
18609 /* The line table index (1-based) of the current file. */
18610 file_name_index m_file = (file_name_index) 1;
18611 unsigned int m_line = 1;
18612
18613 /* These are initialized in the constructor. */
18614
18615 CORE_ADDR m_address;
18616 bool m_is_stmt;
18617 unsigned int m_discriminator;
18618
18619 /* Additional bits of state we need to track. */
18620
18621 /* The last file that we called dwarf2_start_subfile for.
18622 This is only used for TLLs. */
18623 unsigned int m_last_file = 0;
18624 /* The last file a line number was recorded for. */
18625 struct subfile *m_last_subfile = NULL;
18626
18627 /* The function to call to record a line. */
18628 record_line_ftype *m_record_line_callback = NULL;
18629
18630 /* The last line number that was recorded, used to coalesce
18631 consecutive entries for the same line. This can happen, for
18632 example, when discriminators are present. PR 17276. */
18633 unsigned int m_last_line = 0;
18634 bool m_line_has_non_zero_discriminator = false;
18635 };
18636
18637 void
18638 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
18639 {
18640 CORE_ADDR addr_adj = (((m_op_index + adjust)
18641 / m_line_header->maximum_ops_per_instruction)
18642 * m_line_header->minimum_instruction_length);
18643 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18644 m_op_index = ((m_op_index + adjust)
18645 % m_line_header->maximum_ops_per_instruction);
18646 }
18647
18648 void
18649 lnp_state_machine::handle_special_opcode (unsigned char op_code)
18650 {
18651 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
18652 CORE_ADDR addr_adj = (((m_op_index
18653 + (adj_opcode / m_line_header->line_range))
18654 / m_line_header->maximum_ops_per_instruction)
18655 * m_line_header->minimum_instruction_length);
18656 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18657 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
18658 % m_line_header->maximum_ops_per_instruction);
18659
18660 int line_delta = (m_line_header->line_base
18661 + (adj_opcode % m_line_header->line_range));
18662 advance_line (line_delta);
18663 record_line (false);
18664 m_discriminator = 0;
18665 }
18666
18667 void
18668 lnp_state_machine::handle_set_file (file_name_index file)
18669 {
18670 m_file = file;
18671
18672 const file_entry *fe = current_file ();
18673 if (fe == NULL)
18674 dwarf2_debug_line_missing_file_complaint ();
18675 else if (m_record_lines_p)
18676 {
18677 const char *dir = fe->include_dir (m_line_header);
18678
18679 m_last_subfile = current_subfile;
18680 m_line_has_non_zero_discriminator = m_discriminator != 0;
18681 dwarf2_start_subfile (fe->name, dir);
18682 }
18683 }
18684
18685 void
18686 lnp_state_machine::handle_const_add_pc ()
18687 {
18688 CORE_ADDR adjust
18689 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
18690
18691 CORE_ADDR addr_adj
18692 = (((m_op_index + adjust)
18693 / m_line_header->maximum_ops_per_instruction)
18694 * m_line_header->minimum_instruction_length);
18695
18696 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18697 m_op_index = ((m_op_index + adjust)
18698 % m_line_header->maximum_ops_per_instruction);
18699 }
18700
18701 /* Ignore this record_line request. */
18702
18703 static void
18704 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
18705 {
18706 return;
18707 }
18708
18709 /* Return non-zero if we should add LINE to the line number table.
18710 LINE is the line to add, LAST_LINE is the last line that was added,
18711 LAST_SUBFILE is the subfile for LAST_LINE.
18712 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
18713 had a non-zero discriminator.
18714
18715 We have to be careful in the presence of discriminators.
18716 E.g., for this line:
18717
18718 for (i = 0; i < 100000; i++);
18719
18720 clang can emit four line number entries for that one line,
18721 each with a different discriminator.
18722 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
18723
18724 However, we want gdb to coalesce all four entries into one.
18725 Otherwise the user could stepi into the middle of the line and
18726 gdb would get confused about whether the pc really was in the
18727 middle of the line.
18728
18729 Things are further complicated by the fact that two consecutive
18730 line number entries for the same line is a heuristic used by gcc
18731 to denote the end of the prologue. So we can't just discard duplicate
18732 entries, we have to be selective about it. The heuristic we use is
18733 that we only collapse consecutive entries for the same line if at least
18734 one of those entries has a non-zero discriminator. PR 17276.
18735
18736 Note: Addresses in the line number state machine can never go backwards
18737 within one sequence, thus this coalescing is ok. */
18738
18739 static int
18740 dwarf_record_line_p (unsigned int line, unsigned int last_line,
18741 int line_has_non_zero_discriminator,
18742 struct subfile *last_subfile)
18743 {
18744 if (current_subfile != last_subfile)
18745 return 1;
18746 if (line != last_line)
18747 return 1;
18748 /* Same line for the same file that we've seen already.
18749 As a last check, for pr 17276, only record the line if the line
18750 has never had a non-zero discriminator. */
18751 if (!line_has_non_zero_discriminator)
18752 return 1;
18753 return 0;
18754 }
18755
18756 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
18757 in the line table of subfile SUBFILE. */
18758
18759 static void
18760 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
18761 unsigned int line, CORE_ADDR address,
18762 record_line_ftype p_record_line)
18763 {
18764 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
18765
18766 if (dwarf_line_debug)
18767 {
18768 fprintf_unfiltered (gdb_stdlog,
18769 "Recording line %u, file %s, address %s\n",
18770 line, lbasename (subfile->name),
18771 paddress (gdbarch, address));
18772 }
18773
18774 (*p_record_line) (subfile, line, addr);
18775 }
18776
18777 /* Subroutine of dwarf_decode_lines_1 to simplify it.
18778 Mark the end of a set of line number records.
18779 The arguments are the same as for dwarf_record_line_1.
18780 If SUBFILE is NULL the request is ignored. */
18781
18782 static void
18783 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
18784 CORE_ADDR address, record_line_ftype p_record_line)
18785 {
18786 if (subfile == NULL)
18787 return;
18788
18789 if (dwarf_line_debug)
18790 {
18791 fprintf_unfiltered (gdb_stdlog,
18792 "Finishing current line, file %s, address %s\n",
18793 lbasename (subfile->name),
18794 paddress (gdbarch, address));
18795 }
18796
18797 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
18798 }
18799
18800 void
18801 lnp_state_machine::record_line (bool end_sequence)
18802 {
18803 if (dwarf_line_debug)
18804 {
18805 fprintf_unfiltered (gdb_stdlog,
18806 "Processing actual line %u: file %u,"
18807 " address %s, is_stmt %u, discrim %u\n",
18808 m_line, to_underlying (m_file),
18809 paddress (m_gdbarch, m_address),
18810 m_is_stmt, m_discriminator);
18811 }
18812
18813 file_entry *fe = current_file ();
18814
18815 if (fe == NULL)
18816 dwarf2_debug_line_missing_file_complaint ();
18817 /* For now we ignore lines not starting on an instruction boundary.
18818 But not when processing end_sequence for compatibility with the
18819 previous version of the code. */
18820 else if (m_op_index == 0 || end_sequence)
18821 {
18822 fe->included_p = 1;
18823 if (m_record_lines_p && m_is_stmt)
18824 {
18825 if (m_last_subfile != current_subfile || end_sequence)
18826 {
18827 dwarf_finish_line (m_gdbarch, m_last_subfile,
18828 m_address, m_record_line_callback);
18829 }
18830
18831 if (!end_sequence)
18832 {
18833 if (dwarf_record_line_p (m_line, m_last_line,
18834 m_line_has_non_zero_discriminator,
18835 m_last_subfile))
18836 {
18837 dwarf_record_line_1 (m_gdbarch, current_subfile,
18838 m_line, m_address,
18839 m_record_line_callback);
18840 }
18841 m_last_subfile = current_subfile;
18842 m_last_line = m_line;
18843 }
18844 }
18845 }
18846 }
18847
18848 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
18849 bool record_lines_p)
18850 {
18851 m_gdbarch = arch;
18852 m_record_lines_p = record_lines_p;
18853 m_line_header = lh;
18854
18855 m_record_line_callback = ::record_line;
18856
18857 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
18858 was a line entry for it so that the backend has a chance to adjust it
18859 and also record it in case it needs it. This is currently used by MIPS
18860 code, cf. `mips_adjust_dwarf2_line'. */
18861 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
18862 m_is_stmt = lh->default_is_stmt;
18863 m_discriminator = 0;
18864 }
18865
18866 void
18867 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
18868 const gdb_byte *line_ptr,
18869 CORE_ADDR lowpc, CORE_ADDR address)
18870 {
18871 /* If address < lowpc then it's not a usable value, it's outside the
18872 pc range of the CU. However, we restrict the test to only address
18873 values of zero to preserve GDB's previous behaviour which is to
18874 handle the specific case of a function being GC'd by the linker. */
18875
18876 if (address == 0 && address < lowpc)
18877 {
18878 /* This line table is for a function which has been
18879 GCd by the linker. Ignore it. PR gdb/12528 */
18880
18881 struct objfile *objfile = cu->objfile;
18882 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
18883
18884 complaint (&symfile_complaints,
18885 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
18886 line_offset, objfile_name (objfile));
18887 m_record_line_callback = noop_record_line;
18888 /* Note: record_line_callback is left as noop_record_line until
18889 we see DW_LNE_end_sequence. */
18890 }
18891 }
18892
18893 /* Subroutine of dwarf_decode_lines to simplify it.
18894 Process the line number information in LH.
18895 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
18896 program in order to set included_p for every referenced header. */
18897
18898 static void
18899 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
18900 const int decode_for_pst_p, CORE_ADDR lowpc)
18901 {
18902 const gdb_byte *line_ptr, *extended_end;
18903 const gdb_byte *line_end;
18904 unsigned int bytes_read, extended_len;
18905 unsigned char op_code, extended_op;
18906 CORE_ADDR baseaddr;
18907 struct objfile *objfile = cu->objfile;
18908 bfd *abfd = objfile->obfd;
18909 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18910 /* True if we're recording line info (as opposed to building partial
18911 symtabs and just interested in finding include files mentioned by
18912 the line number program). */
18913 bool record_lines_p = !decode_for_pst_p;
18914
18915 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18916
18917 line_ptr = lh->statement_program_start;
18918 line_end = lh->statement_program_end;
18919
18920 /* Read the statement sequences until there's nothing left. */
18921 while (line_ptr < line_end)
18922 {
18923 /* The DWARF line number program state machine. Reset the state
18924 machine at the start of each sequence. */
18925 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
18926 bool end_sequence = false;
18927
18928 if (record_lines_p)
18929 {
18930 /* Start a subfile for the current file of the state
18931 machine. */
18932 const file_entry *fe = state_machine.current_file ();
18933
18934 if (fe != NULL)
18935 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
18936 }
18937
18938 /* Decode the table. */
18939 while (line_ptr < line_end && !end_sequence)
18940 {
18941 op_code = read_1_byte (abfd, line_ptr);
18942 line_ptr += 1;
18943
18944 if (op_code >= lh->opcode_base)
18945 {
18946 /* Special opcode. */
18947 state_machine.handle_special_opcode (op_code);
18948 }
18949 else switch (op_code)
18950 {
18951 case DW_LNS_extended_op:
18952 extended_len = read_unsigned_leb128 (abfd, line_ptr,
18953 &bytes_read);
18954 line_ptr += bytes_read;
18955 extended_end = line_ptr + extended_len;
18956 extended_op = read_1_byte (abfd, line_ptr);
18957 line_ptr += 1;
18958 switch (extended_op)
18959 {
18960 case DW_LNE_end_sequence:
18961 state_machine.handle_end_sequence ();
18962 end_sequence = true;
18963 break;
18964 case DW_LNE_set_address:
18965 {
18966 CORE_ADDR address
18967 = read_address (abfd, line_ptr, cu, &bytes_read);
18968 line_ptr += bytes_read;
18969
18970 state_machine.check_line_address (cu, line_ptr,
18971 lowpc, address);
18972 state_machine.handle_set_address (baseaddr, address);
18973 }
18974 break;
18975 case DW_LNE_define_file:
18976 {
18977 const char *cur_file;
18978 unsigned int mod_time, length;
18979 dir_index dindex;
18980
18981 cur_file = read_direct_string (abfd, line_ptr,
18982 &bytes_read);
18983 line_ptr += bytes_read;
18984 dindex = (dir_index)
18985 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18986 line_ptr += bytes_read;
18987 mod_time =
18988 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18989 line_ptr += bytes_read;
18990 length =
18991 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18992 line_ptr += bytes_read;
18993 lh->add_file_name (cur_file, dindex, mod_time, length);
18994 }
18995 break;
18996 case DW_LNE_set_discriminator:
18997 {
18998 /* The discriminator is not interesting to the
18999 debugger; just ignore it. We still need to
19000 check its value though:
19001 if there are consecutive entries for the same
19002 (non-prologue) line we want to coalesce them.
19003 PR 17276. */
19004 unsigned int discr
19005 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19006 line_ptr += bytes_read;
19007
19008 state_machine.handle_set_discriminator (discr);
19009 }
19010 break;
19011 default:
19012 complaint (&symfile_complaints,
19013 _("mangled .debug_line section"));
19014 return;
19015 }
19016 /* Make sure that we parsed the extended op correctly. If e.g.
19017 we expected a different address size than the producer used,
19018 we may have read the wrong number of bytes. */
19019 if (line_ptr != extended_end)
19020 {
19021 complaint (&symfile_complaints,
19022 _("mangled .debug_line section"));
19023 return;
19024 }
19025 break;
19026 case DW_LNS_copy:
19027 state_machine.handle_copy ();
19028 break;
19029 case DW_LNS_advance_pc:
19030 {
19031 CORE_ADDR adjust
19032 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19033 line_ptr += bytes_read;
19034
19035 state_machine.handle_advance_pc (adjust);
19036 }
19037 break;
19038 case DW_LNS_advance_line:
19039 {
19040 int line_delta
19041 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
19042 line_ptr += bytes_read;
19043
19044 state_machine.handle_advance_line (line_delta);
19045 }
19046 break;
19047 case DW_LNS_set_file:
19048 {
19049 file_name_index file
19050 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
19051 &bytes_read);
19052 line_ptr += bytes_read;
19053
19054 state_machine.handle_set_file (file);
19055 }
19056 break;
19057 case DW_LNS_set_column:
19058 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19059 line_ptr += bytes_read;
19060 break;
19061 case DW_LNS_negate_stmt:
19062 state_machine.handle_negate_stmt ();
19063 break;
19064 case DW_LNS_set_basic_block:
19065 break;
19066 /* Add to the address register of the state machine the
19067 address increment value corresponding to special opcode
19068 255. I.e., this value is scaled by the minimum
19069 instruction length since special opcode 255 would have
19070 scaled the increment. */
19071 case DW_LNS_const_add_pc:
19072 state_machine.handle_const_add_pc ();
19073 break;
19074 case DW_LNS_fixed_advance_pc:
19075 {
19076 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
19077 line_ptr += 2;
19078
19079 state_machine.handle_fixed_advance_pc (addr_adj);
19080 }
19081 break;
19082 default:
19083 {
19084 /* Unknown standard opcode, ignore it. */
19085 int i;
19086
19087 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
19088 {
19089 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19090 line_ptr += bytes_read;
19091 }
19092 }
19093 }
19094 }
19095
19096 if (!end_sequence)
19097 dwarf2_debug_line_missing_end_sequence_complaint ();
19098
19099 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
19100 in which case we still finish recording the last line). */
19101 state_machine.record_line (true);
19102 }
19103 }
19104
19105 /* Decode the Line Number Program (LNP) for the given line_header
19106 structure and CU. The actual information extracted and the type
19107 of structures created from the LNP depends on the value of PST.
19108
19109 1. If PST is NULL, then this procedure uses the data from the program
19110 to create all necessary symbol tables, and their linetables.
19111
19112 2. If PST is not NULL, this procedure reads the program to determine
19113 the list of files included by the unit represented by PST, and
19114 builds all the associated partial symbol tables.
19115
19116 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
19117 It is used for relative paths in the line table.
19118 NOTE: When processing partial symtabs (pst != NULL),
19119 comp_dir == pst->dirname.
19120
19121 NOTE: It is important that psymtabs have the same file name (via strcmp)
19122 as the corresponding symtab. Since COMP_DIR is not used in the name of the
19123 symtab we don't use it in the name of the psymtabs we create.
19124 E.g. expand_line_sal requires this when finding psymtabs to expand.
19125 A good testcase for this is mb-inline.exp.
19126
19127 LOWPC is the lowest address in CU (or 0 if not known).
19128
19129 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
19130 for its PC<->lines mapping information. Otherwise only the filename
19131 table is read in. */
19132
19133 static void
19134 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
19135 struct dwarf2_cu *cu, struct partial_symtab *pst,
19136 CORE_ADDR lowpc, int decode_mapping)
19137 {
19138 struct objfile *objfile = cu->objfile;
19139 const int decode_for_pst_p = (pst != NULL);
19140
19141 if (decode_mapping)
19142 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
19143
19144 if (decode_for_pst_p)
19145 {
19146 int file_index;
19147
19148 /* Now that we're done scanning the Line Header Program, we can
19149 create the psymtab of each included file. */
19150 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
19151 if (lh->file_names[file_index].included_p == 1)
19152 {
19153 const char *include_name =
19154 psymtab_include_file_name (lh, file_index, pst, comp_dir);
19155 if (include_name != NULL)
19156 dwarf2_create_include_psymtab (include_name, pst, objfile);
19157 }
19158 }
19159 else
19160 {
19161 /* Make sure a symtab is created for every file, even files
19162 which contain only variables (i.e. no code with associated
19163 line numbers). */
19164 struct compunit_symtab *cust = buildsym_compunit_symtab ();
19165 int i;
19166
19167 for (i = 0; i < lh->file_names.size (); i++)
19168 {
19169 file_entry &fe = lh->file_names[i];
19170
19171 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
19172
19173 if (current_subfile->symtab == NULL)
19174 {
19175 current_subfile->symtab
19176 = allocate_symtab (cust, current_subfile->name);
19177 }
19178 fe.symtab = current_subfile->symtab;
19179 }
19180 }
19181 }
19182
19183 /* Start a subfile for DWARF. FILENAME is the name of the file and
19184 DIRNAME the name of the source directory which contains FILENAME
19185 or NULL if not known.
19186 This routine tries to keep line numbers from identical absolute and
19187 relative file names in a common subfile.
19188
19189 Using the `list' example from the GDB testsuite, which resides in
19190 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
19191 of /srcdir/list0.c yields the following debugging information for list0.c:
19192
19193 DW_AT_name: /srcdir/list0.c
19194 DW_AT_comp_dir: /compdir
19195 files.files[0].name: list0.h
19196 files.files[0].dir: /srcdir
19197 files.files[1].name: list0.c
19198 files.files[1].dir: /srcdir
19199
19200 The line number information for list0.c has to end up in a single
19201 subfile, so that `break /srcdir/list0.c:1' works as expected.
19202 start_subfile will ensure that this happens provided that we pass the
19203 concatenation of files.files[1].dir and files.files[1].name as the
19204 subfile's name. */
19205
19206 static void
19207 dwarf2_start_subfile (const char *filename, const char *dirname)
19208 {
19209 char *copy = NULL;
19210
19211 /* In order not to lose the line information directory,
19212 we concatenate it to the filename when it makes sense.
19213 Note that the Dwarf3 standard says (speaking of filenames in line
19214 information): ``The directory index is ignored for file names
19215 that represent full path names''. Thus ignoring dirname in the
19216 `else' branch below isn't an issue. */
19217
19218 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
19219 {
19220 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
19221 filename = copy;
19222 }
19223
19224 start_subfile (filename);
19225
19226 if (copy != NULL)
19227 xfree (copy);
19228 }
19229
19230 /* Start a symtab for DWARF.
19231 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
19232
19233 static struct compunit_symtab *
19234 dwarf2_start_symtab (struct dwarf2_cu *cu,
19235 const char *name, const char *comp_dir, CORE_ADDR low_pc)
19236 {
19237 struct compunit_symtab *cust
19238 = start_symtab (cu->objfile, name, comp_dir, low_pc, cu->language);
19239
19240 record_debugformat ("DWARF 2");
19241 record_producer (cu->producer);
19242
19243 /* We assume that we're processing GCC output. */
19244 processing_gcc_compilation = 2;
19245
19246 cu->processing_has_namespace_info = 0;
19247
19248 return cust;
19249 }
19250
19251 static void
19252 var_decode_location (struct attribute *attr, struct symbol *sym,
19253 struct dwarf2_cu *cu)
19254 {
19255 struct objfile *objfile = cu->objfile;
19256 struct comp_unit_head *cu_header = &cu->header;
19257
19258 /* NOTE drow/2003-01-30: There used to be a comment and some special
19259 code here to turn a symbol with DW_AT_external and a
19260 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
19261 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
19262 with some versions of binutils) where shared libraries could have
19263 relocations against symbols in their debug information - the
19264 minimal symbol would have the right address, but the debug info
19265 would not. It's no longer necessary, because we will explicitly
19266 apply relocations when we read in the debug information now. */
19267
19268 /* A DW_AT_location attribute with no contents indicates that a
19269 variable has been optimized away. */
19270 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
19271 {
19272 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
19273 return;
19274 }
19275
19276 /* Handle one degenerate form of location expression specially, to
19277 preserve GDB's previous behavior when section offsets are
19278 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
19279 then mark this symbol as LOC_STATIC. */
19280
19281 if (attr_form_is_block (attr)
19282 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
19283 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
19284 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
19285 && (DW_BLOCK (attr)->size
19286 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
19287 {
19288 unsigned int dummy;
19289
19290 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
19291 SYMBOL_VALUE_ADDRESS (sym) =
19292 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
19293 else
19294 SYMBOL_VALUE_ADDRESS (sym) =
19295 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
19296 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
19297 fixup_symbol_section (sym, objfile);
19298 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
19299 SYMBOL_SECTION (sym));
19300 return;
19301 }
19302
19303 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
19304 expression evaluator, and use LOC_COMPUTED only when necessary
19305 (i.e. when the value of a register or memory location is
19306 referenced, or a thread-local block, etc.). Then again, it might
19307 not be worthwhile. I'm assuming that it isn't unless performance
19308 or memory numbers show me otherwise. */
19309
19310 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
19311
19312 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
19313 cu->has_loclist = 1;
19314 }
19315
19316 /* Given a pointer to a DWARF information entry, figure out if we need
19317 to make a symbol table entry for it, and if so, create a new entry
19318 and return a pointer to it.
19319 If TYPE is NULL, determine symbol type from the die, otherwise
19320 used the passed type.
