Use setter and getter for demangled_name.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support.
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28
29 #include "defs.h"
30 #include "bfd.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "objfiles.h"
34 #include "dwarf2.h"
35 #include "buildsym.h"
36 #include "demangle.h"
37 #include "expression.h"
38 #include "filenames.h" /* for DOSish file names */
39 #include "macrotab.h"
40 #include "language.h"
41 #include "complaints.h"
42 #include "bcache.h"
43 #include "dwarf2expr.h"
44 #include "dwarf2loc.h"
45 #include "cp-support.h"
46 #include "hashtab.h"
47 #include "command.h"
48 #include "gdbcmd.h"
49 #include "block.h"
50 #include "addrmap.h"
51 #include "typeprint.h"
52 #include "jv-lang.h"
53 #include "psympriv.h"
54 #include "exceptions.h"
55 #include "gdb_stat.h"
56
57 #include <fcntl.h>
58 #include "gdb_string.h"
59 #include "gdb_assert.h"
60 #include <sys/types.h>
61 #ifdef HAVE_ZLIB_H
62 #include <zlib.h>
63 #endif
64 #ifdef HAVE_MMAP
65 #include <sys/mman.h>
66 #ifndef MAP_FAILED
67 #define MAP_FAILED ((void *) -1)
68 #endif
69 #endif
70
71 #if 0
72 /* .debug_info header for a compilation unit
73 Because of alignment constraints, this structure has padding and cannot
74 be mapped directly onto the beginning of the .debug_info section. */
75 typedef struct comp_unit_header
76 {
77 unsigned int length; /* length of the .debug_info
78 contribution */
79 unsigned short version; /* version number -- 2 for DWARF
80 version 2 */
81 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
82 unsigned char addr_size; /* byte size of an address -- 4 */
83 }
84 _COMP_UNIT_HEADER;
85 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
86 #endif
87
88 /* .debug_line statement program prologue
89 Because of alignment constraints, this structure has padding and cannot
90 be mapped directly onto the beginning of the .debug_info section. */
91 typedef struct statement_prologue
92 {
93 unsigned int total_length; /* byte length of the statement
94 information */
95 unsigned short version; /* version number -- 2 for DWARF
96 version 2 */
97 unsigned int prologue_length; /* # bytes between prologue &
98 stmt program */
99 unsigned char minimum_instruction_length; /* byte size of
100 smallest instr */
101 unsigned char default_is_stmt; /* initial value of is_stmt
102 register */
103 char line_base;
104 unsigned char line_range;
105 unsigned char opcode_base; /* number assigned to first special
106 opcode */
107 unsigned char *standard_opcode_lengths;
108 }
109 _STATEMENT_PROLOGUE;
110
111 /* When non-zero, dump DIEs after they are read in. */
112 static int dwarf2_die_debug = 0;
113
114 static int pagesize;
115
116 /* When set, the file that we're processing is known to have debugging
117 info for C++ namespaces. GCC 3.3.x did not produce this information,
118 but later versions do. */
119
120 static int processing_has_namespace_info;
121
122 static const struct objfile_data *dwarf2_objfile_data_key;
123
124 struct dwarf2_section_info
125 {
126 asection *asection;
127 gdb_byte *buffer;
128 bfd_size_type size;
129 int was_mmapped;
130 /* True if we have tried to read this section. */
131 int readin;
132 };
133
134 /* All offsets in the index are of this type. It must be
135 architecture-independent. */
136 typedef uint32_t offset_type;
137
138 DEF_VEC_I (offset_type);
139
140 /* A description of the mapped index. The file format is described in
141 a comment by the code that writes the index. */
142 struct mapped_index
143 {
144 /* The total length of the buffer. */
145 off_t total_size;
146 /* A pointer to the address table data. */
147 const gdb_byte *address_table;
148 /* Size of the address table data in bytes. */
149 offset_type address_table_size;
150 /* The hash table. */
151 const offset_type *index_table;
152 /* Size in slots, each slot is 2 offset_types. */
153 offset_type index_table_slots;
154 /* A pointer to the constant pool. */
155 const char *constant_pool;
156 };
157
158 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_data_ptr;
159 DEF_VEC_P (dwarf2_per_cu_data_ptr);
160
161 struct dwarf2_per_objfile
162 {
163 struct dwarf2_section_info info;
164 struct dwarf2_section_info abbrev;
165 struct dwarf2_section_info line;
166 struct dwarf2_section_info loc;
167 struct dwarf2_section_info macinfo;
168 struct dwarf2_section_info str;
169 struct dwarf2_section_info ranges;
170 struct dwarf2_section_info types;
171 struct dwarf2_section_info frame;
172 struct dwarf2_section_info eh_frame;
173 struct dwarf2_section_info gdb_index;
174
175 /* Back link. */
176 struct objfile *objfile;
177
178 /* A list of all the compilation units. This is used to locate
179 the target compilation unit of a particular reference. */
180 struct dwarf2_per_cu_data **all_comp_units;
181
182 /* The number of compilation units in ALL_COMP_UNITS. */
183 int n_comp_units;
184
185 /* A chain of compilation units that are currently read in, so that
186 they can be freed later. */
187 struct dwarf2_per_cu_data *read_in_chain;
188
189 /* A table mapping .debug_types signatures to its signatured_type entry.
190 This is NULL if the .debug_types section hasn't been read in yet. */
191 htab_t signatured_types;
192
193 /* A flag indicating wether this objfile has a section loaded at a
194 VMA of 0. */
195 int has_section_at_zero;
196
197 /* True if we are using the mapped index. */
198 unsigned char using_index;
199
200 /* The mapped index. */
201 struct mapped_index *index_table;
202 };
203
204 static struct dwarf2_per_objfile *dwarf2_per_objfile;
205
206 /* names of the debugging sections */
207
208 /* Note that if the debugging section has been compressed, it might
209 have a name like .zdebug_info. */
210
211 #define INFO_SECTION "debug_info"
212 #define ABBREV_SECTION "debug_abbrev"
213 #define LINE_SECTION "debug_line"
214 #define LOC_SECTION "debug_loc"
215 #define MACINFO_SECTION "debug_macinfo"
216 #define STR_SECTION "debug_str"
217 #define RANGES_SECTION "debug_ranges"
218 #define TYPES_SECTION "debug_types"
219 #define FRAME_SECTION "debug_frame"
220 #define EH_FRAME_SECTION "eh_frame"
221 #define GDB_INDEX_SECTION "gdb_index"
222
223 /* local data types */
224
225 /* We hold several abbreviation tables in memory at the same time. */
226 #ifndef ABBREV_HASH_SIZE
227 #define ABBREV_HASH_SIZE 121
228 #endif
229
230 /* The data in a compilation unit header, after target2host
231 translation, looks like this. */
232 struct comp_unit_head
233 {
234 unsigned int length;
235 short version;
236 unsigned char addr_size;
237 unsigned char signed_addr_p;
238 unsigned int abbrev_offset;
239
240 /* Size of file offsets; either 4 or 8. */
241 unsigned int offset_size;
242
243 /* Size of the length field; either 4 or 12. */
244 unsigned int initial_length_size;
245
246 /* Offset to the first byte of this compilation unit header in the
247 .debug_info section, for resolving relative reference dies. */
248 unsigned int offset;
249
250 /* Offset to first die in this cu from the start of the cu.
251 This will be the first byte following the compilation unit header. */
252 unsigned int first_die_offset;
253 };
254
255 /* Internal state when decoding a particular compilation unit. */
256 struct dwarf2_cu
257 {
258 /* The objfile containing this compilation unit. */
259 struct objfile *objfile;
260
261 /* The header of the compilation unit. */
262 struct comp_unit_head header;
263
264 /* Base address of this compilation unit. */
265 CORE_ADDR base_address;
266
267 /* Non-zero if base_address has been set. */
268 int base_known;
269
270 struct function_range *first_fn, *last_fn, *cached_fn;
271
272 /* The language we are debugging. */
273 enum language language;
274 const struct language_defn *language_defn;
275
276 const char *producer;
277
278 /* The generic symbol table building routines have separate lists for
279 file scope symbols and all all other scopes (local scopes). So
280 we need to select the right one to pass to add_symbol_to_list().
281 We do it by keeping a pointer to the correct list in list_in_scope.
282
283 FIXME: The original dwarf code just treated the file scope as the
284 first local scope, and all other local scopes as nested local
285 scopes, and worked fine. Check to see if we really need to
286 distinguish these in buildsym.c. */
287 struct pending **list_in_scope;
288
289 /* DWARF abbreviation table associated with this compilation unit. */
290 struct abbrev_info **dwarf2_abbrevs;
291
292 /* Storage for the abbrev table. */
293 struct obstack abbrev_obstack;
294
295 /* Hash table holding all the loaded partial DIEs. */
296 htab_t partial_dies;
297
298 /* Storage for things with the same lifetime as this read-in compilation
299 unit, including partial DIEs. */
300 struct obstack comp_unit_obstack;
301
302 /* When multiple dwarf2_cu structures are living in memory, this field
303 chains them all together, so that they can be released efficiently.
304 We will probably also want a generation counter so that most-recently-used
305 compilation units are cached... */
306 struct dwarf2_per_cu_data *read_in_chain;
307
308 /* Backchain to our per_cu entry if the tree has been built. */
309 struct dwarf2_per_cu_data *per_cu;
310
311 /* Pointer to the die -> type map. Although it is stored
312 permanently in per_cu, we copy it here to avoid double
313 indirection. */
314 htab_t type_hash;
315
316 /* How many compilation units ago was this CU last referenced? */
317 int last_used;
318
319 /* A hash table of die offsets for following references. */
320 htab_t die_hash;
321
322 /* Full DIEs if read in. */
323 struct die_info *dies;
324
325 /* A set of pointers to dwarf2_per_cu_data objects for compilation
326 units referenced by this one. Only set during full symbol processing;
327 partial symbol tables do not have dependencies. */
328 htab_t dependencies;
329
330 /* Header data from the line table, during full symbol processing. */
331 struct line_header *line_header;
332
333 /* Mark used when releasing cached dies. */
334 unsigned int mark : 1;
335
336 /* This flag will be set if this compilation unit might include
337 inter-compilation-unit references. */
338 unsigned int has_form_ref_addr : 1;
339
340 /* This flag will be set if this compilation unit includes any
341 DW_TAG_namespace DIEs. If we know that there are explicit
342 DIEs for namespaces, we don't need to try to infer them
343 from mangled names. */
344 unsigned int has_namespace_info : 1;
345 };
346
347 /* When using the index (and thus not using psymtabs), each CU has an
348 object of this type. This is used to hold information needed by
349 the various "quick" methods. */
350 struct dwarf2_per_cu_quick_data
351 {
352 /* The line table. This can be NULL if there was no line table. */
353 struct line_header *lines;
354
355 /* The file names from the line table. */
356 const char **file_names;
357 /* The file names from the line table after being run through
358 gdb_realpath. */
359 const char **full_names;
360
361 /* The corresponding symbol table. This is NULL if symbols for this
362 CU have not yet been read. */
363 struct symtab *symtab;
364
365 /* A temporary mark bit used when iterating over all CUs in
366 expand_symtabs_matching. */
367 unsigned int mark : 1;
368
369 /* True if we've tried to read the line table. */
370 unsigned int read_lines : 1;
371 };
372
373 /* Persistent data held for a compilation unit, even when not
374 processing it. We put a pointer to this structure in the
375 read_symtab_private field of the psymtab. If we encounter
376 inter-compilation-unit references, we also maintain a sorted
377 list of all compilation units. */
378
379 struct dwarf2_per_cu_data
380 {
381 /* The start offset and length of this compilation unit. 2**29-1
382 bytes should suffice to store the length of any compilation unit
383 - if it doesn't, GDB will fall over anyway.
384 NOTE: Unlike comp_unit_head.length, this length includes
385 initial_length_size. */
386 unsigned int offset;
387 unsigned int length : 29;
388
389 /* Flag indicating this compilation unit will be read in before
390 any of the current compilation units are processed. */
391 unsigned int queued : 1;
392
393 /* This flag will be set if we need to load absolutely all DIEs
394 for this compilation unit, instead of just the ones we think
395 are interesting. It gets set if we look for a DIE in the
396 hash table and don't find it. */
397 unsigned int load_all_dies : 1;
398
399 /* Non-zero if this CU is from .debug_types.
400 Otherwise it's from .debug_info. */
401 unsigned int from_debug_types : 1;
402
403 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
404 of the CU cache it gets reset to NULL again. */
405 struct dwarf2_cu *cu;
406
407 /* If full symbols for this CU have been read in, then this field
408 holds a map of DIE offsets to types. It isn't always possible
409 to reconstruct this information later, so we have to preserve
410 it. */
411 htab_t type_hash;
412
413 /* The corresponding objfile. */
414 struct objfile *objfile;
415
416 /* When using partial symbol tables, the 'psymtab' field is active.
417 Otherwise the 'quick' field is active. */
418 union
419 {
420 /* The partial symbol table associated with this compilation unit,
421 or NULL for partial units (which do not have an associated
422 symtab). */
423 struct partial_symtab *psymtab;
424
425 /* Data needed by the "quick" functions. */
426 struct dwarf2_per_cu_quick_data *quick;
427 } v;
428 };
429
430 /* Entry in the signatured_types hash table. */
431
432 struct signatured_type
433 {
434 ULONGEST signature;
435
436 /* Offset in .debug_types of the TU (type_unit) for this type. */
437 unsigned int offset;
438
439 /* Offset in .debug_types of the type defined by this TU. */
440 unsigned int type_offset;
441
442 /* The CU(/TU) of this type. */
443 struct dwarf2_per_cu_data per_cu;
444 };
445
446 /* Struct used to pass misc. parameters to read_die_and_children, et. al.
447 which are used for both .debug_info and .debug_types dies.
448 All parameters here are unchanging for the life of the call.
449 This struct exists to abstract away the constant parameters of
450 die reading. */
451
452 struct die_reader_specs
453 {
454 /* The bfd of this objfile. */
455 bfd* abfd;
456
457 /* The CU of the DIE we are parsing. */
458 struct dwarf2_cu *cu;
459
460 /* Pointer to start of section buffer.
461 This is either the start of .debug_info or .debug_types. */
462 const gdb_byte *buffer;
463 };
464
465 /* The line number information for a compilation unit (found in the
466 .debug_line section) begins with a "statement program header",
467 which contains the following information. */
468 struct line_header
469 {
470 unsigned int total_length;
471 unsigned short version;
472 unsigned int header_length;
473 unsigned char minimum_instruction_length;
474 unsigned char maximum_ops_per_instruction;
475 unsigned char default_is_stmt;
476 int line_base;
477 unsigned char line_range;
478 unsigned char opcode_base;
479
480 /* standard_opcode_lengths[i] is the number of operands for the
481 standard opcode whose value is i. This means that
482 standard_opcode_lengths[0] is unused, and the last meaningful
483 element is standard_opcode_lengths[opcode_base - 1]. */
484 unsigned char *standard_opcode_lengths;
485
486 /* The include_directories table. NOTE! These strings are not
487 allocated with xmalloc; instead, they are pointers into
488 debug_line_buffer. If you try to free them, `free' will get
489 indigestion. */
490 unsigned int num_include_dirs, include_dirs_size;
491 char **include_dirs;
492
493 /* The file_names table. NOTE! These strings are not allocated
494 with xmalloc; instead, they are pointers into debug_line_buffer.
495 Don't try to free them directly. */
496 unsigned int num_file_names, file_names_size;
497 struct file_entry
498 {
499 char *name;
500 unsigned int dir_index;
501 unsigned int mod_time;
502 unsigned int length;
503 int included_p; /* Non-zero if referenced by the Line Number Program. */
504 struct symtab *symtab; /* The associated symbol table, if any. */
505 } *file_names;
506
507 /* The start and end of the statement program following this
508 header. These point into dwarf2_per_objfile->line_buffer. */
509 gdb_byte *statement_program_start, *statement_program_end;
510 };
511
512 /* When we construct a partial symbol table entry we only
513 need this much information. */
514 struct partial_die_info
515 {
516 /* Offset of this DIE. */
517 unsigned int offset;
518
519 /* DWARF-2 tag for this DIE. */
520 ENUM_BITFIELD(dwarf_tag) tag : 16;
521
522 /* Assorted flags describing the data found in this DIE. */
523 unsigned int has_children : 1;
524 unsigned int is_external : 1;
525 unsigned int is_declaration : 1;
526 unsigned int has_type : 1;
527 unsigned int has_specification : 1;
528 unsigned int has_pc_info : 1;
529
530 /* Flag set if the SCOPE field of this structure has been
531 computed. */
532 unsigned int scope_set : 1;
533
534 /* Flag set if the DIE has a byte_size attribute. */
535 unsigned int has_byte_size : 1;
536
537 /* The name of this DIE. Normally the value of DW_AT_name, but
538 sometimes a default name for unnamed DIEs. */
539 char *name;
540
541 /* The scope to prepend to our children. This is generally
542 allocated on the comp_unit_obstack, so will disappear
543 when this compilation unit leaves the cache. */
544 char *scope;
545
546 /* The location description associated with this DIE, if any. */
547 struct dwarf_block *locdesc;
548
549 /* If HAS_PC_INFO, the PC range associated with this DIE. */
550 CORE_ADDR lowpc;
551 CORE_ADDR highpc;
552
553 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
554 DW_AT_sibling, if any. */
555 gdb_byte *sibling;
556
557 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
558 DW_AT_specification (or DW_AT_abstract_origin or
559 DW_AT_extension). */
560 unsigned int spec_offset;
561
562 /* Pointers to this DIE's parent, first child, and next sibling,
563 if any. */
564 struct partial_die_info *die_parent, *die_child, *die_sibling;
565 };
566
567 /* This data structure holds the information of an abbrev. */
568 struct abbrev_info
569 {
570 unsigned int number; /* number identifying abbrev */
571 enum dwarf_tag tag; /* dwarf tag */
572 unsigned short has_children; /* boolean */
573 unsigned short num_attrs; /* number of attributes */
574 struct attr_abbrev *attrs; /* an array of attribute descriptions */
575 struct abbrev_info *next; /* next in chain */
576 };
577
578 struct attr_abbrev
579 {
580 ENUM_BITFIELD(dwarf_attribute) name : 16;
581 ENUM_BITFIELD(dwarf_form) form : 16;
582 };
583
584 /* Attributes have a name and a value */
585 struct attribute
586 {
587 ENUM_BITFIELD(dwarf_attribute) name : 16;
588 ENUM_BITFIELD(dwarf_form) form : 15;
589
590 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
591 field should be in u.str (existing only for DW_STRING) but it is kept
592 here for better struct attribute alignment. */
593 unsigned int string_is_canonical : 1;
594
595 union
596 {
597 char *str;
598 struct dwarf_block *blk;
599 ULONGEST unsnd;
600 LONGEST snd;
601 CORE_ADDR addr;
602 struct signatured_type *signatured_type;
603 }
604 u;
605 };
606
607 /* This data structure holds a complete die structure. */
608 struct die_info
609 {
610 /* DWARF-2 tag for this DIE. */
611 ENUM_BITFIELD(dwarf_tag) tag : 16;
612
613 /* Number of attributes */
614 unsigned short num_attrs;
615
616 /* Abbrev number */
617 unsigned int abbrev;
618
619 /* Offset in .debug_info or .debug_types section. */
620 unsigned int offset;
621
622 /* The dies in a compilation unit form an n-ary tree. PARENT
623 points to this die's parent; CHILD points to the first child of
624 this node; and all the children of a given node are chained
625 together via their SIBLING fields, terminated by a die whose
626 tag is zero. */
627 struct die_info *child; /* Its first child, if any. */
628 struct die_info *sibling; /* Its next sibling, if any. */
629 struct die_info *parent; /* Its parent, if any. */
630
631 /* An array of attributes, with NUM_ATTRS elements. There may be
632 zero, but it's not common and zero-sized arrays are not
633 sufficiently portable C. */
634 struct attribute attrs[1];
635 };
636
637 struct function_range
638 {
639 const char *name;
640 CORE_ADDR lowpc, highpc;
641 int seen_line;
642 struct function_range *next;
643 };
644
645 /* Get at parts of an attribute structure */
646
647 #define DW_STRING(attr) ((attr)->u.str)
648 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
649 #define DW_UNSND(attr) ((attr)->u.unsnd)
650 #define DW_BLOCK(attr) ((attr)->u.blk)
651 #define DW_SND(attr) ((attr)->u.snd)
652 #define DW_ADDR(attr) ((attr)->u.addr)
653 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
654
655 /* Blocks are a bunch of untyped bytes. */
656 struct dwarf_block
657 {
658 unsigned int size;
659 gdb_byte *data;
660 };
661
662 #ifndef ATTR_ALLOC_CHUNK
663 #define ATTR_ALLOC_CHUNK 4
664 #endif
665
666 /* Allocate fields for structs, unions and enums in this size. */
667 #ifndef DW_FIELD_ALLOC_CHUNK
668 #define DW_FIELD_ALLOC_CHUNK 4
669 #endif
670
671 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
672 but this would require a corresponding change in unpack_field_as_long
673 and friends. */
674 static int bits_per_byte = 8;
675
676 /* The routines that read and process dies for a C struct or C++ class
677 pass lists of data member fields and lists of member function fields
678 in an instance of a field_info structure, as defined below. */
679 struct field_info
680 {
681 /* List of data member and baseclasses fields. */
682 struct nextfield
683 {
684 struct nextfield *next;
685 int accessibility;
686 int virtuality;
687 struct field field;
688 }
689 *fields, *baseclasses;
690
691 /* Number of fields (including baseclasses). */
692 int nfields;
693
694 /* Number of baseclasses. */
695 int nbaseclasses;
696
697 /* Set if the accesibility of one of the fields is not public. */
698 int non_public_fields;
699
700 /* Member function fields array, entries are allocated in the order they
701 are encountered in the object file. */
702 struct nextfnfield
703 {
704 struct nextfnfield *next;
705 struct fn_field fnfield;
706 }
707 *fnfields;
708
709 /* Member function fieldlist array, contains name of possibly overloaded
710 member function, number of overloaded member functions and a pointer
711 to the head of the member function field chain. */
712 struct fnfieldlist
713 {
714 char *name;
715 int length;
716 struct nextfnfield *head;
717 }
718 *fnfieldlists;
719
720 /* Number of entries in the fnfieldlists array. */
721 int nfnfields;
722
723 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
724 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
725 struct typedef_field_list
726 {
727 struct typedef_field field;
728 struct typedef_field_list *next;
729 }
730 *typedef_field_list;
731 unsigned typedef_field_list_count;
732 };
733
734 /* One item on the queue of compilation units to read in full symbols
735 for. */
736 struct dwarf2_queue_item
737 {
738 struct dwarf2_per_cu_data *per_cu;
739 struct dwarf2_queue_item *next;
740 };
741
742 /* The current queue. */
743 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
744
745 /* Loaded secondary compilation units are kept in memory until they
746 have not been referenced for the processing of this many
747 compilation units. Set this to zero to disable caching. Cache
748 sizes of up to at least twenty will improve startup time for
749 typical inter-CU-reference binaries, at an obvious memory cost. */
750 static int dwarf2_max_cache_age = 5;
751 static void
752 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
753 struct cmd_list_element *c, const char *value)
754 {
755 fprintf_filtered (file, _("\
756 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
757 value);
758 }
759
760
761 /* Various complaints about symbol reading that don't abort the process */
762
763 static void
764 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
765 {
766 complaint (&symfile_complaints,
767 _("statement list doesn't fit in .debug_line section"));
768 }
769
770 static void
771 dwarf2_debug_line_missing_file_complaint (void)
772 {
773 complaint (&symfile_complaints,
774 _(".debug_line section has line data without a file"));
775 }
776
777 static void
778 dwarf2_debug_line_missing_end_sequence_complaint (void)
779 {
780 complaint (&symfile_complaints,
781 _(".debug_line section has line program sequence without an end"));
782 }
783
784 static void
785 dwarf2_complex_location_expr_complaint (void)
786 {
787 complaint (&symfile_complaints, _("location expression too complex"));
788 }
789
790 static void
791 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
792 int arg3)
793 {
794 complaint (&symfile_complaints,
795 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
796 arg2, arg3);
797 }
798
799 static void
800 dwarf2_macros_too_long_complaint (void)
801 {
802 complaint (&symfile_complaints,
803 _("macro info runs off end of `.debug_macinfo' section"));
804 }
805
806 static void
807 dwarf2_macro_malformed_definition_complaint (const char *arg1)
808 {
809 complaint (&symfile_complaints,
810 _("macro debug info contains a malformed macro definition:\n`%s'"),
811 arg1);
812 }
813
814 static void
815 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
816 {
817 complaint (&symfile_complaints,
818 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
819 }
820
821 /* local function prototypes */
822
823 static void dwarf2_locate_sections (bfd *, asection *, void *);
824
825 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
826 struct objfile *);
827
828 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
829 struct die_info *,
830 struct partial_symtab *);
831
832 static void dwarf2_build_psymtabs_hard (struct objfile *);
833
834 static void scan_partial_symbols (struct partial_die_info *,
835 CORE_ADDR *, CORE_ADDR *,
836 int, struct dwarf2_cu *);
837
838 static void add_partial_symbol (struct partial_die_info *,
839 struct dwarf2_cu *);
840
841 static void add_partial_namespace (struct partial_die_info *pdi,
842 CORE_ADDR *lowpc, CORE_ADDR *highpc,
843 int need_pc, struct dwarf2_cu *cu);
844
845 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
846 CORE_ADDR *highpc, int need_pc,
847 struct dwarf2_cu *cu);
848
849 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
850 struct dwarf2_cu *cu);
851
852 static void add_partial_subprogram (struct partial_die_info *pdi,
853 CORE_ADDR *lowpc, CORE_ADDR *highpc,
854 int need_pc, struct dwarf2_cu *cu);
855
856 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
857 gdb_byte *buffer, gdb_byte *info_ptr,
858 bfd *abfd, struct dwarf2_cu *cu);
859
860 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
861
862 static void psymtab_to_symtab_1 (struct partial_symtab *);
863
864 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
865
866 static void dwarf2_free_abbrev_table (void *);
867
868 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
869 struct dwarf2_cu *);
870
871 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
872 struct dwarf2_cu *);
873
874 static struct partial_die_info *load_partial_dies (bfd *,
875 gdb_byte *, gdb_byte *,
876 int, struct dwarf2_cu *);
877
878 static gdb_byte *read_partial_die (struct partial_die_info *,
879 struct abbrev_info *abbrev,
880 unsigned int, bfd *,
881 gdb_byte *, gdb_byte *,
882 struct dwarf2_cu *);
883
884 static struct partial_die_info *find_partial_die (unsigned int,
885 struct dwarf2_cu *);
886
887 static void fixup_partial_die (struct partial_die_info *,
888 struct dwarf2_cu *);
889
890 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
891 bfd *, gdb_byte *, struct dwarf2_cu *);
892
893 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
894 bfd *, gdb_byte *, struct dwarf2_cu *);
895
896 static unsigned int read_1_byte (bfd *, gdb_byte *);
897
898 static int read_1_signed_byte (bfd *, gdb_byte *);
899
900 static unsigned int read_2_bytes (bfd *, gdb_byte *);
901
902 static unsigned int read_4_bytes (bfd *, gdb_byte *);
903
904 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
905
906 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
907 unsigned int *);
908
909 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
910
911 static LONGEST read_checked_initial_length_and_offset
912 (bfd *, gdb_byte *, const struct comp_unit_head *,
913 unsigned int *, unsigned int *);
914
915 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
916 unsigned int *);
917
918 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
919
920 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
921
922 static char *read_string (bfd *, gdb_byte *, unsigned int *);
923
924 static char *read_indirect_string (bfd *, gdb_byte *,
925 const struct comp_unit_head *,
926 unsigned int *);
927
928 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
929
930 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
931
932 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
933
934 static void set_cu_language (unsigned int, struct dwarf2_cu *);
935
936 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
937 struct dwarf2_cu *);
938
939 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
940 unsigned int,
941 struct dwarf2_cu *);
942
943 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
944 struct dwarf2_cu *cu);
945
946 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
947
948 static struct die_info *die_specification (struct die_info *die,
949 struct dwarf2_cu **);
950
951 static void free_line_header (struct line_header *lh);
952
953 static void add_file_name (struct line_header *, char *, unsigned int,
954 unsigned int, unsigned int);
955
956 static struct line_header *(dwarf_decode_line_header
957 (unsigned int offset,
958 bfd *abfd, struct dwarf2_cu *cu));
959
960 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
961 struct dwarf2_cu *, struct partial_symtab *);
962
963 static void dwarf2_start_subfile (char *, char *, char *);
964
965 static struct symbol *new_symbol (struct die_info *, struct type *,
966 struct dwarf2_cu *);
967
968 static void dwarf2_const_value (struct attribute *, struct symbol *,
969 struct dwarf2_cu *);
970
971 static void dwarf2_const_value_data (struct attribute *attr,
972 struct symbol *sym,
973 int bits);
974
975 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
976
977 static int need_gnat_info (struct dwarf2_cu *);
978
979 static struct type *die_descriptive_type (struct die_info *, struct dwarf2_cu *);
980
981 static void set_descriptive_type (struct type *, struct die_info *,
982 struct dwarf2_cu *);
983
984 static struct type *die_containing_type (struct die_info *,
985 struct dwarf2_cu *);
986
987 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
988
989 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
990
991 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
992
993 static char *typename_concat (struct obstack *obs, const char *prefix,
994 const char *suffix, int physname,
995 struct dwarf2_cu *cu);
996
997 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
998
999 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1000
1001 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1002
1003 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1004
1005 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1006 struct dwarf2_cu *, struct partial_symtab *);
1007
1008 static int dwarf2_get_pc_bounds (struct die_info *,
1009 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1010 struct partial_symtab *);
1011
1012 static void get_scope_pc_bounds (struct die_info *,
1013 CORE_ADDR *, CORE_ADDR *,
1014 struct dwarf2_cu *);
1015
1016 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1017 CORE_ADDR, struct dwarf2_cu *);
1018
1019 static void dwarf2_add_field (struct field_info *, struct die_info *,
1020 struct dwarf2_cu *);
1021
1022 static void dwarf2_attach_fields_to_type (struct field_info *,
1023 struct type *, struct dwarf2_cu *);
1024
1025 static void dwarf2_add_member_fn (struct field_info *,
1026 struct die_info *, struct type *,
1027 struct dwarf2_cu *);
1028
1029 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1030 struct type *, struct dwarf2_cu *);
1031
1032 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1033
1034 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1035
1036 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1037
1038 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1039
1040 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1041
1042 static struct type *read_module_type (struct die_info *die,
1043 struct dwarf2_cu *cu);
1044
1045 static const char *namespace_name (struct die_info *die,
1046 int *is_anonymous, struct dwarf2_cu *);
1047
1048 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1049
1050 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1051
1052 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1053 struct dwarf2_cu *);
1054
1055 static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
1056
1057 static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1058 gdb_byte *info_ptr,
1059 gdb_byte **new_info_ptr,
1060 struct die_info *parent);
1061
1062 static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1063 gdb_byte *info_ptr,
1064 gdb_byte **new_info_ptr,
1065 struct die_info *parent);
1066
1067 static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1068 gdb_byte *info_ptr,
1069 gdb_byte **new_info_ptr,
1070 struct die_info *parent);
1071
1072 static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1073 struct die_info **, gdb_byte *,
1074 int *);
1075
1076 static void process_die (struct die_info *, struct dwarf2_cu *);
1077
1078 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1079 struct obstack *);
1080
1081 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1082
1083 static struct die_info *dwarf2_extension (struct die_info *die,
1084 struct dwarf2_cu **);
1085
1086 static char *dwarf_tag_name (unsigned int);
1087
1088 static char *dwarf_attr_name (unsigned int);
1089
1090 static char *dwarf_form_name (unsigned int);
1091
1092 static char *dwarf_bool_name (unsigned int);
1093
1094 static char *dwarf_type_encoding_name (unsigned int);
1095
1096 #if 0
1097 static char *dwarf_cfi_name (unsigned int);
1098 #endif
1099
1100 static struct die_info *sibling_die (struct die_info *);
1101
1102 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1103
1104 static void dump_die_for_error (struct die_info *);
1105
1106 static void dump_die_1 (struct ui_file *, int level, int max_level,
1107 struct die_info *);
1108
1109 /*static*/ void dump_die (struct die_info *, int max_level);
1110
1111 static void store_in_ref_table (struct die_info *,
1112 struct dwarf2_cu *);
1113
1114 static int is_ref_attr (struct attribute *);
1115
1116 static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
1117
1118 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1119
1120 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1121 struct attribute *,
1122 struct dwarf2_cu **);
1123
1124 static struct die_info *follow_die_ref (struct die_info *,
1125 struct attribute *,
1126 struct dwarf2_cu **);
1127
1128 static struct die_info *follow_die_sig (struct die_info *,
1129 struct attribute *,
1130 struct dwarf2_cu **);
1131
1132 static void read_signatured_type_at_offset (struct objfile *objfile,
1133 unsigned int offset);
1134
1135 static void read_signatured_type (struct objfile *,
1136 struct signatured_type *type_sig);
1137
1138 /* memory allocation interface */
1139
1140 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1141
1142 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1143
1144 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1145
1146 static void initialize_cu_func_list (struct dwarf2_cu *);
1147
1148 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1149 struct dwarf2_cu *);
1150
1151 static void dwarf_decode_macros (struct line_header *, unsigned int,
1152 char *, bfd *, struct dwarf2_cu *);
1153
1154 static int attr_form_is_block (struct attribute *);
1155
1156 static int attr_form_is_section_offset (struct attribute *);
1157
1158 static int attr_form_is_constant (struct attribute *);
1159
1160 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1161 struct symbol *sym,
1162 struct dwarf2_cu *cu);
1163
1164 static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1165 struct abbrev_info *abbrev,
1166 struct dwarf2_cu *cu);
1167
1168 static void free_stack_comp_unit (void *);
1169
1170 static hashval_t partial_die_hash (const void *item);
1171
1172 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1173
1174 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1175 (unsigned int offset, struct objfile *objfile);
1176
1177 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1178 (unsigned int offset, struct objfile *objfile);
1179
1180 static struct dwarf2_cu *alloc_one_comp_unit (struct objfile *objfile);
1181
1182 static void free_one_comp_unit (void *);
1183
1184 static void free_cached_comp_units (void *);
1185
1186 static void age_cached_comp_units (void);
1187
1188 static void free_one_cached_comp_unit (void *);
1189
1190 static struct type *set_die_type (struct die_info *, struct type *,
1191 struct dwarf2_cu *);
1192
1193 static void create_all_comp_units (struct objfile *);
1194
1195 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1196 struct objfile *);
1197
1198 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1199
1200 static void dwarf2_add_dependence (struct dwarf2_cu *,
1201 struct dwarf2_per_cu_data *);
1202
1203 static void dwarf2_mark (struct dwarf2_cu *);
1204
1205 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1206
1207 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1208
1209 static void dwarf2_release_queue (void *dummy);
1210
1211 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1212 struct objfile *objfile);
1213
1214 static void process_queue (struct objfile *objfile);
1215
1216 static void find_file_and_directory (struct die_info *die,
1217 struct dwarf2_cu *cu,
1218 char **name, char **comp_dir);
1219
1220 static char *file_full_name (int file, struct line_header *lh,
1221 const char *comp_dir);
1222
1223 static gdb_byte *partial_read_comp_unit_head (struct comp_unit_head *header,
1224 gdb_byte *info_ptr,
1225 gdb_byte *buffer,
1226 unsigned int buffer_size,
1227 bfd *abfd);
1228
1229 static void init_cu_die_reader (struct die_reader_specs *reader,
1230 struct dwarf2_cu *cu);
1231
1232 #if WORDS_BIGENDIAN
1233
1234 /* Convert VALUE between big- and little-endian. */
1235 static offset_type
1236 byte_swap (offset_type value)
1237 {
1238 offset_type result;
1239
1240 result = (value & 0xff) << 24;
1241 result |= (value & 0xff00) << 8;
1242 result |= (value & 0xff0000) >> 8;
1243 result |= (value & 0xff000000) >> 24;
1244 return result;
1245 }
1246
1247 #define MAYBE_SWAP(V) byte_swap (V)
1248
1249 #else
1250 #define MAYBE_SWAP(V) (V)
1251 #endif /* WORDS_BIGENDIAN */
1252
1253 /* The suffix for an index file. */
1254 #define INDEX_SUFFIX ".gdb-index"
1255
1256 /* Try to locate the sections we need for DWARF 2 debugging
1257 information and return true if we have enough to do something. */
1258
1259 int
1260 dwarf2_has_info (struct objfile *objfile)
1261 {
1262 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1263 if (!dwarf2_per_objfile)
1264 {
1265 /* Initialize per-objfile state. */
1266 struct dwarf2_per_objfile *data
1267 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1268
1269 memset (data, 0, sizeof (*data));
1270 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1271 dwarf2_per_objfile = data;
1272
1273 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1274 dwarf2_per_objfile->objfile = objfile;
1275 }
1276 return (dwarf2_per_objfile->info.asection != NULL
1277 && dwarf2_per_objfile->abbrev.asection != NULL);
1278 }
1279
1280 /* When loading sections, we can either look for ".<name>", or for
1281 * ".z<name>", which indicates a compressed section. */
1282
1283 static int
1284 section_is_p (const char *section_name, const char *name)
1285 {
1286 return (section_name[0] == '.'
1287 && (strcmp (section_name + 1, name) == 0
1288 || (section_name[1] == 'z'
1289 && strcmp (section_name + 2, name) == 0)));
1290 }
1291
1292 /* This function is mapped across the sections and remembers the
1293 offset and size of each of the debugging sections we are interested
1294 in. */
1295
1296 static void
1297 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1298 {
1299 if (section_is_p (sectp->name, INFO_SECTION))
1300 {
1301 dwarf2_per_objfile->info.asection = sectp;
1302 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1303 }
1304 else if (section_is_p (sectp->name, ABBREV_SECTION))
1305 {
1306 dwarf2_per_objfile->abbrev.asection = sectp;
1307 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1308 }
1309 else if (section_is_p (sectp->name, LINE_SECTION))
1310 {
1311 dwarf2_per_objfile->line.asection = sectp;
1312 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1313 }
1314 else if (section_is_p (sectp->name, LOC_SECTION))
1315 {
1316 dwarf2_per_objfile->loc.asection = sectp;
1317 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1318 }
1319 else if (section_is_p (sectp->name, MACINFO_SECTION))
1320 {
1321 dwarf2_per_objfile->macinfo.asection = sectp;
1322 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1323 }
1324 else if (section_is_p (sectp->name, STR_SECTION))
1325 {
1326 dwarf2_per_objfile->str.asection = sectp;
1327 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1328 }
1329 else if (section_is_p (sectp->name, FRAME_SECTION))
1330 {
1331 dwarf2_per_objfile->frame.asection = sectp;
1332 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1333 }
1334 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
1335 {
1336 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1337
1338 if (aflag & SEC_HAS_CONTENTS)
1339 {
1340 dwarf2_per_objfile->eh_frame.asection = sectp;
1341 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1342 }
1343 }
1344 else if (section_is_p (sectp->name, RANGES_SECTION))
1345 {
1346 dwarf2_per_objfile->ranges.asection = sectp;
1347 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1348 }
1349 else if (section_is_p (sectp->name, TYPES_SECTION))
1350 {
1351 dwarf2_per_objfile->types.asection = sectp;
1352 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1353 }
1354 else if (section_is_p (sectp->name, GDB_INDEX_SECTION))
1355 {
1356 dwarf2_per_objfile->gdb_index.asection = sectp;
1357 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1358 }
1359
1360 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1361 && bfd_section_vma (abfd, sectp) == 0)
1362 dwarf2_per_objfile->has_section_at_zero = 1;
1363 }
1364
1365 /* Decompress a section that was compressed using zlib. Store the
1366 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1367
1368 static void
1369 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1370 gdb_byte **outbuf, bfd_size_type *outsize)
1371 {
1372 bfd *abfd = objfile->obfd;
1373 #ifndef HAVE_ZLIB_H
1374 error (_("Support for zlib-compressed DWARF data (from '%s') "
1375 "is disabled in this copy of GDB"),
1376 bfd_get_filename (abfd));
1377 #else
1378 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1379 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1380 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1381 bfd_size_type uncompressed_size;
1382 gdb_byte *uncompressed_buffer;
1383 z_stream strm;
1384 int rc;
1385 int header_size = 12;
1386
1387 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1388 || bfd_bread (compressed_buffer, compressed_size, abfd) != compressed_size)
1389 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1390 bfd_get_filename (abfd));
1391
1392 /* Read the zlib header. In this case, it should be "ZLIB" followed
1393 by the uncompressed section size, 8 bytes in big-endian order. */
1394 if (compressed_size < header_size
1395 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1396 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1397 bfd_get_filename (abfd));
1398 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1399 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1400 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1401 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1402 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1403 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1404 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1405 uncompressed_size += compressed_buffer[11];
1406
1407 /* It is possible the section consists of several compressed
1408 buffers concatenated together, so we uncompress in a loop. */
1409 strm.zalloc = NULL;
1410 strm.zfree = NULL;
1411 strm.opaque = NULL;
1412 strm.avail_in = compressed_size - header_size;
1413 strm.next_in = (Bytef*) compressed_buffer + header_size;
1414 strm.avail_out = uncompressed_size;
1415 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1416 uncompressed_size);
1417 rc = inflateInit (&strm);
1418 while (strm.avail_in > 0)
1419 {
1420 if (rc != Z_OK)
1421 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1422 bfd_get_filename (abfd), rc);
1423 strm.next_out = ((Bytef*) uncompressed_buffer
1424 + (uncompressed_size - strm.avail_out));
1425 rc = inflate (&strm, Z_FINISH);
1426 if (rc != Z_STREAM_END)
1427 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1428 bfd_get_filename (abfd), rc);
1429 rc = inflateReset (&strm);
1430 }
1431 rc = inflateEnd (&strm);
1432 if (rc != Z_OK
1433 || strm.avail_out != 0)
1434 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1435 bfd_get_filename (abfd), rc);
1436
1437 do_cleanups (cleanup);
1438 *outbuf = uncompressed_buffer;
1439 *outsize = uncompressed_size;
1440 #endif
1441 }
1442
1443 /* Read the contents of the section SECTP from object file specified by
1444 OBJFILE, store info about the section into INFO.
1445 If the section is compressed, uncompress it before returning. */
1446
1447 static void
1448 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1449 {
1450 bfd *abfd = objfile->obfd;
1451 asection *sectp = info->asection;
1452 gdb_byte *buf, *retbuf;
1453 unsigned char header[4];
1454
1455 if (info->readin)
1456 return;
1457 info->buffer = NULL;
1458 info->was_mmapped = 0;
1459 info->readin = 1;
1460
1461 if (info->asection == NULL || info->size == 0)
1462 return;
1463
1464 /* Check if the file has a 4-byte header indicating compression. */
1465 if (info->size > sizeof (header)
1466 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1467 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1468 {
1469 /* Upon decompression, update the buffer and its size. */
1470 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1471 {
1472 zlib_decompress_section (objfile, sectp, &info->buffer,
1473 &info->size);
1474 return;
1475 }
1476 }
1477
1478 #ifdef HAVE_MMAP
1479 if (pagesize == 0)
1480 pagesize = getpagesize ();
1481
1482 /* Only try to mmap sections which are large enough: we don't want to
1483 waste space due to fragmentation. Also, only try mmap for sections
1484 without relocations. */
1485
1486 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1487 {
1488 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1489 size_t map_length = info->size + sectp->filepos - pg_offset;
1490 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1491 MAP_PRIVATE, pg_offset);
1492
1493 if (retbuf != MAP_FAILED)
1494 {
1495 info->was_mmapped = 1;
1496 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
1497 #if HAVE_POSIX_MADVISE
1498 posix_madvise (retbuf, map_length, POSIX_MADV_WILLNEED);
1499 #endif
1500 return;
1501 }
1502 }
1503 #endif
1504
1505 /* If we get here, we are a normal, not-compressed section. */
1506 info->buffer = buf
1507 = obstack_alloc (&objfile->objfile_obstack, info->size);
1508
1509 /* When debugging .o files, we may need to apply relocations; see
1510 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1511 We never compress sections in .o files, so we only need to
1512 try this when the section is not compressed. */
1513 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1514 if (retbuf != NULL)
1515 {
1516 info->buffer = retbuf;
1517 return;
1518 }
1519
1520 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1521 || bfd_bread (buf, info->size, abfd) != info->size)
1522 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1523 bfd_get_filename (abfd));
1524 }
1525
1526 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1527 SECTION_NAME. */
1528
1529 void
1530 dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1531 asection **sectp, gdb_byte **bufp,
1532 bfd_size_type *sizep)
1533 {
1534 struct dwarf2_per_objfile *data
1535 = objfile_data (objfile, dwarf2_objfile_data_key);
1536 struct dwarf2_section_info *info;
1537
1538 /* We may see an objfile without any DWARF, in which case we just
1539 return nothing. */
1540 if (data == NULL)
1541 {
1542 *sectp = NULL;
1543 *bufp = NULL;
1544 *sizep = 0;
1545 return;
1546 }
1547 if (section_is_p (section_name, EH_FRAME_SECTION))
1548 info = &data->eh_frame;
1549 else if (section_is_p (section_name, FRAME_SECTION))
1550 info = &data->frame;
1551 else
1552 gdb_assert (0);
1553
1554 if (info->asection != NULL && info->size != 0 && info->buffer == NULL)
1555 /* We haven't read this section in yet. Do it now. */
1556 dwarf2_read_section (objfile, info);
1557
1558 *sectp = info->asection;
1559 *bufp = info->buffer;
1560 *sizep = info->size;
1561 }
1562
1563 \f
1564
1565 /* Read in the symbols for PER_CU. OBJFILE is the objfile from which
1566 this CU came. */
1567 static void
1568 dw2_do_instantiate_symtab (struct objfile *objfile,
1569 struct dwarf2_per_cu_data *per_cu)
1570 {
1571 struct cleanup *back_to;
1572
1573 back_to = make_cleanup (dwarf2_release_queue, NULL);
1574
1575 queue_comp_unit (per_cu, objfile);
1576
1577 if (per_cu->from_debug_types)
1578 read_signatured_type_at_offset (objfile, per_cu->offset);
1579 else
1580 load_full_comp_unit (per_cu, objfile);
1581
1582 process_queue (objfile);
1583
1584 /* Age the cache, releasing compilation units that have not
1585 been used recently. */
1586 age_cached_comp_units ();
1587
1588 do_cleanups (back_to);
1589 }
1590
1591 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1592 the objfile from which this CU came. Returns the resulting symbol
1593 table. */
1594 static struct symtab *
1595 dw2_instantiate_symtab (struct objfile *objfile,
1596 struct dwarf2_per_cu_data *per_cu)
1597 {
1598 if (!per_cu->v.quick->symtab)
1599 {
1600 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1601 increment_reading_symtab ();
1602 dw2_do_instantiate_symtab (objfile, per_cu);
1603 do_cleanups (back_to);
1604 }
1605 return per_cu->v.quick->symtab;
1606 }
1607
1608 /* A helper function that knows how to read a 64-bit value in a way
1609 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1610 otherwise. */
1611 static int
1612 extract_cu_value (const char *bytes, ULONGEST *result)
1613 {
1614 if (sizeof (ULONGEST) < 8)
1615 {
1616 int i;
1617
1618 /* Ignore the upper 4 bytes if they are all zero. */
1619 for (i = 0; i < 4; ++i)
1620 if (bytes[i + 4] != 0)
1621 return 0;
1622
1623 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1624 }
1625 else
1626 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1627 return 1;
1628 }
1629
1630 /* Read the CU list from the mapped index, and use it to create all
1631 the CU objects for this objfile. Return 0 if something went wrong,
1632 1 if everything went ok. */
1633 static int
1634 create_cus_from_index (struct objfile *objfile, struct mapped_index *index,
1635 const gdb_byte *cu_list, offset_type cu_list_elements)
1636 {
1637 offset_type i;
1638 const char *entry;
1639
1640 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1641 dwarf2_per_objfile->all_comp_units
1642 = obstack_alloc (&objfile->objfile_obstack,
1643 dwarf2_per_objfile->n_comp_units
1644 * sizeof (struct dwarf2_per_cu_data *));
1645
1646 for (i = 0; i < cu_list_elements; i += 2)
1647 {
1648 struct dwarf2_per_cu_data *the_cu;
1649 ULONGEST offset, length;
1650
1651 if (!extract_cu_value (cu_list, &offset)
1652 || !extract_cu_value (cu_list + 8, &length))
1653 return 0;
1654 cu_list += 2 * 8;
1655
1656 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1657 struct dwarf2_per_cu_data);
1658 the_cu->offset = offset;
1659 the_cu->length = length;
1660 the_cu->objfile = objfile;
1661 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1662 struct dwarf2_per_cu_quick_data);
1663 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1664 }
1665
1666 return 1;
1667 }
1668
1669 /* Read the address map data from the mapped index, and use it to
1670 populate the objfile's psymtabs_addrmap. */
1671 static void
1672 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1673 {
1674 const gdb_byte *iter, *end;
1675 struct obstack temp_obstack;
1676 struct addrmap *mutable_map;
1677 struct cleanup *cleanup;
1678 CORE_ADDR baseaddr;
1679
1680 obstack_init (&temp_obstack);
1681 cleanup = make_cleanup_obstack_free (&temp_obstack);
1682 mutable_map = addrmap_create_mutable (&temp_obstack);
1683
1684 iter = index->address_table;
1685 end = iter + index->address_table_size;
1686
1687 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1688
1689 while (iter < end)
1690 {
1691 ULONGEST hi, lo, cu_index;
1692 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1693 iter += 8;
1694 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1695 iter += 8;
1696 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1697 iter += 4;
1698
1699 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1700 dwarf2_per_objfile->all_comp_units[cu_index]);
1701 }
1702
1703 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1704 &objfile->objfile_obstack);
1705 do_cleanups (cleanup);
1706 }
1707
1708 /* The hash function for strings in the mapped index. This is the
1709 same as the hashtab.c hash function, but we keep a separate copy to
1710 maintain control over the implementation. This is necessary
1711 because the hash function is tied to the format of the mapped index
1712 file. */
1713 static hashval_t
1714 mapped_index_string_hash (const void *p)
1715 {
1716 const unsigned char *str = (const unsigned char *) p;
1717 hashval_t r = 0;
1718 unsigned char c;
1719
1720 while ((c = *str++) != 0)
1721 r = r * 67 + c - 113;
1722
1723 return r;
1724 }
1725
1726 /* Find a slot in the mapped index INDEX for the object named NAME.
