2006-05-13 Gaius Mulley <gaius@glam.ac.uk>
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support in dwarfread.c
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 2 of the License, or (at
19 your option) any later version.
20
21 This program is distributed in the hope that it will be useful, but
22 WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
24 General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the Free Software
28 Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "elf/dwarf2.h"
37 #include "buildsym.h"
38 #include "demangle.h"
39 #include "expression.h"
40 #include "filenames.h" /* for DOSish file names */
41 #include "macrotab.h"
42 #include "language.h"
43 #include "complaints.h"
44 #include "bcache.h"
45 #include "dwarf2expr.h"
46 #include "dwarf2loc.h"
47 #include "cp-support.h"
48 #include "hashtab.h"
49 #include "command.h"
50 #include "gdbcmd.h"
51
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_assert.h"
55 #include <sys/types.h>
56
57 /* A note on memory usage for this file.
58
59 At the present time, this code reads the debug info sections into
60 the objfile's objfile_obstack. A definite improvement for startup
61 time, on platforms which do not emit relocations for debug
62 sections, would be to use mmap instead. The object's complete
63 debug information is loaded into memory, partly to simplify
64 absolute DIE references.
65
66 Whether using obstacks or mmap, the sections should remain loaded
67 until the objfile is released, and pointers into the section data
68 can be used for any other data associated to the objfile (symbol
69 names, type names, location expressions to name a few). */
70
71 #ifndef DWARF2_REG_TO_REGNUM
72 #define DWARF2_REG_TO_REGNUM(REG) (REG)
73 #endif
74
75 #if 0
76 /* .debug_info header for a compilation unit
77 Because of alignment constraints, this structure has padding and cannot
78 be mapped directly onto the beginning of the .debug_info section. */
79 typedef struct comp_unit_header
80 {
81 unsigned int length; /* length of the .debug_info
82 contribution */
83 unsigned short version; /* version number -- 2 for DWARF
84 version 2 */
85 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
86 unsigned char addr_size; /* byte size of an address -- 4 */
87 }
88 _COMP_UNIT_HEADER;
89 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
90 #endif
91
92 /* .debug_pubnames header
93 Because of alignment constraints, this structure has padding and cannot
94 be mapped directly onto the beginning of the .debug_info section. */
95 typedef struct pubnames_header
96 {
97 unsigned int length; /* length of the .debug_pubnames
98 contribution */
99 unsigned char version; /* version number -- 2 for DWARF
100 version 2 */
101 unsigned int info_offset; /* offset into .debug_info section */
102 unsigned int info_size; /* byte size of .debug_info section
103 portion */
104 }
105 _PUBNAMES_HEADER;
106 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
107
108 /* .debug_pubnames header
109 Because of alignment constraints, this structure has padding and cannot
110 be mapped directly onto the beginning of the .debug_info section. */
111 typedef struct aranges_header
112 {
113 unsigned int length; /* byte len of the .debug_aranges
114 contribution */
115 unsigned short version; /* version number -- 2 for DWARF
116 version 2 */
117 unsigned int info_offset; /* offset into .debug_info section */
118 unsigned char addr_size; /* byte size of an address */
119 unsigned char seg_size; /* byte size of segment descriptor */
120 }
121 _ARANGES_HEADER;
122 #define _ACTUAL_ARANGES_HEADER_SIZE 12
123
124 /* .debug_line statement program prologue
125 Because of alignment constraints, this structure has padding and cannot
126 be mapped directly onto the beginning of the .debug_info section. */
127 typedef struct statement_prologue
128 {
129 unsigned int total_length; /* byte length of the statement
130 information */
131 unsigned short version; /* version number -- 2 for DWARF
132 version 2 */
133 unsigned int prologue_length; /* # bytes between prologue &
134 stmt program */
135 unsigned char minimum_instruction_length; /* byte size of
136 smallest instr */
137 unsigned char default_is_stmt; /* initial value of is_stmt
138 register */
139 char line_base;
140 unsigned char line_range;
141 unsigned char opcode_base; /* number assigned to first special
142 opcode */
143 unsigned char *standard_opcode_lengths;
144 }
145 _STATEMENT_PROLOGUE;
146
147 static const struct objfile_data *dwarf2_objfile_data_key;
148
149 struct dwarf2_per_objfile
150 {
151 /* Sizes of debugging sections. */
152 unsigned int info_size;
153 unsigned int abbrev_size;
154 unsigned int line_size;
155 unsigned int pubnames_size;
156 unsigned int aranges_size;
157 unsigned int loc_size;
158 unsigned int macinfo_size;
159 unsigned int str_size;
160 unsigned int ranges_size;
161 unsigned int frame_size;
162 unsigned int eh_frame_size;
163
164 /* Loaded data from the sections. */
165 gdb_byte *info_buffer;
166 gdb_byte *abbrev_buffer;
167 gdb_byte *line_buffer;
168 gdb_byte *str_buffer;
169 gdb_byte *macinfo_buffer;
170 gdb_byte *ranges_buffer;
171 gdb_byte *loc_buffer;
172
173 /* A list of all the compilation units. This is used to locate
174 the target compilation unit of a particular reference. */
175 struct dwarf2_per_cu_data **all_comp_units;
176
177 /* The number of compilation units in ALL_COMP_UNITS. */
178 int n_comp_units;
179
180 /* A chain of compilation units that are currently read in, so that
181 they can be freed later. */
182 struct dwarf2_per_cu_data *read_in_chain;
183 };
184
185 static struct dwarf2_per_objfile *dwarf2_per_objfile;
186
187 static asection *dwarf_info_section;
188 static asection *dwarf_abbrev_section;
189 static asection *dwarf_line_section;
190 static asection *dwarf_pubnames_section;
191 static asection *dwarf_aranges_section;
192 static asection *dwarf_loc_section;
193 static asection *dwarf_macinfo_section;
194 static asection *dwarf_str_section;
195 static asection *dwarf_ranges_section;
196 asection *dwarf_frame_section;
197 asection *dwarf_eh_frame_section;
198
199 /* names of the debugging sections */
200
201 #define INFO_SECTION ".debug_info"
202 #define ABBREV_SECTION ".debug_abbrev"
203 #define LINE_SECTION ".debug_line"
204 #define PUBNAMES_SECTION ".debug_pubnames"
205 #define ARANGES_SECTION ".debug_aranges"
206 #define LOC_SECTION ".debug_loc"
207 #define MACINFO_SECTION ".debug_macinfo"
208 #define STR_SECTION ".debug_str"
209 #define RANGES_SECTION ".debug_ranges"
210 #define FRAME_SECTION ".debug_frame"
211 #define EH_FRAME_SECTION ".eh_frame"
212
213 /* local data types */
214
215 /* We hold several abbreviation tables in memory at the same time. */
216 #ifndef ABBREV_HASH_SIZE
217 #define ABBREV_HASH_SIZE 121
218 #endif
219
220 /* The data in a compilation unit header, after target2host
221 translation, looks like this. */
222 struct comp_unit_head
223 {
224 unsigned long length;
225 short version;
226 unsigned int abbrev_offset;
227 unsigned char addr_size;
228 unsigned char signed_addr_p;
229
230 /* Size of file offsets; either 4 or 8. */
231 unsigned int offset_size;
232
233 /* Size of the length field; either 4 or 12. */
234 unsigned int initial_length_size;
235
236 /* Offset to the first byte of this compilation unit header in the
237 .debug_info section, for resolving relative reference dies. */
238 unsigned int offset;
239
240 /* Pointer to this compilation unit header in the .debug_info
241 section. */
242 gdb_byte *cu_head_ptr;
243
244 /* Pointer to the first die of this compilation unit. This will be
245 the first byte following the compilation unit header. */
246 gdb_byte *first_die_ptr;
247
248 /* Pointer to the next compilation unit header in the program. */
249 struct comp_unit_head *next;
250
251 /* Base address of this compilation unit. */
252 CORE_ADDR base_address;
253
254 /* Non-zero if base_address has been set. */
255 int base_known;
256 };
257
258 /* Fixed size for the DIE hash table. */
259 #ifndef REF_HASH_SIZE
260 #define REF_HASH_SIZE 1021
261 #endif
262
263 /* Internal state when decoding a particular compilation unit. */
264 struct dwarf2_cu
265 {
266 /* The objfile containing this compilation unit. */
267 struct objfile *objfile;
268
269 /* The header of the compilation unit.
270
271 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
272 should logically be moved to the dwarf2_cu structure. */
273 struct comp_unit_head header;
274
275 struct function_range *first_fn, *last_fn, *cached_fn;
276
277 /* The language we are debugging. */
278 enum language language;
279 const struct language_defn *language_defn;
280
281 const char *producer;
282
283 /* The generic symbol table building routines have separate lists for
284 file scope symbols and all all other scopes (local scopes). So
285 we need to select the right one to pass to add_symbol_to_list().
286 We do it by keeping a pointer to the correct list in list_in_scope.
287
288 FIXME: The original dwarf code just treated the file scope as the
289 first local scope, and all other local scopes as nested local
290 scopes, and worked fine. Check to see if we really need to
291 distinguish these in buildsym.c. */
292 struct pending **list_in_scope;
293
294 /* Maintain an array of referenced fundamental types for the current
295 compilation unit being read. For DWARF version 1, we have to construct
296 the fundamental types on the fly, since no information about the
297 fundamental types is supplied. Each such fundamental type is created by
298 calling a language dependent routine to create the type, and then a
299 pointer to that type is then placed in the array at the index specified
300 by it's FT_<TYPENAME> value. The array has a fixed size set by the
301 FT_NUM_MEMBERS compile time constant, which is the number of predefined
302 fundamental types gdb knows how to construct. */
303 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
304
305 /* DWARF abbreviation table associated with this compilation unit. */
306 struct abbrev_info **dwarf2_abbrevs;
307
308 /* Storage for the abbrev table. */
309 struct obstack abbrev_obstack;
310
311 /* Hash table holding all the loaded partial DIEs. */
312 htab_t partial_dies;
313
314 /* Storage for things with the same lifetime as this read-in compilation
315 unit, including partial DIEs. */
316 struct obstack comp_unit_obstack;
317
318 /* When multiple dwarf2_cu structures are living in memory, this field
319 chains them all together, so that they can be released efficiently.
320 We will probably also want a generation counter so that most-recently-used
321 compilation units are cached... */
322 struct dwarf2_per_cu_data *read_in_chain;
323
324 /* Backchain to our per_cu entry if the tree has been built. */
325 struct dwarf2_per_cu_data *per_cu;
326
327 /* How many compilation units ago was this CU last referenced? */
328 int last_used;
329
330 /* A hash table of die offsets for following references. */
331 struct die_info *die_ref_table[REF_HASH_SIZE];
332
333 /* Full DIEs if read in. */
334 struct die_info *dies;
335
336 /* A set of pointers to dwarf2_per_cu_data objects for compilation
337 units referenced by this one. Only set during full symbol processing;
338 partial symbol tables do not have dependencies. */
339 htab_t dependencies;
340
341 /* Mark used when releasing cached dies. */
342 unsigned int mark : 1;
343
344 /* This flag will be set if this compilation unit might include
345 inter-compilation-unit references. */
346 unsigned int has_form_ref_addr : 1;
347
348 /* This flag will be set if this compilation unit includes any
349 DW_TAG_namespace DIEs. If we know that there are explicit
350 DIEs for namespaces, we don't need to try to infer them
351 from mangled names. */
352 unsigned int has_namespace_info : 1;
353 };
354
355 /* Persistent data held for a compilation unit, even when not
356 processing it. We put a pointer to this structure in the
357 read_symtab_private field of the psymtab. If we encounter
358 inter-compilation-unit references, we also maintain a sorted
359 list of all compilation units. */
360
361 struct dwarf2_per_cu_data
362 {
363 /* The start offset and length of this compilation unit. 2**30-1
364 bytes should suffice to store the length of any compilation unit
365 - if it doesn't, GDB will fall over anyway. */
366 unsigned long offset;
367 unsigned long length : 30;
368
369 /* Flag indicating this compilation unit will be read in before
370 any of the current compilation units are processed. */
371 unsigned long queued : 1;
372
373 /* This flag will be set if we need to load absolutely all DIEs
374 for this compilation unit, instead of just the ones we think
375 are interesting. It gets set if we look for a DIE in the
376 hash table and don't find it. */
377 unsigned int load_all_dies : 1;
378
379 /* Set iff currently read in. */
380 struct dwarf2_cu *cu;
381
382 /* If full symbols for this CU have been read in, then this field
383 holds a map of DIE offsets to types. It isn't always possible
384 to reconstruct this information later, so we have to preserve
385 it. */
386 htab_t type_hash;
387
388 /* The partial symbol table associated with this compilation unit. */
389 struct partial_symtab *psymtab;
390 };
391
392 /* The line number information for a compilation unit (found in the
393 .debug_line section) begins with a "statement program header",
394 which contains the following information. */
395 struct line_header
396 {
397 unsigned int total_length;
398 unsigned short version;
399 unsigned int header_length;
400 unsigned char minimum_instruction_length;
401 unsigned char default_is_stmt;
402 int line_base;
403 unsigned char line_range;
404 unsigned char opcode_base;
405
406 /* standard_opcode_lengths[i] is the number of operands for the
407 standard opcode whose value is i. This means that
408 standard_opcode_lengths[0] is unused, and the last meaningful
409 element is standard_opcode_lengths[opcode_base - 1]. */
410 unsigned char *standard_opcode_lengths;
411
412 /* The include_directories table. NOTE! These strings are not
413 allocated with xmalloc; instead, they are pointers into
414 debug_line_buffer. If you try to free them, `free' will get
415 indigestion. */
416 unsigned int num_include_dirs, include_dirs_size;
417 char **include_dirs;
418
419 /* The file_names table. NOTE! These strings are not allocated
420 with xmalloc; instead, they are pointers into debug_line_buffer.
421 Don't try to free them directly. */
422 unsigned int num_file_names, file_names_size;
423 struct file_entry
424 {
425 char *name;
426 unsigned int dir_index;
427 unsigned int mod_time;
428 unsigned int length;
429 int included_p; /* Non-zero if referenced by the Line Number Program. */
430 } *file_names;
431
432 /* The start and end of the statement program following this
433 header. These point into dwarf2_per_objfile->line_buffer. */
434 gdb_byte *statement_program_start, *statement_program_end;
435 };
436
437 /* When we construct a partial symbol table entry we only
438 need this much information. */
439 struct partial_die_info
440 {
441 /* Offset of this DIE. */
442 unsigned int offset;
443
444 /* DWARF-2 tag for this DIE. */
445 ENUM_BITFIELD(dwarf_tag) tag : 16;
446
447 /* Language code associated with this DIE. This is only used
448 for the compilation unit DIE. */
449 unsigned int language : 8;
450
451 /* Assorted flags describing the data found in this DIE. */
452 unsigned int has_children : 1;
453 unsigned int is_external : 1;
454 unsigned int is_declaration : 1;
455 unsigned int has_type : 1;
456 unsigned int has_specification : 1;
457 unsigned int has_stmt_list : 1;
458 unsigned int has_pc_info : 1;
459
460 /* Flag set if the SCOPE field of this structure has been
461 computed. */
462 unsigned int scope_set : 1;
463
464 /* The name of this DIE. Normally the value of DW_AT_name, but
465 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
466 other fashion. */
467 char *name;
468 char *dirname;
469
470 /* The scope to prepend to our children. This is generally
471 allocated on the comp_unit_obstack, so will disappear
472 when this compilation unit leaves the cache. */
473 char *scope;
474
475 /* The location description associated with this DIE, if any. */
476 struct dwarf_block *locdesc;
477
478 /* If HAS_PC_INFO, the PC range associated with this DIE. */
479 CORE_ADDR lowpc;
480 CORE_ADDR highpc;
481
482 /* Pointer into the info_buffer pointing at the target of
483 DW_AT_sibling, if any. */
484 gdb_byte *sibling;
485
486 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
487 DW_AT_specification (or DW_AT_abstract_origin or
488 DW_AT_extension). */
489 unsigned int spec_offset;
490
491 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
492 unsigned int line_offset;
493
494 /* Pointers to this DIE's parent, first child, and next sibling,
495 if any. */
496 struct partial_die_info *die_parent, *die_child, *die_sibling;
497 };
498
499 /* This data structure holds the information of an abbrev. */
500 struct abbrev_info
501 {
502 unsigned int number; /* number identifying abbrev */
503 enum dwarf_tag tag; /* dwarf tag */
504 unsigned short has_children; /* boolean */
505 unsigned short num_attrs; /* number of attributes */
506 struct attr_abbrev *attrs; /* an array of attribute descriptions */
507 struct abbrev_info *next; /* next in chain */
508 };
509
510 struct attr_abbrev
511 {
512 enum dwarf_attribute name;
513 enum dwarf_form form;
514 };
515
516 /* This data structure holds a complete die structure. */
517 struct die_info
518 {
519 enum dwarf_tag tag; /* Tag indicating type of die */
520 unsigned int abbrev; /* Abbrev number */
521 unsigned int offset; /* Offset in .debug_info section */
522 unsigned int num_attrs; /* Number of attributes */
523 struct attribute *attrs; /* An array of attributes */
524 struct die_info *next_ref; /* Next die in ref hash table */
525
526 /* The dies in a compilation unit form an n-ary tree. PARENT
527 points to this die's parent; CHILD points to the first child of
528 this node; and all the children of a given node are chained
529 together via their SIBLING fields, terminated by a die whose
530 tag is zero. */
531 struct die_info *child; /* Its first child, if any. */
532 struct die_info *sibling; /* Its next sibling, if any. */
533 struct die_info *parent; /* Its parent, if any. */
534
535 struct type *type; /* Cached type information */
536 };
537
538 /* Attributes have a name and a value */
539 struct attribute
540 {
541 enum dwarf_attribute name;
542 enum dwarf_form form;
543 union
544 {
545 char *str;
546 struct dwarf_block *blk;
547 unsigned long unsnd;
548 long int snd;
549 CORE_ADDR addr;
550 }
551 u;
552 };
553
554 struct function_range
555 {
556 const char *name;
557 CORE_ADDR lowpc, highpc;
558 int seen_line;
559 struct function_range *next;
560 };
561
562 /* Get at parts of an attribute structure */
563
564 #define DW_STRING(attr) ((attr)->u.str)
565 #define DW_UNSND(attr) ((attr)->u.unsnd)
566 #define DW_BLOCK(attr) ((attr)->u.blk)
567 #define DW_SND(attr) ((attr)->u.snd)
568 #define DW_ADDR(attr) ((attr)->u.addr)
569
570 /* Blocks are a bunch of untyped bytes. */
571 struct dwarf_block
572 {
573 unsigned int size;
574 gdb_byte *data;
575 };
576
577 #ifndef ATTR_ALLOC_CHUNK
578 #define ATTR_ALLOC_CHUNK 4
579 #endif
580
581 /* Allocate fields for structs, unions and enums in this size. */
582 #ifndef DW_FIELD_ALLOC_CHUNK
583 #define DW_FIELD_ALLOC_CHUNK 4
584 #endif
585
586 /* A zeroed version of a partial die for initialization purposes. */
587 static struct partial_die_info zeroed_partial_die;
588
589 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
590 but this would require a corresponding change in unpack_field_as_long
591 and friends. */
592 static int bits_per_byte = 8;
593
594 /* The routines that read and process dies for a C struct or C++ class
595 pass lists of data member fields and lists of member function fields
596 in an instance of a field_info structure, as defined below. */
597 struct field_info
598 {
599 /* List of data member and baseclasses fields. */
600 struct nextfield
601 {
602 struct nextfield *next;
603 int accessibility;
604 int virtuality;
605 struct field field;
606 }
607 *fields;
608
609 /* Number of fields. */
610 int nfields;
611
612 /* Number of baseclasses. */
613 int nbaseclasses;
614
615 /* Set if the accesibility of one of the fields is not public. */
616 int non_public_fields;
617
618 /* Member function fields array, entries are allocated in the order they
619 are encountered in the object file. */
620 struct nextfnfield
621 {
622 struct nextfnfield *next;
623 struct fn_field fnfield;
624 }
625 *fnfields;
626
627 /* Member function fieldlist array, contains name of possibly overloaded
628 member function, number of overloaded member functions and a pointer
629 to the head of the member function field chain. */
630 struct fnfieldlist
631 {
632 char *name;
633 int length;
634 struct nextfnfield *head;
635 }
636 *fnfieldlists;
637
638 /* Number of entries in the fnfieldlists array. */
639 int nfnfields;
640 };
641
642 /* One item on the queue of compilation units to read in full symbols
643 for. */
644 struct dwarf2_queue_item
645 {
646 struct dwarf2_per_cu_data *per_cu;
647 struct dwarf2_queue_item *next;
648 };
649
650 /* The current queue. */
651 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
652
653 /* Loaded secondary compilation units are kept in memory until they
654 have not been referenced for the processing of this many
655 compilation units. Set this to zero to disable caching. Cache
656 sizes of up to at least twenty will improve startup time for
657 typical inter-CU-reference binaries, at an obvious memory cost. */
658 static int dwarf2_max_cache_age = 5;
659 static void
660 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
661 struct cmd_list_element *c, const char *value)
662 {
663 fprintf_filtered (file, _("\
664 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
665 value);
666 }
667
668
669 /* Various complaints about symbol reading that don't abort the process */
670
671 static void
672 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
673 {
674 complaint (&symfile_complaints,
675 _("statement list doesn't fit in .debug_line section"));
676 }
677
678 static void
679 dwarf2_complex_location_expr_complaint (void)
680 {
681 complaint (&symfile_complaints, _("location expression too complex"));
682 }
683
684 static void
685 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
686 int arg3)
687 {
688 complaint (&symfile_complaints,
689 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
690 arg2, arg3);
691 }
692
693 static void
694 dwarf2_macros_too_long_complaint (void)
695 {
696 complaint (&symfile_complaints,
697 _("macro info runs off end of `.debug_macinfo' section"));
698 }
699
700 static void
701 dwarf2_macro_malformed_definition_complaint (const char *arg1)
702 {
703 complaint (&symfile_complaints,
704 _("macro debug info contains a malformed macro definition:\n`%s'"),
705 arg1);
706 }
707
708 static void
709 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
710 {
711 complaint (&symfile_complaints,
712 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
713 }
714
715 /* local function prototypes */
716
717 static void dwarf2_locate_sections (bfd *, asection *, void *);
718
719 #if 0
720 static void dwarf2_build_psymtabs_easy (struct objfile *, int);
721 #endif
722
723 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
724 struct objfile *);
725
726 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
727 struct partial_die_info *,
728 struct partial_symtab *);
729
730 static void dwarf2_build_psymtabs_hard (struct objfile *, int);
731
732 static void scan_partial_symbols (struct partial_die_info *,
733 CORE_ADDR *, CORE_ADDR *,
734 struct dwarf2_cu *);
735
736 static void add_partial_symbol (struct partial_die_info *,
737 struct dwarf2_cu *);
738
739 static int pdi_needs_namespace (enum dwarf_tag tag);
740
741 static void add_partial_namespace (struct partial_die_info *pdi,
742 CORE_ADDR *lowpc, CORE_ADDR *highpc,
743 struct dwarf2_cu *cu);
744
745 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
746 struct dwarf2_cu *cu);
747
748 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
749 gdb_byte *info_ptr,
750 bfd *abfd,
751 struct dwarf2_cu *cu);
752
753 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
754
755 static void psymtab_to_symtab_1 (struct partial_symtab *);
756
757 gdb_byte *dwarf2_read_section (struct objfile *, asection *);
758
759 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
760
761 static void dwarf2_free_abbrev_table (void *);
762
763 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
764 struct dwarf2_cu *);
765
766 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
767 struct dwarf2_cu *);
768
769 static struct partial_die_info *load_partial_dies (bfd *, gdb_byte *, int,
770 struct dwarf2_cu *);
771
772 static gdb_byte *read_partial_die (struct partial_die_info *,
773 struct abbrev_info *abbrev, unsigned int,
774 bfd *, gdb_byte *, struct dwarf2_cu *);
775
776 static struct partial_die_info *find_partial_die (unsigned long,
777 struct dwarf2_cu *);
778
779 static void fixup_partial_die (struct partial_die_info *,
780 struct dwarf2_cu *);
781
782 static gdb_byte *read_full_die (struct die_info **, bfd *, gdb_byte *,
783 struct dwarf2_cu *, int *);
784
785 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
786 bfd *, gdb_byte *, struct dwarf2_cu *);
787
788 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
789 bfd *, gdb_byte *, struct dwarf2_cu *);
790
791 static unsigned int read_1_byte (bfd *, gdb_byte *);
792
793 static int read_1_signed_byte (bfd *, gdb_byte *);
794
795 static unsigned int read_2_bytes (bfd *, gdb_byte *);
796
797 static unsigned int read_4_bytes (bfd *, gdb_byte *);
798
799 static unsigned long read_8_bytes (bfd *, gdb_byte *);
800
801 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
802 unsigned int *);
803
804 static LONGEST read_initial_length (bfd *, gdb_byte *,
805 struct comp_unit_head *, unsigned int *);
806
807 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
808 unsigned int *);
809
810 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
811
812 static char *read_string (bfd *, gdb_byte *, unsigned int *);
813
814 static char *read_indirect_string (bfd *, gdb_byte *,
815 const struct comp_unit_head *,
816 unsigned int *);
817
818 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
819
820 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
821
822 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
823
824 static void set_cu_language (unsigned int, struct dwarf2_cu *);
825
826 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
827 struct dwarf2_cu *);
828
829 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
830 struct dwarf2_cu *cu);
831
832 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
833
834 static struct die_info *die_specification (struct die_info *die,
835 struct dwarf2_cu *);
836
837 static void free_line_header (struct line_header *lh);
838
839 static void add_file_name (struct line_header *, char *, unsigned int,
840 unsigned int, unsigned int);
841
842 static struct line_header *(dwarf_decode_line_header
843 (unsigned int offset,
844 bfd *abfd, struct dwarf2_cu *cu));
845
846 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
847 struct dwarf2_cu *, struct partial_symtab *);
848
849 static void dwarf2_start_subfile (char *, char *, char *);
850
851 static struct symbol *new_symbol (struct die_info *, struct type *,
852 struct dwarf2_cu *);
853
854 static void dwarf2_const_value (struct attribute *, struct symbol *,
855 struct dwarf2_cu *);
856
857 static void dwarf2_const_value_data (struct attribute *attr,
858 struct symbol *sym,
859 int bits);
860
861 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
862
863 static struct type *die_containing_type (struct die_info *,
864 struct dwarf2_cu *);
865
866 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
867
868 static void read_type_die (struct die_info *, struct dwarf2_cu *);
869
870 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
871
872 static char *typename_concat (struct obstack *,
873 const char *prefix,
874 const char *suffix,
875 struct dwarf2_cu *);
876
877 static void read_typedef (struct die_info *, struct dwarf2_cu *);
878
879 static void read_base_type (struct die_info *, struct dwarf2_cu *);
880
881 static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
882
883 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
884
885 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
886
887 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
888
889 static int dwarf2_get_pc_bounds (struct die_info *,
890 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
891
892 static void get_scope_pc_bounds (struct die_info *,
893 CORE_ADDR *, CORE_ADDR *,
894 struct dwarf2_cu *);
895
896 static void dwarf2_add_field (struct field_info *, struct die_info *,
897 struct dwarf2_cu *);
898
899 static void dwarf2_attach_fields_to_type (struct field_info *,
900 struct type *, struct dwarf2_cu *);
901
902 static void dwarf2_add_member_fn (struct field_info *,
903 struct die_info *, struct type *,
904 struct dwarf2_cu *);
905
906 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
907 struct type *, struct dwarf2_cu *);
908
909 static void read_structure_type (struct die_info *, struct dwarf2_cu *);
910
911 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
912
913 static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
914
915 static void read_common_block (struct die_info *, struct dwarf2_cu *);
916
917 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
918
919 static const char *namespace_name (struct die_info *die,
920 int *is_anonymous, struct dwarf2_cu *);
921
922 static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
923
924 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
925
926 static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
927
928 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
929
930 static void read_array_type (struct die_info *, struct dwarf2_cu *);
931
932 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
933 struct dwarf2_cu *);
934
935 static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
936
937 static void read_tag_ptr_to_member_type (struct die_info *,
938 struct dwarf2_cu *);
939
940 static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
941
942 static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
943
944 static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
945
946 static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
947
948 static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
949
950 static struct die_info *read_comp_unit (gdb_byte *, bfd *, struct dwarf2_cu *);
951
952 static struct die_info *read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
953 struct dwarf2_cu *,
954 gdb_byte **new_info_ptr,
955 struct die_info *parent);
956
957 static struct die_info *read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
958 struct dwarf2_cu *,
959 gdb_byte **new_info_ptr,
960 struct die_info *parent);
961
962 static void free_die_list (struct die_info *);
963
964 static void process_die (struct die_info *, struct dwarf2_cu *);
965
966 static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
967
968 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
969
970 static struct die_info *dwarf2_extension (struct die_info *die,
971 struct dwarf2_cu *);
972
973 static char *dwarf_tag_name (unsigned int);
974
975 static char *dwarf_attr_name (unsigned int);
976
977 static char *dwarf_form_name (unsigned int);
978
979 static char *dwarf_stack_op_name (unsigned int);
980
981 static char *dwarf_bool_name (unsigned int);
982
983 static char *dwarf_type_encoding_name (unsigned int);
984
985 #if 0
986 static char *dwarf_cfi_name (unsigned int);
987
988 struct die_info *copy_die (struct die_info *);
989 #endif
990
991 static struct die_info *sibling_die (struct die_info *);
992
993 static void dump_die (struct die_info *);
994
995 static void dump_die_list (struct die_info *);
996
997 static void store_in_ref_table (unsigned int, struct die_info *,
998 struct dwarf2_cu *);
999
1000 static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
1001 struct dwarf2_cu *);
1002
1003 static int dwarf2_get_attr_constant_value (struct attribute *, int);
1004
1005 static struct die_info *follow_die_ref (struct die_info *,
1006 struct attribute *,
1007 struct dwarf2_cu *);
1008
1009 static struct type *dwarf2_fundamental_type (struct objfile *, int,
1010 struct dwarf2_cu *);
1011
1012 /* memory allocation interface */
1013
1014 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1015
1016 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1017
1018 static struct die_info *dwarf_alloc_die (void);
1019
1020 static void initialize_cu_func_list (struct dwarf2_cu *);
1021
1022 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1023 struct dwarf2_cu *);
1024
1025 static void dwarf_decode_macros (struct line_header *, unsigned int,
1026 char *, bfd *, struct dwarf2_cu *);
1027
1028 static int attr_form_is_block (struct attribute *);
1029
1030 static void
1031 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
1032 struct dwarf2_cu *cu);
1033
1034 static gdb_byte *skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
1035 struct dwarf2_cu *cu);
1036
1037 static void free_stack_comp_unit (void *);
1038
1039 static hashval_t partial_die_hash (const void *item);
1040
1041 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1042
1043 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1044 (unsigned long offset, struct objfile *objfile);
1045
1046 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1047 (unsigned long offset, struct objfile *objfile);
1048
1049 static void free_one_comp_unit (void *);
1050
1051 static void free_cached_comp_units (void *);
1052
1053 static void age_cached_comp_units (void);
1054
1055 static void free_one_cached_comp_unit (void *);
1056
1057 static void set_die_type (struct die_info *, struct type *,
1058 struct dwarf2_cu *);
1059
1060 static void reset_die_and_siblings_types (struct die_info *,
1061 struct dwarf2_cu *);
1062
1063 static void create_all_comp_units (struct objfile *);
1064
1065 static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *);
1066
1067 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1068
1069 static void dwarf2_add_dependence (struct dwarf2_cu *,
1070 struct dwarf2_per_cu_data *);
1071
1072 static void dwarf2_mark (struct dwarf2_cu *);
1073
1074 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1075
1076 static void read_set_type (struct die_info *, struct dwarf2_cu *);
1077
1078
1079 /* Try to locate the sections we need for DWARF 2 debugging
1080 information and return true if we have enough to do something. */
1081
1082 int
1083 dwarf2_has_info (struct objfile *objfile)
1084 {
1085 struct dwarf2_per_objfile *data;
1086
1087 /* Initialize per-objfile state. */
1088 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1089 memset (data, 0, sizeof (*data));
1090 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1091 dwarf2_per_objfile = data;
1092
1093 dwarf_info_section = 0;
1094 dwarf_abbrev_section = 0;
1095 dwarf_line_section = 0;
1096 dwarf_str_section = 0;
1097 dwarf_macinfo_section = 0;
1098 dwarf_frame_section = 0;
1099 dwarf_eh_frame_section = 0;
1100 dwarf_ranges_section = 0;
1101 dwarf_loc_section = 0;
1102
1103 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1104 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
1105 }
1106
1107 /* This function is mapped across the sections and remembers the
1108 offset and size of each of the debugging sections we are interested
1109 in. */
1110
1111 static void
1112 dwarf2_locate_sections (bfd *ignore_abfd, asection *sectp, void *ignore_ptr)
1113 {
1114 if (strcmp (sectp->name, INFO_SECTION) == 0)
1115 {
1116 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
1117 dwarf_info_section = sectp;
1118 }
1119 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
1120 {
1121 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
1122 dwarf_abbrev_section = sectp;
1123 }
1124 else if (strcmp (sectp->name, LINE_SECTION) == 0)
1125 {
1126 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
1127 dwarf_line_section = sectp;
1128 }
1129 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
1130 {
1131 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
1132 dwarf_pubnames_section = sectp;
1133 }
1134 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
1135 {
1136 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
1137 dwarf_aranges_section = sectp;
1138 }
1139 else if (strcmp (sectp->name, LOC_SECTION) == 0)
1140 {
1141 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
1142 dwarf_loc_section = sectp;
1143 }
1144 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
1145 {
1146 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
1147 dwarf_macinfo_section = sectp;
1148 }
1149 else if (strcmp (sectp->name, STR_SECTION) == 0)
1150 {
1151 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
1152 dwarf_str_section = sectp;
1153 }
1154 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
1155 {
1156 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
1157 dwarf_frame_section = sectp;
1158 }
1159 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
1160 {
1161 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1162 if (aflag & SEC_HAS_CONTENTS)
1163 {
1164 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
1165 dwarf_eh_frame_section = sectp;
1166 }
1167 }
1168 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
1169 {
1170 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
1171 dwarf_ranges_section = sectp;
1172 }
1173 }
1174
1175 /* Build a partial symbol table. */
1176
1177 void
1178 dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1179 {
1180 /* We definitely need the .debug_info and .debug_abbrev sections */
1181
1182 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1183 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
1184
1185 if (dwarf_line_section)
1186 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
1187 else
1188 dwarf2_per_objfile->line_buffer = NULL;
1189
1190 if (dwarf_str_section)
1191 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
1192 else
1193 dwarf2_per_objfile->str_buffer = NULL;
1194
1195 if (dwarf_macinfo_section)
1196 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
1197 dwarf_macinfo_section);
1198 else
1199 dwarf2_per_objfile->macinfo_buffer = NULL;
1200
1201 if (dwarf_ranges_section)
1202 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
1203 else
1204 dwarf2_per_objfile->ranges_buffer = NULL;
1205
1206 if (dwarf_loc_section)
1207 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
1208 else
1209 dwarf2_per_objfile->loc_buffer = NULL;
1210
1211 if (mainline
1212 || (objfile->global_psymbols.size == 0
1213 && objfile->static_psymbols.size == 0))
1214 {
1215 init_psymbol_list (objfile, 1024);
1216 }
1217
1218 #if 0
1219 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1220 {
1221 /* Things are significantly easier if we have .debug_aranges and
1222 .debug_pubnames sections */
1223
1224 dwarf2_build_psymtabs_easy (objfile, mainline);
1225 }
1226 else
1227 #endif
1228 /* only test this case for now */
1229 {
1230 /* In this case we have to work a bit harder */
1231 dwarf2_build_psymtabs_hard (objfile, mainline);
1232 }
1233 }
1234
1235 #if 0
1236 /* Build the partial symbol table from the information in the
1237 .debug_pubnames and .debug_aranges sections. */
1238
1239 static void
1240 dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1241 {
1242 bfd *abfd = objfile->obfd;
1243 char *aranges_buffer, *pubnames_buffer;
1244 char *aranges_ptr, *pubnames_ptr;
1245 unsigned int entry_length, version, info_offset, info_size;
1246
1247 pubnames_buffer = dwarf2_read_section (objfile,
1248 dwarf_pubnames_section);
1249 pubnames_ptr = pubnames_buffer;
1250 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
1251 {
1252 struct comp_unit_head cu_header;
1253 unsigned int bytes_read;
1254
1255 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1256 &bytes_read);
1257 pubnames_ptr += bytes_read;
1258 version = read_1_byte (abfd, pubnames_ptr);
1259 pubnames_ptr += 1;
1260 info_offset = read_4_bytes (abfd, pubnames_ptr);
1261 pubnames_ptr += 4;
1262 info_size = read_4_bytes (abfd, pubnames_ptr);
1263 pubnames_ptr += 4;
1264 }
1265
1266 aranges_buffer = dwarf2_read_section (objfile,
1267 dwarf_aranges_section);
1268
1269 }
1270 #endif
1271
1272 /* Read in the comp unit header information from the debug_info at
1273 info_ptr. */
1274
1275 static gdb_byte *
1276 read_comp_unit_head (struct comp_unit_head *cu_header,
1277 gdb_byte *info_ptr, bfd *abfd)
1278 {
1279 int signed_addr;
1280 unsigned int bytes_read;
1281 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1282 &bytes_read);
1283 info_ptr += bytes_read;
1284 cu_header->version = read_2_bytes (abfd, info_ptr);
1285 info_ptr += 2;
1286 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1287 &bytes_read);
1288 info_ptr += bytes_read;
1289 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1290 info_ptr += 1;
1291 signed_addr = bfd_get_sign_extend_vma (abfd);
1292 if (signed_addr < 0)
1293 internal_error (__FILE__, __LINE__,
1294 _("read_comp_unit_head: dwarf from non elf file"));
1295 cu_header->signed_addr_p = signed_addr;
1296 return info_ptr;
1297 }
1298
1299 static gdb_byte *
1300 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
1301 bfd *abfd)
1302 {
1303 gdb_byte *beg_of_comp_unit = info_ptr;
1304
1305 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1306
1307 if (header->version != 2)
1308 error (_("Dwarf Error: wrong version in compilation unit header "
1309 "(is %d, should be %d) [in module %s]"), header->version,
1310 2, bfd_get_filename (abfd));
1311
1312 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
1313 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1314 "(offset 0x%lx + 6) [in module %s]"),
1315 (long) header->abbrev_offset,
1316 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1317 bfd_get_filename (abfd));
1318
1319 if (beg_of_comp_unit + header->length + header->initial_length_size
1320 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1321 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1322 "(offset 0x%lx + 0) [in module %s]"),
1323 (long) header->length,
1324 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1325 bfd_get_filename (abfd));
1326
1327 return info_ptr;
1328 }
1329
1330 /* Allocate a new partial symtab for file named NAME and mark this new
1331 partial symtab as being an include of PST. */
1332
1333 static void
1334 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1335 struct objfile *objfile)
1336 {
1337 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1338
1339 subpst->section_offsets = pst->section_offsets;
1340 subpst->textlow = 0;
1341 subpst->texthigh = 0;
1342
1343 subpst->dependencies = (struct partial_symtab **)
1344 obstack_alloc (&objfile->objfile_obstack,
1345 sizeof (struct partial_symtab *));
1346 subpst->dependencies[0] = pst;
1347 subpst->number_of_dependencies = 1;
1348
1349 subpst->globals_offset = 0;
1350 subpst->n_global_syms = 0;
1351 subpst->statics_offset = 0;
1352 subpst->n_static_syms = 0;
1353 subpst->symtab = NULL;
1354 subpst->read_symtab = pst->read_symtab;
1355 subpst->readin = 0;
1356
1357 /* No private part is necessary for include psymtabs. This property
1358 can be used to differentiate between such include psymtabs and
1359 the regular ones. */
1360 subpst->read_symtab_private = NULL;
1361 }
1362
1363 /* Read the Line Number Program data and extract the list of files
1364 included by the source file represented by PST. Build an include
1365 partial symtab for each of these included files.
