S390: Hardware breakpoint support
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2016 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72 #include "namespace.h"
73
74 #include <fcntl.h>
75 #include <sys/types.h>
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 /* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83 static unsigned int dwarf_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf_die_debug = 0;
87
88 /* When non-zero, dump line number entries as they are read in. */
89 static unsigned int dwarf_line_debug = 0;
90
91 /* When non-zero, cross-check physname against demangler. */
92 static int check_physname = 0;
93
94 /* When non-zero, do not reject deprecated .gdb_index sections. */
95 static int use_deprecated_index_sections = 0;
96
97 static const struct objfile_data *dwarf2_objfile_data_key;
98
99 /* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101 static int dwarf2_locexpr_index;
102 static int dwarf2_loclist_index;
103 static int dwarf2_locexpr_block_index;
104 static int dwarf2_loclist_block_index;
105
106 /* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
122 struct dwarf2_section_info
123 {
124 union
125 {
126 /* If this is a real section, the bfd section. */
127 asection *section;
128 /* If this is a virtual section, pointer to the containing ("real")
129 section. */
130 struct dwarf2_section_info *containing_section;
131 } s;
132 /* Pointer to section data, only valid if readin. */
133 const gdb_byte *buffer;
134 /* The size of the section, real or virtual. */
135 bfd_size_type size;
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
139 /* True if we have tried to read this section. */
140 char readin;
141 /* True if this is a virtual section, False otherwise.
142 This specifies which of s.section and s.containing_section to use. */
143 char is_virtual;
144 };
145
146 typedef struct dwarf2_section_info dwarf2_section_info_def;
147 DEF_VEC_O (dwarf2_section_info_def);
148
149 /* All offsets in the index are of this type. It must be
150 architecture-independent. */
151 typedef uint32_t offset_type;
152
153 DEF_VEC_I (offset_type);
154
155 /* Ensure only legit values are used. */
156 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162 /* Ensure only legit values are used. */
163 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
171 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177 /* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179 struct mapped_index
180 {
181 /* Index data format version. */
182 int version;
183
184 /* The total length of the buffer. */
185 off_t total_size;
186
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
189
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
192
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
195
196 /* Size in slots, each slot is 2 offset_types. */
197 offset_type symbol_table_slots;
198
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201 };
202
203 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204 DEF_VEC_P (dwarf2_per_cu_ptr);
205
206 struct tu_stats
207 {
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213 };
214
215 /* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
218 struct dwarf2_per_objfile
219 {
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
225 struct dwarf2_section_info macro;
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
228 struct dwarf2_section_info addr;
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
231 struct dwarf2_section_info gdb_index;
232
233 VEC (dwarf2_section_info_def) *types;
234
235 /* Back link. */
236 struct objfile *objfile;
237
238 /* Table of all the compilation units. This is used to locate
239 the target compilation unit of a particular reference. */
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
245 /* The number of .debug_types-related CUs. */
246 int n_type_units;
247
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
254 struct signatured_type **all_type_units;
255
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
259
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
266 struct tu_stats tu_stats;
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
289
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
292 unsigned char using_index;
293
294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
295 struct mapped_index *index_table;
296
297 /* When using index_table, this keeps track of all quick_file_names entries.
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
304 htab_t quick_file_names_table;
305
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
309
310 /* Table mapping type DIEs to their struct type *.
311 This is NULL if not allocated yet.
312 The mapping is done via (CU/TU + DIE offset) -> type. */
313 htab_t die_type_hash;
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
320 };
321
322 static struct dwarf2_per_objfile *dwarf2_per_objfile;
323
324 /* Default names of the debugging sections. */
325
326 /* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
329 static const struct dwarf2_debug_sections dwarf2_elf_names =
330 {
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
336 { ".debug_macro", ".zdebug_macro" },
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
340 { ".debug_addr", ".zdebug_addr" },
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
343 { ".gdb_index", ".zgdb_index" },
344 23
345 };
346
347 /* List of DWO/DWP sections. */
348
349 static const struct dwop_section_names
350 {
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
362 }
363 dwop_section_names =
364 {
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
376 };
377
378 /* local data types */
379
380 /* The data in a compilation unit header, after target2host
381 translation, looks like this. */
382 struct comp_unit_head
383 {
384 unsigned int length;
385 short version;
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
388 sect_offset abbrev_offset;
389
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
392
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
395
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
398 sect_offset offset;
399
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
402 cu_offset first_die_offset;
403 };
404
405 /* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407 struct delayed_method_info
408 {
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423 };
424
425 typedef struct delayed_method_info delayed_method_info;
426 DEF_VEC_O (delayed_method_info);
427
428 /* Internal state when decoding a particular compilation unit. */
429 struct dwarf2_cu
430 {
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
434 /* The header of the compilation unit. */
435 struct comp_unit_head header;
436
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
447 const char *producer;
448
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
464
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
479 /* Backlink to our per_cu entry. */
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
487 htab_t die_hash;
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE. */
521 ULONGEST addr_base;
522
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
525 Note this value comes from the Fission stub CU/TU's DIE.
526 Also note that the value is zero in the non-DWO case so this value can
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
533 ULONGEST ranges_base;
534
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
542 unsigned int has_loclist : 1;
543
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
550 unsigned int producer_is_gcc_lt_4_3 : 1;
551 unsigned int producer_is_icc : 1;
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
558 };
559
560 /* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
562 read_symtab_private field of the psymtab. */
563
564 struct dwarf2_per_cu_data
565 {
566 /* The start offset and length of this compilation unit.
567 NOTE: Unlike comp_unit_head.length, this length includes
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
571 sect_offset offset;
572 unsigned int length;
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
576 unsigned int queued : 1;
577
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
587 unsigned int is_debug_types : 1;
588
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
611 struct dwarf2_section_info *section;
612
613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
616 struct dwarf2_cu *cu;
617
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
621 struct objfile *objfile;
622
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
628 or NULL for unread partial units. */
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
634
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
654 };
655
656 /* Entry in the signatured_types hash table. */
657
658 struct signatured_type
659 {
660 /* The "per_cu" object of this type.
661 This struct is used iff per_cu.is_debug_types.
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
666 /* The type's signature. */
667 ULONGEST signature;
668
669 /* Offset in the TU of the type's DIE, as read from the TU header.
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
693 };
694
695 typedef struct signatured_type *sig_type_ptr;
696 DEF_VEC_P (sig_type_ptr);
697
698 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701 struct stmt_list_hash
702 {
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708 };
709
710 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713 struct type_unit_group
714 {
715 /* dwarf2read.c's main "handle" on a TU symtab.
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
720 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
721 struct dwarf2_per_cu_data per_cu;
722
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
727
728 /* The compunit symtab.
729 Type units in a group needn't all be defined in the same source file,
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
732
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749 };
750
751 /* These sections are what may appear in a (real or virtual) DWO file. */
752
753 struct dwo_sections
754 {
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
764 VEC (dwarf2_section_info_def) *types;
765 };
766
767 /* CUs/TUs in DWP/DWO files. */
768
769 struct dwo_unit
770 {
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
780 struct dwarf2_section_info *section;
781
782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788 };
789
790 /* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794 enum dwp_v2_section_ids
795 {
796 DW_SECT_MIN = 1
797 };
798
799 /* Data for one DWO file.
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
809
810 struct dwo_file
811 {
812 /* The DW_AT_GNU_dwo_name attribute.
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
820
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
824
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
828 struct dwo_sections sections;
829
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840 };
841
842 /* These sections are what may appear in a DWP file. */
843
844 struct dwp_sections
845 {
846 /* These are used by both DWP version 1 and 2. */
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
867 };
868
869 /* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
871
872 struct virtual_v1_dwo_sections
873 {
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
881 That is recorded here, and copied to dwo_unit.section. */
882 struct dwarf2_section_info info_or_types;
883 };
884
885 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890 struct virtual_v2_dwo_sections
891 {
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914 };
915
916 /* Contents of DWP hash tables. */
917
918 struct dwp_hash_table
919 {
920 uint32_t version, nr_columns;
921 uint32_t nr_units, nr_slots;
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933 #define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
945 };
946
947 /* Data for one DWP file. */
948
949 struct dwp_file
950 {
951 /* Name of the file. */
952 const char *name;
953
954 /* File format version. */
955 int version;
956
957 /* The bfd. */
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
963 /* Table of CUs in the file. */
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
972
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
975 unsigned int num_sections;
976 asection **elf_sections;
977 };
978
979 /* This represents a '.dwz' file. */
980
981 struct dwz_file
982 {
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
989 struct dwarf2_section_info gdb_index;
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993 };
994
995 /* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
998 struct exists to abstract away the constant parameters of die reading. */
999
1000 struct die_reader_specs
1001 {
1002 /* The bfd of die_section. */
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1009 struct dwo_file *dwo_file;
1010
1011 /* The section the die comes from.
1012 This is either .debug_info or .debug_types, or the .dwo variants. */
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
1016 const gdb_byte *buffer;
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
1023 };
1024
1025 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1026 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1027 const gdb_byte *info_ptr,
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
1032 struct file_entry
1033 {
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
1042 };
1043
1044 /* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047 struct line_header
1048 {
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
1059 unsigned char maximum_ops_per_instruction;
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
1076 const char **include_dirs;
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
1082 struct file_entry *file_names;
1083
1084 /* The start and end of the statement program following this
1085 header. These point into dwarf2_per_objfile->line_buffer. */
1086 const gdb_byte *statement_program_start, *statement_program_end;
1087 };
1088
1089 /* When we construct a partial symbol table entry we only
1090 need this much information. */
1091 struct partial_die_info
1092 {
1093 /* Offset of this DIE. */
1094 sect_offset offset;
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
1106 unsigned int may_be_inlined : 1;
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
1130 /* The name of this DIE. Normally the value of DW_AT_name, but
1131 sometimes a default name for unnamed DIEs. */
1132 const char *name;
1133
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
1140 const char *scope;
1141
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
1155
1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1157 DW_AT_sibling, if any. */
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
1160 const gdb_byte *sibling;
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
1165 sect_offset spec_offset;
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
1170 };
1171
1172 /* This data structure holds the information of an abbrev. */
1173 struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183 struct attr_abbrev
1184 {
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
1187 };
1188
1189 /* Size of abbrev_table.abbrev_hash_table. */
1190 #define ABBREV_HASH_SIZE 121
1191
1192 /* Top level data structure to contain an abbreviation table. */
1193
1194 struct abbrev_table
1195 {
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208 };
1209
1210 /* Attributes have a name and a value. */
1211 struct attribute
1212 {
1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
1221 union
1222 {
1223 const char *str;
1224 struct dwarf_block *blk;
1225 ULONGEST unsnd;
1226 LONGEST snd;
1227 CORE_ADDR addr;
1228 ULONGEST signature;
1229 }
1230 u;
1231 };
1232
1233 /* This data structure holds a complete die structure. */
1234 struct die_info
1235 {
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
1245
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
1252 /* Offset in .debug_info or .debug_types section. */
1253 sect_offset offset;
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
1258 together via their SIBLING fields. */
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
1262
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
1267 };
1268
1269 /* Get at parts of an attribute structure. */
1270
1271 #define DW_STRING(attr) ((attr)->u.str)
1272 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1273 #define DW_UNSND(attr) ((attr)->u.unsnd)
1274 #define DW_BLOCK(attr) ((attr)->u.blk)
1275 #define DW_SND(attr) ((attr)->u.snd)
1276 #define DW_ADDR(attr) ((attr)->u.addr)
1277 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1278
1279 /* Blocks are a bunch of untyped bytes. */
1280 struct dwarf_block
1281 {
1282 size_t size;
1283
1284 /* Valid only if SIZE is not zero. */
1285 const gdb_byte *data;
1286 };
1287
1288 #ifndef ATTR_ALLOC_CHUNK
1289 #define ATTR_ALLOC_CHUNK 4
1290 #endif
1291
1292 /* Allocate fields for structs, unions and enums in this size. */
1293 #ifndef DW_FIELD_ALLOC_CHUNK
1294 #define DW_FIELD_ALLOC_CHUNK 4
1295 #endif
1296
1297 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300 static int bits_per_byte = 8;
1301
1302 struct nextfield
1303 {
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308 };
1309
1310 struct nextfnfield
1311 {
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314 };
1315
1316 struct fnfieldlist
1317 {
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321 };
1322
1323 struct typedef_field_list
1324 {
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327 };
1328
1329 /* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332 struct field_info
1333 {
1334 /* List of data member and baseclasses fields. */
1335 struct nextfield *fields, *baseclasses;
1336
1337 /* Number of fields (including baseclasses). */
1338 int nfields;
1339
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
1342
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
1345
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
1348 struct nextfnfield *fnfields;
1349
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
1353 struct fnfieldlist *fnfieldlists;
1354
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1360 struct typedef_field_list *typedef_field_list;
1361 unsigned typedef_field_list_count;
1362 };
1363
1364 /* One item on the queue of compilation units to read in full symbols
1365 for. */
1366 struct dwarf2_queue_item
1367 {
1368 struct dwarf2_per_cu_data *per_cu;
1369 enum language pretend_language;
1370 struct dwarf2_queue_item *next;
1371 };
1372
1373 /* The current queue. */
1374 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
1376 /* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
1381 static int dwarf_max_cache_age = 5;
1382 static void
1383 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
1385 {
1386 fprintf_filtered (file, _("The upper bound on the age of cached "
1387 "DWARF compilation units is %s.\n"),
1388 value);
1389 }
1390 \f
1391 /* local function prototypes */
1392
1393 static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395 static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
1397 static void dwarf2_locate_sections (bfd *, asection *, void *);
1398
1399 static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
1402 static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
1405 static void dwarf2_build_psymtabs_hard (struct objfile *);
1406
1407 static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
1409 int, struct dwarf2_cu *);
1410
1411 static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
1413
1414 static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1416 int set_addrmap, struct dwarf2_cu *cu);
1417
1418 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1419 CORE_ADDR *highpc, int set_addrmap,
1420 struct dwarf2_cu *cu);
1421
1422 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
1424
1425 static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1427 int need_pc, struct dwarf2_cu *cu);
1428
1429 static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
1431
1432 static void psymtab_to_symtab_1 (struct partial_symtab *);
1433
1434 static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437 static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440 static void abbrev_table_free (struct abbrev_table *);
1441
1442 static void abbrev_table_free_cleanup (void *);
1443
1444 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
1446
1447 static void dwarf2_free_abbrev_table (void *);
1448
1449 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1450
1451 static struct partial_die_info *load_partial_dies
1452 (const struct die_reader_specs *, const gdb_byte *, int);
1453
1454 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
1459
1460 static struct partial_die_info *find_partial_die (sect_offset, int,
1461 struct dwarf2_cu *);
1462
1463 static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
1466 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
1469
1470 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1471
1472 static int read_1_signed_byte (bfd *, const gdb_byte *);
1473
1474 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1475
1476 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1477
1478 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1479
1480 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1481 unsigned int *);
1482
1483 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static LONGEST read_checked_initial_length_and_offset
1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1487 unsigned int *, unsigned int *);
1488
1489 static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
1491 unsigned int *);
1492
1493 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1494
1495 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
1498 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1499
1500 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1501
1502 static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
1505
1506 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1507
1508 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1509
1510 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1511
1512 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
1514 unsigned int *);
1515
1516 static const char *read_str_index (const struct die_reader_specs *reader,
1517 ULONGEST str_index);
1518
1519 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1520
1521 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
1523
1524 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1525 unsigned int);
1526
1527 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1528 struct dwarf2_cu *cu);
1529
1530 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1531 struct dwarf2_cu *cu);
1532
1533 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1534
1535 static struct die_info *die_specification (struct die_info *die,
1536 struct dwarf2_cu **);
1537
1538 static void free_line_header (struct line_header *lh);
1539
1540 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1541 struct dwarf2_cu *cu);
1542
1543 static void dwarf_decode_lines (struct line_header *, const char *,
1544 struct dwarf2_cu *, struct partial_symtab *,
1545 CORE_ADDR, int decode_mapping);
1546
1547 static void dwarf2_start_subfile (const char *, const char *);
1548
1549 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1550 const char *, const char *,
1551 CORE_ADDR);
1552
1553 static struct symbol *new_symbol (struct die_info *, struct type *,
1554 struct dwarf2_cu *);
1555
1556 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1557 struct dwarf2_cu *, struct symbol *);
1558
1559 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1560 struct dwarf2_cu *);
1561
1562 static void dwarf2_const_value_attr (const struct attribute *attr,
1563 struct type *type,
1564 const char *name,
1565 struct obstack *obstack,
1566 struct dwarf2_cu *cu, LONGEST *value,
1567 const gdb_byte **bytes,
1568 struct dwarf2_locexpr_baton **baton);
1569
1570 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1571
1572 static int need_gnat_info (struct dwarf2_cu *);
1573
1574 static struct type *die_descriptive_type (struct die_info *,
1575 struct dwarf2_cu *);
1576
1577 static void set_descriptive_type (struct type *, struct die_info *,
1578 struct dwarf2_cu *);
1579
1580 static struct type *die_containing_type (struct die_info *,
1581 struct dwarf2_cu *);
1582
1583 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1584 struct dwarf2_cu *);
1585
1586 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1587
1588 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1589
1590 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1591
1592 static char *typename_concat (struct obstack *obs, const char *prefix,
1593 const char *suffix, int physname,
1594 struct dwarf2_cu *cu);
1595
1596 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1597
1598 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1599
1600 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1601
1602 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1603
1604 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1605
1606 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *, struct partial_symtab *);
1608
1609 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1610 values. Keep the items ordered with increasing constraints compliance. */
1611 enum pc_bounds_kind
1612 {
1613 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1614 PC_BOUNDS_NOT_PRESENT,
1615
1616 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1617 were present but they do not form a valid range of PC addresses. */
1618 PC_BOUNDS_INVALID,
1619
1620 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1621 PC_BOUNDS_RANGES,
1622
1623 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1624 PC_BOUNDS_HIGH_LOW,
1625 };
1626
1627 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1628 CORE_ADDR *, CORE_ADDR *,
1629 struct dwarf2_cu *,
1630 struct partial_symtab *);
1631
1632 static void get_scope_pc_bounds (struct die_info *,
1633 CORE_ADDR *, CORE_ADDR *,
1634 struct dwarf2_cu *);
1635
1636 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1637 CORE_ADDR, struct dwarf2_cu *);
1638
1639 static void dwarf2_add_field (struct field_info *, struct die_info *,
1640 struct dwarf2_cu *);
1641
1642 static void dwarf2_attach_fields_to_type (struct field_info *,
1643 struct type *, struct dwarf2_cu *);
1644
1645 static void dwarf2_add_member_fn (struct field_info *,
1646 struct die_info *, struct type *,
1647 struct dwarf2_cu *);
1648
1649 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1650 struct type *,
1651 struct dwarf2_cu *);
1652
1653 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1654
1655 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1656
1657 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1658
1659 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1660
1661 static struct using_direct **using_directives (enum language);
1662
1663 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1664
1665 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1666
1667 static struct type *read_module_type (struct die_info *die,
1668 struct dwarf2_cu *cu);
1669
1670 static const char *namespace_name (struct die_info *die,
1671 int *is_anonymous, struct dwarf2_cu *);
1672
1673 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1674
1675 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1676
1677 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1678 struct dwarf2_cu *);
1679
1680 static struct die_info *read_die_and_siblings_1
1681 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1682 struct die_info *);
1683
1684 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1685 const gdb_byte *info_ptr,
1686 const gdb_byte **new_info_ptr,
1687 struct die_info *parent);
1688
1689 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1690 struct die_info **, const gdb_byte *,
1691 int *, int);
1692
1693 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1694 struct die_info **, const gdb_byte *,
1695 int *);
1696
1697 static void process_die (struct die_info *, struct dwarf2_cu *);
1698
1699 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1700 struct obstack *);
1701
1702 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1703
1704 static const char *dwarf2_full_name (const char *name,
1705 struct die_info *die,
1706 struct dwarf2_cu *cu);
1707
1708 static const char *dwarf2_physname (const char *name, struct die_info *die,
1709 struct dwarf2_cu *cu);
1710
1711 static struct die_info *dwarf2_extension (struct die_info *die,
1712 struct dwarf2_cu **);
1713
1714 static const char *dwarf_tag_name (unsigned int);
1715
1716 static const char *dwarf_attr_name (unsigned int);
1717
1718 static const char *dwarf_form_name (unsigned int);
1719
1720 static char *dwarf_bool_name (unsigned int);
1721
1722 static const char *dwarf_type_encoding_name (unsigned int);
1723
1724 static struct die_info *sibling_die (struct die_info *);
1725
1726 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1727
1728 static void dump_die_for_error (struct die_info *);
1729
1730 static void dump_die_1 (struct ui_file *, int level, int max_level,
1731 struct die_info *);
1732
1733 /*static*/ void dump_die (struct die_info *, int max_level);
1734
1735 static void store_in_ref_table (struct die_info *,
1736 struct dwarf2_cu *);
1737
1738 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1739
1740 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1741
1742 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1743 const struct attribute *,
1744 struct dwarf2_cu **);
1745
1746 static struct die_info *follow_die_ref (struct die_info *,
1747 const struct attribute *,
1748 struct dwarf2_cu **);
1749
1750 static struct die_info *follow_die_sig (struct die_info *,
1751 const struct attribute *,
1752 struct dwarf2_cu **);
1753
1754 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1755 struct dwarf2_cu *);
1756
1757 static struct type *get_DW_AT_signature_type (struct die_info *,
1758 const struct attribute *,
1759 struct dwarf2_cu *);
1760
1761 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1762
1763 static void read_signatured_type (struct signatured_type *);
1764
1765 static int attr_to_dynamic_prop (const struct attribute *attr,
1766 struct die_info *die, struct dwarf2_cu *cu,
1767 struct dynamic_prop *prop);
1768
1769 /* memory allocation interface */
1770
1771 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1772
1773 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1774
1775 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1776
1777 static int attr_form_is_block (const struct attribute *);
1778
1779 static int attr_form_is_section_offset (const struct attribute *);
1780
1781 static int attr_form_is_constant (const struct attribute *);
1782
1783 static int attr_form_is_ref (const struct attribute *);
1784
1785 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1786 struct dwarf2_loclist_baton *baton,
1787 const struct attribute *attr);
1788
1789 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1790 struct symbol *sym,
1791 struct dwarf2_cu *cu,
1792 int is_block);
1793
1794 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1795 const gdb_byte *info_ptr,
1796 struct abbrev_info *abbrev);
1797
1798 static void free_stack_comp_unit (void *);
1799
1800 static hashval_t partial_die_hash (const void *item);
1801
1802 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1803
1804 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1805 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1806
1807 static void init_one_comp_unit (struct dwarf2_cu *cu,
1808 struct dwarf2_per_cu_data *per_cu);
1809
1810 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1811 struct die_info *comp_unit_die,
1812 enum language pretend_language);
1813
1814 static void free_heap_comp_unit (void *);
1815
1816 static void free_cached_comp_units (void *);
1817
1818 static void age_cached_comp_units (void);
1819
1820 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1821
1822 static struct type *set_die_type (struct die_info *, struct type *,
1823 struct dwarf2_cu *);
1824
1825 static void create_all_comp_units (struct objfile *);
1826
1827 static int create_all_type_units (struct objfile *);
1828
1829 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1830 enum language);
1831
1832 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1833 enum language);
1834
1835 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1836 enum language);
1837
1838 static void dwarf2_add_dependence (struct dwarf2_cu *,
1839 struct dwarf2_per_cu_data *);
1840
1841 static void dwarf2_mark (struct dwarf2_cu *);
1842
1843 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1844
1845 static struct type *get_die_type_at_offset (sect_offset,
1846 struct dwarf2_per_cu_data *);
1847
1848 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1849
1850 static void dwarf2_release_queue (void *dummy);
1851
1852 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1853 enum language pretend_language);
1854
1855 static void process_queue (void);
1856
1857 static void find_file_and_directory (struct die_info *die,
1858 struct dwarf2_cu *cu,
1859 const char **name, const char **comp_dir);
1860
1861 static char *file_full_name (int file, struct line_header *lh,
1862 const char *comp_dir);
1863
1864 static const gdb_byte *read_and_check_comp_unit_head
1865 (struct comp_unit_head *header,
1866 struct dwarf2_section_info *section,
1867 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1868 int is_debug_types_section);
1869
1870 static void init_cutu_and_read_dies
1871 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1872 int use_existing_cu, int keep,
1873 die_reader_func_ftype *die_reader_func, void *data);
1874
1875 static void init_cutu_and_read_dies_simple
1876 (struct dwarf2_per_cu_data *this_cu,
1877 die_reader_func_ftype *die_reader_func, void *data);
1878
1879 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1880
1881 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1882
1883 static struct dwo_unit *lookup_dwo_unit_in_dwp
1884 (struct dwp_file *dwp_file, const char *comp_dir,
1885 ULONGEST signature, int is_debug_types);
1886
1887 static struct dwp_file *get_dwp_file (void);
1888
1889 static struct dwo_unit *lookup_dwo_comp_unit
1890 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1891
1892 static struct dwo_unit *lookup_dwo_type_unit
1893 (struct signatured_type *, const char *, const char *);
1894
1895 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1896
1897 static void free_dwo_file_cleanup (void *);
1898
1899 static void process_cu_includes (void);
1900
1901 static void check_producer (struct dwarf2_cu *cu);
1902
1903 static void free_line_header_voidp (void *arg);
1904 \f
1905 /* Various complaints about symbol reading that don't abort the process. */
1906
1907 static void
1908 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1909 {
1910 complaint (&symfile_complaints,
1911 _("statement list doesn't fit in .debug_line section"));
1912 }
1913
1914 static void
1915 dwarf2_debug_line_missing_file_complaint (void)
1916 {
1917 complaint (&symfile_complaints,
1918 _(".debug_line section has line data without a file"));
1919 }
1920
1921 static void
1922 dwarf2_debug_line_missing_end_sequence_complaint (void)
1923 {
1924 complaint (&symfile_complaints,
1925 _(".debug_line section has line "
1926 "program sequence without an end"));
1927 }
1928
1929 static void
1930 dwarf2_complex_location_expr_complaint (void)
1931 {
1932 complaint (&symfile_complaints, _("location expression too complex"));
1933 }
1934
1935 static void
1936 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1937 int arg3)
1938 {
1939 complaint (&symfile_complaints,
1940 _("const value length mismatch for '%s', got %d, expected %d"),
1941 arg1, arg2, arg3);
1942 }
1943
1944 static void
1945 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1946 {
1947 complaint (&symfile_complaints,
1948 _("debug info runs off end of %s section"
1949 " [in module %s]"),
1950 get_section_name (section),
1951 get_section_file_name (section));
1952 }
1953
1954 static void
1955 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1956 {
1957 complaint (&symfile_complaints,
1958 _("macro debug info contains a "
1959 "malformed macro definition:\n`%s'"),
1960 arg1);
1961 }
1962
1963 static void
1964 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1965 {
1966 complaint (&symfile_complaints,
1967 _("invalid attribute class or form for '%s' in '%s'"),
1968 arg1, arg2);
1969 }
1970
1971 /* Hash function for line_header_hash. */
1972
1973 static hashval_t
1974 line_header_hash (const struct line_header *ofs)
1975 {
1976 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1977 }
1978
1979 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1980
1981 static hashval_t
1982 line_header_hash_voidp (const void *item)
1983 {
1984 const struct line_header *ofs = (const struct line_header *) item;
1985
1986 return line_header_hash (ofs);
1987 }
1988
1989 /* Equality function for line_header_hash. */
1990
1991 static int
1992 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1993 {
1994 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1995 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1996
1997 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1998 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1999 }
2000
2001 \f
2002 #if WORDS_BIGENDIAN
2003
2004 /* Convert VALUE between big- and little-endian. */
2005 static offset_type
2006 byte_swap (offset_type value)
2007 {
2008 offset_type result;
2009
2010 result = (value & 0xff) << 24;
2011 result |= (value & 0xff00) << 8;
2012 result |= (value & 0xff0000) >> 8;
2013 result |= (value & 0xff000000) >> 24;
2014 return result;
2015 }
2016
2017 #define MAYBE_SWAP(V) byte_swap (V)
2018
2019 #else
2020 #define MAYBE_SWAP(V) (V)
2021 #endif /* WORDS_BIGENDIAN */
2022
2023 /* Read the given attribute value as an address, taking the attribute's
2024 form into account. */
2025
2026 static CORE_ADDR
2027 attr_value_as_address (struct attribute *attr)
2028 {
2029 CORE_ADDR addr;
2030
2031 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2032 {
2033 /* Aside from a few clearly defined exceptions, attributes that
2034 contain an address must always be in DW_FORM_addr form.
2035 Unfortunately, some compilers happen to be violating this
2036 requirement by encoding addresses using other forms, such
2037 as DW_FORM_data4 for example. For those broken compilers,
2038 we try to do our best, without any guarantee of success,
2039 to interpret the address correctly. It would also be nice
2040 to generate a complaint, but that would require us to maintain
2041 a list of legitimate cases where a non-address form is allowed,
2042 as well as update callers to pass in at least the CU's DWARF
2043 version. This is more overhead than what we're willing to
2044 expand for a pretty rare case. */
2045 addr = DW_UNSND (attr);
2046 }
2047 else
2048 addr = DW_ADDR (attr);
2049
2050 return addr;
2051 }
2052
2053 /* The suffix for an index file. */
2054 #define INDEX_SUFFIX ".gdb-index"
2055
2056 /* Try to locate the sections we need for DWARF 2 debugging
2057 information and return true if we have enough to do something.
2058 NAMES points to the dwarf2 section names, or is NULL if the standard
2059 ELF names are used. */
2060
2061 int
2062 dwarf2_has_info (struct objfile *objfile,
2063 const struct dwarf2_debug_sections *names)
2064 {
2065 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2066 objfile_data (objfile, dwarf2_objfile_data_key));
2067 if (!dwarf2_per_objfile)
2068 {
2069 /* Initialize per-objfile state. */
2070 struct dwarf2_per_objfile *data
2071 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2072
2073 memset (data, 0, sizeof (*data));
2074 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2075 dwarf2_per_objfile = data;
2076
2077 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2078 (void *) names);
2079 dwarf2_per_objfile->objfile = objfile;
2080 }
2081 return (!dwarf2_per_objfile->info.is_virtual
2082 && dwarf2_per_objfile->info.s.section != NULL
2083 && !dwarf2_per_objfile->abbrev.is_virtual
2084 && dwarf2_per_objfile->abbrev.s.section != NULL);
2085 }
2086
2087 /* Return the containing section of virtual section SECTION. */
2088
2089 static struct dwarf2_section_info *
2090 get_containing_section (const struct dwarf2_section_info *section)
2091 {
2092 gdb_assert (section->is_virtual);
2093 return section->s.containing_section;
2094 }
2095
2096 /* Return the bfd owner of SECTION. */
2097
2098 static struct bfd *
2099 get_section_bfd_owner (const struct dwarf2_section_info *section)
2100 {
2101 if (section->is_virtual)
2102 {
2103 section = get_containing_section (section);
2104 gdb_assert (!section->is_virtual);
2105 }
2106 return section->s.section->owner;
2107 }
2108
2109 /* Return the bfd section of SECTION.
2110 Returns NULL if the section is not present. */
2111
2112 static asection *
2113 get_section_bfd_section (const struct dwarf2_section_info *section)
2114 {
2115 if (section->is_virtual)
2116 {
2117 section = get_containing_section (section);
2118 gdb_assert (!section->is_virtual);
2119 }
2120 return section->s.section;
2121 }
2122
2123 /* Return the name of SECTION. */
2124
2125 static const char *
2126 get_section_name (const struct dwarf2_section_info *section)
2127 {
2128 asection *sectp = get_section_bfd_section (section);
2129
2130 gdb_assert (sectp != NULL);
2131 return bfd_section_name (get_section_bfd_owner (section), sectp);
2132 }
2133
2134 /* Return the name of the file SECTION is in. */
2135
2136 static const char *
2137 get_section_file_name (const struct dwarf2_section_info *section)
2138 {
2139 bfd *abfd = get_section_bfd_owner (section);
2140
2141 return bfd_get_filename (abfd);
2142 }
2143
2144 /* Return the id of SECTION.
2145 Returns 0 if SECTION doesn't exist. */
2146
2147 static int
2148 get_section_id (const struct dwarf2_section_info *section)
2149 {
2150 asection *sectp = get_section_bfd_section (section);
2151
2152 if (sectp == NULL)
2153 return 0;
2154 return sectp->id;
2155 }
2156
2157 /* Return the flags of SECTION.
2158 SECTION (or containing section if this is a virtual section) must exist. */
2159
2160 static int
2161 get_section_flags (const struct dwarf2_section_info *section)
2162 {
2163 asection *sectp = get_section_bfd_section (section);
2164
2165 gdb_assert (sectp != NULL);
2166 return bfd_get_section_flags (sectp->owner, sectp);
2167 }
2168
2169 /* When loading sections, we look either for uncompressed section or for
2170 compressed section names. */
2171
2172 static int
2173 section_is_p (const char *section_name,
2174 const struct dwarf2_section_names *names)
2175 {
2176 if (names->normal != NULL
2177 && strcmp (section_name, names->normal) == 0)
2178 return 1;
2179 if (names->compressed != NULL
2180 && strcmp (section_name, names->compressed) == 0)
2181 return 1;
2182 return 0;
2183 }
2184
2185 /* This function is mapped across the sections and remembers the
2186 offset and size of each of the debugging sections we are interested
2187 in. */
2188
2189 static void
2190 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2191 {
2192 const struct dwarf2_debug_sections *names;
2193 flagword aflag = bfd_get_section_flags (abfd, sectp);
2194
2195 if (vnames == NULL)
2196 names = &dwarf2_elf_names;
2197 else
2198 names = (const struct dwarf2_debug_sections *) vnames;
2199
2200 if ((aflag & SEC_HAS_CONTENTS) == 0)
2201 {
2202 }
2203 else if (section_is_p (sectp->name, &names->info))
2204 {
2205 dwarf2_per_objfile->info.s.section = sectp;
2206 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2207 }
2208 else if (section_is_p (sectp->name, &names->abbrev))
2209 {
2210 dwarf2_per_objfile->abbrev.s.section = sectp;
2211 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2212 }
2213 else if (section_is_p (sectp->name, &names->line))
2214 {
2215 dwarf2_per_objfile->line.s.section = sectp;
2216 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2217 }
2218 else if (section_is_p (sectp->name, &names->loc))
2219 {
2220 dwarf2_per_objfile->loc.s.section = sectp;
2221 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2222 }
2223 else if (section_is_p (sectp->name, &names->macinfo))
2224 {
2225 dwarf2_per_objfile->macinfo.s.section = sectp;
2226 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2227 }
2228 else if (section_is_p (sectp->name, &names->macro))
2229 {
2230 dwarf2_per_objfile->macro.s.section = sectp;
2231 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2232 }
2233 else if (section_is_p (sectp->name, &names->str))
2234 {
2235 dwarf2_per_objfile->str.s.section = sectp;
2236 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2237 }
2238 else if (section_is_p (sectp->name, &names->addr))
2239 {
2240 dwarf2_per_objfile->addr.s.section = sectp;
2241 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2242 }
2243 else if (section_is_p (sectp->name, &names->frame))
2244 {
2245 dwarf2_per_objfile->frame.s.section = sectp;
2246 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2247 }
2248 else if (section_is_p (sectp->name, &names->eh_frame))
2249 {
2250 dwarf2_per_objfile->eh_frame.s.section = sectp;
2251 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2252 }
2253 else if (section_is_p (sectp->name, &names->ranges))
2254 {
2255 dwarf2_per_objfile->ranges.s.section = sectp;
2256 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2257 }
2258 else if (section_is_p (sectp->name, &names->types))
2259 {
2260 struct dwarf2_section_info type_section;
2261
2262 memset (&type_section, 0, sizeof (type_section));
2263 type_section.s.section = sectp;
2264 type_section.size = bfd_get_section_size (sectp);
2265
2266 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2267 &type_section);
2268 }
2269 else if (section_is_p (sectp->name, &names->gdb_index))
2270 {
2271 dwarf2_per_objfile->gdb_index.s.section = sectp;
2272 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2273 }
2274
2275 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2276 && bfd_section_vma (abfd, sectp) == 0)
2277 dwarf2_per_objfile->has_section_at_zero = 1;
2278 }
2279
2280 /* A helper function that decides whether a section is empty,
2281 or not present. */
2282
2283 static int
2284 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2285 {
2286 if (section->is_virtual)
2287 return section->size == 0;
2288 return section->s.section == NULL || section->size == 0;
2289 }
2290
2291 /* Read the contents of the section INFO.
2292 OBJFILE is the main object file, but not necessarily the file where
2293 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2294 of the DWO file.
2295 If the section is compressed, uncompress it before returning. */
2296
2297 static void
2298 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2299 {
2300 asection *sectp;
2301 bfd *abfd;
2302 gdb_byte *buf, *retbuf;
2303
2304 if (info->readin)
2305 return;
2306 info->buffer = NULL;
2307 info->readin = 1;
2308
2309 if (dwarf2_section_empty_p (info))
2310 return;
2311
2312 sectp = get_section_bfd_section (info);
2313
2314 /* If this is a virtual section we need to read in the real one first. */
2315 if (info->is_virtual)
2316 {
2317 struct dwarf2_section_info *containing_section =
2318 get_containing_section (info);
2319
2320 gdb_assert (sectp != NULL);
2321 if ((sectp->flags & SEC_RELOC) != 0)
2322 {
2323 error (_("Dwarf Error: DWP format V2 with relocations is not"
2324 " supported in section %s [in module %s]"),
2325 get_section_name (info), get_section_file_name (info));
2326 }
2327 dwarf2_read_section (objfile, containing_section);
2328 /* Other code should have already caught virtual sections that don't
2329 fit. */
2330 gdb_assert (info->virtual_offset + info->size
2331 <= containing_section->size);
2332 /* If the real section is empty or there was a problem reading the
2333 section we shouldn't get here. */
2334 gdb_assert (containing_section->buffer != NULL);
2335 info->buffer = containing_section->buffer + info->virtual_offset;
2336 return;
2337 }
2338
2339 /* If the section has relocations, we must read it ourselves.
2340 Otherwise we attach it to the BFD. */
2341 if ((sectp->flags & SEC_RELOC) == 0)
2342 {
2343 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2344 return;
2345 }
2346
2347 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2348 info->buffer = buf;
2349
2350 /* When debugging .o files, we may need to apply relocations; see
2351 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2352 We never compress sections in .o files, so we only need to
2353 try this when the section is not compressed. */
2354 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2355 if (retbuf != NULL)
2356 {
2357 info->buffer = retbuf;
2358 return;
2359 }
2360
2361 abfd = get_section_bfd_owner (info);
2362 gdb_assert (abfd != NULL);
2363
2364 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2365 || bfd_bread (buf, info->size, abfd) != info->size)
2366 {
2367 error (_("Dwarf Error: Can't read DWARF data"
2368 " in section %s [in module %s]"),
2369 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2370 }
2371 }
2372
2373 /* A helper function that returns the size of a section in a safe way.
2374 If you are positive that the section has been read before using the
2375 size, then it is safe to refer to the dwarf2_section_info object's
2376 "size" field directly. In other cases, you must call this
2377 function, because for compressed sections the size field is not set
2378 correctly until the section has been read. */
2379
2380 static bfd_size_type
2381 dwarf2_section_size (struct objfile *objfile,
2382 struct dwarf2_section_info *info)
2383 {
2384 if (!info->readin)
2385 dwarf2_read_section (objfile, info);
2386 return info->size;
2387 }
2388
2389 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2390 SECTION_NAME. */
2391
2392 void
2393 dwarf2_get_section_info (struct objfile *objfile,
2394 enum dwarf2_section_enum sect,
2395 asection **sectp, const gdb_byte **bufp,
2396 bfd_size_type *sizep)
2397 {
2398 struct dwarf2_per_objfile *data
2399 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2400 dwarf2_objfile_data_key);
2401 struct dwarf2_section_info *info;
2402
2403 /* We may see an objfile without any DWARF, in which case we just
2404 return nothing. */
2405 if (data == NULL)
2406 {
2407 *sectp = NULL;
2408 *bufp = NULL;
2409 *sizep = 0;
2410 return;
2411 }
2412 switch (sect)
2413 {
2414 case DWARF2_DEBUG_FRAME:
2415 info = &data->frame;
2416 break;
2417 case DWARF2_EH_FRAME:
2418 info = &data->eh_frame;
2419 break;
2420 default:
2421 gdb_assert_not_reached ("unexpected section");
2422 }
2423
2424 dwarf2_read_section (objfile, info);
2425
2426 *sectp = get_section_bfd_section (info);
2427 *bufp = info->buffer;
2428 *sizep = info->size;
2429 }
2430
2431 /* A helper function to find the sections for a .dwz file. */
2432
2433 static void
2434 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2435 {
2436 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2437
2438 /* Note that we only support the standard ELF names, because .dwz
2439 is ELF-only (at the time of writing). */
2440 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2441 {
2442 dwz_file->abbrev.s.section = sectp;
2443 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2444 }
2445 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2446 {
2447 dwz_file->info.s.section = sectp;
2448 dwz_file->info.size = bfd_get_section_size (sectp);
2449 }
2450 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2451 {
2452 dwz_file->str.s.section = sectp;
2453 dwz_file->str.size = bfd_get_section_size (sectp);
2454 }
2455 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2456 {
2457 dwz_file->line.s.section = sectp;
2458 dwz_file->line.size = bfd_get_section_size (sectp);
2459 }
2460 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2461 {
2462 dwz_file->macro.s.section = sectp;
2463 dwz_file->macro.size = bfd_get_section_size (sectp);
2464 }
2465 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2466 {
2467 dwz_file->gdb_index.s.section = sectp;
2468 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2469 }
2470 }
2471
2472 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2473 there is no .gnu_debugaltlink section in the file. Error if there
2474 is such a section but the file cannot be found. */
2475
2476 static struct dwz_file *
2477 dwarf2_get_dwz_file (void)
2478 {
2479 bfd *dwz_bfd;
2480 char *data;
2481 struct cleanup *cleanup;
2482 const char *filename;
2483 struct dwz_file *result;
2484 bfd_size_type buildid_len_arg;
2485 size_t buildid_len;
2486 bfd_byte *buildid;
2487
2488 if (dwarf2_per_objfile->dwz_file != NULL)
2489 return dwarf2_per_objfile->dwz_file;
2490
2491 bfd_set_error (bfd_error_no_error);
2492 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2493 &buildid_len_arg, &buildid);
2494 if (data == NULL)
2495 {
2496 if (bfd_get_error () == bfd_error_no_error)
2497 return NULL;
2498 error (_("could not read '.gnu_debugaltlink' section: %s"),
2499 bfd_errmsg (bfd_get_error ()));
2500 }
2501 cleanup = make_cleanup (xfree, data);
2502 make_cleanup (xfree, buildid);
2503
2504 buildid_len = (size_t) buildid_len_arg;
2505
2506 filename = (const char *) data;
2507 if (!IS_ABSOLUTE_PATH (filename))
2508 {
2509 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2510 char *rel;
2511
2512 make_cleanup (xfree, abs);
2513 abs = ldirname (abs);
2514 make_cleanup (xfree, abs);
2515
2516 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2517 make_cleanup (xfree, rel);
2518 filename = rel;
2519 }
2520
2521 /* First try the file name given in the section. If that doesn't
2522 work, try to use the build-id instead. */
2523 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2524 if (dwz_bfd != NULL)
2525 {
2526 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2527 {
2528 gdb_bfd_unref (dwz_bfd);
2529 dwz_bfd = NULL;
2530 }
2531 }
2532
2533 if (dwz_bfd == NULL)
2534 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2535
2536 if (dwz_bfd == NULL)
2537 error (_("could not find '.gnu_debugaltlink' file for %s"),
2538 objfile_name (dwarf2_per_objfile->objfile));
2539
2540 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2541 struct dwz_file);
2542 result->dwz_bfd = dwz_bfd;
2543
2544 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2545
2546 do_cleanups (cleanup);
2547
2548 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2549 dwarf2_per_objfile->dwz_file = result;
2550 return result;
2551 }
2552 \f
2553 /* DWARF quick_symbols_functions support. */
2554
2555 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2556 unique line tables, so we maintain a separate table of all .debug_line
2557 derived entries to support the sharing.
2558 All the quick functions need is the list of file names. We discard the
2559 line_header when we're done and don't need to record it here. */
2560 struct quick_file_names
2561 {
2562 /* The data used to construct the hash key. */
2563 struct stmt_list_hash hash;
2564
2565 /* The number of entries in file_names, real_names. */
2566 unsigned int num_file_names;
2567
2568 /* The file names from the line table, after being run through
2569 file_full_name. */
2570 const char **file_names;
2571
2572 /* The file names from the line table after being run through
2573 gdb_realpath. These are computed lazily. */
2574 const char **real_names;
2575 };
2576
2577 /* When using the index (and thus not using psymtabs), each CU has an
2578 object of this type. This is used to hold information needed by
2579 the various "quick" methods. */
2580 struct dwarf2_per_cu_quick_data
2581 {
2582 /* The file table. This can be NULL if there was no file table
2583 or it's currently not read in.
2584 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2585 struct quick_file_names *file_names;
2586
2587 /* The corresponding symbol table. This is NULL if symbols for this
2588 CU have not yet been read. */
2589 struct compunit_symtab *compunit_symtab;
2590
2591 /* A temporary mark bit used when iterating over all CUs in
2592 expand_symtabs_matching. */
2593 unsigned int mark : 1;
2594
2595 /* True if we've tried to read the file table and found there isn't one.
2596 There will be no point in trying to read it again next time. */
2597 unsigned int no_file_data : 1;
2598 };
2599
2600 /* Utility hash function for a stmt_list_hash. */
2601
2602 static hashval_t
2603 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2604 {
2605 hashval_t v = 0;
2606
2607 if (stmt_list_hash->dwo_unit != NULL)
2608 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2609 v += stmt_list_hash->line_offset.sect_off;
2610 return v;
2611 }
2612
2613 /* Utility equality function for a stmt_list_hash. */
2614
2615 static int
2616 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2617 const struct stmt_list_hash *rhs)
2618 {
2619 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2620 return 0;
2621 if (lhs->dwo_unit != NULL
2622 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2623 return 0;
2624
2625 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2626 }
2627
2628 /* Hash function for a quick_file_names. */
2629
2630 static hashval_t
2631 hash_file_name_entry (const void *e)
2632 {
2633 const struct quick_file_names *file_data
2634 = (const struct quick_file_names *) e;
2635
2636 return hash_stmt_list_entry (&file_data->hash);
2637 }
2638
2639 /* Equality function for a quick_file_names. */
2640
2641 static int
2642 eq_file_name_entry (const void *a, const void *b)
2643 {
2644 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2645 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2646
2647 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2648 }
2649
2650 /* Delete function for a quick_file_names. */
2651
2652 static void
2653 delete_file_name_entry (void *e)
2654 {
2655 struct quick_file_names *file_data = (struct quick_file_names *) e;
2656 int i;
2657
2658 for (i = 0; i < file_data->num_file_names; ++i)
2659 {
2660 xfree ((void*) file_data->file_names[i]);
2661 if (file_data->real_names)
2662 xfree ((void*) file_data->real_names[i]);
2663 }
2664
2665 /* The space for the struct itself lives on objfile_obstack,
2666 so we don't free it here. */
2667 }
2668
2669 /* Create a quick_file_names hash table. */
2670
2671 static htab_t
2672 create_quick_file_names_table (unsigned int nr_initial_entries)
2673 {
2674 return htab_create_alloc (nr_initial_entries,
2675 hash_file_name_entry, eq_file_name_entry,
2676 delete_file_name_entry, xcalloc, xfree);
2677 }
2678
2679 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2680 have to be created afterwards. You should call age_cached_comp_units after
2681 processing PER_CU->CU. dw2_setup must have been already called. */
2682
2683 static void
2684 load_cu (struct dwarf2_per_cu_data *per_cu)
2685 {
2686 if (per_cu->is_debug_types)
2687 load_full_type_unit (per_cu);
2688 else
2689 load_full_comp_unit (per_cu, language_minimal);
2690
2691 if (per_cu->cu == NULL)
2692 return; /* Dummy CU. */
2693
2694 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2695 }
2696
2697 /* Read in the symbols for PER_CU. */
2698
2699 static void
2700 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2701 {
2702 struct cleanup *back_to;
2703
2704 /* Skip type_unit_groups, reading the type units they contain
2705 is handled elsewhere. */
2706 if (IS_TYPE_UNIT_GROUP (per_cu))
2707 return;
2708
2709 back_to = make_cleanup (dwarf2_release_queue, NULL);
2710
2711 if (dwarf2_per_objfile->using_index
2712 ? per_cu->v.quick->compunit_symtab == NULL
2713 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2714 {
2715 queue_comp_unit (per_cu, language_minimal);
2716 load_cu (per_cu);
2717
2718 /* If we just loaded a CU from a DWO, and we're working with an index
2719 that may badly handle TUs, load all the TUs in that DWO as well.
2720 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2721 if (!per_cu->is_debug_types
2722 && per_cu->cu != NULL
2723 && per_cu->cu->dwo_unit != NULL
2724 && dwarf2_per_objfile->index_table != NULL
2725 && dwarf2_per_objfile->index_table->version <= 7
2726 /* DWP files aren't supported yet. */
2727 && get_dwp_file () == NULL)
2728 queue_and_load_all_dwo_tus (per_cu);
2729 }
2730
2731 process_queue ();
2732
2733 /* Age the cache, releasing compilation units that have not
2734 been used recently. */
2735 age_cached_comp_units ();
2736
2737 do_cleanups (back_to);
2738 }
2739
2740 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2741 the objfile from which this CU came. Returns the resulting symbol
2742 table. */
2743
2744 static struct compunit_symtab *
2745 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2746 {
2747 gdb_assert (dwarf2_per_objfile->using_index);
2748 if (!per_cu->v.quick->compunit_symtab)
2749 {
2750 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2751 increment_reading_symtab ();
2752 dw2_do_instantiate_symtab (per_cu);
2753 process_cu_includes ();
2754 do_cleanups (back_to);
2755 }
2756
2757 return per_cu->v.quick->compunit_symtab;
2758 }
2759
2760 /* Return the CU/TU given its index.
2761
2762 This is intended for loops like:
2763
2764 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2765 + dwarf2_per_objfile->n_type_units); ++i)
2766 {
2767 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2768
2769 ...;
2770 }
2771 */
2772
2773 static struct dwarf2_per_cu_data *
2774 dw2_get_cutu (int index)
2775 {
2776 if (index >= dwarf2_per_objfile->n_comp_units)
2777 {
2778 index -= dwarf2_per_objfile->n_comp_units;
2779 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2780 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2781 }
2782
2783 return dwarf2_per_objfile->all_comp_units[index];
2784 }
2785
2786 /* Return the CU given its index.
2787 This differs from dw2_get_cutu in that it's for when you know INDEX
2788 refers to a CU. */
2789
2790 static struct dwarf2_per_cu_data *
2791 dw2_get_cu (int index)
2792 {
2793 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2794
2795 return dwarf2_per_objfile->all_comp_units[index];
2796 }
2797
2798 /* A helper for create_cus_from_index that handles a given list of
2799 CUs. */
2800
2801 static void
2802 create_cus_from_index_list (struct objfile *objfile,
2803 const gdb_byte *cu_list, offset_type n_elements,
2804 struct dwarf2_section_info *section,
2805 int is_dwz,
2806 int base_offset)
2807 {
2808 offset_type i;
2809
2810 for (i = 0; i < n_elements; i += 2)
2811 {
2812 struct dwarf2_per_cu_data *the_cu;
2813 ULONGEST offset, length;
2814
2815 gdb_static_assert (sizeof (ULONGEST) >= 8);
2816 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2817 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2818 cu_list += 2 * 8;
2819
2820 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2821 struct dwarf2_per_cu_data);
2822 the_cu->offset.sect_off = offset;
2823 the_cu->length = length;
2824 the_cu->objfile = objfile;
2825 the_cu->section = section;
2826 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2827 struct dwarf2_per_cu_quick_data);
2828 the_cu->is_dwz = is_dwz;
2829 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2830 }
2831 }
2832
2833 /* Read the CU list from the mapped index, and use it to create all
2834 the CU objects for this objfile. */
2835
2836 static void
2837 create_cus_from_index (struct objfile *objfile,
2838 const gdb_byte *cu_list, offset_type cu_list_elements,
2839 const gdb_byte *dwz_list, offset_type dwz_elements)
2840 {
2841 struct dwz_file *dwz;
2842
2843 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2844 dwarf2_per_objfile->all_comp_units =
2845 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2846 dwarf2_per_objfile->n_comp_units);
2847
2848 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2849 &dwarf2_per_objfile->info, 0, 0);
2850
2851 if (dwz_elements == 0)
2852 return;
2853
2854 dwz = dwarf2_get_dwz_file ();
2855 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2856 cu_list_elements / 2);
2857 }
2858
2859 /* Create the signatured type hash table from the index. */
2860
2861 static void
2862 create_signatured_type_table_from_index (struct objfile *objfile,
2863 struct dwarf2_section_info *section,
2864 const gdb_byte *bytes,
2865 offset_type elements)
2866 {
2867 offset_type i;
2868 htab_t sig_types_hash;
2869
2870 dwarf2_per_objfile->n_type_units
2871 = dwarf2_per_objfile->n_allocated_type_units
2872 = elements / 3;
2873 dwarf2_per_objfile->all_type_units =
2874 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
2875
2876 sig_types_hash = allocate_signatured_type_table (objfile);
2877
2878 for (i = 0; i < elements; i += 3)
2879 {
2880 struct signatured_type *sig_type;
2881 ULONGEST offset, type_offset_in_tu, signature;
2882 void **slot;
2883
2884 gdb_static_assert (sizeof (ULONGEST) >= 8);
2885 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2886 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2887 BFD_ENDIAN_LITTLE);
2888 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2889 bytes += 3 * 8;
2890
2891 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2892 struct signatured_type);
2893 sig_type->signature = signature;
2894 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2895 sig_type->per_cu.is_debug_types = 1;
2896 sig_type->per_cu.section = section;
2897 sig_type->per_cu.offset.sect_off = offset;
2898 sig_type->per_cu.objfile = objfile;
2899 sig_type->per_cu.v.quick
2900 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2901 struct dwarf2_per_cu_quick_data);
2902
2903 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2904 *slot = sig_type;
2905
2906 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2907 }
2908
2909 dwarf2_per_objfile->signatured_types = sig_types_hash;
2910 }
2911
2912 /* Read the address map data from the mapped index, and use it to
2913 populate the objfile's psymtabs_addrmap. */
2914
2915 static void
2916 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2917 {
2918 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2919 const gdb_byte *iter, *end;
2920 struct obstack temp_obstack;
2921 struct addrmap *mutable_map;
2922 struct cleanup *cleanup;
2923 CORE_ADDR baseaddr;
2924
2925 obstack_init (&temp_obstack);
2926 cleanup = make_cleanup_obstack_free (&temp_obstack);
2927 mutable_map = addrmap_create_mutable (&temp_obstack);
2928
2929 iter = index->address_table;
2930 end = iter + index->address_table_size;
2931
2932 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2933
2934 while (iter < end)
2935 {
2936 ULONGEST hi, lo, cu_index;
2937 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2938 iter += 8;
2939 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2940 iter += 8;
2941 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2942 iter += 4;
2943
2944 if (lo > hi)
2945 {
2946 complaint (&symfile_complaints,
2947 _(".gdb_index address table has invalid range (%s - %s)"),
2948 hex_string (lo), hex_string (hi));
2949 continue;
2950 }
2951
2952 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2953 {
2954 complaint (&symfile_complaints,
2955 _(".gdb_index address table has invalid CU number %u"),
2956 (unsigned) cu_index);
2957 continue;
2958 }
2959
2960 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2961 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2962 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2963 }
2964
2965 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2966 &objfile->objfile_obstack);
2967 do_cleanups (cleanup);
2968 }
2969
2970 /* The hash function for strings in the mapped index. This is the same as
2971 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2972 implementation. This is necessary because the hash function is tied to the
2973 format of the mapped index file. The hash values do not have to match with
2974 SYMBOL_HASH_NEXT.
2975
2976 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2977
2978 static hashval_t
2979 mapped_index_string_hash (int index_version, const void *p)
2980 {
2981 const unsigned char *str = (const unsigned char *) p;
2982 hashval_t r = 0;
2983 unsigned char c;
2984
2985 while ((c = *str++) != 0)
2986 {
2987 if (index_version >= 5)
2988 c = tolower (c);
2989 r = r * 67 + c - 113;
2990 }
2991
2992 return r;
2993 }
2994
2995 /* Find a slot in the mapped index INDEX for the object named NAME.
2996 If NAME is found, set *VEC_OUT to point to the CU vector in the
2997 constant pool and return 1. If NAME cannot be found, return 0. */
2998
2999 static int
3000 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3001 offset_type **vec_out)
3002 {
3003 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3004 offset_type hash;
3005 offset_type slot, step;
3006 int (*cmp) (const char *, const char *);
3007
3008 if (current_language->la_language == language_cplus
3009 || current_language->la_language == language_java
3010 || current_language->la_language == language_fortran
3011 || current_language->la_language == language_d)
3012 {
3013 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3014 not contain any. */
3015
3016 if (strchr (name, '(') != NULL)
3017 {
3018 char *without_params = cp_remove_params (name);
3019
3020 if (without_params != NULL)
3021 {
3022 make_cleanup (xfree, without_params);
3023 name = without_params;
3024 }
3025 }
3026 }
3027
3028 /* Index version 4 did not support case insensitive searches. But the
3029 indices for case insensitive languages are built in lowercase, therefore
3030 simulate our NAME being searched is also lowercased. */
3031 hash = mapped_index_string_hash ((index->version == 4
3032 && case_sensitivity == case_sensitive_off
3033 ? 5 : index->version),
3034 name);
3035
3036 slot = hash & (index->symbol_table_slots - 1);
3037 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3038 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3039
3040 for (;;)
3041 {
3042 /* Convert a slot number to an offset into the table. */
3043 offset_type i = 2 * slot;
3044 const char *str;
3045 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3046 {
3047 do_cleanups (back_to);
3048 return 0;
3049 }
3050
3051 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3052 if (!cmp (name, str))
3053 {
3054 *vec_out = (offset_type *) (index->constant_pool
3055 + MAYBE_SWAP (index->symbol_table[i + 1]));
3056 do_cleanups (back_to);
3057 return 1;
3058 }
3059
3060 slot = (slot + step) & (index->symbol_table_slots - 1);
3061 }
3062 }
3063
3064 /* A helper function that reads the .gdb_index from SECTION and fills
3065 in MAP. FILENAME is the name of the file containing the section;
3066 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3067 ok to use deprecated sections.
3068
3069 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3070 out parameters that are filled in with information about the CU and
3071 TU lists in the section.
3072
3073 Returns 1 if all went well, 0 otherwise. */
3074
3075 static int
3076 read_index_from_section (struct objfile *objfile,
3077 const char *filename,
3078 int deprecated_ok,
3079 struct dwarf2_section_info *section,
3080 struct mapped_index *map,
3081 const gdb_byte **cu_list,
3082 offset_type *cu_list_elements,
3083 const gdb_byte **types_list,
3084 offset_type *types_list_elements)
3085 {
3086 const gdb_byte *addr;
3087 offset_type version;
3088 offset_type *metadata;
3089 int i;
3090
3091 if (dwarf2_section_empty_p (section))
3092 return 0;
3093
3094 /* Older elfutils strip versions could keep the section in the main
3095 executable while splitting it for the separate debug info file. */
3096 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3097 return 0;
3098
3099 dwarf2_read_section (objfile, section);
3100
3101 addr = section->buffer;
3102 /* Version check. */
3103 version = MAYBE_SWAP (*(offset_type *) addr);
3104 /* Versions earlier than 3 emitted every copy of a psymbol. This
3105 causes the index to behave very poorly for certain requests. Version 3
3106 contained incomplete addrmap. So, it seems better to just ignore such
3107 indices. */
3108 if (version < 4)
3109 {
3110 static int warning_printed = 0;
3111 if (!warning_printed)
3112 {
3113 warning (_("Skipping obsolete .gdb_index section in %s."),
3114 filename);
3115 warning_printed = 1;
3116 }
3117 return 0;
3118 }
3119 /* Index version 4 uses a different hash function than index version
3120 5 and later.
3121
3122 Versions earlier than 6 did not emit psymbols for inlined
3123 functions. Using these files will cause GDB not to be able to
3124 set breakpoints on inlined functions by name, so we ignore these
3125 indices unless the user has done
3126 "set use-deprecated-index-sections on". */
3127 if (version < 6 && !deprecated_ok)
3128 {
3129 static int warning_printed = 0;
3130 if (!warning_printed)
3131 {
3132 warning (_("\
3133 Skipping deprecated .gdb_index section in %s.\n\
3134 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3135 to use the section anyway."),
3136 filename);
3137 warning_printed = 1;
3138 }
3139 return 0;
3140 }
3141 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3142 of the TU (for symbols coming from TUs),
3143 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3144 Plus gold-generated indices can have duplicate entries for global symbols,
3145 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3146 These are just performance bugs, and we can't distinguish gdb-generated
3147 indices from gold-generated ones, so issue no warning here. */
3148
3149 /* Indexes with higher version than the one supported by GDB may be no
3150 longer backward compatible. */
3151 if (version > 8)
3152 return 0;
3153
3154 map->version = version;
3155 map->total_size = section->size;
3156
3157 metadata = (offset_type *) (addr + sizeof (offset_type));
3158
3159 i = 0;
3160 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3161 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3162 / 8);
3163 ++i;
3164
3165 *types_list = addr + MAYBE_SWAP (metadata[i]);
3166 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3167 - MAYBE_SWAP (metadata[i]))
3168 / 8);
3169 ++i;
3170
3171 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3172 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3173 - MAYBE_SWAP (metadata[i]));
3174 ++i;
3175
3176 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3177 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3178 - MAYBE_SWAP (metadata[i]))
3179 / (2 * sizeof (offset_type)));
3180 ++i;
3181
3182 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3183
3184 return 1;
3185 }
3186
3187
3188 /* Read the index file. If everything went ok, initialize the "quick"
3189 elements of all the CUs and return 1. Otherwise, return 0. */
3190
3191 static int
3192 dwarf2_read_index (struct objfile *objfile)
3193 {
3194 struct mapped_index local_map, *map;
3195 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3196 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3197 struct dwz_file *dwz;
3198
3199 if (!read_index_from_section (objfile, objfile_name (objfile),
3200 use_deprecated_index_sections,
3201 &dwarf2_per_objfile->gdb_index, &local_map,
3202 &cu_list, &cu_list_elements,
3203 &types_list, &types_list_elements))
3204 return 0;
3205
3206 /* Don't use the index if it's empty. */
3207 if (local_map.symbol_table_slots == 0)
3208 return 0;
3209
3210 /* If there is a .dwz file, read it so we can get its CU list as
3211 well. */
3212 dwz = dwarf2_get_dwz_file ();
3213 if (dwz != NULL)
3214 {
3215 struct mapped_index dwz_map;
3216 const gdb_byte *dwz_types_ignore;
3217 offset_type dwz_types_elements_ignore;
3218
3219 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3220 1,
3221 &dwz->gdb_index, &dwz_map,
3222 &dwz_list, &dwz_list_elements,
3223 &dwz_types_ignore,
3224 &dwz_types_elements_ignore))
3225 {
3226 warning (_("could not read '.gdb_index' section from %s; skipping"),
3227 bfd_get_filename (dwz->dwz_bfd));
3228 return 0;
3229 }
3230 }
3231
3232 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3233 dwz_list_elements);
3234
3235 if (types_list_elements)
3236 {
3237 struct dwarf2_section_info *section;
3238
3239 /* We can only handle a single .debug_types when we have an
3240 index. */
3241 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3242 return 0;
3243
3244 section = VEC_index (dwarf2_section_info_def,
3245 dwarf2_per_objfile->types, 0);
3246
3247 create_signatured_type_table_from_index (objfile, section, types_list,
3248 types_list_elements);
3249 }
3250
3251 create_addrmap_from_index (objfile, &local_map);
3252
3253 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3254 *map = local_map;
3255
3256 dwarf2_per_objfile->index_table = map;
3257 dwarf2_per_objfile->using_index = 1;
3258 dwarf2_per_objfile->quick_file_names_table =
3259 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3260
3261 return 1;
3262 }
3263
3264 /* A helper for the "quick" functions which sets the global
3265 dwarf2_per_objfile according to OBJFILE. */
3266
3267 static void
3268 dw2_setup (struct objfile *objfile)
3269 {
3270 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3271 objfile_data (objfile, dwarf2_objfile_data_key));
3272 gdb_assert (dwarf2_per_objfile);
3273 }
3274
3275 /* die_reader_func for dw2_get_file_names. */
3276
3277 static void
3278 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3279 const gdb_byte *info_ptr,
3280 struct die_info *comp_unit_die,
3281 int has_children,
3282 void *data)
3283 {
3284 struct dwarf2_cu *cu = reader->cu;
3285 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3286 struct objfile *objfile = dwarf2_per_objfile->objfile;
3287 struct dwarf2_per_cu_data *lh_cu;
3288 struct line_header *lh;
3289 struct attribute *attr;
3290 int i;
3291 const char *name, *comp_dir;
3292 void **slot;
3293 struct quick_file_names *qfn;
3294 unsigned int line_offset;
3295
3296 gdb_assert (! this_cu->is_debug_types);
3297
3298 /* Our callers never want to match partial units -- instead they
3299 will match the enclosing full CU. */
3300 if (comp_unit_die->tag == DW_TAG_partial_unit)
3301 {
3302 this_cu->v.quick->no_file_data = 1;
3303 return;
3304 }
3305
3306 lh_cu = this_cu;
3307 lh = NULL;
3308 slot = NULL;
3309 line_offset = 0;
3310
3311 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3312 if (attr)
3313 {
3314 struct quick_file_names find_entry;
3315
3316 line_offset = DW_UNSND (attr);
3317
3318 /* We may have already read in this line header (TU line header sharing).
3319 If we have we're done. */
3320 find_entry.hash.dwo_unit = cu->dwo_unit;
3321 find_entry.hash.line_offset.sect_off = line_offset;
3322 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3323 &find_entry, INSERT);
3324 if (*slot != NULL)
3325 {
3326 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3327 return;
3328 }
3329
3330 lh = dwarf_decode_line_header (line_offset, cu);
3331 }
3332 if (lh == NULL)
3333 {
3334 lh_cu->v.quick->no_file_data = 1;
3335 return;
3336 }
3337
3338 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3339 qfn->hash.dwo_unit = cu->dwo_unit;
3340 qfn->hash.line_offset.sect_off = line_offset;
3341 gdb_assert (slot != NULL);
3342 *slot = qfn;
3343
3344 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3345
3346 qfn->num_file_names = lh->num_file_names;
3347 qfn->file_names =
3348 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
3349 for (i = 0; i < lh->num_file_names; ++i)
3350 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3351 qfn->real_names = NULL;
3352
3353 free_line_header (lh);
3354
3355 lh_cu->v.quick->file_names = qfn;
3356 }
3357
3358 /* A helper for the "quick" functions which attempts to read the line
3359 table for THIS_CU. */
3360
3361 static struct quick_file_names *
3362 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3363 {
3364 /* This should never be called for TUs. */
3365 gdb_assert (! this_cu->is_debug_types);
3366 /* Nor type unit groups. */
3367 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3368
3369 if (this_cu->v.quick->file_names != NULL)
3370 return this_cu->v.quick->file_names;
3371 /* If we know there is no line data, no point in looking again. */
3372 if (this_cu->v.quick->no_file_data)
3373 return NULL;
3374
3375 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3376
3377 if (this_cu->v.quick->no_file_data)
3378 return NULL;
3379 return this_cu->v.quick->file_names;
3380 }
3381
3382 /* A helper for the "quick" functions which computes and caches the
3383 real path for a given file name from the line table. */
3384
3385 static const char *
3386 dw2_get_real_path (struct objfile *objfile,
3387 struct quick_file_names *qfn, int index)
3388 {
3389 if (qfn->real_names == NULL)
3390 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3391 qfn->num_file_names, const char *);
3392
3393 if (qfn->real_names[index] == NULL)
3394 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3395
3396 return qfn->real_names[index];
3397 }
3398
3399 static struct symtab *
3400 dw2_find_last_source_symtab (struct objfile *objfile)
3401 {
3402 struct compunit_symtab *cust;
3403 int index;
3404
3405 dw2_setup (objfile);
3406 index = dwarf2_per_objfile->n_comp_units - 1;
3407 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3408 if (cust == NULL)
3409 return NULL;
3410 return compunit_primary_filetab (cust);
3411 }
3412
3413 /* Traversal function for dw2_forget_cached_source_info. */
3414
3415 static int
3416 dw2_free_cached_file_names (void **slot, void *info)
3417 {
3418 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3419
3420 if (file_data->real_names)
3421 {
3422 int i;
3423
3424 for (i = 0; i < file_data->num_file_names; ++i)
3425 {
3426 xfree ((void*) file_data->real_names[i]);
3427 file_data->real_names[i] = NULL;
3428 }
3429 }
3430
3431 return 1;
3432 }
3433
3434 static void
3435 dw2_forget_cached_source_info (struct objfile *objfile)
3436 {
3437 dw2_setup (objfile);
3438
3439 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3440 dw2_free_cached_file_names, NULL);
3441 }
3442
3443 /* Helper function for dw2_map_symtabs_matching_filename that expands
3444 the symtabs and calls the iterator. */
3445
3446 static int
3447 dw2_map_expand_apply (struct objfile *objfile,
3448 struct dwarf2_per_cu_data *per_cu,
3449 const char *name, const char *real_path,
3450 int (*callback) (struct symtab *, void *),
3451 void *data)
3452 {
3453 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3454
3455 /* Don't visit already-expanded CUs. */
3456 if (per_cu->v.quick->compunit_symtab)
3457 return 0;
3458
3459 /* This may expand more than one symtab, and we want to iterate over
3460 all of them. */
3461 dw2_instantiate_symtab (per_cu);
3462
3463 return iterate_over_some_symtabs (name, real_path, callback, data,
3464 objfile->compunit_symtabs, last_made);
3465 }
3466
3467 /* Implementation of the map_symtabs_matching_filename method. */
3468
3469 static int
3470 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3471 const char *real_path,
3472 int (*callback) (struct symtab *, void *),
3473 void *data)
3474 {
3475 int i;
3476 const char *name_basename = lbasename (name);
3477
3478 dw2_setup (objfile);
3479
3480 /* The rule is CUs specify all the files, including those used by
3481 any TU, so there's no need to scan TUs here. */
3482
3483 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3484 {
3485 int j;
3486 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3487 struct quick_file_names *file_data;
3488
3489 /* We only need to look at symtabs not already expanded. */
3490 if (per_cu->v.quick->compunit_symtab)
3491 continue;
3492
3493 file_data = dw2_get_file_names (per_cu);
3494 if (file_data == NULL)
3495 continue;
3496
3497 for (j = 0; j < file_data->num_file_names; ++j)
3498 {
3499 const char *this_name = file_data->file_names[j];
3500 const char *this_real_name;
3501
3502 if (compare_filenames_for_search (this_name, name))
3503 {
3504 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3505 callback, data))
3506 return 1;
3507 continue;
3508 }
3509
3510 /* Before we invoke realpath, which can get expensive when many
3511 files are involved, do a quick comparison of the basenames. */
3512 if (! basenames_may_differ
3513 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3514 continue;
3515
3516 this_real_name = dw2_get_real_path (objfile, file_data, j);
3517 if (compare_filenames_for_search (this_real_name, name))
3518 {
3519 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3520 callback, data))
3521 return 1;
3522 continue;
3523 }
3524
3525 if (real_path != NULL)
3526 {
3527 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3528 gdb_assert (IS_ABSOLUTE_PATH (name));
3529 if (this_real_name != NULL
3530 && FILENAME_CMP (real_path, this_real_name) == 0)
3531 {
3532 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3533 callback, data))
3534 return 1;
3535 continue;
3536 }
3537 }
3538 }
3539 }
3540
3541 return 0;
3542 }
3543
3544 /* Struct used to manage iterating over all CUs looking for a symbol. */
3545
3546 struct dw2_symtab_iterator
3547 {
3548 /* The internalized form of .gdb_index. */
3549 struct mapped_index *index;
3550 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3551 int want_specific_block;
3552 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3553 Unused if !WANT_SPECIFIC_BLOCK. */
3554 int block_index;
3555 /* The kind of symbol we're looking for. */
3556 domain_enum domain;
3557 /* The list of CUs from the index entry of the symbol,
3558 or NULL if not found. */
3559 offset_type *vec;
3560 /* The next element in VEC to look at. */
3561 int next;
3562 /* The number of elements in VEC, or zero if there is no match. */
3563 int length;
3564 /* Have we seen a global version of the symbol?
3565 If so we can ignore all further global instances.
3566 This is to work around gold/15646, inefficient gold-generated
3567 indices. */
3568 int global_seen;
3569 };
3570
3571 /* Initialize the index symtab iterator ITER.
3572 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3573 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3574
3575 static void
3576 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3577 struct mapped_index *index,
3578 int want_specific_block,
3579 int block_index,
3580 domain_enum domain,
3581 const char *name)
3582 {
3583 iter->index = index;
3584 iter->want_specific_block = want_specific_block;
3585 iter->block_index = block_index;
3586 iter->domain = domain;
3587 iter->next = 0;
3588 iter->global_seen = 0;
3589
3590 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3591 iter->length = MAYBE_SWAP (*iter->vec);
3592 else
3593 {
3594 iter->vec = NULL;
3595 iter->length = 0;
3596 }
3597 }
3598
3599 /* Return the next matching CU or NULL if there are no more. */
3600
3601 static struct dwarf2_per_cu_data *
3602 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3603 {
3604 for ( ; iter->next < iter->length; ++iter->next)
3605 {
3606 offset_type cu_index_and_attrs =
3607 MAYBE_SWAP (iter->vec[iter->next + 1]);
3608 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3609 struct dwarf2_per_cu_data *per_cu;
3610 int want_static = iter->block_index != GLOBAL_BLOCK;
3611 /* This value is only valid for index versions >= 7. */
3612 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3613 gdb_index_symbol_kind symbol_kind =
3614 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3615 /* Only check the symbol attributes if they're present.
3616 Indices prior to version 7 don't record them,
3617 and indices >= 7 may elide them for certain symbols
3618 (gold does this). */
3619 int attrs_valid =
3620 (iter->index->version >= 7
3621 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3622
3623 /* Don't crash on bad data. */
3624 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3625 + dwarf2_per_objfile->n_type_units))
3626 {
3627 complaint (&symfile_complaints,
3628 _(".gdb_index entry has bad CU index"
3629 " [in module %s]"),
3630 objfile_name (dwarf2_per_objfile->objfile));
3631 continue;
3632 }
3633
3634 per_cu = dw2_get_cutu (cu_index);
3635
3636 /* Skip if already read in. */
3637 if (per_cu->v.quick->compunit_symtab)
3638 continue;
3639
3640 /* Check static vs global. */
3641 if (attrs_valid)
3642 {
3643 if (iter->want_specific_block
3644 && want_static != is_static)
3645 continue;
3646 /* Work around gold/15646. */
3647 if (!is_static && iter->global_seen)
3648 continue;
3649 if (!is_static)
3650 iter->global_seen = 1;
3651 }
3652
3653 /* Only check the symbol's kind if it has one. */
3654 if (attrs_valid)
3655 {
3656 switch (iter->domain)
3657 {
3658 case VAR_DOMAIN:
3659 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3660 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3661 /* Some types are also in VAR_DOMAIN. */
3662 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3663 continue;
3664 break;
3665 case STRUCT_DOMAIN:
3666 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3667 continue;
3668 break;
3669 case LABEL_DOMAIN:
3670 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3671 continue;
3672 break;
3673 default:
3674 break;
3675 }
3676 }
3677
3678 ++iter->next;
3679 return per_cu;
3680 }
3681
3682 return NULL;
3683 }
3684
3685 static struct compunit_symtab *
3686 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3687 const char *name, domain_enum domain)
3688 {
3689 struct compunit_symtab *stab_best = NULL;
3690 struct mapped_index *index;
3691
3692 dw2_setup (objfile);
3693
3694 index = dwarf2_per_objfile->index_table;
3695
3696 /* index is NULL if OBJF_READNOW. */
3697 if (index)
3698 {
3699 struct dw2_symtab_iterator iter;
3700 struct dwarf2_per_cu_data *per_cu;
3701
3702 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3703
3704 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3705 {
3706 struct symbol *sym, *with_opaque = NULL;
3707 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3708 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3709 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3710
3711 sym = block_find_symbol (block, name, domain,
3712 block_find_non_opaque_type_preferred,
3713 &with_opaque);
3714
3715 /* Some caution must be observed with overloaded functions
3716 and methods, since the index will not contain any overload
3717 information (but NAME might contain it). */
3718
3719 if (sym != NULL
3720 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3721 return stab;
3722 if (with_opaque != NULL
3723 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3724 stab_best = stab;
3725
3726 /* Keep looking through other CUs. */
3727 }
3728 }
3729
3730 return stab_best;
3731 }
3732
3733 static void
3734 dw2_print_stats (struct objfile *objfile)
3735 {
3736 int i, total, count;
3737
3738 dw2_setup (objfile);
3739 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3740 count = 0;
3741 for (i = 0; i < total; ++i)
3742 {
3743 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3744
3745 if (!per_cu->v.quick->compunit_symtab)
3746 ++count;
3747 }
3748 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3749 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3750 }
3751
3752 /* This dumps minimal information about the index.
3753 It is called via "mt print objfiles".
3754 One use is to verify .gdb_index has been loaded by the
3755 gdb.dwarf2/gdb-index.exp testcase. */
3756
3757 static void
3758 dw2_dump (struct objfile *objfile)
3759 {
3760 dw2_setup (objfile);
3761 gdb_assert (dwarf2_per_objfile->using_index);
3762 printf_filtered (".gdb_index:");
3763 if (dwarf2_per_objfile->index_table != NULL)
3764 {
3765 printf_filtered (" version %d\n",
3766 dwarf2_per_objfile->index_table->version);
3767 }
3768 else
3769 printf_filtered (" faked for \"readnow\"\n");
3770 printf_filtered ("\n");
3771 }
3772
3773 static void
3774 dw2_relocate (struct objfile *objfile,
3775 const struct section_offsets *new_offsets,
3776 const struct section_offsets *delta)
3777 {
3778 /* There's nothing to relocate here. */
3779 }
3780
3781 static void
3782 dw2_expand_symtabs_for_function (struct objfile *objfile,
3783 const char *func_name)
3784 {
3785 struct mapped_index *index;
3786
3787 dw2_setup (objfile);
3788
3789 index = dwarf2_per_objfile->index_table;
3790
3791 /* index is NULL if OBJF_READNOW. */
3792 if (index)
3793 {
3794 struct dw2_symtab_iterator iter;
3795 struct dwarf2_per_cu_data *per_cu;
3796
3797 /* Note: It doesn't matter what we pass for block_index here. */
3798 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3799 func_name);
3800
3801 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3802 dw2_instantiate_symtab (per_cu);
3803 }
3804 }
3805
3806 static void
3807 dw2_expand_all_symtabs (struct objfile *objfile)
3808 {
3809 int i;
3810
3811 dw2_setup (objfile);
3812
3813 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3814 + dwarf2_per_objfile->n_type_units); ++i)
3815 {
3816 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3817
3818 dw2_instantiate_symtab (per_cu);
3819 }
3820 }
3821
3822 static void
3823 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3824 const char *fullname)
3825 {
3826 int i;
3827
3828 dw2_setup (objfile);
3829
3830 /* We don't need to consider type units here.
3831 This is only called for examining code, e.g. expand_line_sal.
3832 There can be an order of magnitude (or more) more type units
3833 than comp units, and we avoid them if we can. */
3834
3835 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3836 {
3837 int j;
3838 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3839 struct quick_file_names *file_data;
3840
3841 /* We only need to look at symtabs not already expanded. */
3842 if (per_cu->v.quick->compunit_symtab)
3843 continue;
3844
3845 file_data = dw2_get_file_names (per_cu);
3846 if (file_data == NULL)
3847 continue;
3848
3849 for (j = 0; j < file_data->num_file_names; ++j)
3850 {
3851 const char *this_fullname = file_data->file_names[j];
3852
3853 if (filename_cmp (this_fullname, fullname) == 0)
3854 {
3855 dw2_instantiate_symtab (per_cu);
3856 break;
3857 }
3858 }
3859 }
3860 }
3861
3862 static void
3863 dw2_map_matching_symbols (struct objfile *objfile,
3864 const char * name, domain_enum domain,
3865 int global,
3866 int (*callback) (struct block *,
3867 struct symbol *, void *),
3868 void *data, symbol_compare_ftype *match,
3869 symbol_compare_ftype *ordered_compare)
3870 {
3871 /* Currently unimplemented; used for Ada. The function can be called if the
3872 current language is Ada for a non-Ada objfile using GNU index. As Ada
3873 does not look for non-Ada symbols this function should just return. */
3874 }
3875
3876 static void
3877 dw2_expand_symtabs_matching
3878 (struct objfile *objfile,
3879 expand_symtabs_file_matcher_ftype *file_matcher,
3880 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3881 expand_symtabs_exp_notify_ftype *expansion_notify,
3882 enum search_domain kind,
3883 void *data)
3884 {
3885 int i;
3886 offset_type iter;
3887 struct mapped_index *index;
3888
3889 dw2_setup (objfile);
3890
3891 /* index_table is NULL if OBJF_READNOW. */
3892 if (!dwarf2_per_objfile->index_table)
3893 return;
3894 index = dwarf2_per_objfile->index_table;
3895
3896 if (file_matcher != NULL)
3897 {
3898 struct cleanup *cleanup;
3899 htab_t visited_found, visited_not_found;
3900
3901 visited_found = htab_create_alloc (10,
3902 htab_hash_pointer, htab_eq_pointer,
3903 NULL, xcalloc, xfree);
3904 cleanup = make_cleanup_htab_delete (visited_found);
3905 visited_not_found = htab_create_alloc (10,
3906 htab_hash_pointer, htab_eq_pointer,
3907 NULL, xcalloc, xfree);
3908 make_cleanup_htab_delete (visited_not_found);
3909
3910 /* The rule is CUs specify all the files, including those used by
3911 any TU, so there's no need to scan TUs here. */
3912
3913 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3914 {
3915 int j;
3916 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3917 struct quick_file_names *file_data;
3918 void **slot;
3919
3920 QUIT;
3921
3922 per_cu->v.quick->mark = 0;
3923
3924 /* We only need to look at symtabs not already expanded. */
3925 if (per_cu->v.quick->compunit_symtab)
3926 continue;
3927
3928 file_data = dw2_get_file_names (per_cu);
3929 if (file_data == NULL)
3930 continue;
3931
3932 if (htab_find (visited_not_found, file_data) != NULL)
3933 continue;
3934 else if (htab_find (visited_found, file_data) != NULL)
3935 {
3936 per_cu->v.quick->mark = 1;
3937 continue;
3938 }
3939
3940 for (j = 0; j < file_data->num_file_names; ++j)
3941 {
3942 const char *this_real_name;
3943
3944 if (file_matcher (file_data->file_names[j], data, 0))
3945 {
3946 per_cu->v.quick->mark = 1;
3947 break;
3948 }
3949
3950 /* Before we invoke realpath, which can get expensive when many
3951 files are involved, do a quick comparison of the basenames. */
3952 if (!basenames_may_differ
3953 && !file_matcher (lbasename (file_data->file_names[j]),
3954 data, 1))
3955 continue;
3956
3957 this_real_name = dw2_get_real_path (objfile, file_data, j);
3958 if (file_matcher (this_real_name, data, 0))
3959 {
3960 per_cu->v.quick->mark = 1;
3961 break;
3962 }
3963 }
3964
3965 slot = htab_find_slot (per_cu->v.quick->mark
3966 ? visited_found
3967 : visited_not_found,
3968 file_data, INSERT);
3969 *slot = file_data;
3970 }
3971
3972 do_cleanups (cleanup);
3973 }
3974
3975 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3976 {
3977 offset_type idx = 2 * iter;
3978 const char *name;
3979 offset_type *vec, vec_len, vec_idx;
3980 int global_seen = 0;
3981
3982 QUIT;
3983
3984 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3985 continue;
3986
3987 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3988
3989 if (! (*symbol_matcher) (name, data))
3990 continue;
3991
3992 /* The name was matched, now expand corresponding CUs that were
3993 marked. */
3994 vec = (offset_type *) (index->constant_pool
3995 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3996 vec_len = MAYBE_SWAP (vec[0]);
3997 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3998 {
3999 struct dwarf2_per_cu_data *per_cu;
4000 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4001 /* This value is only valid for index versions >= 7. */
4002 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4003 gdb_index_symbol_kind symbol_kind =
4004 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4005 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4006 /* Only check the symbol attributes if they're present.