19321 If SPACE is not NULL, use it to hold the new symbol. If it is
19322 NULL, allocate a new symbol on the objfile's obstack. */
19323
19324 static struct symbol *
19325 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
19326 struct symbol *space)
19327 {
19328 struct objfile *objfile = cu->objfile;
19329 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19330 struct symbol *sym = NULL;
19331 const char *name;
19332 struct attribute *attr = NULL;
19333 struct attribute *attr2 = NULL;
19334 CORE_ADDR baseaddr;
19335 struct pending **list_to_add = NULL;
19336
19337 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
19338
19339 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19340
19341 name = dwarf2_name (die, cu);
19342 if (name)
19343 {
19344 const char *linkagename;
19345 int suppress_add = 0;
19346
19347 if (space)
19348 sym = space;
19349 else
19350 sym = allocate_symbol (objfile);
19351 OBJSTAT (objfile, n_syms++);
19352
19353 /* Cache this symbol's name and the name's demangled form (if any). */
19354 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
19355 linkagename = dwarf2_physname (name, die, cu);
19356 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
19357
19358 /* Fortran does not have mangling standard and the mangling does differ
19359 between gfortran, iFort etc. */
19360 if (cu->language == language_fortran
19361 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
19362 symbol_set_demangled_name (&(sym->ginfo),
19363 dwarf2_full_name (name, die, cu),
19364 NULL);
19365
19366 /* Default assumptions.
19367 Use the passed type or decode it from the die. */
19368 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19369 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
19370 if (type != NULL)
19371 SYMBOL_TYPE (sym) = type;
19372 else
19373 SYMBOL_TYPE (sym) = die_type (die, cu);
19374 attr = dwarf2_attr (die,
19375 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
19376 cu);
19377 if (attr)
19378 {
19379 SYMBOL_LINE (sym) = DW_UNSND (attr);
19380 }
19381
19382 attr = dwarf2_attr (die,
19383 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
19384 cu);
19385 if (attr)
19386 {
19387 file_name_index file_index = (file_name_index) DW_UNSND (attr);
19388 struct file_entry *fe;
19389
19390 if (cu->line_header != NULL)
19391 fe = cu->line_header->file_name_at (file_index);
19392 else
19393 fe = NULL;
19394
19395 if (fe == NULL)
19396 complaint (&symfile_complaints,
19397 _("file index out of range"));
19398 else
19399 symbol_set_symtab (sym, fe->symtab);
19400 }
19401
19402 switch (die->tag)
19403 {
19404 case DW_TAG_label:
19405 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
19406 if (attr)
19407 {
19408 CORE_ADDR addr;
19409
19410 addr = attr_value_as_address (attr);
19411 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
19412 SYMBOL_VALUE_ADDRESS (sym) = addr;
19413 }
19414 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
19415 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
19416 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
19417 add_symbol_to_list (sym, cu->list_in_scope);
19418 break;
19419 case DW_TAG_subprogram:
19420 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19421 finish_block. */
19422 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19423 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19424 if ((attr2 && (DW_UNSND (attr2) != 0))
19425 || cu->language == language_ada)
19426 {
19427 /* Subprograms marked external are stored as a global symbol.
19428 Ada subprograms, whether marked external or not, are always
19429 stored as a global symbol, because we want to be able to
19430 access them globally. For instance, we want to be able
19431 to break on a nested subprogram without having to
19432 specify the context. */
19433 list_to_add = &global_symbols;
19434 }
19435 else
19436 {
19437 list_to_add = cu->list_in_scope;
19438 }
19439 break;
19440 case DW_TAG_inlined_subroutine:
19441 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19442 finish_block. */
19443 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19444 SYMBOL_INLINED (sym) = 1;
19445 list_to_add = cu->list_in_scope;
19446 break;
19447 case DW_TAG_template_value_param:
19448 suppress_add = 1;
19449 /* Fall through. */
19450 case DW_TAG_constant:
19451 case DW_TAG_variable:
19452 case DW_TAG_member:
19453 /* Compilation with minimal debug info may result in
19454 variables with missing type entries. Change the
19455 misleading `void' type to something sensible. */
19456 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
19457 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
19458
19459 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19460 /* In the case of DW_TAG_member, we should only be called for
19461 static const members. */
19462 if (die->tag == DW_TAG_member)
19463 {
19464 /* dwarf2_add_field uses die_is_declaration,
19465 so we do the same. */
19466 gdb_assert (die_is_declaration (die, cu));
19467 gdb_assert (attr);
19468 }
19469 if (attr)
19470 {
19471 dwarf2_const_value (attr, sym, cu);
19472 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19473 if (!suppress_add)
19474 {
19475 if (attr2 && (DW_UNSND (attr2) != 0))
19476 list_to_add = &global_symbols;
19477 else
19478 list_to_add = cu->list_in_scope;
19479 }
19480 break;
19481 }
19482 attr = dwarf2_attr (die, DW_AT_location, cu);
19483 if (attr)
19484 {
19485 var_decode_location (attr, sym, cu);
19486 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19487
19488 /* Fortran explicitly imports any global symbols to the local
19489 scope by DW_TAG_common_block. */
19490 if (cu->language == language_fortran && die->parent
19491 && die->parent->tag == DW_TAG_common_block)
19492 attr2 = NULL;
19493
19494 if (SYMBOL_CLASS (sym) == LOC_STATIC
19495 && SYMBOL_VALUE_ADDRESS (sym) == 0
19496 && !dwarf2_per_objfile->has_section_at_zero)
19497 {
19498 /* When a static variable is eliminated by the linker,
19499 the corresponding debug information is not stripped
19500 out, but the variable address is set to null;
19501 do not add such variables into symbol table. */
19502 }
19503 else if (attr2 && (DW_UNSND (attr2) != 0))
19504 {
19505 /* Workaround gfortran PR debug/40040 - it uses
19506 DW_AT_location for variables in -fPIC libraries which may
19507 get overriden by other libraries/executable and get
19508 a different address. Resolve it by the minimal symbol
19509 which may come from inferior's executable using copy
19510 relocation. Make this workaround only for gfortran as for
19511 other compilers GDB cannot guess the minimal symbol
19512 Fortran mangling kind. */
19513 if (cu->language == language_fortran && die->parent
19514 && die->parent->tag == DW_TAG_module
19515 && cu->producer
19516 && startswith (cu->producer, "GNU Fortran"))
19517 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19518
19519 /* A variable with DW_AT_external is never static,
19520 but it may be block-scoped. */
19521 list_to_add = (cu->list_in_scope == &file_symbols
19522 ? &global_symbols : cu->list_in_scope);
19523 }
19524 else
19525 list_to_add = cu->list_in_scope;
19526 }
19527 else
19528 {
19529 /* We do not know the address of this symbol.
19530 If it is an external symbol and we have type information
19531 for it, enter the symbol as a LOC_UNRESOLVED symbol.
19532 The address of the variable will then be determined from
19533 the minimal symbol table whenever the variable is
19534 referenced. */
19535 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19536
19537 /* Fortran explicitly imports any global symbols to the local
19538 scope by DW_TAG_common_block. */
19539 if (cu->language == language_fortran && die->parent
19540 && die->parent->tag == DW_TAG_common_block)
19541 {
19542 /* SYMBOL_CLASS doesn't matter here because
19543 read_common_block is going to reset it. */
19544 if (!suppress_add)
19545 list_to_add = cu->list_in_scope;
19546 }
19547 else if (attr2 && (DW_UNSND (attr2) != 0)
19548 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
19549 {
19550 /* A variable with DW_AT_external is never static, but it
19551 may be block-scoped. */
19552 list_to_add = (cu->list_in_scope == &file_symbols
19553 ? &global_symbols : cu->list_in_scope);
19554
19555 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19556 }
19557 else if (!die_is_declaration (die, cu))
19558 {
19559 /* Use the default LOC_OPTIMIZED_OUT class. */
19560 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
19561 if (!suppress_add)
19562 list_to_add = cu->list_in_scope;
19563 }
19564 }
19565 break;
19566 case DW_TAG_formal_parameter:
19567 /* If we are inside a function, mark this as an argument. If
19568 not, we might be looking at an argument to an inlined function
19569 when we do not have enough information to show inlined frames;
19570 pretend it's a local variable in that case so that the user can
19571 still see it. */
19572 if (context_stack_depth > 0
19573 && context_stack[context_stack_depth - 1].name != NULL)
19574 SYMBOL_IS_ARGUMENT (sym) = 1;
19575 attr = dwarf2_attr (die, DW_AT_location, cu);
19576 if (attr)
19577 {
19578 var_decode_location (attr, sym, cu);
19579 }
19580 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19581 if (attr)
19582 {
19583 dwarf2_const_value (attr, sym, cu);
19584 }
19585
19586 list_to_add = cu->list_in_scope;
19587 break;
19588 case DW_TAG_unspecified_parameters:
19589 /* From varargs functions; gdb doesn't seem to have any
19590 interest in this information, so just ignore it for now.
19591 (FIXME?) */
19592 break;
19593 case DW_TAG_template_type_param:
19594 suppress_add = 1;
19595 /* Fall through. */
19596 case DW_TAG_class_type:
19597 case DW_TAG_interface_type:
19598 case DW_TAG_structure_type:
19599 case DW_TAG_union_type:
19600 case DW_TAG_set_type:
19601 case DW_TAG_enumeration_type:
19602 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19603 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
19604
19605 {
19606 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
19607 really ever be static objects: otherwise, if you try
19608 to, say, break of a class's method and you're in a file
19609 which doesn't mention that class, it won't work unless
19610 the check for all static symbols in lookup_symbol_aux
19611 saves you. See the OtherFileClass tests in
19612 gdb.c++/namespace.exp. */
19613
19614 if (!suppress_add)
19615 {
19616 list_to_add = (cu->list_in_scope == &file_symbols
19617 && cu->language == language_cplus
19618 ? &global_symbols : cu->list_in_scope);
19619
19620 /* The semantics of C++ state that "struct foo {
19621 ... }" also defines a typedef for "foo". */
19622 if (cu->language == language_cplus
19623 || cu->language == language_ada
19624 || cu->language == language_d
19625 || cu->language == language_rust)
19626 {
19627 /* The symbol's name is already allocated along
19628 with this objfile, so we don't need to
19629 duplicate it for the type. */
19630 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19631 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19632 }
19633 }
19634 }
19635 break;
19636 case DW_TAG_typedef:
19637 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19638 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19639 list_to_add = cu->list_in_scope;
19640 break;
19641 case DW_TAG_base_type:
19642 case DW_TAG_subrange_type:
19643 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19644 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19645 list_to_add = cu->list_in_scope;
19646 break;
19647 case DW_TAG_enumerator:
19648 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19649 if (attr)
19650 {
19651 dwarf2_const_value (attr, sym, cu);
19652 }
19653 {
19654 /* NOTE: carlton/2003-11-10: See comment above in the
19655 DW_TAG_class_type, etc. block. */
19656
19657 list_to_add = (cu->list_in_scope == &file_symbols
19658 && cu->language == language_cplus
19659 ? &global_symbols : cu->list_in_scope);
19660 }
19661 break;
19662 case DW_TAG_imported_declaration:
19663 case DW_TAG_namespace:
19664 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19665 list_to_add = &global_symbols;
19666 break;
19667 case DW_TAG_module:
19668 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19669 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
19670 list_to_add = &global_symbols;
19671 break;
19672 case DW_TAG_common_block:
19673 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
19674 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
19675 add_symbol_to_list (sym, cu->list_in_scope);
19676 break;
19677 default:
19678 /* Not a tag we recognize. Hopefully we aren't processing
19679 trash data, but since we must specifically ignore things
19680 we don't recognize, there is nothing else we should do at
19681 this point. */
19682 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
19683 dwarf_tag_name (die->tag));
19684 break;
19685 }
19686
19687 if (suppress_add)
19688 {
19689 sym->hash_next = objfile->template_symbols;
19690 objfile->template_symbols = sym;
19691 list_to_add = NULL;
19692 }
19693
19694 if (list_to_add != NULL)
19695 add_symbol_to_list (sym, list_to_add);
19696
19697 /* For the benefit of old versions of GCC, check for anonymous
19698 namespaces based on the demangled name. */
19699 if (!cu->processing_has_namespace_info
19700 && cu->language == language_cplus)
19701 cp_scan_for_anonymous_namespaces (sym, objfile);
19702 }
19703 return (sym);
19704 }
19705
19706 /* A wrapper for new_symbol_full that always allocates a new symbol. */
19707
19708 static struct symbol *
19709 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19710 {
19711 return new_symbol_full (die, type, cu, NULL);
19712 }
19713
19714 /* Given an attr with a DW_FORM_dataN value in host byte order,
19715 zero-extend it as appropriate for the symbol's type. The DWARF
19716 standard (v4) is not entirely clear about the meaning of using
19717 DW_FORM_dataN for a constant with a signed type, where the type is
19718 wider than the data. The conclusion of a discussion on the DWARF
19719 list was that this is unspecified. We choose to always zero-extend
19720 because that is the interpretation long in use by GCC. */
19721
19722 static gdb_byte *
19723 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
19724 struct dwarf2_cu *cu, LONGEST *value, int bits)
19725 {
19726 struct objfile *objfile = cu->objfile;
19727 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
19728 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
19729 LONGEST l = DW_UNSND (attr);
19730
19731 if (bits < sizeof (*value) * 8)
19732 {
19733 l &= ((LONGEST) 1 << bits) - 1;
19734 *value = l;
19735 }
19736 else if (bits == sizeof (*value) * 8)
19737 *value = l;
19738 else
19739 {
19740 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
19741 store_unsigned_integer (bytes, bits / 8, byte_order, l);
19742 return bytes;
19743 }
19744
19745 return NULL;
19746 }
19747
19748 /* Read a constant value from an attribute. Either set *VALUE, or if
19749 the value does not fit in *VALUE, set *BYTES - either already
19750 allocated on the objfile obstack, or newly allocated on OBSTACK,
19751 or, set *BATON, if we translated the constant to a location
19752 expression. */
19753
19754 static void
19755 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
19756 const char *name, struct obstack *obstack,
19757 struct dwarf2_cu *cu,
19758 LONGEST *value, const gdb_byte **bytes,
19759 struct dwarf2_locexpr_baton **baton)
19760 {
19761 struct objfile *objfile = cu->objfile;
19762 struct comp_unit_head *cu_header = &cu->header;
19763 struct dwarf_block *blk;
19764 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
19765 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19766
19767 *value = 0;
19768 *bytes = NULL;
19769 *baton = NULL;
19770
19771 switch (attr->form)
19772 {
19773 case DW_FORM_addr:
19774 case DW_FORM_GNU_addr_index:
19775 {
19776 gdb_byte *data;
19777
19778 if (TYPE_LENGTH (type) != cu_header->addr_size)
19779 dwarf2_const_value_length_mismatch_complaint (name,
19780 cu_header->addr_size,
19781 TYPE_LENGTH (type));
19782 /* Symbols of this form are reasonably rare, so we just
19783 piggyback on the existing location code rather than writing
19784 a new implementation of symbol_computed_ops. */
19785 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
19786 (*baton)->per_cu = cu->per_cu;
19787 gdb_assert ((*baton)->per_cu);
19788
19789 (*baton)->size = 2 + cu_header->addr_size;
19790 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
19791 (*baton)->data = data;
19792
19793 data[0] = DW_OP_addr;
19794 store_unsigned_integer (&data[1], cu_header->addr_size,
19795 byte_order, DW_ADDR (attr));
19796 data[cu_header->addr_size + 1] = DW_OP_stack_value;
19797 }
19798 break;
19799 case DW_FORM_string:
19800 case DW_FORM_strp:
19801 case DW_FORM_GNU_str_index:
19802 case DW_FORM_GNU_strp_alt:
19803 /* DW_STRING is already allocated on the objfile obstack, point
19804 directly to it. */
19805 *bytes = (const gdb_byte *) DW_STRING (attr);
19806 break;
19807 case DW_FORM_block1:
19808 case DW_FORM_block2:
19809 case DW_FORM_block4:
19810 case DW_FORM_block:
19811 case DW_FORM_exprloc:
19812 case DW_FORM_data16:
19813 blk = DW_BLOCK (attr);
19814 if (TYPE_LENGTH (type) != blk->size)
19815 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
19816 TYPE_LENGTH (type));
19817 *bytes = blk->data;
19818 break;
19819
19820 /* The DW_AT_const_value attributes are supposed to carry the
19821 symbol's value "represented as it would be on the target
19822 architecture." By the time we get here, it's already been
19823 converted to host endianness, so we just need to sign- or
19824 zero-extend it as appropriate. */
19825 case DW_FORM_data1:
19826 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
19827 break;
19828 case DW_FORM_data2:
19829 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
19830 break;
19831 case DW_FORM_data4:
19832 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
19833 break;
19834 case DW_FORM_data8:
19835 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
19836 break;
19837
19838 case DW_FORM_sdata:
19839 case DW_FORM_implicit_const:
19840 *value = DW_SND (attr);
19841 break;
19842
19843 case DW_FORM_udata:
19844 *value = DW_UNSND (attr);
19845 break;
19846
19847 default:
19848 complaint (&symfile_complaints,
19849 _("unsupported const value attribute form: '%s'"),
19850 dwarf_form_name (attr->form));
19851 *value = 0;
19852 break;
19853 }
19854 }
19855
19856
19857 /* Copy constant value from an attribute to a symbol. */
19858
19859 static void
19860 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
19861 struct dwarf2_cu *cu)
19862 {
19863 struct objfile *objfile = cu->objfile;
19864 LONGEST value;
19865 const gdb_byte *bytes;
19866 struct dwarf2_locexpr_baton *baton;
19867
19868 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
19869 SYMBOL_PRINT_NAME (sym),
19870 &objfile->objfile_obstack, cu,
19871 &value, &bytes, &baton);
19872
19873 if (baton != NULL)
19874 {
19875 SYMBOL_LOCATION_BATON (sym) = baton;
19876 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
19877 }
19878 else if (bytes != NULL)
19879 {
19880 SYMBOL_VALUE_BYTES (sym) = bytes;
19881 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
19882 }
19883 else
19884 {
19885 SYMBOL_VALUE (sym) = value;
19886 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
19887 }
19888 }
19889
19890 /* Return the type of the die in question using its DW_AT_type attribute. */
19891
19892 static struct type *
19893 die_type (struct die_info *die, struct dwarf2_cu *cu)
19894 {
19895 struct attribute *type_attr;
19896
19897 type_attr = dwarf2_attr (die, DW_AT_type, cu);
19898 if (!type_attr)
19899 {
19900 /* A missing DW_AT_type represents a void type. */
19901 return objfile_type (cu->objfile)->builtin_void;
19902 }
19903
19904 return lookup_die_type (die, type_attr, cu);
19905 }
19906
19907 /* True iff CU's producer generates GNAT Ada auxiliary information
19908 that allows to find parallel types through that information instead
19909 of having to do expensive parallel lookups by type name. */
19910
19911 static int
19912 need_gnat_info (struct dwarf2_cu *cu)
19913 {
19914 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
19915 of GNAT produces this auxiliary information, without any indication
19916 that it is produced. Part of enhancing the FSF version of GNAT
19917 to produce that information will be to put in place an indicator
19918 that we can use in order to determine whether the descriptive type
19919 info is available or not. One suggestion that has been made is
19920 to use a new attribute, attached to the CU die. For now, assume
19921 that the descriptive type info is not available. */
19922 return 0;
19923 }
19924
19925 /* Return the auxiliary type of the die in question using its
19926 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
19927 attribute is not present. */
19928
19929 static struct type *
19930 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
19931 {
19932 struct attribute *type_attr;
19933
19934 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
19935 if (!type_attr)
19936 return NULL;
19937
19938 return lookup_die_type (die, type_attr, cu);
19939 }
19940
19941 /* If DIE has a descriptive_type attribute, then set the TYPE's
19942 descriptive type accordingly. */
19943
19944 static void
19945 set_descriptive_type (struct type *type, struct die_info *die,
19946 struct dwarf2_cu *cu)
19947 {
19948 struct type *descriptive_type = die_descriptive_type (die, cu);
19949
19950 if (descriptive_type)
19951 {
19952 ALLOCATE_GNAT_AUX_TYPE (type);
19953 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19954 }
19955 }
19956
19957 /* Return the containing type of the die in question using its
19958 DW_AT_containing_type attribute. */
19959
19960 static struct type *
19961 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
19962 {
19963 struct attribute *type_attr;
19964
19965 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
19966 if (!type_attr)
19967 error (_("Dwarf Error: Problem turning containing type into gdb type "
19968 "[in module %s]"), objfile_name (cu->objfile));
19969
19970 return lookup_die_type (die, type_attr, cu);
19971 }
19972
19973 /* Return an error marker type to use for the ill formed type in DIE/CU. */
19974
19975 static struct type *
19976 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19977 {
19978 struct objfile *objfile = dwarf2_per_objfile->objfile;
19979 char *message, *saved;
19980
19981 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
19982 objfile_name (objfile),
19983 to_underlying (cu->header.sect_off),
19984 to_underlying (die->sect_off));
19985 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19986 message, strlen (message));
19987 xfree (message);
19988
19989 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
19990 }
19991
19992 /* Look up the type of DIE in CU using its type attribute ATTR.
19993 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19994 DW_AT_containing_type.
19995 If there is no type substitute an error marker. */
19996
19997 static struct type *
19998 lookup_die_type (struct die_info *die, const struct attribute *attr,
19999 struct dwarf2_cu *cu)
20000 {
20001 struct objfile *objfile = cu->objfile;
20002 struct type *this_type;
20003
20004 gdb_assert (attr->name == DW_AT_type
20005 || attr->name == DW_AT_GNAT_descriptive_type
20006 || attr->name == DW_AT_containing_type);
20007
20008 /* First see if we have it cached. */
20009
20010 if (attr->form == DW_FORM_GNU_ref_alt)
20011 {
20012 struct dwarf2_per_cu_data *per_cu;
20013 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
20014
20015 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, cu->objfile);
20016 this_type = get_die_type_at_offset (sect_off, per_cu);
20017 }
20018 else if (attr_form_is_ref (attr))
20019 {
20020 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
20021
20022 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
20023 }
20024 else if (attr->form == DW_FORM_ref_sig8)
20025 {
20026 ULONGEST signature = DW_SIGNATURE (attr);
20027
20028 return get_signatured_type (die, signature, cu);
20029 }
20030 else
20031 {
20032 complaint (&symfile_complaints,
20033 _("Dwarf Error: Bad type attribute %s in DIE"
20034 " at 0x%x [in module %s]"),
20035 dwarf_attr_name (attr->name), to_underlying (die->sect_off),
20036 objfile_name (objfile));
20037 return build_error_marker_type (cu, die);
20038 }
20039
20040 /* If not cached we need to read it in. */
20041
20042 if (this_type == NULL)
20043 {
20044 struct die_info *type_die = NULL;
20045 struct dwarf2_cu *type_cu = cu;
20046
20047 if (attr_form_is_ref (attr))
20048 type_die = follow_die_ref (die, attr, &type_cu);
20049 if (type_die == NULL)
20050 return build_error_marker_type (cu, die);
20051 /* If we find the type now, it's probably because the type came
20052 from an inter-CU reference and the type's CU got expanded before
20053 ours. */
20054 this_type = read_type_die (type_die, type_cu);
20055 }
20056
20057 /* If we still don't have a type use an error marker. */
20058
20059 if (this_type == NULL)
20060 return build_error_marker_type (cu, die);
20061
20062 return this_type;
20063 }
20064
20065 /* Return the type in DIE, CU.