1366
1367 This procedure assumes that there *is* a Line Number Program in
1368 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1369 before calling this procedure. */
1370
1371 static void
1372 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1373 struct partial_die_info *pdi,
1374 struct partial_symtab *pst)
1375 {
1376 struct objfile *objfile = cu->objfile;
1377 bfd *abfd = objfile->obfd;
1378 struct line_header *lh;
1379
1380 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1381 if (lh == NULL)
1382 return; /* No linetable, so no includes. */
1383
1384 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1385
1386 free_line_header (lh);
1387 }
1388
1389
1390 /* Build the partial symbol table by doing a quick pass through the
1391 .debug_info and .debug_abbrev sections. */
1392
1393 static void
1394 dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
1395 {
1396 /* Instead of reading this into a big buffer, we should probably use
1397 mmap() on architectures that support it. (FIXME) */
1398 bfd *abfd = objfile->obfd;
1399 gdb_byte *info_ptr;
1400 gdb_byte *beg_of_comp_unit;
1401 struct partial_die_info comp_unit_die;
1402 struct partial_symtab *pst;
1403 struct cleanup *back_to;
1404 CORE_ADDR lowpc, highpc, baseaddr;
1405
1406 info_ptr = dwarf2_per_objfile->info_buffer;
1407
1408 /* Any cached compilation units will be linked by the per-objfile
1409 read_in_chain. Make sure to free them when we're done. */
1410 back_to = make_cleanup (free_cached_comp_units, NULL);
1411
1412 create_all_comp_units (objfile);
1413
1414 /* Since the objects we're extracting from .debug_info vary in
1415 length, only the individual functions to extract them (like
1416 read_comp_unit_head and load_partial_die) can really know whether
1417 the buffer is large enough to hold another complete object.
1418
1419 At the moment, they don't actually check that. If .debug_info
1420 holds just one extra byte after the last compilation unit's dies,
1421 then read_comp_unit_head will happily read off the end of the
1422 buffer. read_partial_die is similarly casual. Those functions
1423 should be fixed.
1424
1425 For this loop condition, simply checking whether there's any data
1426 left at all should be sufficient. */
1427 while (info_ptr < (dwarf2_per_objfile->info_buffer
1428 + dwarf2_per_objfile->info_size))
1429 {
1430 struct cleanup *back_to_inner;
1431 struct dwarf2_cu cu;
1432 struct abbrev_info *abbrev;
1433 unsigned int bytes_read;
1434 struct dwarf2_per_cu_data *this_cu;
1435
1436 beg_of_comp_unit = info_ptr;
1437
1438 memset (&cu, 0, sizeof (cu));
1439
1440 obstack_init (&cu.comp_unit_obstack);
1441
1442 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1443
1444 cu.objfile = objfile;
1445 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
1446
1447 /* Complete the cu_header */
1448 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1449 cu.header.first_die_ptr = info_ptr;
1450 cu.header.cu_head_ptr = beg_of_comp_unit;
1451
1452 cu.list_in_scope = &file_symbols;
1453
1454 /* Read the abbrevs for this compilation unit into a table */
1455 dwarf2_read_abbrevs (abfd, &cu);
1456 make_cleanup (dwarf2_free_abbrev_table, &cu);
1457
1458 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
1459
1460 /* Read the compilation unit die */
1461 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1462 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1463 abfd, info_ptr, &cu);
1464
1465 /* Set the language we're debugging */
1466 set_cu_language (comp_unit_die.language, &cu);
1467
1468 /* Allocate a new partial symbol table structure */
1469 pst = start_psymtab_common (objfile, objfile->section_offsets,
1470 comp_unit_die.name ? comp_unit_die.name : "",
1471 comp_unit_die.lowpc,
1472 objfile->global_psymbols.next,
1473 objfile->static_psymbols.next);
1474
1475 if (comp_unit_die.dirname)
1476 pst->dirname = xstrdup (comp_unit_die.dirname);
1477
1478 pst->read_symtab_private = (char *) this_cu;
1479
1480 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1481
1482 /* Store the function that reads in the rest of the symbol table */
1483 pst->read_symtab = dwarf2_psymtab_to_symtab;
1484
1485 /* If this compilation unit was already read in, free the
1486 cached copy in order to read it in again. This is
1487 necessary because we skipped some symbols when we first
1488 read in the compilation unit (see load_partial_dies).
1489 This problem could be avoided, but the benefit is
1490 unclear. */
1491 if (this_cu->cu != NULL)
1492 free_one_cached_comp_unit (this_cu->cu);
1493
1494 cu.per_cu = this_cu;
1495
1496 /* Note that this is a pointer to our stack frame, being
1497 added to a global data structure. It will be cleaned up
1498 in free_stack_comp_unit when we finish with this
1499 compilation unit. */
1500 this_cu->cu = &cu;
1501
1502 this_cu->psymtab = pst;
1503
1504 /* Check if comp unit has_children.
1505 If so, read the rest of the partial symbols from this comp unit.
1506 If not, there's no more debug_info for this comp unit. */
1507 if (comp_unit_die.has_children)
1508 {
1509 struct partial_die_info *first_die;
1510
1511 lowpc = ((CORE_ADDR) -1);
1512 highpc = ((CORE_ADDR) 0);
1513
1514 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1515
1516 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
1517
1518 /* If we didn't find a lowpc, set it to highpc to avoid
1519 complaints from `maint check'. */
1520 if (lowpc == ((CORE_ADDR) -1))
1521 lowpc = highpc;
1522
1523 /* If the compilation unit didn't have an explicit address range,
1524 then use the information extracted from its child dies. */
1525 if (! comp_unit_die.has_pc_info)
1526 {
1527 comp_unit_die.lowpc = lowpc;
1528 comp_unit_die.highpc = highpc;
1529 }
1530 }
1531 pst->textlow = comp_unit_die.lowpc + baseaddr;
1532 pst->texthigh = comp_unit_die.highpc + baseaddr;
1533
1534 pst->n_global_syms = objfile->global_psymbols.next -
1535 (objfile->global_psymbols.list + pst->globals_offset);
1536 pst->n_static_syms = objfile->static_psymbols.next -
1537 (objfile->static_psymbols.list + pst->statics_offset);
1538 sort_pst_symbols (pst);
1539
1540 /* If there is already a psymtab or symtab for a file of this
1541 name, remove it. (If there is a symtab, more drastic things
1542 also happen.) This happens in VxWorks. */
1543 free_named_symtabs (pst->filename);
1544
1545 info_ptr = beg_of_comp_unit + cu.header.length
1546 + cu.header.initial_length_size;
1547
1548 if (comp_unit_die.has_stmt_list)
1549 {
1550 /* Get the list of files included in the current compilation unit,
1551 and build a psymtab for each of them. */
1552 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1553 }
1554
1555 do_cleanups (back_to_inner);
1556 }
1557 do_cleanups (back_to);
1558 }
1559
1560 /* Load the DIEs for a secondary CU into memory. */
1561
1562 static void
1563 load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1564 {
1565 bfd *abfd = objfile->obfd;
1566 gdb_byte *info_ptr, *beg_of_comp_unit;
1567 struct partial_die_info comp_unit_die;
1568 struct dwarf2_cu *cu;
1569 struct abbrev_info *abbrev;
1570 unsigned int bytes_read;
1571 struct cleanup *back_to;
1572
1573 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1574 beg_of_comp_unit = info_ptr;
1575
1576 cu = xmalloc (sizeof (struct dwarf2_cu));
1577 memset (cu, 0, sizeof (struct dwarf2_cu));
1578
1579 obstack_init (&cu->comp_unit_obstack);
1580
1581 cu->objfile = objfile;
1582 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1583
1584 /* Complete the cu_header. */
1585 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1586 cu->header.first_die_ptr = info_ptr;
1587 cu->header.cu_head_ptr = beg_of_comp_unit;
1588
1589 /* Read the abbrevs for this compilation unit into a table. */
1590 dwarf2_read_abbrevs (abfd, cu);
1591 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1592
1593 /* Read the compilation unit die. */
1594 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1595 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1596 abfd, info_ptr, cu);
1597
1598 /* Set the language we're debugging. */
1599 set_cu_language (comp_unit_die.language, cu);
1600
1601 /* Link this compilation unit into the compilation unit tree. */
1602 this_cu->cu = cu;
1603 cu->per_cu = this_cu;
1604
1605 /* Check if comp unit has_children.
1606 If so, read the rest of the partial symbols from this comp unit.
1607 If not, there's no more debug_info for this comp unit. */
1608 if (comp_unit_die.has_children)
1609 load_partial_dies (abfd, info_ptr, 0, cu);
1610
1611 do_cleanups (back_to);
1612 }
1613
1614 /* Create a list of all compilation units in OBJFILE. We do this only
1615 if an inter-comp-unit reference is found; presumably if there is one,
1616 there will be many, and one will occur early in the .debug_info section.
1617 So there's no point in building this list incrementally. */
1618
1619 static void
1620 create_all_comp_units (struct objfile *objfile)
1621 {
1622 int n_allocated;
1623 int n_comp_units;
1624 struct dwarf2_per_cu_data **all_comp_units;
1625 gdb_byte *info_ptr = dwarf2_per_objfile->info_buffer;
1626
1627 n_comp_units = 0;
1628 n_allocated = 10;
1629 all_comp_units = xmalloc (n_allocated
1630 * sizeof (struct dwarf2_per_cu_data *));
1631
1632 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1633 {
1634 struct comp_unit_head cu_header;
1635 gdb_byte *beg_of_comp_unit;
1636 struct dwarf2_per_cu_data *this_cu;
1637 unsigned long offset;
1638 unsigned int bytes_read;
1639
1640 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1641
1642 /* Read just enough information to find out where the next
1643 compilation unit is. */
1644 cu_header.initial_length_size = 0;
1645 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1646 &cu_header, &bytes_read);
1647
1648 /* Save the compilation unit for later lookup. */
1649 this_cu = obstack_alloc (&objfile->objfile_obstack,
1650 sizeof (struct dwarf2_per_cu_data));
1651 memset (this_cu, 0, sizeof (*this_cu));
1652 this_cu->offset = offset;
1653 this_cu->length = cu_header.length + cu_header.initial_length_size;
1654
1655 if (n_comp_units == n_allocated)
1656 {
1657 n_allocated *= 2;
1658 all_comp_units = xrealloc (all_comp_units,
1659 n_allocated
1660 * sizeof (struct dwarf2_per_cu_data *));
1661 }
1662 all_comp_units[n_comp_units++] = this_cu;
1663
1664 info_ptr = info_ptr + this_cu->length;
1665 }
1666
1667 dwarf2_per_objfile->all_comp_units
1668 = obstack_alloc (&objfile->objfile_obstack,
1669 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1670 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1671 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1672 xfree (all_comp_units);
1673 dwarf2_per_objfile->n_comp_units = n_comp_units;
1674 }
1675
1676 /* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1677 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1678 in CU. */
1679
1680 static void
1681 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1682 CORE_ADDR *highpc, struct dwarf2_cu *cu)
1683 {
1684 struct objfile *objfile = cu->objfile;
1685 bfd *abfd = objfile->obfd;
1686 struct partial_die_info *pdi;
1687
1688 /* Now, march along the PDI's, descending into ones which have
1689 interesting children but skipping the children of the other ones,
1690 until we reach the end of the compilation unit. */
1691
1692 pdi = first_die;
1693
1694 while (pdi != NULL)
1695 {
1696 fixup_partial_die (pdi, cu);
1697
1698 /* Anonymous namespaces have no name but have interesting
1699 children, so we need to look at them. Ditto for anonymous
1700 enums. */
1701
1702 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1703 || pdi->tag == DW_TAG_enumeration_type)
1704 {
1705 switch (pdi->tag)
1706 {
1707 case DW_TAG_subprogram:
1708 if (pdi->has_pc_info)
1709 {
1710 if (pdi->lowpc < *lowpc)
1711 {
1712 *lowpc = pdi->lowpc;
1713 }
1714 if (pdi->highpc > *highpc)
1715 {
1716 *highpc = pdi->highpc;
1717 }
1718 if (!pdi->is_declaration)
1719 {
1720 add_partial_symbol (pdi, cu);
1721 }
1722 }
1723 break;
1724 case DW_TAG_variable:
1725 case DW_TAG_typedef:
1726 case DW_TAG_union_type:
1727 if (!pdi->is_declaration)
1728 {
1729 add_partial_symbol (pdi, cu);
1730 }
1731 break;
1732 case DW_TAG_class_type:
1733 case DW_TAG_structure_type:
1734 if (!pdi->is_declaration)
1735 {
1736 add_partial_symbol (pdi, cu);
1737 }
1738 break;
1739 case DW_TAG_enumeration_type:
1740 if (!pdi->is_declaration)
1741 add_partial_enumeration (pdi, cu);
1742 break;
1743 case DW_TAG_base_type:
1744 case DW_TAG_subrange_type:
1745 /* File scope base type definitions are added to the partial
1746 symbol table. */
1747 add_partial_symbol (pdi, cu);
1748 break;
1749 case DW_TAG_namespace:
1750 add_partial_namespace (pdi, lowpc, highpc, cu);
1751 break;
1752 default:
1753 break;
1754 }
1755 }
1756
1757 /* If the die has a sibling, skip to the sibling. */
1758
1759 pdi = pdi->die_sibling;
1760 }
1761 }
1762
1763 /* Functions used to compute the fully scoped name of a partial DIE.
1764
1765 Normally, this is simple. For C++, the parent DIE's fully scoped
1766 name is concatenated with "::" and the partial DIE's name. For
1767 Java, the same thing occurs except that "." is used instead of "::".
1768 Enumerators are an exception; they use the scope of their parent
1769 enumeration type, i.e. the name of the enumeration type is not
1770 prepended to the enumerator.
1771
1772 There are two complexities. One is DW_AT_specification; in this
1773 case "parent" means the parent of the target of the specification,
1774 instead of the direct parent of the DIE. The other is compilers
1775 which do not emit DW_TAG_namespace; in this case we try to guess
1776 the fully qualified name of structure types from their members'
1777 linkage names. This must be done using the DIE's children rather
1778 than the children of any DW_AT_specification target. We only need
1779 to do this for structures at the top level, i.e. if the target of
1780 any DW_AT_specification (if any; otherwise the DIE itself) does not
1781 have a parent. */
1782
1783 /* Compute the scope prefix associated with PDI's parent, in
1784 compilation unit CU. The result will be allocated on CU's
1785 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1786 field. NULL is returned if no prefix is necessary. */
1787 static char *
1788 partial_die_parent_scope (struct partial_die_info *pdi,
1789 struct dwarf2_cu *cu)
1790 {
1791 char *grandparent_scope;
1792 struct partial_die_info *parent, *real_pdi;
1793
1794 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1795 then this means the parent of the specification DIE. */
1796
1797 real_pdi = pdi;
1798 while (real_pdi->has_specification)
1799 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
1800
1801 parent = real_pdi->die_parent;
1802 if (parent == NULL)
1803 return NULL;
1804
1805 if (parent->scope_set)
1806 return parent->scope;
1807
1808 fixup_partial_die (parent, cu);
1809
1810 grandparent_scope = partial_die_parent_scope (parent, cu);
1811
1812 if (parent->tag == DW_TAG_namespace
1813 || parent->tag == DW_TAG_structure_type
1814 || parent->tag == DW_TAG_class_type
1815 || parent->tag == DW_TAG_union_type)
1816 {
1817 if (grandparent_scope == NULL)
1818 parent->scope = parent->name;
1819 else
1820 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1821 parent->name, cu);
1822 }
1823 else if (parent->tag == DW_TAG_enumeration_type)
1824 /* Enumerators should not get the name of the enumeration as a prefix. */
1825 parent->scope = grandparent_scope;
1826 else
1827 {
1828 /* FIXME drow/2004-04-01: What should we be doing with
1829 function-local names? For partial symbols, we should probably be
1830 ignoring them. */
1831 complaint (&symfile_complaints,
1832 _("unhandled containing DIE tag %d for DIE at %d"),
1833 parent->tag, pdi->offset);
1834 parent->scope = grandparent_scope;
1835 }
1836
1837 parent->scope_set = 1;
1838 return parent->scope;
1839 }
1840
1841 /* Return the fully scoped name associated with PDI, from compilation unit
1842 CU. The result will be allocated with malloc. */
1843 static char *
1844 partial_die_full_name (struct partial_die_info *pdi,
1845 struct dwarf2_cu *cu)
1846 {
1847 char *parent_scope;
1848
1849 parent_scope = partial_die_parent_scope (pdi, cu);
1850 if (parent_scope == NULL)
1851 return NULL;
1852 else
1853 return typename_concat (NULL, parent_scope, pdi->name, cu);
1854 }
1855
1856 static void
1857 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
1858 {
1859 struct objfile *objfile = cu->objfile;
1860 CORE_ADDR addr = 0;
1861 char *actual_name;
1862 const char *my_prefix;
1863 const struct partial_symbol *psym = NULL;
1864 CORE_ADDR baseaddr;
1865 int built_actual_name = 0;
1866
1867 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1868
1869 actual_name = NULL;
1870
1871 if (pdi_needs_namespace (pdi->tag))
1872 {
1873 actual_name = partial_die_full_name (pdi, cu);
1874 if (actual_name)
1875 built_actual_name = 1;
1876 }
1877
1878 if (actual_name == NULL)
1879 actual_name = pdi->name;
1880
1881 switch (pdi->tag)
1882 {
1883 case DW_TAG_subprogram:
1884 if (pdi->is_external)
1885 {
1886 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1887 mst_text, objfile); */
1888 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1889 VAR_DOMAIN, LOC_BLOCK,
1890 &objfile->global_psymbols,
1891 0, pdi->lowpc + baseaddr,
1892 cu->language, objfile);
1893 }
1894 else
1895 {
1896 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1897 mst_file_text, objfile); */
1898 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1899 VAR_DOMAIN, LOC_BLOCK,
1900 &objfile->static_psymbols,
1901 0, pdi->lowpc + baseaddr,
1902 cu->language, objfile);
1903 }
1904 break;
1905 case DW_TAG_variable:
1906 if (pdi->is_external)
1907 {
1908 /* Global Variable.
1909 Don't enter into the minimal symbol tables as there is
1910 a minimal symbol table entry from the ELF symbols already.
1911 Enter into partial symbol table if it has a location
1912 descriptor or a type.
1913 If the location descriptor is missing, new_symbol will create
1914 a LOC_UNRESOLVED symbol, the address of the variable will then
1915 be determined from the minimal symbol table whenever the variable
1916 is referenced.
1917 The address for the partial symbol table entry is not
1918 used by GDB, but it comes in handy for debugging partial symbol
1919 table building. */
1920
1921 if (pdi->locdesc)
1922 addr = decode_locdesc (pdi->locdesc, cu);
1923 if (pdi->locdesc || pdi->has_type)
1924 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1925 VAR_DOMAIN, LOC_STATIC,
1926 &objfile->global_psymbols,
1927 0, addr + baseaddr,
1928 cu->language, objfile);
1929 }
1930 else
1931 {
1932 /* Static Variable. Skip symbols without location descriptors. */
1933 if (pdi->locdesc == NULL)
1934 return;
1935 addr = decode_locdesc (pdi->locdesc, cu);
1936 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
1937 mst_file_data, objfile); */
1938 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1939 VAR_DOMAIN, LOC_STATIC,
1940 &objfile->static_psymbols,
1941 0, addr + baseaddr,
1942 cu->language, objfile);
1943 }
1944 break;
1945 case DW_TAG_typedef:
1946 case DW_TAG_base_type:
1947 case DW_TAG_subrange_type:
1948 add_psymbol_to_list (actual_name, strlen (actual_name),
1949 VAR_DOMAIN, LOC_TYPEDEF,
1950 &objfile->static_psymbols,
1951 0, (CORE_ADDR) 0, cu->language, objfile);
1952 break;
1953 case DW_TAG_namespace:
1954 add_psymbol_to_list (actual_name, strlen (actual_name),
1955 VAR_DOMAIN, LOC_TYPEDEF,
1956 &objfile->global_psymbols,
1957 0, (CORE_ADDR) 0, cu->language, objfile);
1958 break;
1959 case DW_TAG_class_type:
1960 case DW_TAG_structure_type:
1961 case DW_TAG_union_type:
1962 case DW_TAG_enumeration_type:
1963 /* Skip aggregate types without children, these are external
1964 references. */
1965 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
1966 static vs. global. */
1967 if (pdi->has_children == 0)
1968 return;
1969 add_psymbol_to_list (actual_name, strlen (actual_name),
1970 STRUCT_DOMAIN, LOC_TYPEDEF,
1971 (cu->language == language_cplus
1972 || cu->language == language_java)
1973 ? &objfile->global_psymbols
1974 : &objfile->static_psymbols,
1975 0, (CORE_ADDR) 0, cu->language, objfile);
1976
1977 if (cu->language == language_cplus
1978 || cu->language == language_java)
1979 {
1980 /* For C++ and Java, these implicitly act as typedefs as well. */
1981 add_psymbol_to_list (actual_name, strlen (actual_name),
1982 VAR_DOMAIN, LOC_TYPEDEF,
1983 &objfile->global_psymbols,
1984 0, (CORE_ADDR) 0, cu->language, objfile);
1985 }
1986 break;
1987 case DW_TAG_enumerator:
1988 add_psymbol_to_list (actual_name, strlen (actual_name),
1989 VAR_DOMAIN, LOC_CONST,
1990 (cu->language == language_cplus
1991 || cu->language == language_java)
1992 ? &objfile->global_psymbols
1993 : &objfile->static_psymbols,
1994 0, (CORE_ADDR) 0, cu->language, objfile);
1995 break;
1996 default:
1997 break;
1998 }
1999
2000 /* Check to see if we should scan the name for possible namespace
2001 info. Only do this if this is C++, if we don't have namespace
2002 debugging info in the file, if the psym is of an appropriate type
2003 (otherwise we'll have psym == NULL), and if we actually had a
2004 mangled name to begin with. */
2005
2006 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2007 cases which do not set PSYM above? */
2008
2009 if (cu->language == language_cplus
2010 && cu->has_namespace_info == 0
2011 && psym != NULL
2012 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2013 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2014 objfile);
2015
2016 if (built_actual_name)
2017 xfree (actual_name);
2018 }
2019
2020 /* Determine whether a die of type TAG living in a C++ class or
2021 namespace needs to have the name of the scope prepended to the
2022 name listed in the die. */
2023
2024 static int
2025 pdi_needs_namespace (enum dwarf_tag tag)
2026 {
2027 switch (tag)
2028 {
2029 case DW_TAG_namespace:
2030 case DW_TAG_typedef:
2031 case DW_TAG_class_type:
2032 case DW_TAG_structure_type:
2033 case DW_TAG_union_type:
2034 case DW_TAG_enumeration_type:
2035 case DW_TAG_enumerator:
2036 return 1;
2037 default:
2038 return 0;
2039 }
2040 }
2041
2042 /* Read a partial die corresponding to a namespace; also, add a symbol
2043 corresponding to that namespace to the symbol table. NAMESPACE is
2044 the name of the enclosing namespace. */
2045
2046 static void
2047 add_partial_namespace (struct partial_die_info *pdi,
2048 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2049 struct dwarf2_cu *cu)
2050 {
2051 struct objfile *objfile = cu->objfile;
2052
2053 /* Add a symbol for the namespace. */
2054
2055 add_partial_symbol (pdi, cu);
2056
2057 /* Now scan partial symbols in that namespace. */
2058
2059 if (pdi->has_children)
2060 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
2061 }
2062
2063 /* See if we can figure out if the class lives in a namespace. We do
2064 this by looking for a member function; its demangled name will
2065 contain namespace info, if there is any. */
2066
2067 static void
2068 guess_structure_name (struct partial_die_info *struct_pdi,
2069 struct dwarf2_cu *cu)
2070 {
2071 if ((cu->language == language_cplus
2072 || cu->language == language_java)
2073 && cu->has_namespace_info == 0
2074 && struct_pdi->has_children)
2075 {
2076 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2077 what template types look like, because the demangler
2078 frequently doesn't give the same name as the debug info. We
2079 could fix this by only using the demangled name to get the
2080 prefix (but see comment in read_structure_type). */
2081
2082 struct partial_die_info *child_pdi = struct_pdi->die_child;
2083 struct partial_die_info *real_pdi;
2084
2085 /* If this DIE (this DIE's specification, if any) has a parent, then
2086 we should not do this. We'll prepend the parent's fully qualified
2087 name when we create the partial symbol. */
2088
2089 real_pdi = struct_pdi;
2090 while (real_pdi->has_specification)
2091 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2092
2093 if (real_pdi->die_parent != NULL)
2094 return;
2095
2096 while (child_pdi != NULL)
2097 {
2098 if (child_pdi->tag == DW_TAG_subprogram)
2099 {
2100 char *actual_class_name
2101 = language_class_name_from_physname (cu->language_defn,
2102 child_pdi->name);
2103 if (actual_class_name != NULL)
2104 {
2105 struct_pdi->name
2106 = obsavestring (actual_class_name,
2107 strlen (actual_class_name),
2108 &cu->comp_unit_obstack);
2109 xfree (actual_class_name);
2110 }
2111 break;
2112 }
2113
2114 child_pdi = child_pdi->die_sibling;
2115 }
2116 }
2117 }
2118
2119 /* Read a partial die corresponding to an enumeration type. */
2120
2121 static void
2122 add_partial_enumeration (struct partial_die_info *enum_pdi,
2123 struct dwarf2_cu *cu)
2124 {
2125 struct objfile *objfile = cu->objfile;
2126 bfd *abfd = objfile->obfd;
2127 struct partial_die_info *pdi;
2128
2129 if (enum_pdi->name != NULL)
2130 add_partial_symbol (enum_pdi, cu);
2131
2132 pdi = enum_pdi->die_child;
2133 while (pdi)
2134 {
2135 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2136 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
2137 else
2138 add_partial_symbol (pdi, cu);
2139 pdi = pdi->die_sibling;
2140 }
2141 }
2142
2143 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2144 Return the corresponding abbrev, or NULL if the number is zero (indicating
2145 an empty DIE). In either case *BYTES_READ will be set to the length of
2146 the initial number. */
2147
2148 static struct abbrev_info *
2149 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
2150 struct dwarf2_cu *cu)
2151 {
2152 bfd *abfd = cu->objfile->obfd;
2153 unsigned int abbrev_number;
2154 struct abbrev_info *abbrev;
2155
2156 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2157
2158 if (abbrev_number == 0)
2159 return NULL;
2160
2161 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2162 if (!abbrev)
2163 {
2164 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
2165 bfd_get_filename (abfd));
2166 }
2167
2168 return abbrev;
2169 }
2170
2171 /* Scan the debug information for CU starting at INFO_PTR. Returns a
2172 pointer to the end of a series of DIEs, terminated by an empty
2173 DIE. Any children of the skipped DIEs will also be skipped. */
2174
2175 static gdb_byte *
2176 skip_children (gdb_byte *info_ptr, struct dwarf2_cu *cu)
2177 {
2178 struct abbrev_info *abbrev;
2179 unsigned int bytes_read;
2180
2181 while (1)
2182 {
2183 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2184 if (abbrev == NULL)
2185 return info_ptr + bytes_read;
2186 else
2187 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2188 }
2189 }
2190
2191 /* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2192 should point just after the initial uleb128 of a DIE, and the
2193 abbrev corresponding to that skipped uleb128 should be passed in
2194 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2195 children. */
2196
2197 static gdb_byte *
2198 skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
2199 struct dwarf2_cu *cu)
2200 {
2201 unsigned int bytes_read;
2202 struct attribute attr;
2203 bfd *abfd = cu->objfile->obfd;
2204 unsigned int form, i;
2205
2206 for (i = 0; i < abbrev->num_attrs; i++)
2207 {
2208 /* The only abbrev we care about is DW_AT_sibling. */
2209 if (abbrev->attrs[i].name == DW_AT_sibling)
2210 {
2211 read_attribute (&attr, &abbrev->attrs[i],
2212 abfd, info_ptr, cu);
2213 if (attr.form == DW_FORM_ref_addr)
2214 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
2215 else
2216 return dwarf2_per_objfile->info_buffer
2217 + dwarf2_get_ref_die_offset (&attr, cu);
2218 }
2219
2220 /* If it isn't DW_AT_sibling, skip this attribute. */
2221 form = abbrev->attrs[i].form;
2222 skip_attribute:
2223 switch (form)
2224 {
2225 case DW_FORM_addr:
2226 case DW_FORM_ref_addr:
2227 info_ptr += cu->header.addr_size;
2228 break;
2229 case DW_FORM_data1:
2230 case DW_FORM_ref1:
2231 case DW_FORM_flag:
2232 info_ptr += 1;
2233 break;
2234 case DW_FORM_data2:
2235 case DW_FORM_ref2:
2236 info_ptr += 2;
2237 break;
2238 case DW_FORM_data4:
2239 case DW_FORM_ref4:
2240 info_ptr += 4;
2241 break;
2242 case DW_FORM_data8:
2243 case DW_FORM_ref8:
2244 info_ptr += 8;
2245 break;
2246 case DW_FORM_string:
2247 read_string (abfd, info_ptr, &bytes_read);
2248 info_ptr += bytes_read;
2249 break;
2250 case DW_FORM_strp:
2251 info_ptr += cu->header.offset_size;
2252 break;
2253 case DW_FORM_block:
2254 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2255 info_ptr += bytes_read;
2256 break;
2257 case DW_FORM_block1:
2258 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2259 break;
2260 case DW_FORM_block2:
2261 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2262 break;
2263 case DW_FORM_block4:
2264 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2265 break;
2266 case DW_FORM_sdata:
2267 case DW_FORM_udata:
2268 case DW_FORM_ref_udata:
2269 info_ptr = skip_leb128 (abfd, info_ptr);
2270 break;
2271 case DW_FORM_indirect:
2272 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2273 info_ptr += bytes_read;
2274 /* We need to continue parsing from here, so just go back to
2275 the top. */
2276 goto skip_attribute;
2277
2278 default:
2279 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
2280 dwarf_form_name (form),
2281 bfd_get_filename (abfd));
2282 }
2283 }
2284
2285 if (abbrev->has_children)
2286 return skip_children (info_ptr, cu);
2287 else
2288 return info_ptr;
2289 }
2290
2291 /* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2292 the next DIE after ORIG_PDI. */
2293
2294 static gdb_byte *
2295 locate_pdi_sibling (struct partial_die_info *orig_pdi, gdb_byte *info_ptr,
2296 bfd *abfd, struct dwarf2_cu *cu)
2297 {
2298 /* Do we know the sibling already? */
2299
2300 if (orig_pdi->sibling)
2301 return orig_pdi->sibling;
2302
2303 /* Are there any children to deal with? */
2304
2305 if (!orig_pdi->has_children)
2306 return info_ptr;
2307
2308 /* Skip the children the long way. */
2309
2310 return skip_children (info_ptr, cu);
2311 }
2312
2313 /* Expand this partial symbol table into a full symbol table. */
2314
2315 static void
2316 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2317 {
2318 /* FIXME: This is barely more than a stub. */
2319 if (pst != NULL)
2320 {
2321 if (pst->readin)
2322 {
2323 warning (_("bug: psymtab for %s is already read in."), pst->filename);
2324 }
2325 else
2326 {
2327 if (info_verbose)
2328 {
2329 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
2330 gdb_flush (gdb_stdout);
2331 }
2332
2333 /* Restore our global data. */
2334 dwarf2_per_objfile = objfile_data (pst->objfile,
2335 dwarf2_objfile_data_key);
2336
2337 psymtab_to_symtab_1 (pst);
2338
2339 /* Finish up the debug error message. */
2340 if (info_verbose)
2341 printf_filtered (_("done.\n"));
2342 }
2343 }
2344 }
2345
2346 /* Add PER_CU to the queue. */
2347
2348 static void
2349 queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2350 {
2351 struct dwarf2_queue_item *item;
2352
2353 per_cu->queued = 1;
2354 item = xmalloc (sizeof (*item));
2355 item->per_cu = per_cu;
2356 item->next = NULL;
2357
2358 if (dwarf2_queue == NULL)
2359 dwarf2_queue = item;
2360 else
2361 dwarf2_queue_tail->next = item;
2362
2363 dwarf2_queue_tail = item;
2364 }
2365
2366 /* Process the queue. */
2367
2368 static void
2369 process_queue (struct objfile *objfile)
2370 {
2371 struct dwarf2_queue_item *item, *next_item;
2372
2373 /* Initially, there is just one item on the queue. Load its DIEs,
2374 and the DIEs of any other compilation units it requires,
2375 transitively. */
2376
2377 for (item = dwarf2_queue; item != NULL; item = item->next)
2378 {
2379 /* Read in this compilation unit. This may add new items to
2380 the end of the queue. */
2381 load_full_comp_unit (item->per_cu);
2382
2383 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2384 dwarf2_per_objfile->read_in_chain = item->per_cu;
2385
2386 /* If this compilation unit has already had full symbols created,
2387 reset the TYPE fields in each DIE. */
2388 if (item->per_cu->psymtab->readin)
2389 reset_die_and_siblings_types (item->per_cu->cu->dies,
2390 item->per_cu->cu);
2391 }
2392
2393 /* Now everything left on the queue needs to be read in. Process
2394 them, one at a time, removing from the queue as we finish. */
2395 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2396 {
2397 if (!item->per_cu->psymtab->readin)
2398 process_full_comp_unit (item->per_cu);
2399
2400 item->per_cu->queued = 0;
2401 next_item = item->next;
2402 xfree (item);
2403 }
2404
2405 dwarf2_queue_tail = NULL;
2406 }
2407
2408 /* Free all allocated queue entries. This function only releases anything if
2409 an error was thrown; if the queue was processed then it would have been
2410 freed as we went along. */
2411
2412 static void
2413 dwarf2_release_queue (void *dummy)
2414 {
2415 struct dwarf2_queue_item *item, *last;
2416
2417 item = dwarf2_queue;
2418 while (item)
2419 {
2420 /* Anything still marked queued is likely to be in an
2421 inconsistent state, so discard it. */
2422 if (item->per_cu->queued)
2423 {
2424 if (item->per_cu->cu != NULL)
2425 free_one_cached_comp_unit (item->per_cu->cu);
2426 item->per_cu->queued = 0;
2427 }
2428
2429 last = item;
2430 item = item->next;
2431 xfree (last);
2432 }
2433
2434 dwarf2_queue = dwarf2_queue_tail = NULL;
2435 }
2436
2437 /* Read in full symbols for PST, and anything it depends on. */
2438
2439 static void
2440 psymtab_to_symtab_1 (struct partial_symtab *pst)
2441 {
2442 struct dwarf2_per_cu_data *per_cu;
2443 struct cleanup *back_to;
2444 int i;
2445
2446 for (i = 0; i < pst->number_of_dependencies; i++)
2447 if (!pst->dependencies[i]->readin)
2448 {
2449 /* Inform about additional files that need to be read in. */
2450 if (info_verbose)
2451 {
2452 /* FIXME: i18n: Need to make this a single string. */
2453 fputs_filtered (" ", gdb_stdout);
2454 wrap_here ("");
2455 fputs_filtered ("and ", gdb_stdout);
2456 wrap_here ("");
2457 printf_filtered ("%s...", pst->dependencies[i]->filename);
2458 wrap_here (""); /* Flush output */
2459 gdb_flush (gdb_stdout);
2460 }
2461 psymtab_to_symtab_1 (pst->dependencies[i]);
2462 }
2463
2464 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2465
2466 if (per_cu == NULL)
2467 {
2468 /* It's an include file, no symbols to read for it.