4007 Indices prior to version 7 don't record them,
4008 and indices >= 7 may elide them for certain symbols
4009 (gold does this). */
4010 int attrs_valid =
4011 (index->version >= 7
4012 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4013
4014 /* Work around gold/15646. */
4015 if (attrs_valid)
4016 {
4017 if (!is_static && global_seen)
4018 continue;
4019 if (!is_static)
4020 global_seen = 1;
4021 }
4022
4023 /* Only check the symbol's kind if it has one. */
4024 if (attrs_valid)
4025 {
4026 switch (kind)
4027 {
4028 case VARIABLES_DOMAIN:
4029 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4030 continue;
4031 break;
4032 case FUNCTIONS_DOMAIN:
4033 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4034 continue;
4035 break;
4036 case TYPES_DOMAIN:
4037 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4038 continue;
4039 break;
4040 default:
4041 break;
4042 }
4043 }
4044
4045 /* Don't crash on bad data. */
4046 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4047 + dwarf2_per_objfile->n_type_units))
4048 {
4049 complaint (&symfile_complaints,
4050 _(".gdb_index entry has bad CU index"
4051 " [in module %s]"), objfile_name (objfile));
4052 continue;
4053 }
4054
4055 per_cu = dw2_get_cutu (cu_index);
4056 if (file_matcher == NULL || per_cu->v.quick->mark)
4057 {
4058 int symtab_was_null =
4059 (per_cu->v.quick->compunit_symtab == NULL);
4060
4061 dw2_instantiate_symtab (per_cu);
4062
4063 if (expansion_notify != NULL
4064 && symtab_was_null
4065 && per_cu->v.quick->compunit_symtab != NULL)
4066 {
4067 expansion_notify (per_cu->v.quick->compunit_symtab,
4068 data);
4069 }
4070 }
4071 }
4072 }
4073 }
4074
4075 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4076 symtab. */
4077
4078 static struct compunit_symtab *
4079 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4080 CORE_ADDR pc)
4081 {
4082 int i;
4083
4084 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4085 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4086 return cust;
4087
4088 if (cust->includes == NULL)
4089 return NULL;
4090
4091 for (i = 0; cust->includes[i]; ++i)
4092 {
4093 struct compunit_symtab *s = cust->includes[i];
4094
4095 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4096 if (s != NULL)
4097 return s;
4098 }
4099
4100 return NULL;
4101 }
4102
4103 static struct compunit_symtab *
4104 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4105 struct bound_minimal_symbol msymbol,
4106 CORE_ADDR pc,
4107 struct obj_section *section,
4108 int warn_if_readin)
4109 {
4110 struct dwarf2_per_cu_data *data;
4111 struct compunit_symtab *result;
4112
4113 dw2_setup (objfile);
4114
4115 if (!objfile->psymtabs_addrmap)
4116 return NULL;
4117
4118 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4119 pc);
4120 if (!data)
4121 return NULL;
4122
4123 if (warn_if_readin && data->v.quick->compunit_symtab)
4124 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4125 paddress (get_objfile_arch (objfile), pc));
4126
4127 result
4128 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4129 pc);
4130 gdb_assert (result != NULL);
4131 return result;
4132 }
4133
4134 static void
4135 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4136 void *data, int need_fullname)
4137 {
4138 int i;
4139 struct cleanup *cleanup;
4140 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4141 NULL, xcalloc, xfree);
4142
4143 cleanup = make_cleanup_htab_delete (visited);
4144 dw2_setup (objfile);
4145
4146 /* The rule is CUs specify all the files, including those used by
4147 any TU, so there's no need to scan TUs here.
4148 We can ignore file names coming from already-expanded CUs. */
4149
4150 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4151 {
4152 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4153
4154 if (per_cu->v.quick->compunit_symtab)
4155 {
4156 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4157 INSERT);
4158
4159 *slot = per_cu->v.quick->file_names;
4160 }
4161 }
4162
4163 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4164 {
4165 int j;
4166 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4167 struct quick_file_names *file_data;
4168 void **slot;
4169
4170 /* We only need to look at symtabs not already expanded. */
4171 if (per_cu->v.quick->compunit_symtab)
4172 continue;
4173
4174 file_data = dw2_get_file_names (per_cu);
4175 if (file_data == NULL)
4176 continue;
4177
4178 slot = htab_find_slot (visited, file_data, INSERT);
4179 if (*slot)
4180 {
4181 /* Already visited. */
4182 continue;
4183 }
4184 *slot = file_data;
4185
4186 for (j = 0; j < file_data->num_file_names; ++j)
4187 {
4188 const char *this_real_name;
4189
4190 if (need_fullname)
4191 this_real_name = dw2_get_real_path (objfile, file_data, j);
4192 else
4193 this_real_name = NULL;
4194 (*fun) (file_data->file_names[j], this_real_name, data);
4195 }
4196 }
4197
4198 do_cleanups (cleanup);
4199 }
4200
4201 static int
4202 dw2_has_symbols (struct objfile *objfile)
4203 {
4204 return 1;
4205 }
4206
4207 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4208 {
4209 dw2_has_symbols,
4210 dw2_find_last_source_symtab,
4211 dw2_forget_cached_source_info,
4212 dw2_map_symtabs_matching_filename,
4213 dw2_lookup_symbol,
4214 dw2_print_stats,
4215 dw2_dump,
4216 dw2_relocate,
4217 dw2_expand_symtabs_for_function,
4218 dw2_expand_all_symtabs,
4219 dw2_expand_symtabs_with_fullname,
4220 dw2_map_matching_symbols,
4221 dw2_expand_symtabs_matching,
4222 dw2_find_pc_sect_compunit_symtab,
4223 dw2_map_symbol_filenames
4224 };
4225
4226 /* Initialize for reading DWARF for this objfile. Return 0 if this
4227 file will use psymtabs, or 1 if using the GNU index. */
4228
4229 int
4230 dwarf2_initialize_objfile (struct objfile *objfile)
4231 {
4232 /* If we're about to read full symbols, don't bother with the
4233 indices. In this case we also don't care if some other debug
4234 format is making psymtabs, because they are all about to be
4235 expanded anyway. */
4236 if ((objfile->flags & OBJF_READNOW))
4237 {
4238 int i;
4239
4240 dwarf2_per_objfile->using_index = 1;
4241 create_all_comp_units (objfile);
4242 create_all_type_units (objfile);
4243 dwarf2_per_objfile->quick_file_names_table =
4244 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4245
4246 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4247 + dwarf2_per_objfile->n_type_units); ++i)
4248 {
4249 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4250
4251 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4252 struct dwarf2_per_cu_quick_data);
4253 }
4254
4255 /* Return 1 so that gdb sees the "quick" functions. However,
4256 these functions will be no-ops because we will have expanded
4257 all symtabs. */
4258 return 1;
4259 }
4260
4261 if (dwarf2_read_index (objfile))
4262 return 1;
4263
4264 return 0;
4265 }
4266
4267 \f
4268
4269 /* Build a partial symbol table. */
4270
4271 void
4272 dwarf2_build_psymtabs (struct objfile *objfile)
4273 {
4274
4275 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4276 {
4277 init_psymbol_list (objfile, 1024);
4278 }
4279
4280 TRY
4281 {
4282 /* This isn't really ideal: all the data we allocate on the
4283 objfile's obstack is still uselessly kept around. However,
4284 freeing it seems unsafe. */
4285 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4286
4287 dwarf2_build_psymtabs_hard (objfile);
4288 discard_cleanups (cleanups);
4289 }
4290 CATCH (except, RETURN_MASK_ERROR)
4291 {
4292 exception_print (gdb_stderr, except);
4293 }
4294 END_CATCH
4295 }
4296
4297 /* Return the total length of the CU described by HEADER. */
4298
4299 static unsigned int
4300 get_cu_length (const struct comp_unit_head *header)
4301 {
4302 return header->initial_length_size + header->length;
4303 }
4304
4305 /* Return TRUE if OFFSET is within CU_HEADER. */
4306
4307 static inline int
4308 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4309 {
4310 sect_offset bottom = { cu_header->offset.sect_off };
4311 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4312
4313 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4314 }
4315
4316 /* Find the base address of the compilation unit for range lists and
4317 location lists. It will normally be specified by DW_AT_low_pc.
4318 In DWARF-3 draft 4, the base address could be overridden by
4319 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4320 compilation units with discontinuous ranges. */
4321
4322 static void
4323 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4324 {
4325 struct attribute *attr;
4326
4327 cu->base_known = 0;
4328 cu->base_address = 0;
4329
4330 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4331 if (attr)
4332 {
4333 cu->base_address = attr_value_as_address (attr);
4334 cu->base_known = 1;
4335 }
4336 else
4337 {
4338 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4339 if (attr)
4340 {
4341 cu->base_address = attr_value_as_address (attr);
4342 cu->base_known = 1;
4343 }
4344 }
4345 }
4346
4347 /* Read in the comp unit header information from the debug_info at info_ptr.
4348 NOTE: This leaves members offset, first_die_offset to be filled in
4349 by the caller. */
4350
4351 static const gdb_byte *
4352 read_comp_unit_head (struct comp_unit_head *cu_header,
4353 const gdb_byte *info_ptr, bfd *abfd)
4354 {
4355 int signed_addr;
4356 unsigned int bytes_read;
4357
4358 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4359 cu_header->initial_length_size = bytes_read;
4360 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4361 info_ptr += bytes_read;
4362 cu_header->version = read_2_bytes (abfd, info_ptr);
4363 info_ptr += 2;
4364 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4365 &bytes_read);
4366 info_ptr += bytes_read;
4367 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4368 info_ptr += 1;
4369 signed_addr = bfd_get_sign_extend_vma (abfd);
4370 if (signed_addr < 0)
4371 internal_error (__FILE__, __LINE__,
4372 _("read_comp_unit_head: dwarf from non elf file"));
4373 cu_header->signed_addr_p = signed_addr;
4374
4375 return info_ptr;
4376 }
4377
4378 /* Helper function that returns the proper abbrev section for
4379 THIS_CU. */
4380
4381 static struct dwarf2_section_info *
4382 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4383 {
4384 struct dwarf2_section_info *abbrev;
4385
4386 if (this_cu->is_dwz)
4387 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4388 else
4389 abbrev = &dwarf2_per_objfile->abbrev;
4390
4391 return abbrev;
4392 }
4393
4394 /* Subroutine of read_and_check_comp_unit_head and
4395 read_and_check_type_unit_head to simplify them.
4396 Perform various error checking on the header. */
4397
4398 static void
4399 error_check_comp_unit_head (struct comp_unit_head *header,
4400 struct dwarf2_section_info *section,
4401 struct dwarf2_section_info *abbrev_section)
4402 {
4403 const char *filename = get_section_file_name (section);
4404
4405 if (header->version != 2 && header->version != 3 && header->version != 4)
4406 error (_("Dwarf Error: wrong version in compilation unit header "
4407 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4408 filename);
4409
4410 if (header->abbrev_offset.sect_off
4411 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4412 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4413 "(offset 0x%lx + 6) [in module %s]"),
4414 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4415 filename);
4416
4417 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4418 avoid potential 32-bit overflow. */
4419 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4420 > section->size)
4421 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4422 "(offset 0x%lx + 0) [in module %s]"),
4423 (long) header->length, (long) header->offset.sect_off,
4424 filename);
4425 }
4426
4427 /* Read in a CU/TU header and perform some basic error checking.
4428 The contents of the header are stored in HEADER.
4429 The result is a pointer to the start of the first DIE. */
4430
4431 static const gdb_byte *
4432 read_and_check_comp_unit_head (struct comp_unit_head *header,
4433 struct dwarf2_section_info *section,
4434 struct dwarf2_section_info *abbrev_section,
4435 const gdb_byte *info_ptr,
4436 int is_debug_types_section)
4437 {
4438 const gdb_byte *beg_of_comp_unit = info_ptr;
4439 bfd *abfd = get_section_bfd_owner (section);
4440
4441 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4442
4443 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4444
4445 /* If we're reading a type unit, skip over the signature and
4446 type_offset fields. */
4447 if (is_debug_types_section)
4448 info_ptr += 8 /*signature*/ + header->offset_size;
4449
4450 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4451
4452 error_check_comp_unit_head (header, section, abbrev_section);
4453
4454 return info_ptr;
4455 }
4456
4457 /* Read in the types comp unit header information from .debug_types entry at
4458 types_ptr. The result is a pointer to one past the end of the header. */
4459
4460 static const gdb_byte *
4461 read_and_check_type_unit_head (struct comp_unit_head *header,
4462 struct dwarf2_section_info *section,
4463 struct dwarf2_section_info *abbrev_section,
4464 const gdb_byte *info_ptr,
4465 ULONGEST *signature,
4466 cu_offset *type_offset_in_tu)
4467 {
4468 const gdb_byte *beg_of_comp_unit = info_ptr;
4469 bfd *abfd = get_section_bfd_owner (section);
4470
4471 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4472
4473 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4474
4475 /* If we're reading a type unit, skip over the signature and
4476 type_offset fields. */
4477 if (signature != NULL)
4478 *signature = read_8_bytes (abfd, info_ptr);
4479 info_ptr += 8;
4480 if (type_offset_in_tu != NULL)
4481 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4482 header->offset_size);
4483 info_ptr += header->offset_size;
4484
4485 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4486
4487 error_check_comp_unit_head (header, section, abbrev_section);
4488
4489 return info_ptr;
4490 }
4491
4492 /* Fetch the abbreviation table offset from a comp or type unit header. */
4493
4494 static sect_offset
4495 read_abbrev_offset (struct dwarf2_section_info *section,
4496 sect_offset offset)
4497 {
4498 bfd *abfd = get_section_bfd_owner (section);
4499 const gdb_byte *info_ptr;
4500 unsigned int initial_length_size, offset_size;
4501 sect_offset abbrev_offset;
4502
4503 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4504 info_ptr = section->buffer + offset.sect_off;
4505 read_initial_length (abfd, info_ptr, &initial_length_size);
4506 offset_size = initial_length_size == 4 ? 4 : 8;
4507 info_ptr += initial_length_size + 2 /*version*/;
4508 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4509 return abbrev_offset;
4510 }
4511
4512 /* Allocate a new partial symtab for file named NAME and mark this new
4513 partial symtab as being an include of PST. */
4514
4515 static void
4516 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4517 struct objfile *objfile)
4518 {
4519 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4520
4521 if (!IS_ABSOLUTE_PATH (subpst->filename))
4522 {
4523 /* It shares objfile->objfile_obstack. */
4524 subpst->dirname = pst->dirname;
4525 }
4526
4527 subpst->textlow = 0;
4528 subpst->texthigh = 0;
4529
4530 subpst->dependencies
4531 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4532 subpst->dependencies[0] = pst;
4533 subpst->number_of_dependencies = 1;
4534
4535 subpst->globals_offset = 0;
4536 subpst->n_global_syms = 0;
4537 subpst->statics_offset = 0;
4538 subpst->n_static_syms = 0;
4539 subpst->compunit_symtab = NULL;
4540 subpst->read_symtab = pst->read_symtab;
4541 subpst->readin = 0;
4542
4543 /* No private part is necessary for include psymtabs. This property
4544 can be used to differentiate between such include psymtabs and
4545 the regular ones. */
4546 subpst->read_symtab_private = NULL;
4547 }
4548
4549 /* Read the Line Number Program data and extract the list of files
4550 included by the source file represented by PST. Build an include
4551 partial symtab for each of these included files. */
4552
4553 static void
4554 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4555 struct die_info *die,
4556 struct partial_symtab *pst)
4557 {
4558 struct line_header *lh = NULL;
4559 struct attribute *attr;
4560
4561 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4562 if (attr)
4563 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4564 if (lh == NULL)
4565 return; /* No linetable, so no includes. */
4566
4567 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4568 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4569
4570 free_line_header (lh);
4571 }
4572
4573 static hashval_t
4574 hash_signatured_type (const void *item)
4575 {
4576 const struct signatured_type *sig_type
4577 = (const struct signatured_type *) item;
4578
4579 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4580 return sig_type->signature;
4581 }
4582
4583 static int
4584 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4585 {
4586 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4587 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4588
4589 return lhs->signature == rhs->signature;
4590 }
4591
4592 /* Allocate a hash table for signatured types. */
4593
4594 static htab_t
4595 allocate_signatured_type_table (struct objfile *objfile)
4596 {
4597 return htab_create_alloc_ex (41,
4598 hash_signatured_type,
4599 eq_signatured_type,
4600 NULL,
4601 &objfile->objfile_obstack,
4602 hashtab_obstack_allocate,
4603 dummy_obstack_deallocate);
4604 }
4605
4606 /* A helper function to add a signatured type CU to a table. */
4607
4608 static int
4609 add_signatured_type_cu_to_table (void **slot, void *datum)
4610 {
4611 struct signatured_type *sigt = (struct signatured_type *) *slot;
4612 struct signatured_type ***datap = (struct signatured_type ***) datum;
4613
4614 **datap = sigt;
4615 ++*datap;
4616
4617 return 1;
4618 }
4619
4620 /* Create the hash table of all entries in the .debug_types
4621 (or .debug_types.dwo) section(s).
4622 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4623 otherwise it is NULL.
4624
4625 The result is a pointer to the hash table or NULL if there are no types.
4626
4627 Note: This function processes DWO files only, not DWP files. */
4628
4629 static htab_t
4630 create_debug_types_hash_table (struct dwo_file *dwo_file,
4631 VEC (dwarf2_section_info_def) *types)
4632 {
4633 struct objfile *objfile = dwarf2_per_objfile->objfile;
4634 htab_t types_htab = NULL;
4635 int ix;
4636 struct dwarf2_section_info *section;
4637 struct dwarf2_section_info *abbrev_section;
4638
4639 if (VEC_empty (dwarf2_section_info_def, types))
4640 return NULL;
4641
4642 abbrev_section = (dwo_file != NULL
4643 ? &dwo_file->sections.abbrev
4644 : &dwarf2_per_objfile->abbrev);
4645
4646 if (dwarf_read_debug)
4647 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4648 dwo_file ? ".dwo" : "",
4649 get_section_file_name (abbrev_section));
4650
4651 for (ix = 0;
4652 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4653 ++ix)
4654 {
4655 bfd *abfd;
4656 const gdb_byte *info_ptr, *end_ptr;
4657
4658 dwarf2_read_section (objfile, section);
4659 info_ptr = section->buffer;
4660
4661 if (info_ptr == NULL)
4662 continue;
4663
4664 /* We can't set abfd until now because the section may be empty or
4665 not present, in which case the bfd is unknown. */
4666 abfd = get_section_bfd_owner (section);
4667
4668 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4669 because we don't need to read any dies: the signature is in the
4670 header. */
4671
4672 end_ptr = info_ptr + section->size;
4673 while (info_ptr < end_ptr)
4674 {
4675 sect_offset offset;
4676 cu_offset type_offset_in_tu;
4677 ULONGEST signature;
4678 struct signatured_type *sig_type;
4679 struct dwo_unit *dwo_tu;
4680 void **slot;
4681 const gdb_byte *ptr = info_ptr;
4682 struct comp_unit_head header;
4683 unsigned int length;
4684
4685 offset.sect_off = ptr - section->buffer;
4686
4687 /* We need to read the type's signature in order to build the hash
4688 table, but we don't need anything else just yet. */
4689
4690 ptr = read_and_check_type_unit_head (&header, section,
4691 abbrev_section, ptr,
4692 &signature, &type_offset_in_tu);
4693
4694 length = get_cu_length (&header);
4695
4696 /* Skip dummy type units. */
4697 if (ptr >= info_ptr + length
4698 || peek_abbrev_code (abfd, ptr) == 0)
4699 {
4700 info_ptr += length;
4701 continue;
4702 }
4703
4704 if (types_htab == NULL)
4705 {
4706 if (dwo_file)
4707 types_htab = allocate_dwo_unit_table (objfile);
4708 else
4709 types_htab = allocate_signatured_type_table (objfile);
4710 }
4711
4712 if (dwo_file)
4713 {
4714 sig_type = NULL;
4715 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4716 struct dwo_unit);
4717 dwo_tu->dwo_file = dwo_file;
4718 dwo_tu->signature = signature;
4719 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4720 dwo_tu->section = section;
4721 dwo_tu->offset = offset;
4722 dwo_tu->length = length;
4723 }
4724 else
4725 {
4726 /* N.B.: type_offset is not usable if this type uses a DWO file.
4727 The real type_offset is in the DWO file. */
4728 dwo_tu = NULL;
4729 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4730 struct signatured_type);
4731 sig_type->signature = signature;
4732 sig_type->type_offset_in_tu = type_offset_in_tu;
4733 sig_type->per_cu.objfile = objfile;
4734 sig_type->per_cu.is_debug_types = 1;
4735 sig_type->per_cu.section = section;
4736 sig_type->per_cu.offset = offset;
4737 sig_type->per_cu.length = length;
4738 }
4739
4740 slot = htab_find_slot (types_htab,
4741 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4742 INSERT);
4743 gdb_assert (slot != NULL);
4744 if (*slot != NULL)
4745 {
4746 sect_offset dup_offset;
4747
4748 if (dwo_file)
4749 {
4750 const struct dwo_unit *dup_tu
4751 = (const struct dwo_unit *) *slot;
4752
4753 dup_offset = dup_tu->offset;
4754 }
4755 else
4756 {
4757 const struct signatured_type *dup_tu
4758 = (const struct signatured_type *) *slot;
4759
4760 dup_offset = dup_tu->per_cu.offset;
4761 }
4762
4763 complaint (&symfile_complaints,
4764 _("debug type entry at offset 0x%x is duplicate to"
4765 " the entry at offset 0x%x, signature %s"),
4766 offset.sect_off, dup_offset.sect_off,
4767 hex_string (signature));
4768 }
4769 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4770
4771 if (dwarf_read_debug > 1)
4772 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4773 offset.sect_off,
4774 hex_string (signature));
4775
4776 info_ptr += length;
4777 }
4778 }
4779
4780 return types_htab;
4781 }
4782
4783 /* Create the hash table of all entries in the .debug_types section,
4784 and initialize all_type_units.
4785 The result is zero if there is an error (e.g. missing .debug_types section),
4786 otherwise non-zero. */
4787
4788 static int
4789 create_all_type_units (struct objfile *objfile)
4790 {
4791 htab_t types_htab;
4792 struct signatured_type **iter;
4793
4794 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4795 if (types_htab == NULL)
4796 {
4797 dwarf2_per_objfile->signatured_types = NULL;
4798 return 0;
4799 }
4800
4801 dwarf2_per_objfile->signatured_types = types_htab;
4802
4803 dwarf2_per_objfile->n_type_units
4804 = dwarf2_per_objfile->n_allocated_type_units
4805 = htab_elements (types_htab);
4806 dwarf2_per_objfile->all_type_units =
4807 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
4808 iter = &dwarf2_per_objfile->all_type_units[0];
4809 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4810 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4811 == dwarf2_per_objfile->n_type_units);
4812
4813 return 1;
4814 }
4815
4816 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4817 If SLOT is non-NULL, it is the entry to use in the hash table.
4818 Otherwise we find one. */
4819
4820 static struct signatured_type *
4821 add_type_unit (ULONGEST sig, void **slot)
4822 {
4823 struct objfile *objfile = dwarf2_per_objfile->objfile;
4824 int n_type_units = dwarf2_per_objfile->n_type_units;
4825 struct signatured_type *sig_type;
4826
4827 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4828 ++n_type_units;
4829 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4830 {
4831 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4832 dwarf2_per_objfile->n_allocated_type_units = 1;
4833 dwarf2_per_objfile->n_allocated_type_units *= 2;
4834 dwarf2_per_objfile->all_type_units
4835 = XRESIZEVEC (struct signatured_type *,
4836 dwarf2_per_objfile->all_type_units,
4837 dwarf2_per_objfile->n_allocated_type_units);
4838 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4839 }
4840 dwarf2_per_objfile->n_type_units = n_type_units;
4841
4842 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4843 struct signatured_type);
4844 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4845 sig_type->signature = sig;
4846 sig_type->per_cu.is_debug_types = 1;
4847 if (dwarf2_per_objfile->using_index)
4848 {
4849 sig_type->per_cu.v.quick =
4850 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4851 struct dwarf2_per_cu_quick_data);
4852 }
4853
4854 if (slot == NULL)
4855 {
4856 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4857 sig_type, INSERT);
4858 }
4859 gdb_assert (*slot == NULL);
4860 *slot = sig_type;
4861 /* The rest of sig_type must be filled in by the caller. */
4862 return sig_type;
4863 }
4864
4865 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4866 Fill in SIG_ENTRY with DWO_ENTRY. */
4867
4868 static void
4869 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4870 struct signatured_type *sig_entry,
4871 struct dwo_unit *dwo_entry)
4872 {
4873 /* Make sure we're not clobbering something we don't expect to. */
4874 gdb_assert (! sig_entry->per_cu.queued);
4875 gdb_assert (sig_entry->per_cu.cu == NULL);
4876 if (dwarf2_per_objfile->using_index)
4877 {
4878 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4879 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4880 }
4881 else
4882 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4883 gdb_assert (sig_entry->signature == dwo_entry->signature);
4884 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4885 gdb_assert (sig_entry->type_unit_group == NULL);
4886 gdb_assert (sig_entry->dwo_unit == NULL);
4887
4888 sig_entry->per_cu.section = dwo_entry->section;
4889 sig_entry->per_cu.offset = dwo_entry->offset;
4890 sig_entry->per_cu.length = dwo_entry->length;
4891 sig_entry->per_cu.reading_dwo_directly = 1;
4892 sig_entry->per_cu.objfile = objfile;
4893 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4894 sig_entry->dwo_unit = dwo_entry;
4895 }
4896
4897 /* Subroutine of lookup_signatured_type.
4898 If we haven't read the TU yet, create the signatured_type data structure
4899 for a TU to be read in directly from a DWO file, bypassing the stub.
4900 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4901 using .gdb_index, then when reading a CU we want to stay in the DWO file
4902 containing that CU. Otherwise we could end up reading several other DWO
4903 files (due to comdat folding) to process the transitive closure of all the
4904 mentioned TUs, and that can be slow. The current DWO file will have every
4905 type signature that it needs.
4906 We only do this for .gdb_index because in the psymtab case we already have
4907 to read all the DWOs to build the type unit groups. */
4908
4909 static struct signatured_type *
4910 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4911 {
4912 struct objfile *objfile = dwarf2_per_objfile->objfile;
4913 struct dwo_file *dwo_file;
4914 struct dwo_unit find_dwo_entry, *dwo_entry;
4915 struct signatured_type find_sig_entry, *sig_entry;
4916 void **slot;
4917
4918 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4919
4920 /* If TU skeletons have been removed then we may not have read in any
4921 TUs yet. */
4922 if (dwarf2_per_objfile->signatured_types == NULL)
4923 {
4924 dwarf2_per_objfile->signatured_types
4925 = allocate_signatured_type_table (objfile);
4926 }
4927
4928 /* We only ever need to read in one copy of a signatured type.
4929 Use the global signatured_types array to do our own comdat-folding
4930 of types. If this is the first time we're reading this TU, and
4931 the TU has an entry in .gdb_index, replace the recorded data from
4932 .gdb_index with this TU. */
4933
4934 find_sig_entry.signature = sig;
4935 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4936 &find_sig_entry, INSERT);
4937 sig_entry = (struct signatured_type *) *slot;
4938
4939 /* We can get here with the TU already read, *or* in the process of being
4940 read. Don't reassign the global entry to point to this DWO if that's
4941 the case. Also note that if the TU is already being read, it may not
4942 have come from a DWO, the program may be a mix of Fission-compiled
4943 code and non-Fission-compiled code. */
4944
4945 /* Have we already tried to read this TU?
4946 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4947 needn't exist in the global table yet). */
4948 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4949 return sig_entry;
4950
4951 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4952 dwo_unit of the TU itself. */
4953 dwo_file = cu->dwo_unit->dwo_file;
4954
4955 /* Ok, this is the first time we're reading this TU. */
4956 if (dwo_file->tus == NULL)
4957 return NULL;
4958 find_dwo_entry.signature = sig;
4959 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
4960 if (dwo_entry == NULL)
4961 return NULL;
4962
4963 /* If the global table doesn't have an entry for this TU, add one. */
4964 if (sig_entry == NULL)
4965 sig_entry = add_type_unit (sig, slot);
4966
4967 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4968 sig_entry->per_cu.tu_read = 1;
4969 return sig_entry;
4970 }
4971
4972 /* Subroutine of lookup_signatured_type.
4973 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4974 then try the DWP file. If the TU stub (skeleton) has been removed then
4975 it won't be in .gdb_index. */
4976
4977 static struct signatured_type *
4978 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4979 {
4980 struct objfile *objfile = dwarf2_per_objfile->objfile;
4981 struct dwp_file *dwp_file = get_dwp_file ();
4982 struct dwo_unit *dwo_entry;
4983 struct signatured_type find_sig_entry, *sig_entry;
4984 void **slot;
4985
4986 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4987 gdb_assert (dwp_file != NULL);
4988
4989 /* If TU skeletons have been removed then we may not have read in any
4990 TUs yet. */
4991 if (dwarf2_per_objfile->signatured_types == NULL)
4992 {
4993 dwarf2_per_objfile->signatured_types
4994 = allocate_signatured_type_table (objfile);
4995 }
4996
4997 find_sig_entry.signature = sig;
4998 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4999 &find_sig_entry, INSERT);
5000 sig_entry = (struct signatured_type *) *slot;
5001
5002 /* Have we already tried to read this TU?
5003 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5004 needn't exist in the global table yet). */
5005 if (sig_entry != NULL)
5006 return sig_entry;
5007
5008 if (dwp_file->tus == NULL)
5009 return NULL;
5010 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5011 sig, 1 /* is_debug_types */);
5012 if (dwo_entry == NULL)
5013 return NULL;
5014
5015 sig_entry = add_type_unit (sig, slot);
5016 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5017
5018 return sig_entry;
5019 }
5020
5021 /* Lookup a signature based type for DW_FORM_ref_sig8.
5022 Returns NULL if signature SIG is not present in the table.
5023 It is up to the caller to complain about this. */
5024
5025 static struct signatured_type *
5026 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5027 {
5028 if (cu->dwo_unit
5029 && dwarf2_per_objfile->using_index)
5030 {
5031 /* We're in a DWO/DWP file, and we're using .gdb_index.
5032 These cases require special processing. */
5033 if (get_dwp_file () == NULL)
5034 return lookup_dwo_signatured_type (cu, sig);
5035 else
5036 return lookup_dwp_signatured_type (cu, sig);
5037 }
5038 else
5039 {
5040 struct signatured_type find_entry, *entry;
5041
5042 if (dwarf2_per_objfile->signatured_types == NULL)
5043 return NULL;
5044 find_entry.signature = sig;
5045 entry = ((struct signatured_type *)
5046 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5047 return entry;
5048 }
5049 }
5050 \f
5051 /* Low level DIE reading support. */
5052
5053 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5054
5055 static void
5056 init_cu_die_reader (struct die_reader_specs *reader,
5057 struct dwarf2_cu *cu,
5058 struct dwarf2_section_info *section,
5059 struct dwo_file *dwo_file)
5060 {
5061 gdb_assert (section->readin && section->buffer != NULL);
5062 reader->abfd = get_section_bfd_owner (section);
5063 reader->cu = cu;
5064 reader->dwo_file = dwo_file;
5065 reader->die_section = section;
5066 reader->buffer = section->buffer;
5067 reader->buffer_end = section->buffer + section->size;
5068 reader->comp_dir = NULL;
5069 }
5070
5071 /* Subroutine of init_cutu_and_read_dies to simplify it.
5072 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5073 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5074 already.
5075
5076 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5077 from it to the DIE in the DWO. If NULL we are skipping the stub.
5078 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5079 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5080 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5081 STUB_COMP_DIR may be non-NULL.
5082 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5083 are filled in with the info of the DIE from the DWO file.
5084 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5085 provided an abbrev table to use.
5086 The result is non-zero if a valid (non-dummy) DIE was found. */
5087
5088 static int
5089 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5090 struct dwo_unit *dwo_unit,
5091 int abbrev_table_provided,
5092 struct die_info *stub_comp_unit_die,
5093 const char *stub_comp_dir,
5094 struct die_reader_specs *result_reader,
5095 const gdb_byte **result_info_ptr,
5096 struct die_info **result_comp_unit_die,
5097 int *result_has_children)
5098 {
5099 struct objfile *objfile = dwarf2_per_objfile->objfile;
5100 struct dwarf2_cu *cu = this_cu->cu;
5101 struct dwarf2_section_info *section;
5102 bfd *abfd;
5103 const gdb_byte *begin_info_ptr, *info_ptr;
5104 ULONGEST signature; /* Or dwo_id. */
5105 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5106 int i,num_extra_attrs;
5107 struct dwarf2_section_info *dwo_abbrev_section;
5108 struct attribute *attr;
5109 struct die_info *comp_unit_die;
5110
5111 /* At most one of these may be provided. */
5112 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5113
5114 /* These attributes aren't processed until later:
5115 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5116 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5117 referenced later. However, these attributes are found in the stub
5118 which we won't have later. In order to not impose this complication
5119 on the rest of the code, we read them here and copy them to the
5120 DWO CU/TU die. */
5121
5122 stmt_list = NULL;
5123 low_pc = NULL;
5124 high_pc = NULL;
5125 ranges = NULL;
5126 comp_dir = NULL;
5127
5128 if (stub_comp_unit_die != NULL)
5129 {
5130 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5131 DWO file. */
5132 if (! this_cu->is_debug_types)
5133 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5134 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5135 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5136 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5137 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5138
5139 /* There should be a DW_AT_addr_base attribute here (if needed).
5140 We need the value before we can process DW_FORM_GNU_addr_index. */
5141 cu->addr_base = 0;
5142 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5143 if (attr)
5144 cu->addr_base = DW_UNSND (attr);
5145
5146 /* There should be a DW_AT_ranges_base attribute here (if needed).
5147 We need the value before we can process DW_AT_ranges. */
5148 cu->ranges_base = 0;
5149 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5150 if (attr)
5151 cu->ranges_base = DW_UNSND (attr);
5152 }
5153 else if (stub_comp_dir != NULL)
5154 {
5155 /* Reconstruct the comp_dir attribute to simplify the code below. */
5156 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5157 comp_dir->name = DW_AT_comp_dir;
5158 comp_dir->form = DW_FORM_string;
5159 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5160 DW_STRING (comp_dir) = stub_comp_dir;
5161 }
5162
5163 /* Set up for reading the DWO CU/TU. */
5164 cu->dwo_unit = dwo_unit;
5165 section = dwo_unit->section;
5166 dwarf2_read_section (objfile, section);
5167 abfd = get_section_bfd_owner (section);
5168 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5169 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5170 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5171
5172 if (this_cu->is_debug_types)
5173 {
5174 ULONGEST header_signature;
5175 cu_offset type_offset_in_tu;
5176 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5177
5178 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5179 dwo_abbrev_section,
5180 info_ptr,
5181 &header_signature,
5182 &type_offset_in_tu);
5183 /* This is not an assert because it can be caused by bad debug info. */
5184 if (sig_type->signature != header_signature)
5185 {
5186 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5187 " TU at offset 0x%x [in module %s]"),
5188 hex_string (sig_type->signature),
5189 hex_string (header_signature),
5190 dwo_unit->offset.sect_off,
5191 bfd_get_filename (abfd));
5192 }
5193 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5194 /* For DWOs coming from DWP files, we don't know the CU length
5195 nor the type's offset in the TU until now. */
5196 dwo_unit->length = get_cu_length (&cu->header);
5197 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5198
5199 /* Establish the type offset that can be used to lookup the type.
5200 For DWO files, we don't know it until now. */
5201 sig_type->type_offset_in_section.sect_off =
5202 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5203 }
5204 else
5205 {
5206 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5207 dwo_abbrev_section,
5208 info_ptr, 0);
5209 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5210 /* For DWOs coming from DWP files, we don't know the CU length
5211 until now. */
5212 dwo_unit->length = get_cu_length (&cu->header);
5213 }
5214
5215 /* Replace the CU's original abbrev table with the DWO's.
5216 Reminder: We can't read the abbrev table until we've read the header. */
5217 if (abbrev_table_provided)
5218 {
5219 /* Don't free the provided abbrev table, the caller of
5220 init_cutu_and_read_dies owns it. */
5221 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5222 /* Ensure the DWO abbrev table gets freed. */
5223 make_cleanup (dwarf2_free_abbrev_table, cu);
5224 }
5225 else
5226 {
5227 dwarf2_free_abbrev_table (cu);
5228 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5229 /* Leave any existing abbrev table cleanup as is. */
5230 }
5231
5232 /* Read in the die, but leave space to copy over the attributes
5233 from the stub. This has the benefit of simplifying the rest of
5234 the code - all the work to maintain the illusion of a single
5235 DW_TAG_{compile,type}_unit DIE is done here. */
5236 num_extra_attrs = ((stmt_list != NULL)
5237 + (low_pc != NULL)
5238 + (high_pc != NULL)
5239 + (ranges != NULL)
5240 + (comp_dir != NULL));
5241 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5242 result_has_children, num_extra_attrs);
5243
5244 /* Copy over the attributes from the stub to the DIE we just read in. */
5245 comp_unit_die = *result_comp_unit_die;
5246 i = comp_unit_die->num_attrs;
5247 if (stmt_list != NULL)
5248 comp_unit_die->attrs[i++] = *stmt_list;
5249 if (low_pc != NULL)
5250 comp_unit_die->attrs[i++] = *low_pc;
5251 if (high_pc != NULL)
5252 comp_unit_die->attrs[i++] = *high_pc;
5253 if (ranges != NULL)
5254 comp_unit_die->attrs[i++] = *ranges;
5255 if (comp_dir != NULL)
5256 comp_unit_die->attrs[i++] = *comp_dir;
5257 comp_unit_die->num_attrs += num_extra_attrs;
5258
5259 if (dwarf_die_debug)
5260 {
5261 fprintf_unfiltered (gdb_stdlog,
5262 "Read die from %s@0x%x of %s:\n",
5263 get_section_name (section),
5264 (unsigned) (begin_info_ptr - section->buffer),
5265 bfd_get_filename (abfd));
5266 dump_die (comp_unit_die, dwarf_die_debug);
5267 }
5268
5269 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5270 TUs by skipping the stub and going directly to the entry in the DWO file.
5271 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5272 to get it via circuitous means. Blech. */
5273 if (comp_dir != NULL)
5274 result_reader->comp_dir = DW_STRING (comp_dir);
5275
5276 /* Skip dummy compilation units. */
5277 if (info_ptr >= begin_info_ptr + dwo_unit->length
5278 || peek_abbrev_code (abfd, info_ptr) == 0)
5279 return 0;
5280
5281 *result_info_ptr = info_ptr;
5282 return 1;
5283 }
5284
5285 /* Subroutine of init_cutu_and_read_dies to simplify it.
5286 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5287 Returns NULL if the specified DWO unit cannot be found. */
5288
5289 static struct dwo_unit *
5290 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5291 struct die_info *comp_unit_die)
5292 {
5293 struct dwarf2_cu *cu = this_cu->cu;
5294 struct attribute *attr;
5295 ULONGEST signature;
5296 struct dwo_unit *dwo_unit;
5297 const char *comp_dir, *dwo_name;
5298
5299 gdb_assert (cu != NULL);
5300
5301 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5302 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5303 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5304
5305 if (this_cu->is_debug_types)
5306 {
5307 struct signatured_type *sig_type;
5308
5309 /* Since this_cu is the first member of struct signatured_type,
5310 we can go from a pointer to one to a pointer to the other. */
5311 sig_type = (struct signatured_type *) this_cu;
5312 signature = sig_type->signature;
5313 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5314 }
5315 else
5316 {
5317 struct attribute *attr;
5318
5319 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5320 if (! attr)
5321 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5322 " [in module %s]"),
5323 dwo_name, objfile_name (this_cu->objfile));
5324 signature = DW_UNSND (attr);
5325 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5326 signature);
5327 }
5328
5329 return dwo_unit;
5330 }
5331
5332 /* Subroutine of init_cutu_and_read_dies to simplify it.
5333 See it for a description of the parameters.
5334 Read a TU directly from a DWO file, bypassing the stub.
5335
5336 Note: This function could be a little bit simpler if we shared cleanups
5337 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5338 to do, so we keep this function self-contained. Or we could move this
5339 into our caller, but it's complex enough already. */
5340
5341 static void
5342 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5343 int use_existing_cu, int keep,
5344 die_reader_func_ftype *die_reader_func,
5345 void *data)
5346 {
5347 struct dwarf2_cu *cu;
5348 struct signatured_type *sig_type;
5349 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5350 struct die_reader_specs reader;
5351 const gdb_byte *info_ptr;
5352 struct die_info *comp_unit_die;
5353 int has_children;
5354
5355 /* Verify we can do the following downcast, and that we have the
5356 data we need. */
5357 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5358 sig_type = (struct signatured_type *) this_cu;
5359 gdb_assert (sig_type->dwo_unit != NULL);
5360
5361 cleanups = make_cleanup (null_cleanup, NULL);
5362
5363 if (use_existing_cu && this_cu->cu != NULL)
5364 {
5365 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5366 cu = this_cu->cu;
5367 /* There's no need to do the rereading_dwo_cu handling that
5368 init_cutu_and_read_dies does since we don't read the stub. */
5369 }
5370 else
5371 {
5372 /* If !use_existing_cu, this_cu->cu must be NULL. */
5373 gdb_assert (this_cu->cu == NULL);
5374 cu = XNEW (struct dwarf2_cu);
5375 init_one_comp_unit (cu, this_cu);
5376 /* If an error occurs while loading, release our storage. */
5377 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5378 }
5379
5380 /* A future optimization, if needed, would be to use an existing
5381 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5382 could share abbrev tables. */
5383
5384 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5385 0 /* abbrev_table_provided */,
5386 NULL /* stub_comp_unit_die */,
5387 sig_type->dwo_unit->dwo_file->comp_dir,
5388 &reader, &info_ptr,
5389 &comp_unit_die, &has_children) == 0)
5390 {
5391 /* Dummy die. */
5392 do_cleanups (cleanups);
5393 return;
5394 }
5395
5396 /* All the "real" work is done here. */
5397 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5398
5399 /* This duplicates the code in init_cutu_and_read_dies,
5400 but the alternative is making the latter more complex.
5401 This function is only for the special case of using DWO files directly:
5402 no point in overly complicating the general case just to handle this. */
5403 if (free_cu_cleanup != NULL)
5404 {
5405 if (keep)
5406 {
5407 /* We've successfully allocated this compilation unit. Let our
5408 caller clean it up when finished with it. */
5409 discard_cleanups (free_cu_cleanup);
5410
5411 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5412 So we have to manually free the abbrev table. */
5413 dwarf2_free_abbrev_table (cu);
5414
5415 /* Link this CU into read_in_chain. */
5416 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5417 dwarf2_per_objfile->read_in_chain = this_cu;
5418 }
5419 else
5420 do_cleanups (free_cu_cleanup);
5421 }
5422
5423 do_cleanups (cleanups);
5424 }
5425
5426 /* Initialize a CU (or TU) and read its DIEs.
5427 If the CU defers to a DWO file, read the DWO file as well.
5428
5429 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5430 Otherwise the table specified in the comp unit header is read in and used.
5431 This is an optimization for when we already have the abbrev table.
5432
5433 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5434 Otherwise, a new CU is allocated with xmalloc.
5435
5436 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5437 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5438
5439 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5440 linker) then DIE_READER_FUNC will not get called. */
5441
5442 static void
5443 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5444 struct abbrev_table *abbrev_table,
5445 int use_existing_cu, int keep,
5446 die_reader_func_ftype *die_reader_func,
5447 void *data)
5448 {
5449 struct objfile *objfile = dwarf2_per_objfile->objfile;
5450 struct dwarf2_section_info *section = this_cu->section;
5451 bfd *abfd = get_section_bfd_owner (section);
5452 struct dwarf2_cu *cu;
5453 const gdb_byte *begin_info_ptr, *info_ptr;
5454 struct die_reader_specs reader;
5455 struct die_info *comp_unit_die;
5456 int has_children;
5457 struct attribute *attr;
5458 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5459 struct signatured_type *sig_type = NULL;
5460 struct dwarf2_section_info *abbrev_section;
5461 /* Non-zero if CU currently points to a DWO file and we need to
5462 reread it. When this happens we need to reread the skeleton die
5463 before we can reread the DWO file (this only applies to CUs, not TUs). */
5464 int rereading_dwo_cu = 0;
5465
5466 if (dwarf_die_debug)
5467 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5468 this_cu->is_debug_types ? "type" : "comp",
5469 this_cu->offset.sect_off);
5470
5471 if (use_existing_cu)
5472 gdb_assert (keep);
5473
5474 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5475 file (instead of going through the stub), short-circuit all of this. */
5476 if (this_cu->reading_dwo_directly)
5477 {
5478 /* Narrow down the scope of possibilities to have to understand. */
5479 gdb_assert (this_cu->is_debug_types);
5480 gdb_assert (abbrev_table == NULL);
5481 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5482 die_reader_func, data);
5483 return;
5484 }
5485
5486 cleanups = make_cleanup (null_cleanup, NULL);
5487
5488 /* This is cheap if the section is already read in. */
5489 dwarf2_read_section (objfile, section);
5490
5491 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5492
5493 abbrev_section = get_abbrev_section_for_cu (this_cu);
5494
5495 if (use_existing_cu && this_cu->cu != NULL)
5496 {
5497 cu = this_cu->cu;
5498 /* If this CU is from a DWO file we need to start over, we need to
5499 refetch the attributes from the skeleton CU.
5500 This could be optimized by retrieving those attributes from when we
5501 were here the first time: the previous comp_unit_die was stored in
5502 comp_unit_obstack. But there's no data yet that we need this
5503 optimization. */
5504 if (cu->dwo_unit != NULL)
5505 rereading_dwo_cu = 1;
5506 }
5507 else
5508 {
5509 /* If !use_existing_cu, this_cu->cu must be NULL. */
5510 gdb_assert (this_cu->cu == NULL);
5511 cu = XNEW (struct dwarf2_cu);
5512 init_one_comp_unit (cu, this_cu);
5513 /* If an error occurs while loading, release our storage. */
5514 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5515 }
5516
5517 /* Get the header. */
5518 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5519 {
5520 /* We already have the header, there's no need to read it in again. */
5521 info_ptr += cu->header.first_die_offset.cu_off;
5522 }
5523 else
5524 {
5525 if (this_cu->is_debug_types)
5526 {
5527 ULONGEST signature;
5528 cu_offset type_offset_in_tu;
5529
5530 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5531 abbrev_section, info_ptr,
5532 &signature,
5533 &type_offset_in_tu);
5534
5535 /* Since per_cu is the first member of struct signatured_type,
5536 we can go from a pointer to one to a pointer to the other. */
5537 sig_type = (struct signatured_type *) this_cu;
5538 gdb_assert (sig_type->signature == signature);
5539 gdb_assert (sig_type->type_offset_in_tu.cu_off
5540 == type_offset_in_tu.cu_off);
5541 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5542
5543 /* LENGTH has not been set yet for type units if we're
5544 using .gdb_index. */
5545 this_cu->length = get_cu_length (&cu->header);
5546
5547 /* Establish the type offset that can be used to lookup the type. */
5548 sig_type->type_offset_in_section.sect_off =
5549 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5550 }
5551 else
5552 {
5553 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5554 abbrev_section,
5555 info_ptr, 0);
5556
5557 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5558 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5559 }
5560 }
5561
5562 /* Skip dummy compilation units. */
5563 if (info_ptr >= begin_info_ptr + this_cu->length
5564 || peek_abbrev_code (abfd, info_ptr) == 0)
5565 {
5566 do_cleanups (cleanups);
5567 return;
5568 }
5569
5570 /* If we don't have them yet, read the abbrevs for this compilation unit.
5571 And if we need to read them now, make sure they're freed when we're
5572 done. Note that it's important that if the CU had an abbrev table
5573 on entry we don't free it when we're done: Somewhere up the call stack
5574 it may be in use. */
5575 if (abbrev_table != NULL)
5576 {
5577 gdb_assert (cu->abbrev_table == NULL);
5578 gdb_assert (cu->header.abbrev_offset.sect_off
5579 == abbrev_table->offset.sect_off);
5580 cu->abbrev_table = abbrev_table;
5581 }
5582 else if (cu->abbrev_table == NULL)
5583 {
5584 dwarf2_read_abbrevs (cu, abbrev_section);
5585 make_cleanup (dwarf2_free_abbrev_table, cu);
5586 }
5587 else if (rereading_dwo_cu)
5588 {
5589 dwarf2_free_abbrev_table (cu);
5590 dwarf2_read_abbrevs (cu, abbrev_section);
5591 }
5592
5593 /* Read the top level CU/TU die. */
5594 init_cu_die_reader (&reader, cu, section, NULL);
5595 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5596
5597 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5598 from the DWO file.
5599 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5600 DWO CU, that this test will fail (the attribute will not be present). */
5601 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5602 if (attr)
5603 {
5604 struct dwo_unit *dwo_unit;
5605 struct die_info *dwo_comp_unit_die;
5606
5607 if (has_children)
5608 {
5609 complaint (&symfile_complaints,
5610 _("compilation unit with DW_AT_GNU_dwo_name"
5611 " has children (offset 0x%x) [in module %s]"),
5612 this_cu->offset.sect_off, bfd_get_filename (abfd));
5613 }
5614 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5615 if (dwo_unit != NULL)
5616 {
5617 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5618 abbrev_table != NULL,
5619 comp_unit_die, NULL,
5620 &reader, &info_ptr,
5621 &dwo_comp_unit_die, &has_children) == 0)
5622 {
5623 /* Dummy die. */
5624 do_cleanups (cleanups);
5625 return;
5626 }
5627 comp_unit_die = dwo_comp_unit_die;
5628 }
5629 else
5630 {
5631 /* Yikes, we couldn't find the rest of the DIE, we only have
5632 the stub. A complaint has already been logged. There's
5633 not much more we can do except pass on the stub DIE to
5634 die_reader_func. We don't want to throw an error on bad
5635 debug info. */
5636 }
5637 }
5638
5639 /* All of the above is setup for this call. Yikes. */
5640 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5641
5642 /* Done, clean up. */
5643 if (free_cu_cleanup != NULL)
5644 {
5645 if (keep)
5646 {
5647 /* We've successfully allocated this compilation unit. Let our
5648 caller clean it up when finished with it. */
5649 discard_cleanups (free_cu_cleanup);
5650
5651 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5652 So we have to manually free the abbrev table. */
5653 dwarf2_free_abbrev_table (cu);
5654
5655 /* Link this CU into read_in_chain. */
5656 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5657 dwarf2_per_objfile->read_in_chain = this_cu;
5658 }
5659 else
5660 do_cleanups (free_cu_cleanup);
5661 }
5662
5663 do_cleanups (cleanups);
5664 }
5665
5666 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5667 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5668 to have already done the lookup to find the DWO file).
5669
5670 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5671 THIS_CU->is_debug_types, but nothing else.
5672
5673 We fill in THIS_CU->length.
5674
5675 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5676 linker) then DIE_READER_FUNC will not get called.
5677
5678 THIS_CU->cu is always freed when done.
5679 This is done in order to not leave THIS_CU->cu in a state where we have
5680 to care whether it refers to the "main" CU or the DWO CU. */
5681
5682 static void
5683 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5684 struct dwo_file *dwo_file,
5685 die_reader_func_ftype *die_reader_func,
5686 void *data)
5687 {
5688 struct objfile *objfile = dwarf2_per_objfile->objfile;
5689 struct dwarf2_section_info *section = this_cu->section;
5690 bfd *abfd = get_section_bfd_owner (section);
5691 struct dwarf2_section_info *abbrev_section;
5692 struct dwarf2_cu cu;
5693 const gdb_byte *begin_info_ptr, *info_ptr;
5694 struct die_reader_specs reader;
5695 struct cleanup *cleanups;
5696 struct die_info *comp_unit_die;
5697 int has_children;
5698
5699 if (dwarf_die_debug)
5700 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5701 this_cu->is_debug_types ? "type" : "comp",
5702 this_cu->offset.sect_off);
5703
5704 gdb_assert (this_cu->cu == NULL);
5705
5706 abbrev_section = (dwo_file != NULL
5707 ? &dwo_file->sections.abbrev
5708 : get_abbrev_section_for_cu (this_cu));
5709
5710 /* This is cheap if the section is already read in. */
5711 dwarf2_read_section (objfile, section);
5712
5713 init_one_comp_unit (&cu, this_cu);
5714
5715 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5716
5717 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5718 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5719 abbrev_section, info_ptr,
5720 this_cu->is_debug_types);
5721
5722 this_cu->length = get_cu_length (&cu.header);
5723
5724 /* Skip dummy compilation units. */
5725 if (info_ptr >= begin_info_ptr + this_cu->length
5726 || peek_abbrev_code (abfd, info_ptr) == 0)
5727 {
5728 do_cleanups (cleanups);
5729 return;
5730 }
5731
5732 dwarf2_read_abbrevs (&cu, abbrev_section);
5733 make_cleanup (dwarf2_free_abbrev_table, &cu);
5734
5735 init_cu_die_reader (&reader, &cu, section, dwo_file);
5736 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5737
5738 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5739
5740 do_cleanups (cleanups);
5741 }
5742
5743 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5744 does not lookup the specified DWO file.
5745 This cannot be used to read DWO files.
5746
5747 THIS_CU->cu is always freed when done.
5748 This is done in order to not leave THIS_CU->cu in a state where we have
5749 to care whether it refers to the "main" CU or the DWO CU.
5750 We can revisit this if the data shows there's a performance issue. */
5751
5752 static void
5753 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5754 die_reader_func_ftype *die_reader_func,
5755 void *data)
5756 {
5757 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5758 }
5759 \f
5760 /* Type Unit Groups.
5761
5762 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5763 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5764 so that all types coming from the same compilation (.o file) are grouped
5765 together. A future step could be to put the types in the same symtab as
5766 the CU the types ultimately came from. */
5767
5768 static hashval_t
5769 hash_type_unit_group (const void *item)
5770 {
5771 const struct type_unit_group *tu_group
5772 = (const struct type_unit_group *) item;
5773
5774 return hash_stmt_list_entry (&tu_group->hash);
5775 }
5776
5777 static int
5778 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5779 {
5780 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5781 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
5782
5783 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5784 }
5785
5786 /* Allocate a hash table for type unit groups. */
5787
5788 static htab_t
5789 allocate_type_unit_groups_table (void)
5790 {
5791 return htab_create_alloc_ex (3,
5792 hash_type_unit_group,
5793 eq_type_unit_group,
5794 NULL,
5795 &dwarf2_per_objfile->objfile->objfile_obstack,
5796 hashtab_obstack_allocate,
5797 dummy_obstack_deallocate);
5798 }
5799
5800 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5801 partial symtabs. We combine several TUs per psymtab to not let the size
5802 of any one psymtab grow too big. */
5803 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5804 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5805
5806 /* Helper routine for get_type_unit_group.
5807 Create the type_unit_group object used to hold one or more TUs. */
5808
5809 static struct type_unit_group *
5810 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5811 {
5812 struct objfile *objfile = dwarf2_per_objfile->objfile;
5813 struct dwarf2_per_cu_data *per_cu;
5814 struct type_unit_group *tu_group;
5815
5816 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5817 struct type_unit_group);
5818 per_cu = &tu_group->per_cu;
5819 per_cu->objfile = objfile;
5820
5821 if (dwarf2_per_objfile->using_index)
5822 {
5823 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5824 struct dwarf2_per_cu_quick_data);
5825 }
5826 else
5827 {
5828 unsigned int line_offset = line_offset_struct.sect_off;
5829 struct partial_symtab *pst;
5830 char *name;
5831
5832 /* Give the symtab a useful name for debug purposes. */
5833 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5834 name = xstrprintf ("<type_units_%d>",
5835 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5836 else
5837 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5838
5839 pst = create_partial_symtab (per_cu, name);
5840 pst->anonymous = 1;
5841
5842 xfree (name);
5843 }
5844
5845 tu_group->hash.dwo_unit = cu->dwo_unit;
5846 tu_group->hash.line_offset = line_offset_struct;
5847
5848 return tu_group;
5849 }
5850
5851 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5852 STMT_LIST is a DW_AT_stmt_list attribute. */
5853
5854 static struct type_unit_group *
5855 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5856 {
5857 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5858 struct type_unit_group *tu_group;
5859 void **slot;
5860 unsigned int line_offset;
5861 struct type_unit_group type_unit_group_for_lookup;
5862
5863 if (dwarf2_per_objfile->type_unit_groups == NULL)
5864 {
5865 dwarf2_per_objfile->type_unit_groups =
5866 allocate_type_unit_groups_table ();
5867 }
5868
5869 /* Do we need to create a new group, or can we use an existing one? */
5870
5871 if (stmt_list)
5872 {
5873 line_offset = DW_UNSND (stmt_list);
5874 ++tu_stats->nr_symtab_sharers;
5875 }
5876 else
5877 {
5878 /* Ugh, no stmt_list. Rare, but we have to handle it.
5879 We can do various things here like create one group per TU or
5880 spread them over multiple groups to split up the expansion work.
5881 To avoid worst case scenarios (too many groups or too large groups)
5882 we, umm, group them in bunches. */
5883 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5884 | (tu_stats->nr_stmt_less_type_units
5885 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5886 ++tu_stats->nr_stmt_less_type_units;
5887 }
5888
5889 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5890 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5891 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5892 &type_unit_group_for_lookup, INSERT);
5893 if (*slot != NULL)
5894 {
5895 tu_group = (struct type_unit_group *) *slot;
5896 gdb_assert (tu_group != NULL);
5897 }
5898 else
5899 {
5900 sect_offset line_offset_struct;
5901
5902 line_offset_struct.sect_off = line_offset;
5903 tu_group = create_type_unit_group (cu, line_offset_struct);
5904 *slot = tu_group;
5905 ++tu_stats->nr_symtabs;
5906 }
5907
5908 return tu_group;
5909 }
5910 \f
5911 /* Partial symbol tables. */
5912
5913 /* Create a psymtab named NAME and assign it to PER_CU.
5914
5915 The caller must fill in the following details:
5916 dirname, textlow, texthigh. */
5917
5918 static struct partial_symtab *
5919 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5920 {
5921 struct objfile *objfile = per_cu->objfile;
5922 struct partial_symtab *pst;
5923
5924 pst = start_psymtab_common (objfile, name, 0,
5925 objfile->global_psymbols.next,
5926 objfile->static_psymbols.next);
5927
5928 pst->psymtabs_addrmap_supported = 1;
5929
5930 /* This is the glue that links PST into GDB's symbol API. */
5931 pst->read_symtab_private = per_cu;
5932 pst->read_symtab = dwarf2_read_symtab;
5933 per_cu->v.psymtab = pst;
5934
5935 return pst;
5936 }
5937
5938 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5939 type. */
5940
5941 struct process_psymtab_comp_unit_data
5942 {
5943 /* True if we are reading a DW_TAG_partial_unit. */
5944
5945 int want_partial_unit;
5946
5947 /* The "pretend" language that is used if the CU doesn't declare a
5948 language. */
5949
5950 enum language pretend_language;
5951 };
5952
5953 /* die_reader_func for process_psymtab_comp_unit. */
5954
5955 static void
5956 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5957 const gdb_byte *info_ptr,
5958 struct die_info *comp_unit_die,
5959 int has_children,
5960 void *data)
5961 {
5962 struct dwarf2_cu *cu = reader->cu;
5963 struct objfile *objfile = cu->objfile;
5964 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5965 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5966 CORE_ADDR baseaddr;
5967 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5968 struct partial_symtab *pst;
5969 enum pc_bounds_kind cu_bounds_kind;
5970 const char *filename;
5971 struct process_psymtab_comp_unit_data *info
5972 = (struct process_psymtab_comp_unit_data *) data;
5973
5974 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5975 return;
5976
5977 gdb_assert (! per_cu->is_debug_types);
5978
5979 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5980
5981 cu->list_in_scope = &file_symbols;
5982
5983 /* Allocate a new partial symbol table structure. */
5984 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5985 if (filename == NULL)
5986 filename = "";
5987
5988 pst = create_partial_symtab (per_cu, filename);
5989
5990 /* This must be done before calling dwarf2_build_include_psymtabs. */
5991 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5992
5993 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5994
5995 dwarf2_find_base_address (comp_unit_die, cu);
5996
5997 /* Possibly set the default values of LOWPC and HIGHPC from
5998 `DW_AT_ranges'. */
5999 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6000 &best_highpc, cu, pst);
6001 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
6002 /* Store the contiguous range if it is not empty; it can be empty for
6003 CUs with no code. */
6004 addrmap_set_empty (objfile->psymtabs_addrmap,
6005 gdbarch_adjust_dwarf2_addr (gdbarch,
6006 best_lowpc + baseaddr),
6007 gdbarch_adjust_dwarf2_addr (gdbarch,
6008 best_highpc + baseaddr) - 1,
6009 pst);
6010
6011 /* Check if comp unit has_children.
6012 If so, read the rest of the partial symbols from this comp unit.
6013 If not, there's no more debug_info for this comp unit. */
6014 if (has_children)
6015 {
6016 struct partial_die_info *first_die;
6017 CORE_ADDR lowpc, highpc;
6018
6019 lowpc = ((CORE_ADDR) -1);
6020 highpc = ((CORE_ADDR) 0);
6021
6022 first_die = load_partial_dies (reader, info_ptr, 1);
6023
6024 scan_partial_symbols (first_die, &lowpc, &highpc,
6025 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6026
6027 /* If we didn't find a lowpc, set it to highpc to avoid
6028 complaints from `maint check'. */
6029 if (lowpc == ((CORE_ADDR) -1))
6030 lowpc = highpc;
6031
6032 /* If the compilation unit didn't have an explicit address range,
6033 then use the information extracted from its child dies. */
6034 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6035 {
6036 best_lowpc = lowpc;
6037 best_highpc = highpc;
6038 }
6039 }
6040 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6041 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6042
6043 end_psymtab_common (objfile, pst);
6044
6045 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6046 {
6047 int i;
6048 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6049 struct dwarf2_per_cu_data *iter;
6050
6051 /* Fill in 'dependencies' here; we fill in 'users' in a
6052 post-pass. */
6053 pst->number_of_dependencies = len;
6054 pst->dependencies =
6055 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6056 for (i = 0;
6057 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6058 i, iter);
6059 ++i)
6060 pst->dependencies[i] = iter->v.psymtab;
6061
6062 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6063 }
6064
6065 /* Get the list of files included in the current compilation unit,
6066 and build a psymtab for each of them. */
6067 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6068
6069 if (dwarf_read_debug)
6070 {
6071 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6072
6073 fprintf_unfiltered (gdb_stdlog,
6074 "Psymtab for %s unit @0x%x: %s - %s"
6075 ", %d global, %d static syms\n",
6076 per_cu->is_debug_types ? "type" : "comp",
6077 per_cu->offset.sect_off,
6078 paddress (gdbarch, pst->textlow),
6079 paddress (gdbarch, pst->texthigh),
6080 pst->n_global_syms, pst->n_static_syms);
6081 }
6082 }
6083
6084 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6085 Process compilation unit THIS_CU for a psymtab. */
6086
6087 static void
6088 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6089 int want_partial_unit,
6090 enum language pretend_language)
6091 {
6092 struct process_psymtab_comp_unit_data info;
6093
6094 /* If this compilation unit was already read in, free the
6095 cached copy in order to read it in again. This is
6096 necessary because we skipped some symbols when we first
6097 read in the compilation unit (see load_partial_dies).
6098 This problem could be avoided, but the benefit is unclear. */
6099 if (this_cu->cu != NULL)
6100 free_one_cached_comp_unit (this_cu);
6101
6102 gdb_assert (! this_cu->is_debug_types);
6103 info.want_partial_unit = want_partial_unit;
6104 info.pretend_language = pretend_language;
6105 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6106 process_psymtab_comp_unit_reader,
6107 &info);
6108
6109 /* Age out any secondary CUs. */
6110 age_cached_comp_units ();
6111 }
6112
6113 /* Reader function for build_type_psymtabs. */
6114
6115 static void
6116 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6117 const gdb_byte *info_ptr,
6118 struct die_info *type_unit_die,
6119 int has_children,
6120 void *data)
6121 {
6122 struct objfile *objfile = dwarf2_per_objfile->objfile;
6123 struct dwarf2_cu *cu = reader->cu;
6124 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6125 struct signatured_type *sig_type;
6126 struct type_unit_group *tu_group;
6127 struct attribute *attr;
6128 struct partial_die_info *first_die;
6129 CORE_ADDR lowpc, highpc;
6130 struct partial_symtab *pst;
6131
6132 gdb_assert (data == NULL);
6133 gdb_assert (per_cu->is_debug_types);
6134 sig_type = (struct signatured_type *) per_cu;
6135
6136 if (! has_children)
6137 return;
6138
6139 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6140 tu_group = get_type_unit_group (cu, attr);
6141
6142 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6143
6144 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6145 cu->list_in_scope = &file_symbols;
6146 pst = create_partial_symtab (per_cu, "");
6147 pst->anonymous = 1;
6148
6149 first_die = load_partial_dies (reader, info_ptr, 1);
6150
6151 lowpc = (CORE_ADDR) -1;
6152 highpc = (CORE_ADDR) 0;
6153 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6154
6155 end_psymtab_common (objfile, pst);
6156 }
6157
6158 /* Struct used to sort TUs by their abbreviation table offset. */
6159
6160 struct tu_abbrev_offset
6161 {
6162 struct signatured_type *sig_type;
6163 sect_offset abbrev_offset;
6164 };
6165
6166 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6167
6168 static int
6169 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6170 {
6171 const struct tu_abbrev_offset * const *a
6172 = (const struct tu_abbrev_offset * const*) ap;
6173 const struct tu_abbrev_offset * const *b
6174 = (const struct tu_abbrev_offset * const*) bp;
6175 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6176 unsigned int boff = (*b)->abbrev_offset.sect_off;
6177
6178 return (aoff > boff) - (aoff < boff);
6179 }
6180
6181 /* Efficiently read all the type units.
6182 This does the bulk of the work for build_type_psymtabs.
6183
6184 The efficiency is because we sort TUs by the abbrev table they use and
6185 only read each abbrev table once. In one program there are 200K TUs
6186 sharing 8K abbrev tables.
6187
6188 The main purpose of this function is to support building the
6189 dwarf2_per_objfile->type_unit_groups table.
6190 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6191 can collapse the search space by grouping them by stmt_list.
6192 The savings can be significant, in the same program from above the 200K TUs
6193 share 8K stmt_list tables.
6194
6195 FUNC is expected to call get_type_unit_group, which will create the
6196 struct type_unit_group if necessary and add it to
6197 dwarf2_per_objfile->type_unit_groups. */
6198
6199 static void
6200 build_type_psymtabs_1 (void)
6201 {
6202 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6203 struct cleanup *cleanups;
6204 struct abbrev_table *abbrev_table;
6205 sect_offset abbrev_offset;
6206 struct tu_abbrev_offset *sorted_by_abbrev;
6207 int i;
6208
6209 /* It's up to the caller to not call us multiple times. */
6210 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6211
6212 if (dwarf2_per_objfile->n_type_units == 0)
6213 return;
6214
6215 /* TUs typically share abbrev tables, and there can be way more TUs than
6216 abbrev tables. Sort by abbrev table to reduce the number of times we
6217 read each abbrev table in.
6218 Alternatives are to punt or to maintain a cache of abbrev tables.
6219 This is simpler and efficient enough for now.
6220
6221 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6222 symtab to use). Typically TUs with the same abbrev offset have the same
6223 stmt_list value too so in practice this should work well.
6224
6225 The basic algorithm here is:
6226
6227 sort TUs by abbrev table
6228 for each TU with same abbrev table:
6229 read abbrev table if first user
6230 read TU top level DIE
6231 [IWBN if DWO skeletons had DW_AT_stmt_list]
6232 call FUNC */
6233
6234 if (dwarf_read_debug)
6235 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6236
6237 /* Sort in a separate table to maintain the order of all_type_units
6238 for .gdb_index: TU indices directly index all_type_units. */
6239 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6240 dwarf2_per_objfile->n_type_units);
6241 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6242 {
6243 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6244
6245 sorted_by_abbrev[i].sig_type = sig_type;
6246 sorted_by_abbrev[i].abbrev_offset =
6247 read_abbrev_offset (sig_type->per_cu.section,
6248 sig_type->per_cu.offset);
6249 }
6250 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6251 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6252 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6253
6254 abbrev_offset.sect_off = ~(unsigned) 0;
6255 abbrev_table = NULL;
6256 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6257
6258 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6259 {
6260 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6261
6262 /* Switch to the next abbrev table if necessary. */
6263 if (abbrev_table == NULL
6264 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6265 {
6266 if (abbrev_table != NULL)
6267 {
6268 abbrev_table_free (abbrev_table);
6269 /* Reset to NULL in case abbrev_table_read_table throws
6270 an error: abbrev_table_free_cleanup will get called. */
6271 abbrev_table = NULL;
6272 }
6273 abbrev_offset = tu->abbrev_offset;
6274 abbrev_table =
6275 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6276 abbrev_offset);
6277 ++tu_stats->nr_uniq_abbrev_tables;
6278 }
6279
6280 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6281 build_type_psymtabs_reader, NULL);
6282 }
6283
6284 do_cleanups (cleanups);
6285 }
6286
6287 /* Print collected type unit statistics. */
6288
6289 static void
6290 print_tu_stats (void)
6291 {
6292 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6293
6294 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6295 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6296 dwarf2_per_objfile->n_type_units);
6297 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6298 tu_stats->nr_uniq_abbrev_tables);
6299 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6300 tu_stats->nr_symtabs);
6301 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6302 tu_stats->nr_symtab_sharers);
6303 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6304 tu_stats->nr_stmt_less_type_units);
6305 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6306 tu_stats->nr_all_type_units_reallocs);
6307 }
6308
6309 /* Traversal function for build_type_psymtabs. */
6310
6311 static int
6312 build_type_psymtab_dependencies (void **slot, void *info)
6313 {
6314 struct objfile *objfile = dwarf2_per_objfile->objfile;
6315 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6316 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6317 struct partial_symtab *pst = per_cu->v.psymtab;
6318 int len = VEC_length (sig_type_ptr, tu_group->tus);
6319 struct signatured_type *iter;
6320 int i;
6321
6322 gdb_assert (len > 0);
6323 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6324
6325 pst->number_of_dependencies = len;
6326 pst->dependencies =
6327 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6328 for (i = 0;
6329 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6330 ++i)
6331 {
6332 gdb_assert (iter->per_cu.is_debug_types);
6333 pst->dependencies[i] = iter->per_cu.v.psymtab;
6334 iter->type_unit_group = tu_group;
6335 }
6336
6337 VEC_free (sig_type_ptr, tu_group->tus);
6338
6339 return 1;
6340 }
6341
6342 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6343 Build partial symbol tables for the .debug_types comp-units. */
6344
6345 static void
6346 build_type_psymtabs (struct objfile *objfile)
6347 {
6348 if (! create_all_type_units (objfile))
6349 return;
6350
6351 build_type_psymtabs_1 ();
6352 }
6353
6354 /* Traversal function for process_skeletonless_type_unit.
6355 Read a TU in a DWO file and build partial symbols for it. */
6356
6357 static int
6358 process_skeletonless_type_unit (void **slot, void *info)
6359 {
6360 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6361 struct objfile *objfile = (struct objfile *) info;
6362 struct signatured_type find_entry, *entry;
6363
6364 /* If this TU doesn't exist in the global table, add it and read it in. */
6365
6366 if (dwarf2_per_objfile->signatured_types == NULL)
6367 {
6368 dwarf2_per_objfile->signatured_types
6369 = allocate_signatured_type_table (objfile);
6370 }
6371
6372 find_entry.signature = dwo_unit->signature;
6373 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6374 INSERT);
6375 /* If we've already seen this type there's nothing to do. What's happening
6376 is we're doing our own version of comdat-folding here. */
6377 if (*slot != NULL)
6378 return 1;
6379
6380 /* This does the job that create_all_type_units would have done for
6381 this TU. */
6382 entry = add_type_unit (dwo_unit->signature, slot);
6383 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6384 *slot = entry;
6385
6386 /* This does the job that build_type_psymtabs_1 would have done. */
6387 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6388 build_type_psymtabs_reader, NULL);
6389
6390 return 1;
6391 }
6392
6393 /* Traversal function for process_skeletonless_type_units. */
6394
6395 static int
6396 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6397 {
6398 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6399
6400 if (dwo_file->tus != NULL)
6401 {
6402 htab_traverse_noresize (dwo_file->tus,
6403 process_skeletonless_type_unit, info);
6404 }
6405
6406 return 1;
6407 }
6408
6409 /* Scan all TUs of DWO files, verifying we've processed them.
6410 This is needed in case a TU was emitted without its skeleton.
6411 Note: This can't be done until we know what all the DWO files are. */
6412
6413 static void
6414 process_skeletonless_type_units (struct objfile *objfile)
6415 {
6416 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6417 if (get_dwp_file () == NULL
6418 && dwarf2_per_objfile->dwo_files != NULL)
6419 {
6420 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6421 process_dwo_file_for_skeletonless_type_units,
6422 objfile);
6423 }
6424 }
6425
6426 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6427
6428 static void
6429 psymtabs_addrmap_cleanup (void *o)
6430 {
6431 struct objfile *objfile = (struct objfile *) o;
6432
6433 objfile->psymtabs_addrmap = NULL;
6434 }
6435
6436 /* Compute the 'user' field for each psymtab in OBJFILE. */
6437
6438 static void
6439 set_partial_user (struct objfile *objfile)
6440 {
6441 int i;
6442
6443 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6444 {
6445 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6446 struct partial_symtab *pst = per_cu->v.psymtab;
6447 int j;
6448
6449 if (pst == NULL)
6450 continue;
6451
6452 for (j = 0; j < pst->number_of_dependencies; ++j)
6453 {
6454 /* Set the 'user' field only if it is not already set. */
6455 if (pst->dependencies[j]->user == NULL)
6456 pst->dependencies[j]->user = pst;
6457 }
6458 }
6459 }
6460
6461 /* Build the partial symbol table by doing a quick pass through the
6462 .debug_info and .debug_abbrev sections. */
6463
6464 static void
6465 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6466 {
6467 struct cleanup *back_to, *addrmap_cleanup;
6468 struct obstack temp_obstack;
6469 int i;
6470
6471 if (dwarf_read_debug)
6472 {
6473 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6474 objfile_name (objfile));
6475 }
6476
6477 dwarf2_per_objfile->reading_partial_symbols = 1;
6478
6479 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6480
6481 /* Any cached compilation units will be linked by the per-objfile
6482 read_in_chain. Make sure to free them when we're done. */
6483 back_to = make_cleanup (free_cached_comp_units, NULL);
6484
6485 build_type_psymtabs (objfile);
6486
6487 create_all_comp_units (objfile);
6488
6489 /* Create a temporary address map on a temporary obstack. We later
6490 copy this to the final obstack. */
6491 obstack_init (&temp_obstack);
6492 make_cleanup_obstack_free (&temp_obstack);
6493 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6494 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6495
6496 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6497 {
6498 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6499
6500 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6501 }
6502
6503 /* This has to wait until we read the CUs, we need the list of DWOs. */
6504 process_skeletonless_type_units (objfile);
6505
6506 /* Now that all TUs have been processed we can fill in the dependencies. */
6507 if (dwarf2_per_objfile->type_unit_groups != NULL)
6508 {
6509 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6510 build_type_psymtab_dependencies, NULL);
6511 }
6512
6513 if (dwarf_read_debug)
6514 print_tu_stats ();
6515
6516 set_partial_user (objfile);
6517
6518 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6519 &objfile->objfile_obstack);
6520 discard_cleanups (addrmap_cleanup);
6521
6522 do_cleanups (back_to);
6523
6524 if (dwarf_read_debug)
6525 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6526 objfile_name (objfile));
6527 }
6528
6529 /* die_reader_func for load_partial_comp_unit. */
6530
6531 static void
6532 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6533 const gdb_byte *info_ptr,
6534 struct die_info *comp_unit_die,
6535 int has_children,
6536 void *data)
6537 {
6538 struct dwarf2_cu *cu = reader->cu;
6539
6540 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6541
6542 /* Check if comp unit has_children.
6543 If so, read the rest of the partial symbols from this comp unit.
6544 If not, there's no more debug_info for this comp unit. */
6545 if (has_children)
6546 load_partial_dies (reader, info_ptr, 0);
6547 }
6548
6549 /* Load the partial DIEs for a secondary CU into memory.
6550 This is also used when rereading a primary CU with load_all_dies. */
6551
6552 static void
6553 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6554 {
6555 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6556 load_partial_comp_unit_reader, NULL);
6557 }
6558
6559 static void
6560 read_comp_units_from_section (struct objfile *objfile,
6561 struct dwarf2_section_info *section,
6562 unsigned int is_dwz,
6563 int *n_allocated,
6564 int *n_comp_units,
6565 struct dwarf2_per_cu_data ***all_comp_units)
6566 {
6567 const gdb_byte *info_ptr;
6568 bfd *abfd = get_section_bfd_owner (section);
6569
6570 if (dwarf_read_debug)
6571 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6572 get_section_name (section),
6573 get_section_file_name (section));
6574
6575 dwarf2_read_section (objfile, section);
6576
6577 info_ptr = section->buffer;
6578
6579 while (info_ptr < section->buffer + section->size)
6580 {
6581 unsigned int length, initial_length_size;
6582 struct dwarf2_per_cu_data *this_cu;
6583 sect_offset offset;
6584
6585 offset.sect_off = info_ptr - section->buffer;
6586
6587 /* Read just enough information to find out where the next
6588 compilation unit is. */
6589 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6590
6591 /* Save the compilation unit for later lookup. */
6592 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6593 memset (this_cu, 0, sizeof (*this_cu));
6594 this_cu->offset = offset;
6595 this_cu->length = length + initial_length_size;
6596 this_cu->is_dwz = is_dwz;
6597 this_cu->objfile = objfile;
6598 this_cu->section = section;
6599
6600 if (*n_comp_units == *n_allocated)
6601 {
6602 *n_allocated *= 2;
6603 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6604 *all_comp_units, *n_allocated);
6605 }
6606 (*all_comp_units)[*n_comp_units] = this_cu;
6607 ++*n_comp_units;
6608
6609 info_ptr = info_ptr + this_cu->length;
6610 }
6611 }
6612
6613 /* Create a list of all compilation units in OBJFILE.
6614 This is only done for -readnow and building partial symtabs. */
6615
6616 static void
6617 create_all_comp_units (struct objfile *objfile)
6618 {
6619 int n_allocated;
6620 int n_comp_units;
6621 struct dwarf2_per_cu_data **all_comp_units;
6622 struct dwz_file *dwz;
6623
6624 n_comp_units = 0;
6625 n_allocated = 10;
6626 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6627
6628 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6629 &n_allocated, &n_comp_units, &all_comp_units);
6630
6631 dwz = dwarf2_get_dwz_file ();
6632 if (dwz != NULL)
6633 read_comp_units_from_section (objfile, &dwz->info, 1,
6634 &n_allocated, &n_comp_units,
6635 &all_comp_units);
6636
6637 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6638 struct dwarf2_per_cu_data *,
6639 n_comp_units);
6640 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6641 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6642 xfree (all_comp_units);
6643 dwarf2_per_objfile->n_comp_units = n_comp_units;
6644 }
6645
6646 /* Process all loaded DIEs for compilation unit CU, starting at
6647 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6648 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6649 DW_AT_ranges). See the comments of add_partial_subprogram on how
6650 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6651
6652 static void
6653 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6654 CORE_ADDR *highpc, int set_addrmap,
6655 struct dwarf2_cu *cu)
6656 {
6657 struct partial_die_info *pdi;
6658
6659 /* Now, march along the PDI's, descending into ones which have
6660 interesting children but skipping the children of the other ones,
6661 until we reach the end of the compilation unit. */
6662
6663 pdi = first_die;
6664
6665 while (pdi != NULL)
6666 {
6667 fixup_partial_die (pdi, cu);
6668
6669 /* Anonymous namespaces or modules have no name but have interesting
6670 children, so we need to look at them. Ditto for anonymous
6671 enums. */
6672
6673 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6674 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6675 || pdi->tag == DW_TAG_imported_unit)
6676 {
6677 switch (pdi->tag)
6678 {
6679 case DW_TAG_subprogram:
6680 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6681 break;
6682 case DW_TAG_constant:
6683 case DW_TAG_variable:
6684 case DW_TAG_typedef:
6685 case DW_TAG_union_type:
6686 if (!pdi->is_declaration)
6687 {
6688 add_partial_symbol (pdi, cu);
6689 }
6690 break;
6691 case DW_TAG_class_type:
6692 case DW_TAG_interface_type:
6693 case DW_TAG_structure_type:
6694 if (!pdi->is_declaration)
6695 {
6696 add_partial_symbol (pdi, cu);
6697 }
6698 if (cu->language == language_rust && pdi->has_children)
6699 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6700 set_addrmap, cu);
6701 break;
6702 case DW_TAG_enumeration_type:
6703 if (!pdi->is_declaration)
6704 add_partial_enumeration (pdi, cu);
6705 break;
6706 case DW_TAG_base_type:
6707 case DW_TAG_subrange_type:
6708 /* File scope base type definitions are added to the partial
6709 symbol table. */
6710 add_partial_symbol (pdi, cu);
6711 break;
6712 case DW_TAG_namespace:
6713 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6714 break;
6715 case DW_TAG_module:
6716 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6717 break;
6718 case DW_TAG_imported_unit:
6719 {
6720 struct dwarf2_per_cu_data *per_cu;
6721
6722 /* For now we don't handle imported units in type units. */
6723 if (cu->per_cu->is_debug_types)
6724 {
6725 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6726 " supported in type units [in module %s]"),
6727 objfile_name (cu->objfile));
6728 }
6729
6730 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6731 pdi->is_dwz,
6732 cu->objfile);
6733
6734 /* Go read the partial unit, if needed. */
6735 if (per_cu->v.psymtab == NULL)
6736 process_psymtab_comp_unit (per_cu, 1, cu->language);
6737
6738 VEC_safe_push (dwarf2_per_cu_ptr,
6739 cu->per_cu->imported_symtabs, per_cu);
6740 }
6741 break;
6742 case DW_TAG_imported_declaration:
6743 add_partial_symbol (pdi, cu);
6744 break;
6745 default:
6746 break;
6747 }
6748 }
6749
6750 /* If the die has a sibling, skip to the sibling. */
6751
6752 pdi = pdi->die_sibling;
6753 }
6754 }
6755
6756 /* Functions used to compute the fully scoped name of a partial DIE.
6757
6758 Normally, this is simple. For C++, the parent DIE's fully scoped
6759 name is concatenated with "::" and the partial DIE's name. For
6760 Java, the same thing occurs except that "." is used instead of "::".
6761 Enumerators are an exception; they use the scope of their parent
6762 enumeration type, i.e. the name of the enumeration type is not
6763 prepended to the enumerator.