1727 If NAME is found, set *VEC_OUT to point to the CU vector in the
1728 constant pool and return 1. If NAME cannot be found, return 0. */
1729 static int
1730 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
1731 offset_type **vec_out)
1732 {
1733 offset_type hash = mapped_index_string_hash (name);
1734 offset_type slot, step;
1735
1736 slot = hash & (index->index_table_slots - 1);
1737 step = ((hash * 17) & (index->index_table_slots - 1)) | 1;
1738
1739 for (;;)
1740 {
1741 /* Convert a slot number to an offset into the table. */
1742 offset_type i = 2 * slot;
1743 const char *str;
1744 if (index->index_table[i] == 0 && index->index_table[i + 1] == 0)
1745 return 0;
1746
1747 str = index->constant_pool + MAYBE_SWAP (index->index_table[i]);
1748 if (!strcmp (name, str))
1749 {
1750 *vec_out = (offset_type *) (index->constant_pool
1751 + MAYBE_SWAP (index->index_table[i + 1]));
1752 return 1;
1753 }
1754
1755 slot = (slot + step) & (index->index_table_slots - 1);
1756 }
1757 }
1758
1759 /* Read the index file. If everything went ok, initialize the "quick"
1760 elements of all the CUs and return 1. Otherwise, return 0. */
1761 static int
1762 dwarf2_read_index (struct objfile *objfile)
1763 {
1764 char *addr;
1765 struct mapped_index *map;
1766 offset_type *metadata;
1767 const gdb_byte *cu_list;
1768 offset_type cu_list_elements;
1769
1770 if (dwarf2_per_objfile->gdb_index.asection == NULL
1771 || dwarf2_per_objfile->gdb_index.size == 0)
1772 return 0;
1773 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
1774
1775 addr = dwarf2_per_objfile->gdb_index.buffer;
1776 /* Version check. */
1777 if (MAYBE_SWAP (*(offset_type *) addr) != 1)
1778 return 0;
1779
1780 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
1781 map->total_size = dwarf2_per_objfile->gdb_index.size;
1782
1783 metadata = (offset_type *) (addr + sizeof (offset_type));
1784 cu_list = addr + MAYBE_SWAP (metadata[0]);
1785 cu_list_elements = ((MAYBE_SWAP (metadata[1]) - MAYBE_SWAP (metadata[0]))
1786 / 8);
1787 map->address_table = addr + MAYBE_SWAP (metadata[1]);
1788 map->address_table_size = (MAYBE_SWAP (metadata[2])
1789 - MAYBE_SWAP (metadata[1]));
1790 map->index_table = (offset_type *) (addr + MAYBE_SWAP (metadata[2]));
1791 map->index_table_slots = ((MAYBE_SWAP (metadata[3])
1792 - MAYBE_SWAP (metadata[2]))
1793 / (2 * sizeof (offset_type)));
1794 map->constant_pool = addr + MAYBE_SWAP (metadata[3]);
1795
1796 if (!create_cus_from_index (objfile, map, cu_list, cu_list_elements))
1797 return 0;
1798
1799 create_addrmap_from_index (objfile, map);
1800
1801 dwarf2_per_objfile->index_table = map;
1802 dwarf2_per_objfile->using_index = 1;
1803
1804 return 1;
1805 }
1806
1807 /* A helper for the "quick" functions which sets the global
1808 dwarf2_per_objfile according to OBJFILE. */
1809 static void
1810 dw2_setup (struct objfile *objfile)
1811 {
1812 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1813 gdb_assert (dwarf2_per_objfile);
1814 }
1815
1816 /* A helper for the "quick" functions which attempts to read the line
1817 table for THIS_CU. */
1818 static void
1819 dw2_require_line_header (struct objfile *objfile,
1820 struct dwarf2_per_cu_data *this_cu)
1821 {
1822 bfd *abfd = objfile->obfd;
1823 struct line_header *lh = NULL;
1824 struct attribute *attr;
1825 struct cleanup *cleanups;
1826 struct die_info *comp_unit_die;
1827 gdb_byte *beg_of_comp_unit, *info_ptr, *buffer;
1828 int has_children, i;
1829 struct dwarf2_cu cu;
1830 unsigned int bytes_read, buffer_size;
1831 struct die_reader_specs reader_specs;
1832 char *name, *comp_dir;
1833
1834 if (this_cu->v.quick->read_lines)
1835 return;
1836 this_cu->v.quick->read_lines = 1;
1837
1838 memset (&cu, 0, sizeof (cu));
1839 cu.objfile = objfile;
1840 obstack_init (&cu.comp_unit_obstack);
1841
1842 cleanups = make_cleanup (free_stack_comp_unit, &cu);
1843
1844 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
1845 buffer_size = dwarf2_per_objfile->info.size;
1846 buffer = dwarf2_per_objfile->info.buffer;
1847 info_ptr = buffer + this_cu->offset;
1848 beg_of_comp_unit = info_ptr;
1849
1850 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
1851 buffer, buffer_size,
1852 abfd);
1853
1854 /* Complete the cu_header. */
1855 cu.header.offset = beg_of_comp_unit - buffer;
1856 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
1857
1858 this_cu->cu = &cu;
1859 cu.per_cu = this_cu;
1860
1861 dwarf2_read_abbrevs (abfd, &cu);
1862 make_cleanup (dwarf2_free_abbrev_table, &cu);
1863
1864 if (this_cu->from_debug_types)
1865 info_ptr += 8 /*signature*/ + cu.header.offset_size;
1866 init_cu_die_reader (&reader_specs, &cu);
1867 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
1868 &has_children);
1869
1870 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
1871 if (attr)
1872 {
1873 unsigned int line_offset = DW_UNSND (attr);
1874 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
1875 }
1876 if (lh == NULL)
1877 {
1878 do_cleanups (cleanups);
1879 return;
1880 }
1881
1882 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
1883
1884 this_cu->v.quick->lines = lh;
1885
1886 this_cu->v.quick->file_names
1887 = obstack_alloc (&objfile->objfile_obstack,
1888 lh->num_file_names * sizeof (char *));
1889 for (i = 0; i < lh->num_file_names; ++i)
1890 this_cu->v.quick->file_names[i] = file_full_name (i + 1, lh, comp_dir);
1891
1892 do_cleanups (cleanups);
1893 }
1894
1895 /* A helper for the "quick" functions which computes and caches the
1896 real path for a given file name from the line table.
1897 dw2_require_line_header must have been called before this is
1898 invoked. */
1899 static const char *
1900 dw2_require_full_path (struct objfile *objfile,
1901 struct dwarf2_per_cu_data *cu,
1902 int index)
1903 {
1904 if (!cu->v.quick->full_names)
1905 cu->v.quick->full_names
1906 = OBSTACK_CALLOC (&objfile->objfile_obstack,
1907 cu->v.quick->lines->num_file_names,
1908 sizeof (char *));
1909
1910 if (!cu->v.quick->full_names[index])
1911 cu->v.quick->full_names[index]
1912 = gdb_realpath (cu->v.quick->file_names[index]);
1913
1914 return cu->v.quick->full_names[index];
1915 }
1916
1917 static struct symtab *
1918 dw2_find_last_source_symtab (struct objfile *objfile)
1919 {
1920 int index;
1921 dw2_setup (objfile);
1922 index = dwarf2_per_objfile->n_comp_units - 1;
1923 return dw2_instantiate_symtab (objfile,
1924 dwarf2_per_objfile->all_comp_units[index]);
1925 }
1926
1927 static void
1928 dw2_forget_cached_source_info (struct objfile *objfile)
1929 {
1930 int i;
1931
1932 dw2_setup (objfile);
1933 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
1934 {
1935 struct dwarf2_per_cu_data *cu = dwarf2_per_objfile->all_comp_units[i];
1936
1937 if (cu->v.quick->full_names)
1938 {
1939 int j;
1940
1941 for (j = 0; j < cu->v.quick->lines->num_file_names; ++j)
1942 xfree ((void *) cu->v.quick->full_names[j]);
1943 }
1944 }
1945 }
1946
1947 static int
1948 dw2_lookup_symtab (struct objfile *objfile, const char *name,
1949 const char *full_path, const char *real_path,
1950 struct symtab **result)
1951 {
1952 int i;
1953 int check_basename = lbasename (name) == name;
1954 struct dwarf2_per_cu_data *base_cu = NULL;
1955
1956 dw2_setup (objfile);
1957 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
1958 {
1959 int j;
1960 struct dwarf2_per_cu_data *cu = dwarf2_per_objfile->all_comp_units[i];
1961
1962 if (cu->v.quick->symtab)
1963 continue;
1964
1965 dw2_require_line_header (objfile, cu);
1966 if (!cu->v.quick->lines)
1967 continue;
1968
1969 for (j = 0; j < cu->v.quick->lines->num_file_names; ++j)
1970 {
1971 const char *this_name = cu->v.quick->file_names[j];
1972
1973 if (FILENAME_CMP (name, this_name) == 0)
1974 {
1975 *result = dw2_instantiate_symtab (objfile, cu);
1976 return 1;
1977 }
1978
1979 if (check_basename && ! base_cu
1980 && FILENAME_CMP (lbasename (this_name), name) == 0)
1981 base_cu = cu;
1982
1983 if (full_path != NULL)
1984 {
1985 const char *this_full_name = dw2_require_full_path (objfile,
1986 cu, j);
1987
1988 if (this_full_name
1989 && FILENAME_CMP (full_path, this_full_name) == 0)
1990 {
1991 *result = dw2_instantiate_symtab (objfile, cu);
1992 return 1;
1993 }
1994 }
1995
1996 if (real_path != NULL)
1997 {
1998 const char *this_full_name = dw2_require_full_path (objfile,
1999 cu, j);
2000
2001 if (this_full_name != NULL)
2002 {
2003 char *rp = gdb_realpath (this_full_name);
2004 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
2005 {
2006 xfree (rp);
2007 *result = dw2_instantiate_symtab (objfile, cu);
2008 return 1;
2009 }
2010 xfree (rp);
2011 }
2012 }
2013 }
2014 }
2015
2016 if (base_cu)
2017 {
2018 *result = dw2_instantiate_symtab (objfile, base_cu);
2019 return 1;
2020 }
2021
2022 return 0;
2023 }
2024
2025 static struct symtab *
2026 dw2_lookup_symbol (struct objfile *objfile, int block_index,
2027 const char *name, domain_enum domain)
2028 {
2029 /* We do all the work in the pre_expand_symtabs_matching hook
2030 instead. */
2031 return NULL;
2032 }
2033
2034 /* A helper function that expands all symtabs that hold an object
2035 named NAME. */
2036 static void
2037 dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2038 {
2039 dw2_setup (objfile);
2040
2041 if (dwarf2_per_objfile->index_table)
2042 {
2043 offset_type *vec;
2044
2045 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2046 name, &vec))
2047 {
2048 offset_type i, len = MAYBE_SWAP (*vec);
2049 for (i = 0; i < len; ++i)
2050 {
2051 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
2052 struct dwarf2_per_cu_data *cu;
2053 cu = dwarf2_per_objfile->all_comp_units[cu_index];
2054 dw2_instantiate_symtab (objfile, cu);
2055 }
2056 }
2057 }
2058 }
2059
2060 static void
2061 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2062 int kind, const char *name,
2063 domain_enum domain)
2064 {
2065 dw2_do_expand_symtabs_matching (objfile, name);
2066 }
2067
2068 static void
2069 dw2_print_stats (struct objfile *objfile)
2070 {
2071 int i, count;
2072
2073 dw2_setup (objfile);
2074 count = 0;
2075 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2076 {
2077 struct dwarf2_per_cu_data *cu = dwarf2_per_objfile->all_comp_units[i];
2078
2079 if (!cu->v.quick->symtab)
2080 ++count;
2081 }
2082 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2083 }
2084
2085 static void
2086 dw2_dump (struct objfile *objfile)
2087 {
2088 /* Nothing worth printing. */
2089 }
2090
2091 static void
2092 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2093 struct section_offsets *delta)
2094 {
2095 /* There's nothing to relocate here. */
2096 }
2097
2098 static void
2099 dw2_expand_symtabs_for_function (struct objfile *objfile,
2100 const char *func_name)
2101 {
2102 dw2_do_expand_symtabs_matching (objfile, func_name);
2103 }
2104
2105 static void
2106 dw2_expand_all_symtabs (struct objfile *objfile)
2107 {
2108 int i;
2109
2110 dw2_setup (objfile);
2111 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2112 {
2113 struct dwarf2_per_cu_data *cu = dwarf2_per_objfile->all_comp_units[i];
2114
2115 dw2_instantiate_symtab (objfile, cu);
2116 }
2117 }
2118
2119 static void
2120 dw2_expand_symtabs_with_filename (struct objfile *objfile,
2121 const char *filename)
2122 {
2123 int i;
2124
2125 dw2_setup (objfile);
2126 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2127 {
2128 int j;
2129 struct dwarf2_per_cu_data *cu = dwarf2_per_objfile->all_comp_units[i];
2130
2131 if (cu->v.quick->symtab)
2132 continue;
2133
2134 dw2_require_line_header (objfile, cu);
2135 if (!cu->v.quick->lines)
2136 continue;
2137
2138 for (j = 0; j < cu->v.quick->lines->num_file_names; ++j)
2139 {
2140 const char *this_name = cu->v.quick->file_names[j];
2141 if (strcmp (this_name, filename) == 0)
2142 {
2143 dw2_instantiate_symtab (objfile, cu);
2144 break;
2145 }
2146 }
2147 }
2148 }
2149
2150 static const char *
2151 dw2_find_symbol_file (struct objfile *objfile, const char *name)
2152 {
2153 struct dwarf2_per_cu_data *cu;
2154 offset_type *vec;
2155
2156 dw2_setup (objfile);
2157
2158 if (!dwarf2_per_objfile->index_table)
2159 return NULL;
2160
2161 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2162 name, &vec))
2163 return NULL;
2164
2165 /* Note that this just looks at the very first one named NAME -- but
2166 actually we are looking for a function. find_main_filename
2167 should be rewritten so that it doesn't require a custom hook. It
2168 could just use the ordinary symbol tables. */
2169 /* vec[0] is the length, which must always be >0. */
2170 cu = dwarf2_per_objfile->all_comp_units[MAYBE_SWAP (vec[1])];
2171
2172 dw2_require_line_header (objfile, cu);
2173 if (!cu->v.quick->lines)
2174 return NULL;
2175
2176 return cu->v.quick->file_names[cu->v.quick->lines->num_file_names - 1];
2177 }
2178
2179 static void
2180 dw2_map_ada_symtabs (struct objfile *objfile,
2181 int (*wild_match) (const char *, int, const char *),
2182 int (*is_name_suffix) (const char *),
2183 void (*callback) (struct objfile *,
2184 struct symtab *, void *),
2185 const char *name, int global,
2186 domain_enum namespace, int wild,
2187 void *data)
2188 {
2189 /* For now, we don't support Ada, so this function can't be
2190 reached. */
2191 internal_error (__FILE__, __LINE__,
2192 _("map_ada_symtabs called via index method"));
2193 }
2194
2195 static void
2196 dw2_expand_symtabs_matching (struct objfile *objfile,
2197 int (*file_matcher) (const char *, void *),
2198 int (*name_matcher) (const char *, void *),
2199 domain_enum kind,
2200 void *data)
2201 {
2202 int i;
2203 offset_type iter;
2204
2205 dw2_setup (objfile);
2206 if (!dwarf2_per_objfile->index_table)
2207 return;
2208
2209 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2210 {
2211 int j;
2212 struct dwarf2_per_cu_data *cu = dwarf2_per_objfile->all_comp_units[i];
2213
2214 cu->v.quick->mark = 0;
2215 if (cu->v.quick->symtab)
2216 continue;
2217
2218 dw2_require_line_header (objfile, cu);
2219 if (!cu->v.quick->lines)
2220 continue;
2221
2222 for (j = 0; j < cu->v.quick->lines->num_file_names; ++j)
2223 {
2224 if (file_matcher (cu->v.quick->file_names[j], data))
2225 {
2226 cu->v.quick->mark = 1;
2227 break;
2228 }
2229 }
2230 }
2231
2232 for (iter = 0;
2233 iter < dwarf2_per_objfile->index_table->index_table_slots;
2234 ++iter)
2235 {
2236 offset_type idx = 2 * iter;
2237 const char *name;
2238 offset_type *vec, vec_len, vec_idx;
2239
2240 if (dwarf2_per_objfile->index_table->index_table[idx] == 0
2241 && dwarf2_per_objfile->index_table->index_table[idx + 1] == 0)
2242 continue;
2243
2244 name = (dwarf2_per_objfile->index_table->constant_pool
2245 + dwarf2_per_objfile->index_table->index_table[idx]);
2246
2247 if (! (*name_matcher) (name, data))
2248 continue;
2249
2250 /* The name was matched, now expand corresponding CUs that were
2251 marked. */
2252 vec = (offset_type *) (dwarf2_per_objfile->index_table->constant_pool
2253 + dwarf2_per_objfile->index_table->index_table[idx + 1]);
2254 vec_len = MAYBE_SWAP (vec[0]);
2255 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2256 {
2257 struct dwarf2_per_cu_data *cu
2258 = dwarf2_per_objfile->all_comp_units[MAYBE_SWAP (vec[vec_idx + 1])];
2259 if (cu->v.quick->mark)
2260 dw2_instantiate_symtab (objfile, cu);
2261 }
2262 }
2263 }
2264
2265 static struct symtab *
2266 dw2_find_pc_sect_symtab (struct objfile *objfile,
2267 struct minimal_symbol *msymbol,
2268 CORE_ADDR pc,
2269 struct obj_section *section,
2270 int warn_if_readin)
2271 {
2272 struct dwarf2_per_cu_data *data;
2273
2274 dw2_setup (objfile);
2275
2276 if (!objfile->psymtabs_addrmap)
2277 return NULL;
2278
2279 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2280 if (!data)
2281 return NULL;
2282
2283 if (warn_if_readin && data->v.quick->symtab)
2284 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)\n"),
2285 paddress (get_objfile_arch (objfile), pc));
2286
2287 return dw2_instantiate_symtab (objfile, data);
2288 }
2289
2290 static void
2291 dw2_map_symbol_names (struct objfile *objfile,
2292 void (*fun) (const char *, void *),
2293 void *data)
2294 {
2295 offset_type iter;
2296 dw2_setup (objfile);
2297
2298 if (!dwarf2_per_objfile->index_table)
2299 return;
2300
2301 for (iter = 0;
2302 iter < dwarf2_per_objfile->index_table->index_table_slots;
2303 ++iter)
2304 {
2305 offset_type idx = 2 * iter;
2306 const char *name;
2307 offset_type *vec, vec_len, vec_idx;
2308
2309 if (dwarf2_per_objfile->index_table->index_table[idx] == 0
2310 && dwarf2_per_objfile->index_table->index_table[idx + 1] == 0)
2311 continue;
2312
2313 name = (dwarf2_per_objfile->index_table->constant_pool
2314 + dwarf2_per_objfile->index_table->index_table[idx]);
2315
2316 (*fun) (name, data);
2317 }
2318 }
2319
2320 static void
2321 dw2_map_symbol_filenames (struct objfile *objfile,
2322 void (*fun) (const char *, const char *, void *),
2323 void *data)
2324 {
2325 int i;
2326
2327 dw2_setup (objfile);
2328 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2329 {
2330 int j;
2331 struct dwarf2_per_cu_data *cu = dwarf2_per_objfile->all_comp_units[i];
2332
2333 if (cu->v.quick->symtab)
2334 continue;
2335
2336 dw2_require_line_header (objfile, cu);
2337 if (!cu->v.quick->lines)
2338 continue;
2339
2340 for (j = 0; j < cu->v.quick->lines->num_file_names; ++j)
2341 {
2342 const char *this_full_name = dw2_require_full_path (objfile, cu, j);
2343 (*fun) (cu->v.quick->file_names[j], this_full_name, data);
2344 }
2345 }
2346 }
2347
2348 static int
2349 dw2_has_symbols (struct objfile *objfile)
2350 {
2351 return 1;
2352 }
2353
2354 const struct quick_symbol_functions dwarf2_gdb_index_functions =
2355 {
2356 dw2_has_symbols,
2357 dw2_find_last_source_symtab,
2358 dw2_forget_cached_source_info,
2359 dw2_lookup_symtab,
2360 dw2_lookup_symbol,
2361 dw2_pre_expand_symtabs_matching,
2362 dw2_print_stats,
2363 dw2_dump,
2364 dw2_relocate,
2365 dw2_expand_symtabs_for_function,
2366 dw2_expand_all_symtabs,
2367 dw2_expand_symtabs_with_filename,
2368 dw2_find_symbol_file,
2369 dw2_map_ada_symtabs,
2370 dw2_expand_symtabs_matching,
2371 dw2_find_pc_sect_symtab,
2372 dw2_map_symbol_names,
2373 dw2_map_symbol_filenames
2374 };
2375
2376 /* Initialize for reading DWARF for this objfile. Return 0 if this
2377 file will use psymtabs, or 1 if using the GNU index. */
2378
2379 int
2380 dwarf2_initialize_objfile (struct objfile *objfile)
2381 {
2382 /* If we're about to read full symbols, don't bother with the
2383 indices. In this case we also don't care if some other debug
2384 format is making psymtabs, because they are all about to be
2385 expanded anyway. */
2386 if ((objfile->flags & OBJF_READNOW))
2387 {
2388 int i;
2389
2390 dwarf2_per_objfile->using_index = 1;
2391 create_all_comp_units (objfile);
2392
2393 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2394 {
2395 struct dwarf2_per_cu_data *cu = dwarf2_per_objfile->all_comp_units[i];
2396
2397 cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2398 struct dwarf2_per_cu_quick_data);
2399 }
2400
2401 /* Return 1 so that gdb sees the "quick" functions. However,
2402 these functions will be no-ops because we will have expanded
2403 all symtabs. */
2404 return 1;
2405 }
2406
2407 if (dwarf2_read_index (objfile))
2408 return 1;
2409
2410 dwarf2_build_psymtabs (objfile);
2411 return 0;
2412 }
2413
2414 \f
2415
2416 /* Build a partial symbol table. */
2417
2418 void
2419 dwarf2_build_psymtabs (struct objfile *objfile)
2420 {
2421 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
2422 {
2423 init_psymbol_list (objfile, 1024);
2424 }
2425
2426 dwarf2_build_psymtabs_hard (objfile);
2427 }
2428
2429 /* Return TRUE if OFFSET is within CU_HEADER. */
2430
2431 static inline int
2432 offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2433 {
2434 unsigned int bottom = cu_header->offset;
2435 unsigned int top = (cu_header->offset
2436 + cu_header->length
2437 + cu_header->initial_length_size);
2438
2439 return (offset >= bottom && offset < top);
2440 }
2441
2442 /* Read in the comp unit header information from the debug_info at info_ptr.
2443 NOTE: This leaves members offset, first_die_offset to be filled in
2444 by the caller. */
2445
2446 static gdb_byte *
2447 read_comp_unit_head (struct comp_unit_head *cu_header,
2448 gdb_byte *info_ptr, bfd *abfd)
2449 {
2450 int signed_addr;
2451 unsigned int bytes_read;
2452
2453 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2454 cu_header->initial_length_size = bytes_read;
2455 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
2456 info_ptr += bytes_read;
2457 cu_header->version = read_2_bytes (abfd, info_ptr);
2458 info_ptr += 2;
2459 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
2460 &bytes_read);
2461 info_ptr += bytes_read;
2462 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2463 info_ptr += 1;
2464 signed_addr = bfd_get_sign_extend_vma (abfd);
2465 if (signed_addr < 0)
2466 internal_error (__FILE__, __LINE__,
2467 _("read_comp_unit_head: dwarf from non elf file"));
2468 cu_header->signed_addr_p = signed_addr;
2469
2470 return info_ptr;
2471 }
2472
2473 static gdb_byte *
2474 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
2475 gdb_byte *buffer, unsigned int buffer_size,
2476 bfd *abfd)
2477 {
2478 gdb_byte *beg_of_comp_unit = info_ptr;
2479
2480 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
2481
2482 if (header->version != 2 && header->version != 3 && header->version != 4)
2483 error (_("Dwarf Error: wrong version in compilation unit header "
2484 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
2485 bfd_get_filename (abfd));
2486
2487 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev.size)
2488 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
2489 "(offset 0x%lx + 6) [in module %s]"),
2490 (long) header->abbrev_offset,
2491 (long) (beg_of_comp_unit - buffer),
2492 bfd_get_filename (abfd));
2493
2494 if (beg_of_comp_unit + header->length + header->initial_length_size
2495 > buffer + buffer_size)
2496 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
2497 "(offset 0x%lx + 0) [in module %s]"),
2498 (long) header->length,
2499 (long) (beg_of_comp_unit - buffer),
2500 bfd_get_filename (abfd));
2501
2502 return info_ptr;
2503 }
2504
2505 /* Read in the types comp unit header information from .debug_types entry at
2506 types_ptr. The result is a pointer to one past the end of the header. */
2507
2508 static gdb_byte *
2509 read_type_comp_unit_head (struct comp_unit_head *cu_header,
2510 ULONGEST *signature,
2511 gdb_byte *types_ptr, bfd *abfd)
2512 {
2513 gdb_byte *initial_types_ptr = types_ptr;
2514
2515 dwarf2_read_section (dwarf2_per_objfile->objfile,
2516 &dwarf2_per_objfile->types);
2517 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
2518
2519 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
2520
2521 *signature = read_8_bytes (abfd, types_ptr);
2522 types_ptr += 8;
2523 types_ptr += cu_header->offset_size;
2524 cu_header->first_die_offset = types_ptr - initial_types_ptr;
2525
2526 return types_ptr;
2527 }
2528
2529 /* Allocate a new partial symtab for file named NAME and mark this new
2530 partial symtab as being an include of PST. */
2531
2532 static void
2533 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
2534 struct objfile *objfile)
2535 {
2536 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
2537
2538 subpst->section_offsets = pst->section_offsets;
2539 subpst->textlow = 0;
2540 subpst->texthigh = 0;
2541
2542 subpst->dependencies = (struct partial_symtab **)
2543 obstack_alloc (&objfile->objfile_obstack,
2544 sizeof (struct partial_symtab *));
2545 subpst->dependencies[0] = pst;
2546 subpst->number_of_dependencies = 1;
2547
2548 subpst->globals_offset = 0;
2549 subpst->n_global_syms = 0;
2550 subpst->statics_offset = 0;
2551 subpst->n_static_syms = 0;
2552 subpst->symtab = NULL;
2553 subpst->read_symtab = pst->read_symtab;
2554 subpst->readin = 0;
2555
2556 /* No private part is necessary for include psymtabs. This property
2557 can be used to differentiate between such include psymtabs and
2558 the regular ones. */
2559 subpst->read_symtab_private = NULL;
2560 }
2561
2562 /* Read the Line Number Program data and extract the list of files
2563 included by the source file represented by PST. Build an include
2564 partial symtab for each of these included files. */
2565
2566 static void
2567 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
2568 struct die_info *die,
2569 struct partial_symtab *pst)
2570 {
2571 struct objfile *objfile = cu->objfile;
2572 bfd *abfd = objfile->obfd;
2573 struct line_header *lh = NULL;
2574 struct attribute *attr;
2575
2576 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2577 if (attr)
2578 {
2579 unsigned int line_offset = DW_UNSND (attr);
2580
2581 lh = dwarf_decode_line_header (line_offset, abfd, cu);
2582 }
2583 if (lh == NULL)
2584 return; /* No linetable, so no includes. */
2585
2586 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
2587
2588 free_line_header (lh);
2589 }
2590
2591 static hashval_t
2592 hash_type_signature (const void *item)
2593 {
2594 const struct signatured_type *type_sig = item;
2595
2596 /* This drops the top 32 bits of the signature, but is ok for a hash. */
2597 return type_sig->signature;
2598 }
2599
2600 static int
2601 eq_type_signature (const void *item_lhs, const void *item_rhs)
2602 {
2603 const struct signatured_type *lhs = item_lhs;
2604 const struct signatured_type *rhs = item_rhs;
2605
2606 return lhs->signature == rhs->signature;
2607 }
2608
2609 /* Create the hash table of all entries in the .debug_types section.
2610 The result is zero if there is an error (e.g. missing .debug_types section),
2611 otherwise non-zero. */
2612
2613 static int
2614 create_debug_types_hash_table (struct objfile *objfile)
2615 {
2616 gdb_byte *info_ptr;
2617 htab_t types_htab;
2618
2619 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
2620 info_ptr = dwarf2_per_objfile->types.buffer;
2621
2622 if (info_ptr == NULL)
2623 {
2624 dwarf2_per_objfile->signatured_types = NULL;
2625 return 0;
2626 }
2627
2628 types_htab = htab_create_alloc_ex (41,
2629 hash_type_signature,
2630 eq_type_signature,
2631 NULL,
2632 &objfile->objfile_obstack,
2633 hashtab_obstack_allocate,
2634 dummy_obstack_deallocate);
2635
2636 if (dwarf2_die_debug)
2637 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
2638
2639 while (info_ptr < dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
2640 {
2641 unsigned int offset;
2642 unsigned int offset_size;
2643 unsigned int type_offset;
2644 unsigned int length, initial_length_size;
2645 unsigned short version;
2646 ULONGEST signature;
2647 struct signatured_type *type_sig;
2648 void **slot;
2649 gdb_byte *ptr = info_ptr;
2650
2651 offset = ptr - dwarf2_per_objfile->types.buffer;
2652
2653 /* We need to read the type's signature in order to build the hash
2654 table, but we don't need to read anything else just yet. */
2655
2656 /* Sanity check to ensure entire cu is present. */
2657 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
2658 if (ptr + length + initial_length_size
2659 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
2660 {
2661 complaint (&symfile_complaints,
2662 _("debug type entry runs off end of `.debug_types' section, ignored"));
2663 break;
2664 }
2665
2666 offset_size = initial_length_size == 4 ? 4 : 8;
2667 ptr += initial_length_size;
2668 version = bfd_get_16 (objfile->obfd, ptr);
2669 ptr += 2;
2670 ptr += offset_size; /* abbrev offset */
2671 ptr += 1; /* address size */
2672 signature = bfd_get_64 (objfile->obfd, ptr);
2673 ptr += 8;
2674 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
2675
2676 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
2677 memset (type_sig, 0, sizeof (*type_sig));
2678 type_sig->signature = signature;
2679 type_sig->offset = offset;
2680 type_sig->type_offset = type_offset;
2681
2682 slot = htab_find_slot (types_htab, type_sig, INSERT);
2683 gdb_assert (slot != NULL);
2684 *slot = type_sig;
2685
2686 if (dwarf2_die_debug)
2687 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
2688 offset, phex (signature, sizeof (signature)));
2689
2690 info_ptr = info_ptr + initial_length_size + length;
2691 }
2692
2693 dwarf2_per_objfile->signatured_types = types_htab;
2694
2695 return 1;
2696 }
2697
2698 /* Lookup a signature based type.
2699 Returns NULL if SIG is not present in the table. */
2700
2701 static struct signatured_type *
2702 lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
2703 {
2704 struct signatured_type find_entry, *entry;
2705
2706 if (dwarf2_per_objfile->signatured_types == NULL)
2707 {
2708 complaint (&symfile_complaints,
2709 _("missing `.debug_types' section for DW_FORM_sig8 die"));
2710 return 0;
2711 }
2712
2713 find_entry.signature = sig;
2714 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
2715 return entry;
2716 }
2717
2718 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
2719
2720 static void
2721 init_cu_die_reader (struct die_reader_specs *reader,
2722 struct dwarf2_cu *cu)
2723 {
2724 reader->abfd = cu->objfile->obfd;
2725 reader->cu = cu;
2726 if (cu->per_cu->from_debug_types)
2727 {
2728 gdb_assert (dwarf2_per_objfile->types.readin);
2729 reader->buffer = dwarf2_per_objfile->types.buffer;
2730 }
2731 else
2732 {
2733 gdb_assert (dwarf2_per_objfile->info.readin);
2734 reader->buffer = dwarf2_per_objfile->info.buffer;
2735 }
2736 }
2737
2738 /* Find the base address of the compilation unit for range lists and
2739 location lists. It will normally be specified by DW_AT_low_pc.
2740 In DWARF-3 draft 4, the base address could be overridden by
2741 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2742 compilation units with discontinuous ranges. */
2743
2744 static void
2745 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
2746 {
2747 struct attribute *attr;
2748
2749 cu->base_known = 0;
2750 cu->base_address = 0;
2751
2752 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
2753 if (attr)
2754 {
2755 cu->base_address = DW_ADDR (attr);
2756 cu->base_known = 1;
2757 }
2758 else
2759 {
2760 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
2761 if (attr)
2762 {
2763 cu->base_address = DW_ADDR (attr);
2764 cu->base_known = 1;
2765 }
2766 }
2767 }
2768
2769 /* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
2770 to combine the common parts.
2771 Process a compilation unit for a psymtab.
2772 BUFFER is a pointer to the beginning of the dwarf section buffer,
2773 either .debug_info or debug_types.
2774 INFO_PTR is a pointer to the start of the CU.
2775 Returns a pointer to the next CU. */
2776
2777 static gdb_byte *
2778 process_psymtab_comp_unit (struct objfile *objfile,
2779 struct dwarf2_per_cu_data *this_cu,
2780 gdb_byte *buffer, gdb_byte *info_ptr,
2781 unsigned int buffer_size)
2782 {
2783 bfd *abfd = objfile->obfd;
2784 gdb_byte *beg_of_comp_unit = info_ptr;
2785 struct die_info *comp_unit_die;
2786 struct partial_symtab *pst;
2787 CORE_ADDR baseaddr;
2788 struct cleanup *back_to_inner;
2789 struct dwarf2_cu cu;
2790 int has_children, has_pc_info;
2791 struct attribute *attr;
2792 CORE_ADDR best_lowpc = 0, best_highpc = 0;
2793 struct die_reader_specs reader_specs;
2794
2795 memset (&cu, 0, sizeof (cu));
2796 cu.objfile = objfile;
2797 obstack_init (&cu.comp_unit_obstack);
2798
2799 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
2800
2801 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
2802 buffer, buffer_size,
2803 abfd);
2804
2805 /* Complete the cu_header. */
2806 cu.header.offset = beg_of_comp_unit - buffer;
2807 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
2808
2809 cu.list_in_scope = &file_symbols;
2810
2811 /* If this compilation unit was already read in, free the
2812 cached copy in order to read it in again. This is
2813 necessary because we skipped some symbols when we first
2814 read in the compilation unit (see load_partial_dies).
2815 This problem could be avoided, but the benefit is
2816 unclear. */
2817 if (this_cu->cu != NULL)
2818 free_one_cached_comp_unit (this_cu->cu);
2819
2820 /* Note that this is a pointer to our stack frame, being
2821 added to a global data structure. It will be cleaned up
2822 in free_stack_comp_unit when we finish with this
2823 compilation unit. */
2824 this_cu->cu = &cu;
2825 cu.per_cu = this_cu;
2826
2827 /* Read the abbrevs for this compilation unit into a table. */
2828 dwarf2_read_abbrevs (abfd, &cu);
2829 make_cleanup (dwarf2_free_abbrev_table, &cu);
2830
2831 /* Read the compilation unit die. */
2832 if (this_cu->from_debug_types)
2833 info_ptr += 8 /*signature*/ + cu.header.offset_size;
2834 init_cu_die_reader (&reader_specs, &cu);
2835 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2836 &has_children);
2837
2838 if (this_cu->from_debug_types)
2839 {
2840 /* offset,length haven't been set yet for type units. */
2841 this_cu->offset = cu.header.offset;
2842 this_cu->length = cu.header.length + cu.header.initial_length_size;
2843 }
2844 else if (comp_unit_die->tag == DW_TAG_partial_unit)
2845 {
2846 info_ptr = (beg_of_comp_unit + cu.header.length
2847 + cu.header.initial_length_size);
2848 do_cleanups (back_to_inner);
2849 return info_ptr;
2850 }
2851
2852 /* Set the language we're debugging. */
2853 attr = dwarf2_attr (comp_unit_die, DW_AT_language, &cu);
2854 if (attr)
2855 set_cu_language (DW_UNSND (attr), &cu);
2856 else
2857 set_cu_language (language_minimal, &cu);
2858
2859 /* Allocate a new partial symbol table structure. */
2860 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
2861 pst = start_psymtab_common (objfile, objfile->section_offsets,
2862 (attr != NULL) ? DW_STRING (attr) : "",
2863 /* TEXTLOW and TEXTHIGH are set below. */
2864 0,
2865 objfile->global_psymbols.next,
2866 objfile->static_psymbols.next);
2867
2868 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
2869 if (attr != NULL)
2870 pst->dirname = DW_STRING (attr);
2871
2872 pst->read_symtab_private = this_cu;
2873
2874 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2875
2876 /* Store the function that reads in the rest of the symbol table */
2877 pst->read_symtab = dwarf2_psymtab_to_symtab;
2878
2879 this_cu->v.psymtab = pst;
2880
2881 dwarf2_find_base_address (comp_unit_die, &cu);
2882
2883 /* Possibly set the default values of LOWPC and HIGHPC from
2884 `DW_AT_ranges'. */
2885 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
2886 &best_highpc, &cu, pst);
2887 if (has_pc_info == 1 && best_lowpc < best_highpc)
2888 /* Store the contiguous range if it is not empty; it can be empty for
2889 CUs with no code. */
2890 addrmap_set_empty (objfile->psymtabs_addrmap,
2891 best_lowpc + baseaddr,
2892 best_highpc + baseaddr - 1, pst);
2893
2894 /* Check if comp unit has_children.