2469 Everything is in the parent symtab. */
2470 pst->readin = 1;
2471 return;
2472 }
2473
2474 back_to = make_cleanup (dwarf2_release_queue, NULL);
2475
2476 queue_comp_unit (per_cu);
2477
2478 process_queue (pst->objfile);
2479
2480 /* Age the cache, releasing compilation units that have not
2481 been used recently. */
2482 age_cached_comp_units ();
2483
2484 do_cleanups (back_to);
2485 }
2486
2487 /* Load the DIEs associated with PST and PER_CU into memory. */
2488
2489 static struct dwarf2_cu *
2490 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2491 {
2492 struct partial_symtab *pst = per_cu->psymtab;
2493 bfd *abfd = pst->objfile->obfd;
2494 struct dwarf2_cu *cu;
2495 unsigned long offset;
2496 gdb_byte *info_ptr;
2497 struct cleanup *back_to, *free_cu_cleanup;
2498 struct attribute *attr;
2499 CORE_ADDR baseaddr;
2500
2501 /* Set local variables from the partial symbol table info. */
2502 offset = per_cu->offset;
2503
2504 info_ptr = dwarf2_per_objfile->info_buffer + offset;
2505
2506 cu = xmalloc (sizeof (struct dwarf2_cu));
2507 memset (cu, 0, sizeof (struct dwarf2_cu));
2508
2509 /* If an error occurs while loading, release our storage. */
2510 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
2511
2512 cu->objfile = pst->objfile;
2513
2514 /* read in the comp_unit header */
2515 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
2516
2517 /* Read the abbrevs for this compilation unit */
2518 dwarf2_read_abbrevs (abfd, cu);
2519 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2520
2521 cu->header.offset = offset;
2522
2523 cu->per_cu = per_cu;
2524 per_cu->cu = cu;
2525
2526 /* We use this obstack for block values in dwarf_alloc_block. */
2527 obstack_init (&cu->comp_unit_obstack);
2528
2529 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2530
2531 /* We try not to read any attributes in this function, because not
2532 all objfiles needed for references have been loaded yet, and symbol
2533 table processing isn't initialized. But we have to set the CU language,
2534 or we won't be able to build types correctly. */
2535 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2536 if (attr)
2537 set_cu_language (DW_UNSND (attr), cu);
2538 else
2539 set_cu_language (language_minimal, cu);
2540
2541 do_cleanups (back_to);
2542
2543 /* We've successfully allocated this compilation unit. Let our caller
2544 clean it up when finished with it. */
2545 discard_cleanups (free_cu_cleanup);
2546
2547 return cu;
2548 }
2549
2550 /* Generate full symbol information for PST and CU, whose DIEs have
2551 already been loaded into memory. */
2552
2553 static void
2554 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2555 {
2556 struct partial_symtab *pst = per_cu->psymtab;
2557 struct dwarf2_cu *cu = per_cu->cu;
2558 struct objfile *objfile = pst->objfile;
2559 bfd *abfd = objfile->obfd;
2560 CORE_ADDR lowpc, highpc;
2561 struct symtab *symtab;
2562 struct cleanup *back_to;
2563 struct attribute *attr;
2564 CORE_ADDR baseaddr;
2565
2566 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2567
2568 /* We're in the global namespace. */
2569 processing_current_prefix = "";
2570
2571 buildsym_init ();
2572 back_to = make_cleanup (really_free_pendings, NULL);
2573
2574 cu->list_in_scope = &file_symbols;
2575
2576 /* Find the base address of the compilation unit for range lists and
2577 location lists. It will normally be specified by DW_AT_low_pc.
2578 In DWARF-3 draft 4, the base address could be overridden by
2579 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2580 compilation units with discontinuous ranges. */
2581
2582 cu->header.base_known = 0;
2583 cu->header.base_address = 0;
2584
2585 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
2586 if (attr)
2587 {
2588 cu->header.base_address = DW_ADDR (attr);
2589 cu->header.base_known = 1;
2590 }
2591 else
2592 {
2593 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
2594 if (attr)
2595 {
2596 cu->header.base_address = DW_ADDR (attr);
2597 cu->header.base_known = 1;
2598 }
2599 }
2600
2601 /* Do line number decoding in read_file_scope () */
2602 process_die (cu->dies, cu);
2603
2604 /* Some compilers don't define a DW_AT_high_pc attribute for the
2605 compilation unit. If the DW_AT_high_pc is missing, synthesize
2606 it, by scanning the DIE's below the compilation unit. */
2607 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
2608
2609 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
2610
2611 /* Set symtab language to language from DW_AT_language.
2612 If the compilation is from a C file generated by language preprocessors,
2613 do not set the language if it was already deduced by start_subfile. */
2614 if (symtab != NULL
2615 && !(cu->language == language_c && symtab->language != language_c))
2616 {
2617 symtab->language = cu->language;
2618 }
2619 pst->symtab = symtab;
2620 pst->readin = 1;
2621
2622 do_cleanups (back_to);
2623 }
2624
2625 /* Process a die and its children. */
2626
2627 static void
2628 process_die (struct die_info *die, struct dwarf2_cu *cu)
2629 {
2630 switch (die->tag)
2631 {
2632 case DW_TAG_padding:
2633 break;
2634 case DW_TAG_compile_unit:
2635 read_file_scope (die, cu);
2636 break;
2637 case DW_TAG_subprogram:
2638 read_subroutine_type (die, cu);
2639 read_func_scope (die, cu);
2640 break;
2641 case DW_TAG_inlined_subroutine:
2642 /* FIXME: These are ignored for now.
2643 They could be used to set breakpoints on all inlined instances
2644 of a function and make GDB `next' properly over inlined functions. */
2645 break;
2646 case DW_TAG_lexical_block:
2647 case DW_TAG_try_block:
2648 case DW_TAG_catch_block:
2649 read_lexical_block_scope (die, cu);
2650 break;
2651 case DW_TAG_class_type:
2652 case DW_TAG_structure_type:
2653 case DW_TAG_union_type:
2654 read_structure_type (die, cu);
2655 process_structure_scope (die, cu);
2656 break;
2657 case DW_TAG_enumeration_type:
2658 read_enumeration_type (die, cu);
2659 process_enumeration_scope (die, cu);
2660 break;
2661
2662 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2663 a symbol or process any children. Therefore it doesn't do anything
2664 that won't be done on-demand by read_type_die. */
2665 case DW_TAG_subroutine_type:
2666 read_subroutine_type (die, cu);
2667 break;
2668 case DW_TAG_set_type:
2669 read_set_type (die, cu);
2670 break;
2671 case DW_TAG_array_type:
2672 read_array_type (die, cu);
2673 break;
2674 case DW_TAG_pointer_type:
2675 read_tag_pointer_type (die, cu);
2676 break;
2677 case DW_TAG_ptr_to_member_type:
2678 read_tag_ptr_to_member_type (die, cu);
2679 break;
2680 case DW_TAG_reference_type:
2681 read_tag_reference_type (die, cu);
2682 break;
2683 case DW_TAG_string_type:
2684 read_tag_string_type (die, cu);
2685 break;
2686 /* END FIXME */
2687
2688 case DW_TAG_base_type:
2689 read_base_type (die, cu);
2690 /* Add a typedef symbol for the type definition, if it has a
2691 DW_AT_name. */
2692 new_symbol (die, die->type, cu);
2693 break;
2694 case DW_TAG_subrange_type:
2695 read_subrange_type (die, cu);
2696 /* Add a typedef symbol for the type definition, if it has a
2697 DW_AT_name. */
2698 new_symbol (die, die->type, cu);
2699 break;
2700 case DW_TAG_common_block:
2701 read_common_block (die, cu);
2702 break;
2703 case DW_TAG_common_inclusion:
2704 break;
2705 case DW_TAG_namespace:
2706 processing_has_namespace_info = 1;
2707 read_namespace (die, cu);
2708 break;
2709 case DW_TAG_imported_declaration:
2710 case DW_TAG_imported_module:
2711 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2712 information contained in these. DW_TAG_imported_declaration
2713 dies shouldn't have children; DW_TAG_imported_module dies
2714 shouldn't in the C++ case, but conceivably could in the
2715 Fortran case, so we'll have to replace this gdb_assert if
2716 Fortran compilers start generating that info. */
2717 processing_has_namespace_info = 1;
2718 gdb_assert (die->child == NULL);
2719 break;
2720 default:
2721 new_symbol (die, NULL, cu);
2722 break;
2723 }
2724 }
2725
2726 static void
2727 initialize_cu_func_list (struct dwarf2_cu *cu)
2728 {
2729 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
2730 }
2731
2732 static void
2733 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
2734 {
2735 struct objfile *objfile = cu->objfile;
2736 struct comp_unit_head *cu_header = &cu->header;
2737 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2738 CORE_ADDR lowpc = ((CORE_ADDR) -1);
2739 CORE_ADDR highpc = ((CORE_ADDR) 0);
2740 struct attribute *attr;
2741 char *name = "<unknown>";
2742 char *comp_dir = NULL;
2743 struct die_info *child_die;
2744 bfd *abfd = objfile->obfd;
2745 struct line_header *line_header = 0;
2746 CORE_ADDR baseaddr;
2747
2748 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2749
2750 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
2751
2752 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2753 from finish_block. */
2754 if (lowpc == ((CORE_ADDR) -1))
2755 lowpc = highpc;
2756 lowpc += baseaddr;
2757 highpc += baseaddr;
2758
2759 attr = dwarf2_attr (die, DW_AT_name, cu);
2760 if (attr)
2761 {
2762 name = DW_STRING (attr);
2763 }
2764 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
2765 if (attr)
2766 {
2767 comp_dir = DW_STRING (attr);
2768 if (comp_dir)
2769 {
2770 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2771 directory, get rid of it. */
2772 char *cp = strchr (comp_dir, ':');
2773
2774 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2775 comp_dir = cp + 1;
2776 }
2777 }
2778
2779 attr = dwarf2_attr (die, DW_AT_language, cu);
2780 if (attr)
2781 {
2782 set_cu_language (DW_UNSND (attr), cu);
2783 }
2784
2785 attr = dwarf2_attr (die, DW_AT_producer, cu);
2786 if (attr)
2787 cu->producer = DW_STRING (attr);
2788
2789 /* We assume that we're processing GCC output. */
2790 processing_gcc_compilation = 2;
2791 #if 0
2792 /* FIXME:Do something here. */
2793 if (dip->at_producer != NULL)
2794 {
2795 handle_producer (dip->at_producer);
2796 }
2797 #endif
2798
2799 /* The compilation unit may be in a different language or objfile,
2800 zero out all remembered fundamental types. */
2801 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
2802
2803 start_symtab (name, comp_dir, lowpc);
2804 record_debugformat ("DWARF 2");
2805
2806 initialize_cu_func_list (cu);
2807
2808 /* Process all dies in compilation unit. */
2809 if (die->child != NULL)
2810 {
2811 child_die = die->child;
2812 while (child_die && child_die->tag)
2813 {
2814 process_die (child_die, cu);
2815 child_die = sibling_die (child_die);
2816 }
2817 }
2818
2819 /* Decode line number information if present. */
2820 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2821 if (attr)
2822 {
2823 unsigned int line_offset = DW_UNSND (attr);
2824 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
2825 if (line_header)
2826 {
2827 make_cleanup ((make_cleanup_ftype *) free_line_header,
2828 (void *) line_header);
2829 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
2830 }
2831 }
2832
2833 /* Decode macro information, if present. Dwarf 2 macro information
2834 refers to information in the line number info statement program
2835 header, so we can only read it if we've read the header
2836 successfully. */
2837 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
2838 if (attr && line_header)
2839 {
2840 unsigned int macro_offset = DW_UNSND (attr);
2841 dwarf_decode_macros (line_header, macro_offset,
2842 comp_dir, abfd, cu);
2843 }
2844 do_cleanups (back_to);
2845 }
2846
2847 static void
2848 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2849 struct dwarf2_cu *cu)
2850 {
2851 struct function_range *thisfn;
2852
2853 thisfn = (struct function_range *)
2854 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
2855 thisfn->name = name;
2856 thisfn->lowpc = lowpc;
2857 thisfn->highpc = highpc;
2858 thisfn->seen_line = 0;
2859 thisfn->next = NULL;
2860
2861 if (cu->last_fn == NULL)
2862 cu->first_fn = thisfn;
2863 else
2864 cu->last_fn->next = thisfn;
2865
2866 cu->last_fn = thisfn;
2867 }
2868
2869 static void
2870 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
2871 {
2872 struct objfile *objfile = cu->objfile;
2873 struct context_stack *new;
2874 CORE_ADDR lowpc;
2875 CORE_ADDR highpc;
2876 struct die_info *child_die;
2877 struct attribute *attr;
2878 char *name;
2879 const char *previous_prefix = processing_current_prefix;
2880 struct cleanup *back_to = NULL;
2881 CORE_ADDR baseaddr;
2882
2883 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2884
2885 name = dwarf2_linkage_name (die, cu);
2886
2887 /* Ignore functions with missing or empty names and functions with
2888 missing or invalid low and high pc attributes. */
2889 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2890 return;
2891
2892 if (cu->language == language_cplus
2893 || cu->language == language_java)
2894 {
2895 struct die_info *spec_die = die_specification (die, cu);
2896
2897 /* NOTE: carlton/2004-01-23: We have to be careful in the
2898 presence of DW_AT_specification. For example, with GCC 3.4,
2899 given the code
2900
2901 namespace N {
2902 void foo() {
2903 // Definition of N::foo.
2904 }
2905 }
2906
2907 then we'll have a tree of DIEs like this:
2908
2909 1: DW_TAG_compile_unit
2910 2: DW_TAG_namespace // N
2911 3: DW_TAG_subprogram // declaration of N::foo
2912 4: DW_TAG_subprogram // definition of N::foo
2913 DW_AT_specification // refers to die #3
2914
2915 Thus, when processing die #4, we have to pretend that we're
2916 in the context of its DW_AT_specification, namely the contex
2917 of die #3. */
2918
2919 if (spec_die != NULL)
2920 {
2921 char *specification_prefix = determine_prefix (spec_die, cu);
2922 processing_current_prefix = specification_prefix;
2923 back_to = make_cleanup (xfree, specification_prefix);
2924 }
2925 }
2926
2927 lowpc += baseaddr;
2928 highpc += baseaddr;
2929
2930 /* Record the function range for dwarf_decode_lines. */
2931 add_to_cu_func_list (name, lowpc, highpc, cu);
2932
2933 new = push_context (0, lowpc);
2934 new->name = new_symbol (die, die->type, cu);
2935
2936 /* If there is a location expression for DW_AT_frame_base, record
2937 it. */
2938 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
2939 if (attr)
2940 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2941 expression is being recorded directly in the function's symbol
2942 and not in a separate frame-base object. I guess this hack is
2943 to avoid adding some sort of frame-base adjunct/annex to the
2944 function's symbol :-(. The problem with doing this is that it
2945 results in a function symbol with a location expression that
2946 has nothing to do with the location of the function, ouch! The
2947 relationship should be: a function's symbol has-a frame base; a
2948 frame-base has-a location expression. */
2949 dwarf2_symbol_mark_computed (attr, new->name, cu);
2950
2951 cu->list_in_scope = &local_symbols;
2952
2953 if (die->child != NULL)
2954 {
2955 child_die = die->child;
2956 while (child_die && child_die->tag)
2957 {
2958 process_die (child_die, cu);
2959 child_die = sibling_die (child_die);
2960 }
2961 }
2962
2963 new = pop_context ();
2964 /* Make a block for the local symbols within. */
2965 finish_block (new->name, &local_symbols, new->old_blocks,
2966 lowpc, highpc, objfile);
2967
2968 /* In C++, we can have functions nested inside functions (e.g., when
2969 a function declares a class that has methods). This means that
2970 when we finish processing a function scope, we may need to go
2971 back to building a containing block's symbol lists. */
2972 local_symbols = new->locals;
2973 param_symbols = new->params;
2974
2975 /* If we've finished processing a top-level function, subsequent
2976 symbols go in the file symbol list. */
2977 if (outermost_context_p ())
2978 cu->list_in_scope = &file_symbols;
2979
2980 processing_current_prefix = previous_prefix;
2981 if (back_to != NULL)
2982 do_cleanups (back_to);
2983 }
2984
2985 /* Process all the DIES contained within a lexical block scope. Start
2986 a new scope, process the dies, and then close the scope. */
2987
2988 static void
2989 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
2990 {
2991 struct objfile *objfile = cu->objfile;
2992 struct context_stack *new;
2993 CORE_ADDR lowpc, highpc;
2994 struct die_info *child_die;
2995 CORE_ADDR baseaddr;
2996
2997 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2998
2999 /* Ignore blocks with missing or invalid low and high pc attributes. */
3000 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
3001 as multiple lexical blocks? Handling children in a sane way would
3002 be nasty. Might be easier to properly extend generic blocks to
3003 describe ranges. */
3004 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
3005 return;
3006 lowpc += baseaddr;
3007 highpc += baseaddr;
3008
3009 push_context (0, lowpc);
3010 if (die->child != NULL)
3011 {
3012 child_die = die->child;
3013 while (child_die && child_die->tag)
3014 {
3015 process_die (child_die, cu);
3016 child_die = sibling_die (child_die);
3017 }
3018 }
3019 new = pop_context ();
3020
3021 if (local_symbols != NULL)
3022 {
3023 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3024 highpc, objfile);
3025 }
3026 local_symbols = new->locals;
3027 }
3028
3029 /* Get low and high pc attributes from a die. Return 1 if the attributes
3030 are present and valid, otherwise, return 0. Return -1 if the range is
3031 discontinuous, i.e. derived from DW_AT_ranges information. */
3032 static int
3033 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
3034 CORE_ADDR *highpc, struct dwarf2_cu *cu)
3035 {
3036 struct objfile *objfile = cu->objfile;
3037 struct comp_unit_head *cu_header = &cu->header;
3038 struct attribute *attr;
3039 bfd *obfd = objfile->obfd;
3040 CORE_ADDR low = 0;
3041 CORE_ADDR high = 0;
3042 int ret = 0;
3043
3044 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3045 if (attr)
3046 {
3047 high = DW_ADDR (attr);
3048 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3049 if (attr)
3050 low = DW_ADDR (attr);
3051 else
3052 /* Found high w/o low attribute. */
3053 return 0;
3054
3055 /* Found consecutive range of addresses. */
3056 ret = 1;
3057 }
3058 else
3059 {
3060 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3061 if (attr != NULL)
3062 {
3063 unsigned int addr_size = cu_header->addr_size;
3064 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3065 /* Value of the DW_AT_ranges attribute is the offset in the
3066 .debug_ranges section. */
3067 unsigned int offset = DW_UNSND (attr);
3068 /* Base address selection entry. */
3069 CORE_ADDR base;
3070 int found_base;
3071 unsigned int dummy;
3072 gdb_byte *buffer;
3073 CORE_ADDR marker;
3074 int low_set;
3075
3076 found_base = cu_header->base_known;
3077 base = cu_header->base_address;
3078
3079 if (offset >= dwarf2_per_objfile->ranges_size)
3080 {
3081 complaint (&symfile_complaints,
3082 _("Offset %d out of bounds for DW_AT_ranges attribute"),
3083 offset);
3084 return 0;
3085 }
3086 buffer = dwarf2_per_objfile->ranges_buffer + offset;
3087
3088 /* Read in the largest possible address. */
3089 marker = read_address (obfd, buffer, cu, &dummy);
3090 if ((marker & mask) == mask)
3091 {
3092 /* If we found the largest possible address, then
3093 read the base address. */
3094 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3095 buffer += 2 * addr_size;
3096 offset += 2 * addr_size;
3097 found_base = 1;
3098 }
3099
3100 low_set = 0;
3101
3102 while (1)
3103 {
3104 CORE_ADDR range_beginning, range_end;
3105
3106 range_beginning = read_address (obfd, buffer, cu, &dummy);
3107 buffer += addr_size;
3108 range_end = read_address (obfd, buffer, cu, &dummy);
3109 buffer += addr_size;
3110 offset += 2 * addr_size;
3111
3112 /* An end of list marker is a pair of zero addresses. */
3113 if (range_beginning == 0 && range_end == 0)
3114 /* Found the end of list entry. */
3115 break;
3116
3117 /* Each base address selection entry is a pair of 2 values.
3118 The first is the largest possible address, the second is
3119 the base address. Check for a base address here. */
3120 if ((range_beginning & mask) == mask)
3121 {
3122 /* If we found the largest possible address, then
3123 read the base address. */
3124 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3125 found_base = 1;
3126 continue;
3127 }
3128
3129 if (!found_base)
3130 {
3131 /* We have no valid base address for the ranges
3132 data. */
3133 complaint (&symfile_complaints,
3134 _("Invalid .debug_ranges data (no base address)"));
3135 return 0;
3136 }
3137
3138 range_beginning += base;
3139 range_end += base;
3140
3141 /* FIXME: This is recording everything as a low-high
3142 segment of consecutive addresses. We should have a
3143 data structure for discontiguous block ranges
3144 instead. */
3145 if (! low_set)
3146 {
3147 low = range_beginning;
3148 high = range_end;
3149 low_set = 1;
3150 }
3151 else
3152 {
3153 if (range_beginning < low)
3154 low = range_beginning;
3155 if (range_end > high)
3156 high = range_end;
3157 }
3158 }
3159
3160 if (! low_set)
3161 /* If the first entry is an end-of-list marker, the range
3162 describes an empty scope, i.e. no instructions. */
3163 return 0;
3164
3165 ret = -1;
3166 }
3167 }
3168
3169 if (high < low)
3170 return 0;
3171
3172 /* When using the GNU linker, .gnu.linkonce. sections are used to
3173 eliminate duplicate copies of functions and vtables and such.
3174 The linker will arbitrarily choose one and discard the others.
3175 The AT_*_pc values for such functions refer to local labels in
3176 these sections. If the section from that file was discarded, the
3177 labels are not in the output, so the relocs get a value of 0.
3178 If this is a discarded function, mark the pc bounds as invalid,
3179 so that GDB will ignore it. */
3180 if (low == 0 && (bfd_get_file_flags (obfd) & HAS_RELOC) == 0)
3181 return 0;
3182
3183 *lowpc = low;
3184 *highpc = high;
3185 return ret;
3186 }
3187
3188 /* Get the low and high pc's represented by the scope DIE, and store
3189 them in *LOWPC and *HIGHPC. If the correct values can't be
3190 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3191
3192 static void
3193 get_scope_pc_bounds (struct die_info *die,
3194 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3195 struct dwarf2_cu *cu)
3196 {
3197 CORE_ADDR best_low = (CORE_ADDR) -1;
3198 CORE_ADDR best_high = (CORE_ADDR) 0;
3199 CORE_ADDR current_low, current_high;
3200
3201 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3202 {
3203 best_low = current_low;
3204 best_high = current_high;
3205 }
3206 else
3207 {
3208 struct die_info *child = die->child;
3209
3210 while (child && child->tag)
3211 {
3212 switch (child->tag) {
3213 case DW_TAG_subprogram:
3214 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3215 {
3216 best_low = min (best_low, current_low);
3217 best_high = max (best_high, current_high);
3218 }
3219 break;
3220 case DW_TAG_namespace:
3221 /* FIXME: carlton/2004-01-16: Should we do this for
3222 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3223 that current GCC's always emit the DIEs corresponding
3224 to definitions of methods of classes as children of a
3225 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3226 the DIEs giving the declarations, which could be
3227 anywhere). But I don't see any reason why the
3228 standards says that they have to be there. */
3229 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3230
3231 if (current_low != ((CORE_ADDR) -1))
3232 {
3233 best_low = min (best_low, current_low);
3234 best_high = max (best_high, current_high);
3235 }
3236 break;
3237 default:
3238 /* Ignore. */
3239 break;
3240 }
3241
3242 child = sibling_die (child);
3243 }
3244 }
3245
3246 *lowpc = best_low;
3247 *highpc = best_high;
3248 }
3249
3250 /* Add an aggregate field to the field list. */
3251
3252 static void
3253 dwarf2_add_field (struct field_info *fip, struct die_info *die,
3254 struct dwarf2_cu *cu)
3255 {
3256 struct objfile *objfile = cu->objfile;
3257 struct nextfield *new_field;
3258 struct attribute *attr;
3259 struct field *fp;
3260 char *fieldname = "";
3261
3262 /* Allocate a new field list entry and link it in. */
3263 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3264 make_cleanup (xfree, new_field);
3265 memset (new_field, 0, sizeof (struct nextfield));
3266 new_field->next = fip->fields;
3267 fip->fields = new_field;
3268 fip->nfields++;
3269
3270 /* Handle accessibility and virtuality of field.
3271 The default accessibility for members is public, the default
3272 accessibility for inheritance is private. */
3273 if (die->tag != DW_TAG_inheritance)
3274 new_field->accessibility = DW_ACCESS_public;
3275 else
3276 new_field->accessibility = DW_ACCESS_private;
3277 new_field->virtuality = DW_VIRTUALITY_none;
3278
3279 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3280 if (attr)
3281 new_field->accessibility = DW_UNSND (attr);
3282 if (new_field->accessibility != DW_ACCESS_public)
3283 fip->non_public_fields = 1;
3284 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
3285 if (attr)
3286 new_field->virtuality = DW_UNSND (attr);
3287
3288 fp = &new_field->field;
3289
3290 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
3291 {
3292 /* Data member other than a C++ static data member. */
3293
3294 /* Get type of field. */
3295 fp->type = die_type (die, cu);
3296
3297 FIELD_STATIC_KIND (*fp) = 0;
3298
3299 /* Get bit size of field (zero if none). */
3300 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
3301 if (attr)
3302 {
3303 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3304 }
3305 else
3306 {
3307 FIELD_BITSIZE (*fp) = 0;
3308 }
3309
3310 /* Get bit offset of field. */
3311 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3312 if (attr)
3313 {
3314 FIELD_BITPOS (*fp) =
3315 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
3316 }
3317 else
3318 FIELD_BITPOS (*fp) = 0;
3319 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
3320 if (attr)
3321 {
3322 if (BITS_BIG_ENDIAN)
3323 {
3324 /* For big endian bits, the DW_AT_bit_offset gives the
3325 additional bit offset from the MSB of the containing
3326 anonymous object to the MSB of the field. We don't
3327 have to do anything special since we don't need to
3328 know the size of the anonymous object. */
3329 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3330 }
3331 else
3332 {
3333 /* For little endian bits, compute the bit offset to the
3334 MSB of the anonymous object, subtract off the number of
3335 bits from the MSB of the field to the MSB of the
3336 object, and then subtract off the number of bits of
3337 the field itself. The result is the bit offset of
3338 the LSB of the field. */
3339 int anonymous_size;
3340 int bit_offset = DW_UNSND (attr);
3341
3342 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3343 if (attr)
3344 {
3345 /* The size of the anonymous object containing
3346 the bit field is explicit, so use the
3347 indicated size (in bytes). */
3348 anonymous_size = DW_UNSND (attr);
3349 }
3350 else
3351 {
3352 /* The size of the anonymous object containing
3353 the bit field must be inferred from the type
3354 attribute of the data member containing the
3355 bit field. */
3356 anonymous_size = TYPE_LENGTH (fp->type);
3357 }
3358 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3359 - bit_offset - FIELD_BITSIZE (*fp);
3360 }
3361 }
3362
3363 /* Get name of field. */
3364 attr = dwarf2_attr (die, DW_AT_name, cu);
3365 if (attr && DW_STRING (attr))
3366 fieldname = DW_STRING (attr);
3367
3368 /* The name is already allocated along with this objfile, so we don't
3369 need to duplicate it for the type. */
3370 fp->name = fieldname;
3371
3372 /* Change accessibility for artificial fields (e.g. virtual table
3373 pointer or virtual base class pointer) to private. */
3374 if (dwarf2_attr (die, DW_AT_artificial, cu))
3375 {
3376 new_field->accessibility = DW_ACCESS_private;
3377 fip->non_public_fields = 1;
3378 }
3379 }
3380 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
3381 {
3382 /* C++ static member. */
3383
3384 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3385 is a declaration, but all versions of G++ as of this writing
3386 (so through at least 3.2.1) incorrectly generate
3387 DW_TAG_variable tags. */
3388
3389 char *physname;
3390
3391 /* Get name of field. */
3392 attr = dwarf2_attr (die, DW_AT_name, cu);
3393 if (attr && DW_STRING (attr))
3394 fieldname = DW_STRING (attr);
3395 else
3396 return;
3397
3398 /* Get physical name. */
3399 physname = dwarf2_linkage_name (die, cu);
3400
3401 /* The name is already allocated along with this objfile, so we don't
3402 need to duplicate it for the type. */
3403 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
3404 FIELD_TYPE (*fp) = die_type (die, cu);
3405 FIELD_NAME (*fp) = fieldname;
3406 }
3407 else if (die->tag == DW_TAG_inheritance)
3408 {
3409 /* C++ base class field. */
3410 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3411 if (attr)
3412 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
3413 * bits_per_byte);
3414 FIELD_BITSIZE (*fp) = 0;
3415 FIELD_STATIC_KIND (*fp) = 0;
3416 FIELD_TYPE (*fp) = die_type (die, cu);
3417 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3418 fip->nbaseclasses++;
3419 }
3420 }
3421
3422 /* Create the vector of fields, and attach it to the type. */
3423
3424 static void
3425 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
3426 struct dwarf2_cu *cu)
3427 {
3428 int nfields = fip->nfields;
3429
3430 /* Record the field count, allocate space for the array of fields,
3431 and create blank accessibility bitfields if necessary. */
3432 TYPE_NFIELDS (type) = nfields;
3433 TYPE_FIELDS (type) = (struct field *)
3434 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3435 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3436
3437 if (fip->non_public_fields)
3438 {
3439 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3440
3441 TYPE_FIELD_PRIVATE_BITS (type) =
3442 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3443 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3444
3445 TYPE_FIELD_PROTECTED_BITS (type) =
3446 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3447 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3448
3449 TYPE_FIELD_IGNORE_BITS (type) =
3450 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3451 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3452 }
3453
3454 /* If the type has baseclasses, allocate and clear a bit vector for
3455 TYPE_FIELD_VIRTUAL_BITS. */
3456 if (fip->nbaseclasses)
3457 {
3458 int num_bytes = B_BYTES (fip->nbaseclasses);
3459 unsigned char *pointer;
3460
3461 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3462 pointer = TYPE_ALLOC (type, num_bytes);
3463 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
3464 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3465 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3466 }
3467
3468 /* Copy the saved-up fields into the field vector. Start from the head
3469 of the list, adding to the tail of the field array, so that they end
3470 up in the same order in the array in which they were added to the list. */
3471 while (nfields-- > 0)
3472 {
3473 TYPE_FIELD (type, nfields) = fip->fields->field;
3474 switch (fip->fields->accessibility)
3475 {
3476 case DW_ACCESS_private:
3477 SET_TYPE_FIELD_PRIVATE (type, nfields);
3478 break;
3479
3480 case DW_ACCESS_protected:
3481 SET_TYPE_FIELD_PROTECTED (type, nfields);
3482 break;
3483
3484 case DW_ACCESS_public:
3485 break;
3486
3487 default:
3488 /* Unknown accessibility. Complain and treat it as public. */
3489 {
3490 complaint (&symfile_complaints, _("unsupported accessibility %d"),
3491 fip->fields->accessibility);
3492 }
3493 break;
3494 }
3495 if (nfields < fip->nbaseclasses)
3496 {
3497 switch (fip->fields->virtuality)
3498 {
3499 case DW_VIRTUALITY_virtual:
3500 case DW_VIRTUALITY_pure_virtual:
3501 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3502 break;
3503 }
3504 }
3505 fip->fields = fip->fields->next;
3506 }
3507 }
3508
3509 /* Add a member function to the proper fieldlist. */
3510
3511 static void
3512 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
3513 struct type *type, struct dwarf2_cu *cu)
3514 {
3515 struct objfile *objfile = cu->objfile;
3516 struct attribute *attr;
3517 struct fnfieldlist *flp;
3518 int i;
3519 struct fn_field *fnp;
3520 char *fieldname;
3521 char *physname;
3522 struct nextfnfield *new_fnfield;
3523
3524 /* Get name of member function. */
3525 attr = dwarf2_attr (die, DW_AT_name, cu);
3526 if (attr && DW_STRING (attr))
3527 fieldname = DW_STRING (attr);
3528 else
3529 return;
3530
3531 /* Get the mangled name. */
3532 physname = dwarf2_linkage_name (die, cu);
3533
3534 /* Look up member function name in fieldlist. */
3535 for (i = 0; i < fip->nfnfields; i++)
3536 {
3537 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
3538 break;
3539 }
3540
3541 /* Create new list element if necessary. */
3542 if (i < fip->nfnfields)
3543 flp = &fip->fnfieldlists[i];
3544 else
3545 {
3546 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3547 {
3548 fip->fnfieldlists = (struct fnfieldlist *)
3549 xrealloc (fip->fnfieldlists,
3550 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
3551 * sizeof (struct fnfieldlist));
3552 if (fip->nfnfields == 0)
3553 make_cleanup (free_current_contents, &fip->fnfieldlists);
3554 }
3555 flp = &fip->fnfieldlists[fip->nfnfields];
3556 flp->name = fieldname;
3557 flp->length = 0;
3558 flp->head = NULL;
3559 fip->nfnfields++;
3560 }
3561
3562 /* Create a new member function field and chain it to the field list
3563 entry. */
3564 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
3565 make_cleanup (xfree, new_fnfield);
3566 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3567 new_fnfield->next = flp->head;
3568 flp->head = new_fnfield;
3569 flp->length++;
3570
3571 /* Fill in the member function field info. */
3572 fnp = &new_fnfield->fnfield;
3573 /* The name is already allocated along with this objfile, so we don't
3574 need to duplicate it for the type. */
3575 fnp->physname = physname ? physname : "";
3576 fnp->type = alloc_type (objfile);
3577 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3578 {
3579 int nparams = TYPE_NFIELDS (die->type);
3580
3581 /* TYPE is the domain of this method, and DIE->TYPE is the type
3582 of the method itself (TYPE_CODE_METHOD). */
3583 smash_to_method_type (fnp->type, type,
3584 TYPE_TARGET_TYPE (die->type),
3585 TYPE_FIELDS (die->type),
3586 TYPE_NFIELDS (die->type),
3587 TYPE_VARARGS (die->type));
3588
3589 /* Handle static member functions.
3590 Dwarf2 has no clean way to discern C++ static and non-static
3591 member functions. G++ helps GDB by marking the first
3592 parameter for non-static member functions (which is the
3593 this pointer) as artificial. We obtain this information
3594 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
3595 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3596 fnp->voffset = VOFFSET_STATIC;
3597 }
3598 else
3599 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3600 physname);
3601
3602 /* Get fcontext from DW_AT_containing_type if present. */
3603 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3604 fnp->fcontext = die_containing_type (die, cu);
3605
3606 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3607 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3608
3609 /* Get accessibility. */
3610 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3611 if (attr)
3612 {
3613 switch (DW_UNSND (attr))
3614 {
3615 case DW_ACCESS_private:
3616 fnp->is_private = 1;
3617 break;
3618 case DW_ACCESS_protected:
3619 fnp->is_protected = 1;
3620 break;
3621 }
3622 }
3623
3624 /* Check for artificial methods. */
3625 attr = dwarf2_attr (die, DW_AT_artificial, cu);
3626 if (attr && DW_UNSND (attr) != 0)
3627 fnp->is_artificial = 1;
3628
3629 /* Get index in virtual function table if it is a virtual member function. */
3630 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
3631 if (attr)
3632 {
3633 /* Support the .debug_loc offsets */
3634 if (attr_form_is_block (attr))
3635 {
3636 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
3637 }
3638 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3639 {
3640 dwarf2_complex_location_expr_complaint ();
3641 }
3642 else
3643 {
3644 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3645 fieldname);
3646 }
3647 }
3648 }
3649
3650 /* Create the vector of member function fields, and attach it to the type. */
3651
3652 static void
3653 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
3654 struct dwarf2_cu *cu)
3655 {
3656 struct fnfieldlist *flp;
3657 int total_length = 0;
3658 int i;
3659
3660 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3661 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3662 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3663
3664 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3665 {
3666 struct nextfnfield *nfp = flp->head;
3667 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3668 int k;
3669
3670 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3671 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3672 fn_flp->fn_fields = (struct fn_field *)
3673 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3674 for (k = flp->length; (k--, nfp); nfp = nfp->next)
3675 fn_flp->fn_fields[k] = nfp->fnfield;
3676
3677 total_length += flp->length;
3678 }
3679
3680 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3681 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3682 }
3683
3684
3685 /* Returns non-zero if NAME is the name of a vtable member in CU's
3686 language, zero otherwise. */
3687 static int
3688 is_vtable_name (const char *name, struct dwarf2_cu *cu)
3689 {
3690 static const char vptr[] = "_vptr";
3691 static const char vtable[] = "vtable";
3692
3693 /* Look for the C++ and Java forms of the vtable. */
3694 if ((cu->language == language_java
3695 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3696 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3697 && is_cplus_marker (name[sizeof (vptr) - 1])))
3698 return 1;
3699
3700 return 0;
3701 }
3702
3703
3704 /* Called when we find the DIE that starts a structure or union scope
3705 (definition) to process all dies that define the members of the
3706 structure or union.