20066 Returns NULL for invalid types.
20067
20068 This first does a lookup in die_type_hash,
20069 and only reads the die in if necessary.
20070
20071 NOTE: This can be called when reading in partial or full symbols. */
20072
20073 static struct type *
20074 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
20075 {
20076 struct type *this_type;
20077
20078 this_type = get_die_type (die, cu);
20079 if (this_type)
20080 return this_type;
20081
20082 return read_type_die_1 (die, cu);
20083 }
20084
20085 /* Read the type in DIE, CU.
20086 Returns NULL for invalid types. */
20087
20088 static struct type *
20089 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
20090 {
20091 struct type *this_type = NULL;
20092
20093 switch (die->tag)
20094 {
20095 case DW_TAG_class_type:
20096 case DW_TAG_interface_type:
20097 case DW_TAG_structure_type:
20098 case DW_TAG_union_type:
20099 this_type = read_structure_type (die, cu);
20100 break;
20101 case DW_TAG_enumeration_type:
20102 this_type = read_enumeration_type (die, cu);
20103 break;
20104 case DW_TAG_subprogram:
20105 case DW_TAG_subroutine_type:
20106 case DW_TAG_inlined_subroutine:
20107 this_type = read_subroutine_type (die, cu);
20108 break;
20109 case DW_TAG_array_type:
20110 this_type = read_array_type (die, cu);
20111 break;
20112 case DW_TAG_set_type:
20113 this_type = read_set_type (die, cu);
20114 break;
20115 case DW_TAG_pointer_type:
20116 this_type = read_tag_pointer_type (die, cu);
20117 break;
20118 case DW_TAG_ptr_to_member_type:
20119 this_type = read_tag_ptr_to_member_type (die, cu);
20120 break;
20121 case DW_TAG_reference_type:
20122 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
20123 break;
20124 case DW_TAG_rvalue_reference_type:
20125 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
20126 break;
20127 case DW_TAG_const_type:
20128 this_type = read_tag_const_type (die, cu);
20129 break;
20130 case DW_TAG_volatile_type:
20131 this_type = read_tag_volatile_type (die, cu);
20132 break;
20133 case DW_TAG_restrict_type:
20134 this_type = read_tag_restrict_type (die, cu);
20135 break;
20136 case DW_TAG_string_type:
20137 this_type = read_tag_string_type (die, cu);
20138 break;
20139 case DW_TAG_typedef:
20140 this_type = read_typedef (die, cu);
20141 break;
20142 case DW_TAG_subrange_type:
20143 this_type = read_subrange_type (die, cu);
20144 break;
20145 case DW_TAG_base_type:
20146 this_type = read_base_type (die, cu);
20147 break;
20148 case DW_TAG_unspecified_type:
20149 this_type = read_unspecified_type (die, cu);
20150 break;
20151 case DW_TAG_namespace:
20152 this_type = read_namespace_type (die, cu);
20153 break;
20154 case DW_TAG_module:
20155 this_type = read_module_type (die, cu);
20156 break;
20157 case DW_TAG_atomic_type:
20158 this_type = read_tag_atomic_type (die, cu);
20159 break;
20160 default:
20161 complaint (&symfile_complaints,
20162 _("unexpected tag in read_type_die: '%s'"),
20163 dwarf_tag_name (die->tag));
20164 break;
20165 }
20166
20167 return this_type;
20168 }
20169
20170 /* See if we can figure out if the class lives in a namespace. We do
20171 this by looking for a member function; its demangled name will
20172 contain namespace info, if there is any.
20173 Return the computed name or NULL.
20174 Space for the result is allocated on the objfile's obstack.
20175 This is the full-die version of guess_partial_die_structure_name.
20176 In this case we know DIE has no useful parent. */
20177
20178 static char *
20179 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
20180 {
20181 struct die_info *spec_die;
20182 struct dwarf2_cu *spec_cu;
20183 struct die_info *child;
20184
20185 spec_cu = cu;
20186 spec_die = die_specification (die, &spec_cu);
20187 if (spec_die != NULL)
20188 {
20189 die = spec_die;
20190 cu = spec_cu;
20191 }
20192
20193 for (child = die->child;
20194 child != NULL;
20195 child = child->sibling)
20196 {
20197 if (child->tag == DW_TAG_subprogram)
20198 {
20199 const char *linkage_name = dw2_linkage_name (child, cu);
20200
20201 if (linkage_name != NULL)
20202 {
20203 char *actual_name
20204 = language_class_name_from_physname (cu->language_defn,
20205 linkage_name);
20206 char *name = NULL;
20207
20208 if (actual_name != NULL)
20209 {
20210 const char *die_name = dwarf2_name (die, cu);
20211
20212 if (die_name != NULL
20213 && strcmp (die_name, actual_name) != 0)
20214 {
20215 /* Strip off the class name from the full name.
20216 We want the prefix. */
20217 int die_name_len = strlen (die_name);
20218 int actual_name_len = strlen (actual_name);
20219
20220 /* Test for '::' as a sanity check. */
20221 if (actual_name_len > die_name_len + 2
20222 && actual_name[actual_name_len
20223 - die_name_len - 1] == ':')
20224 name = (char *) obstack_copy0 (
20225 &cu->objfile->per_bfd->storage_obstack,
20226 actual_name, actual_name_len - die_name_len - 2);
20227 }
20228 }
20229 xfree (actual_name);
20230 return name;
20231 }
20232 }
20233 }
20234
20235 return NULL;
20236 }
20237
20238 /* GCC might emit a nameless typedef that has a linkage name. Determine the
20239 prefix part in such case. See
20240 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20241
20242 static const char *
20243 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
20244 {
20245 struct attribute *attr;
20246 const char *base;
20247
20248 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
20249 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
20250 return NULL;
20251
20252 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
20253 return NULL;
20254
20255 attr = dw2_linkage_name_attr (die, cu);
20256 if (attr == NULL || DW_STRING (attr) == NULL)
20257 return NULL;
20258
20259 /* dwarf2_name had to be already called. */
20260 gdb_assert (DW_STRING_IS_CANONICAL (attr));
20261
20262 /* Strip the base name, keep any leading namespaces/classes. */
20263 base = strrchr (DW_STRING (attr), ':');
20264 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
20265 return "";
20266
20267 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20268 DW_STRING (attr),
20269 &base[-1] - DW_STRING (attr));
20270 }
20271
20272 /* Return the name of the namespace/class that DIE is defined within,
20273 or "" if we can't tell. The caller should not xfree the result.
20274
20275 For example, if we're within the method foo() in the following
20276 code:
20277
20278 namespace N {
20279 class C {
20280 void foo () {
20281 }
20282 };
20283 }
20284
20285 then determine_prefix on foo's die will return "N::C". */
20286
20287 static const char *
20288 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
20289 {
20290 struct die_info *parent, *spec_die;
20291 struct dwarf2_cu *spec_cu;
20292 struct type *parent_type;
20293 const char *retval;
20294
20295 if (cu->language != language_cplus
20296 && cu->language != language_fortran && cu->language != language_d
20297 && cu->language != language_rust)
20298 return "";
20299
20300 retval = anonymous_struct_prefix (die, cu);
20301 if (retval)
20302 return retval;
20303
20304 /* We have to be careful in the presence of DW_AT_specification.
20305 For example, with GCC 3.4, given the code
20306
20307 namespace N {
20308 void foo() {
20309 // Definition of N::foo.
20310 }
20311 }
20312
20313 then we'll have a tree of DIEs like this:
20314
20315 1: DW_TAG_compile_unit
20316 2: DW_TAG_namespace // N
20317 3: DW_TAG_subprogram // declaration of N::foo
20318 4: DW_TAG_subprogram // definition of N::foo
20319 DW_AT_specification // refers to die #3
20320
20321 Thus, when processing die #4, we have to pretend that we're in
20322 the context of its DW_AT_specification, namely the contex of die
20323 #3. */
20324 spec_cu = cu;
20325 spec_die = die_specification (die, &spec_cu);
20326 if (spec_die == NULL)
20327 parent = die->parent;
20328 else
20329 {
20330 parent = spec_die->parent;
20331 cu = spec_cu;
20332 }
20333
20334 if (parent == NULL)
20335 return "";
20336 else if (parent->building_fullname)
20337 {
20338 const char *name;
20339 const char *parent_name;
20340
20341 /* It has been seen on RealView 2.2 built binaries,
20342 DW_TAG_template_type_param types actually _defined_ as
20343 children of the parent class:
20344
20345 enum E {};
20346 template class <class Enum> Class{};
20347 Class<enum E> class_e;
20348
20349 1: DW_TAG_class_type (Class)
20350 2: DW_TAG_enumeration_type (E)
20351 3: DW_TAG_enumerator (enum1:0)
20352 3: DW_TAG_enumerator (enum2:1)
20353 ...
20354 2: DW_TAG_template_type_param
20355 DW_AT_type DW_FORM_ref_udata (E)
20356
20357 Besides being broken debug info, it can put GDB into an
20358 infinite loop. Consider:
20359
20360 When we're building the full name for Class<E>, we'll start
20361 at Class, and go look over its template type parameters,
20362 finding E. We'll then try to build the full name of E, and
20363 reach here. We're now trying to build the full name of E,
20364 and look over the parent DIE for containing scope. In the
20365 broken case, if we followed the parent DIE of E, we'd again
20366 find Class, and once again go look at its template type
20367 arguments, etc., etc. Simply don't consider such parent die
20368 as source-level parent of this die (it can't be, the language
20369 doesn't allow it), and break the loop here. */
20370 name = dwarf2_name (die, cu);
20371 parent_name = dwarf2_name (parent, cu);
20372 complaint (&symfile_complaints,
20373 _("template param type '%s' defined within parent '%s'"),
20374 name ? name : "<unknown>",
20375 parent_name ? parent_name : "<unknown>");
20376 return "";
20377 }
20378 else
20379 switch (parent->tag)
20380 {
20381 case DW_TAG_namespace:
20382 parent_type = read_type_die (parent, cu);
20383 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
20384 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
20385 Work around this problem here. */
20386 if (cu->language == language_cplus
20387 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
20388 return "";
20389 /* We give a name to even anonymous namespaces. */
20390 return TYPE_TAG_NAME (parent_type);
20391 case DW_TAG_class_type:
20392 case DW_TAG_interface_type:
20393 case DW_TAG_structure_type:
20394 case DW_TAG_union_type:
20395 case DW_TAG_module:
20396 parent_type = read_type_die (parent, cu);
20397 if (TYPE_TAG_NAME (parent_type) != NULL)
20398 return TYPE_TAG_NAME (parent_type);
20399 else
20400 /* An anonymous structure is only allowed non-static data
20401 members; no typedefs, no member functions, et cetera.
20402 So it does not need a prefix. */
20403 return "";
20404 case DW_TAG_compile_unit:
20405 case DW_TAG_partial_unit:
20406 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
20407 if (cu->language == language_cplus
20408 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
20409 && die->child != NULL
20410 && (die->tag == DW_TAG_class_type
20411 || die->tag == DW_TAG_structure_type
20412 || die->tag == DW_TAG_union_type))
20413 {
20414 char *name = guess_full_die_structure_name (die, cu);
20415 if (name != NULL)
20416 return name;
20417 }
20418 return "";
20419 case DW_TAG_enumeration_type:
20420 parent_type = read_type_die (parent, cu);
20421 if (TYPE_DECLARED_CLASS (parent_type))
20422 {
20423 if (TYPE_TAG_NAME (parent_type) != NULL)
20424 return TYPE_TAG_NAME (parent_type);
20425 return "";
20426 }
20427 /* Fall through. */
20428 default:
20429 return determine_prefix (parent, cu);
20430 }
20431 }
20432
20433 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
20434 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
20435 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
20436 an obconcat, otherwise allocate storage for the result. The CU argument is
20437 used to determine the language and hence, the appropriate separator. */
20438
20439 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
20440
20441 static char *
20442 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
20443 int physname, struct dwarf2_cu *cu)
20444 {
20445 const char *lead = "";
20446 const char *sep;
20447
20448 if (suffix == NULL || suffix[0] == '\0'
20449 || prefix == NULL || prefix[0] == '\0')
20450 sep = "";
20451 else if (cu->language == language_d)
20452 {
20453 /* For D, the 'main' function could be defined in any module, but it
20454 should never be prefixed. */
20455 if (strcmp (suffix, "D main") == 0)
20456 {
20457 prefix = "";
20458 sep = "";
20459 }
20460 else
20461 sep = ".";
20462 }
20463 else if (cu->language == language_fortran && physname)
20464 {
20465 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
20466 DW_AT_MIPS_linkage_name is preferred and used instead. */
20467
20468 lead = "__";
20469 sep = "_MOD_";
20470 }
20471 else
20472 sep = "::";
20473
20474 if (prefix == NULL)
20475 prefix = "";
20476 if (suffix == NULL)
20477 suffix = "";
20478
20479 if (obs == NULL)
20480 {
20481 char *retval
20482 = ((char *)
20483 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
20484
20485 strcpy (retval, lead);
20486 strcat (retval, prefix);
20487 strcat (retval, sep);
20488 strcat (retval, suffix);
20489 return retval;
20490 }
20491 else
20492 {
20493 /* We have an obstack. */
20494 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
20495 }
20496 }
20497
20498 /* Return sibling of die, NULL if no sibling. */
20499
20500 static struct die_info *
20501 sibling_die (struct die_info *die)
20502 {
20503 return die->sibling;
20504 }
20505
20506 /* Get name of a die, return NULL if not found. */
20507
20508 static const char *
20509 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
20510 struct obstack *obstack)
20511 {
20512 if (name && cu->language == language_cplus)
20513 {
20514 std::string canon_name = cp_canonicalize_string (name);
20515
20516 if (!canon_name.empty ())
20517 {
20518 if (canon_name != name)
20519 name = (const char *) obstack_copy0 (obstack,
20520 canon_name.c_str (),
20521 canon_name.length ());
20522 }
20523 }
20524
20525 return name;
20526 }
20527
20528 /* Get name of a die, return NULL if not found.
20529 Anonymous namespaces are converted to their magic string. */
20530
20531 static const char *
20532 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
20533 {
20534 struct attribute *attr;
20535
20536 attr = dwarf2_attr (die, DW_AT_name, cu);
20537 if ((!attr || !DW_STRING (attr))
20538 && die->tag != DW_TAG_namespace
20539 && die->tag != DW_TAG_class_type
20540 && die->tag != DW_TAG_interface_type
20541 && die->tag != DW_TAG_structure_type
20542 && die->tag != DW_TAG_union_type)
20543 return NULL;
20544
20545 switch (die->tag)
20546 {
20547 case DW_TAG_compile_unit:
20548 case DW_TAG_partial_unit:
20549 /* Compilation units have a DW_AT_name that is a filename, not
20550 a source language identifier. */
20551 case DW_TAG_enumeration_type:
20552 case DW_TAG_enumerator:
20553 /* These tags always have simple identifiers already; no need
20554 to canonicalize them. */
20555 return DW_STRING (attr);
20556
20557 case DW_TAG_namespace:
20558 if (attr != NULL && DW_STRING (attr) != NULL)
20559 return DW_STRING (attr);
20560 return CP_ANONYMOUS_NAMESPACE_STR;
20561
20562 case DW_TAG_class_type:
20563 case DW_TAG_interface_type:
20564 case DW_TAG_structure_type:
20565 case DW_TAG_union_type:
20566 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20567 structures or unions. These were of the form "._%d" in GCC 4.1,
20568 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20569 and GCC 4.4. We work around this problem by ignoring these. */
20570 if (attr && DW_STRING (attr)
20571 && (startswith (DW_STRING (attr), "._")
20572 || startswith (DW_STRING (attr), "<anonymous")))
20573 return NULL;
20574
20575 /* GCC might emit a nameless typedef that has a linkage name. See
20576 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20577 if (!attr || DW_STRING (attr) == NULL)
20578 {
20579 char *demangled = NULL;
20580
20581 attr = dw2_linkage_name_attr (die, cu);
20582 if (attr == NULL || DW_STRING (attr) == NULL)
20583 return NULL;
20584
20585 /* Avoid demangling DW_STRING (attr) the second time on a second
20586 call for the same DIE. */
20587 if (!DW_STRING_IS_CANONICAL (attr))
20588 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
20589
20590 if (demangled)
20591 {
20592 const char *base;
20593
20594 /* FIXME: we already did this for the partial symbol... */
20595 DW_STRING (attr)
20596 = ((const char *)
20597 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20598 demangled, strlen (demangled)));
20599 DW_STRING_IS_CANONICAL (attr) = 1;
20600 xfree (demangled);
20601
20602 /* Strip any leading namespaces/classes, keep only the base name.
20603 DW_AT_name for named DIEs does not contain the prefixes. */
20604 base = strrchr (DW_STRING (attr), ':');
20605 if (base && base > DW_STRING (attr) && base[-1] == ':')
20606 return &base[1];
20607 else
20608 return DW_STRING (attr);
20609 }
20610 }
20611 break;
20612
20613 default:
20614 break;
20615 }
20616
20617 if (!DW_STRING_IS_CANONICAL (attr))
20618 {
20619 DW_STRING (attr)
20620 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
20621 &cu->objfile->per_bfd->storage_obstack);
20622 DW_STRING_IS_CANONICAL (attr) = 1;
20623 }
20624 return DW_STRING (attr);
20625 }
20626
20627 /* Return the die that this die in an extension of, or NULL if there
20628 is none. *EXT_CU is the CU containing DIE on input, and the CU
20629 containing the return value on output. */
20630
20631 static struct die_info *
20632 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
20633 {
20634 struct attribute *attr;
20635
20636 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
20637 if (attr == NULL)
20638 return NULL;
20639
20640 return follow_die_ref (die, attr, ext_cu);
20641 }
20642
20643 /* Convert a DIE tag into its string name. */
20644
20645 static const char *
20646 dwarf_tag_name (unsigned tag)
20647 {
20648 const char *name = get_DW_TAG_name (tag);
20649
20650 if (name == NULL)
20651 return "DW_TAG_<unknown>";
20652
20653 return name;
20654 }
20655
20656 /* Convert a DWARF attribute code into its string name. */
20657
20658 static const char *
20659 dwarf_attr_name (unsigned attr)
20660 {
20661 const char *name;
20662
20663 #ifdef MIPS /* collides with DW_AT_HP_block_index */
20664 if (attr == DW_AT_MIPS_fde)
20665 return "DW_AT_MIPS_fde";
20666 #else
20667 if (attr == DW_AT_HP_block_index)
20668 return "DW_AT_HP_block_index";
20669 #endif
20670
20671 name = get_DW_AT_name (attr);
20672
20673 if (name == NULL)
20674 return "DW_AT_<unknown>";
20675
20676 return name;
20677 }
20678
20679 /* Convert a DWARF value form code into its string name. */
20680
20681 static const char *
20682 dwarf_form_name (unsigned form)
20683 {
20684 const char *name = get_DW_FORM_name (form);
20685
20686 if (name == NULL)
20687 return "DW_FORM_<unknown>";
20688
20689 return name;
20690 }
20691
20692 static const char *
20693 dwarf_bool_name (unsigned mybool)
20694 {
20695 if (mybool)
20696 return "TRUE";
20697 else
20698 return "FALSE";
20699 }
20700
20701 /* Convert a DWARF type code into its string name. */
20702
20703 static const char *
20704 dwarf_type_encoding_name (unsigned enc)
20705 {
20706 const char *name = get_DW_ATE_name (enc);
20707
20708 if (name == NULL)
20709 return "DW_ATE_<unknown>";
20710
20711 return name;
20712 }
20713
20714 static void
20715 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
20716 {
20717 unsigned int i;
20718
20719 print_spaces (indent, f);
20720 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
20721 dwarf_tag_name (die->tag), die->abbrev,
20722 to_underlying (die->sect_off));
20723
20724 if (die->parent != NULL)
20725 {
20726 print_spaces (indent, f);
20727 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
20728 to_underlying (die->parent->sect_off));
20729 }
20730
20731 print_spaces (indent, f);
20732 fprintf_unfiltered (f, " has children: %s\n",
20733 dwarf_bool_name (die->child != NULL));
20734
20735 print_spaces (indent, f);
20736 fprintf_unfiltered (f, " attributes:\n");
20737
20738 for (i = 0; i < die->num_attrs; ++i)
20739 {
20740 print_spaces (indent, f);
20741 fprintf_unfiltered (f, " %s (%s) ",
20742 dwarf_attr_name (die->attrs[i].name),
20743 dwarf_form_name (die->attrs[i].form));
20744
20745 switch (die->attrs[i].form)
20746 {
20747 case DW_FORM_addr:
20748 case DW_FORM_GNU_addr_index:
20749 fprintf_unfiltered (f, "address: ");
20750 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
20751 break;
20752 case DW_FORM_block2:
20753 case DW_FORM_block4:
20754 case DW_FORM_block:
20755 case DW_FORM_block1:
20756 fprintf_unfiltered (f, "block: size %s",
20757 pulongest (DW_BLOCK (&die->attrs[i])->size));
20758 break;
20759 case DW_FORM_exprloc:
20760 fprintf_unfiltered (f, "expression: size %s",
20761 pulongest (DW_BLOCK (&die->attrs[i])->size));
20762 break;
20763 case DW_FORM_data16:
20764 fprintf_unfiltered (f, "constant of 16 bytes");
20765 break;
20766 case DW_FORM_ref_addr:
20767 fprintf_unfiltered (f, "ref address: ");
20768 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20769 break;
20770 case DW_FORM_GNU_ref_alt:
20771 fprintf_unfiltered (f, "alt ref address: ");
20772 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20773 break;
20774 case DW_FORM_ref1:
20775 case DW_FORM_ref2:
20776 case DW_FORM_ref4:
20777 case DW_FORM_ref8:
20778 case DW_FORM_ref_udata:
20779 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
20780 (long) (DW_UNSND (&die->attrs[i])));
20781 break;
20782 case DW_FORM_data1:
20783 case DW_FORM_data2:
20784 case DW_FORM_data4:
20785 case DW_FORM_data8:
20786 case DW_FORM_udata:
20787 case DW_FORM_sdata:
20788 fprintf_unfiltered (f, "constant: %s",
20789 pulongest (DW_UNSND (&die->attrs[i])));
20790 break;
20791 case DW_FORM_sec_offset:
20792 fprintf_unfiltered (f, "section offset: %s",
20793 pulongest (DW_UNSND (&die->attrs[i])));
20794 break;
20795 case DW_FORM_ref_sig8:
20796 fprintf_unfiltered (f, "signature: %s",
20797 hex_string (DW_SIGNATURE (&die->attrs[i])));
20798 break;
20799 case DW_FORM_string:
20800 case DW_FORM_strp:
20801 case DW_FORM_line_strp:
20802 case DW_FORM_GNU_str_index:
20803 case DW_FORM_GNU_strp_alt:
20804 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
20805 DW_STRING (&die->attrs[i])
20806 ? DW_STRING (&die->attrs[i]) : "",
20807 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
20808 break;
20809 case DW_FORM_flag:
20810 if (DW_UNSND (&die->attrs[i]))
20811 fprintf_unfiltered (f, "flag: TRUE");
20812 else
20813 fprintf_unfiltered (f, "flag: FALSE");
20814 break;
20815 case DW_FORM_flag_present:
20816 fprintf_unfiltered (f, "flag: TRUE");
20817 break;
20818 case DW_FORM_indirect:
20819 /* The reader will have reduced the indirect form to
20820 the "base form" so this form should not occur. */
20821 fprintf_unfiltered (f,
20822 "unexpected attribute form: DW_FORM_indirect");
20823 break;
20824 case DW_FORM_implicit_const:
20825 fprintf_unfiltered (f, "constant: %s",
20826 plongest (DW_SND (&die->attrs[i])));
20827 break;
20828 default:
20829 fprintf_unfiltered (f, "unsupported attribute form: %d.",
20830 die->attrs[i].form);
20831 break;
20832 }
20833 fprintf_unfiltered (f, "\n");
20834 }
20835 }
20836
20837 static void
20838 dump_die_for_error (struct die_info *die)
20839 {
20840 dump_die_shallow (gdb_stderr, 0, die);
20841 }
20842
20843 static void
20844 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
20845 {
20846 int indent = level * 4;
20847
20848 gdb_assert (die != NULL);
20849
20850 if (level >= max_level)
20851 return;
20852
20853 dump_die_shallow (f, indent, die);
20854
20855 if (die->child != NULL)
20856 {
20857 print_spaces (indent, f);
20858 fprintf_unfiltered (f, " Children:");
20859 if (level + 1 < max_level)
20860 {
20861 fprintf_unfiltered (f, "\n");
20862 dump_die_1 (f, level + 1, max_level, die->child);
20863 }
20864 else
20865 {
20866 fprintf_unfiltered (f,
20867 " [not printed, max nesting level reached]\n");
20868 }
20869 }
20870
20871 if (die->sibling != NULL && level > 0)
20872 {
20873 dump_die_1 (f, level, max_level, die->sibling);
20874 }
20875 }
20876
20877 /* This is called from the pdie macro in gdbinit.in.