2895 If so, read the rest of the partial symbols from this comp unit.
2896 If not, there's no more debug_info for this comp unit. */
2897 if (has_children)
2898 {
2899 struct partial_die_info *first_die;
2900 CORE_ADDR lowpc, highpc;
2901
2902 lowpc = ((CORE_ADDR) -1);
2903 highpc = ((CORE_ADDR) 0);
2904
2905 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
2906
2907 scan_partial_symbols (first_die, &lowpc, &highpc,
2908 ! has_pc_info, &cu);
2909
2910 /* If we didn't find a lowpc, set it to highpc to avoid
2911 complaints from `maint check'. */
2912 if (lowpc == ((CORE_ADDR) -1))
2913 lowpc = highpc;
2914
2915 /* If the compilation unit didn't have an explicit address range,
2916 then use the information extracted from its child dies. */
2917 if (! has_pc_info)
2918 {
2919 best_lowpc = lowpc;
2920 best_highpc = highpc;
2921 }
2922 }
2923 pst->textlow = best_lowpc + baseaddr;
2924 pst->texthigh = best_highpc + baseaddr;
2925
2926 pst->n_global_syms = objfile->global_psymbols.next -
2927 (objfile->global_psymbols.list + pst->globals_offset);
2928 pst->n_static_syms = objfile->static_psymbols.next -
2929 (objfile->static_psymbols.list + pst->statics_offset);
2930 sort_pst_symbols (pst);
2931
2932 info_ptr = (beg_of_comp_unit + cu.header.length
2933 + cu.header.initial_length_size);
2934
2935 if (this_cu->from_debug_types)
2936 {
2937 /* It's not clear we want to do anything with stmt lists here.
2938 Waiting to see what gcc ultimately does. */
2939 }
2940 else
2941 {
2942 /* Get the list of files included in the current compilation unit,
2943 and build a psymtab for each of them. */
2944 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
2945 }
2946
2947 do_cleanups (back_to_inner);
2948
2949 return info_ptr;
2950 }
2951
2952 /* Traversal function for htab_traverse_noresize.
2953 Process one .debug_types comp-unit. */
2954
2955 static int
2956 process_type_comp_unit (void **slot, void *info)
2957 {
2958 struct signatured_type *entry = (struct signatured_type *) *slot;
2959 struct objfile *objfile = (struct objfile *) info;
2960 struct dwarf2_per_cu_data *this_cu;
2961
2962 this_cu = &entry->per_cu;
2963 this_cu->from_debug_types = 1;
2964
2965 gdb_assert (dwarf2_per_objfile->types.readin);
2966 process_psymtab_comp_unit (objfile, this_cu,
2967 dwarf2_per_objfile->types.buffer,
2968 dwarf2_per_objfile->types.buffer + entry->offset,
2969 dwarf2_per_objfile->types.size);
2970
2971 return 1;
2972 }
2973
2974 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
2975 Build partial symbol tables for the .debug_types comp-units. */
2976
2977 static void
2978 build_type_psymtabs (struct objfile *objfile)
2979 {
2980 if (! create_debug_types_hash_table (objfile))
2981 return;
2982
2983 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
2984 process_type_comp_unit, objfile);
2985 }
2986
2987 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
2988
2989 static void
2990 psymtabs_addrmap_cleanup (void *o)
2991 {
2992 struct objfile *objfile = o;
2993
2994 objfile->psymtabs_addrmap = NULL;
2995 }
2996
2997 /* Build the partial symbol table by doing a quick pass through the
2998 .debug_info and .debug_abbrev sections. */
2999
3000 static void
3001 dwarf2_build_psymtabs_hard (struct objfile *objfile)
3002 {
3003 gdb_byte *info_ptr;
3004 struct cleanup *back_to, *addrmap_cleanup;
3005 struct obstack temp_obstack;
3006
3007 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3008 info_ptr = dwarf2_per_objfile->info.buffer;
3009
3010 /* Any cached compilation units will be linked by the per-objfile
3011 read_in_chain. Make sure to free them when we're done. */
3012 back_to = make_cleanup (free_cached_comp_units, NULL);
3013
3014 build_type_psymtabs (objfile);
3015
3016 create_all_comp_units (objfile);
3017
3018 /* Create a temporary address map on a temporary obstack. We later
3019 copy this to the final obstack. */
3020 obstack_init (&temp_obstack);
3021 make_cleanup_obstack_free (&temp_obstack);
3022 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3023 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
3024
3025 /* Since the objects we're extracting from .debug_info vary in
3026 length, only the individual functions to extract them (like
3027 read_comp_unit_head and load_partial_die) can really know whether
3028 the buffer is large enough to hold another complete object.
3029
3030 At the moment, they don't actually check that. If .debug_info
3031 holds just one extra byte after the last compilation unit's dies,
3032 then read_comp_unit_head will happily read off the end of the
3033 buffer. read_partial_die is similarly casual. Those functions
3034 should be fixed.
3035
3036 For this loop condition, simply checking whether there's any data
3037 left at all should be sufficient. */
3038
3039 while (info_ptr < (dwarf2_per_objfile->info.buffer
3040 + dwarf2_per_objfile->info.size))
3041 {
3042 struct dwarf2_per_cu_data *this_cu;
3043
3044 this_cu = dwarf2_find_comp_unit (info_ptr - dwarf2_per_objfile->info.buffer,
3045 objfile);
3046
3047 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
3048 dwarf2_per_objfile->info.buffer,
3049 info_ptr,
3050 dwarf2_per_objfile->info.size);
3051 }
3052
3053 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3054 &objfile->objfile_obstack);
3055 discard_cleanups (addrmap_cleanup);
3056
3057 do_cleanups (back_to);
3058 }
3059
3060 /* Load the partial DIEs for a secondary CU into memory. */
3061
3062 static void
3063 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
3064 struct objfile *objfile)
3065 {
3066 bfd *abfd = objfile->obfd;
3067 gdb_byte *info_ptr, *beg_of_comp_unit;
3068 struct die_info *comp_unit_die;
3069 struct dwarf2_cu *cu;
3070 struct cleanup *back_to;
3071 struct attribute *attr;
3072 int has_children;
3073 struct die_reader_specs reader_specs;
3074
3075 gdb_assert (! this_cu->from_debug_types);
3076
3077 gdb_assert (dwarf2_per_objfile->info.readin);
3078 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
3079 beg_of_comp_unit = info_ptr;
3080
3081 cu = alloc_one_comp_unit (objfile);
3082
3083 /* ??? Missing cleanup for CU? */
3084
3085 /* Link this compilation unit into the compilation unit tree. */
3086 this_cu->cu = cu;
3087 cu->per_cu = this_cu;
3088 cu->type_hash = this_cu->type_hash;
3089
3090 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
3091 dwarf2_per_objfile->info.buffer,
3092 dwarf2_per_objfile->info.size,
3093 abfd);
3094
3095 /* Complete the cu_header. */
3096 cu->header.offset = this_cu->offset;
3097 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3098
3099 /* Read the abbrevs for this compilation unit into a table. */
3100 dwarf2_read_abbrevs (abfd, cu);
3101 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
3102
3103 /* Read the compilation unit die. */
3104 init_cu_die_reader (&reader_specs, cu);
3105 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3106 &has_children);
3107
3108 /* Set the language we're debugging. */
3109 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
3110 if (attr)
3111 set_cu_language (DW_UNSND (attr), cu);
3112 else
3113 set_cu_language (language_minimal, cu);
3114
3115 /* Check if comp unit has_children.
3116 If so, read the rest of the partial symbols from this comp unit.
3117 If not, there's no more debug_info for this comp unit. */
3118 if (has_children)
3119 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
3120
3121 do_cleanups (back_to);
3122 }
3123
3124 /* Create a list of all compilation units in OBJFILE. We do this only
3125 if an inter-comp-unit reference is found; presumably if there is one,
3126 there will be many, and one will occur early in the .debug_info section.
3127 So there's no point in building this list incrementally. */
3128
3129 static void
3130 create_all_comp_units (struct objfile *objfile)
3131 {
3132 int n_allocated;
3133 int n_comp_units;
3134 struct dwarf2_per_cu_data **all_comp_units;
3135 gdb_byte *info_ptr;
3136
3137 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3138 info_ptr = dwarf2_per_objfile->info.buffer;
3139
3140 n_comp_units = 0;
3141 n_allocated = 10;
3142 all_comp_units = xmalloc (n_allocated
3143 * sizeof (struct dwarf2_per_cu_data *));
3144
3145 while (info_ptr < dwarf2_per_objfile->info.buffer + dwarf2_per_objfile->info.size)
3146 {
3147 unsigned int length, initial_length_size;
3148 struct dwarf2_per_cu_data *this_cu;
3149 unsigned int offset;
3150
3151 offset = info_ptr - dwarf2_per_objfile->info.buffer;
3152
3153 /* Read just enough information to find out where the next
3154 compilation unit is. */
3155 length = read_initial_length (objfile->obfd, info_ptr,
3156 &initial_length_size);
3157
3158 /* Save the compilation unit for later lookup. */
3159 this_cu = obstack_alloc (&objfile->objfile_obstack,
3160 sizeof (struct dwarf2_per_cu_data));
3161 memset (this_cu, 0, sizeof (*this_cu));
3162 this_cu->offset = offset;
3163 this_cu->length = length + initial_length_size;
3164 this_cu->objfile = objfile;
3165
3166 if (n_comp_units == n_allocated)
3167 {
3168 n_allocated *= 2;
3169 all_comp_units = xrealloc (all_comp_units,
3170 n_allocated
3171 * sizeof (struct dwarf2_per_cu_data *));
3172 }
3173 all_comp_units[n_comp_units++] = this_cu;
3174
3175 info_ptr = info_ptr + this_cu->length;
3176 }
3177
3178 dwarf2_per_objfile->all_comp_units
3179 = obstack_alloc (&objfile->objfile_obstack,
3180 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3181 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3182 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3183 xfree (all_comp_units);
3184 dwarf2_per_objfile->n_comp_units = n_comp_units;
3185 }
3186
3187 /* Process all loaded DIEs for compilation unit CU, starting at
3188 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3189 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3190 DW_AT_ranges). If NEED_PC is set, then this function will set
3191 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3192 and record the covered ranges in the addrmap. */
3193
3194 static void
3195 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
3196 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3197 {
3198 struct partial_die_info *pdi;
3199
3200 /* Now, march along the PDI's, descending into ones which have
3201 interesting children but skipping the children of the other ones,
3202 until we reach the end of the compilation unit. */
3203
3204 pdi = first_die;
3205
3206 while (pdi != NULL)
3207 {
3208 fixup_partial_die (pdi, cu);
3209
3210 /* Anonymous namespaces or modules have no name but have interesting
3211 children, so we need to look at them. Ditto for anonymous
3212 enums. */
3213
3214 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
3215 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
3216 {
3217 switch (pdi->tag)
3218 {
3219 case DW_TAG_subprogram:
3220 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3221 break;
3222 case DW_TAG_variable:
3223 case DW_TAG_typedef:
3224 case DW_TAG_union_type:
3225 if (!pdi->is_declaration)
3226 {
3227 add_partial_symbol (pdi, cu);
3228 }
3229 break;
3230 case DW_TAG_class_type:
3231 case DW_TAG_interface_type:
3232 case DW_TAG_structure_type:
3233 if (!pdi->is_declaration)
3234 {
3235 add_partial_symbol (pdi, cu);
3236 }
3237 break;
3238 case DW_TAG_enumeration_type:
3239 if (!pdi->is_declaration)
3240 add_partial_enumeration (pdi, cu);
3241 break;
3242 case DW_TAG_base_type:
3243 case DW_TAG_subrange_type:
3244 /* File scope base type definitions are added to the partial
3245 symbol table. */
3246 add_partial_symbol (pdi, cu);
3247 break;
3248 case DW_TAG_namespace:
3249 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
3250 break;
3251 case DW_TAG_module:
3252 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3253 break;
3254 default:
3255 break;
3256 }
3257 }
3258
3259 /* If the die has a sibling, skip to the sibling. */
3260
3261 pdi = pdi->die_sibling;
3262 }
3263 }
3264
3265 /* Functions used to compute the fully scoped name of a partial DIE.
3266
3267 Normally, this is simple. For C++, the parent DIE's fully scoped
3268 name is concatenated with "::" and the partial DIE's name. For
3269 Java, the same thing occurs except that "." is used instead of "::".
3270 Enumerators are an exception; they use the scope of their parent
3271 enumeration type, i.e. the name of the enumeration type is not
3272 prepended to the enumerator.
3273
3274 There are two complexities. One is DW_AT_specification; in this
3275 case "parent" means the parent of the target of the specification,
3276 instead of the direct parent of the DIE. The other is compilers
3277 which do not emit DW_TAG_namespace; in this case we try to guess
3278 the fully qualified name of structure types from their members'
3279 linkage names. This must be done using the DIE's children rather
3280 than the children of any DW_AT_specification target. We only need
3281 to do this for structures at the top level, i.e. if the target of
3282 any DW_AT_specification (if any; otherwise the DIE itself) does not
3283 have a parent. */
3284
3285 /* Compute the scope prefix associated with PDI's parent, in
3286 compilation unit CU. The result will be allocated on CU's
3287 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3288 field. NULL is returned if no prefix is necessary. */
3289 static char *
3290 partial_die_parent_scope (struct partial_die_info *pdi,
3291 struct dwarf2_cu *cu)
3292 {
3293 char *grandparent_scope;
3294 struct partial_die_info *parent, *real_pdi;
3295
3296 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3297 then this means the parent of the specification DIE. */
3298
3299 real_pdi = pdi;
3300 while (real_pdi->has_specification)
3301 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
3302
3303 parent = real_pdi->die_parent;
3304 if (parent == NULL)
3305 return NULL;
3306
3307 if (parent->scope_set)
3308 return parent->scope;
3309
3310 fixup_partial_die (parent, cu);
3311
3312 grandparent_scope = partial_die_parent_scope (parent, cu);
3313
3314 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3315 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3316 Work around this problem here. */
3317 if (cu->language == language_cplus
3318 && parent->tag == DW_TAG_namespace
3319 && strcmp (parent->name, "::") == 0
3320 && grandparent_scope == NULL)
3321 {
3322 parent->scope = NULL;
3323 parent->scope_set = 1;
3324 return NULL;
3325 }
3326
3327 if (parent->tag == DW_TAG_namespace
3328 || parent->tag == DW_TAG_module
3329 || parent->tag == DW_TAG_structure_type
3330 || parent->tag == DW_TAG_class_type
3331 || parent->tag == DW_TAG_interface_type
3332 || parent->tag == DW_TAG_union_type
3333 || parent->tag == DW_TAG_enumeration_type)
3334 {
3335 if (grandparent_scope == NULL)
3336 parent->scope = parent->name;
3337 else
3338 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
3339 parent->name, 0, cu);
3340 }
3341 else if (parent->tag == DW_TAG_enumerator)
3342 /* Enumerators should not get the name of the enumeration as a prefix. */
3343 parent->scope = grandparent_scope;
3344 else
3345 {
3346 /* FIXME drow/2004-04-01: What should we be doing with
3347 function-local names? For partial symbols, we should probably be
3348 ignoring them. */
3349 complaint (&symfile_complaints,
3350 _("unhandled containing DIE tag %d for DIE at %d"),
3351 parent->tag, pdi->offset);
3352 parent->scope = grandparent_scope;
3353 }
3354
3355 parent->scope_set = 1;
3356 return parent->scope;
3357 }
3358
3359 /* Return the fully scoped name associated with PDI, from compilation unit
3360 CU. The result will be allocated with malloc. */
3361 static char *
3362 partial_die_full_name (struct partial_die_info *pdi,
3363 struct dwarf2_cu *cu)
3364 {
3365 char *parent_scope;
3366
3367 parent_scope = partial_die_parent_scope (pdi, cu);
3368 if (parent_scope == NULL)
3369 return NULL;
3370 else
3371 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
3372 }
3373
3374 static void
3375 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
3376 {
3377 struct objfile *objfile = cu->objfile;
3378 CORE_ADDR addr = 0;
3379 char *actual_name = NULL;
3380 const struct partial_symbol *psym = NULL;
3381 CORE_ADDR baseaddr;
3382 int built_actual_name = 0;
3383
3384 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3385
3386 actual_name = partial_die_full_name (pdi, cu);
3387 if (actual_name)
3388 built_actual_name = 1;
3389
3390 if (actual_name == NULL)
3391 actual_name = pdi->name;
3392
3393 switch (pdi->tag)
3394 {
3395 case DW_TAG_subprogram:
3396 if (pdi->is_external || cu->language == language_ada)
3397 {
3398 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
3399 of the global scope. But in Ada, we want to be able to access
3400 nested procedures globally. So all Ada subprograms are stored
3401 in the global scope. */
3402 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3403 mst_text, objfile); */
3404 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3405 built_actual_name,
3406 VAR_DOMAIN, LOC_BLOCK,
3407 &objfile->global_psymbols,
3408 0, pdi->lowpc + baseaddr,
3409 cu->language, objfile);
3410 }
3411 else
3412 {
3413 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3414 mst_file_text, objfile); */
3415 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3416 built_actual_name,
3417 VAR_DOMAIN, LOC_BLOCK,
3418 &objfile->static_psymbols,
3419 0, pdi->lowpc + baseaddr,
3420 cu->language, objfile);
3421 }
3422 break;
3423 case DW_TAG_variable:
3424 if (pdi->is_external)
3425 {
3426 /* Global Variable.
3427 Don't enter into the minimal symbol tables as there is
3428 a minimal symbol table entry from the ELF symbols already.
3429 Enter into partial symbol table if it has a location
3430 descriptor or a type.
3431 If the location descriptor is missing, new_symbol will create
3432 a LOC_UNRESOLVED symbol, the address of the variable will then
3433 be determined from the minimal symbol table whenever the variable
3434 is referenced.
3435 The address for the partial symbol table entry is not
3436 used by GDB, but it comes in handy for debugging partial symbol
3437 table building. */
3438
3439 if (pdi->locdesc)
3440 addr = decode_locdesc (pdi->locdesc, cu);
3441 if (pdi->locdesc || pdi->has_type)
3442 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3443 built_actual_name,
3444 VAR_DOMAIN, LOC_STATIC,
3445 &objfile->global_psymbols,
3446 0, addr + baseaddr,
3447 cu->language, objfile);
3448 }
3449 else
3450 {
3451 /* Static Variable. Skip symbols without location descriptors. */
3452 if (pdi->locdesc == NULL)
3453 {
3454 if (built_actual_name)
3455 xfree (actual_name);
3456 return;
3457 }
3458 addr = decode_locdesc (pdi->locdesc, cu);
3459 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
3460 mst_file_data, objfile); */
3461 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3462 built_actual_name,
3463 VAR_DOMAIN, LOC_STATIC,
3464 &objfile->static_psymbols,
3465 0, addr + baseaddr,
3466 cu->language, objfile);
3467 }
3468 break;
3469 case DW_TAG_typedef:
3470 case DW_TAG_base_type:
3471 case DW_TAG_subrange_type:
3472 add_psymbol_to_list (actual_name, strlen (actual_name),
3473 built_actual_name,
3474 VAR_DOMAIN, LOC_TYPEDEF,
3475 &objfile->static_psymbols,
3476 0, (CORE_ADDR) 0, cu->language, objfile);
3477 break;
3478 case DW_TAG_namespace:
3479 add_psymbol_to_list (actual_name, strlen (actual_name),
3480 built_actual_name,
3481 VAR_DOMAIN, LOC_TYPEDEF,
3482 &objfile->global_psymbols,
3483 0, (CORE_ADDR) 0, cu->language, objfile);
3484 break;
3485 case DW_TAG_class_type:
3486 case DW_TAG_interface_type:
3487 case DW_TAG_structure_type:
3488 case DW_TAG_union_type:
3489 case DW_TAG_enumeration_type:
3490 /* Skip external references. The DWARF standard says in the section
3491 about "Structure, Union, and Class Type Entries": "An incomplete
3492 structure, union or class type is represented by a structure,
3493 union or class entry that does not have a byte size attribute
3494 and that has a DW_AT_declaration attribute." */
3495 if (!pdi->has_byte_size && pdi->is_declaration)
3496 {
3497 if (built_actual_name)
3498 xfree (actual_name);
3499 return;
3500 }
3501
3502 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
3503 static vs. global. */
3504 add_psymbol_to_list (actual_name, strlen (actual_name),
3505 built_actual_name,
3506 STRUCT_DOMAIN, LOC_TYPEDEF,
3507 (cu->language == language_cplus
3508 || cu->language == language_java)
3509 ? &objfile->global_psymbols
3510 : &objfile->static_psymbols,
3511 0, (CORE_ADDR) 0, cu->language, objfile);
3512
3513 break;
3514 case DW_TAG_enumerator:
3515 add_psymbol_to_list (actual_name, strlen (actual_name),
3516 built_actual_name,
3517 VAR_DOMAIN, LOC_CONST,
3518 (cu->language == language_cplus
3519 || cu->language == language_java)
3520 ? &objfile->global_psymbols
3521 : &objfile->static_psymbols,
3522 0, (CORE_ADDR) 0, cu->language, objfile);
3523 break;
3524 default:
3525 break;
3526 }
3527
3528 if (built_actual_name)
3529 xfree (actual_name);
3530 }
3531
3532 /* Read a partial die corresponding to a namespace; also, add a symbol
3533 corresponding to that namespace to the symbol table. NAMESPACE is
3534 the name of the enclosing namespace. */
3535
3536 static void
3537 add_partial_namespace (struct partial_die_info *pdi,
3538 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3539 int need_pc, struct dwarf2_cu *cu)
3540 {
3541 /* Add a symbol for the namespace. */
3542
3543 add_partial_symbol (pdi, cu);
3544
3545 /* Now scan partial symbols in that namespace. */
3546
3547 if (pdi->has_children)
3548 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
3549 }
3550
3551 /* Read a partial die corresponding to a Fortran module. */
3552
3553 static void
3554 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
3555 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3556 {
3557 /* Now scan partial symbols in that module. */
3558
3559 if (pdi->has_children)
3560 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
3561 }
3562
3563 /* Read a partial die corresponding to a subprogram and create a partial
3564 symbol for that subprogram. When the CU language allows it, this
3565 routine also defines a partial symbol for each nested subprogram
3566 that this subprogram contains.
3567
3568 DIE my also be a lexical block, in which case we simply search
3569 recursively for suprograms defined inside that lexical block.
3570 Again, this is only performed when the CU language allows this
3571 type of definitions. */
3572
3573 static void
3574 add_partial_subprogram (struct partial_die_info *pdi,
3575 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3576 int need_pc, struct dwarf2_cu *cu)
3577 {
3578 if (pdi->tag == DW_TAG_subprogram)
3579 {
3580 if (pdi->has_pc_info)
3581 {
3582 if (pdi->lowpc < *lowpc)
3583 *lowpc = pdi->lowpc;
3584 if (pdi->highpc > *highpc)
3585 *highpc = pdi->highpc;
3586 if (need_pc)
3587 {
3588 CORE_ADDR baseaddr;
3589 struct objfile *objfile = cu->objfile;
3590
3591 baseaddr = ANOFFSET (objfile->section_offsets,
3592 SECT_OFF_TEXT (objfile));
3593 addrmap_set_empty (objfile->psymtabs_addrmap,
3594 pdi->lowpc + baseaddr,
3595 pdi->highpc - 1 + baseaddr,
3596 cu->per_cu->v.psymtab);
3597 }
3598 if (!pdi->is_declaration)
3599 /* Ignore subprogram DIEs that do not have a name, they are
3600 illegal. Do not emit a complaint at this point, we will
3601 do so when we convert this psymtab into a symtab. */
3602 if (pdi->name)
3603 add_partial_symbol (pdi, cu);
3604 }
3605 }
3606
3607 if (! pdi->has_children)
3608 return;
3609
3610 if (cu->language == language_ada)
3611 {
3612 pdi = pdi->die_child;
3613 while (pdi != NULL)
3614 {
3615 fixup_partial_die (pdi, cu);
3616 if (pdi->tag == DW_TAG_subprogram
3617 || pdi->tag == DW_TAG_lexical_block)
3618 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3619 pdi = pdi->die_sibling;
3620 }
3621 }
3622 }
3623
3624 /* See if we can figure out if the class lives in a namespace. We do
3625 this by looking for a member function; its demangled name will
3626 contain namespace info, if there is any. */
3627
3628 static void
3629 guess_structure_name (struct partial_die_info *struct_pdi,
3630 struct dwarf2_cu *cu)
3631 {
3632 if ((cu->language == language_cplus
3633 || cu->language == language_java)
3634 && cu->has_namespace_info == 0
3635 && struct_pdi->has_children)
3636 {
3637 /* NOTE: carlton/2003-10-07: Getting the info this way changes
3638 what template types look like, because the demangler
3639 frequently doesn't give the same name as the debug info. We
3640 could fix this by only using the demangled name to get the
3641 prefix (but see comment in read_structure_type). */
3642
3643 struct partial_die_info *real_pdi;
3644
3645 /* If this DIE (this DIE's specification, if any) has a parent, then
3646 we should not do this. We'll prepend the parent's fully qualified
3647 name when we create the partial symbol. */
3648
3649 real_pdi = struct_pdi;
3650 while (real_pdi->has_specification)
3651 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
3652
3653 if (real_pdi->die_parent != NULL)
3654 return;
3655 }
3656 }
3657
3658 /* Read a partial die corresponding to an enumeration type. */
3659
3660 static void
3661 add_partial_enumeration (struct partial_die_info *enum_pdi,
3662 struct dwarf2_cu *cu)
3663 {
3664 struct partial_die_info *pdi;
3665
3666 if (enum_pdi->name != NULL)
3667 add_partial_symbol (enum_pdi, cu);
3668
3669 pdi = enum_pdi->die_child;
3670 while (pdi)
3671 {
3672 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
3673 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
3674 else
3675 add_partial_symbol (pdi, cu);
3676 pdi = pdi->die_sibling;
3677 }
3678 }
3679
3680 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
3681 Return the corresponding abbrev, or NULL if the number is zero (indicating
3682 an empty DIE). In either case *BYTES_READ will be set to the length of
3683 the initial number. */
3684
3685 static struct abbrev_info *
3686 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
3687 struct dwarf2_cu *cu)
3688 {
3689 bfd *abfd = cu->objfile->obfd;
3690 unsigned int abbrev_number;
3691 struct abbrev_info *abbrev;
3692
3693 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
3694
3695 if (abbrev_number == 0)
3696 return NULL;
3697
3698 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
3699 if (!abbrev)
3700 {
3701 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
3702 bfd_get_filename (abfd));
3703 }
3704
3705 return abbrev;
3706 }
3707
3708 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
3709 Returns a pointer to the end of a series of DIEs, terminated by an empty
3710 DIE. Any children of the skipped DIEs will also be skipped. */
3711
3712 static gdb_byte *
3713 skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
3714 {
3715 struct abbrev_info *abbrev;
3716 unsigned int bytes_read;
3717
3718 while (1)
3719 {
3720 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
3721 if (abbrev == NULL)
3722 return info_ptr + bytes_read;
3723 else
3724 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
3725 }
3726 }
3727
3728 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
3729 INFO_PTR should point just after the initial uleb128 of a DIE, and the
3730 abbrev corresponding to that skipped uleb128 should be passed in
3731 ABBREV. Returns a pointer to this DIE's sibling, skipping any
3732 children. */
3733
3734 static gdb_byte *
3735 skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
3736 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
3737 {
3738 unsigned int bytes_read;
3739 struct attribute attr;
3740 bfd *abfd = cu->objfile->obfd;
3741 unsigned int form, i;
3742
3743 for (i = 0; i < abbrev->num_attrs; i++)
3744 {
3745 /* The only abbrev we care about is DW_AT_sibling. */
3746 if (abbrev->attrs[i].name == DW_AT_sibling)
3747 {
3748 read_attribute (&attr, &abbrev->attrs[i],
3749 abfd, info_ptr, cu);
3750 if (attr.form == DW_FORM_ref_addr)
3751 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
3752 else
3753 return buffer + dwarf2_get_ref_die_offset (&attr);
3754 }
3755
3756 /* If it isn't DW_AT_sibling, skip this attribute. */
3757 form = abbrev->attrs[i].form;
3758 skip_attribute:
3759 switch (form)
3760 {
3761 case DW_FORM_ref_addr:
3762 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
3763 and later it is offset sized. */
3764 if (cu->header.version == 2)
3765 info_ptr += cu->header.addr_size;
3766 else
3767 info_ptr += cu->header.offset_size;
3768 break;
3769 case DW_FORM_addr:
3770 info_ptr += cu->header.addr_size;
3771 break;
3772 case DW_FORM_data1:
3773 case DW_FORM_ref1:
3774 case DW_FORM_flag:
3775 info_ptr += 1;
3776 break;
3777 case DW_FORM_flag_present:
3778 break;
3779 case DW_FORM_data2:
3780 case DW_FORM_ref2:
3781 info_ptr += 2;
3782 break;
3783 case DW_FORM_data4:
3784 case DW_FORM_ref4:
3785 info_ptr += 4;
3786 break;
3787 case DW_FORM_data8:
3788 case DW_FORM_ref8:
3789 case DW_FORM_sig8:
3790 info_ptr += 8;
3791 break;
3792 case DW_FORM_string:
3793 read_string (abfd, info_ptr, &bytes_read);
3794 info_ptr += bytes_read;
3795 break;
3796 case DW_FORM_sec_offset:
3797 case DW_FORM_strp:
3798 info_ptr += cu->header.offset_size;
3799 break;
3800 case DW_FORM_exprloc:
3801 case DW_FORM_block:
3802 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
3803 info_ptr += bytes_read;
3804 break;
3805 case DW_FORM_block1:
3806 info_ptr += 1 + read_1_byte (abfd, info_ptr);
3807 break;
3808 case DW_FORM_block2:
3809 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
3810 break;
3811 case DW_FORM_block4:
3812 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
3813 break;
3814 case DW_FORM_sdata:
3815 case DW_FORM_udata:
3816 case DW_FORM_ref_udata:
3817 info_ptr = skip_leb128 (abfd, info_ptr);
3818 break;
3819 case DW_FORM_indirect:
3820 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
3821 info_ptr += bytes_read;
3822 /* We need to continue parsing from here, so just go back to
3823 the top. */
3824 goto skip_attribute;
3825
3826 default:
3827 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
3828 dwarf_form_name (form),
3829 bfd_get_filename (abfd));
3830 }
3831 }
3832
3833 if (abbrev->has_children)
3834 return skip_children (buffer, info_ptr, cu);
3835 else
3836 return info_ptr;
3837 }
3838
3839 /* Locate ORIG_PDI's sibling.
3840 INFO_PTR should point to the start of the next DIE after ORIG_PDI
3841 in BUFFER. */
3842
3843 static gdb_byte *
3844 locate_pdi_sibling (struct partial_die_info *orig_pdi,
3845 gdb_byte *buffer, gdb_byte *info_ptr,
3846 bfd *abfd, struct dwarf2_cu *cu)
3847 {
3848 /* Do we know the sibling already? */
3849
3850 if (orig_pdi->sibling)
3851 return orig_pdi->sibling;
3852
3853 /* Are there any children to deal with? */
3854
3855 if (!orig_pdi->has_children)
3856 return info_ptr;
3857
3858 /* Skip the children the long way. */
3859
3860 return skip_children (buffer, info_ptr, cu);
3861 }
3862
3863 /* Expand this partial symbol table into a full symbol table. */
3864
3865 static void
3866 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
3867 {
3868 if (pst != NULL)
3869 {
3870 if (pst->readin)
3871 {
3872 warning (_("bug: psymtab for %s is already read in."), pst->filename);
3873 }
3874 else
3875 {
3876 if (info_verbose)
3877 {
3878 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
3879 gdb_flush (gdb_stdout);
3880 }
3881
3882 /* Restore our global data. */
3883 dwarf2_per_objfile = objfile_data (pst->objfile,
3884 dwarf2_objfile_data_key);
3885
3886 /* If this psymtab is constructed from a debug-only objfile, the
3887 has_section_at_zero flag will not necessarily be correct. We
3888 can get the correct value for this flag by looking at the data
3889 associated with the (presumably stripped) associated objfile. */
3890 if (pst->objfile->separate_debug_objfile_backlink)
3891 {
3892 struct dwarf2_per_objfile *dpo_backlink
3893 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
3894 dwarf2_objfile_data_key);
3895
3896 dwarf2_per_objfile->has_section_at_zero
3897 = dpo_backlink->has_section_at_zero;
3898 }
3899
3900 psymtab_to_symtab_1 (pst);
3901
3902 /* Finish up the debug error message. */
3903 if (info_verbose)
3904 printf_filtered (_("done.\n"));
3905 }
3906 }
3907 }
3908
3909 /* Add PER_CU to the queue. */
3910
3911 static void
3912 queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
3913 {
3914 struct dwarf2_queue_item *item;
3915
3916 per_cu->queued = 1;
3917 item = xmalloc (sizeof (*item));
3918 item->per_cu = per_cu;
3919 item->next = NULL;
3920
3921 if (dwarf2_queue == NULL)
3922 dwarf2_queue = item;
3923 else
3924 dwarf2_queue_tail->next = item;
3925
3926 dwarf2_queue_tail = item;
3927 }
3928
3929 /* Process the queue. */
3930
3931 static void
3932 process_queue (struct objfile *objfile)
3933 {
3934 struct dwarf2_queue_item *item, *next_item;
3935
3936 /* The queue starts out with one item, but following a DIE reference
3937 may load a new CU, adding it to the end of the queue. */
3938 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
3939 {
3940 if (dwarf2_per_objfile->using_index
3941 ? !item->per_cu->v.quick->symtab
3942 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
3943 process_full_comp_unit (item->per_cu);
3944
3945 item->per_cu->queued = 0;
3946 next_item = item->next;
3947 xfree (item);
3948 }
3949
3950 dwarf2_queue_tail = NULL;
3951 }
3952
3953 /* Free all allocated queue entries. This function only releases anything if
3954 an error was thrown; if the queue was processed then it would have been
3955 freed as we went along. */
3956
3957 static void
3958 dwarf2_release_queue (void *dummy)
3959 {
3960 struct dwarf2_queue_item *item, *last;
3961
3962 item = dwarf2_queue;
3963 while (item)
3964 {
3965 /* Anything still marked queued is likely to be in an
3966 inconsistent state, so discard it. */
3967 if (item->per_cu->queued)
3968 {
3969 if (item->per_cu->cu != NULL)
3970 free_one_cached_comp_unit (item->per_cu->cu);
3971 item->per_cu->queued = 0;
3972 }
3973
3974 last = item;
3975 item = item->next;
3976 xfree (last);
3977 }
3978
3979 dwarf2_queue = dwarf2_queue_tail = NULL;
3980 }
3981
3982 /* Read in full symbols for PST, and anything it depends on. */
3983
3984 static void
3985 psymtab_to_symtab_1 (struct partial_symtab *pst)
3986 {
3987 struct dwarf2_per_cu_data *per_cu;
3988 struct cleanup *back_to;
3989 int i;
3990
3991 for (i = 0; i < pst->number_of_dependencies; i++)
3992 if (!pst->dependencies[i]->readin)
3993 {
3994 /* Inform about additional files that need to be read in. */
3995 if (info_verbose)
3996 {
3997 /* FIXME: i18n: Need to make this a single string. */
3998 fputs_filtered (" ", gdb_stdout);
3999 wrap_here ("");
4000 fputs_filtered ("and ", gdb_stdout);
4001 wrap_here ("");
4002 printf_filtered ("%s...", pst->dependencies[i]->filename);
4003 wrap_here (""); /* Flush output */
4004 gdb_flush (gdb_stdout);
4005 }
4006 psymtab_to_symtab_1 (pst->dependencies[i]);
4007 }
4008
4009 per_cu = pst->read_symtab_private;
4010
4011 if (per_cu == NULL)
4012 {
4013 /* It's an include file, no symbols to read for it.
4014 Everything is in the parent symtab. */
4015 pst->readin = 1;
4016 return;
4017 }
4018
4019 dw2_do_instantiate_symtab (pst->objfile, per_cu);
4020 }
4021
4022 /* Load the DIEs associated with PER_CU into memory. */
4023
4024 static void
4025 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
4026 {
4027 bfd *abfd = objfile->obfd;
4028 struct dwarf2_cu *cu;
4029 unsigned int offset;
4030 gdb_byte *info_ptr, *beg_of_comp_unit;
4031 struct cleanup *back_to, *free_cu_cleanup;
4032 struct attribute *attr;
4033
4034 gdb_assert (! per_cu->from_debug_types);
4035
4036 /* Set local variables from the partial symbol table info. */
4037 offset = per_cu->offset;
4038
4039 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
4040 info_ptr = dwarf2_per_objfile->info.buffer + offset;
4041 beg_of_comp_unit = info_ptr;
4042
4043 cu = alloc_one_comp_unit (objfile);
4044
4045 /* If an error occurs while loading, release our storage. */
4046 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
4047
4048 /* Read in the comp_unit header. */
4049 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
4050
4051 /* Complete the cu_header. */
4052 cu->header.offset = offset;
4053 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
4054
4055 /* Read the abbrevs for this compilation unit. */
4056 dwarf2_read_abbrevs (abfd, cu);
4057 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
4058
4059 /* Link this compilation unit into the compilation unit tree. */
4060 per_cu->cu = cu;
4061 cu->per_cu = per_cu;
4062 cu->type_hash = per_cu->type_hash;
4063
4064 cu->dies = read_comp_unit (info_ptr, cu);
4065
4066 /* We try not to read any attributes in this function, because not
4067 all objfiles needed for references have been loaded yet, and symbol
4068 table processing isn't initialized. But we have to set the CU language,
4069 or we won't be able to build types correctly. */
4070 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
4071 if (attr)
4072 set_cu_language (DW_UNSND (attr), cu);
4073 else
4074 set_cu_language (language_minimal, cu);
4075
4076 /* Similarly, if we do not read the producer, we can not apply
4077 producer-specific interpretation. */
4078 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4079 if (attr)
4080 cu->producer = DW_STRING (attr);
4081
4082 /* Link this CU into read_in_chain. */
4083 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4084 dwarf2_per_objfile->read_in_chain = per_cu;
4085
4086 do_cleanups (back_to);
4087
4088 /* We've successfully allocated this compilation unit. Let our caller
4089 clean it up when finished with it. */
4090 discard_cleanups (free_cu_cleanup);
4091 }
4092
4093 /* Generate full symbol information for PST and CU, whose DIEs have
4094 already been loaded into memory. */
4095
4096 static void
4097 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4098 {
4099 struct dwarf2_cu *cu = per_cu->cu;
4100 struct objfile *objfile = per_cu->objfile;
4101 CORE_ADDR lowpc, highpc;
4102 struct symtab *symtab;
4103 struct cleanup *back_to;
4104 CORE_ADDR baseaddr;
4105
4106 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4107
4108 buildsym_init ();
4109 back_to = make_cleanup (really_free_pendings, NULL);
4110
4111 cu->list_in_scope = &file_symbols;
4112
4113 dwarf2_find_base_address (cu->dies, cu);
4114
4115 /* Do line number decoding in read_file_scope () */
4116 process_die (cu->dies, cu);
4117
4118 /* Some compilers don't define a DW_AT_high_pc attribute for the
4119 compilation unit. If the DW_AT_high_pc is missing, synthesize
4120 it, by scanning the DIE's below the compilation unit. */
4121 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
4122
4123 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
4124
4125 /* Set symtab language to language from DW_AT_language.
4126 If the compilation is from a C file generated by language preprocessors,
4127 do not set the language if it was already deduced by start_subfile. */
4128 if (symtab != NULL
4129 && !(cu->language == language_c && symtab->language != language_c))
4130 {
4131 symtab->language = cu->language;
4132 }
4133
4134 if (dwarf2_per_objfile->using_index)
4135 per_cu->v.quick->symtab = symtab;
4136 else
4137 {
4138 struct partial_symtab *pst = per_cu->v.psymtab;
4139 pst->symtab = symtab;
4140 pst->readin = 1;
4141 }
4142
4143 do_cleanups (back_to);
4144 }
4145
4146 /* Process a die and its children. */
4147
4148 static void
4149 process_die (struct die_info *die, struct dwarf2_cu *cu)
4150 {
4151 switch (die->tag)
4152 {
4153 case DW_TAG_padding:
4154 break;
4155 case DW_TAG_compile_unit:
4156 read_file_scope (die, cu);
4157 break;
4158 case DW_TAG_type_unit:
4159 read_type_unit_scope (die, cu);
4160 break;
4161 case DW_TAG_subprogram:
4162 case DW_TAG_inlined_subroutine:
4163 read_func_scope (die, cu);
4164 break;
4165 case DW_TAG_lexical_block:
4166 case DW_TAG_try_block:
4167 case DW_TAG_catch_block:
4168 read_lexical_block_scope (die, cu);
4169 break;
4170 case DW_TAG_class_type:
4171 case DW_TAG_interface_type:
4172 case DW_TAG_structure_type:
4173 case DW_TAG_union_type:
4174 process_structure_scope (die, cu);
4175 break;
4176 case DW_TAG_enumeration_type:
4177 process_enumeration_scope (die, cu);
4178 break;
4179
4180 /* These dies have a type, but processing them does not create
4181 a symbol or recurse to process the children. Therefore we can
4182 read them on-demand through read_type_die. */
4183 case DW_TAG_subroutine_type:
4184 case DW_TAG_set_type:
4185 case DW_TAG_array_type:
4186 case DW_TAG_pointer_type:
4187 case DW_TAG_ptr_to_member_type:
4188 case DW_TAG_reference_type:
4189 case DW_TAG_string_type:
4190 break;
4191
4192 case DW_TAG_base_type:
4193 case DW_TAG_subrange_type:
4194 case DW_TAG_typedef:
4195 case DW_TAG_const_type:
4196 case DW_TAG_volatile_type:
4197 /* Add a typedef symbol for the type definition, if it has a
4198 DW_AT_name. */
4199 new_symbol (die, read_type_die (die, cu), cu);
4200 break;
4201 case DW_TAG_common_block:
4202 read_common_block (die, cu);
4203 break;
4204 case DW_TAG_common_inclusion:
4205 break;
4206 case DW_TAG_namespace:
4207 processing_has_namespace_info = 1;
4208 read_namespace (die, cu);
4209 break;
4210 case DW_TAG_module:
4211 processing_has_namespace_info = 1;
4212 read_module (die, cu);
4213 break;
4214 case DW_TAG_imported_declaration:
4215 case DW_TAG_imported_module:
4216 processing_has_namespace_info = 1;
4217 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4218 || cu->language != language_fortran))
4219 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4220 dwarf_tag_name (die->tag));
4221 read_import_statement (die, cu);
4222 break;
4223 default:
4224 new_symbol (die, NULL, cu);
4225 break;
4226 }
4227 }
4228
4229 /* A helper function for dwarf2_compute_name which determines whether DIE
4230 needs to have the name of the scope prepended to the name listed in the
4231 die. */
4232
4233 static int
4234 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4235 {
4236 struct attribute *attr;
4237
4238 switch (die->tag)
4239 {
4240 case DW_TAG_namespace:
4241 case DW_TAG_typedef:
4242 case DW_TAG_class_type:
4243 case DW_TAG_interface_type:
4244 case DW_TAG_structure_type:
4245 case DW_TAG_union_type:
4246 case DW_TAG_enumeration_type:
4247 case DW_TAG_enumerator:
4248 case DW_TAG_subprogram:
4249 case DW_TAG_member:
4250 return 1;
4251
4252 case DW_TAG_variable:
4253 /* We only need to prefix "globally" visible variables. These include
4254 any variable marked with DW_AT_external or any variable that
4255 lives in a namespace. [Variables in anonymous namespaces
4256 require prefixing, but they are not DW_AT_external.] */
4257
4258 if (dwarf2_attr (die, DW_AT_specification, cu))
4259 {
4260 struct dwarf2_cu *spec_cu = cu;
4261
4262 return die_needs_namespace (die_specification (die, &spec_cu),
4263 spec_cu);
4264 }
4265
4266 attr = dwarf2_attr (die, DW_AT_external, cu);
4267 if (attr == NULL && die->parent->tag != DW_TAG_namespace
4268 && die->parent->tag != DW_TAG_module)
4269 return 0;
4270 /* A variable in a lexical block of some kind does not need a
4271 namespace, even though in C++ such variables may be external
4272 and have a mangled name. */
4273 if (die->parent->tag == DW_TAG_lexical_block
4274 || die->parent->tag == DW_TAG_try_block
4275 || die->parent->tag == DW_TAG_catch_block
4276 || die->parent->tag == DW_TAG_subprogram)
4277 return 0;
4278 return 1;
4279
4280 default:
4281 return 0;
4282 }
4283 }
4284
4285 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
4286 compute the physname for the object, which include a method's
4287 formal parameters (C++/Java) and return type (Java).