3707
3708 NOTE: we need to call struct_type regardless of whether or not the
3709 DIE has an at_name attribute, since it might be an anonymous
3710 structure or union. This gets the type entered into our set of
3711 user defined types.
3712
3713 However, if the structure is incomplete (an opaque struct/union)
3714 then suppress creating a symbol table entry for it since gdb only
3715 wants to find the one with the complete definition. Note that if
3716 it is complete, we just call new_symbol, which does it's own
3717 checking about whether the struct/union is anonymous or not (and
3718 suppresses creating a symbol table entry itself). */
3719
3720 static void
3721 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
3722 {
3723 struct objfile *objfile = cu->objfile;
3724 struct type *type;
3725 struct attribute *attr;
3726 const char *previous_prefix = processing_current_prefix;
3727 struct cleanup *back_to = NULL;
3728
3729 if (die->type)
3730 return;
3731
3732 type = alloc_type (objfile);
3733
3734 INIT_CPLUS_SPECIFIC (type);
3735 attr = dwarf2_attr (die, DW_AT_name, cu);
3736 if (attr && DW_STRING (attr))
3737 {
3738 if (cu->language == language_cplus
3739 || cu->language == language_java)
3740 {
3741 char *new_prefix = determine_class_name (die, cu);
3742 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3743 strlen (new_prefix),
3744 &objfile->objfile_obstack);
3745 back_to = make_cleanup (xfree, new_prefix);
3746 processing_current_prefix = new_prefix;
3747 }
3748 else
3749 {
3750 /* The name is already allocated along with this objfile, so
3751 we don't need to duplicate it for the type. */
3752 TYPE_TAG_NAME (type) = DW_STRING (attr);
3753 }
3754 }
3755
3756 if (die->tag == DW_TAG_structure_type)
3757 {
3758 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3759 }
3760 else if (die->tag == DW_TAG_union_type)
3761 {
3762 TYPE_CODE (type) = TYPE_CODE_UNION;
3763 }
3764 else
3765 {
3766 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
3767 in gdbtypes.h. */
3768 TYPE_CODE (type) = TYPE_CODE_CLASS;
3769 }
3770
3771 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3772 if (attr)
3773 {
3774 TYPE_LENGTH (type) = DW_UNSND (attr);
3775 }
3776 else
3777 {
3778 TYPE_LENGTH (type) = 0;
3779 }
3780
3781 if (die_is_declaration (die, cu))
3782 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3783
3784 /* We need to add the type field to the die immediately so we don't
3785 infinitely recurse when dealing with pointers to the structure
3786 type within the structure itself. */
3787 set_die_type (die, type, cu);
3788
3789 if (die->child != NULL && ! die_is_declaration (die, cu))
3790 {
3791 struct field_info fi;
3792 struct die_info *child_die;
3793 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3794
3795 memset (&fi, 0, sizeof (struct field_info));
3796
3797 child_die = die->child;
3798
3799 while (child_die && child_die->tag)
3800 {
3801 if (child_die->tag == DW_TAG_member
3802 || child_die->tag == DW_TAG_variable)
3803 {
3804 /* NOTE: carlton/2002-11-05: A C++ static data member
3805 should be a DW_TAG_member that is a declaration, but
3806 all versions of G++ as of this writing (so through at
3807 least 3.2.1) incorrectly generate DW_TAG_variable
3808 tags for them instead. */
3809 dwarf2_add_field (&fi, child_die, cu);
3810 }
3811 else if (child_die->tag == DW_TAG_subprogram)
3812 {
3813 /* C++ member function. */
3814 read_type_die (child_die, cu);
3815 dwarf2_add_member_fn (&fi, child_die, type, cu);
3816 }
3817 else if (child_die->tag == DW_TAG_inheritance)
3818 {
3819 /* C++ base class field. */
3820 dwarf2_add_field (&fi, child_die, cu);
3821 }
3822 child_die = sibling_die (child_die);
3823 }
3824
3825 /* Attach fields and member functions to the type. */
3826 if (fi.nfields)
3827 dwarf2_attach_fields_to_type (&fi, type, cu);
3828 if (fi.nfnfields)
3829 {
3830 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
3831
3832 /* Get the type which refers to the base class (possibly this
3833 class itself) which contains the vtable pointer for the current
3834 class from the DW_AT_containing_type attribute. */
3835
3836 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3837 {
3838 struct type *t = die_containing_type (die, cu);
3839
3840 TYPE_VPTR_BASETYPE (type) = t;
3841 if (type == t)
3842 {
3843 int i;
3844
3845 /* Our own class provides vtbl ptr. */
3846 for (i = TYPE_NFIELDS (t) - 1;
3847 i >= TYPE_N_BASECLASSES (t);
3848 --i)
3849 {
3850 char *fieldname = TYPE_FIELD_NAME (t, i);
3851
3852 if (is_vtable_name (fieldname, cu))
3853 {
3854 TYPE_VPTR_FIELDNO (type) = i;
3855 break;
3856 }
3857 }
3858
3859 /* Complain if virtual function table field not found. */
3860 if (i < TYPE_N_BASECLASSES (t))
3861 complaint (&symfile_complaints,
3862 _("virtual function table pointer not found when defining class '%s'"),
3863 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3864 "");
3865 }
3866 else
3867 {
3868 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3869 }
3870 }
3871 else if (cu->producer
3872 && strncmp (cu->producer,
3873 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
3874 {
3875 /* The IBM XLC compiler does not provide direct indication
3876 of the containing type, but the vtable pointer is
3877 always named __vfp. */
3878
3879 int i;
3880
3881 for (i = TYPE_NFIELDS (type) - 1;
3882 i >= TYPE_N_BASECLASSES (type);
3883 --i)
3884 {
3885 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
3886 {
3887 TYPE_VPTR_FIELDNO (type) = i;
3888 TYPE_VPTR_BASETYPE (type) = type;
3889 break;
3890 }
3891 }
3892 }
3893 }
3894
3895 do_cleanups (back_to);
3896 }
3897
3898 processing_current_prefix = previous_prefix;
3899 if (back_to != NULL)
3900 do_cleanups (back_to);
3901 }
3902
3903 static void
3904 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
3905 {
3906 struct objfile *objfile = cu->objfile;
3907 const char *previous_prefix = processing_current_prefix;
3908 struct die_info *child_die = die->child;
3909
3910 if (TYPE_TAG_NAME (die->type) != NULL)
3911 processing_current_prefix = TYPE_TAG_NAME (die->type);
3912
3913 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
3914 snapshots) has been known to create a die giving a declaration
3915 for a class that has, as a child, a die giving a definition for a
3916 nested class. So we have to process our children even if the
3917 current die is a declaration. Normally, of course, a declaration
3918 won't have any children at all. */
3919
3920 while (child_die != NULL && child_die->tag)
3921 {
3922 if (child_die->tag == DW_TAG_member
3923 || child_die->tag == DW_TAG_variable
3924 || child_die->tag == DW_TAG_inheritance)
3925 {
3926 /* Do nothing. */
3927 }
3928 else
3929 process_die (child_die, cu);
3930
3931 child_die = sibling_die (child_die);
3932 }
3933
3934 if (die->child != NULL && ! die_is_declaration (die, cu))
3935 new_symbol (die, die->type, cu);
3936
3937 processing_current_prefix = previous_prefix;
3938 }
3939
3940 /* Given a DW_AT_enumeration_type die, set its type. We do not
3941 complete the type's fields yet, or create any symbols. */
3942
3943 static void
3944 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
3945 {
3946 struct objfile *objfile = cu->objfile;
3947 struct type *type;
3948 struct attribute *attr;
3949
3950 if (die->type)
3951 return;
3952
3953 type = alloc_type (objfile);
3954
3955 TYPE_CODE (type) = TYPE_CODE_ENUM;
3956 attr = dwarf2_attr (die, DW_AT_name, cu);
3957 if (attr && DW_STRING (attr))
3958 {
3959 char *name = DW_STRING (attr);
3960
3961 if (processing_has_namespace_info)
3962 {
3963 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
3964 processing_current_prefix,
3965 name, cu);
3966 }
3967 else
3968 {
3969 /* The name is already allocated along with this objfile, so
3970 we don't need to duplicate it for the type. */
3971 TYPE_TAG_NAME (type) = name;
3972 }
3973 }
3974
3975 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3976 if (attr)
3977 {
3978 TYPE_LENGTH (type) = DW_UNSND (attr);
3979 }
3980 else
3981 {
3982 TYPE_LENGTH (type) = 0;
3983 }
3984
3985 set_die_type (die, type, cu);
3986 }
3987
3988 /* Determine the name of the type represented by DIE, which should be
3989 a named C++ or Java compound type. Return the name in question; the caller
3990 is responsible for xfree()'ing it. */
3991
3992 static char *
3993 determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
3994 {
3995 struct cleanup *back_to = NULL;
3996 struct die_info *spec_die = die_specification (die, cu);
3997 char *new_prefix = NULL;
3998
3999 /* If this is the definition of a class that is declared by another
4000 die, then processing_current_prefix may not be accurate; see
4001 read_func_scope for a similar example. */
4002 if (spec_die != NULL)
4003 {
4004 char *specification_prefix = determine_prefix (spec_die, cu);
4005 processing_current_prefix = specification_prefix;
4006 back_to = make_cleanup (xfree, specification_prefix);
4007 }
4008
4009 /* If we don't have namespace debug info, guess the name by trying
4010 to demangle the names of members, just like we did in
4011 guess_structure_name. */
4012 if (!processing_has_namespace_info)
4013 {
4014 struct die_info *child;
4015
4016 for (child = die->child;
4017 child != NULL && child->tag != 0;
4018 child = sibling_die (child))
4019 {
4020 if (child->tag == DW_TAG_subprogram)
4021 {
4022 new_prefix
4023 = language_class_name_from_physname (cu->language_defn,
4024 dwarf2_linkage_name
4025 (child, cu));
4026
4027 if (new_prefix != NULL)
4028 break;
4029 }
4030 }
4031 }
4032
4033 if (new_prefix == NULL)
4034 {
4035 const char *name = dwarf2_name (die, cu);
4036 new_prefix = typename_concat (NULL, processing_current_prefix,
4037 name ? name : "<<anonymous>>",
4038 cu);
4039 }
4040
4041 if (back_to != NULL)
4042 do_cleanups (back_to);
4043
4044 return new_prefix;
4045 }
4046
4047 /* Given a pointer to a die which begins an enumeration, process all
4048 the dies that define the members of the enumeration, and create the
4049 symbol for the enumeration type.
4050
4051 NOTE: We reverse the order of the element list. */
4052
4053 static void
4054 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4055 {
4056 struct objfile *objfile = cu->objfile;
4057 struct die_info *child_die;
4058 struct field *fields;
4059 struct attribute *attr;
4060 struct symbol *sym;
4061 int num_fields;
4062 int unsigned_enum = 1;
4063
4064 num_fields = 0;
4065 fields = NULL;
4066 if (die->child != NULL)
4067 {
4068 child_die = die->child;
4069 while (child_die && child_die->tag)
4070 {
4071 if (child_die->tag != DW_TAG_enumerator)
4072 {
4073 process_die (child_die, cu);
4074 }
4075 else
4076 {
4077 attr = dwarf2_attr (child_die, DW_AT_name, cu);
4078 if (attr)
4079 {
4080 sym = new_symbol (child_die, die->type, cu);
4081 if (SYMBOL_VALUE (sym) < 0)
4082 unsigned_enum = 0;
4083
4084 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4085 {
4086 fields = (struct field *)
4087 xrealloc (fields,
4088 (num_fields + DW_FIELD_ALLOC_CHUNK)
4089 * sizeof (struct field));
4090 }
4091
4092 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
4093 FIELD_TYPE (fields[num_fields]) = NULL;
4094 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4095 FIELD_BITSIZE (fields[num_fields]) = 0;
4096 FIELD_STATIC_KIND (fields[num_fields]) = 0;
4097
4098 num_fields++;
4099 }
4100 }
4101
4102 child_die = sibling_die (child_die);
4103 }
4104
4105 if (num_fields)
4106 {
4107 TYPE_NFIELDS (die->type) = num_fields;
4108 TYPE_FIELDS (die->type) = (struct field *)
4109 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4110 memcpy (TYPE_FIELDS (die->type), fields,
4111 sizeof (struct field) * num_fields);
4112 xfree (fields);
4113 }
4114 if (unsigned_enum)
4115 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
4116 }
4117
4118 new_symbol (die, die->type, cu);
4119 }
4120
4121 /* Extract all information from a DW_TAG_array_type DIE and put it in
4122 the DIE's type field. For now, this only handles one dimensional
4123 arrays. */
4124
4125 static void
4126 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
4127 {
4128 struct objfile *objfile = cu->objfile;
4129 struct die_info *child_die;
4130 struct type *type = NULL;
4131 struct type *element_type, *range_type, *index_type;
4132 struct type **range_types = NULL;
4133 struct attribute *attr;
4134 int ndim = 0;
4135 struct cleanup *back_to;
4136
4137 /* Return if we've already decoded this type. */
4138 if (die->type)
4139 {
4140 return;
4141 }
4142
4143 element_type = die_type (die, cu);
4144
4145 /* Irix 6.2 native cc creates array types without children for
4146 arrays with unspecified length. */
4147 if (die->child == NULL)
4148 {
4149 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4150 range_type = create_range_type (NULL, index_type, 0, -1);
4151 set_die_type (die, create_array_type (NULL, element_type, range_type),
4152 cu);
4153 return;
4154 }
4155
4156 back_to = make_cleanup (null_cleanup, NULL);
4157 child_die = die->child;
4158 while (child_die && child_die->tag)
4159 {
4160 if (child_die->tag == DW_TAG_subrange_type)
4161 {
4162 read_subrange_type (child_die, cu);
4163
4164 if (child_die->type != NULL)
4165 {
4166 /* The range type was succesfully read. Save it for
4167 the array type creation. */
4168 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4169 {
4170 range_types = (struct type **)
4171 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4172 * sizeof (struct type *));
4173 if (ndim == 0)
4174 make_cleanup (free_current_contents, &range_types);
4175 }
4176 range_types[ndim++] = child_die->type;
4177 }
4178 }
4179 child_die = sibling_die (child_die);
4180 }
4181
4182 /* Dwarf2 dimensions are output from left to right, create the
4183 necessary array types in backwards order. */
4184
4185 type = element_type;
4186
4187 if (read_array_order (die, cu) == DW_ORD_col_major)
4188 {
4189 int i = 0;
4190 while (i < ndim)
4191 type = create_array_type (NULL, type, range_types[i++]);
4192 }
4193 else
4194 {
4195 while (ndim-- > 0)
4196 type = create_array_type (NULL, type, range_types[ndim]);
4197 }
4198
4199 /* Understand Dwarf2 support for vector types (like they occur on
4200 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4201 array type. This is not part of the Dwarf2/3 standard yet, but a
4202 custom vendor extension. The main difference between a regular
4203 array and the vector variant is that vectors are passed by value
4204 to functions. */
4205 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
4206 if (attr)
4207 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
4208
4209 do_cleanups (back_to);
4210
4211 /* Install the type in the die. */
4212 set_die_type (die, type, cu);
4213 }
4214
4215 static enum dwarf_array_dim_ordering
4216 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4217 {
4218 struct attribute *attr;
4219
4220 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4221
4222 if (attr) return DW_SND (attr);
4223
4224 /*
4225 GNU F77 is a special case, as at 08/2004 array type info is the
4226 opposite order to the dwarf2 specification, but data is still
4227 laid out as per normal fortran.
4228
4229 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4230 version checking.
4231 */
4232
4233 if (cu->language == language_fortran &&
4234 cu->producer && strstr (cu->producer, "GNU F77"))
4235 {
4236 return DW_ORD_row_major;
4237 }
4238
4239 switch (cu->language_defn->la_array_ordering)
4240 {
4241 case array_column_major:
4242 return DW_ORD_col_major;
4243 case array_row_major:
4244 default:
4245 return DW_ORD_row_major;
4246 };
4247 }
4248
4249 /* Extract all information from a DW_TAG_set_type DIE and put it in
4250 the DIE's type field. */
4251
4252 static void
4253 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
4254 {
4255 if (die->type == NULL)
4256 die->type = create_set_type ((struct type *) NULL, die_type (die, cu));
4257 }
4258
4259 /* First cut: install each common block member as a global variable. */
4260
4261 static void
4262 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
4263 {
4264 struct die_info *child_die;
4265 struct attribute *attr;
4266 struct symbol *sym;
4267 CORE_ADDR base = (CORE_ADDR) 0;
4268
4269 attr = dwarf2_attr (die, DW_AT_location, cu);
4270 if (attr)
4271 {
4272 /* Support the .debug_loc offsets */
4273 if (attr_form_is_block (attr))
4274 {
4275 base = decode_locdesc (DW_BLOCK (attr), cu);
4276 }
4277 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4278 {
4279 dwarf2_complex_location_expr_complaint ();
4280 }
4281 else
4282 {
4283 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4284 "common block member");
4285 }
4286 }
4287 if (die->child != NULL)
4288 {
4289 child_die = die->child;
4290 while (child_die && child_die->tag)
4291 {
4292 sym = new_symbol (child_die, NULL, cu);
4293 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
4294 if (attr)
4295 {
4296 SYMBOL_VALUE_ADDRESS (sym) =
4297 base + decode_locdesc (DW_BLOCK (attr), cu);
4298 add_symbol_to_list (sym, &global_symbols);
4299 }
4300 child_die = sibling_die (child_die);
4301 }
4302 }
4303 }
4304
4305 /* Read a C++ namespace. */
4306
4307 static void
4308 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
4309 {
4310 struct objfile *objfile = cu->objfile;
4311 const char *previous_prefix = processing_current_prefix;
4312 const char *name;
4313 int is_anonymous;
4314 struct die_info *current_die;
4315 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4316
4317 name = namespace_name (die, &is_anonymous, cu);
4318
4319 /* Now build the name of the current namespace. */
4320
4321 if (previous_prefix[0] == '\0')
4322 {
4323 processing_current_prefix = name;
4324 }
4325 else
4326 {
4327 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4328 make_cleanup (xfree, temp_name);
4329 processing_current_prefix = temp_name;
4330 }
4331
4332 /* Add a symbol associated to this if we haven't seen the namespace
4333 before. Also, add a using directive if it's an anonymous
4334 namespace. */
4335
4336 if (dwarf2_extension (die, cu) == NULL)
4337 {
4338 struct type *type;
4339
4340 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4341 this cast will hopefully become unnecessary. */
4342 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
4343 (char *) processing_current_prefix,
4344 objfile);
4345 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4346
4347 new_symbol (die, type, cu);
4348 set_die_type (die, type, cu);
4349
4350 if (is_anonymous)
4351 cp_add_using_directive (processing_current_prefix,
4352 strlen (previous_prefix),
4353 strlen (processing_current_prefix));
4354 }
4355
4356 if (die->child != NULL)
4357 {
4358 struct die_info *child_die = die->child;
4359
4360 while (child_die && child_die->tag)
4361 {
4362 process_die (child_die, cu);
4363 child_die = sibling_die (child_die);
4364 }
4365 }
4366
4367 processing_current_prefix = previous_prefix;
4368 do_cleanups (back_to);
4369 }
4370
4371 /* Return the name of the namespace represented by DIE. Set
4372 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4373 namespace. */
4374
4375 static const char *
4376 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
4377 {
4378 struct die_info *current_die;
4379 const char *name = NULL;
4380
4381 /* Loop through the extensions until we find a name. */
4382
4383 for (current_die = die;
4384 current_die != NULL;
4385 current_die = dwarf2_extension (die, cu))
4386 {
4387 name = dwarf2_name (current_die, cu);
4388 if (name != NULL)
4389 break;
4390 }
4391
4392 /* Is it an anonymous namespace? */
4393
4394 *is_anonymous = (name == NULL);
4395 if (*is_anonymous)
4396 name = "(anonymous namespace)";
4397
4398 return name;
4399 }
4400
4401 /* Extract all information from a DW_TAG_pointer_type DIE and add to
4402 the user defined type vector. */
4403
4404 static void
4405 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
4406 {
4407 struct comp_unit_head *cu_header = &cu->header;
4408 struct type *type;
4409 struct attribute *attr_byte_size;
4410 struct attribute *attr_address_class;
4411 int byte_size, addr_class;
4412
4413 if (die->type)
4414 {
4415 return;
4416 }
4417
4418 type = lookup_pointer_type (die_type (die, cu));
4419
4420 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
4421 if (attr_byte_size)
4422 byte_size = DW_UNSND (attr_byte_size);
4423 else
4424 byte_size = cu_header->addr_size;
4425
4426 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
4427 if (attr_address_class)
4428 addr_class = DW_UNSND (attr_address_class);
4429 else
4430 addr_class = DW_ADDR_none;
4431
4432 /* If the pointer size or address class is different than the
4433 default, create a type variant marked as such and set the
4434 length accordingly. */
4435 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
4436 {
4437 if (ADDRESS_CLASS_TYPE_FLAGS_P ())
4438 {
4439 int type_flags;
4440
4441 type_flags = ADDRESS_CLASS_TYPE_FLAGS (byte_size, addr_class);
4442 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4443 type = make_type_with_address_space (type, type_flags);
4444 }
4445 else if (TYPE_LENGTH (type) != byte_size)
4446 {
4447 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
4448 }
4449 else {
4450 /* Should we also complain about unhandled address classes? */
4451 }
4452 }
4453
4454 TYPE_LENGTH (type) = byte_size;
4455 set_die_type (die, type, cu);
4456 }
4457
4458 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4459 the user defined type vector. */
4460
4461 static void
4462 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
4463 {
4464 struct objfile *objfile = cu->objfile;
4465 struct type *type;
4466 struct type *to_type;
4467 struct type *domain;
4468
4469 if (die->type)
4470 {
4471 return;
4472 }
4473
4474 type = alloc_type (objfile);
4475 to_type = die_type (die, cu);
4476 domain = die_containing_type (die, cu);
4477 smash_to_member_type (type, domain, to_type);
4478
4479 set_die_type (die, type, cu);
4480 }
4481
4482 /* Extract all information from a DW_TAG_reference_type DIE and add to
4483 the user defined type vector. */
4484
4485 static void
4486 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
4487 {
4488 struct comp_unit_head *cu_header = &cu->header;
4489 struct type *type;
4490 struct attribute *attr;
4491
4492 if (die->type)
4493 {
4494 return;
4495 }
4496
4497 type = lookup_reference_type (die_type (die, cu));
4498 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4499 if (attr)
4500 {
4501 TYPE_LENGTH (type) = DW_UNSND (attr);
4502 }
4503 else
4504 {
4505 TYPE_LENGTH (type) = cu_header->addr_size;
4506 }
4507 set_die_type (die, type, cu);
4508 }
4509
4510 static void
4511 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
4512 {
4513 struct type *base_type;
4514
4515 if (die->type)
4516 {
4517 return;
4518 }
4519
4520 base_type = die_type (die, cu);
4521 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4522 cu);
4523 }
4524
4525 static void
4526 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
4527 {
4528 struct type *base_type;
4529
4530 if (die->type)
4531 {
4532 return;
4533 }
4534
4535 base_type = die_type (die, cu);
4536 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4537 cu);
4538 }
4539
4540 /* Extract all information from a DW_TAG_string_type DIE and add to
4541 the user defined type vector. It isn't really a user defined type,
4542 but it behaves like one, with other DIE's using an AT_user_def_type
4543 attribute to reference it. */
4544
4545 static void
4546 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
4547 {
4548 struct objfile *objfile = cu->objfile;
4549 struct type *type, *range_type, *index_type, *char_type;
4550 struct attribute *attr;
4551 unsigned int length;
4552
4553 if (die->type)
4554 {
4555 return;
4556 }
4557
4558 attr = dwarf2_attr (die, DW_AT_string_length, cu);
4559 if (attr)
4560 {
4561 length = DW_UNSND (attr);
4562 }
4563 else
4564 {
4565 /* check for the DW_AT_byte_size attribute */
4566 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4567 if (attr)
4568 {
4569 length = DW_UNSND (attr);
4570 }
4571 else
4572 {
4573 length = 1;
4574 }
4575 }
4576 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4577 range_type = create_range_type (NULL, index_type, 1, length);
4578 if (cu->language == language_fortran)
4579 {
4580 /* Need to create a unique string type for bounds
4581 information */
4582 type = create_string_type (0, range_type);
4583 }
4584 else
4585 {
4586 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
4587 type = create_string_type (char_type, range_type);
4588 }
4589 set_die_type (die, type, cu);
4590 }
4591
4592 /* Handle DIES due to C code like:
4593
4594 struct foo
4595 {
4596 int (*funcp)(int a, long l);
4597 int b;
4598 };
4599
4600 ('funcp' generates a DW_TAG_subroutine_type DIE)
4601 */
4602
4603 static void
4604 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
4605 {
4606 struct type *type; /* Type that this function returns */
4607 struct type *ftype; /* Function that returns above type */
4608 struct attribute *attr;
4609
4610 /* Decode the type that this subroutine returns */
4611 if (die->type)
4612 {
4613 return;
4614 }
4615 type = die_type (die, cu);
4616 ftype = make_function_type (type, (struct type **) 0);
4617
4618 /* All functions in C++ and Java have prototypes. */
4619 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
4620 if ((attr && (DW_UNSND (attr) != 0))
4621 || cu->language == language_cplus
4622 || cu->language == language_java)
4623 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4624
4625 if (die->child != NULL)
4626 {
4627 struct die_info *child_die;
4628 int nparams = 0;
4629 int iparams = 0;
4630
4631 /* Count the number of parameters.
4632 FIXME: GDB currently ignores vararg functions, but knows about
4633 vararg member functions. */
4634 child_die = die->child;
4635 while (child_die && child_die->tag)
4636 {
4637 if (child_die->tag == DW_TAG_formal_parameter)
4638 nparams++;
4639 else if (child_die->tag == DW_TAG_unspecified_parameters)
4640 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4641 child_die = sibling_die (child_die);
4642 }
4643
4644 /* Allocate storage for parameters and fill them in. */
4645 TYPE_NFIELDS (ftype) = nparams;
4646 TYPE_FIELDS (ftype) = (struct field *)
4647 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
4648
4649 child_die = die->child;
4650 while (child_die && child_die->tag)
4651 {
4652 if (child_die->tag == DW_TAG_formal_parameter)
4653 {
4654 /* Dwarf2 has no clean way to discern C++ static and non-static
4655 member functions. G++ helps GDB by marking the first
4656 parameter for non-static member functions (which is the
4657 this pointer) as artificial. We pass this information
4658 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
4659 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
4660 if (attr)
4661 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4662 else
4663 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
4664 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
4665 iparams++;
4666 }
4667 child_die = sibling_die (child_die);
4668 }
4669 }
4670
4671 set_die_type (die, ftype, cu);
4672 }
4673
4674 static void
4675 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
4676 {
4677 struct objfile *objfile = cu->objfile;
4678 struct attribute *attr;
4679 char *name = NULL;
4680
4681 if (!die->type)
4682 {
4683 attr = dwarf2_attr (die, DW_AT_name, cu);
4684 if (attr && DW_STRING (attr))
4685 {
4686 name = DW_STRING (attr);
4687 }
4688 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4689 TYPE_FLAG_TARGET_STUB, name, objfile),
4690 cu);
4691 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
4692 }
4693 }
4694
4695 /* Find a representation of a given base type and install
4696 it in the TYPE field of the die. */
4697
4698 static void
4699 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
4700 {
4701 struct objfile *objfile = cu->objfile;
4702 struct type *type;
4703 struct attribute *attr;
4704 int encoding = 0, size = 0;
4705
4706 /* If we've already decoded this die, this is a no-op. */
4707 if (die->type)
4708 {
4709 return;
4710 }
4711
4712 attr = dwarf2_attr (die, DW_AT_encoding, cu);
4713 if (attr)
4714 {
4715 encoding = DW_UNSND (attr);
4716 }
4717 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4718 if (attr)
4719 {
4720 size = DW_UNSND (attr);
4721 }
4722 attr = dwarf2_attr (die, DW_AT_name, cu);
4723 if (attr && DW_STRING (attr))
4724 {
4725 enum type_code code = TYPE_CODE_INT;
4726 int type_flags = 0;
4727
4728 switch (encoding)
4729 {
4730 case DW_ATE_address:
4731 /* Turn DW_ATE_address into a void * pointer. */
4732 code = TYPE_CODE_PTR;
4733 type_flags |= TYPE_FLAG_UNSIGNED;
4734 break;
4735 case DW_ATE_boolean:
4736 code = TYPE_CODE_BOOL;
4737 type_flags |= TYPE_FLAG_UNSIGNED;
4738 break;
4739 case DW_ATE_complex_float:
4740 code = TYPE_CODE_COMPLEX;
4741 break;
4742 case DW_ATE_float:
4743 code = TYPE_CODE_FLT;
4744 break;
4745 case DW_ATE_signed:
4746 break;
4747 case DW_ATE_unsigned:
4748 type_flags |= TYPE_FLAG_UNSIGNED;
4749 break;
4750 case DW_ATE_signed_char:
4751 if (cu->language == language_m2)
4752 code = TYPE_CODE_CHAR;
4753 break;
4754 case DW_ATE_unsigned_char:
4755 if (cu->language == language_m2)
4756 code = TYPE_CODE_CHAR;
4757 type_flags |= TYPE_FLAG_UNSIGNED;
4758 break;
4759 default:
4760 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
4761 dwarf_type_encoding_name (encoding));
4762 break;
4763 }
4764 type = init_type (code, size, type_flags, DW_STRING (attr), objfile);
4765 if (encoding == DW_ATE_address)
4766 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4767 cu);
4768 else if (encoding == DW_ATE_complex_float)
4769 {
4770 if (size == 32)
4771 TYPE_TARGET_TYPE (type)
4772 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
4773 else if (size == 16)
4774 TYPE_TARGET_TYPE (type)
4775 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
4776 else if (size == 8)
4777 TYPE_TARGET_TYPE (type)
4778 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
4779 }
4780 }
4781 else
4782 {
4783 type = dwarf_base_type (encoding, size, cu);
4784 }
4785 set_die_type (die, type, cu);
4786 }
4787
4788 /* Read the given DW_AT_subrange DIE. */
4789
4790 static void
4791 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4792 {
4793 struct type *base_type;
4794 struct type *range_type;
4795 struct attribute *attr;
4796 int low = 0;
4797 int high = -1;
4798
4799 /* If we have already decoded this die, then nothing more to do. */
4800 if (die->type)
4801 return;
4802
4803 base_type = die_type (die, cu);
4804 if (base_type == NULL)
4805 {
4806 complaint (&symfile_complaints,
4807 _("DW_AT_type missing from DW_TAG_subrange_type"));
4808 return;
4809 }
4810
4811 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
4812 base_type = alloc_type (NULL);
4813
4814 if (cu->language == language_fortran)
4815 {
4816 /* FORTRAN implies a lower bound of 1, if not given. */
4817 low = 1;
4818 }
4819
4820 /* FIXME: For variable sized arrays either of these could be
4821 a variable rather than a constant value. We'll allow it,
4822 but we don't know how to handle it. */
4823 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
4824 if (attr)
4825 low = dwarf2_get_attr_constant_value (attr, 0);
4826
4827 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
4828 if (attr)
4829 {
4830 if (attr->form == DW_FORM_block1)
4831 {
4832 /* GCC encodes arrays with unspecified or dynamic length
4833 with a DW_FORM_block1 attribute.
4834 FIXME: GDB does not yet know how to handle dynamic
4835 arrays properly, treat them as arrays with unspecified
4836 length for now.
4837
4838 FIXME: jimb/2003-09-22: GDB does not really know
4839 how to handle arrays of unspecified length
4840 either; we just represent them as zero-length
4841 arrays. Choose an appropriate upper bound given
4842 the lower bound we've computed above. */
4843 high = low - 1;
4844 }
4845 else
4846 high = dwarf2_get_attr_constant_value (attr, 1);
4847 }
4848
4849 range_type = create_range_type (NULL, base_type, low, high);
4850
4851 attr = dwarf2_attr (die, DW_AT_name, cu);
4852 if (attr && DW_STRING (attr))
4853 TYPE_NAME (range_type) = DW_STRING (attr);
4854
4855 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4856 if (attr)
4857 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4858
4859 set_die_type (die, range_type, cu);
4860 }
4861
4862
4863 /* Read a whole compilation unit into a linked list of dies. */
4864
4865 static struct die_info *
4866 read_comp_unit (gdb_byte *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
4867 {
4868 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
4869 }
4870
4871 /* Read a single die and all its descendents. Set the die's sibling
4872 field to NULL; set other fields in the die correctly, and set all
4873 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
4874 location of the info_ptr after reading all of those dies. PARENT
4875 is the parent of the die in question. */
4876
4877 static struct die_info *
4878 read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
4879 struct dwarf2_cu *cu,
4880 gdb_byte **new_info_ptr,
4881 struct die_info *parent)
4882 {
4883 struct die_info *die;
4884 gdb_byte *cur_ptr;
4885 int has_children;
4886
4887 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
4888 store_in_ref_table (die->offset, die, cu);
4889
4890 if (has_children)
4891 {
4892 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
4893 new_info_ptr, die);
4894 }
4895 else
4896 {
4897 die->child = NULL;
4898 *new_info_ptr = cur_ptr;
4899 }
4900
4901 die->sibling = NULL;
4902 die->parent = parent;
4903 return die;
4904 }
4905
4906 /* Read a die, all of its descendents, and all of its siblings; set
4907 all of the fields of all of the dies correctly. Arguments are as
4908 in read_die_and_children. */
4909
4910 static struct die_info *
4911 read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
4912 struct dwarf2_cu *cu,
4913 gdb_byte **new_info_ptr,
4914 struct die_info *parent)
4915 {
4916 struct die_info *first_die, *last_sibling;
4917 gdb_byte *cur_ptr;
4918
4919 cur_ptr = info_ptr;
4920 first_die = last_sibling = NULL;
4921
4922 while (1)
4923 {
4924 struct die_info *die
4925 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
4926
4927 if (!first_die)
4928 {
4929 first_die = die;
4930 }
4931 else
4932 {
4933 last_sibling->sibling = die;
4934 }
4935
4936 if (die->tag == 0)
4937 {
4938 *new_info_ptr = cur_ptr;
4939 return first_die;
4940 }
4941 else
4942 {
4943 last_sibling = die;
4944 }
4945 }
4946 }
4947
4948 /* Free a linked list of dies. */
4949
4950 static void
4951 free_die_list (struct die_info *dies)
4952 {
4953 struct die_info *die, *next;
4954
4955 die = dies;
4956 while (die)
4957 {
4958 if (die->child != NULL)
4959 free_die_list (die->child);
4960 next = die->sibling;
4961 xfree (die->attrs);
4962 xfree (die);
4963 die = next;
4964 }
4965 }
4966
4967 /* Read the contents of the section at OFFSET and of size SIZE from the
4968 object file specified by OBJFILE into the objfile_obstack and return it. */
4969
4970 gdb_byte *
4971 dwarf2_read_section (struct objfile *objfile, asection *sectp)
4972 {
4973 bfd *abfd = objfile->obfd;
4974 gdb_byte *buf, *retbuf;
4975 bfd_size_type size = bfd_get_section_size (sectp);
4976
4977 if (size == 0)
4978 return NULL;
4979
4980 buf = obstack_alloc (&objfile->objfile_obstack, size);
4981 retbuf = symfile_relocate_debug_section (abfd, sectp, buf);
4982 if (retbuf != NULL)
4983 return retbuf;
4984
4985 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
4986 || bfd_bread (buf, size, abfd) != size)
4987 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
4988 bfd_get_filename (abfd));
4989
4990 return buf;
4991 }
4992
4993 /* In DWARF version 2, the description of the debugging information is
4994 stored in a separate .debug_abbrev section. Before we read any
4995 dies from a section we read in all abbreviations and install them
4996 in a hash table. This function also sets flags in CU describing
4997 the data found in the abbrev table. */
4998
4999 static void
5000 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
5001 {
5002 struct comp_unit_head *cu_header = &cu->header;
5003 gdb_byte *abbrev_ptr;
5004 struct abbrev_info *cur_abbrev;
5005 unsigned int abbrev_number, bytes_read, abbrev_name;
5006 unsigned int abbrev_form, hash_number;
5007 struct attr_abbrev *cur_attrs;
5008 unsigned int allocated_attrs;
5009
5010 /* Initialize dwarf2 abbrevs */
5011 obstack_init (&cu->abbrev_obstack);
5012 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
5013 (ABBREV_HASH_SIZE
5014 * sizeof (struct abbrev_info *)));
5015 memset (cu->dwarf2_abbrevs, 0,
5016 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
5017
5018 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
5019 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5020 abbrev_ptr += bytes_read;
5021
5022 allocated_attrs = ATTR_ALLOC_CHUNK;
5023 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
5024
5025 /* loop until we reach an abbrev number of 0 */
5026 while (abbrev_number)
5027 {
5028 cur_abbrev = dwarf_alloc_abbrev (cu);
5029
5030 /* read in abbrev header */
5031 cur_abbrev->number = abbrev_number;
5032 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5033 abbrev_ptr += bytes_read;
5034 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
5035 abbrev_ptr += 1;
5036
5037 if (cur_abbrev->tag == DW_TAG_namespace)
5038 cu->has_namespace_info = 1;
5039
5040 /* now read in declarations */
5041 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5042 abbrev_ptr += bytes_read;
5043 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5044 abbrev_ptr += bytes_read;
5045 while (abbrev_name)
5046 {
5047 if (cur_abbrev->num_attrs == allocated_attrs)
5048 {
5049 allocated_attrs += ATTR_ALLOC_CHUNK;
5050 cur_attrs
5051 = xrealloc (cur_attrs, (allocated_attrs
5052 * sizeof (struct attr_abbrev)));
5053 }
5054
5055 /* Record whether this compilation unit might have
5056 inter-compilation-unit references. If we don't know what form
5057 this attribute will have, then it might potentially be a
5058 DW_FORM_ref_addr, so we conservatively expect inter-CU
5059 references. */
5060
5061 if (abbrev_form == DW_FORM_ref_addr
5062 || abbrev_form == DW_FORM_indirect)
5063 cu->has_form_ref_addr = 1;
5064
5065 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5066 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
5067 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5068 abbrev_ptr += bytes_read;
5069 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5070 abbrev_ptr += bytes_read;
5071 }
5072
5073 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5074 (cur_abbrev->num_attrs
5075 * sizeof (struct attr_abbrev)));
5076 memcpy (cur_abbrev->attrs, cur_attrs,
5077 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5078
5079 hash_number = abbrev_number % ABBREV_HASH_SIZE;
5080 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5081 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
5082
5083 /* Get next abbreviation.