6764
6765 There are two complexities. One is DW_AT_specification; in this
6766 case "parent" means the parent of the target of the specification,
6767 instead of the direct parent of the DIE. The other is compilers
6768 which do not emit DW_TAG_namespace; in this case we try to guess
6769 the fully qualified name of structure types from their members'
6770 linkage names. This must be done using the DIE's children rather
6771 than the children of any DW_AT_specification target. We only need
6772 to do this for structures at the top level, i.e. if the target of
6773 any DW_AT_specification (if any; otherwise the DIE itself) does not
6774 have a parent. */
6775
6776 /* Compute the scope prefix associated with PDI's parent, in
6777 compilation unit CU. The result will be allocated on CU's
6778 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6779 field. NULL is returned if no prefix is necessary. */
6780 static const char *
6781 partial_die_parent_scope (struct partial_die_info *pdi,
6782 struct dwarf2_cu *cu)
6783 {
6784 const char *grandparent_scope;
6785 struct partial_die_info *parent, *real_pdi;
6786
6787 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6788 then this means the parent of the specification DIE. */
6789
6790 real_pdi = pdi;
6791 while (real_pdi->has_specification)
6792 real_pdi = find_partial_die (real_pdi->spec_offset,
6793 real_pdi->spec_is_dwz, cu);
6794
6795 parent = real_pdi->die_parent;
6796 if (parent == NULL)
6797 return NULL;
6798
6799 if (parent->scope_set)
6800 return parent->scope;
6801
6802 fixup_partial_die (parent, cu);
6803
6804 grandparent_scope = partial_die_parent_scope (parent, cu);
6805
6806 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6807 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6808 Work around this problem here. */
6809 if (cu->language == language_cplus
6810 && parent->tag == DW_TAG_namespace
6811 && strcmp (parent->name, "::") == 0
6812 && grandparent_scope == NULL)
6813 {
6814 parent->scope = NULL;
6815 parent->scope_set = 1;
6816 return NULL;
6817 }
6818
6819 if (pdi->tag == DW_TAG_enumerator)
6820 /* Enumerators should not get the name of the enumeration as a prefix. */
6821 parent->scope = grandparent_scope;
6822 else if (parent->tag == DW_TAG_namespace
6823 || parent->tag == DW_TAG_module
6824 || parent->tag == DW_TAG_structure_type
6825 || parent->tag == DW_TAG_class_type
6826 || parent->tag == DW_TAG_interface_type
6827 || parent->tag == DW_TAG_union_type
6828 || parent->tag == DW_TAG_enumeration_type)
6829 {
6830 if (grandparent_scope == NULL)
6831 parent->scope = parent->name;
6832 else
6833 parent->scope = typename_concat (&cu->comp_unit_obstack,
6834 grandparent_scope,
6835 parent->name, 0, cu);
6836 }
6837 else
6838 {
6839 /* FIXME drow/2004-04-01: What should we be doing with
6840 function-local names? For partial symbols, we should probably be
6841 ignoring them. */
6842 complaint (&symfile_complaints,
6843 _("unhandled containing DIE tag %d for DIE at %d"),
6844 parent->tag, pdi->offset.sect_off);
6845 parent->scope = grandparent_scope;
6846 }
6847
6848 parent->scope_set = 1;
6849 return parent->scope;
6850 }
6851
6852 /* Return the fully scoped name associated with PDI, from compilation unit
6853 CU. The result will be allocated with malloc. */
6854
6855 static char *
6856 partial_die_full_name (struct partial_die_info *pdi,
6857 struct dwarf2_cu *cu)
6858 {
6859 const char *parent_scope;
6860
6861 /* If this is a template instantiation, we can not work out the
6862 template arguments from partial DIEs. So, unfortunately, we have
6863 to go through the full DIEs. At least any work we do building
6864 types here will be reused if full symbols are loaded later. */
6865 if (pdi->has_template_arguments)
6866 {
6867 fixup_partial_die (pdi, cu);
6868
6869 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6870 {
6871 struct die_info *die;
6872 struct attribute attr;
6873 struct dwarf2_cu *ref_cu = cu;
6874
6875 /* DW_FORM_ref_addr is using section offset. */
6876 attr.name = (enum dwarf_attribute) 0;
6877 attr.form = DW_FORM_ref_addr;
6878 attr.u.unsnd = pdi->offset.sect_off;
6879 die = follow_die_ref (NULL, &attr, &ref_cu);
6880
6881 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6882 }
6883 }
6884
6885 parent_scope = partial_die_parent_scope (pdi, cu);
6886 if (parent_scope == NULL)
6887 return NULL;
6888 else
6889 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6890 }
6891
6892 static void
6893 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6894 {
6895 struct objfile *objfile = cu->objfile;
6896 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6897 CORE_ADDR addr = 0;
6898 const char *actual_name = NULL;
6899 CORE_ADDR baseaddr;
6900 char *built_actual_name;
6901
6902 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6903
6904 built_actual_name = partial_die_full_name (pdi, cu);
6905 if (built_actual_name != NULL)
6906 actual_name = built_actual_name;
6907
6908 if (actual_name == NULL)
6909 actual_name = pdi->name;
6910
6911 switch (pdi->tag)
6912 {
6913 case DW_TAG_subprogram:
6914 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6915 if (pdi->is_external || cu->language == language_ada)
6916 {
6917 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6918 of the global scope. But in Ada, we want to be able to access
6919 nested procedures globally. So all Ada subprograms are stored
6920 in the global scope. */
6921 add_psymbol_to_list (actual_name, strlen (actual_name),
6922 built_actual_name != NULL,
6923 VAR_DOMAIN, LOC_BLOCK,
6924 &objfile->global_psymbols,
6925 addr, cu->language, objfile);
6926 }
6927 else
6928 {
6929 add_psymbol_to_list (actual_name, strlen (actual_name),
6930 built_actual_name != NULL,
6931 VAR_DOMAIN, LOC_BLOCK,
6932 &objfile->static_psymbols,
6933 addr, cu->language, objfile);
6934 }
6935 break;
6936 case DW_TAG_constant:
6937 {
6938 struct psymbol_allocation_list *list;
6939
6940 if (pdi->is_external)
6941 list = &objfile->global_psymbols;
6942 else
6943 list = &objfile->static_psymbols;
6944 add_psymbol_to_list (actual_name, strlen (actual_name),
6945 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6946 list, 0, cu->language, objfile);
6947 }
6948 break;
6949 case DW_TAG_variable:
6950 if (pdi->d.locdesc)
6951 addr = decode_locdesc (pdi->d.locdesc, cu);
6952
6953 if (pdi->d.locdesc
6954 && addr == 0
6955 && !dwarf2_per_objfile->has_section_at_zero)
6956 {
6957 /* A global or static variable may also have been stripped
6958 out by the linker if unused, in which case its address
6959 will be nullified; do not add such variables into partial
6960 symbol table then. */
6961 }
6962 else if (pdi->is_external)
6963 {
6964 /* Global Variable.
6965 Don't enter into the minimal symbol tables as there is
6966 a minimal symbol table entry from the ELF symbols already.
6967 Enter into partial symbol table if it has a location
6968 descriptor or a type.
6969 If the location descriptor is missing, new_symbol will create
6970 a LOC_UNRESOLVED symbol, the address of the variable will then
6971 be determined from the minimal symbol table whenever the variable
6972 is referenced.
6973 The address for the partial symbol table entry is not
6974 used by GDB, but it comes in handy for debugging partial symbol
6975 table building. */
6976
6977 if (pdi->d.locdesc || pdi->has_type)
6978 add_psymbol_to_list (actual_name, strlen (actual_name),
6979 built_actual_name != NULL,
6980 VAR_DOMAIN, LOC_STATIC,
6981 &objfile->global_psymbols,
6982 addr + baseaddr,
6983 cu->language, objfile);
6984 }
6985 else
6986 {
6987 int has_loc = pdi->d.locdesc != NULL;
6988
6989 /* Static Variable. Skip symbols whose value we cannot know (those
6990 without location descriptors or constant values). */
6991 if (!has_loc && !pdi->has_const_value)
6992 {
6993 xfree (built_actual_name);
6994 return;
6995 }
6996
6997 add_psymbol_to_list (actual_name, strlen (actual_name),
6998 built_actual_name != NULL,
6999 VAR_DOMAIN, LOC_STATIC,
7000 &objfile->static_psymbols,
7001 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
7002 cu->language, objfile);
7003 }
7004 break;
7005 case DW_TAG_typedef:
7006 case DW_TAG_base_type:
7007 case DW_TAG_subrange_type:
7008 add_psymbol_to_list (actual_name, strlen (actual_name),
7009 built_actual_name != NULL,
7010 VAR_DOMAIN, LOC_TYPEDEF,
7011 &objfile->static_psymbols,
7012 0, cu->language, objfile);
7013 break;
7014 case DW_TAG_imported_declaration:
7015 case DW_TAG_namespace:
7016 add_psymbol_to_list (actual_name, strlen (actual_name),
7017 built_actual_name != NULL,
7018 VAR_DOMAIN, LOC_TYPEDEF,
7019 &objfile->global_psymbols,
7020 0, cu->language, objfile);
7021 break;
7022 case DW_TAG_module:
7023 add_psymbol_to_list (actual_name, strlen (actual_name),
7024 built_actual_name != NULL,
7025 MODULE_DOMAIN, LOC_TYPEDEF,
7026 &objfile->global_psymbols,
7027 0, cu->language, objfile);
7028 break;
7029 case DW_TAG_class_type:
7030 case DW_TAG_interface_type:
7031 case DW_TAG_structure_type:
7032 case DW_TAG_union_type:
7033 case DW_TAG_enumeration_type:
7034 /* Skip external references. The DWARF standard says in the section
7035 about "Structure, Union, and Class Type Entries": "An incomplete
7036 structure, union or class type is represented by a structure,
7037 union or class entry that does not have a byte size attribute
7038 and that has a DW_AT_declaration attribute." */
7039 if (!pdi->has_byte_size && pdi->is_declaration)
7040 {
7041 xfree (built_actual_name);
7042 return;
7043 }
7044
7045 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7046 static vs. global. */
7047 add_psymbol_to_list (actual_name, strlen (actual_name),
7048 built_actual_name != NULL,
7049 STRUCT_DOMAIN, LOC_TYPEDEF,
7050 (cu->language == language_cplus
7051 || cu->language == language_java)
7052 ? &objfile->global_psymbols
7053 : &objfile->static_psymbols,
7054 0, cu->language, objfile);
7055
7056 break;
7057 case DW_TAG_enumerator:
7058 add_psymbol_to_list (actual_name, strlen (actual_name),
7059 built_actual_name != NULL,
7060 VAR_DOMAIN, LOC_CONST,
7061 (cu->language == language_cplus
7062 || cu->language == language_java)
7063 ? &objfile->global_psymbols
7064 : &objfile->static_psymbols,
7065 0, cu->language, objfile);
7066 break;
7067 default:
7068 break;
7069 }
7070
7071 xfree (built_actual_name);
7072 }
7073
7074 /* Read a partial die corresponding to a namespace; also, add a symbol
7075 corresponding to that namespace to the symbol table. NAMESPACE is
7076 the name of the enclosing namespace. */
7077
7078 static void
7079 add_partial_namespace (struct partial_die_info *pdi,
7080 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7081 int set_addrmap, struct dwarf2_cu *cu)
7082 {
7083 /* Add a symbol for the namespace. */
7084
7085 add_partial_symbol (pdi, cu);
7086
7087 /* Now scan partial symbols in that namespace. */
7088
7089 if (pdi->has_children)
7090 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7091 }
7092
7093 /* Read a partial die corresponding to a Fortran module. */
7094
7095 static void
7096 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7097 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7098 {
7099 /* Add a symbol for the namespace. */
7100
7101 add_partial_symbol (pdi, cu);
7102
7103 /* Now scan partial symbols in that module. */
7104
7105 if (pdi->has_children)
7106 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7107 }
7108
7109 /* Read a partial die corresponding to a subprogram and create a partial
7110 symbol for that subprogram. When the CU language allows it, this
7111 routine also defines a partial symbol for each nested subprogram
7112 that this subprogram contains. If SET_ADDRMAP is true, record the
7113 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7114 and highest PC values found in PDI.
7115
7116 PDI may also be a lexical block, in which case we simply search
7117 recursively for subprograms defined inside that lexical block.
7118 Again, this is only performed when the CU language allows this
7119 type of definitions. */
7120
7121 static void
7122 add_partial_subprogram (struct partial_die_info *pdi,
7123 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7124 int set_addrmap, struct dwarf2_cu *cu)
7125 {
7126 if (pdi->tag == DW_TAG_subprogram)
7127 {
7128 if (pdi->has_pc_info)
7129 {
7130 if (pdi->lowpc < *lowpc)
7131 *lowpc = pdi->lowpc;
7132 if (pdi->highpc > *highpc)
7133 *highpc = pdi->highpc;
7134 if (set_addrmap)
7135 {
7136 struct objfile *objfile = cu->objfile;
7137 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7138 CORE_ADDR baseaddr;
7139 CORE_ADDR highpc;
7140 CORE_ADDR lowpc;
7141
7142 baseaddr = ANOFFSET (objfile->section_offsets,
7143 SECT_OFF_TEXT (objfile));
7144 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7145 pdi->lowpc + baseaddr);
7146 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7147 pdi->highpc + baseaddr);
7148 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7149 cu->per_cu->v.psymtab);
7150 }
7151 }
7152
7153 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7154 {
7155 if (!pdi->is_declaration)
7156 /* Ignore subprogram DIEs that do not have a name, they are
7157 illegal. Do not emit a complaint at this point, we will
7158 do so when we convert this psymtab into a symtab. */
7159 if (pdi->name)
7160 add_partial_symbol (pdi, cu);
7161 }
7162 }
7163
7164 if (! pdi->has_children)
7165 return;
7166
7167 if (cu->language == language_ada)
7168 {
7169 pdi = pdi->die_child;
7170 while (pdi != NULL)
7171 {
7172 fixup_partial_die (pdi, cu);
7173 if (pdi->tag == DW_TAG_subprogram
7174 || pdi->tag == DW_TAG_lexical_block)
7175 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7176 pdi = pdi->die_sibling;
7177 }
7178 }
7179 }
7180
7181 /* Read a partial die corresponding to an enumeration type. */
7182
7183 static void
7184 add_partial_enumeration (struct partial_die_info *enum_pdi,
7185 struct dwarf2_cu *cu)
7186 {
7187 struct partial_die_info *pdi;
7188
7189 if (enum_pdi->name != NULL)
7190 add_partial_symbol (enum_pdi, cu);
7191
7192 pdi = enum_pdi->die_child;
7193 while (pdi)
7194 {
7195 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7196 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7197 else
7198 add_partial_symbol (pdi, cu);
7199 pdi = pdi->die_sibling;
7200 }
7201 }
7202
7203 /* Return the initial uleb128 in the die at INFO_PTR. */
7204
7205 static unsigned int
7206 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7207 {
7208 unsigned int bytes_read;
7209
7210 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7211 }
7212
7213 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7214 Return the corresponding abbrev, or NULL if the number is zero (indicating
7215 an empty DIE). In either case *BYTES_READ will be set to the length of
7216 the initial number. */
7217
7218 static struct abbrev_info *
7219 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7220 struct dwarf2_cu *cu)
7221 {
7222 bfd *abfd = cu->objfile->obfd;
7223 unsigned int abbrev_number;
7224 struct abbrev_info *abbrev;
7225
7226 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7227
7228 if (abbrev_number == 0)
7229 return NULL;
7230
7231 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7232 if (!abbrev)
7233 {
7234 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7235 " at offset 0x%x [in module %s]"),
7236 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7237 cu->header.offset.sect_off, bfd_get_filename (abfd));
7238 }
7239
7240 return abbrev;
7241 }
7242
7243 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7244 Returns a pointer to the end of a series of DIEs, terminated by an empty
7245 DIE. Any children of the skipped DIEs will also be skipped. */
7246
7247 static const gdb_byte *
7248 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7249 {
7250 struct dwarf2_cu *cu = reader->cu;
7251 struct abbrev_info *abbrev;
7252 unsigned int bytes_read;
7253
7254 while (1)
7255 {
7256 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7257 if (abbrev == NULL)
7258 return info_ptr + bytes_read;
7259 else
7260 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7261 }
7262 }
7263
7264 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7265 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7266 abbrev corresponding to that skipped uleb128 should be passed in
7267 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7268 children. */
7269
7270 static const gdb_byte *
7271 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7272 struct abbrev_info *abbrev)
7273 {
7274 unsigned int bytes_read;
7275 struct attribute attr;
7276 bfd *abfd = reader->abfd;
7277 struct dwarf2_cu *cu = reader->cu;
7278 const gdb_byte *buffer = reader->buffer;
7279 const gdb_byte *buffer_end = reader->buffer_end;
7280 unsigned int form, i;
7281
7282 for (i = 0; i < abbrev->num_attrs; i++)
7283 {
7284 /* The only abbrev we care about is DW_AT_sibling. */
7285 if (abbrev->attrs[i].name == DW_AT_sibling)
7286 {
7287 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7288 if (attr.form == DW_FORM_ref_addr)
7289 complaint (&symfile_complaints,
7290 _("ignoring absolute DW_AT_sibling"));
7291 else
7292 {
7293 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7294 const gdb_byte *sibling_ptr = buffer + off;
7295
7296 if (sibling_ptr < info_ptr)
7297 complaint (&symfile_complaints,
7298 _("DW_AT_sibling points backwards"));
7299 else if (sibling_ptr > reader->buffer_end)
7300 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7301 else
7302 return sibling_ptr;
7303 }
7304 }
7305
7306 /* If it isn't DW_AT_sibling, skip this attribute. */
7307 form = abbrev->attrs[i].form;
7308 skip_attribute:
7309 switch (form)
7310 {
7311 case DW_FORM_ref_addr:
7312 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7313 and later it is offset sized. */
7314 if (cu->header.version == 2)
7315 info_ptr += cu->header.addr_size;
7316 else
7317 info_ptr += cu->header.offset_size;
7318 break;
7319 case DW_FORM_GNU_ref_alt:
7320 info_ptr += cu->header.offset_size;
7321 break;
7322 case DW_FORM_addr:
7323 info_ptr += cu->header.addr_size;
7324 break;
7325 case DW_FORM_data1:
7326 case DW_FORM_ref1:
7327 case DW_FORM_flag:
7328 info_ptr += 1;
7329 break;
7330 case DW_FORM_flag_present:
7331 break;
7332 case DW_FORM_data2:
7333 case DW_FORM_ref2:
7334 info_ptr += 2;
7335 break;
7336 case DW_FORM_data4:
7337 case DW_FORM_ref4:
7338 info_ptr += 4;
7339 break;
7340 case DW_FORM_data8:
7341 case DW_FORM_ref8:
7342 case DW_FORM_ref_sig8:
7343 info_ptr += 8;
7344 break;
7345 case DW_FORM_string:
7346 read_direct_string (abfd, info_ptr, &bytes_read);
7347 info_ptr += bytes_read;
7348 break;
7349 case DW_FORM_sec_offset:
7350 case DW_FORM_strp:
7351 case DW_FORM_GNU_strp_alt:
7352 info_ptr += cu->header.offset_size;
7353 break;
7354 case DW_FORM_exprloc:
7355 case DW_FORM_block:
7356 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7357 info_ptr += bytes_read;
7358 break;
7359 case DW_FORM_block1:
7360 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7361 break;
7362 case DW_FORM_block2:
7363 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7364 break;
7365 case DW_FORM_block4:
7366 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7367 break;
7368 case DW_FORM_sdata:
7369 case DW_FORM_udata:
7370 case DW_FORM_ref_udata:
7371 case DW_FORM_GNU_addr_index:
7372 case DW_FORM_GNU_str_index:
7373 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7374 break;
7375 case DW_FORM_indirect:
7376 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7377 info_ptr += bytes_read;
7378 /* We need to continue parsing from here, so just go back to
7379 the top. */
7380 goto skip_attribute;
7381
7382 default:
7383 error (_("Dwarf Error: Cannot handle %s "
7384 "in DWARF reader [in module %s]"),
7385 dwarf_form_name (form),
7386 bfd_get_filename (abfd));
7387 }
7388 }
7389
7390 if (abbrev->has_children)
7391 return skip_children (reader, info_ptr);
7392 else
7393 return info_ptr;
7394 }
7395
7396 /* Locate ORIG_PDI's sibling.
7397 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7398
7399 static const gdb_byte *
7400 locate_pdi_sibling (const struct die_reader_specs *reader,
7401 struct partial_die_info *orig_pdi,
7402 const gdb_byte *info_ptr)
7403 {
7404 /* Do we know the sibling already? */
7405
7406 if (orig_pdi->sibling)
7407 return orig_pdi->sibling;
7408
7409 /* Are there any children to deal with? */
7410
7411 if (!orig_pdi->has_children)
7412 return info_ptr;
7413
7414 /* Skip the children the long way. */
7415
7416 return skip_children (reader, info_ptr);
7417 }
7418
7419 /* Expand this partial symbol table into a full symbol table. SELF is
7420 not NULL. */
7421
7422 static void
7423 dwarf2_read_symtab (struct partial_symtab *self,
7424 struct objfile *objfile)
7425 {
7426 if (self->readin)
7427 {
7428 warning (_("bug: psymtab for %s is already read in."),
7429 self->filename);
7430 }
7431 else
7432 {
7433 if (info_verbose)
7434 {
7435 printf_filtered (_("Reading in symbols for %s..."),
7436 self->filename);
7437 gdb_flush (gdb_stdout);
7438 }
7439
7440 /* Restore our global data. */
7441 dwarf2_per_objfile
7442 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7443 dwarf2_objfile_data_key);
7444
7445 /* If this psymtab is constructed from a debug-only objfile, the
7446 has_section_at_zero flag will not necessarily be correct. We
7447 can get the correct value for this flag by looking at the data
7448 associated with the (presumably stripped) associated objfile. */
7449 if (objfile->separate_debug_objfile_backlink)
7450 {
7451 struct dwarf2_per_objfile *dpo_backlink
7452 = ((struct dwarf2_per_objfile *)
7453 objfile_data (objfile->separate_debug_objfile_backlink,
7454 dwarf2_objfile_data_key));
7455
7456 dwarf2_per_objfile->has_section_at_zero
7457 = dpo_backlink->has_section_at_zero;
7458 }
7459
7460 dwarf2_per_objfile->reading_partial_symbols = 0;
7461
7462 psymtab_to_symtab_1 (self);
7463
7464 /* Finish up the debug error message. */
7465 if (info_verbose)
7466 printf_filtered (_("done.\n"));
7467 }
7468
7469 process_cu_includes ();
7470 }
7471 \f
7472 /* Reading in full CUs. */
7473
7474 /* Add PER_CU to the queue. */
7475
7476 static void
7477 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7478 enum language pretend_language)
7479 {
7480 struct dwarf2_queue_item *item;
7481
7482 per_cu->queued = 1;
7483 item = XNEW (struct dwarf2_queue_item);
7484 item->per_cu = per_cu;
7485 item->pretend_language = pretend_language;
7486 item->next = NULL;
7487
7488 if (dwarf2_queue == NULL)
7489 dwarf2_queue = item;
7490 else
7491 dwarf2_queue_tail->next = item;
7492
7493 dwarf2_queue_tail = item;
7494 }
7495
7496 /* If PER_CU is not yet queued, add it to the queue.
7497 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7498 dependency.
7499 The result is non-zero if PER_CU was queued, otherwise the result is zero
7500 meaning either PER_CU is already queued or it is already loaded.
7501
7502 N.B. There is an invariant here that if a CU is queued then it is loaded.
7503 The caller is required to load PER_CU if we return non-zero. */
7504
7505 static int
7506 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7507 struct dwarf2_per_cu_data *per_cu,
7508 enum language pretend_language)
7509 {
7510 /* We may arrive here during partial symbol reading, if we need full
7511 DIEs to process an unusual case (e.g. template arguments). Do
7512 not queue PER_CU, just tell our caller to load its DIEs. */
7513 if (dwarf2_per_objfile->reading_partial_symbols)
7514 {
7515 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7516 return 1;
7517 return 0;
7518 }
7519
7520 /* Mark the dependence relation so that we don't flush PER_CU
7521 too early. */
7522 if (dependent_cu != NULL)
7523 dwarf2_add_dependence (dependent_cu, per_cu);
7524
7525 /* If it's already on the queue, we have nothing to do. */
7526 if (per_cu->queued)
7527 return 0;
7528
7529 /* If the compilation unit is already loaded, just mark it as
7530 used. */
7531 if (per_cu->cu != NULL)
7532 {
7533 per_cu->cu->last_used = 0;
7534 return 0;
7535 }
7536
7537 /* Add it to the queue. */
7538 queue_comp_unit (per_cu, pretend_language);
7539
7540 return 1;
7541 }
7542
7543 /* Process the queue. */
7544
7545 static void
7546 process_queue (void)
7547 {
7548 struct dwarf2_queue_item *item, *next_item;
7549
7550 if (dwarf_read_debug)
7551 {
7552 fprintf_unfiltered (gdb_stdlog,
7553 "Expanding one or more symtabs of objfile %s ...\n",
7554 objfile_name (dwarf2_per_objfile->objfile));
7555 }
7556
7557 /* The queue starts out with one item, but following a DIE reference
7558 may load a new CU, adding it to the end of the queue. */
7559 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7560 {
7561 if ((dwarf2_per_objfile->using_index
7562 ? !item->per_cu->v.quick->compunit_symtab
7563 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7564 /* Skip dummy CUs. */
7565 && item->per_cu->cu != NULL)
7566 {
7567 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7568 unsigned int debug_print_threshold;
7569 char buf[100];
7570
7571 if (per_cu->is_debug_types)
7572 {
7573 struct signatured_type *sig_type =
7574 (struct signatured_type *) per_cu;
7575
7576 sprintf (buf, "TU %s at offset 0x%x",
7577 hex_string (sig_type->signature),
7578 per_cu->offset.sect_off);
7579 /* There can be 100s of TUs.
7580 Only print them in verbose mode. */
7581 debug_print_threshold = 2;
7582 }
7583 else
7584 {
7585 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7586 debug_print_threshold = 1;
7587 }
7588
7589 if (dwarf_read_debug >= debug_print_threshold)
7590 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7591
7592 if (per_cu->is_debug_types)
7593 process_full_type_unit (per_cu, item->pretend_language);
7594 else
7595 process_full_comp_unit (per_cu, item->pretend_language);
7596
7597 if (dwarf_read_debug >= debug_print_threshold)
7598 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7599 }
7600
7601 item->per_cu->queued = 0;
7602 next_item = item->next;
7603 xfree (item);
7604 }
7605
7606 dwarf2_queue_tail = NULL;
7607
7608 if (dwarf_read_debug)
7609 {
7610 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7611 objfile_name (dwarf2_per_objfile->objfile));
7612 }
7613 }
7614
7615 /* Free all allocated queue entries. This function only releases anything if
7616 an error was thrown; if the queue was processed then it would have been
7617 freed as we went along. */
7618
7619 static void
7620 dwarf2_release_queue (void *dummy)
7621 {
7622 struct dwarf2_queue_item *item, *last;
7623
7624 item = dwarf2_queue;
7625 while (item)
7626 {
7627 /* Anything still marked queued is likely to be in an
7628 inconsistent state, so discard it. */
7629 if (item->per_cu->queued)
7630 {
7631 if (item->per_cu->cu != NULL)
7632 free_one_cached_comp_unit (item->per_cu);
7633 item->per_cu->queued = 0;
7634 }
7635
7636 last = item;
7637 item = item->next;
7638 xfree (last);
7639 }
7640
7641 dwarf2_queue = dwarf2_queue_tail = NULL;
7642 }
7643
7644 /* Read in full symbols for PST, and anything it depends on. */
7645
7646 static void
7647 psymtab_to_symtab_1 (struct partial_symtab *pst)
7648 {
7649 struct dwarf2_per_cu_data *per_cu;
7650 int i;
7651
7652 if (pst->readin)
7653 return;
7654
7655 for (i = 0; i < pst->number_of_dependencies; i++)
7656 if (!pst->dependencies[i]->readin
7657 && pst->dependencies[i]->user == NULL)
7658 {
7659 /* Inform about additional files that need to be read in. */
7660 if (info_verbose)
7661 {
7662 /* FIXME: i18n: Need to make this a single string. */
7663 fputs_filtered (" ", gdb_stdout);
7664 wrap_here ("");
7665 fputs_filtered ("and ", gdb_stdout);
7666 wrap_here ("");
7667 printf_filtered ("%s...", pst->dependencies[i]->filename);
7668 wrap_here (""); /* Flush output. */
7669 gdb_flush (gdb_stdout);
7670 }
7671 psymtab_to_symtab_1 (pst->dependencies[i]);
7672 }
7673
7674 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7675
7676 if (per_cu == NULL)
7677 {
7678 /* It's an include file, no symbols to read for it.
7679 Everything is in the parent symtab. */
7680 pst->readin = 1;
7681 return;
7682 }
7683
7684 dw2_do_instantiate_symtab (per_cu);
7685 }
7686
7687 /* Trivial hash function for die_info: the hash value of a DIE
7688 is its offset in .debug_info for this objfile. */
7689
7690 static hashval_t
7691 die_hash (const void *item)
7692 {
7693 const struct die_info *die = (const struct die_info *) item;
7694
7695 return die->offset.sect_off;
7696 }
7697
7698 /* Trivial comparison function for die_info structures: two DIEs
7699 are equal if they have the same offset. */
7700
7701 static int
7702 die_eq (const void *item_lhs, const void *item_rhs)
7703 {
7704 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7705 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7706
7707 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7708 }
7709
7710 /* die_reader_func for load_full_comp_unit.
7711 This is identical to read_signatured_type_reader,
7712 but is kept separate for now. */
7713
7714 static void
7715 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7716 const gdb_byte *info_ptr,
7717 struct die_info *comp_unit_die,
7718 int has_children,
7719 void *data)
7720 {
7721 struct dwarf2_cu *cu = reader->cu;
7722 enum language *language_ptr = (enum language *) data;
7723
7724 gdb_assert (cu->die_hash == NULL);
7725 cu->die_hash =
7726 htab_create_alloc_ex (cu->header.length / 12,
7727 die_hash,
7728 die_eq,
7729 NULL,
7730 &cu->comp_unit_obstack,
7731 hashtab_obstack_allocate,
7732 dummy_obstack_deallocate);
7733
7734 if (has_children)
7735 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7736 &info_ptr, comp_unit_die);
7737 cu->dies = comp_unit_die;
7738 /* comp_unit_die is not stored in die_hash, no need. */
7739
7740 /* We try not to read any attributes in this function, because not
7741 all CUs needed for references have been loaded yet, and symbol
7742 table processing isn't initialized. But we have to set the CU language,
7743 or we won't be able to build types correctly.
7744 Similarly, if we do not read the producer, we can not apply
7745 producer-specific interpretation. */
7746 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7747 }
7748
7749 /* Load the DIEs associated with PER_CU into memory. */
7750
7751 static void
7752 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7753 enum language pretend_language)
7754 {
7755 gdb_assert (! this_cu->is_debug_types);
7756
7757 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7758 load_full_comp_unit_reader, &pretend_language);
7759 }
7760
7761 /* Add a DIE to the delayed physname list. */
7762
7763 static void
7764 add_to_method_list (struct type *type, int fnfield_index, int index,
7765 const char *name, struct die_info *die,
7766 struct dwarf2_cu *cu)
7767 {
7768 struct delayed_method_info mi;
7769 mi.type = type;
7770 mi.fnfield_index = fnfield_index;
7771 mi.index = index;
7772 mi.name = name;
7773 mi.die = die;
7774 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7775 }
7776
7777 /* A cleanup for freeing the delayed method list. */
7778
7779 static void
7780 free_delayed_list (void *ptr)
7781 {
7782 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7783 if (cu->method_list != NULL)
7784 {
7785 VEC_free (delayed_method_info, cu->method_list);
7786 cu->method_list = NULL;
7787 }
7788 }
7789
7790 /* Compute the physnames of any methods on the CU's method list.
7791
7792 The computation of method physnames is delayed in order to avoid the
7793 (bad) condition that one of the method's formal parameters is of an as yet
7794 incomplete type. */
7795
7796 static void
7797 compute_delayed_physnames (struct dwarf2_cu *cu)
7798 {
7799 int i;
7800 struct delayed_method_info *mi;
7801 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7802 {
7803 const char *physname;
7804 struct fn_fieldlist *fn_flp
7805 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7806 physname = dwarf2_physname (mi->name, mi->die, cu);
7807 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7808 = physname ? physname : "";
7809 }
7810 }
7811
7812 /* Go objects should be embedded in a DW_TAG_module DIE,
7813 and it's not clear if/how imported objects will appear.
7814 To keep Go support simple until that's worked out,
7815 go back through what we've read and create something usable.
7816 We could do this while processing each DIE, and feels kinda cleaner,
7817 but that way is more invasive.
7818 This is to, for example, allow the user to type "p var" or "b main"
7819 without having to specify the package name, and allow lookups
7820 of module.object to work in contexts that use the expression
7821 parser. */
7822
7823 static void
7824 fixup_go_packaging (struct dwarf2_cu *cu)
7825 {
7826 char *package_name = NULL;
7827 struct pending *list;
7828 int i;
7829
7830 for (list = global_symbols; list != NULL; list = list->next)
7831 {
7832 for (i = 0; i < list->nsyms; ++i)
7833 {
7834 struct symbol *sym = list->symbol[i];
7835
7836 if (SYMBOL_LANGUAGE (sym) == language_go
7837 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7838 {
7839 char *this_package_name = go_symbol_package_name (sym);
7840
7841 if (this_package_name == NULL)
7842 continue;
7843 if (package_name == NULL)
7844 package_name = this_package_name;
7845 else
7846 {
7847 if (strcmp (package_name, this_package_name) != 0)
7848 complaint (&symfile_complaints,
7849 _("Symtab %s has objects from two different Go packages: %s and %s"),
7850 (symbol_symtab (sym) != NULL
7851 ? symtab_to_filename_for_display
7852 (symbol_symtab (sym))
7853 : objfile_name (cu->objfile)),
7854 this_package_name, package_name);
7855 xfree (this_package_name);
7856 }
7857 }
7858 }
7859 }
7860
7861 if (package_name != NULL)
7862 {
7863 struct objfile *objfile = cu->objfile;
7864 const char *saved_package_name
7865 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7866 package_name,
7867 strlen (package_name));
7868 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
7869 saved_package_name);
7870 struct symbol *sym;
7871
7872 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7873
7874 sym = allocate_symbol (objfile);
7875 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7876 SYMBOL_SET_NAMES (sym, saved_package_name,
7877 strlen (saved_package_name), 0, objfile);
7878 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7879 e.g., "main" finds the "main" module and not C's main(). */
7880 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7881 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7882 SYMBOL_TYPE (sym) = type;
7883
7884 add_symbol_to_list (sym, &global_symbols);
7885
7886 xfree (package_name);
7887 }
7888 }
7889
7890 /* Return the symtab for PER_CU. This works properly regardless of
7891 whether we're using the index or psymtabs. */
7892
7893 static struct compunit_symtab *
7894 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7895 {
7896 return (dwarf2_per_objfile->using_index
7897 ? per_cu->v.quick->compunit_symtab
7898 : per_cu->v.psymtab->compunit_symtab);
7899 }
7900
7901 /* A helper function for computing the list of all symbol tables
7902 included by PER_CU. */
7903
7904 static void
7905 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7906 htab_t all_children, htab_t all_type_symtabs,
7907 struct dwarf2_per_cu_data *per_cu,
7908 struct compunit_symtab *immediate_parent)
7909 {
7910 void **slot;
7911 int ix;
7912 struct compunit_symtab *cust;
7913 struct dwarf2_per_cu_data *iter;
7914
7915 slot = htab_find_slot (all_children, per_cu, INSERT);
7916 if (*slot != NULL)
7917 {
7918 /* This inclusion and its children have been processed. */
7919 return;
7920 }
7921
7922 *slot = per_cu;
7923 /* Only add a CU if it has a symbol table. */
7924 cust = get_compunit_symtab (per_cu);
7925 if (cust != NULL)
7926 {
7927 /* If this is a type unit only add its symbol table if we haven't
7928 seen it yet (type unit per_cu's can share symtabs). */
7929 if (per_cu->is_debug_types)
7930 {
7931 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7932 if (*slot == NULL)
7933 {
7934 *slot = cust;
7935 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7936 if (cust->user == NULL)
7937 cust->user = immediate_parent;
7938 }
7939 }
7940 else
7941 {
7942 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7943 if (cust->user == NULL)
7944 cust->user = immediate_parent;
7945 }
7946 }
7947
7948 for (ix = 0;
7949 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7950 ++ix)
7951 {
7952 recursively_compute_inclusions (result, all_children,
7953 all_type_symtabs, iter, cust);
7954 }
7955 }
7956
7957 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7958 PER_CU. */
7959
7960 static void
7961 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7962 {
7963 gdb_assert (! per_cu->is_debug_types);
7964
7965 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7966 {
7967 int ix, len;
7968 struct dwarf2_per_cu_data *per_cu_iter;
7969 struct compunit_symtab *compunit_symtab_iter;
7970 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7971 htab_t all_children, all_type_symtabs;
7972 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7973
7974 /* If we don't have a symtab, we can just skip this case. */
7975 if (cust == NULL)
7976 return;
7977
7978 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7979 NULL, xcalloc, xfree);
7980 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7981 NULL, xcalloc, xfree);
7982
7983 for (ix = 0;
7984 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7985 ix, per_cu_iter);
7986 ++ix)
7987 {
7988 recursively_compute_inclusions (&result_symtabs, all_children,
7989 all_type_symtabs, per_cu_iter,
7990 cust);
7991 }
7992
7993 /* Now we have a transitive closure of all the included symtabs. */
7994 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7995 cust->includes
7996 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7997 struct compunit_symtab *, len + 1);
7998 for (ix = 0;
7999 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8000 compunit_symtab_iter);
8001 ++ix)
8002 cust->includes[ix] = compunit_symtab_iter;
8003 cust->includes[len] = NULL;
8004
8005 VEC_free (compunit_symtab_ptr, result_symtabs);
8006 htab_delete (all_children);
8007 htab_delete (all_type_symtabs);
8008 }
8009 }
8010
8011 /* Compute the 'includes' field for the symtabs of all the CUs we just
8012 read. */
8013
8014 static void
8015 process_cu_includes (void)
8016 {
8017 int ix;
8018 struct dwarf2_per_cu_data *iter;
8019
8020 for (ix = 0;
8021 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8022 ix, iter);
8023 ++ix)
8024 {
8025 if (! iter->is_debug_types)
8026 compute_compunit_symtab_includes (iter);
8027 }
8028
8029 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8030 }
8031
8032 /* Generate full symbol information for PER_CU, whose DIEs have
8033 already been loaded into memory. */
8034
8035 static void
8036 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8037 enum language pretend_language)
8038 {
8039 struct dwarf2_cu *cu = per_cu->cu;
8040 struct objfile *objfile = per_cu->objfile;
8041 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8042 CORE_ADDR lowpc, highpc;
8043 struct compunit_symtab *cust;
8044 struct cleanup *back_to, *delayed_list_cleanup;
8045 CORE_ADDR baseaddr;
8046 struct block *static_block;
8047 CORE_ADDR addr;
8048
8049 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8050
8051 buildsym_init ();
8052 back_to = make_cleanup (really_free_pendings, NULL);
8053 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8054
8055 cu->list_in_scope = &file_symbols;
8056
8057 cu->language = pretend_language;
8058 cu->language_defn = language_def (cu->language);
8059
8060 /* Do line number decoding in read_file_scope () */
8061 process_die (cu->dies, cu);
8062
8063 /* For now fudge the Go package. */
8064 if (cu->language == language_go)
8065 fixup_go_packaging (cu);
8066
8067 /* Now that we have processed all the DIEs in the CU, all the types
8068 should be complete, and it should now be safe to compute all of the
8069 physnames. */
8070 compute_delayed_physnames (cu);
8071 do_cleanups (delayed_list_cleanup);
8072
8073 /* Some compilers don't define a DW_AT_high_pc attribute for the
8074 compilation unit. If the DW_AT_high_pc is missing, synthesize
8075 it, by scanning the DIE's below the compilation unit. */
8076 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8077
8078 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8079 static_block = end_symtab_get_static_block (addr, 0, 1);
8080
8081 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8082 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8083 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8084 addrmap to help ensure it has an accurate map of pc values belonging to
8085 this comp unit. */
8086 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8087
8088 cust = end_symtab_from_static_block (static_block,
8089 SECT_OFF_TEXT (objfile), 0);
8090
8091 if (cust != NULL)
8092 {
8093 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8094
8095 /* Set symtab language to language from DW_AT_language. If the
8096 compilation is from a C file generated by language preprocessors, do
8097 not set the language if it was already deduced by start_subfile. */
8098 if (!(cu->language == language_c
8099 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8100 COMPUNIT_FILETABS (cust)->language = cu->language;
8101
8102 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8103 produce DW_AT_location with location lists but it can be possibly
8104 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8105 there were bugs in prologue debug info, fixed later in GCC-4.5
8106 by "unwind info for epilogues" patch (which is not directly related).
8107
8108 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8109 needed, it would be wrong due to missing DW_AT_producer there.
8110
8111 Still one can confuse GDB by using non-standard GCC compilation
8112 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8113 */
8114 if (cu->has_loclist && gcc_4_minor >= 5)
8115 cust->locations_valid = 1;
8116
8117 if (gcc_4_minor >= 5)
8118 cust->epilogue_unwind_valid = 1;
8119
8120 cust->call_site_htab = cu->call_site_htab;
8121 }
8122
8123 if (dwarf2_per_objfile->using_index)
8124 per_cu->v.quick->compunit_symtab = cust;
8125 else
8126 {
8127 struct partial_symtab *pst = per_cu->v.psymtab;
8128 pst->compunit_symtab = cust;
8129 pst->readin = 1;
8130 }
8131
8132 /* Push it for inclusion processing later. */
8133 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8134
8135 do_cleanups (back_to);
8136 }
8137
8138 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8139 already been loaded into memory. */
8140
8141 static void
8142 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8143 enum language pretend_language)
8144 {
8145 struct dwarf2_cu *cu = per_cu->cu;
8146 struct objfile *objfile = per_cu->objfile;
8147 struct compunit_symtab *cust;
8148 struct cleanup *back_to, *delayed_list_cleanup;
8149 struct signatured_type *sig_type;
8150
8151 gdb_assert (per_cu->is_debug_types);
8152 sig_type = (struct signatured_type *) per_cu;
8153
8154 buildsym_init ();
8155 back_to = make_cleanup (really_free_pendings, NULL);
8156 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8157
8158 cu->list_in_scope = &file_symbols;
8159
8160 cu->language = pretend_language;
8161 cu->language_defn = language_def (cu->language);
8162
8163 /* The symbol tables are set up in read_type_unit_scope. */
8164 process_die (cu->dies, cu);
8165
8166 /* For now fudge the Go package. */
8167 if (cu->language == language_go)
8168 fixup_go_packaging (cu);
8169
8170 /* Now that we have processed all the DIEs in the CU, all the types
8171 should be complete, and it should now be safe to compute all of the
8172 physnames. */
8173 compute_delayed_physnames (cu);
8174 do_cleanups (delayed_list_cleanup);
8175
8176 /* TUs share symbol tables.
8177 If this is the first TU to use this symtab, complete the construction
8178 of it with end_expandable_symtab. Otherwise, complete the addition of
8179 this TU's symbols to the existing symtab. */
8180 if (sig_type->type_unit_group->compunit_symtab == NULL)
8181 {
8182 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8183 sig_type->type_unit_group->compunit_symtab = cust;
8184
8185 if (cust != NULL)
8186 {
8187 /* Set symtab language to language from DW_AT_language. If the
8188 compilation is from a C file generated by language preprocessors,
8189 do not set the language if it was already deduced by
8190 start_subfile. */
8191 if (!(cu->language == language_c
8192 && COMPUNIT_FILETABS (cust)->language != language_c))
8193 COMPUNIT_FILETABS (cust)->language = cu->language;
8194 }
8195 }
8196 else
8197 {
8198 augment_type_symtab ();
8199 cust = sig_type->type_unit_group->compunit_symtab;
8200 }
8201
8202 if (dwarf2_per_objfile->using_index)
8203 per_cu->v.quick->compunit_symtab = cust;
8204 else
8205 {
8206 struct partial_symtab *pst = per_cu->v.psymtab;
8207 pst->compunit_symtab = cust;
8208 pst->readin = 1;
8209 }
8210
8211 do_cleanups (back_to);
8212 }
8213
8214 /* Process an imported unit DIE. */
8215
8216 static void
8217 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8218 {
8219 struct attribute *attr;
8220
8221 /* For now we don't handle imported units in type units. */
8222 if (cu->per_cu->is_debug_types)
8223 {
8224 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8225 " supported in type units [in module %s]"),
8226 objfile_name (cu->objfile));
8227 }
8228
8229 attr = dwarf2_attr (die, DW_AT_import, cu);
8230 if (attr != NULL)
8231 {
8232 struct dwarf2_per_cu_data *per_cu;
8233 sect_offset offset;
8234 int is_dwz;
8235
8236 offset = dwarf2_get_ref_die_offset (attr);
8237 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8238 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8239
8240 /* If necessary, add it to the queue and load its DIEs. */
8241 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8242 load_full_comp_unit (per_cu, cu->language);
8243
8244 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8245 per_cu);
8246 }
8247 }
8248
8249 /* Reset the in_process bit of a die. */
8250
8251 static void
8252 reset_die_in_process (void *arg)
8253 {
8254 struct die_info *die = (struct die_info *) arg;
8255
8256 die->in_process = 0;
8257 }
8258
8259 /* Process a die and its children. */
8260
8261 static void
8262 process_die (struct die_info *die, struct dwarf2_cu *cu)
8263 {
8264 struct cleanup *in_process;
8265
8266 /* We should only be processing those not already in process. */
8267 gdb_assert (!die->in_process);
8268
8269 die->in_process = 1;
8270 in_process = make_cleanup (reset_die_in_process,die);
8271
8272 switch (die->tag)
8273 {
8274 case DW_TAG_padding:
8275 break;
8276 case DW_TAG_compile_unit:
8277 case DW_TAG_partial_unit:
8278 read_file_scope (die, cu);
8279 break;
8280 case DW_TAG_type_unit:
8281 read_type_unit_scope (die, cu);
8282 break;
8283 case DW_TAG_subprogram:
8284 case DW_TAG_inlined_subroutine:
8285 read_func_scope (die, cu);
8286 break;
8287 case DW_TAG_lexical_block:
8288 case DW_TAG_try_block:
8289 case DW_TAG_catch_block:
8290 read_lexical_block_scope (die, cu);
8291 break;
8292 case DW_TAG_GNU_call_site:
8293 read_call_site_scope (die, cu);
8294 break;
8295 case DW_TAG_class_type:
8296 case DW_TAG_interface_type:
8297 case DW_TAG_structure_type:
8298 case DW_TAG_union_type:
8299 process_structure_scope (die, cu);
8300 break;
8301 case DW_TAG_enumeration_type:
8302 process_enumeration_scope (die, cu);
8303 break;
8304
8305 /* These dies have a type, but processing them does not create
8306 a symbol or recurse to process the children. Therefore we can
8307 read them on-demand through read_type_die. */
8308 case DW_TAG_subroutine_type:
8309 case DW_TAG_set_type:
8310 case DW_TAG_array_type:
8311 case DW_TAG_pointer_type:
8312 case DW_TAG_ptr_to_member_type:
8313 case DW_TAG_reference_type:
8314 case DW_TAG_string_type:
8315 break;
8316
8317 case DW_TAG_base_type:
8318 case DW_TAG_subrange_type:
8319 case DW_TAG_typedef:
8320 /* Add a typedef symbol for the type definition, if it has a
8321 DW_AT_name. */
8322 new_symbol (die, read_type_die (die, cu), cu);
8323 break;
8324 case DW_TAG_common_block:
8325 read_common_block (die, cu);
8326 break;
8327 case DW_TAG_common_inclusion:
8328 break;
8329 case DW_TAG_namespace:
8330 cu->processing_has_namespace_info = 1;
8331 read_namespace (die, cu);
8332 break;
8333 case DW_TAG_module:
8334 cu->processing_has_namespace_info = 1;
8335 read_module (die, cu);
8336 break;
8337 case DW_TAG_imported_declaration:
8338 cu->processing_has_namespace_info = 1;
8339 if (read_namespace_alias (die, cu))
8340 break;
8341 /* The declaration is not a global namespace alias: fall through. */
8342 case DW_TAG_imported_module:
8343 cu->processing_has_namespace_info = 1;
8344 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8345 || cu->language != language_fortran))
8346 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8347 dwarf_tag_name (die->tag));
8348 read_import_statement (die, cu);
8349 break;
8350
8351 case DW_TAG_imported_unit:
8352 process_imported_unit_die (die, cu);
8353 break;
8354
8355 default:
8356 new_symbol (die, NULL, cu);
8357 break;
8358 }
8359
8360 do_cleanups (in_process);
8361 }
8362 \f
8363 /* DWARF name computation. */
8364
8365 /* A helper function for dwarf2_compute_name which determines whether DIE
8366 needs to have the name of the scope prepended to the name listed in the
8367 die. */
8368
8369 static int
8370 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8371 {
8372 struct attribute *attr;
8373
8374 switch (die->tag)
8375 {
8376 case DW_TAG_namespace:
8377 case DW_TAG_typedef:
8378 case DW_TAG_class_type:
8379 case DW_TAG_interface_type:
8380 case DW_TAG_structure_type:
8381 case DW_TAG_union_type:
8382 case DW_TAG_enumeration_type:
8383 case DW_TAG_enumerator:
8384 case DW_TAG_subprogram:
8385 case DW_TAG_inlined_subroutine:
8386 case DW_TAG_member:
8387 case DW_TAG_imported_declaration:
8388 return 1;
8389
8390 case DW_TAG_variable:
8391 case DW_TAG_constant:
8392 /* We only need to prefix "globally" visible variables. These include
8393 any variable marked with DW_AT_external or any variable that
8394 lives in a namespace. [Variables in anonymous namespaces
8395 require prefixing, but they are not DW_AT_external.] */
8396
8397 if (dwarf2_attr (die, DW_AT_specification, cu))
8398 {
8399 struct dwarf2_cu *spec_cu = cu;
8400
8401 return die_needs_namespace (die_specification (die, &spec_cu),
8402 spec_cu);
8403 }
8404
8405 attr = dwarf2_attr (die, DW_AT_external, cu);
8406 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8407 && die->parent->tag != DW_TAG_module)
8408 return 0;
8409 /* A variable in a lexical block of some kind does not need a
8410 namespace, even though in C++ such variables may be external
8411 and have a mangled name. */
8412 if (die->parent->tag == DW_TAG_lexical_block
8413 || die->parent->tag == DW_TAG_try_block
8414 || die->parent->tag == DW_TAG_catch_block
8415 || die->parent->tag == DW_TAG_subprogram)
8416 return 0;
8417 return 1;
8418
8419 default:
8420 return 0;
8421 }
8422 }
8423
8424 /* Retrieve the last character from a mem_file. */
8425
8426 static void
8427 do_ui_file_peek_last (void *object, const char *buffer, long length)
8428 {
8429 char *last_char_p = (char *) object;
8430
8431 if (length > 0)
8432 *last_char_p = buffer[length - 1];
8433 }
8434
8435 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8436 compute the physname for the object, which include a method's:
8437 - formal parameters (C++/Java),
8438 - receiver type (Go),
8439 - return type (Java).
8440
8441 The term "physname" is a bit confusing.
8442 For C++, for example, it is the demangled name.
8443 For Go, for example, it's the mangled name.
8444
8445 For Ada, return the DIE's linkage name rather than the fully qualified
8446 name. PHYSNAME is ignored..
8447
8448 The result is allocated on the objfile_obstack and canonicalized. */
8449
8450 static const char *
8451 dwarf2_compute_name (const char *name,
8452 struct die_info *die, struct dwarf2_cu *cu,
8453 int physname)
8454 {
8455 struct objfile *objfile = cu->objfile;
8456
8457 if (name == NULL)
8458 name = dwarf2_name (die, cu);
8459
8460 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8461 but otherwise compute it by typename_concat inside GDB.
8462 FIXME: Actually this is not really true, or at least not always true.
8463 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8464 Fortran names because there is no mangling standard. So new_symbol_full
8465 will set the demangled name to the result of dwarf2_full_name, and it is
8466 the demangled name that GDB uses if it exists. */
8467 if (cu->language == language_ada
8468 || (cu->language == language_fortran && physname))
8469 {
8470 /* For Ada unit, we prefer the linkage name over the name, as
8471 the former contains the exported name, which the user expects
8472 to be able to reference. Ideally, we want the user to be able
8473 to reference this entity using either natural or linkage name,
8474 but we haven't started looking at this enhancement yet. */
8475 const char *linkage_name;
8476
8477 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8478 if (linkage_name == NULL)
8479 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8480 if (linkage_name != NULL)
8481 return linkage_name;
8482 }
8483
8484 /* These are the only languages we know how to qualify names in. */
8485 if (name != NULL
8486 && (cu->language == language_cplus || cu->language == language_java
8487 || cu->language == language_fortran || cu->language == language_d
8488 || cu->language == language_rust))
8489 {
8490 if (die_needs_namespace (die, cu))
8491 {
8492 long length;
8493 const char *prefix;
8494 struct ui_file *buf;
8495 char *intermediate_name;
8496 const char *canonical_name = NULL;
8497
8498 prefix = determine_prefix (die, cu);
8499 buf = mem_fileopen ();
8500 if (*prefix != '\0')
8501 {
8502 char *prefixed_name = typename_concat (NULL, prefix, name,
8503 physname, cu);
8504
8505 fputs_unfiltered (prefixed_name, buf);
8506 xfree (prefixed_name);
8507 }
8508 else
8509 fputs_unfiltered (name, buf);
8510
8511 /* Template parameters may be specified in the DIE's DW_AT_name, or
8512 as children with DW_TAG_template_type_param or
8513 DW_TAG_value_type_param. If the latter, add them to the name
8514 here. If the name already has template parameters, then
8515 skip this step; some versions of GCC emit both, and
8516 it is more efficient to use the pre-computed name.
8517
8518 Something to keep in mind about this process: it is very
8519 unlikely, or in some cases downright impossible, to produce
8520 something that will match the mangled name of a function.
8521 If the definition of the function has the same debug info,
8522 we should be able to match up with it anyway. But fallbacks
8523 using the minimal symbol, for instance to find a method
8524 implemented in a stripped copy of libstdc++, will not work.
8525 If we do not have debug info for the definition, we will have to
8526 match them up some other way.
8527
8528 When we do name matching there is a related problem with function
8529 templates; two instantiated function templates are allowed to
8530 differ only by their return types, which we do not add here. */
8531
8532 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8533 {
8534 struct attribute *attr;
8535 struct die_info *child;
8536 int first = 1;
8537
8538 die->building_fullname = 1;
8539
8540 for (child = die->child; child != NULL; child = child->sibling)
8541 {
8542 struct type *type;
8543 LONGEST value;
8544 const gdb_byte *bytes;
8545 struct dwarf2_locexpr_baton *baton;
8546 struct value *v;
8547
8548 if (child->tag != DW_TAG_template_type_param
8549 && child->tag != DW_TAG_template_value_param)
8550 continue;
8551
8552 if (first)
8553 {
8554 fputs_unfiltered ("<", buf);
8555 first = 0;
8556 }
8557 else
8558 fputs_unfiltered (", ", buf);
8559
8560 attr = dwarf2_attr (child, DW_AT_type, cu);
8561 if (attr == NULL)
8562 {
8563 complaint (&symfile_complaints,
8564 _("template parameter missing DW_AT_type"));
8565 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8566 continue;
8567 }
8568 type = die_type (child, cu);
8569
8570 if (child->tag == DW_TAG_template_type_param)
8571 {
8572 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8573 continue;
8574 }
8575
8576 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8577 if (attr == NULL)
8578 {
8579 complaint (&symfile_complaints,
8580 _("template parameter missing "
8581 "DW_AT_const_value"));
8582 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8583 continue;
8584 }
8585
8586 dwarf2_const_value_attr (attr, type, name,
8587 &cu->comp_unit_obstack, cu,
8588 &value, &bytes, &baton);
8589
8590 if (TYPE_NOSIGN (type))
8591 /* GDB prints characters as NUMBER 'CHAR'. If that's
8592 changed, this can use value_print instead. */
8593 c_printchar (value, type, buf);
8594 else
8595 {
8596 struct value_print_options opts;
8597
8598 if (baton != NULL)
8599 v = dwarf2_evaluate_loc_desc (type, NULL,
8600 baton->data,
8601 baton->size,
8602 baton->per_cu);
8603 else if (bytes != NULL)
8604 {
8605 v = allocate_value (type);
8606 memcpy (value_contents_writeable (v), bytes,
8607 TYPE_LENGTH (type));
8608 }
8609 else
8610 v = value_from_longest (type, value);
8611
8612 /* Specify decimal so that we do not depend on
8613 the radix. */
8614 get_formatted_print_options (&opts, 'd');
8615 opts.raw = 1;
8616 value_print (v, buf, &opts);
8617 release_value (v);
8618 value_free (v);
8619 }
8620 }
8621
8622 die->building_fullname = 0;
8623
8624 if (!first)
8625 {
8626 /* Close the argument list, with a space if necessary
8627 (nested templates). */
8628 char last_char = '\0';
8629 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8630 if (last_char == '>')
8631 fputs_unfiltered (" >", buf);
8632 else
8633 fputs_unfiltered (">", buf);
8634 }
8635 }
8636
8637 /* For Java and C++ methods, append formal parameter type
8638 information, if PHYSNAME. */
8639
8640 if (physname && die->tag == DW_TAG_subprogram
8641 && (cu->language == language_cplus
8642 || cu->language == language_java))
8643 {
8644 struct type *type = read_type_die (die, cu);
8645
8646 c_type_print_args (type, buf, 1, cu->language,
8647 &type_print_raw_options);
8648
8649 if (cu->language == language_java)
8650 {
8651 /* For java, we must append the return type to method
8652 names. */
8653 if (die->tag == DW_TAG_subprogram)
8654 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8655 0, 0, &type_print_raw_options);
8656 }
8657 else if (cu->language == language_cplus)
8658 {
8659 /* Assume that an artificial first parameter is
8660 "this", but do not crash if it is not. RealView
8661 marks unnamed (and thus unused) parameters as
8662 artificial; there is no way to differentiate
8663 the two cases. */
8664 if (TYPE_NFIELDS (type) > 0
8665 && TYPE_FIELD_ARTIFICIAL (type, 0)
8666 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8667 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8668 0))))
8669 fputs_unfiltered (" const", buf);
8670 }
8671 }
8672
8673 intermediate_name = ui_file_xstrdup (buf, &length);
8674 ui_file_delete (buf);
8675
8676 if (cu->language == language_cplus)
8677 canonical_name
8678 = dwarf2_canonicalize_name (intermediate_name, cu,
8679 &objfile->per_bfd->storage_obstack);
8680
8681 /* If we only computed INTERMEDIATE_NAME, or if
8682 INTERMEDIATE_NAME is already canonical, then we need to
8683 copy it to the appropriate obstack. */
8684 if (canonical_name == NULL || canonical_name == intermediate_name)
8685 name = ((const char *)
8686 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8687 intermediate_name,
8688 strlen (intermediate_name)));
8689 else
8690 name = canonical_name;
8691
8692 xfree (intermediate_name);
8693 }
8694 }
8695
8696 return name;
8697 }
8698
8699 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8700 If scope qualifiers are appropriate they will be added. The result
8701 will be allocated on the storage_obstack, or NULL if the DIE does
8702 not have a name. NAME may either be from a previous call to
8703 dwarf2_name or NULL.
8704
8705 The output string will be canonicalized (if C++/Java). */
8706
8707 static const char *
8708 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8709 {
8710 return dwarf2_compute_name (name, die, cu, 0);
8711 }
8712
8713 /* Construct a physname for the given DIE in CU. NAME may either be
8714 from a previous call to dwarf2_name or NULL. The result will be
8715 allocated on the objfile_objstack or NULL if the DIE does not have a
8716 name.
8717
8718 The output string will be canonicalized (if C++/Java). */
8719
8720 static const char *
8721 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8722 {
8723 struct objfile *objfile = cu->objfile;
8724 const char *retval, *mangled = NULL, *canon = NULL;
8725 struct cleanup *back_to;
8726 int need_copy = 1;
8727
8728 /* In this case dwarf2_compute_name is just a shortcut not building anything
8729 on its own. */
8730 if (!die_needs_namespace (die, cu))
8731 return dwarf2_compute_name (name, die, cu, 1);
8732
8733 back_to = make_cleanup (null_cleanup, NULL);
8734
8735 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8736 if (mangled == NULL)
8737 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8738
8739 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8740 See https://github.com/rust-lang/rust/issues/32925. */
8741 if (cu->language == language_rust && mangled != NULL
8742 && strchr (mangled, '{') != NULL)
8743 mangled = NULL;
8744
8745 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8746 has computed. */
8747 if (mangled != NULL)
8748 {
8749 char *demangled;
8750
8751 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8752 type. It is easier for GDB users to search for such functions as
8753 `name(params)' than `long name(params)'. In such case the minimal
8754 symbol names do not match the full symbol names but for template
8755 functions there is never a need to look up their definition from their
8756 declaration so the only disadvantage remains the minimal symbol
8757 variant `long name(params)' does not have the proper inferior type.
8758 */
8759
8760 if (cu->language == language_go)
8761 {
8762 /* This is a lie, but we already lie to the caller new_symbol_full.
8763 new_symbol_full assumes we return the mangled name.
8764 This just undoes that lie until things are cleaned up. */
8765 demangled = NULL;
8766 }
8767 else
8768 {
8769 demangled = gdb_demangle (mangled,
8770 (DMGL_PARAMS | DMGL_ANSI
8771 | (cu->language == language_java
8772 ? DMGL_JAVA | DMGL_RET_POSTFIX
8773 : DMGL_RET_DROP)));
8774 }
8775 if (demangled)
8776 {
8777 make_cleanup (xfree, demangled);
8778 canon = demangled;
8779 }
8780 else
8781 {
8782 canon = mangled;
8783 need_copy = 0;
8784 }
8785 }
8786
8787 if (canon == NULL || check_physname)
8788 {
8789 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8790
8791 if (canon != NULL && strcmp (physname, canon) != 0)
8792 {
8793 /* It may not mean a bug in GDB. The compiler could also
8794 compute DW_AT_linkage_name incorrectly. But in such case
8795 GDB would need to be bug-to-bug compatible. */
8796
8797 complaint (&symfile_complaints,
8798 _("Computed physname <%s> does not match demangled <%s> "
8799 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8800 physname, canon, mangled, die->offset.sect_off,
8801 objfile_name (objfile));
8802
8803 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8804 is available here - over computed PHYSNAME. It is safer
8805 against both buggy GDB and buggy compilers. */
8806
8807 retval = canon;
8808 }
8809 else
8810 {
8811 retval = physname;
8812 need_copy = 0;
8813 }
8814 }
8815 else
8816 retval = canon;
8817
8818 if (need_copy)
8819 retval = ((const char *)
8820 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8821 retval, strlen (retval)));
8822
8823 do_cleanups (back_to);
8824 return retval;
8825 }
8826
8827 /* Inspect DIE in CU for a namespace alias. If one exists, record
8828 a new symbol for it.
8829
8830 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8831
8832 static int
8833 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8834 {
8835 struct attribute *attr;
8836
8837 /* If the die does not have a name, this is not a namespace
8838 alias. */
8839 attr = dwarf2_attr (die, DW_AT_name, cu);
8840 if (attr != NULL)
8841 {
8842 int num;
8843 struct die_info *d = die;
8844 struct dwarf2_cu *imported_cu = cu;
8845
8846 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8847 keep inspecting DIEs until we hit the underlying import. */
8848 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8849 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8850 {
8851 attr = dwarf2_attr (d, DW_AT_import, cu);
8852 if (attr == NULL)
8853 break;
8854
8855 d = follow_die_ref (d, attr, &imported_cu);
8856 if (d->tag != DW_TAG_imported_declaration)
8857 break;
8858 }
8859
8860 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8861 {
8862 complaint (&symfile_complaints,
8863 _("DIE at 0x%x has too many recursively imported "
8864 "declarations"), d->offset.sect_off);
8865 return 0;
8866 }
8867
8868 if (attr != NULL)
8869 {
8870 struct type *type;
8871 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8872
8873 type = get_die_type_at_offset (offset, cu->per_cu);
8874 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8875 {
8876 /* This declaration is a global namespace alias. Add
8877 a symbol for it whose type is the aliased namespace. */
8878 new_symbol (die, type, cu);
8879 return 1;
8880 }
8881 }
8882 }
8883
8884 return 0;
8885 }
8886
8887 /* Return the using directives repository (global or local?) to use in the
8888 current context for LANGUAGE.
8889
8890 For Ada, imported declarations can materialize renamings, which *may* be
8891 global. However it is impossible (for now?) in DWARF to distinguish
8892 "external" imported declarations and "static" ones. As all imported
8893 declarations seem to be static in all other languages, make them all CU-wide
8894 global only in Ada. */
8895
8896 static struct using_direct **
8897 using_directives (enum language language)
8898 {
8899 if (language == language_ada && context_stack_depth == 0)
8900 return &global_using_directives;
8901 else
8902 return &local_using_directives;
8903 }
8904
8905 /* Read the import statement specified by the given die and record it. */
8906
8907 static void
8908 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8909 {
8910 struct objfile *objfile = cu->objfile;
8911 struct attribute *import_attr;
8912 struct die_info *imported_die, *child_die;
8913 struct dwarf2_cu *imported_cu;
8914 const char *imported_name;
8915 const char *imported_name_prefix;
8916 const char *canonical_name;
8917 const char *import_alias;
8918 const char *imported_declaration = NULL;
8919 const char *import_prefix;
8920 VEC (const_char_ptr) *excludes = NULL;
8921 struct cleanup *cleanups;
8922
8923 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8924 if (import_attr == NULL)
8925 {
8926 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8927 dwarf_tag_name (die->tag));
8928 return;
8929 }
8930
8931 imported_cu = cu;
8932 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8933 imported_name = dwarf2_name (imported_die, imported_cu);
8934 if (imported_name == NULL)
8935 {
8936 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8937
8938 The import in the following code:
8939 namespace A
8940 {
8941 typedef int B;
8942 }
8943
8944 int main ()
8945 {
8946 using A::B;
8947 B b;
8948 return b;
8949 }
8950
8951 ...
8952 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8953 <52> DW_AT_decl_file : 1
8954 <53> DW_AT_decl_line : 6
8955 <54> DW_AT_import : <0x75>
8956 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8957 <59> DW_AT_name : B
8958 <5b> DW_AT_decl_file : 1
8959 <5c> DW_AT_decl_line : 2
8960 <5d> DW_AT_type : <0x6e>
8961 ...
8962 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8963 <76> DW_AT_byte_size : 4
8964 <77> DW_AT_encoding : 5 (signed)
8965
8966 imports the wrong die ( 0x75 instead of 0x58 ).
8967 This case will be ignored until the gcc bug is fixed. */
8968 return;
8969 }
8970
8971 /* Figure out the local name after import. */
8972 import_alias = dwarf2_name (die, cu);
8973
8974 /* Figure out where the statement is being imported to. */
8975 import_prefix = determine_prefix (die, cu);
8976
8977 /* Figure out what the scope of the imported die is and prepend it
8978 to the name of the imported die. */
8979 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8980
8981 if (imported_die->tag != DW_TAG_namespace
8982 && imported_die->tag != DW_TAG_module)
8983 {
8984 imported_declaration = imported_name;
8985 canonical_name = imported_name_prefix;
8986 }
8987 else if (strlen (imported_name_prefix) > 0)
8988 canonical_name = obconcat (&objfile->objfile_obstack,
8989 imported_name_prefix,
8990 (cu->language == language_d ? "." : "::"),
8991 imported_name, (char *) NULL);
8992 else
8993 canonical_name = imported_name;
8994
8995 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8996
8997 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8998 for (child_die = die->child; child_die && child_die->tag;
8999 child_die = sibling_die (child_die))
9000 {
9001 /* DWARF-4: A Fortran use statement with a “rename list” may be
9002 represented by an imported module entry with an import attribute
9003 referring to the module and owned entries corresponding to those
9004 entities that are renamed as part of being imported. */
9005
9006 if (child_die->tag != DW_TAG_imported_declaration)
9007 {
9008 complaint (&symfile_complaints,
9009 _("child DW_TAG_imported_declaration expected "
9010 "- DIE at 0x%x [in module %s]"),
9011 child_die->offset.sect_off, objfile_name (objfile));
9012 continue;
9013 }
9014
9015 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9016 if (import_attr == NULL)
9017 {
9018 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9019 dwarf_tag_name (child_die->tag));
9020 continue;
9021 }
9022
9023 imported_cu = cu;
9024 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9025 &imported_cu);
9026 imported_name = dwarf2_name (imported_die, imported_cu);
9027 if (imported_name == NULL)
9028 {
9029 complaint (&symfile_complaints,
9030 _("child DW_TAG_imported_declaration has unknown "
9031 "imported name - DIE at 0x%x [in module %s]"),
9032 child_die->offset.sect_off, objfile_name (objfile));
9033 continue;
9034 }
9035
9036 VEC_safe_push (const_char_ptr, excludes, imported_name);
9037
9038 process_die (child_die, cu);
9039 }
9040
9041 add_using_directive (using_directives (cu->language),
9042 import_prefix,
9043 canonical_name,
9044 import_alias,
9045 imported_declaration,
9046 excludes,
9047 0,
9048 &objfile->objfile_obstack);
9049
9050 do_cleanups (cleanups);
9051 }
9052
9053 /* Cleanup function for handle_DW_AT_stmt_list. */
9054
9055 static void
9056 free_cu_line_header (void *arg)
9057 {
9058 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
9059
9060 free_line_header (cu->line_header);
9061 cu->line_header = NULL;
9062 }
9063
9064 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9065 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9066 this, it was first present in GCC release 4.3.0. */
9067
9068 static int
9069 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9070 {
9071 if (!cu->checked_producer)
9072 check_producer (cu);
9073
9074 return cu->producer_is_gcc_lt_4_3;
9075 }
9076
9077 static void
9078 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9079 const char **name, const char **comp_dir)
9080 {
9081 /* Find the filename. Do not use dwarf2_name here, since the filename
9082 is not a source language identifier. */
9083 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9084 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9085
9086 if (*comp_dir == NULL
9087 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9088 && IS_ABSOLUTE_PATH (*name))
9089 {
9090 char *d = ldirname (*name);
9091
9092 *comp_dir = d;
9093 if (d != NULL)
9094 make_cleanup (xfree, d);
9095 }
9096 if (*comp_dir != NULL)
9097 {
9098 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9099 directory, get rid of it. */
9100 const char *cp = strchr (*comp_dir, ':');
9101
9102 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9103 *comp_dir = cp + 1;
9104 }
9105
9106 if (*name == NULL)
9107 *name = "<unknown>";
9108 }
9109
9110 /* Handle DW_AT_stmt_list for a compilation unit.
9111 DIE is the DW_TAG_compile_unit die for CU.
9112 COMP_DIR is the compilation directory. LOWPC is passed to
9113 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9114
9115 static void
9116 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9117 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9118 {
9119 struct objfile *objfile = dwarf2_per_objfile->objfile;
9120 struct attribute *attr;
9121 unsigned int line_offset;
9122 struct line_header line_header_local;
9123 hashval_t line_header_local_hash;
9124 unsigned u;
9125 void **slot;
9126 int decode_mapping;
9127
9128 gdb_assert (! cu->per_cu->is_debug_types);
9129
9130 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9131 if (attr == NULL)
9132 return;
9133
9134 line_offset = DW_UNSND (attr);
9135
9136 /* The line header hash table is only created if needed (it exists to
9137 prevent redundant reading of the line table for partial_units).
9138 If we're given a partial_unit, we'll need it. If we're given a
9139 compile_unit, then use the line header hash table if it's already
9140 created, but don't create one just yet. */
9141
9142 if (dwarf2_per_objfile->line_header_hash == NULL
9143 && die->tag == DW_TAG_partial_unit)
9144 {
9145 dwarf2_per_objfile->line_header_hash
9146 = htab_create_alloc_ex (127, line_header_hash_voidp,
9147 line_header_eq_voidp,
9148 free_line_header_voidp,
9149 &objfile->objfile_obstack,
9150 hashtab_obstack_allocate,
9151 dummy_obstack_deallocate);
9152 }
9153
9154 line_header_local.offset.sect_off = line_offset;
9155 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9156 line_header_local_hash = line_header_hash (&line_header_local);
9157 if (dwarf2_per_objfile->line_header_hash != NULL)
9158 {
9159 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9160 &line_header_local,
9161 line_header_local_hash, NO_INSERT);
9162
9163 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9164 is not present in *SLOT (since if there is something in *SLOT then
9165 it will be for a partial_unit). */
9166 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9167 {
9168 gdb_assert (*slot != NULL);
9169 cu->line_header = (struct line_header *) *slot;
9170 return;
9171 }
9172 }
9173
9174 /* dwarf_decode_line_header does not yet provide sufficient information.
9175 We always have to call also dwarf_decode_lines for it. */
9176 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9177 if (cu->line_header == NULL)
9178 return;
9179
9180 if (dwarf2_per_objfile->line_header_hash == NULL)
9181 slot = NULL;
9182 else
9183 {
9184 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9185 &line_header_local,
9186 line_header_local_hash, INSERT);
9187 gdb_assert (slot != NULL);
9188 }
9189 if (slot != NULL && *slot == NULL)
9190 {
9191 /* This newly decoded line number information unit will be owned
9192 by line_header_hash hash table. */
9193 *slot = cu->line_header;
9194 }
9195 else
9196 {
9197 /* We cannot free any current entry in (*slot) as that struct line_header
9198 may be already used by multiple CUs. Create only temporary decoded
9199 line_header for this CU - it may happen at most once for each line
9200 number information unit. And if we're not using line_header_hash
9201 then this is what we want as well. */
9202 gdb_assert (die->tag != DW_TAG_partial_unit);
9203 make_cleanup (free_cu_line_header, cu);
9204 }
9205 decode_mapping = (die->tag != DW_TAG_partial_unit);
9206 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9207 decode_mapping);
9208 }
9209
9210 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9211
9212 static void
9213 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9214 {
9215 struct objfile *objfile = dwarf2_per_objfile->objfile;
9216 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9217 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9218 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9219 CORE_ADDR highpc = ((CORE_ADDR) 0);
9220 struct attribute *attr;
9221 const char *name = NULL;
9222 const char *comp_dir = NULL;
9223 struct die_info *child_die;
9224 CORE_ADDR baseaddr;
9225
9226 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9227
9228 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9229
9230 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9231 from finish_block. */
9232 if (lowpc == ((CORE_ADDR) -1))
9233 lowpc = highpc;
9234 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9235
9236 find_file_and_directory (die, cu, &name, &comp_dir);
9237
9238 prepare_one_comp_unit (cu, die, cu->language);
9239
9240 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9241 standardised yet. As a workaround for the language detection we fall
9242 back to the DW_AT_producer string. */
9243 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9244 cu->language = language_opencl;
9245
9246 /* Similar hack for Go. */
9247 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9248 set_cu_language (DW_LANG_Go, cu);
9249
9250 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9251
9252 /* Decode line number information if present. We do this before
9253 processing child DIEs, so that the line header table is available
9254 for DW_AT_decl_file. */
9255 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9256
9257 /* Process all dies in compilation unit. */
9258 if (die->child != NULL)
9259 {
9260 child_die = die->child;
9261 while (child_die && child_die->tag)
9262 {
9263 process_die (child_die, cu);
9264 child_die = sibling_die (child_die);
9265 }
9266 }
9267
9268 /* Decode macro information, if present. Dwarf 2 macro information
9269 refers to information in the line number info statement program
9270 header, so we can only read it if we've read the header
9271 successfully. */
9272 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9273 if (attr && cu->line_header)
9274 {
9275 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9276 complaint (&symfile_complaints,
9277 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9278
9279 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9280 }
9281 else
9282 {
9283 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9284 if (attr && cu->line_header)
9285 {
9286 unsigned int macro_offset = DW_UNSND (attr);
9287
9288 dwarf_decode_macros (cu, macro_offset, 0);
9289 }
9290 }
9291
9292 do_cleanups (back_to);
9293 }
9294
9295 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9296 Create the set of symtabs used by this TU, or if this TU is sharing
9297 symtabs with another TU and the symtabs have already been created
9298 then restore those symtabs in the line header.
9299 We don't need the pc/line-number mapping for type units. */
9300
9301 static void
9302 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9303 {
9304 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9305 struct type_unit_group *tu_group;
9306 int first_time;
9307 struct line_header *lh;
9308 struct attribute *attr;
9309 unsigned int i, line_offset;
9310 struct signatured_type *sig_type;
9311
9312 gdb_assert (per_cu->is_debug_types);
9313 sig_type = (struct signatured_type *) per_cu;
9314
9315 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9316
9317 /* If we're using .gdb_index (includes -readnow) then
9318 per_cu->type_unit_group may not have been set up yet. */
9319 if (sig_type->type_unit_group == NULL)
9320 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9321 tu_group = sig_type->type_unit_group;
9322
9323 /* If we've already processed this stmt_list there's no real need to
9324 do it again, we could fake it and just recreate the part we need
9325 (file name,index -> symtab mapping). If data shows this optimization
9326 is useful we can do it then. */
9327 first_time = tu_group->compunit_symtab == NULL;
9328
9329 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9330 debug info. */
9331 lh = NULL;
9332 if (attr != NULL)
9333 {
9334 line_offset = DW_UNSND (attr);
9335 lh = dwarf_decode_line_header (line_offset, cu);
9336 }
9337 if (lh == NULL)
9338 {
9339 if (first_time)
9340 dwarf2_start_symtab (cu, "", NULL, 0);
9341 else
9342 {
9343 gdb_assert (tu_group->symtabs == NULL);
9344 restart_symtab (tu_group->compunit_symtab, "", 0);
9345 }
9346 return;
9347 }
9348
9349 cu->line_header = lh;
9350 make_cleanup (free_cu_line_header, cu);
9351
9352 if (first_time)
9353 {
9354 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9355
9356 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9357 still initializing it, and our caller (a few levels up)
9358 process_full_type_unit still needs to know if this is the first
9359 time. */
9360
9361 tu_group->num_symtabs = lh->num_file_names;
9362 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9363
9364 for (i = 0; i < lh->num_file_names; ++i)
9365 {
9366 const char *dir = NULL;
9367 struct file_entry *fe = &lh->file_names[i];
9368
9369 if (fe->dir_index && lh->include_dirs != NULL)
9370 dir = lh->include_dirs[fe->dir_index - 1];
9371 dwarf2_start_subfile (fe->name, dir);
9372
9373 if (current_subfile->symtab == NULL)
9374 {
9375 /* NOTE: start_subfile will recognize when it's been passed
9376 a file it has already seen. So we can't assume there's a
9377 simple mapping from lh->file_names to subfiles, plus
9378 lh->file_names may contain dups. */
9379 current_subfile->symtab
9380 = allocate_symtab (cust, current_subfile->name);
9381 }
9382
9383 fe->symtab = current_subfile->symtab;
9384 tu_group->symtabs[i] = fe->symtab;
9385 }
9386 }
9387 else
9388 {
9389 restart_symtab (tu_group->compunit_symtab, "", 0);
9390
9391 for (i = 0; i < lh->num_file_names; ++i)
9392 {
9393 struct file_entry *fe = &lh->file_names[i];
9394
9395 fe->symtab = tu_group->symtabs[i];
9396 }
9397 }
9398
9399 /* The main symtab is allocated last. Type units don't have DW_AT_name
9400 so they don't have a "real" (so to speak) symtab anyway.
9401 There is later code that will assign the main symtab to all symbols
9402 that don't have one. We need to handle the case of a symbol with a
9403 missing symtab (DW_AT_decl_file) anyway. */
9404 }
9405
9406 /* Process DW_TAG_type_unit.
9407 For TUs we want to skip the first top level sibling if it's not the
9408 actual type being defined by this TU. In this case the first top
9409 level sibling is there to provide context only. */
9410
9411 static void
9412 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9413 {
9414 struct die_info *child_die;
9415
9416 prepare_one_comp_unit (cu, die, language_minimal);
9417
9418 /* Initialize (or reinitialize) the machinery for building symtabs.
9419 We do this before processing child DIEs, so that the line header table
9420 is available for DW_AT_decl_file. */
9421 setup_type_unit_groups (die, cu);
9422
9423 if (die->child != NULL)
9424 {
9425 child_die = die->child;
9426 while (child_die && child_die->tag)
9427 {
9428 process_die (child_die, cu);
9429 child_die = sibling_die (child_die);
9430 }
9431 }
9432 }
9433 \f
9434 /* DWO/DWP files.
9435
9436 http://gcc.gnu.org/wiki/DebugFission
9437 http://gcc.gnu.org/wiki/DebugFissionDWP
9438
9439 To simplify handling of both DWO files ("object" files with the DWARF info)
9440 and DWP files (a file with the DWOs packaged up into one file), we treat
9441 DWP files as having a collection of virtual DWO files. */
9442
9443 static hashval_t
9444 hash_dwo_file (const void *item)
9445 {
9446 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9447 hashval_t hash;
9448
9449 hash = htab_hash_string (dwo_file->dwo_name);
9450 if (dwo_file->comp_dir != NULL)
9451 hash += htab_hash_string (dwo_file->comp_dir);
9452 return hash;
9453 }
9454
9455 static int
9456 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9457 {
9458 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9459 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9460
9461 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9462 return 0;
9463 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9464 return lhs->comp_dir == rhs->comp_dir;
9465 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9466 }
9467
9468 /* Allocate a hash table for DWO files. */
9469
9470 static htab_t
9471 allocate_dwo_file_hash_table (void)
9472 {
9473 struct objfile *objfile = dwarf2_per_objfile->objfile;
9474
9475 return htab_create_alloc_ex (41,
9476 hash_dwo_file,
9477 eq_dwo_file,
9478 NULL,
9479 &objfile->objfile_obstack,
9480 hashtab_obstack_allocate,
9481 dummy_obstack_deallocate);
9482 }
9483
9484 /* Lookup DWO file DWO_NAME. */
9485
9486 static void **
9487 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9488 {
9489 struct dwo_file find_entry;
9490 void **slot;
9491
9492 if (dwarf2_per_objfile->dwo_files == NULL)
9493 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9494
9495 memset (&find_entry, 0, sizeof (find_entry));
9496 find_entry.dwo_name = dwo_name;
9497 find_entry.comp_dir = comp_dir;
9498 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9499
9500 return slot;
9501 }
9502
9503 static hashval_t
9504 hash_dwo_unit (const void *item)
9505 {
9506 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9507
9508 /* This drops the top 32 bits of the id, but is ok for a hash. */
9509 return dwo_unit->signature;
9510 }
9511
9512 static int
9513 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9514 {
9515 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9516 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9517
9518 /* The signature is assumed to be unique within the DWO file.
9519 So while object file CU dwo_id's always have the value zero,
9520 that's OK, assuming each object file DWO file has only one CU,
9521 and that's the rule for now. */
9522 return lhs->signature == rhs->signature;
9523 }
9524
9525 /* Allocate a hash table for DWO CUs,TUs.
9526 There is one of these tables for each of CUs,TUs for each DWO file. */
9527
9528 static htab_t
9529 allocate_dwo_unit_table (struct objfile *objfile)
9530 {
9531 /* Start out with a pretty small number.
9532 Generally DWO files contain only one CU and maybe some TUs. */
9533 return htab_create_alloc_ex (3,
9534 hash_dwo_unit,
9535 eq_dwo_unit,
9536 NULL,
9537 &objfile->objfile_obstack,
9538 hashtab_obstack_allocate,
9539 dummy_obstack_deallocate);
9540 }
9541
9542 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9543
9544 struct create_dwo_cu_data
9545 {
9546 struct dwo_file *dwo_file;
9547 struct dwo_unit dwo_unit;
9548 };
9549
9550 /* die_reader_func for create_dwo_cu. */
9551
9552 static void
9553 create_dwo_cu_reader (const struct die_reader_specs *reader,
9554 const gdb_byte *info_ptr,
9555 struct die_info *comp_unit_die,
9556 int has_children,
9557 void *datap)
9558 {
9559 struct dwarf2_cu *cu = reader->cu;
9560 sect_offset offset = cu->per_cu->offset;
9561 struct dwarf2_section_info *section = cu->per_cu->section;
9562 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9563 struct dwo_file *dwo_file = data->dwo_file;
9564 struct dwo_unit *dwo_unit = &data->dwo_unit;
9565 struct attribute *attr;
9566
9567 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9568 if (attr == NULL)
9569 {
9570 complaint (&symfile_complaints,
9571 _("Dwarf Error: debug entry at offset 0x%x is missing"
9572 " its dwo_id [in module %s]"),
9573 offset.sect_off, dwo_file->dwo_name);
9574 return;
9575 }
9576
9577 dwo_unit->dwo_file = dwo_file;
9578 dwo_unit->signature = DW_UNSND (attr);
9579 dwo_unit->section = section;
9580 dwo_unit->offset = offset;
9581 dwo_unit->length = cu->per_cu->length;
9582
9583 if (dwarf_read_debug)
9584 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9585 offset.sect_off, hex_string (dwo_unit->signature));
9586 }
9587
9588 /* Create the dwo_unit for the lone CU in DWO_FILE.
9589 Note: This function processes DWO files only, not DWP files. */
9590
9591 static struct dwo_unit *
9592 create_dwo_cu (struct dwo_file *dwo_file)
9593 {
9594 struct objfile *objfile = dwarf2_per_objfile->objfile;
9595 struct dwarf2_section_info *section = &dwo_file->sections.info;
9596 const gdb_byte *info_ptr, *end_ptr;
9597 struct create_dwo_cu_data create_dwo_cu_data;
9598 struct dwo_unit *dwo_unit;
9599
9600 dwarf2_read_section (objfile, section);
9601 info_ptr = section->buffer;
9602
9603 if (info_ptr == NULL)
9604 return NULL;
9605
9606 if (dwarf_read_debug)
9607 {
9608 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9609 get_section_name (section),
9610 get_section_file_name (section));
9611 }
9612
9613 create_dwo_cu_data.dwo_file = dwo_file;
9614 dwo_unit = NULL;
9615
9616 end_ptr = info_ptr + section->size;
9617 while (info_ptr < end_ptr)
9618 {
9619 struct dwarf2_per_cu_data per_cu;
9620
9621 memset (&create_dwo_cu_data.dwo_unit, 0,
9622 sizeof (create_dwo_cu_data.dwo_unit));
9623 memset (&per_cu, 0, sizeof (per_cu));
9624 per_cu.objfile = objfile;
9625 per_cu.is_debug_types = 0;
9626 per_cu.offset.sect_off = info_ptr - section->buffer;
9627 per_cu.section = section;
9628
9629 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9630 create_dwo_cu_reader,
9631 &create_dwo_cu_data);
9632
9633 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9634 {
9635 /* If we've already found one, complain. We only support one
9636 because having more than one requires hacking the dwo_name of
9637 each to match, which is highly unlikely to happen. */
9638 if (dwo_unit != NULL)
9639 {
9640 complaint (&symfile_complaints,
9641 _("Multiple CUs in DWO file %s [in module %s]"),
9642 dwo_file->dwo_name, objfile_name (objfile));
9643 break;
9644 }
9645
9646 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9647 *dwo_unit = create_dwo_cu_data.dwo_unit;
9648 }
9649
9650 info_ptr += per_cu.length;
9651 }
9652
9653 return dwo_unit;
9654 }
9655
9656 /* DWP file .debug_{cu,tu}_index section format:
9657 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9658
9659 DWP Version 1:
9660
9661 Both index sections have the same format, and serve to map a 64-bit
9662 signature to a set of section numbers. Each section begins with a header,
9663 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9664 indexes, and a pool of 32-bit section numbers. The index sections will be
9665 aligned at 8-byte boundaries in the file.