4288
4289 For Ada, return the DIE's linkage name rather than the fully qualified
4290 name. PHYSNAME is ignored..
4291
4292 The result is allocated on the objfile_obstack and canonicalized. */
4293
4294 static const char *
4295 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
4296 int physname)
4297 {
4298 if (name == NULL)
4299 name = dwarf2_name (die, cu);
4300
4301 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
4302 compute it by typename_concat inside GDB. */
4303 if (cu->language == language_ada
4304 || (cu->language == language_fortran && physname))
4305 {
4306 /* For Ada unit, we prefer the linkage name over the name, as
4307 the former contains the exported name, which the user expects
4308 to be able to reference. Ideally, we want the user to be able
4309 to reference this entity using either natural or linkage name,
4310 but we haven't started looking at this enhancement yet. */
4311 struct attribute *attr;
4312
4313 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
4314 if (attr == NULL)
4315 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
4316 if (attr && DW_STRING (attr))
4317 return DW_STRING (attr);
4318 }
4319
4320 /* These are the only languages we know how to qualify names in. */
4321 if (name != NULL
4322 && (cu->language == language_cplus || cu->language == language_java
4323 || cu->language == language_fortran))
4324 {
4325 if (die_needs_namespace (die, cu))
4326 {
4327 long length;
4328 char *prefix;
4329 struct ui_file *buf;
4330
4331 prefix = determine_prefix (die, cu);
4332 buf = mem_fileopen ();
4333 if (*prefix != '\0')
4334 {
4335 char *prefixed_name = typename_concat (NULL, prefix, name,
4336 physname, cu);
4337
4338 fputs_unfiltered (prefixed_name, buf);
4339 xfree (prefixed_name);
4340 }
4341 else
4342 fputs_unfiltered (name ? name : "", buf);
4343
4344 /* For Java and C++ methods, append formal parameter type
4345 information, if PHYSNAME. */
4346
4347 if (physname && die->tag == DW_TAG_subprogram
4348 && (cu->language == language_cplus
4349 || cu->language == language_java))
4350 {
4351 struct type *type = read_type_die (die, cu);
4352
4353 c_type_print_args (type, buf, 0, cu->language);
4354
4355 if (cu->language == language_java)
4356 {
4357 /* For java, we must append the return type to method
4358 names. */
4359 if (die->tag == DW_TAG_subprogram)
4360 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
4361 0, 0);
4362 }
4363 else if (cu->language == language_cplus)
4364 {
4365 if (TYPE_NFIELDS (type) > 0
4366 && TYPE_FIELD_ARTIFICIAL (type, 0)
4367 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0))))
4368 fputs_unfiltered (" const", buf);
4369 }
4370 }
4371
4372 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
4373 &length);
4374 ui_file_delete (buf);
4375
4376 if (cu->language == language_cplus)
4377 {
4378 char *cname
4379 = dwarf2_canonicalize_name (name, cu,
4380 &cu->objfile->objfile_obstack);
4381
4382 if (cname != NULL)
4383 name = cname;
4384 }
4385 }
4386 }
4387
4388 return name;
4389 }
4390
4391 /* Return the fully qualified name of DIE, based on its DW_AT_name.
4392 If scope qualifiers are appropriate they will be added. The result
4393 will be allocated on the objfile_obstack, or NULL if the DIE does
4394 not have a name. NAME may either be from a previous call to
4395 dwarf2_name or NULL.
4396
4397 The output string will be canonicalized (if C++/Java). */
4398
4399 static const char *
4400 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
4401 {
4402 return dwarf2_compute_name (name, die, cu, 0);
4403 }
4404
4405 /* Construct a physname for the given DIE in CU. NAME may either be
4406 from a previous call to dwarf2_name or NULL. The result will be
4407 allocated on the objfile_objstack or NULL if the DIE does not have a
4408 name.
4409
4410 The output string will be canonicalized (if C++/Java). */
4411
4412 static const char *
4413 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
4414 {
4415 return dwarf2_compute_name (name, die, cu, 1);
4416 }
4417
4418 /* Read the import statement specified by the given die and record it. */
4419
4420 static void
4421 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
4422 {
4423 struct attribute *import_attr;
4424 struct die_info *imported_die;
4425 struct dwarf2_cu *imported_cu;
4426 const char *imported_name;
4427 const char *imported_name_prefix;
4428 const char *canonical_name;
4429 const char *import_alias;
4430 const char *imported_declaration = NULL;
4431 const char *import_prefix;
4432
4433 char *temp;
4434
4435 import_attr = dwarf2_attr (die, DW_AT_import, cu);
4436 if (import_attr == NULL)
4437 {
4438 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
4439 dwarf_tag_name (die->tag));
4440 return;
4441 }
4442
4443 imported_cu = cu;
4444 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
4445 imported_name = dwarf2_name (imported_die, imported_cu);
4446 if (imported_name == NULL)
4447 {
4448 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
4449
4450 The import in the following code:
4451 namespace A
4452 {
4453 typedef int B;
4454 }
4455
4456 int main ()
4457 {
4458 using A::B;
4459 B b;
4460 return b;
4461 }
4462
4463 ...
4464 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
4465 <52> DW_AT_decl_file : 1
4466 <53> DW_AT_decl_line : 6
4467 <54> DW_AT_import : <0x75>
4468 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
4469 <59> DW_AT_name : B
4470 <5b> DW_AT_decl_file : 1
4471 <5c> DW_AT_decl_line : 2
4472 <5d> DW_AT_type : <0x6e>
4473 ...
4474 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
4475 <76> DW_AT_byte_size : 4
4476 <77> DW_AT_encoding : 5 (signed)
4477
4478 imports the wrong die ( 0x75 instead of 0x58 ).
4479 This case will be ignored until the gcc bug is fixed. */
4480 return;
4481 }
4482
4483 /* Figure out the local name after import. */
4484 import_alias = dwarf2_name (die, cu);
4485
4486 /* Figure out where the statement is being imported to. */
4487 import_prefix = determine_prefix (die, cu);
4488
4489 /* Figure out what the scope of the imported die is and prepend it
4490 to the name of the imported die. */
4491 imported_name_prefix = determine_prefix (imported_die, imported_cu);
4492
4493 if (imported_die->tag != DW_TAG_namespace
4494 && imported_die->tag != DW_TAG_module)
4495 {
4496 imported_declaration = imported_name;
4497 canonical_name = imported_name_prefix;
4498 }
4499 else if (strlen (imported_name_prefix) > 0)
4500 {
4501 temp = alloca (strlen (imported_name_prefix)
4502 + 2 + strlen (imported_name) + 1);
4503 strcpy (temp, imported_name_prefix);
4504 strcat (temp, "::");
4505 strcat (temp, imported_name);
4506 canonical_name = temp;
4507 }
4508 else
4509 canonical_name = imported_name;
4510
4511 cp_add_using_directive (import_prefix,
4512 canonical_name,
4513 import_alias,
4514 imported_declaration,
4515 &cu->objfile->objfile_obstack);
4516 }
4517
4518 static void
4519 initialize_cu_func_list (struct dwarf2_cu *cu)
4520 {
4521 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
4522 }
4523
4524 static void
4525 free_cu_line_header (void *arg)
4526 {
4527 struct dwarf2_cu *cu = arg;
4528
4529 free_line_header (cu->line_header);
4530 cu->line_header = NULL;
4531 }
4532
4533 static void
4534 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
4535 char **name, char **comp_dir)
4536 {
4537 struct attribute *attr;
4538
4539 *name = NULL;
4540 *comp_dir = NULL;
4541
4542 /* Find the filename. Do not use dwarf2_name here, since the filename
4543 is not a source language identifier. */
4544 attr = dwarf2_attr (die, DW_AT_name, cu);
4545 if (attr)
4546 {
4547 *name = DW_STRING (attr);
4548 }
4549
4550 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
4551 if (attr)
4552 *comp_dir = DW_STRING (attr);
4553 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
4554 {
4555 *comp_dir = ldirname (*name);
4556 if (*comp_dir != NULL)
4557 make_cleanup (xfree, *comp_dir);
4558 }
4559 if (*comp_dir != NULL)
4560 {
4561 /* Irix 6.2 native cc prepends <machine>.: to the compilation
4562 directory, get rid of it. */
4563 char *cp = strchr (*comp_dir, ':');
4564
4565 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
4566 *comp_dir = cp + 1;
4567 }
4568
4569 if (*name == NULL)
4570 *name = "<unknown>";
4571 }
4572
4573 static void
4574 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
4575 {
4576 struct objfile *objfile = cu->objfile;
4577 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4578 CORE_ADDR lowpc = ((CORE_ADDR) -1);
4579 CORE_ADDR highpc = ((CORE_ADDR) 0);
4580 struct attribute *attr;
4581 char *name = NULL;
4582 char *comp_dir = NULL;
4583 struct die_info *child_die;
4584 bfd *abfd = objfile->obfd;
4585 struct line_header *line_header = 0;
4586 CORE_ADDR baseaddr;
4587
4588 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4589
4590 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
4591
4592 /* If we didn't find a lowpc, set it to highpc to avoid complaints
4593 from finish_block. */
4594 if (lowpc == ((CORE_ADDR) -1))
4595 lowpc = highpc;
4596 lowpc += baseaddr;
4597 highpc += baseaddr;
4598
4599 find_file_and_directory (die, cu, &name, &comp_dir);
4600
4601 attr = dwarf2_attr (die, DW_AT_language, cu);
4602 if (attr)
4603 {
4604 set_cu_language (DW_UNSND (attr), cu);
4605 }
4606
4607 attr = dwarf2_attr (die, DW_AT_producer, cu);
4608 if (attr)
4609 cu->producer = DW_STRING (attr);
4610
4611 /* We assume that we're processing GCC output. */
4612 processing_gcc_compilation = 2;
4613
4614 processing_has_namespace_info = 0;
4615
4616 start_symtab (name, comp_dir, lowpc);
4617 record_debugformat ("DWARF 2");
4618 record_producer (cu->producer);
4619
4620 initialize_cu_func_list (cu);
4621
4622 /* Decode line number information if present. We do this before
4623 processing child DIEs, so that the line header table is available
4624 for DW_AT_decl_file. */
4625 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4626 if (attr)
4627 {
4628 unsigned int line_offset = DW_UNSND (attr);
4629 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
4630 if (line_header)
4631 {
4632 cu->line_header = line_header;
4633 make_cleanup (free_cu_line_header, cu);
4634 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
4635 }
4636 }
4637
4638 /* Process all dies in compilation unit. */
4639 if (die->child != NULL)
4640 {
4641 child_die = die->child;
4642 while (child_die && child_die->tag)
4643 {
4644 process_die (child_die, cu);
4645 child_die = sibling_die (child_die);
4646 }
4647 }
4648
4649 /* Decode macro information, if present. Dwarf 2 macro information
4650 refers to information in the line number info statement program
4651 header, so we can only read it if we've read the header
4652 successfully. */
4653 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
4654 if (attr && line_header)
4655 {
4656 unsigned int macro_offset = DW_UNSND (attr);
4657
4658 dwarf_decode_macros (line_header, macro_offset,
4659 comp_dir, abfd, cu);
4660 }
4661 do_cleanups (back_to);
4662 }
4663
4664 /* For TUs we want to skip the first top level sibling if it's not the
4665 actual type being defined by this TU. In this case the first top
4666 level sibling is there to provide context only. */
4667
4668 static void
4669 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
4670 {
4671 struct objfile *objfile = cu->objfile;
4672 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4673 CORE_ADDR lowpc;
4674 struct attribute *attr;
4675 char *name = NULL;
4676 char *comp_dir = NULL;
4677 struct die_info *child_die;
4678 bfd *abfd = objfile->obfd;
4679
4680 /* start_symtab needs a low pc, but we don't really have one.
4681 Do what read_file_scope would do in the absence of such info. */
4682 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4683
4684 /* Find the filename. Do not use dwarf2_name here, since the filename
4685 is not a source language identifier. */
4686 attr = dwarf2_attr (die, DW_AT_name, cu);
4687 if (attr)
4688 name = DW_STRING (attr);
4689
4690 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
4691 if (attr)
4692 comp_dir = DW_STRING (attr);
4693 else if (name != NULL && IS_ABSOLUTE_PATH (name))
4694 {
4695 comp_dir = ldirname (name);
4696 if (comp_dir != NULL)
4697 make_cleanup (xfree, comp_dir);
4698 }
4699
4700 if (name == NULL)
4701 name = "<unknown>";
4702
4703 attr = dwarf2_attr (die, DW_AT_language, cu);
4704 if (attr)
4705 set_cu_language (DW_UNSND (attr), cu);
4706
4707 /* This isn't technically needed today. It is done for symmetry
4708 with read_file_scope. */
4709 attr = dwarf2_attr (die, DW_AT_producer, cu);
4710 if (attr)
4711 cu->producer = DW_STRING (attr);
4712
4713 /* We assume that we're processing GCC output. */
4714 processing_gcc_compilation = 2;
4715
4716 processing_has_namespace_info = 0;
4717
4718 start_symtab (name, comp_dir, lowpc);
4719 record_debugformat ("DWARF 2");
4720 record_producer (cu->producer);
4721
4722 /* Process the dies in the type unit. */
4723 if (die->child == NULL)
4724 {
4725 dump_die_for_error (die);
4726 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
4727 bfd_get_filename (abfd));
4728 }
4729
4730 child_die = die->child;
4731
4732 while (child_die && child_die->tag)
4733 {
4734 process_die (child_die, cu);
4735
4736 child_die = sibling_die (child_die);
4737 }
4738
4739 do_cleanups (back_to);
4740 }
4741
4742 static void
4743 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
4744 struct dwarf2_cu *cu)
4745 {
4746 struct function_range *thisfn;
4747
4748 thisfn = (struct function_range *)
4749 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
4750 thisfn->name = name;
4751 thisfn->lowpc = lowpc;
4752 thisfn->highpc = highpc;
4753 thisfn->seen_line = 0;
4754 thisfn->next = NULL;
4755
4756 if (cu->last_fn == NULL)
4757 cu->first_fn = thisfn;
4758 else
4759 cu->last_fn->next = thisfn;
4760
4761 cu->last_fn = thisfn;
4762 }
4763
4764 /* qsort helper for inherit_abstract_dies. */
4765
4766 static int
4767 unsigned_int_compar (const void *ap, const void *bp)
4768 {
4769 unsigned int a = *(unsigned int *) ap;
4770 unsigned int b = *(unsigned int *) bp;
4771
4772 return (a > b) - (b > a);
4773 }
4774
4775 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
4776 Inherit only the children of the DW_AT_abstract_origin DIE not being already
4777 referenced by DW_AT_abstract_origin from the children of the current DIE. */
4778
4779 static void
4780 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
4781 {
4782 struct die_info *child_die;
4783 unsigned die_children_count;
4784 /* CU offsets which were referenced by children of the current DIE. */
4785 unsigned *offsets;
4786 unsigned *offsets_end, *offsetp;
4787 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
4788 struct die_info *origin_die;
4789 /* Iterator of the ORIGIN_DIE children. */
4790 struct die_info *origin_child_die;
4791 struct cleanup *cleanups;
4792 struct attribute *attr;
4793
4794 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
4795 if (!attr)
4796 return;
4797
4798 origin_die = follow_die_ref (die, attr, &cu);
4799 if (die->tag != origin_die->tag
4800 && !(die->tag == DW_TAG_inlined_subroutine
4801 && origin_die->tag == DW_TAG_subprogram))
4802 complaint (&symfile_complaints,
4803 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
4804 die->offset, origin_die->offset);
4805
4806 child_die = die->child;
4807 die_children_count = 0;
4808 while (child_die && child_die->tag)
4809 {
4810 child_die = sibling_die (child_die);
4811 die_children_count++;
4812 }
4813 offsets = xmalloc (sizeof (*offsets) * die_children_count);
4814 cleanups = make_cleanup (xfree, offsets);
4815
4816 offsets_end = offsets;
4817 child_die = die->child;
4818 while (child_die && child_die->tag)
4819 {
4820 /* For each CHILD_DIE, find the corresponding child of
4821 ORIGIN_DIE. If there is more than one layer of
4822 DW_AT_abstract_origin, follow them all; there shouldn't be,
4823 but GCC versions at least through 4.4 generate this (GCC PR
4824 40573). */
4825 struct die_info *child_origin_die = child_die;
4826
4827 while (1)
4828 {
4829 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin, cu);
4830 if (attr == NULL)
4831 break;
4832 child_origin_die = follow_die_ref (child_origin_die, attr, &cu);
4833 }
4834
4835 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
4836 counterpart may exist. */
4837 if (child_origin_die != child_die)
4838 {
4839 if (child_die->tag != child_origin_die->tag
4840 && !(child_die->tag == DW_TAG_inlined_subroutine
4841 && child_origin_die->tag == DW_TAG_subprogram))
4842 complaint (&symfile_complaints,
4843 _("Child DIE 0x%x and its abstract origin 0x%x have "
4844 "different tags"), child_die->offset,
4845 child_origin_die->offset);
4846 if (child_origin_die->parent != origin_die)
4847 complaint (&symfile_complaints,
4848 _("Child DIE 0x%x and its abstract origin 0x%x have "
4849 "different parents"), child_die->offset,
4850 child_origin_die->offset);
4851 else
4852 *offsets_end++ = child_origin_die->offset;
4853 }
4854 child_die = sibling_die (child_die);
4855 }
4856 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
4857 unsigned_int_compar);
4858 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
4859 if (offsetp[-1] == *offsetp)
4860 complaint (&symfile_complaints, _("Multiple children of DIE 0x%x refer "
4861 "to DIE 0x%x as their abstract origin"),
4862 die->offset, *offsetp);
4863
4864 offsetp = offsets;
4865 origin_child_die = origin_die->child;
4866 while (origin_child_die && origin_child_die->tag)
4867 {
4868 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
4869 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
4870 offsetp++;
4871 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
4872 {
4873 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
4874 process_die (origin_child_die, cu);
4875 }
4876 origin_child_die = sibling_die (origin_child_die);
4877 }
4878
4879 do_cleanups (cleanups);
4880 }
4881
4882 static void
4883 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
4884 {
4885 struct objfile *objfile = cu->objfile;
4886 struct context_stack *new;
4887 CORE_ADDR lowpc;
4888 CORE_ADDR highpc;
4889 struct die_info *child_die;
4890 struct attribute *attr, *call_line, *call_file;
4891 char *name;
4892 CORE_ADDR baseaddr;
4893 struct block *block;
4894 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
4895
4896 if (inlined_func)
4897 {
4898 /* If we do not have call site information, we can't show the
4899 caller of this inlined function. That's too confusing, so
4900 only use the scope for local variables. */
4901 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
4902 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
4903 if (call_line == NULL || call_file == NULL)
4904 {
4905 read_lexical_block_scope (die, cu);
4906 return;
4907 }
4908 }
4909
4910 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4911
4912 name = dwarf2_name (die, cu);
4913
4914 /* Ignore functions with missing or empty names. These are actually
4915 illegal according to the DWARF standard. */
4916 if (name == NULL)
4917 {
4918 complaint (&symfile_complaints,
4919 _("missing name for subprogram DIE at %d"), die->offset);
4920 return;
4921 }
4922
4923 /* Ignore functions with missing or invalid low and high pc attributes. */
4924 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
4925 {
4926 attr = dwarf2_attr (die, DW_AT_external, cu);
4927 if (!attr || !DW_UNSND (attr))
4928 complaint (&symfile_complaints,
4929 _("cannot get low and high bounds for subprogram DIE at %d"),
4930 die->offset);
4931 return;
4932 }
4933
4934 lowpc += baseaddr;
4935 highpc += baseaddr;
4936
4937 /* Record the function range for dwarf_decode_lines. */
4938 add_to_cu_func_list (name, lowpc, highpc, cu);
4939
4940 new = push_context (0, lowpc);
4941 new->name = new_symbol (die, read_type_die (die, cu), cu);
4942
4943 /* If there is a location expression for DW_AT_frame_base, record
4944 it. */
4945 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4946 if (attr)
4947 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
4948 expression is being recorded directly in the function's symbol
4949 and not in a separate frame-base object. I guess this hack is
4950 to avoid adding some sort of frame-base adjunct/annex to the
4951 function's symbol :-(. The problem with doing this is that it
4952 results in a function symbol with a location expression that
4953 has nothing to do with the location of the function, ouch! The
4954 relationship should be: a function's symbol has-a frame base; a
4955 frame-base has-a location expression. */
4956 dwarf2_symbol_mark_computed (attr, new->name, cu);
4957
4958 cu->list_in_scope = &local_symbols;
4959
4960 if (die->child != NULL)
4961 {
4962 child_die = die->child;
4963 while (child_die && child_die->tag)
4964 {
4965 process_die (child_die, cu);
4966 child_die = sibling_die (child_die);
4967 }
4968 }
4969
4970 inherit_abstract_dies (die, cu);
4971
4972 /* If we have a DW_AT_specification, we might need to import using
4973 directives from the context of the specification DIE. See the
4974 comment in determine_prefix. */
4975 if (cu->language == language_cplus
4976 && dwarf2_attr (die, DW_AT_specification, cu))
4977 {
4978 struct dwarf2_cu *spec_cu = cu;
4979 struct die_info *spec_die = die_specification (die, &spec_cu);
4980
4981 while (spec_die)
4982 {
4983 child_die = spec_die->child;
4984 while (child_die && child_die->tag)
4985 {
4986 if (child_die->tag == DW_TAG_imported_module)
4987 process_die (child_die, spec_cu);
4988 child_die = sibling_die (child_die);
4989 }
4990
4991 /* In some cases, GCC generates specification DIEs that
4992 themselves contain DW_AT_specification attributes. */
4993 spec_die = die_specification (spec_die, &spec_cu);
4994 }
4995 }
4996
4997 new = pop_context ();
4998 /* Make a block for the local symbols within. */
4999 block = finish_block (new->name, &local_symbols, new->old_blocks,
5000 lowpc, highpc, objfile);
5001
5002 /* For C++, set the block's scope. */
5003 if (cu->language == language_cplus || cu->language == language_fortran)
5004 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
5005 determine_prefix (die, cu),
5006 processing_has_namespace_info);
5007
5008 /* If we have address ranges, record them. */
5009 dwarf2_record_block_ranges (die, block, baseaddr, cu);
5010
5011 /* In C++, we can have functions nested inside functions (e.g., when
5012 a function declares a class that has methods). This means that
5013 when we finish processing a function scope, we may need to go
5014 back to building a containing block's symbol lists. */
5015 local_symbols = new->locals;
5016 param_symbols = new->params;
5017 using_directives = new->using_directives;
5018
5019 /* If we've finished processing a top-level function, subsequent
5020 symbols go in the file symbol list. */
5021 if (outermost_context_p ())
5022 cu->list_in_scope = &file_symbols;
5023 }
5024
5025 /* Process all the DIES contained within a lexical block scope. Start
5026 a new scope, process the dies, and then close the scope. */
5027
5028 static void
5029 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
5030 {
5031 struct objfile *objfile = cu->objfile;
5032 struct context_stack *new;
5033 CORE_ADDR lowpc, highpc;
5034 struct die_info *child_die;
5035 CORE_ADDR baseaddr;
5036
5037 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5038
5039 /* Ignore blocks with missing or invalid low and high pc attributes. */
5040 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
5041 as multiple lexical blocks? Handling children in a sane way would
5042 be nasty. Might be easier to properly extend generic blocks to
5043 describe ranges. */
5044 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5045 return;
5046 lowpc += baseaddr;
5047 highpc += baseaddr;
5048
5049 push_context (0, lowpc);
5050 if (die->child != NULL)
5051 {
5052 child_die = die->child;
5053 while (child_die && child_die->tag)
5054 {
5055 process_die (child_die, cu);
5056 child_die = sibling_die (child_die);
5057 }
5058 }
5059 new = pop_context ();
5060
5061 if (local_symbols != NULL || using_directives != NULL)
5062 {
5063 struct block *block
5064 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
5065 highpc, objfile);
5066
5067 /* Note that recording ranges after traversing children, as we
5068 do here, means that recording a parent's ranges entails
5069 walking across all its children's ranges as they appear in
5070 the address map, which is quadratic behavior.
5071
5072 It would be nicer to record the parent's ranges before
5073 traversing its children, simply overriding whatever you find
5074 there. But since we don't even decide whether to create a
5075 block until after we've traversed its children, that's hard
5076 to do. */
5077 dwarf2_record_block_ranges (die, block, baseaddr, cu);
5078 }
5079 local_symbols = new->locals;
5080 using_directives = new->using_directives;
5081 }
5082
5083 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
5084 Return 1 if the attributes are present and valid, otherwise, return 0.
5085 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
5086
5087 static int
5088 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
5089 CORE_ADDR *high_return, struct dwarf2_cu *cu,
5090 struct partial_symtab *ranges_pst)
5091 {
5092 struct objfile *objfile = cu->objfile;
5093 struct comp_unit_head *cu_header = &cu->header;
5094 bfd *obfd = objfile->obfd;
5095 unsigned int addr_size = cu_header->addr_size;
5096 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5097 /* Base address selection entry. */
5098 CORE_ADDR base;
5099 int found_base;
5100 unsigned int dummy;
5101 gdb_byte *buffer;
5102 CORE_ADDR marker;
5103 int low_set;
5104 CORE_ADDR low = 0;
5105 CORE_ADDR high = 0;
5106 CORE_ADDR baseaddr;
5107
5108 found_base = cu->base_known;
5109 base = cu->base_address;
5110
5111 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
5112 if (offset >= dwarf2_per_objfile->ranges.size)
5113 {
5114 complaint (&symfile_complaints,
5115 _("Offset %d out of bounds for DW_AT_ranges attribute"),
5116 offset);
5117 return 0;
5118 }
5119 buffer = dwarf2_per_objfile->ranges.buffer + offset;
5120
5121 /* Read in the largest possible address. */
5122 marker = read_address (obfd, buffer, cu, &dummy);
5123 if ((marker & mask) == mask)
5124 {
5125 /* If we found the largest possible address, then
5126 read the base address. */
5127 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5128 buffer += 2 * addr_size;
5129 offset += 2 * addr_size;
5130 found_base = 1;
5131 }
5132
5133 low_set = 0;
5134
5135 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5136
5137 while (1)
5138 {
5139 CORE_ADDR range_beginning, range_end;
5140
5141 range_beginning = read_address (obfd, buffer, cu, &dummy);
5142 buffer += addr_size;
5143 range_end = read_address (obfd, buffer, cu, &dummy);
5144 buffer += addr_size;
5145 offset += 2 * addr_size;
5146
5147 /* An end of list marker is a pair of zero addresses. */
5148 if (range_beginning == 0 && range_end == 0)
5149 /* Found the end of list entry. */
5150 break;
5151
5152 /* Each base address selection entry is a pair of 2 values.
5153 The first is the largest possible address, the second is
5154 the base address. Check for a base address here. */
5155 if ((range_beginning & mask) == mask)
5156 {
5157 /* If we found the largest possible address, then
5158 read the base address. */
5159 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5160 found_base = 1;
5161 continue;
5162 }
5163
5164 if (!found_base)
5165 {
5166 /* We have no valid base address for the ranges
5167 data. */
5168 complaint (&symfile_complaints,
5169 _("Invalid .debug_ranges data (no base address)"));
5170 return 0;
5171 }
5172
5173 range_beginning += base;
5174 range_end += base;
5175
5176 if (ranges_pst != NULL && range_beginning < range_end)
5177 addrmap_set_empty (objfile->psymtabs_addrmap,
5178 range_beginning + baseaddr, range_end - 1 + baseaddr,
5179 ranges_pst);
5180
5181 /* FIXME: This is recording everything as a low-high
5182 segment of consecutive addresses. We should have a
5183 data structure for discontiguous block ranges
5184 instead. */
5185 if (! low_set)
5186 {
5187 low = range_beginning;
5188 high = range_end;
5189 low_set = 1;
5190 }
5191 else
5192 {
5193 if (range_beginning < low)
5194 low = range_beginning;
5195 if (range_end > high)
5196 high = range_end;
5197 }
5198 }
5199
5200 if (! low_set)
5201 /* If the first entry is an end-of-list marker, the range
5202 describes an empty scope, i.e. no instructions. */
5203 return 0;
5204
5205 if (low_return)
5206 *low_return = low;
5207 if (high_return)
5208 *high_return = high;
5209 return 1;
5210 }
5211
5212 /* Get low and high pc attributes from a die. Return 1 if the attributes
5213 are present and valid, otherwise, return 0. Return -1 if the range is
5214 discontinuous, i.e. derived from DW_AT_ranges information. */
5215 static int
5216 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
5217 CORE_ADDR *highpc, struct dwarf2_cu *cu,
5218 struct partial_symtab *pst)
5219 {
5220 struct attribute *attr;
5221 CORE_ADDR low = 0;
5222 CORE_ADDR high = 0;
5223 int ret = 0;
5224
5225 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
5226 if (attr)
5227 {
5228 high = DW_ADDR (attr);
5229 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5230 if (attr)
5231 low = DW_ADDR (attr);
5232 else
5233 /* Found high w/o low attribute. */
5234 return 0;
5235
5236 /* Found consecutive range of addresses. */
5237 ret = 1;
5238 }
5239 else
5240 {
5241 attr = dwarf2_attr (die, DW_AT_ranges, cu);
5242 if (attr != NULL)
5243 {
5244 /* Value of the DW_AT_ranges attribute is the offset in the
5245 .debug_ranges section. */
5246 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
5247 return 0;
5248 /* Found discontinuous range of addresses. */
5249 ret = -1;
5250 }
5251 }
5252
5253 if (high < low)
5254 return 0;
5255
5256 /* When using the GNU linker, .gnu.linkonce. sections are used to
5257 eliminate duplicate copies of functions and vtables and such.
5258 The linker will arbitrarily choose one and discard the others.
5259 The AT_*_pc values for such functions refer to local labels in
5260 these sections. If the section from that file was discarded, the
5261 labels are not in the output, so the relocs get a value of 0.
5262 If this is a discarded function, mark the pc bounds as invalid,
5263 so that GDB will ignore it. */
5264 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
5265 return 0;
5266
5267 *lowpc = low;
5268 *highpc = high;
5269 return ret;
5270 }
5271
5272 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
5273 its low and high PC addresses. Do nothing if these addresses could not
5274 be determined. Otherwise, set LOWPC to the low address if it is smaller,
5275 and HIGHPC to the high address if greater than HIGHPC. */
5276
5277 static void
5278 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
5279 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5280 struct dwarf2_cu *cu)
5281 {
5282 CORE_ADDR low, high;
5283 struct die_info *child = die->child;
5284
5285 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
5286 {
5287 *lowpc = min (*lowpc, low);
5288 *highpc = max (*highpc, high);
5289 }
5290
5291 /* If the language does not allow nested subprograms (either inside
5292 subprograms or lexical blocks), we're done. */
5293 if (cu->language != language_ada)
5294 return;
5295
5296 /* Check all the children of the given DIE. If it contains nested
5297 subprograms, then check their pc bounds. Likewise, we need to
5298 check lexical blocks as well, as they may also contain subprogram
5299 definitions. */
5300 while (child && child->tag)
5301 {
5302 if (child->tag == DW_TAG_subprogram
5303 || child->tag == DW_TAG_lexical_block)
5304 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
5305 child = sibling_die (child);
5306 }
5307 }
5308
5309 /* Get the low and high pc's represented by the scope DIE, and store
5310 them in *LOWPC and *HIGHPC. If the correct values can't be
5311 determined, set *LOWPC to -1 and *HIGHPC to 0. */
5312
5313 static void
5314 get_scope_pc_bounds (struct die_info *die,
5315 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5316 struct dwarf2_cu *cu)
5317 {
5318 CORE_ADDR best_low = (CORE_ADDR) -1;
5319 CORE_ADDR best_high = (CORE_ADDR) 0;
5320 CORE_ADDR current_low, current_high;
5321
5322 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
5323 {
5324 best_low = current_low;
5325 best_high = current_high;
5326 }
5327 else
5328 {
5329 struct die_info *child = die->child;
5330
5331 while (child && child->tag)
5332 {
5333 switch (child->tag) {
5334 case DW_TAG_subprogram:
5335 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
5336 break;
5337 case DW_TAG_namespace:
5338 case DW_TAG_module:
5339 /* FIXME: carlton/2004-01-16: Should we do this for
5340 DW_TAG_class_type/DW_TAG_structure_type, too? I think
5341 that current GCC's always emit the DIEs corresponding
5342 to definitions of methods of classes as children of a
5343 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
5344 the DIEs giving the declarations, which could be
5345 anywhere). But I don't see any reason why the
5346 standards says that they have to be there. */
5347 get_scope_pc_bounds (child, &current_low, &current_high, cu);
5348
5349 if (current_low != ((CORE_ADDR) -1))
5350 {
5351 best_low = min (best_low, current_low);
5352 best_high = max (best_high, current_high);
5353 }
5354 break;
5355 default:
5356 /* Ignore. */
5357 break;
5358 }
5359
5360 child = sibling_die (child);
5361 }
5362 }
5363
5364 *lowpc = best_low;
5365 *highpc = best_high;
5366 }
5367
5368 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
5369 in DIE. */
5370 static void
5371 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
5372 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
5373 {
5374 struct attribute *attr;
5375
5376 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
5377 if (attr)
5378 {
5379 CORE_ADDR high = DW_ADDR (attr);
5380
5381 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5382 if (attr)
5383 {
5384 CORE_ADDR low = DW_ADDR (attr);
5385
5386 record_block_range (block, baseaddr + low, baseaddr + high - 1);
5387 }
5388 }
5389
5390 attr = dwarf2_attr (die, DW_AT_ranges, cu);
5391 if (attr)
5392 {
5393 bfd *obfd = cu->objfile->obfd;
5394
5395 /* The value of the DW_AT_ranges attribute is the offset of the
5396 address range list in the .debug_ranges section. */
5397 unsigned long offset = DW_UNSND (attr);
5398 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
5399
5400 /* For some target architectures, but not others, the
5401 read_address function sign-extends the addresses it returns.
5402 To recognize base address selection entries, we need a
5403 mask. */
5404 unsigned int addr_size = cu->header.addr_size;
5405 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5406
5407 /* The base address, to which the next pair is relative. Note
5408 that this 'base' is a DWARF concept: most entries in a range
5409 list are relative, to reduce the number of relocs against the
5410 debugging information. This is separate from this function's
5411 'baseaddr' argument, which GDB uses to relocate debugging
5412 information from a shared library based on the address at
5413 which the library was loaded. */
5414 CORE_ADDR base = cu->base_address;
5415 int base_known = cu->base_known;
5416
5417 gdb_assert (dwarf2_per_objfile->ranges.readin);
5418 if (offset >= dwarf2_per_objfile->ranges.size)
5419 {
5420 complaint (&symfile_complaints,
5421 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
5422 offset);
5423 return;
5424 }
5425
5426 for (;;)
5427 {
5428 unsigned int bytes_read;
5429 CORE_ADDR start, end;
5430
5431 start = read_address (obfd, buffer, cu, &bytes_read);
5432 buffer += bytes_read;
5433 end = read_address (obfd, buffer, cu, &bytes_read);
5434 buffer += bytes_read;
5435
5436 /* Did we find the end of the range list? */
5437 if (start == 0 && end == 0)
5438 break;
5439
5440 /* Did we find a base address selection entry? */
5441 else if ((start & base_select_mask) == base_select_mask)
5442 {
5443 base = end;
5444 base_known = 1;
5445 }
5446
5447 /* We found an ordinary address range. */
5448 else
5449 {
5450 if (!base_known)
5451 {
5452 complaint (&symfile_complaints,
5453 _("Invalid .debug_ranges data (no base address)"));
5454 return;
5455 }
5456
5457 record_block_range (block,
5458 baseaddr + base + start,
5459 baseaddr + base + end - 1);
5460 }
5461 }
5462 }
5463 }
5464
5465 /* Add an aggregate field to the field list. */
5466
5467 static void
5468 dwarf2_add_field (struct field_info *fip, struct die_info *die,
5469 struct dwarf2_cu *cu)
5470 {
5471 struct objfile *objfile = cu->objfile;
5472 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5473 struct nextfield *new_field;
5474 struct attribute *attr;
5475 struct field *fp;
5476 char *fieldname = "";
5477
5478 /* Allocate a new field list entry and link it in. */
5479 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
5480 make_cleanup (xfree, new_field);
5481 memset (new_field, 0, sizeof (struct nextfield));
5482
5483 if (die->tag == DW_TAG_inheritance)
5484 {
5485 new_field->next = fip->baseclasses;
5486 fip->baseclasses = new_field;
5487 }
5488 else
5489 {
5490 new_field->next = fip->fields;
5491 fip->fields = new_field;
5492 }
5493 fip->nfields++;
5494
5495 /* Handle accessibility and virtuality of field.
5496 The default accessibility for members is public, the default
5497 accessibility for inheritance is private. */
5498 if (die->tag != DW_TAG_inheritance)
5499 new_field->accessibility = DW_ACCESS_public;
5500 else
5501 new_field->accessibility = DW_ACCESS_private;
5502 new_field->virtuality = DW_VIRTUALITY_none;
5503
5504 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
5505 if (attr)
5506 new_field->accessibility = DW_UNSND (attr);
5507 if (new_field->accessibility != DW_ACCESS_public)
5508 fip->non_public_fields = 1;
5509 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
5510 if (attr)
5511 new_field->virtuality = DW_UNSND (attr);
5512
5513 fp = &new_field->field;
5514
5515 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
5516 {
5517 /* Data member other than a C++ static data member. */
5518
5519 /* Get type of field. */
5520 fp->type = die_type (die, cu);
5521
5522 SET_FIELD_BITPOS (*fp, 0);
5523
5524 /* Get bit size of field (zero if none). */
5525 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
5526 if (attr)
5527 {
5528 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
5529 }
5530 else
5531 {
5532 FIELD_BITSIZE (*fp) = 0;
5533 }
5534
5535 /* Get bit offset of field. */
5536 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
5537 if (attr)
5538 {
5539 int byte_offset = 0;
5540
5541 if (attr_form_is_section_offset (attr))
5542 dwarf2_complex_location_expr_complaint ();
5543 else if (attr_form_is_constant (attr))
5544 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
5545 else if (attr_form_is_block (attr))
5546 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
5547 else
5548 dwarf2_complex_location_expr_complaint ();
5549
5550 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
5551 }
5552 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
5553 if (attr)
5554 {
5555 if (gdbarch_bits_big_endian (gdbarch))
5556 {
5557 /* For big endian bits, the DW_AT_bit_offset gives the
5558 additional bit offset from the MSB of the containing
5559 anonymous object to the MSB of the field. We don't
5560 have to do anything special since we don't need to
5561 know the size of the anonymous object. */
5562 FIELD_BITPOS (*fp) += DW_UNSND (attr);
5563 }
5564 else
5565 {
5566 /* For little endian bits, compute the bit offset to the
5567 MSB of the anonymous object, subtract off the number of
5568 bits from the MSB of the field to the MSB of the
5569 object, and then subtract off the number of bits of
5570 the field itself. The result is the bit offset of
5571 the LSB of the field. */
5572 int anonymous_size;
5573 int bit_offset = DW_UNSND (attr);
5574
5575 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
5576 if (attr)
5577 {
5578 /* The size of the anonymous object containing
5579 the bit field is explicit, so use the
5580 indicated size (in bytes). */
5581 anonymous_size = DW_UNSND (attr);
5582 }
5583 else
5584 {
5585 /* The size of the anonymous object containing
5586 the bit field must be inferred from the type
5587 attribute of the data member containing the
5588 bit field. */
5589 anonymous_size = TYPE_LENGTH (fp->type);
5590 }
5591 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
5592 - bit_offset - FIELD_BITSIZE (*fp);
5593 }
5594 }
5595
5596 /* Get name of field. */
5597 fieldname = dwarf2_name (die, cu);
5598 if (fieldname == NULL)
5599 fieldname = "";
5600
5601 /* The name is already allocated along with this objfile, so we don't
5602 need to duplicate it for the type. */
5603 fp->name = fieldname;
5604
5605 /* Change accessibility for artificial fields (e.g. virtual table
5606 pointer or virtual base class pointer) to private. */
5607 if (dwarf2_attr (die, DW_AT_artificial, cu))
5608 {
5609 FIELD_ARTIFICIAL (*fp) = 1;
5610 new_field->accessibility = DW_ACCESS_private;
5611 fip->non_public_fields = 1;
5612 }
5613 }
5614 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
5615 {
5616 /* C++ static member. */
5617
5618 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
5619 is a declaration, but all versions of G++ as of this writing
5620 (so through at least 3.2.1) incorrectly generate
5621 DW_TAG_variable tags. */
5622
5623 char *physname;
5624
5625 /* Get name of field. */
5626 fieldname = dwarf2_name (die, cu);
5627 if (fieldname == NULL)
5628 return;
5629
5630 attr = dwarf2_attr (die, DW_AT_const_value, cu);
5631 if (attr
5632 /* Only create a symbol if this is an external value.