20878 It's not static so gcc will keep a copy callable from gdb. */
20879
20880 void
20881 dump_die (struct die_info *die, int max_level)
20882 {
20883 dump_die_1 (gdb_stdlog, 0, max_level, die);
20884 }
20885
20886 static void
20887 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
20888 {
20889 void **slot;
20890
20891 slot = htab_find_slot_with_hash (cu->die_hash, die,
20892 to_underlying (die->sect_off),
20893 INSERT);
20894
20895 *slot = die;
20896 }
20897
20898 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
20899 required kind. */
20900
20901 static sect_offset
20902 dwarf2_get_ref_die_offset (const struct attribute *attr)
20903 {
20904 if (attr_form_is_ref (attr))
20905 return (sect_offset) DW_UNSND (attr);
20906
20907 complaint (&symfile_complaints,
20908 _("unsupported die ref attribute form: '%s'"),
20909 dwarf_form_name (attr->form));
20910 return {};
20911 }
20912
20913 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20914 * the value held by the attribute is not constant. */
20915
20916 static LONGEST
20917 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
20918 {
20919 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
20920 return DW_SND (attr);
20921 else if (attr->form == DW_FORM_udata
20922 || attr->form == DW_FORM_data1
20923 || attr->form == DW_FORM_data2
20924 || attr->form == DW_FORM_data4
20925 || attr->form == DW_FORM_data8)
20926 return DW_UNSND (attr);
20927 else
20928 {
20929 /* For DW_FORM_data16 see attr_form_is_constant. */
20930 complaint (&symfile_complaints,
20931 _("Attribute value is not a constant (%s)"),
20932 dwarf_form_name (attr->form));
20933 return default_value;
20934 }
20935 }
20936
20937 /* Follow reference or signature attribute ATTR of SRC_DIE.
20938 On entry *REF_CU is the CU of SRC_DIE.
20939 On exit *REF_CU is the CU of the result. */
20940
20941 static struct die_info *
20942 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
20943 struct dwarf2_cu **ref_cu)
20944 {
20945 struct die_info *die;
20946
20947 if (attr_form_is_ref (attr))
20948 die = follow_die_ref (src_die, attr, ref_cu);
20949 else if (attr->form == DW_FORM_ref_sig8)
20950 die = follow_die_sig (src_die, attr, ref_cu);
20951 else
20952 {
20953 dump_die_for_error (src_die);
20954 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
20955 objfile_name ((*ref_cu)->objfile));
20956 }
20957
20958 return die;
20959 }
20960
20961 /* Follow reference OFFSET.
20962 On entry *REF_CU is the CU of the source die referencing OFFSET.
20963 On exit *REF_CU is the CU of the result.
20964 Returns NULL if OFFSET is invalid. */
20965
20966 static struct die_info *
20967 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
20968 struct dwarf2_cu **ref_cu)
20969 {
20970 struct die_info temp_die;
20971 struct dwarf2_cu *target_cu, *cu = *ref_cu;
20972
20973 gdb_assert (cu->per_cu != NULL);
20974
20975 target_cu = cu;
20976
20977 if (cu->per_cu->is_debug_types)
20978 {
20979 /* .debug_types CUs cannot reference anything outside their CU.
20980 If they need to, they have to reference a signatured type via
20981 DW_FORM_ref_sig8. */
20982 if (!offset_in_cu_p (&cu->header, sect_off))
20983 return NULL;
20984 }
20985 else if (offset_in_dwz != cu->per_cu->is_dwz
20986 || !offset_in_cu_p (&cu->header, sect_off))
20987 {
20988 struct dwarf2_per_cu_data *per_cu;
20989
20990 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
20991 cu->objfile);
20992
20993 /* If necessary, add it to the queue and load its DIEs. */
20994 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20995 load_full_comp_unit (per_cu, cu->language);
20996
20997 target_cu = per_cu->cu;
20998 }
20999 else if (cu->dies == NULL)
21000 {
21001 /* We're loading full DIEs during partial symbol reading. */
21002 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
21003 load_full_comp_unit (cu->per_cu, language_minimal);
21004 }
21005
21006 *ref_cu = target_cu;
21007 temp_die.sect_off = sect_off;
21008 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
21009 &temp_die,
21010 to_underlying (sect_off));
21011 }
21012
21013 /* Follow reference attribute ATTR of SRC_DIE.
21014 On entry *REF_CU is the CU of SRC_DIE.
21015 On exit *REF_CU is the CU of the result. */
21016
21017 static struct die_info *
21018 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
21019 struct dwarf2_cu **ref_cu)
21020 {
21021 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21022 struct dwarf2_cu *cu = *ref_cu;
21023 struct die_info *die;
21024
21025 die = follow_die_offset (sect_off,
21026 (attr->form == DW_FORM_GNU_ref_alt
21027 || cu->per_cu->is_dwz),
21028 ref_cu);
21029 if (!die)
21030 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
21031 "at 0x%x [in module %s]"),
21032 to_underlying (sect_off), to_underlying (src_die->sect_off),
21033 objfile_name (cu->objfile));
21034
21035 return die;
21036 }
21037
21038 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
21039 Returned value is intended for DW_OP_call*. Returned
21040 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
21041
21042 struct dwarf2_locexpr_baton
21043 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
21044 struct dwarf2_per_cu_data *per_cu,
21045 CORE_ADDR (*get_frame_pc) (void *baton),
21046 void *baton)
21047 {
21048 struct dwarf2_cu *cu;
21049 struct die_info *die;
21050 struct attribute *attr;
21051 struct dwarf2_locexpr_baton retval;
21052
21053 dw2_setup (per_cu->objfile);
21054
21055 if (per_cu->cu == NULL)
21056 load_cu (per_cu);
21057 cu = per_cu->cu;
21058 if (cu == NULL)
21059 {
21060 /* We shouldn't get here for a dummy CU, but don't crash on the user.
21061 Instead just throw an error, not much else we can do. */
21062 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
21063 to_underlying (sect_off), objfile_name (per_cu->objfile));
21064 }
21065
21066 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
21067 if (!die)
21068 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
21069 to_underlying (sect_off), objfile_name (per_cu->objfile));
21070
21071 attr = dwarf2_attr (die, DW_AT_location, cu);
21072 if (!attr)
21073 {
21074 /* DWARF: "If there is no such attribute, then there is no effect.".
21075 DATA is ignored if SIZE is 0. */
21076
21077 retval.data = NULL;
21078 retval.size = 0;
21079 }
21080 else if (attr_form_is_section_offset (attr))
21081 {
21082 struct dwarf2_loclist_baton loclist_baton;
21083 CORE_ADDR pc = (*get_frame_pc) (baton);
21084 size_t size;
21085
21086 fill_in_loclist_baton (cu, &loclist_baton, attr);
21087
21088 retval.data = dwarf2_find_location_expression (&loclist_baton,
21089 &size, pc);
21090 retval.size = size;
21091 }
21092 else
21093 {
21094 if (!attr_form_is_block (attr))
21095 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
21096 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
21097 to_underlying (sect_off), objfile_name (per_cu->objfile));
21098
21099 retval.data = DW_BLOCK (attr)->data;
21100 retval.size = DW_BLOCK (attr)->size;
21101 }
21102 retval.per_cu = cu->per_cu;
21103
21104 age_cached_comp_units ();
21105
21106 return retval;
21107 }
21108
21109 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
21110 offset. */
21111
21112 struct dwarf2_locexpr_baton
21113 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
21114 struct dwarf2_per_cu_data *per_cu,
21115 CORE_ADDR (*get_frame_pc) (void *baton),
21116 void *baton)
21117 {
21118 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
21119
21120 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
21121 }
21122
21123 /* Write a constant of a given type as target-ordered bytes into
21124 OBSTACK. */
21125
21126 static const gdb_byte *
21127 write_constant_as_bytes (struct obstack *obstack,
21128 enum bfd_endian byte_order,
21129 struct type *type,
21130 ULONGEST value,
21131 LONGEST *len)
21132 {
21133 gdb_byte *result;
21134
21135 *len = TYPE_LENGTH (type);
21136 result = (gdb_byte *) obstack_alloc (obstack, *len);
21137 store_unsigned_integer (result, *len, byte_order, value);
21138
21139 return result;
21140 }
21141
21142 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
21143 pointer to the constant bytes and set LEN to the length of the
21144 data. If memory is needed, allocate it on OBSTACK. If the DIE
21145 does not have a DW_AT_const_value, return NULL. */
21146
21147 const gdb_byte *
21148 dwarf2_fetch_constant_bytes (sect_offset sect_off,
21149 struct dwarf2_per_cu_data *per_cu,
21150 struct obstack *obstack,
21151 LONGEST *len)
21152 {
21153 struct dwarf2_cu *cu;
21154 struct die_info *die;
21155 struct attribute *attr;
21156 const gdb_byte *result = NULL;
21157 struct type *type;
21158 LONGEST value;
21159 enum bfd_endian byte_order;
21160
21161 dw2_setup (per_cu->objfile);
21162
21163 if (per_cu->cu == NULL)
21164 load_cu (per_cu);
21165 cu = per_cu->cu;
21166 if (cu == NULL)
21167 {
21168 /* We shouldn't get here for a dummy CU, but don't crash on the user.
21169 Instead just throw an error, not much else we can do. */
21170 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
21171 to_underlying (sect_off), objfile_name (per_cu->objfile));
21172 }
21173
21174 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
21175 if (!die)
21176 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
21177 to_underlying (sect_off), objfile_name (per_cu->objfile));
21178
21179
21180 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21181 if (attr == NULL)
21182 return NULL;
21183
21184 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
21185 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21186
21187 switch (attr->form)
21188 {
21189 case DW_FORM_addr:
21190 case DW_FORM_GNU_addr_index:
21191 {
21192 gdb_byte *tem;
21193
21194 *len = cu->header.addr_size;
21195 tem = (gdb_byte *) obstack_alloc (obstack, *len);
21196 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
21197 result = tem;
21198 }
21199 break;
21200 case DW_FORM_string:
21201 case DW_FORM_strp:
21202 case DW_FORM_GNU_str_index:
21203 case DW_FORM_GNU_strp_alt:
21204 /* DW_STRING is already allocated on the objfile obstack, point
21205 directly to it. */
21206 result = (const gdb_byte *) DW_STRING (attr);
21207 *len = strlen (DW_STRING (attr));
21208 break;
21209 case DW_FORM_block1:
21210 case DW_FORM_block2:
21211 case DW_FORM_block4:
21212 case DW_FORM_block:
21213 case DW_FORM_exprloc:
21214 case DW_FORM_data16:
21215 result = DW_BLOCK (attr)->data;
21216 *len = DW_BLOCK (attr)->size;
21217 break;
21218
21219 /* The DW_AT_const_value attributes are supposed to carry the
21220 symbol's value "represented as it would be on the target
21221 architecture." By the time we get here, it's already been
21222 converted to host endianness, so we just need to sign- or
21223 zero-extend it as appropriate. */
21224 case DW_FORM_data1:
21225 type = die_type (die, cu);
21226 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
21227 if (result == NULL)
21228 result = write_constant_as_bytes (obstack, byte_order,
21229 type, value, len);
21230 break;
21231 case DW_FORM_data2:
21232 type = die_type (die, cu);
21233 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
21234 if (result == NULL)
21235 result = write_constant_as_bytes (obstack, byte_order,
21236 type, value, len);
21237 break;
21238 case DW_FORM_data4:
21239 type = die_type (die, cu);
21240 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
21241 if (result == NULL)
21242 result = write_constant_as_bytes (obstack, byte_order,
21243 type, value, len);
21244 break;
21245 case DW_FORM_data8:
21246 type = die_type (die, cu);
21247 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
21248 if (result == NULL)
21249 result = write_constant_as_bytes (obstack, byte_order,
21250 type, value, len);
21251 break;
21252
21253 case DW_FORM_sdata:
21254 case DW_FORM_implicit_const:
21255 type = die_type (die, cu);
21256 result = write_constant_as_bytes (obstack, byte_order,
21257 type, DW_SND (attr), len);
21258 break;
21259
21260 case DW_FORM_udata:
21261 type = die_type (die, cu);
21262 result = write_constant_as_bytes (obstack, byte_order,
21263 type, DW_UNSND (attr), len);
21264 break;
21265
21266 default:
21267 complaint (&symfile_complaints,
21268 _("unsupported const value attribute form: '%s'"),
21269 dwarf_form_name (attr->form));
21270 break;
21271 }
21272
21273 return result;
21274 }
21275
21276 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
21277 valid type for this die is found. */
21278
21279 struct type *
21280 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
21281 struct dwarf2_per_cu_data *per_cu)
21282 {
21283 struct dwarf2_cu *cu;
21284 struct die_info *die;
21285
21286 dw2_setup (per_cu->objfile);
21287
21288 if (per_cu->cu == NULL)
21289 load_cu (per_cu);
21290 cu = per_cu->cu;
21291 if (!cu)
21292 return NULL;
21293
21294 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
21295 if (!die)
21296 return NULL;
21297
21298 return die_type (die, cu);
21299 }
21300
21301 /* Return the type of the DIE at DIE_OFFSET in the CU named by
21302 PER_CU. */
21303
21304 struct type *
21305 dwarf2_get_die_type (cu_offset die_offset,
21306 struct dwarf2_per_cu_data *per_cu)
21307 {
21308 dw2_setup (per_cu->objfile);
21309
21310 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
21311 return get_die_type_at_offset (die_offset_sect, per_cu);
21312 }
21313
21314 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
21315 On entry *REF_CU is the CU of SRC_DIE.
21316 On exit *REF_CU is the CU of the result.
21317 Returns NULL if the referenced DIE isn't found. */
21318
21319 static struct die_info *
21320 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
21321 struct dwarf2_cu **ref_cu)
21322 {
21323 struct die_info temp_die;
21324 struct dwarf2_cu *sig_cu;
21325 struct die_info *die;
21326
21327 /* While it might be nice to assert sig_type->type == NULL here,
21328 we can get here for DW_AT_imported_declaration where we need
21329 the DIE not the type. */
21330
21331 /* If necessary, add it to the queue and load its DIEs. */
21332
21333 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
21334 read_signatured_type (sig_type);
21335
21336 sig_cu = sig_type->per_cu.cu;
21337 gdb_assert (sig_cu != NULL);
21338 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
21339 temp_die.sect_off = sig_type->type_offset_in_section;
21340 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
21341 to_underlying (temp_die.sect_off));
21342 if (die)
21343 {
21344 /* For .gdb_index version 7 keep track of included TUs.
21345 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
21346 if (dwarf2_per_objfile->index_table != NULL
21347 && dwarf2_per_objfile->index_table->version <= 7)
21348 {
21349 VEC_safe_push (dwarf2_per_cu_ptr,
21350 (*ref_cu)->per_cu->imported_symtabs,
21351 sig_cu->per_cu);
21352 }
21353
21354 *ref_cu = sig_cu;
21355 return die;
21356 }
21357
21358 return NULL;
21359 }
21360
21361 /* Follow signatured type referenced by ATTR in SRC_DIE.
21362 On entry *REF_CU is the CU of SRC_DIE.
21363 On exit *REF_CU is the CU of the result.
21364 The result is the DIE of the type.
21365 If the referenced type cannot be found an error is thrown. */
21366
21367 static struct die_info *
21368 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
21369 struct dwarf2_cu **ref_cu)
21370 {
21371 ULONGEST signature = DW_SIGNATURE (attr);
21372 struct signatured_type *sig_type;
21373 struct die_info *die;
21374
21375 gdb_assert (attr->form == DW_FORM_ref_sig8);
21376
21377 sig_type = lookup_signatured_type (*ref_cu, signature);
21378 /* sig_type will be NULL if the signatured type is missing from
21379 the debug info. */
21380 if (sig_type == NULL)
21381 {
21382 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
21383 " from DIE at 0x%x [in module %s]"),
21384 hex_string (signature), to_underlying (src_die->sect_off),
21385 objfile_name ((*ref_cu)->objfile));
21386 }
21387
21388 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
21389 if (die == NULL)
21390 {
21391 dump_die_for_error (src_die);
21392 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
21393 " from DIE at 0x%x [in module %s]"),
21394 hex_string (signature), to_underlying (src_die->sect_off),
21395 objfile_name ((*ref_cu)->objfile));
21396 }
21397
21398 return die;
21399 }
21400
21401 /* Get the type specified by SIGNATURE referenced in DIE/CU,
21402 reading in and processing the type unit if necessary. */
21403
21404 static struct type *
21405 get_signatured_type (struct die_info *die, ULONGEST signature,
21406 struct dwarf2_cu *cu)
21407 {
21408 struct signatured_type *sig_type;
21409 struct dwarf2_cu *type_cu;
21410 struct die_info *type_die;
21411 struct type *type;
21412
21413 sig_type = lookup_signatured_type (cu, signature);
21414 /* sig_type will be NULL if the signatured type is missing from
21415 the debug info. */
21416 if (sig_type == NULL)
21417 {
21418 complaint (&symfile_complaints,
21419 _("Dwarf Error: Cannot find signatured DIE %s referenced"
21420 " from DIE at 0x%x [in module %s]"),
21421 hex_string (signature), to_underlying (die->sect_off),
21422 objfile_name (dwarf2_per_objfile->objfile));
21423 return build_error_marker_type (cu, die);
21424 }
21425
21426 /* If we already know the type we're done. */
21427 if (sig_type->type != NULL)
21428 return sig_type->type;
21429
21430 type_cu = cu;
21431 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
21432 if (type_die != NULL)
21433 {
21434 /* N.B. We need to call get_die_type to ensure only one type for this DIE
21435 is created. This is important, for example, because for c++ classes
21436 we need TYPE_NAME set which is only done by new_symbol. Blech. */
21437 type = read_type_die (type_die, type_cu);
21438 if (type == NULL)
21439 {
21440 complaint (&symfile_complaints,
21441 _("Dwarf Error: Cannot build signatured type %s"
21442 " referenced from DIE at 0x%x [in module %s]"),
21443 hex_string (signature), to_underlying (die->sect_off),
21444 objfile_name (dwarf2_per_objfile->objfile));
21445 type = build_error_marker_type (cu, die);
21446 }
21447 }
21448 else
21449 {
21450 complaint (&symfile_complaints,
21451 _("Dwarf Error: Problem reading signatured DIE %s referenced"
21452 " from DIE at 0x%x [in module %s]"),
21453 hex_string (signature), to_underlying (die->sect_off),
21454 objfile_name (dwarf2_per_objfile->objfile));
21455 type = build_error_marker_type (cu, die);
21456 }
21457 sig_type->type = type;
21458
21459 return type;
21460 }
21461
21462 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
21463 reading in and processing the type unit if necessary. */
21464
21465 static struct type *
21466 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
21467 struct dwarf2_cu *cu) /* ARI: editCase function */
21468 {
21469 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
21470 if (attr_form_is_ref (attr))
21471 {
21472 struct dwarf2_cu *type_cu = cu;
21473 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
21474
21475 return read_type_die (type_die, type_cu);
21476 }
21477 else if (attr->form == DW_FORM_ref_sig8)
21478 {
21479 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
21480 }
21481 else
21482 {
21483 complaint (&symfile_complaints,
21484 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
21485 " at 0x%x [in module %s]"),
21486 dwarf_form_name (attr->form), to_underlying (die->sect_off),
21487 objfile_name (dwarf2_per_objfile->objfile));
21488 return build_error_marker_type (cu, die);
21489 }
21490 }
21491
21492 /* Load the DIEs associated with type unit PER_CU into memory. */
21493
21494 static void
21495 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
21496 {
21497 struct signatured_type *sig_type;
21498
21499 /* Caller is responsible for ensuring type_unit_groups don't get here. */
21500 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
21501
21502 /* We have the per_cu, but we need the signatured_type.
21503 Fortunately this is an easy translation. */
21504 gdb_assert (per_cu->is_debug_types);
21505 sig_type = (struct signatured_type *) per_cu;
21506
21507 gdb_assert (per_cu->cu == NULL);
21508
21509 read_signatured_type (sig_type);
21510
21511 gdb_assert (per_cu->cu != NULL);
21512 }
21513
21514 /* die_reader_func for read_signatured_type.