9666
9667 The index section header consists of:
9668
9669 V, 32 bit version number
9670 -, 32 bits unused
9671 N, 32 bit number of compilation units or type units in the index
9672 M, 32 bit number of slots in the hash table
9673
9674 Numbers are recorded using the byte order of the application binary.
9675
9676 The hash table begins at offset 16 in the section, and consists of an array
9677 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9678 order of the application binary). Unused slots in the hash table are 0.
9679 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9680
9681 The parallel table begins immediately after the hash table
9682 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9683 array of 32-bit indexes (using the byte order of the application binary),
9684 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9685 table contains a 32-bit index into the pool of section numbers. For unused
9686 hash table slots, the corresponding entry in the parallel table will be 0.
9687
9688 The pool of section numbers begins immediately following the hash table
9689 (at offset 16 + 12 * M from the beginning of the section). The pool of
9690 section numbers consists of an array of 32-bit words (using the byte order
9691 of the application binary). Each item in the array is indexed starting
9692 from 0. The hash table entry provides the index of the first section
9693 number in the set. Additional section numbers in the set follow, and the
9694 set is terminated by a 0 entry (section number 0 is not used in ELF).
9695
9696 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9697 section must be the first entry in the set, and the .debug_abbrev.dwo must
9698 be the second entry. Other members of the set may follow in any order.
9699
9700 ---
9701
9702 DWP Version 2:
9703
9704 DWP Version 2 combines all the .debug_info, etc. sections into one,
9705 and the entries in the index tables are now offsets into these sections.
9706 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9707 section.
9708
9709 Index Section Contents:
9710 Header
9711 Hash Table of Signatures dwp_hash_table.hash_table
9712 Parallel Table of Indices dwp_hash_table.unit_table
9713 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9714 Table of Section Sizes dwp_hash_table.v2.sizes
9715
9716 The index section header consists of:
9717
9718 V, 32 bit version number
9719 L, 32 bit number of columns in the table of section offsets
9720 N, 32 bit number of compilation units or type units in the index
9721 M, 32 bit number of slots in the hash table
9722
9723 Numbers are recorded using the byte order of the application binary.
9724
9725 The hash table has the same format as version 1.
9726 The parallel table of indices has the same format as version 1,
9727 except that the entries are origin-1 indices into the table of sections
9728 offsets and the table of section sizes.
9729
9730 The table of offsets begins immediately following the parallel table
9731 (at offset 16 + 12 * M from the beginning of the section). The table is
9732 a two-dimensional array of 32-bit words (using the byte order of the
9733 application binary), with L columns and N+1 rows, in row-major order.
9734 Each row in the array is indexed starting from 0. The first row provides
9735 a key to the remaining rows: each column in this row provides an identifier
9736 for a debug section, and the offsets in the same column of subsequent rows
9737 refer to that section. The section identifiers are:
9738
9739 DW_SECT_INFO 1 .debug_info.dwo
9740 DW_SECT_TYPES 2 .debug_types.dwo
9741 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9742 DW_SECT_LINE 4 .debug_line.dwo
9743 DW_SECT_LOC 5 .debug_loc.dwo
9744 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9745 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9746 DW_SECT_MACRO 8 .debug_macro.dwo
9747
9748 The offsets provided by the CU and TU index sections are the base offsets
9749 for the contributions made by each CU or TU to the corresponding section
9750 in the package file. Each CU and TU header contains an abbrev_offset
9751 field, used to find the abbreviations table for that CU or TU within the
9752 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9753 be interpreted as relative to the base offset given in the index section.
9754 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9755 should be interpreted as relative to the base offset for .debug_line.dwo,
9756 and offsets into other debug sections obtained from DWARF attributes should
9757 also be interpreted as relative to the corresponding base offset.
9758
9759 The table of sizes begins immediately following the table of offsets.
9760 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9761 with L columns and N rows, in row-major order. Each row in the array is
9762 indexed starting from 1 (row 0 is shared by the two tables).
9763
9764 ---
9765
9766 Hash table lookup is handled the same in version 1 and 2:
9767
9768 We assume that N and M will not exceed 2^32 - 1.
9769 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9770
9771 Given a 64-bit compilation unit signature or a type signature S, an entry
9772 in the hash table is located as follows:
9773
9774 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9775 the low-order k bits all set to 1.
9776
9777 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9778
9779 3) If the hash table entry at index H matches the signature, use that
9780 entry. If the hash table entry at index H is unused (all zeroes),
9781 terminate the search: the signature is not present in the table.
9782
9783 4) Let H = (H + H') modulo M. Repeat at Step 3.
9784
9785 Because M > N and H' and M are relatively prime, the search is guaranteed
9786 to stop at an unused slot or find the match. */
9787
9788 /* Create a hash table to map DWO IDs to their CU/TU entry in
9789 .debug_{info,types}.dwo in DWP_FILE.
9790 Returns NULL if there isn't one.
9791 Note: This function processes DWP files only, not DWO files. */
9792
9793 static struct dwp_hash_table *
9794 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9795 {
9796 struct objfile *objfile = dwarf2_per_objfile->objfile;
9797 bfd *dbfd = dwp_file->dbfd;
9798 const gdb_byte *index_ptr, *index_end;
9799 struct dwarf2_section_info *index;
9800 uint32_t version, nr_columns, nr_units, nr_slots;
9801 struct dwp_hash_table *htab;
9802
9803 if (is_debug_types)
9804 index = &dwp_file->sections.tu_index;
9805 else
9806 index = &dwp_file->sections.cu_index;
9807
9808 if (dwarf2_section_empty_p (index))
9809 return NULL;
9810 dwarf2_read_section (objfile, index);
9811
9812 index_ptr = index->buffer;
9813 index_end = index_ptr + index->size;
9814
9815 version = read_4_bytes (dbfd, index_ptr);
9816 index_ptr += 4;
9817 if (version == 2)
9818 nr_columns = read_4_bytes (dbfd, index_ptr);
9819 else
9820 nr_columns = 0;
9821 index_ptr += 4;
9822 nr_units = read_4_bytes (dbfd, index_ptr);
9823 index_ptr += 4;
9824 nr_slots = read_4_bytes (dbfd, index_ptr);
9825 index_ptr += 4;
9826
9827 if (version != 1 && version != 2)
9828 {
9829 error (_("Dwarf Error: unsupported DWP file version (%s)"
9830 " [in module %s]"),
9831 pulongest (version), dwp_file->name);
9832 }
9833 if (nr_slots != (nr_slots & -nr_slots))
9834 {
9835 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9836 " is not power of 2 [in module %s]"),
9837 pulongest (nr_slots), dwp_file->name);
9838 }
9839
9840 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9841 htab->version = version;
9842 htab->nr_columns = nr_columns;
9843 htab->nr_units = nr_units;
9844 htab->nr_slots = nr_slots;
9845 htab->hash_table = index_ptr;
9846 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9847
9848 /* Exit early if the table is empty. */
9849 if (nr_slots == 0 || nr_units == 0
9850 || (version == 2 && nr_columns == 0))
9851 {
9852 /* All must be zero. */
9853 if (nr_slots != 0 || nr_units != 0
9854 || (version == 2 && nr_columns != 0))
9855 {
9856 complaint (&symfile_complaints,
9857 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9858 " all zero [in modules %s]"),
9859 dwp_file->name);
9860 }
9861 return htab;
9862 }
9863
9864 if (version == 1)
9865 {
9866 htab->section_pool.v1.indices =
9867 htab->unit_table + sizeof (uint32_t) * nr_slots;
9868 /* It's harder to decide whether the section is too small in v1.
9869 V1 is deprecated anyway so we punt. */
9870 }
9871 else
9872 {
9873 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9874 int *ids = htab->section_pool.v2.section_ids;
9875 /* Reverse map for error checking. */
9876 int ids_seen[DW_SECT_MAX + 1];
9877 int i;
9878
9879 if (nr_columns < 2)
9880 {
9881 error (_("Dwarf Error: bad DWP hash table, too few columns"
9882 " in section table [in module %s]"),
9883 dwp_file->name);
9884 }
9885 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9886 {
9887 error (_("Dwarf Error: bad DWP hash table, too many columns"
9888 " in section table [in module %s]"),
9889 dwp_file->name);
9890 }
9891 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9892 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9893 for (i = 0; i < nr_columns; ++i)
9894 {
9895 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9896
9897 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9898 {
9899 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9900 " in section table [in module %s]"),
9901 id, dwp_file->name);
9902 }
9903 if (ids_seen[id] != -1)
9904 {
9905 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9906 " id %d in section table [in module %s]"),
9907 id, dwp_file->name);
9908 }
9909 ids_seen[id] = i;
9910 ids[i] = id;
9911 }
9912 /* Must have exactly one info or types section. */
9913 if (((ids_seen[DW_SECT_INFO] != -1)
9914 + (ids_seen[DW_SECT_TYPES] != -1))
9915 != 1)
9916 {
9917 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9918 " DWO info/types section [in module %s]"),
9919 dwp_file->name);
9920 }
9921 /* Must have an abbrev section. */
9922 if (ids_seen[DW_SECT_ABBREV] == -1)
9923 {
9924 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9925 " section [in module %s]"),
9926 dwp_file->name);
9927 }
9928 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9929 htab->section_pool.v2.sizes =
9930 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9931 * nr_units * nr_columns);
9932 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9933 * nr_units * nr_columns))
9934 > index_end)
9935 {
9936 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9937 " [in module %s]"),
9938 dwp_file->name);
9939 }
9940 }
9941
9942 return htab;
9943 }
9944
9945 /* Update SECTIONS with the data from SECTP.
9946
9947 This function is like the other "locate" section routines that are
9948 passed to bfd_map_over_sections, but in this context the sections to
9949 read comes from the DWP V1 hash table, not the full ELF section table.
9950
9951 The result is non-zero for success, or zero if an error was found. */
9952
9953 static int
9954 locate_v1_virtual_dwo_sections (asection *sectp,
9955 struct virtual_v1_dwo_sections *sections)
9956 {
9957 const struct dwop_section_names *names = &dwop_section_names;
9958
9959 if (section_is_p (sectp->name, &names->abbrev_dwo))
9960 {
9961 /* There can be only one. */
9962 if (sections->abbrev.s.section != NULL)
9963 return 0;
9964 sections->abbrev.s.section = sectp;
9965 sections->abbrev.size = bfd_get_section_size (sectp);
9966 }
9967 else if (section_is_p (sectp->name, &names->info_dwo)
9968 || section_is_p (sectp->name, &names->types_dwo))
9969 {
9970 /* There can be only one. */
9971 if (sections->info_or_types.s.section != NULL)
9972 return 0;
9973 sections->info_or_types.s.section = sectp;
9974 sections->info_or_types.size = bfd_get_section_size (sectp);
9975 }
9976 else if (section_is_p (sectp->name, &names->line_dwo))
9977 {
9978 /* There can be only one. */
9979 if (sections->line.s.section != NULL)
9980 return 0;
9981 sections->line.s.section = sectp;
9982 sections->line.size = bfd_get_section_size (sectp);
9983 }
9984 else if (section_is_p (sectp->name, &names->loc_dwo))
9985 {
9986 /* There can be only one. */
9987 if (sections->loc.s.section != NULL)
9988 return 0;
9989 sections->loc.s.section = sectp;
9990 sections->loc.size = bfd_get_section_size (sectp);
9991 }
9992 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9993 {
9994 /* There can be only one. */
9995 if (sections->macinfo.s.section != NULL)
9996 return 0;
9997 sections->macinfo.s.section = sectp;
9998 sections->macinfo.size = bfd_get_section_size (sectp);
9999 }
10000 else if (section_is_p (sectp->name, &names->macro_dwo))
10001 {
10002 /* There can be only one. */
10003 if (sections->macro.s.section != NULL)
10004 return 0;
10005 sections->macro.s.section = sectp;
10006 sections->macro.size = bfd_get_section_size (sectp);
10007 }
10008 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10009 {
10010 /* There can be only one. */
10011 if (sections->str_offsets.s.section != NULL)
10012 return 0;
10013 sections->str_offsets.s.section = sectp;
10014 sections->str_offsets.size = bfd_get_section_size (sectp);
10015 }
10016 else
10017 {
10018 /* No other kind of section is valid. */
10019 return 0;
10020 }
10021
10022 return 1;
10023 }
10024
10025 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10026 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10027 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10028 This is for DWP version 1 files. */
10029
10030 static struct dwo_unit *
10031 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10032 uint32_t unit_index,
10033 const char *comp_dir,
10034 ULONGEST signature, int is_debug_types)
10035 {
10036 struct objfile *objfile = dwarf2_per_objfile->objfile;
10037 const struct dwp_hash_table *dwp_htab =
10038 is_debug_types ? dwp_file->tus : dwp_file->cus;
10039 bfd *dbfd = dwp_file->dbfd;
10040 const char *kind = is_debug_types ? "TU" : "CU";
10041 struct dwo_file *dwo_file;
10042 struct dwo_unit *dwo_unit;
10043 struct virtual_v1_dwo_sections sections;
10044 void **dwo_file_slot;
10045 char *virtual_dwo_name;
10046 struct cleanup *cleanups;
10047 int i;
10048
10049 gdb_assert (dwp_file->version == 1);
10050
10051 if (dwarf_read_debug)
10052 {
10053 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10054 kind,
10055 pulongest (unit_index), hex_string (signature),
10056 dwp_file->name);
10057 }
10058
10059 /* Fetch the sections of this DWO unit.
10060 Put a limit on the number of sections we look for so that bad data
10061 doesn't cause us to loop forever. */
10062
10063 #define MAX_NR_V1_DWO_SECTIONS \
10064 (1 /* .debug_info or .debug_types */ \
10065 + 1 /* .debug_abbrev */ \
10066 + 1 /* .debug_line */ \
10067 + 1 /* .debug_loc */ \
10068 + 1 /* .debug_str_offsets */ \
10069 + 1 /* .debug_macro or .debug_macinfo */ \
10070 + 1 /* trailing zero */)
10071
10072 memset (&sections, 0, sizeof (sections));
10073 cleanups = make_cleanup (null_cleanup, 0);
10074
10075 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10076 {
10077 asection *sectp;
10078 uint32_t section_nr =
10079 read_4_bytes (dbfd,
10080 dwp_htab->section_pool.v1.indices
10081 + (unit_index + i) * sizeof (uint32_t));
10082
10083 if (section_nr == 0)
10084 break;
10085 if (section_nr >= dwp_file->num_sections)
10086 {
10087 error (_("Dwarf Error: bad DWP hash table, section number too large"
10088 " [in module %s]"),
10089 dwp_file->name);
10090 }
10091
10092 sectp = dwp_file->elf_sections[section_nr];
10093 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10094 {
10095 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10096 " [in module %s]"),
10097 dwp_file->name);
10098 }
10099 }
10100
10101 if (i < 2
10102 || dwarf2_section_empty_p (&sections.info_or_types)
10103 || dwarf2_section_empty_p (&sections.abbrev))
10104 {
10105 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10106 " [in module %s]"),
10107 dwp_file->name);
10108 }
10109 if (i == MAX_NR_V1_DWO_SECTIONS)
10110 {
10111 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10112 " [in module %s]"),
10113 dwp_file->name);
10114 }
10115
10116 /* It's easier for the rest of the code if we fake a struct dwo_file and
10117 have dwo_unit "live" in that. At least for now.
10118
10119 The DWP file can be made up of a random collection of CUs and TUs.
10120 However, for each CU + set of TUs that came from the same original DWO
10121 file, we can combine them back into a virtual DWO file to save space
10122 (fewer struct dwo_file objects to allocate). Remember that for really
10123 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10124
10125 virtual_dwo_name =
10126 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10127 get_section_id (&sections.abbrev),
10128 get_section_id (&sections.line),
10129 get_section_id (&sections.loc),
10130 get_section_id (&sections.str_offsets));
10131 make_cleanup (xfree, virtual_dwo_name);
10132 /* Can we use an existing virtual DWO file? */
10133 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10134 /* Create one if necessary. */
10135 if (*dwo_file_slot == NULL)
10136 {
10137 if (dwarf_read_debug)
10138 {
10139 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10140 virtual_dwo_name);
10141 }
10142 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10143 dwo_file->dwo_name
10144 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10145 virtual_dwo_name,
10146 strlen (virtual_dwo_name));
10147 dwo_file->comp_dir = comp_dir;
10148 dwo_file->sections.abbrev = sections.abbrev;
10149 dwo_file->sections.line = sections.line;
10150 dwo_file->sections.loc = sections.loc;
10151 dwo_file->sections.macinfo = sections.macinfo;
10152 dwo_file->sections.macro = sections.macro;
10153 dwo_file->sections.str_offsets = sections.str_offsets;
10154 /* The "str" section is global to the entire DWP file. */
10155 dwo_file->sections.str = dwp_file->sections.str;
10156 /* The info or types section is assigned below to dwo_unit,
10157 there's no need to record it in dwo_file.
10158 Also, we can't simply record type sections in dwo_file because
10159 we record a pointer into the vector in dwo_unit. As we collect more
10160 types we'll grow the vector and eventually have to reallocate space
10161 for it, invalidating all copies of pointers into the previous
10162 contents. */
10163 *dwo_file_slot = dwo_file;
10164 }
10165 else
10166 {
10167 if (dwarf_read_debug)
10168 {
10169 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10170 virtual_dwo_name);
10171 }
10172 dwo_file = (struct dwo_file *) *dwo_file_slot;
10173 }
10174 do_cleanups (cleanups);
10175
10176 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10177 dwo_unit->dwo_file = dwo_file;
10178 dwo_unit->signature = signature;
10179 dwo_unit->section =
10180 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10181 *dwo_unit->section = sections.info_or_types;
10182 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10183
10184 return dwo_unit;
10185 }
10186
10187 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10188 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10189 piece within that section used by a TU/CU, return a virtual section
10190 of just that piece. */
10191
10192 static struct dwarf2_section_info
10193 create_dwp_v2_section (struct dwarf2_section_info *section,
10194 bfd_size_type offset, bfd_size_type size)
10195 {
10196 struct dwarf2_section_info result;
10197 asection *sectp;
10198
10199 gdb_assert (section != NULL);
10200 gdb_assert (!section->is_virtual);
10201
10202 memset (&result, 0, sizeof (result));
10203 result.s.containing_section = section;
10204 result.is_virtual = 1;
10205
10206 if (size == 0)
10207 return result;
10208
10209 sectp = get_section_bfd_section (section);
10210
10211 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10212 bounds of the real section. This is a pretty-rare event, so just
10213 flag an error (easier) instead of a warning and trying to cope. */
10214 if (sectp == NULL
10215 || offset + size > bfd_get_section_size (sectp))
10216 {
10217 bfd *abfd = sectp->owner;
10218
10219 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10220 " in section %s [in module %s]"),
10221 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10222 objfile_name (dwarf2_per_objfile->objfile));
10223 }
10224
10225 result.virtual_offset = offset;
10226 result.size = size;
10227 return result;
10228 }
10229
10230 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10231 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10232 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10233 This is for DWP version 2 files. */
10234
10235 static struct dwo_unit *
10236 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10237 uint32_t unit_index,
10238 const char *comp_dir,
10239 ULONGEST signature, int is_debug_types)
10240 {
10241 struct objfile *objfile = dwarf2_per_objfile->objfile;
10242 const struct dwp_hash_table *dwp_htab =
10243 is_debug_types ? dwp_file->tus : dwp_file->cus;
10244 bfd *dbfd = dwp_file->dbfd;
10245 const char *kind = is_debug_types ? "TU" : "CU";
10246 struct dwo_file *dwo_file;
10247 struct dwo_unit *dwo_unit;
10248 struct virtual_v2_dwo_sections sections;
10249 void **dwo_file_slot;
10250 char *virtual_dwo_name;
10251 struct cleanup *cleanups;
10252 int i;
10253
10254 gdb_assert (dwp_file->version == 2);
10255
10256 if (dwarf_read_debug)
10257 {
10258 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10259 kind,
10260 pulongest (unit_index), hex_string (signature),
10261 dwp_file->name);
10262 }
10263
10264 /* Fetch the section offsets of this DWO unit. */
10265
10266 memset (&sections, 0, sizeof (sections));
10267 cleanups = make_cleanup (null_cleanup, 0);
10268
10269 for (i = 0; i < dwp_htab->nr_columns; ++i)
10270 {
10271 uint32_t offset = read_4_bytes (dbfd,
10272 dwp_htab->section_pool.v2.offsets
10273 + (((unit_index - 1) * dwp_htab->nr_columns
10274 + i)
10275 * sizeof (uint32_t)));
10276 uint32_t size = read_4_bytes (dbfd,
10277 dwp_htab->section_pool.v2.sizes
10278 + (((unit_index - 1) * dwp_htab->nr_columns
10279 + i)
10280 * sizeof (uint32_t)));
10281
10282 switch (dwp_htab->section_pool.v2.section_ids[i])
10283 {
10284 case DW_SECT_INFO:
10285 case DW_SECT_TYPES:
10286 sections.info_or_types_offset = offset;
10287 sections.info_or_types_size = size;
10288 break;
10289 case DW_SECT_ABBREV:
10290 sections.abbrev_offset = offset;
10291 sections.abbrev_size = size;
10292 break;
10293 case DW_SECT_LINE:
10294 sections.line_offset = offset;
10295 sections.line_size = size;
10296 break;
10297 case DW_SECT_LOC:
10298 sections.loc_offset = offset;
10299 sections.loc_size = size;
10300 break;
10301 case DW_SECT_STR_OFFSETS:
10302 sections.str_offsets_offset = offset;
10303 sections.str_offsets_size = size;
10304 break;
10305 case DW_SECT_MACINFO:
10306 sections.macinfo_offset = offset;
10307 sections.macinfo_size = size;
10308 break;
10309 case DW_SECT_MACRO:
10310 sections.macro_offset = offset;
10311 sections.macro_size = size;
10312 break;
10313 }
10314 }
10315
10316 /* It's easier for the rest of the code if we fake a struct dwo_file and
10317 have dwo_unit "live" in that. At least for now.
10318
10319 The DWP file can be made up of a random collection of CUs and TUs.
10320 However, for each CU + set of TUs that came from the same original DWO
10321 file, we can combine them back into a virtual DWO file to save space
10322 (fewer struct dwo_file objects to allocate). Remember that for really
10323 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10324
10325 virtual_dwo_name =
10326 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10327 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10328 (long) (sections.line_size ? sections.line_offset : 0),
10329 (long) (sections.loc_size ? sections.loc_offset : 0),
10330 (long) (sections.str_offsets_size
10331 ? sections.str_offsets_offset : 0));
10332 make_cleanup (xfree, virtual_dwo_name);
10333 /* Can we use an existing virtual DWO file? */
10334 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10335 /* Create one if necessary. */
10336 if (*dwo_file_slot == NULL)
10337 {
10338 if (dwarf_read_debug)
10339 {
10340 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10341 virtual_dwo_name);
10342 }
10343 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10344 dwo_file->dwo_name
10345 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10346 virtual_dwo_name,
10347 strlen (virtual_dwo_name));
10348 dwo_file->comp_dir = comp_dir;
10349 dwo_file->sections.abbrev =
10350 create_dwp_v2_section (&dwp_file->sections.abbrev,
10351 sections.abbrev_offset, sections.abbrev_size);
10352 dwo_file->sections.line =
10353 create_dwp_v2_section (&dwp_file->sections.line,
10354 sections.line_offset, sections.line_size);
10355 dwo_file->sections.loc =
10356 create_dwp_v2_section (&dwp_file->sections.loc,
10357 sections.loc_offset, sections.loc_size);
10358 dwo_file->sections.macinfo =
10359 create_dwp_v2_section (&dwp_file->sections.macinfo,
10360 sections.macinfo_offset, sections.macinfo_size);
10361 dwo_file->sections.macro =
10362 create_dwp_v2_section (&dwp_file->sections.macro,
10363 sections.macro_offset, sections.macro_size);
10364 dwo_file->sections.str_offsets =
10365 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10366 sections.str_offsets_offset,
10367 sections.str_offsets_size);
10368 /* The "str" section is global to the entire DWP file. */
10369 dwo_file->sections.str = dwp_file->sections.str;
10370 /* The info or types section is assigned below to dwo_unit,
10371 there's no need to record it in dwo_file.
10372 Also, we can't simply record type sections in dwo_file because
10373 we record a pointer into the vector in dwo_unit. As we collect more
10374 types we'll grow the vector and eventually have to reallocate space
10375 for it, invalidating all copies of pointers into the previous
10376 contents. */
10377 *dwo_file_slot = dwo_file;
10378 }
10379 else
10380 {
10381 if (dwarf_read_debug)
10382 {
10383 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10384 virtual_dwo_name);
10385 }
10386 dwo_file = (struct dwo_file *) *dwo_file_slot;
10387 }
10388 do_cleanups (cleanups);
10389
10390 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10391 dwo_unit->dwo_file = dwo_file;
10392 dwo_unit->signature = signature;
10393 dwo_unit->section =
10394 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10395 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10396 ? &dwp_file->sections.types
10397 : &dwp_file->sections.info,
10398 sections.info_or_types_offset,
10399 sections.info_or_types_size);
10400 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10401
10402 return dwo_unit;
10403 }
10404
10405 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10406 Returns NULL if the signature isn't found. */
10407
10408 static struct dwo_unit *
10409 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10410 ULONGEST signature, int is_debug_types)
10411 {
10412 const struct dwp_hash_table *dwp_htab =
10413 is_debug_types ? dwp_file->tus : dwp_file->cus;
10414 bfd *dbfd = dwp_file->dbfd;
10415 uint32_t mask = dwp_htab->nr_slots - 1;
10416 uint32_t hash = signature & mask;
10417 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10418 unsigned int i;
10419 void **slot;
10420 struct dwo_unit find_dwo_cu;
10421
10422 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10423 find_dwo_cu.signature = signature;
10424 slot = htab_find_slot (is_debug_types
10425 ? dwp_file->loaded_tus
10426 : dwp_file->loaded_cus,
10427 &find_dwo_cu, INSERT);
10428
10429 if (*slot != NULL)
10430 return (struct dwo_unit *) *slot;
10431
10432 /* Use a for loop so that we don't loop forever on bad debug info. */
10433 for (i = 0; i < dwp_htab->nr_slots; ++i)
10434 {
10435 ULONGEST signature_in_table;
10436
10437 signature_in_table =
10438 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10439 if (signature_in_table == signature)
10440 {
10441 uint32_t unit_index =
10442 read_4_bytes (dbfd,
10443 dwp_htab->unit_table + hash * sizeof (uint32_t));
10444
10445 if (dwp_file->version == 1)
10446 {
10447 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10448 comp_dir, signature,
10449 is_debug_types);
10450 }
10451 else
10452 {
10453 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10454 comp_dir, signature,
10455 is_debug_types);
10456 }
10457 return (struct dwo_unit *) *slot;
10458 }
10459 if (signature_in_table == 0)
10460 return NULL;
10461 hash = (hash + hash2) & mask;
10462 }
10463
10464 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10465 " [in module %s]"),
10466 dwp_file->name);
10467 }
10468
10469 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10470 Open the file specified by FILE_NAME and hand it off to BFD for
10471 preliminary analysis. Return a newly initialized bfd *, which
10472 includes a canonicalized copy of FILE_NAME.
10473 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10474 SEARCH_CWD is true if the current directory is to be searched.
10475 It will be searched before debug-file-directory.
10476 If successful, the file is added to the bfd include table of the
10477 objfile's bfd (see gdb_bfd_record_inclusion).
10478 If unable to find/open the file, return NULL.
10479 NOTE: This function is derived from symfile_bfd_open. */
10480
10481 static bfd *
10482 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10483 {
10484 bfd *sym_bfd;
10485 int desc, flags;
10486 char *absolute_name;
10487 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10488 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10489 to debug_file_directory. */
10490 char *search_path;
10491 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10492
10493 if (search_cwd)
10494 {
10495 if (*debug_file_directory != '\0')
10496 search_path = concat (".", dirname_separator_string,
10497 debug_file_directory, (char *) NULL);
10498 else
10499 search_path = xstrdup (".");
10500 }
10501 else
10502 search_path = xstrdup (debug_file_directory);
10503
10504 flags = OPF_RETURN_REALPATH;
10505 if (is_dwp)
10506 flags |= OPF_SEARCH_IN_PATH;
10507 desc = openp (search_path, flags, file_name,
10508 O_RDONLY | O_BINARY, &absolute_name);
10509 xfree (search_path);
10510 if (desc < 0)
10511 return NULL;
10512
10513 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10514 xfree (absolute_name);
10515 if (sym_bfd == NULL)
10516 return NULL;
10517 bfd_set_cacheable (sym_bfd, 1);
10518
10519 if (!bfd_check_format (sym_bfd, bfd_object))
10520 {
10521 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10522 return NULL;
10523 }
10524
10525 /* Success. Record the bfd as having been included by the objfile's bfd.
10526 This is important because things like demangled_names_hash lives in the
10527 objfile's per_bfd space and may have references to things like symbol
10528 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10529 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10530
10531 return sym_bfd;
10532 }
10533
10534 /* Try to open DWO file FILE_NAME.
10535 COMP_DIR is the DW_AT_comp_dir attribute.
10536 The result is the bfd handle of the file.
10537 If there is a problem finding or opening the file, return NULL.
10538 Upon success, the canonicalized path of the file is stored in the bfd,
10539 same as symfile_bfd_open. */
10540
10541 static bfd *
10542 open_dwo_file (const char *file_name, const char *comp_dir)
10543 {
10544 bfd *abfd;
10545
10546 if (IS_ABSOLUTE_PATH (file_name))
10547 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10548
10549 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10550
10551 if (comp_dir != NULL)
10552 {
10553 char *path_to_try = concat (comp_dir, SLASH_STRING,
10554 file_name, (char *) NULL);
10555
10556 /* NOTE: If comp_dir is a relative path, this will also try the
10557 search path, which seems useful. */
10558 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10559 xfree (path_to_try);
10560 if (abfd != NULL)
10561 return abfd;
10562 }
10563
10564 /* That didn't work, try debug-file-directory, which, despite its name,
10565 is a list of paths. */
10566
10567 if (*debug_file_directory == '\0')
10568 return NULL;
10569
10570 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10571 }
10572
10573 /* This function is mapped across the sections and remembers the offset and
10574 size of each of the DWO debugging sections we are interested in. */
10575
10576 static void
10577 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10578 {
10579 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10580 const struct dwop_section_names *names = &dwop_section_names;
10581
10582 if (section_is_p (sectp->name, &names->abbrev_dwo))
10583 {
10584 dwo_sections->abbrev.s.section = sectp;
10585 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10586 }
10587 else if (section_is_p (sectp->name, &names->info_dwo))
10588 {
10589 dwo_sections->info.s.section = sectp;
10590 dwo_sections->info.size = bfd_get_section_size (sectp);
10591 }
10592 else if (section_is_p (sectp->name, &names->line_dwo))
10593 {
10594 dwo_sections->line.s.section = sectp;
10595 dwo_sections->line.size = bfd_get_section_size (sectp);
10596 }
10597 else if (section_is_p (sectp->name, &names->loc_dwo))
10598 {
10599 dwo_sections->loc.s.section = sectp;
10600 dwo_sections->loc.size = bfd_get_section_size (sectp);
10601 }
10602 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10603 {
10604 dwo_sections->macinfo.s.section = sectp;
10605 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10606 }
10607 else if (section_is_p (sectp->name, &names->macro_dwo))
10608 {
10609 dwo_sections->macro.s.section = sectp;
10610 dwo_sections->macro.size = bfd_get_section_size (sectp);
10611 }
10612 else if (section_is_p (sectp->name, &names->str_dwo))
10613 {
10614 dwo_sections->str.s.section = sectp;
10615 dwo_sections->str.size = bfd_get_section_size (sectp);
10616 }
10617 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10618 {
10619 dwo_sections->str_offsets.s.section = sectp;
10620 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10621 }
10622 else if (section_is_p (sectp->name, &names->types_dwo))
10623 {
10624 struct dwarf2_section_info type_section;
10625
10626 memset (&type_section, 0, sizeof (type_section));
10627 type_section.s.section = sectp;
10628 type_section.size = bfd_get_section_size (sectp);
10629 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10630 &type_section);
10631 }
10632 }
10633
10634 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10635 by PER_CU. This is for the non-DWP case.
10636 The result is NULL if DWO_NAME can't be found. */
10637
10638 static struct dwo_file *
10639 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10640 const char *dwo_name, const char *comp_dir)
10641 {
10642 struct objfile *objfile = dwarf2_per_objfile->objfile;
10643 struct dwo_file *dwo_file;
10644 bfd *dbfd;
10645 struct cleanup *cleanups;
10646
10647 dbfd = open_dwo_file (dwo_name, comp_dir);
10648 if (dbfd == NULL)
10649 {
10650 if (dwarf_read_debug)
10651 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10652 return NULL;
10653 }
10654 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10655 dwo_file->dwo_name = dwo_name;
10656 dwo_file->comp_dir = comp_dir;
10657 dwo_file->dbfd = dbfd;
10658
10659 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10660
10661 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10662
10663 dwo_file->cu = create_dwo_cu (dwo_file);
10664
10665 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10666 dwo_file->sections.types);
10667
10668 discard_cleanups (cleanups);
10669
10670 if (dwarf_read_debug)
10671 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10672
10673 return dwo_file;
10674 }
10675
10676 /* This function is mapped across the sections and remembers the offset and
10677 size of each of the DWP debugging sections common to version 1 and 2 that
10678 we are interested in. */
10679
10680 static void
10681 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10682 void *dwp_file_ptr)
10683 {
10684 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10685 const struct dwop_section_names *names = &dwop_section_names;
10686 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10687
10688 /* Record the ELF section number for later lookup: this is what the
10689 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10690 gdb_assert (elf_section_nr < dwp_file->num_sections);
10691 dwp_file->elf_sections[elf_section_nr] = sectp;
10692
10693 /* Look for specific sections that we need. */
10694 if (section_is_p (sectp->name, &names->str_dwo))
10695 {
10696 dwp_file->sections.str.s.section = sectp;
10697 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10698 }
10699 else if (section_is_p (sectp->name, &names->cu_index))
10700 {
10701 dwp_file->sections.cu_index.s.section = sectp;
10702 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10703 }
10704 else if (section_is_p (sectp->name, &names->tu_index))
10705 {
10706 dwp_file->sections.tu_index.s.section = sectp;
10707 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10708 }
10709 }
10710
10711 /* This function is mapped across the sections and remembers the offset and
10712 size of each of the DWP version 2 debugging sections that we are interested
10713 in. This is split into a separate function because we don't know if we
10714 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10715
10716 static void
10717 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10718 {
10719 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10720 const struct dwop_section_names *names = &dwop_section_names;
10721 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10722
10723 /* Record the ELF section number for later lookup: this is what the
10724 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10725 gdb_assert (elf_section_nr < dwp_file->num_sections);
10726 dwp_file->elf_sections[elf_section_nr] = sectp;
10727
10728 /* Look for specific sections that we need. */
10729 if (section_is_p (sectp->name, &names->abbrev_dwo))
10730 {
10731 dwp_file->sections.abbrev.s.section = sectp;
10732 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10733 }
10734 else if (section_is_p (sectp->name, &names->info_dwo))
10735 {
10736 dwp_file->sections.info.s.section = sectp;
10737 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10738 }
10739 else if (section_is_p (sectp->name, &names->line_dwo))
10740 {
10741 dwp_file->sections.line.s.section = sectp;
10742 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10743 }
10744 else if (section_is_p (sectp->name, &names->loc_dwo))
10745 {
10746 dwp_file->sections.loc.s.section = sectp;
10747 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10748 }
10749 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10750 {
10751 dwp_file->sections.macinfo.s.section = sectp;
10752 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10753 }
10754 else if (section_is_p (sectp->name, &names->macro_dwo))
10755 {
10756 dwp_file->sections.macro.s.section = sectp;
10757 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10758 }
10759 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10760 {
10761 dwp_file->sections.str_offsets.s.section = sectp;
10762 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10763 }
10764 else if (section_is_p (sectp->name, &names->types_dwo))
10765 {
10766 dwp_file->sections.types.s.section = sectp;
10767 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10768 }
10769 }
10770
10771 /* Hash function for dwp_file loaded CUs/TUs. */
10772
10773 static hashval_t
10774 hash_dwp_loaded_cutus (const void *item)
10775 {
10776 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10777
10778 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10779 return dwo_unit->signature;
10780 }
10781
10782 /* Equality function for dwp_file loaded CUs/TUs. */
10783
10784 static int
10785 eq_dwp_loaded_cutus (const void *a, const void *b)
10786 {
10787 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10788 const struct dwo_unit *dub = (const struct dwo_unit *) b;
10789
10790 return dua->signature == dub->signature;
10791 }
10792
10793 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10794
10795 static htab_t
10796 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10797 {
10798 return htab_create_alloc_ex (3,
10799 hash_dwp_loaded_cutus,
10800 eq_dwp_loaded_cutus,
10801 NULL,
10802 &objfile->objfile_obstack,
10803 hashtab_obstack_allocate,
10804 dummy_obstack_deallocate);
10805 }
10806
10807 /* Try to open DWP file FILE_NAME.
10808 The result is the bfd handle of the file.
10809 If there is a problem finding or opening the file, return NULL.
10810 Upon success, the canonicalized path of the file is stored in the bfd,
10811 same as symfile_bfd_open. */
10812
10813 static bfd *
10814 open_dwp_file (const char *file_name)
10815 {
10816 bfd *abfd;
10817
10818 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10819 if (abfd != NULL)
10820 return abfd;
10821
10822 /* Work around upstream bug 15652.
10823 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10824 [Whether that's a "bug" is debatable, but it is getting in our way.]
10825 We have no real idea where the dwp file is, because gdb's realpath-ing
10826 of the executable's path may have discarded the needed info.
10827 [IWBN if the dwp file name was recorded in the executable, akin to
10828 .gnu_debuglink, but that doesn't exist yet.]
10829 Strip the directory from FILE_NAME and search again. */
10830 if (*debug_file_directory != '\0')
10831 {
10832 /* Don't implicitly search the current directory here.
10833 If the user wants to search "." to handle this case,
10834 it must be added to debug-file-directory. */
10835 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10836 0 /*search_cwd*/);
10837 }
10838
10839 return NULL;
10840 }
10841
10842 /* Initialize the use of the DWP file for the current objfile.
10843 By convention the name of the DWP file is ${objfile}.dwp.
10844 The result is NULL if it can't be found. */
10845
10846 static struct dwp_file *
10847 open_and_init_dwp_file (void)
10848 {
10849 struct objfile *objfile = dwarf2_per_objfile->objfile;
10850 struct dwp_file *dwp_file;
10851 char *dwp_name;
10852 bfd *dbfd;
10853 struct cleanup *cleanups = make_cleanup (null_cleanup, 0);
10854
10855 /* Try to find first .dwp for the binary file before any symbolic links
10856 resolving. */
10857
10858 /* If the objfile is a debug file, find the name of the real binary
10859 file and get the name of dwp file from there. */
10860 if (objfile->separate_debug_objfile_backlink != NULL)
10861 {
10862 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
10863 const char *backlink_basename = lbasename (backlink->original_name);
10864 char *debug_dirname = ldirname (objfile->original_name);
10865
10866 make_cleanup (xfree, debug_dirname);
10867 dwp_name = xstrprintf ("%s%s%s.dwp", debug_dirname,
10868 SLASH_STRING, backlink_basename);
10869 }
10870 else
10871 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10872 make_cleanup (xfree, dwp_name);
10873
10874 dbfd = open_dwp_file (dwp_name);
10875 if (dbfd == NULL
10876 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10877 {
10878 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10879 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10880 make_cleanup (xfree, dwp_name);
10881 dbfd = open_dwp_file (dwp_name);
10882 }
10883
10884 if (dbfd == NULL)
10885 {
10886 if (dwarf_read_debug)
10887 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10888 do_cleanups (cleanups);
10889 return NULL;
10890 }
10891 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10892 dwp_file->name = bfd_get_filename (dbfd);
10893 dwp_file->dbfd = dbfd;
10894 do_cleanups (cleanups);
10895
10896 /* +1: section 0 is unused */
10897 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10898 dwp_file->elf_sections =
10899 OBSTACK_CALLOC (&objfile->objfile_obstack,
10900 dwp_file->num_sections, asection *);
10901
10902 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10903
10904 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10905
10906 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10907
10908 /* The DWP file version is stored in the hash table. Oh well. */
10909 if (dwp_file->cus->version != dwp_file->tus->version)
10910 {
10911 /* Technically speaking, we should try to limp along, but this is
10912 pretty bizarre. We use pulongest here because that's the established
10913 portability solution (e.g, we cannot use %u for uint32_t). */
10914 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10915 " TU version %s [in DWP file %s]"),
10916 pulongest (dwp_file->cus->version),
10917 pulongest (dwp_file->tus->version), dwp_name);
10918 }
10919 dwp_file->version = dwp_file->cus->version;
10920
10921 if (dwp_file->version == 2)
10922 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10923
10924 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10925 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10926
10927 if (dwarf_read_debug)
10928 {
10929 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10930 fprintf_unfiltered (gdb_stdlog,
10931 " %s CUs, %s TUs\n",
10932 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10933 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10934 }
10935
10936 return dwp_file;
10937 }
10938
10939 /* Wrapper around open_and_init_dwp_file, only open it once. */
10940
10941 static struct dwp_file *
10942 get_dwp_file (void)
10943 {
10944 if (! dwarf2_per_objfile->dwp_checked)
10945 {
10946 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10947 dwarf2_per_objfile->dwp_checked = 1;
10948 }
10949 return dwarf2_per_objfile->dwp_file;
10950 }
10951
10952 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10953 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10954 or in the DWP file for the objfile, referenced by THIS_UNIT.
10955 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10956 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10957
10958 This is called, for example, when wanting to read a variable with a
10959 complex location. Therefore we don't want to do file i/o for every call.
10960 Therefore we don't want to look for a DWO file on every call.
10961 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10962 then we check if we've already seen DWO_NAME, and only THEN do we check
10963 for a DWO file.
10964
10965 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10966 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10967
10968 static struct dwo_unit *
10969 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10970 const char *dwo_name, const char *comp_dir,
10971 ULONGEST signature, int is_debug_types)
10972 {
10973 struct objfile *objfile = dwarf2_per_objfile->objfile;
10974 const char *kind = is_debug_types ? "TU" : "CU";
10975 void **dwo_file_slot;
10976 struct dwo_file *dwo_file;
10977 struct dwp_file *dwp_file;
10978
10979 /* First see if there's a DWP file.
10980 If we have a DWP file but didn't find the DWO inside it, don't
10981 look for the original DWO file. It makes gdb behave differently
10982 depending on whether one is debugging in the build tree. */
10983
10984 dwp_file = get_dwp_file ();
10985 if (dwp_file != NULL)
10986 {
10987 const struct dwp_hash_table *dwp_htab =
10988 is_debug_types ? dwp_file->tus : dwp_file->cus;
10989
10990 if (dwp_htab != NULL)
10991 {
10992 struct dwo_unit *dwo_cutu =
10993 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10994 signature, is_debug_types);
10995
10996 if (dwo_cutu != NULL)
10997 {
10998 if (dwarf_read_debug)
10999 {
11000 fprintf_unfiltered (gdb_stdlog,
11001 "Virtual DWO %s %s found: @%s\n",
11002 kind, hex_string (signature),
11003 host_address_to_string (dwo_cutu));
11004 }
11005 return dwo_cutu;
11006 }
11007 }
11008 }
11009 else
11010 {
11011 /* No DWP file, look for the DWO file. */
11012
11013 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11014 if (*dwo_file_slot == NULL)
11015 {
11016 /* Read in the file and build a table of the CUs/TUs it contains. */
11017 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
11018 }
11019 /* NOTE: This will be NULL if unable to open the file. */
11020 dwo_file = (struct dwo_file *) *dwo_file_slot;
11021
11022 if (dwo_file != NULL)
11023 {
11024 struct dwo_unit *dwo_cutu = NULL;
11025
11026 if (is_debug_types && dwo_file->tus)
11027 {
11028 struct dwo_unit find_dwo_cutu;
11029
11030 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11031 find_dwo_cutu.signature = signature;
11032 dwo_cutu
11033 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11034 }
11035 else if (!is_debug_types && dwo_file->cu)
11036 {
11037 if (signature == dwo_file->cu->signature)
11038 dwo_cutu = dwo_file->cu;
11039 }
11040
11041 if (dwo_cutu != NULL)
11042 {
11043 if (dwarf_read_debug)
11044 {
11045 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11046 kind, dwo_name, hex_string (signature),
11047 host_address_to_string (dwo_cutu));
11048 }
11049 return dwo_cutu;
11050 }
11051 }
11052 }
11053
11054 /* We didn't find it. This could mean a dwo_id mismatch, or
11055 someone deleted the DWO/DWP file, or the search path isn't set up
11056 correctly to find the file. */
11057
11058 if (dwarf_read_debug)
11059 {
11060 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11061 kind, dwo_name, hex_string (signature));
11062 }
11063
11064 /* This is a warning and not a complaint because it can be caused by
11065 pilot error (e.g., user accidentally deleting the DWO). */
11066 {
11067 /* Print the name of the DWP file if we looked there, helps the user
11068 better diagnose the problem. */
11069 char *dwp_text = NULL;
11070 struct cleanup *cleanups;
11071
11072 if (dwp_file != NULL)
11073 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11074 cleanups = make_cleanup (xfree, dwp_text);
11075
11076 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11077 " [in module %s]"),
11078 kind, dwo_name, hex_string (signature),
11079 dwp_text != NULL ? dwp_text : "",
11080 this_unit->is_debug_types ? "TU" : "CU",
11081 this_unit->offset.sect_off, objfile_name (objfile));
11082
11083 do_cleanups (cleanups);
11084 }
11085 return NULL;
11086 }
11087
11088 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11089 See lookup_dwo_cutu_unit for details. */
11090
11091 static struct dwo_unit *
11092 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11093 const char *dwo_name, const char *comp_dir,
11094 ULONGEST signature)
11095 {
11096 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11097 }
11098
11099 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11100 See lookup_dwo_cutu_unit for details. */
11101
11102 static struct dwo_unit *
11103 lookup_dwo_type_unit (struct signatured_type *this_tu,
11104 const char *dwo_name, const char *comp_dir)
11105 {
11106 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11107 }
11108
11109 /* Traversal function for queue_and_load_all_dwo_tus. */
11110
11111 static int
11112 queue_and_load_dwo_tu (void **slot, void *info)
11113 {
11114 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11115 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11116 ULONGEST signature = dwo_unit->signature;
11117 struct signatured_type *sig_type =
11118 lookup_dwo_signatured_type (per_cu->cu, signature);
11119
11120 if (sig_type != NULL)
11121 {
11122 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11123
11124 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11125 a real dependency of PER_CU on SIG_TYPE. That is detected later
11126 while processing PER_CU. */
11127 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11128 load_full_type_unit (sig_cu);
11129 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11130 }
11131
11132 return 1;
11133 }
11134
11135 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11136 The DWO may have the only definition of the type, though it may not be
11137 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11138 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11139
11140 static void
11141 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11142 {
11143 struct dwo_unit *dwo_unit;
11144 struct dwo_file *dwo_file;
11145
11146 gdb_assert (!per_cu->is_debug_types);
11147 gdb_assert (get_dwp_file () == NULL);
11148 gdb_assert (per_cu->cu != NULL);
11149
11150 dwo_unit = per_cu->cu->dwo_unit;
11151 gdb_assert (dwo_unit != NULL);
11152
11153 dwo_file = dwo_unit->dwo_file;
11154 if (dwo_file->tus != NULL)
11155 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11156 }
11157
11158 /* Free all resources associated with DWO_FILE.
11159 Close the DWO file and munmap the sections.
11160 All memory should be on the objfile obstack. */
11161
11162 static void
11163 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11164 {
11165
11166 /* Note: dbfd is NULL for virtual DWO files. */
11167 gdb_bfd_unref (dwo_file->dbfd);
11168
11169 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11170 }
11171
11172 /* Wrapper for free_dwo_file for use in cleanups. */
11173
11174 static void
11175 free_dwo_file_cleanup (void *arg)
11176 {
11177 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11178 struct objfile *objfile = dwarf2_per_objfile->objfile;
11179
11180 free_dwo_file (dwo_file, objfile);
11181 }
11182
11183 /* Traversal function for free_dwo_files. */
11184
11185 static int
11186 free_dwo_file_from_slot (void **slot, void *info)
11187 {
11188 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11189 struct objfile *objfile = (struct objfile *) info;
11190
11191 free_dwo_file (dwo_file, objfile);
11192
11193 return 1;
11194 }
11195
11196 /* Free all resources associated with DWO_FILES. */
11197
11198 static void
11199 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11200 {
11201 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11202 }
11203 \f
11204 /* Read in various DIEs. */
11205
11206 /* qsort helper for inherit_abstract_dies. */
11207
11208 static int
11209 unsigned_int_compar (const void *ap, const void *bp)
11210 {
11211 unsigned int a = *(unsigned int *) ap;
11212 unsigned int b = *(unsigned int *) bp;
11213
11214 return (a > b) - (b > a);
11215 }
11216
11217 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11218 Inherit only the children of the DW_AT_abstract_origin DIE not being
11219 already referenced by DW_AT_abstract_origin from the children of the
11220 current DIE. */
11221
11222 static void
11223 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11224 {
11225 struct die_info *child_die;
11226 unsigned die_children_count;
11227 /* CU offsets which were referenced by children of the current DIE. */
11228 sect_offset *offsets;
11229 sect_offset *offsets_end, *offsetp;
11230 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11231 struct die_info *origin_die;
11232 /* Iterator of the ORIGIN_DIE children. */
11233 struct die_info *origin_child_die;
11234 struct cleanup *cleanups;
11235 struct attribute *attr;
11236 struct dwarf2_cu *origin_cu;
11237 struct pending **origin_previous_list_in_scope;
11238
11239 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11240 if (!attr)
11241 return;
11242
11243 /* Note that following die references may follow to a die in a
11244 different cu. */
11245
11246 origin_cu = cu;
11247 origin_die = follow_die_ref (die, attr, &origin_cu);
11248
11249 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11250 symbols in. */
11251 origin_previous_list_in_scope = origin_cu->list_in_scope;
11252 origin_cu->list_in_scope = cu->list_in_scope;
11253
11254 if (die->tag != origin_die->tag
11255 && !(die->tag == DW_TAG_inlined_subroutine
11256 && origin_die->tag == DW_TAG_subprogram))
11257 complaint (&symfile_complaints,
11258 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11259 die->offset.sect_off, origin_die->offset.sect_off);
11260
11261 child_die = die->child;
11262 die_children_count = 0;
11263 while (child_die && child_die->tag)
11264 {
11265 child_die = sibling_die (child_die);
11266 die_children_count++;
11267 }
11268 offsets = XNEWVEC (sect_offset, die_children_count);
11269 cleanups = make_cleanup (xfree, offsets);
11270
11271 offsets_end = offsets;
11272 for (child_die = die->child;
11273 child_die && child_die->tag;
11274 child_die = sibling_die (child_die))
11275 {
11276 struct die_info *child_origin_die;
11277 struct dwarf2_cu *child_origin_cu;
11278
11279 /* We are trying to process concrete instance entries:
11280 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11281 it's not relevant to our analysis here. i.e. detecting DIEs that are
11282 present in the abstract instance but not referenced in the concrete
11283 one. */
11284 if (child_die->tag == DW_TAG_GNU_call_site)
11285 continue;
11286
11287 /* For each CHILD_DIE, find the corresponding child of
11288 ORIGIN_DIE. If there is more than one layer of
11289 DW_AT_abstract_origin, follow them all; there shouldn't be,
11290 but GCC versions at least through 4.4 generate this (GCC PR
11291 40573). */
11292 child_origin_die = child_die;
11293 child_origin_cu = cu;
11294 while (1)
11295 {
11296 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11297 child_origin_cu);
11298 if (attr == NULL)
11299 break;
11300 child_origin_die = follow_die_ref (child_origin_die, attr,
11301 &child_origin_cu);
11302 }
11303
11304 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11305 counterpart may exist. */
11306 if (child_origin_die != child_die)
11307 {
11308 if (child_die->tag != child_origin_die->tag
11309 && !(child_die->tag == DW_TAG_inlined_subroutine
11310 && child_origin_die->tag == DW_TAG_subprogram))
11311 complaint (&symfile_complaints,
11312 _("Child DIE 0x%x and its abstract origin 0x%x have "
11313 "different tags"), child_die->offset.sect_off,
11314 child_origin_die->offset.sect_off);
11315 if (child_origin_die->parent != origin_die)
11316 complaint (&symfile_complaints,
11317 _("Child DIE 0x%x and its abstract origin 0x%x have "
11318 "different parents"), child_die->offset.sect_off,
11319 child_origin_die->offset.sect_off);
11320 else
11321 *offsets_end++ = child_origin_die->offset;
11322 }
11323 }
11324 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11325 unsigned_int_compar);
11326 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11327 if (offsetp[-1].sect_off == offsetp->sect_off)
11328 complaint (&symfile_complaints,
11329 _("Multiple children of DIE 0x%x refer "
11330 "to DIE 0x%x as their abstract origin"),
11331 die->offset.sect_off, offsetp->sect_off);
11332
11333 offsetp = offsets;
11334 origin_child_die = origin_die->child;
11335 while (origin_child_die && origin_child_die->tag)
11336 {
11337 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11338 while (offsetp < offsets_end
11339 && offsetp->sect_off < origin_child_die->offset.sect_off)
11340 offsetp++;
11341 if (offsetp >= offsets_end
11342 || offsetp->sect_off > origin_child_die->offset.sect_off)
11343 {
11344 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11345 Check whether we're already processing ORIGIN_CHILD_DIE.
11346 This can happen with mutually referenced abstract_origins.
11347 PR 16581. */
11348 if (!origin_child_die->in_process)
11349 process_die (origin_child_die, origin_cu);
11350 }
11351 origin_child_die = sibling_die (origin_child_die);
11352 }
11353 origin_cu->list_in_scope = origin_previous_list_in_scope;
11354
11355 do_cleanups (cleanups);
11356 }
11357
11358 static void
11359 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11360 {
11361 struct objfile *objfile = cu->objfile;
11362 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11363 struct context_stack *newobj;
11364 CORE_ADDR lowpc;
11365 CORE_ADDR highpc;
11366 struct die_info *child_die;
11367 struct attribute *attr, *call_line, *call_file;
11368 const char *name;
11369 CORE_ADDR baseaddr;
11370 struct block *block;
11371 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11372 VEC (symbolp) *template_args = NULL;
11373 struct template_symbol *templ_func = NULL;
11374
11375 if (inlined_func)
11376 {
11377 /* If we do not have call site information, we can't show the
11378 caller of this inlined function. That's too confusing, so
11379 only use the scope for local variables. */
11380 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11381 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11382 if (call_line == NULL || call_file == NULL)
11383 {
11384 read_lexical_block_scope (die, cu);
11385 return;
11386 }
11387 }
11388
11389 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11390
11391 name = dwarf2_name (die, cu);
11392
11393 /* Ignore functions with missing or empty names. These are actually
11394 illegal according to the DWARF standard. */
11395 if (name == NULL)
11396 {
11397 complaint (&symfile_complaints,
11398 _("missing name for subprogram DIE at %d"),
11399 die->offset.sect_off);
11400 return;
11401 }
11402
11403 /* Ignore functions with missing or invalid low and high pc attributes. */
11404 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
11405 <= PC_BOUNDS_INVALID)
11406 {
11407 attr = dwarf2_attr (die, DW_AT_external, cu);
11408 if (!attr || !DW_UNSND (attr))
11409 complaint (&symfile_complaints,
11410 _("cannot get low and high bounds "
11411 "for subprogram DIE at %d"),
11412 die->offset.sect_off);
11413 return;
11414 }
11415
11416 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11417 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11418
11419 /* If we have any template arguments, then we must allocate a
11420 different sort of symbol. */
11421 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11422 {
11423 if (child_die->tag == DW_TAG_template_type_param
11424 || child_die->tag == DW_TAG_template_value_param)
11425 {
11426 templ_func = allocate_template_symbol (objfile);
11427 templ_func->base.is_cplus_template_function = 1;
11428 break;
11429 }
11430 }
11431
11432 newobj = push_context (0, lowpc);
11433 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11434 (struct symbol *) templ_func);
11435
11436 /* If there is a location expression for DW_AT_frame_base, record
11437 it. */
11438 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11439 if (attr)
11440 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11441
11442 /* If there is a location for the static link, record it. */
11443 newobj->static_link = NULL;
11444 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11445 if (attr)
11446 {
11447 newobj->static_link
11448 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11449 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11450 }
11451
11452 cu->list_in_scope = &local_symbols;
11453
11454 if (die->child != NULL)
11455 {
11456 child_die = die->child;
11457 while (child_die && child_die->tag)
11458 {
11459 if (child_die->tag == DW_TAG_template_type_param
11460 || child_die->tag == DW_TAG_template_value_param)
11461 {
11462 struct symbol *arg = new_symbol (child_die, NULL, cu);
11463
11464 if (arg != NULL)
11465 VEC_safe_push (symbolp, template_args, arg);
11466 }
11467 else
11468 process_die (child_die, cu);
11469 child_die = sibling_die (child_die);
11470 }
11471 }
11472
11473 inherit_abstract_dies (die, cu);
11474
11475 /* If we have a DW_AT_specification, we might need to import using
11476 directives from the context of the specification DIE. See the
11477 comment in determine_prefix. */
11478 if (cu->language == language_cplus
11479 && dwarf2_attr (die, DW_AT_specification, cu))
11480 {
11481 struct dwarf2_cu *spec_cu = cu;
11482 struct die_info *spec_die = die_specification (die, &spec_cu);
11483
11484 while (spec_die)
11485 {
11486 child_die = spec_die->child;
11487 while (child_die && child_die->tag)
11488 {
11489 if (child_die->tag == DW_TAG_imported_module)
11490 process_die (child_die, spec_cu);
11491 child_die = sibling_die (child_die);
11492 }
11493
11494 /* In some cases, GCC generates specification DIEs that
11495 themselves contain DW_AT_specification attributes. */
11496 spec_die = die_specification (spec_die, &spec_cu);
11497 }
11498 }
11499
11500 newobj = pop_context ();
11501 /* Make a block for the local symbols within. */
11502 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11503 newobj->static_link, lowpc, highpc);
11504
11505 /* For C++, set the block's scope. */
11506 if ((cu->language == language_cplus
11507 || cu->language == language_fortran
11508 || cu->language == language_d
11509 || cu->language == language_rust)
11510 && cu->processing_has_namespace_info)
11511 block_set_scope (block, determine_prefix (die, cu),
11512 &objfile->objfile_obstack);
11513
11514 /* If we have address ranges, record them. */
11515 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11516
11517 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11518
11519 /* Attach template arguments to function. */
11520 if (! VEC_empty (symbolp, template_args))
11521 {
11522 gdb_assert (templ_func != NULL);
11523
11524 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11525 templ_func->template_arguments
11526 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11527 templ_func->n_template_arguments);
11528 memcpy (templ_func->template_arguments,
11529 VEC_address (symbolp, template_args),
11530 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11531 VEC_free (symbolp, template_args);
11532 }
11533
11534 /* In C++, we can have functions nested inside functions (e.g., when
11535 a function declares a class that has methods). This means that
11536 when we finish processing a function scope, we may need to go
11537 back to building a containing block's symbol lists. */
11538 local_symbols = newobj->locals;
11539 local_using_directives = newobj->local_using_directives;
11540
11541 /* If we've finished processing a top-level function, subsequent
11542 symbols go in the file symbol list. */
11543 if (outermost_context_p ())
11544 cu->list_in_scope = &file_symbols;
11545 }
11546
11547 /* Process all the DIES contained within a lexical block scope. Start
11548 a new scope, process the dies, and then close the scope. */
11549
11550 static void
11551 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11552 {
11553 struct objfile *objfile = cu->objfile;
11554 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11555 struct context_stack *newobj;
11556 CORE_ADDR lowpc, highpc;
11557 struct die_info *child_die;
11558 CORE_ADDR baseaddr;
11559
11560 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11561
11562 /* Ignore blocks with missing or invalid low and high pc attributes. */
11563 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11564 as multiple lexical blocks? Handling children in a sane way would
11565 be nasty. Might be easier to properly extend generic blocks to
11566 describe ranges. */
11567 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11568 {
11569 case PC_BOUNDS_NOT_PRESENT:
11570 /* DW_TAG_lexical_block has no attributes, process its children as if
11571 there was no wrapping by that DW_TAG_lexical_block.
11572 GCC does no longer produces such DWARF since GCC r224161. */
11573 for (child_die = die->child;
11574 child_die != NULL && child_die->tag;
11575 child_die = sibling_die (child_die))
11576 process_die (child_die, cu);
11577 return;
11578 case PC_BOUNDS_INVALID:
11579 return;
11580 }
11581 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11582 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11583
11584 push_context (0, lowpc);
11585 if (die->child != NULL)
11586 {
11587 child_die = die->child;
11588 while (child_die && child_die->tag)
11589 {
11590 process_die (child_die, cu);
11591 child_die = sibling_die (child_die);
11592 }
11593 }
11594 inherit_abstract_dies (die, cu);
11595 newobj = pop_context ();
11596
11597 if (local_symbols != NULL || local_using_directives != NULL)
11598 {
11599 struct block *block
11600 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11601 newobj->start_addr, highpc);
11602
11603 /* Note that recording ranges after traversing children, as we
11604 do here, means that recording a parent's ranges entails
11605 walking across all its children's ranges as they appear in
11606 the address map, which is quadratic behavior.
11607
11608 It would be nicer to record the parent's ranges before
11609 traversing its children, simply overriding whatever you find
11610 there. But since we don't even decide whether to create a
11611 block until after we've traversed its children, that's hard
11612 to do. */
11613 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11614 }
11615 local_symbols = newobj->locals;
11616 local_using_directives = newobj->local_using_directives;
11617 }
11618
11619 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11620
11621 static void
11622 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11623 {
11624 struct objfile *objfile = cu->objfile;
11625 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11626 CORE_ADDR pc, baseaddr;
11627 struct attribute *attr;
11628 struct call_site *call_site, call_site_local;
11629 void **slot;
11630 int nparams;
11631 struct die_info *child_die;
11632
11633 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11634
11635 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11636 if (!attr)
11637 {
11638 complaint (&symfile_complaints,
11639 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11640 "DIE 0x%x [in module %s]"),
11641 die->offset.sect_off, objfile_name (objfile));
11642 return;
11643 }
11644 pc = attr_value_as_address (attr) + baseaddr;
11645 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11646
11647 if (cu->call_site_htab == NULL)
11648 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11649 NULL, &objfile->objfile_obstack,
11650 hashtab_obstack_allocate, NULL);
11651 call_site_local.pc = pc;
11652 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11653 if (*slot != NULL)
11654 {
11655 complaint (&symfile_complaints,
11656 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11657 "DIE 0x%x [in module %s]"),
11658 paddress (gdbarch, pc), die->offset.sect_off,
11659 objfile_name (objfile));
11660 return;
11661 }
11662
11663 /* Count parameters at the caller. */
11664
11665 nparams = 0;
11666 for (child_die = die->child; child_die && child_die->tag;
11667 child_die = sibling_die (child_die))
11668 {
11669 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11670 {
11671 complaint (&symfile_complaints,
11672 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11673 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11674 child_die->tag, child_die->offset.sect_off,
11675 objfile_name (objfile));
11676 continue;
11677 }
11678
11679 nparams++;
11680 }
11681
11682 call_site
11683 = ((struct call_site *)
11684 obstack_alloc (&objfile->objfile_obstack,
11685 sizeof (*call_site)
11686 + (sizeof (*call_site->parameter) * (nparams - 1))));
11687 *slot = call_site;
11688 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11689 call_site->pc = pc;
11690
11691 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11692 {
11693 struct die_info *func_die;
11694
11695 /* Skip also over DW_TAG_inlined_subroutine. */
11696 for (func_die = die->parent;
11697 func_die && func_die->tag != DW_TAG_subprogram
11698 && func_die->tag != DW_TAG_subroutine_type;
11699 func_die = func_die->parent);
11700
11701 /* DW_AT_GNU_all_call_sites is a superset
11702 of DW_AT_GNU_all_tail_call_sites. */
11703 if (func_die
11704 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11705 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11706 {
11707 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11708 not complete. But keep CALL_SITE for look ups via call_site_htab,
11709 both the initial caller containing the real return address PC and
11710 the final callee containing the current PC of a chain of tail
11711 calls do not need to have the tail call list complete. But any
11712 function candidate for a virtual tail call frame searched via
11713 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11714 determined unambiguously. */
11715 }
11716 else
11717 {
11718 struct type *func_type = NULL;
11719
11720 if (func_die)
11721 func_type = get_die_type (func_die, cu);
11722 if (func_type != NULL)
11723 {
11724 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11725
11726 /* Enlist this call site to the function. */
11727 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11728 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11729 }
11730 else
11731 complaint (&symfile_complaints,
11732 _("Cannot find function owning DW_TAG_GNU_call_site "
11733 "DIE 0x%x [in module %s]"),
11734 die->offset.sect_off, objfile_name (objfile));
11735 }
11736 }
11737
11738 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11739 if (attr == NULL)
11740 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11741 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11742 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11743 /* Keep NULL DWARF_BLOCK. */;
11744 else if (attr_form_is_block (attr))
11745 {
11746 struct dwarf2_locexpr_baton *dlbaton;
11747
11748 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11749 dlbaton->data = DW_BLOCK (attr)->data;
11750 dlbaton->size = DW_BLOCK (attr)->size;
11751 dlbaton->per_cu = cu->per_cu;
11752
11753 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11754 }
11755 else if (attr_form_is_ref (attr))
11756 {
11757 struct dwarf2_cu *target_cu = cu;
11758 struct die_info *target_die;
11759
11760 target_die = follow_die_ref (die, attr, &target_cu);
11761 gdb_assert (target_cu->objfile == objfile);
11762 if (die_is_declaration (target_die, target_cu))
11763 {
11764 const char *target_physname;
11765
11766 /* Prefer the mangled name; otherwise compute the demangled one. */
11767 target_physname = dwarf2_string_attr (target_die,
11768 DW_AT_linkage_name,
11769 target_cu);
11770 if (target_physname == NULL)
11771 target_physname = dwarf2_string_attr (target_die,
11772 DW_AT_MIPS_linkage_name,
11773 target_cu);
11774 if (target_physname == NULL)
11775 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11776 if (target_physname == NULL)
11777 complaint (&symfile_complaints,
11778 _("DW_AT_GNU_call_site_target target DIE has invalid "
11779 "physname, for referencing DIE 0x%x [in module %s]"),
11780 die->offset.sect_off, objfile_name (objfile));
11781 else
11782 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11783 }
11784 else
11785 {
11786 CORE_ADDR lowpc;
11787
11788 /* DW_AT_entry_pc should be preferred. */
11789 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
11790 <= PC_BOUNDS_INVALID)
11791 complaint (&symfile_complaints,
11792 _("DW_AT_GNU_call_site_target target DIE has invalid "
11793 "low pc, for referencing DIE 0x%x [in module %s]"),
11794 die->offset.sect_off, objfile_name (objfile));
11795 else
11796 {
11797 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11798 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11799 }
11800 }
11801 }
11802 else
11803 complaint (&symfile_complaints,
11804 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11805 "block nor reference, for DIE 0x%x [in module %s]"),
11806 die->offset.sect_off, objfile_name (objfile));
11807
11808 call_site->per_cu = cu->per_cu;
11809
11810 for (child_die = die->child;
11811 child_die && child_die->tag;
11812 child_die = sibling_die (child_die))
11813 {
11814 struct call_site_parameter *parameter;
11815 struct attribute *loc, *origin;
11816
11817 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11818 {
11819 /* Already printed the complaint above. */
11820 continue;
11821 }
11822
11823 gdb_assert (call_site->parameter_count < nparams);
11824 parameter = &call_site->parameter[call_site->parameter_count];
11825
11826 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11827 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11828 register is contained in DW_AT_GNU_call_site_value. */
11829
11830 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11831 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11832 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11833 {
11834 sect_offset offset;
11835
11836 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11837 offset = dwarf2_get_ref_die_offset (origin);
11838 if (!offset_in_cu_p (&cu->header, offset))
11839 {
11840 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11841 binding can be done only inside one CU. Such referenced DIE
11842 therefore cannot be even moved to DW_TAG_partial_unit. */
11843 complaint (&symfile_complaints,
11844 _("DW_AT_abstract_origin offset is not in CU for "
11845 "DW_TAG_GNU_call_site child DIE 0x%x "
11846 "[in module %s]"),
11847 child_die->offset.sect_off, objfile_name (objfile));
11848 continue;
11849 }
11850 parameter->u.param_offset.cu_off = (offset.sect_off
11851 - cu->header.offset.sect_off);
11852 }
11853 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11854 {
11855 complaint (&symfile_complaints,
11856 _("No DW_FORM_block* DW_AT_location for "
11857 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11858 child_die->offset.sect_off, objfile_name (objfile));
11859 continue;
11860 }
11861 else
11862 {
11863 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11864 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11865 if (parameter->u.dwarf_reg != -1)
11866 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11867 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11868 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11869 &parameter->u.fb_offset))
11870 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11871 else
11872 {
11873 complaint (&symfile_complaints,
11874 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11875 "for DW_FORM_block* DW_AT_location is supported for "
11876 "DW_TAG_GNU_call_site child DIE 0x%x "
11877 "[in module %s]"),
11878 child_die->offset.sect_off, objfile_name (objfile));
11879 continue;
11880 }
11881 }
11882
11883 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11884 if (!attr_form_is_block (attr))
11885 {
11886 complaint (&symfile_complaints,
11887 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11888 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11889 child_die->offset.sect_off, objfile_name (objfile));
11890 continue;
11891 }
11892 parameter->value = DW_BLOCK (attr)->data;
11893 parameter->value_size = DW_BLOCK (attr)->size;
11894
11895 /* Parameters are not pre-cleared by memset above. */
11896 parameter->data_value = NULL;
11897 parameter->data_value_size = 0;
11898 call_site->parameter_count++;
11899
11900 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11901 if (attr)
11902 {
11903 if (!attr_form_is_block (attr))
11904 complaint (&symfile_complaints,
11905 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11906 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11907 child_die->offset.sect_off, objfile_name (objfile));
11908 else
11909 {
11910 parameter->data_value = DW_BLOCK (attr)->data;
11911 parameter->data_value_size = DW_BLOCK (attr)->size;
11912 }
11913 }
11914 }
11915 }
11916
11917 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11918 Return 1 if the attributes are present and valid, otherwise, return 0.
11919 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11920
11921 static int
11922 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11923 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11924 struct partial_symtab *ranges_pst)
11925 {
11926 struct objfile *objfile = cu->objfile;
11927 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11928 struct comp_unit_head *cu_header = &cu->header;
11929 bfd *obfd = objfile->obfd;
11930 unsigned int addr_size = cu_header->addr_size;
11931 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11932 /* Base address selection entry. */
11933 CORE_ADDR base;
11934 int found_base;
11935 unsigned int dummy;
11936 const gdb_byte *buffer;
11937 int low_set;
11938 CORE_ADDR low = 0;
11939 CORE_ADDR high = 0;
11940 CORE_ADDR baseaddr;
11941
11942 found_base = cu->base_known;
11943 base = cu->base_address;
11944
11945 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11946 if (offset >= dwarf2_per_objfile->ranges.size)
11947 {
11948 complaint (&symfile_complaints,
11949 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11950 offset);
11951 return 0;
11952 }
11953 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11954
11955 low_set = 0;
11956
11957 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11958
11959 while (1)
11960 {
11961 CORE_ADDR range_beginning, range_end;
11962
11963 range_beginning = read_address (obfd, buffer, cu, &dummy);
11964 buffer += addr_size;
11965 range_end = read_address (obfd, buffer, cu, &dummy);
11966 buffer += addr_size;
11967 offset += 2 * addr_size;
11968
11969 /* An end of list marker is a pair of zero addresses. */
11970 if (range_beginning == 0 && range_end == 0)
11971 /* Found the end of list entry. */
11972 break;
11973
11974 /* Each base address selection entry is a pair of 2 values.
11975 The first is the largest possible address, the second is
11976 the base address. Check for a base address here. */
11977 if ((range_beginning & mask) == mask)
11978 {
11979 /* If we found the largest possible address, then we already
11980 have the base address in range_end. */
11981 base = range_end;
11982 found_base = 1;
11983 continue;
11984 }
11985
11986 if (!found_base)
11987 {
11988 /* We have no valid base address for the ranges
11989 data. */
11990 complaint (&symfile_complaints,
11991 _("Invalid .debug_ranges data (no base address)"));
11992 return 0;
11993 }
11994
11995 if (range_beginning > range_end)
11996 {
11997 /* Inverted range entries are invalid. */
11998 complaint (&symfile_complaints,
11999 _("Invalid .debug_ranges data (inverted range)"));
12000 return 0;
12001 }
12002
12003 /* Empty range entries have no effect. */
12004 if (range_beginning == range_end)
12005 continue;
12006
12007 range_beginning += base;
12008 range_end += base;
12009
12010 /* A not-uncommon case of bad debug info.
12011 Don't pollute the addrmap with bad data. */
12012 if (range_beginning + baseaddr == 0
12013 && !dwarf2_per_objfile->has_section_at_zero)
12014 {
12015 complaint (&symfile_complaints,
12016 _(".debug_ranges entry has start address of zero"
12017 " [in module %s]"), objfile_name (objfile));
12018 continue;
12019 }
12020
12021 if (ranges_pst != NULL)
12022 {
12023 CORE_ADDR lowpc;
12024 CORE_ADDR highpc;
12025
12026 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12027 range_beginning + baseaddr);
12028 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12029 range_end + baseaddr);
12030 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12031 ranges_pst);
12032 }
12033
12034 /* FIXME: This is recording everything as a low-high
12035 segment of consecutive addresses. We should have a
12036 data structure for discontiguous block ranges
12037 instead. */
12038 if (! low_set)
12039 {
12040 low = range_beginning;
12041 high = range_end;
12042 low_set = 1;
12043 }
12044 else
12045 {
12046 if (range_beginning < low)
12047 low = range_beginning;
12048 if (range_end > high)
12049 high = range_end;
12050 }
12051 }
12052
12053 if (! low_set)
12054 /* If the first entry is an end-of-list marker, the range
12055 describes an empty scope, i.e. no instructions. */
12056 return 0;
12057
12058 if (low_return)
12059 *low_return = low;
12060 if (high_return)
12061 *high_return = high;
12062 return 1;
12063 }
12064
12065 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
12066 definition for the return value. *LOWPC and *HIGHPC are set iff
12067 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
12068
12069 static enum pc_bounds_kind
12070 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12071 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12072 struct partial_symtab *pst)
12073 {
12074 struct attribute *attr;
12075 struct attribute *attr_high;
12076 CORE_ADDR low = 0;
12077 CORE_ADDR high = 0;
12078 enum pc_bounds_kind ret;
12079
12080 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12081 if (attr_high)
12082 {
12083 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12084 if (attr)
12085 {
12086 low = attr_value_as_address (attr);
12087 high = attr_value_as_address (attr_high);
12088 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12089 high += low;
12090 }
12091 else
12092 /* Found high w/o low attribute. */
12093 return PC_BOUNDS_INVALID;
12094
12095 /* Found consecutive range of addresses. */
12096 ret = PC_BOUNDS_HIGH_LOW;
12097 }
12098 else
12099 {
12100 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12101 if (attr != NULL)
12102 {
12103 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12104 We take advantage of the fact that DW_AT_ranges does not appear
12105 in DW_TAG_compile_unit of DWO files. */
12106 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12107 unsigned int ranges_offset = (DW_UNSND (attr)
12108 + (need_ranges_base
12109 ? cu->ranges_base
12110 : 0));
12111
12112 /* Value of the DW_AT_ranges attribute is the offset in the
12113 .debug_ranges section. */
12114 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12115 return PC_BOUNDS_INVALID;
12116 /* Found discontinuous range of addresses. */
12117 ret = PC_BOUNDS_RANGES;
12118 }
12119 else
12120 return PC_BOUNDS_NOT_PRESENT;
12121 }
12122
12123 /* read_partial_die has also the strict LOW < HIGH requirement. */
12124 if (high <= low)
12125 return PC_BOUNDS_INVALID;
12126
12127 /* When using the GNU linker, .gnu.linkonce. sections are used to
12128 eliminate duplicate copies of functions and vtables and such.
12129 The linker will arbitrarily choose one and discard the others.
12130 The AT_*_pc values for such functions refer to local labels in
12131 these sections. If the section from that file was discarded, the
12132 labels are not in the output, so the relocs get a value of 0.
12133 If this is a discarded function, mark the pc bounds as invalid,
12134 so that GDB will ignore it. */
12135 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12136 return PC_BOUNDS_INVALID;
12137
12138 *lowpc = low;
12139 if (highpc)
12140 *highpc = high;
12141 return ret;
12142 }
12143
12144 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12145 its low and high PC addresses. Do nothing if these addresses could not
12146 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12147 and HIGHPC to the high address if greater than HIGHPC. */
12148
12149 static void
12150 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12151 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12152 struct dwarf2_cu *cu)
12153 {
12154 CORE_ADDR low, high;
12155 struct die_info *child = die->child;
12156
12157 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
12158 {
12159 *lowpc = min (*lowpc, low);
12160 *highpc = max (*highpc, high);
12161 }
12162
12163 /* If the language does not allow nested subprograms (either inside
12164 subprograms or lexical blocks), we're done. */
12165 if (cu->language != language_ada)
12166 return;
12167
12168 /* Check all the children of the given DIE. If it contains nested
12169 subprograms, then check their pc bounds. Likewise, we need to
12170 check lexical blocks as well, as they may also contain subprogram
12171 definitions. */
12172 while (child && child->tag)
12173 {
12174 if (child->tag == DW_TAG_subprogram
12175 || child->tag == DW_TAG_lexical_block)
12176 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12177 child = sibling_die (child);
12178 }
12179 }
12180
12181 /* Get the low and high pc's represented by the scope DIE, and store
12182 them in *LOWPC and *HIGHPC. If the correct values can't be
12183 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12184
12185 static void
12186 get_scope_pc_bounds (struct die_info *die,
12187 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12188 struct dwarf2_cu *cu)
12189 {
12190 CORE_ADDR best_low = (CORE_ADDR) -1;
12191 CORE_ADDR best_high = (CORE_ADDR) 0;
12192 CORE_ADDR current_low, current_high;
12193
12194 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
12195 >= PC_BOUNDS_RANGES)
12196 {
12197 best_low = current_low;
12198 best_high = current_high;
12199 }
12200 else
12201 {
12202 struct die_info *child = die->child;
12203
12204 while (child && child->tag)
12205 {
12206 switch (child->tag) {
12207 case DW_TAG_subprogram:
12208 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12209 break;
12210 case DW_TAG_namespace:
12211 case DW_TAG_module:
12212 /* FIXME: carlton/2004-01-16: Should we do this for
12213 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12214 that current GCC's always emit the DIEs corresponding
12215 to definitions of methods of classes as children of a
12216 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12217 the DIEs giving the declarations, which could be
12218 anywhere). But I don't see any reason why the
12219 standards says that they have to be there. */
12220 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12221
12222 if (current_low != ((CORE_ADDR) -1))
12223 {
12224 best_low = min (best_low, current_low);
12225 best_high = max (best_high, current_high);
12226 }
12227 break;
12228 default:
12229 /* Ignore. */
12230 break;
12231 }
12232
12233 child = sibling_die (child);
12234 }
12235 }
12236
12237 *lowpc = best_low;
12238 *highpc = best_high;
12239 }
12240
12241 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12242 in DIE. */
12243
12244 static void
12245 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12246 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12247 {
12248 struct objfile *objfile = cu->objfile;
12249 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12250 struct attribute *attr;
12251 struct attribute *attr_high;
12252
12253 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12254 if (attr_high)
12255 {
12256 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12257 if (attr)
12258 {
12259 CORE_ADDR low = attr_value_as_address (attr);
12260 CORE_ADDR high = attr_value_as_address (attr_high);
12261
12262 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12263 high += low;
12264
12265 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12266 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12267 record_block_range (block, low, high - 1);
12268 }
12269 }
12270
12271 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12272 if (attr)
12273 {
12274 bfd *obfd = objfile->obfd;
12275 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12276 We take advantage of the fact that DW_AT_ranges does not appear
12277 in DW_TAG_compile_unit of DWO files. */
12278 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12279
12280 /* The value of the DW_AT_ranges attribute is the offset of the
12281 address range list in the .debug_ranges section. */
12282 unsigned long offset = (DW_UNSND (attr)
12283 + (need_ranges_base ? cu->ranges_base : 0));
12284 const gdb_byte *buffer;
12285
12286 /* For some target architectures, but not others, the
12287 read_address function sign-extends the addresses it returns.
12288 To recognize base address selection entries, we need a
12289 mask. */
12290 unsigned int addr_size = cu->header.addr_size;
12291 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12292
12293 /* The base address, to which the next pair is relative. Note
12294 that this 'base' is a DWARF concept: most entries in a range
12295 list are relative, to reduce the number of relocs against the
12296 debugging information. This is separate from this function's
12297 'baseaddr' argument, which GDB uses to relocate debugging
12298 information from a shared library based on the address at
12299 which the library was loaded. */
12300 CORE_ADDR base = cu->base_address;
12301 int base_known = cu->base_known;
12302
12303 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12304 if (offset >= dwarf2_per_objfile->ranges.size)
12305 {
12306 complaint (&symfile_complaints,
12307 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12308 offset);
12309 return;
12310 }
12311 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12312
12313 for (;;)
12314 {
12315 unsigned int bytes_read;
12316 CORE_ADDR start, end;
12317
12318 start = read_address (obfd, buffer, cu, &bytes_read);
12319 buffer += bytes_read;
12320 end = read_address (obfd, buffer, cu, &bytes_read);
12321 buffer += bytes_read;
12322
12323 /* Did we find the end of the range list? */
12324 if (start == 0 && end == 0)
12325 break;
12326
12327 /* Did we find a base address selection entry? */
12328 else if ((start & base_select_mask) == base_select_mask)
12329 {
12330 base = end;
12331 base_known = 1;
12332 }
12333
12334 /* We found an ordinary address range. */
12335 else
12336 {
12337 if (!base_known)
12338 {
12339 complaint (&symfile_complaints,
12340 _("Invalid .debug_ranges data "
12341 "(no base address)"));
12342 return;
12343 }
12344
12345 if (start > end)
12346 {
12347 /* Inverted range entries are invalid. */
12348 complaint (&symfile_complaints,
12349 _("Invalid .debug_ranges data "
12350 "(inverted range)"));
12351 return;
12352 }
12353
12354 /* Empty range entries have no effect. */
12355 if (start == end)
12356 continue;
12357
12358 start += base + baseaddr;
12359 end += base + baseaddr;
12360
12361 /* A not-uncommon case of bad debug info.
12362 Don't pollute the addrmap with bad data. */
12363 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12364 {
12365 complaint (&symfile_complaints,
12366 _(".debug_ranges entry has start address of zero"
12367 " [in module %s]"), objfile_name (objfile));
12368 continue;
12369 }
12370
12371 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12372 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12373 record_block_range (block, start, end - 1);
12374 }
12375 }
12376 }
12377 }
12378
12379 /* Check whether the producer field indicates either of GCC < 4.6, or the
12380 Intel C/C++ compiler, and cache the result in CU. */
12381
12382 static void
12383 check_producer (struct dwarf2_cu *cu)
12384 {
12385 int major, minor;
12386
12387 if (cu->producer == NULL)
12388 {
12389 /* For unknown compilers expect their behavior is DWARF version
12390 compliant.