5633 new_symbol checks this and puts the value in the global symbol
5634 table, which we want. If it is not external, new_symbol
5635 will try to put the value in cu->list_in_scope which is wrong. */
5636 && dwarf2_flag_true_p (die, DW_AT_external, cu))
5637 {
5638 /* A static const member, not much different than an enum as far as
5639 we're concerned, except that we can support more types. */
5640 new_symbol (die, NULL, cu);
5641 }
5642
5643 /* Get physical name. */
5644 physname = (char *) dwarf2_physname (fieldname, die, cu);
5645
5646 /* The name is already allocated along with this objfile, so we don't
5647 need to duplicate it for the type. */
5648 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
5649 FIELD_TYPE (*fp) = die_type (die, cu);
5650 FIELD_NAME (*fp) = fieldname;
5651 }
5652 else if (die->tag == DW_TAG_inheritance)
5653 {
5654 /* C++ base class field. */
5655 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
5656 if (attr)
5657 {
5658 int byte_offset = 0;
5659
5660 if (attr_form_is_section_offset (attr))
5661 dwarf2_complex_location_expr_complaint ();
5662 else if (attr_form_is_constant (attr))
5663 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
5664 else if (attr_form_is_block (attr))
5665 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
5666 else
5667 dwarf2_complex_location_expr_complaint ();
5668
5669 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
5670 }
5671 FIELD_BITSIZE (*fp) = 0;
5672 FIELD_TYPE (*fp) = die_type (die, cu);
5673 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
5674 fip->nbaseclasses++;
5675 }
5676 }
5677
5678 /* Add a typedef defined in the scope of the FIP's class. */
5679
5680 static void
5681 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
5682 struct dwarf2_cu *cu)
5683 {
5684 struct objfile *objfile = cu->objfile;
5685 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5686 struct typedef_field_list *new_field;
5687 struct attribute *attr;
5688 struct typedef_field *fp;
5689 char *fieldname = "";
5690
5691 /* Allocate a new field list entry and link it in. */
5692 new_field = xzalloc (sizeof (*new_field));
5693 make_cleanup (xfree, new_field);
5694
5695 gdb_assert (die->tag == DW_TAG_typedef);
5696
5697 fp = &new_field->field;
5698
5699 /* Get name of field. */
5700 fp->name = dwarf2_name (die, cu);
5701 if (fp->name == NULL)
5702 return;
5703
5704 fp->type = read_type_die (die, cu);
5705
5706 new_field->next = fip->typedef_field_list;
5707 fip->typedef_field_list = new_field;
5708 fip->typedef_field_list_count++;
5709 }
5710
5711 /* Create the vector of fields, and attach it to the type. */
5712
5713 static void
5714 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
5715 struct dwarf2_cu *cu)
5716 {
5717 int nfields = fip->nfields;
5718
5719 /* Record the field count, allocate space for the array of fields,
5720 and create blank accessibility bitfields if necessary. */
5721 TYPE_NFIELDS (type) = nfields;
5722 TYPE_FIELDS (type) = (struct field *)
5723 TYPE_ALLOC (type, sizeof (struct field) * nfields);
5724 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
5725
5726 if (fip->non_public_fields && cu->language != language_ada)
5727 {
5728 ALLOCATE_CPLUS_STRUCT_TYPE (type);
5729
5730 TYPE_FIELD_PRIVATE_BITS (type) =
5731 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
5732 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
5733
5734 TYPE_FIELD_PROTECTED_BITS (type) =
5735 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
5736 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
5737
5738 TYPE_FIELD_IGNORE_BITS (type) =
5739 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
5740 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
5741 }
5742
5743 /* If the type has baseclasses, allocate and clear a bit vector for
5744 TYPE_FIELD_VIRTUAL_BITS. */
5745 if (fip->nbaseclasses && cu->language != language_ada)
5746 {
5747 int num_bytes = B_BYTES (fip->nbaseclasses);
5748 unsigned char *pointer;
5749
5750 ALLOCATE_CPLUS_STRUCT_TYPE (type);
5751 pointer = TYPE_ALLOC (type, num_bytes);
5752 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
5753 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
5754 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
5755 }
5756
5757 /* Copy the saved-up fields into the field vector. Start from the head
5758 of the list, adding to the tail of the field array, so that they end
5759 up in the same order in the array in which they were added to the list. */
5760 while (nfields-- > 0)
5761 {
5762 struct nextfield *fieldp;
5763
5764 if (fip->fields)
5765 {
5766 fieldp = fip->fields;
5767 fip->fields = fieldp->next;
5768 }
5769 else
5770 {
5771 fieldp = fip->baseclasses;
5772 fip->baseclasses = fieldp->next;
5773 }
5774
5775 TYPE_FIELD (type, nfields) = fieldp->field;
5776 switch (fieldp->accessibility)
5777 {
5778 case DW_ACCESS_private:
5779 if (cu->language != language_ada)
5780 SET_TYPE_FIELD_PRIVATE (type, nfields);
5781 break;
5782
5783 case DW_ACCESS_protected:
5784 if (cu->language != language_ada)
5785 SET_TYPE_FIELD_PROTECTED (type, nfields);
5786 break;
5787
5788 case DW_ACCESS_public:
5789 break;
5790
5791 default:
5792 /* Unknown accessibility. Complain and treat it as public. */
5793 {
5794 complaint (&symfile_complaints, _("unsupported accessibility %d"),
5795 fieldp->accessibility);
5796 }
5797 break;
5798 }
5799 if (nfields < fip->nbaseclasses)
5800 {
5801 switch (fieldp->virtuality)
5802 {
5803 case DW_VIRTUALITY_virtual:
5804 case DW_VIRTUALITY_pure_virtual:
5805 if (cu->language == language_ada)
5806 error ("unexpected virtuality in component of Ada type");
5807 SET_TYPE_FIELD_VIRTUAL (type, nfields);
5808 break;
5809 }
5810 }
5811 }
5812 }
5813
5814 /* Add a member function to the proper fieldlist. */
5815
5816 static void
5817 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
5818 struct type *type, struct dwarf2_cu *cu)
5819 {
5820 struct objfile *objfile = cu->objfile;
5821 struct attribute *attr;
5822 struct fnfieldlist *flp;
5823 int i;
5824 struct fn_field *fnp;
5825 char *fieldname;
5826 char *physname;
5827 struct nextfnfield *new_fnfield;
5828 struct type *this_type;
5829
5830 if (cu->language == language_ada)
5831 error ("unexpected member function in Ada type");
5832
5833 /* Get name of member function. */
5834 fieldname = dwarf2_name (die, cu);
5835 if (fieldname == NULL)
5836 return;
5837
5838 /* Get the mangled name. */
5839 physname = (char *) dwarf2_physname (fieldname, die, cu);
5840
5841 /* Look up member function name in fieldlist. */
5842 for (i = 0; i < fip->nfnfields; i++)
5843 {
5844 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
5845 break;
5846 }
5847
5848 /* Create new list element if necessary. */
5849 if (i < fip->nfnfields)
5850 flp = &fip->fnfieldlists[i];
5851 else
5852 {
5853 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
5854 {
5855 fip->fnfieldlists = (struct fnfieldlist *)
5856 xrealloc (fip->fnfieldlists,
5857 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
5858 * sizeof (struct fnfieldlist));
5859 if (fip->nfnfields == 0)
5860 make_cleanup (free_current_contents, &fip->fnfieldlists);
5861 }
5862 flp = &fip->fnfieldlists[fip->nfnfields];
5863 flp->name = fieldname;
5864 flp->length = 0;
5865 flp->head = NULL;
5866 fip->nfnfields++;
5867 }
5868
5869 /* Create a new member function field and chain it to the field list
5870 entry. */
5871 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
5872 make_cleanup (xfree, new_fnfield);
5873 memset (new_fnfield, 0, sizeof (struct nextfnfield));
5874 new_fnfield->next = flp->head;
5875 flp->head = new_fnfield;
5876 flp->length++;
5877
5878 /* Fill in the member function field info. */
5879 fnp = &new_fnfield->fnfield;
5880 /* The name is already allocated along with this objfile, so we don't
5881 need to duplicate it for the type. */
5882 fnp->physname = physname ? physname : "";
5883 fnp->type = alloc_type (objfile);
5884 this_type = read_type_die (die, cu);
5885 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
5886 {
5887 int nparams = TYPE_NFIELDS (this_type);
5888
5889 /* TYPE is the domain of this method, and THIS_TYPE is the type
5890 of the method itself (TYPE_CODE_METHOD). */
5891 smash_to_method_type (fnp->type, type,
5892 TYPE_TARGET_TYPE (this_type),
5893 TYPE_FIELDS (this_type),
5894 TYPE_NFIELDS (this_type),
5895 TYPE_VARARGS (this_type));
5896
5897 /* Handle static member functions.
5898 Dwarf2 has no clean way to discern C++ static and non-static
5899 member functions. G++ helps GDB by marking the first
5900 parameter for non-static member functions (which is the
5901 this pointer) as artificial. We obtain this information
5902 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
5903 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
5904 fnp->voffset = VOFFSET_STATIC;
5905 }
5906 else
5907 complaint (&symfile_complaints, _("member function type missing for '%s'"),
5908 physname);
5909
5910 /* Get fcontext from DW_AT_containing_type if present. */
5911 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
5912 fnp->fcontext = die_containing_type (die, cu);
5913
5914 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
5915 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
5916
5917 /* Get accessibility. */
5918 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
5919 if (attr)
5920 {
5921 switch (DW_UNSND (attr))
5922 {
5923 case DW_ACCESS_private:
5924 fnp->is_private = 1;
5925 break;
5926 case DW_ACCESS_protected:
5927 fnp->is_protected = 1;
5928 break;
5929 }
5930 }
5931
5932 /* Check for artificial methods. */
5933 attr = dwarf2_attr (die, DW_AT_artificial, cu);
5934 if (attr && DW_UNSND (attr) != 0)
5935 fnp->is_artificial = 1;
5936
5937 /* Get index in virtual function table if it is a virtual member
5938 function. For older versions of GCC, this is an offset in the
5939 appropriate virtual table, as specified by DW_AT_containing_type.
5940 For everyone else, it is an expression to be evaluated relative
5941 to the object address. */
5942
5943 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
5944 if (attr)
5945 {
5946 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
5947 {
5948 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
5949 {
5950 /* Old-style GCC. */
5951 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
5952 }
5953 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
5954 || (DW_BLOCK (attr)->size > 1
5955 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
5956 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
5957 {
5958 struct dwarf_block blk;
5959 int offset;
5960
5961 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
5962 ? 1 : 2);
5963 blk.size = DW_BLOCK (attr)->size - offset;
5964 blk.data = DW_BLOCK (attr)->data + offset;
5965 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
5966 if ((fnp->voffset % cu->header.addr_size) != 0)
5967 dwarf2_complex_location_expr_complaint ();
5968 else
5969 fnp->voffset /= cu->header.addr_size;
5970 fnp->voffset += 2;
5971 }
5972 else
5973 dwarf2_complex_location_expr_complaint ();
5974
5975 if (!fnp->fcontext)
5976 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
5977 }
5978 else if (attr_form_is_section_offset (attr))
5979 {
5980 dwarf2_complex_location_expr_complaint ();
5981 }
5982 else
5983 {
5984 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
5985 fieldname);
5986 }
5987 }
5988 else
5989 {
5990 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
5991 if (attr && DW_UNSND (attr))
5992 {
5993 /* GCC does this, as of 2008-08-25; PR debug/37237. */
5994 complaint (&symfile_complaints,
5995 _("Member function \"%s\" (offset %d) is virtual but the vtable offset is not specified"),
5996 fieldname, die->offset);
5997 ALLOCATE_CPLUS_STRUCT_TYPE (type);
5998 TYPE_CPLUS_DYNAMIC (type) = 1;
5999 }
6000 }
6001 }
6002
6003 /* Create the vector of member function fields, and attach it to the type. */
6004
6005 static void
6006 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
6007 struct dwarf2_cu *cu)
6008 {
6009 struct fnfieldlist *flp;
6010 int total_length = 0;
6011 int i;
6012
6013 if (cu->language == language_ada)
6014 error ("unexpected member functions in Ada type");
6015
6016 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6017 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
6018 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
6019
6020 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
6021 {
6022 struct nextfnfield *nfp = flp->head;
6023 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
6024 int k;
6025
6026 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
6027 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
6028 fn_flp->fn_fields = (struct fn_field *)
6029 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
6030 for (k = flp->length; (k--, nfp); nfp = nfp->next)
6031 fn_flp->fn_fields[k] = nfp->fnfield;
6032
6033 total_length += flp->length;
6034 }
6035
6036 TYPE_NFN_FIELDS (type) = fip->nfnfields;
6037 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
6038 }
6039
6040 /* Returns non-zero if NAME is the name of a vtable member in CU's
6041 language, zero otherwise. */
6042 static int
6043 is_vtable_name (const char *name, struct dwarf2_cu *cu)
6044 {
6045 static const char vptr[] = "_vptr";
6046 static const char vtable[] = "vtable";
6047
6048 /* Look for the C++ and Java forms of the vtable. */
6049 if ((cu->language == language_java
6050 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
6051 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
6052 && is_cplus_marker (name[sizeof (vptr) - 1])))
6053 return 1;
6054
6055 return 0;
6056 }
6057
6058 /* GCC outputs unnamed structures that are really pointers to member
6059 functions, with the ABI-specified layout. If TYPE describes
6060 such a structure, smash it into a member function type.
6061
6062 GCC shouldn't do this; it should just output pointer to member DIEs.
6063 This is GCC PR debug/28767. */
6064
6065 static void
6066 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
6067 {
6068 struct type *pfn_type, *domain_type, *new_type;
6069
6070 /* Check for a structure with no name and two children. */
6071 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
6072 return;
6073
6074 /* Check for __pfn and __delta members. */
6075 if (TYPE_FIELD_NAME (type, 0) == NULL
6076 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
6077 || TYPE_FIELD_NAME (type, 1) == NULL
6078 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
6079 return;
6080
6081 /* Find the type of the method. */
6082 pfn_type = TYPE_FIELD_TYPE (type, 0);
6083 if (pfn_type == NULL
6084 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
6085 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
6086 return;
6087
6088 /* Look for the "this" argument. */
6089 pfn_type = TYPE_TARGET_TYPE (pfn_type);
6090 if (TYPE_NFIELDS (pfn_type) == 0
6091 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
6092 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
6093 return;
6094
6095 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
6096 new_type = alloc_type (objfile);
6097 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
6098 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
6099 TYPE_VARARGS (pfn_type));
6100 smash_to_methodptr_type (type, new_type);
6101 }
6102
6103 /* Called when we find the DIE that starts a structure or union scope
6104 (definition) to process all dies that define the members of the
6105 structure or union.
6106
6107 NOTE: we need to call struct_type regardless of whether or not the
6108 DIE has an at_name attribute, since it might be an anonymous
6109 structure or union. This gets the type entered into our set of
6110 user defined types.
6111
6112 However, if the structure is incomplete (an opaque struct/union)
6113 then suppress creating a symbol table entry for it since gdb only
6114 wants to find the one with the complete definition. Note that if
6115 it is complete, we just call new_symbol, which does it's own
6116 checking about whether the struct/union is anonymous or not (and
6117 suppresses creating a symbol table entry itself). */
6118
6119 static struct type *
6120 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
6121 {
6122 struct objfile *objfile = cu->objfile;
6123 struct type *type;
6124 struct attribute *attr;
6125 char *name;
6126 struct cleanup *back_to;
6127
6128 /* If the definition of this type lives in .debug_types, read that type.
6129 Don't follow DW_AT_specification though, that will take us back up
6130 the chain and we want to go down. */
6131 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6132 if (attr)
6133 {
6134 struct dwarf2_cu *type_cu = cu;
6135 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
6136
6137 /* We could just recurse on read_structure_type, but we need to call
6138 get_die_type to ensure only one type for this DIE is created.
6139 This is important, for example, because for c++ classes we need
6140 TYPE_NAME set which is only done by new_symbol. Blech. */
6141 type = read_type_die (type_die, type_cu);
6142 return set_die_type (die, type, cu);
6143 }
6144
6145 back_to = make_cleanup (null_cleanup, 0);
6146
6147 type = alloc_type (objfile);
6148 INIT_CPLUS_SPECIFIC (type);
6149
6150 name = dwarf2_name (die, cu);
6151 if (name != NULL)
6152 {
6153 if (cu->language == language_cplus
6154 || cu->language == language_java)
6155 {
6156 TYPE_TAG_NAME (type) = (char *) dwarf2_full_name (name, die, cu);
6157 if (die->tag == DW_TAG_structure_type
6158 || die->tag == DW_TAG_class_type)
6159 TYPE_NAME (type) = TYPE_TAG_NAME (type);
6160 }
6161 else
6162 {
6163 /* The name is already allocated along with this objfile, so
6164 we don't need to duplicate it for the type. */
6165 TYPE_TAG_NAME (type) = (char *) name;
6166 if (die->tag == DW_TAG_class_type)
6167 TYPE_NAME (type) = TYPE_TAG_NAME (type);
6168 }
6169 }
6170
6171 if (die->tag == DW_TAG_structure_type)
6172 {
6173 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6174 }
6175 else if (die->tag == DW_TAG_union_type)
6176 {
6177 TYPE_CODE (type) = TYPE_CODE_UNION;
6178 }
6179 else
6180 {
6181 TYPE_CODE (type) = TYPE_CODE_CLASS;
6182 }
6183
6184 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
6185 TYPE_DECLARED_CLASS (type) = 1;
6186
6187 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6188 if (attr)
6189 {
6190 TYPE_LENGTH (type) = DW_UNSND (attr);
6191 }
6192 else
6193 {
6194 TYPE_LENGTH (type) = 0;
6195 }
6196
6197 TYPE_STUB_SUPPORTED (type) = 1;
6198 if (die_is_declaration (die, cu))
6199 TYPE_STUB (type) = 1;
6200 else if (attr == NULL && die->child == NULL
6201 && producer_is_realview (cu->producer))
6202 /* RealView does not output the required DW_AT_declaration
6203 on incomplete types. */
6204 TYPE_STUB (type) = 1;
6205
6206 /* We need to add the type field to the die immediately so we don't
6207 infinitely recurse when dealing with pointers to the structure
6208 type within the structure itself. */
6209 set_die_type (die, type, cu);
6210
6211 /* set_die_type should be already done. */
6212 set_descriptive_type (type, die, cu);
6213
6214 if (die->child != NULL && ! die_is_declaration (die, cu))
6215 {
6216 struct field_info fi;
6217 struct die_info *child_die;
6218
6219 memset (&fi, 0, sizeof (struct field_info));
6220
6221 child_die = die->child;
6222
6223 while (child_die && child_die->tag)
6224 {
6225 if (child_die->tag == DW_TAG_member
6226 || child_die->tag == DW_TAG_variable)
6227 {
6228 /* NOTE: carlton/2002-11-05: A C++ static data member
6229 should be a DW_TAG_member that is a declaration, but
6230 all versions of G++ as of this writing (so through at
6231 least 3.2.1) incorrectly generate DW_TAG_variable
6232 tags for them instead. */
6233 dwarf2_add_field (&fi, child_die, cu);
6234 }
6235 else if (child_die->tag == DW_TAG_subprogram)
6236 {
6237 /* C++ member function. */
6238 dwarf2_add_member_fn (&fi, child_die, type, cu);
6239 }
6240 else if (child_die->tag == DW_TAG_inheritance)
6241 {
6242 /* C++ base class field. */
6243 dwarf2_add_field (&fi, child_die, cu);
6244 }
6245 else if (child_die->tag == DW_TAG_typedef)
6246 dwarf2_add_typedef (&fi, child_die, cu);
6247 child_die = sibling_die (child_die);
6248 }
6249
6250 /* Attach fields and member functions to the type. */
6251 if (fi.nfields)
6252 dwarf2_attach_fields_to_type (&fi, type, cu);
6253 if (fi.nfnfields)
6254 {
6255 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
6256
6257 /* Get the type which refers to the base class (possibly this
6258 class itself) which contains the vtable pointer for the current
6259 class from the DW_AT_containing_type attribute. This use of
6260 DW_AT_containing_type is a GNU extension. */
6261
6262 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
6263 {
6264 struct type *t = die_containing_type (die, cu);
6265
6266 TYPE_VPTR_BASETYPE (type) = t;
6267 if (type == t)
6268 {
6269 int i;
6270
6271 /* Our own class provides vtbl ptr. */
6272 for (i = TYPE_NFIELDS (t) - 1;
6273 i >= TYPE_N_BASECLASSES (t);
6274 --i)
6275 {
6276 char *fieldname = TYPE_FIELD_NAME (t, i);
6277
6278 if (is_vtable_name (fieldname, cu))
6279 {
6280 TYPE_VPTR_FIELDNO (type) = i;
6281 break;
6282 }
6283 }
6284
6285 /* Complain if virtual function table field not found. */
6286 if (i < TYPE_N_BASECLASSES (t))
6287 complaint (&symfile_complaints,
6288 _("virtual function table pointer not found when defining class '%s'"),
6289 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
6290 "");
6291 }
6292 else
6293 {
6294 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
6295 }
6296 }
6297 else if (cu->producer
6298 && strncmp (cu->producer,
6299 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
6300 {
6301 /* The IBM XLC compiler does not provide direct indication
6302 of the containing type, but the vtable pointer is
6303 always named __vfp. */
6304
6305 int i;
6306
6307 for (i = TYPE_NFIELDS (type) - 1;
6308 i >= TYPE_N_BASECLASSES (type);
6309 --i)
6310 {
6311 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
6312 {
6313 TYPE_VPTR_FIELDNO (type) = i;
6314 TYPE_VPTR_BASETYPE (type) = type;
6315 break;
6316 }
6317 }
6318 }
6319 }
6320
6321 /* Copy fi.typedef_field_list linked list elements content into the
6322 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
6323 if (fi.typedef_field_list)
6324 {
6325 int i = fi.typedef_field_list_count;
6326
6327 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6328 TYPE_TYPEDEF_FIELD_ARRAY (type)
6329 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
6330 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
6331
6332 /* Reverse the list order to keep the debug info elements order. */
6333 while (--i >= 0)
6334 {
6335 struct typedef_field *dest, *src;
6336
6337 dest = &TYPE_TYPEDEF_FIELD (type, i);
6338 src = &fi.typedef_field_list->field;
6339 fi.typedef_field_list = fi.typedef_field_list->next;
6340 *dest = *src;
6341 }
6342 }
6343 }
6344
6345 quirk_gcc_member_function_pointer (type, cu->objfile);
6346
6347 do_cleanups (back_to);
6348 return type;
6349 }
6350
6351 static void
6352 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
6353 {
6354 struct die_info *child_die = die->child;
6355 struct type *this_type;
6356
6357 this_type = get_die_type (die, cu);
6358 if (this_type == NULL)
6359 this_type = read_structure_type (die, cu);
6360
6361 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
6362 snapshots) has been known to create a die giving a declaration
6363 for a class that has, as a child, a die giving a definition for a
6364 nested class. So we have to process our children even if the
6365 current die is a declaration. Normally, of course, a declaration
6366 won't have any children at all. */
6367
6368 while (child_die != NULL && child_die->tag)
6369 {
6370 if (child_die->tag == DW_TAG_member
6371 || child_die->tag == DW_TAG_variable
6372 || child_die->tag == DW_TAG_inheritance)
6373 {
6374 /* Do nothing. */
6375 }
6376 else
6377 process_die (child_die, cu);
6378
6379 child_die = sibling_die (child_die);
6380 }
6381
6382 /* Do not consider external references. According to the DWARF standard,
6383 these DIEs are identified by the fact that they have no byte_size
6384 attribute, and a declaration attribute. */
6385 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
6386 || !die_is_declaration (die, cu))
6387 new_symbol (die, this_type, cu);
6388 }
6389
6390 /* Given a DW_AT_enumeration_type die, set its type. We do not
6391 complete the type's fields yet, or create any symbols. */
6392
6393 static struct type *
6394 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
6395 {
6396 struct objfile *objfile = cu->objfile;
6397 struct type *type;
6398 struct attribute *attr;
6399 const char *name;
6400
6401 /* If the definition of this type lives in .debug_types, read that type.
6402 Don't follow DW_AT_specification though, that will take us back up
6403 the chain and we want to go down. */
6404 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6405 if (attr)
6406 {
6407 struct dwarf2_cu *type_cu = cu;
6408 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
6409
6410 type = read_type_die (type_die, type_cu);
6411 return set_die_type (die, type, cu);
6412 }
6413
6414 type = alloc_type (objfile);
6415
6416 TYPE_CODE (type) = TYPE_CODE_ENUM;
6417 name = dwarf2_full_name (NULL, die, cu);
6418 if (name != NULL)
6419 TYPE_TAG_NAME (type) = (char *) name;
6420
6421 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6422 if (attr)
6423 {
6424 TYPE_LENGTH (type) = DW_UNSND (attr);
6425 }
6426 else
6427 {
6428 TYPE_LENGTH (type) = 0;
6429 }
6430
6431 /* The enumeration DIE can be incomplete. In Ada, any type can be
6432 declared as private in the package spec, and then defined only
6433 inside the package body. Such types are known as Taft Amendment
6434 Types. When another package uses such a type, an incomplete DIE
6435 may be generated by the compiler. */
6436 if (die_is_declaration (die, cu))
6437 TYPE_STUB (type) = 1;
6438
6439 return set_die_type (die, type, cu);
6440 }
6441
6442 /* Given a pointer to a die which begins an enumeration, process all
6443 the dies that define the members of the enumeration, and create the
6444 symbol for the enumeration type.
6445
6446 NOTE: We reverse the order of the element list. */
6447
6448 static void
6449 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
6450 {
6451 struct die_info *child_die;
6452 struct field *fields;
6453 struct symbol *sym;
6454 int num_fields;
6455 int unsigned_enum = 1;
6456 char *name;
6457 struct type *this_type;
6458
6459 num_fields = 0;
6460 fields = NULL;
6461 this_type = get_die_type (die, cu);
6462 if (this_type == NULL)
6463 this_type = read_enumeration_type (die, cu);
6464 if (die->child != NULL)
6465 {
6466 child_die = die->child;
6467 while (child_die && child_die->tag)
6468 {
6469 if (child_die->tag != DW_TAG_enumerator)
6470 {
6471 process_die (child_die, cu);
6472 }
6473 else
6474 {
6475 name = dwarf2_name (child_die, cu);
6476 if (name)
6477 {
6478 sym = new_symbol (child_die, this_type, cu);
6479 if (SYMBOL_VALUE (sym) < 0)
6480 unsigned_enum = 0;
6481
6482 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
6483 {
6484 fields = (struct field *)
6485 xrealloc (fields,
6486 (num_fields + DW_FIELD_ALLOC_CHUNK)
6487 * sizeof (struct field));
6488 }
6489
6490 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
6491 FIELD_TYPE (fields[num_fields]) = NULL;
6492 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
6493 FIELD_BITSIZE (fields[num_fields]) = 0;
6494
6495 num_fields++;
6496 }
6497 }
6498
6499 child_die = sibling_die (child_die);
6500 }
6501
6502 if (num_fields)
6503 {
6504 TYPE_NFIELDS (this_type) = num_fields;
6505 TYPE_FIELDS (this_type) = (struct field *)
6506 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
6507 memcpy (TYPE_FIELDS (this_type), fields,
6508 sizeof (struct field) * num_fields);
6509 xfree (fields);
6510 }
6511 if (unsigned_enum)
6512 TYPE_UNSIGNED (this_type) = 1;
6513 }
6514
6515 new_symbol (die, this_type, cu);
6516 }
6517
6518 /* Extract all information from a DW_TAG_array_type DIE and put it in
6519 the DIE's type field. For now, this only handles one dimensional
6520 arrays. */
6521
6522 static struct type *
6523 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
6524 {
6525 struct objfile *objfile = cu->objfile;
6526 struct die_info *child_die;
6527 struct type *type;
6528 struct type *element_type, *range_type, *index_type;
6529 struct type **range_types = NULL;
6530 struct attribute *attr;
6531 int ndim = 0;
6532 struct cleanup *back_to;
6533 char *name;
6534
6535 element_type = die_type (die, cu);
6536
6537 /* The die_type call above may have already set the type for this DIE. */
6538 type = get_die_type (die, cu);
6539 if (type)
6540 return type;
6541
6542 /* Irix 6.2 native cc creates array types without children for
6543 arrays with unspecified length. */
6544 if (die->child == NULL)
6545 {
6546 index_type = objfile_type (objfile)->builtin_int;
6547 range_type = create_range_type (NULL, index_type, 0, -1);
6548 type = create_array_type (NULL, element_type, range_type);
6549 return set_die_type (die, type, cu);
6550 }
6551
6552 back_to = make_cleanup (null_cleanup, NULL);
6553 child_die = die->child;
6554 while (child_die && child_die->tag)
6555 {
6556 if (child_die->tag == DW_TAG_subrange_type)
6557 {
6558 struct type *child_type = read_type_die (child_die, cu);
6559
6560 if (child_type != NULL)
6561 {
6562 /* The range type was succesfully read. Save it for
6563 the array type creation. */
6564 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
6565 {
6566 range_types = (struct type **)
6567 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
6568 * sizeof (struct type *));
6569 if (ndim == 0)
6570 make_cleanup (free_current_contents, &range_types);
6571 }
6572 range_types[ndim++] = child_type;
6573 }
6574 }
6575 child_die = sibling_die (child_die);
6576 }
6577
6578 /* Dwarf2 dimensions are output from left to right, create the
6579 necessary array types in backwards order. */
6580
6581 type = element_type;
6582
6583 if (read_array_order (die, cu) == DW_ORD_col_major)
6584 {
6585 int i = 0;
6586
6587 while (i < ndim)
6588 type = create_array_type (NULL, type, range_types[i++]);
6589 }
6590 else
6591 {
6592 while (ndim-- > 0)
6593 type = create_array_type (NULL, type, range_types[ndim]);
6594 }
6595
6596 /* Understand Dwarf2 support for vector types (like they occur on
6597 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
6598 array type. This is not part of the Dwarf2/3 standard yet, but a
6599 custom vendor extension. The main difference between a regular
6600 array and the vector variant is that vectors are passed by value
6601 to functions. */
6602 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
6603 if (attr)
6604 make_vector_type (type);
6605
6606 name = dwarf2_name (die, cu);
6607 if (name)
6608 TYPE_NAME (type) = name;
6609
6610 /* Install the type in the die. */
6611 set_die_type (die, type, cu);
6612
6613 /* set_die_type should be already done. */
6614 set_descriptive_type (type, die, cu);
6615
6616 do_cleanups (back_to);
6617
6618 return type;
6619 }
6620
6621 static enum dwarf_array_dim_ordering
6622 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
6623 {
6624 struct attribute *attr;
6625
6626 attr = dwarf2_attr (die, DW_AT_ordering, cu);
6627
6628 if (attr) return DW_SND (attr);
6629
6630 /*
6631 GNU F77 is a special case, as at 08/2004 array type info is the
6632 opposite order to the dwarf2 specification, but data is still
6633 laid out as per normal fortran.
6634
6635 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
6636 version checking.
6637 */
6638
6639 if (cu->language == language_fortran
6640 && cu->producer && strstr (cu->producer, "GNU F77"))
6641 {
6642 return DW_ORD_row_major;
6643 }
6644
6645 switch (cu->language_defn->la_array_ordering)
6646 {
6647 case array_column_major:
6648 return DW_ORD_col_major;
6649 case array_row_major:
6650 default:
6651 return DW_ORD_row_major;
6652 };
6653 }
6654
6655 /* Extract all information from a DW_TAG_set_type DIE and put it in
6656 the DIE's type field. */
6657
6658 static struct type *
6659 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
6660 {
6661 struct type *domain_type, *set_type;
6662 struct attribute *attr;
6663
6664 domain_type = die_type (die, cu);
6665
6666 /* The die_type call above may have already set the type for this DIE. */
6667 set_type = get_die_type (die, cu);
6668 if (set_type)
6669 return set_type;
6670
6671 set_type = create_set_type (NULL, domain_type);
6672
6673 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6674 if (attr)
6675 TYPE_LENGTH (set_type) = DW_UNSND (attr);
6676
6677 return set_die_type (die, set_type, cu);
6678 }
6679
6680 /* First cut: install each common block member as a global variable. */
6681
6682 static void
6683 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
6684 {
6685 struct die_info *child_die;
6686 struct attribute *attr;
6687 struct symbol *sym;
6688 CORE_ADDR base = (CORE_ADDR) 0;
6689
6690 attr = dwarf2_attr (die, DW_AT_location, cu);
6691 if (attr)
6692 {
6693 /* Support the .debug_loc offsets */
6694 if (attr_form_is_block (attr))
6695 {
6696 base = decode_locdesc (DW_BLOCK (attr), cu);
6697 }
6698 else if (attr_form_is_section_offset (attr))
6699 {
6700 dwarf2_complex_location_expr_complaint ();
6701 }
6702 else
6703 {
6704 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
6705 "common block member");
6706 }
6707 }
6708 if (die->child != NULL)
6709 {
6710 child_die = die->child;
6711 while (child_die && child_die->tag)
6712 {
6713 sym = new_symbol (child_die, NULL, cu);
6714 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
6715 if (attr)
6716 {
6717 CORE_ADDR byte_offset = 0;
6718
6719 if (attr_form_is_section_offset (attr))
6720 dwarf2_complex_location_expr_complaint ();
6721 else if (attr_form_is_constant (attr))
6722 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6723 else if (attr_form_is_block (attr))
6724 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6725 else
6726 dwarf2_complex_location_expr_complaint ();
6727
6728 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
6729 add_symbol_to_list (sym, &global_symbols);
6730 }
6731 child_die = sibling_die (child_die);
6732 }
6733 }
6734 }
6735
6736 /* Create a type for a C++ namespace. */
6737
6738 static struct type *
6739 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
6740 {
6741 struct objfile *objfile = cu->objfile;
6742 const char *previous_prefix, *name;
6743 int is_anonymous;
6744 struct type *type;
6745
6746 /* For extensions, reuse the type of the original namespace. */
6747 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
6748 {
6749 struct die_info *ext_die;
6750 struct dwarf2_cu *ext_cu = cu;
6751
6752 ext_die = dwarf2_extension (die, &ext_cu);
6753 type = read_type_die (ext_die, ext_cu);
6754 return set_die_type (die, type, cu);
6755 }
6756
6757 name = namespace_name (die, &is_anonymous, cu);
6758
6759 /* Now build the name of the current namespace. */
6760
6761 previous_prefix = determine_prefix (die, cu);
6762 if (previous_prefix[0] != '\0')
6763 name = typename_concat (&objfile->objfile_obstack,
6764 previous_prefix, name, 0, cu);
6765
6766 /* Create the type. */
6767 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
6768 objfile);
6769 TYPE_NAME (type) = (char *) name;
6770 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6771
6772 return set_die_type (die, type, cu);
6773 }
6774
6775 /* Read a C++ namespace. */
6776
6777 static void
6778 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
6779 {
6780 struct objfile *objfile = cu->objfile;
6781 const char *name;
6782 int is_anonymous;
6783
6784 /* Add a symbol associated to this if we haven't seen the namespace
6785 before. Also, add a using directive if it's an anonymous
6786 namespace. */
6787
6788 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
6789 {
6790 struct type *type;
6791
6792 type = read_type_die (die, cu);
6793 new_symbol (die, type, cu);
6794
6795 name = namespace_name (die, &is_anonymous, cu);
6796 if (is_anonymous)
6797 {
6798 const char *previous_prefix = determine_prefix (die, cu);
6799
6800 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
6801 NULL, &objfile->objfile_obstack);
6802 }
6803 }
6804
6805 if (die->child != NULL)
6806 {
6807 struct die_info *child_die = die->child;
6808
6809 while (child_die && child_die->tag)
6810 {
6811 process_die (child_die, cu);
6812 child_die = sibling_die (child_die);
6813 }
6814 }
6815 }
6816
6817 /* Read a Fortran module as type. This DIE can be only a declaration used for
6818 imported module. Still we need that type as local Fortran "use ... only"
6819 declaration imports depend on the created type in determine_prefix. */
6820
6821 static struct type *
6822 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
6823 {
6824 struct objfile *objfile = cu->objfile;
6825 char *module_name;
6826 struct type *type;
6827
6828 module_name = dwarf2_name (die, cu);
6829 if (!module_name)
6830 complaint (&symfile_complaints, _("DW_TAG_module has no name, offset 0x%x"),
6831 die->offset);
6832 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
6833
6834 /* determine_prefix uses TYPE_TAG_NAME. */
6835 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6836
6837 return set_die_type (die, type, cu);
6838 }
6839
6840 /* Read a Fortran module. */
6841
6842 static void
6843 read_module (struct die_info *die, struct dwarf2_cu *cu)
6844 {
6845 struct die_info *child_die = die->child;
6846
6847 while (child_die && child_die->tag)
6848 {
6849 process_die (child_die, cu);
6850 child_die = sibling_die (child_die);
6851 }
6852 }
6853
6854 /* Return the name of the namespace represented by DIE. Set
6855 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
6856 namespace. */
6857
6858 static const char *
6859 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
6860 {
6861 struct die_info *current_die;
6862 const char *name = NULL;
6863
6864 /* Loop through the extensions until we find a name. */
6865
6866 for (current_die = die;
6867 current_die != NULL;
6868 current_die = dwarf2_extension (die, &cu))
6869 {
6870 name = dwarf2_name (current_die, cu);
6871 if (name != NULL)
6872 break;
6873 }
6874
6875 /* Is it an anonymous namespace? */
6876
6877 *is_anonymous = (name == NULL);
6878 if (*is_anonymous)
6879 name = "(anonymous namespace)";
6880
6881 return name;
6882 }
6883
6884 /* Extract all information from a DW_TAG_pointer_type DIE and add to
6885 the user defined type vector. */
6886
6887 static struct type *
6888 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
6889 {
6890 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
6891 struct comp_unit_head *cu_header = &cu->header;
6892 struct type *type;
6893 struct attribute *attr_byte_size;
6894 struct attribute *attr_address_class;
6895 int byte_size, addr_class;
6896 struct type *target_type;
6897
6898 target_type = die_type (die, cu);
6899
6900 /* The die_type call above may have already set the type for this DIE. */
6901 type = get_die_type (die, cu);
6902 if (type)
6903 return type;
6904
6905 type = lookup_pointer_type (target_type);
6906
6907 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
6908 if (attr_byte_size)
6909 byte_size = DW_UNSND (attr_byte_size);
6910 else
6911 byte_size = cu_header->addr_size;
6912
6913 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
6914 if (attr_address_class)
6915 addr_class = DW_UNSND (attr_address_class);
6916 else
6917 addr_class = DW_ADDR_none;
6918
6919 /* If the pointer size or address class is different than the
6920 default, create a type variant marked as such and set the
6921 length accordingly. */
6922 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
6923 {
6924 if (gdbarch_address_class_type_flags_p (gdbarch))
6925 {
6926 int type_flags;
6927
6928 type_flags = gdbarch_address_class_type_flags
6929 (gdbarch, byte_size, addr_class);
6930 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
6931 == 0);
6932 type = make_type_with_address_space (type, type_flags);
6933 }
6934 else if (TYPE_LENGTH (type) != byte_size)
6935 {
6936 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
6937 }
6938 else
6939 {
6940 /* Should we also complain about unhandled address classes? */
6941 }
6942 }
6943
6944 TYPE_LENGTH (type) = byte_size;
6945 return set_die_type (die, type, cu);
6946 }
6947
6948 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
6949 the user defined type vector. */
6950
6951 static struct type *
6952 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
6953 {
6954 struct type *type;
6955 struct type *to_type;
6956 struct type *domain;
6957
6958 to_type = die_type (die, cu);
6959 domain = die_containing_type (die, cu);
6960
6961 /* The calls above may have already set the type for this DIE. */
6962 type = get_die_type (die, cu);
6963 if (type)
6964 return type;
6965
6966 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
6967 type = lookup_methodptr_type (to_type);
6968 else
6969 type = lookup_memberptr_type (to_type, domain);
6970
6971 return set_die_type (die, type, cu);
6972 }
6973
6974 /* Extract all information from a DW_TAG_reference_type DIE and add to
6975 the user defined type vector. */
6976
6977 static struct type *
6978 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
6979 {
6980 struct comp_unit_head *cu_header = &cu->header;
6981 struct type *type, *target_type;
6982 struct attribute *attr;
6983
6984 target_type = die_type (die, cu);
6985
6986 /* The die_type call above may have already set the type for this DIE. */
6987 type = get_die_type (die, cu);
6988 if (type)
6989 return type;
6990
6991 type = lookup_reference_type (target_type);
6992 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6993 if (attr)
6994 {
6995 TYPE_LENGTH (type) = DW_UNSND (attr);
6996 }
6997 else
6998 {
6999 TYPE_LENGTH (type) = cu_header->addr_size;
7000 }
7001 return set_die_type (die, type, cu);
7002 }
7003
7004 static struct type *
7005 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
7006 {
7007 struct type *base_type, *cv_type;
7008
7009 base_type = die_type (die, cu);
7010
7011 /* The die_type call above may have already set the type for this DIE. */
7012 cv_type = get_die_type (die, cu);
7013 if (cv_type)
7014 return cv_type;
7015
7016 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
7017 return set_die_type (die, cv_type, cu);
7018 }
7019
7020 static struct type *
7021 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
7022 {
7023 struct type *base_type, *cv_type;
7024
7025 base_type = die_type (die, cu);
7026
7027 /* The die_type call above may have already set the type for this DIE. */
7028 cv_type = get_die_type (die, cu);
7029 if (cv_type)
7030 return cv_type;
7031
7032 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
7033 return set_die_type (die, cv_type, cu);
7034 }
7035
7036 /* Extract all information from a DW_TAG_string_type DIE and add to
7037 the user defined type vector. It isn't really a user defined type,
7038 but it behaves like one, with other DIE's using an AT_user_def_type
7039 attribute to reference it. */
7040
7041 static struct type *
7042 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
7043 {
7044 struct objfile *objfile = cu->objfile;
7045 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7046 struct type *type, *range_type, *index_type, *char_type;
7047 struct attribute *attr;
7048 unsigned int length;
7049
7050 attr = dwarf2_attr (die, DW_AT_string_length, cu);
7051 if (attr)
7052 {
7053 length = DW_UNSND (attr);
7054 }
7055 else
7056 {
7057 /* check for the DW_AT_byte_size attribute */
7058 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7059 if (attr)
7060 {
7061 length = DW_UNSND (attr);
7062 }
7063 else
7064 {
7065 length = 1;
7066 }
7067 }
7068
7069 index_type = objfile_type (objfile)->builtin_int;
7070 range_type = create_range_type (NULL, index_type, 1, length);
7071 char_type = language_string_char_type (cu->language_defn, gdbarch);
7072 type = create_string_type (NULL, char_type, range_type);
7073
7074 return set_die_type (die, type, cu);
7075 }
7076
7077 /* Handle DIES due to C code like:
7078
7079 struct foo
7080 {
7081 int (*funcp)(int a, long l);
7082 int b;
7083 };
7084
7085 ('funcp' generates a DW_TAG_subroutine_type DIE)
7086 */
7087
7088 static struct type *
7089 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
7090 {
7091 struct type *type; /* Type that this function returns */
7092 struct type *ftype; /* Function that returns above type */
7093 struct attribute *attr;
7094
7095 type = die_type (die, cu);
7096
7097 /* The die_type call above may have already set the type for this DIE. */
7098 ftype = get_die_type (die, cu);
7099 if (ftype)
7100 return ftype;
7101
7102 ftype = lookup_function_type (type);
7103
7104 /* All functions in C++, Pascal and Java have prototypes. */
7105 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
7106 if ((attr && (DW_UNSND (attr) != 0))
7107 || cu->language == language_cplus
7108 || cu->language == language_java
7109 || cu->language == language_pascal)
7110 TYPE_PROTOTYPED (ftype) = 1;
7111 else if (producer_is_realview (cu->producer))
7112 /* RealView does not emit DW_AT_prototyped. We can not
7113 distinguish prototyped and unprototyped functions; default to
7114 prototyped, since that is more common in modern code (and
7115 RealView warns about unprototyped functions). */
7116 TYPE_PROTOTYPED (ftype) = 1;
7117
7118 /* Store the calling convention in the type if it's available in
7119 the subroutine die. Otherwise set the calling convention to
7120 the default value DW_CC_normal. */
7121 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
7122 TYPE_CALLING_CONVENTION (ftype) = attr ? DW_UNSND (attr) : DW_CC_normal;
7123
7124 /* We need to add the subroutine type to the die immediately so
7125 we don't infinitely recurse when dealing with parameters
7126 declared as the same subroutine type. */
7127 set_die_type (die, ftype, cu);
7128
7129 if (die->child != NULL)
7130 {
7131 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
7132 struct die_info *child_die;
7133 int nparams, iparams;
7134
7135 /* Count the number of parameters.