5084 Under Irix6 the abbreviations for a compilation unit are not
5085 always properly terminated with an abbrev number of 0.
5086 Exit loop if we encounter an abbreviation which we have
5087 already read (which means we are about to read the abbreviations
5088 for the next compile unit) or if the end of the abbreviation
5089 table is reached. */
5090 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5091 >= dwarf2_per_objfile->abbrev_size)
5092 break;
5093 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5094 abbrev_ptr += bytes_read;
5095 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
5096 break;
5097 }
5098
5099 xfree (cur_attrs);
5100 }
5101
5102 /* Release the memory used by the abbrev table for a compilation unit. */
5103
5104 static void
5105 dwarf2_free_abbrev_table (void *ptr_to_cu)
5106 {
5107 struct dwarf2_cu *cu = ptr_to_cu;
5108
5109 obstack_free (&cu->abbrev_obstack, NULL);
5110 cu->dwarf2_abbrevs = NULL;
5111 }
5112
5113 /* Lookup an abbrev_info structure in the abbrev hash table. */
5114
5115 static struct abbrev_info *
5116 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
5117 {
5118 unsigned int hash_number;
5119 struct abbrev_info *abbrev;
5120
5121 hash_number = number % ABBREV_HASH_SIZE;
5122 abbrev = cu->dwarf2_abbrevs[hash_number];
5123
5124 while (abbrev)
5125 {
5126 if (abbrev->number == number)
5127 return abbrev;
5128 else
5129 abbrev = abbrev->next;
5130 }
5131 return NULL;
5132 }
5133
5134 /* Returns nonzero if TAG represents a type that we might generate a partial
5135 symbol for. */
5136
5137 static int
5138 is_type_tag_for_partial (int tag)
5139 {
5140 switch (tag)
5141 {
5142 #if 0
5143 /* Some types that would be reasonable to generate partial symbols for,
5144 that we don't at present. */
5145 case DW_TAG_array_type:
5146 case DW_TAG_file_type:
5147 case DW_TAG_ptr_to_member_type:
5148 case DW_TAG_set_type:
5149 case DW_TAG_string_type:
5150 case DW_TAG_subroutine_type:
5151 #endif
5152 case DW_TAG_base_type:
5153 case DW_TAG_class_type:
5154 case DW_TAG_enumeration_type:
5155 case DW_TAG_structure_type:
5156 case DW_TAG_subrange_type:
5157 case DW_TAG_typedef:
5158 case DW_TAG_union_type:
5159 return 1;
5160 default:
5161 return 0;
5162 }
5163 }
5164
5165 /* Load all DIEs that are interesting for partial symbols into memory. */
5166
5167 static struct partial_die_info *
5168 load_partial_dies (bfd *abfd, gdb_byte *info_ptr, int building_psymtab,
5169 struct dwarf2_cu *cu)
5170 {
5171 struct partial_die_info *part_die;
5172 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5173 struct abbrev_info *abbrev;
5174 unsigned int bytes_read;
5175 unsigned int load_all = 0;
5176
5177 int nesting_level = 1;
5178
5179 parent_die = NULL;
5180 last_die = NULL;
5181
5182 if (cu->per_cu && cu->per_cu->load_all_dies)
5183 load_all = 1;
5184
5185 cu->partial_dies
5186 = htab_create_alloc_ex (cu->header.length / 12,
5187 partial_die_hash,
5188 partial_die_eq,
5189 NULL,
5190 &cu->comp_unit_obstack,
5191 hashtab_obstack_allocate,
5192 dummy_obstack_deallocate);
5193
5194 part_die = obstack_alloc (&cu->comp_unit_obstack,
5195 sizeof (struct partial_die_info));
5196
5197 while (1)
5198 {
5199 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5200
5201 /* A NULL abbrev means the end of a series of children. */
5202 if (abbrev == NULL)
5203 {
5204 if (--nesting_level == 0)
5205 {
5206 /* PART_DIE was probably the last thing allocated on the
5207 comp_unit_obstack, so we could call obstack_free
5208 here. We don't do that because the waste is small,
5209 and will be cleaned up when we're done with this
5210 compilation unit. This way, we're also more robust
5211 against other users of the comp_unit_obstack. */
5212 return first_die;
5213 }
5214 info_ptr += bytes_read;
5215 last_die = parent_die;
5216 parent_die = parent_die->die_parent;
5217 continue;
5218 }
5219
5220 /* Check whether this DIE is interesting enough to save. Normally
5221 we would not be interested in members here, but there may be
5222 later variables referencing them via DW_AT_specification (for
5223 static members). */
5224 if (!load_all
5225 && !is_type_tag_for_partial (abbrev->tag)
5226 && abbrev->tag != DW_TAG_enumerator
5227 && abbrev->tag != DW_TAG_subprogram
5228 && abbrev->tag != DW_TAG_variable
5229 && abbrev->tag != DW_TAG_namespace
5230 && abbrev->tag != DW_TAG_member)
5231 {
5232 /* Otherwise we skip to the next sibling, if any. */
5233 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5234 continue;
5235 }
5236
5237 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5238 abfd, info_ptr, cu);
5239
5240 /* This two-pass algorithm for processing partial symbols has a
5241 high cost in cache pressure. Thus, handle some simple cases
5242 here which cover the majority of C partial symbols. DIEs
5243 which neither have specification tags in them, nor could have
5244 specification tags elsewhere pointing at them, can simply be
5245 processed and discarded.
5246
5247 This segment is also optional; scan_partial_symbols and
5248 add_partial_symbol will handle these DIEs if we chain
5249 them in normally. When compilers which do not emit large
5250 quantities of duplicate debug information are more common,
5251 this code can probably be removed. */
5252
5253 /* Any complete simple types at the top level (pretty much all
5254 of them, for a language without namespaces), can be processed
5255 directly. */
5256 if (parent_die == NULL
5257 && part_die->has_specification == 0
5258 && part_die->is_declaration == 0
5259 && (part_die->tag == DW_TAG_typedef
5260 || part_die->tag == DW_TAG_base_type
5261 || part_die->tag == DW_TAG_subrange_type))
5262 {
5263 if (building_psymtab && part_die->name != NULL)
5264 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5265 VAR_DOMAIN, LOC_TYPEDEF,
5266 &cu->objfile->static_psymbols,
5267 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5268 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5269 continue;
5270 }
5271
5272 /* If we're at the second level, and we're an enumerator, and
5273 our parent has no specification (meaning possibly lives in a
5274 namespace elsewhere), then we can add the partial symbol now
5275 instead of queueing it. */
5276 if (part_die->tag == DW_TAG_enumerator
5277 && parent_die != NULL
5278 && parent_die->die_parent == NULL
5279 && parent_die->tag == DW_TAG_enumeration_type
5280 && parent_die->has_specification == 0)
5281 {
5282 if (part_die->name == NULL)
5283 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
5284 else if (building_psymtab)
5285 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5286 VAR_DOMAIN, LOC_CONST,
5287 (cu->language == language_cplus
5288 || cu->language == language_java)
5289 ? &cu->objfile->global_psymbols
5290 : &cu->objfile->static_psymbols,
5291 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5292
5293 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5294 continue;
5295 }
5296
5297 /* We'll save this DIE so link it in. */
5298 part_die->die_parent = parent_die;
5299 part_die->die_sibling = NULL;
5300 part_die->die_child = NULL;
5301
5302 if (last_die && last_die == parent_die)
5303 last_die->die_child = part_die;
5304 else if (last_die)
5305 last_die->die_sibling = part_die;
5306
5307 last_die = part_die;
5308
5309 if (first_die == NULL)
5310 first_die = part_die;
5311
5312 /* Maybe add the DIE to the hash table. Not all DIEs that we
5313 find interesting need to be in the hash table, because we
5314 also have the parent/sibling/child chains; only those that we
5315 might refer to by offset later during partial symbol reading.
5316
5317 For now this means things that might have be the target of a
5318 DW_AT_specification, DW_AT_abstract_origin, or
5319 DW_AT_extension. DW_AT_extension will refer only to
5320 namespaces; DW_AT_abstract_origin refers to functions (and
5321 many things under the function DIE, but we do not recurse
5322 into function DIEs during partial symbol reading) and
5323 possibly variables as well; DW_AT_specification refers to
5324 declarations. Declarations ought to have the DW_AT_declaration
5325 flag. It happens that GCC forgets to put it in sometimes, but
5326 only for functions, not for types.
5327
5328 Adding more things than necessary to the hash table is harmless
5329 except for the performance cost. Adding too few will result in
5330 wasted time in find_partial_die, when we reread the compilation
5331 unit with load_all_dies set. */
5332
5333 if (load_all
5334 || abbrev->tag == DW_TAG_subprogram
5335 || abbrev->tag == DW_TAG_variable
5336 || abbrev->tag == DW_TAG_namespace
5337 || part_die->is_declaration)
5338 {
5339 void **slot;
5340
5341 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5342 part_die->offset, INSERT);
5343 *slot = part_die;
5344 }
5345
5346 part_die = obstack_alloc (&cu->comp_unit_obstack,
5347 sizeof (struct partial_die_info));
5348
5349 /* For some DIEs we want to follow their children (if any). For C
5350 we have no reason to follow the children of structures; for other
5351 languages we have to, both so that we can get at method physnames
5352 to infer fully qualified class names, and for DW_AT_specification. */
5353 if (last_die->has_children
5354 && (load_all
5355 || last_die->tag == DW_TAG_namespace
5356 || last_die->tag == DW_TAG_enumeration_type
5357 || (cu->language != language_c
5358 && (last_die->tag == DW_TAG_class_type
5359 || last_die->tag == DW_TAG_structure_type
5360 || last_die->tag == DW_TAG_union_type))))
5361 {
5362 nesting_level++;
5363 parent_die = last_die;
5364 continue;
5365 }
5366
5367 /* Otherwise we skip to the next sibling, if any. */
5368 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5369
5370 /* Back to the top, do it again. */
5371 }
5372 }
5373
5374 /* Read a minimal amount of information into the minimal die structure. */
5375
5376 static gdb_byte *
5377 read_partial_die (struct partial_die_info *part_die,
5378 struct abbrev_info *abbrev,
5379 unsigned int abbrev_len, bfd *abfd,
5380 gdb_byte *info_ptr, struct dwarf2_cu *cu)
5381 {
5382 unsigned int bytes_read, i;
5383 struct attribute attr;
5384 int has_low_pc_attr = 0;
5385 int has_high_pc_attr = 0;
5386
5387 memset (part_die, 0, sizeof (struct partial_die_info));
5388
5389 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
5390
5391 info_ptr += abbrev_len;
5392
5393 if (abbrev == NULL)
5394 return info_ptr;
5395
5396 part_die->tag = abbrev->tag;
5397 part_die->has_children = abbrev->has_children;
5398
5399 for (i = 0; i < abbrev->num_attrs; ++i)
5400 {
5401 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
5402
5403 /* Store the data if it is of an attribute we want to keep in a
5404 partial symbol table. */
5405 switch (attr.name)
5406 {
5407 case DW_AT_name:
5408
5409 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5410 if (part_die->name == NULL)
5411 part_die->name = DW_STRING (&attr);
5412 break;
5413 case DW_AT_comp_dir:
5414 if (part_die->dirname == NULL)
5415 part_die->dirname = DW_STRING (&attr);
5416 break;
5417 case DW_AT_MIPS_linkage_name:
5418 part_die->name = DW_STRING (&attr);
5419 break;
5420 case DW_AT_low_pc:
5421 has_low_pc_attr = 1;
5422 part_die->lowpc = DW_ADDR (&attr);
5423 break;
5424 case DW_AT_high_pc:
5425 has_high_pc_attr = 1;
5426 part_die->highpc = DW_ADDR (&attr);
5427 break;
5428 case DW_AT_location:
5429 /* Support the .debug_loc offsets */
5430 if (attr_form_is_block (&attr))
5431 {
5432 part_die->locdesc = DW_BLOCK (&attr);
5433 }
5434 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
5435 {
5436 dwarf2_complex_location_expr_complaint ();
5437 }
5438 else
5439 {
5440 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5441 "partial symbol information");
5442 }
5443 break;
5444 case DW_AT_language:
5445 part_die->language = DW_UNSND (&attr);
5446 break;
5447 case DW_AT_external:
5448 part_die->is_external = DW_UNSND (&attr);
5449 break;
5450 case DW_AT_declaration:
5451 part_die->is_declaration = DW_UNSND (&attr);
5452 break;
5453 case DW_AT_type:
5454 part_die->has_type = 1;
5455 break;
5456 case DW_AT_abstract_origin:
5457 case DW_AT_specification:
5458 case DW_AT_extension:
5459 part_die->has_specification = 1;
5460 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
5461 break;
5462 case DW_AT_sibling:
5463 /* Ignore absolute siblings, they might point outside of
5464 the current compile unit. */
5465 if (attr.form == DW_FORM_ref_addr)
5466 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
5467 else
5468 part_die->sibling = dwarf2_per_objfile->info_buffer
5469 + dwarf2_get_ref_die_offset (&attr, cu);
5470 break;
5471 case DW_AT_stmt_list:
5472 part_die->has_stmt_list = 1;
5473 part_die->line_offset = DW_UNSND (&attr);
5474 break;
5475 default:
5476 break;
5477 }
5478 }
5479
5480 /* When using the GNU linker, .gnu.linkonce. sections are used to
5481 eliminate duplicate copies of functions and vtables and such.
5482 The linker will arbitrarily choose one and discard the others.
5483 The AT_*_pc values for such functions refer to local labels in
5484 these sections. If the section from that file was discarded, the
5485 labels are not in the output, so the relocs get a value of 0.
5486 If this is a discarded function, mark the pc bounds as invalid,
5487 so that GDB will ignore it. */
5488 if (has_low_pc_attr && has_high_pc_attr
5489 && part_die->lowpc < part_die->highpc
5490 && (part_die->lowpc != 0
5491 || (bfd_get_file_flags (abfd) & HAS_RELOC)))
5492 part_die->has_pc_info = 1;
5493 return info_ptr;
5494 }
5495
5496 /* Find a cached partial DIE at OFFSET in CU. */
5497
5498 static struct partial_die_info *
5499 find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5500 {
5501 struct partial_die_info *lookup_die = NULL;
5502 struct partial_die_info part_die;
5503
5504 part_die.offset = offset;
5505 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5506
5507 return lookup_die;
5508 }
5509
5510 /* Find a partial DIE at OFFSET, which may or may not be in CU. */
5511
5512 static struct partial_die_info *
5513 find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
5514 {
5515 struct dwarf2_per_cu_data *per_cu = NULL;
5516 struct partial_die_info *pd = NULL;
5517
5518 if (offset >= cu->header.offset
5519 && offset < cu->header.offset + cu->header.length)
5520 {
5521 pd = find_partial_die_in_comp_unit (offset, cu);
5522 if (pd != NULL)
5523 return pd;
5524 }
5525
5526 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5527
5528 if (per_cu->cu == NULL)
5529 {
5530 load_comp_unit (per_cu, cu->objfile);
5531 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5532 dwarf2_per_objfile->read_in_chain = per_cu;
5533 }
5534
5535 per_cu->cu->last_used = 0;
5536 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5537
5538 if (pd == NULL && per_cu->load_all_dies == 0)
5539 {
5540 struct cleanup *back_to;
5541 struct partial_die_info comp_unit_die;
5542 struct abbrev_info *abbrev;
5543 unsigned int bytes_read;
5544 char *info_ptr;
5545
5546 per_cu->load_all_dies = 1;
5547
5548 /* Re-read the DIEs. */
5549 back_to = make_cleanup (null_cleanup, 0);
5550 if (per_cu->cu->dwarf2_abbrevs == NULL)
5551 {
5552 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
5553 back_to = make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5554 }
5555 info_ptr = per_cu->cu->header.first_die_ptr;
5556 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
5557 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
5558 per_cu->cu->objfile->obfd, info_ptr,
5559 per_cu->cu);
5560 if (comp_unit_die.has_children)
5561 load_partial_dies (per_cu->cu->objfile->obfd, info_ptr, 0, per_cu->cu);
5562 do_cleanups (back_to);
5563
5564 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5565 }
5566
5567 if (pd == NULL)
5568 internal_error (__FILE__, __LINE__,
5569 _("could not find partial DIE 0x%lx in cache [from module %s]\n"),
5570 offset, bfd_get_filename (cu->objfile->obfd));
5571 return pd;
5572 }
5573
5574 /* Adjust PART_DIE before generating a symbol for it. This function
5575 may set the is_external flag or change the DIE's name. */
5576
5577 static void
5578 fixup_partial_die (struct partial_die_info *part_die,
5579 struct dwarf2_cu *cu)
5580 {
5581 /* If we found a reference attribute and the DIE has no name, try
5582 to find a name in the referred to DIE. */
5583
5584 if (part_die->name == NULL && part_die->has_specification)
5585 {
5586 struct partial_die_info *spec_die;
5587
5588 spec_die = find_partial_die (part_die->spec_offset, cu);
5589
5590 fixup_partial_die (spec_die, cu);
5591
5592 if (spec_die->name)
5593 {
5594 part_die->name = spec_die->name;
5595
5596 /* Copy DW_AT_external attribute if it is set. */
5597 if (spec_die->is_external)
5598 part_die->is_external = spec_die->is_external;
5599 }
5600 }
5601
5602 /* Set default names for some unnamed DIEs. */
5603 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5604 || part_die->tag == DW_TAG_class_type))
5605 part_die->name = "(anonymous class)";
5606
5607 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5608 part_die->name = "(anonymous namespace)";
5609
5610 if (part_die->tag == DW_TAG_structure_type
5611 || part_die->tag == DW_TAG_class_type
5612 || part_die->tag == DW_TAG_union_type)
5613 guess_structure_name (part_die, cu);
5614 }
5615
5616 /* Read the die from the .debug_info section buffer. Set DIEP to
5617 point to a newly allocated die with its information, except for its
5618 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5619 whether the die has children or not. */
5620
5621 static gdb_byte *
5622 read_full_die (struct die_info **diep, bfd *abfd, gdb_byte *info_ptr,
5623 struct dwarf2_cu *cu, int *has_children)
5624 {
5625 unsigned int abbrev_number, bytes_read, i, offset;
5626 struct abbrev_info *abbrev;
5627 struct die_info *die;
5628
5629 offset = info_ptr - dwarf2_per_objfile->info_buffer;
5630 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5631 info_ptr += bytes_read;
5632 if (!abbrev_number)
5633 {
5634 die = dwarf_alloc_die ();
5635 die->tag = 0;
5636 die->abbrev = abbrev_number;
5637 die->type = NULL;
5638 *diep = die;
5639 *has_children = 0;
5640 return info_ptr;
5641 }
5642
5643 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
5644 if (!abbrev)
5645 {
5646 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
5647 abbrev_number,
5648 bfd_get_filename (abfd));
5649 }
5650 die = dwarf_alloc_die ();
5651 die->offset = offset;
5652 die->tag = abbrev->tag;
5653 die->abbrev = abbrev_number;
5654 die->type = NULL;
5655
5656 die->num_attrs = abbrev->num_attrs;
5657 die->attrs = (struct attribute *)
5658 xmalloc (die->num_attrs * sizeof (struct attribute));
5659
5660 for (i = 0; i < abbrev->num_attrs; ++i)
5661 {
5662 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
5663 abfd, info_ptr, cu);
5664
5665 /* If this attribute is an absolute reference to a different
5666 compilation unit, make sure that compilation unit is loaded
5667 also. */
5668 if (die->attrs[i].form == DW_FORM_ref_addr
5669 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5670 || (DW_ADDR (&die->attrs[i])
5671 >= cu->header.offset + cu->header.length)))
5672 {
5673 struct dwarf2_per_cu_data *per_cu;
5674 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5675 cu->objfile);
5676
5677 /* Mark the dependence relation so that we don't flush PER_CU
5678 too early. */
5679 dwarf2_add_dependence (cu, per_cu);
5680
5681 /* If it's already on the queue, we have nothing to do. */
5682 if (per_cu->queued)
5683 continue;
5684
5685 /* If the compilation unit is already loaded, just mark it as
5686 used. */
5687 if (per_cu->cu != NULL)
5688 {
5689 per_cu->cu->last_used = 0;
5690 continue;
5691 }
5692
5693 /* Add it to the queue. */
5694 queue_comp_unit (per_cu);
5695 }
5696 }
5697
5698 *diep = die;
5699 *has_children = abbrev->has_children;
5700 return info_ptr;
5701 }
5702
5703 /* Read an attribute value described by an attribute form. */
5704
5705 static gdb_byte *
5706 read_attribute_value (struct attribute *attr, unsigned form,
5707 bfd *abfd, gdb_byte *info_ptr,
5708 struct dwarf2_cu *cu)
5709 {
5710 struct comp_unit_head *cu_header = &cu->header;
5711 unsigned int bytes_read;
5712 struct dwarf_block *blk;
5713
5714 attr->form = form;
5715 switch (form)
5716 {
5717 case DW_FORM_addr:
5718 case DW_FORM_ref_addr:
5719 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
5720 info_ptr += bytes_read;
5721 break;
5722 case DW_FORM_block2:
5723 blk = dwarf_alloc_block (cu);
5724 blk->size = read_2_bytes (abfd, info_ptr);
5725 info_ptr += 2;
5726 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5727 info_ptr += blk->size;
5728 DW_BLOCK (attr) = blk;
5729 break;
5730 case DW_FORM_block4:
5731 blk = dwarf_alloc_block (cu);
5732 blk->size = read_4_bytes (abfd, info_ptr);
5733 info_ptr += 4;
5734 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5735 info_ptr += blk->size;
5736 DW_BLOCK (attr) = blk;
5737 break;
5738 case DW_FORM_data2:
5739 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5740 info_ptr += 2;
5741 break;
5742 case DW_FORM_data4:
5743 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5744 info_ptr += 4;
5745 break;
5746 case DW_FORM_data8:
5747 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5748 info_ptr += 8;
5749 break;
5750 case DW_FORM_string:
5751 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5752 info_ptr += bytes_read;
5753 break;
5754 case DW_FORM_strp:
5755 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5756 &bytes_read);
5757 info_ptr += bytes_read;
5758 break;
5759 case DW_FORM_block:
5760 blk = dwarf_alloc_block (cu);
5761 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5762 info_ptr += bytes_read;
5763 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5764 info_ptr += blk->size;
5765 DW_BLOCK (attr) = blk;
5766 break;
5767 case DW_FORM_block1:
5768 blk = dwarf_alloc_block (cu);
5769 blk->size = read_1_byte (abfd, info_ptr);
5770 info_ptr += 1;
5771 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5772 info_ptr += blk->size;
5773 DW_BLOCK (attr) = blk;
5774 break;
5775 case DW_FORM_data1:
5776 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5777 info_ptr += 1;
5778 break;
5779 case DW_FORM_flag:
5780 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5781 info_ptr += 1;
5782 break;
5783 case DW_FORM_sdata:
5784 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5785 info_ptr += bytes_read;
5786 break;
5787 case DW_FORM_udata:
5788 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5789 info_ptr += bytes_read;
5790 break;
5791 case DW_FORM_ref1:
5792 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
5793 info_ptr += 1;
5794 break;
5795 case DW_FORM_ref2:
5796 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
5797 info_ptr += 2;
5798 break;
5799 case DW_FORM_ref4:
5800 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
5801 info_ptr += 4;
5802 break;
5803 case DW_FORM_ref8:
5804 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
5805 info_ptr += 8;
5806 break;
5807 case DW_FORM_ref_udata:
5808 DW_ADDR (attr) = (cu->header.offset
5809 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
5810 info_ptr += bytes_read;
5811 break;
5812 case DW_FORM_indirect:
5813 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5814 info_ptr += bytes_read;
5815 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
5816 break;
5817 default:
5818 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
5819 dwarf_form_name (form),
5820 bfd_get_filename (abfd));
5821 }
5822 return info_ptr;
5823 }
5824
5825 /* Read an attribute described by an abbreviated attribute. */
5826
5827 static gdb_byte *
5828 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
5829 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
5830 {
5831 attr->name = abbrev->name;
5832 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
5833 }
5834
5835 /* read dwarf information from a buffer */
5836
5837 static unsigned int
5838 read_1_byte (bfd *abfd, gdb_byte *buf)
5839 {
5840 return bfd_get_8 (abfd, buf);
5841 }
5842
5843 static int
5844 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
5845 {
5846 return bfd_get_signed_8 (abfd, buf);
5847 }
5848
5849 static unsigned int
5850 read_2_bytes (bfd *abfd, gdb_byte *buf)
5851 {
5852 return bfd_get_16 (abfd, buf);
5853 }
5854
5855 static int
5856 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
5857 {
5858 return bfd_get_signed_16 (abfd, buf);
5859 }
5860
5861 static unsigned int
5862 read_4_bytes (bfd *abfd, gdb_byte *buf)
5863 {
5864 return bfd_get_32 (abfd, buf);
5865 }
5866
5867 static int
5868 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
5869 {
5870 return bfd_get_signed_32 (abfd, buf);
5871 }
5872
5873 static unsigned long
5874 read_8_bytes (bfd *abfd, gdb_byte *buf)
5875 {
5876 return bfd_get_64 (abfd, buf);
5877 }
5878
5879 static CORE_ADDR
5880 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
5881 unsigned int *bytes_read)
5882 {
5883 struct comp_unit_head *cu_header = &cu->header;
5884 CORE_ADDR retval = 0;
5885
5886 if (cu_header->signed_addr_p)
5887 {
5888 switch (cu_header->addr_size)
5889 {
5890 case 2:
5891 retval = bfd_get_signed_16 (abfd, buf);
5892 break;
5893 case 4:
5894 retval = bfd_get_signed_32 (abfd, buf);
5895 break;
5896 case 8:
5897 retval = bfd_get_signed_64 (abfd, buf);
5898 break;
5899 default:
5900 internal_error (__FILE__, __LINE__,
5901 _("read_address: bad switch, signed [in module %s]"),
5902 bfd_get_filename (abfd));
5903 }
5904 }
5905 else
5906 {
5907 switch (cu_header->addr_size)
5908 {
5909 case 2:
5910 retval = bfd_get_16 (abfd, buf);
5911 break;
5912 case 4:
5913 retval = bfd_get_32 (abfd, buf);
5914 break;
5915 case 8:
5916 retval = bfd_get_64 (abfd, buf);
5917 break;
5918 default:
5919 internal_error (__FILE__, __LINE__,
5920 _("read_address: bad switch, unsigned [in module %s]"),
5921 bfd_get_filename (abfd));
5922 }
5923 }
5924
5925 *bytes_read = cu_header->addr_size;
5926 return retval;
5927 }
5928
5929 /* Read the initial length from a section. The (draft) DWARF 3
5930 specification allows the initial length to take up either 4 bytes
5931 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
5932 bytes describe the length and all offsets will be 8 bytes in length
5933 instead of 4.
5934
5935 An older, non-standard 64-bit format is also handled by this
5936 function. The older format in question stores the initial length
5937 as an 8-byte quantity without an escape value. Lengths greater
5938 than 2^32 aren't very common which means that the initial 4 bytes
5939 is almost always zero. Since a length value of zero doesn't make
5940 sense for the 32-bit format, this initial zero can be considered to
5941 be an escape value which indicates the presence of the older 64-bit
5942 format. As written, the code can't detect (old format) lengths
5943 greater than 4GB. If it becomes necessary to handle lengths
5944 somewhat larger than 4GB, we could allow other small values (such
5945 as the non-sensical values of 1, 2, and 3) to also be used as
5946 escape values indicating the presence of the old format.
5947
5948 The value returned via bytes_read should be used to increment the
5949 relevant pointer after calling read_initial_length().
5950
5951 As a side effect, this function sets the fields initial_length_size
5952 and offset_size in cu_header to the values appropriate for the
5953 length field. (The format of the initial length field determines
5954 the width of file offsets to be fetched later with read_offset().)
5955
5956 [ Note: read_initial_length() and read_offset() are based on the
5957 document entitled "DWARF Debugging Information Format", revision
5958 3, draft 8, dated November 19, 2001. This document was obtained
5959 from:
5960
5961 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
5962
5963 This document is only a draft and is subject to change. (So beware.)
5964
5965 Details regarding the older, non-standard 64-bit format were
5966 determined empirically by examining 64-bit ELF files produced by
5967 the SGI toolchain on an IRIX 6.5 machine.
5968
5969 - Kevin, July 16, 2002
5970 ] */
5971
5972 static LONGEST
5973 read_initial_length (bfd *abfd, gdb_byte *buf, struct comp_unit_head *cu_header,
5974 unsigned int *bytes_read)
5975 {
5976 LONGEST length = bfd_get_32 (abfd, buf);
5977
5978 if (length == 0xffffffff)
5979 {
5980 length = bfd_get_64 (abfd, buf + 4);
5981 *bytes_read = 12;
5982 }
5983 else if (length == 0)
5984 {
5985 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
5986 length = bfd_get_64 (abfd, buf);
5987 *bytes_read = 8;
5988 }
5989 else
5990 {
5991 *bytes_read = 4;
5992 }
5993
5994 if (cu_header)
5995 {
5996 gdb_assert (cu_header->initial_length_size == 0
5997 || cu_header->initial_length_size == 4
5998 || cu_header->initial_length_size == 8
5999 || cu_header->initial_length_size == 12);
6000
6001 if (cu_header->initial_length_size != 0
6002 && cu_header->initial_length_size != *bytes_read)
6003 complaint (&symfile_complaints,
6004 _("intermixed 32-bit and 64-bit DWARF sections"));
6005
6006 cu_header->initial_length_size = *bytes_read;
6007 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
6008 }
6009
6010 return length;
6011 }
6012
6013 /* Read an offset from the data stream. The size of the offset is
6014 given by cu_header->offset_size. */
6015
6016 static LONGEST
6017 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
6018 unsigned int *bytes_read)
6019 {
6020 LONGEST retval = 0;
6021
6022 switch (cu_header->offset_size)
6023 {
6024 case 4:
6025 retval = bfd_get_32 (abfd, buf);
6026 *bytes_read = 4;
6027 break;
6028 case 8:
6029 retval = bfd_get_64 (abfd, buf);
6030 *bytes_read = 8;
6031 break;
6032 default:
6033 internal_error (__FILE__, __LINE__,
6034 _("read_offset: bad switch [in module %s]"),
6035 bfd_get_filename (abfd));
6036 }
6037
6038 return retval;
6039 }
6040
6041 static gdb_byte *
6042 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
6043 {
6044 /* If the size of a host char is 8 bits, we can return a pointer
6045 to the buffer, otherwise we have to copy the data to a buffer
6046 allocated on the temporary obstack. */
6047 gdb_assert (HOST_CHAR_BIT == 8);
6048 return buf;
6049 }
6050
6051 static char *
6052 read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6053 {
6054 /* If the size of a host char is 8 bits, we can return a pointer
6055 to the string, otherwise we have to copy the string to a buffer
6056 allocated on the temporary obstack. */
6057 gdb_assert (HOST_CHAR_BIT == 8);
6058 if (*buf == '\0')
6059 {
6060 *bytes_read_ptr = 1;
6061 return NULL;
6062 }
6063 *bytes_read_ptr = strlen ((char *) buf) + 1;
6064 return (char *) buf;
6065 }
6066
6067 static char *
6068 read_indirect_string (bfd *abfd, gdb_byte *buf,
6069 const struct comp_unit_head *cu_header,
6070 unsigned int *bytes_read_ptr)
6071 {
6072 LONGEST str_offset = read_offset (abfd, buf, cu_header,
6073 bytes_read_ptr);
6074
6075 if (dwarf2_per_objfile->str_buffer == NULL)
6076 {
6077 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
6078 bfd_get_filename (abfd));
6079 return NULL;
6080 }
6081 if (str_offset >= dwarf2_per_objfile->str_size)
6082 {
6083 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
6084 bfd_get_filename (abfd));
6085 return NULL;
6086 }
6087 gdb_assert (HOST_CHAR_BIT == 8);
6088 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
6089 return NULL;
6090 return (char *) (dwarf2_per_objfile->str_buffer + str_offset);
6091 }
6092
6093 static unsigned long
6094 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6095 {
6096 unsigned long result;
6097 unsigned int num_read;
6098 int i, shift;
6099 unsigned char byte;
6100
6101 result = 0;
6102 shift = 0;
6103 num_read = 0;
6104 i = 0;
6105 while (1)
6106 {
6107 byte = bfd_get_8 (abfd, buf);
6108 buf++;
6109 num_read++;
6110 result |= ((unsigned long)(byte & 127) << shift);
6111 if ((byte & 128) == 0)
6112 {
6113 break;
6114 }
6115 shift += 7;
6116 }
6117 *bytes_read_ptr = num_read;
6118 return result;
6119 }
6120
6121 static long
6122 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6123 {
6124 long result;
6125 int i, shift, num_read;
6126 unsigned char byte;
6127
6128 result = 0;
6129 shift = 0;
6130 num_read = 0;
6131 i = 0;
6132 while (1)
6133 {
6134 byte = bfd_get_8 (abfd, buf);
6135 buf++;
6136 num_read++;
6137 result |= ((long)(byte & 127) << shift);
6138 shift += 7;
6139 if ((byte & 128) == 0)
6140 {
6141 break;
6142 }
6143 }
6144 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
6145 result |= -(((long)1) << shift);
6146 *bytes_read_ptr = num_read;
6147 return result;
6148 }
6149
6150 /* Return a pointer to just past the end of an LEB128 number in BUF. */
6151
6152 static gdb_byte *
6153 skip_leb128 (bfd *abfd, gdb_byte *buf)
6154 {
6155 int byte;
6156
6157 while (1)
6158 {
6159 byte = bfd_get_8 (abfd, buf);
6160 buf++;
6161 if ((byte & 128) == 0)
6162 return buf;
6163 }
6164 }
6165
6166 static void
6167 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
6168 {
6169 switch (lang)
6170 {
6171 case DW_LANG_C89:
6172 case DW_LANG_C:
6173 cu->language = language_c;
6174 break;
6175 case DW_LANG_C_plus_plus:
6176 cu->language = language_cplus;
6177 break;
6178 case DW_LANG_Fortran77:
6179 case DW_LANG_Fortran90:
6180 case DW_LANG_Fortran95:
6181 cu->language = language_fortran;
6182 break;
6183 case DW_LANG_Mips_Assembler:
6184 cu->language = language_asm;
6185 break;
6186 case DW_LANG_Java:
6187 cu->language = language_java;
6188 break;
6189 case DW_LANG_Ada83:
6190 case DW_LANG_Ada95:
6191 cu->language = language_ada;
6192 break;
6193 case DW_LANG_Modula2:
6194 cu->language = language_m2;
6195 break;
6196 case DW_LANG_Cobol74:
6197 case DW_LANG_Cobol85:
6198 case DW_LANG_Pascal83:
6199 default:
6200 cu->language = language_minimal;
6201 break;
6202 }
6203 cu->language_defn = language_def (cu->language);
6204 }
6205
6206 /* Return the named attribute or NULL if not there. */
6207
6208 static struct attribute *
6209 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
6210 {
6211 unsigned int i;
6212 struct attribute *spec = NULL;
6213
6214 for (i = 0; i < die->num_attrs; ++i)
6215 {
6216 if (die->attrs[i].name == name)
6217 return &die->attrs[i];
6218 if (die->attrs[i].name == DW_AT_specification
6219 || die->attrs[i].name == DW_AT_abstract_origin)
6220 spec = &die->attrs[i];
6221 }
6222
6223 if (spec)
6224 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
6225
6226 return NULL;
6227 }
6228
6229 /* Return non-zero iff the attribute NAME is defined for the given DIE,
6230 and holds a non-zero value. This function should only be used for
6231 DW_FORM_flag attributes. */
6232
6233 static int
6234 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6235 {
6236 struct attribute *attr = dwarf2_attr (die, name, cu);
6237
6238 return (attr && DW_UNSND (attr));
6239 }
6240
6241 static int
6242 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
6243 {
6244 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6245 which value is non-zero. However, we have to be careful with
6246 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6247 (via dwarf2_flag_true_p) follows this attribute. So we may
6248 end up accidently finding a declaration attribute that belongs
6249 to a different DIE referenced by the specification attribute,
6250 even though the given DIE does not have a declaration attribute. */
6251 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6252 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
6253 }
6254
6255 /* Return the die giving the specification for DIE, if there is
6256 one. */
6257
6258 static struct die_info *
6259 die_specification (struct die_info *die, struct dwarf2_cu *cu)
6260 {
6261 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
6262
6263 if (spec_attr == NULL)
6264 return NULL;
6265 else
6266 return follow_die_ref (die, spec_attr, cu);
6267 }
6268
6269 /* Free the line_header structure *LH, and any arrays and strings it
6270 refers to. */
6271 static void
6272 free_line_header (struct line_header *lh)
6273 {
6274 if (lh->standard_opcode_lengths)
6275 xfree (lh->standard_opcode_lengths);
6276
6277 /* Remember that all the lh->file_names[i].name pointers are
6278 pointers into debug_line_buffer, and don't need to be freed. */
6279 if (lh->file_names)
6280 xfree (lh->file_names);
6281
6282 /* Similarly for the include directory names. */
6283 if (lh->include_dirs)
6284 xfree (lh->include_dirs);
6285
6286 xfree (lh);
6287 }
6288
6289
6290 /* Add an entry to LH's include directory table. */
6291 static void
6292 add_include_dir (struct line_header *lh, char *include_dir)
6293 {
6294 /* Grow the array if necessary. */
6295 if (lh->include_dirs_size == 0)
6296 {
6297 lh->include_dirs_size = 1; /* for testing */
6298 lh->include_dirs = xmalloc (lh->include_dirs_size
6299 * sizeof (*lh->include_dirs));
6300 }
6301 else if (lh->num_include_dirs >= lh->include_dirs_size)
6302 {
6303 lh->include_dirs_size *= 2;
6304 lh->include_dirs = xrealloc (lh->include_dirs,
6305 (lh->include_dirs_size
6306 * sizeof (*lh->include_dirs)));
6307 }
6308
6309 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6310 }
6311
6312
6313 /* Add an entry to LH's file name table. */
6314 static void
6315 add_file_name (struct line_header *lh,
6316 char *name,
6317 unsigned int dir_index,
6318 unsigned int mod_time,
6319 unsigned int length)
6320 {
6321 struct file_entry *fe;
6322
6323 /* Grow the array if necessary. */
6324 if (lh->file_names_size == 0)
6325 {
6326 lh->file_names_size = 1; /* for testing */
6327 lh->file_names = xmalloc (lh->file_names_size
6328 * sizeof (*lh->file_names));
6329 }
6330 else if (lh->num_file_names >= lh->file_names_size)
6331 {
6332 lh->file_names_size *= 2;
6333 lh->file_names = xrealloc (lh->file_names,
6334 (lh->file_names_size
6335 * sizeof (*lh->file_names)));
6336 }
6337
6338 fe = &lh->file_names[lh->num_file_names++];
6339 fe->name = name;
6340 fe->dir_index = dir_index;
6341 fe->mod_time = mod_time;
6342 fe->length = length;
6343 fe->included_p = 0;
6344 }
6345
6346
6347 /* Read the statement program header starting at OFFSET in
6348 .debug_line, according to the endianness of ABFD. Return a pointer
6349 to a struct line_header, allocated using xmalloc.