12391
12392 GCC started to support .debug_types sections by -gdwarf-4 since
12393 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12394 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12395 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12396 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12397 }
12398 else if (producer_is_gcc (cu->producer, &major, &minor))
12399 {
12400 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12401 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12402 }
12403 else if (startswith (cu->producer, "Intel(R) C"))
12404 cu->producer_is_icc = 1;
12405 else
12406 {
12407 /* For other non-GCC compilers, expect their behavior is DWARF version
12408 compliant. */
12409 }
12410
12411 cu->checked_producer = 1;
12412 }
12413
12414 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12415 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12416 during 4.6.0 experimental. */
12417
12418 static int
12419 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12420 {
12421 if (!cu->checked_producer)
12422 check_producer (cu);
12423
12424 return cu->producer_is_gxx_lt_4_6;
12425 }
12426
12427 /* Return the default accessibility type if it is not overriden by
12428 DW_AT_accessibility. */
12429
12430 static enum dwarf_access_attribute
12431 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12432 {
12433 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12434 {
12435 /* The default DWARF 2 accessibility for members is public, the default
12436 accessibility for inheritance is private. */
12437
12438 if (die->tag != DW_TAG_inheritance)
12439 return DW_ACCESS_public;
12440 else
12441 return DW_ACCESS_private;
12442 }
12443 else
12444 {
12445 /* DWARF 3+ defines the default accessibility a different way. The same
12446 rules apply now for DW_TAG_inheritance as for the members and it only
12447 depends on the container kind. */
12448
12449 if (die->parent->tag == DW_TAG_class_type)
12450 return DW_ACCESS_private;
12451 else
12452 return DW_ACCESS_public;
12453 }
12454 }
12455
12456 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12457 offset. If the attribute was not found return 0, otherwise return
12458 1. If it was found but could not properly be handled, set *OFFSET
12459 to 0. */
12460
12461 static int
12462 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12463 LONGEST *offset)
12464 {
12465 struct attribute *attr;
12466
12467 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12468 if (attr != NULL)
12469 {
12470 *offset = 0;
12471
12472 /* Note that we do not check for a section offset first here.
12473 This is because DW_AT_data_member_location is new in DWARF 4,
12474 so if we see it, we can assume that a constant form is really
12475 a constant and not a section offset. */
12476 if (attr_form_is_constant (attr))
12477 *offset = dwarf2_get_attr_constant_value (attr, 0);
12478 else if (attr_form_is_section_offset (attr))
12479 dwarf2_complex_location_expr_complaint ();
12480 else if (attr_form_is_block (attr))
12481 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12482 else
12483 dwarf2_complex_location_expr_complaint ();
12484
12485 return 1;
12486 }
12487
12488 return 0;
12489 }
12490
12491 /* Add an aggregate field to the field list. */
12492
12493 static void
12494 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12495 struct dwarf2_cu *cu)
12496 {
12497 struct objfile *objfile = cu->objfile;
12498 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12499 struct nextfield *new_field;
12500 struct attribute *attr;
12501 struct field *fp;
12502 const char *fieldname = "";
12503
12504 /* Allocate a new field list entry and link it in. */
12505 new_field = XNEW (struct nextfield);
12506 make_cleanup (xfree, new_field);
12507 memset (new_field, 0, sizeof (struct nextfield));
12508
12509 if (die->tag == DW_TAG_inheritance)
12510 {
12511 new_field->next = fip->baseclasses;
12512 fip->baseclasses = new_field;
12513 }
12514 else
12515 {
12516 new_field->next = fip->fields;
12517 fip->fields = new_field;
12518 }
12519 fip->nfields++;
12520
12521 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12522 if (attr)
12523 new_field->accessibility = DW_UNSND (attr);
12524 else
12525 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12526 if (new_field->accessibility != DW_ACCESS_public)
12527 fip->non_public_fields = 1;
12528
12529 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12530 if (attr)
12531 new_field->virtuality = DW_UNSND (attr);
12532 else
12533 new_field->virtuality = DW_VIRTUALITY_none;
12534
12535 fp = &new_field->field;
12536
12537 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12538 {
12539 LONGEST offset;
12540
12541 /* Data member other than a C++ static data member. */
12542
12543 /* Get type of field. */
12544 fp->type = die_type (die, cu);
12545
12546 SET_FIELD_BITPOS (*fp, 0);
12547
12548 /* Get bit size of field (zero if none). */
12549 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12550 if (attr)
12551 {
12552 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12553 }
12554 else
12555 {
12556 FIELD_BITSIZE (*fp) = 0;
12557 }
12558
12559 /* Get bit offset of field. */
12560 if (handle_data_member_location (die, cu, &offset))
12561 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12562 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12563 if (attr)
12564 {
12565 if (gdbarch_bits_big_endian (gdbarch))
12566 {
12567 /* For big endian bits, the DW_AT_bit_offset gives the
12568 additional bit offset from the MSB of the containing
12569 anonymous object to the MSB of the field. We don't
12570 have to do anything special since we don't need to
12571 know the size of the anonymous object. */
12572 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12573 }
12574 else
12575 {
12576 /* For little endian bits, compute the bit offset to the
12577 MSB of the anonymous object, subtract off the number of
12578 bits from the MSB of the field to the MSB of the
12579 object, and then subtract off the number of bits of
12580 the field itself. The result is the bit offset of
12581 the LSB of the field. */
12582 int anonymous_size;
12583 int bit_offset = DW_UNSND (attr);
12584
12585 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12586 if (attr)
12587 {
12588 /* The size of the anonymous object containing
12589 the bit field is explicit, so use the
12590 indicated size (in bytes). */
12591 anonymous_size = DW_UNSND (attr);
12592 }
12593 else
12594 {
12595 /* The size of the anonymous object containing
12596 the bit field must be inferred from the type
12597 attribute of the data member containing the
12598 bit field. */
12599 anonymous_size = TYPE_LENGTH (fp->type);
12600 }
12601 SET_FIELD_BITPOS (*fp,
12602 (FIELD_BITPOS (*fp)
12603 + anonymous_size * bits_per_byte
12604 - bit_offset - FIELD_BITSIZE (*fp)));
12605 }
12606 }
12607
12608 /* Get name of field. */
12609 fieldname = dwarf2_name (die, cu);
12610 if (fieldname == NULL)
12611 fieldname = "";
12612
12613 /* The name is already allocated along with this objfile, so we don't
12614 need to duplicate it for the type. */
12615 fp->name = fieldname;
12616
12617 /* Change accessibility for artificial fields (e.g. virtual table
12618 pointer or virtual base class pointer) to private. */
12619 if (dwarf2_attr (die, DW_AT_artificial, cu))
12620 {
12621 FIELD_ARTIFICIAL (*fp) = 1;
12622 new_field->accessibility = DW_ACCESS_private;
12623 fip->non_public_fields = 1;
12624 }
12625 }
12626 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12627 {
12628 /* C++ static member. */
12629
12630 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12631 is a declaration, but all versions of G++ as of this writing
12632 (so through at least 3.2.1) incorrectly generate
12633 DW_TAG_variable tags. */
12634
12635 const char *physname;
12636
12637 /* Get name of field. */
12638 fieldname = dwarf2_name (die, cu);
12639 if (fieldname == NULL)
12640 return;
12641
12642 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12643 if (attr
12644 /* Only create a symbol if this is an external value.
12645 new_symbol checks this and puts the value in the global symbol
12646 table, which we want. If it is not external, new_symbol
12647 will try to put the value in cu->list_in_scope which is wrong. */
12648 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12649 {
12650 /* A static const member, not much different than an enum as far as
12651 we're concerned, except that we can support more types. */
12652 new_symbol (die, NULL, cu);
12653 }
12654
12655 /* Get physical name. */
12656 physname = dwarf2_physname (fieldname, die, cu);
12657
12658 /* The name is already allocated along with this objfile, so we don't
12659 need to duplicate it for the type. */
12660 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12661 FIELD_TYPE (*fp) = die_type (die, cu);
12662 FIELD_NAME (*fp) = fieldname;
12663 }
12664 else if (die->tag == DW_TAG_inheritance)
12665 {
12666 LONGEST offset;
12667
12668 /* C++ base class field. */
12669 if (handle_data_member_location (die, cu, &offset))
12670 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12671 FIELD_BITSIZE (*fp) = 0;
12672 FIELD_TYPE (*fp) = die_type (die, cu);
12673 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12674 fip->nbaseclasses++;
12675 }
12676 }
12677
12678 /* Add a typedef defined in the scope of the FIP's class. */
12679
12680 static void
12681 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12682 struct dwarf2_cu *cu)
12683 {
12684 struct typedef_field_list *new_field;
12685 struct typedef_field *fp;
12686
12687 /* Allocate a new field list entry and link it in. */
12688 new_field = XCNEW (struct typedef_field_list);
12689 make_cleanup (xfree, new_field);
12690
12691 gdb_assert (die->tag == DW_TAG_typedef);
12692
12693 fp = &new_field->field;
12694
12695 /* Get name of field. */
12696 fp->name = dwarf2_name (die, cu);
12697 if (fp->name == NULL)
12698 return;
12699
12700 fp->type = read_type_die (die, cu);
12701
12702 new_field->next = fip->typedef_field_list;
12703 fip->typedef_field_list = new_field;
12704 fip->typedef_field_list_count++;
12705 }
12706
12707 /* Create the vector of fields, and attach it to the type. */
12708
12709 static void
12710 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12711 struct dwarf2_cu *cu)
12712 {
12713 int nfields = fip->nfields;
12714
12715 /* Record the field count, allocate space for the array of fields,
12716 and create blank accessibility bitfields if necessary. */
12717 TYPE_NFIELDS (type) = nfields;
12718 TYPE_FIELDS (type) = (struct field *)
12719 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12720 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12721
12722 if (fip->non_public_fields && cu->language != language_ada)
12723 {
12724 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12725
12726 TYPE_FIELD_PRIVATE_BITS (type) =
12727 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12728 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12729
12730 TYPE_FIELD_PROTECTED_BITS (type) =
12731 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12732 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12733
12734 TYPE_FIELD_IGNORE_BITS (type) =
12735 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12736 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12737 }
12738
12739 /* If the type has baseclasses, allocate and clear a bit vector for
12740 TYPE_FIELD_VIRTUAL_BITS. */
12741 if (fip->nbaseclasses && cu->language != language_ada)
12742 {
12743 int num_bytes = B_BYTES (fip->nbaseclasses);
12744 unsigned char *pointer;
12745
12746 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12747 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
12748 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12749 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12750 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12751 }
12752
12753 /* Copy the saved-up fields into the field vector. Start from the head of
12754 the list, adding to the tail of the field array, so that they end up in
12755 the same order in the array in which they were added to the list. */
12756 while (nfields-- > 0)
12757 {
12758 struct nextfield *fieldp;
12759
12760 if (fip->fields)
12761 {
12762 fieldp = fip->fields;
12763 fip->fields = fieldp->next;
12764 }
12765 else
12766 {
12767 fieldp = fip->baseclasses;
12768 fip->baseclasses = fieldp->next;
12769 }
12770
12771 TYPE_FIELD (type, nfields) = fieldp->field;
12772 switch (fieldp->accessibility)
12773 {
12774 case DW_ACCESS_private:
12775 if (cu->language != language_ada)
12776 SET_TYPE_FIELD_PRIVATE (type, nfields);
12777 break;
12778
12779 case DW_ACCESS_protected:
12780 if (cu->language != language_ada)
12781 SET_TYPE_FIELD_PROTECTED (type, nfields);
12782 break;
12783
12784 case DW_ACCESS_public:
12785 break;
12786
12787 default:
12788 /* Unknown accessibility. Complain and treat it as public. */
12789 {
12790 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12791 fieldp->accessibility);
12792 }
12793 break;
12794 }
12795 if (nfields < fip->nbaseclasses)
12796 {
12797 switch (fieldp->virtuality)
12798 {
12799 case DW_VIRTUALITY_virtual:
12800 case DW_VIRTUALITY_pure_virtual:
12801 if (cu->language == language_ada)
12802 error (_("unexpected virtuality in component of Ada type"));
12803 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12804 break;
12805 }
12806 }
12807 }
12808 }
12809
12810 /* Return true if this member function is a constructor, false
12811 otherwise. */
12812
12813 static int
12814 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12815 {
12816 const char *fieldname;
12817 const char *type_name;
12818 int len;
12819
12820 if (die->parent == NULL)
12821 return 0;
12822
12823 if (die->parent->tag != DW_TAG_structure_type
12824 && die->parent->tag != DW_TAG_union_type
12825 && die->parent->tag != DW_TAG_class_type)
12826 return 0;
12827
12828 fieldname = dwarf2_name (die, cu);
12829 type_name = dwarf2_name (die->parent, cu);
12830 if (fieldname == NULL || type_name == NULL)
12831 return 0;
12832
12833 len = strlen (fieldname);
12834 return (strncmp (fieldname, type_name, len) == 0
12835 && (type_name[len] == '\0' || type_name[len] == '<'));
12836 }
12837
12838 /* Add a member function to the proper fieldlist. */
12839
12840 static void
12841 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12842 struct type *type, struct dwarf2_cu *cu)
12843 {
12844 struct objfile *objfile = cu->objfile;
12845 struct attribute *attr;
12846 struct fnfieldlist *flp;
12847 int i;
12848 struct fn_field *fnp;
12849 const char *fieldname;
12850 struct nextfnfield *new_fnfield;
12851 struct type *this_type;
12852 enum dwarf_access_attribute accessibility;
12853
12854 if (cu->language == language_ada)
12855 error (_("unexpected member function in Ada type"));
12856
12857 /* Get name of member function. */
12858 fieldname = dwarf2_name (die, cu);
12859 if (fieldname == NULL)
12860 return;
12861
12862 /* Look up member function name in fieldlist. */
12863 for (i = 0; i < fip->nfnfields; i++)
12864 {
12865 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12866 break;
12867 }
12868
12869 /* Create new list element if necessary. */
12870 if (i < fip->nfnfields)
12871 flp = &fip->fnfieldlists[i];
12872 else
12873 {
12874 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12875 {
12876 fip->fnfieldlists = (struct fnfieldlist *)
12877 xrealloc (fip->fnfieldlists,
12878 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12879 * sizeof (struct fnfieldlist));
12880 if (fip->nfnfields == 0)
12881 make_cleanup (free_current_contents, &fip->fnfieldlists);
12882 }
12883 flp = &fip->fnfieldlists[fip->nfnfields];
12884 flp->name = fieldname;
12885 flp->length = 0;
12886 flp->head = NULL;
12887 i = fip->nfnfields++;
12888 }
12889
12890 /* Create a new member function field and chain it to the field list
12891 entry. */
12892 new_fnfield = XNEW (struct nextfnfield);
12893 make_cleanup (xfree, new_fnfield);
12894 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12895 new_fnfield->next = flp->head;
12896 flp->head = new_fnfield;
12897 flp->length++;
12898
12899 /* Fill in the member function field info. */
12900 fnp = &new_fnfield->fnfield;
12901
12902 /* Delay processing of the physname until later. */
12903 if (cu->language == language_cplus || cu->language == language_java)
12904 {
12905 add_to_method_list (type, i, flp->length - 1, fieldname,
12906 die, cu);
12907 }
12908 else
12909 {
12910 const char *physname = dwarf2_physname (fieldname, die, cu);
12911 fnp->physname = physname ? physname : "";
12912 }
12913
12914 fnp->type = alloc_type (objfile);
12915 this_type = read_type_die (die, cu);
12916 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12917 {
12918 int nparams = TYPE_NFIELDS (this_type);
12919
12920 /* TYPE is the domain of this method, and THIS_TYPE is the type
12921 of the method itself (TYPE_CODE_METHOD). */
12922 smash_to_method_type (fnp->type, type,
12923 TYPE_TARGET_TYPE (this_type),
12924 TYPE_FIELDS (this_type),
12925 TYPE_NFIELDS (this_type),
12926 TYPE_VARARGS (this_type));
12927
12928 /* Handle static member functions.
12929 Dwarf2 has no clean way to discern C++ static and non-static
12930 member functions. G++ helps GDB by marking the first
12931 parameter for non-static member functions (which is the this
12932 pointer) as artificial. We obtain this information from
12933 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12934 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12935 fnp->voffset = VOFFSET_STATIC;
12936 }
12937 else
12938 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12939 dwarf2_full_name (fieldname, die, cu));
12940
12941 /* Get fcontext from DW_AT_containing_type if present. */
12942 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12943 fnp->fcontext = die_containing_type (die, cu);
12944
12945 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12946 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12947
12948 /* Get accessibility. */
12949 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12950 if (attr)
12951 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
12952 else
12953 accessibility = dwarf2_default_access_attribute (die, cu);
12954 switch (accessibility)
12955 {
12956 case DW_ACCESS_private:
12957 fnp->is_private = 1;
12958 break;
12959 case DW_ACCESS_protected:
12960 fnp->is_protected = 1;
12961 break;
12962 }
12963
12964 /* Check for artificial methods. */
12965 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12966 if (attr && DW_UNSND (attr) != 0)
12967 fnp->is_artificial = 1;
12968
12969 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12970
12971 /* Get index in virtual function table if it is a virtual member
12972 function. For older versions of GCC, this is an offset in the
12973 appropriate virtual table, as specified by DW_AT_containing_type.
12974 For everyone else, it is an expression to be evaluated relative
12975 to the object address. */
12976
12977 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12978 if (attr)
12979 {
12980 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12981 {
12982 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12983 {
12984 /* Old-style GCC. */
12985 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12986 }
12987 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12988 || (DW_BLOCK (attr)->size > 1
12989 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12990 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12991 {
12992 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12993 if ((fnp->voffset % cu->header.addr_size) != 0)
12994 dwarf2_complex_location_expr_complaint ();
12995 else
12996 fnp->voffset /= cu->header.addr_size;
12997 fnp->voffset += 2;
12998 }
12999 else
13000 dwarf2_complex_location_expr_complaint ();
13001
13002 if (!fnp->fcontext)
13003 {
13004 /* If there is no `this' field and no DW_AT_containing_type,
13005 we cannot actually find a base class context for the
13006 vtable! */
13007 if (TYPE_NFIELDS (this_type) == 0
13008 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13009 {
13010 complaint (&symfile_complaints,
13011 _("cannot determine context for virtual member "
13012 "function \"%s\" (offset %d)"),
13013 fieldname, die->offset.sect_off);
13014 }
13015 else
13016 {
13017 fnp->fcontext
13018 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13019 }
13020 }
13021 }
13022 else if (attr_form_is_section_offset (attr))
13023 {
13024 dwarf2_complex_location_expr_complaint ();
13025 }
13026 else
13027 {
13028 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13029 fieldname);
13030 }
13031 }
13032 else
13033 {
13034 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13035 if (attr && DW_UNSND (attr))
13036 {
13037 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13038 complaint (&symfile_complaints,
13039 _("Member function \"%s\" (offset %d) is virtual "
13040 "but the vtable offset is not specified"),
13041 fieldname, die->offset.sect_off);
13042 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13043 TYPE_CPLUS_DYNAMIC (type) = 1;
13044 }
13045 }
13046 }
13047
13048 /* Create the vector of member function fields, and attach it to the type. */
13049
13050 static void
13051 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13052 struct dwarf2_cu *cu)
13053 {
13054 struct fnfieldlist *flp;
13055 int i;
13056
13057 if (cu->language == language_ada)
13058 error (_("unexpected member functions in Ada type"));
13059
13060 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13061 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13062 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13063
13064 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13065 {
13066 struct nextfnfield *nfp = flp->head;
13067 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13068 int k;
13069
13070 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13071 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13072 fn_flp->fn_fields = (struct fn_field *)
13073 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13074 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13075 fn_flp->fn_fields[k] = nfp->fnfield;
13076 }
13077
13078 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13079 }
13080
13081 /* Returns non-zero if NAME is the name of a vtable member in CU's
13082 language, zero otherwise. */
13083 static int
13084 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13085 {
13086 static const char vptr[] = "_vptr";
13087 static const char vtable[] = "vtable";
13088
13089 /* Look for the C++ and Java forms of the vtable. */
13090 if ((cu->language == language_java
13091 && startswith (name, vtable))
13092 || (startswith (name, vptr)
13093 && is_cplus_marker (name[sizeof (vptr) - 1])))
13094 return 1;
13095
13096 return 0;
13097 }
13098
13099 /* GCC outputs unnamed structures that are really pointers to member
13100 functions, with the ABI-specified layout. If TYPE describes
13101 such a structure, smash it into a member function type.
13102
13103 GCC shouldn't do this; it should just output pointer to member DIEs.
13104 This is GCC PR debug/28767. */
13105
13106 static void
13107 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13108 {
13109 struct type *pfn_type, *self_type, *new_type;
13110
13111 /* Check for a structure with no name and two children. */
13112 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13113 return;
13114
13115 /* Check for __pfn and __delta members. */
13116 if (TYPE_FIELD_NAME (type, 0) == NULL
13117 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13118 || TYPE_FIELD_NAME (type, 1) == NULL
13119 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13120 return;
13121
13122 /* Find the type of the method. */
13123 pfn_type = TYPE_FIELD_TYPE (type, 0);
13124 if (pfn_type == NULL
13125 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13126 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13127 return;
13128
13129 /* Look for the "this" argument. */
13130 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13131 if (TYPE_NFIELDS (pfn_type) == 0
13132 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13133 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13134 return;
13135
13136 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13137 new_type = alloc_type (objfile);
13138 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13139 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13140 TYPE_VARARGS (pfn_type));
13141 smash_to_methodptr_type (type, new_type);
13142 }
13143
13144 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13145 (icc). */
13146
13147 static int
13148 producer_is_icc (struct dwarf2_cu *cu)
13149 {
13150 if (!cu->checked_producer)
13151 check_producer (cu);
13152
13153 return cu->producer_is_icc;
13154 }
13155
13156 /* Called when we find the DIE that starts a structure or union scope
13157 (definition) to create a type for the structure or union. Fill in
13158 the type's name and general properties; the members will not be
13159 processed until process_structure_scope. A symbol table entry for
13160 the type will also not be done until process_structure_scope (assuming
13161 the type has a name).
13162
13163 NOTE: we need to call these functions regardless of whether or not the
13164 DIE has a DW_AT_name attribute, since it might be an anonymous
13165 structure or union. This gets the type entered into our set of
13166 user defined types. */
13167
13168 static struct type *
13169 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13170 {
13171 struct objfile *objfile = cu->objfile;
13172 struct type *type;
13173 struct attribute *attr;
13174 const char *name;
13175
13176 /* If the definition of this type lives in .debug_types, read that type.
13177 Don't follow DW_AT_specification though, that will take us back up
13178 the chain and we want to go down. */
13179 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13180 if (attr)
13181 {
13182 type = get_DW_AT_signature_type (die, attr, cu);
13183
13184 /* The type's CU may not be the same as CU.
13185 Ensure TYPE is recorded with CU in die_type_hash. */
13186 return set_die_type (die, type, cu);
13187 }
13188
13189 type = alloc_type (objfile);
13190 INIT_CPLUS_SPECIFIC (type);
13191
13192 name = dwarf2_name (die, cu);
13193 if (name != NULL)
13194 {
13195 if (cu->language == language_cplus
13196 || cu->language == language_java
13197 || cu->language == language_d
13198 || cu->language == language_rust)
13199 {
13200 const char *full_name = dwarf2_full_name (name, die, cu);
13201
13202 /* dwarf2_full_name might have already finished building the DIE's
13203 type. If so, there is no need to continue. */
13204 if (get_die_type (die, cu) != NULL)
13205 return get_die_type (die, cu);
13206
13207 TYPE_TAG_NAME (type) = full_name;
13208 if (die->tag == DW_TAG_structure_type
13209 || die->tag == DW_TAG_class_type)
13210 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13211 }
13212 else
13213 {
13214 /* The name is already allocated along with this objfile, so
13215 we don't need to duplicate it for the type. */
13216 TYPE_TAG_NAME (type) = name;
13217 if (die->tag == DW_TAG_class_type)
13218 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13219 }
13220 }
13221
13222 if (die->tag == DW_TAG_structure_type)
13223 {
13224 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13225 }
13226 else if (die->tag == DW_TAG_union_type)
13227 {
13228 TYPE_CODE (type) = TYPE_CODE_UNION;
13229 }
13230 else
13231 {
13232 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13233 }
13234
13235 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13236 TYPE_DECLARED_CLASS (type) = 1;
13237
13238 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13239 if (attr)
13240 {
13241 if (attr_form_is_constant (attr))
13242 TYPE_LENGTH (type) = DW_UNSND (attr);
13243 else
13244 {
13245 /* For the moment, dynamic type sizes are not supported
13246 by GDB's struct type. The actual size is determined
13247 on-demand when resolving the type of a given object,
13248 so set the type's length to zero for now. Otherwise,
13249 we record an expression as the length, and that expression
13250 could lead to a very large value, which could eventually
13251 lead to us trying to allocate that much memory when creating
13252 a value of that type. */
13253 TYPE_LENGTH (type) = 0;
13254 }
13255 }
13256 else
13257 {
13258 TYPE_LENGTH (type) = 0;
13259 }
13260
13261 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13262 {
13263 /* ICC does not output the required DW_AT_declaration
13264 on incomplete types, but gives them a size of zero. */
13265 TYPE_STUB (type) = 1;
13266 }
13267 else
13268 TYPE_STUB_SUPPORTED (type) = 1;
13269
13270 if (die_is_declaration (die, cu))
13271 TYPE_STUB (type) = 1;
13272 else if (attr == NULL && die->child == NULL
13273 && producer_is_realview (cu->producer))
13274 /* RealView does not output the required DW_AT_declaration
13275 on incomplete types. */
13276 TYPE_STUB (type) = 1;
13277
13278 /* We need to add the type field to the die immediately so we don't
13279 infinitely recurse when dealing with pointers to the structure
13280 type within the structure itself. */
13281 set_die_type (die, type, cu);
13282
13283 /* set_die_type should be already done. */
13284 set_descriptive_type (type, die, cu);
13285
13286 return type;
13287 }
13288
13289 /* Finish creating a structure or union type, including filling in
13290 its members and creating a symbol for it. */
13291
13292 static void
13293 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13294 {
13295 struct objfile *objfile = cu->objfile;
13296 struct die_info *child_die;
13297 struct type *type;
13298
13299 type = get_die_type (die, cu);
13300 if (type == NULL)
13301 type = read_structure_type (die, cu);
13302
13303 if (die->child != NULL && ! die_is_declaration (die, cu))
13304 {
13305 struct field_info fi;
13306 VEC (symbolp) *template_args = NULL;
13307 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13308
13309 memset (&fi, 0, sizeof (struct field_info));
13310
13311 child_die = die->child;
13312
13313 while (child_die && child_die->tag)
13314 {
13315 if (child_die->tag == DW_TAG_member
13316 || child_die->tag == DW_TAG_variable)
13317 {
13318 /* NOTE: carlton/2002-11-05: A C++ static data member
13319 should be a DW_TAG_member that is a declaration, but
13320 all versions of G++ as of this writing (so through at
13321 least 3.2.1) incorrectly generate DW_TAG_variable
13322 tags for them instead. */
13323 dwarf2_add_field (&fi, child_die, cu);
13324 }
13325 else if (child_die->tag == DW_TAG_subprogram)
13326 {
13327 /* Rust doesn't have member functions in the C++ sense.
13328 However, it does emit ordinary functions as children
13329 of a struct DIE. */
13330 if (cu->language == language_rust)
13331 read_func_scope (child_die, cu);
13332 else
13333 {
13334 /* C++ member function. */
13335 dwarf2_add_member_fn (&fi, child_die, type, cu);
13336 }
13337 }
13338 else if (child_die->tag == DW_TAG_inheritance)
13339 {
13340 /* C++ base class field. */
13341 dwarf2_add_field (&fi, child_die, cu);
13342 }
13343 else if (child_die->tag == DW_TAG_typedef)
13344 dwarf2_add_typedef (&fi, child_die, cu);
13345 else if (child_die->tag == DW_TAG_template_type_param
13346 || child_die->tag == DW_TAG_template_value_param)
13347 {
13348 struct symbol *arg = new_symbol (child_die, NULL, cu);
13349
13350 if (arg != NULL)
13351 VEC_safe_push (symbolp, template_args, arg);
13352 }
13353
13354 child_die = sibling_die (child_die);
13355 }
13356
13357 /* Attach template arguments to type. */
13358 if (! VEC_empty (symbolp, template_args))
13359 {
13360 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13361 TYPE_N_TEMPLATE_ARGUMENTS (type)
13362 = VEC_length (symbolp, template_args);
13363 TYPE_TEMPLATE_ARGUMENTS (type)
13364 = XOBNEWVEC (&objfile->objfile_obstack,
13365 struct symbol *,
13366 TYPE_N_TEMPLATE_ARGUMENTS (type));
13367 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13368 VEC_address (symbolp, template_args),
13369 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13370 * sizeof (struct symbol *)));
13371 VEC_free (symbolp, template_args);
13372 }
13373
13374 /* Attach fields and member functions to the type. */
13375 if (fi.nfields)
13376 dwarf2_attach_fields_to_type (&fi, type, cu);
13377 if (fi.nfnfields)
13378 {
13379 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13380
13381 /* Get the type which refers to the base class (possibly this
13382 class itself) which contains the vtable pointer for the current
13383 class from the DW_AT_containing_type attribute. This use of
13384 DW_AT_containing_type is a GNU extension. */
13385
13386 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13387 {
13388 struct type *t = die_containing_type (die, cu);
13389
13390 set_type_vptr_basetype (type, t);
13391 if (type == t)
13392 {
13393 int i;
13394
13395 /* Our own class provides vtbl ptr. */
13396 for (i = TYPE_NFIELDS (t) - 1;
13397 i >= TYPE_N_BASECLASSES (t);
13398 --i)
13399 {
13400 const char *fieldname = TYPE_FIELD_NAME (t, i);
13401
13402 if (is_vtable_name (fieldname, cu))
13403 {
13404 set_type_vptr_fieldno (type, i);
13405 break;
13406 }
13407 }
13408
13409 /* Complain if virtual function table field not found. */
13410 if (i < TYPE_N_BASECLASSES (t))
13411 complaint (&symfile_complaints,
13412 _("virtual function table pointer "
13413 "not found when defining class '%s'"),
13414 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13415 "");
13416 }
13417 else
13418 {
13419 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13420 }
13421 }
13422 else if (cu->producer
13423 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13424 {
13425 /* The IBM XLC compiler does not provide direct indication
13426 of the containing type, but the vtable pointer is
13427 always named __vfp. */
13428
13429 int i;
13430
13431 for (i = TYPE_NFIELDS (type) - 1;
13432 i >= TYPE_N_BASECLASSES (type);
13433 --i)
13434 {
13435 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13436 {
13437 set_type_vptr_fieldno (type, i);
13438 set_type_vptr_basetype (type, type);
13439 break;
13440 }
13441 }
13442 }
13443 }
13444
13445 /* Copy fi.typedef_field_list linked list elements content into the
13446 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13447 if (fi.typedef_field_list)
13448 {
13449 int i = fi.typedef_field_list_count;
13450
13451 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13452 TYPE_TYPEDEF_FIELD_ARRAY (type)
13453 = ((struct typedef_field *)
13454 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13455 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13456
13457 /* Reverse the list order to keep the debug info elements order. */
13458 while (--i >= 0)
13459 {
13460 struct typedef_field *dest, *src;
13461
13462 dest = &TYPE_TYPEDEF_FIELD (type, i);
13463 src = &fi.typedef_field_list->field;
13464 fi.typedef_field_list = fi.typedef_field_list->next;
13465 *dest = *src;
13466 }
13467 }
13468
13469 do_cleanups (back_to);
13470
13471 if (HAVE_CPLUS_STRUCT (type))
13472 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13473 }
13474
13475 quirk_gcc_member_function_pointer (type, objfile);
13476
13477 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13478 snapshots) has been known to create a die giving a declaration
13479 for a class that has, as a child, a die giving a definition for a
13480 nested class. So we have to process our children even if the
13481 current die is a declaration. Normally, of course, a declaration
13482 won't have any children at all. */
13483
13484 child_die = die->child;
13485
13486 while (child_die != NULL && child_die->tag)
13487 {
13488 if (child_die->tag == DW_TAG_member
13489 || child_die->tag == DW_TAG_variable
13490 || child_die->tag == DW_TAG_inheritance
13491 || child_die->tag == DW_TAG_template_value_param
13492 || child_die->tag == DW_TAG_template_type_param)
13493 {
13494 /* Do nothing. */
13495 }
13496 else
13497 process_die (child_die, cu);
13498
13499 child_die = sibling_die (child_die);
13500 }
13501
13502 /* Do not consider external references. According to the DWARF standard,
13503 these DIEs are identified by the fact that they have no byte_size
13504 attribute, and a declaration attribute. */
13505 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13506 || !die_is_declaration (die, cu))
13507 new_symbol (die, type, cu);
13508 }
13509
13510 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13511 update TYPE using some information only available in DIE's children. */
13512
13513 static void
13514 update_enumeration_type_from_children (struct die_info *die,
13515 struct type *type,
13516 struct dwarf2_cu *cu)
13517 {
13518 struct obstack obstack;
13519 struct die_info *child_die;
13520 int unsigned_enum = 1;
13521 int flag_enum = 1;
13522 ULONGEST mask = 0;
13523 struct cleanup *old_chain;
13524
13525 obstack_init (&obstack);
13526 old_chain = make_cleanup_obstack_free (&obstack);
13527
13528 for (child_die = die->child;
13529 child_die != NULL && child_die->tag;
13530 child_die = sibling_die (child_die))
13531 {
13532 struct attribute *attr;
13533 LONGEST value;
13534 const gdb_byte *bytes;
13535 struct dwarf2_locexpr_baton *baton;
13536 const char *name;
13537
13538 if (child_die->tag != DW_TAG_enumerator)
13539 continue;
13540
13541 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13542 if (attr == NULL)
13543 continue;
13544
13545 name = dwarf2_name (child_die, cu);
13546 if (name == NULL)
13547 name = "<anonymous enumerator>";
13548
13549 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13550 &value, &bytes, &baton);
13551 if (value < 0)
13552 {
13553 unsigned_enum = 0;
13554 flag_enum = 0;
13555 }
13556 else if ((mask & value) != 0)
13557 flag_enum = 0;
13558 else
13559 mask |= value;
13560
13561 /* If we already know that the enum type is neither unsigned, nor
13562 a flag type, no need to look at the rest of the enumerates. */
13563 if (!unsigned_enum && !flag_enum)
13564 break;
13565 }
13566
13567 if (unsigned_enum)
13568 TYPE_UNSIGNED (type) = 1;
13569 if (flag_enum)
13570 TYPE_FLAG_ENUM (type) = 1;
13571
13572 do_cleanups (old_chain);
13573 }
13574
13575 /* Given a DW_AT_enumeration_type die, set its type. We do not
13576 complete the type's fields yet, or create any symbols. */
13577
13578 static struct type *
13579 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13580 {
13581 struct objfile *objfile = cu->objfile;
13582 struct type *type;
13583 struct attribute *attr;
13584 const char *name;
13585
13586 /* If the definition of this type lives in .debug_types, read that type.
13587 Don't follow DW_AT_specification though, that will take us back up
13588 the chain and we want to go down. */
13589 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13590 if (attr)
13591 {
13592 type = get_DW_AT_signature_type (die, attr, cu);
13593
13594 /* The type's CU may not be the same as CU.
13595 Ensure TYPE is recorded with CU in die_type_hash. */
13596 return set_die_type (die, type, cu);
13597 }
13598
13599 type = alloc_type (objfile);
13600
13601 TYPE_CODE (type) = TYPE_CODE_ENUM;
13602 name = dwarf2_full_name (NULL, die, cu);
13603 if (name != NULL)
13604 TYPE_TAG_NAME (type) = name;
13605
13606 attr = dwarf2_attr (die, DW_AT_type, cu);
13607 if (attr != NULL)
13608 {
13609 struct type *underlying_type = die_type (die, cu);
13610
13611 TYPE_TARGET_TYPE (type) = underlying_type;
13612 }
13613
13614 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13615 if (attr)
13616 {
13617 TYPE_LENGTH (type) = DW_UNSND (attr);
13618 }
13619 else
13620 {
13621 TYPE_LENGTH (type) = 0;
13622 }
13623
13624 /* The enumeration DIE can be incomplete. In Ada, any type can be
13625 declared as private in the package spec, and then defined only
13626 inside the package body. Such types are known as Taft Amendment
13627 Types. When another package uses such a type, an incomplete DIE
13628 may be generated by the compiler. */
13629 if (die_is_declaration (die, cu))
13630 TYPE_STUB (type) = 1;
13631
13632 /* Finish the creation of this type by using the enum's children.
13633 We must call this even when the underlying type has been provided
13634 so that we can determine if we're looking at a "flag" enum. */
13635 update_enumeration_type_from_children (die, type, cu);
13636
13637 /* If this type has an underlying type that is not a stub, then we
13638 may use its attributes. We always use the "unsigned" attribute
13639 in this situation, because ordinarily we guess whether the type
13640 is unsigned -- but the guess can be wrong and the underlying type
13641 can tell us the reality. However, we defer to a local size
13642 attribute if one exists, because this lets the compiler override
13643 the underlying type if needed. */
13644 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13645 {
13646 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13647 if (TYPE_LENGTH (type) == 0)
13648 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13649 }
13650
13651 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13652
13653 return set_die_type (die, type, cu);
13654 }
13655
13656 /* Given a pointer to a die which begins an enumeration, process all
13657 the dies that define the members of the enumeration, and create the
13658 symbol for the enumeration type.
13659
13660 NOTE: We reverse the order of the element list. */
13661
13662 static void
13663 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13664 {
13665 struct type *this_type;
13666
13667 this_type = get_die_type (die, cu);
13668 if (this_type == NULL)
13669 this_type = read_enumeration_type (die, cu);
13670
13671 if (die->child != NULL)
13672 {
13673 struct die_info *child_die;
13674 struct symbol *sym;
13675 struct field *fields = NULL;
13676 int num_fields = 0;
13677 const char *name;
13678
13679 child_die = die->child;
13680 while (child_die && child_die->tag)
13681 {
13682 if (child_die->tag != DW_TAG_enumerator)
13683 {
13684 process_die (child_die, cu);
13685 }
13686 else
13687 {
13688 name = dwarf2_name (child_die, cu);
13689 if (name)
13690 {
13691 sym = new_symbol (child_die, this_type, cu);
13692
13693 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13694 {
13695 fields = (struct field *)
13696 xrealloc (fields,
13697 (num_fields + DW_FIELD_ALLOC_CHUNK)
13698 * sizeof (struct field));
13699 }
13700
13701 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13702 FIELD_TYPE (fields[num_fields]) = NULL;
13703 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13704 FIELD_BITSIZE (fields[num_fields]) = 0;
13705
13706 num_fields++;
13707 }
13708 }
13709
13710 child_die = sibling_die (child_die);
13711 }
13712
13713 if (num_fields)
13714 {
13715 TYPE_NFIELDS (this_type) = num_fields;
13716 TYPE_FIELDS (this_type) = (struct field *)
13717 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13718 memcpy (TYPE_FIELDS (this_type), fields,
13719 sizeof (struct field) * num_fields);
13720 xfree (fields);
13721 }
13722 }
13723
13724 /* If we are reading an enum from a .debug_types unit, and the enum
13725 is a declaration, and the enum is not the signatured type in the
13726 unit, then we do not want to add a symbol for it. Adding a
13727 symbol would in some cases obscure the true definition of the
13728 enum, giving users an incomplete type when the definition is
13729 actually available. Note that we do not want to do this for all
13730 enums which are just declarations, because C++0x allows forward
13731 enum declarations. */
13732 if (cu->per_cu->is_debug_types
13733 && die_is_declaration (die, cu))
13734 {
13735 struct signatured_type *sig_type;
13736
13737 sig_type = (struct signatured_type *) cu->per_cu;
13738 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13739 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13740 return;
13741 }
13742
13743 new_symbol (die, this_type, cu);
13744 }
13745
13746 /* Extract all information from a DW_TAG_array_type DIE and put it in
13747 the DIE's type field. For now, this only handles one dimensional
13748 arrays. */
13749
13750 static struct type *
13751 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13752 {
13753 struct objfile *objfile = cu->objfile;
13754 struct die_info *child_die;
13755 struct type *type;
13756 struct type *element_type, *range_type, *index_type;
13757 struct type **range_types = NULL;
13758 struct attribute *attr;
13759 int ndim = 0;
13760 struct cleanup *back_to;
13761 const char *name;
13762 unsigned int bit_stride = 0;
13763
13764 element_type = die_type (die, cu);
13765
13766 /* The die_type call above may have already set the type for this DIE. */
13767 type = get_die_type (die, cu);
13768 if (type)
13769 return type;
13770
13771 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13772 if (attr != NULL)
13773 bit_stride = DW_UNSND (attr) * 8;
13774
13775 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13776 if (attr != NULL)
13777 bit_stride = DW_UNSND (attr);
13778
13779 /* Irix 6.2 native cc creates array types without children for
13780 arrays with unspecified length. */
13781 if (die->child == NULL)
13782 {
13783 index_type = objfile_type (objfile)->builtin_int;
13784 range_type = create_static_range_type (NULL, index_type, 0, -1);
13785 type = create_array_type_with_stride (NULL, element_type, range_type,
13786 bit_stride);
13787 return set_die_type (die, type, cu);
13788 }
13789
13790 back_to = make_cleanup (null_cleanup, NULL);
13791 child_die = die->child;
13792 while (child_die && child_die->tag)
13793 {
13794 if (child_die->tag == DW_TAG_subrange_type)
13795 {
13796 struct type *child_type = read_type_die (child_die, cu);
13797
13798 if (child_type != NULL)
13799 {
13800 /* The range type was succesfully read. Save it for the
13801 array type creation. */
13802 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13803 {
13804 range_types = (struct type **)
13805 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13806 * sizeof (struct type *));
13807 if (ndim == 0)
13808 make_cleanup (free_current_contents, &range_types);
13809 }
13810 range_types[ndim++] = child_type;
13811 }
13812 }
13813 child_die = sibling_die (child_die);
13814 }
13815
13816 /* Dwarf2 dimensions are output from left to right, create the
13817 necessary array types in backwards order. */
13818
13819 type = element_type;
13820
13821 if (read_array_order (die, cu) == DW_ORD_col_major)
13822 {
13823 int i = 0;
13824
13825 while (i < ndim)
13826 type = create_array_type_with_stride (NULL, type, range_types[i++],
13827 bit_stride);
13828 }
13829 else
13830 {
13831 while (ndim-- > 0)
13832 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13833 bit_stride);
13834 }
13835
13836 /* Understand Dwarf2 support for vector types (like they occur on
13837 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13838 array type. This is not part of the Dwarf2/3 standard yet, but a
13839 custom vendor extension. The main difference between a regular
13840 array and the vector variant is that vectors are passed by value
13841 to functions. */
13842 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13843 if (attr)
13844 make_vector_type (type);
13845
13846 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13847 implementation may choose to implement triple vectors using this
13848 attribute. */
13849 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13850 if (attr)
13851 {
13852 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13853 TYPE_LENGTH (type) = DW_UNSND (attr);
13854 else
13855 complaint (&symfile_complaints,
13856 _("DW_AT_byte_size for array type smaller "
13857 "than the total size of elements"));
13858 }
13859
13860 name = dwarf2_name (die, cu);
13861 if (name)
13862 TYPE_NAME (type) = name;
13863
13864 /* Install the type in the die. */
13865 set_die_type (die, type, cu);
13866
13867 /* set_die_type should be already done. */
13868 set_descriptive_type (type, die, cu);
13869
13870 do_cleanups (back_to);
13871
13872 return type;
13873 }
13874
13875 static enum dwarf_array_dim_ordering
13876 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13877 {
13878 struct attribute *attr;
13879
13880 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13881
13882 if (attr)
13883 return (enum dwarf_array_dim_ordering) DW_SND (attr);
13884
13885 /* GNU F77 is a special case, as at 08/2004 array type info is the
13886 opposite order to the dwarf2 specification, but data is still
13887 laid out as per normal fortran.
13888
13889 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13890 version checking. */
13891
13892 if (cu->language == language_fortran
13893 && cu->producer && strstr (cu->producer, "GNU F77"))
13894 {
13895 return DW_ORD_row_major;
13896 }
13897
13898 switch (cu->language_defn->la_array_ordering)
13899 {
13900 case array_column_major:
13901 return DW_ORD_col_major;
13902 case array_row_major:
13903 default:
13904 return DW_ORD_row_major;
13905 };
13906 }
13907
13908 /* Extract all information from a DW_TAG_set_type DIE and put it in
13909 the DIE's type field. */
13910
13911 static struct type *
13912 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13913 {
13914 struct type *domain_type, *set_type;
13915 struct attribute *attr;
13916
13917 domain_type = die_type (die, cu);
13918
13919 /* The die_type call above may have already set the type for this DIE. */
13920 set_type = get_die_type (die, cu);
13921 if (set_type)
13922 return set_type;
13923
13924 set_type = create_set_type (NULL, domain_type);
13925
13926 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13927 if (attr)
13928 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13929
13930 return set_die_type (die, set_type, cu);
13931 }
13932
13933 /* A helper for read_common_block that creates a locexpr baton.
13934 SYM is the symbol which we are marking as computed.
13935 COMMON_DIE is the DIE for the common block.
13936 COMMON_LOC is the location expression attribute for the common
13937 block itself.
13938 MEMBER_LOC is the location expression attribute for the particular
13939 member of the common block that we are processing.
13940 CU is the CU from which the above come. */
13941
13942 static void
13943 mark_common_block_symbol_computed (struct symbol *sym,
13944 struct die_info *common_die,
13945 struct attribute *common_loc,
13946 struct attribute *member_loc,
13947 struct dwarf2_cu *cu)
13948 {
13949 struct objfile *objfile = dwarf2_per_objfile->objfile;
13950 struct dwarf2_locexpr_baton *baton;
13951 gdb_byte *ptr;
13952 unsigned int cu_off;
13953 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13954 LONGEST offset = 0;
13955
13956 gdb_assert (common_loc && member_loc);
13957 gdb_assert (attr_form_is_block (common_loc));
13958 gdb_assert (attr_form_is_block (member_loc)
13959 || attr_form_is_constant (member_loc));
13960
13961 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13962 baton->per_cu = cu->per_cu;
13963 gdb_assert (baton->per_cu);
13964
13965 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13966
13967 if (attr_form_is_constant (member_loc))
13968 {
13969 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13970 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13971 }
13972 else
13973 baton->size += DW_BLOCK (member_loc)->size;
13974
13975 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
13976 baton->data = ptr;
13977
13978 *ptr++ = DW_OP_call4;
13979 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13980 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13981 ptr += 4;
13982
13983 if (attr_form_is_constant (member_loc))
13984 {
13985 *ptr++ = DW_OP_addr;
13986 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13987 ptr += cu->header.addr_size;
13988 }
13989 else
13990 {
13991 /* We have to copy the data here, because DW_OP_call4 will only
13992 use a DW_AT_location attribute. */
13993 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13994 ptr += DW_BLOCK (member_loc)->size;
13995 }
13996
13997 *ptr++ = DW_OP_plus;
13998 gdb_assert (ptr - baton->data == baton->size);
13999
14000 SYMBOL_LOCATION_BATON (sym) = baton;
14001 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
14002 }
14003
14004 /* Create appropriate locally-scoped variables for all the
14005 DW_TAG_common_block entries. Also create a struct common_block
14006 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14007 is used to sepate the common blocks name namespace from regular
14008 variable names. */
14009
14010 static void
14011 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
14012 {
14013 struct attribute *attr;
14014
14015 attr = dwarf2_attr (die, DW_AT_location, cu);
14016 if (attr)
14017 {
14018 /* Support the .debug_loc offsets. */
14019 if (attr_form_is_block (attr))
14020 {
14021 /* Ok. */
14022 }
14023 else if (attr_form_is_section_offset (attr))
14024 {
14025 dwarf2_complex_location_expr_complaint ();
14026 attr = NULL;
14027 }
14028 else
14029 {
14030 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14031 "common block member");
14032 attr = NULL;
14033 }
14034 }
14035
14036 if (die->child != NULL)
14037 {
14038 struct objfile *objfile = cu->objfile;
14039 struct die_info *child_die;
14040 size_t n_entries = 0, size;
14041 struct common_block *common_block;
14042 struct symbol *sym;
14043
14044 for (child_die = die->child;
14045 child_die && child_die->tag;
14046 child_die = sibling_die (child_die))
14047 ++n_entries;
14048
14049 size = (sizeof (struct common_block)
14050 + (n_entries - 1) * sizeof (struct symbol *));
14051 common_block
14052 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14053 size);
14054 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14055 common_block->n_entries = 0;
14056
14057 for (child_die = die->child;
14058 child_die && child_die->tag;
14059 child_die = sibling_die (child_die))
14060 {
14061 /* Create the symbol in the DW_TAG_common_block block in the current
14062 symbol scope. */
14063 sym = new_symbol (child_die, NULL, cu);
14064 if (sym != NULL)
14065 {
14066 struct attribute *member_loc;
14067
14068 common_block->contents[common_block->n_entries++] = sym;
14069
14070 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14071 cu);
14072 if (member_loc)
14073 {
14074 /* GDB has handled this for a long time, but it is
14075 not specified by DWARF. It seems to have been
14076 emitted by gfortran at least as recently as:
14077 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14078 complaint (&symfile_complaints,
14079 _("Variable in common block has "
14080 "DW_AT_data_member_location "
14081 "- DIE at 0x%x [in module %s]"),
14082 child_die->offset.sect_off,
14083 objfile_name (cu->objfile));
14084
14085 if (attr_form_is_section_offset (member_loc))
14086 dwarf2_complex_location_expr_complaint ();
14087 else if (attr_form_is_constant (member_loc)
14088 || attr_form_is_block (member_loc))
14089 {
14090 if (attr)
14091 mark_common_block_symbol_computed (sym, die, attr,
14092 member_loc, cu);
14093 }
14094 else
14095 dwarf2_complex_location_expr_complaint ();
14096 }
14097 }
14098 }
14099
14100 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14101 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14102 }
14103 }
14104
14105 /* Create a type for a C++ namespace. */
14106
14107 static struct type *
14108 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14109 {
14110 struct objfile *objfile = cu->objfile;
14111 const char *previous_prefix, *name;
14112 int is_anonymous;
14113 struct type *type;
14114
14115 /* For extensions, reuse the type of the original namespace. */
14116 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14117 {
14118 struct die_info *ext_die;
14119 struct dwarf2_cu *ext_cu = cu;
14120
14121 ext_die = dwarf2_extension (die, &ext_cu);
14122 type = read_type_die (ext_die, ext_cu);
14123
14124 /* EXT_CU may not be the same as CU.
14125 Ensure TYPE is recorded with CU in die_type_hash. */
14126 return set_die_type (die, type, cu);
14127 }
14128
14129 name = namespace_name (die, &is_anonymous, cu);
14130
14131 /* Now build the name of the current namespace. */
14132
14133 previous_prefix = determine_prefix (die, cu);
14134 if (previous_prefix[0] != '\0')
14135 name = typename_concat (&objfile->objfile_obstack,
14136 previous_prefix, name, 0, cu);
14137
14138 /* Create the type. */
14139 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
14140 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14141
14142 return set_die_type (die, type, cu);
14143 }
14144
14145 /* Read a namespace scope. */
14146
14147 static void
14148 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14149 {
14150 struct objfile *objfile = cu->objfile;
14151 int is_anonymous;
14152
14153 /* Add a symbol associated to this if we haven't seen the namespace
14154 before. Also, add a using directive if it's an anonymous
14155 namespace. */
14156
14157 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14158 {
14159 struct type *type;
14160
14161 type = read_type_die (die, cu);
14162 new_symbol (die, type, cu);
14163
14164 namespace_name (die, &is_anonymous, cu);
14165 if (is_anonymous)
14166 {
14167 const char *previous_prefix = determine_prefix (die, cu);
14168
14169 add_using_directive (using_directives (cu->language),
14170 previous_prefix, TYPE_NAME (type), NULL,
14171 NULL, NULL, 0, &objfile->objfile_obstack);
14172 }
14173 }
14174
14175 if (die->child != NULL)
14176 {
14177 struct die_info *child_die = die->child;
14178
14179 while (child_die && child_die->tag)
14180 {
14181 process_die (child_die, cu);
14182 child_die = sibling_die (child_die);
14183 }
14184 }
14185 }
14186
14187 /* Read a Fortran module as type. This DIE can be only a declaration used for
14188 imported module. Still we need that type as local Fortran "use ... only"
14189 declaration imports depend on the created type in determine_prefix. */
14190
14191 static struct type *
14192 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14193 {
14194 struct objfile *objfile = cu->objfile;
14195 const char *module_name;
14196 struct type *type;
14197
14198 module_name = dwarf2_name (die, cu);
14199 if (!module_name)
14200 complaint (&symfile_complaints,
14201 _("DW_TAG_module has no name, offset 0x%x"),
14202 die->offset.sect_off);
14203 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
14204
14205 /* determine_prefix uses TYPE_TAG_NAME. */
14206 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14207
14208 return set_die_type (die, type, cu);
14209 }
14210
14211 /* Read a Fortran module. */
14212
14213 static void
14214 read_module (struct die_info *die, struct dwarf2_cu *cu)
14215 {
14216 struct die_info *child_die = die->child;
14217 struct type *type;
14218
14219 type = read_type_die (die, cu);
14220 new_symbol (die, type, cu);
14221
14222 while (child_die && child_die->tag)
14223 {
14224 process_die (child_die, cu);
14225 child_die = sibling_die (child_die);
14226 }
14227 }
14228
14229 /* Return the name of the namespace represented by DIE. Set
14230 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14231 namespace. */
14232
14233 static const char *
14234 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14235 {
14236 struct die_info *current_die;
14237 const char *name = NULL;
14238
14239 /* Loop through the extensions until we find a name. */
14240
14241 for (current_die = die;
14242 current_die != NULL;
14243 current_die = dwarf2_extension (die, &cu))
14244 {
14245 /* We don't use dwarf2_name here so that we can detect the absence
14246 of a name -> anonymous namespace. */
14247 name = dwarf2_string_attr (die, DW_AT_name, cu);
14248
14249 if (name != NULL)
14250 break;
14251 }
14252
14253 /* Is it an anonymous namespace? */
14254
14255 *is_anonymous = (name == NULL);
14256 if (*is_anonymous)
14257 name = CP_ANONYMOUS_NAMESPACE_STR;
14258
14259 return name;
14260 }
14261
14262 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14263 the user defined type vector. */
14264
14265 static struct type *
14266 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14267 {
14268 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14269 struct comp_unit_head *cu_header = &cu->header;
14270 struct type *type;
14271 struct attribute *attr_byte_size;
14272 struct attribute *attr_address_class;
14273 int byte_size, addr_class;
14274 struct type *target_type;
14275
14276 target_type = die_type (die, cu);
14277
14278 /* The die_type call above may have already set the type for this DIE. */
14279 type = get_die_type (die, cu);
14280 if (type)
14281 return type;
14282
14283 type = lookup_pointer_type (target_type);
14284
14285 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14286 if (attr_byte_size)
14287 byte_size = DW_UNSND (attr_byte_size);
14288 else
14289 byte_size = cu_header->addr_size;
14290
14291 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14292 if (attr_address_class)
14293 addr_class = DW_UNSND (attr_address_class);
14294 else
14295 addr_class = DW_ADDR_none;
14296
14297 /* If the pointer size or address class is different than the
14298 default, create a type variant marked as such and set the
14299 length accordingly. */
14300 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14301 {
14302 if (gdbarch_address_class_type_flags_p (gdbarch))
14303 {
14304 int type_flags;
14305
14306 type_flags = gdbarch_address_class_type_flags
14307 (gdbarch, byte_size, addr_class);
14308 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14309 == 0);
14310 type = make_type_with_address_space (type, type_flags);
14311 }
14312 else if (TYPE_LENGTH (type) != byte_size)
14313 {
14314 complaint (&symfile_complaints,
14315 _("invalid pointer size %d"), byte_size);
14316 }
14317 else
14318 {
14319 /* Should we also complain about unhandled address classes? */
14320 }
14321 }
14322
14323 TYPE_LENGTH (type) = byte_size;
14324 return set_die_type (die, type, cu);
14325 }
14326
14327 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14328 the user defined type vector. */
14329
14330 static struct type *
14331 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14332 {
14333 struct type *type;
14334 struct type *to_type;
14335 struct type *domain;
14336
14337 to_type = die_type (die, cu);
14338 domain = die_containing_type (die, cu);
14339
14340 /* The calls above may have already set the type for this DIE. */
14341 type = get_die_type (die, cu);
14342 if (type)
14343 return type;
14344
14345 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14346 type = lookup_methodptr_type (to_type);
14347 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14348 {
14349 struct type *new_type = alloc_type (cu->objfile);
14350
14351 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14352 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14353 TYPE_VARARGS (to_type));
14354 type = lookup_methodptr_type (new_type);
14355 }
14356 else
14357 type = lookup_memberptr_type (to_type, domain);
14358
14359 return set_die_type (die, type, cu);
14360 }
14361
14362 /* Extract all information from a DW_TAG_reference_type DIE and add to
14363 the user defined type vector. */
14364
14365 static struct type *
14366 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14367 {
14368 struct comp_unit_head *cu_header = &cu->header;
14369 struct type *type, *target_type;
14370 struct attribute *attr;
14371
14372 target_type = die_type (die, cu);
14373
14374 /* The die_type call above may have already set the type for this DIE. */
14375 type = get_die_type (die, cu);
14376 if (type)
14377 return type;
14378
14379 type = lookup_reference_type (target_type);
14380 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14381 if (attr)
14382 {
14383 TYPE_LENGTH (type) = DW_UNSND (attr);
14384 }
14385 else
14386 {
14387 TYPE_LENGTH (type) = cu_header->addr_size;
14388 }
14389 return set_die_type (die, type, cu);
14390 }
14391
14392 /* Add the given cv-qualifiers to the element type of the array. GCC
14393 outputs DWARF type qualifiers that apply to an array, not the
14394 element type. But GDB relies on the array element type to carry
14395 the cv-qualifiers. This mimics section 6.7.3 of the C99
14396 specification. */
14397
14398 static struct type *
14399 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14400 struct type *base_type, int cnst, int voltl)
14401 {
14402 struct type *el_type, *inner_array;
14403
14404 base_type = copy_type (base_type);
14405 inner_array = base_type;
14406
14407 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14408 {
14409 TYPE_TARGET_TYPE (inner_array) =
14410 copy_type (TYPE_TARGET_TYPE (inner_array));
14411 inner_array = TYPE_TARGET_TYPE (inner_array);
14412 }
14413
14414 el_type = TYPE_TARGET_TYPE (inner_array);
14415 cnst |= TYPE_CONST (el_type);
14416 voltl |= TYPE_VOLATILE (el_type);
14417 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14418
14419 return set_die_type (die, base_type, cu);
14420 }
14421
14422 static struct type *
14423 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14424 {
14425 struct type *base_type, *cv_type;
14426
14427 base_type = die_type (die, cu);
14428
14429 /* The die_type call above may have already set the type for this DIE. */
14430 cv_type = get_die_type (die, cu);
14431 if (cv_type)
14432 return cv_type;
14433
14434 /* In case the const qualifier is applied to an array type, the element type
14435 is so qualified, not the array type (section 6.7.3 of C99). */
14436 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14437 return add_array_cv_type (die, cu, base_type, 1, 0);
14438
14439 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14440 return set_die_type (die, cv_type, cu);
14441 }
14442
14443 static struct type *
14444 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14445 {
14446 struct type *base_type, *cv_type;
14447
14448 base_type = die_type (die, cu);
14449
14450 /* The die_type call above may have already set the type for this DIE. */
14451 cv_type = get_die_type (die, cu);
14452 if (cv_type)
14453 return cv_type;
14454
14455 /* In case the volatile qualifier is applied to an array type, the
14456 element type is so qualified, not the array type (section 6.7.3
14457 of C99). */
14458 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14459 return add_array_cv_type (die, cu, base_type, 0, 1);
14460
14461 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14462 return set_die_type (die, cv_type, cu);
14463 }
14464
14465 /* Handle DW_TAG_restrict_type. */
14466
14467 static struct type *
14468 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14469 {
14470 struct type *base_type, *cv_type;
14471
14472 base_type = die_type (die, cu);
14473
14474 /* The die_type call above may have already set the type for this DIE. */
14475 cv_type = get_die_type (die, cu);
14476 if (cv_type)
14477 return cv_type;
14478
14479 cv_type = make_restrict_type (base_type);
14480 return set_die_type (die, cv_type, cu);
14481 }
14482
14483 /* Handle DW_TAG_atomic_type. */
14484
14485 static struct type *
14486 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14487 {
14488 struct type *base_type, *cv_type;
14489
14490 base_type = die_type (die, cu);
14491
14492 /* The die_type call above may have already set the type for this DIE. */
14493 cv_type = get_die_type (die, cu);
14494 if (cv_type)
14495 return cv_type;
14496
14497 cv_type = make_atomic_type (base_type);
14498 return set_die_type (die, cv_type, cu);
14499 }
14500
14501 /* Extract all information from a DW_TAG_string_type DIE and add to
14502 the user defined type vector. It isn't really a user defined type,
14503 but it behaves like one, with other DIE's using an AT_user_def_type
14504 attribute to reference it. */
14505
14506 static struct type *
14507 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14508 {
14509 struct objfile *objfile = cu->objfile;
14510 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14511 struct type *type, *range_type, *index_type, *char_type;
14512 struct attribute *attr;
14513 unsigned int length;
14514
14515 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14516 if (attr)
14517 {
14518 length = DW_UNSND (attr);
14519 }
14520 else
14521 {
14522 /* Check for the DW_AT_byte_size attribute. */
14523 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14524 if (attr)
14525 {
14526 length = DW_UNSND (attr);
14527 }
14528 else
14529 {
14530 length = 1;
14531 }
14532 }
14533
14534 index_type = objfile_type (objfile)->builtin_int;
14535 range_type = create_static_range_type (NULL, index_type, 1, length);
14536 char_type = language_string_char_type (cu->language_defn, gdbarch);
14537 type = create_string_type (NULL, char_type, range_type);
14538
14539 return set_die_type (die, type, cu);
14540 }
14541
14542 /* Assuming that DIE corresponds to a function, returns nonzero
14543 if the function is prototyped. */
14544
14545 static int
14546 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14547 {
14548 struct attribute *attr;
14549
14550 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14551 if (attr && (DW_UNSND (attr) != 0))
14552 return 1;
14553
14554 /* The DWARF standard implies that the DW_AT_prototyped attribute
14555 is only meaninful for C, but the concept also extends to other
14556 languages that allow unprototyped functions (Eg: Objective C).
14557 For all other languages, assume that functions are always
14558 prototyped. */
14559 if (cu->language != language_c
14560 && cu->language != language_objc
14561 && cu->language != language_opencl)
14562 return 1;
14563
14564 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14565 prototyped and unprototyped functions; default to prototyped,
14566 since that is more common in modern code (and RealView warns
14567 about unprototyped functions). */
14568 if (producer_is_realview (cu->producer))
14569 return 1;
14570
14571 return 0;
14572 }
14573
14574 /* Handle DIES due to C code like:
14575
14576 struct foo
14577 {
14578 int (*funcp)(int a, long l);
14579 int b;
14580 };
14581
14582 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14583
14584 static struct type *
14585 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14586 {
14587 struct objfile *objfile = cu->objfile;
14588 struct type *type; /* Type that this function returns. */
14589 struct type *ftype; /* Function that returns above type. */
14590 struct attribute *attr;
14591
14592 type = die_type (die, cu);
14593
14594 /* The die_type call above may have already set the type for this DIE. */
14595 ftype = get_die_type (die, cu);
14596 if (ftype)
14597 return ftype;
14598
14599 ftype = lookup_function_type (type);
14600
14601 if (prototyped_function_p (die, cu))
14602 TYPE_PROTOTYPED (ftype) = 1;
14603
14604 /* Store the calling convention in the type if it's available in
14605 the subroutine die. Otherwise set the calling convention to
14606 the default value DW_CC_normal. */
14607 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14608 if (attr)
14609 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14610 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14611 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14612 else
14613 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14614
14615 /* Record whether the function returns normally to its caller or not
14616 if the DWARF producer set that information. */
14617 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14618 if (attr && (DW_UNSND (attr) != 0))
14619 TYPE_NO_RETURN (ftype) = 1;
14620
14621 /* We need to add the subroutine type to the die immediately so
14622 we don't infinitely recurse when dealing with parameters
14623 declared as the same subroutine type. */
14624 set_die_type (die, ftype, cu);
14625
14626 if (die->child != NULL)
14627 {
14628 struct type *void_type = objfile_type (objfile)->builtin_void;
14629 struct die_info *child_die;
14630 int nparams, iparams;
14631
14632 /* Count the number of parameters.
14633 FIXME: GDB currently ignores vararg functions, but knows about
14634 vararg member functions. */
14635 nparams = 0;
14636 child_die = die->child;
14637 while (child_die && child_die->tag)
14638 {
14639 if (child_die->tag == DW_TAG_formal_parameter)
14640 nparams++;
14641 else if (child_die->tag == DW_TAG_unspecified_parameters)
14642 TYPE_VARARGS (ftype) = 1;
14643 child_die = sibling_die (child_die);
14644 }
14645
14646 /* Allocate storage for parameters and fill them in. */
14647 TYPE_NFIELDS (ftype) = nparams;
14648 TYPE_FIELDS (ftype) = (struct field *)
14649 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14650
14651 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14652 even if we error out during the parameters reading below. */
14653 for (iparams = 0; iparams < nparams; iparams++)
14654 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14655
14656 iparams = 0;
14657 child_die = die->child;
14658 while (child_die && child_die->tag)
14659 {
14660 if (child_die->tag == DW_TAG_formal_parameter)
14661 {
14662 struct type *arg_type;
14663
14664 /* DWARF version 2 has no clean way to discern C++
14665 static and non-static member functions. G++ helps
14666 GDB by marking the first parameter for non-static
14667 member functions (which is the this pointer) as
14668 artificial. We pass this information to
14669 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14670
14671 DWARF version 3 added DW_AT_object_pointer, which GCC
14672 4.5 does not yet generate. */
14673 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14674 if (attr)
14675 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14676 else
14677 {
14678 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14679
14680 /* GCC/43521: In java, the formal parameter
14681 "this" is sometimes not marked with DW_AT_artificial. */
14682 if (cu->language == language_java)
14683 {
14684 const char *name = dwarf2_name (child_die, cu);
14685
14686 if (name && !strcmp (name, "this"))
14687 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14688 }
14689 }
14690 arg_type = die_type (child_die, cu);
14691
14692 /* RealView does not mark THIS as const, which the testsuite
14693 expects. GCC marks THIS as const in method definitions,
14694 but not in the class specifications (GCC PR 43053). */
14695 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14696 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14697 {
14698 int is_this = 0;
14699 struct dwarf2_cu *arg_cu = cu;
14700 const char *name = dwarf2_name (child_die, cu);
14701
14702 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14703 if (attr)
14704 {
14705 /* If the compiler emits this, use it. */
14706 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14707 is_this = 1;
14708 }
14709 else if (name && strcmp (name, "this") == 0)
14710 /* Function definitions will have the argument names. */
14711 is_this = 1;
14712 else if (name == NULL && iparams == 0)
14713 /* Declarations may not have the names, so like
14714 elsewhere in GDB, assume an artificial first
14715 argument is "this". */
14716 is_this = 1;
14717
14718 if (is_this)
14719 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14720 arg_type, 0);
14721 }
14722
14723 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14724 iparams++;
14725 }
14726 child_die = sibling_die (child_die);
14727 }
14728 }
14729
14730 return ftype;
14731 }
14732
14733 static struct type *
14734 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14735 {
14736 struct objfile *objfile = cu->objfile;
14737 const char *name = NULL;
14738 struct type *this_type, *target_type;
14739
14740 name = dwarf2_full_name (NULL, die, cu);
14741 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
14742 TYPE_TARGET_STUB (this_type) = 1;
14743 set_die_type (die, this_type, cu);
14744 target_type = die_type (die, cu);
14745 if (target_type != this_type)
14746 TYPE_TARGET_TYPE (this_type) = target_type;
14747 else
14748 {
14749 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14750 spec and cause infinite loops in GDB. */
14751 complaint (&symfile_complaints,
14752 _("Self-referential DW_TAG_typedef "
14753 "- DIE at 0x%x [in module %s]"),
14754 die->offset.sect_off, objfile_name (objfile));
14755 TYPE_TARGET_TYPE (this_type) = NULL;
14756 }
14757 return this_type;
14758 }
14759
14760 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
14761 (which may be different from NAME) to the architecture back-end to allow
14762 it to guess the correct format if necessary. */
14763
14764 static struct type *
14765 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
14766 const char *name_hint)
14767 {
14768 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14769 const struct floatformat **format;
14770 struct type *type;
14771
14772 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
14773 if (format)
14774 type = init_float_type (objfile, bits, name, format);
14775 else
14776 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
14777
14778 return type;
14779 }
14780
14781 /* Find a representation of a given base type and install
14782 it in the TYPE field of the die. */
14783
14784 static struct type *
14785 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14786 {
14787 struct objfile *objfile = cu->objfile;
14788 struct type *type;
14789 struct attribute *attr;
14790 int encoding = 0, bits = 0;
14791 const char *name;
14792
14793 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14794 if (attr)
14795 {
14796 encoding = DW_UNSND (attr);
14797 }
14798 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14799 if (attr)
14800 {
14801 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
14802 }
14803 name = dwarf2_name (die, cu);
14804 if (!name)
14805 {
14806 complaint (&symfile_complaints,
14807 _("DW_AT_name missing from DW_TAG_base_type"));
14808 }
14809
14810 switch (encoding)
14811 {
14812 case DW_ATE_address:
14813 /* Turn DW_ATE_address into a void * pointer. */
14814 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
14815 type = init_pointer_type (objfile, bits, name, type);
14816 break;
14817 case DW_ATE_boolean:
14818 type = init_boolean_type (objfile, bits, 1, name);
14819 break;
14820 case DW_ATE_complex_float:
14821 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
14822 type = init_complex_type (objfile, name, type);
14823 break;
14824 case DW_ATE_decimal_float:
14825 type = init_decfloat_type (objfile, bits, name);
14826 break;
14827 case DW_ATE_float:
14828 type = dwarf2_init_float_type (objfile, bits, name, name);
14829 break;
14830 case DW_ATE_signed:
14831 type = init_integer_type (objfile, bits, 0, name);
14832 break;
14833 case DW_ATE_unsigned:
14834 if (cu->language == language_fortran
14835 && name
14836 && startswith (name, "character("))
14837 type = init_character_type (objfile, bits, 1, name);
14838 else
14839 type = init_integer_type (objfile, bits, 1, name);
14840 break;
14841 case DW_ATE_signed_char:
14842 if (cu->language == language_ada || cu->language == language_m2
14843 || cu->language == language_pascal
14844 || cu->language == language_fortran)
14845 type = init_character_type (objfile, bits, 0, name);
14846 else
14847 type = init_integer_type (objfile, bits, 0, name);
14848 break;
14849 case DW_ATE_unsigned_char:
14850 if (cu->language == language_ada || cu->language == language_m2
14851 || cu->language == language_pascal
14852 || cu->language == language_fortran
14853 || cu->language == language_rust)
14854 type = init_character_type (objfile, bits, 1, name);
14855 else
14856 type = init_integer_type (objfile, bits, 1, name);
14857 break;
14858 case DW_ATE_UTF:
14859 /* We just treat this as an integer and then recognize the
14860 type by name elsewhere. */
14861 type = init_integer_type (objfile, bits, 0, name);
14862 break;
14863
14864 default:
14865 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14866 dwarf_type_encoding_name (encoding));
14867 type = init_type (objfile, TYPE_CODE_ERROR,
14868 bits / TARGET_CHAR_BIT, name);
14869 break;
14870 }
14871
14872 if (name && strcmp (name, "char") == 0)
14873 TYPE_NOSIGN (type) = 1;
14874
14875 return set_die_type (die, type, cu);
14876 }
14877
14878 /* Parse dwarf attribute if it's a block, reference or constant and put the
14879 resulting value of the attribute into struct bound_prop.
14880 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14881
14882 static int
14883 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14884 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14885 {
14886 struct dwarf2_property_baton *baton;
14887 struct obstack *obstack = &cu->objfile->objfile_obstack;
14888
14889 if (attr == NULL || prop == NULL)
14890 return 0;
14891
14892 if (attr_form_is_block (attr))
14893 {
14894 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14895 baton->referenced_type = NULL;
14896 baton->locexpr.per_cu = cu->per_cu;
14897 baton->locexpr.size = DW_BLOCK (attr)->size;
14898 baton->locexpr.data = DW_BLOCK (attr)->data;
14899 prop->data.baton = baton;
14900 prop->kind = PROP_LOCEXPR;
14901 gdb_assert (prop->data.baton != NULL);
14902 }
14903 else if (attr_form_is_ref (attr))
14904 {
14905 struct dwarf2_cu *target_cu = cu;
14906 struct die_info *target_die;
14907 struct attribute *target_attr;
14908
14909 target_die = follow_die_ref (die, attr, &target_cu);
14910 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14911 if (target_attr == NULL)
14912 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14913 target_cu);
14914 if (target_attr == NULL)
14915 return 0;
14916
14917 switch (target_attr->name)
14918 {
14919 case DW_AT_location:
14920 if (attr_form_is_section_offset (target_attr))
14921 {
14922 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14923 baton->referenced_type = die_type (target_die, target_cu);
14924 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14925 prop->data.baton = baton;
14926 prop->kind = PROP_LOCLIST;
14927 gdb_assert (prop->data.baton != NULL);
14928 }
14929 else if (attr_form_is_block (target_attr))
14930 {
14931 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14932 baton->referenced_type = die_type (target_die, target_cu);
14933 baton->locexpr.per_cu = cu->per_cu;
14934 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14935 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14936 prop->data.baton = baton;
14937 prop->kind = PROP_LOCEXPR;
14938 gdb_assert (prop->data.baton != NULL);
14939 }
14940 else
14941 {
14942 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14943 "dynamic property");
14944 return 0;
14945 }
14946 break;
14947 case DW_AT_data_member_location:
14948 {
14949 LONGEST offset;
14950
14951 if (!handle_data_member_location (target_die, target_cu,
14952 &offset))
14953 return 0;
14954
14955 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14956 baton->referenced_type = read_type_die (target_die->parent,
14957 target_cu);
14958 baton->offset_info.offset = offset;
14959 baton->offset_info.type = die_type (target_die, target_cu);
14960 prop->data.baton = baton;
14961 prop->kind = PROP_ADDR_OFFSET;
14962 break;
14963 }
14964 }
14965 }
14966 else if (attr_form_is_constant (attr))
14967 {
14968 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14969 prop->kind = PROP_CONST;
14970 }
14971 else
14972 {
14973 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14974 dwarf2_name (die, cu));
14975 return 0;
14976 }
14977
14978 return 1;
14979 }
14980
14981 /* Read the given DW_AT_subrange DIE. */
14982
14983 static struct type *
14984 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14985 {
14986 struct type *base_type, *orig_base_type;
14987 struct type *range_type;
14988 struct attribute *attr;
14989 struct dynamic_prop low, high;
14990 int low_default_is_valid;
14991 int high_bound_is_count = 0;
14992 const char *name;
14993 LONGEST negative_mask;
14994
14995 orig_base_type = die_type (die, cu);
14996 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14997 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14998 creating the range type, but we use the result of check_typedef
14999 when examining properties of the type. */
15000 base_type = check_typedef (orig_base_type);
15001
15002 /* The die_type call above may have already set the type for this DIE. */
15003 range_type = get_die_type (die, cu);
15004 if (range_type)
15005 return range_type;
15006
15007 low.kind = PROP_CONST;
15008 high.kind = PROP_CONST;
15009 high.data.const_val = 0;
15010
15011 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15012 omitting DW_AT_lower_bound. */
15013 switch (cu->language)
15014 {
15015 case language_c:
15016 case language_cplus:
15017 low.data.const_val = 0;
15018 low_default_is_valid = 1;
15019 break;
15020 case language_fortran:
15021 low.data.const_val = 1;
15022 low_default_is_valid = 1;
15023 break;
15024 case language_d:
15025 case language_java:
15026 case language_objc:
15027 case language_rust:
15028 low.data.const_val = 0;
15029 low_default_is_valid = (cu->header.version >= 4);
15030 break;
15031 case language_ada:
15032 case language_m2:
15033 case language_pascal:
15034 low.data.const_val = 1;
15035 low_default_is_valid = (cu->header.version >= 4);
15036 break;
15037 default:
15038 low.data.const_val = 0;
15039 low_default_is_valid = 0;
15040 break;
15041 }
15042
15043 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
15044 if (attr)
15045 attr_to_dynamic_prop (attr, die, cu, &low);
15046 else if (!low_default_is_valid)
15047 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15048 "- DIE at 0x%x [in module %s]"),
15049 die->offset.sect_off, objfile_name (cu->objfile));
15050
15051 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
15052 if (!attr_to_dynamic_prop (attr, die, cu, &high))
15053 {
15054 attr = dwarf2_attr (die, DW_AT_count, cu);
15055 if (attr_to_dynamic_prop (attr, die, cu, &high))
15056 {
15057 /* If bounds are constant do the final calculation here. */
15058 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15059 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15060 else
15061 high_bound_is_count = 1;
15062 }
15063 }
15064
15065 /* Dwarf-2 specifications explicitly allows to create subrange types
15066 without specifying a base type.
15067 In that case, the base type must be set to the type of
15068 the lower bound, upper bound or count, in that order, if any of these
15069 three attributes references an object that has a type.
15070 If no base type is found, the Dwarf-2 specifications say that
15071 a signed integer type of size equal to the size of an address should
15072 be used.
15073 For the following C code: `extern char gdb_int [];'
15074 GCC produces an empty range DIE.
15075 FIXME: muller/2010-05-28: Possible references to object for low bound,
15076 high bound or count are not yet handled by this code. */
15077 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15078 {
15079 struct objfile *objfile = cu->objfile;
15080 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15081 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15082 struct type *int_type = objfile_type (objfile)->builtin_int;
15083
15084 /* Test "int", "long int", and "long long int" objfile types,
15085 and select the first one having a size above or equal to the
15086 architecture address size. */
15087 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15088 base_type = int_type;
15089 else
15090 {
15091 int_type = objfile_type (objfile)->builtin_long;
15092 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15093 base_type = int_type;
15094 else
15095 {
15096 int_type = objfile_type (objfile)->builtin_long_long;
15097 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15098 base_type = int_type;
15099 }
15100 }
15101 }
15102
15103 /* Normally, the DWARF producers are expected to use a signed
15104 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15105 But this is unfortunately not always the case, as witnessed
15106 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15107 is used instead. To work around that ambiguity, we treat
15108 the bounds as signed, and thus sign-extend their values, when
15109 the base type is signed. */
15110 negative_mask =
15111 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15112 if (low.kind == PROP_CONST
15113 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15114 low.data.const_val |= negative_mask;
15115 if (high.kind == PROP_CONST
15116 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15117 high.data.const_val |= negative_mask;
15118
15119 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15120
15121 if (high_bound_is_count)
15122 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15123
15124 /* Ada expects an empty array on no boundary attributes. */
15125 if (attr == NULL && cu->language != language_ada)
15126 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15127
15128 name = dwarf2_name (die, cu);
15129 if (name)
15130 TYPE_NAME (range_type) = name;
15131
15132 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15133 if (attr)
15134 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15135
15136 set_die_type (die, range_type, cu);
15137
15138 /* set_die_type should be already done. */
15139 set_descriptive_type (range_type, die, cu);
15140
15141 return range_type;
15142 }
15143
15144 static struct type *
15145 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15146 {
15147 struct type *type;
15148
15149 /* For now, we only support the C meaning of an unspecified type: void. */
15150
15151 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
15152 TYPE_NAME (type) = dwarf2_name (die, cu);
15153
15154 return set_die_type (die, type, cu);
15155 }
15156
15157 /* Read a single die and all its descendents. Set the die's sibling
15158 field to NULL; set other fields in the die correctly, and set all
15159 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15160 location of the info_ptr after reading all of those dies. PARENT
15161 is the parent of the die in question. */
15162
15163 static struct die_info *
15164 read_die_and_children (const struct die_reader_specs *reader,
15165 const gdb_byte *info_ptr,
15166 const gdb_byte **new_info_ptr,
15167 struct die_info *parent)
15168 {
15169 struct die_info *die;
15170 const gdb_byte *cur_ptr;
15171 int has_children;
15172
15173 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15174 if (die == NULL)
15175 {
15176 *new_info_ptr = cur_ptr;
15177 return NULL;
15178 }
15179 store_in_ref_table (die, reader->cu);
15180
15181 if (has_children)
15182 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15183 else
15184 {
15185 die->child = NULL;
15186 *new_info_ptr = cur_ptr;
15187 }
15188
15189 die->sibling = NULL;
15190 die->parent = parent;
15191 return die;
15192 }
15193
15194 /* Read a die, all of its descendents, and all of its siblings; set
15195 all of the fields of all of the dies correctly. Arguments are as
15196 in read_die_and_children. */
15197
15198 static struct die_info *
15199 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15200 const gdb_byte *info_ptr,
15201 const gdb_byte **new_info_ptr,
15202 struct die_info *parent)
15203 {
15204 struct die_info *first_die, *last_sibling;
15205 const gdb_byte *cur_ptr;
15206
15207 cur_ptr = info_ptr;
15208 first_die = last_sibling = NULL;
15209
15210 while (1)
15211 {
15212 struct die_info *die
15213 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15214
15215 if (die == NULL)
15216 {
15217 *new_info_ptr = cur_ptr;
15218 return first_die;
15219 }
15220
15221 if (!first_die)
15222 first_die = die;
15223 else
15224 last_sibling->sibling = die;
15225
15226 last_sibling = die;
15227 }
15228 }
15229
15230 /* Read a die, all of its descendents, and all of its siblings; set
15231 all of the fields of all of the dies correctly. Arguments are as
15232 in read_die_and_children.
15233 This the main entry point for reading a DIE and all its children. */
15234
15235 static struct die_info *
15236 read_die_and_siblings (const struct die_reader_specs *reader,
15237 const gdb_byte *info_ptr,
15238 const gdb_byte **new_info_ptr,
15239 struct die_info *parent)
15240 {
15241 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15242 new_info_ptr, parent);
15243
15244 if (dwarf_die_debug)
15245 {
15246 fprintf_unfiltered (gdb_stdlog,
15247 "Read die from %s@0x%x of %s:\n",
15248 get_section_name (reader->die_section),
15249 (unsigned) (info_ptr - reader->die_section->buffer),
15250 bfd_get_filename (reader->abfd));
15251 dump_die (die, dwarf_die_debug);
15252 }
15253
15254 return die;
15255 }
15256
15257 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15258 attributes.
15259 The caller is responsible for filling in the extra attributes
15260 and updating (*DIEP)->num_attrs.
15261 Set DIEP to point to a newly allocated die with its information,
15262 except for its child, sibling, and parent fields.
15263 Set HAS_CHILDREN to tell whether the die has children or not. */
15264
15265 static const gdb_byte *
15266 read_full_die_1 (const struct die_reader_specs *reader,
15267 struct die_info **diep, const gdb_byte *info_ptr,
15268 int *has_children, int num_extra_attrs)
15269 {
15270 unsigned int abbrev_number, bytes_read, i;
15271 sect_offset offset;
15272 struct abbrev_info *abbrev;
15273 struct die_info *die;
15274 struct dwarf2_cu *cu = reader->cu;
15275 bfd *abfd = reader->abfd;
15276
15277 offset.sect_off = info_ptr - reader->buffer;
15278 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15279 info_ptr += bytes_read;
15280 if (!abbrev_number)
15281 {
15282 *diep = NULL;
15283 *has_children = 0;
15284 return info_ptr;
15285 }
15286
15287 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15288 if (!abbrev)
15289 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15290 abbrev_number,
15291 bfd_get_filename (abfd));
15292
15293 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15294 die->offset = offset;
15295 die->tag = abbrev->tag;
15296 die->abbrev = abbrev_number;
15297
15298 /* Make the result usable.
15299 The caller needs to update num_attrs after adding the extra
15300 attributes. */
15301 die->num_attrs = abbrev->num_attrs;
15302
15303 for (i = 0; i < abbrev->num_attrs; ++i)
15304 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15305 info_ptr);
15306
15307 *diep = die;
15308 *has_children = abbrev->has_children;
15309 return info_ptr;
15310 }
15311
15312 /* Read a die and all its attributes.
15313 Set DIEP to point to a newly allocated die with its information,
15314 except for its child, sibling, and parent fields.