7136 FIXME: GDB currently ignores vararg functions, but knows about
7137 vararg member functions. */
7138 nparams = 0;
7139 child_die = die->child;
7140 while (child_die && child_die->tag)
7141 {
7142 if (child_die->tag == DW_TAG_formal_parameter)
7143 nparams++;
7144 else if (child_die->tag == DW_TAG_unspecified_parameters)
7145 TYPE_VARARGS (ftype) = 1;
7146 child_die = sibling_die (child_die);
7147 }
7148
7149 /* Allocate storage for parameters and fill them in. */
7150 TYPE_NFIELDS (ftype) = nparams;
7151 TYPE_FIELDS (ftype) = (struct field *)
7152 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
7153
7154 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
7155 even if we error out during the parameters reading below. */
7156 for (iparams = 0; iparams < nparams; iparams++)
7157 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
7158
7159 iparams = 0;
7160 child_die = die->child;
7161 while (child_die && child_die->tag)
7162 {
7163 if (child_die->tag == DW_TAG_formal_parameter)
7164 {
7165 /* Dwarf2 has no clean way to discern C++ static and non-static
7166 member functions. G++ helps GDB by marking the first
7167 parameter for non-static member functions (which is the
7168 this pointer) as artificial. We pass this information
7169 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
7170 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
7171 if (attr)
7172 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
7173 else
7174 {
7175 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
7176
7177 /* GCC/43521: In java, the formal parameter
7178 "this" is sometimes not marked with DW_AT_artificial. */
7179 if (cu->language == language_java)
7180 {
7181 const char *name = dwarf2_name (child_die, cu);
7182
7183 if (name && !strcmp (name, "this"))
7184 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
7185 }
7186 }
7187 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
7188 iparams++;
7189 }
7190 child_die = sibling_die (child_die);
7191 }
7192 }
7193
7194 return ftype;
7195 }
7196
7197 static struct type *
7198 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
7199 {
7200 struct objfile *objfile = cu->objfile;
7201 const char *name = NULL;
7202 struct type *this_type;
7203
7204 name = dwarf2_full_name (NULL, die, cu);
7205 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
7206 TYPE_FLAG_TARGET_STUB, NULL, objfile);
7207 TYPE_NAME (this_type) = (char *) name;
7208 set_die_type (die, this_type, cu);
7209 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
7210 return this_type;
7211 }
7212
7213 /* Find a representation of a given base type and install
7214 it in the TYPE field of the die. */
7215
7216 static struct type *
7217 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
7218 {
7219 struct objfile *objfile = cu->objfile;
7220 struct type *type;
7221 struct attribute *attr;
7222 int encoding = 0, size = 0;
7223 char *name;
7224 enum type_code code = TYPE_CODE_INT;
7225 int type_flags = 0;
7226 struct type *target_type = NULL;
7227
7228 attr = dwarf2_attr (die, DW_AT_encoding, cu);
7229 if (attr)
7230 {
7231 encoding = DW_UNSND (attr);
7232 }
7233 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7234 if (attr)
7235 {
7236 size = DW_UNSND (attr);
7237 }
7238 name = dwarf2_name (die, cu);
7239 if (!name)
7240 {
7241 complaint (&symfile_complaints,
7242 _("DW_AT_name missing from DW_TAG_base_type"));
7243 }
7244
7245 switch (encoding)
7246 {
7247 case DW_ATE_address:
7248 /* Turn DW_ATE_address into a void * pointer. */
7249 code = TYPE_CODE_PTR;
7250 type_flags |= TYPE_FLAG_UNSIGNED;
7251 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
7252 break;
7253 case DW_ATE_boolean:
7254 code = TYPE_CODE_BOOL;
7255 type_flags |= TYPE_FLAG_UNSIGNED;
7256 break;
7257 case DW_ATE_complex_float:
7258 code = TYPE_CODE_COMPLEX;
7259 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
7260 break;
7261 case DW_ATE_decimal_float:
7262 code = TYPE_CODE_DECFLOAT;
7263 break;
7264 case DW_ATE_float:
7265 code = TYPE_CODE_FLT;
7266 break;
7267 case DW_ATE_signed:
7268 break;
7269 case DW_ATE_unsigned:
7270 type_flags |= TYPE_FLAG_UNSIGNED;
7271 break;
7272 case DW_ATE_signed_char:
7273 if (cu->language == language_ada || cu->language == language_m2
7274 || cu->language == language_pascal)
7275 code = TYPE_CODE_CHAR;
7276 break;
7277 case DW_ATE_unsigned_char:
7278 if (cu->language == language_ada || cu->language == language_m2
7279 || cu->language == language_pascal)
7280 code = TYPE_CODE_CHAR;
7281 type_flags |= TYPE_FLAG_UNSIGNED;
7282 break;
7283 case DW_ATE_UTF:
7284 /* We just treat this as an integer and then recognize the
7285 type by name elsewhere. */
7286 break;
7287
7288 default:
7289 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
7290 dwarf_type_encoding_name (encoding));
7291 break;
7292 }
7293
7294 type = init_type (code, size, type_flags, NULL, objfile);
7295 TYPE_NAME (type) = name;
7296 TYPE_TARGET_TYPE (type) = target_type;
7297
7298 if (name && strcmp (name, "char") == 0)
7299 TYPE_NOSIGN (type) = 1;
7300
7301 return set_die_type (die, type, cu);
7302 }
7303
7304 /* Read the given DW_AT_subrange DIE. */
7305
7306 static struct type *
7307 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
7308 {
7309 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
7310 struct type *base_type;
7311 struct type *range_type;
7312 struct attribute *attr;
7313 LONGEST low = 0;
7314 LONGEST high = -1;
7315 char *name;
7316 LONGEST negative_mask;
7317
7318 base_type = die_type (die, cu);
7319 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
7320 check_typedef (base_type);
7321
7322 /* The die_type call above may have already set the type for this DIE. */
7323 range_type = get_die_type (die, cu);
7324 if (range_type)
7325 return range_type;
7326
7327 if (cu->language == language_fortran)
7328 {
7329 /* FORTRAN implies a lower bound of 1, if not given. */
7330 low = 1;
7331 }
7332
7333 /* FIXME: For variable sized arrays either of these could be
7334 a variable rather than a constant value. We'll allow it,
7335 but we don't know how to handle it. */
7336 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
7337 if (attr)
7338 low = dwarf2_get_attr_constant_value (attr, 0);
7339
7340 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
7341 if (attr)
7342 {
7343 if (attr->form == DW_FORM_block1 || is_ref_attr (attr))
7344 {
7345 /* GCC encodes arrays with unspecified or dynamic length
7346 with a DW_FORM_block1 attribute or a reference attribute.
7347 FIXME: GDB does not yet know how to handle dynamic
7348 arrays properly, treat them as arrays with unspecified
7349 length for now.
7350
7351 FIXME: jimb/2003-09-22: GDB does not really know
7352 how to handle arrays of unspecified length
7353 either; we just represent them as zero-length
7354 arrays. Choose an appropriate upper bound given
7355 the lower bound we've computed above. */
7356 high = low - 1;
7357 }
7358 else
7359 high = dwarf2_get_attr_constant_value (attr, 1);
7360 }
7361 else
7362 {
7363 attr = dwarf2_attr (die, DW_AT_count, cu);
7364 if (attr)
7365 {
7366 int count = dwarf2_get_attr_constant_value (attr, 1);
7367 high = low + count - 1;
7368 }
7369 }
7370
7371 /* Dwarf-2 specifications explicitly allows to create subrange types
7372 without specifying a base type.
7373 In that case, the base type must be set to the type of
7374 the lower bound, upper bound or count, in that order, if any of these
7375 three attributes references an object that has a type.
7376 If no base type is found, the Dwarf-2 specifications say that
7377 a signed integer type of size equal to the size of an address should
7378 be used.
7379 For the following C code: `extern char gdb_int [];'
7380 GCC produces an empty range DIE.
7381 FIXME: muller/2010-05-28: Possible references to object for low bound,
7382 high bound or count are not yet handled by this code.
7383 */
7384 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
7385 {
7386 struct objfile *objfile = cu->objfile;
7387 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7388 int addr_size = gdbarch_addr_bit (gdbarch) /8;
7389 struct type *int_type = objfile_type (objfile)->builtin_int;
7390
7391 /* Test "int", "long int", and "long long int" objfile types,
7392 and select the first one having a size above or equal to the
7393 architecture address size. */
7394 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
7395 base_type = int_type;
7396 else
7397 {
7398 int_type = objfile_type (objfile)->builtin_long;
7399 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
7400 base_type = int_type;
7401 else
7402 {
7403 int_type = objfile_type (objfile)->builtin_long_long;
7404 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
7405 base_type = int_type;
7406 }
7407 }
7408 }
7409
7410 negative_mask =
7411 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
7412 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
7413 low |= negative_mask;
7414 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
7415 high |= negative_mask;
7416
7417 range_type = create_range_type (NULL, base_type, low, high);
7418
7419 /* Mark arrays with dynamic length at least as an array of unspecified
7420 length. GDB could check the boundary but before it gets implemented at
7421 least allow accessing the array elements. */
7422 if (attr && attr->form == DW_FORM_block1)
7423 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
7424
7425 name = dwarf2_name (die, cu);
7426 if (name)
7427 TYPE_NAME (range_type) = name;
7428
7429 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7430 if (attr)
7431 TYPE_LENGTH (range_type) = DW_UNSND (attr);
7432
7433 set_die_type (die, range_type, cu);
7434
7435 /* set_die_type should be already done. */
7436 set_descriptive_type (range_type, die, cu);
7437
7438 return range_type;
7439 }
7440
7441 static struct type *
7442 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
7443 {
7444 struct type *type;
7445
7446 /* For now, we only support the C meaning of an unspecified type: void. */
7447
7448 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
7449 TYPE_NAME (type) = dwarf2_name (die, cu);
7450
7451 return set_die_type (die, type, cu);
7452 }
7453
7454 /* Trivial hash function for die_info: the hash value of a DIE
7455 is its offset in .debug_info for this objfile. */
7456
7457 static hashval_t
7458 die_hash (const void *item)
7459 {
7460 const struct die_info *die = item;
7461
7462 return die->offset;
7463 }
7464
7465 /* Trivial comparison function for die_info structures: two DIEs
7466 are equal if they have the same offset. */
7467
7468 static int
7469 die_eq (const void *item_lhs, const void *item_rhs)
7470 {
7471 const struct die_info *die_lhs = item_lhs;
7472 const struct die_info *die_rhs = item_rhs;
7473
7474 return die_lhs->offset == die_rhs->offset;
7475 }
7476
7477 /* Read a whole compilation unit into a linked list of dies. */
7478
7479 static struct die_info *
7480 read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
7481 {
7482 struct die_reader_specs reader_specs;
7483
7484 gdb_assert (cu->die_hash == NULL);
7485 cu->die_hash
7486 = htab_create_alloc_ex (cu->header.length / 12,
7487 die_hash,
7488 die_eq,
7489 NULL,
7490 &cu->comp_unit_obstack,
7491 hashtab_obstack_allocate,
7492 dummy_obstack_deallocate);
7493
7494 init_cu_die_reader (&reader_specs, cu);
7495
7496 return read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
7497 }
7498
7499 /* Main entry point for reading a DIE and all children.
7500 Read the DIE and dump it if requested. */
7501
7502 static struct die_info *
7503 read_die_and_children (const struct die_reader_specs *reader,
7504 gdb_byte *info_ptr,
7505 gdb_byte **new_info_ptr,
7506 struct die_info *parent)
7507 {
7508 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
7509 new_info_ptr, parent);
7510
7511 if (dwarf2_die_debug)
7512 {
7513 fprintf_unfiltered (gdb_stdlog,
7514 "\nRead die from %s of %s:\n",
7515 reader->buffer == dwarf2_per_objfile->info.buffer
7516 ? ".debug_info"
7517 : reader->buffer == dwarf2_per_objfile->types.buffer
7518 ? ".debug_types"
7519 : "unknown section",
7520 reader->abfd->filename);
7521 dump_die (result, dwarf2_die_debug);
7522 }
7523
7524 return result;
7525 }
7526
7527 /* Read a single die and all its descendents. Set the die's sibling
7528 field to NULL; set other fields in the die correctly, and set all
7529 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
7530 location of the info_ptr after reading all of those dies. PARENT
7531 is the parent of the die in question. */
7532
7533 static struct die_info *
7534 read_die_and_children_1 (const struct die_reader_specs *reader,
7535 gdb_byte *info_ptr,
7536 gdb_byte **new_info_ptr,
7537 struct die_info *parent)
7538 {
7539 struct die_info *die;
7540 gdb_byte *cur_ptr;
7541 int has_children;
7542
7543 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
7544 if (die == NULL)
7545 {
7546 *new_info_ptr = cur_ptr;
7547 return NULL;
7548 }
7549 store_in_ref_table (die, reader->cu);
7550
7551 if (has_children)
7552 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
7553 else
7554 {
7555 die->child = NULL;
7556 *new_info_ptr = cur_ptr;
7557 }
7558
7559 die->sibling = NULL;
7560 die->parent = parent;
7561 return die;
7562 }
7563
7564 /* Read a die, all of its descendents, and all of its siblings; set
7565 all of the fields of all of the dies correctly. Arguments are as
7566 in read_die_and_children. */
7567
7568 static struct die_info *
7569 read_die_and_siblings (const struct die_reader_specs *reader,
7570 gdb_byte *info_ptr,
7571 gdb_byte **new_info_ptr,
7572 struct die_info *parent)
7573 {
7574 struct die_info *first_die, *last_sibling;
7575 gdb_byte *cur_ptr;
7576
7577 cur_ptr = info_ptr;
7578 first_die = last_sibling = NULL;
7579
7580 while (1)
7581 {
7582 struct die_info *die
7583 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
7584
7585 if (die == NULL)
7586 {
7587 *new_info_ptr = cur_ptr;
7588 return first_die;
7589 }
7590
7591 if (!first_die)
7592 first_die = die;
7593 else
7594 last_sibling->sibling = die;
7595
7596 last_sibling = die;
7597 }
7598 }
7599
7600 /* Read the die from the .debug_info section buffer. Set DIEP to
7601 point to a newly allocated die with its information, except for its
7602 child, sibling, and parent fields. Set HAS_CHILDREN to tell
7603 whether the die has children or not. */
7604
7605 static gdb_byte *
7606 read_full_die (const struct die_reader_specs *reader,
7607 struct die_info **diep, gdb_byte *info_ptr,
7608 int *has_children)
7609 {
7610 unsigned int abbrev_number, bytes_read, i, offset;
7611 struct abbrev_info *abbrev;
7612 struct die_info *die;
7613 struct dwarf2_cu *cu = reader->cu;
7614 bfd *abfd = reader->abfd;
7615
7616 offset = info_ptr - reader->buffer;
7617 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7618 info_ptr += bytes_read;
7619 if (!abbrev_number)
7620 {
7621 *diep = NULL;
7622 *has_children = 0;
7623 return info_ptr;
7624 }
7625
7626 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
7627 if (!abbrev)
7628 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
7629 abbrev_number,
7630 bfd_get_filename (abfd));
7631
7632 die = dwarf_alloc_die (cu, abbrev->num_attrs);
7633 die->offset = offset;
7634 die->tag = abbrev->tag;
7635 die->abbrev = abbrev_number;
7636
7637 die->num_attrs = abbrev->num_attrs;
7638
7639 for (i = 0; i < abbrev->num_attrs; ++i)
7640 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
7641 abfd, info_ptr, cu);
7642
7643 *diep = die;
7644 *has_children = abbrev->has_children;
7645 return info_ptr;
7646 }
7647
7648 /* In DWARF version 2, the description of the debugging information is
7649 stored in a separate .debug_abbrev section. Before we read any
7650 dies from a section we read in all abbreviations and install them
7651 in a hash table. This function also sets flags in CU describing
7652 the data found in the abbrev table. */
7653
7654 static void
7655 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
7656 {
7657 struct comp_unit_head *cu_header = &cu->header;
7658 gdb_byte *abbrev_ptr;
7659 struct abbrev_info *cur_abbrev;
7660 unsigned int abbrev_number, bytes_read, abbrev_name;
7661 unsigned int abbrev_form, hash_number;
7662 struct attr_abbrev *cur_attrs;
7663 unsigned int allocated_attrs;
7664
7665 /* Initialize dwarf2 abbrevs */
7666 obstack_init (&cu->abbrev_obstack);
7667 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
7668 (ABBREV_HASH_SIZE
7669 * sizeof (struct abbrev_info *)));
7670 memset (cu->dwarf2_abbrevs, 0,
7671 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
7672
7673 dwarf2_read_section (dwarf2_per_objfile->objfile,
7674 &dwarf2_per_objfile->abbrev);
7675 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
7676 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
7677 abbrev_ptr += bytes_read;
7678
7679 allocated_attrs = ATTR_ALLOC_CHUNK;
7680 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
7681
7682 /* loop until we reach an abbrev number of 0 */
7683 while (abbrev_number)
7684 {
7685 cur_abbrev = dwarf_alloc_abbrev (cu);
7686
7687 /* read in abbrev header */
7688 cur_abbrev->number = abbrev_number;
7689 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
7690 abbrev_ptr += bytes_read;
7691 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
7692 abbrev_ptr += 1;
7693
7694 if (cur_abbrev->tag == DW_TAG_namespace)
7695 cu->has_namespace_info = 1;
7696
7697 /* now read in declarations */
7698 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
7699 abbrev_ptr += bytes_read;
7700 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
7701 abbrev_ptr += bytes_read;
7702 while (abbrev_name)
7703 {
7704 if (cur_abbrev->num_attrs == allocated_attrs)
7705 {
7706 allocated_attrs += ATTR_ALLOC_CHUNK;
7707 cur_attrs
7708 = xrealloc (cur_attrs, (allocated_attrs
7709 * sizeof (struct attr_abbrev)));
7710 }
7711
7712 /* Record whether this compilation unit might have
7713 inter-compilation-unit references. If we don't know what form
7714 this attribute will have, then it might potentially be a
7715 DW_FORM_ref_addr, so we conservatively expect inter-CU
7716 references. */
7717
7718 if (abbrev_form == DW_FORM_ref_addr
7719 || abbrev_form == DW_FORM_indirect)
7720 cu->has_form_ref_addr = 1;
7721
7722 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
7723 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
7724 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
7725 abbrev_ptr += bytes_read;
7726 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
7727 abbrev_ptr += bytes_read;
7728 }
7729
7730 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
7731 (cur_abbrev->num_attrs
7732 * sizeof (struct attr_abbrev)));
7733 memcpy (cur_abbrev->attrs, cur_attrs,
7734 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
7735
7736 hash_number = abbrev_number % ABBREV_HASH_SIZE;
7737 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
7738 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
7739
7740 /* Get next abbreviation.
7741 Under Irix6 the abbreviations for a compilation unit are not
7742 always properly terminated with an abbrev number of 0.
7743 Exit loop if we encounter an abbreviation which we have
7744 already read (which means we are about to read the abbreviations
7745 for the next compile unit) or if the end of the abbreviation
7746 table is reached. */
7747 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
7748 >= dwarf2_per_objfile->abbrev.size)
7749 break;
7750 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
7751 abbrev_ptr += bytes_read;
7752 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
7753 break;
7754 }
7755
7756 xfree (cur_attrs);
7757 }
7758
7759 /* Release the memory used by the abbrev table for a compilation unit. */
7760
7761 static void
7762 dwarf2_free_abbrev_table (void *ptr_to_cu)
7763 {
7764 struct dwarf2_cu *cu = ptr_to_cu;
7765
7766 obstack_free (&cu->abbrev_obstack, NULL);
7767 cu->dwarf2_abbrevs = NULL;
7768 }
7769
7770 /* Lookup an abbrev_info structure in the abbrev hash table. */
7771
7772 static struct abbrev_info *
7773 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
7774 {
7775 unsigned int hash_number;
7776 struct abbrev_info *abbrev;
7777
7778 hash_number = number % ABBREV_HASH_SIZE;
7779 abbrev = cu->dwarf2_abbrevs[hash_number];
7780
7781 while (abbrev)
7782 {
7783 if (abbrev->number == number)
7784 return abbrev;
7785 else
7786 abbrev = abbrev->next;
7787 }
7788 return NULL;
7789 }
7790
7791 /* Returns nonzero if TAG represents a type that we might generate a partial
7792 symbol for. */
7793
7794 static int
7795 is_type_tag_for_partial (int tag)
7796 {
7797 switch (tag)
7798 {
7799 #if 0
7800 /* Some types that would be reasonable to generate partial symbols for,
7801 that we don't at present. */
7802 case DW_TAG_array_type:
7803 case DW_TAG_file_type:
7804 case DW_TAG_ptr_to_member_type:
7805 case DW_TAG_set_type:
7806 case DW_TAG_string_type:
7807 case DW_TAG_subroutine_type:
7808 #endif
7809 case DW_TAG_base_type:
7810 case DW_TAG_class_type:
7811 case DW_TAG_interface_type:
7812 case DW_TAG_enumeration_type:
7813 case DW_TAG_structure_type:
7814 case DW_TAG_subrange_type:
7815 case DW_TAG_typedef:
7816 case DW_TAG_union_type:
7817 return 1;
7818 default:
7819 return 0;
7820 }
7821 }
7822
7823 /* Load all DIEs that are interesting for partial symbols into memory. */
7824
7825 static struct partial_die_info *
7826 load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
7827 int building_psymtab, struct dwarf2_cu *cu)
7828 {
7829 struct partial_die_info *part_die;
7830 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
7831 struct abbrev_info *abbrev;
7832 unsigned int bytes_read;
7833 unsigned int load_all = 0;
7834
7835 int nesting_level = 1;
7836
7837 parent_die = NULL;
7838 last_die = NULL;
7839
7840 if (cu->per_cu && cu->per_cu->load_all_dies)
7841 load_all = 1;
7842
7843 cu->partial_dies
7844 = htab_create_alloc_ex (cu->header.length / 12,
7845 partial_die_hash,
7846 partial_die_eq,
7847 NULL,
7848 &cu->comp_unit_obstack,
7849 hashtab_obstack_allocate,
7850 dummy_obstack_deallocate);
7851
7852 part_die = obstack_alloc (&cu->comp_unit_obstack,
7853 sizeof (struct partial_die_info));
7854
7855 while (1)
7856 {
7857 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7858
7859 /* A NULL abbrev means the end of a series of children. */
7860 if (abbrev == NULL)
7861 {
7862 if (--nesting_level == 0)
7863 {
7864 /* PART_DIE was probably the last thing allocated on the
7865 comp_unit_obstack, so we could call obstack_free
7866 here. We don't do that because the waste is small,
7867 and will be cleaned up when we're done with this
7868 compilation unit. This way, we're also more robust
7869 against other users of the comp_unit_obstack. */
7870 return first_die;
7871 }
7872 info_ptr += bytes_read;
7873 last_die = parent_die;
7874 parent_die = parent_die->die_parent;
7875 continue;
7876 }
7877
7878 /* Check whether this DIE is interesting enough to save. Normally
7879 we would not be interested in members here, but there may be
7880 later variables referencing them via DW_AT_specification (for
7881 static members). */
7882 if (!load_all
7883 && !is_type_tag_for_partial (abbrev->tag)
7884 && abbrev->tag != DW_TAG_enumerator
7885 && abbrev->tag != DW_TAG_subprogram
7886 && abbrev->tag != DW_TAG_lexical_block
7887 && abbrev->tag != DW_TAG_variable
7888 && abbrev->tag != DW_TAG_namespace
7889 && abbrev->tag != DW_TAG_module
7890 && abbrev->tag != DW_TAG_member)
7891 {
7892 /* Otherwise we skip to the next sibling, if any. */
7893 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
7894 continue;
7895 }
7896
7897 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
7898 buffer, info_ptr, cu);
7899
7900 /* This two-pass algorithm for processing partial symbols has a
7901 high cost in cache pressure. Thus, handle some simple cases
7902 here which cover the majority of C partial symbols. DIEs
7903 which neither have specification tags in them, nor could have
7904 specification tags elsewhere pointing at them, can simply be
7905 processed and discarded.
7906
7907 This segment is also optional; scan_partial_symbols and
7908 add_partial_symbol will handle these DIEs if we chain
7909 them in normally. When compilers which do not emit large
7910 quantities of duplicate debug information are more common,
7911 this code can probably be removed. */
7912
7913 /* Any complete simple types at the top level (pretty much all
7914 of them, for a language without namespaces), can be processed
7915 directly. */
7916 if (parent_die == NULL
7917 && part_die->has_specification == 0
7918 && part_die->is_declaration == 0
7919 && (part_die->tag == DW_TAG_typedef
7920 || part_die->tag == DW_TAG_base_type
7921 || part_die->tag == DW_TAG_subrange_type))
7922 {
7923 if (building_psymtab && part_die->name != NULL)
7924 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
7925 VAR_DOMAIN, LOC_TYPEDEF,
7926 &cu->objfile->static_psymbols,
7927 0, (CORE_ADDR) 0, cu->language, cu->objfile);
7928 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
7929 continue;
7930 }
7931
7932 /* If we're at the second level, and we're an enumerator, and
7933 our parent has no specification (meaning possibly lives in a
7934 namespace elsewhere), then we can add the partial symbol now
7935 instead of queueing it. */
7936 if (part_die->tag == DW_TAG_enumerator
7937 && parent_die != NULL
7938 && parent_die->die_parent == NULL
7939 && parent_die->tag == DW_TAG_enumeration_type
7940 && parent_die->has_specification == 0)
7941 {
7942 if (part_die->name == NULL)
7943 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7944 else if (building_psymtab)
7945 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
7946 VAR_DOMAIN, LOC_CONST,
7947 (cu->language == language_cplus
7948 || cu->language == language_java)
7949 ? &cu->objfile->global_psymbols
7950 : &cu->objfile->static_psymbols,
7951 0, (CORE_ADDR) 0, cu->language, cu->objfile);
7952
7953 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
7954 continue;
7955 }
7956
7957 /* We'll save this DIE so link it in. */
7958 part_die->die_parent = parent_die;
7959 part_die->die_sibling = NULL;
7960 part_die->die_child = NULL;
7961
7962 if (last_die && last_die == parent_die)
7963 last_die->die_child = part_die;
7964 else if (last_die)
7965 last_die->die_sibling = part_die;
7966
7967 last_die = part_die;
7968
7969 if (first_die == NULL)
7970 first_die = part_die;
7971
7972 /* Maybe add the DIE to the hash table. Not all DIEs that we
7973 find interesting need to be in the hash table, because we
7974 also have the parent/sibling/child chains; only those that we
7975 might refer to by offset later during partial symbol reading.
7976
7977 For now this means things that might have be the target of a
7978 DW_AT_specification, DW_AT_abstract_origin, or
7979 DW_AT_extension. DW_AT_extension will refer only to
7980 namespaces; DW_AT_abstract_origin refers to functions (and
7981 many things under the function DIE, but we do not recurse
7982 into function DIEs during partial symbol reading) and
7983 possibly variables as well; DW_AT_specification refers to
7984 declarations. Declarations ought to have the DW_AT_declaration
7985 flag. It happens that GCC forgets to put it in sometimes, but
7986 only for functions, not for types.
7987
7988 Adding more things than necessary to the hash table is harmless
7989 except for the performance cost. Adding too few will result in
7990 wasted time in find_partial_die, when we reread the compilation
7991 unit with load_all_dies set. */
7992
7993 if (load_all
7994 || abbrev->tag == DW_TAG_subprogram
7995 || abbrev->tag == DW_TAG_variable
7996 || abbrev->tag == DW_TAG_namespace
7997 || part_die->is_declaration)
7998 {
7999 void **slot;
8000
8001 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
8002 part_die->offset, INSERT);
8003 *slot = part_die;
8004 }
8005
8006 part_die = obstack_alloc (&cu->comp_unit_obstack,
8007 sizeof (struct partial_die_info));
8008
8009 /* For some DIEs we want to follow their children (if any). For C
8010 we have no reason to follow the children of structures; for other
8011 languages we have to, both so that we can get at method physnames
8012 to infer fully qualified class names, and for DW_AT_specification.
8013
8014 For Ada, we need to scan the children of subprograms and lexical
8015 blocks as well because Ada allows the definition of nested
8016 entities that could be interesting for the debugger, such as
8017 nested subprograms for instance. */
8018 if (last_die->has_children
8019 && (load_all
8020 || last_die->tag == DW_TAG_namespace
8021 || last_die->tag == DW_TAG_module
8022 || last_die->tag == DW_TAG_enumeration_type
8023 || (cu->language != language_c
8024 && (last_die->tag == DW_TAG_class_type
8025 || last_die->tag == DW_TAG_interface_type
8026 || last_die->tag == DW_TAG_structure_type
8027 || last_die->tag == DW_TAG_union_type))
8028 || (cu->language == language_ada
8029 && (last_die->tag == DW_TAG_subprogram
8030 || last_die->tag == DW_TAG_lexical_block))))
8031 {
8032 nesting_level++;
8033 parent_die = last_die;
8034 continue;
8035 }
8036
8037 /* Otherwise we skip to the next sibling, if any. */
8038 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
8039
8040 /* Back to the top, do it again. */
8041 }
8042 }
8043
8044 /* Read a minimal amount of information into the minimal die structure. */
8045
8046 static gdb_byte *
8047 read_partial_die (struct partial_die_info *part_die,
8048 struct abbrev_info *abbrev,
8049 unsigned int abbrev_len, bfd *abfd,
8050 gdb_byte *buffer, gdb_byte *info_ptr,
8051 struct dwarf2_cu *cu)
8052 {
8053 unsigned int i;
8054 struct attribute attr;
8055 int has_low_pc_attr = 0;
8056 int has_high_pc_attr = 0;
8057
8058 memset (part_die, 0, sizeof (struct partial_die_info));
8059
8060 part_die->offset = info_ptr - buffer;
8061
8062 info_ptr += abbrev_len;
8063
8064 if (abbrev == NULL)
8065 return info_ptr;
8066
8067 part_die->tag = abbrev->tag;
8068 part_die->has_children = abbrev->has_children;
8069
8070 for (i = 0; i < abbrev->num_attrs; ++i)
8071 {
8072 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
8073
8074 /* Store the data if it is of an attribute we want to keep in a
8075 partial symbol table. */
8076 switch (attr.name)
8077 {
8078 case DW_AT_name:
8079 switch (part_die->tag)
8080 {
8081 case DW_TAG_compile_unit:
8082 case DW_TAG_type_unit:
8083 /* Compilation units have a DW_AT_name that is a filename, not
8084 a source language identifier. */
8085 case DW_TAG_enumeration_type:
8086 case DW_TAG_enumerator:
8087 /* These tags always have simple identifiers already; no need
8088 to canonicalize them. */
8089 part_die->name = DW_STRING (&attr);
8090 break;
8091 default:
8092 part_die->name
8093 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
8094 &cu->objfile->objfile_obstack);
8095 break;
8096 }
8097 break;
8098 case DW_AT_linkage_name:
8099 case DW_AT_MIPS_linkage_name:
8100 /* Note that both forms of linkage name might appear. We
8101 assume they will be the same, and we only store the last
8102 one we see. */
8103 if (cu->language == language_ada)
8104 part_die->name = DW_STRING (&attr);
8105 break;
8106 case DW_AT_low_pc:
8107 has_low_pc_attr = 1;
8108 part_die->lowpc = DW_ADDR (&attr);
8109 break;
8110 case DW_AT_high_pc:
8111 has_high_pc_attr = 1;
8112 part_die->highpc = DW_ADDR (&attr);
8113 break;
8114 case DW_AT_location:
8115 /* Support the .debug_loc offsets */
8116 if (attr_form_is_block (&attr))
8117 {
8118 part_die->locdesc = DW_BLOCK (&attr);
8119 }
8120 else if (attr_form_is_section_offset (&attr))
8121 {
8122 dwarf2_complex_location_expr_complaint ();
8123 }
8124 else
8125 {
8126 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
8127 "partial symbol information");
8128 }
8129 break;
8130 case DW_AT_external:
8131 part_die->is_external = DW_UNSND (&attr);
8132 break;
8133 case DW_AT_declaration:
8134 part_die->is_declaration = DW_UNSND (&attr);
8135 break;
8136 case DW_AT_type:
8137 part_die->has_type = 1;
8138 break;
8139 case DW_AT_abstract_origin:
8140 case DW_AT_specification:
8141 case DW_AT_extension:
8142 part_die->has_specification = 1;
8143 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
8144 break;
8145 case DW_AT_sibling:
8146 /* Ignore absolute siblings, they might point outside of
8147 the current compile unit. */
8148 if (attr.form == DW_FORM_ref_addr)
8149 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
8150 else
8151 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
8152 break;
8153 case DW_AT_byte_size:
8154 part_die->has_byte_size = 1;
8155 break;
8156 case DW_AT_calling_convention:
8157 /* DWARF doesn't provide a way to identify a program's source-level
8158 entry point. DW_AT_calling_convention attributes are only meant
8159 to describe functions' calling conventions.
8160
8161 However, because it's a necessary piece of information in
8162 Fortran, and because DW_CC_program is the only piece of debugging
8163 information whose definition refers to a 'main program' at all,
8164 several compilers have begun marking Fortran main programs with
8165 DW_CC_program --- even when those functions use the standard
8166 calling conventions.
8167
8168 So until DWARF specifies a way to provide this information and
8169 compilers pick up the new representation, we'll support this
8170 practice. */
8171 if (DW_UNSND (&attr) == DW_CC_program
8172 && cu->language == language_fortran)
8173 set_main_name (part_die->name);
8174 break;
8175 default:
8176 break;
8177 }
8178 }
8179
8180 /* When using the GNU linker, .gnu.linkonce. sections are used to
8181 eliminate duplicate copies of functions and vtables and such.
8182 The linker will arbitrarily choose one and discard the others.
8183 The AT_*_pc values for such functions refer to local labels in
8184 these sections. If the section from that file was discarded, the
8185 labels are not in the output, so the relocs get a value of 0.
8186 If this is a discarded function, mark the pc bounds as invalid,
8187 so that GDB will ignore it. */
8188 if (has_low_pc_attr && has_high_pc_attr
8189 && part_die->lowpc < part_die->highpc
8190 && (part_die->lowpc != 0
8191 || dwarf2_per_objfile->has_section_at_zero))
8192 part_die->has_pc_info = 1;
8193
8194 return info_ptr;
8195 }
8196
8197 /* Find a cached partial DIE at OFFSET in CU. */
8198
8199 static struct partial_die_info *
8200 find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
8201 {
8202 struct partial_die_info *lookup_die = NULL;
8203 struct partial_die_info part_die;
8204
8205 part_die.offset = offset;
8206 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
8207
8208 return lookup_die;
8209 }
8210
8211 /* Find a partial DIE at OFFSET, which may or may not be in CU,
8212 except in the case of .debug_types DIEs which do not reference
8213 outside their CU (they do however referencing other types via
8214 DW_FORM_sig8). */
8215
8216 static struct partial_die_info *
8217 find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
8218 {
8219 struct dwarf2_per_cu_data *per_cu = NULL;
8220 struct partial_die_info *pd = NULL;
8221
8222 if (cu->per_cu->from_debug_types)
8223 {
8224 pd = find_partial_die_in_comp_unit (offset, cu);
8225 if (pd != NULL)
8226 return pd;
8227 goto not_found;
8228 }
8229
8230 if (offset_in_cu_p (&cu->header, offset))
8231 {
8232 pd = find_partial_die_in_comp_unit (offset, cu);
8233 if (pd != NULL)
8234 return pd;
8235 }
8236
8237 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
8238
8239 if (per_cu->cu == NULL)
8240 {
8241 load_partial_comp_unit (per_cu, cu->objfile);
8242 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
8243 dwarf2_per_objfile->read_in_chain = per_cu;
8244 }
8245
8246 per_cu->cu->last_used = 0;
8247 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
8248
8249 if (pd == NULL && per_cu->load_all_dies == 0)
8250 {
8251 struct cleanup *back_to;
8252 struct partial_die_info comp_unit_die;
8253 struct abbrev_info *abbrev;
8254 unsigned int bytes_read;
8255 char *info_ptr;
8256
8257 per_cu->load_all_dies = 1;
8258
8259 /* Re-read the DIEs. */
8260 back_to = make_cleanup (null_cleanup, 0);
8261 if (per_cu->cu->dwarf2_abbrevs == NULL)
8262 {
8263 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
8264 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
8265 }
8266 info_ptr = (dwarf2_per_objfile->info.buffer
8267 + per_cu->cu->header.offset
8268 + per_cu->cu->header.first_die_offset);
8269 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
8270 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
8271 per_cu->cu->objfile->obfd,
8272 dwarf2_per_objfile->info.buffer, info_ptr,
8273 per_cu->cu);
8274 if (comp_unit_die.has_children)
8275 load_partial_dies (per_cu->cu->objfile->obfd,
8276 dwarf2_per_objfile->info.buffer, info_ptr,
8277 0, per_cu->cu);
8278 do_cleanups (back_to);
8279
8280 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
8281 }
8282
8283 not_found:
8284
8285 if (pd == NULL)
8286 internal_error (__FILE__, __LINE__,
8287 _("could not find partial DIE 0x%x in cache [from module %s]\n"),
8288 offset, bfd_get_filename (cu->objfile->obfd));
8289 return pd;
8290 }
8291
8292 /* Adjust PART_DIE before generating a symbol for it. This function
8293 may set the is_external flag or change the DIE's name. */
8294
8295 static void
8296 fixup_partial_die (struct partial_die_info *part_die,
8297 struct dwarf2_cu *cu)
8298 {
8299 /* If we found a reference attribute and the DIE has no name, try
8300 to find a name in the referred to DIE. */
8301
8302 if (part_die->name == NULL && part_die->has_specification)
8303 {
8304 struct partial_die_info *spec_die;
8305
8306 spec_die = find_partial_die (part_die->spec_offset, cu);
8307
8308 fixup_partial_die (spec_die, cu);
8309
8310 if (spec_die->name)
8311 {
8312 part_die->name = spec_die->name;
8313
8314 /* Copy DW_AT_external attribute if it is set. */
8315 if (spec_die->is_external)
8316 part_die->is_external = spec_die->is_external;
8317 }
8318 }
8319
8320 /* Set default names for some unnamed DIEs. */
8321 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
8322 || part_die->tag == DW_TAG_class_type))
8323 part_die->name = "(anonymous class)";
8324
8325 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
8326 part_die->name = "(anonymous namespace)";
8327
8328 if (part_die->tag == DW_TAG_structure_type
8329 || part_die->tag == DW_TAG_class_type
8330 || part_die->tag == DW_TAG_union_type)
8331 guess_structure_name (part_die, cu);
8332 }
8333
8334 /* Read an attribute value described by an attribute form. */
8335
8336 static gdb_byte *
8337 read_attribute_value (struct attribute *attr, unsigned form,
8338 bfd *abfd, gdb_byte *info_ptr,
8339 struct dwarf2_cu *cu)
8340 {
8341 struct comp_unit_head *cu_header = &cu->header;
8342 unsigned int bytes_read;
8343 struct dwarf_block *blk;
8344
8345 attr->form = form;
8346 switch (form)
8347 {
8348 case DW_FORM_ref_addr:
8349 if (cu->header.version == 2)
8350 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
8351 else
8352 DW_ADDR (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
8353 info_ptr += bytes_read;
8354 break;
8355 case DW_FORM_addr:
8356 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
8357 info_ptr += bytes_read;
8358 break;
8359 case DW_FORM_block2:
8360 blk = dwarf_alloc_block (cu);
8361 blk->size = read_2_bytes (abfd, info_ptr);
8362 info_ptr += 2;
8363 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
8364 info_ptr += blk->size;
8365 DW_BLOCK (attr) = blk;
8366 break;
8367 case DW_FORM_block4:
8368 blk = dwarf_alloc_block (cu);
8369 blk->size = read_4_bytes (abfd, info_ptr);
8370 info_ptr += 4;
8371 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
8372 info_ptr += blk->size;
8373 DW_BLOCK (attr) = blk;
8374 break;
8375 case DW_FORM_data2:
8376 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
8377 info_ptr += 2;
8378 break;
8379 case DW_FORM_data4:
8380 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
8381 info_ptr += 4;
8382 break;
8383 case DW_FORM_data8:
8384 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
8385 info_ptr += 8;
8386 break;
8387 case DW_FORM_sec_offset:
8388 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
8389 info_ptr += bytes_read;
8390 break;
8391 case DW_FORM_string:
8392 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
8393 DW_STRING_IS_CANONICAL (attr) = 0;
8394 info_ptr += bytes_read;
8395 break;
8396 case DW_FORM_strp:
8397 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
8398 &bytes_read);
8399 DW_STRING_IS_CANONICAL (attr) = 0;
8400 info_ptr += bytes_read;
8401 break;
8402 case DW_FORM_exprloc:
8403 case DW_FORM_block:
8404 blk = dwarf_alloc_block (cu);
8405 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8406 info_ptr += bytes_read;
8407 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
8408 info_ptr += blk->size;
8409 DW_BLOCK (attr) = blk;
8410 break;
8411 case DW_FORM_block1:
8412 blk = dwarf_alloc_block (cu);
8413 blk->size = read_1_byte (abfd, info_ptr);
8414 info_ptr += 1;
8415 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
8416 info_ptr += blk->size;
8417 DW_BLOCK (attr) = blk;
8418 break;
8419 case DW_FORM_data1:
8420 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
8421 info_ptr += 1;
8422 break;
8423 case DW_FORM_flag:
8424 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
8425 info_ptr += 1;
8426 break;
8427 case DW_FORM_flag_present:
8428 DW_UNSND (attr) = 1;
8429 break;
8430 case DW_FORM_sdata:
8431 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
8432 info_ptr += bytes_read;
8433 break;
8434 case DW_FORM_udata:
8435 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8436 info_ptr += bytes_read;
8437 break;
8438 case DW_FORM_ref1:
8439 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
8440 info_ptr += 1;
8441 break;
8442 case DW_FORM_ref2:
8443 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
8444 info_ptr += 2;
8445 break;
8446 case DW_FORM_ref4:
8447 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
8448 info_ptr += 4;
8449 break;
8450 case DW_FORM_ref8:
8451 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
8452 info_ptr += 8;
8453 break;
8454 case DW_FORM_sig8:
8455 /* Convert the signature to something we can record in DW_UNSND
8456 for later lookup.
8457 NOTE: This is NULL if the type wasn't found. */
8458 DW_SIGNATURED_TYPE (attr) =
8459 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
8460 info_ptr += 8;
8461 break;
8462 case DW_FORM_ref_udata:
8463 DW_ADDR (attr) = (cu->header.offset
8464 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
8465 info_ptr += bytes_read;
8466 break;
8467 case DW_FORM_indirect:
8468 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8469 info_ptr += bytes_read;
8470 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
8471 break;
8472 default:
8473 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
8474 dwarf_form_name (form),
8475 bfd_get_filename (abfd));
8476 }
8477
8478 /* We have seen instances where the compiler tried to emit a byte
8479 size attribute of -1 which ended up being encoded as an unsigned
8480 0xffffffff. Although 0xffffffff is technically a valid size value,
8481 an object of this size seems pretty unlikely so we can relatively
8482 safely treat these cases as if the size attribute was invalid and
8483 treat them as zero by default. */
8484 if (attr->name == DW_AT_byte_size
8485 && form == DW_FORM_data4
8486 && DW_UNSND (attr) >= 0xffffffff)
8487 {
8488 complaint
8489 (&symfile_complaints,
8490 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
8491 hex_string (DW_UNSND (attr)));
8492 DW_UNSND (attr) = 0;
8493 }
8494
8495 return info_ptr;
8496 }
8497
8498 /* Read an attribute described by an abbreviated attribute. */
8499
8500 static gdb_byte *
8501 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
8502 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
8503 {
8504 attr->name = abbrev->name;
8505 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
8506 }
8507
8508 /* read dwarf information from a buffer */
8509
8510 static unsigned int
8511 read_1_byte (bfd *abfd, gdb_byte *buf)
8512 {
8513 return bfd_get_8 (abfd, buf);
8514 }
8515
8516 static int
8517 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
8518 {
8519 return bfd_get_signed_8 (abfd, buf);
8520 }
8521
8522 static unsigned int
8523 read_2_bytes (bfd *abfd, gdb_byte *buf)
8524 {
8525 return bfd_get_16 (abfd, buf);
8526 }
8527
8528 static int
8529 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
8530 {
8531 return bfd_get_signed_16 (abfd, buf);
8532 }
8533
8534 static unsigned int
8535 read_4_bytes (bfd *abfd, gdb_byte *buf)
8536 {
8537 return bfd_get_32 (abfd, buf);
8538 }
8539
8540 static int
8541 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
8542 {
8543 return bfd_get_signed_32 (abfd, buf);
8544 }
8545
8546 static ULONGEST
8547 read_8_bytes (bfd *abfd, gdb_byte *buf)
8548 {
8549 return bfd_get_64 (abfd, buf);
8550 }
8551
8552 static CORE_ADDR
8553 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
8554 unsigned int *bytes_read)
8555 {
8556 struct comp_unit_head *cu_header = &cu->header;
8557 CORE_ADDR retval = 0;
8558
8559 if (cu_header->signed_addr_p)
8560 {
8561 switch (cu_header->addr_size)
8562 {
8563 case 2:
8564 retval = bfd_get_signed_16 (abfd, buf);
8565 break;
8566 case 4:
8567 retval = bfd_get_signed_32 (abfd, buf);
8568 break;
8569 case 8:
8570 retval = bfd_get_signed_64 (abfd, buf);
8571 break;
8572 default:
8573 internal_error (__FILE__, __LINE__,
8574 _("read_address: bad switch, signed [in module %s]"),
8575 bfd_get_filename (abfd));
8576 }
8577 }
8578 else
8579 {
8580 switch (cu_header->addr_size)
8581 {
8582 case 2:
8583 retval = bfd_get_16 (abfd, buf);
8584 break;
8585 case 4:
8586 retval = bfd_get_32 (abfd, buf);
8587 break;
8588 case 8:
8589 retval = bfd_get_64 (abfd, buf);
8590 break;
8591 default:
8592 internal_error (__FILE__, __LINE__,
8593 _("read_address: bad switch, unsigned [in module %s]"),
8594 bfd_get_filename (abfd));
8595 }
8596 }
8597
8598 *bytes_read = cu_header->addr_size;
8599 return retval;
8600 }
8601
8602 /* Read the initial length from a section. The (draft) DWARF 3
8603 specification allows the initial length to take up either 4 bytes
8604 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
8605 bytes describe the length and all offsets will be 8 bytes in length
8606 instead of 4.