21515 This is identical to load_full_comp_unit_reader,
21516 but is kept separate for now. */
21517
21518 static void
21519 read_signatured_type_reader (const struct die_reader_specs *reader,
21520 const gdb_byte *info_ptr,
21521 struct die_info *comp_unit_die,
21522 int has_children,
21523 void *data)
21524 {
21525 struct dwarf2_cu *cu = reader->cu;
21526
21527 gdb_assert (cu->die_hash == NULL);
21528 cu->die_hash =
21529 htab_create_alloc_ex (cu->header.length / 12,
21530 die_hash,
21531 die_eq,
21532 NULL,
21533 &cu->comp_unit_obstack,
21534 hashtab_obstack_allocate,
21535 dummy_obstack_deallocate);
21536
21537 if (has_children)
21538 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
21539 &info_ptr, comp_unit_die);
21540 cu->dies = comp_unit_die;
21541 /* comp_unit_die is not stored in die_hash, no need. */
21542
21543 /* We try not to read any attributes in this function, because not
21544 all CUs needed for references have been loaded yet, and symbol
21545 table processing isn't initialized. But we have to set the CU language,
21546 or we won't be able to build types correctly.
21547 Similarly, if we do not read the producer, we can not apply
21548 producer-specific interpretation. */
21549 prepare_one_comp_unit (cu, cu->dies, language_minimal);
21550 }
21551
21552 /* Read in a signatured type and build its CU and DIEs.
21553 If the type is a stub for the real type in a DWO file,
21554 read in the real type from the DWO file as well. */
21555
21556 static void
21557 read_signatured_type (struct signatured_type *sig_type)
21558 {
21559 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
21560
21561 gdb_assert (per_cu->is_debug_types);
21562 gdb_assert (per_cu->cu == NULL);
21563
21564 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
21565 read_signatured_type_reader, NULL);
21566 sig_type->per_cu.tu_read = 1;
21567 }
21568
21569 /* Decode simple location descriptions.
21570 Given a pointer to a dwarf block that defines a location, compute
21571 the location and return the value.
21572
21573 NOTE drow/2003-11-18: This function is called in two situations
21574 now: for the address of static or global variables (partial symbols
21575 only) and for offsets into structures which are expected to be
21576 (more or less) constant. The partial symbol case should go away,
21577 and only the constant case should remain. That will let this
21578 function complain more accurately. A few special modes are allowed
21579 without complaint for global variables (for instance, global
21580 register values and thread-local values).
21581
21582 A location description containing no operations indicates that the
21583 object is optimized out. The return value is 0 for that case.
21584 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21585 callers will only want a very basic result and this can become a
21586 complaint.
21587
21588 Note that stack[0] is unused except as a default error return. */
21589
21590 static CORE_ADDR
21591 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
21592 {
21593 struct objfile *objfile = cu->objfile;
21594 size_t i;
21595 size_t size = blk->size;
21596 const gdb_byte *data = blk->data;
21597 CORE_ADDR stack[64];
21598 int stacki;
21599 unsigned int bytes_read, unsnd;
21600 gdb_byte op;
21601
21602 i = 0;
21603 stacki = 0;
21604 stack[stacki] = 0;
21605 stack[++stacki] = 0;
21606
21607 while (i < size)
21608 {
21609 op = data[i++];
21610 switch (op)
21611 {
21612 case DW_OP_lit0:
21613 case DW_OP_lit1:
21614 case DW_OP_lit2:
21615 case DW_OP_lit3:
21616 case DW_OP_lit4:
21617 case DW_OP_lit5:
21618 case DW_OP_lit6:
21619 case DW_OP_lit7:
21620 case DW_OP_lit8:
21621 case DW_OP_lit9:
21622 case DW_OP_lit10:
21623 case DW_OP_lit11:
21624 case DW_OP_lit12:
21625 case DW_OP_lit13:
21626 case DW_OP_lit14:
21627 case DW_OP_lit15:
21628 case DW_OP_lit16:
21629 case DW_OP_lit17:
21630 case DW_OP_lit18:
21631 case DW_OP_lit19:
21632 case DW_OP_lit20:
21633 case DW_OP_lit21:
21634 case DW_OP_lit22:
21635 case DW_OP_lit23:
21636 case DW_OP_lit24:
21637 case DW_OP_lit25:
21638 case DW_OP_lit26:
21639 case DW_OP_lit27:
21640 case DW_OP_lit28:
21641 case DW_OP_lit29:
21642 case DW_OP_lit30:
21643 case DW_OP_lit31:
21644 stack[++stacki] = op - DW_OP_lit0;
21645 break;
21646
21647 case DW_OP_reg0:
21648 case DW_OP_reg1:
21649 case DW_OP_reg2:
21650 case DW_OP_reg3:
21651 case DW_OP_reg4:
21652 case DW_OP_reg5:
21653 case DW_OP_reg6:
21654 case DW_OP_reg7:
21655 case DW_OP_reg8:
21656 case DW_OP_reg9:
21657 case DW_OP_reg10:
21658 case DW_OP_reg11:
21659 case DW_OP_reg12:
21660 case DW_OP_reg13:
21661 case DW_OP_reg14:
21662 case DW_OP_reg15:
21663 case DW_OP_reg16:
21664 case DW_OP_reg17:
21665 case DW_OP_reg18:
21666 case DW_OP_reg19:
21667 case DW_OP_reg20:
21668 case DW_OP_reg21:
21669 case DW_OP_reg22:
21670 case DW_OP_reg23:
21671 case DW_OP_reg24:
21672 case DW_OP_reg25:
21673 case DW_OP_reg26:
21674 case DW_OP_reg27:
21675 case DW_OP_reg28:
21676 case DW_OP_reg29:
21677 case DW_OP_reg30:
21678 case DW_OP_reg31:
21679 stack[++stacki] = op - DW_OP_reg0;
21680 if (i < size)
21681 dwarf2_complex_location_expr_complaint ();
21682 break;
21683
21684 case DW_OP_regx:
21685 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
21686 i += bytes_read;
21687 stack[++stacki] = unsnd;
21688 if (i < size)
21689 dwarf2_complex_location_expr_complaint ();
21690 break;
21691
21692 case DW_OP_addr:
21693 stack[++stacki] = read_address (objfile->obfd, &data[i],
21694 cu, &bytes_read);
21695 i += bytes_read;
21696 break;
21697
21698 case DW_OP_const1u:
21699 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
21700 i += 1;
21701 break;
21702
21703 case DW_OP_const1s:
21704 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
21705 i += 1;
21706 break;
21707
21708 case DW_OP_const2u:
21709 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
21710 i += 2;
21711 break;
21712
21713 case DW_OP_const2s:
21714 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
21715 i += 2;
21716 break;
21717
21718 case DW_OP_const4u:
21719 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
21720 i += 4;
21721 break;
21722
21723 case DW_OP_const4s:
21724 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
21725 i += 4;
21726 break;
21727
21728 case DW_OP_const8u:
21729 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
21730 i += 8;
21731 break;
21732
21733 case DW_OP_constu:
21734 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
21735 &bytes_read);
21736 i += bytes_read;
21737 break;
21738
21739 case DW_OP_consts:
21740 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
21741 i += bytes_read;
21742 break;
21743
21744 case DW_OP_dup:
21745 stack[stacki + 1] = stack[stacki];
21746 stacki++;
21747 break;
21748
21749 case DW_OP_plus:
21750 stack[stacki - 1] += stack[stacki];
21751 stacki--;
21752 break;
21753
21754 case DW_OP_plus_uconst:
21755 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
21756 &bytes_read);
21757 i += bytes_read;
21758 break;
21759
21760 case DW_OP_minus:
21761 stack[stacki - 1] -= stack[stacki];
21762 stacki--;
21763 break;
21764
21765 case DW_OP_deref:
21766 /* If we're not the last op, then we definitely can't encode
21767 this using GDB's address_class enum. This is valid for partial
21768 global symbols, although the variable's address will be bogus
21769 in the psymtab. */
21770 if (i < size)
21771 dwarf2_complex_location_expr_complaint ();
21772 break;
21773
21774 case DW_OP_GNU_push_tls_address:
21775 case DW_OP_form_tls_address:
21776 /* The top of the stack has the offset from the beginning
21777 of the thread control block at which the variable is located. */
21778 /* Nothing should follow this operator, so the top of stack would
21779 be returned. */
21780 /* This is valid for partial global symbols, but the variable's
21781 address will be bogus in the psymtab. Make it always at least
21782 non-zero to not look as a variable garbage collected by linker
21783 which have DW_OP_addr 0. */
21784 if (i < size)
21785 dwarf2_complex_location_expr_complaint ();
21786 stack[stacki]++;
21787 break;
21788
21789 case DW_OP_GNU_uninit:
21790 break;
21791
21792 case DW_OP_GNU_addr_index:
21793 case DW_OP_GNU_const_index:
21794 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
21795 &bytes_read);
21796 i += bytes_read;
21797 break;
21798
21799 default:
21800 {
21801 const char *name = get_DW_OP_name (op);
21802
21803 if (name)
21804 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
21805 name);
21806 else
21807 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
21808 op);
21809 }
21810
21811 return (stack[stacki]);
21812 }
21813
21814 /* Enforce maximum stack depth of SIZE-1 to avoid writing
21815 outside of the allocated space. Also enforce minimum>0. */
21816 if (stacki >= ARRAY_SIZE (stack) - 1)
21817 {
21818 complaint (&symfile_complaints,
21819 _("location description stack overflow"));
21820 return 0;
21821 }
21822
21823 if (stacki <= 0)
21824 {
21825 complaint (&symfile_complaints,
21826 _("location description stack underflow"));
21827 return 0;
21828 }
21829 }
21830 return (stack[stacki]);
21831 }
21832
21833 /* memory allocation interface */
21834
21835 static struct dwarf_block *
21836 dwarf_alloc_block (struct dwarf2_cu *cu)
21837 {
21838 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
21839 }
21840
21841 static struct die_info *
21842 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
21843 {
21844 struct die_info *die;
21845 size_t size = sizeof (struct die_info);
21846
21847 if (num_attrs > 1)
21848 size += (num_attrs - 1) * sizeof (struct attribute);
21849
21850 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
21851 memset (die, 0, sizeof (struct die_info));
21852 return (die);
21853 }
21854
21855 \f
21856 /* Macro support. */
21857
21858 /* Return file name relative to the compilation directory of file number I in
21859 *LH's file name table. The result is allocated using xmalloc; the caller is
21860 responsible for freeing it. */
21861
21862 static char *
21863 file_file_name (int file, struct line_header *lh)
21864 {
21865 /* Is the file number a valid index into the line header's file name
21866 table? Remember that file numbers start with one, not zero. */
21867 if (1 <= file && file <= lh->file_names.size ())
21868 {
21869 const file_entry &fe = lh->file_names[file - 1];
21870
21871 if (!IS_ABSOLUTE_PATH (fe.name))
21872 {
21873 const char *dir = fe.include_dir (lh);
21874 if (dir != NULL)
21875 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
21876 }
21877 return xstrdup (fe.name);
21878 }
21879 else
21880 {
21881 /* The compiler produced a bogus file number. We can at least
21882 record the macro definitions made in the file, even if we
21883 won't be able to find the file by name. */
21884 char fake_name[80];
21885
21886 xsnprintf (fake_name, sizeof (fake_name),
21887 "<bad macro file number %d>", file);
21888
21889 complaint (&symfile_complaints,
21890 _("bad file number in macro information (%d)"),
21891 file);
21892
21893 return xstrdup (fake_name);
21894 }
21895 }
21896
21897 /* Return the full name of file number I in *LH's file name table.
21898 Use COMP_DIR as the name of the current directory of the
21899 compilation. The result is allocated using xmalloc; the caller is
21900 responsible for freeing it. */
21901 static char *
21902 file_full_name (int file, struct line_header *lh, const char *comp_dir)
21903 {
21904 /* Is the file number a valid index into the line header's file name
21905 table? Remember that file numbers start with one, not zero. */
21906 if (1 <= file && file <= lh->file_names.size ())
21907 {
21908 char *relative = file_file_name (file, lh);
21909
21910 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
21911 return relative;
21912 return reconcat (relative, comp_dir, SLASH_STRING,
21913 relative, (char *) NULL);
21914 }
21915 else
21916 return file_file_name (file, lh);
21917 }
21918
21919
21920 static struct macro_source_file *
21921 macro_start_file (int file, int line,
21922 struct macro_source_file *current_file,
21923 struct line_header *lh)
21924 {
21925 /* File name relative to the compilation directory of this source file. */
21926 char *file_name = file_file_name (file, lh);
21927
21928 if (! current_file)
21929 {
21930 /* Note: We don't create a macro table for this compilation unit
21931 at all until we actually get a filename. */
21932 struct macro_table *macro_table = get_macro_table ();
21933
21934 /* If we have no current file, then this must be the start_file
21935 directive for the compilation unit's main source file. */
21936 current_file = macro_set_main (macro_table, file_name);
21937 macro_define_special (macro_table);
21938 }
21939 else
21940 current_file = macro_include (current_file, line, file_name);
21941
21942 xfree (file_name);
21943
21944 return current_file;
21945 }
21946
21947 static const char *
21948 consume_improper_spaces (const char *p, const char *body)
21949 {
21950 if (*p == ' ')
21951 {
21952 complaint (&symfile_complaints,
21953 _("macro definition contains spaces "
21954 "in formal argument list:\n`%s'"),
21955 body);
21956
21957 while (*p == ' ')
21958 p++;
21959 }
21960
21961 return p;
21962 }
21963
21964
21965 static void
21966 parse_macro_definition (struct macro_source_file *file, int line,
21967 const char *body)
21968 {
21969 const char *p;
21970
21971 /* The body string takes one of two forms. For object-like macro
21972 definitions, it should be:
21973
21974 <macro name> " " <definition>
21975
21976 For function-like macro definitions, it should be:
21977
21978 <macro name> "() " <definition>
21979 or
21980 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21981
21982 Spaces may appear only where explicitly indicated, and in the
21983 <definition>.
21984
21985 The Dwarf 2 spec says that an object-like macro's name is always
21986 followed by a space, but versions of GCC around March 2002 omit
21987 the space when the macro's definition is the empty string.
21988
21989 The Dwarf 2 spec says that there should be no spaces between the
21990 formal arguments in a function-like macro's formal argument list,
21991 but versions of GCC around March 2002 include spaces after the
21992 commas. */
21993
21994
21995 /* Find the extent of the macro name. The macro name is terminated
21996 by either a space or null character (for an object-like macro) or
21997 an opening paren (for a function-like macro). */
21998 for (p = body; *p; p++)
21999 if (*p == ' ' || *p == '(')
22000 break;
22001
22002 if (*p == ' ' || *p == '\0')
22003 {
22004 /* It's an object-like macro. */
22005 int name_len = p - body;
22006 char *name = savestring (body, name_len);
22007 const char *replacement;
22008
22009 if (*p == ' ')
22010 replacement = body + name_len + 1;
22011 else
22012 {
22013 dwarf2_macro_malformed_definition_complaint (body);
22014 replacement = body + name_len;
22015 }
22016
22017 macro_define_object (file, line, name, replacement);
22018
22019 xfree (name);
22020 }
22021 else if (*p == '(')
22022 {
22023 /* It's a function-like macro. */
22024 char *name = savestring (body, p - body);
22025 int argc = 0;
22026 int argv_size = 1;
22027 char **argv = XNEWVEC (char *, argv_size);
22028
22029 p++;
22030
22031 p = consume_improper_spaces (p, body);
22032
22033 /* Parse the formal argument list. */
22034 while (*p && *p != ')')
22035 {
22036 /* Find the extent of the current argument name. */
22037 const char *arg_start = p;
22038
22039 while (*p && *p != ',' && *p != ')' && *p != ' ')
22040 p++;
22041
22042 if (! *p || p == arg_start)
22043 dwarf2_macro_malformed_definition_complaint (body);
22044 else
22045 {
22046 /* Make sure argv has room for the new argument. */
22047 if (argc >= argv_size)
22048 {
22049 argv_size *= 2;
22050 argv = XRESIZEVEC (char *, argv, argv_size);
22051 }
22052
22053 argv[argc++] = savestring (arg_start, p - arg_start);
22054 }
22055
22056 p = consume_improper_spaces (p, body);
22057
22058 /* Consume the comma, if present. */
22059 if (*p == ',')
22060 {
22061 p++;
22062
22063 p = consume_improper_spaces (p, body);
22064 }
22065 }
22066
22067 if (*p == ')')
22068 {
22069 p++;
22070
22071 if (*p == ' ')
22072 /* Perfectly formed definition, no complaints. */
22073 macro_define_function (file, line, name,
22074 argc, (const char **) argv,
22075 p + 1);
22076 else if (*p == '\0')
22077 {
22078 /* Complain, but do define it. */
22079 dwarf2_macro_malformed_definition_complaint (body);
22080 macro_define_function (file, line, name,
22081 argc, (const char **) argv,
22082 p);
22083 }
22084 else
22085 /* Just complain. */
22086 dwarf2_macro_malformed_definition_complaint (body);
22087 }
22088 else
22089 /* Just complain. */
22090 dwarf2_macro_malformed_definition_complaint (body);
22091
22092 xfree (name);
22093 {
22094 int i;
22095
22096 for (i = 0; i < argc; i++)
22097 xfree (argv[i]);
22098 }
22099 xfree (argv);
22100 }
22101 else
22102 dwarf2_macro_malformed_definition_complaint (body);
22103 }
22104
22105 /* Skip some bytes from BYTES according to the form given in FORM.
22106 Returns the new pointer. */
22107
22108 static const gdb_byte *
22109 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
22110 enum dwarf_form form,
22111 unsigned int offset_size,
22112 struct dwarf2_section_info *section)
22113 {
22114 unsigned int bytes_read;
22115
22116 switch (form)
22117 {
22118 case DW_FORM_data1:
22119 case DW_FORM_flag:
22120 ++bytes;
22121 break;
22122
22123 case DW_FORM_data2:
22124 bytes += 2;
22125 break;
22126
22127 case DW_FORM_data4:
22128 bytes += 4;
22129 break;
22130
22131 case DW_FORM_data8:
22132 bytes += 8;
22133 break;
22134
22135 case DW_FORM_data16:
22136 bytes += 16;
22137 break;
22138
22139 case DW_FORM_string:
22140 read_direct_string (abfd, bytes, &bytes_read);
22141 bytes += bytes_read;
22142 break;
22143
22144 case DW_FORM_sec_offset:
22145 case DW_FORM_strp:
22146 case DW_FORM_GNU_strp_alt:
22147 bytes += offset_size;
22148 break;
22149
22150 case DW_FORM_block:
22151 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
22152 bytes += bytes_read;
22153 break;
22154
22155 case DW_FORM_block1:
22156 bytes += 1 + read_1_byte (abfd, bytes);
22157 break;
22158 case DW_FORM_block2:
22159 bytes += 2 + read_2_bytes (abfd, bytes);
22160 break;
22161 case DW_FORM_block4:
22162 bytes += 4 + read_4_bytes (abfd, bytes);
22163 break;
22164
22165 case DW_FORM_sdata:
22166 case DW_FORM_udata:
22167 case DW_FORM_GNU_addr_index:
22168 case DW_FORM_GNU_str_index:
22169 bytes = gdb_skip_leb128 (bytes, buffer_end);
22170 if (bytes == NULL)
22171 {
22172 dwarf2_section_buffer_overflow_complaint (section);
22173 return NULL;
22174 }
22175 break;
22176
22177 case DW_FORM_implicit_const:
22178 break;
22179
22180 default:
22181 {
22182 complain:
22183 complaint (&symfile_complaints,
22184 _("invalid form 0x%x in `%s'"),
22185 form, get_section_name (section));
22186 return NULL;
22187 }
22188 }
22189
22190 return bytes;
22191 }
22192
22193 /* A helper for dwarf_decode_macros that handles skipping an unknown
22194 opcode. Returns an updated pointer to the macro data buffer; or,
22195 on error, issues a complaint and returns NULL. */
22196
22197 static const gdb_byte *
22198 skip_unknown_opcode (unsigned int opcode,
22199 const gdb_byte **opcode_definitions,
22200 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
22201 bfd *abfd,
22202 unsigned int offset_size,
22203 struct dwarf2_section_info *section)
22204 {
22205 unsigned int bytes_read, i;
22206 unsigned long arg;
22207 const gdb_byte *defn;
22208
22209 if (opcode_definitions[opcode] == NULL)
22210 {
22211 complaint (&symfile_complaints,
22212 _("unrecognized DW_MACFINO opcode 0x%x"),
22213 opcode);
22214 return NULL;
22215 }
22216
22217 defn = opcode_definitions[opcode];
22218 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
22219 defn += bytes_read;
22220
22221 for (i = 0; i < arg; ++i)
22222 {
22223 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
22224 (enum dwarf_form) defn[i], offset_size,
22225 section);
22226 if (mac_ptr == NULL)
22227 {
22228 /* skip_form_bytes already issued the complaint. */
22229 return NULL;
22230 }
22231 }
22232
22233 return mac_ptr;
22234 }
22235
22236 /* A helper function which parses the header of a macro section.