6350
6351 NOTE: the strings in the include directory and file name tables of
6352 the returned object point into debug_line_buffer, and must not be
6353 freed. */
6354 static struct line_header *
6355 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
6356 struct dwarf2_cu *cu)
6357 {
6358 struct cleanup *back_to;
6359 struct line_header *lh;
6360 gdb_byte *line_ptr;
6361 unsigned int bytes_read;
6362 int i;
6363 char *cur_dir, *cur_file;
6364
6365 if (dwarf2_per_objfile->line_buffer == NULL)
6366 {
6367 complaint (&symfile_complaints, _("missing .debug_line section"));
6368 return 0;
6369 }
6370
6371 /* Make sure that at least there's room for the total_length field.
6372 That could be 12 bytes long, but we're just going to fudge that. */
6373 if (offset + 4 >= dwarf2_per_objfile->line_size)
6374 {
6375 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6376 return 0;
6377 }
6378
6379 lh = xmalloc (sizeof (*lh));
6380 memset (lh, 0, sizeof (*lh));
6381 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6382 (void *) lh);
6383
6384 line_ptr = dwarf2_per_objfile->line_buffer + offset;
6385
6386 /* Read in the header. */
6387 lh->total_length =
6388 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
6389 line_ptr += bytes_read;
6390 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6391 + dwarf2_per_objfile->line_size))
6392 {
6393 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6394 return 0;
6395 }
6396 lh->statement_program_end = line_ptr + lh->total_length;
6397 lh->version = read_2_bytes (abfd, line_ptr);
6398 line_ptr += 2;
6399 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
6400 line_ptr += bytes_read;
6401 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6402 line_ptr += 1;
6403 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6404 line_ptr += 1;
6405 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6406 line_ptr += 1;
6407 lh->line_range = read_1_byte (abfd, line_ptr);
6408 line_ptr += 1;
6409 lh->opcode_base = read_1_byte (abfd, line_ptr);
6410 line_ptr += 1;
6411 lh->standard_opcode_lengths
6412 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
6413
6414 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6415 for (i = 1; i < lh->opcode_base; ++i)
6416 {
6417 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6418 line_ptr += 1;
6419 }
6420
6421 /* Read directory table. */
6422 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6423 {
6424 line_ptr += bytes_read;
6425 add_include_dir (lh, cur_dir);
6426 }
6427 line_ptr += bytes_read;
6428
6429 /* Read file name table. */
6430 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6431 {
6432 unsigned int dir_index, mod_time, length;
6433
6434 line_ptr += bytes_read;
6435 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6436 line_ptr += bytes_read;
6437 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6438 line_ptr += bytes_read;
6439 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6440 line_ptr += bytes_read;
6441
6442 add_file_name (lh, cur_file, dir_index, mod_time, length);
6443 }
6444 line_ptr += bytes_read;
6445 lh->statement_program_start = line_ptr;
6446
6447 if (line_ptr > (dwarf2_per_objfile->line_buffer
6448 + dwarf2_per_objfile->line_size))
6449 complaint (&symfile_complaints,
6450 _("line number info header doesn't fit in `.debug_line' section"));
6451
6452 discard_cleanups (back_to);
6453 return lh;
6454 }
6455
6456 /* This function exists to work around a bug in certain compilers
6457 (particularly GCC 2.95), in which the first line number marker of a
6458 function does not show up until after the prologue, right before
6459 the second line number marker. This function shifts ADDRESS down
6460 to the beginning of the function if necessary, and is called on
6461 addresses passed to record_line. */
6462
6463 static CORE_ADDR
6464 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
6465 {
6466 struct function_range *fn;
6467
6468 /* Find the function_range containing address. */
6469 if (!cu->first_fn)
6470 return address;
6471
6472 if (!cu->cached_fn)
6473 cu->cached_fn = cu->first_fn;
6474
6475 fn = cu->cached_fn;
6476 while (fn)
6477 if (fn->lowpc <= address && fn->highpc > address)
6478 goto found;
6479 else
6480 fn = fn->next;
6481
6482 fn = cu->first_fn;
6483 while (fn && fn != cu->cached_fn)
6484 if (fn->lowpc <= address && fn->highpc > address)
6485 goto found;
6486 else
6487 fn = fn->next;
6488
6489 return address;
6490
6491 found:
6492 if (fn->seen_line)
6493 return address;
6494 if (address != fn->lowpc)
6495 complaint (&symfile_complaints,
6496 _("misplaced first line number at 0x%lx for '%s'"),
6497 (unsigned long) address, fn->name);
6498 fn->seen_line = 1;
6499 return fn->lowpc;
6500 }
6501
6502 /* Decode the Line Number Program (LNP) for the given line_header
6503 structure and CU. The actual information extracted and the type
6504 of structures created from the LNP depends on the value of PST.
6505
6506 1. If PST is NULL, then this procedure uses the data from the program
6507 to create all necessary symbol tables, and their linetables.
6508 The compilation directory of the file is passed in COMP_DIR,
6509 and must not be NULL.
6510
6511 2. If PST is not NULL, this procedure reads the program to determine
6512 the list of files included by the unit represented by PST, and
6513 builds all the associated partial symbol tables. In this case,
6514 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6515 is not used to compute the full name of the symtab, and therefore
6516 omitting it when building the partial symtab does not introduce
6517 the potential for inconsistency - a partial symtab and its associated
6518 symbtab having a different fullname -). */
6519
6520 static void
6521 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
6522 struct dwarf2_cu *cu, struct partial_symtab *pst)
6523 {
6524 gdb_byte *line_ptr;
6525 gdb_byte *line_end;
6526 unsigned int bytes_read;
6527 unsigned char op_code, extended_op, adj_opcode;
6528 CORE_ADDR baseaddr;
6529 struct objfile *objfile = cu->objfile;
6530 const int decode_for_pst_p = (pst != NULL);
6531
6532 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6533
6534 line_ptr = lh->statement_program_start;
6535 line_end = lh->statement_program_end;
6536
6537 /* Read the statement sequences until there's nothing left. */
6538 while (line_ptr < line_end)
6539 {
6540 /* state machine registers */
6541 CORE_ADDR address = 0;
6542 unsigned int file = 1;
6543 unsigned int line = 1;
6544 unsigned int column = 0;
6545 int is_stmt = lh->default_is_stmt;
6546 int basic_block = 0;
6547 int end_sequence = 0;
6548
6549 if (!decode_for_pst_p && lh->num_file_names >= file)
6550 {
6551 /* Start a subfile for the current file of the state machine. */
6552 /* lh->include_dirs and lh->file_names are 0-based, but the
6553 directory and file name numbers in the statement program
6554 are 1-based. */
6555 struct file_entry *fe = &lh->file_names[file - 1];
6556 char *dir = NULL;
6557
6558 if (fe->dir_index)
6559 dir = lh->include_dirs[fe->dir_index - 1];
6560
6561 dwarf2_start_subfile (fe->name, dir, comp_dir);
6562 }
6563
6564 /* Decode the table. */
6565 while (!end_sequence)
6566 {
6567 op_code = read_1_byte (abfd, line_ptr);
6568 line_ptr += 1;
6569
6570 if (op_code >= lh->opcode_base)
6571 {
6572 /* Special operand. */
6573 adj_opcode = op_code - lh->opcode_base;
6574 address += (adj_opcode / lh->line_range)
6575 * lh->minimum_instruction_length;
6576 line += lh->line_base + (adj_opcode % lh->line_range);
6577 lh->file_names[file - 1].included_p = 1;
6578 if (!decode_for_pst_p)
6579 {
6580 /* Append row to matrix using current values. */
6581 record_line (current_subfile, line,
6582 check_cu_functions (address, cu));
6583 }
6584 basic_block = 1;
6585 }
6586 else switch (op_code)
6587 {
6588 case DW_LNS_extended_op:
6589 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6590 line_ptr += bytes_read;
6591 extended_op = read_1_byte (abfd, line_ptr);
6592 line_ptr += 1;
6593 switch (extended_op)
6594 {
6595 case DW_LNE_end_sequence:
6596 end_sequence = 1;
6597 lh->file_names[file - 1].included_p = 1;
6598 if (!decode_for_pst_p)
6599 record_line (current_subfile, 0, address);
6600 break;
6601 case DW_LNE_set_address:
6602 address = read_address (abfd, line_ptr, cu, &bytes_read);
6603 line_ptr += bytes_read;
6604 address += baseaddr;
6605 break;
6606 case DW_LNE_define_file:
6607 {
6608 char *cur_file;
6609 unsigned int dir_index, mod_time, length;
6610
6611 cur_file = read_string (abfd, line_ptr, &bytes_read);
6612 line_ptr += bytes_read;
6613 dir_index =
6614 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6615 line_ptr += bytes_read;
6616 mod_time =
6617 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6618 line_ptr += bytes_read;
6619 length =
6620 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6621 line_ptr += bytes_read;
6622 add_file_name (lh, cur_file, dir_index, mod_time, length);
6623 }
6624 break;
6625 default:
6626 complaint (&symfile_complaints,
6627 _("mangled .debug_line section"));
6628 return;
6629 }
6630 break;
6631 case DW_LNS_copy:
6632 lh->file_names[file - 1].included_p = 1;
6633 if (!decode_for_pst_p)
6634 record_line (current_subfile, line,
6635 check_cu_functions (address, cu));
6636 basic_block = 0;
6637 break;
6638 case DW_LNS_advance_pc:
6639 address += lh->minimum_instruction_length
6640 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6641 line_ptr += bytes_read;
6642 break;
6643 case DW_LNS_advance_line:
6644 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6645 line_ptr += bytes_read;
6646 break;
6647 case DW_LNS_set_file:
6648 {
6649 /* The arrays lh->include_dirs and lh->file_names are
6650 0-based, but the directory and file name numbers in
6651 the statement program are 1-based. */
6652 struct file_entry *fe;
6653 char *dir = NULL;
6654
6655 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6656 line_ptr += bytes_read;
6657 fe = &lh->file_names[file - 1];
6658 if (fe->dir_index)
6659 dir = lh->include_dirs[fe->dir_index - 1];
6660
6661 if (!decode_for_pst_p)
6662 dwarf2_start_subfile (fe->name, dir, comp_dir);
6663 }
6664 break;
6665 case DW_LNS_set_column:
6666 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6667 line_ptr += bytes_read;
6668 break;
6669 case DW_LNS_negate_stmt:
6670 is_stmt = (!is_stmt);
6671 break;
6672 case DW_LNS_set_basic_block:
6673 basic_block = 1;
6674 break;
6675 /* Add to the address register of the state machine the
6676 address increment value corresponding to special opcode
6677 255. I.e., this value is scaled by the minimum
6678 instruction length since special opcode 255 would have
6679 scaled the the increment. */
6680 case DW_LNS_const_add_pc:
6681 address += (lh->minimum_instruction_length
6682 * ((255 - lh->opcode_base) / lh->line_range));
6683 break;
6684 case DW_LNS_fixed_advance_pc:
6685 address += read_2_bytes (abfd, line_ptr);
6686 line_ptr += 2;
6687 break;
6688 default:
6689 {
6690 /* Unknown standard opcode, ignore it. */
6691 int i;
6692
6693 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
6694 {
6695 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6696 line_ptr += bytes_read;
6697 }
6698 }
6699 }
6700 }
6701 }
6702
6703 if (decode_for_pst_p)
6704 {
6705 int file_index;
6706
6707 /* Now that we're done scanning the Line Header Program, we can
6708 create the psymtab of each included file. */
6709 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6710 if (lh->file_names[file_index].included_p == 1)
6711 {
6712 const struct file_entry fe = lh->file_names [file_index];
6713 char *include_name = fe.name;
6714 char *dir_name = NULL;
6715 char *pst_filename = pst->filename;
6716
6717 if (fe.dir_index)
6718 dir_name = lh->include_dirs[fe.dir_index - 1];
6719
6720 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
6721 {
6722 include_name = concat (dir_name, SLASH_STRING,
6723 include_name, (char *)NULL);
6724 make_cleanup (xfree, include_name);
6725 }
6726
6727 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
6728 {
6729 pst_filename = concat (pst->dirname, SLASH_STRING,
6730 pst_filename, (char *)NULL);
6731 make_cleanup (xfree, pst_filename);
6732 }
6733
6734 if (strcmp (include_name, pst_filename) != 0)
6735 dwarf2_create_include_psymtab (include_name, pst, objfile);
6736 }
6737 }
6738 }
6739
6740 /* Start a subfile for DWARF. FILENAME is the name of the file and
6741 DIRNAME the name of the source directory which contains FILENAME
6742 or NULL if not known. COMP_DIR is the compilation directory for the
6743 linetable's compilation unit or NULL if not known.
6744 This routine tries to keep line numbers from identical absolute and
6745 relative file names in a common subfile.
6746
6747 Using the `list' example from the GDB testsuite, which resides in
6748 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6749 of /srcdir/list0.c yields the following debugging information for list0.c:
6750
6751 DW_AT_name: /srcdir/list0.c
6752 DW_AT_comp_dir: /compdir
6753 files.files[0].name: list0.h
6754 files.files[0].dir: /srcdir
6755 files.files[1].name: list0.c
6756 files.files[1].dir: /srcdir
6757
6758 The line number information for list0.c has to end up in a single
6759 subfile, so that `break /srcdir/list0.c:1' works as expected.
6760 start_subfile will ensure that this happens provided that we pass the
6761 concatenation of files.files[1].dir and files.files[1].name as the
6762 subfile's name. */
6763
6764 static void
6765 dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
6766 {
6767 char *fullname;
6768
6769 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
6770 `start_symtab' will always pass the contents of DW_AT_comp_dir as
6771 second argument to start_subfile. To be consistent, we do the
6772 same here. In order not to lose the line information directory,
6773 we concatenate it to the filename when it makes sense.
6774 Note that the Dwarf3 standard says (speaking of filenames in line
6775 information): ``The directory index is ignored for file names
6776 that represent full path names''. Thus ignoring dirname in the
6777 `else' branch below isn't an issue. */
6778
6779 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
6780 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
6781 else
6782 fullname = filename;
6783
6784 start_subfile (fullname, comp_dir);
6785
6786 if (fullname != filename)
6787 xfree (fullname);
6788 }
6789
6790 static void
6791 var_decode_location (struct attribute *attr, struct symbol *sym,
6792 struct dwarf2_cu *cu)
6793 {
6794 struct objfile *objfile = cu->objfile;
6795 struct comp_unit_head *cu_header = &cu->header;
6796
6797 /* NOTE drow/2003-01-30: There used to be a comment and some special
6798 code here to turn a symbol with DW_AT_external and a
6799 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
6800 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
6801 with some versions of binutils) where shared libraries could have
6802 relocations against symbols in their debug information - the
6803 minimal symbol would have the right address, but the debug info
6804 would not. It's no longer necessary, because we will explicitly
6805 apply relocations when we read in the debug information now. */
6806
6807 /* A DW_AT_location attribute with no contents indicates that a
6808 variable has been optimized away. */
6809 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
6810 {
6811 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
6812 return;
6813 }
6814
6815 /* Handle one degenerate form of location expression specially, to
6816 preserve GDB's previous behavior when section offsets are
6817 specified. If this is just a DW_OP_addr then mark this symbol
6818 as LOC_STATIC. */
6819
6820 if (attr_form_is_block (attr)
6821 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
6822 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
6823 {
6824 unsigned int dummy;
6825
6826 SYMBOL_VALUE_ADDRESS (sym) =
6827 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
6828 fixup_symbol_section (sym, objfile);
6829 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
6830 SYMBOL_SECTION (sym));
6831 SYMBOL_CLASS (sym) = LOC_STATIC;
6832 return;
6833 }
6834
6835 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
6836 expression evaluator, and use LOC_COMPUTED only when necessary
6837 (i.e. when the value of a register or memory location is
6838 referenced, or a thread-local block, etc.). Then again, it might
6839 not be worthwhile. I'm assuming that it isn't unless performance
6840 or memory numbers show me otherwise. */
6841
6842 dwarf2_symbol_mark_computed (attr, sym, cu);
6843 SYMBOL_CLASS (sym) = LOC_COMPUTED;
6844 }
6845
6846 /* Given a pointer to a DWARF information entry, figure out if we need
6847 to make a symbol table entry for it, and if so, create a new entry
6848 and return a pointer to it.
6849 If TYPE is NULL, determine symbol type from the die, otherwise
6850 used the passed type. */
6851
6852 static struct symbol *
6853 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
6854 {
6855 struct objfile *objfile = cu->objfile;
6856 struct symbol *sym = NULL;
6857 char *name;
6858 struct attribute *attr = NULL;
6859 struct attribute *attr2 = NULL;
6860 CORE_ADDR baseaddr;
6861
6862 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6863
6864 if (die->tag != DW_TAG_namespace)
6865 name = dwarf2_linkage_name (die, cu);
6866 else
6867 name = TYPE_NAME (type);
6868
6869 if (name)
6870 {
6871 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
6872 sizeof (struct symbol));
6873 OBJSTAT (objfile, n_syms++);
6874 memset (sym, 0, sizeof (struct symbol));
6875
6876 /* Cache this symbol's name and the name's demangled form (if any). */
6877 SYMBOL_LANGUAGE (sym) = cu->language;
6878 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
6879
6880 /* Default assumptions.
6881 Use the passed type or decode it from the die. */
6882 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6883 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
6884 if (type != NULL)
6885 SYMBOL_TYPE (sym) = type;
6886 else
6887 SYMBOL_TYPE (sym) = die_type (die, cu);
6888 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
6889 if (attr)
6890 {
6891 SYMBOL_LINE (sym) = DW_UNSND (attr);
6892 }
6893 switch (die->tag)
6894 {
6895 case DW_TAG_label:
6896 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6897 if (attr)
6898 {
6899 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
6900 }
6901 SYMBOL_CLASS (sym) = LOC_LABEL;
6902 break;
6903 case DW_TAG_subprogram:
6904 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
6905 finish_block. */
6906 SYMBOL_CLASS (sym) = LOC_BLOCK;
6907 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6908 if (attr2 && (DW_UNSND (attr2) != 0))
6909 {
6910 add_symbol_to_list (sym, &global_symbols);
6911 }
6912 else
6913 {
6914 add_symbol_to_list (sym, cu->list_in_scope);
6915 }
6916 break;
6917 case DW_TAG_variable:
6918 /* Compilation with minimal debug info may result in variables
6919 with missing type entries. Change the misleading `void' type
6920 to something sensible. */
6921 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
6922 SYMBOL_TYPE (sym) = init_type (TYPE_CODE_INT,
6923 TARGET_INT_BIT / HOST_CHAR_BIT, 0,
6924 "<variable, no debug info>",
6925 objfile);
6926 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6927 if (attr)
6928 {
6929 dwarf2_const_value (attr, sym, cu);
6930 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6931 if (attr2 && (DW_UNSND (attr2) != 0))
6932 add_symbol_to_list (sym, &global_symbols);
6933 else
6934 add_symbol_to_list (sym, cu->list_in_scope);
6935 break;
6936 }
6937 attr = dwarf2_attr (die, DW_AT_location, cu);
6938 if (attr)
6939 {
6940 var_decode_location (attr, sym, cu);
6941 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6942 if (attr2 && (DW_UNSND (attr2) != 0))
6943 add_symbol_to_list (sym, &global_symbols);
6944 else
6945 add_symbol_to_list (sym, cu->list_in_scope);
6946 }
6947 else
6948 {
6949 /* We do not know the address of this symbol.
6950 If it is an external symbol and we have type information
6951 for it, enter the symbol as a LOC_UNRESOLVED symbol.
6952 The address of the variable will then be determined from
6953 the minimal symbol table whenever the variable is
6954 referenced. */
6955 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6956 if (attr2 && (DW_UNSND (attr2) != 0)
6957 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
6958 {
6959 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
6960 add_symbol_to_list (sym, &global_symbols);
6961 }
6962 }
6963 break;
6964 case DW_TAG_formal_parameter:
6965 attr = dwarf2_attr (die, DW_AT_location, cu);
6966 if (attr)
6967 {
6968 var_decode_location (attr, sym, cu);
6969 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
6970 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
6971 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
6972 }
6973 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6974 if (attr)
6975 {
6976 dwarf2_const_value (attr, sym, cu);
6977 }
6978 add_symbol_to_list (sym, cu->list_in_scope);
6979 break;
6980 case DW_TAG_unspecified_parameters:
6981 /* From varargs functions; gdb doesn't seem to have any
6982 interest in this information, so just ignore it for now.
6983 (FIXME?) */
6984 break;
6985 case DW_TAG_class_type:
6986 case DW_TAG_structure_type:
6987 case DW_TAG_union_type:
6988 case DW_TAG_set_type:
6989 case DW_TAG_enumeration_type:
6990 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6991 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6992
6993 /* Make sure that the symbol includes appropriate enclosing
6994 classes/namespaces in its name. These are calculated in
6995 read_structure_type, and the correct name is saved in
6996 the type. */
6997
6998 if (cu->language == language_cplus
6999 || cu->language == language_java)
7000 {
7001 struct type *type = SYMBOL_TYPE (sym);
7002
7003 if (TYPE_TAG_NAME (type) != NULL)
7004 {
7005 /* FIXME: carlton/2003-11-10: Should this use
7006 SYMBOL_SET_NAMES instead? (The same problem also
7007 arises further down in this function.) */
7008 /* The type's name is already allocated along with
7009 this objfile, so we don't need to duplicate it
7010 for the symbol. */
7011 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
7012 }
7013 }
7014
7015 {
7016 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
7017 really ever be static objects: otherwise, if you try
7018 to, say, break of a class's method and you're in a file
7019 which doesn't mention that class, it won't work unless
7020 the check for all static symbols in lookup_symbol_aux
7021 saves you. See the OtherFileClass tests in
7022 gdb.c++/namespace.exp. */
7023
7024 struct pending **list_to_add;
7025
7026 list_to_add = (cu->list_in_scope == &file_symbols
7027 && (cu->language == language_cplus
7028 || cu->language == language_java)
7029 ? &global_symbols : cu->list_in_scope);
7030
7031 add_symbol_to_list (sym, list_to_add);
7032
7033 /* The semantics of C++ state that "struct foo { ... }" also
7034 defines a typedef for "foo". A Java class declaration also
7035 defines a typedef for the class. Synthesize a typedef symbol
7036 so that "ptype foo" works as expected. */
7037 if (cu->language == language_cplus
7038 || cu->language == language_java)
7039 {
7040 struct symbol *typedef_sym = (struct symbol *)
7041 obstack_alloc (&objfile->objfile_obstack,
7042 sizeof (struct symbol));
7043 *typedef_sym = *sym;
7044 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
7045 /* The symbol's name is already allocated along with
7046 this objfile, so we don't need to duplicate it for
7047 the type. */
7048 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
7049 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
7050 add_symbol_to_list (typedef_sym, list_to_add);
7051 }
7052 }
7053 break;
7054 case DW_TAG_typedef:
7055 if (processing_has_namespace_info
7056 && processing_current_prefix[0] != '\0')
7057 {
7058 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7059 processing_current_prefix,
7060 name, cu);
7061 }
7062 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7063 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7064 add_symbol_to_list (sym, cu->list_in_scope);
7065 break;
7066 case DW_TAG_base_type:
7067 case DW_TAG_subrange_type:
7068 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7069 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7070 add_symbol_to_list (sym, cu->list_in_scope);
7071 break;
7072 case DW_TAG_enumerator:
7073 if (processing_has_namespace_info
7074 && processing_current_prefix[0] != '\0')
7075 {
7076 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7077 processing_current_prefix,
7078 name, cu);
7079 }
7080 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7081 if (attr)
7082 {
7083 dwarf2_const_value (attr, sym, cu);
7084 }
7085 {
7086 /* NOTE: carlton/2003-11-10: See comment above in the
7087 DW_TAG_class_type, etc. block. */
7088
7089 struct pending **list_to_add;
7090
7091 list_to_add = (cu->list_in_scope == &file_symbols
7092 && (cu->language == language_cplus
7093 || cu->language == language_java)
7094 ? &global_symbols : cu->list_in_scope);
7095
7096 add_symbol_to_list (sym, list_to_add);
7097 }
7098 break;
7099 case DW_TAG_namespace:
7100 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7101 add_symbol_to_list (sym, &global_symbols);
7102 break;
7103 default:
7104 /* Not a tag we recognize. Hopefully we aren't processing
7105 trash data, but since we must specifically ignore things
7106 we don't recognize, there is nothing else we should do at
7107 this point. */
7108 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
7109 dwarf_tag_name (die->tag));
7110 break;
7111 }
7112 }
7113 return (sym);
7114 }
7115
7116 /* Copy constant value from an attribute to a symbol. */
7117
7118 static void
7119 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
7120 struct dwarf2_cu *cu)
7121 {
7122 struct objfile *objfile = cu->objfile;
7123 struct comp_unit_head *cu_header = &cu->header;
7124 struct dwarf_block *blk;
7125
7126 switch (attr->form)
7127 {
7128 case DW_FORM_addr:
7129 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
7130 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7131 cu_header->addr_size,
7132 TYPE_LENGTH (SYMBOL_TYPE
7133 (sym)));
7134 SYMBOL_VALUE_BYTES (sym) =
7135 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
7136 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7137 it's body - store_unsigned_integer. */
7138 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7139 DW_ADDR (attr));
7140 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7141 break;
7142 case DW_FORM_block1:
7143 case DW_FORM_block2:
7144 case DW_FORM_block4:
7145 case DW_FORM_block:
7146 blk = DW_BLOCK (attr);
7147 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
7148 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7149 blk->size,
7150 TYPE_LENGTH (SYMBOL_TYPE
7151 (sym)));
7152 SYMBOL_VALUE_BYTES (sym) =
7153 obstack_alloc (&objfile->objfile_obstack, blk->size);
7154 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7155 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7156 break;
7157
7158 /* The DW_AT_const_value attributes are supposed to carry the
7159 symbol's value "represented as it would be on the target
7160 architecture." By the time we get here, it's already been
7161 converted to host endianness, so we just need to sign- or
7162 zero-extend it as appropriate. */
7163 case DW_FORM_data1:
7164 dwarf2_const_value_data (attr, sym, 8);
7165 break;
7166 case DW_FORM_data2:
7167 dwarf2_const_value_data (attr, sym, 16);
7168 break;
7169 case DW_FORM_data4:
7170 dwarf2_const_value_data (attr, sym, 32);
7171 break;
7172 case DW_FORM_data8:
7173 dwarf2_const_value_data (attr, sym, 64);
7174 break;
7175
7176 case DW_FORM_sdata:
7177 SYMBOL_VALUE (sym) = DW_SND (attr);
7178 SYMBOL_CLASS (sym) = LOC_CONST;
7179 break;
7180
7181 case DW_FORM_udata:
7182 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7183 SYMBOL_CLASS (sym) = LOC_CONST;
7184 break;
7185
7186 default:
7187 complaint (&symfile_complaints,
7188 _("unsupported const value attribute form: '%s'"),
7189 dwarf_form_name (attr->form));
7190 SYMBOL_VALUE (sym) = 0;
7191 SYMBOL_CLASS (sym) = LOC_CONST;
7192 break;
7193 }
7194 }
7195
7196
7197 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7198 or zero-extend it as appropriate for the symbol's type. */
7199 static void
7200 dwarf2_const_value_data (struct attribute *attr,
7201 struct symbol *sym,
7202 int bits)
7203 {
7204 LONGEST l = DW_UNSND (attr);
7205
7206 if (bits < sizeof (l) * 8)
7207 {
7208 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7209 l &= ((LONGEST) 1 << bits) - 1;
7210 else
7211 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
7212 }
7213
7214 SYMBOL_VALUE (sym) = l;
7215 SYMBOL_CLASS (sym) = LOC_CONST;
7216 }
7217
7218
7219 /* Return the type of the die in question using its DW_AT_type attribute. */
7220
7221 static struct type *
7222 die_type (struct die_info *die, struct dwarf2_cu *cu)
7223 {
7224 struct type *type;
7225 struct attribute *type_attr;
7226 struct die_info *type_die;
7227
7228 type_attr = dwarf2_attr (die, DW_AT_type, cu);
7229 if (!type_attr)
7230 {
7231 /* A missing DW_AT_type represents a void type. */
7232 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
7233 }
7234 else
7235 type_die = follow_die_ref (die, type_attr, cu);
7236
7237 type = tag_type_to_type (type_die, cu);
7238 if (!type)
7239 {
7240 dump_die (type_die);
7241 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
7242 cu->objfile->name);
7243 }
7244 return type;
7245 }
7246
7247 /* Return the containing type of the die in question using its
7248 DW_AT_containing_type attribute. */
7249
7250 static struct type *
7251 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
7252 {
7253 struct type *type = NULL;
7254 struct attribute *type_attr;
7255 struct die_info *type_die = NULL;
7256
7257 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
7258 if (type_attr)
7259 {
7260 type_die = follow_die_ref (die, type_attr, cu);
7261 type = tag_type_to_type (type_die, cu);
7262 }
7263 if (!type)
7264 {
7265 if (type_die)
7266 dump_die (type_die);
7267 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
7268 cu->objfile->name);
7269 }
7270 return type;
7271 }
7272
7273 static struct type *
7274 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
7275 {
7276 if (die->type)
7277 {
7278 return die->type;
7279 }
7280 else
7281 {
7282 read_type_die (die, cu);
7283 if (!die->type)
7284 {
7285 dump_die (die);
7286 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
7287 cu->objfile->name);
7288 }
7289 return die->type;
7290 }
7291 }
7292
7293 static void
7294 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
7295 {
7296 char *prefix = determine_prefix (die, cu);
7297 const char *old_prefix = processing_current_prefix;
7298 struct cleanup *back_to = make_cleanup (xfree, prefix);
7299 processing_current_prefix = prefix;
7300
7301 switch (die->tag)
7302 {
7303 case DW_TAG_class_type:
7304 case DW_TAG_structure_type:
7305 case DW_TAG_union_type:
7306 read_structure_type (die, cu);
7307 break;
7308 case DW_TAG_enumeration_type:
7309 read_enumeration_type (die, cu);
7310 break;
7311 case DW_TAG_subprogram:
7312 case DW_TAG_subroutine_type:
7313 read_subroutine_type (die, cu);
7314 break;
7315 case DW_TAG_array_type:
7316 read_array_type (die, cu);
7317 break;
7318 case DW_TAG_set_type:
7319 read_set_type (die, cu);
7320 break;
7321 case DW_TAG_pointer_type:
7322 read_tag_pointer_type (die, cu);
7323 break;
7324 case DW_TAG_ptr_to_member_type:
7325 read_tag_ptr_to_member_type (die, cu);
7326 break;
7327 case DW_TAG_reference_type:
7328 read_tag_reference_type (die, cu);
7329 break;
7330 case DW_TAG_const_type:
7331 read_tag_const_type (die, cu);
7332 break;
7333 case DW_TAG_volatile_type:
7334 read_tag_volatile_type (die, cu);
7335 break;
7336 case DW_TAG_string_type:
7337 read_tag_string_type (die, cu);
7338 break;
7339 case DW_TAG_typedef:
7340 read_typedef (die, cu);
7341 break;
7342 case DW_TAG_subrange_type:
7343 read_subrange_type (die, cu);
7344 break;
7345 case DW_TAG_base_type:
7346 read_base_type (die, cu);
7347 break;
7348 default:
7349 complaint (&symfile_complaints, _("unexepected tag in read_type_die: '%s'"),
7350 dwarf_tag_name (die->tag));
7351 break;
7352 }
7353
7354 processing_current_prefix = old_prefix;
7355 do_cleanups (back_to);
7356 }
7357
7358 /* Return the name of the namespace/class that DIE is defined within,
7359 or "" if we can't tell. The caller should xfree the result. */
7360
7361 /* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7362 therein) for an example of how to use this function to deal with
7363 DW_AT_specification. */
7364
7365 static char *
7366 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
7367 {
7368 struct die_info *parent;
7369
7370 if (cu->language != language_cplus
7371 && cu->language != language_java)
7372 return NULL;
7373
7374 parent = die->parent;
7375
7376 if (parent == NULL)
7377 {
7378 return xstrdup ("");
7379 }
7380 else
7381 {
7382 switch (parent->tag) {
7383 case DW_TAG_namespace:
7384 {
7385 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7386 before doing this check? */
7387 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7388 {
7389 return xstrdup (TYPE_TAG_NAME (parent->type));
7390 }
7391 else
7392 {
7393 int dummy;
7394 char *parent_prefix = determine_prefix (parent, cu);
7395 char *retval = typename_concat (NULL, parent_prefix,
7396 namespace_name (parent, &dummy,
7397 cu),
7398 cu);
7399 xfree (parent_prefix);
7400 return retval;