15315 Set HAS_CHILDREN to tell whether the die has children or not. */
15316
15317 static const gdb_byte *
15318 read_full_die (const struct die_reader_specs *reader,
15319 struct die_info **diep, const gdb_byte *info_ptr,
15320 int *has_children)
15321 {
15322 const gdb_byte *result;
15323
15324 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15325
15326 if (dwarf_die_debug)
15327 {
15328 fprintf_unfiltered (gdb_stdlog,
15329 "Read die from %s@0x%x of %s:\n",
15330 get_section_name (reader->die_section),
15331 (unsigned) (info_ptr - reader->die_section->buffer),
15332 bfd_get_filename (reader->abfd));
15333 dump_die (*diep, dwarf_die_debug);
15334 }
15335
15336 return result;
15337 }
15338 \f
15339 /* Abbreviation tables.
15340
15341 In DWARF version 2, the description of the debugging information is
15342 stored in a separate .debug_abbrev section. Before we read any
15343 dies from a section we read in all abbreviations and install them
15344 in a hash table. */
15345
15346 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15347
15348 static struct abbrev_info *
15349 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15350 {
15351 struct abbrev_info *abbrev;
15352
15353 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15354 memset (abbrev, 0, sizeof (struct abbrev_info));
15355
15356 return abbrev;
15357 }
15358
15359 /* Add an abbreviation to the table. */
15360
15361 static void
15362 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15363 unsigned int abbrev_number,
15364 struct abbrev_info *abbrev)
15365 {
15366 unsigned int hash_number;
15367
15368 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15369 abbrev->next = abbrev_table->abbrevs[hash_number];
15370 abbrev_table->abbrevs[hash_number] = abbrev;
15371 }
15372
15373 /* Look up an abbrev in the table.
15374 Returns NULL if the abbrev is not found. */
15375
15376 static struct abbrev_info *
15377 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15378 unsigned int abbrev_number)
15379 {
15380 unsigned int hash_number;
15381 struct abbrev_info *abbrev;
15382
15383 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15384 abbrev = abbrev_table->abbrevs[hash_number];
15385
15386 while (abbrev)
15387 {
15388 if (abbrev->number == abbrev_number)
15389 return abbrev;
15390 abbrev = abbrev->next;
15391 }
15392 return NULL;
15393 }
15394
15395 /* Read in an abbrev table. */
15396
15397 static struct abbrev_table *
15398 abbrev_table_read_table (struct dwarf2_section_info *section,
15399 sect_offset offset)
15400 {
15401 struct objfile *objfile = dwarf2_per_objfile->objfile;
15402 bfd *abfd = get_section_bfd_owner (section);
15403 struct abbrev_table *abbrev_table;
15404 const gdb_byte *abbrev_ptr;
15405 struct abbrev_info *cur_abbrev;
15406 unsigned int abbrev_number, bytes_read, abbrev_name;
15407 unsigned int abbrev_form;
15408 struct attr_abbrev *cur_attrs;
15409 unsigned int allocated_attrs;
15410
15411 abbrev_table = XNEW (struct abbrev_table);
15412 abbrev_table->offset = offset;
15413 obstack_init (&abbrev_table->abbrev_obstack);
15414 abbrev_table->abbrevs =
15415 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15416 ABBREV_HASH_SIZE);
15417 memset (abbrev_table->abbrevs, 0,
15418 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15419
15420 dwarf2_read_section (objfile, section);
15421 abbrev_ptr = section->buffer + offset.sect_off;
15422 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15423 abbrev_ptr += bytes_read;
15424
15425 allocated_attrs = ATTR_ALLOC_CHUNK;
15426 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15427
15428 /* Loop until we reach an abbrev number of 0. */
15429 while (abbrev_number)
15430 {
15431 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15432
15433 /* read in abbrev header */
15434 cur_abbrev->number = abbrev_number;
15435 cur_abbrev->tag
15436 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15437 abbrev_ptr += bytes_read;
15438 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15439 abbrev_ptr += 1;
15440
15441 /* now read in declarations */
15442 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15443 abbrev_ptr += bytes_read;
15444 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15445 abbrev_ptr += bytes_read;
15446 while (abbrev_name)
15447 {
15448 if (cur_abbrev->num_attrs == allocated_attrs)
15449 {
15450 allocated_attrs += ATTR_ALLOC_CHUNK;
15451 cur_attrs
15452 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15453 }
15454
15455 cur_attrs[cur_abbrev->num_attrs].name
15456 = (enum dwarf_attribute) abbrev_name;
15457 cur_attrs[cur_abbrev->num_attrs++].form
15458 = (enum dwarf_form) abbrev_form;
15459 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15460 abbrev_ptr += bytes_read;
15461 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15462 abbrev_ptr += bytes_read;
15463 }
15464
15465 cur_abbrev->attrs =
15466 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15467 cur_abbrev->num_attrs);
15468 memcpy (cur_abbrev->attrs, cur_attrs,
15469 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15470
15471 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15472
15473 /* Get next abbreviation.
15474 Under Irix6 the abbreviations for a compilation unit are not
15475 always properly terminated with an abbrev number of 0.
15476 Exit loop if we encounter an abbreviation which we have
15477 already read (which means we are about to read the abbreviations
15478 for the next compile unit) or if the end of the abbreviation
15479 table is reached. */
15480 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15481 break;
15482 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15483 abbrev_ptr += bytes_read;
15484 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15485 break;
15486 }
15487
15488 xfree (cur_attrs);
15489 return abbrev_table;
15490 }
15491
15492 /* Free the resources held by ABBREV_TABLE. */
15493
15494 static void
15495 abbrev_table_free (struct abbrev_table *abbrev_table)
15496 {
15497 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15498 xfree (abbrev_table);
15499 }
15500
15501 /* Same as abbrev_table_free but as a cleanup.
15502 We pass in a pointer to the pointer to the table so that we can
15503 set the pointer to NULL when we're done. It also simplifies
15504 build_type_psymtabs_1. */
15505
15506 static void
15507 abbrev_table_free_cleanup (void *table_ptr)
15508 {
15509 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15510
15511 if (*abbrev_table_ptr != NULL)
15512 abbrev_table_free (*abbrev_table_ptr);
15513 *abbrev_table_ptr = NULL;
15514 }
15515
15516 /* Read the abbrev table for CU from ABBREV_SECTION. */
15517
15518 static void
15519 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15520 struct dwarf2_section_info *abbrev_section)
15521 {
15522 cu->abbrev_table =
15523 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15524 }
15525
15526 /* Release the memory used by the abbrev table for a compilation unit. */
15527
15528 static void
15529 dwarf2_free_abbrev_table (void *ptr_to_cu)
15530 {
15531 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15532
15533 if (cu->abbrev_table != NULL)
15534 abbrev_table_free (cu->abbrev_table);
15535 /* Set this to NULL so that we SEGV if we try to read it later,
15536 and also because free_comp_unit verifies this is NULL. */
15537 cu->abbrev_table = NULL;
15538 }
15539 \f
15540 /* Returns nonzero if TAG represents a type that we might generate a partial
15541 symbol for. */
15542
15543 static int
15544 is_type_tag_for_partial (int tag)
15545 {
15546 switch (tag)
15547 {
15548 #if 0
15549 /* Some types that would be reasonable to generate partial symbols for,
15550 that we don't at present. */
15551 case DW_TAG_array_type:
15552 case DW_TAG_file_type:
15553 case DW_TAG_ptr_to_member_type:
15554 case DW_TAG_set_type:
15555 case DW_TAG_string_type:
15556 case DW_TAG_subroutine_type:
15557 #endif
15558 case DW_TAG_base_type:
15559 case DW_TAG_class_type:
15560 case DW_TAG_interface_type:
15561 case DW_TAG_enumeration_type:
15562 case DW_TAG_structure_type:
15563 case DW_TAG_subrange_type:
15564 case DW_TAG_typedef:
15565 case DW_TAG_union_type:
15566 return 1;
15567 default:
15568 return 0;
15569 }
15570 }
15571
15572 /* Load all DIEs that are interesting for partial symbols into memory. */
15573
15574 static struct partial_die_info *
15575 load_partial_dies (const struct die_reader_specs *reader,
15576 const gdb_byte *info_ptr, int building_psymtab)
15577 {
15578 struct dwarf2_cu *cu = reader->cu;
15579 struct objfile *objfile = cu->objfile;
15580 struct partial_die_info *part_die;
15581 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15582 struct abbrev_info *abbrev;
15583 unsigned int bytes_read;
15584 unsigned int load_all = 0;
15585 int nesting_level = 1;
15586
15587 parent_die = NULL;
15588 last_die = NULL;
15589
15590 gdb_assert (cu->per_cu != NULL);
15591 if (cu->per_cu->load_all_dies)
15592 load_all = 1;
15593
15594 cu->partial_dies
15595 = htab_create_alloc_ex (cu->header.length / 12,
15596 partial_die_hash,
15597 partial_die_eq,
15598 NULL,
15599 &cu->comp_unit_obstack,
15600 hashtab_obstack_allocate,
15601 dummy_obstack_deallocate);
15602
15603 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15604
15605 while (1)
15606 {
15607 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15608
15609 /* A NULL abbrev means the end of a series of children. */
15610 if (abbrev == NULL)
15611 {
15612 if (--nesting_level == 0)
15613 {
15614 /* PART_DIE was probably the last thing allocated on the
15615 comp_unit_obstack, so we could call obstack_free
15616 here. We don't do that because the waste is small,
15617 and will be cleaned up when we're done with this
15618 compilation unit. This way, we're also more robust
15619 against other users of the comp_unit_obstack. */
15620 return first_die;
15621 }
15622 info_ptr += bytes_read;
15623 last_die = parent_die;
15624 parent_die = parent_die->die_parent;
15625 continue;
15626 }
15627
15628 /* Check for template arguments. We never save these; if
15629 they're seen, we just mark the parent, and go on our way. */
15630 if (parent_die != NULL
15631 && cu->language == language_cplus
15632 && (abbrev->tag == DW_TAG_template_type_param
15633 || abbrev->tag == DW_TAG_template_value_param))
15634 {
15635 parent_die->has_template_arguments = 1;
15636
15637 if (!load_all)
15638 {
15639 /* We don't need a partial DIE for the template argument. */
15640 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15641 continue;
15642 }
15643 }
15644
15645 /* We only recurse into c++ subprograms looking for template arguments.
15646 Skip their other children. */
15647 if (!load_all
15648 && cu->language == language_cplus
15649 && parent_die != NULL
15650 && parent_die->tag == DW_TAG_subprogram)
15651 {
15652 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15653 continue;
15654 }
15655
15656 /* Check whether this DIE is interesting enough to save. Normally
15657 we would not be interested in members here, but there may be
15658 later variables referencing them via DW_AT_specification (for
15659 static members). */
15660 if (!load_all
15661 && !is_type_tag_for_partial (abbrev->tag)
15662 && abbrev->tag != DW_TAG_constant
15663 && abbrev->tag != DW_TAG_enumerator
15664 && abbrev->tag != DW_TAG_subprogram
15665 && abbrev->tag != DW_TAG_lexical_block
15666 && abbrev->tag != DW_TAG_variable
15667 && abbrev->tag != DW_TAG_namespace
15668 && abbrev->tag != DW_TAG_module
15669 && abbrev->tag != DW_TAG_member
15670 && abbrev->tag != DW_TAG_imported_unit
15671 && abbrev->tag != DW_TAG_imported_declaration)
15672 {
15673 /* Otherwise we skip to the next sibling, if any. */
15674 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15675 continue;
15676 }
15677
15678 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15679 info_ptr);
15680
15681 /* This two-pass algorithm for processing partial symbols has a
15682 high cost in cache pressure. Thus, handle some simple cases
15683 here which cover the majority of C partial symbols. DIEs
15684 which neither have specification tags in them, nor could have
15685 specification tags elsewhere pointing at them, can simply be
15686 processed and discarded.
15687
15688 This segment is also optional; scan_partial_symbols and
15689 add_partial_symbol will handle these DIEs if we chain
15690 them in normally. When compilers which do not emit large
15691 quantities of duplicate debug information are more common,
15692 this code can probably be removed. */
15693
15694 /* Any complete simple types at the top level (pretty much all
15695 of them, for a language without namespaces), can be processed
15696 directly. */
15697 if (parent_die == NULL
15698 && part_die->has_specification == 0
15699 && part_die->is_declaration == 0
15700 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15701 || part_die->tag == DW_TAG_base_type
15702 || part_die->tag == DW_TAG_subrange_type))
15703 {
15704 if (building_psymtab && part_die->name != NULL)
15705 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15706 VAR_DOMAIN, LOC_TYPEDEF,
15707 &objfile->static_psymbols,
15708 0, cu->language, objfile);
15709 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15710 continue;
15711 }
15712
15713 /* The exception for DW_TAG_typedef with has_children above is
15714 a workaround of GCC PR debug/47510. In the case of this complaint
15715 type_name_no_tag_or_error will error on such types later.
15716
15717 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15718 it could not find the child DIEs referenced later, this is checked
15719 above. In correct DWARF DW_TAG_typedef should have no children. */
15720
15721 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15722 complaint (&symfile_complaints,
15723 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15724 "- DIE at 0x%x [in module %s]"),
15725 part_die->offset.sect_off, objfile_name (objfile));
15726
15727 /* If we're at the second level, and we're an enumerator, and
15728 our parent has no specification (meaning possibly lives in a
15729 namespace elsewhere), then we can add the partial symbol now
15730 instead of queueing it. */
15731 if (part_die->tag == DW_TAG_enumerator
15732 && parent_die != NULL
15733 && parent_die->die_parent == NULL
15734 && parent_die->tag == DW_TAG_enumeration_type
15735 && parent_die->has_specification == 0)
15736 {
15737 if (part_die->name == NULL)
15738 complaint (&symfile_complaints,
15739 _("malformed enumerator DIE ignored"));
15740 else if (building_psymtab)
15741 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15742 VAR_DOMAIN, LOC_CONST,
15743 (cu->language == language_cplus
15744 || cu->language == language_java)
15745 ? &objfile->global_psymbols
15746 : &objfile->static_psymbols,
15747 0, cu->language, objfile);
15748
15749 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15750 continue;
15751 }
15752
15753 /* We'll save this DIE so link it in. */
15754 part_die->die_parent = parent_die;
15755 part_die->die_sibling = NULL;
15756 part_die->die_child = NULL;
15757
15758 if (last_die && last_die == parent_die)
15759 last_die->die_child = part_die;
15760 else if (last_die)
15761 last_die->die_sibling = part_die;
15762
15763 last_die = part_die;
15764
15765 if (first_die == NULL)
15766 first_die = part_die;
15767
15768 /* Maybe add the DIE to the hash table. Not all DIEs that we
15769 find interesting need to be in the hash table, because we
15770 also have the parent/sibling/child chains; only those that we
15771 might refer to by offset later during partial symbol reading.
15772
15773 For now this means things that might have be the target of a
15774 DW_AT_specification, DW_AT_abstract_origin, or
15775 DW_AT_extension. DW_AT_extension will refer only to
15776 namespaces; DW_AT_abstract_origin refers to functions (and
15777 many things under the function DIE, but we do not recurse
15778 into function DIEs during partial symbol reading) and
15779 possibly variables as well; DW_AT_specification refers to
15780 declarations. Declarations ought to have the DW_AT_declaration
15781 flag. It happens that GCC forgets to put it in sometimes, but
15782 only for functions, not for types.
15783
15784 Adding more things than necessary to the hash table is harmless
15785 except for the performance cost. Adding too few will result in
15786 wasted time in find_partial_die, when we reread the compilation
15787 unit with load_all_dies set. */
15788
15789 if (load_all
15790 || abbrev->tag == DW_TAG_constant
15791 || abbrev->tag == DW_TAG_subprogram
15792 || abbrev->tag == DW_TAG_variable
15793 || abbrev->tag == DW_TAG_namespace
15794 || part_die->is_declaration)
15795 {
15796 void **slot;
15797
15798 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15799 part_die->offset.sect_off, INSERT);
15800 *slot = part_die;
15801 }
15802
15803 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15804
15805 /* For some DIEs we want to follow their children (if any). For C
15806 we have no reason to follow the children of structures; for other
15807 languages we have to, so that we can get at method physnames
15808 to infer fully qualified class names, for DW_AT_specification,
15809 and for C++ template arguments. For C++, we also look one level
15810 inside functions to find template arguments (if the name of the
15811 function does not already contain the template arguments).
15812
15813 For Ada, we need to scan the children of subprograms and lexical
15814 blocks as well because Ada allows the definition of nested
15815 entities that could be interesting for the debugger, such as
15816 nested subprograms for instance. */
15817 if (last_die->has_children
15818 && (load_all
15819 || last_die->tag == DW_TAG_namespace
15820 || last_die->tag == DW_TAG_module
15821 || last_die->tag == DW_TAG_enumeration_type
15822 || (cu->language == language_cplus
15823 && last_die->tag == DW_TAG_subprogram
15824 && (last_die->name == NULL
15825 || strchr (last_die->name, '<') == NULL))
15826 || (cu->language != language_c
15827 && (last_die->tag == DW_TAG_class_type
15828 || last_die->tag == DW_TAG_interface_type
15829 || last_die->tag == DW_TAG_structure_type
15830 || last_die->tag == DW_TAG_union_type))
15831 || (cu->language == language_ada
15832 && (last_die->tag == DW_TAG_subprogram
15833 || last_die->tag == DW_TAG_lexical_block))))
15834 {
15835 nesting_level++;
15836 parent_die = last_die;
15837 continue;
15838 }
15839
15840 /* Otherwise we skip to the next sibling, if any. */
15841 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15842
15843 /* Back to the top, do it again. */
15844 }
15845 }
15846
15847 /* Read a minimal amount of information into the minimal die structure. */
15848
15849 static const gdb_byte *
15850 read_partial_die (const struct die_reader_specs *reader,
15851 struct partial_die_info *part_die,
15852 struct abbrev_info *abbrev, unsigned int abbrev_len,
15853 const gdb_byte *info_ptr)
15854 {
15855 struct dwarf2_cu *cu = reader->cu;
15856 struct objfile *objfile = cu->objfile;
15857 const gdb_byte *buffer = reader->buffer;
15858 unsigned int i;
15859 struct attribute attr;
15860 int has_low_pc_attr = 0;
15861 int has_high_pc_attr = 0;
15862 int high_pc_relative = 0;
15863
15864 memset (part_die, 0, sizeof (struct partial_die_info));
15865
15866 part_die->offset.sect_off = info_ptr - buffer;
15867
15868 info_ptr += abbrev_len;
15869
15870 if (abbrev == NULL)
15871 return info_ptr;
15872
15873 part_die->tag = abbrev->tag;
15874 part_die->has_children = abbrev->has_children;
15875
15876 for (i = 0; i < abbrev->num_attrs; ++i)
15877 {
15878 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15879
15880 /* Store the data if it is of an attribute we want to keep in a
15881 partial symbol table. */
15882 switch (attr.name)
15883 {
15884 case DW_AT_name:
15885 switch (part_die->tag)
15886 {
15887 case DW_TAG_compile_unit:
15888 case DW_TAG_partial_unit:
15889 case DW_TAG_type_unit:
15890 /* Compilation units have a DW_AT_name that is a filename, not
15891 a source language identifier. */
15892 case DW_TAG_enumeration_type:
15893 case DW_TAG_enumerator:
15894 /* These tags always have simple identifiers already; no need
15895 to canonicalize them. */
15896 part_die->name = DW_STRING (&attr);
15897 break;
15898 default:
15899 part_die->name
15900 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15901 &objfile->per_bfd->storage_obstack);
15902 break;
15903 }
15904 break;
15905 case DW_AT_linkage_name:
15906 case DW_AT_MIPS_linkage_name:
15907 /* Note that both forms of linkage name might appear. We
15908 assume they will be the same, and we only store the last
15909 one we see. */
15910 if (cu->language == language_ada)
15911 part_die->name = DW_STRING (&attr);
15912 part_die->linkage_name = DW_STRING (&attr);
15913 break;
15914 case DW_AT_low_pc:
15915 has_low_pc_attr = 1;
15916 part_die->lowpc = attr_value_as_address (&attr);
15917 break;
15918 case DW_AT_high_pc:
15919 has_high_pc_attr = 1;
15920 part_die->highpc = attr_value_as_address (&attr);
15921 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15922 high_pc_relative = 1;
15923 break;
15924 case DW_AT_location:
15925 /* Support the .debug_loc offsets. */
15926 if (attr_form_is_block (&attr))
15927 {
15928 part_die->d.locdesc = DW_BLOCK (&attr);
15929 }
15930 else if (attr_form_is_section_offset (&attr))
15931 {
15932 dwarf2_complex_location_expr_complaint ();
15933 }
15934 else
15935 {
15936 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15937 "partial symbol information");
15938 }
15939 break;
15940 case DW_AT_external:
15941 part_die->is_external = DW_UNSND (&attr);
15942 break;
15943 case DW_AT_declaration:
15944 part_die->is_declaration = DW_UNSND (&attr);
15945 break;
15946 case DW_AT_type:
15947 part_die->has_type = 1;
15948 break;
15949 case DW_AT_abstract_origin:
15950 case DW_AT_specification:
15951 case DW_AT_extension:
15952 part_die->has_specification = 1;
15953 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15954 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15955 || cu->per_cu->is_dwz);
15956 break;
15957 case DW_AT_sibling:
15958 /* Ignore absolute siblings, they might point outside of
15959 the current compile unit. */
15960 if (attr.form == DW_FORM_ref_addr)
15961 complaint (&symfile_complaints,
15962 _("ignoring absolute DW_AT_sibling"));
15963 else
15964 {
15965 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15966 const gdb_byte *sibling_ptr = buffer + off;
15967
15968 if (sibling_ptr < info_ptr)
15969 complaint (&symfile_complaints,
15970 _("DW_AT_sibling points backwards"));
15971 else if (sibling_ptr > reader->buffer_end)
15972 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15973 else
15974 part_die->sibling = sibling_ptr;
15975 }
15976 break;
15977 case DW_AT_byte_size:
15978 part_die->has_byte_size = 1;
15979 break;
15980 case DW_AT_const_value:
15981 part_die->has_const_value = 1;
15982 break;
15983 case DW_AT_calling_convention:
15984 /* DWARF doesn't provide a way to identify a program's source-level
15985 entry point. DW_AT_calling_convention attributes are only meant
15986 to describe functions' calling conventions.
15987
15988 However, because it's a necessary piece of information in
15989 Fortran, and because DW_CC_program is the only piece of debugging
15990 information whose definition refers to a 'main program' at all,
15991 several compilers have begun marking Fortran main programs with
15992 DW_CC_program --- even when those functions use the standard
15993 calling conventions.
15994
15995 So until DWARF specifies a way to provide this information and
15996 compilers pick up the new representation, we'll support this
15997 practice. */
15998 if (DW_UNSND (&attr) == DW_CC_program
15999 && cu->language == language_fortran
16000 && part_die->name != NULL)
16001 set_objfile_main_name (objfile, part_die->name, language_fortran);
16002 break;
16003 case DW_AT_inline:
16004 if (DW_UNSND (&attr) == DW_INL_inlined
16005 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16006 part_die->may_be_inlined = 1;
16007 break;
16008
16009 case DW_AT_import:
16010 if (part_die->tag == DW_TAG_imported_unit)
16011 {
16012 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
16013 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16014 || cu->per_cu->is_dwz);
16015 }
16016 break;
16017
16018 default:
16019 break;
16020 }
16021 }
16022
16023 if (high_pc_relative)
16024 part_die->highpc += part_die->lowpc;
16025
16026 if (has_low_pc_attr && has_high_pc_attr)
16027 {
16028 /* When using the GNU linker, .gnu.linkonce. sections are used to
16029 eliminate duplicate copies of functions and vtables and such.
16030 The linker will arbitrarily choose one and discard the others.
16031 The AT_*_pc values for such functions refer to local labels in
16032 these sections. If the section from that file was discarded, the
16033 labels are not in the output, so the relocs get a value of 0.
16034 If this is a discarded function, mark the pc bounds as invalid,
16035 so that GDB will ignore it. */
16036 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16037 {
16038 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16039
16040 complaint (&symfile_complaints,
16041 _("DW_AT_low_pc %s is zero "
16042 "for DIE at 0x%x [in module %s]"),
16043 paddress (gdbarch, part_die->lowpc),
16044 part_die->offset.sect_off, objfile_name (objfile));
16045 }
16046 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16047 else if (part_die->lowpc >= part_die->highpc)
16048 {
16049 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16050
16051 complaint (&symfile_complaints,
16052 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16053 "for DIE at 0x%x [in module %s]"),
16054 paddress (gdbarch, part_die->lowpc),
16055 paddress (gdbarch, part_die->highpc),
16056 part_die->offset.sect_off, objfile_name (objfile));
16057 }
16058 else
16059 part_die->has_pc_info = 1;
16060 }
16061
16062 return info_ptr;
16063 }
16064
16065 /* Find a cached partial DIE at OFFSET in CU. */
16066
16067 static struct partial_die_info *
16068 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
16069 {
16070 struct partial_die_info *lookup_die = NULL;
16071 struct partial_die_info part_die;
16072
16073 part_die.offset = offset;
16074 lookup_die = ((struct partial_die_info *)
16075 htab_find_with_hash (cu->partial_dies, &part_die,
16076 offset.sect_off));
16077
16078 return lookup_die;
16079 }
16080
16081 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16082 except in the case of .debug_types DIEs which do not reference
16083 outside their CU (they do however referencing other types via
16084 DW_FORM_ref_sig8). */
16085
16086 static struct partial_die_info *
16087 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
16088 {
16089 struct objfile *objfile = cu->objfile;
16090 struct dwarf2_per_cu_data *per_cu = NULL;
16091 struct partial_die_info *pd = NULL;
16092
16093 if (offset_in_dwz == cu->per_cu->is_dwz
16094 && offset_in_cu_p (&cu->header, offset))
16095 {
16096 pd = find_partial_die_in_comp_unit (offset, cu);
16097 if (pd != NULL)
16098 return pd;
16099 /* We missed recording what we needed.
16100 Load all dies and try again. */
16101 per_cu = cu->per_cu;
16102 }
16103 else
16104 {
16105 /* TUs don't reference other CUs/TUs (except via type signatures). */
16106 if (cu->per_cu->is_debug_types)
16107 {
16108 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16109 " external reference to offset 0x%lx [in module %s].\n"),
16110 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16111 bfd_get_filename (objfile->obfd));
16112 }
16113 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16114 objfile);
16115
16116 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16117 load_partial_comp_unit (per_cu);
16118
16119 per_cu->cu->last_used = 0;
16120 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16121 }
16122
16123 /* If we didn't find it, and not all dies have been loaded,
16124 load them all and try again. */
16125
16126 if (pd == NULL && per_cu->load_all_dies == 0)
16127 {
16128 per_cu->load_all_dies = 1;
16129
16130 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16131 THIS_CU->cu may already be in use. So we can't just free it and
16132 replace its DIEs with the ones we read in. Instead, we leave those
16133 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16134 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16135 set. */
16136 load_partial_comp_unit (per_cu);
16137
16138 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16139 }
16140
16141 if (pd == NULL)
16142 internal_error (__FILE__, __LINE__,
16143 _("could not find partial DIE 0x%x "
16144 "in cache [from module %s]\n"),
16145 offset.sect_off, bfd_get_filename (objfile->obfd));
16146 return pd;
16147 }
16148
16149 /* See if we can figure out if the class lives in a namespace. We do
16150 this by looking for a member function; its demangled name will
16151 contain namespace info, if there is any. */
16152
16153 static void
16154 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16155 struct dwarf2_cu *cu)
16156 {
16157 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16158 what template types look like, because the demangler
16159 frequently doesn't give the same name as the debug info. We
16160 could fix this by only using the demangled name to get the
16161 prefix (but see comment in read_structure_type). */
16162
16163 struct partial_die_info *real_pdi;
16164 struct partial_die_info *child_pdi;
16165
16166 /* If this DIE (this DIE's specification, if any) has a parent, then
16167 we should not do this. We'll prepend the parent's fully qualified
16168 name when we create the partial symbol. */
16169
16170 real_pdi = struct_pdi;
16171 while (real_pdi->has_specification)
16172 real_pdi = find_partial_die (real_pdi->spec_offset,
16173 real_pdi->spec_is_dwz, cu);
16174
16175 if (real_pdi->die_parent != NULL)
16176 return;
16177
16178 for (child_pdi = struct_pdi->die_child;
16179 child_pdi != NULL;
16180 child_pdi = child_pdi->die_sibling)
16181 {
16182 if (child_pdi->tag == DW_TAG_subprogram
16183 && child_pdi->linkage_name != NULL)
16184 {
16185 char *actual_class_name
16186 = language_class_name_from_physname (cu->language_defn,
16187 child_pdi->linkage_name);
16188 if (actual_class_name != NULL)
16189 {
16190 struct_pdi->name
16191 = ((const char *)
16192 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16193 actual_class_name,
16194 strlen (actual_class_name)));
16195 xfree (actual_class_name);
16196 }
16197 break;
16198 }
16199 }
16200 }
16201
16202 /* Adjust PART_DIE before generating a symbol for it. This function
16203 may set the is_external flag or change the DIE's name. */
16204
16205 static void
16206 fixup_partial_die (struct partial_die_info *part_die,
16207 struct dwarf2_cu *cu)
16208 {
16209 /* Once we've fixed up a die, there's no point in doing so again.
16210 This also avoids a memory leak if we were to call
16211 guess_partial_die_structure_name multiple times. */
16212 if (part_die->fixup_called)
16213 return;
16214
16215 /* If we found a reference attribute and the DIE has no name, try
16216 to find a name in the referred to DIE. */
16217
16218 if (part_die->name == NULL && part_die->has_specification)
16219 {
16220 struct partial_die_info *spec_die;
16221
16222 spec_die = find_partial_die (part_die->spec_offset,
16223 part_die->spec_is_dwz, cu);
16224
16225 fixup_partial_die (spec_die, cu);
16226
16227 if (spec_die->name)
16228 {
16229 part_die->name = spec_die->name;
16230
16231 /* Copy DW_AT_external attribute if it is set. */
16232 if (spec_die->is_external)
16233 part_die->is_external = spec_die->is_external;
16234 }
16235 }
16236
16237 /* Set default names for some unnamed DIEs. */
16238
16239 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16240 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16241
16242 /* If there is no parent die to provide a namespace, and there are
16243 children, see if we can determine the namespace from their linkage
16244 name. */
16245 if (cu->language == language_cplus
16246 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16247 && part_die->die_parent == NULL
16248 && part_die->has_children
16249 && (part_die->tag == DW_TAG_class_type
16250 || part_die->tag == DW_TAG_structure_type
16251 || part_die->tag == DW_TAG_union_type))
16252 guess_partial_die_structure_name (part_die, cu);
16253
16254 /* GCC might emit a nameless struct or union that has a linkage
16255 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16256 if (part_die->name == NULL
16257 && (part_die->tag == DW_TAG_class_type
16258 || part_die->tag == DW_TAG_interface_type
16259 || part_die->tag == DW_TAG_structure_type
16260 || part_die->tag == DW_TAG_union_type)
16261 && part_die->linkage_name != NULL)
16262 {
16263 char *demangled;
16264
16265 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16266 if (demangled)
16267 {
16268 const char *base;
16269
16270 /* Strip any leading namespaces/classes, keep only the base name.
16271 DW_AT_name for named DIEs does not contain the prefixes. */
16272 base = strrchr (demangled, ':');
16273 if (base && base > demangled && base[-1] == ':')
16274 base++;
16275 else
16276 base = demangled;
16277
16278 part_die->name
16279 = ((const char *)
16280 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16281 base, strlen (base)));
16282 xfree (demangled);
16283 }
16284 }
16285
16286 part_die->fixup_called = 1;
16287 }
16288
16289 /* Read an attribute value described by an attribute form. */
16290
16291 static const gdb_byte *
16292 read_attribute_value (const struct die_reader_specs *reader,
16293 struct attribute *attr, unsigned form,
16294 const gdb_byte *info_ptr)
16295 {
16296 struct dwarf2_cu *cu = reader->cu;
16297 struct objfile *objfile = cu->objfile;
16298 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16299 bfd *abfd = reader->abfd;
16300 struct comp_unit_head *cu_header = &cu->header;
16301 unsigned int bytes_read;
16302 struct dwarf_block *blk;
16303
16304 attr->form = (enum dwarf_form) form;
16305 switch (form)
16306 {
16307 case DW_FORM_ref_addr:
16308 if (cu->header.version == 2)
16309 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16310 else
16311 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16312 &cu->header, &bytes_read);
16313 info_ptr += bytes_read;
16314 break;
16315 case DW_FORM_GNU_ref_alt:
16316 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16317 info_ptr += bytes_read;
16318 break;
16319 case DW_FORM_addr:
16320 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16321 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16322 info_ptr += bytes_read;
16323 break;
16324 case DW_FORM_block2:
16325 blk = dwarf_alloc_block (cu);
16326 blk->size = read_2_bytes (abfd, info_ptr);
16327 info_ptr += 2;
16328 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16329 info_ptr += blk->size;
16330 DW_BLOCK (attr) = blk;
16331 break;
16332 case DW_FORM_block4:
16333 blk = dwarf_alloc_block (cu);
16334 blk->size = read_4_bytes (abfd, info_ptr);
16335 info_ptr += 4;
16336 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16337 info_ptr += blk->size;
16338 DW_BLOCK (attr) = blk;
16339 break;
16340 case DW_FORM_data2:
16341 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16342 info_ptr += 2;
16343 break;
16344 case DW_FORM_data4:
16345 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16346 info_ptr += 4;
16347 break;
16348 case DW_FORM_data8:
16349 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16350 info_ptr += 8;
16351 break;
16352 case DW_FORM_sec_offset:
16353 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16354 info_ptr += bytes_read;
16355 break;
16356 case DW_FORM_string:
16357 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16358 DW_STRING_IS_CANONICAL (attr) = 0;
16359 info_ptr += bytes_read;
16360 break;
16361 case DW_FORM_strp:
16362 if (!cu->per_cu->is_dwz)
16363 {
16364 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16365 &bytes_read);
16366 DW_STRING_IS_CANONICAL (attr) = 0;
16367 info_ptr += bytes_read;
16368 break;
16369 }
16370 /* FALLTHROUGH */
16371 case DW_FORM_GNU_strp_alt:
16372 {
16373 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16374 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16375 &bytes_read);
16376
16377 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16378 DW_STRING_IS_CANONICAL (attr) = 0;
16379 info_ptr += bytes_read;
16380 }
16381 break;
16382 case DW_FORM_exprloc:
16383 case DW_FORM_block:
16384 blk = dwarf_alloc_block (cu);
16385 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16386 info_ptr += bytes_read;
16387 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16388 info_ptr += blk->size;
16389 DW_BLOCK (attr) = blk;
16390 break;
16391 case DW_FORM_block1:
16392 blk = dwarf_alloc_block (cu);
16393 blk->size = read_1_byte (abfd, info_ptr);
16394 info_ptr += 1;
16395 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16396 info_ptr += blk->size;
16397 DW_BLOCK (attr) = blk;
16398 break;
16399 case DW_FORM_data1:
16400 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16401 info_ptr += 1;
16402 break;
16403 case DW_FORM_flag:
16404 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16405 info_ptr += 1;
16406 break;
16407 case DW_FORM_flag_present:
16408 DW_UNSND (attr) = 1;
16409 break;
16410 case DW_FORM_sdata:
16411 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16412 info_ptr += bytes_read;
16413 break;
16414 case DW_FORM_udata:
16415 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16416 info_ptr += bytes_read;
16417 break;
16418 case DW_FORM_ref1:
16419 DW_UNSND (attr) = (cu->header.offset.sect_off
16420 + read_1_byte (abfd, info_ptr));
16421 info_ptr += 1;
16422 break;
16423 case DW_FORM_ref2:
16424 DW_UNSND (attr) = (cu->header.offset.sect_off
16425 + read_2_bytes (abfd, info_ptr));
16426 info_ptr += 2;
16427 break;
16428 case DW_FORM_ref4:
16429 DW_UNSND (attr) = (cu->header.offset.sect_off
16430 + read_4_bytes (abfd, info_ptr));
16431 info_ptr += 4;
16432 break;
16433 case DW_FORM_ref8:
16434 DW_UNSND (attr) = (cu->header.offset.sect_off
16435 + read_8_bytes (abfd, info_ptr));
16436 info_ptr += 8;
16437 break;
16438 case DW_FORM_ref_sig8:
16439 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16440 info_ptr += 8;
16441 break;
16442 case DW_FORM_ref_udata:
16443 DW_UNSND (attr) = (cu->header.offset.sect_off
16444 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16445 info_ptr += bytes_read;
16446 break;
16447 case DW_FORM_indirect:
16448 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16449 info_ptr += bytes_read;
16450 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16451 break;
16452 case DW_FORM_GNU_addr_index:
16453 if (reader->dwo_file == NULL)
16454 {
16455 /* For now flag a hard error.
16456 Later we can turn this into a complaint. */
16457 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16458 dwarf_form_name (form),
16459 bfd_get_filename (abfd));
16460 }
16461 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16462 info_ptr += bytes_read;
16463 break;
16464 case DW_FORM_GNU_str_index:
16465 if (reader->dwo_file == NULL)
16466 {
16467 /* For now flag a hard error.
16468 Later we can turn this into a complaint if warranted. */
16469 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16470 dwarf_form_name (form),
16471 bfd_get_filename (abfd));
16472 }
16473 {
16474 ULONGEST str_index =
16475 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16476
16477 DW_STRING (attr) = read_str_index (reader, str_index);
16478 DW_STRING_IS_CANONICAL (attr) = 0;
16479 info_ptr += bytes_read;
16480 }
16481 break;
16482 default:
16483 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16484 dwarf_form_name (form),
16485 bfd_get_filename (abfd));
16486 }
16487
16488 /* Super hack. */
16489 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16490 attr->form = DW_FORM_GNU_ref_alt;
16491
16492 /* We have seen instances where the compiler tried to emit a byte
16493 size attribute of -1 which ended up being encoded as an unsigned
16494 0xffffffff. Although 0xffffffff is technically a valid size value,
16495 an object of this size seems pretty unlikely so we can relatively
16496 safely treat these cases as if the size attribute was invalid and
16497 treat them as zero by default. */
16498 if (attr->name == DW_AT_byte_size
16499 && form == DW_FORM_data4
16500 && DW_UNSND (attr) >= 0xffffffff)
16501 {
16502 complaint
16503 (&symfile_complaints,
16504 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16505 hex_string (DW_UNSND (attr)));
16506 DW_UNSND (attr) = 0;
16507 }
16508
16509 return info_ptr;
16510 }
16511
16512 /* Read an attribute described by an abbreviated attribute. */
16513
16514 static const gdb_byte *
16515 read_attribute (const struct die_reader_specs *reader,
16516 struct attribute *attr, struct attr_abbrev *abbrev,
16517 const gdb_byte *info_ptr)
16518 {
16519 attr->name = abbrev->name;
16520 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16521 }
16522
16523 /* Read dwarf information from a buffer. */
16524
16525 static unsigned int
16526 read_1_byte (bfd *abfd, const gdb_byte *buf)
16527 {
16528 return bfd_get_8 (abfd, buf);
16529 }
16530
16531 static int
16532 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16533 {
16534 return bfd_get_signed_8 (abfd, buf);
16535 }
16536
16537 static unsigned int
16538 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16539 {
16540 return bfd_get_16 (abfd, buf);
16541 }
16542
16543 static int
16544 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16545 {
16546 return bfd_get_signed_16 (abfd, buf);
16547 }
16548
16549 static unsigned int
16550 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16551 {
16552 return bfd_get_32 (abfd, buf);
16553 }
16554
16555 static int
16556 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16557 {
16558 return bfd_get_signed_32 (abfd, buf);
16559 }
16560
16561 static ULONGEST
16562 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16563 {
16564 return bfd_get_64 (abfd, buf);
16565 }
16566
16567 static CORE_ADDR
16568 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16569 unsigned int *bytes_read)
16570 {
16571 struct comp_unit_head *cu_header = &cu->header;
16572 CORE_ADDR retval = 0;
16573
16574 if (cu_header->signed_addr_p)
16575 {
16576 switch (cu_header->addr_size)
16577 {
16578 case 2:
16579 retval = bfd_get_signed_16 (abfd, buf);
16580 break;
16581 case 4:
16582 retval = bfd_get_signed_32 (abfd, buf);
16583 break;
16584 case 8:
16585 retval = bfd_get_signed_64 (abfd, buf);
16586 break;
16587 default:
16588 internal_error (__FILE__, __LINE__,
16589 _("read_address: bad switch, signed [in module %s]"),
16590 bfd_get_filename (abfd));
16591 }
16592 }
16593 else
16594 {
16595 switch (cu_header->addr_size)
16596 {
16597 case 2:
16598 retval = bfd_get_16 (abfd, buf);
16599 break;
16600 case 4:
16601 retval = bfd_get_32 (abfd, buf);
16602 break;
16603 case 8:
16604 retval = bfd_get_64 (abfd, buf);
16605 break;
16606 default:
16607 internal_error (__FILE__, __LINE__,
16608 _("read_address: bad switch, "
16609 "unsigned [in module %s]"),
16610 bfd_get_filename (abfd));
16611 }
16612 }
16613
16614 *bytes_read = cu_header->addr_size;
16615 return retval;
16616 }
16617
16618 /* Read the initial length from a section. The (draft) DWARF 3
16619 specification allows the initial length to take up either 4 bytes
16620 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16621 bytes describe the length and all offsets will be 8 bytes in length
16622 instead of 4.
16623
16624 An older, non-standard 64-bit format is also handled by this
16625 function. The older format in question stores the initial length
16626 as an 8-byte quantity without an escape value. Lengths greater
16627 than 2^32 aren't very common which means that the initial 4 bytes
16628 is almost always zero. Since a length value of zero doesn't make
16629 sense for the 32-bit format, this initial zero can be considered to
16630 be an escape value which indicates the presence of the older 64-bit
16631 format. As written, the code can't detect (old format) lengths
16632 greater than 4GB. If it becomes necessary to handle lengths
16633 somewhat larger than 4GB, we could allow other small values (such
16634 as the non-sensical values of 1, 2, and 3) to also be used as
16635 escape values indicating the presence of the old format.
16636
16637 The value returned via bytes_read should be used to increment the
16638 relevant pointer after calling read_initial_length().
16639
16640 [ Note: read_initial_length() and read_offset() are based on the
16641 document entitled "DWARF Debugging Information Format", revision
16642 3, draft 8, dated November 19, 2001. This document was obtained
16643 from:
16644
16645 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16646
16647 This document is only a draft and is subject to change. (So beware.)
16648
16649 Details regarding the older, non-standard 64-bit format were
16650 determined empirically by examining 64-bit ELF files produced by
16651 the SGI toolchain on an IRIX 6.5 machine.
16652
16653 - Kevin, July 16, 2002
16654 ] */
16655
16656 static LONGEST
16657 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16658 {
16659 LONGEST length = bfd_get_32 (abfd, buf);
16660
16661 if (length == 0xffffffff)
16662 {
16663 length = bfd_get_64 (abfd, buf + 4);
16664 *bytes_read = 12;
16665 }
16666 else if (length == 0)
16667 {
16668 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16669 length = bfd_get_64 (abfd, buf);
16670 *bytes_read = 8;
16671 }
16672 else
16673 {
16674 *bytes_read = 4;
16675 }
16676
16677 return length;
16678 }
16679
16680 /* Cover function for read_initial_length.
16681 Returns the length of the object at BUF, and stores the size of the
16682 initial length in *BYTES_READ and stores the size that offsets will be in
16683 *OFFSET_SIZE.
16684 If the initial length size is not equivalent to that specified in
16685 CU_HEADER then issue a complaint.
16686 This is useful when reading non-comp-unit headers. */
16687
16688 static LONGEST
16689 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16690 const struct comp_unit_head *cu_header,
16691 unsigned int *bytes_read,
16692 unsigned int *offset_size)
16693 {
16694 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16695
16696 gdb_assert (cu_header->initial_length_size == 4
16697 || cu_header->initial_length_size == 8
16698 || cu_header->initial_length_size == 12);
16699
16700 if (cu_header->initial_length_size != *bytes_read)
16701 complaint (&symfile_complaints,
16702 _("intermixed 32-bit and 64-bit DWARF sections"));
16703
16704 *offset_size = (*bytes_read == 4) ? 4 : 8;
16705 return length;
16706 }
16707
16708 /* Read an offset from the data stream. The size of the offset is
16709 given by cu_header->offset_size. */
16710
16711 static LONGEST
16712 read_offset (bfd *abfd, const gdb_byte *buf,
16713 const struct comp_unit_head *cu_header,
16714 unsigned int *bytes_read)
16715 {
16716 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16717
16718 *bytes_read = cu_header->offset_size;
16719 return offset;
16720 }
16721
16722 /* Read an offset from the data stream. */
16723
16724 static LONGEST
16725 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16726 {
16727 LONGEST retval = 0;
16728
16729 switch (offset_size)
16730 {
16731 case 4:
16732 retval = bfd_get_32 (abfd, buf);
16733 break;
16734 case 8:
16735 retval = bfd_get_64 (abfd, buf);
16736 break;
16737 default:
16738 internal_error (__FILE__, __LINE__,
16739 _("read_offset_1: bad switch [in module %s]"),
16740 bfd_get_filename (abfd));
16741 }
16742
16743 return retval;
16744 }
16745
16746 static const gdb_byte *
16747 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16748 {
16749 /* If the size of a host char is 8 bits, we can return a pointer
16750 to the buffer, otherwise we have to copy the data to a buffer
16751 allocated on the temporary obstack. */
16752 gdb_assert (HOST_CHAR_BIT == 8);
16753 return buf;
16754 }
16755
16756 static const char *
16757 read_direct_string (bfd *abfd, const gdb_byte *buf,
16758 unsigned int *bytes_read_ptr)
16759 {
16760 /* If the size of a host char is 8 bits, we can return a pointer
16761 to the string, otherwise we have to copy the string to a buffer
16762 allocated on the temporary obstack. */
16763 gdb_assert (HOST_CHAR_BIT == 8);
16764 if (*buf == '\0')
16765 {
16766 *bytes_read_ptr = 1;
16767 return NULL;
16768 }
16769 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16770 return (const char *) buf;
16771 }
16772
16773 static const char *
16774 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16775 {
16776 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16777 if (dwarf2_per_objfile->str.buffer == NULL)
16778 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16779 bfd_get_filename (abfd));
16780 if (str_offset >= dwarf2_per_objfile->str.size)
16781 error (_("DW_FORM_strp pointing outside of "
16782 ".debug_str section [in module %s]"),
16783 bfd_get_filename (abfd));
16784 gdb_assert (HOST_CHAR_BIT == 8);
16785 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16786 return NULL;
16787 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16788 }
16789
16790 /* Read a string at offset STR_OFFSET in the .debug_str section from
16791 the .dwz file DWZ. Throw an error if the offset is too large. If
16792 the string consists of a single NUL byte, return NULL; otherwise
16793 return a pointer to the string. */
16794
16795 static const char *
16796 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16797 {
16798 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16799
16800 if (dwz->str.buffer == NULL)
16801 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16802 "section [in module %s]"),
16803 bfd_get_filename (dwz->dwz_bfd));
16804 if (str_offset >= dwz->str.size)
16805 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16806 ".debug_str section [in module %s]"),
16807 bfd_get_filename (dwz->dwz_bfd));
16808 gdb_assert (HOST_CHAR_BIT == 8);
16809 if (dwz->str.buffer[str_offset] == '\0')
16810 return NULL;
16811 return (const char *) (dwz->str.buffer + str_offset);
16812 }
16813
16814 static const char *
16815 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16816 const struct comp_unit_head *cu_header,
16817 unsigned int *bytes_read_ptr)
16818 {
16819 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16820
16821 return read_indirect_string_at_offset (abfd, str_offset);
16822 }
16823
16824 static ULONGEST
16825 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16826 unsigned int *bytes_read_ptr)
16827 {
16828 ULONGEST result;
16829 unsigned int num_read;
16830 int shift;
16831 unsigned char byte;
16832
16833 result = 0;
16834 shift = 0;
16835 num_read = 0;
16836 while (1)
16837 {
16838 byte = bfd_get_8 (abfd, buf);
16839 buf++;
16840 num_read++;
16841 result |= ((ULONGEST) (byte & 127) << shift);
16842 if ((byte & 128) == 0)
16843 {
16844 break;
16845 }
16846 shift += 7;
16847 }
16848 *bytes_read_ptr = num_read;
16849 return result;
16850 }
16851
16852 static LONGEST
16853 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16854 unsigned int *bytes_read_ptr)
16855 {
16856 LONGEST result;
16857 int shift, num_read;
16858 unsigned char byte;
16859
16860 result = 0;
16861 shift = 0;
16862 num_read = 0;
16863 while (1)
16864 {
16865 byte = bfd_get_8 (abfd, buf);
16866 buf++;
16867 num_read++;
16868 result |= ((LONGEST) (byte & 127) << shift);
16869 shift += 7;
16870 if ((byte & 128) == 0)
16871 {
16872 break;
16873 }
16874 }
16875 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16876 result |= -(((LONGEST) 1) << shift);
16877 *bytes_read_ptr = num_read;
16878 return result;
16879 }
16880
16881 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16882 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16883 ADDR_SIZE is the size of addresses from the CU header. */
16884
16885 static CORE_ADDR
16886 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16887 {
16888 struct objfile *objfile = dwarf2_per_objfile->objfile;
16889 bfd *abfd = objfile->obfd;
16890 const gdb_byte *info_ptr;
16891
16892 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16893 if (dwarf2_per_objfile->addr.buffer == NULL)
16894 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16895 objfile_name (objfile));
16896 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16897 error (_("DW_FORM_addr_index pointing outside of "
16898 ".debug_addr section [in module %s]"),
16899 objfile_name (objfile));
16900 info_ptr = (dwarf2_per_objfile->addr.buffer
16901 + addr_base + addr_index * addr_size);
16902 if (addr_size == 4)
16903 return bfd_get_32 (abfd, info_ptr);
16904 else
16905 return bfd_get_64 (abfd, info_ptr);
16906 }
16907
16908 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16909
16910 static CORE_ADDR
16911 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16912 {
16913 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16914 }
16915
16916 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16917
16918 static CORE_ADDR
16919 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16920 unsigned int *bytes_read)
16921 {
16922 bfd *abfd = cu->objfile->obfd;
16923 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16924
16925 return read_addr_index (cu, addr_index);
16926 }
16927
16928 /* Data structure to pass results from dwarf2_read_addr_index_reader
16929 back to dwarf2_read_addr_index. */
16930
16931 struct dwarf2_read_addr_index_data
16932 {
16933 ULONGEST addr_base;
16934 int addr_size;
16935 };
16936
16937 /* die_reader_func for dwarf2_read_addr_index. */
16938
16939 static void
16940 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16941 const gdb_byte *info_ptr,
16942 struct die_info *comp_unit_die,
16943 int has_children,
16944 void *data)
16945 {
16946 struct dwarf2_cu *cu = reader->cu;
16947 struct dwarf2_read_addr_index_data *aidata =
16948 (struct dwarf2_read_addr_index_data *) data;
16949
16950 aidata->addr_base = cu->addr_base;
16951 aidata->addr_size = cu->header.addr_size;
16952 }
16953
16954 /* Given an index in .debug_addr, fetch the value.
16955 NOTE: This can be called during dwarf expression evaluation,
16956 long after the debug information has been read, and thus per_cu->cu
16957 may no longer exist. */
16958
16959 CORE_ADDR
16960 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16961 unsigned int addr_index)
16962 {
16963 struct objfile *objfile = per_cu->objfile;
16964 struct dwarf2_cu *cu = per_cu->cu;
16965 ULONGEST addr_base;
16966 int addr_size;
16967
16968 /* This is intended to be called from outside this file. */
16969 dw2_setup (objfile);
16970
16971 /* We need addr_base and addr_size.
16972 If we don't have PER_CU->cu, we have to get it.
16973 Nasty, but the alternative is storing the needed info in PER_CU,
16974 which at this point doesn't seem justified: it's not clear how frequently
16975 it would get used and it would increase the size of every PER_CU.
16976 Entry points like dwarf2_per_cu_addr_size do a similar thing
16977 so we're not in uncharted territory here.
16978 Alas we need to be a bit more complicated as addr_base is contained
16979 in the DIE.
16980
16981 We don't need to read the entire CU(/TU).
16982 We just need the header and top level die.
16983
16984 IWBN to use the aging mechanism to let us lazily later discard the CU.
16985 For now we skip this optimization. */
16986
16987 if (cu != NULL)
16988 {
16989 addr_base = cu->addr_base;
16990 addr_size = cu->header.addr_size;
16991 }
16992 else
16993 {
16994 struct dwarf2_read_addr_index_data aidata;
16995
16996 /* Note: We can't use init_cutu_and_read_dies_simple here,
16997 we need addr_base. */
16998 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16999 dwarf2_read_addr_index_reader, &aidata);
17000 addr_base = aidata.addr_base;
17001 addr_size = aidata.addr_size;
17002 }
17003
17004 return read_addr_index_1 (addr_index, addr_base, addr_size);
17005 }
17006
17007 /* Given a DW_FORM_GNU_str_index, fetch the string.
17008 This is only used by the Fission support. */
17009
17010 static const char *
17011 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
17012 {
17013 struct objfile *objfile = dwarf2_per_objfile->objfile;
17014 const char *objf_name = objfile_name (objfile);
17015 bfd *abfd = objfile->obfd;
17016 struct dwarf2_cu *cu = reader->cu;
17017 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17018 struct dwarf2_section_info *str_offsets_section =
17019 &reader->dwo_file->sections.str_offsets;
17020 const gdb_byte *info_ptr;
17021 ULONGEST str_offset;
17022 static const char form_name[] = "DW_FORM_GNU_str_index";
17023
17024 dwarf2_read_section (objfile, str_section);
17025 dwarf2_read_section (objfile, str_offsets_section);
17026 if (str_section->buffer == NULL)
17027 error (_("%s used without .debug_str.dwo section"
17028 " in CU at offset 0x%lx [in module %s]"),
17029 form_name, (long) cu->header.offset.sect_off, objf_name);
17030 if (str_offsets_section->buffer == NULL)
17031 error (_("%s used without .debug_str_offsets.dwo section"
17032 " in CU at offset 0x%lx [in module %s]"),
17033 form_name, (long) cu->header.offset.sect_off, objf_name);
17034 if (str_index * cu->header.offset_size >= str_offsets_section->size)
17035 error (_("%s pointing outside of .debug_str_offsets.dwo"
17036 " section in CU at offset 0x%lx [in module %s]"),
17037 form_name, (long) cu->header.offset.sect_off, objf_name);
17038 info_ptr = (str_offsets_section->buffer
17039 + str_index * cu->header.offset_size);
17040 if (cu->header.offset_size == 4)
17041 str_offset = bfd_get_32 (abfd, info_ptr);
17042 else
17043 str_offset = bfd_get_64 (abfd, info_ptr);
17044 if (str_offset >= str_section->size)
17045 error (_("Offset from %s pointing outside of"
17046 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
17047 form_name, (long) cu->header.offset.sect_off, objf_name);
17048 return (const char *) (str_section->buffer + str_offset);
17049 }
17050
17051 /* Return the length of an LEB128 number in BUF. */
17052
17053 static int
17054 leb128_size (const gdb_byte *buf)
17055 {
17056 const gdb_byte *begin = buf;
17057 gdb_byte byte;
17058
17059 while (1)
17060 {
17061 byte = *buf++;
17062 if ((byte & 128) == 0)
17063 return buf - begin;
17064 }
17065 }
17066
17067 static void
17068 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17069 {
17070 switch (lang)
17071 {
17072 case DW_LANG_C89:
17073 case DW_LANG_C99:
17074 case DW_LANG_C11:
17075 case DW_LANG_C:
17076 case DW_LANG_UPC:
17077 cu->language = language_c;
17078 break;
17079 case DW_LANG_C_plus_plus:
17080 case DW_LANG_C_plus_plus_11:
17081 case DW_LANG_C_plus_plus_14:
17082 cu->language = language_cplus;
17083 break;
17084 case DW_LANG_D:
17085 cu->language = language_d;
17086 break;
17087 case DW_LANG_Fortran77:
17088 case DW_LANG_Fortran90:
17089 case DW_LANG_Fortran95:
17090 case DW_LANG_Fortran03:
17091 case DW_LANG_Fortran08:
17092 cu->language = language_fortran;
17093 break;
17094 case DW_LANG_Go:
17095 cu->language = language_go;
17096 break;
17097 case DW_LANG_Mips_Assembler:
17098 cu->language = language_asm;
17099 break;
17100 case DW_LANG_Java:
17101 cu->language = language_java;
17102 break;
17103 case DW_LANG_Ada83:
17104 case DW_LANG_Ada95:
17105 cu->language = language_ada;
17106 break;
17107 case DW_LANG_Modula2:
17108 cu->language = language_m2;
17109 break;
17110 case DW_LANG_Pascal83:
17111 cu->language = language_pascal;
17112 break;
17113 case DW_LANG_ObjC:
17114 cu->language = language_objc;
17115 break;
17116 case DW_LANG_Rust:
17117 case DW_LANG_Rust_old:
17118 cu->language = language_rust;
17119 break;
17120 case DW_LANG_Cobol74:
17121 case DW_LANG_Cobol85:
17122 default:
17123 cu->language = language_minimal;
17124 break;
17125 }
17126 cu->language_defn = language_def (cu->language);
17127 }
17128
17129 /* Return the named attribute or NULL if not there. */
17130
17131 static struct attribute *
17132 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17133 {
17134 for (;;)
17135 {
17136 unsigned int i;
17137 struct attribute *spec = NULL;
17138
17139 for (i = 0; i < die->num_attrs; ++i)
17140 {
17141 if (die->attrs[i].name == name)
17142 return &die->attrs[i];
17143 if (die->attrs[i].name == DW_AT_specification
17144 || die->attrs[i].name == DW_AT_abstract_origin)
17145 spec = &die->attrs[i];
17146 }
17147
17148 if (!spec)
17149 break;
17150
17151 die = follow_die_ref (die, spec, &cu);
17152 }
17153
17154 return NULL;
17155 }
17156
17157 /* Return the named attribute or NULL if not there,
17158 but do not follow DW_AT_specification, etc.
17159 This is for use in contexts where we're reading .debug_types dies.
17160 Following DW_AT_specification, DW_AT_abstract_origin will take us
17161 back up the chain, and we want to go down. */
17162
17163 static struct attribute *
17164 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17165 {
17166 unsigned int i;
17167
17168 for (i = 0; i < die->num_attrs; ++i)
17169 if (die->attrs[i].name == name)
17170 return &die->attrs[i];
17171
17172 return NULL;
17173 }
17174
17175 /* Return the string associated with a string-typed attribute, or NULL if it
17176 is either not found or is of an incorrect type. */
17177
17178 static const char *
17179 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17180 {
17181 struct attribute *attr;
17182 const char *str = NULL;
17183
17184 attr = dwarf2_attr (die, name, cu);
17185
17186 if (attr != NULL)
17187 {
17188 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17189 || attr->form == DW_FORM_GNU_strp_alt)
17190 str = DW_STRING (attr);
17191 else
17192 complaint (&symfile_complaints,
17193 _("string type expected for attribute %s for "
17194 "DIE at 0x%x in module %s"),
17195 dwarf_attr_name (name), die->offset.sect_off,
17196 objfile_name (cu->objfile));
17197 }
17198
17199 return str;
17200 }
17201
17202 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17203 and holds a non-zero value. This function should only be used for
17204 DW_FORM_flag or DW_FORM_flag_present attributes. */
17205
17206 static int
17207 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17208 {
17209 struct attribute *attr = dwarf2_attr (die, name, cu);
17210
17211 return (attr && DW_UNSND (attr));
17212 }
17213
17214 static int
17215 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17216 {
17217 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17218 which value is non-zero. However, we have to be careful with
17219 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17220 (via dwarf2_flag_true_p) follows this attribute. So we may
17221 end up accidently finding a declaration attribute that belongs
17222 to a different DIE referenced by the specification attribute,
17223 even though the given DIE does not have a declaration attribute. */
17224 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17225 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17226 }
17227
17228 /* Return the die giving the specification for DIE, if there is
17229 one. *SPEC_CU is the CU containing DIE on input, and the CU
17230 containing the return value on output. If there is no
17231 specification, but there is an abstract origin, that is
17232 returned. */
17233
17234 static struct die_info *
17235 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17236 {
17237 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17238 *spec_cu);
17239
17240 if (spec_attr == NULL)
17241 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17242
17243 if (spec_attr == NULL)
17244 return NULL;
17245 else
17246 return follow_die_ref (die, spec_attr, spec_cu);
17247 }
17248
17249 /* Free the line_header structure *LH, and any arrays and strings it
17250 refers to.
17251 NOTE: This is also used as a "cleanup" function. */
17252
17253 static void
17254 free_line_header (struct line_header *lh)
17255 {
17256 if (lh->standard_opcode_lengths)
17257 xfree (lh->standard_opcode_lengths);
17258
17259 /* Remember that all the lh->file_names[i].name pointers are
17260 pointers into debug_line_buffer, and don't need to be freed. */
17261 if (lh->file_names)
17262 xfree (lh->file_names);
17263
17264 /* Similarly for the include directory names. */
17265 if (lh->include_dirs)
17266 xfree (lh->include_dirs);
17267
17268 xfree (lh);
17269 }
17270
17271 /* Stub for free_line_header to match void * callback types. */
17272
17273 static void
17274 free_line_header_voidp (void *arg)
17275 {
17276 struct line_header *lh = (struct line_header *) arg;
17277
17278 free_line_header (lh);
17279 }
17280
17281 /* Add an entry to LH's include directory table. */
17282
17283 static void
17284 add_include_dir (struct line_header *lh, const char *include_dir)
17285 {
17286 if (dwarf_line_debug >= 2)
17287 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17288 lh->num_include_dirs + 1, include_dir);
17289
17290 /* Grow the array if necessary. */
17291 if (lh->include_dirs_size == 0)
17292 {
17293 lh->include_dirs_size = 1; /* for testing */
17294 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
17295 }
17296 else if (lh->num_include_dirs >= lh->include_dirs_size)
17297 {
17298 lh->include_dirs_size *= 2;
17299 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17300 lh->include_dirs_size);
17301 }
17302
17303 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17304 }
17305
17306 /* Add an entry to LH's file name table. */
17307
17308 static void
17309 add_file_name (struct line_header *lh,
17310 const char *name,
17311 unsigned int dir_index,
17312 unsigned int mod_time,
17313 unsigned int length)
17314 {
17315 struct file_entry *fe;
17316
17317 if (dwarf_line_debug >= 2)
17318 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17319 lh->num_file_names + 1, name);
17320
17321 /* Grow the array if necessary. */
17322 if (lh->file_names_size == 0)
17323 {
17324 lh->file_names_size = 1; /* for testing */
17325 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
17326 }
17327 else if (lh->num_file_names >= lh->file_names_size)
17328 {
17329 lh->file_names_size *= 2;
17330 lh->file_names
17331 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
17332 }
17333
17334 fe = &lh->file_names[lh->num_file_names++];
17335 fe->name = name;
17336 fe->dir_index = dir_index;
17337 fe->mod_time = mod_time;
17338 fe->length = length;
17339 fe->included_p = 0;
17340 fe->symtab = NULL;
17341 }
17342
17343 /* A convenience function to find the proper .debug_line section for a CU. */
17344
17345 static struct dwarf2_section_info *
17346 get_debug_line_section (struct dwarf2_cu *cu)
17347 {
17348 struct dwarf2_section_info *section;
17349
17350 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17351 DWO file. */
17352 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17353 section = &cu->dwo_unit->dwo_file->sections.line;
17354 else if (cu->per_cu->is_dwz)
17355 {
17356 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17357
17358 section = &dwz->line;
17359 }
17360 else
17361 section = &dwarf2_per_objfile->line;
17362
17363 return section;
17364 }
17365
17366 /* Read the statement program header starting at OFFSET in
17367 .debug_line, or .debug_line.dwo. Return a pointer
17368 to a struct line_header, allocated using xmalloc.
17369 Returns NULL if there is a problem reading the header, e.g., if it
17370 has a version we don't understand.
17371
17372 NOTE: the strings in the include directory and file name tables of
17373 the returned object point into the dwarf line section buffer,
17374 and must not be freed. */
17375
17376 static struct line_header *
17377 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17378 {
17379 struct cleanup *back_to;
17380 struct line_header *lh;
17381 const gdb_byte *line_ptr;
17382 unsigned int bytes_read, offset_size;
17383 int i;
17384 const char *cur_dir, *cur_file;
17385 struct dwarf2_section_info *section;
17386 bfd *abfd;
17387
17388 section = get_debug_line_section (cu);
17389 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17390 if (section->buffer == NULL)
17391 {
17392 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17393 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17394 else
17395 complaint (&symfile_complaints, _("missing .debug_line section"));
17396 return 0;
17397 }
17398
17399 /* We can't do this until we know the section is non-empty.
17400 Only then do we know we have such a section. */
17401 abfd = get_section_bfd_owner (section);
17402
17403 /* Make sure that at least there's room for the total_length field.
17404 That could be 12 bytes long, but we're just going to fudge that. */
17405 if (offset + 4 >= section->size)
17406 {
17407 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17408 return 0;
17409 }
17410
17411 lh = XNEW (struct line_header);
17412 memset (lh, 0, sizeof (*lh));
17413 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17414 (void *) lh);
17415
17416 lh->offset.sect_off = offset;
17417 lh->offset_in_dwz = cu->per_cu->is_dwz;
17418
17419 line_ptr = section->buffer + offset;
17420
17421 /* Read in the header. */
17422 lh->total_length =
17423 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17424 &bytes_read, &offset_size);
17425 line_ptr += bytes_read;
17426 if (line_ptr + lh->total_length > (section->buffer + section->size))
17427 {
17428 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17429 do_cleanups (back_to);
17430 return 0;
17431 }
17432 lh->statement_program_end = line_ptr + lh->total_length;
17433 lh->version = read_2_bytes (abfd, line_ptr);
17434 line_ptr += 2;
17435 if (lh->version > 4)
17436 {
17437 /* This is a version we don't understand. The format could have
17438 changed in ways we don't handle properly so just punt. */
17439 complaint (&symfile_complaints,
17440 _("unsupported version in .debug_line section"));
17441 return NULL;
17442 }
17443 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17444 line_ptr += offset_size;
17445 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17446 line_ptr += 1;
17447 if (lh->version >= 4)
17448 {
17449 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17450 line_ptr += 1;
17451 }
17452 else
17453 lh->maximum_ops_per_instruction = 1;
17454
17455 if (lh->maximum_ops_per_instruction == 0)
17456 {
17457 lh->maximum_ops_per_instruction = 1;
17458 complaint (&symfile_complaints,
17459 _("invalid maximum_ops_per_instruction "
17460 "in `.debug_line' section"));
17461 }
17462
17463 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17464 line_ptr += 1;
17465 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17466 line_ptr += 1;
17467 lh->line_range = read_1_byte (abfd, line_ptr);
17468 line_ptr += 1;
17469 lh->opcode_base = read_1_byte (abfd, line_ptr);
17470 line_ptr += 1;
17471 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
17472
17473 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17474 for (i = 1; i < lh->opcode_base; ++i)
17475 {
17476 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17477 line_ptr += 1;
17478 }
17479
17480 /* Read directory table. */
17481 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17482 {
17483 line_ptr += bytes_read;
17484 add_include_dir (lh, cur_dir);
17485 }
17486 line_ptr += bytes_read;
17487
17488 /* Read file name table. */
17489 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17490 {
17491 unsigned int dir_index, mod_time, length;
17492
17493 line_ptr += bytes_read;
17494 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17495 line_ptr += bytes_read;
17496 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17497 line_ptr += bytes_read;
17498 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17499 line_ptr += bytes_read;
17500
17501 add_file_name (lh, cur_file, dir_index, mod_time, length);
17502 }
17503 line_ptr += bytes_read;
17504 lh->statement_program_start = line_ptr;
17505
17506 if (line_ptr > (section->buffer + section->size))
17507 complaint (&symfile_complaints,
17508 _("line number info header doesn't "
17509 "fit in `.debug_line' section"));
17510
17511 discard_cleanups (back_to);
17512 return lh;
17513 }
17514
17515 /* Subroutine of dwarf_decode_lines to simplify it.
17516 Return the file name of the psymtab for included file FILE_INDEX
17517 in line header LH of PST.
17518 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17519 If space for the result is malloc'd, it will be freed by a cleanup.
17520 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17521
17522 The function creates dangling cleanup registration. */
17523
17524 static const char *
17525 psymtab_include_file_name (const struct line_header *lh, int file_index,
17526 const struct partial_symtab *pst,
17527 const char *comp_dir)
17528 {
17529 const struct file_entry fe = lh->file_names [file_index];
17530 const char *include_name = fe.name;
17531 const char *include_name_to_compare = include_name;
17532 const char *dir_name = NULL;
17533 const char *pst_filename;
17534 char *copied_name = NULL;
17535 int file_is_pst;
17536
17537 if (fe.dir_index && lh->include_dirs != NULL)
17538 dir_name = lh->include_dirs[fe.dir_index - 1];
17539
17540 if (!IS_ABSOLUTE_PATH (include_name)
17541 && (dir_name != NULL || comp_dir != NULL))
17542 {
17543 /* Avoid creating a duplicate psymtab for PST.
17544 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17545 Before we do the comparison, however, we need to account
17546 for DIR_NAME and COMP_DIR.
17547 First prepend dir_name (if non-NULL). If we still don't
17548 have an absolute path prepend comp_dir (if non-NULL).
17549 However, the directory we record in the include-file's
17550 psymtab does not contain COMP_DIR (to match the
17551 corresponding symtab(s)).
17552
17553 Example:
17554
17555 bash$ cd /tmp
17556 bash$ gcc -g ./hello.c
17557 include_name = "hello.c"
17558 dir_name = "."
17559 DW_AT_comp_dir = comp_dir = "/tmp"
17560 DW_AT_name = "./hello.c"
17561
17562 */
17563
17564 if (dir_name != NULL)
17565 {
17566 char *tem = concat (dir_name, SLASH_STRING,
17567 include_name, (char *)NULL);
17568
17569 make_cleanup (xfree, tem);
17570 include_name = tem;
17571 include_name_to_compare = include_name;
17572 }
17573 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17574 {
17575 char *tem = concat (comp_dir, SLASH_STRING,
17576 include_name, (char *)NULL);
17577
17578 make_cleanup (xfree, tem);
17579 include_name_to_compare = tem;
17580 }
17581 }
17582
17583 pst_filename = pst->filename;
17584 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17585 {
17586 copied_name = concat (pst->dirname, SLASH_STRING,
17587 pst_filename, (char *)NULL);
17588 pst_filename = copied_name;
17589 }
17590
17591 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17592
17593 if (copied_name != NULL)
17594 xfree (copied_name);
17595
17596 if (file_is_pst)
17597 return NULL;
17598 return include_name;
17599 }
17600
17601 /* State machine to track the state of the line number program. */
17602
17603 typedef struct
17604 {
17605 /* These are part of the standard DWARF line number state machine. */
17606
17607 unsigned char op_index;
17608 unsigned int file;
17609 unsigned int line;
17610 CORE_ADDR address;
17611 int is_stmt;
17612 unsigned int discriminator;
17613
17614 /* Additional bits of state we need to track. */
17615
17616 /* The last file that we called dwarf2_start_subfile for.
17617 This is only used for TLLs. */
17618 unsigned int last_file;
17619 /* The last file a line number was recorded for. */
17620 struct subfile *last_subfile;
17621
17622 /* The function to call to record a line. */
17623 record_line_ftype *record_line;
17624
17625 /* The last line number that was recorded, used to coalesce
17626 consecutive entries for the same line. This can happen, for
17627 example, when discriminators are present. PR 17276. */
17628 unsigned int last_line;
17629 int line_has_non_zero_discriminator;
17630 } lnp_state_machine;
17631
17632 /* There's a lot of static state to pass to dwarf_record_line.
17633 This keeps it all together. */
17634
17635 typedef struct
17636 {
17637 /* The gdbarch. */
17638 struct gdbarch *gdbarch;
17639
17640 /* The line number header. */
17641 struct line_header *line_header;
17642
17643 /* Non-zero if we're recording lines.
17644 Otherwise we're building partial symtabs and are just interested in
17645 finding include files mentioned by the line number program. */
17646 int record_lines_p;
17647 } lnp_reader_state;
17648
17649 /* Ignore this record_line request. */
17650
17651 static void
17652 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17653 {
17654 return;
17655 }
17656
17657 /* Return non-zero if we should add LINE to the line number table.
17658 LINE is the line to add, LAST_LINE is the last line that was added,
17659 LAST_SUBFILE is the subfile for LAST_LINE.
17660 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17661 had a non-zero discriminator.
17662
17663 We have to be careful in the presence of discriminators.
17664 E.g., for this line:
17665
17666 for (i = 0; i < 100000; i++);
17667
17668 clang can emit four line number entries for that one line,
17669 each with a different discriminator.
17670 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17671
17672 However, we want gdb to coalesce all four entries into one.
17673 Otherwise the user could stepi into the middle of the line and
17674 gdb would get confused about whether the pc really was in the
17675 middle of the line.
17676
17677 Things are further complicated by the fact that two consecutive
17678 line number entries for the same line is a heuristic used by gcc
17679 to denote the end of the prologue. So we can't just discard duplicate
17680 entries, we have to be selective about it. The heuristic we use is
17681 that we only collapse consecutive entries for the same line if at least
17682 one of those entries has a non-zero discriminator. PR 17276.
17683
17684 Note: Addresses in the line number state machine can never go backwards
17685 within one sequence, thus this coalescing is ok. */
17686
17687 static int
17688 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17689 int line_has_non_zero_discriminator,
17690 struct subfile *last_subfile)
17691 {
17692 if (current_subfile != last_subfile)
17693 return 1;
17694 if (line != last_line)
17695 return 1;
17696 /* Same line for the same file that we've seen already.
17697 As a last check, for pr 17276, only record the line if the line
17698 has never had a non-zero discriminator. */
17699 if (!line_has_non_zero_discriminator)
17700 return 1;
17701 return 0;
17702 }
17703
17704 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17705 in the line table of subfile SUBFILE. */
17706
17707 static void
17708 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17709 unsigned int line, CORE_ADDR address,
17710 record_line_ftype p_record_line)
17711 {
17712 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17713
17714 if (dwarf_line_debug)
17715 {
17716 fprintf_unfiltered (gdb_stdlog,
17717 "Recording line %u, file %s, address %s\n",
17718 line, lbasename (subfile->name),
17719 paddress (gdbarch, address));
17720 }
17721
17722 (*p_record_line) (subfile, line, addr);
17723 }
17724
17725 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17726 Mark the end of a set of line number records.
17727 The arguments are the same as for dwarf_record_line_1.
17728 If SUBFILE is NULL the request is ignored. */
17729
17730 static void
17731 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17732 CORE_ADDR address, record_line_ftype p_record_line)
17733 {
17734 if (subfile == NULL)
17735 return;
17736
17737 if (dwarf_line_debug)
17738 {
17739 fprintf_unfiltered (gdb_stdlog,
17740 "Finishing current line, file %s, address %s\n",
17741 lbasename (subfile->name),
17742 paddress (gdbarch, address));
17743 }
17744
17745 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17746 }
17747
17748 /* Record the line in STATE.
17749 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17750
17751 static void
17752 dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17753 int end_sequence)
17754 {
17755 const struct line_header *lh = reader->line_header;
17756 unsigned int file, line, discriminator;
17757 int is_stmt;
17758
17759 file = state->file;
17760 line = state->line;
17761 is_stmt = state->is_stmt;
17762 discriminator = state->discriminator;
17763
17764 if (dwarf_line_debug)
17765 {
17766 fprintf_unfiltered (gdb_stdlog,
17767 "Processing actual line %u: file %u,"
17768 " address %s, is_stmt %u, discrim %u\n",
17769 line, file,
17770 paddress (reader->gdbarch, state->address),
17771 is_stmt, discriminator);
17772 }
17773
17774 if (file == 0 || file - 1 >= lh->num_file_names)
17775 dwarf2_debug_line_missing_file_complaint ();
17776 /* For now we ignore lines not starting on an instruction boundary.
17777 But not when processing end_sequence for compatibility with the
17778 previous version of the code. */
17779 else if (state->op_index == 0 || end_sequence)
17780 {
17781 lh->file_names[file - 1].included_p = 1;
17782 if (reader->record_lines_p && is_stmt)
17783 {
17784 if (state->last_subfile != current_subfile || end_sequence)
17785 {
17786 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17787 state->address, state->record_line);
17788 }
17789
17790 if (!end_sequence)
17791 {
17792 if (dwarf_record_line_p (line, state->last_line,
17793 state->line_has_non_zero_discriminator,
17794 state->last_subfile))
17795 {
17796 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17797 line, state->address,
17798 state->record_line);
17799 }
17800 state->last_subfile = current_subfile;
17801 state->last_line = line;
17802 }
17803 }
17804 }
17805 }
17806
17807 /* Initialize STATE for the start of a line number program. */
17808
17809 static void
17810 init_lnp_state_machine (lnp_state_machine *state,
17811 const lnp_reader_state *reader)
17812 {
17813 memset (state, 0, sizeof (*state));
17814
17815 /* Just starting, there is no "last file". */
17816 state->last_file = 0;
17817 state->last_subfile = NULL;
17818
17819 state->record_line = record_line;
17820
17821 state->last_line = 0;
17822 state->line_has_non_zero_discriminator = 0;
17823
17824 /* Initialize these according to the DWARF spec. */
17825 state->op_index = 0;
17826 state->file = 1;
17827 state->line = 1;
17828 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17829 was a line entry for it so that the backend has a chance to adjust it
17830 and also record it in case it needs it. This is currently used by MIPS
17831 code, cf. `mips_adjust_dwarf2_line'. */
17832 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17833 state->is_stmt = reader->line_header->default_is_stmt;
17834 state->discriminator = 0;
17835 }
17836
17837 /* Check address and if invalid nop-out the rest of the lines in this
17838 sequence. */
17839
17840 static void
17841 check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
17842 const gdb_byte *line_ptr,
17843 CORE_ADDR lowpc, CORE_ADDR address)
17844 {
17845 /* If address < lowpc then it's not a usable value, it's outside the
17846 pc range of the CU. However, we restrict the test to only address
17847 values of zero to preserve GDB's previous behaviour which is to
17848 handle the specific case of a function being GC'd by the linker. */
17849
17850 if (address == 0 && address < lowpc)
17851 {
17852 /* This line table is for a function which has been
17853 GCd by the linker. Ignore it. PR gdb/12528 */
17854
17855 struct objfile *objfile = cu->objfile;
17856 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17857
17858 complaint (&symfile_complaints,
17859 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17860 line_offset, objfile_name (objfile));
17861 state->record_line = noop_record_line;
17862 /* Note: sm.record_line is left as noop_record_line
17863 until we see DW_LNE_end_sequence. */
17864 }
17865 }
17866
17867 /* Subroutine of dwarf_decode_lines to simplify it.
17868 Process the line number information in LH.
17869 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17870 program in order to set included_p for every referenced header. */
17871
17872 static void
17873 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17874 const int decode_for_pst_p, CORE_ADDR lowpc)
17875 {
17876 const gdb_byte *line_ptr, *extended_end;
17877 const gdb_byte *line_end;
17878 unsigned int bytes_read, extended_len;
17879 unsigned char op_code, extended_op;
17880 CORE_ADDR baseaddr;
17881 struct objfile *objfile = cu->objfile;
17882 bfd *abfd = objfile->obfd;
17883 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17884 /* Non-zero if we're recording line info (as opposed to building partial
17885 symtabs). */
17886 int record_lines_p = !decode_for_pst_p;
17887 /* A collection of things we need to pass to dwarf_record_line. */
17888 lnp_reader_state reader_state;
17889
17890 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17891
17892 line_ptr = lh->statement_program_start;
17893 line_end = lh->statement_program_end;
17894
17895 reader_state.gdbarch = gdbarch;
17896 reader_state.line_header = lh;
17897 reader_state.record_lines_p = record_lines_p;
17898
17899 /* Read the statement sequences until there's nothing left. */
17900 while (line_ptr < line_end)
17901 {
17902 /* The DWARF line number program state machine. */
17903 lnp_state_machine state_machine;
17904 int end_sequence = 0;
17905
17906 /* Reset the state machine at the start of each sequence. */
17907 init_lnp_state_machine (&state_machine, &reader_state);
17908
17909 if (record_lines_p && lh->num_file_names >= state_machine.file)
17910 {
17911 /* Start a subfile for the current file of the state machine. */
17912 /* lh->include_dirs and lh->file_names are 0-based, but the
17913 directory and file name numbers in the statement program
17914 are 1-based. */
17915 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
17916 const char *dir = NULL;
17917
17918 if (fe->dir_index && lh->include_dirs != NULL)
17919 dir = lh->include_dirs[fe->dir_index - 1];
17920
17921 dwarf2_start_subfile (fe->name, dir);
17922 }
17923
17924 /* Decode the table. */
17925 while (line_ptr < line_end && !end_sequence)
17926 {
17927 op_code = read_1_byte (abfd, line_ptr);
17928 line_ptr += 1;
17929
17930 if (op_code >= lh->opcode_base)
17931 {
17932 /* Special opcode. */
17933 unsigned char adj_opcode;
17934 CORE_ADDR addr_adj;
17935 int line_delta;
17936
17937 adj_opcode = op_code - lh->opcode_base;
17938 addr_adj = (((state_machine.op_index
17939 + (adj_opcode / lh->line_range))
17940 / lh->maximum_ops_per_instruction)
17941 * lh->minimum_instruction_length);
17942 state_machine.address
17943 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17944 state_machine.op_index = ((state_machine.op_index
17945 + (adj_opcode / lh->line_range))
17946 % lh->maximum_ops_per_instruction);
17947 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17948 state_machine.line += line_delta;
17949 if (line_delta != 0)
17950 state_machine.line_has_non_zero_discriminator
17951 = state_machine.discriminator != 0;
17952
17953 dwarf_record_line (&reader_state, &state_machine, 0);
17954 state_machine.discriminator = 0;
17955 }
17956 else switch (op_code)
17957 {
17958 case DW_LNS_extended_op:
17959 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17960 &bytes_read);
17961 line_ptr += bytes_read;
17962 extended_end = line_ptr + extended_len;
17963 extended_op = read_1_byte (abfd, line_ptr);
17964 line_ptr += 1;
17965 switch (extended_op)
17966 {
17967 case DW_LNE_end_sequence:
17968 state_machine.record_line = record_line;
17969 end_sequence = 1;
17970 break;
17971 case DW_LNE_set_address:
17972 {
17973 CORE_ADDR address
17974 = read_address (abfd, line_ptr, cu, &bytes_read);
17975
17976 line_ptr += bytes_read;
17977 check_line_address (cu, &state_machine, line_ptr,
17978 lowpc, address);
17979 state_machine.op_index = 0;
17980 address += baseaddr;
17981 state_machine.address
17982 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17983 }
17984 break;
17985 case DW_LNE_define_file:
17986 {
17987 const char *cur_file;
17988 unsigned int dir_index, mod_time, length;
17989
17990 cur_file = read_direct_string (abfd, line_ptr,
17991 &bytes_read);
17992 line_ptr += bytes_read;
17993 dir_index =
17994 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17995 line_ptr += bytes_read;
17996 mod_time =
17997 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17998 line_ptr += bytes_read;
17999 length =
18000 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18001 line_ptr += bytes_read;
18002 add_file_name (lh, cur_file, dir_index, mod_time, length);
18003 }
18004 break;
18005 case DW_LNE_set_discriminator:
18006 /* The discriminator is not interesting to the debugger;
18007 just ignore it. We still need to check its value though:
18008 if there are consecutive entries for the same
18009 (non-prologue) line we want to coalesce them.
18010 PR 17276. */
18011 state_machine.discriminator
18012 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18013 state_machine.line_has_non_zero_discriminator
18014 |= state_machine.discriminator != 0;
18015 line_ptr += bytes_read;
18016 break;
18017 default:
18018 complaint (&symfile_complaints,
18019 _("mangled .debug_line section"));
18020 return;
18021 }
18022 /* Make sure that we parsed the extended op correctly. If e.g.