8607
8608 An older, non-standard 64-bit format is also handled by this
8609 function. The older format in question stores the initial length
8610 as an 8-byte quantity without an escape value. Lengths greater
8611 than 2^32 aren't very common which means that the initial 4 bytes
8612 is almost always zero. Since a length value of zero doesn't make
8613 sense for the 32-bit format, this initial zero can be considered to
8614 be an escape value which indicates the presence of the older 64-bit
8615 format. As written, the code can't detect (old format) lengths
8616 greater than 4GB. If it becomes necessary to handle lengths
8617 somewhat larger than 4GB, we could allow other small values (such
8618 as the non-sensical values of 1, 2, and 3) to also be used as
8619 escape values indicating the presence of the old format.
8620
8621 The value returned via bytes_read should be used to increment the
8622 relevant pointer after calling read_initial_length().
8623
8624 [ Note: read_initial_length() and read_offset() are based on the
8625 document entitled "DWARF Debugging Information Format", revision
8626 3, draft 8, dated November 19, 2001. This document was obtained
8627 from:
8628
8629 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
8630
8631 This document is only a draft and is subject to change. (So beware.)
8632
8633 Details regarding the older, non-standard 64-bit format were
8634 determined empirically by examining 64-bit ELF files produced by
8635 the SGI toolchain on an IRIX 6.5 machine.
8636
8637 - Kevin, July 16, 2002
8638 ] */
8639
8640 static LONGEST
8641 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
8642 {
8643 LONGEST length = bfd_get_32 (abfd, buf);
8644
8645 if (length == 0xffffffff)
8646 {
8647 length = bfd_get_64 (abfd, buf + 4);
8648 *bytes_read = 12;
8649 }
8650 else if (length == 0)
8651 {
8652 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
8653 length = bfd_get_64 (abfd, buf);
8654 *bytes_read = 8;
8655 }
8656 else
8657 {
8658 *bytes_read = 4;
8659 }
8660
8661 return length;
8662 }
8663
8664 /* Cover function for read_initial_length.
8665 Returns the length of the object at BUF, and stores the size of the
8666 initial length in *BYTES_READ and stores the size that offsets will be in
8667 *OFFSET_SIZE.
8668 If the initial length size is not equivalent to that specified in
8669 CU_HEADER then issue a complaint.
8670 This is useful when reading non-comp-unit headers. */
8671
8672 static LONGEST
8673 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
8674 const struct comp_unit_head *cu_header,
8675 unsigned int *bytes_read,
8676 unsigned int *offset_size)
8677 {
8678 LONGEST length = read_initial_length (abfd, buf, bytes_read);
8679
8680 gdb_assert (cu_header->initial_length_size == 4
8681 || cu_header->initial_length_size == 8
8682 || cu_header->initial_length_size == 12);
8683
8684 if (cu_header->initial_length_size != *bytes_read)
8685 complaint (&symfile_complaints,
8686 _("intermixed 32-bit and 64-bit DWARF sections"));
8687
8688 *offset_size = (*bytes_read == 4) ? 4 : 8;
8689 return length;
8690 }
8691
8692 /* Read an offset from the data stream. The size of the offset is
8693 given by cu_header->offset_size. */
8694
8695 static LONGEST
8696 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
8697 unsigned int *bytes_read)
8698 {
8699 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
8700
8701 *bytes_read = cu_header->offset_size;
8702 return offset;
8703 }
8704
8705 /* Read an offset from the data stream. */
8706
8707 static LONGEST
8708 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
8709 {
8710 LONGEST retval = 0;
8711
8712 switch (offset_size)
8713 {
8714 case 4:
8715 retval = bfd_get_32 (abfd, buf);
8716 break;
8717 case 8:
8718 retval = bfd_get_64 (abfd, buf);
8719 break;
8720 default:
8721 internal_error (__FILE__, __LINE__,
8722 _("read_offset_1: bad switch [in module %s]"),
8723 bfd_get_filename (abfd));
8724 }
8725
8726 return retval;
8727 }
8728
8729 static gdb_byte *
8730 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
8731 {
8732 /* If the size of a host char is 8 bits, we can return a pointer
8733 to the buffer, otherwise we have to copy the data to a buffer
8734 allocated on the temporary obstack. */
8735 gdb_assert (HOST_CHAR_BIT == 8);
8736 return buf;
8737 }
8738
8739 static char *
8740 read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
8741 {
8742 /* If the size of a host char is 8 bits, we can return a pointer
8743 to the string, otherwise we have to copy the string to a buffer
8744 allocated on the temporary obstack. */
8745 gdb_assert (HOST_CHAR_BIT == 8);
8746 if (*buf == '\0')
8747 {
8748 *bytes_read_ptr = 1;
8749 return NULL;
8750 }
8751 *bytes_read_ptr = strlen ((char *) buf) + 1;
8752 return (char *) buf;
8753 }
8754
8755 static char *
8756 read_indirect_string (bfd *abfd, gdb_byte *buf,
8757 const struct comp_unit_head *cu_header,
8758 unsigned int *bytes_read_ptr)
8759 {
8760 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
8761
8762 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
8763 if (dwarf2_per_objfile->str.buffer == NULL)
8764 {
8765 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
8766 bfd_get_filename (abfd));
8767 return NULL;
8768 }
8769 if (str_offset >= dwarf2_per_objfile->str.size)
8770 {
8771 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
8772 bfd_get_filename (abfd));
8773 return NULL;
8774 }
8775 gdb_assert (HOST_CHAR_BIT == 8);
8776 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
8777 return NULL;
8778 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
8779 }
8780
8781 static unsigned long
8782 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
8783 {
8784 unsigned long result;
8785 unsigned int num_read;
8786 int i, shift;
8787 unsigned char byte;
8788
8789 result = 0;
8790 shift = 0;
8791 num_read = 0;
8792 i = 0;
8793 while (1)
8794 {
8795 byte = bfd_get_8 (abfd, buf);
8796 buf++;
8797 num_read++;
8798 result |= ((unsigned long)(byte & 127) << shift);
8799 if ((byte & 128) == 0)
8800 {
8801 break;
8802 }
8803 shift += 7;
8804 }
8805 *bytes_read_ptr = num_read;
8806 return result;
8807 }
8808
8809 static long
8810 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
8811 {
8812 long result;
8813 int i, shift, num_read;
8814 unsigned char byte;
8815
8816 result = 0;
8817 shift = 0;
8818 num_read = 0;
8819 i = 0;
8820 while (1)
8821 {
8822 byte = bfd_get_8 (abfd, buf);
8823 buf++;
8824 num_read++;
8825 result |= ((long)(byte & 127) << shift);
8826 shift += 7;
8827 if ((byte & 128) == 0)
8828 {
8829 break;
8830 }
8831 }
8832 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
8833 result |= -(((long)1) << shift);
8834 *bytes_read_ptr = num_read;
8835 return result;
8836 }
8837
8838 /* Return a pointer to just past the end of an LEB128 number in BUF. */
8839
8840 static gdb_byte *
8841 skip_leb128 (bfd *abfd, gdb_byte *buf)
8842 {
8843 int byte;
8844
8845 while (1)
8846 {
8847 byte = bfd_get_8 (abfd, buf);
8848 buf++;
8849 if ((byte & 128) == 0)
8850 return buf;
8851 }
8852 }
8853
8854 static void
8855 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
8856 {
8857 switch (lang)
8858 {
8859 case DW_LANG_C89:
8860 case DW_LANG_C99:
8861 case DW_LANG_C:
8862 cu->language = language_c;
8863 break;
8864 case DW_LANG_C_plus_plus:
8865 cu->language = language_cplus;
8866 break;
8867 case DW_LANG_D:
8868 cu->language = language_d;
8869 break;
8870 case DW_LANG_Fortran77:
8871 case DW_LANG_Fortran90:
8872 case DW_LANG_Fortran95:
8873 cu->language = language_fortran;
8874 break;
8875 case DW_LANG_Mips_Assembler:
8876 cu->language = language_asm;
8877 break;
8878 case DW_LANG_Java:
8879 cu->language = language_java;
8880 break;
8881 case DW_LANG_Ada83:
8882 case DW_LANG_Ada95:
8883 cu->language = language_ada;
8884 break;
8885 case DW_LANG_Modula2:
8886 cu->language = language_m2;
8887 break;
8888 case DW_LANG_Pascal83:
8889 cu->language = language_pascal;
8890 break;
8891 case DW_LANG_ObjC:
8892 cu->language = language_objc;
8893 break;
8894 case DW_LANG_Cobol74:
8895 case DW_LANG_Cobol85:
8896 default:
8897 cu->language = language_minimal;
8898 break;
8899 }
8900 cu->language_defn = language_def (cu->language);
8901 }
8902
8903 /* Return the named attribute or NULL if not there. */
8904
8905 static struct attribute *
8906 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
8907 {
8908 unsigned int i;
8909 struct attribute *spec = NULL;
8910
8911 for (i = 0; i < die->num_attrs; ++i)
8912 {
8913 if (die->attrs[i].name == name)
8914 return &die->attrs[i];
8915 if (die->attrs[i].name == DW_AT_specification
8916 || die->attrs[i].name == DW_AT_abstract_origin)
8917 spec = &die->attrs[i];
8918 }
8919
8920 if (spec)
8921 {
8922 die = follow_die_ref (die, spec, &cu);
8923 return dwarf2_attr (die, name, cu);
8924 }
8925
8926 return NULL;
8927 }
8928
8929 /* Return the named attribute or NULL if not there,
8930 but do not follow DW_AT_specification, etc.
8931 This is for use in contexts where we're reading .debug_types dies.
8932 Following DW_AT_specification, DW_AT_abstract_origin will take us
8933 back up the chain, and we want to go down. */
8934
8935 static struct attribute *
8936 dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
8937 struct dwarf2_cu *cu)
8938 {
8939 unsigned int i;
8940
8941 for (i = 0; i < die->num_attrs; ++i)
8942 if (die->attrs[i].name == name)
8943 return &die->attrs[i];
8944
8945 return NULL;
8946 }
8947
8948 /* Return non-zero iff the attribute NAME is defined for the given DIE,
8949 and holds a non-zero value. This function should only be used for
8950 DW_FORM_flag or DW_FORM_flag_present attributes. */
8951
8952 static int
8953 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
8954 {
8955 struct attribute *attr = dwarf2_attr (die, name, cu);
8956
8957 return (attr && DW_UNSND (attr));
8958 }
8959
8960 static int
8961 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
8962 {
8963 /* A DIE is a declaration if it has a DW_AT_declaration attribute
8964 which value is non-zero. However, we have to be careful with
8965 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
8966 (via dwarf2_flag_true_p) follows this attribute. So we may
8967 end up accidently finding a declaration attribute that belongs
8968 to a different DIE referenced by the specification attribute,
8969 even though the given DIE does not have a declaration attribute. */
8970 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
8971 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
8972 }
8973
8974 /* Return the die giving the specification for DIE, if there is
8975 one. *SPEC_CU is the CU containing DIE on input, and the CU
8976 containing the return value on output. If there is no
8977 specification, but there is an abstract origin, that is
8978 returned. */
8979
8980 static struct die_info *
8981 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
8982 {
8983 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
8984 *spec_cu);
8985
8986 if (spec_attr == NULL)
8987 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
8988
8989 if (spec_attr == NULL)
8990 return NULL;
8991 else
8992 return follow_die_ref (die, spec_attr, spec_cu);
8993 }
8994
8995 /* Free the line_header structure *LH, and any arrays and strings it
8996 refers to. */
8997 static void
8998 free_line_header (struct line_header *lh)
8999 {
9000 if (lh->standard_opcode_lengths)
9001 xfree (lh->standard_opcode_lengths);
9002
9003 /* Remember that all the lh->file_names[i].name pointers are
9004 pointers into debug_line_buffer, and don't need to be freed. */
9005 if (lh->file_names)
9006 xfree (lh->file_names);
9007
9008 /* Similarly for the include directory names. */
9009 if (lh->include_dirs)
9010 xfree (lh->include_dirs);
9011
9012 xfree (lh);
9013 }
9014
9015
9016 /* Add an entry to LH's include directory table. */
9017 static void
9018 add_include_dir (struct line_header *lh, char *include_dir)
9019 {
9020 /* Grow the array if necessary. */
9021 if (lh->include_dirs_size == 0)
9022 {
9023 lh->include_dirs_size = 1; /* for testing */
9024 lh->include_dirs = xmalloc (lh->include_dirs_size
9025 * sizeof (*lh->include_dirs));
9026 }
9027 else if (lh->num_include_dirs >= lh->include_dirs_size)
9028 {
9029 lh->include_dirs_size *= 2;
9030 lh->include_dirs = xrealloc (lh->include_dirs,
9031 (lh->include_dirs_size
9032 * sizeof (*lh->include_dirs)));
9033 }
9034
9035 lh->include_dirs[lh->num_include_dirs++] = include_dir;
9036 }
9037
9038
9039 /* Add an entry to LH's file name table. */
9040 static void
9041 add_file_name (struct line_header *lh,
9042 char *name,
9043 unsigned int dir_index,
9044 unsigned int mod_time,
9045 unsigned int length)
9046 {
9047 struct file_entry *fe;
9048
9049 /* Grow the array if necessary. */
9050 if (lh->file_names_size == 0)
9051 {
9052 lh->file_names_size = 1; /* for testing */
9053 lh->file_names = xmalloc (lh->file_names_size
9054 * sizeof (*lh->file_names));
9055 }
9056 else if (lh->num_file_names >= lh->file_names_size)
9057 {
9058 lh->file_names_size *= 2;
9059 lh->file_names = xrealloc (lh->file_names,
9060 (lh->file_names_size
9061 * sizeof (*lh->file_names)));
9062 }
9063
9064 fe = &lh->file_names[lh->num_file_names++];
9065 fe->name = name;
9066 fe->dir_index = dir_index;
9067 fe->mod_time = mod_time;
9068 fe->length = length;
9069 fe->included_p = 0;
9070 fe->symtab = NULL;
9071 }
9072
9073
9074 /* Read the statement program header starting at OFFSET in
9075 .debug_line, according to the endianness of ABFD. Return a pointer
9076 to a struct line_header, allocated using xmalloc.
9077
9078 NOTE: the strings in the include directory and file name tables of
9079 the returned object point into debug_line_buffer, and must not be
9080 freed. */
9081 static struct line_header *
9082 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
9083 struct dwarf2_cu *cu)
9084 {
9085 struct cleanup *back_to;
9086 struct line_header *lh;
9087 gdb_byte *line_ptr;
9088 unsigned int bytes_read, offset_size;
9089 int i;
9090 char *cur_dir, *cur_file;
9091
9092 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
9093 if (dwarf2_per_objfile->line.buffer == NULL)
9094 {
9095 complaint (&symfile_complaints, _("missing .debug_line section"));
9096 return 0;
9097 }
9098
9099 /* Make sure that at least there's room for the total_length field.
9100 That could be 12 bytes long, but we're just going to fudge that. */
9101 if (offset + 4 >= dwarf2_per_objfile->line.size)
9102 {
9103 dwarf2_statement_list_fits_in_line_number_section_complaint ();
9104 return 0;
9105 }
9106
9107 lh = xmalloc (sizeof (*lh));
9108 memset (lh, 0, sizeof (*lh));
9109 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
9110 (void *) lh);
9111
9112 line_ptr = dwarf2_per_objfile->line.buffer + offset;
9113
9114 /* Read in the header. */
9115 lh->total_length =
9116 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
9117 &bytes_read, &offset_size);
9118 line_ptr += bytes_read;
9119 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
9120 + dwarf2_per_objfile->line.size))
9121 {
9122 dwarf2_statement_list_fits_in_line_number_section_complaint ();
9123 return 0;
9124 }
9125 lh->statement_program_end = line_ptr + lh->total_length;
9126 lh->version = read_2_bytes (abfd, line_ptr);
9127 line_ptr += 2;
9128 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
9129 line_ptr += offset_size;
9130 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
9131 line_ptr += 1;
9132 if (lh->version >= 4)
9133 {
9134 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
9135 line_ptr += 1;
9136 }
9137 else
9138 lh->maximum_ops_per_instruction = 1;
9139
9140 if (lh->maximum_ops_per_instruction == 0)
9141 {
9142 lh->maximum_ops_per_instruction = 1;
9143 complaint (&symfile_complaints,
9144 _("invalid maximum_ops_per_instruction in `.debug_line' section"));
9145 }
9146
9147 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
9148 line_ptr += 1;
9149 lh->line_base = read_1_signed_byte (abfd, line_ptr);
9150 line_ptr += 1;
9151 lh->line_range = read_1_byte (abfd, line_ptr);
9152 line_ptr += 1;
9153 lh->opcode_base = read_1_byte (abfd, line_ptr);
9154 line_ptr += 1;
9155 lh->standard_opcode_lengths
9156 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
9157
9158 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
9159 for (i = 1; i < lh->opcode_base; ++i)
9160 {
9161 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
9162 line_ptr += 1;
9163 }
9164
9165 /* Read directory table. */
9166 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
9167 {
9168 line_ptr += bytes_read;
9169 add_include_dir (lh, cur_dir);
9170 }
9171 line_ptr += bytes_read;
9172
9173 /* Read file name table. */
9174 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
9175 {
9176 unsigned int dir_index, mod_time, length;
9177
9178 line_ptr += bytes_read;
9179 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9180 line_ptr += bytes_read;
9181 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9182 line_ptr += bytes_read;
9183 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9184 line_ptr += bytes_read;
9185
9186 add_file_name (lh, cur_file, dir_index, mod_time, length);
9187 }
9188 line_ptr += bytes_read;
9189 lh->statement_program_start = line_ptr;
9190
9191 if (line_ptr > (dwarf2_per_objfile->line.buffer
9192 + dwarf2_per_objfile->line.size))
9193 complaint (&symfile_complaints,
9194 _("line number info header doesn't fit in `.debug_line' section"));
9195
9196 discard_cleanups (back_to);
9197 return lh;
9198 }
9199
9200 /* This function exists to work around a bug in certain compilers
9201 (particularly GCC 2.95), in which the first line number marker of a
9202 function does not show up until after the prologue, right before
9203 the second line number marker. This function shifts ADDRESS down
9204 to the beginning of the function if necessary, and is called on
9205 addresses passed to record_line. */
9206
9207 static CORE_ADDR
9208 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
9209 {
9210 struct function_range *fn;
9211
9212 /* Find the function_range containing address. */
9213 if (!cu->first_fn)
9214 return address;
9215
9216 if (!cu->cached_fn)
9217 cu->cached_fn = cu->first_fn;
9218
9219 fn = cu->cached_fn;
9220 while (fn)
9221 if (fn->lowpc <= address && fn->highpc > address)
9222 goto found;
9223 else
9224 fn = fn->next;
9225
9226 fn = cu->first_fn;
9227 while (fn && fn != cu->cached_fn)
9228 if (fn->lowpc <= address && fn->highpc > address)
9229 goto found;
9230 else
9231 fn = fn->next;
9232
9233 return address;
9234
9235 found:
9236 if (fn->seen_line)
9237 return address;
9238 if (address != fn->lowpc)
9239 complaint (&symfile_complaints,
9240 _("misplaced first line number at 0x%lx for '%s'"),
9241 (unsigned long) address, fn->name);
9242 fn->seen_line = 1;
9243 return fn->lowpc;
9244 }
9245
9246 /* Decode the Line Number Program (LNP) for the given line_header
9247 structure and CU. The actual information extracted and the type
9248 of structures created from the LNP depends on the value of PST.
9249
9250 1. If PST is NULL, then this procedure uses the data from the program
9251 to create all necessary symbol tables, and their linetables.
9252 The compilation directory of the file is passed in COMP_DIR,
9253 and must not be NULL.
9254
9255 2. If PST is not NULL, this procedure reads the program to determine
9256 the list of files included by the unit represented by PST, and
9257 builds all the associated partial symbol tables. In this case,
9258 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
9259 is not used to compute the full name of the symtab, and therefore
9260 omitting it when building the partial symtab does not introduce
9261 the potential for inconsistency - a partial symtab and its associated
9262 symbtab having a different fullname -). */
9263
9264 static void
9265 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
9266 struct dwarf2_cu *cu, struct partial_symtab *pst)
9267 {
9268 gdb_byte *line_ptr, *extended_end;
9269 gdb_byte *line_end;
9270 unsigned int bytes_read, extended_len;
9271 unsigned char op_code, extended_op, adj_opcode;
9272 CORE_ADDR baseaddr;
9273 struct objfile *objfile = cu->objfile;
9274 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9275 const int decode_for_pst_p = (pst != NULL);
9276 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
9277
9278 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9279
9280 line_ptr = lh->statement_program_start;
9281 line_end = lh->statement_program_end;
9282
9283 /* Read the statement sequences until there's nothing left. */
9284 while (line_ptr < line_end)
9285 {
9286 /* state machine registers */
9287 CORE_ADDR address = 0;
9288 unsigned int file = 1;
9289 unsigned int line = 1;
9290 unsigned int column = 0;
9291 int is_stmt = lh->default_is_stmt;
9292 int basic_block = 0;
9293 int end_sequence = 0;
9294 CORE_ADDR addr;
9295 unsigned char op_index = 0;
9296
9297 if (!decode_for_pst_p && lh->num_file_names >= file)
9298 {
9299 /* Start a subfile for the current file of the state machine. */
9300 /* lh->include_dirs and lh->file_names are 0-based, but the
9301 directory and file name numbers in the statement program
9302 are 1-based. */
9303 struct file_entry *fe = &lh->file_names[file - 1];
9304 char *dir = NULL;
9305
9306 if (fe->dir_index)
9307 dir = lh->include_dirs[fe->dir_index - 1];
9308
9309 dwarf2_start_subfile (fe->name, dir, comp_dir);
9310 }
9311
9312 /* Decode the table. */
9313 while (!end_sequence)
9314 {
9315 op_code = read_1_byte (abfd, line_ptr);
9316 line_ptr += 1;
9317 if (line_ptr > line_end)
9318 {
9319 dwarf2_debug_line_missing_end_sequence_complaint ();
9320 break;
9321 }
9322
9323 if (op_code >= lh->opcode_base)
9324 {
9325 /* Special operand. */
9326 adj_opcode = op_code - lh->opcode_base;
9327 address += (((op_index + (adj_opcode / lh->line_range))
9328 / lh->maximum_ops_per_instruction)
9329 * lh->minimum_instruction_length);
9330 op_index = ((op_index + (adj_opcode / lh->line_range))
9331 % lh->maximum_ops_per_instruction);
9332 line += lh->line_base + (adj_opcode % lh->line_range);
9333 if (lh->num_file_names < file || file == 0)
9334 dwarf2_debug_line_missing_file_complaint ();
9335 /* For now we ignore lines not starting on an
9336 instruction boundary. */
9337 else if (op_index == 0)
9338 {
9339 lh->file_names[file - 1].included_p = 1;
9340 if (!decode_for_pst_p && is_stmt)
9341 {
9342 if (last_subfile != current_subfile)
9343 {
9344 addr = gdbarch_addr_bits_remove (gdbarch, address);
9345 if (last_subfile)
9346 record_line (last_subfile, 0, addr);
9347 last_subfile = current_subfile;
9348 }
9349 /* Append row to matrix using current values. */
9350 addr = check_cu_functions (address, cu);
9351 addr = gdbarch_addr_bits_remove (gdbarch, addr);
9352 record_line (current_subfile, line, addr);
9353 }
9354 }
9355 basic_block = 0;
9356 }
9357 else switch (op_code)
9358 {
9359 case DW_LNS_extended_op:
9360 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9361 line_ptr += bytes_read;
9362 extended_end = line_ptr + extended_len;
9363 extended_op = read_1_byte (abfd, line_ptr);
9364 line_ptr += 1;
9365 switch (extended_op)
9366 {
9367 case DW_LNE_end_sequence:
9368 end_sequence = 1;
9369 break;
9370 case DW_LNE_set_address:
9371 address = read_address (abfd, line_ptr, cu, &bytes_read);
9372 op_index = 0;
9373 line_ptr += bytes_read;
9374 address += baseaddr;
9375 break;
9376 case DW_LNE_define_file:
9377 {
9378 char *cur_file;
9379 unsigned int dir_index, mod_time, length;
9380
9381 cur_file = read_string (abfd, line_ptr, &bytes_read);
9382 line_ptr += bytes_read;
9383 dir_index =
9384 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9385 line_ptr += bytes_read;
9386 mod_time =
9387 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9388 line_ptr += bytes_read;
9389 length =
9390 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9391 line_ptr += bytes_read;
9392 add_file_name (lh, cur_file, dir_index, mod_time, length);
9393 }
9394 break;
9395 case DW_LNE_set_discriminator:
9396 /* The discriminator is not interesting to the debugger;
9397 just ignore it. */
9398 line_ptr = extended_end;
9399 break;
9400 default:
9401 complaint (&symfile_complaints,
9402 _("mangled .debug_line section"));
9403 return;
9404 }
9405 /* Make sure that we parsed the extended op correctly. If e.g.
9406 we expected a different address size than the producer used,
9407 we may have read the wrong number of bytes. */
9408 if (line_ptr != extended_end)
9409 {
9410 complaint (&symfile_complaints,
9411 _("mangled .debug_line section"));
9412 return;
9413 }
9414 break;
9415 case DW_LNS_copy:
9416 if (lh->num_file_names < file || file == 0)
9417 dwarf2_debug_line_missing_file_complaint ();
9418 else
9419 {
9420 lh->file_names[file - 1].included_p = 1;
9421 if (!decode_for_pst_p && is_stmt)
9422 {
9423 if (last_subfile != current_subfile)
9424 {
9425 addr = gdbarch_addr_bits_remove (gdbarch, address);
9426 if (last_subfile)
9427 record_line (last_subfile, 0, addr);
9428 last_subfile = current_subfile;
9429 }
9430 addr = check_cu_functions (address, cu);
9431 addr = gdbarch_addr_bits_remove (gdbarch, addr);
9432 record_line (current_subfile, line, addr);
9433 }
9434 }
9435 basic_block = 0;
9436 break;
9437 case DW_LNS_advance_pc:
9438 {
9439 CORE_ADDR adjust
9440 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9441
9442 address += (((op_index + adjust)
9443 / lh->maximum_ops_per_instruction)
9444 * lh->minimum_instruction_length);
9445 op_index = ((op_index + adjust)
9446 % lh->maximum_ops_per_instruction);
9447 line_ptr += bytes_read;
9448 }
9449 break;
9450 case DW_LNS_advance_line:
9451 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
9452 line_ptr += bytes_read;
9453 break;
9454 case DW_LNS_set_file:
9455 {
9456 /* The arrays lh->include_dirs and lh->file_names are
9457 0-based, but the directory and file name numbers in
9458 the statement program are 1-based. */
9459 struct file_entry *fe;
9460 char *dir = NULL;
9461
9462 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9463 line_ptr += bytes_read;
9464 if (lh->num_file_names < file || file == 0)
9465 dwarf2_debug_line_missing_file_complaint ();
9466 else
9467 {
9468 fe = &lh->file_names[file - 1];
9469 if (fe->dir_index)
9470 dir = lh->include_dirs[fe->dir_index - 1];
9471 if (!decode_for_pst_p)
9472 {
9473 last_subfile = current_subfile;
9474 dwarf2_start_subfile (fe->name, dir, comp_dir);
9475 }
9476 }
9477 }
9478 break;
9479 case DW_LNS_set_column:
9480 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9481 line_ptr += bytes_read;
9482 break;
9483 case DW_LNS_negate_stmt:
9484 is_stmt = (!is_stmt);
9485 break;
9486 case DW_LNS_set_basic_block:
9487 basic_block = 1;
9488 break;
9489 /* Add to the address register of the state machine the
9490 address increment value corresponding to special opcode
9491 255. I.e., this value is scaled by the minimum
9492 instruction length since special opcode 255 would have
9493 scaled the the increment. */
9494 case DW_LNS_const_add_pc:
9495 {
9496 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
9497
9498 address += (((op_index + adjust)
9499 / lh->maximum_ops_per_instruction)
9500 * lh->minimum_instruction_length);
9501 op_index = ((op_index + adjust)
9502 % lh->maximum_ops_per_instruction);
9503 }
9504 break;
9505 case DW_LNS_fixed_advance_pc:
9506 address += read_2_bytes (abfd, line_ptr);
9507 op_index = 0;
9508 line_ptr += 2;
9509 break;
9510 default:
9511 {
9512 /* Unknown standard opcode, ignore it. */
9513 int i;
9514
9515 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9516 {
9517 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9518 line_ptr += bytes_read;
9519 }
9520 }
9521 }
9522 }
9523 if (lh->num_file_names < file || file == 0)
9524 dwarf2_debug_line_missing_file_complaint ();
9525 else
9526 {
9527 lh->file_names[file - 1].included_p = 1;
9528 if (!decode_for_pst_p)
9529 {
9530 addr = gdbarch_addr_bits_remove (gdbarch, address);
9531 record_line (current_subfile, 0, addr);
9532 }
9533 }
9534 }
9535
9536 if (decode_for_pst_p)
9537 {
9538 int file_index;
9539
9540 /* Now that we're done scanning the Line Header Program, we can
9541 create the psymtab of each included file. */
9542 for (file_index = 0; file_index < lh->num_file_names; file_index++)
9543 if (lh->file_names[file_index].included_p == 1)
9544 {
9545 const struct file_entry fe = lh->file_names [file_index];
9546 char *include_name = fe.name;
9547 char *dir_name = NULL;
9548 char *pst_filename = pst->filename;
9549
9550 if (fe.dir_index)
9551 dir_name = lh->include_dirs[fe.dir_index - 1];
9552
9553 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
9554 {
9555 include_name = concat (dir_name, SLASH_STRING,
9556 include_name, (char *)NULL);
9557 make_cleanup (xfree, include_name);
9558 }
9559
9560 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
9561 {
9562 pst_filename = concat (pst->dirname, SLASH_STRING,
9563 pst_filename, (char *)NULL);
9564 make_cleanup (xfree, pst_filename);
9565 }
9566
9567 if (strcmp (include_name, pst_filename) != 0)
9568 dwarf2_create_include_psymtab (include_name, pst, objfile);
9569 }
9570 }
9571 else
9572 {
9573 /* Make sure a symtab is created for every file, even files
9574 which contain only variables (i.e. no code with associated
9575 line numbers). */
9576
9577 int i;
9578 struct file_entry *fe;
9579
9580 for (i = 0; i < lh->num_file_names; i++)
9581 {
9582 char *dir = NULL;
9583
9584 fe = &lh->file_names[i];
9585 if (fe->dir_index)
9586 dir = lh->include_dirs[fe->dir_index - 1];
9587 dwarf2_start_subfile (fe->name, dir, comp_dir);
9588
9589 /* Skip the main file; we don't need it, and it must be
9590 allocated last, so that it will show up before the
9591 non-primary symtabs in the objfile's symtab list. */
9592 if (current_subfile == first_subfile)
9593 continue;
9594
9595 if (current_subfile->symtab == NULL)
9596 current_subfile->symtab = allocate_symtab (current_subfile->name,
9597 cu->objfile);
9598 fe->symtab = current_subfile->symtab;
9599 }
9600 }
9601 }
9602
9603 /* Start a subfile for DWARF. FILENAME is the name of the file and
9604 DIRNAME the name of the source directory which contains FILENAME
9605 or NULL if not known. COMP_DIR is the compilation directory for the
9606 linetable's compilation unit or NULL if not known.
9607 This routine tries to keep line numbers from identical absolute and
9608 relative file names in a common subfile.
9609
9610 Using the `list' example from the GDB testsuite, which resides in
9611 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
9612 of /srcdir/list0.c yields the following debugging information for list0.c:
9613
9614 DW_AT_name: /srcdir/list0.c
9615 DW_AT_comp_dir: /compdir
9616 files.files[0].name: list0.h
9617 files.files[0].dir: /srcdir
9618 files.files[1].name: list0.c
9619 files.files[1].dir: /srcdir
9620
9621 The line number information for list0.c has to end up in a single
9622 subfile, so that `break /srcdir/list0.c:1' works as expected.
9623 start_subfile will ensure that this happens provided that we pass the
9624 concatenation of files.files[1].dir and files.files[1].name as the
9625 subfile's name. */
9626
9627 static void
9628 dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
9629 {
9630 char *fullname;
9631
9632 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
9633 `start_symtab' will always pass the contents of DW_AT_comp_dir as
9634 second argument to start_subfile. To be consistent, we do the
9635 same here. In order not to lose the line information directory,
9636 we concatenate it to the filename when it makes sense.
9637 Note that the Dwarf3 standard says (speaking of filenames in line
9638 information): ``The directory index is ignored for file names
9639 that represent full path names''. Thus ignoring dirname in the
9640 `else' branch below isn't an issue. */
9641
9642 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
9643 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
9644 else
9645 fullname = filename;
9646
9647 start_subfile (fullname, comp_dir);
9648
9649 if (fullname != filename)
9650 xfree (fullname);
9651 }
9652
9653 static void
9654 var_decode_location (struct attribute *attr, struct symbol *sym,
9655 struct dwarf2_cu *cu)
9656 {
9657 struct objfile *objfile = cu->objfile;
9658 struct comp_unit_head *cu_header = &cu->header;
9659
9660 /* NOTE drow/2003-01-30: There used to be a comment and some special
9661 code here to turn a symbol with DW_AT_external and a
9662 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
9663 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
9664 with some versions of binutils) where shared libraries could have
9665 relocations against symbols in their debug information - the
9666 minimal symbol would have the right address, but the debug info
9667 would not. It's no longer necessary, because we will explicitly
9668 apply relocations when we read in the debug information now. */
9669
9670 /* A DW_AT_location attribute with no contents indicates that a
9671 variable has been optimized away. */
9672 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
9673 {
9674 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
9675 return;
9676 }
9677
9678 /* Handle one degenerate form of location expression specially, to
9679 preserve GDB's previous behavior when section offsets are
9680 specified. If this is just a DW_OP_addr then mark this symbol
9681 as LOC_STATIC. */
9682
9683 if (attr_form_is_block (attr)
9684 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
9685 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
9686 {
9687 unsigned int dummy;
9688
9689 SYMBOL_VALUE_ADDRESS (sym) =
9690 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
9691 SYMBOL_CLASS (sym) = LOC_STATIC;
9692 fixup_symbol_section (sym, objfile);
9693 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
9694 SYMBOL_SECTION (sym));
9695 return;
9696 }
9697
9698 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
9699 expression evaluator, and use LOC_COMPUTED only when necessary
9700 (i.e. when the value of a register or memory location is
9701 referenced, or a thread-local block, etc.). Then again, it might
9702 not be worthwhile. I'm assuming that it isn't unless performance
9703 or memory numbers show me otherwise. */
9704
9705 dwarf2_symbol_mark_computed (attr, sym, cu);
9706 SYMBOL_CLASS (sym) = LOC_COMPUTED;
9707 }
9708
9709 /* Given a pointer to a DWARF information entry, figure out if we need
9710 to make a symbol table entry for it, and if so, create a new entry
9711 and return a pointer to it.
9712 If TYPE is NULL, determine symbol type from the die, otherwise
9713 used the passed type. */
9714
9715 static struct symbol *
9716 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
9717 {
9718 struct objfile *objfile = cu->objfile;
9719 struct symbol *sym = NULL;
9720 char *name;
9721 struct attribute *attr = NULL;
9722 struct attribute *attr2 = NULL;
9723 CORE_ADDR baseaddr;
9724 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
9725
9726 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9727
9728 name = dwarf2_name (die, cu);
9729 if (name)
9730 {
9731 const char *linkagename;
9732
9733 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
9734 sizeof (struct symbol));
9735 OBJSTAT (objfile, n_syms++);
9736 memset (sym, 0, sizeof (struct symbol));
9737
9738 /* Cache this symbol's name and the name's demangled form (if any). */
9739 SYMBOL_LANGUAGE (sym) = cu->language;
9740 linkagename = dwarf2_physname (name, die, cu);
9741 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
9742
9743 /* Fortran does not have mangling standard and the mangling does differ
9744 between gfortran, iFort etc. */
9745 if (cu->language == language_fortran
9746 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
9747 symbol_set_demangled_name (&(sym->ginfo), (char *) dwarf2_full_name (name, die, cu));
9748
9749 /* Default assumptions.
9750 Use the passed type or decode it from the die. */
9751 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
9752 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
9753 if (type != NULL)
9754 SYMBOL_TYPE (sym) = type;
9755 else
9756 SYMBOL_TYPE (sym) = die_type (die, cu);
9757 attr = dwarf2_attr (die,
9758 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
9759 cu);
9760 if (attr)
9761 {
9762 SYMBOL_LINE (sym) = DW_UNSND (attr);
9763 }
9764
9765 attr = dwarf2_attr (die,
9766 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
9767 cu);
9768 if (attr)
9769 {
9770 int file_index = DW_UNSND (attr);
9771
9772 if (cu->line_header == NULL
9773 || file_index > cu->line_header->num_file_names)
9774 complaint (&symfile_complaints,
9775 _("file index out of range"));
9776 else if (file_index > 0)
9777 {
9778 struct file_entry *fe;
9779
9780 fe = &cu->line_header->file_names[file_index - 1];
9781 SYMBOL_SYMTAB (sym) = fe->symtab;
9782 }
9783 }
9784
9785 switch (die->tag)
9786 {
9787 case DW_TAG_label:
9788 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9789 if (attr)
9790 {
9791 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
9792 }
9793 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
9794 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
9795 SYMBOL_CLASS (sym) = LOC_LABEL;
9796 add_symbol_to_list (sym, cu->list_in_scope);
9797 break;
9798 case DW_TAG_subprogram:
9799 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
9800 finish_block. */
9801 SYMBOL_CLASS (sym) = LOC_BLOCK;
9802 attr2 = dwarf2_attr (die, DW_AT_external, cu);
9803 if ((attr2 && (DW_UNSND (attr2) != 0))
9804 || cu->language == language_ada)
9805 {
9806 /* Subprograms marked external are stored as a global symbol.
9807 Ada subprograms, whether marked external or not, are always
9808 stored as a global symbol, because we want to be able to
9809 access them globally. For instance, we want to be able
9810 to break on a nested subprogram without having to
9811 specify the context. */
9812 add_symbol_to_list (sym, &global_symbols);
9813 }
9814 else
9815 {
9816 add_symbol_to_list (sym, cu->list_in_scope);
9817 }
9818 break;
9819 case DW_TAG_inlined_subroutine:
9820 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
9821 finish_block. */
9822 SYMBOL_CLASS (sym) = LOC_BLOCK;
9823 SYMBOL_INLINED (sym) = 1;
9824 /* Do not add the symbol to any lists. It will be found via
9825 BLOCK_FUNCTION from the blockvector. */
9826 break;
9827 case DW_TAG_variable:
9828 case DW_TAG_member:
9829 /* Compilation with minimal debug info may result in variables
9830 with missing type entries. Change the misleading `void' type
9831 to something sensible. */
9832 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
9833 SYMBOL_TYPE (sym)
9834 = objfile_type (objfile)->nodebug_data_symbol;
9835
9836 attr = dwarf2_attr (die, DW_AT_const_value, cu);
9837 /* In the case of DW_TAG_member, we should only be called for
9838 static const members. */
9839 if (die->tag == DW_TAG_member)
9840 {
9841 /* dwarf2_add_field uses die_is_declaration,
9842 so we do the same. */
9843 gdb_assert (die_is_declaration (die, cu));
9844 gdb_assert (attr);
9845 }
9846 if (attr)
9847 {
9848 dwarf2_const_value (attr, sym, cu);
9849 attr2 = dwarf2_attr (die, DW_AT_external, cu);
9850 if (attr2 && (DW_UNSND (attr2) != 0))
9851 add_symbol_to_list (sym, &global_symbols);
9852 else
9853 add_symbol_to_list (sym, cu->list_in_scope);
9854 break;
9855 }
9856 attr = dwarf2_attr (die, DW_AT_location, cu);
9857 if (attr)
9858 {
9859 var_decode_location (attr, sym, cu);
9860 attr2 = dwarf2_attr (die, DW_AT_external, cu);
9861 if (attr2 && (DW_UNSND (attr2) != 0))
9862 {
9863 struct pending **list_to_add;
9864
9865 /* Workaround gfortran PR debug/40040 - it uses
9866 DW_AT_location for variables in -fPIC libraries which may
9867 get overriden by other libraries/executable and get
9868 a different address. Resolve it by the minimal symbol
9869 which may come from inferior's executable using copy
9870 relocation. Make this workaround only for gfortran as for
9871 other compilers GDB cannot guess the minimal symbol
9872 Fortran mangling kind. */
9873 if (cu->language == language_fortran && die->parent
9874 && die->parent->tag == DW_TAG_module
9875 && cu->producer
9876 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
9877 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
9878
9879 /* A variable with DW_AT_external is never static,
9880 but it may be block-scoped. */
9881 list_to_add = (cu->list_in_scope == &file_symbols
9882 ? &global_symbols : cu->list_in_scope);
9883 add_symbol_to_list (sym, list_to_add);
9884 }
9885 else
9886 add_symbol_to_list (sym, cu->list_in_scope);
9887 }
9888 else
9889 {
9890 /* We do not know the address of this symbol.
9891 If it is an external symbol and we have type information
9892 for it, enter the symbol as a LOC_UNRESOLVED symbol.
9893 The address of the variable will then be determined from
9894 the minimal symbol table whenever the variable is
9895 referenced. */
9896 attr2 = dwarf2_attr (die, DW_AT_external, cu);
9897 if (attr2 && (DW_UNSND (attr2) != 0)
9898 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
9899 {
9900 struct pending **list_to_add;
9901
9902 /* A variable with DW_AT_external is never static, but it
9903 may be block-scoped. */
9904 list_to_add = (cu->list_in_scope == &file_symbols
9905 ? &global_symbols : cu->list_in_scope);
9906
9907 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
9908 add_symbol_to_list (sym, list_to_add);
9909 }
9910 else if (!die_is_declaration (die, cu))
9911 {
9912 /* Use the default LOC_OPTIMIZED_OUT class. */
9913 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
9914 add_symbol_to_list (sym, cu->list_in_scope);
9915 }
9916 }
9917 break;
9918 case DW_TAG_formal_parameter:
9919 /* If we are inside a function, mark this as an argument. If
9920 not, we might be looking at an argument to an inlined function
9921 when we do not have enough information to show inlined frames;
9922 pretend it's a local variable in that case so that the user can
9923 still see it. */
9924 if (context_stack_depth > 0
9925 && context_stack[context_stack_depth - 1].name != NULL)
9926 SYMBOL_IS_ARGUMENT (sym) = 1;
9927 attr = dwarf2_attr (die, DW_AT_location, cu);
9928 if (attr)
9929 {
9930 var_decode_location (attr, sym, cu);
9931 }
9932 attr = dwarf2_attr (die, DW_AT_const_value, cu);
9933 if (attr)
9934 {
9935 dwarf2_const_value (attr, sym, cu);
9936 }
9937 attr = dwarf2_attr (die, DW_AT_variable_parameter, cu);
9938 if (attr && DW_UNSND (attr))
9939 {
9940 struct type *ref_type;
9941
9942 ref_type = lookup_reference_type (SYMBOL_TYPE (sym));
9943 SYMBOL_TYPE (sym) = ref_type;
9944 }
9945
9946 add_symbol_to_list (sym, cu->list_in_scope);
9947 break;
9948 case DW_TAG_unspecified_parameters:
9949 /* From varargs functions; gdb doesn't seem to have any
9950 interest in this information, so just ignore it for now.