22237 If the macro section is the extended (for now called "GNU") type,
22238 then this updates *OFFSET_SIZE. Returns a pointer to just after
22239 the header, or issues a complaint and returns NULL on error. */
22240
22241 static const gdb_byte *
22242 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
22243 bfd *abfd,
22244 const gdb_byte *mac_ptr,
22245 unsigned int *offset_size,
22246 int section_is_gnu)
22247 {
22248 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
22249
22250 if (section_is_gnu)
22251 {
22252 unsigned int version, flags;
22253
22254 version = read_2_bytes (abfd, mac_ptr);
22255 if (version != 4 && version != 5)
22256 {
22257 complaint (&symfile_complaints,
22258 _("unrecognized version `%d' in .debug_macro section"),
22259 version);
22260 return NULL;
22261 }
22262 mac_ptr += 2;
22263
22264 flags = read_1_byte (abfd, mac_ptr);
22265 ++mac_ptr;
22266 *offset_size = (flags & 1) ? 8 : 4;
22267
22268 if ((flags & 2) != 0)
22269 /* We don't need the line table offset. */
22270 mac_ptr += *offset_size;
22271
22272 /* Vendor opcode descriptions. */
22273 if ((flags & 4) != 0)
22274 {
22275 unsigned int i, count;
22276
22277 count = read_1_byte (abfd, mac_ptr);
22278 ++mac_ptr;
22279 for (i = 0; i < count; ++i)
22280 {
22281 unsigned int opcode, bytes_read;
22282 unsigned long arg;
22283
22284 opcode = read_1_byte (abfd, mac_ptr);
22285 ++mac_ptr;
22286 opcode_definitions[opcode] = mac_ptr;
22287 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22288 mac_ptr += bytes_read;
22289 mac_ptr += arg;
22290 }
22291 }
22292 }
22293
22294 return mac_ptr;
22295 }
22296
22297 /* A helper for dwarf_decode_macros that handles the GNU extensions,
22298 including DW_MACRO_import. */
22299
22300 static void
22301 dwarf_decode_macro_bytes (bfd *abfd,
22302 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
22303 struct macro_source_file *current_file,
22304 struct line_header *lh,
22305 struct dwarf2_section_info *section,
22306 int section_is_gnu, int section_is_dwz,
22307 unsigned int offset_size,
22308 htab_t include_hash)
22309 {
22310 struct objfile *objfile = dwarf2_per_objfile->objfile;
22311 enum dwarf_macro_record_type macinfo_type;
22312 int at_commandline;
22313 const gdb_byte *opcode_definitions[256];
22314
22315 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22316 &offset_size, section_is_gnu);
22317 if (mac_ptr == NULL)
22318 {
22319 /* We already issued a complaint. */
22320 return;
22321 }
22322
22323 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
22324 GDB is still reading the definitions from command line. First
22325 DW_MACINFO_start_file will need to be ignored as it was already executed
22326 to create CURRENT_FILE for the main source holding also the command line
22327 definitions. On first met DW_MACINFO_start_file this flag is reset to
22328 normally execute all the remaining DW_MACINFO_start_file macinfos. */
22329
22330 at_commandline = 1;
22331
22332 do
22333 {
22334 /* Do we at least have room for a macinfo type byte? */
22335 if (mac_ptr >= mac_end)
22336 {
22337 dwarf2_section_buffer_overflow_complaint (section);
22338 break;
22339 }
22340
22341 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22342 mac_ptr++;
22343
22344 /* Note that we rely on the fact that the corresponding GNU and
22345 DWARF constants are the same. */
22346 switch (macinfo_type)
22347 {
22348 /* A zero macinfo type indicates the end of the macro
22349 information. */
22350 case 0:
22351 break;
22352
22353 case DW_MACRO_define:
22354 case DW_MACRO_undef:
22355 case DW_MACRO_define_strp:
22356 case DW_MACRO_undef_strp:
22357 case DW_MACRO_define_sup:
22358 case DW_MACRO_undef_sup:
22359 {
22360 unsigned int bytes_read;
22361 int line;
22362 const char *body;
22363 int is_define;
22364
22365 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22366 mac_ptr += bytes_read;
22367
22368 if (macinfo_type == DW_MACRO_define
22369 || macinfo_type == DW_MACRO_undef)
22370 {
22371 body = read_direct_string (abfd, mac_ptr, &bytes_read);
22372 mac_ptr += bytes_read;
22373 }
22374 else
22375 {
22376 LONGEST str_offset;
22377
22378 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
22379 mac_ptr += offset_size;
22380
22381 if (macinfo_type == DW_MACRO_define_sup
22382 || macinfo_type == DW_MACRO_undef_sup
22383 || section_is_dwz)
22384 {
22385 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22386
22387 body = read_indirect_string_from_dwz (dwz, str_offset);
22388 }
22389 else
22390 body = read_indirect_string_at_offset (abfd, str_offset);
22391 }
22392
22393 is_define = (macinfo_type == DW_MACRO_define
22394 || macinfo_type == DW_MACRO_define_strp
22395 || macinfo_type == DW_MACRO_define_sup);
22396 if (! current_file)
22397 {
22398 /* DWARF violation as no main source is present. */
22399 complaint (&symfile_complaints,
22400 _("debug info with no main source gives macro %s "
22401 "on line %d: %s"),
22402 is_define ? _("definition") : _("undefinition"),
22403 line, body);
22404 break;
22405 }
22406 if ((line == 0 && !at_commandline)
22407 || (line != 0 && at_commandline))
22408 complaint (&symfile_complaints,
22409 _("debug info gives %s macro %s with %s line %d: %s"),
22410 at_commandline ? _("command-line") : _("in-file"),
22411 is_define ? _("definition") : _("undefinition"),
22412 line == 0 ? _("zero") : _("non-zero"), line, body);
22413
22414 if (is_define)
22415 parse_macro_definition (current_file, line, body);
22416 else
22417 {
22418 gdb_assert (macinfo_type == DW_MACRO_undef
22419 || macinfo_type == DW_MACRO_undef_strp
22420 || macinfo_type == DW_MACRO_undef_sup);
22421 macro_undef (current_file, line, body);
22422 }
22423 }
22424 break;
22425
22426 case DW_MACRO_start_file:
22427 {
22428 unsigned int bytes_read;
22429 int line, file;
22430
22431 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22432 mac_ptr += bytes_read;
22433 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22434 mac_ptr += bytes_read;
22435
22436 if ((line == 0 && !at_commandline)
22437 || (line != 0 && at_commandline))
22438 complaint (&symfile_complaints,
22439 _("debug info gives source %d included "
22440 "from %s at %s line %d"),
22441 file, at_commandline ? _("command-line") : _("file"),
22442 line == 0 ? _("zero") : _("non-zero"), line);
22443
22444 if (at_commandline)
22445 {
22446 /* This DW_MACRO_start_file was executed in the
22447 pass one. */
22448 at_commandline = 0;
22449 }
22450 else
22451 current_file = macro_start_file (file, line, current_file, lh);
22452 }
22453 break;
22454
22455 case DW_MACRO_end_file:
22456 if (! current_file)
22457 complaint (&symfile_complaints,
22458 _("macro debug info has an unmatched "
22459 "`close_file' directive"));
22460 else
22461 {
22462 current_file = current_file->included_by;
22463 if (! current_file)
22464 {
22465 enum dwarf_macro_record_type next_type;
22466
22467 /* GCC circa March 2002 doesn't produce the zero
22468 type byte marking the end of the compilation
22469 unit. Complain if it's not there, but exit no
22470 matter what. */
22471
22472 /* Do we at least have room for a macinfo type byte? */
22473 if (mac_ptr >= mac_end)
22474 {
22475 dwarf2_section_buffer_overflow_complaint (section);
22476 return;
22477 }
22478
22479 /* We don't increment mac_ptr here, so this is just
22480 a look-ahead. */
22481 next_type
22482 = (enum dwarf_macro_record_type) read_1_byte (abfd,
22483 mac_ptr);
22484 if (next_type != 0)
22485 complaint (&symfile_complaints,
22486 _("no terminating 0-type entry for "
22487 "macros in `.debug_macinfo' section"));
22488
22489 return;
22490 }
22491 }
22492 break;
22493
22494 case DW_MACRO_import:
22495 case DW_MACRO_import_sup:
22496 {
22497 LONGEST offset;
22498 void **slot;
22499 bfd *include_bfd = abfd;
22500 struct dwarf2_section_info *include_section = section;
22501 const gdb_byte *include_mac_end = mac_end;
22502 int is_dwz = section_is_dwz;
22503 const gdb_byte *new_mac_ptr;
22504
22505 offset = read_offset_1 (abfd, mac_ptr, offset_size);
22506 mac_ptr += offset_size;
22507
22508 if (macinfo_type == DW_MACRO_import_sup)
22509 {
22510 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22511
22512 dwarf2_read_section (objfile, &dwz->macro);
22513
22514 include_section = &dwz->macro;
22515 include_bfd = get_section_bfd_owner (include_section);
22516 include_mac_end = dwz->macro.buffer + dwz->macro.size;
22517 is_dwz = 1;
22518 }
22519
22520 new_mac_ptr = include_section->buffer + offset;
22521 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
22522
22523 if (*slot != NULL)
22524 {
22525 /* This has actually happened; see
22526 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
22527 complaint (&symfile_complaints,
22528 _("recursive DW_MACRO_import in "
22529 ".debug_macro section"));
22530 }
22531 else
22532 {
22533 *slot = (void *) new_mac_ptr;
22534
22535 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
22536 include_mac_end, current_file, lh,
22537 section, section_is_gnu, is_dwz,
22538 offset_size, include_hash);
22539
22540 htab_remove_elt (include_hash, (void *) new_mac_ptr);
22541 }
22542 }
22543 break;
22544
22545 case DW_MACINFO_vendor_ext:
22546 if (!section_is_gnu)
22547 {
22548 unsigned int bytes_read;
22549
22550 /* This reads the constant, but since we don't recognize
22551 any vendor extensions, we ignore it. */
22552 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22553 mac_ptr += bytes_read;
22554 read_direct_string (abfd, mac_ptr, &bytes_read);
22555 mac_ptr += bytes_read;
22556
22557 /* We don't recognize any vendor extensions. */
22558 break;
22559 }
22560 /* FALLTHROUGH */
22561
22562 default:
22563 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22564 mac_ptr, mac_end, abfd, offset_size,
22565 section);
22566 if (mac_ptr == NULL)
22567 return;
22568 break;
22569 }
22570 } while (macinfo_type != 0);
22571 }
22572
22573 static void
22574 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
22575 int section_is_gnu)
22576 {
22577 struct objfile *objfile = dwarf2_per_objfile->objfile;
22578 struct line_header *lh = cu->line_header;
22579 bfd *abfd;
22580 const gdb_byte *mac_ptr, *mac_end;
22581 struct macro_source_file *current_file = 0;
22582 enum dwarf_macro_record_type macinfo_type;
22583 unsigned int offset_size = cu->header.offset_size;
22584 const gdb_byte *opcode_definitions[256];
22585 void **slot;
22586 struct dwarf2_section_info *section;
22587 const char *section_name;
22588
22589 if (cu->dwo_unit != NULL)
22590 {
22591 if (section_is_gnu)
22592 {
22593 section = &cu->dwo_unit->dwo_file->sections.macro;
22594 section_name = ".debug_macro.dwo";
22595 }
22596 else
22597 {
22598 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22599 section_name = ".debug_macinfo.dwo";
22600 }
22601 }
22602 else
22603 {
22604 if (section_is_gnu)
22605 {
22606 section = &dwarf2_per_objfile->macro;
22607 section_name = ".debug_macro";
22608 }
22609 else
22610 {
22611 section = &dwarf2_per_objfile->macinfo;
22612 section_name = ".debug_macinfo";
22613 }
22614 }
22615
22616 dwarf2_read_section (objfile, section);
22617 if (section->buffer == NULL)
22618 {
22619 complaint (&symfile_complaints, _("missing %s section"), section_name);
22620 return;
22621 }
22622 abfd = get_section_bfd_owner (section);
22623
22624 /* First pass: Find the name of the base filename.
22625 This filename is needed in order to process all macros whose definition
22626 (or undefinition) comes from the command line. These macros are defined
22627 before the first DW_MACINFO_start_file entry, and yet still need to be
22628 associated to the base file.
22629
22630 To determine the base file name, we scan the macro definitions until we
22631 reach the first DW_MACINFO_start_file entry. We then initialize
22632 CURRENT_FILE accordingly so that any macro definition found before the
22633 first DW_MACINFO_start_file can still be associated to the base file. */
22634
22635 mac_ptr = section->buffer + offset;
22636 mac_end = section->buffer + section->size;
22637
22638 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22639 &offset_size, section_is_gnu);
22640 if (mac_ptr == NULL)
22641 {
22642 /* We already issued a complaint. */
22643 return;
22644 }
22645
22646 do
22647 {
22648 /* Do we at least have room for a macinfo type byte? */
22649 if (mac_ptr >= mac_end)
22650 {
22651 /* Complaint is printed during the second pass as GDB will probably
22652 stop the first pass earlier upon finding
22653 DW_MACINFO_start_file. */
22654 break;
22655 }
22656
22657 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22658 mac_ptr++;
22659
22660 /* Note that we rely on the fact that the corresponding GNU and
22661 DWARF constants are the same. */
22662 switch (macinfo_type)
22663 {
22664 /* A zero macinfo type indicates the end of the macro
22665 information. */
22666 case 0:
22667 break;
22668
22669 case DW_MACRO_define:
22670 case DW_MACRO_undef:
22671 /* Only skip the data by MAC_PTR. */
22672 {
22673 unsigned int bytes_read;
22674
22675 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22676 mac_ptr += bytes_read;
22677 read_direct_string (abfd, mac_ptr, &bytes_read);
22678 mac_ptr += bytes_read;
22679 }
22680 break;
22681
22682 case DW_MACRO_start_file:
22683 {
22684 unsigned int bytes_read;
22685 int line, file;
22686
22687 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22688 mac_ptr += bytes_read;
22689 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22690 mac_ptr += bytes_read;
22691
22692 current_file = macro_start_file (file, line, current_file, lh);
22693 }
22694 break;
22695
22696 case DW_MACRO_end_file:
22697 /* No data to skip by MAC_PTR. */
22698 break;
22699
22700 case DW_MACRO_define_strp:
22701 case DW_MACRO_undef_strp:
22702 case DW_MACRO_define_sup:
22703 case DW_MACRO_undef_sup:
22704 {
22705 unsigned int bytes_read;
22706
22707 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22708 mac_ptr += bytes_read;
22709 mac_ptr += offset_size;
22710 }
22711 break;
22712
22713 case DW_MACRO_import:
22714 case DW_MACRO_import_sup:
22715 /* Note that, according to the spec, a transparent include
22716 chain cannot call DW_MACRO_start_file. So, we can just
22717 skip this opcode. */
22718 mac_ptr += offset_size;
22719 break;
22720
22721 case DW_MACINFO_vendor_ext:
22722 /* Only skip the data by MAC_PTR. */
22723 if (!section_is_gnu)
22724 {
22725 unsigned int bytes_read;
22726
22727 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22728 mac_ptr += bytes_read;
22729 read_direct_string (abfd, mac_ptr, &bytes_read);
22730 mac_ptr += bytes_read;
22731 }
22732 /* FALLTHROUGH */
22733
22734 default:
22735 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22736 mac_ptr, mac_end, abfd, offset_size,
22737 section);
22738 if (mac_ptr == NULL)
22739 return;
22740 break;
22741 }
22742 } while (macinfo_type != 0 && current_file == NULL);
22743
22744 /* Second pass: Process all entries.
22745
22746 Use the AT_COMMAND_LINE flag to determine whether we are still processing
22747 command-line macro definitions/undefinitions. This flag is unset when we
22748 reach the first DW_MACINFO_start_file entry. */
22749
22750 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
22751 htab_eq_pointer,
22752 NULL, xcalloc, xfree));
22753 mac_ptr = section->buffer + offset;
22754 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
22755 *slot = (void *) mac_ptr;
22756 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
22757 current_file, lh, section,
22758 section_is_gnu, 0, offset_size,
22759 include_hash.get ());
22760 }
22761
22762 /* Check if the attribute's form is a DW_FORM_block*
22763 if so return true else false. */
22764
22765 static int
22766 attr_form_is_block (const struct attribute *attr)
22767 {
22768 return (attr == NULL ? 0 :
22769 attr->form == DW_FORM_block1
22770 || attr->form == DW_FORM_block2
22771 || attr->form == DW_FORM_block4
22772 || attr->form == DW_FORM_block
22773 || attr->form == DW_FORM_exprloc);
22774 }
22775
22776 /* Return non-zero if ATTR's value is a section offset --- classes
22777 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
22778 You may use DW_UNSND (attr) to retrieve such offsets.
22779
22780 Section 7.5.4, "Attribute Encodings", explains that no attribute
22781 may have a value that belongs to more than one of these classes; it
22782 would be ambiguous if we did, because we use the same forms for all
22783 of them. */
22784
22785 static int
22786 attr_form_is_section_offset (const struct attribute *attr)
22787 {
22788 return (attr->form == DW_FORM_data4
22789 || attr->form == DW_FORM_data8
22790 || attr->form == DW_FORM_sec_offset);
22791 }
22792
22793 /* Return non-zero if ATTR's value falls in the 'constant' class, or
22794 zero otherwise. When this function returns true, you can apply
22795 dwarf2_get_attr_constant_value to it.
22796
22797 However, note that for some attributes you must check
22798 attr_form_is_section_offset before using this test. DW_FORM_data4
22799 and DW_FORM_data8 are members of both the constant class, and of
22800 the classes that contain offsets into other debug sections
22801 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
22802 that, if an attribute's can be either a constant or one of the
22803 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
22804 taken as section offsets, not constants.
22805
22806 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
22807 cannot handle that. */
22808
22809 static int
22810 attr_form_is_constant (const struct attribute *attr)
22811 {
22812 switch (attr->form)
22813 {
22814 case DW_FORM_sdata:
22815 case DW_FORM_udata:
22816 case DW_FORM_data1:
22817 case DW_FORM_data2:
22818 case DW_FORM_data4:
22819 case DW_FORM_data8:
22820 case DW_FORM_implicit_const:
22821 return 1;
22822 default:
22823 return 0;
22824 }
22825 }
22826
22827
22828 /* DW_ADDR is always stored already as sect_offset; despite for the forms
22829 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
22830
22831 static int
22832 attr_form_is_ref (const struct attribute *attr)
22833 {
22834 switch (attr->form)
22835 {
22836 case DW_FORM_ref_addr:
22837 case DW_FORM_ref1:
22838 case DW_FORM_ref2:
22839 case DW_FORM_ref4:
22840 case DW_FORM_ref8:
22841 case DW_FORM_ref_udata:
22842 case DW_FORM_GNU_ref_alt:
22843 return 1;
22844 default:
22845 return 0;
22846 }
22847 }
22848
22849 /* Return the .debug_loc section to use for CU.
22850 For DWO files use .debug_loc.dwo. */
22851
22852 static struct dwarf2_section_info *
22853 cu_debug_loc_section (struct dwarf2_cu *cu)
22854 {
22855 if (cu->dwo_unit)
22856 {
22857 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22858
22859 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22860 }
22861 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22862 : &dwarf2_per_objfile->loc);
22863 }
22864
22865 /* A helper function that fills in a dwarf2_loclist_baton. */
22866
22867 static void
22868 fill_in_loclist_baton (struct dwarf2_cu *cu,
22869 struct dwarf2_loclist_baton *baton,
22870 const struct attribute *attr)
22871 {
22872 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22873
22874 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
22875
22876 baton->per_cu = cu->per_cu;
22877 gdb_assert (baton->per_cu);
22878 /* We don't know how long the location list is, but make sure we
22879 don't run off the edge of the section. */
22880 baton->size = section->size - DW_UNSND (attr);
22881 baton->data = section->buffer + DW_UNSND (attr);
22882 baton->base_address = cu->base_address;
22883 baton->from_dwo = cu->dwo_unit != NULL;
22884 }
22885
22886 static void
22887 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
22888 struct dwarf2_cu *cu, int is_block)
22889 {
22890 struct objfile *objfile = dwarf2_per_objfile->objfile;
22891 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22892
22893 if (attr_form_is_section_offset (attr)
22894 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
22895 the section. If so, fall through to the complaint in the
22896 other branch. */
22897 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
22898 {
22899 struct dwarf2_loclist_baton *baton;
22900
22901 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
22902
22903 fill_in_loclist_baton (cu, baton, attr);
22904
22905 if (cu->base_known == 0)
22906 complaint (&symfile_complaints,
22907 _("Location list used without "
22908 "specifying the CU base address."));
22909
22910 SYMBOL_ACLASS_INDEX (sym) = (is_block
22911 ? dwarf2_loclist_block_index
22912 : dwarf2_loclist_index);
22913 SYMBOL_LOCATION_BATON (sym) = baton;
22914 }
22915 else
22916 {
22917 struct dwarf2_locexpr_baton *baton;
22918
22919 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
22920 baton->per_cu = cu->per_cu;
22921 gdb_assert (baton->per_cu);
22922
22923 if (attr_form_is_block (attr))
22924 {
22925 /* Note that we're just copying the block's data pointer
22926 here, not the actual data. We're still pointing into the
22927 info_buffer for SYM's objfile; right now we never release
22928 that buffer, but when we do clean up properly this may
22929 need to change. */
22930 baton->size = DW_BLOCK (attr)->size;
22931 baton->data = DW_BLOCK (attr)->data;
22932 }
22933 else
22934 {
22935 dwarf2_invalid_attrib_class_complaint ("location description",
22936 SYMBOL_NATURAL_NAME (sym));
22937 baton->size = 0;
22938 }
22939
22940 SYMBOL_ACLASS_INDEX (sym) = (is_block
22941 ? dwarf2_locexpr_block_index
22942 : dwarf2_locexpr_index);
22943 SYMBOL_LOCATION_BATON (sym) = baton;
22944 }
22945 }
22946
22947 /* Return the OBJFILE associated with the compilation unit CU. If CU
22948 came from a separate debuginfo file, then the master objfile is
22949 returned. */
22950
22951 struct objfile *
22952 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22953 {
22954 struct objfile *objfile = per_cu->objfile;
22955
22956 /* Return the master objfile, so that we can report and look up the
22957 correct file containing this variable. */
22958 if (objfile->separate_debug_objfile_backlink)
22959 objfile = objfile->separate_debug_objfile_backlink;
22960
22961 return objfile;
22962 }
22963
22964 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22965 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22966 CU_HEADERP first. */
22967
22968 static const struct comp_unit_head *
22969 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22970 struct dwarf2_per_cu_data *per_cu)
22971 {
22972 const gdb_byte *info_ptr;
22973
22974 if (per_cu->cu)
22975 return &per_cu->cu->header;
22976
22977 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
22978
22979 memset (cu_headerp, 0, sizeof (*cu_headerp));
22980 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22981 rcuh_kind::COMPILE);
22982
22983 return cu_headerp;
22984 }
22985
22986 /* Return the address size given in the compilation unit header for CU. */
22987
22988 int
22989 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22990 {
22991 struct comp_unit_head cu_header_local;
22992 const struct comp_unit_head *cu_headerp;
22993
22994 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22995
22996 return cu_headerp->addr_size;
22997 }
22998
22999 /* Return the offset size given in the compilation unit header for CU. */
23000
23001 int
23002 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
23003 {
23004 struct comp_unit_head cu_header_local;
23005 const struct comp_unit_head *cu_headerp;
23006
23007 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
23008
23009 return cu_headerp->offset_size;
23010 }
23011
23012 /* See its dwarf2loc.h declaration. */
23013
23014 int
23015 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
23016 {
23017 struct comp_unit_head cu_header_local;
23018 const struct comp_unit_head *cu_headerp;
23019
23020 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
23021
23022 if (cu_headerp->version == 2)
23023 return cu_headerp->addr_size;
23024 else
23025 return cu_headerp->offset_size;
23026 }
23027
23028 /* Return the text offset of the CU. The returned offset comes from
23029 this CU's objfile. If this objfile came from a separate debuginfo
23030 file, then the offset may be different from the corresponding
23031 offset in the parent objfile. */
23032
23033 CORE_ADDR
23034 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
23035 {
23036 struct objfile *objfile = per_cu->objfile;
23037
23038 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23039 }
23040
23041 /* Return DWARF version number of PER_CU. */
23042
23043 short
23044 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
23045 {
23046 return per_cu->dwarf_version;
23047 }
23048
23049 /* Locate the .debug_info compilation unit from CU's objfile which contains
23050 the DIE at OFFSET. Raises an error on failure. */
23051
23052 static struct dwarf2_per_cu_data *
23053 dwarf2_find_containing_comp_unit (sect_offset sect_off,
23054 unsigned int offset_in_dwz,
23055 struct objfile *objfile)
23056 {
23057 struct dwarf2_per_cu_data *this_cu;
23058 int low, high;
23059 const sect_offset *cu_off;
23060
23061 low = 0;
23062 high = dwarf2_per_objfile->n_comp_units - 1;
23063 while (high > low)
23064 {
23065 struct dwarf2_per_cu_data *mid_cu;
23066 int mid = low + (high - low) / 2;
23067
23068 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
23069 cu_off = &mid_cu->sect_off;
23070 if (mid_cu->is_dwz > offset_in_dwz
23071 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
23072 high = mid;
23073 else
23074 low = mid + 1;
23075 }
23076 gdb_assert (low == high);
23077 this_cu = dwarf2_per_objfile->all_comp_units[low];
23078 cu_off = &this_cu->sect_off;
23079 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
23080 {
23081 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
23082 error (_("Dwarf Error: could not find partial DIE containing "
23083 "offset 0x%x [in module %s]"),
23084 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
23085
23086 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
23087 <= sect_off);
23088 return dwarf2_per_objfile->all_comp_units[low-1];
23089 }
23090 else
23091 {
23092 this_cu = dwarf2_per_objfile->all_comp_units[low];
23093 if (low == dwarf2_per_objfile->n_comp_units - 1
23094 && sect_off >= this_cu->sect_off + this_cu->length)
23095 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off));
23096 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
23097 return this_cu;
23098 }
23099 }
23100
23101 /* Initialize dwarf2_cu CU, owned by PER_CU. */
23102
23103 static void
23104 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
23105 {
23106 memset (cu, 0, sizeof (*cu));
23107 per_cu->cu = cu;
23108 cu->per_cu = per_cu;
23109 cu->objfile = per_cu->objfile;
23110 obstack_init (&cu->comp_unit_obstack);
23111 }
23112
23113 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
23114
23115 static void
23116 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
23117 enum language pretend_language)
23118 {
23119 struct attribute *attr;
23120
23121 /* Set the language we're debugging. */
23122 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
23123 if (attr)
23124 set_cu_language (DW_UNSND (attr), cu);
23125 else
23126 {
23127 cu->language = pretend_language;
23128 cu->language_defn = language_def (cu->language);
23129 }
23130
23131 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
23132 }
23133
23134 /* Release one cached compilation unit, CU. We unlink it from the tree
23135 of compilation units, but we don't remove it from the read_in_chain;
23136 the caller is responsible for that.