7401 }
7402 }
7403 break;
7404 case DW_TAG_class_type:
7405 case DW_TAG_structure_type:
7406 {
7407 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7408 {
7409 return xstrdup (TYPE_TAG_NAME (parent->type));
7410 }
7411 else
7412 {
7413 const char *old_prefix = processing_current_prefix;
7414 char *new_prefix = determine_prefix (parent, cu);
7415 char *retval;
7416
7417 processing_current_prefix = new_prefix;
7418 retval = determine_class_name (parent, cu);
7419 processing_current_prefix = old_prefix;
7420
7421 xfree (new_prefix);
7422 return retval;
7423 }
7424 }
7425 default:
7426 return determine_prefix (parent, cu);
7427 }
7428 }
7429 }
7430
7431 /* Return a newly-allocated string formed by concatenating PREFIX and
7432 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7433 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7434 perform an obconcat, otherwise allocate storage for the result. The CU argument
7435 is used to determine the language and hence, the appropriate separator. */
7436
7437 #define MAX_SEP_LEN 2 /* sizeof ("::") */
7438
7439 static char *
7440 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7441 struct dwarf2_cu *cu)
7442 {
7443 char *sep;
7444
7445 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7446 sep = "";
7447 else if (cu->language == language_java)
7448 sep = ".";
7449 else
7450 sep = "::";
7451
7452 if (obs == NULL)
7453 {
7454 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7455 retval[0] = '\0';
7456
7457 if (prefix)
7458 {
7459 strcpy (retval, prefix);
7460 strcat (retval, sep);
7461 }
7462 if (suffix)
7463 strcat (retval, suffix);
7464
7465 return retval;
7466 }
7467 else
7468 {
7469 /* We have an obstack. */
7470 return obconcat (obs, prefix, sep, suffix);
7471 }
7472 }
7473
7474 static struct type *
7475 dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
7476 {
7477 struct objfile *objfile = cu->objfile;
7478
7479 /* FIXME - this should not produce a new (struct type *)
7480 every time. It should cache base types. */
7481 struct type *type;
7482 switch (encoding)
7483 {
7484 case DW_ATE_address:
7485 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
7486 return type;
7487 case DW_ATE_boolean:
7488 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
7489 return type;
7490 case DW_ATE_complex_float:
7491 if (size == 16)
7492 {
7493 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
7494 }
7495 else
7496 {
7497 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
7498 }
7499 return type;
7500 case DW_ATE_float:
7501 if (size == 8)
7502 {
7503 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
7504 }
7505 else
7506 {
7507 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
7508 }
7509 return type;
7510 case DW_ATE_signed:
7511 switch (size)
7512 {
7513 case 1:
7514 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7515 break;
7516 case 2:
7517 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
7518 break;
7519 default:
7520 case 4:
7521 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7522 break;
7523 }
7524 return type;
7525 case DW_ATE_signed_char:
7526 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7527 return type;
7528 case DW_ATE_unsigned:
7529 switch (size)
7530 {
7531 case 1:
7532 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7533 break;
7534 case 2:
7535 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
7536 break;
7537 default:
7538 case 4:
7539 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
7540 break;
7541 }
7542 return type;
7543 case DW_ATE_unsigned_char:
7544 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7545 return type;
7546 default:
7547 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7548 return type;
7549 }
7550 }
7551
7552 #if 0
7553 struct die_info *
7554 copy_die (struct die_info *old_die)
7555 {
7556 struct die_info *new_die;
7557 int i, num_attrs;
7558
7559 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7560 memset (new_die, 0, sizeof (struct die_info));
7561
7562 new_die->tag = old_die->tag;
7563 new_die->has_children = old_die->has_children;
7564 new_die->abbrev = old_die->abbrev;
7565 new_die->offset = old_die->offset;
7566 new_die->type = NULL;
7567
7568 num_attrs = old_die->num_attrs;
7569 new_die->num_attrs = num_attrs;
7570 new_die->attrs = (struct attribute *)
7571 xmalloc (num_attrs * sizeof (struct attribute));
7572
7573 for (i = 0; i < old_die->num_attrs; ++i)
7574 {
7575 new_die->attrs[i].name = old_die->attrs[i].name;
7576 new_die->attrs[i].form = old_die->attrs[i].form;
7577 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7578 }
7579
7580 new_die->next = NULL;
7581 return new_die;
7582 }
7583 #endif
7584
7585 /* Return sibling of die, NULL if no sibling. */
7586
7587 static struct die_info *
7588 sibling_die (struct die_info *die)
7589 {
7590 return die->sibling;
7591 }
7592
7593 /* Get linkage name of a die, return NULL if not found. */
7594
7595 static char *
7596 dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
7597 {
7598 struct attribute *attr;
7599
7600 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7601 if (attr && DW_STRING (attr))
7602 return DW_STRING (attr);
7603 attr = dwarf2_attr (die, DW_AT_name, cu);
7604 if (attr && DW_STRING (attr))
7605 return DW_STRING (attr);
7606 return NULL;
7607 }
7608
7609 /* Get name of a die, return NULL if not found. */
7610
7611 static char *
7612 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
7613 {
7614 struct attribute *attr;
7615
7616 attr = dwarf2_attr (die, DW_AT_name, cu);
7617 if (attr && DW_STRING (attr))
7618 return DW_STRING (attr);
7619 return NULL;
7620 }
7621
7622 /* Return the die that this die in an extension of, or NULL if there
7623 is none. */
7624
7625 static struct die_info *
7626 dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
7627 {
7628 struct attribute *attr;
7629
7630 attr = dwarf2_attr (die, DW_AT_extension, cu);
7631 if (attr == NULL)
7632 return NULL;
7633
7634 return follow_die_ref (die, attr, cu);
7635 }
7636
7637 /* Convert a DIE tag into its string name. */
7638
7639 static char *
7640 dwarf_tag_name (unsigned tag)
7641 {
7642 switch (tag)
7643 {
7644 case DW_TAG_padding:
7645 return "DW_TAG_padding";
7646 case DW_TAG_array_type:
7647 return "DW_TAG_array_type";
7648 case DW_TAG_class_type:
7649 return "DW_TAG_class_type";
7650 case DW_TAG_entry_point:
7651 return "DW_TAG_entry_point";
7652 case DW_TAG_enumeration_type:
7653 return "DW_TAG_enumeration_type";
7654 case DW_TAG_formal_parameter:
7655 return "DW_TAG_formal_parameter";
7656 case DW_TAG_imported_declaration:
7657 return "DW_TAG_imported_declaration";
7658 case DW_TAG_label:
7659 return "DW_TAG_label";
7660 case DW_TAG_lexical_block:
7661 return "DW_TAG_lexical_block";
7662 case DW_TAG_member:
7663 return "DW_TAG_member";
7664 case DW_TAG_pointer_type:
7665 return "DW_TAG_pointer_type";
7666 case DW_TAG_reference_type:
7667 return "DW_TAG_reference_type";
7668 case DW_TAG_compile_unit:
7669 return "DW_TAG_compile_unit";
7670 case DW_TAG_string_type:
7671 return "DW_TAG_string_type";
7672 case DW_TAG_structure_type:
7673 return "DW_TAG_structure_type";
7674 case DW_TAG_subroutine_type:
7675 return "DW_TAG_subroutine_type";
7676 case DW_TAG_typedef:
7677 return "DW_TAG_typedef";
7678 case DW_TAG_union_type:
7679 return "DW_TAG_union_type";
7680 case DW_TAG_unspecified_parameters:
7681 return "DW_TAG_unspecified_parameters";
7682 case DW_TAG_variant:
7683 return "DW_TAG_variant";
7684 case DW_TAG_common_block:
7685 return "DW_TAG_common_block";
7686 case DW_TAG_common_inclusion:
7687 return "DW_TAG_common_inclusion";
7688 case DW_TAG_inheritance:
7689 return "DW_TAG_inheritance";
7690 case DW_TAG_inlined_subroutine:
7691 return "DW_TAG_inlined_subroutine";
7692 case DW_TAG_module:
7693 return "DW_TAG_module";
7694 case DW_TAG_ptr_to_member_type:
7695 return "DW_TAG_ptr_to_member_type";
7696 case DW_TAG_set_type:
7697 return "DW_TAG_set_type";
7698 case DW_TAG_subrange_type:
7699 return "DW_TAG_subrange_type";
7700 case DW_TAG_with_stmt:
7701 return "DW_TAG_with_stmt";
7702 case DW_TAG_access_declaration:
7703 return "DW_TAG_access_declaration";
7704 case DW_TAG_base_type:
7705 return "DW_TAG_base_type";
7706 case DW_TAG_catch_block:
7707 return "DW_TAG_catch_block";
7708 case DW_TAG_const_type:
7709 return "DW_TAG_const_type";
7710 case DW_TAG_constant:
7711 return "DW_TAG_constant";
7712 case DW_TAG_enumerator:
7713 return "DW_TAG_enumerator";
7714 case DW_TAG_file_type:
7715 return "DW_TAG_file_type";
7716 case DW_TAG_friend:
7717 return "DW_TAG_friend";
7718 case DW_TAG_namelist:
7719 return "DW_TAG_namelist";
7720 case DW_TAG_namelist_item:
7721 return "DW_TAG_namelist_item";
7722 case DW_TAG_packed_type:
7723 return "DW_TAG_packed_type";
7724 case DW_TAG_subprogram:
7725 return "DW_TAG_subprogram";
7726 case DW_TAG_template_type_param:
7727 return "DW_TAG_template_type_param";
7728 case DW_TAG_template_value_param:
7729 return "DW_TAG_template_value_param";
7730 case DW_TAG_thrown_type:
7731 return "DW_TAG_thrown_type";
7732 case DW_TAG_try_block:
7733 return "DW_TAG_try_block";
7734 case DW_TAG_variant_part:
7735 return "DW_TAG_variant_part";
7736 case DW_TAG_variable:
7737 return "DW_TAG_variable";
7738 case DW_TAG_volatile_type:
7739 return "DW_TAG_volatile_type";
7740 case DW_TAG_dwarf_procedure:
7741 return "DW_TAG_dwarf_procedure";
7742 case DW_TAG_restrict_type:
7743 return "DW_TAG_restrict_type";
7744 case DW_TAG_interface_type:
7745 return "DW_TAG_interface_type";
7746 case DW_TAG_namespace:
7747 return "DW_TAG_namespace";
7748 case DW_TAG_imported_module:
7749 return "DW_TAG_imported_module";
7750 case DW_TAG_unspecified_type:
7751 return "DW_TAG_unspecified_type";
7752 case DW_TAG_partial_unit:
7753 return "DW_TAG_partial_unit";
7754 case DW_TAG_imported_unit:
7755 return "DW_TAG_imported_unit";
7756 case DW_TAG_MIPS_loop:
7757 return "DW_TAG_MIPS_loop";
7758 case DW_TAG_format_label:
7759 return "DW_TAG_format_label";
7760 case DW_TAG_function_template:
7761 return "DW_TAG_function_template";
7762 case DW_TAG_class_template:
7763 return "DW_TAG_class_template";
7764 default:
7765 return "DW_TAG_<unknown>";
7766 }
7767 }
7768
7769 /* Convert a DWARF attribute code into its string name. */
7770
7771 static char *
7772 dwarf_attr_name (unsigned attr)
7773 {
7774 switch (attr)
7775 {
7776 case DW_AT_sibling:
7777 return "DW_AT_sibling";
7778 case DW_AT_location:
7779 return "DW_AT_location";
7780 case DW_AT_name:
7781 return "DW_AT_name";
7782 case DW_AT_ordering:
7783 return "DW_AT_ordering";
7784 case DW_AT_subscr_data:
7785 return "DW_AT_subscr_data";
7786 case DW_AT_byte_size:
7787 return "DW_AT_byte_size";
7788 case DW_AT_bit_offset:
7789 return "DW_AT_bit_offset";
7790 case DW_AT_bit_size:
7791 return "DW_AT_bit_size";
7792 case DW_AT_element_list:
7793 return "DW_AT_element_list";
7794 case DW_AT_stmt_list:
7795 return "DW_AT_stmt_list";
7796 case DW_AT_low_pc:
7797 return "DW_AT_low_pc";
7798 case DW_AT_high_pc:
7799 return "DW_AT_high_pc";
7800 case DW_AT_language:
7801 return "DW_AT_language";
7802 case DW_AT_member:
7803 return "DW_AT_member";
7804 case DW_AT_discr:
7805 return "DW_AT_discr";
7806 case DW_AT_discr_value:
7807 return "DW_AT_discr_value";
7808 case DW_AT_visibility:
7809 return "DW_AT_visibility";
7810 case DW_AT_import:
7811 return "DW_AT_import";
7812 case DW_AT_string_length:
7813 return "DW_AT_string_length";
7814 case DW_AT_common_reference:
7815 return "DW_AT_common_reference";
7816 case DW_AT_comp_dir:
7817 return "DW_AT_comp_dir";
7818 case DW_AT_const_value:
7819 return "DW_AT_const_value";
7820 case DW_AT_containing_type:
7821 return "DW_AT_containing_type";
7822 case DW_AT_default_value:
7823 return "DW_AT_default_value";
7824 case DW_AT_inline:
7825 return "DW_AT_inline";
7826 case DW_AT_is_optional:
7827 return "DW_AT_is_optional";
7828 case DW_AT_lower_bound:
7829 return "DW_AT_lower_bound";
7830 case DW_AT_producer:
7831 return "DW_AT_producer";
7832 case DW_AT_prototyped:
7833 return "DW_AT_prototyped";
7834 case DW_AT_return_addr:
7835 return "DW_AT_return_addr";
7836 case DW_AT_start_scope:
7837 return "DW_AT_start_scope";
7838 case DW_AT_stride_size:
7839 return "DW_AT_stride_size";
7840 case DW_AT_upper_bound:
7841 return "DW_AT_upper_bound";
7842 case DW_AT_abstract_origin:
7843 return "DW_AT_abstract_origin";
7844 case DW_AT_accessibility:
7845 return "DW_AT_accessibility";
7846 case DW_AT_address_class:
7847 return "DW_AT_address_class";
7848 case DW_AT_artificial:
7849 return "DW_AT_artificial";
7850 case DW_AT_base_types:
7851 return "DW_AT_base_types";
7852 case DW_AT_calling_convention:
7853 return "DW_AT_calling_convention";
7854 case DW_AT_count:
7855 return "DW_AT_count";
7856 case DW_AT_data_member_location:
7857 return "DW_AT_data_member_location";
7858 case DW_AT_decl_column:
7859 return "DW_AT_decl_column";
7860 case DW_AT_decl_file:
7861 return "DW_AT_decl_file";
7862 case DW_AT_decl_line:
7863 return "DW_AT_decl_line";
7864 case DW_AT_declaration:
7865 return "DW_AT_declaration";
7866 case DW_AT_discr_list:
7867 return "DW_AT_discr_list";
7868 case DW_AT_encoding:
7869 return "DW_AT_encoding";
7870 case DW_AT_external:
7871 return "DW_AT_external";
7872 case DW_AT_frame_base:
7873 return "DW_AT_frame_base";
7874 case DW_AT_friend:
7875 return "DW_AT_friend";
7876 case DW_AT_identifier_case:
7877 return "DW_AT_identifier_case";
7878 case DW_AT_macro_info:
7879 return "DW_AT_macro_info";
7880 case DW_AT_namelist_items:
7881 return "DW_AT_namelist_items";
7882 case DW_AT_priority:
7883 return "DW_AT_priority";
7884 case DW_AT_segment:
7885 return "DW_AT_segment";
7886 case DW_AT_specification:
7887 return "DW_AT_specification";
7888 case DW_AT_static_link:
7889 return "DW_AT_static_link";
7890 case DW_AT_type:
7891 return "DW_AT_type";
7892 case DW_AT_use_location:
7893 return "DW_AT_use_location";
7894 case DW_AT_variable_parameter:
7895 return "DW_AT_variable_parameter";
7896 case DW_AT_virtuality:
7897 return "DW_AT_virtuality";
7898 case DW_AT_vtable_elem_location:
7899 return "DW_AT_vtable_elem_location";
7900 case DW_AT_allocated:
7901 return "DW_AT_allocated";
7902 case DW_AT_associated:
7903 return "DW_AT_associated";
7904 case DW_AT_data_location:
7905 return "DW_AT_data_location";
7906 case DW_AT_stride:
7907 return "DW_AT_stride";
7908 case DW_AT_entry_pc:
7909 return "DW_AT_entry_pc";
7910 case DW_AT_use_UTF8:
7911 return "DW_AT_use_UTF8";
7912 case DW_AT_extension:
7913 return "DW_AT_extension";
7914 case DW_AT_ranges:
7915 return "DW_AT_ranges";
7916 case DW_AT_trampoline:
7917 return "DW_AT_trampoline";
7918 case DW_AT_call_column:
7919 return "DW_AT_call_column";
7920 case DW_AT_call_file:
7921 return "DW_AT_call_file";
7922 case DW_AT_call_line:
7923 return "DW_AT_call_line";
7924 #ifdef MIPS
7925 case DW_AT_MIPS_fde:
7926 return "DW_AT_MIPS_fde";
7927 case DW_AT_MIPS_loop_begin:
7928 return "DW_AT_MIPS_loop_begin";
7929 case DW_AT_MIPS_tail_loop_begin:
7930 return "DW_AT_MIPS_tail_loop_begin";
7931 case DW_AT_MIPS_epilog_begin:
7932 return "DW_AT_MIPS_epilog_begin";
7933 case DW_AT_MIPS_loop_unroll_factor:
7934 return "DW_AT_MIPS_loop_unroll_factor";
7935 case DW_AT_MIPS_software_pipeline_depth:
7936 return "DW_AT_MIPS_software_pipeline_depth";
7937 #endif
7938 case DW_AT_MIPS_linkage_name:
7939 return "DW_AT_MIPS_linkage_name";
7940
7941 case DW_AT_sf_names:
7942 return "DW_AT_sf_names";
7943 case DW_AT_src_info:
7944 return "DW_AT_src_info";
7945 case DW_AT_mac_info:
7946 return "DW_AT_mac_info";
7947 case DW_AT_src_coords:
7948 return "DW_AT_src_coords";
7949 case DW_AT_body_begin:
7950 return "DW_AT_body_begin";
7951 case DW_AT_body_end:
7952 return "DW_AT_body_end";
7953 case DW_AT_GNU_vector:
7954 return "DW_AT_GNU_vector";
7955 default:
7956 return "DW_AT_<unknown>";
7957 }
7958 }
7959
7960 /* Convert a DWARF value form code into its string name. */
7961
7962 static char *
7963 dwarf_form_name (unsigned form)
7964 {
7965 switch (form)
7966 {
7967 case DW_FORM_addr:
7968 return "DW_FORM_addr";
7969 case DW_FORM_block2:
7970 return "DW_FORM_block2";
7971 case DW_FORM_block4:
7972 return "DW_FORM_block4";
7973 case DW_FORM_data2:
7974 return "DW_FORM_data2";
7975 case DW_FORM_data4:
7976 return "DW_FORM_data4";
7977 case DW_FORM_data8:
7978 return "DW_FORM_data8";
7979 case DW_FORM_string:
7980 return "DW_FORM_string";
7981 case DW_FORM_block:
7982 return "DW_FORM_block";
7983 case DW_FORM_block1:
7984 return "DW_FORM_block1";
7985 case DW_FORM_data1:
7986 return "DW_FORM_data1";
7987 case DW_FORM_flag:
7988 return "DW_FORM_flag";
7989 case DW_FORM_sdata:
7990 return "DW_FORM_sdata";
7991 case DW_FORM_strp:
7992 return "DW_FORM_strp";
7993 case DW_FORM_udata:
7994 return "DW_FORM_udata";
7995 case DW_FORM_ref_addr:
7996 return "DW_FORM_ref_addr";
7997 case DW_FORM_ref1:
7998 return "DW_FORM_ref1";
7999 case DW_FORM_ref2:
8000 return "DW_FORM_ref2";
8001 case DW_FORM_ref4:
8002 return "DW_FORM_ref4";
8003 case DW_FORM_ref8:
8004 return "DW_FORM_ref8";
8005 case DW_FORM_ref_udata:
8006 return "DW_FORM_ref_udata";
8007 case DW_FORM_indirect:
8008 return "DW_FORM_indirect";
8009 default:
8010 return "DW_FORM_<unknown>";
8011 }
8012 }
8013
8014 /* Convert a DWARF stack opcode into its string name. */
8015
8016 static char *
8017 dwarf_stack_op_name (unsigned op)
8018 {
8019 switch (op)
8020 {
8021 case DW_OP_addr:
8022 return "DW_OP_addr";
8023 case DW_OP_deref:
8024 return "DW_OP_deref";
8025 case DW_OP_const1u:
8026 return "DW_OP_const1u";
8027 case DW_OP_const1s:
8028 return "DW_OP_const1s";
8029 case DW_OP_const2u:
8030 return "DW_OP_const2u";
8031 case DW_OP_const2s:
8032 return "DW_OP_const2s";
8033 case DW_OP_const4u:
8034 return "DW_OP_const4u";
8035 case DW_OP_const4s:
8036 return "DW_OP_const4s";
8037 case DW_OP_const8u:
8038 return "DW_OP_const8u";
8039 case DW_OP_const8s:
8040 return "DW_OP_const8s";
8041 case DW_OP_constu:
8042 return "DW_OP_constu";
8043 case DW_OP_consts:
8044 return "DW_OP_consts";
8045 case DW_OP_dup:
8046 return "DW_OP_dup";
8047 case DW_OP_drop:
8048 return "DW_OP_drop";
8049 case DW_OP_over:
8050 return "DW_OP_over";
8051 case DW_OP_pick:
8052 return "DW_OP_pick";
8053 case DW_OP_swap:
8054 return "DW_OP_swap";
8055 case DW_OP_rot:
8056 return "DW_OP_rot";
8057 case DW_OP_xderef:
8058 return "DW_OP_xderef";
8059 case DW_OP_abs:
8060 return "DW_OP_abs";
8061 case DW_OP_and:
8062 return "DW_OP_and";
8063 case DW_OP_div:
8064 return "DW_OP_div";
8065 case DW_OP_minus:
8066 return "DW_OP_minus";
8067 case DW_OP_mod:
8068 return "DW_OP_mod";
8069 case DW_OP_mul:
8070 return "DW_OP_mul";
8071 case DW_OP_neg:
8072 return "DW_OP_neg";
8073 case DW_OP_not:
8074 return "DW_OP_not";
8075 case DW_OP_or:
8076 return "DW_OP_or";
8077 case DW_OP_plus:
8078 return "DW_OP_plus";
8079 case DW_OP_plus_uconst:
8080 return "DW_OP_plus_uconst";
8081 case DW_OP_shl:
8082 return "DW_OP_shl";
8083 case DW_OP_shr:
8084 return "DW_OP_shr";
8085 case DW_OP_shra:
8086 return "DW_OP_shra";
8087 case DW_OP_xor:
8088 return "DW_OP_xor";
8089 case DW_OP_bra:
8090 return "DW_OP_bra";
8091 case DW_OP_eq:
8092 return "DW_OP_eq";
8093 case DW_OP_ge:
8094 return "DW_OP_ge";
8095 case DW_OP_gt:
8096 return "DW_OP_gt";
8097 case DW_OP_le:
8098 return "DW_OP_le";
8099 case DW_OP_lt:
8100 return "DW_OP_lt";
8101 case DW_OP_ne:
8102 return "DW_OP_ne";
8103 case DW_OP_skip:
8104 return "DW_OP_skip";
8105 case DW_OP_lit0:
8106 return "DW_OP_lit0";
8107 case DW_OP_lit1:
8108 return "DW_OP_lit1";
8109 case DW_OP_lit2:
8110 return "DW_OP_lit2";
8111 case DW_OP_lit3:
8112 return "DW_OP_lit3";
8113 case DW_OP_lit4:
8114 return "DW_OP_lit4";
8115 case DW_OP_lit5:
8116 return "DW_OP_lit5";
8117 case DW_OP_lit6:
8118 return "DW_OP_lit6";
8119 case DW_OP_lit7:
8120 return "DW_OP_lit7";
8121 case DW_OP_lit8:
8122 return "DW_OP_lit8";
8123 case DW_OP_lit9:
8124 return "DW_OP_lit9";
8125 case DW_OP_lit10:
8126 return "DW_OP_lit10";
8127 case DW_OP_lit11:
8128 return "DW_OP_lit11";
8129 case DW_OP_lit12:
8130 return "DW_OP_lit12";
8131 case DW_OP_lit13:
8132 return "DW_OP_lit13";
8133 case DW_OP_lit14:
8134 return "DW_OP_lit14";
8135 case DW_OP_lit15:
8136 return "DW_OP_lit15";
8137 case DW_OP_lit16:
8138 return "DW_OP_lit16";
8139 case DW_OP_lit17:
8140 return "DW_OP_lit17";
8141 case DW_OP_lit18:
8142 return "DW_OP_lit18";
8143 case DW_OP_lit19:
8144 return "DW_OP_lit19";
8145 case DW_OP_lit20:
8146 return "DW_OP_lit20";
8147 case DW_OP_lit21:
8148 return "DW_OP_lit21";
8149 case DW_OP_lit22:
8150 return "DW_OP_lit22";
8151 case DW_OP_lit23:
8152 return "DW_OP_lit23";
8153 case DW_OP_lit24:
8154 return "DW_OP_lit24";
8155 case DW_OP_lit25:
8156 return "DW_OP_lit25";
8157 case DW_OP_lit26:
8158 return "DW_OP_lit26";
8159 case DW_OP_lit27:
8160 return "DW_OP_lit27";
8161 case DW_OP_lit28:
8162 return "DW_OP_lit28";
8163 case DW_OP_lit29:
8164 return "DW_OP_lit29";
8165 case DW_OP_lit30:
8166 return "DW_OP_lit30";
8167 case DW_OP_lit31:
8168 return "DW_OP_lit31";
8169 case DW_OP_reg0:
8170 return "DW_OP_reg0";
8171 case DW_OP_reg1:
8172 return "DW_OP_reg1";
8173 case DW_OP_reg2:
8174 return "DW_OP_reg2";
8175 case DW_OP_reg3:
8176 return "DW_OP_reg3";
8177 case DW_OP_reg4:
8178 return "DW_OP_reg4";
8179 case DW_OP_reg5:
8180 return "DW_OP_reg5";
8181 case DW_OP_reg6:
8182 return "DW_OP_reg6";
8183 case DW_OP_reg7:
8184 return "DW_OP_reg7";
8185 case DW_OP_reg8:
8186 return "DW_OP_reg8";
8187 case DW_OP_reg9:
8188 return "DW_OP_reg9";
8189 case DW_OP_reg10:
8190 return "DW_OP_reg10";
8191 case DW_OP_reg11:
8192 return "DW_OP_reg11";
8193 case DW_OP_reg12:
8194 return "DW_OP_reg12";
8195 case DW_OP_reg13:
8196 return "DW_OP_reg13";
8197 case DW_OP_reg14:
8198 return "DW_OP_reg14";
8199 case DW_OP_reg15:
8200 return "DW_OP_reg15";
8201 case DW_OP_reg16:
8202 return "DW_OP_reg16";
8203 case DW_OP_reg17:
8204 return "DW_OP_reg17";
8205 case DW_OP_reg18:
8206 return "DW_OP_reg18";
8207 case DW_OP_reg19:
8208 return "DW_OP_reg19";
8209 case DW_OP_reg20:
8210 return "DW_OP_reg20";
8211 case DW_OP_reg21:
8212 return "DW_OP_reg21";
8213 case DW_OP_reg22:
8214 return "DW_OP_reg22";
8215 case DW_OP_reg23:
8216 return "DW_OP_reg23";
8217 case DW_OP_reg24:
8218 return "DW_OP_reg24";
8219 case DW_OP_reg25:
8220 return "DW_OP_reg25";
8221 case DW_OP_reg26:
8222 return "DW_OP_reg26";
8223 case DW_OP_reg27:
8224 return "DW_OP_reg27";
8225 case DW_OP_reg28:
8226 return "DW_OP_reg28";
8227 case DW_OP_reg29:
8228 return "DW_OP_reg29";
8229 case DW_OP_reg30:
8230 return "DW_OP_reg30";
8231 case DW_OP_reg31:
8232 return "DW_OP_reg31";
8233 case DW_OP_breg0:
8234 return "DW_OP_breg0";
8235 case DW_OP_breg1:
8236 return "DW_OP_breg1";
8237 case DW_OP_breg2:
8238 return "DW_OP_breg2";
8239 case DW_OP_breg3:
8240 return "DW_OP_breg3";
8241 case DW_OP_breg4:
8242 return "DW_OP_breg4";
8243 case DW_OP_breg5:
8244 return "DW_OP_breg5";
8245 case DW_OP_breg6:
8246 return "DW_OP_breg6";
8247 case DW_OP_breg7:
8248 return "DW_OP_breg7";
8249 case DW_OP_breg8:
8250 return "DW_OP_breg8";
8251 case DW_OP_breg9:
8252 return "DW_OP_breg9";
8253 case DW_OP_breg10:
8254 return "DW_OP_breg10";
8255 case DW_OP_breg11:
8256 return "DW_OP_breg11";
8257 case DW_OP_breg12:
8258 return "DW_OP_breg12";
8259 case DW_OP_breg13:
8260 return "DW_OP_breg13";
8261 case DW_OP_breg14:
8262 return "DW_OP_breg14";
8263 case DW_OP_breg15:
8264 return "DW_OP_breg15";
8265 case DW_OP_breg16:
8266 return "DW_OP_breg16";
8267 case DW_OP_breg17:
8268 return "DW_OP_breg17";
8269 case DW_OP_breg18:
8270 return "DW_OP_breg18";
8271 case DW_OP_breg19:
8272 return "DW_OP_breg19";
8273 case DW_OP_breg20:
8274 return "DW_OP_breg20";
8275 case DW_OP_breg21:
8276 return "DW_OP_breg21";
8277 case DW_OP_breg22:
8278 return "DW_OP_breg22";
8279 case DW_OP_breg23:
8280 return "DW_OP_breg23";
8281 case DW_OP_breg24:
8282 return "DW_OP_breg24";
8283 case DW_OP_breg25:
8284 return "DW_OP_breg25";
8285 case DW_OP_breg26:
8286 return "DW_OP_breg26";
8287 case DW_OP_breg27:
8288 return "DW_OP_breg27";
8289 case DW_OP_breg28:
8290 return "DW_OP_breg28";
8291 case DW_OP_breg29:
8292 return "DW_OP_breg29";
8293 case DW_OP_breg30:
8294 return "DW_OP_breg30";
8295 case DW_OP_breg31:
8296 return "DW_OP_breg31";
8297 case DW_OP_regx:
8298 return "DW_OP_regx";
8299 case DW_OP_fbreg:
8300 return "DW_OP_fbreg";
8301 case DW_OP_bregx:
8302 return "DW_OP_bregx";
8303 case DW_OP_piece:
8304 return "DW_OP_piece";
8305 case DW_OP_deref_size:
8306 return "DW_OP_deref_size";
8307 case DW_OP_xderef_size:
8308 return "DW_OP_xderef_size";
8309 case DW_OP_nop:
8310 return "DW_OP_nop";
8311 /* DWARF 3 extensions. */
8312 case DW_OP_push_object_address:
8313 return "DW_OP_push_object_address";
8314 case DW_OP_call2:
8315 return "DW_OP_call2";
8316 case DW_OP_call4:
8317 return "DW_OP_call4";
8318 case DW_OP_call_ref:
8319 return "DW_OP_call_ref";
8320 /* GNU extensions. */
8321 case DW_OP_GNU_push_tls_address:
8322 return "DW_OP_GNU_push_tls_address";
8323 default:
8324 return "OP_<unknown>";
8325 }
8326 }
8327
8328 static char *
8329 dwarf_bool_name (unsigned mybool)
8330 {
8331 if (mybool)
8332 return "TRUE";
8333 else
8334 return "FALSE";
8335 }
8336
8337 /* Convert a DWARF type code into its string name. */
8338
8339 static char *
8340 dwarf_type_encoding_name (unsigned enc)
8341 {
8342 switch (enc)
8343 {
8344 case DW_ATE_address:
8345 return "DW_ATE_address";
8346 case DW_ATE_boolean:
8347 return "DW_ATE_boolean";
8348 case DW_ATE_complex_float:
8349 return "DW_ATE_complex_float";
8350 case DW_ATE_float:
8351 return "DW_ATE_float";
8352 case DW_ATE_signed:
8353 return "DW_ATE_signed";
8354 case DW_ATE_signed_char:
8355 return "DW_ATE_signed_char";
8356 case DW_ATE_unsigned:
8357 return "DW_ATE_unsigned";
8358 case DW_ATE_unsigned_char:
8359 return "DW_ATE_unsigned_char";
8360 case DW_ATE_imaginary_float:
8361 return "DW_ATE_imaginary_float";
8362 default:
8363 return "DW_ATE_<unknown>";
8364 }
8365 }
8366
8367 /* Convert a DWARF call frame info operation to its string name. */
8368
8369 #if 0
8370 static char *
8371 dwarf_cfi_name (unsigned cfi_opc)
8372 {
8373 switch (cfi_opc)
8374 {
8375 case DW_CFA_advance_loc:
8376 return "DW_CFA_advance_loc";
8377 case DW_CFA_offset:
8378 return "DW_CFA_offset";
8379 case DW_CFA_restore:
8380 return "DW_CFA_restore";
8381 case DW_CFA_nop:
8382 return "DW_CFA_nop";
8383 case DW_CFA_set_loc:
8384 return "DW_CFA_set_loc";
8385 case DW_CFA_advance_loc1:
8386 return "DW_CFA_advance_loc1";
8387 case DW_CFA_advance_loc2:
8388 return "DW_CFA_advance_loc2";
8389 case DW_CFA_advance_loc4:
8390 return "DW_CFA_advance_loc4";
8391 case DW_CFA_offset_extended:
8392 return "DW_CFA_offset_extended";
8393 case DW_CFA_restore_extended:
8394 return "DW_CFA_restore_extended";
8395 case DW_CFA_undefined:
8396 return "DW_CFA_undefined";
8397 case DW_CFA_same_value:
8398 return "DW_CFA_same_value";
8399 case DW_CFA_register:
8400 return "DW_CFA_register";
8401 case DW_CFA_remember_state:
8402 return "DW_CFA_remember_state";
8403 case DW_CFA_restore_state:
8404 return "DW_CFA_restore_state";
8405 case DW_CFA_def_cfa:
8406 return "DW_CFA_def_cfa";
8407 case DW_CFA_def_cfa_register:
8408 return "DW_CFA_def_cfa_register";
8409 case DW_CFA_def_cfa_offset:
8410 return "DW_CFA_def_cfa_offset";
8411
8412 /* DWARF 3 */
8413 case DW_CFA_def_cfa_expression:
8414 return "DW_CFA_def_cfa_expression";
8415 case DW_CFA_expression:
8416 return "DW_CFA_expression";
8417 case DW_CFA_offset_extended_sf:
8418 return "DW_CFA_offset_extended_sf";
8419 case DW_CFA_def_cfa_sf:
8420 return "DW_CFA_def_cfa_sf";
8421 case DW_CFA_def_cfa_offset_sf:
8422 return "DW_CFA_def_cfa_offset_sf";
8423
8424 /* SGI/MIPS specific */
8425 case DW_CFA_MIPS_advance_loc8:
8426 return "DW_CFA_MIPS_advance_loc8";
8427
8428 /* GNU extensions */
8429 case DW_CFA_GNU_window_save:
8430 return "DW_CFA_GNU_window_save";
8431 case DW_CFA_GNU_args_size:
8432 return "DW_CFA_GNU_args_size";
8433 case DW_CFA_GNU_negative_offset_extended:
8434 return "DW_CFA_GNU_negative_offset_extended";
8435
8436 default:
8437 return "DW_CFA_<unknown>";
8438 }
8439 }
8440 #endif
8441
8442 static void
8443 dump_die (struct die_info *die)
8444 {
8445 unsigned int i;
8446
8447 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
8448 dwarf_tag_name (die->tag), die->abbrev, die->offset);
8449 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
8450 dwarf_bool_name (die->child != NULL));
8451
8452 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
8453 for (i = 0; i < die->num_attrs; ++i)
8454 {
8455 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
8456 dwarf_attr_name (die->attrs[i].name),
8457 dwarf_form_name (die->attrs[i].form));
8458 switch (die->attrs[i].form)
8459 {
8460 case DW_FORM_ref_addr:
8461 case DW_FORM_addr:
8462 fprintf_unfiltered (gdb_stderr, "address: ");
8463 deprecated_print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
8464 break;
8465 case DW_FORM_block2:
8466 case DW_FORM_block4:
8467 case DW_FORM_block:
8468 case DW_FORM_block1:
8469 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
8470 break;
8471 case DW_FORM_ref1:
8472 case DW_FORM_ref2:
8473 case DW_FORM_ref4:
8474 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8475 (long) (DW_ADDR (&die->attrs[i])));
8476 break;
8477 case DW_FORM_data1:
8478 case DW_FORM_data2:
8479 case DW_FORM_data4:
8480 case DW_FORM_data8:
8481 case DW_FORM_udata:
8482 case DW_FORM_sdata:
8483 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
8484 break;
8485 case DW_FORM_string:
8486 case DW_FORM_strp:
8487 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
8488 DW_STRING (&die->attrs[i])
8489 ? DW_STRING (&die->attrs[i]) : "");
8490 break;
8491 case DW_FORM_flag:
8492 if (DW_UNSND (&die->attrs[i]))
8493 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
8494 else
8495 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
8496 break;
8497 case DW_FORM_indirect:
8498 /* the reader will have reduced the indirect form to
8499 the "base form" so this form should not occur */
8500 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
8501 break;
8502 default:
8503 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
8504 die->attrs[i].form);
8505 }
8506 fprintf_unfiltered (gdb_stderr, "\n");
8507 }
8508 }
8509
8510 static void
8511 dump_die_list (struct die_info *die)
8512 {
8513 while (die)
8514 {
8515 dump_die (die);
8516 if (die->child != NULL)
8517 dump_die_list (die->child);
8518 if (die->sibling != NULL)
8519 dump_die_list (die->sibling);
8520 }
8521 }
8522
8523 static void
8524 store_in_ref_table (unsigned int offset, struct die_info *die,
8525 struct dwarf2_cu *cu)
8526 {
8527 int h;
8528 struct die_info *old;
8529
8530 h = (offset % REF_HASH_SIZE);
8531 old = cu->die_ref_table[h];
8532 die->next_ref = old;
8533 cu->die_ref_table[h] = die;
8534 }
8535
8536 static unsigned int
8537 dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
8538 {
8539 unsigned int result = 0;
8540
8541 switch (attr->form)
8542 {
8543 case DW_FORM_ref_addr:
8544 case DW_FORM_ref1:
8545 case DW_FORM_ref2:
8546 case DW_FORM_ref4:
8547 case DW_FORM_ref8:
8548 case DW_FORM_ref_udata:
8549 result = DW_ADDR (attr);
8550 break;
8551 default:
8552 complaint (&symfile_complaints,
8553 _("unsupported die ref attribute form: '%s'"),
8554 dwarf_form_name (attr->form));
8555 }
8556 return result;
8557 }
8558
8559 /* Return the constant value held by the given attribute. Return -1
8560 if the value held by the attribute is not constant. */
8561
8562 static int
8563 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
8564 {
8565 if (attr->form == DW_FORM_sdata)
8566 return DW_SND (attr);
8567 else if (attr->form == DW_FORM_udata
8568 || attr->form == DW_FORM_data1
8569 || attr->form == DW_FORM_data2
8570 || attr->form == DW_FORM_data4
8571 || attr->form == DW_FORM_data8)
8572 return DW_UNSND (attr);
8573 else
8574 {
8575 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
8576 dwarf_form_name (attr->form));
8577 return default_value;
8578 }
8579 }
8580
8581 static struct die_info *
8582 follow_die_ref (struct die_info *src_die, struct attribute *attr,
8583 struct dwarf2_cu *cu)
8584 {
8585 struct die_info *die;
8586 unsigned int offset;
8587 int h;
8588 struct die_info temp_die;
8589 struct dwarf2_cu *target_cu;
8590
8591 offset = dwarf2_get_ref_die_offset (attr, cu);
8592
8593 if (DW_ADDR (attr) < cu->header.offset
8594 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
8595 {
8596 struct dwarf2_per_cu_data *per_cu;
8597 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
8598 cu->objfile);
8599 target_cu = per_cu->cu;
8600 }
8601 else
8602 target_cu = cu;
8603
8604 h = (offset % REF_HASH_SIZE);
8605 die = target_cu->die_ref_table[h];
8606 while (die)
8607 {
8608 if (die->offset == offset)
8609 return die;
8610 die = die->next_ref;
8611 }
8612
8613 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
8614 "at 0x%lx [in module %s]"),
8615 (long) src_die->offset, (long) offset, cu->objfile->name);
8616
8617 return NULL;
8618 }
8619
8620 static struct type *
8621 dwarf2_fundamental_type (struct objfile *objfile, int typeid,
8622 struct dwarf2_cu *cu)
8623 {
8624 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
8625 {
8626 error (_("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]"),
8627 typeid, objfile->name);
8628 }
8629
8630 /* Look for this particular type in the fundamental type vector. If
8631 one is not found, create and install one appropriate for the
8632 current language and the current target machine. */
8633
8634 if (cu->ftypes[typeid] == NULL)
8635 {
8636 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
8637 }
8638
8639 return (cu->ftypes[typeid]);
8640 }
8641
8642 /* Decode simple location descriptions.