18023 we expected a different address size than the producer used,
18024 we may have read the wrong number of bytes. */
18025 if (line_ptr != extended_end)
18026 {
18027 complaint (&symfile_complaints,
18028 _("mangled .debug_line section"));
18029 return;
18030 }
18031 break;
18032 case DW_LNS_copy:
18033 dwarf_record_line (&reader_state, &state_machine, 0);
18034 state_machine.discriminator = 0;
18035 break;
18036 case DW_LNS_advance_pc:
18037 {
18038 CORE_ADDR adjust
18039 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18040 CORE_ADDR addr_adj;
18041
18042 addr_adj = (((state_machine.op_index + adjust)
18043 / lh->maximum_ops_per_instruction)
18044 * lh->minimum_instruction_length);
18045 state_machine.address
18046 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18047 state_machine.op_index = ((state_machine.op_index + adjust)
18048 % lh->maximum_ops_per_instruction);
18049 line_ptr += bytes_read;
18050 }
18051 break;
18052 case DW_LNS_advance_line:
18053 {
18054 int line_delta
18055 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18056
18057 state_machine.line += line_delta;
18058 if (line_delta != 0)
18059 state_machine.line_has_non_zero_discriminator
18060 = state_machine.discriminator != 0;
18061 line_ptr += bytes_read;
18062 }
18063 break;
18064 case DW_LNS_set_file:
18065 {
18066 /* The arrays lh->include_dirs and lh->file_names are
18067 0-based, but the directory and file name numbers in
18068 the statement program are 1-based. */
18069 struct file_entry *fe;
18070 const char *dir = NULL;
18071
18072 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18073 &bytes_read);
18074 line_ptr += bytes_read;
18075 if (state_machine.file == 0
18076 || state_machine.file - 1 >= lh->num_file_names)
18077 dwarf2_debug_line_missing_file_complaint ();
18078 else
18079 {
18080 fe = &lh->file_names[state_machine.file - 1];
18081 if (fe->dir_index && lh->include_dirs != NULL)
18082 dir = lh->include_dirs[fe->dir_index - 1];
18083 if (record_lines_p)
18084 {
18085 state_machine.last_subfile = current_subfile;
18086 state_machine.line_has_non_zero_discriminator
18087 = state_machine.discriminator != 0;
18088 dwarf2_start_subfile (fe->name, dir);
18089 }
18090 }
18091 }
18092 break;
18093 case DW_LNS_set_column:
18094 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18095 line_ptr += bytes_read;
18096 break;
18097 case DW_LNS_negate_stmt:
18098 state_machine.is_stmt = (!state_machine.is_stmt);
18099 break;
18100 case DW_LNS_set_basic_block:
18101 break;
18102 /* Add to the address register of the state machine the
18103 address increment value corresponding to special opcode
18104 255. I.e., this value is scaled by the minimum
18105 instruction length since special opcode 255 would have
18106 scaled the increment. */
18107 case DW_LNS_const_add_pc:
18108 {
18109 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
18110 CORE_ADDR addr_adj;
18111
18112 addr_adj = (((state_machine.op_index + adjust)
18113 / lh->maximum_ops_per_instruction)
18114 * lh->minimum_instruction_length);
18115 state_machine.address
18116 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18117 state_machine.op_index = ((state_machine.op_index + adjust)
18118 % lh->maximum_ops_per_instruction);
18119 }
18120 break;
18121 case DW_LNS_fixed_advance_pc:
18122 {
18123 CORE_ADDR addr_adj;
18124
18125 addr_adj = read_2_bytes (abfd, line_ptr);
18126 state_machine.address
18127 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18128 state_machine.op_index = 0;
18129 line_ptr += 2;
18130 }
18131 break;
18132 default:
18133 {
18134 /* Unknown standard opcode, ignore it. */
18135 int i;
18136
18137 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18138 {
18139 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18140 line_ptr += bytes_read;
18141 }
18142 }
18143 }
18144 }
18145
18146 if (!end_sequence)
18147 dwarf2_debug_line_missing_end_sequence_complaint ();
18148
18149 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18150 in which case we still finish recording the last line). */
18151 dwarf_record_line (&reader_state, &state_machine, 1);
18152 }
18153 }
18154
18155 /* Decode the Line Number Program (LNP) for the given line_header
18156 structure and CU. The actual information extracted and the type
18157 of structures created from the LNP depends on the value of PST.
18158
18159 1. If PST is NULL, then this procedure uses the data from the program
18160 to create all necessary symbol tables, and their linetables.
18161
18162 2. If PST is not NULL, this procedure reads the program to determine
18163 the list of files included by the unit represented by PST, and
18164 builds all the associated partial symbol tables.
18165
18166 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18167 It is used for relative paths in the line table.
18168 NOTE: When processing partial symtabs (pst != NULL),
18169 comp_dir == pst->dirname.
18170
18171 NOTE: It is important that psymtabs have the same file name (via strcmp)
18172 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18173 symtab we don't use it in the name of the psymtabs we create.
18174 E.g. expand_line_sal requires this when finding psymtabs to expand.
18175 A good testcase for this is mb-inline.exp.
18176
18177 LOWPC is the lowest address in CU (or 0 if not known).
18178
18179 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18180 for its PC<->lines mapping information. Otherwise only the filename
18181 table is read in. */
18182
18183 static void
18184 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18185 struct dwarf2_cu *cu, struct partial_symtab *pst,
18186 CORE_ADDR lowpc, int decode_mapping)
18187 {
18188 struct objfile *objfile = cu->objfile;
18189 const int decode_for_pst_p = (pst != NULL);
18190
18191 if (decode_mapping)
18192 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18193
18194 if (decode_for_pst_p)
18195 {
18196 int file_index;
18197
18198 /* Now that we're done scanning the Line Header Program, we can
18199 create the psymtab of each included file. */
18200 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18201 if (lh->file_names[file_index].included_p == 1)
18202 {
18203 const char *include_name =
18204 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18205 if (include_name != NULL)
18206 dwarf2_create_include_psymtab (include_name, pst, objfile);
18207 }
18208 }
18209 else
18210 {
18211 /* Make sure a symtab is created for every file, even files
18212 which contain only variables (i.e. no code with associated
18213 line numbers). */
18214 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18215 int i;
18216
18217 for (i = 0; i < lh->num_file_names; i++)
18218 {
18219 const char *dir = NULL;
18220 struct file_entry *fe;
18221
18222 fe = &lh->file_names[i];
18223 if (fe->dir_index && lh->include_dirs != NULL)
18224 dir = lh->include_dirs[fe->dir_index - 1];
18225 dwarf2_start_subfile (fe->name, dir);
18226
18227 if (current_subfile->symtab == NULL)
18228 {
18229 current_subfile->symtab
18230 = allocate_symtab (cust, current_subfile->name);
18231 }
18232 fe->symtab = current_subfile->symtab;
18233 }
18234 }
18235 }
18236
18237 /* Start a subfile for DWARF. FILENAME is the name of the file and
18238 DIRNAME the name of the source directory which contains FILENAME
18239 or NULL if not known.
18240 This routine tries to keep line numbers from identical absolute and
18241 relative file names in a common subfile.
18242
18243 Using the `list' example from the GDB testsuite, which resides in
18244 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18245 of /srcdir/list0.c yields the following debugging information for list0.c:
18246
18247 DW_AT_name: /srcdir/list0.c
18248 DW_AT_comp_dir: /compdir
18249 files.files[0].name: list0.h
18250 files.files[0].dir: /srcdir
18251 files.files[1].name: list0.c
18252 files.files[1].dir: /srcdir
18253
18254 The line number information for list0.c has to end up in a single
18255 subfile, so that `break /srcdir/list0.c:1' works as expected.
18256 start_subfile will ensure that this happens provided that we pass the
18257 concatenation of files.files[1].dir and files.files[1].name as the
18258 subfile's name. */
18259
18260 static void
18261 dwarf2_start_subfile (const char *filename, const char *dirname)
18262 {
18263 char *copy = NULL;
18264
18265 /* In order not to lose the line information directory,
18266 we concatenate it to the filename when it makes sense.
18267 Note that the Dwarf3 standard says (speaking of filenames in line
18268 information): ``The directory index is ignored for file names
18269 that represent full path names''. Thus ignoring dirname in the
18270 `else' branch below isn't an issue. */
18271
18272 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18273 {
18274 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18275 filename = copy;
18276 }
18277
18278 start_subfile (filename);
18279
18280 if (copy != NULL)
18281 xfree (copy);
18282 }
18283
18284 /* Start a symtab for DWARF.
18285 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18286
18287 static struct compunit_symtab *
18288 dwarf2_start_symtab (struct dwarf2_cu *cu,
18289 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18290 {
18291 struct compunit_symtab *cust
18292 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18293
18294 record_debugformat ("DWARF 2");
18295 record_producer (cu->producer);
18296
18297 /* We assume that we're processing GCC output. */
18298 processing_gcc_compilation = 2;
18299
18300 cu->processing_has_namespace_info = 0;
18301
18302 return cust;
18303 }
18304
18305 static void
18306 var_decode_location (struct attribute *attr, struct symbol *sym,
18307 struct dwarf2_cu *cu)
18308 {
18309 struct objfile *objfile = cu->objfile;
18310 struct comp_unit_head *cu_header = &cu->header;
18311
18312 /* NOTE drow/2003-01-30: There used to be a comment and some special
18313 code here to turn a symbol with DW_AT_external and a
18314 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18315 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18316 with some versions of binutils) where shared libraries could have
18317 relocations against symbols in their debug information - the
18318 minimal symbol would have the right address, but the debug info
18319 would not. It's no longer necessary, because we will explicitly
18320 apply relocations when we read in the debug information now. */
18321
18322 /* A DW_AT_location attribute with no contents indicates that a
18323 variable has been optimized away. */
18324 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18325 {
18326 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18327 return;
18328 }
18329
18330 /* Handle one degenerate form of location expression specially, to
18331 preserve GDB's previous behavior when section offsets are
18332 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18333 then mark this symbol as LOC_STATIC. */
18334
18335 if (attr_form_is_block (attr)
18336 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18337 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18338 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18339 && (DW_BLOCK (attr)->size
18340 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18341 {
18342 unsigned int dummy;
18343
18344 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18345 SYMBOL_VALUE_ADDRESS (sym) =
18346 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18347 else
18348 SYMBOL_VALUE_ADDRESS (sym) =
18349 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18350 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18351 fixup_symbol_section (sym, objfile);
18352 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18353 SYMBOL_SECTION (sym));
18354 return;
18355 }
18356
18357 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18358 expression evaluator, and use LOC_COMPUTED only when necessary
18359 (i.e. when the value of a register or memory location is
18360 referenced, or a thread-local block, etc.). Then again, it might
18361 not be worthwhile. I'm assuming that it isn't unless performance
18362 or memory numbers show me otherwise. */
18363
18364 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18365
18366 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18367 cu->has_loclist = 1;
18368 }
18369
18370 /* Given a pointer to a DWARF information entry, figure out if we need
18371 to make a symbol table entry for it, and if so, create a new entry
18372 and return a pointer to it.
18373 If TYPE is NULL, determine symbol type from the die, otherwise
18374 used the passed type.
18375 If SPACE is not NULL, use it to hold the new symbol. If it is
18376 NULL, allocate a new symbol on the objfile's obstack. */
18377
18378 static struct symbol *
18379 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18380 struct symbol *space)
18381 {
18382 struct objfile *objfile = cu->objfile;
18383 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18384 struct symbol *sym = NULL;
18385 const char *name;
18386 struct attribute *attr = NULL;
18387 struct attribute *attr2 = NULL;
18388 CORE_ADDR baseaddr;
18389 struct pending **list_to_add = NULL;
18390
18391 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18392
18393 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18394
18395 name = dwarf2_name (die, cu);
18396 if (name)
18397 {
18398 const char *linkagename;
18399 int suppress_add = 0;
18400
18401 if (space)
18402 sym = space;
18403 else
18404 sym = allocate_symbol (objfile);
18405 OBJSTAT (objfile, n_syms++);
18406
18407 /* Cache this symbol's name and the name's demangled form (if any). */
18408 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18409 linkagename = dwarf2_physname (name, die, cu);
18410 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18411
18412 /* Fortran does not have mangling standard and the mangling does differ
18413 between gfortran, iFort etc. */
18414 if (cu->language == language_fortran
18415 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18416 symbol_set_demangled_name (&(sym->ginfo),
18417 dwarf2_full_name (name, die, cu),
18418 NULL);
18419
18420 /* Default assumptions.
18421 Use the passed type or decode it from the die. */
18422 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18423 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18424 if (type != NULL)
18425 SYMBOL_TYPE (sym) = type;
18426 else
18427 SYMBOL_TYPE (sym) = die_type (die, cu);
18428 attr = dwarf2_attr (die,
18429 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18430 cu);
18431 if (attr)
18432 {
18433 SYMBOL_LINE (sym) = DW_UNSND (attr);
18434 }
18435
18436 attr = dwarf2_attr (die,
18437 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18438 cu);
18439 if (attr)
18440 {
18441 int file_index = DW_UNSND (attr);
18442
18443 if (cu->line_header == NULL
18444 || file_index > cu->line_header->num_file_names)
18445 complaint (&symfile_complaints,
18446 _("file index out of range"));
18447 else if (file_index > 0)
18448 {
18449 struct file_entry *fe;
18450
18451 fe = &cu->line_header->file_names[file_index - 1];
18452 symbol_set_symtab (sym, fe->symtab);
18453 }
18454 }
18455
18456 switch (die->tag)
18457 {
18458 case DW_TAG_label:
18459 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18460 if (attr)
18461 {
18462 CORE_ADDR addr;
18463
18464 addr = attr_value_as_address (attr);
18465 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18466 SYMBOL_VALUE_ADDRESS (sym) = addr;
18467 }
18468 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18469 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18470 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18471 add_symbol_to_list (sym, cu->list_in_scope);
18472 break;
18473 case DW_TAG_subprogram:
18474 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18475 finish_block. */
18476 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18477 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18478 if ((attr2 && (DW_UNSND (attr2) != 0))
18479 || cu->language == language_ada)
18480 {
18481 /* Subprograms marked external are stored as a global symbol.
18482 Ada subprograms, whether marked external or not, are always
18483 stored as a global symbol, because we want to be able to
18484 access them globally. For instance, we want to be able
18485 to break on a nested subprogram without having to
18486 specify the context. */
18487 list_to_add = &global_symbols;
18488 }
18489 else
18490 {
18491 list_to_add = cu->list_in_scope;
18492 }
18493 break;
18494 case DW_TAG_inlined_subroutine:
18495 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18496 finish_block. */
18497 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18498 SYMBOL_INLINED (sym) = 1;
18499 list_to_add = cu->list_in_scope;
18500 break;
18501 case DW_TAG_template_value_param:
18502 suppress_add = 1;
18503 /* Fall through. */
18504 case DW_TAG_constant:
18505 case DW_TAG_variable:
18506 case DW_TAG_member:
18507 /* Compilation with minimal debug info may result in
18508 variables with missing type entries. Change the
18509 misleading `void' type to something sensible. */
18510 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18511 SYMBOL_TYPE (sym)
18512 = objfile_type (objfile)->nodebug_data_symbol;
18513
18514 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18515 /* In the case of DW_TAG_member, we should only be called for
18516 static const members. */
18517 if (die->tag == DW_TAG_member)
18518 {
18519 /* dwarf2_add_field uses die_is_declaration,
18520 so we do the same. */
18521 gdb_assert (die_is_declaration (die, cu));
18522 gdb_assert (attr);
18523 }
18524 if (attr)
18525 {
18526 dwarf2_const_value (attr, sym, cu);
18527 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18528 if (!suppress_add)
18529 {
18530 if (attr2 && (DW_UNSND (attr2) != 0))
18531 list_to_add = &global_symbols;
18532 else
18533 list_to_add = cu->list_in_scope;
18534 }
18535 break;
18536 }
18537 attr = dwarf2_attr (die, DW_AT_location, cu);
18538 if (attr)
18539 {
18540 var_decode_location (attr, sym, cu);
18541 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18542
18543 /* Fortran explicitly imports any global symbols to the local
18544 scope by DW_TAG_common_block. */
18545 if (cu->language == language_fortran && die->parent
18546 && die->parent->tag == DW_TAG_common_block)
18547 attr2 = NULL;
18548
18549 if (SYMBOL_CLASS (sym) == LOC_STATIC
18550 && SYMBOL_VALUE_ADDRESS (sym) == 0
18551 && !dwarf2_per_objfile->has_section_at_zero)
18552 {
18553 /* When a static variable is eliminated by the linker,
18554 the corresponding debug information is not stripped
18555 out, but the variable address is set to null;
18556 do not add such variables into symbol table. */
18557 }
18558 else if (attr2 && (DW_UNSND (attr2) != 0))
18559 {
18560 /* Workaround gfortran PR debug/40040 - it uses
18561 DW_AT_location for variables in -fPIC libraries which may
18562 get overriden by other libraries/executable and get
18563 a different address. Resolve it by the minimal symbol
18564 which may come from inferior's executable using copy
18565 relocation. Make this workaround only for gfortran as for
18566 other compilers GDB cannot guess the minimal symbol
18567 Fortran mangling kind. */
18568 if (cu->language == language_fortran && die->parent
18569 && die->parent->tag == DW_TAG_module
18570 && cu->producer
18571 && startswith (cu->producer, "GNU Fortran"))
18572 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18573
18574 /* A variable with DW_AT_external is never static,
18575 but it may be block-scoped. */
18576 list_to_add = (cu->list_in_scope == &file_symbols
18577 ? &global_symbols : cu->list_in_scope);
18578 }
18579 else
18580 list_to_add = cu->list_in_scope;
18581 }
18582 else
18583 {
18584 /* We do not know the address of this symbol.
18585 If it is an external symbol and we have type information
18586 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18587 The address of the variable will then be determined from
18588 the minimal symbol table whenever the variable is
18589 referenced. */
18590 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18591
18592 /* Fortran explicitly imports any global symbols to the local
18593 scope by DW_TAG_common_block. */
18594 if (cu->language == language_fortran && die->parent
18595 && die->parent->tag == DW_TAG_common_block)
18596 {
18597 /* SYMBOL_CLASS doesn't matter here because
18598 read_common_block is going to reset it. */
18599 if (!suppress_add)
18600 list_to_add = cu->list_in_scope;
18601 }
18602 else if (attr2 && (DW_UNSND (attr2) != 0)
18603 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18604 {
18605 /* A variable with DW_AT_external is never static, but it
18606 may be block-scoped. */
18607 list_to_add = (cu->list_in_scope == &file_symbols
18608 ? &global_symbols : cu->list_in_scope);
18609
18610 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18611 }
18612 else if (!die_is_declaration (die, cu))
18613 {
18614 /* Use the default LOC_OPTIMIZED_OUT class. */
18615 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18616 if (!suppress_add)
18617 list_to_add = cu->list_in_scope;
18618 }
18619 }
18620 break;
18621 case DW_TAG_formal_parameter:
18622 /* If we are inside a function, mark this as an argument. If
18623 not, we might be looking at an argument to an inlined function
18624 when we do not have enough information to show inlined frames;
18625 pretend it's a local variable in that case so that the user can
18626 still see it. */
18627 if (context_stack_depth > 0
18628 && context_stack[context_stack_depth - 1].name != NULL)
18629 SYMBOL_IS_ARGUMENT (sym) = 1;
18630 attr = dwarf2_attr (die, DW_AT_location, cu);
18631 if (attr)
18632 {
18633 var_decode_location (attr, sym, cu);
18634 }
18635 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18636 if (attr)
18637 {
18638 dwarf2_const_value (attr, sym, cu);
18639 }
18640
18641 list_to_add = cu->list_in_scope;
18642 break;
18643 case DW_TAG_unspecified_parameters:
18644 /* From varargs functions; gdb doesn't seem to have any
18645 interest in this information, so just ignore it for now.
18646 (FIXME?) */
18647 break;
18648 case DW_TAG_template_type_param:
18649 suppress_add = 1;
18650 /* Fall through. */
18651 case DW_TAG_class_type:
18652 case DW_TAG_interface_type:
18653 case DW_TAG_structure_type:
18654 case DW_TAG_union_type:
18655 case DW_TAG_set_type:
18656 case DW_TAG_enumeration_type:
18657 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18658 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18659
18660 {
18661 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18662 really ever be static objects: otherwise, if you try
18663 to, say, break of a class's method and you're in a file
18664 which doesn't mention that class, it won't work unless
18665 the check for all static symbols in lookup_symbol_aux
18666 saves you. See the OtherFileClass tests in
18667 gdb.c++/namespace.exp. */
18668
18669 if (!suppress_add)
18670 {
18671 list_to_add = (cu->list_in_scope == &file_symbols
18672 && (cu->language == language_cplus
18673 || cu->language == language_java)
18674 ? &global_symbols : cu->list_in_scope);
18675
18676 /* The semantics of C++ state that "struct foo {
18677 ... }" also defines a typedef for "foo". A Java
18678 class declaration also defines a typedef for the
18679 class. */
18680 if (cu->language == language_cplus
18681 || cu->language == language_java
18682 || cu->language == language_ada
18683 || cu->language == language_d
18684 || cu->language == language_rust)
18685 {
18686 /* The symbol's name is already allocated along
18687 with this objfile, so we don't need to
18688 duplicate it for the type. */
18689 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18690 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18691 }
18692 }
18693 }
18694 break;
18695 case DW_TAG_typedef:
18696 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18697 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18698 list_to_add = cu->list_in_scope;
18699 break;
18700 case DW_TAG_base_type:
18701 case DW_TAG_subrange_type:
18702 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18703 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18704 list_to_add = cu->list_in_scope;
18705 break;
18706 case DW_TAG_enumerator:
18707 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18708 if (attr)
18709 {
18710 dwarf2_const_value (attr, sym, cu);
18711 }
18712 {
18713 /* NOTE: carlton/2003-11-10: See comment above in the
18714 DW_TAG_class_type, etc. block. */
18715
18716 list_to_add = (cu->list_in_scope == &file_symbols
18717 && (cu->language == language_cplus
18718 || cu->language == language_java)
18719 ? &global_symbols : cu->list_in_scope);
18720 }
18721 break;
18722 case DW_TAG_imported_declaration:
18723 case DW_TAG_namespace:
18724 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18725 list_to_add = &global_symbols;
18726 break;
18727 case DW_TAG_module:
18728 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18729 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18730 list_to_add = &global_symbols;
18731 break;
18732 case DW_TAG_common_block:
18733 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18734 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18735 add_symbol_to_list (sym, cu->list_in_scope);
18736 break;
18737 default:
18738 /* Not a tag we recognize. Hopefully we aren't processing
18739 trash data, but since we must specifically ignore things
18740 we don't recognize, there is nothing else we should do at
18741 this point. */
18742 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18743 dwarf_tag_name (die->tag));
18744 break;
18745 }
18746
18747 if (suppress_add)
18748 {
18749 sym->hash_next = objfile->template_symbols;
18750 objfile->template_symbols = sym;
18751 list_to_add = NULL;
18752 }
18753
18754 if (list_to_add != NULL)
18755 add_symbol_to_list (sym, list_to_add);
18756
18757 /* For the benefit of old versions of GCC, check for anonymous
18758 namespaces based on the demangled name. */
18759 if (!cu->processing_has_namespace_info
18760 && cu->language == language_cplus)
18761 cp_scan_for_anonymous_namespaces (sym, objfile);
18762 }
18763 return (sym);
18764 }
18765
18766 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18767
18768 static struct symbol *
18769 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18770 {
18771 return new_symbol_full (die, type, cu, NULL);
18772 }
18773
18774 /* Given an attr with a DW_FORM_dataN value in host byte order,
18775 zero-extend it as appropriate for the symbol's type. The DWARF
18776 standard (v4) is not entirely clear about the meaning of using
18777 DW_FORM_dataN for a constant with a signed type, where the type is
18778 wider than the data. The conclusion of a discussion on the DWARF
18779 list was that this is unspecified. We choose to always zero-extend
18780 because that is the interpretation long in use by GCC. */
18781
18782 static gdb_byte *
18783 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18784 struct dwarf2_cu *cu, LONGEST *value, int bits)
18785 {
18786 struct objfile *objfile = cu->objfile;
18787 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18788 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18789 LONGEST l = DW_UNSND (attr);
18790
18791 if (bits < sizeof (*value) * 8)
18792 {
18793 l &= ((LONGEST) 1 << bits) - 1;
18794 *value = l;
18795 }
18796 else if (bits == sizeof (*value) * 8)
18797 *value = l;
18798 else
18799 {
18800 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
18801 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18802 return bytes;
18803 }
18804
18805 return NULL;
18806 }
18807
18808 /* Read a constant value from an attribute. Either set *VALUE, or if
18809 the value does not fit in *VALUE, set *BYTES - either already
18810 allocated on the objfile obstack, or newly allocated on OBSTACK,
18811 or, set *BATON, if we translated the constant to a location
18812 expression. */
18813
18814 static void
18815 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18816 const char *name, struct obstack *obstack,
18817 struct dwarf2_cu *cu,
18818 LONGEST *value, const gdb_byte **bytes,
18819 struct dwarf2_locexpr_baton **baton)
18820 {
18821 struct objfile *objfile = cu->objfile;
18822 struct comp_unit_head *cu_header = &cu->header;
18823 struct dwarf_block *blk;
18824 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18825 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18826
18827 *value = 0;
18828 *bytes = NULL;
18829 *baton = NULL;
18830
18831 switch (attr->form)
18832 {
18833 case DW_FORM_addr:
18834 case DW_FORM_GNU_addr_index:
18835 {
18836 gdb_byte *data;
18837
18838 if (TYPE_LENGTH (type) != cu_header->addr_size)
18839 dwarf2_const_value_length_mismatch_complaint (name,
18840 cu_header->addr_size,
18841 TYPE_LENGTH (type));
18842 /* Symbols of this form are reasonably rare, so we just
18843 piggyback on the existing location code rather than writing
18844 a new implementation of symbol_computed_ops. */
18845 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
18846 (*baton)->per_cu = cu->per_cu;
18847 gdb_assert ((*baton)->per_cu);
18848
18849 (*baton)->size = 2 + cu_header->addr_size;
18850 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
18851 (*baton)->data = data;
18852
18853 data[0] = DW_OP_addr;
18854 store_unsigned_integer (&data[1], cu_header->addr_size,
18855 byte_order, DW_ADDR (attr));
18856 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18857 }
18858 break;
18859 case DW_FORM_string:
18860 case DW_FORM_strp:
18861 case DW_FORM_GNU_str_index:
18862 case DW_FORM_GNU_strp_alt:
18863 /* DW_STRING is already allocated on the objfile obstack, point
18864 directly to it. */
18865 *bytes = (const gdb_byte *) DW_STRING (attr);
18866 break;
18867 case DW_FORM_block1:
18868 case DW_FORM_block2:
18869 case DW_FORM_block4:
18870 case DW_FORM_block:
18871 case DW_FORM_exprloc:
18872 blk = DW_BLOCK (attr);
18873 if (TYPE_LENGTH (type) != blk->size)
18874 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18875 TYPE_LENGTH (type));
18876 *bytes = blk->data;
18877 break;
18878
18879 /* The DW_AT_const_value attributes are supposed to carry the
18880 symbol's value "represented as it would be on the target
18881 architecture." By the time we get here, it's already been
18882 converted to host endianness, so we just need to sign- or
18883 zero-extend it as appropriate. */
18884 case DW_FORM_data1:
18885 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18886 break;
18887 case DW_FORM_data2:
18888 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18889 break;
18890 case DW_FORM_data4:
18891 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18892 break;
18893 case DW_FORM_data8:
18894 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18895 break;
18896
18897 case DW_FORM_sdata:
18898 *value = DW_SND (attr);
18899 break;
18900
18901 case DW_FORM_udata:
18902 *value = DW_UNSND (attr);
18903 break;
18904
18905 default:
18906 complaint (&symfile_complaints,
18907 _("unsupported const value attribute form: '%s'"),
18908 dwarf_form_name (attr->form));
18909 *value = 0;
18910 break;
18911 }
18912 }
18913
18914
18915 /* Copy constant value from an attribute to a symbol. */
18916
18917 static void
18918 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18919 struct dwarf2_cu *cu)
18920 {
18921 struct objfile *objfile = cu->objfile;
18922 LONGEST value;
18923 const gdb_byte *bytes;
18924 struct dwarf2_locexpr_baton *baton;
18925
18926 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18927 SYMBOL_PRINT_NAME (sym),
18928 &objfile->objfile_obstack, cu,
18929 &value, &bytes, &baton);
18930
18931 if (baton != NULL)
18932 {
18933 SYMBOL_LOCATION_BATON (sym) = baton;
18934 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18935 }
18936 else if (bytes != NULL)
18937 {
18938 SYMBOL_VALUE_BYTES (sym) = bytes;
18939 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18940 }
18941 else
18942 {
18943 SYMBOL_VALUE (sym) = value;
18944 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18945 }
18946 }
18947
18948 /* Return the type of the die in question using its DW_AT_type attribute. */
18949
18950 static struct type *
18951 die_type (struct die_info *die, struct dwarf2_cu *cu)
18952 {
18953 struct attribute *type_attr;
18954
18955 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18956 if (!type_attr)
18957 {
18958 /* A missing DW_AT_type represents a void type. */
18959 return objfile_type (cu->objfile)->builtin_void;
18960 }
18961
18962 return lookup_die_type (die, type_attr, cu);
18963 }
18964
18965 /* True iff CU's producer generates GNAT Ada auxiliary information
18966 that allows to find parallel types through that information instead
18967 of having to do expensive parallel lookups by type name. */
18968
18969 static int
18970 need_gnat_info (struct dwarf2_cu *cu)
18971 {
18972 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18973 of GNAT produces this auxiliary information, without any indication
18974 that it is produced. Part of enhancing the FSF version of GNAT
18975 to produce that information will be to put in place an indicator
18976 that we can use in order to determine whether the descriptive type
18977 info is available or not. One suggestion that has been made is
18978 to use a new attribute, attached to the CU die. For now, assume
18979 that the descriptive type info is not available. */
18980 return 0;
18981 }
18982
18983 /* Return the auxiliary type of the die in question using its
18984 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18985 attribute is not present. */
18986
18987 static struct type *
18988 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18989 {
18990 struct attribute *type_attr;
18991
18992 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18993 if (!type_attr)
18994 return NULL;
18995
18996 return lookup_die_type (die, type_attr, cu);
18997 }
18998
18999 /* If DIE has a descriptive_type attribute, then set the TYPE's
19000 descriptive type accordingly. */
19001
19002 static void
19003 set_descriptive_type (struct type *type, struct die_info *die,
19004 struct dwarf2_cu *cu)
19005 {
19006 struct type *descriptive_type = die_descriptive_type (die, cu);
19007
19008 if (descriptive_type)
19009 {
19010 ALLOCATE_GNAT_AUX_TYPE (type);
19011 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19012 }
19013 }
19014
19015 /* Return the containing type of the die in question using its
19016 DW_AT_containing_type attribute. */
19017
19018 static struct type *
19019 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
19020 {
19021 struct attribute *type_attr;
19022
19023 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
19024 if (!type_attr)
19025 error (_("Dwarf Error: Problem turning containing type into gdb type "
19026 "[in module %s]"), objfile_name (cu->objfile));
19027
19028 return lookup_die_type (die, type_attr, cu);
19029 }
19030
19031 /* Return an error marker type to use for the ill formed type in DIE/CU. */
19032
19033 static struct type *
19034 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19035 {
19036 struct objfile *objfile = dwarf2_per_objfile->objfile;
19037 char *message, *saved;
19038
19039 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
19040 objfile_name (objfile),
19041 cu->header.offset.sect_off,
19042 die->offset.sect_off);
19043 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19044 message, strlen (message));
19045 xfree (message);
19046
19047 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
19048 }
19049
19050 /* Look up the type of DIE in CU using its type attribute ATTR.
19051 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19052 DW_AT_containing_type.
19053 If there is no type substitute an error marker. */
19054
19055 static struct type *
19056 lookup_die_type (struct die_info *die, const struct attribute *attr,
19057 struct dwarf2_cu *cu)
19058 {
19059 struct objfile *objfile = cu->objfile;
19060 struct type *this_type;
19061
19062 gdb_assert (attr->name == DW_AT_type
19063 || attr->name == DW_AT_GNAT_descriptive_type
19064 || attr->name == DW_AT_containing_type);
19065
19066 /* First see if we have it cached. */
19067
19068 if (attr->form == DW_FORM_GNU_ref_alt)
19069 {
19070 struct dwarf2_per_cu_data *per_cu;
19071 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19072
19073 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19074 this_type = get_die_type_at_offset (offset, per_cu);
19075 }
19076 else if (attr_form_is_ref (attr))
19077 {
19078 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19079
19080 this_type = get_die_type_at_offset (offset, cu->per_cu);
19081 }
19082 else if (attr->form == DW_FORM_ref_sig8)
19083 {
19084 ULONGEST signature = DW_SIGNATURE (attr);
19085
19086 return get_signatured_type (die, signature, cu);
19087 }
19088 else
19089 {
19090 complaint (&symfile_complaints,
19091 _("Dwarf Error: Bad type attribute %s in DIE"
19092 " at 0x%x [in module %s]"),
19093 dwarf_attr_name (attr->name), die->offset.sect_off,
19094 objfile_name (objfile));
19095 return build_error_marker_type (cu, die);
19096 }
19097
19098 /* If not cached we need to read it in. */
19099
19100 if (this_type == NULL)
19101 {
19102 struct die_info *type_die = NULL;
19103 struct dwarf2_cu *type_cu = cu;
19104
19105 if (attr_form_is_ref (attr))
19106 type_die = follow_die_ref (die, attr, &type_cu);
19107 if (type_die == NULL)
19108 return build_error_marker_type (cu, die);
19109 /* If we find the type now, it's probably because the type came
19110 from an inter-CU reference and the type's CU got expanded before
19111 ours. */
19112 this_type = read_type_die (type_die, type_cu);
19113 }
19114
19115 /* If we still don't have a type use an error marker. */
19116
19117 if (this_type == NULL)
19118 return build_error_marker_type (cu, die);
19119
19120 return this_type;
19121 }
19122
19123 /* Return the type in DIE, CU.
19124 Returns NULL for invalid types.
19125
19126 This first does a lookup in die_type_hash,
19127 and only reads the die in if necessary.
19128
19129 NOTE: This can be called when reading in partial or full symbols. */
19130
19131 static struct type *
19132 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19133 {
19134 struct type *this_type;
19135
19136 this_type = get_die_type (die, cu);
19137 if (this_type)
19138 return this_type;
19139
19140 return read_type_die_1 (die, cu);
19141 }
19142
19143 /* Read the type in DIE, CU.
19144 Returns NULL for invalid types. */
19145
19146 static struct type *
19147 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19148 {
19149 struct type *this_type = NULL;
19150
19151 switch (die->tag)
19152 {
19153 case DW_TAG_class_type:
19154 case DW_TAG_interface_type:
19155 case DW_TAG_structure_type:
19156 case DW_TAG_union_type:
19157 this_type = read_structure_type (die, cu);
19158 break;
19159 case DW_TAG_enumeration_type:
19160 this_type = read_enumeration_type (die, cu);
19161 break;
19162 case DW_TAG_subprogram:
19163 case DW_TAG_subroutine_type:
19164 case DW_TAG_inlined_subroutine:
19165 this_type = read_subroutine_type (die, cu);
19166 break;
19167 case DW_TAG_array_type:
19168 this_type = read_array_type (die, cu);
19169 break;
19170 case DW_TAG_set_type:
19171 this_type = read_set_type (die, cu);
19172 break;
19173 case DW_TAG_pointer_type:
19174 this_type = read_tag_pointer_type (die, cu);
19175 break;
19176 case DW_TAG_ptr_to_member_type:
19177 this_type = read_tag_ptr_to_member_type (die, cu);
19178 break;
19179 case DW_TAG_reference_type:
19180 this_type = read_tag_reference_type (die, cu);
19181 break;
19182 case DW_TAG_const_type:
19183 this_type = read_tag_const_type (die, cu);
19184 break;
19185 case DW_TAG_volatile_type:
19186 this_type = read_tag_volatile_type (die, cu);
19187 break;
19188 case DW_TAG_restrict_type:
19189 this_type = read_tag_restrict_type (die, cu);
19190 break;
19191 case DW_TAG_string_type:
19192 this_type = read_tag_string_type (die, cu);
19193 break;
19194 case DW_TAG_typedef:
19195 this_type = read_typedef (die, cu);
19196 break;
19197 case DW_TAG_subrange_type:
19198 this_type = read_subrange_type (die, cu);
19199 break;
19200 case DW_TAG_base_type:
19201 this_type = read_base_type (die, cu);
19202 break;
19203 case DW_TAG_unspecified_type:
19204 this_type = read_unspecified_type (die, cu);
19205 break;
19206 case DW_TAG_namespace:
19207 this_type = read_namespace_type (die, cu);
19208 break;
19209 case DW_TAG_module:
19210 this_type = read_module_type (die, cu);
19211 break;
19212 case DW_TAG_atomic_type:
19213 this_type = read_tag_atomic_type (die, cu);
19214 break;
19215 default:
19216 complaint (&symfile_complaints,
19217 _("unexpected tag in read_type_die: '%s'"),
19218 dwarf_tag_name (die->tag));
19219 break;
19220 }
19221
19222 return this_type;
19223 }
19224
19225 /* See if we can figure out if the class lives in a namespace. We do
19226 this by looking for a member function; its demangled name will
19227 contain namespace info, if there is any.
19228 Return the computed name or NULL.
19229 Space for the result is allocated on the objfile's obstack.
19230 This is the full-die version of guess_partial_die_structure_name.
19231 In this case we know DIE has no useful parent. */
19232
19233 static char *
19234 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19235 {
19236 struct die_info *spec_die;
19237 struct dwarf2_cu *spec_cu;
19238 struct die_info *child;
19239
19240 spec_cu = cu;
19241 spec_die = die_specification (die, &spec_cu);
19242 if (spec_die != NULL)
19243 {
19244 die = spec_die;
19245 cu = spec_cu;
19246 }
19247
19248 for (child = die->child;
19249 child != NULL;
19250 child = child->sibling)
19251 {
19252 if (child->tag == DW_TAG_subprogram)
19253 {
19254 const char *linkage_name;
19255
19256 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19257 if (linkage_name == NULL)
19258 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19259 cu);
19260 if (linkage_name != NULL)
19261 {
19262 char *actual_name
19263 = language_class_name_from_physname (cu->language_defn,
19264 linkage_name);
19265 char *name = NULL;
19266
19267 if (actual_name != NULL)
19268 {
19269 const char *die_name = dwarf2_name (die, cu);
19270
19271 if (die_name != NULL
19272 && strcmp (die_name, actual_name) != 0)
19273 {
19274 /* Strip off the class name from the full name.
19275 We want the prefix. */
19276 int die_name_len = strlen (die_name);
19277 int actual_name_len = strlen (actual_name);
19278
19279 /* Test for '::' as a sanity check. */
19280 if (actual_name_len > die_name_len + 2
19281 && actual_name[actual_name_len
19282 - die_name_len - 1] == ':')
19283 name = (char *) obstack_copy0 (
19284 &cu->objfile->per_bfd->storage_obstack,
19285 actual_name, actual_name_len - die_name_len - 2);
19286 }
19287 }
19288 xfree (actual_name);
19289 return name;
19290 }
19291 }
19292 }
19293
19294 return NULL;
19295 }
19296
19297 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19298 prefix part in such case. See
19299 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19300
19301 static char *
19302 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19303 {
19304 struct attribute *attr;
19305 const char *base;
19306
19307 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19308 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19309 return NULL;
19310
19311 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19312 return NULL;
19313
19314 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19315 if (attr == NULL)
19316 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19317 if (attr == NULL || DW_STRING (attr) == NULL)
19318 return NULL;
19319
19320 /* dwarf2_name had to be already called. */
19321 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19322
19323 /* Strip the base name, keep any leading namespaces/classes. */
19324 base = strrchr (DW_STRING (attr), ':');
19325 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19326 return "";
19327
19328 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19329 DW_STRING (attr),
19330 &base[-1] - DW_STRING (attr));
19331 }
19332
19333 /* Return the name of the namespace/class that DIE is defined within,
19334 or "" if we can't tell. The caller should not xfree the result.
19335
19336 For example, if we're within the method foo() in the following
19337 code:
19338
19339 namespace N {
19340 class C {
19341 void foo () {
19342 }
19343 };
19344 }
19345
19346 then determine_prefix on foo's die will return "N::C". */
19347
19348 static const char *
19349 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19350 {
19351 struct die_info *parent, *spec_die;
19352 struct dwarf2_cu *spec_cu;
19353 struct type *parent_type;
19354 char *retval;
19355
19356 if (cu->language != language_cplus && cu->language != language_java
19357 && cu->language != language_fortran && cu->language != language_d
19358 && cu->language != language_rust)
19359 return "";
19360
19361 retval = anonymous_struct_prefix (die, cu);
19362 if (retval)
19363 return retval;
19364
19365 /* We have to be careful in the presence of DW_AT_specification.
19366 For example, with GCC 3.4, given the code
19367
19368 namespace N {
19369 void foo() {
19370 // Definition of N::foo.
19371 }
19372 }
19373
19374 then we'll have a tree of DIEs like this:
19375
19376 1: DW_TAG_compile_unit
19377 2: DW_TAG_namespace // N
19378 3: DW_TAG_subprogram // declaration of N::foo
19379 4: DW_TAG_subprogram // definition of N::foo
19380 DW_AT_specification // refers to die #3
19381
19382 Thus, when processing die #4, we have to pretend that we're in
19383 the context of its DW_AT_specification, namely the contex of die
19384 #3. */
19385 spec_cu = cu;
19386 spec_die = die_specification (die, &spec_cu);
19387 if (spec_die == NULL)
19388 parent = die->parent;
19389 else
19390 {
19391 parent = spec_die->parent;
19392 cu = spec_cu;
19393 }
19394
19395 if (parent == NULL)
19396 return "";
19397 else if (parent->building_fullname)
19398 {
19399 const char *name;
19400 const char *parent_name;
19401
19402 /* It has been seen on RealView 2.2 built binaries,
19403 DW_TAG_template_type_param types actually _defined_ as
19404 children of the parent class:
19405
19406 enum E {};
19407 template class <class Enum> Class{};
19408 Class<enum E> class_e;
19409
19410 1: DW_TAG_class_type (Class)
19411 2: DW_TAG_enumeration_type (E)
19412 3: DW_TAG_enumerator (enum1:0)
19413 3: DW_TAG_enumerator (enum2:1)
19414 ...
19415 2: DW_TAG_template_type_param
19416 DW_AT_type DW_FORM_ref_udata (E)
19417
19418 Besides being broken debug info, it can put GDB into an
19419 infinite loop. Consider:
19420
19421 When we're building the full name for Class<E>, we'll start
19422 at Class, and go look over its template type parameters,
19423 finding E. We'll then try to build the full name of E, and
19424 reach here. We're now trying to build the full name of E,
19425 and look over the parent DIE for containing scope. In the
19426 broken case, if we followed the parent DIE of E, we'd again
19427 find Class, and once again go look at its template type
19428 arguments, etc., etc. Simply don't consider such parent die
19429 as source-level parent of this die (it can't be, the language
19430 doesn't allow it), and break the loop here. */
19431 name = dwarf2_name (die, cu);
19432 parent_name = dwarf2_name (parent, cu);
19433 complaint (&symfile_complaints,
19434 _("template param type '%s' defined within parent '%s'"),
19435 name ? name : "<unknown>",
19436 parent_name ? parent_name : "<unknown>");
19437 return "";
19438 }
19439 else
19440 switch (parent->tag)
19441 {
19442 case DW_TAG_namespace:
19443 parent_type = read_type_die (parent, cu);
19444 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19445 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19446 Work around this problem here. */
19447 if (cu->language == language_cplus
19448 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19449 return "";
19450 /* We give a name to even anonymous namespaces. */
19451 return TYPE_TAG_NAME (parent_type);
19452 case DW_TAG_class_type:
19453 case DW_TAG_interface_type:
19454 case DW_TAG_structure_type:
19455 case DW_TAG_union_type:
19456 case DW_TAG_module:
19457 parent_type = read_type_die (parent, cu);
19458 if (TYPE_TAG_NAME (parent_type) != NULL)
19459 return TYPE_TAG_NAME (parent_type);
19460 else
19461 /* An anonymous structure is only allowed non-static data
19462 members; no typedefs, no member functions, et cetera.
19463 So it does not need a prefix. */
19464 return "";
19465 case DW_TAG_compile_unit:
19466 case DW_TAG_partial_unit:
19467 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19468 if (cu->language == language_cplus
19469 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19470 && die->child != NULL
19471 && (die->tag == DW_TAG_class_type
19472 || die->tag == DW_TAG_structure_type
19473 || die->tag == DW_TAG_union_type))
19474 {
19475 char *name = guess_full_die_structure_name (die, cu);
19476 if (name != NULL)
19477 return name;
19478 }
19479 return "";
19480 case DW_TAG_enumeration_type:
19481 parent_type = read_type_die (parent, cu);
19482 if (TYPE_DECLARED_CLASS (parent_type))
19483 {
19484 if (TYPE_TAG_NAME (parent_type) != NULL)
19485 return TYPE_TAG_NAME (parent_type);
19486 return "";
19487 }
19488 /* Fall through. */
19489 default:
19490 return determine_prefix (parent, cu);
19491 }
19492 }
19493
19494 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19495 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19496 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19497 an obconcat, otherwise allocate storage for the result. The CU argument is
19498 used to determine the language and hence, the appropriate separator. */
19499
19500 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19501
19502 static char *
19503 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19504 int physname, struct dwarf2_cu *cu)
19505 {
19506 const char *lead = "";
19507 const char *sep;
19508
19509 if (suffix == NULL || suffix[0] == '\0'
19510 || prefix == NULL || prefix[0] == '\0')
19511 sep = "";
19512 else if (cu->language == language_java)
19513 sep = ".";
19514 else if (cu->language == language_d)
19515 {
19516 /* For D, the 'main' function could be defined in any module, but it
19517 should never be prefixed. */
19518 if (strcmp (suffix, "D main") == 0)
19519 {
19520 prefix = "";
19521 sep = "";
19522 }
19523 else
19524 sep = ".";
19525 }
19526 else if (cu->language == language_fortran && physname)
19527 {
19528 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19529 DW_AT_MIPS_linkage_name is preferred and used instead. */
19530
19531 lead = "__";
19532 sep = "_MOD_";
19533 }
19534 else
19535 sep = "::";
19536
19537 if (prefix == NULL)
19538 prefix = "";
19539 if (suffix == NULL)
19540 suffix = "";
19541
19542 if (obs == NULL)
19543 {
19544 char *retval
19545 = ((char *)
19546 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
19547
19548 strcpy (retval, lead);
19549 strcat (retval, prefix);
19550 strcat (retval, sep);
19551 strcat (retval, suffix);
19552 return retval;
19553 }
19554 else
19555 {
19556 /* We have an obstack. */
19557 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19558 }
19559 }
19560
19561 /* Return sibling of die, NULL if no sibling. */
19562
19563 static struct die_info *
19564 sibling_die (struct die_info *die)
19565 {
19566 return die->sibling;
19567 }
19568
19569 /* Get name of a die, return NULL if not found. */
19570
19571 static const char *
19572 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19573 struct obstack *obstack)
19574 {
19575 if (name && cu->language == language_cplus)
19576 {
19577 char *canon_name = cp_canonicalize_string (name);
19578
19579 if (canon_name != NULL)
19580 {
19581 if (strcmp (canon_name, name) != 0)
19582 name = (const char *) obstack_copy0 (obstack, canon_name,
19583 strlen (canon_name));
19584 xfree (canon_name);
19585 }
19586 }
19587
19588 return name;
19589 }
19590
19591 /* Get name of a die, return NULL if not found.
19592 Anonymous namespaces are converted to their magic string. */
19593
19594 static const char *
19595 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19596 {
19597 struct attribute *attr;
19598
19599 attr = dwarf2_attr (die, DW_AT_name, cu);
19600 if ((!attr || !DW_STRING (attr))
19601 && die->tag != DW_TAG_namespace
19602 && die->tag != DW_TAG_class_type
19603 && die->tag != DW_TAG_interface_type
19604 && die->tag != DW_TAG_structure_type
19605 && die->tag != DW_TAG_union_type)
19606 return NULL;
19607
19608 switch (die->tag)
19609 {
19610 case DW_TAG_compile_unit:
19611 case DW_TAG_partial_unit:
19612 /* Compilation units have a DW_AT_name that is a filename, not
19613 a source language identifier. */
19614 case DW_TAG_enumeration_type:
19615 case DW_TAG_enumerator:
19616 /* These tags always have simple identifiers already; no need
19617 to canonicalize them. */
19618 return DW_STRING (attr);
19619
19620 case DW_TAG_namespace:
19621 if (attr != NULL && DW_STRING (attr) != NULL)
19622 return DW_STRING (attr);
19623 return CP_ANONYMOUS_NAMESPACE_STR;
19624
19625 case DW_TAG_subprogram:
19626 /* Java constructors will all be named "<init>", so return
19627 the class name when we see this special case. */
19628 if (cu->language == language_java
19629 && DW_STRING (attr) != NULL
19630 && strcmp (DW_STRING (attr), "<init>") == 0)
19631 {
19632 struct dwarf2_cu *spec_cu = cu;
19633 struct die_info *spec_die;
19634
19635 /* GCJ will output '<init>' for Java constructor names.
19636 For this special case, return the name of the parent class. */
19637
19638 /* GCJ may output subprogram DIEs with AT_specification set.
19639 If so, use the name of the specified DIE. */
19640 spec_die = die_specification (die, &spec_cu);
19641 if (spec_die != NULL)
19642 return dwarf2_name (spec_die, spec_cu);
19643
19644 do
19645 {
19646 die = die->parent;
19647 if (die->tag == DW_TAG_class_type)
19648 return dwarf2_name (die, cu);
19649 }
19650 while (die->tag != DW_TAG_compile_unit
19651 && die->tag != DW_TAG_partial_unit);
19652 }
19653 break;
19654
19655 case DW_TAG_class_type:
19656 case DW_TAG_interface_type:
19657 case DW_TAG_structure_type:
19658 case DW_TAG_union_type:
19659 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19660 structures or unions. These were of the form "._%d" in GCC 4.1,
19661 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19662 and GCC 4.4. We work around this problem by ignoring these. */
19663 if (attr && DW_STRING (attr)
19664 && (startswith (DW_STRING (attr), "._")
19665 || startswith (DW_STRING (attr), "<anonymous")))
19666 return NULL;
19667
19668 /* GCC might emit a nameless typedef that has a linkage name. See
19669 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19670 if (!attr || DW_STRING (attr) == NULL)
19671 {
19672 char *demangled = NULL;
19673
19674 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19675 if (attr == NULL)
19676 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19677
19678 if (attr == NULL || DW_STRING (attr) == NULL)
19679 return NULL;
19680
19681 /* Avoid demangling DW_STRING (attr) the second time on a second
19682 call for the same DIE. */
19683 if (!DW_STRING_IS_CANONICAL (attr))
19684 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19685
19686 if (demangled)
19687 {
19688 const char *base;
19689
19690 /* FIXME: we already did this for the partial symbol... */
19691 DW_STRING (attr)
19692 = ((const char *)
19693 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19694 demangled, strlen (demangled)));
19695 DW_STRING_IS_CANONICAL (attr) = 1;
19696 xfree (demangled);
19697
19698 /* Strip any leading namespaces/classes, keep only the base name.
19699 DW_AT_name for named DIEs does not contain the prefixes. */
19700 base = strrchr (DW_STRING (attr), ':');
19701 if (base && base > DW_STRING (attr) && base[-1] == ':')
19702 return &base[1];
19703 else
19704 return DW_STRING (attr);
19705 }
19706 }
19707 break;
19708
19709 default:
19710 break;
19711 }
19712
19713 if (!DW_STRING_IS_CANONICAL (attr))
19714 {
19715 DW_STRING (attr)
19716 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19717 &cu->objfile->per_bfd->storage_obstack);
19718 DW_STRING_IS_CANONICAL (attr) = 1;
19719 }
19720 return DW_STRING (attr);
19721 }
19722
19723 /* Return the die that this die in an extension of, or NULL if there
19724 is none. *EXT_CU is the CU containing DIE on input, and the CU
19725 containing the return value on output. */
19726
19727 static struct die_info *
19728 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19729 {
19730 struct attribute *attr;
19731
19732 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19733 if (attr == NULL)
19734 return NULL;
19735
19736 return follow_die_ref (die, attr, ext_cu);
19737 }
19738
19739 /* Convert a DIE tag into its string name. */
19740
19741 static const char *
19742 dwarf_tag_name (unsigned tag)
19743 {
19744 const char *name = get_DW_TAG_name (tag);
19745
19746 if (name == NULL)
19747 return "DW_TAG_<unknown>";
19748
19749 return name;
19750 }
19751
19752 /* Convert a DWARF attribute code into its string name. */
19753
19754 static const char *
19755 dwarf_attr_name (unsigned attr)
19756 {
19757 const char *name;
19758
19759 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19760 if (attr == DW_AT_MIPS_fde)
19761 return "DW_AT_MIPS_fde";
19762 #else
19763 if (attr == DW_AT_HP_block_index)
19764 return "DW_AT_HP_block_index";
19765 #endif
19766
19767 name = get_DW_AT_name (attr);
19768
19769 if (name == NULL)
19770 return "DW_AT_<unknown>";
19771
19772 return name;
19773 }
19774
19775 /* Convert a DWARF value form code into its string name. */
19776
19777 static const char *
19778 dwarf_form_name (unsigned form)
19779 {
19780 const char *name = get_DW_FORM_name (form);
19781
19782 if (name == NULL)
19783 return "DW_FORM_<unknown>";
19784
19785 return name;
19786 }
19787
19788 static char *
19789 dwarf_bool_name (unsigned mybool)
19790 {
19791 if (mybool)
19792 return "TRUE";
19793 else
19794 return "FALSE";
19795 }
19796
19797 /* Convert a DWARF type code into its string name. */
19798
19799 static const char *
19800 dwarf_type_encoding_name (unsigned enc)
19801 {
19802 const char *name = get_DW_ATE_name (enc);
19803
19804 if (name == NULL)
19805 return "DW_ATE_<unknown>";
19806
19807 return name;
19808 }
19809
19810 static void
19811 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19812 {
19813 unsigned int i;
19814
19815 print_spaces (indent, f);
19816 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19817 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19818
19819 if (die->parent != NULL)
19820 {
19821 print_spaces (indent, f);
19822 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19823 die->parent->offset.sect_off);
19824 }
19825
19826 print_spaces (indent, f);
19827 fprintf_unfiltered (f, " has children: %s\n",
19828 dwarf_bool_name (die->child != NULL));
19829
19830 print_spaces (indent, f);
19831 fprintf_unfiltered (f, " attributes:\n");
19832
19833 for (i = 0; i < die->num_attrs; ++i)
19834 {
19835 print_spaces (indent, f);
19836 fprintf_unfiltered (f, " %s (%s) ",
19837 dwarf_attr_name (die->attrs[i].name),
19838 dwarf_form_name (die->attrs[i].form));
19839
19840 switch (die->attrs[i].form)
19841 {
19842 case DW_FORM_addr:
19843 case DW_FORM_GNU_addr_index:
19844 fprintf_unfiltered (f, "address: ");
19845 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19846 break;
19847 case DW_FORM_block2:
19848 case DW_FORM_block4:
19849 case DW_FORM_block:
19850 case DW_FORM_block1:
19851 fprintf_unfiltered (f, "block: size %s",
19852 pulongest (DW_BLOCK (&die->attrs[i])->size));
19853 break;
19854 case DW_FORM_exprloc:
19855 fprintf_unfiltered (f, "expression: size %s",
19856 pulongest (DW_BLOCK (&die->attrs[i])->size));
19857 break;
19858 case DW_FORM_ref_addr:
19859 fprintf_unfiltered (f, "ref address: ");
19860 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19861 break;
19862 case DW_FORM_GNU_ref_alt:
19863 fprintf_unfiltered (f, "alt ref address: ");
19864 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19865 break;
19866 case DW_FORM_ref1:
19867 case DW_FORM_ref2:
19868 case DW_FORM_ref4:
19869 case DW_FORM_ref8:
19870 case DW_FORM_ref_udata:
19871 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19872 (long) (DW_UNSND (&die->attrs[i])));
19873 break;
19874 case DW_FORM_data1:
19875 case DW_FORM_data2:
19876 case DW_FORM_data4:
19877 case DW_FORM_data8:
19878 case DW_FORM_udata:
19879 case DW_FORM_sdata:
19880 fprintf_unfiltered (f, "constant: %s",
19881 pulongest (DW_UNSND (&die->attrs[i])));
19882 break;
19883 case DW_FORM_sec_offset:
19884 fprintf_unfiltered (f, "section offset: %s",
19885 pulongest (DW_UNSND (&die->attrs[i])));
19886 break;
19887 case DW_FORM_ref_sig8:
19888 fprintf_unfiltered (f, "signature: %s",
19889 hex_string (DW_SIGNATURE (&die->attrs[i])));
19890 break;
19891 case DW_FORM_string:
19892 case DW_FORM_strp:
19893 case DW_FORM_GNU_str_index:
19894 case DW_FORM_GNU_strp_alt:
19895 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19896 DW_STRING (&die->attrs[i])
19897 ? DW_STRING (&die->attrs[i]) : "",
19898 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19899 break;
19900 case DW_FORM_flag:
19901 if (DW_UNSND (&die->attrs[i]))
19902 fprintf_unfiltered (f, "flag: TRUE");
19903 else
19904 fprintf_unfiltered (f, "flag: FALSE");
19905 break;
19906 case DW_FORM_flag_present:
19907 fprintf_unfiltered (f, "flag: TRUE");
19908 break;
19909 case DW_FORM_indirect:
19910 /* The reader will have reduced the indirect form to
19911 the "base form" so this form should not occur. */
19912 fprintf_unfiltered (f,
19913 "unexpected attribute form: DW_FORM_indirect");
19914 break;
19915 default:
19916 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19917 die->attrs[i].form);
19918 break;
19919 }
19920 fprintf_unfiltered (f, "\n");
19921 }
19922 }
19923
19924 static void
19925 dump_die_for_error (struct die_info *die)
19926 {
19927 dump_die_shallow (gdb_stderr, 0, die);
19928 }
19929
19930 static void
19931 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19932 {
19933 int indent = level * 4;
19934
19935 gdb_assert (die != NULL);
19936
19937 if (level >= max_level)
19938 return;
19939
19940 dump_die_shallow (f, indent, die);
19941
19942 if (die->child != NULL)
19943 {
19944 print_spaces (indent, f);
19945 fprintf_unfiltered (f, " Children:");
19946 if (level + 1 < max_level)
19947 {
19948 fprintf_unfiltered (f, "\n");
19949 dump_die_1 (f, level + 1, max_level, die->child);
19950 }
19951 else
19952 {
19953 fprintf_unfiltered (f,
19954 " [not printed, max nesting level reached]\n");
19955 }
19956 }
19957
19958 if (die->sibling != NULL && level > 0)
19959 {
19960 dump_die_1 (f, level, max_level, die->sibling);
19961 }
19962 }
19963
19964 /* This is called from the pdie macro in gdbinit.in.
19965 It's not static so gcc will keep a copy callable from gdb. */
19966
19967 void
19968 dump_die (struct die_info *die, int max_level)
19969 {
19970 dump_die_1 (gdb_stdlog, 0, max_level, die);
19971 }
19972
19973 static void
19974 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19975 {
19976 void **slot;
19977
19978 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19979 INSERT);
19980
19981 *slot = die;
19982 }
19983
19984 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19985 required kind. */
19986
19987 static sect_offset
19988 dwarf2_get_ref_die_offset (const struct attribute *attr)
19989 {
19990 sect_offset retval = { DW_UNSND (attr) };
19991
19992 if (attr_form_is_ref (attr))
19993 return retval;
19994
19995 retval.sect_off = 0;
19996 complaint (&symfile_complaints,
19997 _("unsupported die ref attribute form: '%s'"),
19998 dwarf_form_name (attr->form));
19999 return retval;
20000 }
20001
20002 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20003 * the value held by the attribute is not constant. */
20004
20005 static LONGEST
20006 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
20007 {
20008 if (attr->form == DW_FORM_sdata)
20009 return DW_SND (attr);
20010 else if (attr->form == DW_FORM_udata
20011 || attr->form == DW_FORM_data1
20012 || attr->form == DW_FORM_data2
20013 || attr->form == DW_FORM_data4
20014 || attr->form == DW_FORM_data8)
20015 return DW_UNSND (attr);
20016 else
20017 {
20018 complaint (&symfile_complaints,
20019 _("Attribute value is not a constant (%s)"),
20020 dwarf_form_name (attr->form));
20021 return default_value;
20022 }
20023 }
20024
20025 /* Follow reference or signature attribute ATTR of SRC_DIE.
20026 On entry *REF_CU is the CU of SRC_DIE.
20027 On exit *REF_CU is the CU of the result. */
20028
20029 static struct die_info *
20030 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
20031 struct dwarf2_cu **ref_cu)
20032 {
20033 struct die_info *die;
20034
20035 if (attr_form_is_ref (attr))
20036 die = follow_die_ref (src_die, attr, ref_cu);
20037 else if (attr->form == DW_FORM_ref_sig8)
20038 die = follow_die_sig (src_die, attr, ref_cu);
20039 else
20040 {
20041 dump_die_for_error (src_die);
20042 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
20043 objfile_name ((*ref_cu)->objfile));
20044 }
20045
20046 return die;
20047 }
20048
20049 /* Follow reference OFFSET.
20050 On entry *REF_CU is the CU of the source die referencing OFFSET.
20051 On exit *REF_CU is the CU of the result.
20052 Returns NULL if OFFSET is invalid. */
20053
20054 static struct die_info *
20055 follow_die_offset (sect_offset offset, int offset_in_dwz,
20056 struct dwarf2_cu **ref_cu)
20057 {
20058 struct die_info temp_die;
20059 struct dwarf2_cu *target_cu, *cu = *ref_cu;
20060
20061 gdb_assert (cu->per_cu != NULL);
20062
20063 target_cu = cu;
20064
20065 if (cu->per_cu->is_debug_types)
20066 {
20067 /* .debug_types CUs cannot reference anything outside their CU.
20068 If they need to, they have to reference a signatured type via
20069 DW_FORM_ref_sig8. */
20070 if (! offset_in_cu_p (&cu->header, offset))
20071 return NULL;
20072 }
20073 else if (offset_in_dwz != cu->per_cu->is_dwz
20074 || ! offset_in_cu_p (&cu->header, offset))
20075 {
20076 struct dwarf2_per_cu_data *per_cu;
20077
20078 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
20079 cu->objfile);
20080
20081 /* If necessary, add it to the queue and load its DIEs. */
20082 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20083 load_full_comp_unit (per_cu, cu->language);
20084
20085 target_cu = per_cu->cu;
20086 }
20087 else if (cu->dies == NULL)
20088 {
20089 /* We're loading full DIEs during partial symbol reading. */
20090 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20091 load_full_comp_unit (cu->per_cu, language_minimal);
20092 }
20093
20094 *ref_cu = target_cu;
20095 temp_die.offset = offset;
20096 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20097 &temp_die, offset.sect_off);
20098 }
20099
20100 /* Follow reference attribute ATTR of SRC_DIE.
20101 On entry *REF_CU is the CU of SRC_DIE.
20102 On exit *REF_CU is the CU of the result. */
20103
20104 static struct die_info *
20105 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20106 struct dwarf2_cu **ref_cu)
20107 {
20108 sect_offset offset = dwarf2_get_ref_die_offset (attr);
20109 struct dwarf2_cu *cu = *ref_cu;
20110 struct die_info *die;
20111
20112 die = follow_die_offset (offset,
20113 (attr->form == DW_FORM_GNU_ref_alt
20114 || cu->per_cu->is_dwz),
20115 ref_cu);
20116 if (!die)
20117 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20118 "at 0x%x [in module %s]"),
20119 offset.sect_off, src_die->offset.sect_off,
20120 objfile_name (cu->objfile));
20121
20122 return die;
20123 }
20124
20125 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20126 Returned value is intended for DW_OP_call*. Returned
20127 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20128
20129 struct dwarf2_locexpr_baton
20130 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20131 struct dwarf2_per_cu_data *per_cu,
20132 CORE_ADDR (*get_frame_pc) (void *baton),
20133 void *baton)
20134 {
20135 struct dwarf2_cu *cu;
20136 struct die_info *die;
20137 struct attribute *attr;
20138 struct dwarf2_locexpr_baton retval;
20139
20140 dw2_setup (per_cu->objfile);
20141
20142 if (per_cu->cu == NULL)
20143 load_cu (per_cu);
20144 cu = per_cu->cu;
20145 if (cu == NULL)
20146 {
20147 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20148 Instead just throw an error, not much else we can do. */
20149 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20150 offset.sect_off, objfile_name (per_cu->objfile));
20151 }
20152
20153 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20154 if (!die)
20155 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20156 offset.sect_off, objfile_name (per_cu->objfile));
20157
20158 attr = dwarf2_attr (die, DW_AT_location, cu);
20159 if (!attr)
20160 {
20161 /* DWARF: "If there is no such attribute, then there is no effect.".
20162 DATA is ignored if SIZE is 0. */
20163
20164 retval.data = NULL;
20165 retval.size = 0;
20166 }
20167 else if (attr_form_is_section_offset (attr))
20168 {
20169 struct dwarf2_loclist_baton loclist_baton;
20170 CORE_ADDR pc = (*get_frame_pc) (baton);
20171 size_t size;
20172
20173 fill_in_loclist_baton (cu, &loclist_baton, attr);
20174
20175 retval.data = dwarf2_find_location_expression (&loclist_baton,
20176 &size, pc);
20177 retval.size = size;
20178 }
20179 else
20180 {
20181 if (!attr_form_is_block (attr))
20182 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20183 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20184 offset.sect_off, objfile_name (per_cu->objfile));
20185
20186 retval.data = DW_BLOCK (attr)->data;
20187 retval.size = DW_BLOCK (attr)->size;
20188 }
20189 retval.per_cu = cu->per_cu;
20190
20191 age_cached_comp_units ();
20192
20193 return retval;
20194 }
20195
20196 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20197 offset. */
20198
20199 struct dwarf2_locexpr_baton
20200 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20201 struct dwarf2_per_cu_data *per_cu,
20202 CORE_ADDR (*get_frame_pc) (void *baton),
20203 void *baton)
20204 {
20205 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20206
20207 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20208 }
20209
20210 /* Write a constant of a given type as target-ordered bytes into
20211 OBSTACK. */
20212
20213 static const gdb_byte *
20214 write_constant_as_bytes (struct obstack *obstack,
20215 enum bfd_endian byte_order,
20216 struct type *type,
20217 ULONGEST value,
20218 LONGEST *len)
20219 {
20220 gdb_byte *result;
20221
20222 *len = TYPE_LENGTH (type);
20223 result = (gdb_byte *) obstack_alloc (obstack, *len);
20224 store_unsigned_integer (result, *len, byte_order, value);
20225
20226 return result;
20227 }
20228
20229 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20230 pointer to the constant bytes and set LEN to the length of the
20231 data. If memory is needed, allocate it on OBSTACK. If the DIE
20232 does not have a DW_AT_const_value, return NULL. */
20233
20234 const gdb_byte *
20235 dwarf2_fetch_constant_bytes (sect_offset offset,
20236 struct dwarf2_per_cu_data *per_cu,
20237 struct obstack *obstack,
20238 LONGEST *len)
20239 {
20240 struct dwarf2_cu *cu;
20241 struct die_info *die;
20242 struct attribute *attr;
20243 const gdb_byte *result = NULL;
20244 struct type *type;
20245 LONGEST value;
20246 enum bfd_endian byte_order;
20247
20248 dw2_setup (per_cu->objfile);
20249
20250 if (per_cu->cu == NULL)
20251 load_cu (per_cu);
20252 cu = per_cu->cu;
20253 if (cu == NULL)
20254 {
20255 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20256 Instead just throw an error, not much else we can do. */
20257 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20258 offset.sect_off, objfile_name (per_cu->objfile));
20259 }
20260
20261 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20262 if (!die)
20263 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20264 offset.sect_off, objfile_name (per_cu->objfile));
20265
20266
20267 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20268 if (attr == NULL)
20269 return NULL;
20270
20271 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20272 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20273
20274 switch (attr->form)
20275 {
20276 case DW_FORM_addr:
20277 case DW_FORM_GNU_addr_index:
20278 {
20279 gdb_byte *tem;
20280
20281 *len = cu->header.addr_size;
20282 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20283 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20284 result = tem;
20285 }
20286 break;
20287 case DW_FORM_string:
20288 case DW_FORM_strp:
20289 case DW_FORM_GNU_str_index:
20290 case DW_FORM_GNU_strp_alt:
20291 /* DW_STRING is already allocated on the objfile obstack, point
20292 directly to it. */
20293 result = (const gdb_byte *) DW_STRING (attr);
20294 *len = strlen (DW_STRING (attr));
20295 break;
20296 case DW_FORM_block1:
20297 case DW_FORM_block2:
20298 case DW_FORM_block4:
20299 case DW_FORM_block:
20300 case DW_FORM_exprloc:
20301 result = DW_BLOCK (attr)->data;
20302 *len = DW_BLOCK (attr)->size;
20303 break;
20304
20305 /* The DW_AT_const_value attributes are supposed to carry the
20306 symbol's value "represented as it would be on the target
20307 architecture." By the time we get here, it's already been
20308 converted to host endianness, so we just need to sign- or
20309 zero-extend it as appropriate. */
20310 case DW_FORM_data1:
20311 type = die_type (die, cu);
20312 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20313 if (result == NULL)
20314 result = write_constant_as_bytes (obstack, byte_order,
20315 type, value, len);
20316 break;
20317 case DW_FORM_data2:
20318 type = die_type (die, cu);
20319 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20320 if (result == NULL)
20321 result = write_constant_as_bytes (obstack, byte_order,
20322 type, value, len);
20323 break;
20324 case DW_FORM_data4:
20325 type = die_type (die, cu);
20326 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20327 if (result == NULL)
20328 result = write_constant_as_bytes (obstack, byte_order,
20329 type, value, len);
20330 break;
20331 case DW_FORM_data8:
20332 type = die_type (die, cu);
20333 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20334 if (result == NULL)
20335 result = write_constant_as_bytes (obstack, byte_order,
20336 type, value, len);
20337 break;
20338
20339 case DW_FORM_sdata:
20340 type = die_type (die, cu);
20341 result = write_constant_as_bytes (obstack, byte_order,
20342 type, DW_SND (attr), len);
20343 break;
20344
20345 case DW_FORM_udata:
20346 type = die_type (die, cu);
20347 result = write_constant_as_bytes (obstack, byte_order,
20348 type, DW_UNSND (attr), len);
20349 break;
20350
20351 default:
20352 complaint (&symfile_complaints,
20353 _("unsupported const value attribute form: '%s'"),
20354 dwarf_form_name (attr->form));
20355 break;
20356 }
20357
20358 return result;
20359 }
20360
20361 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20362 PER_CU. */
20363
20364 struct type *
20365 dwarf2_get_die_type (cu_offset die_offset,
20366 struct dwarf2_per_cu_data *per_cu)
20367 {
20368 sect_offset die_offset_sect;
20369
20370 dw2_setup (per_cu->objfile);
20371
20372 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20373 return get_die_type_at_offset (die_offset_sect, per_cu);
20374 }
20375
20376 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20377 On entry *REF_CU is the CU of SRC_DIE.
20378 On exit *REF_CU is the CU of the result.
20379 Returns NULL if the referenced DIE isn't found. */
20380
20381 static struct die_info *
20382 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20383 struct dwarf2_cu **ref_cu)
20384 {
20385 struct die_info temp_die;
20386 struct dwarf2_cu *sig_cu;
20387 struct die_info *die;
20388
20389 /* While it might be nice to assert sig_type->type == NULL here,
20390 we can get here for DW_AT_imported_declaration where we need
20391 the DIE not the type. */
20392
20393 /* If necessary, add it to the queue and load its DIEs. */
20394
20395 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20396 read_signatured_type (sig_type);
20397
20398 sig_cu = sig_type->per_cu.cu;
20399 gdb_assert (sig_cu != NULL);
20400 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20401 temp_die.offset = sig_type->type_offset_in_section;
20402 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20403 temp_die.offset.sect_off);
20404 if (die)
20405 {
20406 /* For .gdb_index version 7 keep track of included TUs.
20407 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20408 if (dwarf2_per_objfile->index_table != NULL
20409 && dwarf2_per_objfile->index_table->version <= 7)
20410 {
20411 VEC_safe_push (dwarf2_per_cu_ptr,
20412 (*ref_cu)->per_cu->imported_symtabs,
20413 sig_cu->per_cu);
20414 }
20415
20416 *ref_cu = sig_cu;
20417 return die;
20418 }
20419
20420 return NULL;
20421 }
20422
20423 /* Follow signatured type referenced by ATTR in SRC_DIE.
20424 On entry *REF_CU is the CU of SRC_DIE.
20425 On exit *REF_CU is the CU of the result.
20426 The result is the DIE of the type.
20427 If the referenced type cannot be found an error is thrown. */
20428
20429 static struct die_info *
20430 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20431 struct dwarf2_cu **ref_cu)
20432 {
20433 ULONGEST signature = DW_SIGNATURE (attr);
20434 struct signatured_type *sig_type;
20435 struct die_info *die;
20436
20437 gdb_assert (attr->form == DW_FORM_ref_sig8);
20438
20439 sig_type = lookup_signatured_type (*ref_cu, signature);
20440 /* sig_type will be NULL if the signatured type is missing from
20441 the debug info. */
20442 if (sig_type == NULL)
20443 {
20444 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20445 " from DIE at 0x%x [in module %s]"),
20446 hex_string (signature), src_die->offset.sect_off,
20447 objfile_name ((*ref_cu)->objfile));
20448 }
20449
20450 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20451 if (die == NULL)
20452 {
20453 dump_die_for_error (src_die);
20454 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20455 " from DIE at 0x%x [in module %s]"),
20456 hex_string (signature), src_die->offset.sect_off,
20457 objfile_name ((*ref_cu)->objfile));
20458 }
20459
20460 return die;
20461 }
20462
20463 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20464 reading in and processing the type unit if necessary. */
20465
20466 static struct type *
20467 get_signatured_type (struct die_info *die, ULONGEST signature,
20468 struct dwarf2_cu *cu)
20469 {
20470 struct signatured_type *sig_type;
20471 struct dwarf2_cu *type_cu;
20472 struct die_info *type_die;
20473 struct type *type;
20474
20475 sig_type = lookup_signatured_type (cu, signature);
20476 /* sig_type will be NULL if the signatured type is missing from
20477 the debug info. */
20478 if (sig_type == NULL)
20479 {
20480 complaint (&symfile_complaints,
20481 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20482 " from DIE at 0x%x [in module %s]"),
20483 hex_string (signature), die->offset.sect_off,
20484 objfile_name (dwarf2_per_objfile->objfile));
20485 return build_error_marker_type (cu, die);
20486 }
20487
20488 /* If we already know the type we're done. */
20489 if (sig_type->type != NULL)
20490 return sig_type->type;
20491
20492 type_cu = cu;
20493 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20494 if (type_die != NULL)
20495 {
20496 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20497 is created. This is important, for example, because for c++ classes
20498 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20499 type = read_type_die (type_die, type_cu);
20500 if (type == NULL)
20501 {
20502 complaint (&symfile_complaints,
20503 _("Dwarf Error: Cannot build signatured type %s"
20504 " referenced from DIE at 0x%x [in module %s]"),
20505 hex_string (signature), die->offset.sect_off,
20506 objfile_name (dwarf2_per_objfile->objfile));
20507 type = build_error_marker_type (cu, die);
20508 }
20509 }
20510 else
20511 {
20512 complaint (&symfile_complaints,
20513 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20514 " from DIE at 0x%x [in module %s]"),
20515 hex_string (signature), die->offset.sect_off,
20516 objfile_name (dwarf2_per_objfile->objfile));
20517 type = build_error_marker_type (cu, die);
20518 }
20519 sig_type->type = type;
20520
20521 return type;
20522 }
20523
20524 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20525 reading in and processing the type unit if necessary. */
20526
20527 static struct type *
20528 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20529 struct dwarf2_cu *cu) /* ARI: editCase function */
20530 {
20531 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20532 if (attr_form_is_ref (attr))
20533 {
20534 struct dwarf2_cu *type_cu = cu;
20535 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20536
20537 return read_type_die (type_die, type_cu);
20538 }
20539 else if (attr->form == DW_FORM_ref_sig8)
20540 {
20541 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20542 }
20543 else
20544 {
20545 complaint (&symfile_complaints,
20546 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20547 " at 0x%x [in module %s]"),
20548 dwarf_form_name (attr->form), die->offset.sect_off,
20549 objfile_name (dwarf2_per_objfile->objfile));
20550 return build_error_marker_type (cu, die);
20551 }
20552 }
20553
20554 /* Load the DIEs associated with type unit PER_CU into memory. */
20555
20556 static void
20557 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20558 {
20559 struct signatured_type *sig_type;
20560
20561 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20562 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20563
20564 /* We have the per_cu, but we need the signatured_type.
20565 Fortunately this is an easy translation. */
20566 gdb_assert (per_cu->is_debug_types);
20567 sig_type = (struct signatured_type *) per_cu;
20568
20569 gdb_assert (per_cu->cu == NULL);
20570
20571 read_signatured_type (sig_type);
20572
20573 gdb_assert (per_cu->cu != NULL);
20574 }
20575
20576 /* die_reader_func for read_signatured_type.
20577 This is identical to load_full_comp_unit_reader,
20578 but is kept separate for now. */
20579
20580 static void
20581 read_signatured_type_reader (const struct die_reader_specs *reader,
20582 const gdb_byte *info_ptr,
20583 struct die_info *comp_unit_die,
20584 int has_children,
20585 void *data)
20586 {
20587 struct dwarf2_cu *cu = reader->cu;
20588
20589 gdb_assert (cu->die_hash == NULL);
20590 cu->die_hash =
20591 htab_create_alloc_ex (cu->header.length / 12,
20592 die_hash,
20593 die_eq,
20594 NULL,
20595 &cu->comp_unit_obstack,
20596 hashtab_obstack_allocate,
20597 dummy_obstack_deallocate);
20598
20599 if (has_children)
20600 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20601 &info_ptr, comp_unit_die);
20602 cu->dies = comp_unit_die;
20603 /* comp_unit_die is not stored in die_hash, no need. */
20604
20605 /* We try not to read any attributes in this function, because not
20606 all CUs needed for references have been loaded yet, and symbol
20607 table processing isn't initialized. But we have to set the CU language,
20608 or we won't be able to build types correctly.
20609 Similarly, if we do not read the producer, we can not apply
20610 producer-specific interpretation. */
20611 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20612 }
20613
20614 /* Read in a signatured type and build its CU and DIEs.
20615 If the type is a stub for the real type in a DWO file,
20616 read in the real type from the DWO file as well. */
20617
20618 static void
20619 read_signatured_type (struct signatured_type *sig_type)
20620 {
20621 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20622
20623 gdb_assert (per_cu->is_debug_types);
20624 gdb_assert (per_cu->cu == NULL);
20625
20626 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20627 read_signatured_type_reader, NULL);
20628 sig_type->per_cu.tu_read = 1;
20629 }
20630
20631 /* Decode simple location descriptions.
20632 Given a pointer to a dwarf block that defines a location, compute
20633 the location and return the value.
20634
20635 NOTE drow/2003-11-18: This function is called in two situations
20636 now: for the address of static or global variables (partial symbols
20637 only) and for offsets into structures which are expected to be
20638 (more or less) constant. The partial symbol case should go away,
20639 and only the constant case should remain. That will let this
20640 function complain more accurately. A few special modes are allowed
20641 without complaint for global variables (for instance, global
20642 register values and thread-local values).
20643
20644 A location description containing no operations indicates that the
20645 object is optimized out. The return value is 0 for that case.
20646 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20647 callers will only want a very basic result and this can become a
20648 complaint.
20649
20650 Note that stack[0] is unused except as a default error return. */
20651
20652 static CORE_ADDR
20653 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20654 {
20655 struct objfile *objfile = cu->objfile;
20656 size_t i;
20657 size_t size = blk->size;
20658 const gdb_byte *data = blk->data;
20659 CORE_ADDR stack[64];
20660 int stacki;
20661 unsigned int bytes_read, unsnd;
20662 gdb_byte op;
20663
20664 i = 0;
20665 stacki = 0;
20666 stack[stacki] = 0;
20667 stack[++stacki] = 0;
20668
20669 while (i < size)
20670 {
20671 op = data[i++];
20672 switch (op)
20673 {
20674 case DW_OP_lit0:
20675 case DW_OP_lit1:
20676 case DW_OP_lit2:
20677 case DW_OP_lit3:
20678 case DW_OP_lit4:
20679 case DW_OP_lit5:
20680 case DW_OP_lit6:
20681 case DW_OP_lit7:
20682 case DW_OP_lit8:
20683 case DW_OP_lit9:
20684 case DW_OP_lit10:
20685 case DW_OP_lit11:
20686 case DW_OP_lit12:
20687 case DW_OP_lit13:
20688 case DW_OP_lit14:
20689 case DW_OP_lit15:
20690 case DW_OP_lit16:
20691 case DW_OP_lit17:
20692 case DW_OP_lit18:
20693 case DW_OP_lit19:
20694 case DW_OP_lit20:
20695 case DW_OP_lit21:
20696 case DW_OP_lit22:
20697 case DW_OP_lit23:
20698 case DW_OP_lit24:
20699 case DW_OP_lit25:
20700 case DW_OP_lit26:
20701 case DW_OP_lit27:
20702 case DW_OP_lit28:
20703 case DW_OP_lit29:
20704 case DW_OP_lit30:
20705 case DW_OP_lit31:
20706 stack[++stacki] = op - DW_OP_lit0;
20707 break;
20708
20709 case DW_OP_reg0:
20710 case DW_OP_reg1:
20711 case DW_OP_reg2:
20712 case DW_OP_reg3:
20713 case DW_OP_reg4:
20714 case DW_OP_reg5:
20715 case DW_OP_reg6:
20716 case DW_OP_reg7:
20717 case DW_OP_reg8:
20718 case DW_OP_reg9:
20719 case DW_OP_reg10:
20720 case DW_OP_reg11:
20721 case DW_OP_reg12:
20722 case DW_OP_reg13:
20723 case DW_OP_reg14:
20724 case DW_OP_reg15:
20725 case DW_OP_reg16:
20726 case DW_OP_reg17:
20727 case DW_OP_reg18:
20728 case DW_OP_reg19:
20729 case DW_OP_reg20:
20730 case DW_OP_reg21:
20731 case DW_OP_reg22:
20732 case DW_OP_reg23:
20733 case DW_OP_reg24:
20734 case DW_OP_reg25:
20735 case DW_OP_reg26:
20736 case DW_OP_reg27:
20737 case DW_OP_reg28:
20738 case DW_OP_reg29:
20739 case DW_OP_reg30:
20740 case DW_OP_reg31:
20741 stack[++stacki] = op - DW_OP_reg0;
20742 if (i < size)
20743 dwarf2_complex_location_expr_complaint ();
20744 break;
20745
20746 case DW_OP_regx:
20747 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20748 i += bytes_read;
20749 stack[++stacki] = unsnd;
20750 if (i < size)
20751 dwarf2_complex_location_expr_complaint ();
20752 break;
20753
20754 case DW_OP_addr:
20755 stack[++stacki] = read_address (objfile->obfd, &data[i],
20756 cu, &bytes_read);
20757 i += bytes_read;
20758 break;
20759
20760 case DW_OP_const1u:
20761 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20762 i += 1;
20763 break;
20764
20765 case DW_OP_const1s:
20766 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20767 i += 1;
20768 break;
20769
20770 case DW_OP_const2u:
20771 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20772 i += 2;
20773 break;
20774
20775 case DW_OP_const2s:
20776 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20777 i += 2;
20778 break;
20779
20780 case DW_OP_const4u:
20781 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20782 i += 4;
20783 break;
20784
20785 case DW_OP_const4s:
20786 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20787 i += 4;
20788 break;
20789
20790 case DW_OP_const8u:
20791 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20792 i += 8;
20793 break;
20794
20795 case DW_OP_constu:
20796 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20797 &bytes_read);
20798 i += bytes_read;
20799 break;
20800
20801 case DW_OP_consts:
20802 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20803 i += bytes_read;
20804 break;
20805
20806 case DW_OP_dup:
20807 stack[stacki + 1] = stack[stacki];
20808 stacki++;
20809 break;
20810
20811 case DW_OP_plus:
20812 stack[stacki - 1] += stack[stacki];
20813 stacki--;
20814 break;
20815
20816 case DW_OP_plus_uconst:
20817 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20818 &bytes_read);
20819 i += bytes_read;
20820 break;
20821
20822 case DW_OP_minus:
20823 stack[stacki - 1] -= stack[stacki];
20824 stacki--;
20825 break;
20826
20827 case DW_OP_deref:
20828 /* If we're not the last op, then we definitely can't encode
20829 this using GDB's address_class enum. This is valid for partial
20830 global symbols, although the variable's address will be bogus
20831 in the psymtab. */
20832 if (i < size)
20833 dwarf2_complex_location_expr_complaint ();
20834 break;
20835
20836 case DW_OP_GNU_push_tls_address:
20837 case DW_OP_form_tls_address:
20838 /* The top of the stack has the offset from the beginning
20839 of the thread control block at which the variable is located. */
20840 /* Nothing should follow this operator, so the top of stack would
20841 be returned. */
20842 /* This is valid for partial global symbols, but the variable's
20843 address will be bogus in the psymtab. Make it always at least
20844 non-zero to not look as a variable garbage collected by linker
20845 which have DW_OP_addr 0. */
20846 if (i < size)
20847 dwarf2_complex_location_expr_complaint ();
20848 stack[stacki]++;
20849 break;
20850
20851 case DW_OP_GNU_uninit:
20852 break;
20853
20854 case DW_OP_GNU_addr_index:
20855 case DW_OP_GNU_const_index:
20856 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20857 &bytes_read);
20858 i += bytes_read;
20859 break;
20860
20861 default:
20862 {
20863 const char *name = get_DW_OP_name (op);
20864
20865 if (name)
20866 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20867 name);
20868 else
20869 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20870 op);
20871 }
20872
20873 return (stack[stacki]);
20874 }
20875
20876 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20877 outside of the allocated space. Also enforce minimum>0. */
20878 if (stacki >= ARRAY_SIZE (stack) - 1)
20879 {
20880 complaint (&symfile_complaints,
20881 _("location description stack overflow"));
20882 return 0;
20883 }
20884
20885 if (stacki <= 0)
20886 {
20887 complaint (&symfile_complaints,
20888 _("location description stack underflow"));
20889 return 0;
20890 }
20891 }
20892 return (stack[stacki]);
20893 }
20894
20895 /* memory allocation interface */
20896
20897 static struct dwarf_block *
20898 dwarf_alloc_block (struct dwarf2_cu *cu)
20899 {
20900 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
20901 }
20902
20903 static struct die_info *
20904 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20905 {
20906 struct die_info *die;
20907 size_t size = sizeof (struct die_info);
20908
20909 if (num_attrs > 1)
20910 size += (num_attrs - 1) * sizeof (struct attribute);
20911
20912 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20913 memset (die, 0, sizeof (struct die_info));
20914 return (die);
20915 }
20916
20917 \f
20918 /* Macro support. */
20919
20920 /* Return file name relative to the compilation directory of file number I in
20921 *LH's file name table. The result is allocated using xmalloc; the caller is
20922 responsible for freeing it. */
20923
20924 static char *
20925 file_file_name (int file, struct line_header *lh)
20926 {
20927 /* Is the file number a valid index into the line header's file name
20928 table? Remember that file numbers start with one, not zero. */
20929 if (1 <= file && file <= lh->num_file_names)
20930 {
20931 struct file_entry *fe = &lh->file_names[file - 1];
20932
20933 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20934 || lh->include_dirs == NULL)
20935 return xstrdup (fe->name);
20936 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20937 fe->name, (char *) NULL);
20938 }
20939 else
20940 {
20941 /* The compiler produced a bogus file number. We can at least
20942 record the macro definitions made in the file, even if we
20943 won't be able to find the file by name. */
20944 char fake_name[80];
20945
20946 xsnprintf (fake_name, sizeof (fake_name),
20947 "<bad macro file number %d>", file);
20948
20949 complaint (&symfile_complaints,
20950 _("bad file number in macro information (%d)"),
20951 file);
20952
20953 return xstrdup (fake_name);
20954 }
20955 }
20956
20957 /* Return the full name of file number I in *LH's file name table.