23137 NOTE: DATA is a void * because this function is also used as a
23138 cleanup routine. */
23139
23140 static void
23141 free_heap_comp_unit (void *data)
23142 {
23143 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
23144
23145 gdb_assert (cu->per_cu != NULL);
23146 cu->per_cu->cu = NULL;
23147 cu->per_cu = NULL;
23148
23149 obstack_free (&cu->comp_unit_obstack, NULL);
23150
23151 xfree (cu);
23152 }
23153
23154 /* This cleanup function is passed the address of a dwarf2_cu on the stack
23155 when we're finished with it. We can't free the pointer itself, but be
23156 sure to unlink it from the cache. Also release any associated storage. */
23157
23158 static void
23159 free_stack_comp_unit (void *data)
23160 {
23161 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
23162
23163 gdb_assert (cu->per_cu != NULL);
23164 cu->per_cu->cu = NULL;
23165 cu->per_cu = NULL;
23166
23167 obstack_free (&cu->comp_unit_obstack, NULL);
23168 cu->partial_dies = NULL;
23169 }
23170
23171 /* Free all cached compilation units. */
23172
23173 static void
23174 free_cached_comp_units (void *data)
23175 {
23176 dwarf2_per_objfile->free_cached_comp_units ();
23177 }
23178
23179 /* Increase the age counter on each cached compilation unit, and free
23180 any that are too old. */
23181
23182 static void
23183 age_cached_comp_units (void)
23184 {
23185 struct dwarf2_per_cu_data *per_cu, **last_chain;
23186
23187 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
23188 per_cu = dwarf2_per_objfile->read_in_chain;
23189 while (per_cu != NULL)
23190 {
23191 per_cu->cu->last_used ++;
23192 if (per_cu->cu->last_used <= dwarf_max_cache_age)
23193 dwarf2_mark (per_cu->cu);
23194 per_cu = per_cu->cu->read_in_chain;
23195 }
23196
23197 per_cu = dwarf2_per_objfile->read_in_chain;
23198 last_chain = &dwarf2_per_objfile->read_in_chain;
23199 while (per_cu != NULL)
23200 {
23201 struct dwarf2_per_cu_data *next_cu;
23202
23203 next_cu = per_cu->cu->read_in_chain;
23204
23205 if (!per_cu->cu->mark)
23206 {
23207 free_heap_comp_unit (per_cu->cu);
23208 *last_chain = next_cu;
23209 }
23210 else
23211 last_chain = &per_cu->cu->read_in_chain;
23212
23213 per_cu = next_cu;
23214 }
23215 }
23216
23217 /* Remove a single compilation unit from the cache. */
23218
23219 static void
23220 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
23221 {
23222 struct dwarf2_per_cu_data *per_cu, **last_chain;
23223
23224 per_cu = dwarf2_per_objfile->read_in_chain;
23225 last_chain = &dwarf2_per_objfile->read_in_chain;
23226 while (per_cu != NULL)
23227 {
23228 struct dwarf2_per_cu_data *next_cu;
23229
23230 next_cu = per_cu->cu->read_in_chain;
23231
23232 if (per_cu == target_per_cu)
23233 {
23234 free_heap_comp_unit (per_cu->cu);
23235 per_cu->cu = NULL;
23236 *last_chain = next_cu;
23237 break;
23238 }
23239 else
23240 last_chain = &per_cu->cu->read_in_chain;
23241
23242 per_cu = next_cu;
23243 }
23244 }
23245
23246 /* Release all extra memory associated with OBJFILE. */
23247
23248 void
23249 dwarf2_free_objfile (struct objfile *objfile)
23250 {
23251 dwarf2_per_objfile
23252 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23253 dwarf2_objfile_data_key);
23254
23255 if (dwarf2_per_objfile == NULL)
23256 return;
23257
23258 dwarf2_per_objfile->~dwarf2_per_objfile ();
23259 }
23260
23261 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
23262 We store these in a hash table separate from the DIEs, and preserve them
23263 when the DIEs are flushed out of cache.
23264
23265 The CU "per_cu" pointer is needed because offset alone is not enough to
23266 uniquely identify the type. A file may have multiple .debug_types sections,
23267 or the type may come from a DWO file. Furthermore, while it's more logical
23268 to use per_cu->section+offset, with Fission the section with the data is in
23269 the DWO file but we don't know that section at the point we need it.
23270 We have to use something in dwarf2_per_cu_data (or the pointer to it)
23271 because we can enter the lookup routine, get_die_type_at_offset, from
23272 outside this file, and thus won't necessarily have PER_CU->cu.
23273 Fortunately, PER_CU is stable for the life of the objfile. */
23274
23275 struct dwarf2_per_cu_offset_and_type
23276 {
23277 const struct dwarf2_per_cu_data *per_cu;
23278 sect_offset sect_off;
23279 struct type *type;
23280 };
23281
23282 /* Hash function for a dwarf2_per_cu_offset_and_type. */
23283
23284 static hashval_t
23285 per_cu_offset_and_type_hash (const void *item)
23286 {
23287 const struct dwarf2_per_cu_offset_and_type *ofs
23288 = (const struct dwarf2_per_cu_offset_and_type *) item;
23289
23290 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
23291 }
23292
23293 /* Equality function for a dwarf2_per_cu_offset_and_type. */
23294
23295 static int
23296 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
23297 {
23298 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
23299 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
23300 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
23301 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
23302
23303 return (ofs_lhs->per_cu == ofs_rhs->per_cu
23304 && ofs_lhs->sect_off == ofs_rhs->sect_off);
23305 }
23306
23307 /* Set the type associated with DIE to TYPE. Save it in CU's hash
23308 table if necessary. For convenience, return TYPE.
23309
23310 The DIEs reading must have careful ordering to:
23311 * Not cause infite loops trying to read in DIEs as a prerequisite for
23312 reading current DIE.
23313 * Not trying to dereference contents of still incompletely read in types
23314 while reading in other DIEs.
23315 * Enable referencing still incompletely read in types just by a pointer to
23316 the type without accessing its fields.
23317
23318 Therefore caller should follow these rules:
23319 * Try to fetch any prerequisite types we may need to build this DIE type
23320 before building the type and calling set_die_type.
23321 * After building type call set_die_type for current DIE as soon as
23322 possible before fetching more types to complete the current type.
23323 * Make the type as complete as possible before fetching more types. */
23324
23325 static struct type *
23326 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23327 {
23328 struct dwarf2_per_cu_offset_and_type **slot, ofs;
23329 struct objfile *objfile = cu->objfile;
23330 struct attribute *attr;
23331 struct dynamic_prop prop;
23332
23333 /* For Ada types, make sure that the gnat-specific data is always
23334 initialized (if not already set). There are a few types where
23335 we should not be doing so, because the type-specific area is
23336 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23337 where the type-specific area is used to store the floatformat).
23338 But this is not a problem, because the gnat-specific information
23339 is actually not needed for these types. */
23340 if (need_gnat_info (cu)
23341 && TYPE_CODE (type) != TYPE_CODE_FUNC
23342 && TYPE_CODE (type) != TYPE_CODE_FLT
23343 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
23344 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
23345 && TYPE_CODE (type) != TYPE_CODE_METHOD
23346 && !HAVE_GNAT_AUX_INFO (type))
23347 INIT_GNAT_SPECIFIC (type);
23348
23349 /* Read DW_AT_allocated and set in type. */
23350 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23351 if (attr_form_is_block (attr))
23352 {
23353 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23354 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
23355 }
23356 else if (attr != NULL)
23357 {
23358 complaint (&symfile_complaints,
23359 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
23360 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23361 to_underlying (die->sect_off));
23362 }
23363
23364 /* Read DW_AT_associated and set in type. */
23365 attr = dwarf2_attr (die, DW_AT_associated, cu);
23366 if (attr_form_is_block (attr))
23367 {
23368 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23369 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
23370 }
23371 else if (attr != NULL)
23372 {
23373 complaint (&symfile_complaints,
23374 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
23375 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23376 to_underlying (die->sect_off));
23377 }
23378
23379 /* Read DW_AT_data_location and set in type. */
23380 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23381 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23382 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
23383
23384 if (dwarf2_per_objfile->die_type_hash == NULL)
23385 {
23386 dwarf2_per_objfile->die_type_hash =
23387 htab_create_alloc_ex (127,
23388 per_cu_offset_and_type_hash,
23389 per_cu_offset_and_type_eq,
23390 NULL,
23391 &objfile->objfile_obstack,
23392 hashtab_obstack_allocate,
23393 dummy_obstack_deallocate);
23394 }
23395
23396 ofs.per_cu = cu->per_cu;
23397 ofs.sect_off = die->sect_off;
23398 ofs.type = type;
23399 slot = (struct dwarf2_per_cu_offset_and_type **)
23400 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
23401 if (*slot)
23402 complaint (&symfile_complaints,
23403 _("A problem internal to GDB: DIE 0x%x has type already set"),
23404 to_underlying (die->sect_off));
23405 *slot = XOBNEW (&objfile->objfile_obstack,
23406 struct dwarf2_per_cu_offset_and_type);
23407 **slot = ofs;
23408 return type;
23409 }
23410
23411 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
23412 or return NULL if the die does not have a saved type. */
23413
23414 static struct type *
23415 get_die_type_at_offset (sect_offset sect_off,
23416 struct dwarf2_per_cu_data *per_cu)
23417 {
23418 struct dwarf2_per_cu_offset_and_type *slot, ofs;
23419
23420 if (dwarf2_per_objfile->die_type_hash == NULL)
23421 return NULL;
23422
23423 ofs.per_cu = per_cu;
23424 ofs.sect_off = sect_off;
23425 slot = ((struct dwarf2_per_cu_offset_and_type *)
23426 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
23427 if (slot)
23428 return slot->type;
23429 else
23430 return NULL;
23431 }
23432
23433 /* Look up the type for DIE in CU in die_type_hash,
23434 or return NULL if DIE does not have a saved type. */
23435
23436 static struct type *
23437 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23438 {
23439 return get_die_type_at_offset (die->sect_off, cu->per_cu);
23440 }
23441
23442 /* Add a dependence relationship from CU to REF_PER_CU. */
23443
23444 static void
23445 dwarf2_add_dependence (struct dwarf2_cu *cu,
23446 struct dwarf2_per_cu_data *ref_per_cu)
23447 {
23448 void **slot;
23449
23450 if (cu->dependencies == NULL)
23451 cu->dependencies
23452 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23453 NULL, &cu->comp_unit_obstack,
23454 hashtab_obstack_allocate,
23455 dummy_obstack_deallocate);
23456
23457 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23458 if (*slot == NULL)
23459 *slot = ref_per_cu;
23460 }
23461
23462 /* Subroutine of dwarf2_mark to pass to htab_traverse.
23463 Set the mark field in every compilation unit in the
23464 cache that we must keep because we are keeping CU. */
23465
23466 static int
23467 dwarf2_mark_helper (void **slot, void *data)
23468 {
23469 struct dwarf2_per_cu_data *per_cu;
23470
23471 per_cu = (struct dwarf2_per_cu_data *) *slot;
23472
23473 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23474 reading of the chain. As such dependencies remain valid it is not much
23475 useful to track and undo them during QUIT cleanups. */
23476 if (per_cu->cu == NULL)
23477 return 1;
23478
23479 if (per_cu->cu->mark)
23480 return 1;
23481 per_cu->cu->mark = 1;
23482
23483 if (per_cu->cu->dependencies != NULL)
23484 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23485
23486 return 1;
23487 }
23488
23489 /* Set the mark field in CU and in every other compilation unit in the
23490 cache that we must keep because we are keeping CU. */
23491
23492 static void
23493 dwarf2_mark (struct dwarf2_cu *cu)
23494 {
23495 if (cu->mark)
23496 return;
23497 cu->mark = 1;
23498 if (cu->dependencies != NULL)
23499 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23500 }
23501
23502 static void
23503 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23504 {
23505 while (per_cu)
23506 {
23507 per_cu->cu->mark = 0;
23508 per_cu = per_cu->cu->read_in_chain;
23509 }
23510 }
23511
23512 /* Trivial hash function for partial_die_info: the hash value of a DIE
23513 is its offset in .debug_info for this objfile. */
23514
23515 static hashval_t
23516 partial_die_hash (const void *item)
23517 {
23518 const struct partial_die_info *part_die
23519 = (const struct partial_die_info *) item;
23520
23521 return to_underlying (part_die->sect_off);
23522 }
23523
23524 /* Trivial comparison function for partial_die_info structures: two DIEs
23525 are equal if they have the same offset. */
23526
23527 static int
23528 partial_die_eq (const void *item_lhs, const void *item_rhs)
23529 {
23530 const struct partial_die_info *part_die_lhs
23531 = (const struct partial_die_info *) item_lhs;
23532 const struct partial_die_info *part_die_rhs
23533 = (const struct partial_die_info *) item_rhs;
23534
23535 return part_die_lhs->sect_off == part_die_rhs->sect_off;
23536 }
23537
23538 static struct cmd_list_element *set_dwarf_cmdlist;
23539 static struct cmd_list_element *show_dwarf_cmdlist;
23540
23541 static void
23542 set_dwarf_cmd (const char *args, int from_tty)
23543 {
23544 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
23545 gdb_stdout);
23546 }
23547
23548 static void
23549 show_dwarf_cmd (const char *args, int from_tty)
23550 {
23551 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
23552 }
23553
23554 /* Free data associated with OBJFILE, if necessary. */
23555
23556 static void
23557 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
23558 {
23559 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
23560 int ix;
23561
23562 /* Make sure we don't accidentally use dwarf2_per_objfile while
23563 cleaning up. */
23564 dwarf2_per_objfile = NULL;
23565
23566 for (ix = 0; ix < data->n_comp_units; ++ix)
23567 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
23568
23569 for (ix = 0; ix < data->n_type_units; ++ix)
23570 VEC_free (dwarf2_per_cu_ptr,
23571 data->all_type_units[ix]->per_cu.imported_symtabs);
23572 xfree (data->all_type_units);
23573
23574 VEC_free (dwarf2_section_info_def, data->types);
23575
23576 if (data->dwo_files)
23577 free_dwo_files (data->dwo_files, objfile);
23578 if (data->dwp_file)
23579 gdb_bfd_unref (data->dwp_file->dbfd);
23580
23581 if (data->dwz_file && data->dwz_file->dwz_bfd)
23582 gdb_bfd_unref (data->dwz_file->dwz_bfd);
23583
23584 if (data->index_table != NULL)
23585 data->index_table->~mapped_index ();
23586 }
23587
23588 \f
23589 /* The "save gdb-index" command. */
23590
23591 /* In-memory buffer to prepare data to be written later to a file. */
23592 class data_buf
23593 {
23594 public:
23595 /* Copy DATA to the end of the buffer. */
23596 template<typename T>
23597 void append_data (const T &data)
23598 {
23599 std::copy (reinterpret_cast<const gdb_byte *> (&data),
23600 reinterpret_cast<const gdb_byte *> (&data + 1),
23601 grow (sizeof (data)));
23602 }
23603
23604 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
23605 terminating zero is appended too. */
23606 void append_cstr0 (const char *cstr)
23607 {
23608 const size_t size = strlen (cstr) + 1;
23609 std::copy (cstr, cstr + size, grow (size));
23610 }
23611
23612 /* Accept a host-format integer in VAL and append it to the buffer
23613 as a target-format integer which is LEN bytes long. */
23614 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
23615 {
23616 ::store_unsigned_integer (grow (len), len, byte_order, val);
23617 }
23618
23619 /* Return the size of the buffer. */
23620 size_t size () const
23621 {
23622 return m_vec.size ();
23623 }
23624
23625 /* Write the buffer to FILE. */
23626 void file_write (FILE *file) const
23627 {
23628 if (::fwrite (m_vec.data (), 1, m_vec.size (), file) != m_vec.size ())
23629 error (_("couldn't write data to file"));
23630 }
23631
23632 private:
23633 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
23634 the start of the new block. */
23635 gdb_byte *grow (size_t size)
23636 {
23637 m_vec.resize (m_vec.size () + size);
23638 return &*m_vec.end () - size;
23639 }
23640
23641 gdb::byte_vector m_vec;
23642 };
23643
23644 /* An entry in the symbol table. */
23645 struct symtab_index_entry
23646 {
23647 /* The name of the symbol. */
23648 const char *name;
23649 /* The offset of the name in the constant pool. */
23650 offset_type index_offset;
23651 /* A sorted vector of the indices of all the CUs that hold an object
23652 of this name. */
23653 std::vector<offset_type> cu_indices;
23654 };
23655
23656 /* The symbol table. This is a power-of-2-sized hash table. */
23657 struct mapped_symtab
23658 {
23659 mapped_symtab ()
23660 {
23661 data.resize (1024);
23662 }
23663
23664 offset_type n_elements = 0;
23665 std::vector<symtab_index_entry> data;
23666 };
23667
23668 /* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
23669 the slot.
23670
23671 Function is used only during write_hash_table so no index format backward
23672 compatibility is needed. */
23673
23674 static symtab_index_entry &
23675 find_slot (struct mapped_symtab *symtab, const char *name)
23676 {
23677 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
23678
23679 index = hash & (symtab->data.size () - 1);
23680 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
23681
23682 for (;;)
23683 {
23684 if (symtab->data[index].name == NULL
23685 || strcmp (name, symtab->data[index].name) == 0)
23686 return symtab->data[index];
23687 index = (index + step) & (symtab->data.size () - 1);
23688 }
23689 }
23690
23691 /* Expand SYMTAB's hash table. */
23692
23693 static void
23694 hash_expand (struct mapped_symtab *symtab)
23695 {
23696 auto old_entries = std::move (symtab->data);
23697
23698 symtab->data.clear ();
23699 symtab->data.resize (old_entries.size () * 2);
23700
23701 for (auto &it : old_entries)
23702 if (it.name != NULL)
23703 {
23704 auto &ref = find_slot (symtab, it.name);
23705 ref = std::move (it);
23706 }
23707 }
23708
23709 /* Add an entry to SYMTAB. NAME is the name of the symbol.
23710 CU_INDEX is the index of the CU in which the symbol appears.
23711 IS_STATIC is one if the symbol is static, otherwise zero (global). */
23712
23713 static void
23714 add_index_entry (struct mapped_symtab *symtab, const char *name,
23715 int is_static, gdb_index_symbol_kind kind,
23716 offset_type cu_index)
23717 {
23718 offset_type cu_index_and_attrs;
23719
23720 ++symtab->n_elements;
23721 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
23722 hash_expand (symtab);
23723
23724 symtab_index_entry &slot = find_slot (symtab, name);
23725 if (slot.name == NULL)
23726 {
23727 slot.name = name;
23728 /* index_offset is set later. */
23729 }
23730
23731 cu_index_and_attrs = 0;
23732 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
23733 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
23734 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
23735
23736 /* We don't want to record an index value twice as we want to avoid the
23737 duplication.
23738 We process all global symbols and then all static symbols
23739 (which would allow us to avoid the duplication by only having to check
23740 the last entry pushed), but a symbol could have multiple kinds in one CU.