8643 Given a pointer to a dwarf block that defines a location, compute
8644 the location and return the value.
8645
8646 NOTE drow/2003-11-18: This function is called in two situations
8647 now: for the address of static or global variables (partial symbols
8648 only) and for offsets into structures which are expected to be
8649 (more or less) constant. The partial symbol case should go away,
8650 and only the constant case should remain. That will let this
8651 function complain more accurately. A few special modes are allowed
8652 without complaint for global variables (for instance, global
8653 register values and thread-local values).
8654
8655 A location description containing no operations indicates that the
8656 object is optimized out. The return value is 0 for that case.
8657 FIXME drow/2003-11-16: No callers check for this case any more; soon all
8658 callers will only want a very basic result and this can become a
8659 complaint.
8660
8661 Note that stack[0] is unused except as a default error return.
8662 Note that stack overflow is not yet handled. */
8663
8664 static CORE_ADDR
8665 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
8666 {
8667 struct objfile *objfile = cu->objfile;
8668 struct comp_unit_head *cu_header = &cu->header;
8669 int i;
8670 int size = blk->size;
8671 gdb_byte *data = blk->data;
8672 CORE_ADDR stack[64];
8673 int stacki;
8674 unsigned int bytes_read, unsnd;
8675 gdb_byte op;
8676
8677 i = 0;
8678 stacki = 0;
8679 stack[stacki] = 0;
8680
8681 while (i < size)
8682 {
8683 op = data[i++];
8684 switch (op)
8685 {
8686 case DW_OP_lit0:
8687 case DW_OP_lit1:
8688 case DW_OP_lit2:
8689 case DW_OP_lit3:
8690 case DW_OP_lit4:
8691 case DW_OP_lit5:
8692 case DW_OP_lit6:
8693 case DW_OP_lit7:
8694 case DW_OP_lit8:
8695 case DW_OP_lit9:
8696 case DW_OP_lit10:
8697 case DW_OP_lit11:
8698 case DW_OP_lit12:
8699 case DW_OP_lit13:
8700 case DW_OP_lit14:
8701 case DW_OP_lit15:
8702 case DW_OP_lit16:
8703 case DW_OP_lit17:
8704 case DW_OP_lit18:
8705 case DW_OP_lit19:
8706 case DW_OP_lit20:
8707 case DW_OP_lit21:
8708 case DW_OP_lit22:
8709 case DW_OP_lit23:
8710 case DW_OP_lit24:
8711 case DW_OP_lit25:
8712 case DW_OP_lit26:
8713 case DW_OP_lit27:
8714 case DW_OP_lit28:
8715 case DW_OP_lit29:
8716 case DW_OP_lit30:
8717 case DW_OP_lit31:
8718 stack[++stacki] = op - DW_OP_lit0;
8719 break;
8720
8721 case DW_OP_reg0:
8722 case DW_OP_reg1:
8723 case DW_OP_reg2:
8724 case DW_OP_reg3:
8725 case DW_OP_reg4:
8726 case DW_OP_reg5:
8727 case DW_OP_reg6:
8728 case DW_OP_reg7:
8729 case DW_OP_reg8:
8730 case DW_OP_reg9:
8731 case DW_OP_reg10:
8732 case DW_OP_reg11:
8733 case DW_OP_reg12:
8734 case DW_OP_reg13:
8735 case DW_OP_reg14:
8736 case DW_OP_reg15:
8737 case DW_OP_reg16:
8738 case DW_OP_reg17:
8739 case DW_OP_reg18:
8740 case DW_OP_reg19:
8741 case DW_OP_reg20:
8742 case DW_OP_reg21:
8743 case DW_OP_reg22:
8744 case DW_OP_reg23:
8745 case DW_OP_reg24:
8746 case DW_OP_reg25:
8747 case DW_OP_reg26:
8748 case DW_OP_reg27:
8749 case DW_OP_reg28:
8750 case DW_OP_reg29:
8751 case DW_OP_reg30:
8752 case DW_OP_reg31:
8753 stack[++stacki] = op - DW_OP_reg0;
8754 if (i < size)
8755 dwarf2_complex_location_expr_complaint ();
8756 break;
8757
8758 case DW_OP_regx:
8759 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8760 i += bytes_read;
8761 stack[++stacki] = unsnd;
8762 if (i < size)
8763 dwarf2_complex_location_expr_complaint ();
8764 break;
8765
8766 case DW_OP_addr:
8767 stack[++stacki] = read_address (objfile->obfd, &data[i],
8768 cu, &bytes_read);
8769 i += bytes_read;
8770 break;
8771
8772 case DW_OP_const1u:
8773 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
8774 i += 1;
8775 break;
8776
8777 case DW_OP_const1s:
8778 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
8779 i += 1;
8780 break;
8781
8782 case DW_OP_const2u:
8783 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
8784 i += 2;
8785 break;
8786
8787 case DW_OP_const2s:
8788 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
8789 i += 2;
8790 break;
8791
8792 case DW_OP_const4u:
8793 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
8794 i += 4;
8795 break;
8796
8797 case DW_OP_const4s:
8798 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
8799 i += 4;
8800 break;
8801
8802 case DW_OP_constu:
8803 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
8804 &bytes_read);
8805 i += bytes_read;
8806 break;
8807
8808 case DW_OP_consts:
8809 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
8810 i += bytes_read;
8811 break;
8812
8813 case DW_OP_dup:
8814 stack[stacki + 1] = stack[stacki];
8815 stacki++;
8816 break;
8817
8818 case DW_OP_plus:
8819 stack[stacki - 1] += stack[stacki];
8820 stacki--;
8821 break;
8822
8823 case DW_OP_plus_uconst:
8824 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8825 i += bytes_read;
8826 break;
8827
8828 case DW_OP_minus:
8829 stack[stacki - 1] -= stack[stacki];
8830 stacki--;
8831 break;
8832
8833 case DW_OP_deref:
8834 /* If we're not the last op, then we definitely can't encode
8835 this using GDB's address_class enum. This is valid for partial
8836 global symbols, although the variable's address will be bogus
8837 in the psymtab. */
8838 if (i < size)
8839 dwarf2_complex_location_expr_complaint ();
8840 break;
8841
8842 case DW_OP_GNU_push_tls_address:
8843 /* The top of the stack has the offset from the beginning
8844 of the thread control block at which the variable is located. */
8845 /* Nothing should follow this operator, so the top of stack would
8846 be returned. */
8847 /* This is valid for partial global symbols, but the variable's
8848 address will be bogus in the psymtab. */
8849 if (i < size)
8850 dwarf2_complex_location_expr_complaint ();
8851 break;
8852
8853 default:
8854 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
8855 dwarf_stack_op_name (op));
8856 return (stack[stacki]);
8857 }
8858 }
8859 return (stack[stacki]);
8860 }
8861
8862 /* memory allocation interface */
8863
8864 static struct dwarf_block *
8865 dwarf_alloc_block (struct dwarf2_cu *cu)
8866 {
8867 struct dwarf_block *blk;
8868
8869 blk = (struct dwarf_block *)
8870 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
8871 return (blk);
8872 }
8873
8874 static struct abbrev_info *
8875 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
8876 {
8877 struct abbrev_info *abbrev;
8878
8879 abbrev = (struct abbrev_info *)
8880 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
8881 memset (abbrev, 0, sizeof (struct abbrev_info));
8882 return (abbrev);
8883 }
8884
8885 static struct die_info *
8886 dwarf_alloc_die (void)
8887 {
8888 struct die_info *die;
8889
8890 die = (struct die_info *) xmalloc (sizeof (struct die_info));
8891 memset (die, 0, sizeof (struct die_info));
8892 return (die);
8893 }
8894
8895 \f
8896 /* Macro support. */
8897
8898
8899 /* Return the full name of file number I in *LH's file name table.
8900 Use COMP_DIR as the name of the current directory of the
8901 compilation. The result is allocated using xmalloc; the caller is
8902 responsible for freeing it. */
8903 static char *
8904 file_full_name (int file, struct line_header *lh, const char *comp_dir)
8905 {
8906 /* Is the file number a valid index into the line header's file name
8907 table? Remember that file numbers start with one, not zero. */
8908 if (1 <= file && file <= lh->num_file_names)
8909 {
8910 struct file_entry *fe = &lh->file_names[file - 1];
8911
8912 if (IS_ABSOLUTE_PATH (fe->name))
8913 return xstrdup (fe->name);
8914 else
8915 {
8916 const char *dir;
8917 int dir_len;
8918 char *full_name;
8919
8920 if (fe->dir_index)
8921 dir = lh->include_dirs[fe->dir_index - 1];
8922 else
8923 dir = comp_dir;
8924
8925 if (dir)
8926 {
8927 dir_len = strlen (dir);
8928 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
8929 strcpy (full_name, dir);
8930 full_name[dir_len] = '/';
8931 strcpy (full_name + dir_len + 1, fe->name);
8932 return full_name;
8933 }
8934 else
8935 return xstrdup (fe->name);
8936 }
8937 }
8938 else
8939 {
8940 /* The compiler produced a bogus file number. We can at least
8941 record the macro definitions made in the file, even if we
8942 won't be able to find the file by name. */
8943 char fake_name[80];
8944 sprintf (fake_name, "<bad macro file number %d>", file);
8945
8946 complaint (&symfile_complaints,
8947 _("bad file number in macro information (%d)"),
8948 file);
8949
8950 return xstrdup (fake_name);
8951 }
8952 }
8953
8954
8955 static struct macro_source_file *
8956 macro_start_file (int file, int line,
8957 struct macro_source_file *current_file,
8958 const char *comp_dir,
8959 struct line_header *lh, struct objfile *objfile)
8960 {
8961 /* The full name of this source file. */
8962 char *full_name = file_full_name (file, lh, comp_dir);
8963
8964 /* We don't create a macro table for this compilation unit
8965 at all until we actually get a filename. */
8966 if (! pending_macros)
8967 pending_macros = new_macro_table (&objfile->objfile_obstack,
8968 objfile->macro_cache);
8969
8970 if (! current_file)
8971 /* If we have no current file, then this must be the start_file
8972 directive for the compilation unit's main source file. */
8973 current_file = macro_set_main (pending_macros, full_name);
8974 else
8975 current_file = macro_include (current_file, line, full_name);
8976
8977 xfree (full_name);
8978
8979 return current_file;
8980 }
8981
8982
8983 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
8984 followed by a null byte. */
8985 static char *
8986 copy_string (const char *buf, int len)
8987 {
8988 char *s = xmalloc (len + 1);
8989 memcpy (s, buf, len);
8990 s[len] = '\0';
8991
8992 return s;
8993 }
8994
8995
8996 static const char *
8997 consume_improper_spaces (const char *p, const char *body)
8998 {
8999 if (*p == ' ')
9000 {
9001 complaint (&symfile_complaints,
9002 _("macro definition contains spaces in formal argument list:\n`%s'"),
9003 body);
9004
9005 while (*p == ' ')
9006 p++;
9007 }
9008
9009 return p;
9010 }
9011
9012
9013 static void
9014 parse_macro_definition (struct macro_source_file *file, int line,
9015 const char *body)
9016 {
9017 const char *p;
9018
9019 /* The body string takes one of two forms. For object-like macro
9020 definitions, it should be:
9021
9022 <macro name> " " <definition>
9023
9024 For function-like macro definitions, it should be:
9025
9026 <macro name> "() " <definition>
9027 or
9028 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
9029
9030 Spaces may appear only where explicitly indicated, and in the
9031 <definition>.
9032
9033 The Dwarf 2 spec says that an object-like macro's name is always
9034 followed by a space, but versions of GCC around March 2002 omit
9035 the space when the macro's definition is the empty string.
9036
9037 The Dwarf 2 spec says that there should be no spaces between the
9038 formal arguments in a function-like macro's formal argument list,
9039 but versions of GCC around March 2002 include spaces after the
9040 commas. */
9041
9042
9043 /* Find the extent of the macro name. The macro name is terminated
9044 by either a space or null character (for an object-like macro) or
9045 an opening paren (for a function-like macro). */
9046 for (p = body; *p; p++)
9047 if (*p == ' ' || *p == '(')
9048 break;
9049
9050 if (*p == ' ' || *p == '\0')
9051 {
9052 /* It's an object-like macro. */
9053 int name_len = p - body;
9054 char *name = copy_string (body, name_len);
9055 const char *replacement;
9056
9057 if (*p == ' ')
9058 replacement = body + name_len + 1;
9059 else
9060 {
9061 dwarf2_macro_malformed_definition_complaint (body);
9062 replacement = body + name_len;
9063 }
9064
9065 macro_define_object (file, line, name, replacement);
9066
9067 xfree (name);
9068 }
9069 else if (*p == '(')
9070 {
9071 /* It's a function-like macro. */
9072 char *name = copy_string (body, p - body);
9073 int argc = 0;
9074 int argv_size = 1;
9075 char **argv = xmalloc (argv_size * sizeof (*argv));
9076
9077 p++;
9078
9079 p = consume_improper_spaces (p, body);
9080
9081 /* Parse the formal argument list. */
9082 while (*p && *p != ')')
9083 {
9084 /* Find the extent of the current argument name. */
9085 const char *arg_start = p;
9086
9087 while (*p && *p != ',' && *p != ')' && *p != ' ')
9088 p++;
9089
9090 if (! *p || p == arg_start)
9091 dwarf2_macro_malformed_definition_complaint (body);
9092 else
9093 {
9094 /* Make sure argv has room for the new argument. */
9095 if (argc >= argv_size)
9096 {
9097 argv_size *= 2;
9098 argv = xrealloc (argv, argv_size * sizeof (*argv));
9099 }
9100
9101 argv[argc++] = copy_string (arg_start, p - arg_start);
9102 }
9103
9104 p = consume_improper_spaces (p, body);
9105
9106 /* Consume the comma, if present. */
9107 if (*p == ',')
9108 {
9109 p++;
9110
9111 p = consume_improper_spaces (p, body);
9112 }
9113 }
9114
9115 if (*p == ')')
9116 {
9117 p++;
9118
9119 if (*p == ' ')
9120 /* Perfectly formed definition, no complaints. */
9121 macro_define_function (file, line, name,
9122 argc, (const char **) argv,
9123 p + 1);
9124 else if (*p == '\0')
9125 {
9126 /* Complain, but do define it. */
9127 dwarf2_macro_malformed_definition_complaint (body);
9128 macro_define_function (file, line, name,
9129 argc, (const char **) argv,
9130 p);
9131 }
9132 else
9133 /* Just complain. */
9134 dwarf2_macro_malformed_definition_complaint (body);
9135 }
9136 else
9137 /* Just complain. */
9138 dwarf2_macro_malformed_definition_complaint (body);
9139
9140 xfree (name);
9141 {
9142 int i;
9143
9144 for (i = 0; i < argc; i++)
9145 xfree (argv[i]);
9146 }
9147 xfree (argv);
9148 }
9149 else
9150 dwarf2_macro_malformed_definition_complaint (body);
9151 }
9152
9153
9154 static void
9155 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9156 char *comp_dir, bfd *abfd,
9157 struct dwarf2_cu *cu)
9158 {
9159 gdb_byte *mac_ptr, *mac_end;
9160 struct macro_source_file *current_file = 0;
9161
9162 if (dwarf2_per_objfile->macinfo_buffer == NULL)
9163 {
9164 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
9165 return;
9166 }
9167
9168 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9169 mac_end = dwarf2_per_objfile->macinfo_buffer
9170 + dwarf2_per_objfile->macinfo_size;
9171
9172 for (;;)
9173 {
9174 enum dwarf_macinfo_record_type macinfo_type;
9175
9176 /* Do we at least have room for a macinfo type byte? */
9177 if (mac_ptr >= mac_end)
9178 {
9179 dwarf2_macros_too_long_complaint ();
9180 return;
9181 }
9182
9183 macinfo_type = read_1_byte (abfd, mac_ptr);
9184 mac_ptr++;
9185
9186 switch (macinfo_type)
9187 {
9188 /* A zero macinfo type indicates the end of the macro
9189 information. */
9190 case 0:
9191 return;
9192
9193 case DW_MACINFO_define:
9194 case DW_MACINFO_undef:
9195 {
9196 unsigned int bytes_read;
9197 int line;
9198 char *body;
9199
9200 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9201 mac_ptr += bytes_read;
9202 body = read_string (abfd, mac_ptr, &bytes_read);
9203 mac_ptr += bytes_read;
9204
9205 if (! current_file)
9206 complaint (&symfile_complaints,
9207 _("debug info gives macro %s outside of any file: %s"),
9208 macinfo_type ==
9209 DW_MACINFO_define ? "definition" : macinfo_type ==
9210 DW_MACINFO_undef ? "undefinition" :
9211 "something-or-other", body);
9212 else
9213 {
9214 if (macinfo_type == DW_MACINFO_define)
9215 parse_macro_definition (current_file, line, body);
9216 else if (macinfo_type == DW_MACINFO_undef)
9217 macro_undef (current_file, line, body);
9218 }
9219 }
9220 break;
9221
9222 case DW_MACINFO_start_file:
9223 {
9224 unsigned int bytes_read;
9225 int line, file;
9226
9227 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9228 mac_ptr += bytes_read;
9229 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9230 mac_ptr += bytes_read;
9231
9232 current_file = macro_start_file (file, line,
9233 current_file, comp_dir,
9234 lh, cu->objfile);
9235 }
9236 break;
9237
9238 case DW_MACINFO_end_file:
9239 if (! current_file)
9240 complaint (&symfile_complaints,
9241 _("macro debug info has an unmatched `close_file' directive"));
9242 else
9243 {
9244 current_file = current_file->included_by;
9245 if (! current_file)
9246 {
9247 enum dwarf_macinfo_record_type next_type;
9248
9249 /* GCC circa March 2002 doesn't produce the zero
9250 type byte marking the end of the compilation
9251 unit. Complain if it's not there, but exit no
9252 matter what. */
9253
9254 /* Do we at least have room for a macinfo type byte? */
9255 if (mac_ptr >= mac_end)
9256 {
9257 dwarf2_macros_too_long_complaint ();
9258 return;
9259 }
9260
9261 /* We don't increment mac_ptr here, so this is just
9262 a look-ahead. */
9263 next_type = read_1_byte (abfd, mac_ptr);
9264 if (next_type != 0)
9265 complaint (&symfile_complaints,
9266 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
9267
9268 return;
9269 }
9270 }
9271 break;
9272
9273 case DW_MACINFO_vendor_ext:
9274 {
9275 unsigned int bytes_read;
9276 int constant;
9277 char *string;
9278
9279 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9280 mac_ptr += bytes_read;
9281 string = read_string (abfd, mac_ptr, &bytes_read);
9282 mac_ptr += bytes_read;
9283
9284 /* We don't recognize any vendor extensions. */
9285 }
9286 break;
9287 }
9288 }
9289 }
9290
9291 /* Check if the attribute's form is a DW_FORM_block*
9292 if so return true else false. */
9293 static int
9294 attr_form_is_block (struct attribute *attr)
9295 {
9296 return (attr == NULL ? 0 :
9297 attr->form == DW_FORM_block1
9298 || attr->form == DW_FORM_block2
9299 || attr->form == DW_FORM_block4
9300 || attr->form == DW_FORM_block);
9301 }
9302
9303 static void
9304 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
9305 struct dwarf2_cu *cu)
9306 {
9307 if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
9308 {
9309 struct dwarf2_loclist_baton *baton;
9310
9311 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9312 sizeof (struct dwarf2_loclist_baton));
9313 baton->objfile = cu->objfile;
9314
9315 /* We don't know how long the location list is, but make sure we
9316 don't run off the edge of the section. */
9317 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9318 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
9319 baton->base_address = cu->header.base_address;
9320 if (cu->header.base_known == 0)
9321 complaint (&symfile_complaints,
9322 _("Location list used without specifying the CU base address."));
9323
9324 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
9325 SYMBOL_LOCATION_BATON (sym) = baton;
9326 }
9327 else
9328 {
9329 struct dwarf2_locexpr_baton *baton;
9330
9331 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9332 sizeof (struct dwarf2_locexpr_baton));
9333 baton->objfile = cu->objfile;
9334
9335 if (attr_form_is_block (attr))
9336 {
9337 /* Note that we're just copying the block's data pointer
9338 here, not the actual data. We're still pointing into the
9339 info_buffer for SYM's objfile; right now we never release
9340 that buffer, but when we do clean up properly this may
9341 need to change. */
9342 baton->size = DW_BLOCK (attr)->size;
9343 baton->data = DW_BLOCK (attr)->data;
9344 }
9345 else
9346 {
9347 dwarf2_invalid_attrib_class_complaint ("location description",
9348 SYMBOL_NATURAL_NAME (sym));
9349 baton->size = 0;
9350 baton->data = NULL;
9351 }
9352
9353 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
9354 SYMBOL_LOCATION_BATON (sym) = baton;
9355 }
9356 }
9357
9358 /* Locate the compilation unit from CU's objfile which contains the
9359 DIE at OFFSET. Raises an error on failure. */
9360
9361 static struct dwarf2_per_cu_data *
9362 dwarf2_find_containing_comp_unit (unsigned long offset,
9363 struct objfile *objfile)
9364 {
9365 struct dwarf2_per_cu_data *this_cu;
9366 int low, high;
9367
9368 low = 0;
9369 high = dwarf2_per_objfile->n_comp_units - 1;
9370 while (high > low)
9371 {
9372 int mid = low + (high - low) / 2;
9373 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9374 high = mid;
9375 else
9376 low = mid + 1;
9377 }
9378 gdb_assert (low == high);
9379 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9380 {
9381 if (low == 0)
9382 error (_("Dwarf Error: could not find partial DIE containing "
9383 "offset 0x%lx [in module %s]"),
9384 (long) offset, bfd_get_filename (objfile->obfd));
9385
9386 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9387 return dwarf2_per_objfile->all_comp_units[low-1];
9388 }
9389 else
9390 {
9391 this_cu = dwarf2_per_objfile->all_comp_units[low];
9392 if (low == dwarf2_per_objfile->n_comp_units - 1
9393 && offset >= this_cu->offset + this_cu->length)
9394 error (_("invalid dwarf2 offset %ld"), offset);
9395 gdb_assert (offset < this_cu->offset + this_cu->length);
9396 return this_cu;
9397 }
9398 }
9399
9400 /* Locate the compilation unit from OBJFILE which is located at exactly
9401 OFFSET. Raises an error on failure. */
9402
9403 static struct dwarf2_per_cu_data *
9404 dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9405 {
9406 struct dwarf2_per_cu_data *this_cu;
9407 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9408 if (this_cu->offset != offset)
9409 error (_("no compilation unit with offset %ld."), offset);
9410 return this_cu;
9411 }
9412
9413 /* Release one cached compilation unit, CU. We unlink it from the tree
9414 of compilation units, but we don't remove it from the read_in_chain;
9415 the caller is responsible for that. */
9416
9417 static void
9418 free_one_comp_unit (void *data)
9419 {
9420 struct dwarf2_cu *cu = data;
9421
9422 if (cu->per_cu != NULL)
9423 cu->per_cu->cu = NULL;
9424 cu->per_cu = NULL;
9425
9426 obstack_free (&cu->comp_unit_obstack, NULL);
9427 if (cu->dies)
9428 free_die_list (cu->dies);
9429
9430 xfree (cu);
9431 }
9432
9433 /* This cleanup function is passed the address of a dwarf2_cu on the stack
9434 when we're finished with it. We can't free the pointer itself, but be
9435 sure to unlink it from the cache. Also release any associated storage
9436 and perform cache maintenance.
9437
9438 Only used during partial symbol parsing. */
9439
9440 static void
9441 free_stack_comp_unit (void *data)
9442 {
9443 struct dwarf2_cu *cu = data;
9444
9445 obstack_free (&cu->comp_unit_obstack, NULL);
9446 cu->partial_dies = NULL;
9447
9448 if (cu->per_cu != NULL)
9449 {
9450 /* This compilation unit is on the stack in our caller, so we
9451 should not xfree it. Just unlink it. */
9452 cu->per_cu->cu = NULL;
9453 cu->per_cu = NULL;
9454
9455 /* If we had a per-cu pointer, then we may have other compilation
9456 units loaded, so age them now. */
9457 age_cached_comp_units ();
9458 }
9459 }
9460
9461 /* Free all cached compilation units. */
9462
9463 static void
9464 free_cached_comp_units (void *data)
9465 {
9466 struct dwarf2_per_cu_data *per_cu, **last_chain;
9467
9468 per_cu = dwarf2_per_objfile->read_in_chain;
9469 last_chain = &dwarf2_per_objfile->read_in_chain;
9470 while (per_cu != NULL)
9471 {
9472 struct dwarf2_per_cu_data *next_cu;
9473
9474 next_cu = per_cu->cu->read_in_chain;
9475
9476 free_one_comp_unit (per_cu->cu);
9477 *last_chain = next_cu;
9478
9479 per_cu = next_cu;
9480 }
9481 }
9482
9483 /* Increase the age counter on each cached compilation unit, and free
9484 any that are too old. */
9485
9486 static void
9487 age_cached_comp_units (void)
9488 {
9489 struct dwarf2_per_cu_data *per_cu, **last_chain;
9490
9491 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9492 per_cu = dwarf2_per_objfile->read_in_chain;
9493 while (per_cu != NULL)
9494 {
9495 per_cu->cu->last_used ++;
9496 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
9497 dwarf2_mark (per_cu->cu);
9498 per_cu = per_cu->cu->read_in_chain;
9499 }
9500
9501 per_cu = dwarf2_per_objfile->read_in_chain;
9502 last_chain = &dwarf2_per_objfile->read_in_chain;
9503 while (per_cu != NULL)
9504 {
9505 struct dwarf2_per_cu_data *next_cu;
9506
9507 next_cu = per_cu->cu->read_in_chain;
9508
9509 if (!per_cu->cu->mark)
9510 {
9511 free_one_comp_unit (per_cu->cu);
9512 *last_chain = next_cu;
9513 }
9514 else
9515 last_chain = &per_cu->cu->read_in_chain;
9516
9517 per_cu = next_cu;
9518 }
9519 }
9520
9521 /* Remove a single compilation unit from the cache. */
9522
9523 static void
9524 free_one_cached_comp_unit (void *target_cu)
9525 {
9526 struct dwarf2_per_cu_data *per_cu, **last_chain;
9527
9528 per_cu = dwarf2_per_objfile->read_in_chain;
9529 last_chain = &dwarf2_per_objfile->read_in_chain;
9530 while (per_cu != NULL)
9531 {
9532 struct dwarf2_per_cu_data *next_cu;
9533
9534 next_cu = per_cu->cu->read_in_chain;
9535
9536 if (per_cu->cu == target_cu)
9537 {
9538 free_one_comp_unit (per_cu->cu);
9539 *last_chain = next_cu;
9540 break;
9541 }
9542 else
9543 last_chain = &per_cu->cu->read_in_chain;
9544
9545 per_cu = next_cu;
9546 }
9547 }
9548
9549 /* A pair of DIE offset and GDB type pointer. We store these
9550 in a hash table separate from the DIEs, and preserve them
9551 when the DIEs are flushed out of cache. */
9552
9553 struct dwarf2_offset_and_type
9554 {
9555 unsigned int offset;
9556 struct type *type;
9557 };
9558
9559 /* Hash function for a dwarf2_offset_and_type. */
9560
9561 static hashval_t
9562 offset_and_type_hash (const void *item)
9563 {
9564 const struct dwarf2_offset_and_type *ofs = item;
9565 return ofs->offset;
9566 }
9567
9568 /* Equality function for a dwarf2_offset_and_type. */
9569
9570 static int
9571 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
9572 {
9573 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
9574 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9575 return ofs_lhs->offset == ofs_rhs->offset;
9576 }
9577
9578 /* Set the type associated with DIE to TYPE. Save it in CU's hash
9579 table if necessary. */
9580
9581 static void
9582 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
9583 {
9584 struct dwarf2_offset_and_type **slot, ofs;
9585
9586 die->type = type;
9587
9588 if (cu->per_cu == NULL)
9589 return;
9590
9591 if (cu->per_cu->type_hash == NULL)
9592 cu->per_cu->type_hash
9593 = htab_create_alloc_ex (cu->header.length / 24,
9594 offset_and_type_hash,
9595 offset_and_type_eq,
9596 NULL,
9597 &cu->objfile->objfile_obstack,
9598 hashtab_obstack_allocate,
9599 dummy_obstack_deallocate);
9600
9601 ofs.offset = die->offset;
9602 ofs.type = type;
9603 slot = (struct dwarf2_offset_and_type **)
9604 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
9605 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
9606 **slot = ofs;
9607 }
9608
9609 /* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
9610 have a saved type. */
9611
9612 static struct type *
9613 get_die_type (struct die_info *die, htab_t type_hash)
9614 {
9615 struct dwarf2_offset_and_type *slot, ofs;
9616
9617 ofs.offset = die->offset;
9618 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
9619 if (slot)
9620 return slot->type;
9621 else
9622 return NULL;
9623 }
9624
9625 /* Restore the types of the DIE tree starting at START_DIE from the hash
9626 table saved in CU. */
9627
9628 static void
9629 reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
9630 {
9631 struct die_info *die;
9632
9633 if (cu->per_cu->type_hash == NULL)
9634 return;
9635
9636 for (die = start_die; die != NULL; die = die->sibling)
9637 {
9638 die->type = get_die_type (die, cu->per_cu->type_hash);
9639 if (die->child != NULL)
9640 reset_die_and_siblings_types (die->child, cu);
9641 }
9642 }
9643
9644 /* Set the mark field in CU and in every other compilation unit in the
9645 cache that we must keep because we are keeping CU. */
9646
9647 /* Add a dependence relationship from CU to REF_PER_CU. */
9648
9649 static void
9650 dwarf2_add_dependence (struct dwarf2_cu *cu,
9651 struct dwarf2_per_cu_data *ref_per_cu)
9652 {
9653 void **slot;
9654
9655 if (cu->dependencies == NULL)
9656 cu->dependencies
9657 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
9658 NULL, &cu->comp_unit_obstack,
9659 hashtab_obstack_allocate,
9660 dummy_obstack_deallocate);
9661
9662 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
9663 if (*slot == NULL)
9664 *slot = ref_per_cu;
9665 }
9666
9667 /* Set the mark field in CU and in every other compilation unit in the
9668 cache that we must keep because we are keeping CU. */
9669
9670 static int
9671 dwarf2_mark_helper (void **slot, void *data)
9672 {
9673 struct dwarf2_per_cu_data *per_cu;
9674
9675 per_cu = (struct dwarf2_per_cu_data *) *slot;
9676 if (per_cu->cu->mark)
9677 return 1;
9678 per_cu->cu->mark = 1;
9679
9680 if (per_cu->cu->dependencies != NULL)
9681 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
9682
9683 return 1;
9684 }
9685
9686 static void
9687 dwarf2_mark (struct dwarf2_cu *cu)
9688 {
9689 if (cu->mark)
9690 return;
9691 cu->mark = 1;
9692 if (cu->dependencies != NULL)
9693 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
9694 }
9695
9696 static void
9697 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
9698 {
9699 while (per_cu)
9700 {
9701 per_cu->cu->mark = 0;
9702 per_cu = per_cu->cu->read_in_chain;
9703 }
9704 }
9705
9706 /* Trivial hash function for partial_die_info: the hash value of a DIE
9707 is its offset in .debug_info for this objfile. */
9708
9709 static hashval_t
9710 partial_die_hash (const void *item)
9711 {
9712 const struct partial_die_info *part_die = item;
9713 return part_die->offset;
9714 }
9715
9716 /* Trivial comparison function for partial_die_info structures: two DIEs
9717 are equal if they have the same offset. */
9718
9719 static int
9720 partial_die_eq (const void *item_lhs, const void *item_rhs)
9721 {
9722 const struct partial_die_info *part_die_lhs = item_lhs;
9723 const struct partial_die_info *part_die_rhs = item_rhs;
9724 return part_die_lhs->offset == part_die_rhs->offset;
9725 }
9726
9727 static struct cmd_list_element *set_dwarf2_cmdlist;
9728 static struct cmd_list_element *show_dwarf2_cmdlist;
9729
9730 static void
9731 set_dwarf2_cmd (char *args, int from_tty)
9732 {
9733 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
9734 }
9735
9736 static void
9737 show_dwarf2_cmd (char *args, int from_tty)
9738 {
9739 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
9740 }
9741
9742 void _initialize_dwarf2_read (void);
9743
9744 void
9745 _initialize_dwarf2_read (void)
9746 {
9747 dwarf2_objfile_data_key = register_objfile_data ();
9748
9749 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
9750 Set DWARF 2 specific variables.\n\
9751 Configure DWARF 2 variables such as the cache size"),
9752 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
9753 0/*allow-unknown*/, &maintenance_set_cmdlist);
9754
9755 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
9756 Show DWARF 2 specific variables\n\
9757 Show DWARF 2 variables such as the cache size"),
9758 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
9759 0/*allow-unknown*/, &maintenance_show_cmdlist);
9760
9761 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
9762 &dwarf2_max_cache_age, _("\
9763 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
9764 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
9765 A higher limit means that cached compilation units will be stored\n\
9766 in memory longer, and more total memory will be used. Zero disables\n\
9767 caching, which can slow down startup."),
9768 NULL,
9769 show_dwarf2_max_cache_age,
9770 &set_dwarf2_cmdlist,
9771 &show_dwarf2_cmdlist);
9772 }
This page took 0.272666 seconds and 5 git commands to generate.