20958 Use COMP_DIR as the name of the current directory of the
20959 compilation. The result is allocated using xmalloc; the caller is
20960 responsible for freeing it. */
20961 static char *
20962 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20963 {
20964 /* Is the file number a valid index into the line header's file name
20965 table? Remember that file numbers start with one, not zero. */
20966 if (1 <= file && file <= lh->num_file_names)
20967 {
20968 char *relative = file_file_name (file, lh);
20969
20970 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20971 return relative;
20972 return reconcat (relative, comp_dir, SLASH_STRING,
20973 relative, (char *) NULL);
20974 }
20975 else
20976 return file_file_name (file, lh);
20977 }
20978
20979
20980 static struct macro_source_file *
20981 macro_start_file (int file, int line,
20982 struct macro_source_file *current_file,
20983 struct line_header *lh)
20984 {
20985 /* File name relative to the compilation directory of this source file. */
20986 char *file_name = file_file_name (file, lh);
20987
20988 if (! current_file)
20989 {
20990 /* Note: We don't create a macro table for this compilation unit
20991 at all until we actually get a filename. */
20992 struct macro_table *macro_table = get_macro_table ();
20993
20994 /* If we have no current file, then this must be the start_file
20995 directive for the compilation unit's main source file. */
20996 current_file = macro_set_main (macro_table, file_name);
20997 macro_define_special (macro_table);
20998 }
20999 else
21000 current_file = macro_include (current_file, line, file_name);
21001
21002 xfree (file_name);
21003
21004 return current_file;
21005 }
21006
21007
21008 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
21009 followed by a null byte. */
21010 static char *
21011 copy_string (const char *buf, int len)
21012 {
21013 char *s = (char *) xmalloc (len + 1);
21014
21015 memcpy (s, buf, len);
21016 s[len] = '\0';
21017 return s;
21018 }
21019
21020
21021 static const char *
21022 consume_improper_spaces (const char *p, const char *body)
21023 {
21024 if (*p == ' ')
21025 {
21026 complaint (&symfile_complaints,
21027 _("macro definition contains spaces "
21028 "in formal argument list:\n`%s'"),
21029 body);
21030
21031 while (*p == ' ')
21032 p++;
21033 }
21034
21035 return p;
21036 }
21037
21038
21039 static void
21040 parse_macro_definition (struct macro_source_file *file, int line,
21041 const char *body)
21042 {
21043 const char *p;
21044
21045 /* The body string takes one of two forms. For object-like macro
21046 definitions, it should be:
21047
21048 <macro name> " " <definition>
21049
21050 For function-like macro definitions, it should be:
21051
21052 <macro name> "() " <definition>
21053 or
21054 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21055
21056 Spaces may appear only where explicitly indicated, and in the
21057 <definition>.
21058
21059 The Dwarf 2 spec says that an object-like macro's name is always
21060 followed by a space, but versions of GCC around March 2002 omit
21061 the space when the macro's definition is the empty string.
21062
21063 The Dwarf 2 spec says that there should be no spaces between the
21064 formal arguments in a function-like macro's formal argument list,
21065 but versions of GCC around March 2002 include spaces after the
21066 commas. */
21067
21068
21069 /* Find the extent of the macro name. The macro name is terminated
21070 by either a space or null character (for an object-like macro) or
21071 an opening paren (for a function-like macro). */
21072 for (p = body; *p; p++)
21073 if (*p == ' ' || *p == '(')
21074 break;
21075
21076 if (*p == ' ' || *p == '\0')
21077 {
21078 /* It's an object-like macro. */
21079 int name_len = p - body;
21080 char *name = copy_string (body, name_len);
21081 const char *replacement;
21082
21083 if (*p == ' ')
21084 replacement = body + name_len + 1;
21085 else
21086 {
21087 dwarf2_macro_malformed_definition_complaint (body);
21088 replacement = body + name_len;
21089 }
21090
21091 macro_define_object (file, line, name, replacement);
21092
21093 xfree (name);
21094 }
21095 else if (*p == '(')
21096 {
21097 /* It's a function-like macro. */
21098 char *name = copy_string (body, p - body);
21099 int argc = 0;
21100 int argv_size = 1;
21101 char **argv = XNEWVEC (char *, argv_size);
21102
21103 p++;
21104
21105 p = consume_improper_spaces (p, body);
21106
21107 /* Parse the formal argument list. */
21108 while (*p && *p != ')')
21109 {
21110 /* Find the extent of the current argument name. */
21111 const char *arg_start = p;
21112
21113 while (*p && *p != ',' && *p != ')' && *p != ' ')
21114 p++;
21115
21116 if (! *p || p == arg_start)
21117 dwarf2_macro_malformed_definition_complaint (body);
21118 else
21119 {
21120 /* Make sure argv has room for the new argument. */
21121 if (argc >= argv_size)
21122 {
21123 argv_size *= 2;
21124 argv = XRESIZEVEC (char *, argv, argv_size);
21125 }
21126
21127 argv[argc++] = copy_string (arg_start, p - arg_start);
21128 }
21129
21130 p = consume_improper_spaces (p, body);
21131
21132 /* Consume the comma, if present. */
21133 if (*p == ',')
21134 {
21135 p++;
21136
21137 p = consume_improper_spaces (p, body);
21138 }
21139 }
21140
21141 if (*p == ')')
21142 {
21143 p++;
21144
21145 if (*p == ' ')
21146 /* Perfectly formed definition, no complaints. */
21147 macro_define_function (file, line, name,
21148 argc, (const char **) argv,
21149 p + 1);
21150 else if (*p == '\0')
21151 {
21152 /* Complain, but do define it. */
21153 dwarf2_macro_malformed_definition_complaint (body);
21154 macro_define_function (file, line, name,
21155 argc, (const char **) argv,
21156 p);
21157 }
21158 else
21159 /* Just complain. */
21160 dwarf2_macro_malformed_definition_complaint (body);
21161 }
21162 else
21163 /* Just complain. */
21164 dwarf2_macro_malformed_definition_complaint (body);
21165
21166 xfree (name);
21167 {
21168 int i;
21169
21170 for (i = 0; i < argc; i++)
21171 xfree (argv[i]);
21172 }
21173 xfree (argv);
21174 }
21175 else
21176 dwarf2_macro_malformed_definition_complaint (body);
21177 }
21178
21179 /* Skip some bytes from BYTES according to the form given in FORM.
21180 Returns the new pointer. */
21181
21182 static const gdb_byte *
21183 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21184 enum dwarf_form form,
21185 unsigned int offset_size,
21186 struct dwarf2_section_info *section)
21187 {
21188 unsigned int bytes_read;
21189
21190 switch (form)
21191 {
21192 case DW_FORM_data1:
21193 case DW_FORM_flag:
21194 ++bytes;
21195 break;
21196
21197 case DW_FORM_data2:
21198 bytes += 2;
21199 break;
21200
21201 case DW_FORM_data4:
21202 bytes += 4;
21203 break;
21204
21205 case DW_FORM_data8:
21206 bytes += 8;
21207 break;
21208
21209 case DW_FORM_string:
21210 read_direct_string (abfd, bytes, &bytes_read);
21211 bytes += bytes_read;
21212 break;
21213
21214 case DW_FORM_sec_offset:
21215 case DW_FORM_strp:
21216 case DW_FORM_GNU_strp_alt:
21217 bytes += offset_size;
21218 break;
21219
21220 case DW_FORM_block:
21221 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21222 bytes += bytes_read;
21223 break;
21224
21225 case DW_FORM_block1:
21226 bytes += 1 + read_1_byte (abfd, bytes);
21227 break;
21228 case DW_FORM_block2:
21229 bytes += 2 + read_2_bytes (abfd, bytes);
21230 break;
21231 case DW_FORM_block4:
21232 bytes += 4 + read_4_bytes (abfd, bytes);
21233 break;
21234
21235 case DW_FORM_sdata:
21236 case DW_FORM_udata:
21237 case DW_FORM_GNU_addr_index:
21238 case DW_FORM_GNU_str_index:
21239 bytes = gdb_skip_leb128 (bytes, buffer_end);
21240 if (bytes == NULL)
21241 {
21242 dwarf2_section_buffer_overflow_complaint (section);
21243 return NULL;
21244 }
21245 break;
21246
21247 default:
21248 {
21249 complain:
21250 complaint (&symfile_complaints,
21251 _("invalid form 0x%x in `%s'"),
21252 form, get_section_name (section));
21253 return NULL;
21254 }
21255 }
21256
21257 return bytes;
21258 }
21259
21260 /* A helper for dwarf_decode_macros that handles skipping an unknown
21261 opcode. Returns an updated pointer to the macro data buffer; or,
21262 on error, issues a complaint and returns NULL. */
21263
21264 static const gdb_byte *
21265 skip_unknown_opcode (unsigned int opcode,
21266 const gdb_byte **opcode_definitions,
21267 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21268 bfd *abfd,
21269 unsigned int offset_size,
21270 struct dwarf2_section_info *section)
21271 {
21272 unsigned int bytes_read, i;
21273 unsigned long arg;
21274 const gdb_byte *defn;
21275
21276 if (opcode_definitions[opcode] == NULL)
21277 {
21278 complaint (&symfile_complaints,
21279 _("unrecognized DW_MACFINO opcode 0x%x"),
21280 opcode);
21281 return NULL;
21282 }
21283
21284 defn = opcode_definitions[opcode];
21285 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21286 defn += bytes_read;
21287
21288 for (i = 0; i < arg; ++i)
21289 {
21290 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21291 (enum dwarf_form) defn[i], offset_size,
21292 section);
21293 if (mac_ptr == NULL)
21294 {
21295 /* skip_form_bytes already issued the complaint. */
21296 return NULL;
21297 }
21298 }
21299
21300 return mac_ptr;
21301 }
21302
21303 /* A helper function which parses the header of a macro section.
21304 If the macro section is the extended (for now called "GNU") type,
21305 then this updates *OFFSET_SIZE. Returns a pointer to just after
21306 the header, or issues a complaint and returns NULL on error. */
21307
21308 static const gdb_byte *
21309 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21310 bfd *abfd,
21311 const gdb_byte *mac_ptr,
21312 unsigned int *offset_size,
21313 int section_is_gnu)
21314 {
21315 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21316
21317 if (section_is_gnu)
21318 {
21319 unsigned int version, flags;
21320
21321 version = read_2_bytes (abfd, mac_ptr);
21322 if (version != 4)
21323 {
21324 complaint (&symfile_complaints,
21325 _("unrecognized version `%d' in .debug_macro section"),
21326 version);
21327 return NULL;
21328 }
21329 mac_ptr += 2;
21330
21331 flags = read_1_byte (abfd, mac_ptr);
21332 ++mac_ptr;
21333 *offset_size = (flags & 1) ? 8 : 4;
21334
21335 if ((flags & 2) != 0)
21336 /* We don't need the line table offset. */
21337 mac_ptr += *offset_size;
21338
21339 /* Vendor opcode descriptions. */
21340 if ((flags & 4) != 0)
21341 {
21342 unsigned int i, count;
21343
21344 count = read_1_byte (abfd, mac_ptr);
21345 ++mac_ptr;
21346 for (i = 0; i < count; ++i)
21347 {
21348 unsigned int opcode, bytes_read;
21349 unsigned long arg;
21350
21351 opcode = read_1_byte (abfd, mac_ptr);
21352 ++mac_ptr;
21353 opcode_definitions[opcode] = mac_ptr;
21354 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21355 mac_ptr += bytes_read;
21356 mac_ptr += arg;
21357 }
21358 }
21359 }
21360
21361 return mac_ptr;
21362 }
21363
21364 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21365 including DW_MACRO_GNU_transparent_include. */
21366
21367 static void
21368 dwarf_decode_macro_bytes (bfd *abfd,
21369 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21370 struct macro_source_file *current_file,
21371 struct line_header *lh,
21372 struct dwarf2_section_info *section,
21373 int section_is_gnu, int section_is_dwz,
21374 unsigned int offset_size,
21375 htab_t include_hash)
21376 {
21377 struct objfile *objfile = dwarf2_per_objfile->objfile;
21378 enum dwarf_macro_record_type macinfo_type;
21379 int at_commandline;
21380 const gdb_byte *opcode_definitions[256];
21381
21382 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21383 &offset_size, section_is_gnu);
21384 if (mac_ptr == NULL)
21385 {
21386 /* We already issued a complaint. */
21387 return;
21388 }
21389
21390 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21391 GDB is still reading the definitions from command line. First
21392 DW_MACINFO_start_file will need to be ignored as it was already executed
21393 to create CURRENT_FILE for the main source holding also the command line
21394 definitions. On first met DW_MACINFO_start_file this flag is reset to
21395 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21396
21397 at_commandline = 1;
21398
21399 do
21400 {
21401 /* Do we at least have room for a macinfo type byte? */
21402 if (mac_ptr >= mac_end)
21403 {
21404 dwarf2_section_buffer_overflow_complaint (section);
21405 break;
21406 }
21407
21408 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21409 mac_ptr++;
21410
21411 /* Note that we rely on the fact that the corresponding GNU and
21412 DWARF constants are the same. */
21413 switch (macinfo_type)
21414 {
21415 /* A zero macinfo type indicates the end of the macro
21416 information. */
21417 case 0:
21418 break;
21419
21420 case DW_MACRO_GNU_define:
21421 case DW_MACRO_GNU_undef:
21422 case DW_MACRO_GNU_define_indirect:
21423 case DW_MACRO_GNU_undef_indirect:
21424 case DW_MACRO_GNU_define_indirect_alt:
21425 case DW_MACRO_GNU_undef_indirect_alt:
21426 {
21427 unsigned int bytes_read;
21428 int line;
21429 const char *body;
21430 int is_define;
21431
21432 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21433 mac_ptr += bytes_read;
21434
21435 if (macinfo_type == DW_MACRO_GNU_define
21436 || macinfo_type == DW_MACRO_GNU_undef)
21437 {
21438 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21439 mac_ptr += bytes_read;
21440 }
21441 else
21442 {
21443 LONGEST str_offset;
21444
21445 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21446 mac_ptr += offset_size;
21447
21448 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21449 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21450 || section_is_dwz)
21451 {
21452 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21453
21454 body = read_indirect_string_from_dwz (dwz, str_offset);
21455 }
21456 else
21457 body = read_indirect_string_at_offset (abfd, str_offset);
21458 }
21459
21460 is_define = (macinfo_type == DW_MACRO_GNU_define
21461 || macinfo_type == DW_MACRO_GNU_define_indirect
21462 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21463 if (! current_file)
21464 {
21465 /* DWARF violation as no main source is present. */
21466 complaint (&symfile_complaints,
21467 _("debug info with no main source gives macro %s "
21468 "on line %d: %s"),
21469 is_define ? _("definition") : _("undefinition"),
21470 line, body);
21471 break;
21472 }
21473 if ((line == 0 && !at_commandline)
21474 || (line != 0 && at_commandline))
21475 complaint (&symfile_complaints,
21476 _("debug info gives %s macro %s with %s line %d: %s"),
21477 at_commandline ? _("command-line") : _("in-file"),
21478 is_define ? _("definition") : _("undefinition"),
21479 line == 0 ? _("zero") : _("non-zero"), line, body);
21480
21481 if (is_define)
21482 parse_macro_definition (current_file, line, body);
21483 else
21484 {
21485 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21486 || macinfo_type == DW_MACRO_GNU_undef_indirect
21487 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21488 macro_undef (current_file, line, body);
21489 }
21490 }
21491 break;
21492
21493 case DW_MACRO_GNU_start_file:
21494 {
21495 unsigned int bytes_read;
21496 int line, file;
21497
21498 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21499 mac_ptr += bytes_read;
21500 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21501 mac_ptr += bytes_read;
21502
21503 if ((line == 0 && !at_commandline)
21504 || (line != 0 && at_commandline))
21505 complaint (&symfile_complaints,
21506 _("debug info gives source %d included "
21507 "from %s at %s line %d"),
21508 file, at_commandline ? _("command-line") : _("file"),
21509 line == 0 ? _("zero") : _("non-zero"), line);
21510
21511 if (at_commandline)
21512 {
21513 /* This DW_MACRO_GNU_start_file was executed in the
21514 pass one. */
21515 at_commandline = 0;
21516 }
21517 else
21518 current_file = macro_start_file (file, line, current_file, lh);
21519 }
21520 break;
21521
21522 case DW_MACRO_GNU_end_file:
21523 if (! current_file)
21524 complaint (&symfile_complaints,
21525 _("macro debug info has an unmatched "
21526 "`close_file' directive"));
21527 else
21528 {
21529 current_file = current_file->included_by;
21530 if (! current_file)
21531 {
21532 enum dwarf_macro_record_type next_type;
21533
21534 /* GCC circa March 2002 doesn't produce the zero
21535 type byte marking the end of the compilation
21536 unit. Complain if it's not there, but exit no
21537 matter what. */
21538
21539 /* Do we at least have room for a macinfo type byte? */
21540 if (mac_ptr >= mac_end)
21541 {
21542 dwarf2_section_buffer_overflow_complaint (section);
21543 return;
21544 }
21545
21546 /* We don't increment mac_ptr here, so this is just
21547 a look-ahead. */
21548 next_type
21549 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21550 mac_ptr);
21551 if (next_type != 0)
21552 complaint (&symfile_complaints,
21553 _("no terminating 0-type entry for "
21554 "macros in `.debug_macinfo' section"));
21555
21556 return;
21557 }
21558 }
21559 break;
21560
21561 case DW_MACRO_GNU_transparent_include:
21562 case DW_MACRO_GNU_transparent_include_alt:
21563 {
21564 LONGEST offset;
21565 void **slot;
21566 bfd *include_bfd = abfd;
21567 struct dwarf2_section_info *include_section = section;
21568 const gdb_byte *include_mac_end = mac_end;
21569 int is_dwz = section_is_dwz;
21570 const gdb_byte *new_mac_ptr;
21571
21572 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21573 mac_ptr += offset_size;
21574
21575 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21576 {
21577 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21578
21579 dwarf2_read_section (objfile, &dwz->macro);
21580
21581 include_section = &dwz->macro;
21582 include_bfd = get_section_bfd_owner (include_section);
21583 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21584 is_dwz = 1;
21585 }
21586
21587 new_mac_ptr = include_section->buffer + offset;
21588 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21589
21590 if (*slot != NULL)
21591 {
21592 /* This has actually happened; see
21593 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21594 complaint (&symfile_complaints,
21595 _("recursive DW_MACRO_GNU_transparent_include in "
21596 ".debug_macro section"));
21597 }
21598 else
21599 {
21600 *slot = (void *) new_mac_ptr;
21601
21602 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21603 include_mac_end, current_file, lh,
21604 section, section_is_gnu, is_dwz,
21605 offset_size, include_hash);
21606
21607 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21608 }
21609 }
21610 break;
21611
21612 case DW_MACINFO_vendor_ext:
21613 if (!section_is_gnu)
21614 {
21615 unsigned int bytes_read;
21616
21617 /* This reads the constant, but since we don't recognize
21618 any vendor extensions, we ignore it. */
21619 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21620 mac_ptr += bytes_read;
21621 read_direct_string (abfd, mac_ptr, &bytes_read);
21622 mac_ptr += bytes_read;
21623
21624 /* We don't recognize any vendor extensions. */
21625 break;
21626 }
21627 /* FALLTHROUGH */
21628
21629 default:
21630 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21631 mac_ptr, mac_end, abfd, offset_size,
21632 section);
21633 if (mac_ptr == NULL)
21634 return;
21635 break;
21636 }
21637 } while (macinfo_type != 0);
21638 }
21639
21640 static void
21641 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21642 int section_is_gnu)
21643 {
21644 struct objfile *objfile = dwarf2_per_objfile->objfile;
21645 struct line_header *lh = cu->line_header;
21646 bfd *abfd;
21647 const gdb_byte *mac_ptr, *mac_end;
21648 struct macro_source_file *current_file = 0;
21649 enum dwarf_macro_record_type macinfo_type;
21650 unsigned int offset_size = cu->header.offset_size;
21651 const gdb_byte *opcode_definitions[256];
21652 struct cleanup *cleanup;
21653 htab_t include_hash;
21654 void **slot;
21655 struct dwarf2_section_info *section;
21656 const char *section_name;
21657
21658 if (cu->dwo_unit != NULL)
21659 {
21660 if (section_is_gnu)
21661 {
21662 section = &cu->dwo_unit->dwo_file->sections.macro;
21663 section_name = ".debug_macro.dwo";
21664 }
21665 else
21666 {
21667 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21668 section_name = ".debug_macinfo.dwo";
21669 }
21670 }
21671 else
21672 {
21673 if (section_is_gnu)
21674 {
21675 section = &dwarf2_per_objfile->macro;
21676 section_name = ".debug_macro";
21677 }
21678 else
21679 {
21680 section = &dwarf2_per_objfile->macinfo;
21681 section_name = ".debug_macinfo";
21682 }
21683 }
21684
21685 dwarf2_read_section (objfile, section);
21686 if (section->buffer == NULL)
21687 {
21688 complaint (&symfile_complaints, _("missing %s section"), section_name);
21689 return;
21690 }
21691 abfd = get_section_bfd_owner (section);
21692
21693 /* First pass: Find the name of the base filename.
21694 This filename is needed in order to process all macros whose definition
21695 (or undefinition) comes from the command line. These macros are defined
21696 before the first DW_MACINFO_start_file entry, and yet still need to be
21697 associated to the base file.
21698
21699 To determine the base file name, we scan the macro definitions until we
21700 reach the first DW_MACINFO_start_file entry. We then initialize
21701 CURRENT_FILE accordingly so that any macro definition found before the
21702 first DW_MACINFO_start_file can still be associated to the base file. */
21703
21704 mac_ptr = section->buffer + offset;
21705 mac_end = section->buffer + section->size;
21706
21707 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21708 &offset_size, section_is_gnu);
21709 if (mac_ptr == NULL)
21710 {
21711 /* We already issued a complaint. */
21712 return;
21713 }
21714
21715 do
21716 {
21717 /* Do we at least have room for a macinfo type byte? */
21718 if (mac_ptr >= mac_end)
21719 {
21720 /* Complaint is printed during the second pass as GDB will probably
21721 stop the first pass earlier upon finding
21722 DW_MACINFO_start_file. */
21723 break;
21724 }
21725
21726 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21727 mac_ptr++;
21728
21729 /* Note that we rely on the fact that the corresponding GNU and
21730 DWARF constants are the same. */
21731 switch (macinfo_type)
21732 {
21733 /* A zero macinfo type indicates the end of the macro
21734 information. */
21735 case 0:
21736 break;
21737
21738 case DW_MACRO_GNU_define:
21739 case DW_MACRO_GNU_undef:
21740 /* Only skip the data by MAC_PTR. */
21741 {
21742 unsigned int bytes_read;
21743
21744 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21745 mac_ptr += bytes_read;
21746 read_direct_string (abfd, mac_ptr, &bytes_read);
21747 mac_ptr += bytes_read;
21748 }
21749 break;
21750
21751 case DW_MACRO_GNU_start_file:
21752 {
21753 unsigned int bytes_read;
21754 int line, file;
21755
21756 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21757 mac_ptr += bytes_read;
21758 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21759 mac_ptr += bytes_read;
21760
21761 current_file = macro_start_file (file, line, current_file, lh);
21762 }
21763 break;
21764
21765 case DW_MACRO_GNU_end_file:
21766 /* No data to skip by MAC_PTR. */
21767 break;
21768
21769 case DW_MACRO_GNU_define_indirect:
21770 case DW_MACRO_GNU_undef_indirect:
21771 case DW_MACRO_GNU_define_indirect_alt:
21772 case DW_MACRO_GNU_undef_indirect_alt:
21773 {
21774 unsigned int bytes_read;
21775
21776 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21777 mac_ptr += bytes_read;
21778 mac_ptr += offset_size;
21779 }
21780 break;
21781
21782 case DW_MACRO_GNU_transparent_include:
21783 case DW_MACRO_GNU_transparent_include_alt:
21784 /* Note that, according to the spec, a transparent include
21785 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21786 skip this opcode. */
21787 mac_ptr += offset_size;
21788 break;
21789
21790 case DW_MACINFO_vendor_ext:
21791 /* Only skip the data by MAC_PTR. */
21792 if (!section_is_gnu)
21793 {
21794 unsigned int bytes_read;
21795
21796 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21797 mac_ptr += bytes_read;
21798 read_direct_string (abfd, mac_ptr, &bytes_read);
21799 mac_ptr += bytes_read;
21800 }
21801 /* FALLTHROUGH */
21802
21803 default:
21804 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21805 mac_ptr, mac_end, abfd, offset_size,
21806 section);
21807 if (mac_ptr == NULL)
21808 return;
21809 break;
21810 }
21811 } while (macinfo_type != 0 && current_file == NULL);
21812
21813 /* Second pass: Process all entries.
21814
21815 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21816 command-line macro definitions/undefinitions. This flag is unset when we
21817 reach the first DW_MACINFO_start_file entry. */
21818
21819 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21820 NULL, xcalloc, xfree);
21821 cleanup = make_cleanup_htab_delete (include_hash);
21822 mac_ptr = section->buffer + offset;
21823 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21824 *slot = (void *) mac_ptr;
21825 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21826 current_file, lh, section,
21827 section_is_gnu, 0, offset_size, include_hash);
21828 do_cleanups (cleanup);
21829 }
21830
21831 /* Check if the attribute's form is a DW_FORM_block*
21832 if so return true else false. */
21833
21834 static int
21835 attr_form_is_block (const struct attribute *attr)
21836 {
21837 return (attr == NULL ? 0 :
21838 attr->form == DW_FORM_block1
21839 || attr->form == DW_FORM_block2
21840 || attr->form == DW_FORM_block4
21841 || attr->form == DW_FORM_block
21842 || attr->form == DW_FORM_exprloc);
21843 }
21844
21845 /* Return non-zero if ATTR's value is a section offset --- classes
21846 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21847 You may use DW_UNSND (attr) to retrieve such offsets.
21848
21849 Section 7.5.4, "Attribute Encodings", explains that no attribute
21850 may have a value that belongs to more than one of these classes; it
21851 would be ambiguous if we did, because we use the same forms for all
21852 of them. */
21853
21854 static int
21855 attr_form_is_section_offset (const struct attribute *attr)
21856 {
21857 return (attr->form == DW_FORM_data4
21858 || attr->form == DW_FORM_data8
21859 || attr->form == DW_FORM_sec_offset);
21860 }
21861
21862 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21863 zero otherwise. When this function returns true, you can apply
21864 dwarf2_get_attr_constant_value to it.
21865
21866 However, note that for some attributes you must check
21867 attr_form_is_section_offset before using this test. DW_FORM_data4
21868 and DW_FORM_data8 are members of both the constant class, and of
21869 the classes that contain offsets into other debug sections
21870 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21871 that, if an attribute's can be either a constant or one of the
21872 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21873 taken as section offsets, not constants. */
21874
21875 static int
21876 attr_form_is_constant (const struct attribute *attr)
21877 {
21878 switch (attr->form)
21879 {
21880 case DW_FORM_sdata:
21881 case DW_FORM_udata:
21882 case DW_FORM_data1:
21883 case DW_FORM_data2:
21884 case DW_FORM_data4:
21885 case DW_FORM_data8:
21886 return 1;
21887 default:
21888 return 0;
21889 }
21890 }
21891
21892
21893 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21894 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21895
21896 static int
21897 attr_form_is_ref (const struct attribute *attr)
21898 {
21899 switch (attr->form)
21900 {
21901 case DW_FORM_ref_addr:
21902 case DW_FORM_ref1:
21903 case DW_FORM_ref2:
21904 case DW_FORM_ref4:
21905 case DW_FORM_ref8:
21906 case DW_FORM_ref_udata:
21907 case DW_FORM_GNU_ref_alt:
21908 return 1;
21909 default:
21910 return 0;
21911 }
21912 }
21913
21914 /* Return the .debug_loc section to use for CU.
21915 For DWO files use .debug_loc.dwo. */
21916
21917 static struct dwarf2_section_info *
21918 cu_debug_loc_section (struct dwarf2_cu *cu)
21919 {
21920 if (cu->dwo_unit)
21921 return &cu->dwo_unit->dwo_file->sections.loc;
21922 return &dwarf2_per_objfile->loc;
21923 }
21924
21925 /* A helper function that fills in a dwarf2_loclist_baton. */
21926
21927 static void
21928 fill_in_loclist_baton (struct dwarf2_cu *cu,
21929 struct dwarf2_loclist_baton *baton,
21930 const struct attribute *attr)
21931 {
21932 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21933
21934 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21935
21936 baton->per_cu = cu->per_cu;
21937 gdb_assert (baton->per_cu);
21938 /* We don't know how long the location list is, but make sure we
21939 don't run off the edge of the section. */
21940 baton->size = section->size - DW_UNSND (attr);
21941 baton->data = section->buffer + DW_UNSND (attr);
21942 baton->base_address = cu->base_address;
21943 baton->from_dwo = cu->dwo_unit != NULL;
21944 }
21945
21946 static void
21947 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21948 struct dwarf2_cu *cu, int is_block)
21949 {
21950 struct objfile *objfile = dwarf2_per_objfile->objfile;
21951 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21952
21953 if (attr_form_is_section_offset (attr)
21954 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21955 the section. If so, fall through to the complaint in the
21956 other branch. */
21957 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21958 {
21959 struct dwarf2_loclist_baton *baton;
21960
21961 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
21962
21963 fill_in_loclist_baton (cu, baton, attr);
21964
21965 if (cu->base_known == 0)
21966 complaint (&symfile_complaints,
21967 _("Location list used without "
21968 "specifying the CU base address."));
21969
21970 SYMBOL_ACLASS_INDEX (sym) = (is_block
21971 ? dwarf2_loclist_block_index
21972 : dwarf2_loclist_index);
21973 SYMBOL_LOCATION_BATON (sym) = baton;
21974 }
21975 else
21976 {
21977 struct dwarf2_locexpr_baton *baton;
21978
21979 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
21980 baton->per_cu = cu->per_cu;
21981 gdb_assert (baton->per_cu);
21982
21983 if (attr_form_is_block (attr))
21984 {
21985 /* Note that we're just copying the block's data pointer
21986 here, not the actual data. We're still pointing into the
21987 info_buffer for SYM's objfile; right now we never release
21988 that buffer, but when we do clean up properly this may
21989 need to change. */
21990 baton->size = DW_BLOCK (attr)->size;
21991 baton->data = DW_BLOCK (attr)->data;
21992 }
21993 else
21994 {
21995 dwarf2_invalid_attrib_class_complaint ("location description",
21996 SYMBOL_NATURAL_NAME (sym));
21997 baton->size = 0;
21998 }
21999
22000 SYMBOL_ACLASS_INDEX (sym) = (is_block
22001 ? dwarf2_locexpr_block_index
22002 : dwarf2_locexpr_index);
22003 SYMBOL_LOCATION_BATON (sym) = baton;
22004 }
22005 }
22006
22007 /* Return the OBJFILE associated with the compilation unit CU. If CU
22008 came from a separate debuginfo file, then the master objfile is
22009 returned. */
22010
22011 struct objfile *
22012 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22013 {
22014 struct objfile *objfile = per_cu->objfile;
22015
22016 /* Return the master objfile, so that we can report and look up the
22017 correct file containing this variable. */
22018 if (objfile->separate_debug_objfile_backlink)
22019 objfile = objfile->separate_debug_objfile_backlink;
22020
22021 return objfile;
22022 }
22023
22024 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22025 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22026 CU_HEADERP first. */
22027
22028 static const struct comp_unit_head *
22029 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22030 struct dwarf2_per_cu_data *per_cu)
22031 {
22032 const gdb_byte *info_ptr;
22033
22034 if (per_cu->cu)
22035 return &per_cu->cu->header;
22036
22037 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
22038
22039 memset (cu_headerp, 0, sizeof (*cu_headerp));
22040 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
22041
22042 return cu_headerp;
22043 }
22044
22045 /* Return the address size given in the compilation unit header for CU. */
22046
22047 int
22048 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22049 {
22050 struct comp_unit_head cu_header_local;
22051 const struct comp_unit_head *cu_headerp;
22052
22053 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22054
22055 return cu_headerp->addr_size;
22056 }
22057
22058 /* Return the offset size given in the compilation unit header for CU. */
22059
22060 int
22061 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22062 {
22063 struct comp_unit_head cu_header_local;
22064 const struct comp_unit_head *cu_headerp;
22065
22066 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22067
22068 return cu_headerp->offset_size;
22069 }
22070
22071 /* See its dwarf2loc.h declaration. */
22072
22073 int
22074 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22075 {
22076 struct comp_unit_head cu_header_local;
22077 const struct comp_unit_head *cu_headerp;
22078
22079 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22080
22081 if (cu_headerp->version == 2)
22082 return cu_headerp->addr_size;
22083 else
22084 return cu_headerp->offset_size;
22085 }
22086
22087 /* Return the text offset of the CU. The returned offset comes from
22088 this CU's objfile. If this objfile came from a separate debuginfo
22089 file, then the offset may be different from the corresponding
22090 offset in the parent objfile. */
22091
22092 CORE_ADDR
22093 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22094 {
22095 struct objfile *objfile = per_cu->objfile;
22096
22097 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22098 }
22099
22100 /* Locate the .debug_info compilation unit from CU's objfile which contains
22101 the DIE at OFFSET. Raises an error on failure. */
22102
22103 static struct dwarf2_per_cu_data *
22104 dwarf2_find_containing_comp_unit (sect_offset offset,
22105 unsigned int offset_in_dwz,
22106 struct objfile *objfile)
22107 {
22108 struct dwarf2_per_cu_data *this_cu;
22109 int low, high;
22110 const sect_offset *cu_off;
22111
22112 low = 0;
22113 high = dwarf2_per_objfile->n_comp_units - 1;
22114 while (high > low)
22115 {
22116 struct dwarf2_per_cu_data *mid_cu;
22117 int mid = low + (high - low) / 2;
22118
22119 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22120 cu_off = &mid_cu->offset;
22121 if (mid_cu->is_dwz > offset_in_dwz
22122 || (mid_cu->is_dwz == offset_in_dwz
22123 && cu_off->sect_off >= offset.sect_off))
22124 high = mid;
22125 else
22126 low = mid + 1;
22127 }
22128 gdb_assert (low == high);
22129 this_cu = dwarf2_per_objfile->all_comp_units[low];
22130 cu_off = &this_cu->offset;
22131 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
22132 {
22133 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22134 error (_("Dwarf Error: could not find partial DIE containing "
22135 "offset 0x%lx [in module %s]"),
22136 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
22137
22138 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22139 <= offset.sect_off);
22140 return dwarf2_per_objfile->all_comp_units[low-1];
22141 }
22142 else
22143 {
22144 this_cu = dwarf2_per_objfile->all_comp_units[low];
22145 if (low == dwarf2_per_objfile->n_comp_units - 1
22146 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22147 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22148 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
22149 return this_cu;
22150 }
22151 }
22152
22153 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22154
22155 static void
22156 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22157 {
22158 memset (cu, 0, sizeof (*cu));
22159 per_cu->cu = cu;
22160 cu->per_cu = per_cu;
22161 cu->objfile = per_cu->objfile;
22162 obstack_init (&cu->comp_unit_obstack);
22163 }
22164
22165 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22166
22167 static void
22168 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22169 enum language pretend_language)
22170 {
22171 struct attribute *attr;
22172
22173 /* Set the language we're debugging. */
22174 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22175 if (attr)
22176 set_cu_language (DW_UNSND (attr), cu);
22177 else
22178 {
22179 cu->language = pretend_language;
22180 cu->language_defn = language_def (cu->language);
22181 }
22182
22183 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22184 }
22185
22186 /* Release one cached compilation unit, CU. We unlink it from the tree
22187 of compilation units, but we don't remove it from the read_in_chain;
22188 the caller is responsible for that.
22189 NOTE: DATA is a void * because this function is also used as a
22190 cleanup routine. */
22191
22192 static void
22193 free_heap_comp_unit (void *data)
22194 {
22195 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22196
22197 gdb_assert (cu->per_cu != NULL);
22198 cu->per_cu->cu = NULL;
22199 cu->per_cu = NULL;
22200
22201 obstack_free (&cu->comp_unit_obstack, NULL);
22202
22203 xfree (cu);
22204 }
22205
22206 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22207 when we're finished with it. We can't free the pointer itself, but be
22208 sure to unlink it from the cache. Also release any associated storage. */
22209
22210 static void
22211 free_stack_comp_unit (void *data)
22212 {
22213 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22214
22215 gdb_assert (cu->per_cu != NULL);
22216 cu->per_cu->cu = NULL;
22217 cu->per_cu = NULL;
22218
22219 obstack_free (&cu->comp_unit_obstack, NULL);
22220 cu->partial_dies = NULL;
22221 }
22222
22223 /* Free all cached compilation units. */
22224
22225 static void
22226 free_cached_comp_units (void *data)
22227 {
22228 struct dwarf2_per_cu_data *per_cu, **last_chain;
22229
22230 per_cu = dwarf2_per_objfile->read_in_chain;
22231 last_chain = &dwarf2_per_objfile->read_in_chain;
22232 while (per_cu != NULL)
22233 {
22234 struct dwarf2_per_cu_data *next_cu;
22235
22236 next_cu = per_cu->cu->read_in_chain;
22237
22238 free_heap_comp_unit (per_cu->cu);
22239 *last_chain = next_cu;
22240
22241 per_cu = next_cu;
22242 }
22243 }
22244
22245 /* Increase the age counter on each cached compilation unit, and free
22246 any that are too old. */
22247
22248 static void
22249 age_cached_comp_units (void)
22250 {
22251 struct dwarf2_per_cu_data *per_cu, **last_chain;
22252
22253 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22254 per_cu = dwarf2_per_objfile->read_in_chain;
22255 while (per_cu != NULL)
22256 {
22257 per_cu->cu->last_used ++;
22258 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22259 dwarf2_mark (per_cu->cu);
22260 per_cu = per_cu->cu->read_in_chain;
22261 }
22262
22263 per_cu = dwarf2_per_objfile->read_in_chain;
22264 last_chain = &dwarf2_per_objfile->read_in_chain;
22265 while (per_cu != NULL)
22266 {
22267 struct dwarf2_per_cu_data *next_cu;
22268
22269 next_cu = per_cu->cu->read_in_chain;
22270
22271 if (!per_cu->cu->mark)
22272 {
22273 free_heap_comp_unit (per_cu->cu);
22274 *last_chain = next_cu;
22275 }
22276 else
22277 last_chain = &per_cu->cu->read_in_chain;
22278
22279 per_cu = next_cu;
22280 }
22281 }
22282
22283 /* Remove a single compilation unit from the cache. */
22284
22285 static void
22286 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22287 {
22288 struct dwarf2_per_cu_data *per_cu, **last_chain;
22289
22290 per_cu = dwarf2_per_objfile->read_in_chain;
22291 last_chain = &dwarf2_per_objfile->read_in_chain;
22292 while (per_cu != NULL)
22293 {
22294 struct dwarf2_per_cu_data *next_cu;
22295
22296 next_cu = per_cu->cu->read_in_chain;
22297
22298 if (per_cu == target_per_cu)
22299 {
22300 free_heap_comp_unit (per_cu->cu);
22301 per_cu->cu = NULL;
22302 *last_chain = next_cu;
22303 break;
22304 }
22305 else
22306 last_chain = &per_cu->cu->read_in_chain;
22307
22308 per_cu = next_cu;
22309 }
22310 }
22311
22312 /* Release all extra memory associated with OBJFILE. */
22313
22314 void
22315 dwarf2_free_objfile (struct objfile *objfile)
22316 {
22317 dwarf2_per_objfile
22318 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22319 dwarf2_objfile_data_key);
22320
22321 if (dwarf2_per_objfile == NULL)
22322 return;
22323
22324 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22325 free_cached_comp_units (NULL);
22326
22327 if (dwarf2_per_objfile->quick_file_names_table)
22328 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22329
22330 if (dwarf2_per_objfile->line_header_hash)
22331 htab_delete (dwarf2_per_objfile->line_header_hash);
22332
22333 /* Everything else should be on the objfile obstack. */
22334 }
22335
22336 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22337 We store these in a hash table separate from the DIEs, and preserve them
22338 when the DIEs are flushed out of cache.
22339
22340 The CU "per_cu" pointer is needed because offset alone is not enough to
22341 uniquely identify the type. A file may have multiple .debug_types sections,
22342 or the type may come from a DWO file. Furthermore, while it's more logical
22343 to use per_cu->section+offset, with Fission the section with the data is in
22344 the DWO file but we don't know that section at the point we need it.
22345 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22346 because we can enter the lookup routine, get_die_type_at_offset, from
22347 outside this file, and thus won't necessarily have PER_CU->cu.
22348 Fortunately, PER_CU is stable for the life of the objfile. */
22349
22350 struct dwarf2_per_cu_offset_and_type
22351 {
22352 const struct dwarf2_per_cu_data *per_cu;
22353 sect_offset offset;
22354 struct type *type;
22355 };
22356
22357 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22358
22359 static hashval_t
22360 per_cu_offset_and_type_hash (const void *item)
22361 {
22362 const struct dwarf2_per_cu_offset_and_type *ofs
22363 = (const struct dwarf2_per_cu_offset_and_type *) item;
22364
22365 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22366 }
22367
22368 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22369
22370 static int
22371 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22372 {
22373 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22374 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22375 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22376 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
22377
22378 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22379 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22380 }
22381
22382 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22383 table if necessary. For convenience, return TYPE.
22384
22385 The DIEs reading must have careful ordering to:
22386 * Not cause infite loops trying to read in DIEs as a prerequisite for
22387 reading current DIE.
22388 * Not trying to dereference contents of still incompletely read in types
22389 while reading in other DIEs.
22390 * Enable referencing still incompletely read in types just by a pointer to
22391 the type without accessing its fields.
22392
22393 Therefore caller should follow these rules:
22394 * Try to fetch any prerequisite types we may need to build this DIE type
22395 before building the type and calling set_die_type.
22396 * After building type call set_die_type for current DIE as soon as
22397 possible before fetching more types to complete the current type.
22398 * Make the type as complete as possible before fetching more types. */
22399
22400 static struct type *
22401 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22402 {
22403 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22404 struct objfile *objfile = cu->objfile;
22405 struct attribute *attr;
22406 struct dynamic_prop prop;
22407
22408 /* For Ada types, make sure that the gnat-specific data is always
22409 initialized (if not already set). There are a few types where
22410 we should not be doing so, because the type-specific area is
22411 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22412 where the type-specific area is used to store the floatformat).
22413 But this is not a problem, because the gnat-specific information
22414 is actually not needed for these types. */
22415 if (need_gnat_info (cu)
22416 && TYPE_CODE (type) != TYPE_CODE_FUNC
22417 && TYPE_CODE (type) != TYPE_CODE_FLT
22418 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22419 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22420 && TYPE_CODE (type) != TYPE_CODE_METHOD
22421 && !HAVE_GNAT_AUX_INFO (type))
22422 INIT_GNAT_SPECIFIC (type);
22423
22424 /* Read DW_AT_allocated and set in type. */
22425 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22426 if (attr_form_is_block (attr))
22427 {
22428 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22429 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22430 }
22431 else if (attr != NULL)
22432 {
22433 complaint (&symfile_complaints,
22434 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22435 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22436 die->offset.sect_off);
22437 }
22438
22439 /* Read DW_AT_associated and set in type. */
22440 attr = dwarf2_attr (die, DW_AT_associated, cu);
22441 if (attr_form_is_block (attr))
22442 {
22443 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22444 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22445 }
22446 else if (attr != NULL)
22447 {
22448 complaint (&symfile_complaints,
22449 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22450 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22451 die->offset.sect_off);
22452 }
22453
22454 /* Read DW_AT_data_location and set in type. */
22455 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22456 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22457 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22458
22459 if (dwarf2_per_objfile->die_type_hash == NULL)
22460 {
22461 dwarf2_per_objfile->die_type_hash =
22462 htab_create_alloc_ex (127,
22463 per_cu_offset_and_type_hash,
22464 per_cu_offset_and_type_eq,
22465 NULL,
22466 &objfile->objfile_obstack,
22467 hashtab_obstack_allocate,
22468 dummy_obstack_deallocate);
22469 }
22470
22471 ofs.per_cu = cu->per_cu;
22472 ofs.offset = die->offset;
22473 ofs.type = type;
22474 slot = (struct dwarf2_per_cu_offset_and_type **)
22475 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22476 if (*slot)
22477 complaint (&symfile_complaints,
22478 _("A problem internal to GDB: DIE 0x%x has type already set"),
22479 die->offset.sect_off);
22480 *slot = XOBNEW (&objfile->objfile_obstack,
22481 struct dwarf2_per_cu_offset_and_type);
22482 **slot = ofs;
22483 return type;
22484 }
22485
22486 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22487 or return NULL if the die does not have a saved type. */
22488
22489 static struct type *
22490 get_die_type_at_offset (sect_offset offset,
22491 struct dwarf2_per_cu_data *per_cu)
22492 {
22493 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22494
22495 if (dwarf2_per_objfile->die_type_hash == NULL)
22496 return NULL;
22497
22498 ofs.per_cu = per_cu;
22499 ofs.offset = offset;
22500 slot = ((struct dwarf2_per_cu_offset_and_type *)
22501 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
22502 if (slot)
22503 return slot->type;
22504 else
22505 return NULL;
22506 }
22507
22508 /* Look up the type for DIE in CU in die_type_hash,
22509 or return NULL if DIE does not have a saved type. */
22510
22511 static struct type *
22512 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22513 {
22514 return get_die_type_at_offset (die->offset, cu->per_cu);
22515 }
22516
22517 /* Add a dependence relationship from CU to REF_PER_CU. */
22518
22519 static void
22520 dwarf2_add_dependence (struct dwarf2_cu *cu,
22521 struct dwarf2_per_cu_data *ref_per_cu)
22522 {
22523 void **slot;
22524
22525 if (cu->dependencies == NULL)
22526 cu->dependencies
22527 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22528 NULL, &cu->comp_unit_obstack,
22529 hashtab_obstack_allocate,
22530 dummy_obstack_deallocate);
22531
22532 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22533 if (*slot == NULL)
22534 *slot = ref_per_cu;
22535 }
22536
22537 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22538 Set the mark field in every compilation unit in the
22539 cache that we must keep because we are keeping CU. */
22540
22541 static int
22542 dwarf2_mark_helper (void **slot, void *data)
22543 {
22544 struct dwarf2_per_cu_data *per_cu;
22545
22546 per_cu = (struct dwarf2_per_cu_data *) *slot;
22547
22548 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22549 reading of the chain. As such dependencies remain valid it is not much
22550 useful to track and undo them during QUIT cleanups. */
22551 if (per_cu->cu == NULL)
22552 return 1;
22553
22554 if (per_cu->cu->mark)
22555 return 1;
22556 per_cu->cu->mark = 1;
22557
22558 if (per_cu->cu->dependencies != NULL)
22559 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22560
22561 return 1;
22562 }
22563
22564 /* Set the mark field in CU and in every other compilation unit in the
22565 cache that we must keep because we are keeping CU. */
22566
22567 static void
22568 dwarf2_mark (struct dwarf2_cu *cu)
22569 {
22570 if (cu->mark)
22571 return;
22572 cu->mark = 1;
22573 if (cu->dependencies != NULL)
22574 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22575 }
22576
22577 static void
22578 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22579 {
22580 while (per_cu)
22581 {
22582 per_cu->cu->mark = 0;
22583 per_cu = per_cu->cu->read_in_chain;
22584 }
22585 }
22586
22587 /* Trivial hash function for partial_die_info: the hash value of a DIE
22588 is its offset in .debug_info for this objfile. */
22589
22590 static hashval_t
22591 partial_die_hash (const void *item)
22592 {
22593 const struct partial_die_info *part_die
22594 = (const struct partial_die_info *) item;
22595
22596 return part_die->offset.sect_off;
22597 }
22598
22599 /* Trivial comparison function for partial_die_info structures: two DIEs
22600 are equal if they have the same offset. */
22601
22602 static int
22603 partial_die_eq (const void *item_lhs, const void *item_rhs)
22604 {
22605 const struct partial_die_info *part_die_lhs
22606 = (const struct partial_die_info *) item_lhs;
22607 const struct partial_die_info *part_die_rhs
22608 = (const struct partial_die_info *) item_rhs;
22609
22610 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22611 }
22612
22613 static struct cmd_list_element *set_dwarf_cmdlist;
22614 static struct cmd_list_element *show_dwarf_cmdlist;
22615
22616 static void
22617 set_dwarf_cmd (char *args, int from_tty)
22618 {
22619 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
22620 gdb_stdout);
22621 }
22622
22623 static void
22624 show_dwarf_cmd (char *args, int from_tty)
22625 {
22626 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
22627 }
22628
22629 /* Free data associated with OBJFILE, if necessary. */
22630
22631 static void
22632 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22633 {
22634 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
22635 int ix;
22636
22637 /* Make sure we don't accidentally use dwarf2_per_objfile while
22638 cleaning up. */
22639 dwarf2_per_objfile = NULL;
22640
22641 for (ix = 0; ix < data->n_comp_units; ++ix)
22642 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22643
22644 for (ix = 0; ix < data->n_type_units; ++ix)
22645 VEC_free (dwarf2_per_cu_ptr,
22646 data->all_type_units[ix]->per_cu.imported_symtabs);
22647 xfree (data->all_type_units);
22648
22649 VEC_free (dwarf2_section_info_def, data->types);
22650
22651 if (data->dwo_files)
22652 free_dwo_files (data->dwo_files, objfile);
22653 if (data->dwp_file)
22654 gdb_bfd_unref (data->dwp_file->dbfd);
22655
22656 if (data->dwz_file && data->dwz_file->dwz_bfd)
22657 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22658 }
22659
22660 \f
22661 /* The "save gdb-index" command. */
22662
22663 /* The contents of the hash table we create when building the string
22664 table. */
22665 struct strtab_entry
22666 {
22667 offset_type offset;
22668 const char *str;
22669 };
22670
22671 /* Hash function for a strtab_entry.
22672
22673 Function is used only during write_hash_table so no index format backward
22674 compatibility is needed. */
22675
22676 static hashval_t
22677 hash_strtab_entry (const void *e)
22678 {
22679 const struct strtab_entry *entry = (const struct strtab_entry *) e;
22680 return mapped_index_string_hash (INT_MAX, entry->str);
22681 }
22682
22683 /* Equality function for a strtab_entry. */
22684
22685 static int
22686 eq_strtab_entry (const void *a, const void *b)
22687 {
22688 const struct strtab_entry *ea = (const struct strtab_entry *) a;
22689 const struct strtab_entry *eb = (const struct strtab_entry *) b;
22690 return !strcmp (ea->str, eb->str);
22691 }
22692
22693 /* Create a strtab_entry hash table. */
22694
22695 static htab_t
22696 create_strtab (void)
22697 {
22698 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22699 xfree, xcalloc, xfree);
22700 }
22701
22702 /* Add a string to the constant pool. Return the string's offset in
22703 host order. */
22704
22705 static offset_type
22706 add_string (htab_t table, struct obstack *cpool, const char *str)
22707 {
22708 void **slot;
22709 struct strtab_entry entry;
22710 struct strtab_entry *result;
22711
22712 entry.str = str;
22713 slot = htab_find_slot (table, &entry, INSERT);
22714 if (*slot)
22715 result = (struct strtab_entry *) *slot;
22716 else
22717 {
22718 result = XNEW (struct strtab_entry);
22719 result->offset = obstack_object_size (cpool);
22720 result->str = str;
22721 obstack_grow_str0 (cpool, str);
22722 *slot = result;
22723 }
22724 return result->offset;
22725 }
22726
22727 /* An entry in the symbol table. */
22728 struct symtab_index_entry
22729 {
22730 /* The name of the symbol. */
22731 const char *name;
22732 /* The offset of the name in the constant pool. */
22733 offset_type index_offset;
22734 /* A sorted vector of the indices of all the CUs that hold an object
22735 of this name. */
22736 VEC (offset_type) *cu_indices;
22737 };
22738
22739 /* The symbol table. This is a power-of-2-sized hash table. */
22740 struct mapped_symtab
22741 {
22742 offset_type n_elements;
22743 offset_type size;
22744 struct symtab_index_entry **data;
22745 };
22746
22747 /* Hash function for a symtab_index_entry. */
22748
22749 static hashval_t
22750 hash_symtab_entry (const void *e)
22751 {
22752 const struct symtab_index_entry *entry
22753 = (const struct symtab_index_entry *) e;
22754 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22755 sizeof (offset_type) * VEC_length (offset_type,
22756 entry->cu_indices),
22757 0);
22758 }
22759
22760 /* Equality function for a symtab_index_entry. */
22761
22762 static int
22763 eq_symtab_entry (const void *a, const void *b)
22764 {
22765 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
22766 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
22767 int len = VEC_length (offset_type, ea->cu_indices);
22768 if (len != VEC_length (offset_type, eb->cu_indices))
22769 return 0;
22770 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22771 VEC_address (offset_type, eb->cu_indices),
22772 sizeof (offset_type) * len);
22773 }
22774
22775 /* Destroy a symtab_index_entry. */
22776
22777 static void
22778 delete_symtab_entry (void *p)
22779 {
22780 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
22781 VEC_free (offset_type, entry->cu_indices);
22782 xfree (entry);
22783 }
22784
22785 /* Create a hash table holding symtab_index_entry objects. */
22786
22787 static htab_t
22788 create_symbol_hash_table (void)
22789 {
22790 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22791 delete_symtab_entry, xcalloc, xfree);
22792 }
22793
22794 /* Create a new mapped symtab object. */
22795
22796 static struct mapped_symtab *
22797 create_mapped_symtab (void)
22798 {
22799 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22800 symtab->n_elements = 0;
22801 symtab->size = 1024;
22802 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22803 return symtab;
22804 }
22805
22806 /* Destroy a mapped_symtab. */
22807
22808 static void
22809 cleanup_mapped_symtab (void *p)
22810 {
22811 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
22812 /* The contents of the array are freed when the other hash table is
22813 destroyed. */
22814 xfree (symtab->data);
22815 xfree (symtab);
22816 }
22817
22818 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22819 the slot.
22820
22821 Function is used only during write_hash_table so no index format backward
22822 compatibility is needed. */
22823
22824 static struct symtab_index_entry **
22825 find_slot (struct mapped_symtab *symtab, const char *name)
22826 {
22827 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22828
22829 index = hash & (symtab->size - 1);
22830 step = ((hash * 17) & (symtab->size - 1)) | 1;
22831
22832 for (;;)
22833 {
22834 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22835 return &symtab->data[index];
22836 index = (index + step) & (symtab->size - 1);
22837 }
22838 }
22839
22840 /* Expand SYMTAB's hash table. */
22841
22842 static void
22843 hash_expand (struct mapped_symtab *symtab)
22844 {
22845 offset_type old_size = symtab->size;
22846 offset_type i;
22847 struct symtab_index_entry **old_entries = symtab->data;
22848
22849 symtab->size *= 2;
22850 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22851
22852 for (i = 0; i < old_size; ++i)
22853 {
22854 if (old_entries[i])
22855 {
22856 struct symtab_index_entry **slot = find_slot (symtab,
22857 old_entries[i]->name);
22858 *slot = old_entries[i];
22859 }
22860 }
22861
22862 xfree (old_entries);
22863 }
22864
22865 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22866 CU_INDEX is the index of the CU in which the symbol appears.
22867 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22868
22869 static void
22870 add_index_entry (struct mapped_symtab *symtab, const char *name,
22871 int is_static, gdb_index_symbol_kind kind,
22872 offset_type cu_index)
22873 {
22874 struct symtab_index_entry **slot;
22875 offset_type cu_index_and_attrs;
22876
22877 ++symtab->n_elements;
22878 if (4 * symtab->n_elements / 3 >= symtab->size)
22879 hash_expand (symtab);
22880
22881 slot = find_slot (symtab, name);
22882 if (!*slot)
22883 {
22884 *slot = XNEW (struct symtab_index_entry);
22885 (*slot)->name = name;
22886 /* index_offset is set later. */
22887 (*slot)->cu_indices = NULL;
22888 }
22889
22890 cu_index_and_attrs = 0;
22891 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22892 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22893 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22894
22895 /* We don't want to record an index value twice as we want to avoid the
22896 duplication.
22897 We process all global symbols and then all static symbols
22898 (which would allow us to avoid the duplication by only having to check
22899 the last entry pushed), but a symbol could have multiple kinds in one CU.
22900 To keep things simple we don't worry about the duplication here and
22901 sort and uniqufy the list after we've processed all symbols. */
22902 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22903 }
22904
22905 /* qsort helper routine for uniquify_cu_indices. */
22906
22907 static int
22908 offset_type_compare (const void *ap, const void *bp)
22909 {
22910 offset_type a = *(offset_type *) ap;
22911 offset_type b = *(offset_type *) bp;
22912
22913 return (a > b) - (b > a);
22914 }
22915
22916 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22917
22918 static void
22919 uniquify_cu_indices (struct mapped_symtab *symtab)
22920 {
22921 int i;
22922
22923 for (i = 0; i < symtab->size; ++i)
22924 {
22925 struct symtab_index_entry *entry = symtab->data[i];
22926
22927 if (entry
22928 && entry->cu_indices != NULL)
22929 {
22930 unsigned int next_to_insert, next_to_check;
22931 offset_type last_value;
22932
22933 qsort (VEC_address (offset_type, entry->cu_indices),
22934 VEC_length (offset_type, entry->cu_indices),
22935 sizeof (offset_type), offset_type_compare);
22936
22937 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22938 next_to_insert = 1;
22939 for (next_to_check = 1;
22940 next_to_check < VEC_length (offset_type, entry->cu_indices);
22941 ++next_to_check)
22942 {
22943 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22944 != last_value)
22945 {
22946 last_value = VEC_index (offset_type, entry->cu_indices,
22947 next_to_check);
22948 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22949 last_value);
22950 ++next_to_insert;
22951 }
22952 }
22953 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22954 }
22955 }
22956 }
22957
22958 /* Add a vector of indices to the constant pool. */
22959
22960 static offset_type
22961 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22962 struct symtab_index_entry *entry)
22963 {
22964 void **slot;
22965
22966 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22967 if (!*slot)
22968 {
22969 offset_type len = VEC_length (offset_type, entry->cu_indices);
22970 offset_type val = MAYBE_SWAP (len);
22971 offset_type iter;
22972 int i;
22973
22974 *slot = entry;
22975 entry->index_offset = obstack_object_size (cpool);
22976
22977 obstack_grow (cpool, &val, sizeof (val));
22978 for (i = 0;
22979 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22980 ++i)
22981 {
22982 val = MAYBE_SWAP (iter);
22983 obstack_grow (cpool, &val, sizeof (val));
22984 }
22985 }
22986 else
22987 {
22988 struct symtab_index_entry *old_entry
22989 = (struct symtab_index_entry *) *slot;
22990 entry->index_offset = old_entry->index_offset;
22991 entry = old_entry;
22992 }
22993 return entry->index_offset;
22994 }
22995
22996 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22997 constant pool entries going into the obstack CPOOL. */
22998
22999 static void
23000 write_hash_table (struct mapped_symtab *symtab,
23001 struct obstack *output, struct obstack *cpool)
23002 {
23003 offset_type i;
23004 htab_t symbol_hash_table;
23005 htab_t str_table;
23006
23007 symbol_hash_table = create_symbol_hash_table ();
23008 str_table = create_strtab ();
23009
23010 /* We add all the index vectors to the constant pool first, to
23011 ensure alignment is ok. */
23012 for (i = 0; i < symtab->size; ++i)
23013 {
23014 if (symtab->data[i])
23015 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
23016 }
23017
23018 /* Now write out the hash table. */
23019 for (i = 0; i < symtab->size; ++i)
23020 {
23021 offset_type str_off, vec_off;
23022
23023 if (symtab->data[i])
23024 {
23025 str_off = add_string (str_table, cpool, symtab->data[i]->name);
23026 vec_off = symtab->data[i]->index_offset;
23027 }
23028 else
23029 {
23030 /* While 0 is a valid constant pool index, it is not valid
23031 to have 0 for both offsets. */
23032 str_off = 0;
23033 vec_off = 0;
23034 }
23035
23036 str_off = MAYBE_SWAP (str_off);
23037 vec_off = MAYBE_SWAP (vec_off);
23038
23039 obstack_grow (output, &str_off, sizeof (str_off));
23040 obstack_grow (output, &vec_off, sizeof (vec_off));
23041 }
23042
23043 htab_delete (str_table);
23044 htab_delete (symbol_hash_table);
23045 }
23046
23047 /* Struct to map psymtab to CU index in the index file. */
23048 struct psymtab_cu_index_map
23049 {
23050 struct partial_symtab *psymtab;
23051 unsigned int cu_index;
23052 };
23053
23054 static hashval_t
23055 hash_psymtab_cu_index (const void *item)
23056 {
23057 const struct psymtab_cu_index_map *map
23058 = (const struct psymtab_cu_index_map *) item;
23059
23060 return htab_hash_pointer (map->psymtab);
23061 }
23062
23063 static int
23064 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
23065 {
23066 const struct psymtab_cu_index_map *lhs
23067 = (const struct psymtab_cu_index_map *) item_lhs;
23068 const struct psymtab_cu_index_map *rhs
23069 = (const struct psymtab_cu_index_map *) item_rhs;
23070
23071 return lhs->psymtab == rhs->psymtab;
23072 }
23073
23074 /* Helper struct for building the address table. */
23075 struct addrmap_index_data
23076 {
23077 struct objfile *objfile;
23078 struct obstack *addr_obstack;
23079 htab_t cu_index_htab;
23080
23081 /* Non-zero if the previous_* fields are valid.
23082 We can't write an entry until we see the next entry (since it is only then
23083 that we know the end of the entry). */
23084 int previous_valid;
23085 /* Index of the CU in the table of all CUs in the index file. */
23086 unsigned int previous_cu_index;
23087 /* Start address of the CU. */
23088 CORE_ADDR previous_cu_start;
23089 };
23090
23091 /* Write an address entry to OBSTACK. */
23092
23093 static void
23094 add_address_entry (struct objfile *objfile, struct obstack *obstack,
23095 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23096 {
23097 offset_type cu_index_to_write;
23098 gdb_byte addr[8];
23099 CORE_ADDR baseaddr;
23100
23101 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23102
23103 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23104 obstack_grow (obstack, addr, 8);
23105 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23106 obstack_grow (obstack, addr, 8);
23107 cu_index_to_write = MAYBE_SWAP (cu_index);
23108 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23109 }
23110
23111 /* Worker function for traversing an addrmap to build the address table. */
23112
23113 static int
23114 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23115 {
23116 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23117 struct partial_symtab *pst = (struct partial_symtab *) obj;
23118
23119 if (data->previous_valid)
23120 add_address_entry (data->objfile, data->addr_obstack,
23121 data->previous_cu_start, start_addr,
23122 data->previous_cu_index);
23123
23124 data->previous_cu_start = start_addr;
23125 if (pst != NULL)
23126 {
23127 struct psymtab_cu_index_map find_map, *map;
23128 find_map.psymtab = pst;
23129 map = ((struct psymtab_cu_index_map *)
23130 htab_find (data->cu_index_htab, &find_map));
23131 gdb_assert (map != NULL);
23132 data->previous_cu_index = map->cu_index;
23133 data->previous_valid = 1;
23134 }
23135 else
23136 data->previous_valid = 0;
23137
23138 return 0;
23139 }
23140
23141 /* Write OBJFILE's address map to OBSTACK.
23142 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23143 in the index file. */
23144
23145 static void
23146 write_address_map (struct objfile *objfile, struct obstack *obstack,
23147 htab_t cu_index_htab)
23148 {
23149 struct addrmap_index_data addrmap_index_data;
23150
23151 /* When writing the address table, we have to cope with the fact that
23152 the addrmap iterator only provides the start of a region; we have to
23153 wait until the next invocation to get the start of the next region. */
23154
23155 addrmap_index_data.objfile = objfile;
23156 addrmap_index_data.addr_obstack = obstack;
23157 addrmap_index_data.cu_index_htab = cu_index_htab;
23158 addrmap_index_data.previous_valid = 0;
23159
23160 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23161 &addrmap_index_data);
23162
23163 /* It's highly unlikely the last entry (end address = 0xff...ff)
23164 is valid, but we should still handle it.
23165 The end address is recorded as the start of the next region, but that
23166 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23167 anyway. */
23168 if (addrmap_index_data.previous_valid)
23169 add_address_entry (objfile, obstack,
23170 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23171 addrmap_index_data.previous_cu_index);
23172 }
23173
23174 /* Return the symbol kind of PSYM. */
23175
23176 static gdb_index_symbol_kind
23177 symbol_kind (struct partial_symbol *psym)
23178 {
23179 domain_enum domain = PSYMBOL_DOMAIN (psym);
23180 enum address_class aclass = PSYMBOL_CLASS (psym);
23181
23182 switch (domain)
23183 {
23184 case VAR_DOMAIN:
23185 switch (aclass)
23186 {
23187 case LOC_BLOCK:
23188 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23189 case LOC_TYPEDEF:
23190 return GDB_INDEX_SYMBOL_KIND_TYPE;
23191 case LOC_COMPUTED:
23192 case LOC_CONST_BYTES:
23193 case LOC_OPTIMIZED_OUT:
23194 case LOC_STATIC:
23195 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23196 case LOC_CONST:
23197 /* Note: It's currently impossible to recognize psyms as enum values
23198 short of reading the type info. For now punt. */
23199 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23200 default:
23201 /* There are other LOC_FOO values that one might want to classify
23202 as variables, but dwarf2read.c doesn't currently use them. */
23203 return GDB_INDEX_SYMBOL_KIND_OTHER;
23204 }
23205 case STRUCT_DOMAIN:
23206 return GDB_INDEX_SYMBOL_KIND_TYPE;
23207 default:
23208 return GDB_INDEX_SYMBOL_KIND_OTHER;
23209 }
23210 }
23211
23212 /* Add a list of partial symbols to SYMTAB. */
23213
23214 static void
23215 write_psymbols (struct mapped_symtab *symtab,
23216 htab_t psyms_seen,
23217 struct partial_symbol **psymp,
23218 int count,
23219 offset_type cu_index,
23220 int is_static)
23221 {
23222 for (; count-- > 0; ++psymp)
23223 {
23224 struct partial_symbol *psym = *psymp;
23225 void **slot;
23226
23227 if (SYMBOL_LANGUAGE (psym) == language_ada)
23228 error (_("Ada is not currently supported by the index"));
23229
23230 /* Only add a given psymbol once. */
23231 slot = htab_find_slot (psyms_seen, psym, INSERT);
23232 if (!*slot)
23233 {
23234 gdb_index_symbol_kind kind = symbol_kind (psym);
23235
23236 *slot = psym;
23237 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23238 is_static, kind, cu_index);
23239 }
23240 }
23241 }
23242
23243 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
23244 exception if there is an error. */
23245
23246 static void
23247 write_obstack (FILE *file, struct obstack *obstack)
23248 {
23249 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23250 file)
23251 != obstack_object_size (obstack))
23252 error (_("couldn't data write to file"));
23253 }
23254
23255 /* Unlink a file if the argument is not NULL. */
23256
23257 static void
23258 unlink_if_set (void *p)
23259 {
23260 char **filename = (char **) p;
23261 if (*filename)
23262 unlink (*filename);
23263 }
23264
23265 /* A helper struct used when iterating over debug_types. */
23266 struct signatured_type_index_data
23267 {
23268 struct objfile *objfile;
23269 struct mapped_symtab *symtab;
23270 struct obstack *types_list;
23271 htab_t psyms_seen;
23272 int cu_index;
23273 };
23274
23275 /* A helper function that writes a single signatured_type to an
23276 obstack. */
23277
23278 static int
23279 write_one_signatured_type (void **slot, void *d)
23280 {
23281 struct signatured_type_index_data *info
23282 = (struct signatured_type_index_data *) d;
23283 struct signatured_type *entry = (struct signatured_type *) *slot;
23284 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23285 gdb_byte val[8];
23286
23287 write_psymbols (info->symtab,
23288 info->psyms_seen,
23289 info->objfile->global_psymbols.list
23290 + psymtab->globals_offset,
23291 psymtab->n_global_syms, info->cu_index,
23292 0);
23293 write_psymbols (info->symtab,
23294 info->psyms_seen,
23295 info->objfile->static_psymbols.list
23296 + psymtab->statics_offset,
23297 psymtab->n_static_syms, info->cu_index,
23298 1);
23299
23300 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23301 entry->per_cu.offset.sect_off);
23302 obstack_grow (info->types_list, val, 8);
23303 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23304 entry->type_offset_in_tu.cu_off);
23305 obstack_grow (info->types_list, val, 8);
23306 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23307 obstack_grow (info->types_list, val, 8);
23308
23309 ++info->cu_index;
23310
23311 return 1;
23312 }
23313
23314 /* Recurse into all "included" dependencies and write their symbols as
23315 if they appeared in this psymtab. */
23316
23317 static void
23318 recursively_write_psymbols (struct objfile *objfile,
23319 struct partial_symtab *psymtab,
23320 struct mapped_symtab *symtab,
23321 htab_t psyms_seen,
23322 offset_type cu_index)
23323 {
23324 int i;
23325
23326 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23327 if (psymtab->dependencies[i]->user != NULL)
23328 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23329 symtab, psyms_seen, cu_index);
23330
23331 write_psymbols (symtab,
23332 psyms_seen,
23333 objfile->global_psymbols.list + psymtab->globals_offset,
23334 psymtab->n_global_syms, cu_index,
23335 0);
23336 write_psymbols (symtab,
23337 psyms_seen,
23338 objfile->static_psymbols.list + psymtab->statics_offset,
23339 psymtab->n_static_syms, cu_index,
23340 1);
23341 }
23342
23343 /* Create an index file for OBJFILE in the directory DIR. */
23344
23345 static void
23346 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23347 {
23348 struct cleanup *cleanup;
23349 char *filename, *cleanup_filename;
23350 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23351 struct obstack cu_list, types_cu_list;
23352 int i;
23353 FILE *out_file;
23354 struct mapped_symtab *symtab;
23355 offset_type val, size_of_contents, total_len;
23356 struct stat st;
23357 htab_t psyms_seen;
23358 htab_t cu_index_htab;
23359 struct psymtab_cu_index_map *psymtab_cu_index_map;
23360
23361 if (dwarf2_per_objfile->using_index)
23362 error (_("Cannot use an index to create the index"));
23363
23364 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23365 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23366
23367 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23368 return;
23369
23370 if (stat (objfile_name (objfile), &st) < 0)
23371 perror_with_name (objfile_name (objfile));
23372
23373 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23374 INDEX_SUFFIX, (char *) NULL);
23375 cleanup = make_cleanup (xfree, filename);
23376
23377 out_file = gdb_fopen_cloexec (filename, "wb");
23378 if (!out_file)
23379 error (_("Can't open `%s' for writing"), filename);
23380
23381 cleanup_filename = filename;
23382 make_cleanup (unlink_if_set, &cleanup_filename);
23383
23384 symtab = create_mapped_symtab ();
23385 make_cleanup (cleanup_mapped_symtab, symtab);
23386
23387 obstack_init (&addr_obstack);
23388 make_cleanup_obstack_free (&addr_obstack);
23389
23390 obstack_init (&cu_list);
23391 make_cleanup_obstack_free (&cu_list);
23392
23393 obstack_init (&types_cu_list);
23394 make_cleanup_obstack_free (&types_cu_list);
23395
23396 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23397 NULL, xcalloc, xfree);
23398 make_cleanup_htab_delete (psyms_seen);
23399
23400 /* While we're scanning CU's create a table that maps a psymtab pointer
23401 (which is what addrmap records) to its index (which is what is recorded
23402 in the index file). This will later be needed to write the address
23403 table. */
23404 cu_index_htab = htab_create_alloc (100,
23405 hash_psymtab_cu_index,
23406 eq_psymtab_cu_index,
23407 NULL, xcalloc, xfree);
23408 make_cleanup_htab_delete (cu_index_htab);
23409 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23410 dwarf2_per_objfile->n_comp_units);
23411 make_cleanup (xfree, psymtab_cu_index_map);
23412
23413 /* The CU list is already sorted, so we don't need to do additional
23414 work here. Also, the debug_types entries do not appear in
23415 all_comp_units, but only in their own hash table. */
23416 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23417 {
23418 struct dwarf2_per_cu_data *per_cu
23419 = dwarf2_per_objfile->all_comp_units[i];
23420 struct partial_symtab *psymtab = per_cu->v.psymtab;
23421 gdb_byte val[8];
23422 struct psymtab_cu_index_map *map;
23423 void **slot;
23424
23425 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23426 It may be referenced from a local scope but in such case it does not
23427 need to be present in .gdb_index. */
23428 if (psymtab == NULL)
23429 continue;
23430
23431 if (psymtab->user == NULL)
23432 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23433
23434 map = &psymtab_cu_index_map[i];
23435 map->psymtab = psymtab;
23436 map->cu_index = i;
23437 slot = htab_find_slot (cu_index_htab, map, INSERT);
23438 gdb_assert (slot != NULL);
23439 gdb_assert (*slot == NULL);
23440 *slot = map;
23441
23442 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23443 per_cu->offset.sect_off);
23444 obstack_grow (&cu_list, val, 8);
23445 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23446 obstack_grow (&cu_list, val, 8);
23447 }
23448
23449 /* Dump the address map. */
23450 write_address_map (objfile, &addr_obstack, cu_index_htab);
23451
23452 /* Write out the .debug_type entries, if any. */
23453 if (dwarf2_per_objfile->signatured_types)
23454 {
23455 struct signatured_type_index_data sig_data;
23456
23457 sig_data.objfile = objfile;
23458 sig_data.symtab = symtab;
23459 sig_data.types_list = &types_cu_list;
23460 sig_data.psyms_seen = psyms_seen;
23461 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23462 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23463 write_one_signatured_type, &sig_data);
23464 }
23465
23466 /* Now that we've processed all symbols we can shrink their cu_indices
23467 lists. */
23468 uniquify_cu_indices (symtab);
23469
23470 obstack_init (&constant_pool);
23471 make_cleanup_obstack_free (&constant_pool);
23472 obstack_init (&symtab_obstack);
23473 make_cleanup_obstack_free (&symtab_obstack);
23474 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23475
23476 obstack_init (&contents);
23477 make_cleanup_obstack_free (&contents);
23478 size_of_contents = 6 * sizeof (offset_type);
23479 total_len = size_of_contents;
23480
23481 /* The version number. */
23482 val = MAYBE_SWAP (8);
23483 obstack_grow (&contents, &val, sizeof (val));
23484
23485 /* The offset of the CU list from the start of the file. */
23486 val = MAYBE_SWAP (total_len);
23487 obstack_grow (&contents, &val, sizeof (val));
23488 total_len += obstack_object_size (&cu_list);
23489
23490 /* The offset of the types CU list from the start of the file. */
23491 val = MAYBE_SWAP (total_len);
23492 obstack_grow (&contents, &val, sizeof (val));
23493 total_len += obstack_object_size (&types_cu_list);
23494
23495 /* The offset of the address table from the start of the file. */
23496 val = MAYBE_SWAP (total_len);
23497 obstack_grow (&contents, &val, sizeof (val));
23498 total_len += obstack_object_size (&addr_obstack);
23499
23500 /* The offset of the symbol table from the start of the file. */
23501 val = MAYBE_SWAP (total_len);
23502 obstack_grow (&contents, &val, sizeof (val));
23503 total_len += obstack_object_size (&symtab_obstack);
23504
23505 /* The offset of the constant pool from the start of the file. */
23506 val = MAYBE_SWAP (total_len);
23507 obstack_grow (&contents, &val, sizeof (val));
23508 total_len += obstack_object_size (&constant_pool);
23509
23510 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23511
23512 write_obstack (out_file, &contents);
23513 write_obstack (out_file, &cu_list);
23514 write_obstack (out_file, &types_cu_list);
23515 write_obstack (out_file, &addr_obstack);
23516 write_obstack (out_file, &symtab_obstack);
23517 write_obstack (out_file, &constant_pool);
23518
23519 fclose (out_file);
23520
23521 /* We want to keep the file, so we set cleanup_filename to NULL
23522 here. See unlink_if_set. */
23523 cleanup_filename = NULL;
23524
23525 do_cleanups (cleanup);
23526 }
23527
23528 /* Implementation of the `save gdb-index' command.
23529
23530 Note that the file format used by this command is documented in the
23531 GDB manual. Any changes here must be documented there. */
23532
23533 static void
23534 save_gdb_index_command (char *arg, int from_tty)
23535 {
23536 struct objfile *objfile;
23537
23538 if (!arg || !*arg)
23539 error (_("usage: save gdb-index DIRECTORY"));
23540
23541 ALL_OBJFILES (objfile)
23542 {
23543 struct stat st;
23544
23545 /* If the objfile does not correspond to an actual file, skip it. */
23546 if (stat (objfile_name (objfile), &st) < 0)
23547 continue;
23548
23549 dwarf2_per_objfile
23550 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23551 dwarf2_objfile_data_key);
23552 if (dwarf2_per_objfile)
23553 {
23554
23555 TRY
23556 {
23557 write_psymtabs_to_index (objfile, arg);
23558 }
23559 CATCH (except, RETURN_MASK_ERROR)
23560 {
23561 exception_fprintf (gdb_stderr, except,
23562 _("Error while writing index for `%s': "),
23563 objfile_name (objfile));
23564 }
23565 END_CATCH
23566 }
23567 }
23568 }
23569
23570 \f
23571
23572 int dwarf_always_disassemble;
23573
23574 static void
23575 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23576 struct cmd_list_element *c, const char *value)
23577 {
23578 fprintf_filtered (file,
23579 _("Whether to always disassemble "
23580 "DWARF expressions is %s.\n"),
23581 value);
23582 }
23583
23584 static void
23585 show_check_physname (struct ui_file *file, int from_tty,
23586 struct cmd_list_element *c, const char *value)
23587 {
23588 fprintf_filtered (file,
23589 _("Whether to check \"physname\" is %s.\n"),
23590 value);
23591 }
23592
23593 void _initialize_dwarf2_read (void);
23594
23595 void
23596 _initialize_dwarf2_read (void)
23597 {
23598 struct cmd_list_element *c;
23599
23600 dwarf2_objfile_data_key
23601 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23602
23603 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23604 Set DWARF specific variables.\n\
23605 Configure DWARF variables such as the cache size"),
23606 &set_dwarf_cmdlist, "maintenance set dwarf ",
23607 0/*allow-unknown*/, &maintenance_set_cmdlist);
23608
23609 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23610 Show DWARF specific variables\n\
23611 Show DWARF variables such as the cache size"),
23612 &show_dwarf_cmdlist, "maintenance show dwarf ",
23613 0/*allow-unknown*/, &maintenance_show_cmdlist);
23614
23615 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23616 &dwarf_max_cache_age, _("\
23617 Set the upper bound on the age of cached DWARF compilation units."), _("\
23618 Show the upper bound on the age of cached DWARF compilation units."), _("\
23619 A higher limit means that cached compilation units will be stored\n\
23620 in memory longer, and more total memory will be used. Zero disables\n\
23621 caching, which can slow down startup."),
23622 NULL,
23623 show_dwarf_max_cache_age,
23624 &set_dwarf_cmdlist,
23625 &show_dwarf_cmdlist);
23626
23627 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23628 &dwarf_always_disassemble, _("\
23629 Set whether `info address' always disassembles DWARF expressions."), _("\
23630 Show whether `info address' always disassembles DWARF expressions."), _("\
23631 When enabled, DWARF expressions are always printed in an assembly-like\n\
23632 syntax. When disabled, expressions will be printed in a more\n\
23633 conversational style, when possible."),
23634 NULL,
23635 show_dwarf_always_disassemble,
23636 &set_dwarf_cmdlist,
23637 &show_dwarf_cmdlist);
23638
23639 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23640 Set debugging of the DWARF reader."), _("\
23641 Show debugging of the DWARF reader."), _("\
23642 When enabled (non-zero), debugging messages are printed during DWARF\n\
23643 reading and symtab expansion. A value of 1 (one) provides basic\n\
23644 information. A value greater than 1 provides more verbose information."),
23645 NULL,
23646 NULL,
23647 &setdebuglist, &showdebuglist);
23648
23649 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23650 Set debugging of the DWARF DIE reader."), _("\
23651 Show debugging of the DWARF DIE reader."), _("\
23652 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23653 The value is the maximum depth to print."),
23654 NULL,
23655 NULL,
23656 &setdebuglist, &showdebuglist);
23657
23658 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23659 Set debugging of the dwarf line reader."), _("\
23660 Show debugging of the dwarf line reader."), _("\
23661 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23662 A value of 1 (one) provides basic information.\n\
23663 A value greater than 1 provides more verbose information."),
23664 NULL,
23665 NULL,
23666 &setdebuglist, &showdebuglist);
23667
23668 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23669 Set cross-checking of \"physname\" code against demangler."), _("\
23670 Show cross-checking of \"physname\" code against demangler."), _("\
23671 When enabled, GDB's internal \"physname\" code is checked against\n\
23672 the demangler."),
23673 NULL, show_check_physname,
23674 &setdebuglist, &showdebuglist);
23675
23676 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23677 no_class, &use_deprecated_index_sections, _("\
23678 Set whether to use deprecated gdb_index sections."), _("\
23679 Show whether to use deprecated gdb_index sections."), _("\
23680 When enabled, deprecated .gdb_index sections are used anyway.\n\
23681 Normally they are ignored either because of a missing feature or\n\
23682 performance issue.\n\
23683 Warning: This option must be enabled before gdb reads the file."),
23684 NULL,
23685 NULL,
23686 &setlist, &showlist);
23687
23688 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23689 _("\
23690 Save a gdb-index file.\n\
23691 Usage: save gdb-index DIRECTORY"),
23692 &save_cmdlist);
23693 set_cmd_completer (c, filename_completer);
23694
23695 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23696 &dwarf2_locexpr_funcs);
23697 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23698 &dwarf2_loclist_funcs);
23699
23700 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23701 &dwarf2_block_frame_base_locexpr_funcs);
23702 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23703 &dwarf2_block_frame_base_loclist_funcs);
23704 }
This page took 0.544951 seconds and 5 git commands to generate.