23741 To keep things simple we don't worry about the duplication here and
23742 sort and uniqufy the list after we've processed all symbols. */
23743 slot.cu_indices.push_back (cu_index_and_attrs);
23744 }
23745
23746 /* Sort and remove duplicates of all symbols' cu_indices lists. */
23747
23748 static void
23749 uniquify_cu_indices (struct mapped_symtab *symtab)
23750 {
23751 for (auto &entry : symtab->data)
23752 {
23753 if (entry.name != NULL && !entry.cu_indices.empty ())
23754 {
23755 auto &cu_indices = entry.cu_indices;
23756 std::sort (cu_indices.begin (), cu_indices.end ());
23757 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
23758 cu_indices.erase (from, cu_indices.end ());
23759 }
23760 }
23761 }
23762
23763 /* A form of 'const char *' suitable for container keys. Only the
23764 pointer is stored. The strings themselves are compared, not the
23765 pointers. */
23766 class c_str_view
23767 {
23768 public:
23769 c_str_view (const char *cstr)
23770 : m_cstr (cstr)
23771 {}
23772
23773 bool operator== (const c_str_view &other) const
23774 {
23775 return strcmp (m_cstr, other.m_cstr) == 0;
23776 }
23777
23778 private:
23779 friend class c_str_view_hasher;
23780 const char *const m_cstr;
23781 };
23782
23783 /* A std::unordered_map::hasher for c_str_view that uses the right
23784 hash function for strings in a mapped index. */
23785 class c_str_view_hasher
23786 {
23787 public:
23788 size_t operator () (const c_str_view &x) const
23789 {
23790 return mapped_index_string_hash (INT_MAX, x.m_cstr);
23791 }
23792 };
23793
23794 /* A std::unordered_map::hasher for std::vector<>. */
23795 template<typename T>
23796 class vector_hasher
23797 {
23798 public:
23799 size_t operator () (const std::vector<T> &key) const
23800 {
23801 return iterative_hash (key.data (),
23802 sizeof (key.front ()) * key.size (), 0);
23803 }
23804 };
23805
23806 /* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
23807 constant pool entries going into the data buffer CPOOL. */
23808
23809 static void
23810 write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
23811 {
23812 {
23813 /* Elements are sorted vectors of the indices of all the CUs that
23814 hold an object of this name. */
23815 std::unordered_map<std::vector<offset_type>, offset_type,
23816 vector_hasher<offset_type>>
23817 symbol_hash_table;
23818
23819 /* We add all the index vectors to the constant pool first, to
23820 ensure alignment is ok. */
23821 for (symtab_index_entry &entry : symtab->data)
23822 {
23823 if (entry.name == NULL)
23824 continue;
23825 gdb_assert (entry.index_offset == 0);
23826
23827 /* Finding before inserting is faster than always trying to
23828 insert, because inserting always allocates a node, does the
23829 lookup, and then destroys the new node if another node
23830 already had the same key. C++17 try_emplace will avoid
23831 this. */
23832 const auto found
23833 = symbol_hash_table.find (entry.cu_indices);
23834 if (found != symbol_hash_table.end ())
23835 {
23836 entry.index_offset = found->second;
23837 continue;
23838 }
23839
23840 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
23841 entry.index_offset = cpool.size ();
23842 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
23843 for (const auto index : entry.cu_indices)
23844 cpool.append_data (MAYBE_SWAP (index));
23845 }
23846 }
23847
23848 /* Now write out the hash table. */
23849 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
23850 for (const auto &entry : symtab->data)
23851 {
23852 offset_type str_off, vec_off;
23853
23854 if (entry.name != NULL)
23855 {
23856 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
23857 if (insertpair.second)
23858 cpool.append_cstr0 (entry.name);
23859 str_off = insertpair.first->second;
23860 vec_off = entry.index_offset;
23861 }
23862 else
23863 {
23864 /* While 0 is a valid constant pool index, it is not valid
23865 to have 0 for both offsets. */
23866 str_off = 0;
23867 vec_off = 0;
23868 }
23869
23870 output.append_data (MAYBE_SWAP (str_off));
23871 output.append_data (MAYBE_SWAP (vec_off));
23872 }
23873 }
23874
23875 typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
23876
23877 /* Helper struct for building the address table. */
23878 struct addrmap_index_data
23879 {
23880 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
23881 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
23882 {}
23883
23884 struct objfile *objfile;
23885 data_buf &addr_vec;
23886 psym_index_map &cu_index_htab;
23887
23888 /* Non-zero if the previous_* fields are valid.
23889 We can't write an entry until we see the next entry (since it is only then
23890 that we know the end of the entry). */
23891 int previous_valid;
23892 /* Index of the CU in the table of all CUs in the index file. */
23893 unsigned int previous_cu_index;
23894 /* Start address of the CU. */
23895 CORE_ADDR previous_cu_start;
23896 };
23897
23898 /* Write an address entry to ADDR_VEC. */
23899
23900 static void
23901 add_address_entry (struct objfile *objfile, data_buf &addr_vec,
23902 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23903 {
23904 CORE_ADDR baseaddr;
23905
23906 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23907
23908 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
23909 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
23910 addr_vec.append_data (MAYBE_SWAP (cu_index));
23911 }
23912
23913 /* Worker function for traversing an addrmap to build the address table. */
23914
23915 static int
23916 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23917 {
23918 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23919 struct partial_symtab *pst = (struct partial_symtab *) obj;
23920
23921 if (data->previous_valid)
23922 add_address_entry (data->objfile, data->addr_vec,
23923 data->previous_cu_start, start_addr,
23924 data->previous_cu_index);
23925
23926 data->previous_cu_start = start_addr;
23927 if (pst != NULL)
23928 {
23929 const auto it = data->cu_index_htab.find (pst);
23930 gdb_assert (it != data->cu_index_htab.cend ());
23931 data->previous_cu_index = it->second;
23932 data->previous_valid = 1;
23933 }
23934 else
23935 data->previous_valid = 0;
23936
23937 return 0;
23938 }
23939
23940 /* Write OBJFILE's address map to ADDR_VEC.
23941 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23942 in the index file. */
23943
23944 static void
23945 write_address_map (struct objfile *objfile, data_buf &addr_vec,
23946 psym_index_map &cu_index_htab)
23947 {
23948 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
23949
23950 /* When writing the address table, we have to cope with the fact that
23951 the addrmap iterator only provides the start of a region; we have to
23952 wait until the next invocation to get the start of the next region. */
23953
23954 addrmap_index_data.objfile = objfile;
23955 addrmap_index_data.previous_valid = 0;
23956
23957 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23958 &addrmap_index_data);
23959
23960 /* It's highly unlikely the last entry (end address = 0xff...ff)
23961 is valid, but we should still handle it.
23962 The end address is recorded as the start of the next region, but that
23963 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23964 anyway. */
23965 if (addrmap_index_data.previous_valid)
23966 add_address_entry (objfile, addr_vec,
23967 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23968 addrmap_index_data.previous_cu_index);
23969 }
23970
23971 /* Return the symbol kind of PSYM. */
23972
23973 static gdb_index_symbol_kind
23974 symbol_kind (struct partial_symbol *psym)
23975 {
23976 domain_enum domain = PSYMBOL_DOMAIN (psym);
23977 enum address_class aclass = PSYMBOL_CLASS (psym);
23978
23979 switch (domain)
23980 {
23981 case VAR_DOMAIN:
23982 switch (aclass)
23983 {
23984 case LOC_BLOCK:
23985 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23986 case LOC_TYPEDEF:
23987 return GDB_INDEX_SYMBOL_KIND_TYPE;
23988 case LOC_COMPUTED:
23989 case LOC_CONST_BYTES:
23990 case LOC_OPTIMIZED_OUT:
23991 case LOC_STATIC:
23992 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23993 case LOC_CONST:
23994 /* Note: It's currently impossible to recognize psyms as enum values
23995 short of reading the type info. For now punt. */
23996 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23997 default:
23998 /* There are other LOC_FOO values that one might want to classify
23999 as variables, but dwarf2read.c doesn't currently use them. */
24000 return GDB_INDEX_SYMBOL_KIND_OTHER;
24001 }
24002 case STRUCT_DOMAIN:
24003 return GDB_INDEX_SYMBOL_KIND_TYPE;
24004 default:
24005 return GDB_INDEX_SYMBOL_KIND_OTHER;
24006 }
24007 }
24008
24009 /* Add a list of partial symbols to SYMTAB. */
24010
24011 static void
24012 write_psymbols (struct mapped_symtab *symtab,
24013 std::unordered_set<partial_symbol *> &psyms_seen,
24014 struct partial_symbol **psymp,
24015 int count,
24016 offset_type cu_index,
24017 int is_static)
24018 {
24019 for (; count-- > 0; ++psymp)
24020 {
24021 struct partial_symbol *psym = *psymp;
24022
24023 if (SYMBOL_LANGUAGE (psym) == language_ada)
24024 error (_("Ada is not currently supported by the index"));
24025
24026 /* Only add a given psymbol once. */
24027 if (psyms_seen.insert (psym).second)
24028 {
24029 gdb_index_symbol_kind kind = symbol_kind (psym);
24030
24031 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
24032 is_static, kind, cu_index);
24033 }
24034 }
24035 }
24036
24037 /* A helper struct used when iterating over debug_types. */
24038 struct signatured_type_index_data
24039 {
24040 signatured_type_index_data (data_buf &types_list_,
24041 std::unordered_set<partial_symbol *> &psyms_seen_)
24042 : types_list (types_list_), psyms_seen (psyms_seen_)
24043 {}
24044
24045 struct objfile *objfile;
24046 struct mapped_symtab *symtab;
24047 data_buf &types_list;
24048 std::unordered_set<partial_symbol *> &psyms_seen;
24049 int cu_index;
24050 };
24051
24052 /* A helper function that writes a single signatured_type to an
24053 obstack. */
24054
24055 static int
24056 write_one_signatured_type (void **slot, void *d)
24057 {
24058 struct signatured_type_index_data *info
24059 = (struct signatured_type_index_data *) d;
24060 struct signatured_type *entry = (struct signatured_type *) *slot;
24061 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
24062
24063 write_psymbols (info->symtab,
24064 info->psyms_seen,
24065 &info->objfile->global_psymbols[psymtab->globals_offset],
24066 psymtab->n_global_syms, info->cu_index,
24067 0);
24068 write_psymbols (info->symtab,
24069 info->psyms_seen,
24070 &info->objfile->static_psymbols[psymtab->statics_offset],
24071 psymtab->n_static_syms, info->cu_index,
24072 1);
24073
24074 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
24075 to_underlying (entry->per_cu.sect_off));
24076 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
24077 to_underlying (entry->type_offset_in_tu));
24078 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
24079
24080 ++info->cu_index;
24081
24082 return 1;
24083 }
24084
24085 /* Recurse into all "included" dependencies and count their symbols as
24086 if they appeared in this psymtab. */
24087
24088 static void
24089 recursively_count_psymbols (struct partial_symtab *psymtab,
24090 size_t &psyms_seen)
24091 {
24092 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
24093 if (psymtab->dependencies[i]->user != NULL)
24094 recursively_count_psymbols (psymtab->dependencies[i],
24095 psyms_seen);
24096
24097 psyms_seen += psymtab->n_global_syms;
24098 psyms_seen += psymtab->n_static_syms;
24099 }
24100
24101 /* Recurse into all "included" dependencies and write their symbols as
24102 if they appeared in this psymtab. */
24103
24104 static void
24105 recursively_write_psymbols (struct objfile *objfile,
24106 struct partial_symtab *psymtab,
24107 struct mapped_symtab *symtab,
24108 std::unordered_set<partial_symbol *> &psyms_seen,
24109 offset_type cu_index)
24110 {
24111 int i;
24112
24113 for (i = 0; i < psymtab->number_of_dependencies; ++i)
24114 if (psymtab->dependencies[i]->user != NULL)
24115 recursively_write_psymbols (objfile, psymtab->dependencies[i],
24116 symtab, psyms_seen, cu_index);
24117
24118 write_psymbols (symtab,
24119 psyms_seen,
24120 &objfile->global_psymbols[psymtab->globals_offset],
24121 psymtab->n_global_syms, cu_index,
24122 0);
24123 write_psymbols (symtab,
24124 psyms_seen,
24125 &objfile->static_psymbols[psymtab->statics_offset],
24126 psymtab->n_static_syms, cu_index,
24127 1);
24128 }
24129
24130 /* Create an index file for OBJFILE in the directory DIR. */
24131
24132 static void
24133 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
24134 {
24135 if (dwarf2_per_objfile->using_index)
24136 error (_("Cannot use an index to create the index"));
24137
24138 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
24139 error (_("Cannot make an index when the file has multiple .debug_types sections"));
24140
24141 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
24142 return;
24143
24144 struct stat st;
24145 if (stat (objfile_name (objfile), &st) < 0)
24146 perror_with_name (objfile_name (objfile));
24147
24148 std::string filename (std::string (dir) + SLASH_STRING
24149 + lbasename (objfile_name (objfile)) + INDEX_SUFFIX);
24150
24151 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
24152 if (!out_file)
24153 error (_("Can't open `%s' for writing"), filename.c_str ());
24154
24155 /* Order matters here; we want FILE to be closed before FILENAME is
24156 unlinked, because on MS-Windows one cannot delete a file that is
24157 still open. (Don't call anything here that might throw until
24158 file_closer is created.) */
24159 gdb::unlinker unlink_file (filename.c_str ());
24160 gdb_file_up close_out_file (out_file);
24161
24162 mapped_symtab symtab;
24163 data_buf cu_list;
24164
24165 /* While we're scanning CU's create a table that maps a psymtab pointer
24166 (which is what addrmap records) to its index (which is what is recorded
24167 in the index file). This will later be needed to write the address
24168 table. */
24169 psym_index_map cu_index_htab;
24170 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
24171
24172 /* The CU list is already sorted, so we don't need to do additional
24173 work here. Also, the debug_types entries do not appear in
24174 all_comp_units, but only in their own hash table. */
24175
24176 /* The psyms_seen set is potentially going to be largish (~40k
24177 elements when indexing a -g3 build of GDB itself). Estimate the
24178 number of elements in order to avoid too many rehashes, which
24179 require rebuilding buckets and thus many trips to
24180 malloc/free. */
24181 size_t psyms_count = 0;
24182 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24183 {
24184 struct dwarf2_per_cu_data *per_cu
24185 = dwarf2_per_objfile->all_comp_units[i];
24186 struct partial_symtab *psymtab = per_cu->v.psymtab;
24187
24188 if (psymtab != NULL && psymtab->user == NULL)
24189 recursively_count_psymbols (psymtab, psyms_count);
24190 }
24191 /* Generating an index for gdb itself shows a ratio of
24192 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
24193 std::unordered_set<partial_symbol *> psyms_seen (psyms_count / 4);
24194 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24195 {
24196 struct dwarf2_per_cu_data *per_cu
24197 = dwarf2_per_objfile->all_comp_units[i];
24198 struct partial_symtab *psymtab = per_cu->v.psymtab;
24199
24200 /* CU of a shared file from 'dwz -m' may be unused by this main file.
24201 It may be referenced from a local scope but in such case it does not
24202 need to be present in .gdb_index. */
24203 if (psymtab == NULL)
24204 continue;
24205
24206 if (psymtab->user == NULL)
24207 recursively_write_psymbols (objfile, psymtab, &symtab,
24208 psyms_seen, i);
24209
24210 const auto insertpair = cu_index_htab.emplace (psymtab, i);
24211 gdb_assert (insertpair.second);
24212
24213 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
24214 to_underlying (per_cu->sect_off));
24215 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
24216 }
24217
24218 /* Dump the address map. */
24219 data_buf addr_vec;
24220 write_address_map (objfile, addr_vec, cu_index_htab);
24221
24222 /* Write out the .debug_type entries, if any. */
24223 data_buf types_cu_list;
24224 if (dwarf2_per_objfile->signatured_types)
24225 {
24226 signatured_type_index_data sig_data (types_cu_list,
24227 psyms_seen);
24228
24229 sig_data.objfile = objfile;
24230 sig_data.symtab = &symtab;
24231 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
24232 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
24233 write_one_signatured_type, &sig_data);
24234 }
24235
24236 /* Now that we've processed all symbols we can shrink their cu_indices
24237 lists. */
24238 uniquify_cu_indices (&symtab);
24239
24240 data_buf symtab_vec, constant_pool;
24241 write_hash_table (&symtab, symtab_vec, constant_pool);
24242
24243 data_buf contents;
24244 const offset_type size_of_contents = 6 * sizeof (offset_type);
24245 offset_type total_len = size_of_contents;
24246
24247 /* The version number. */
24248 contents.append_data (MAYBE_SWAP (8));
24249
24250 /* The offset of the CU list from the start of the file. */
24251 contents.append_data (MAYBE_SWAP (total_len));
24252 total_len += cu_list.size ();
24253
24254 /* The offset of the types CU list from the start of the file. */
24255 contents.append_data (MAYBE_SWAP (total_len));
24256 total_len += types_cu_list.size ();
24257
24258 /* The offset of the address table from the start of the file. */
24259 contents.append_data (MAYBE_SWAP (total_len));
24260 total_len += addr_vec.size ();
24261
24262 /* The offset of the symbol table from the start of the file. */
24263 contents.append_data (MAYBE_SWAP (total_len));
24264 total_len += symtab_vec.size ();
24265
24266 /* The offset of the constant pool from the start of the file. */
24267 contents.append_data (MAYBE_SWAP (total_len));
24268 total_len += constant_pool.size ();
24269
24270 gdb_assert (contents.size () == size_of_contents);
24271
24272 contents.file_write (out_file);
24273 cu_list.file_write (out_file);
24274 types_cu_list.file_write (out_file);
24275 addr_vec.file_write (out_file);
24276 symtab_vec.file_write (out_file);
24277 constant_pool.file_write (out_file);
24278
24279 /* We want to keep the file. */
24280 unlink_file.keep ();
24281 }
24282
24283 /* Implementation of the `save gdb-index' command.
24284
24285 Note that the file format used by this command is documented in the
24286 GDB manual. Any changes here must be documented there. */
24287
24288 static void
24289 save_gdb_index_command (const char *arg, int from_tty)
24290 {
24291 struct objfile *objfile;
24292
24293 if (!arg || !*arg)
24294 error (_("usage: save gdb-index DIRECTORY"));
24295
24296 ALL_OBJFILES (objfile)
24297 {
24298 struct stat st;
24299
24300 /* If the objfile does not correspond to an actual file, skip it. */
24301 if (stat (objfile_name (objfile), &st) < 0)
24302 continue;
24303
24304 dwarf2_per_objfile
24305 = (struct dwarf2_per_objfile *) objfile_data (objfile,
24306 dwarf2_objfile_data_key);
24307 if (dwarf2_per_objfile)
24308 {
24309
24310 TRY
24311 {
24312 write_psymtabs_to_index (objfile, arg);
24313 }
24314 CATCH (except, RETURN_MASK_ERROR)
24315 {
24316 exception_fprintf (gdb_stderr, except,
24317 _("Error while writing index for `%s': "),
24318 objfile_name (objfile));
24319 }
24320 END_CATCH
24321 }
24322 }
24323 }
24324
24325 \f
24326
24327 int dwarf_always_disassemble;
24328
24329 static void
24330 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
24331 struct cmd_list_element *c, const char *value)
24332 {
24333 fprintf_filtered (file,
24334 _("Whether to always disassemble "
24335 "DWARF expressions is %s.\n"),
24336 value);
24337 }
24338
24339 static void
24340 show_check_physname (struct ui_file *file, int from_tty,
24341 struct cmd_list_element *c, const char *value)
24342 {
24343 fprintf_filtered (file,
24344 _("Whether to check \"physname\" is %s.\n"),
24345 value);
24346 }
24347
24348 void
24349 _initialize_dwarf2_read (void)
24350 {
24351 struct cmd_list_element *c;
24352
24353 dwarf2_objfile_data_key
24354 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
24355
24356 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24357 Set DWARF specific variables.\n\
24358 Configure DWARF variables such as the cache size"),
24359 &set_dwarf_cmdlist, "maintenance set dwarf ",
24360 0/*allow-unknown*/, &maintenance_set_cmdlist);
24361
24362 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24363 Show DWARF specific variables\n\
24364 Show DWARF variables such as the cache size"),
24365 &show_dwarf_cmdlist, "maintenance show dwarf ",
24366 0/*allow-unknown*/, &maintenance_show_cmdlist);
24367
24368 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24369 &dwarf_max_cache_age, _("\
24370 Set the upper bound on the age of cached DWARF compilation units."), _("\
24371 Show the upper bound on the age of cached DWARF compilation units."), _("\
24372 A higher limit means that cached compilation units will be stored\n\
24373 in memory longer, and more total memory will be used. Zero disables\n\
24374 caching, which can slow down startup."),
24375 NULL,
24376 show_dwarf_max_cache_age,
24377 &set_dwarf_cmdlist,
24378 &show_dwarf_cmdlist);
24379
24380 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
24381 &dwarf_always_disassemble, _("\
24382 Set whether `info address' always disassembles DWARF expressions."), _("\
24383 Show whether `info address' always disassembles DWARF expressions."), _("\
24384 When enabled, DWARF expressions are always printed in an assembly-like\n\
24385 syntax. When disabled, expressions will be printed in a more\n\
24386 conversational style, when possible."),
24387 NULL,
24388 show_dwarf_always_disassemble,
24389 &set_dwarf_cmdlist,
24390 &show_dwarf_cmdlist);
24391
24392 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24393 Set debugging of the DWARF reader."), _("\
24394 Show debugging of the DWARF reader."), _("\
24395 When enabled (non-zero), debugging messages are printed during DWARF\n\
24396 reading and symtab expansion. A value of 1 (one) provides basic\n\
24397 information. A value greater than 1 provides more verbose information."),
24398 NULL,
24399 NULL,
24400 &setdebuglist, &showdebuglist);
24401
24402 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24403 Set debugging of the DWARF DIE reader."), _("\
24404 Show debugging of the DWARF DIE reader."), _("\
24405 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24406 The value is the maximum depth to print."),
24407 NULL,
24408 NULL,
24409 &setdebuglist, &showdebuglist);
24410
24411 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24412 Set debugging of the dwarf line reader."), _("\
24413 Show debugging of the dwarf line reader."), _("\
24414 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24415 A value of 1 (one) provides basic information.\n\
24416 A value greater than 1 provides more verbose information."),
24417 NULL,
24418 NULL,
24419 &setdebuglist, &showdebuglist);
24420
24421 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24422 Set cross-checking of \"physname\" code against demangler."), _("\
24423 Show cross-checking of \"physname\" code against demangler."), _("\
24424 When enabled, GDB's internal \"physname\" code is checked against\n\
24425 the demangler."),
24426 NULL, show_check_physname,
24427 &setdebuglist, &showdebuglist);
24428
24429 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24430 no_class, &use_deprecated_index_sections, _("\
24431 Set whether to use deprecated gdb_index sections."), _("\
24432 Show whether to use deprecated gdb_index sections."), _("\
24433 When enabled, deprecated .gdb_index sections are used anyway.\n\
24434 Normally they are ignored either because of a missing feature or\n\
24435 performance issue.\n\
24436 Warning: This option must be enabled before gdb reads the file."),
24437 NULL,
24438 NULL,
24439 &setlist, &showlist);
24440
24441 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
24442 _("\
24443 Save a gdb-index file.\n\
24444 Usage: save gdb-index DIRECTORY"),
24445 &save_cmdlist);
24446 set_cmd_completer (c, filename_completer);
24447
24448 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24449 &dwarf2_locexpr_funcs);
24450 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24451 &dwarf2_loclist_funcs);
24452
24453 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24454 &dwarf2_block_frame_base_locexpr_funcs);
24455 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24456 &dwarf2_block_frame_base_loclist_funcs);
24457 }
This page took 0.512263 seconds and 5 git commands to generate.