9951 (FIXME?) */
9952 break;
9953 case DW_TAG_class_type:
9954 case DW_TAG_interface_type:
9955 case DW_TAG_structure_type:
9956 case DW_TAG_union_type:
9957 case DW_TAG_set_type:
9958 case DW_TAG_enumeration_type:
9959 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
9960 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9961
9962 {
9963 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
9964 really ever be static objects: otherwise, if you try
9965 to, say, break of a class's method and you're in a file
9966 which doesn't mention that class, it won't work unless
9967 the check for all static symbols in lookup_symbol_aux
9968 saves you. See the OtherFileClass tests in
9969 gdb.c++/namespace.exp. */
9970
9971 struct pending **list_to_add;
9972
9973 list_to_add = (cu->list_in_scope == &file_symbols
9974 && (cu->language == language_cplus
9975 || cu->language == language_java)
9976 ? &global_symbols : cu->list_in_scope);
9977
9978 add_symbol_to_list (sym, list_to_add);
9979
9980 /* The semantics of C++ state that "struct foo { ... }" also
9981 defines a typedef for "foo". A Java class declaration also
9982 defines a typedef for the class. */
9983 if (cu->language == language_cplus
9984 || cu->language == language_java
9985 || cu->language == language_ada)
9986 {
9987 /* The symbol's name is already allocated along with
9988 this objfile, so we don't need to duplicate it for
9989 the type. */
9990 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
9991 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
9992 }
9993 }
9994 break;
9995 case DW_TAG_typedef:
9996 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
9997 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
9998 add_symbol_to_list (sym, cu->list_in_scope);
9999 break;
10000 case DW_TAG_base_type:
10001 case DW_TAG_subrange_type:
10002 case DW_TAG_const_type:
10003 case DW_TAG_volatile_type:
10004 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10005 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
10006 add_symbol_to_list (sym, cu->list_in_scope);
10007 break;
10008 case DW_TAG_enumerator:
10009 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10010 if (attr)
10011 {
10012 dwarf2_const_value (attr, sym, cu);
10013 }
10014 {
10015 /* NOTE: carlton/2003-11-10: See comment above in the
10016 DW_TAG_class_type, etc. block. */
10017
10018 struct pending **list_to_add;
10019
10020 list_to_add = (cu->list_in_scope == &file_symbols
10021 && (cu->language == language_cplus
10022 || cu->language == language_java)
10023 ? &global_symbols : cu->list_in_scope);
10024
10025 add_symbol_to_list (sym, list_to_add);
10026 }
10027 break;
10028 case DW_TAG_namespace:
10029 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10030 add_symbol_to_list (sym, &global_symbols);
10031 break;
10032 default:
10033 /* Not a tag we recognize. Hopefully we aren't processing
10034 trash data, but since we must specifically ignore things
10035 we don't recognize, there is nothing else we should do at
10036 this point. */
10037 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
10038 dwarf_tag_name (die->tag));
10039 break;
10040 }
10041
10042 /* For the benefit of old versions of GCC, check for anonymous
10043 namespaces based on the demangled name. */
10044 if (!processing_has_namespace_info
10045 && cu->language == language_cplus)
10046 cp_scan_for_anonymous_namespaces (sym);
10047 }
10048 return (sym);
10049 }
10050
10051 /* Copy constant value from an attribute to a symbol. */
10052
10053 static void
10054 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
10055 struct dwarf2_cu *cu)
10056 {
10057 struct objfile *objfile = cu->objfile;
10058 struct comp_unit_head *cu_header = &cu->header;
10059 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
10060 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
10061 struct dwarf_block *blk;
10062
10063 switch (attr->form)
10064 {
10065 case DW_FORM_addr:
10066 {
10067 struct dwarf2_locexpr_baton *baton;
10068 gdb_byte *data;
10069
10070 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
10071 dwarf2_const_value_length_mismatch_complaint (SYMBOL_PRINT_NAME (sym),
10072 cu_header->addr_size,
10073 TYPE_LENGTH (SYMBOL_TYPE
10074 (sym)));
10075 /* Symbols of this form are reasonably rare, so we just
10076 piggyback on the existing location code rather than writing
10077 a new implementation of symbol_computed_ops. */
10078 baton = obstack_alloc (&objfile->objfile_obstack,
10079 sizeof (struct dwarf2_locexpr_baton));
10080 baton->per_cu = cu->per_cu;
10081 gdb_assert (baton->per_cu);
10082
10083 baton->size = 2 + cu_header->addr_size;
10084 data = obstack_alloc (&objfile->objfile_obstack, baton->size);
10085 baton->data = data;
10086
10087 data[0] = DW_OP_addr;
10088 store_unsigned_integer (&data[1], cu_header->addr_size,
10089 byte_order, DW_ADDR (attr));
10090 data[cu_header->addr_size + 1] = DW_OP_stack_value;
10091
10092 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
10093 SYMBOL_LOCATION_BATON (sym) = baton;
10094 SYMBOL_CLASS (sym) = LOC_COMPUTED;
10095 }
10096 break;
10097 case DW_FORM_string:
10098 case DW_FORM_strp:
10099 /* DW_STRING is already allocated on the obstack, point directly
10100 to it. */
10101 SYMBOL_VALUE_BYTES (sym) = (gdb_byte *) DW_STRING (attr);
10102 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
10103 break;
10104 case DW_FORM_block1:
10105 case DW_FORM_block2:
10106 case DW_FORM_block4:
10107 case DW_FORM_block:
10108 case DW_FORM_exprloc:
10109 blk = DW_BLOCK (attr);
10110 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
10111 dwarf2_const_value_length_mismatch_complaint (SYMBOL_PRINT_NAME (sym),
10112 blk->size,
10113 TYPE_LENGTH (SYMBOL_TYPE
10114 (sym)));
10115 SYMBOL_VALUE_BYTES (sym) =
10116 obstack_alloc (&objfile->objfile_obstack, blk->size);
10117 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
10118 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
10119 break;
10120
10121 /* The DW_AT_const_value attributes are supposed to carry the
10122 symbol's value "represented as it would be on the target
10123 architecture." By the time we get here, it's already been
10124 converted to host endianness, so we just need to sign- or
10125 zero-extend it as appropriate. */
10126 case DW_FORM_data1:
10127 dwarf2_const_value_data (attr, sym, 8);
10128 break;
10129 case DW_FORM_data2:
10130 dwarf2_const_value_data (attr, sym, 16);
10131 break;
10132 case DW_FORM_data4:
10133 dwarf2_const_value_data (attr, sym, 32);
10134 break;
10135 case DW_FORM_data8:
10136 dwarf2_const_value_data (attr, sym, 64);
10137 break;
10138
10139 case DW_FORM_sdata:
10140 SYMBOL_VALUE (sym) = DW_SND (attr);
10141 SYMBOL_CLASS (sym) = LOC_CONST;
10142 break;
10143
10144 case DW_FORM_udata:
10145 SYMBOL_VALUE (sym) = DW_UNSND (attr);
10146 SYMBOL_CLASS (sym) = LOC_CONST;
10147 break;
10148
10149 default:
10150 complaint (&symfile_complaints,
10151 _("unsupported const value attribute form: '%s'"),
10152 dwarf_form_name (attr->form));
10153 SYMBOL_VALUE (sym) = 0;
10154 SYMBOL_CLASS (sym) = LOC_CONST;
10155 break;
10156 }
10157 }
10158
10159
10160 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
10161 or zero-extend it as appropriate for the symbol's type. */
10162 static void
10163 dwarf2_const_value_data (struct attribute *attr,
10164 struct symbol *sym,
10165 int bits)
10166 {
10167 LONGEST l = DW_UNSND (attr);
10168
10169 if (bits < sizeof (l) * 8)
10170 {
10171 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
10172 l &= ((LONGEST) 1 << bits) - 1;
10173 else
10174 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
10175 }
10176
10177 SYMBOL_VALUE (sym) = l;
10178 SYMBOL_CLASS (sym) = LOC_CONST;
10179 }
10180
10181
10182 /* Return the type of the die in question using its DW_AT_type attribute. */
10183
10184 static struct type *
10185 die_type (struct die_info *die, struct dwarf2_cu *cu)
10186 {
10187 struct attribute *type_attr;
10188 struct die_info *type_die;
10189
10190 type_attr = dwarf2_attr (die, DW_AT_type, cu);
10191 if (!type_attr)
10192 {
10193 /* A missing DW_AT_type represents a void type. */
10194 return objfile_type (cu->objfile)->builtin_void;
10195 }
10196
10197 type_die = follow_die_ref_or_sig (die, type_attr, &cu);
10198
10199 return tag_type_to_type (type_die, cu);
10200 }
10201
10202 /* True iff CU's producer generates GNAT Ada auxiliary information
10203 that allows to find parallel types through that information instead
10204 of having to do expensive parallel lookups by type name. */
10205
10206 static int
10207 need_gnat_info (struct dwarf2_cu *cu)
10208 {
10209 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
10210 of GNAT produces this auxiliary information, without any indication
10211 that it is produced. Part of enhancing the FSF version of GNAT
10212 to produce that information will be to put in place an indicator
10213 that we can use in order to determine whether the descriptive type
10214 info is available or not. One suggestion that has been made is
10215 to use a new attribute, attached to the CU die. For now, assume
10216 that the descriptive type info is not available. */
10217 return 0;
10218 }
10219
10220
10221 /* Return the auxiliary type of the die in question using its
10222 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
10223 attribute is not present. */
10224
10225 static struct type *
10226 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
10227 {
10228 struct attribute *type_attr;
10229 struct die_info *type_die;
10230
10231 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
10232 if (!type_attr)
10233 return NULL;
10234
10235 type_die = follow_die_ref (die, type_attr, &cu);
10236 return tag_type_to_type (type_die, cu);
10237 }
10238
10239 /* If DIE has a descriptive_type attribute, then set the TYPE's
10240 descriptive type accordingly. */
10241
10242 static void
10243 set_descriptive_type (struct type *type, struct die_info *die,
10244 struct dwarf2_cu *cu)
10245 {
10246 struct type *descriptive_type = die_descriptive_type (die, cu);
10247
10248 if (descriptive_type)
10249 {
10250 ALLOCATE_GNAT_AUX_TYPE (type);
10251 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
10252 }
10253 }
10254
10255 /* Return the containing type of the die in question using its
10256 DW_AT_containing_type attribute. */
10257
10258 static struct type *
10259 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
10260 {
10261 struct attribute *type_attr;
10262 struct die_info *type_die;
10263
10264 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
10265 if (!type_attr)
10266 error (_("Dwarf Error: Problem turning containing type into gdb type "
10267 "[in module %s]"), cu->objfile->name);
10268
10269 type_die = follow_die_ref_or_sig (die, type_attr, &cu);
10270 return tag_type_to_type (type_die, cu);
10271 }
10272
10273 static struct type *
10274 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
10275 {
10276 struct type *this_type;
10277
10278 this_type = read_type_die (die, cu);
10279 if (!this_type)
10280 {
10281 char *message, *saved;
10282
10283 /* read_type_die already issued a complaint. */
10284 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
10285 cu->objfile->name,
10286 cu->header.offset,
10287 die->offset);
10288 saved = obstack_copy0 (&cu->objfile->objfile_obstack,
10289 message, strlen (message));
10290 xfree (message);
10291
10292 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
10293 }
10294 return this_type;
10295 }
10296
10297 static struct type *
10298 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
10299 {
10300 struct type *this_type;
10301
10302 this_type = get_die_type (die, cu);
10303 if (this_type)
10304 return this_type;
10305
10306 switch (die->tag)
10307 {
10308 case DW_TAG_class_type:
10309 case DW_TAG_interface_type:
10310 case DW_TAG_structure_type:
10311 case DW_TAG_union_type:
10312 this_type = read_structure_type (die, cu);
10313 break;
10314 case DW_TAG_enumeration_type:
10315 this_type = read_enumeration_type (die, cu);
10316 break;
10317 case DW_TAG_subprogram:
10318 case DW_TAG_subroutine_type:
10319 case DW_TAG_inlined_subroutine:
10320 this_type = read_subroutine_type (die, cu);
10321 break;
10322 case DW_TAG_array_type:
10323 this_type = read_array_type (die, cu);
10324 break;
10325 case DW_TAG_set_type:
10326 this_type = read_set_type (die, cu);
10327 break;
10328 case DW_TAG_pointer_type:
10329 this_type = read_tag_pointer_type (die, cu);
10330 break;
10331 case DW_TAG_ptr_to_member_type:
10332 this_type = read_tag_ptr_to_member_type (die, cu);
10333 break;
10334 case DW_TAG_reference_type:
10335 this_type = read_tag_reference_type (die, cu);
10336 break;
10337 case DW_TAG_const_type:
10338 this_type = read_tag_const_type (die, cu);
10339 break;
10340 case DW_TAG_volatile_type:
10341 this_type = read_tag_volatile_type (die, cu);
10342 break;
10343 case DW_TAG_string_type:
10344 this_type = read_tag_string_type (die, cu);
10345 break;
10346 case DW_TAG_typedef:
10347 this_type = read_typedef (die, cu);
10348 break;
10349 case DW_TAG_subrange_type:
10350 this_type = read_subrange_type (die, cu);
10351 break;
10352 case DW_TAG_base_type:
10353 this_type = read_base_type (die, cu);
10354 break;
10355 case DW_TAG_unspecified_type:
10356 this_type = read_unspecified_type (die, cu);
10357 break;
10358 case DW_TAG_namespace:
10359 this_type = read_namespace_type (die, cu);
10360 break;
10361 case DW_TAG_module:
10362 this_type = read_module_type (die, cu);
10363 break;
10364 default:
10365 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
10366 dwarf_tag_name (die->tag));
10367 break;
10368 }
10369
10370 return this_type;
10371 }
10372
10373 /* Return the name of the namespace/class that DIE is defined within,
10374 or "" if we can't tell. The caller should not xfree the result.
10375
10376 For example, if we're within the method foo() in the following
10377 code:
10378
10379 namespace N {
10380 class C {
10381 void foo () {
10382 }
10383 };
10384 }
10385
10386 then determine_prefix on foo's die will return "N::C". */
10387
10388 static char *
10389 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
10390 {
10391 struct die_info *parent, *spec_die;
10392 struct dwarf2_cu *spec_cu;
10393 struct type *parent_type;
10394
10395 if (cu->language != language_cplus && cu->language != language_java
10396 && cu->language != language_fortran)
10397 return "";
10398
10399 /* We have to be careful in the presence of DW_AT_specification.
10400 For example, with GCC 3.4, given the code
10401
10402 namespace N {
10403 void foo() {
10404 // Definition of N::foo.
10405 }
10406 }
10407
10408 then we'll have a tree of DIEs like this:
10409
10410 1: DW_TAG_compile_unit
10411 2: DW_TAG_namespace // N
10412 3: DW_TAG_subprogram // declaration of N::foo
10413 4: DW_TAG_subprogram // definition of N::foo
10414 DW_AT_specification // refers to die #3
10415
10416 Thus, when processing die #4, we have to pretend that we're in
10417 the context of its DW_AT_specification, namely the contex of die
10418 #3. */
10419 spec_cu = cu;
10420 spec_die = die_specification (die, &spec_cu);
10421 if (spec_die == NULL)
10422 parent = die->parent;
10423 else
10424 {
10425 parent = spec_die->parent;
10426 cu = spec_cu;
10427 }
10428
10429 if (parent == NULL)
10430 return "";
10431 else
10432 switch (parent->tag)
10433 {
10434 case DW_TAG_namespace:
10435 parent_type = read_type_die (parent, cu);
10436 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
10437 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
10438 Work around this problem here. */
10439 if (cu->language == language_cplus
10440 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
10441 return "";
10442 /* We give a name to even anonymous namespaces. */
10443 return TYPE_TAG_NAME (parent_type);
10444 case DW_TAG_class_type:
10445 case DW_TAG_interface_type:
10446 case DW_TAG_structure_type:
10447 case DW_TAG_union_type:
10448 case DW_TAG_module:
10449 parent_type = read_type_die (parent, cu);
10450 if (TYPE_TAG_NAME (parent_type) != NULL)
10451 return TYPE_TAG_NAME (parent_type);
10452 else
10453 /* An anonymous structure is only allowed non-static data
10454 members; no typedefs, no member functions, et cetera.
10455 So it does not need a prefix. */
10456 return "";
10457 default:
10458 return determine_prefix (parent, cu);
10459 }
10460 }
10461
10462 /* Return a newly-allocated string formed by concatenating PREFIX and
10463 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
10464 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
10465 perform an obconcat, otherwise allocate storage for the result. The CU argument
10466 is used to determine the language and hence, the appropriate separator. */
10467
10468 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
10469
10470 static char *
10471 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
10472 int physname, struct dwarf2_cu *cu)
10473 {
10474 const char *lead = "";
10475 const char *sep;
10476
10477 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
10478 sep = "";
10479 else if (cu->language == language_java)
10480 sep = ".";
10481 else if (cu->language == language_fortran && physname)
10482 {
10483 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
10484 DW_AT_MIPS_linkage_name is preferred and used instead. */
10485
10486 lead = "__";
10487 sep = "_MOD_";
10488 }
10489 else
10490 sep = "::";
10491
10492 if (prefix == NULL)
10493 prefix = "";
10494 if (suffix == NULL)
10495 suffix = "";
10496
10497 if (obs == NULL)
10498 {
10499 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
10500
10501 strcpy (retval, lead);
10502 strcat (retval, prefix);
10503 strcat (retval, sep);
10504 strcat (retval, suffix);
10505 return retval;
10506 }
10507 else
10508 {
10509 /* We have an obstack. */
10510 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
10511 }
10512 }
10513
10514 /* Return sibling of die, NULL if no sibling. */
10515
10516 static struct die_info *
10517 sibling_die (struct die_info *die)
10518 {
10519 return die->sibling;
10520 }
10521
10522 /* Get name of a die, return NULL if not found. */
10523
10524 static char *
10525 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
10526 struct obstack *obstack)
10527 {
10528 if (name && cu->language == language_cplus)
10529 {
10530 char *canon_name = cp_canonicalize_string (name);
10531
10532 if (canon_name != NULL)
10533 {
10534 if (strcmp (canon_name, name) != 0)
10535 name = obsavestring (canon_name, strlen (canon_name),
10536 obstack);
10537 xfree (canon_name);
10538 }
10539 }
10540
10541 return name;
10542 }
10543
10544 /* Get name of a die, return NULL if not found. */
10545
10546 static char *
10547 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
10548 {
10549 struct attribute *attr;
10550
10551 attr = dwarf2_attr (die, DW_AT_name, cu);
10552 if (!attr || !DW_STRING (attr))
10553 return NULL;
10554
10555 switch (die->tag)
10556 {
10557 case DW_TAG_compile_unit:
10558 /* Compilation units have a DW_AT_name that is a filename, not
10559 a source language identifier. */
10560 case DW_TAG_enumeration_type:
10561 case DW_TAG_enumerator:
10562 /* These tags always have simple identifiers already; no need
10563 to canonicalize them. */
10564 return DW_STRING (attr);
10565
10566 case DW_TAG_subprogram:
10567 /* Java constructors will all be named "<init>", so return
10568 the class name when we see this special case. */
10569 if (cu->language == language_java
10570 && DW_STRING (attr) != NULL
10571 && strcmp (DW_STRING (attr), "<init>") == 0)
10572 {
10573 struct dwarf2_cu *spec_cu = cu;
10574 struct die_info *spec_die;
10575
10576 /* GCJ will output '<init>' for Java constructor names.
10577 For this special case, return the name of the parent class. */
10578
10579 /* GCJ may output suprogram DIEs with AT_specification set.
10580 If so, use the name of the specified DIE. */
10581 spec_die = die_specification (die, &spec_cu);
10582 if (spec_die != NULL)
10583 return dwarf2_name (spec_die, spec_cu);
10584
10585 do
10586 {
10587 die = die->parent;
10588 if (die->tag == DW_TAG_class_type)
10589 return dwarf2_name (die, cu);
10590 }
10591 while (die->tag != DW_TAG_compile_unit);
10592 }
10593 break;
10594
10595 case DW_TAG_class_type:
10596 case DW_TAG_interface_type:
10597 case DW_TAG_structure_type:
10598 case DW_TAG_union_type:
10599 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
10600 structures or unions. These were of the form "._%d" in GCC 4.1,
10601 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
10602 and GCC 4.4. We work around this problem by ignoring these. */
10603 if (strncmp (DW_STRING (attr), "._", 2) == 0
10604 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0)
10605 return NULL;
10606 break;
10607
10608 default:
10609 break;
10610 }
10611
10612 if (!DW_STRING_IS_CANONICAL (attr))
10613 {
10614 DW_STRING (attr)
10615 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
10616 &cu->objfile->objfile_obstack);
10617 DW_STRING_IS_CANONICAL (attr) = 1;
10618 }
10619 return DW_STRING (attr);
10620 }
10621
10622 /* Return the die that this die in an extension of, or NULL if there
10623 is none. *EXT_CU is the CU containing DIE on input, and the CU
10624 containing the return value on output. */
10625
10626 static struct die_info *
10627 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
10628 {
10629 struct attribute *attr;
10630
10631 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
10632 if (attr == NULL)
10633 return NULL;
10634
10635 return follow_die_ref (die, attr, ext_cu);
10636 }
10637
10638 /* Convert a DIE tag into its string name. */
10639
10640 static char *
10641 dwarf_tag_name (unsigned tag)
10642 {
10643 switch (tag)
10644 {
10645 case DW_TAG_padding:
10646 return "DW_TAG_padding";
10647 case DW_TAG_array_type:
10648 return "DW_TAG_array_type";
10649 case DW_TAG_class_type:
10650 return "DW_TAG_class_type";
10651 case DW_TAG_entry_point:
10652 return "DW_TAG_entry_point";
10653 case DW_TAG_enumeration_type:
10654 return "DW_TAG_enumeration_type";
10655 case DW_TAG_formal_parameter:
10656 return "DW_TAG_formal_parameter";
10657 case DW_TAG_imported_declaration:
10658 return "DW_TAG_imported_declaration";
10659 case DW_TAG_label:
10660 return "DW_TAG_label";
10661 case DW_TAG_lexical_block:
10662 return "DW_TAG_lexical_block";
10663 case DW_TAG_member:
10664 return "DW_TAG_member";
10665 case DW_TAG_pointer_type:
10666 return "DW_TAG_pointer_type";
10667 case DW_TAG_reference_type:
10668 return "DW_TAG_reference_type";
10669 case DW_TAG_compile_unit:
10670 return "DW_TAG_compile_unit";
10671 case DW_TAG_string_type:
10672 return "DW_TAG_string_type";
10673 case DW_TAG_structure_type:
10674 return "DW_TAG_structure_type";
10675 case DW_TAG_subroutine_type:
10676 return "DW_TAG_subroutine_type";
10677 case DW_TAG_typedef:
10678 return "DW_TAG_typedef";
10679 case DW_TAG_union_type:
10680 return "DW_TAG_union_type";
10681 case DW_TAG_unspecified_parameters:
10682 return "DW_TAG_unspecified_parameters";
10683 case DW_TAG_variant:
10684 return "DW_TAG_variant";
10685 case DW_TAG_common_block:
10686 return "DW_TAG_common_block";
10687 case DW_TAG_common_inclusion:
10688 return "DW_TAG_common_inclusion";
10689 case DW_TAG_inheritance:
10690 return "DW_TAG_inheritance";
10691 case DW_TAG_inlined_subroutine:
10692 return "DW_TAG_inlined_subroutine";
10693 case DW_TAG_module:
10694 return "DW_TAG_module";
10695 case DW_TAG_ptr_to_member_type:
10696 return "DW_TAG_ptr_to_member_type";
10697 case DW_TAG_set_type:
10698 return "DW_TAG_set_type";
10699 case DW_TAG_subrange_type:
10700 return "DW_TAG_subrange_type";
10701 case DW_TAG_with_stmt:
10702 return "DW_TAG_with_stmt";
10703 case DW_TAG_access_declaration:
10704 return "DW_TAG_access_declaration";
10705 case DW_TAG_base_type:
10706 return "DW_TAG_base_type";
10707 case DW_TAG_catch_block:
10708 return "DW_TAG_catch_block";
10709 case DW_TAG_const_type:
10710 return "DW_TAG_const_type";
10711 case DW_TAG_constant:
10712 return "DW_TAG_constant";
10713 case DW_TAG_enumerator:
10714 return "DW_TAG_enumerator";
10715 case DW_TAG_file_type:
10716 return "DW_TAG_file_type";
10717 case DW_TAG_friend:
10718 return "DW_TAG_friend";
10719 case DW_TAG_namelist:
10720 return "DW_TAG_namelist";
10721 case DW_TAG_namelist_item:
10722 return "DW_TAG_namelist_item";
10723 case DW_TAG_packed_type:
10724 return "DW_TAG_packed_type";
10725 case DW_TAG_subprogram:
10726 return "DW_TAG_subprogram";
10727 case DW_TAG_template_type_param:
10728 return "DW_TAG_template_type_param";
10729 case DW_TAG_template_value_param:
10730 return "DW_TAG_template_value_param";
10731 case DW_TAG_thrown_type:
10732 return "DW_TAG_thrown_type";
10733 case DW_TAG_try_block:
10734 return "DW_TAG_try_block";
10735 case DW_TAG_variant_part:
10736 return "DW_TAG_variant_part";
10737 case DW_TAG_variable:
10738 return "DW_TAG_variable";
10739 case DW_TAG_volatile_type:
10740 return "DW_TAG_volatile_type";
10741 case DW_TAG_dwarf_procedure:
10742 return "DW_TAG_dwarf_procedure";
10743 case DW_TAG_restrict_type:
10744 return "DW_TAG_restrict_type";
10745 case DW_TAG_interface_type:
10746 return "DW_TAG_interface_type";
10747 case DW_TAG_namespace:
10748 return "DW_TAG_namespace";
10749 case DW_TAG_imported_module:
10750 return "DW_TAG_imported_module";
10751 case DW_TAG_unspecified_type:
10752 return "DW_TAG_unspecified_type";
10753 case DW_TAG_partial_unit:
10754 return "DW_TAG_partial_unit";
10755 case DW_TAG_imported_unit:
10756 return "DW_TAG_imported_unit";
10757 case DW_TAG_condition:
10758 return "DW_TAG_condition";
10759 case DW_TAG_shared_type:
10760 return "DW_TAG_shared_type";
10761 case DW_TAG_type_unit:
10762 return "DW_TAG_type_unit";
10763 case DW_TAG_MIPS_loop:
10764 return "DW_TAG_MIPS_loop";
10765 case DW_TAG_HP_array_descriptor:
10766 return "DW_TAG_HP_array_descriptor";
10767 case DW_TAG_format_label:
10768 return "DW_TAG_format_label";
10769 case DW_TAG_function_template:
10770 return "DW_TAG_function_template";
10771 case DW_TAG_class_template:
10772 return "DW_TAG_class_template";
10773 case DW_TAG_GNU_BINCL:
10774 return "DW_TAG_GNU_BINCL";
10775 case DW_TAG_GNU_EINCL:
10776 return "DW_TAG_GNU_EINCL";
10777 case DW_TAG_upc_shared_type:
10778 return "DW_TAG_upc_shared_type";
10779 case DW_TAG_upc_strict_type:
10780 return "DW_TAG_upc_strict_type";
10781 case DW_TAG_upc_relaxed_type:
10782 return "DW_TAG_upc_relaxed_type";
10783 case DW_TAG_PGI_kanji_type:
10784 return "DW_TAG_PGI_kanji_type";
10785 case DW_TAG_PGI_interface_block:
10786 return "DW_TAG_PGI_interface_block";
10787 default:
10788 return "DW_TAG_<unknown>";
10789 }
10790 }
10791
10792 /* Convert a DWARF attribute code into its string name. */
10793
10794 static char *
10795 dwarf_attr_name (unsigned attr)
10796 {
10797 switch (attr)
10798 {
10799 case DW_AT_sibling:
10800 return "DW_AT_sibling";
10801 case DW_AT_location:
10802 return "DW_AT_location";
10803 case DW_AT_name:
10804 return "DW_AT_name";
10805 case DW_AT_ordering:
10806 return "DW_AT_ordering";
10807 case DW_AT_subscr_data:
10808 return "DW_AT_subscr_data";
10809 case DW_AT_byte_size:
10810 return "DW_AT_byte_size";
10811 case DW_AT_bit_offset:
10812 return "DW_AT_bit_offset";
10813 case DW_AT_bit_size:
10814 return "DW_AT_bit_size";
10815 case DW_AT_element_list:
10816 return "DW_AT_element_list";
10817 case DW_AT_stmt_list:
10818 return "DW_AT_stmt_list";
10819 case DW_AT_low_pc:
10820 return "DW_AT_low_pc";
10821 case DW_AT_high_pc:
10822 return "DW_AT_high_pc";
10823 case DW_AT_language:
10824 return "DW_AT_language";
10825 case DW_AT_member:
10826 return "DW_AT_member";
10827 case DW_AT_discr:
10828 return "DW_AT_discr";
10829 case DW_AT_discr_value:
10830 return "DW_AT_discr_value";
10831 case DW_AT_visibility:
10832 return "DW_AT_visibility";
10833 case DW_AT_import:
10834 return "DW_AT_import";
10835 case DW_AT_string_length:
10836 return "DW_AT_string_length";
10837 case DW_AT_common_reference:
10838 return "DW_AT_common_reference";
10839 case DW_AT_comp_dir:
10840 return "DW_AT_comp_dir";
10841 case DW_AT_const_value:
10842 return "DW_AT_const_value";
10843 case DW_AT_containing_type:
10844 return "DW_AT_containing_type";
10845 case DW_AT_default_value:
10846 return "DW_AT_default_value";
10847 case DW_AT_inline:
10848 return "DW_AT_inline";
10849 case DW_AT_is_optional:
10850 return "DW_AT_is_optional";
10851 case DW_AT_lower_bound:
10852 return "DW_AT_lower_bound";
10853 case DW_AT_producer:
10854 return "DW_AT_producer";
10855 case DW_AT_prototyped:
10856 return "DW_AT_prototyped";
10857 case DW_AT_return_addr:
10858 return "DW_AT_return_addr";
10859 case DW_AT_start_scope:
10860 return "DW_AT_start_scope";
10861 case DW_AT_bit_stride:
10862 return "DW_AT_bit_stride";
10863 case DW_AT_upper_bound:
10864 return "DW_AT_upper_bound";
10865 case DW_AT_abstract_origin:
10866 return "DW_AT_abstract_origin";
10867 case DW_AT_accessibility:
10868 return "DW_AT_accessibility";
10869 case DW_AT_address_class:
10870 return "DW_AT_address_class";
10871 case DW_AT_artificial:
10872 return "DW_AT_artificial";
10873 case DW_AT_base_types:
10874 return "DW_AT_base_types";
10875 case DW_AT_calling_convention:
10876 return "DW_AT_calling_convention";
10877 case DW_AT_count:
10878 return "DW_AT_count";
10879 case DW_AT_data_member_location:
10880 return "DW_AT_data_member_location";
10881 case DW_AT_decl_column:
10882 return "DW_AT_decl_column";
10883 case DW_AT_decl_file:
10884 return "DW_AT_decl_file";
10885 case DW_AT_decl_line:
10886 return "DW_AT_decl_line";
10887 case DW_AT_declaration:
10888 return "DW_AT_declaration";
10889 case DW_AT_discr_list:
10890 return "DW_AT_discr_list";
10891 case DW_AT_encoding:
10892 return "DW_AT_encoding";
10893 case DW_AT_external:
10894 return "DW_AT_external";
10895 case DW_AT_frame_base:
10896 return "DW_AT_frame_base";
10897 case DW_AT_friend:
10898 return "DW_AT_friend";
10899 case DW_AT_identifier_case:
10900 return "DW_AT_identifier_case";
10901 case DW_AT_macro_info:
10902 return "DW_AT_macro_info";
10903 case DW_AT_namelist_items:
10904 return "DW_AT_namelist_items";
10905 case DW_AT_priority:
10906 return "DW_AT_priority";
10907 case DW_AT_segment:
10908 return "DW_AT_segment";
10909 case DW_AT_specification:
10910 return "DW_AT_specification";
10911 case DW_AT_static_link:
10912 return "DW_AT_static_link";
10913 case DW_AT_type:
10914 return "DW_AT_type";
10915 case DW_AT_use_location:
10916 return "DW_AT_use_location";
10917 case DW_AT_variable_parameter:
10918 return "DW_AT_variable_parameter";
10919 case DW_AT_virtuality:
10920 return "DW_AT_virtuality";
10921 case DW_AT_vtable_elem_location:
10922 return "DW_AT_vtable_elem_location";
10923 /* DWARF 3 values. */
10924 case DW_AT_allocated:
10925 return "DW_AT_allocated";
10926 case DW_AT_associated:
10927 return "DW_AT_associated";
10928 case DW_AT_data_location:
10929 return "DW_AT_data_location";
10930 case DW_AT_byte_stride:
10931 return "DW_AT_byte_stride";
10932 case DW_AT_entry_pc:
10933 return "DW_AT_entry_pc";
10934 case DW_AT_use_UTF8:
10935 return "DW_AT_use_UTF8";
10936 case DW_AT_extension:
10937 return "DW_AT_extension";
10938 case DW_AT_ranges:
10939 return "DW_AT_ranges";
10940 case DW_AT_trampoline:
10941 return "DW_AT_trampoline";
10942 case DW_AT_call_column:
10943 return "DW_AT_call_column";
10944 case DW_AT_call_file:
10945 return "DW_AT_call_file";
10946 case DW_AT_call_line:
10947 return "DW_AT_call_line";
10948 case DW_AT_description:
10949 return "DW_AT_description";
10950 case DW_AT_binary_scale:
10951 return "DW_AT_binary_scale";
10952 case DW_AT_decimal_scale:
10953 return "DW_AT_decimal_scale";
10954 case DW_AT_small:
10955 return "DW_AT_small";
10956 case DW_AT_decimal_sign:
10957 return "DW_AT_decimal_sign";
10958 case DW_AT_digit_count:
10959 return "DW_AT_digit_count";
10960 case DW_AT_picture_string:
10961 return "DW_AT_picture_string";
10962 case DW_AT_mutable:
10963 return "DW_AT_mutable";
10964 case DW_AT_threads_scaled:
10965 return "DW_AT_threads_scaled";
10966 case DW_AT_explicit:
10967 return "DW_AT_explicit";
10968 case DW_AT_object_pointer:
10969 return "DW_AT_object_pointer";
10970 case DW_AT_endianity:
10971 return "DW_AT_endianity";
10972 case DW_AT_elemental:
10973 return "DW_AT_elemental";
10974 case DW_AT_pure:
10975 return "DW_AT_pure";
10976 case DW_AT_recursive:
10977 return "DW_AT_recursive";
10978 /* DWARF 4 values. */
10979 case DW_AT_signature:
10980 return "DW_AT_signature";
10981 case DW_AT_linkage_name:
10982 return "DW_AT_linkage_name";
10983 /* SGI/MIPS extensions. */
10984 #ifdef MIPS /* collides with DW_AT_HP_block_index */
10985 case DW_AT_MIPS_fde:
10986 return "DW_AT_MIPS_fde";
10987 #endif
10988 case DW_AT_MIPS_loop_begin:
10989 return "DW_AT_MIPS_loop_begin";
10990 case DW_AT_MIPS_tail_loop_begin:
10991 return "DW_AT_MIPS_tail_loop_begin";
10992 case DW_AT_MIPS_epilog_begin:
10993 return "DW_AT_MIPS_epilog_begin";
10994 case DW_AT_MIPS_loop_unroll_factor:
10995 return "DW_AT_MIPS_loop_unroll_factor";
10996 case DW_AT_MIPS_software_pipeline_depth:
10997 return "DW_AT_MIPS_software_pipeline_depth";
10998 case DW_AT_MIPS_linkage_name:
10999 return "DW_AT_MIPS_linkage_name";
11000 case DW_AT_MIPS_stride:
11001 return "DW_AT_MIPS_stride";
11002 case DW_AT_MIPS_abstract_name:
11003 return "DW_AT_MIPS_abstract_name";
11004 case DW_AT_MIPS_clone_origin:
11005 return "DW_AT_MIPS_clone_origin";
11006 case DW_AT_MIPS_has_inlines:
11007 return "DW_AT_MIPS_has_inlines";
11008 /* HP extensions. */
11009 #ifndef MIPS /* collides with DW_AT_MIPS_fde */
11010 case DW_AT_HP_block_index:
11011 return "DW_AT_HP_block_index";
11012 #endif
11013 case DW_AT_HP_unmodifiable:
11014 return "DW_AT_HP_unmodifiable";
11015 case DW_AT_HP_actuals_stmt_list:
11016 return "DW_AT_HP_actuals_stmt_list";
11017 case DW_AT_HP_proc_per_section:
11018 return "DW_AT_HP_proc_per_section";
11019 case DW_AT_HP_raw_data_ptr:
11020 return "DW_AT_HP_raw_data_ptr";
11021 case DW_AT_HP_pass_by_reference:
11022 return "DW_AT_HP_pass_by_reference";
11023 case DW_AT_HP_opt_level:
11024 return "DW_AT_HP_opt_level";
11025 case DW_AT_HP_prof_version_id:
11026 return "DW_AT_HP_prof_version_id";
11027 case DW_AT_HP_opt_flags:
11028 return "DW_AT_HP_opt_flags";
11029 case DW_AT_HP_cold_region_low_pc:
11030 return "DW_AT_HP_cold_region_low_pc";
11031 case DW_AT_HP_cold_region_high_pc:
11032 return "DW_AT_HP_cold_region_high_pc";
11033 case DW_AT_HP_all_variables_modifiable:
11034 return "DW_AT_HP_all_variables_modifiable";
11035 case DW_AT_HP_linkage_name:
11036 return "DW_AT_HP_linkage_name";
11037 case DW_AT_HP_prof_flags:
11038 return "DW_AT_HP_prof_flags";
11039 /* GNU extensions. */
11040 case DW_AT_sf_names:
11041 return "DW_AT_sf_names";
11042 case DW_AT_src_info:
11043 return "DW_AT_src_info";
11044 case DW_AT_mac_info:
11045 return "DW_AT_mac_info";
11046 case DW_AT_src_coords:
11047 return "DW_AT_src_coords";
11048 case DW_AT_body_begin:
11049 return "DW_AT_body_begin";
11050 case DW_AT_body_end:
11051 return "DW_AT_body_end";
11052 case DW_AT_GNU_vector:
11053 return "DW_AT_GNU_vector";
11054 /* VMS extensions. */
11055 case DW_AT_VMS_rtnbeg_pd_address:
11056 return "DW_AT_VMS_rtnbeg_pd_address";
11057 /* UPC extension. */
11058 case DW_AT_upc_threads_scaled:
11059 return "DW_AT_upc_threads_scaled";
11060 /* PGI (STMicroelectronics) extensions. */
11061 case DW_AT_PGI_lbase:
11062 return "DW_AT_PGI_lbase";
11063 case DW_AT_PGI_soffset:
11064 return "DW_AT_PGI_soffset";
11065 case DW_AT_PGI_lstride:
11066 return "DW_AT_PGI_lstride";
11067 default:
11068 return "DW_AT_<unknown>";
11069 }
11070 }
11071
11072 /* Convert a DWARF value form code into its string name. */
11073
11074 static char *
11075 dwarf_form_name (unsigned form)
11076 {
11077 switch (form)
11078 {
11079 case DW_FORM_addr:
11080 return "DW_FORM_addr";
11081 case DW_FORM_block2:
11082 return "DW_FORM_block2";
11083 case DW_FORM_block4:
11084 return "DW_FORM_block4";
11085 case DW_FORM_data2:
11086 return "DW_FORM_data2";
11087 case DW_FORM_data4:
11088 return "DW_FORM_data4";
11089 case DW_FORM_data8:
11090 return "DW_FORM_data8";
11091 case DW_FORM_string:
11092 return "DW_FORM_string";
11093 case DW_FORM_block:
11094 return "DW_FORM_block";
11095 case DW_FORM_block1:
11096 return "DW_FORM_block1";
11097 case DW_FORM_data1:
11098 return "DW_FORM_data1";
11099 case DW_FORM_flag:
11100 return "DW_FORM_flag";
11101 case DW_FORM_sdata:
11102 return "DW_FORM_sdata";
11103 case DW_FORM_strp:
11104 return "DW_FORM_strp";
11105 case DW_FORM_udata:
11106 return "DW_FORM_udata";
11107 case DW_FORM_ref_addr:
11108 return "DW_FORM_ref_addr";
11109 case DW_FORM_ref1:
11110 return "DW_FORM_ref1";
11111 case DW_FORM_ref2:
11112 return "DW_FORM_ref2";
11113 case DW_FORM_ref4:
11114 return "DW_FORM_ref4";
11115 case DW_FORM_ref8:
11116 return "DW_FORM_ref8";
11117 case DW_FORM_ref_udata:
11118 return "DW_FORM_ref_udata";
11119 case DW_FORM_indirect:
11120 return "DW_FORM_indirect";
11121 case DW_FORM_sec_offset:
11122 return "DW_FORM_sec_offset";
11123 case DW_FORM_exprloc:
11124 return "DW_FORM_exprloc";
11125 case DW_FORM_flag_present:
11126 return "DW_FORM_flag_present";
11127 case DW_FORM_sig8:
11128 return "DW_FORM_sig8";
11129 default:
11130 return "DW_FORM_<unknown>";
11131 }
11132 }
11133
11134 /* Convert a DWARF stack opcode into its string name. */
11135
11136 const char *
11137 dwarf_stack_op_name (unsigned op, int def)
11138 {
11139 switch (op)
11140 {
11141 case DW_OP_addr:
11142 return "DW_OP_addr";
11143 case DW_OP_deref:
11144 return "DW_OP_deref";
11145 case DW_OP_const1u:
11146 return "DW_OP_const1u";
11147 case DW_OP_const1s:
11148 return "DW_OP_const1s";
11149 case DW_OP_const2u:
11150 return "DW_OP_const2u";
11151 case DW_OP_const2s:
11152 return "DW_OP_const2s";
11153 case DW_OP_const4u:
11154 return "DW_OP_const4u";
11155 case DW_OP_const4s:
11156 return "DW_OP_const4s";
11157 case DW_OP_const8u:
11158 return "DW_OP_const8u";
11159 case DW_OP_const8s:
11160 return "DW_OP_const8s";
11161 case DW_OP_constu:
11162 return "DW_OP_constu";
11163 case DW_OP_consts:
11164 return "DW_OP_consts";
11165 case DW_OP_dup:
11166 return "DW_OP_dup";
11167 case DW_OP_drop:
11168 return "DW_OP_drop";
11169 case DW_OP_over:
11170 return "DW_OP_over";
11171 case DW_OP_pick:
11172 return "DW_OP_pick";
11173 case DW_OP_swap:
11174 return "DW_OP_swap";
11175 case DW_OP_rot:
11176 return "DW_OP_rot";
11177 case DW_OP_xderef:
11178 return "DW_OP_xderef";
11179 case DW_OP_abs:
11180 return "DW_OP_abs";
11181 case DW_OP_and:
11182 return "DW_OP_and";
11183 case DW_OP_div:
11184 return "DW_OP_div";
11185 case DW_OP_minus:
11186 return "DW_OP_minus";
11187 case DW_OP_mod:
11188 return "DW_OP_mod";
11189 case DW_OP_mul:
11190 return "DW_OP_mul";
11191 case DW_OP_neg:
11192 return "DW_OP_neg";
11193 case DW_OP_not:
11194 return "DW_OP_not";
11195 case DW_OP_or:
11196 return "DW_OP_or";
11197 case DW_OP_plus:
11198 return "DW_OP_plus";
11199 case DW_OP_plus_uconst:
11200 return "DW_OP_plus_uconst";
11201 case DW_OP_shl:
11202 return "DW_OP_shl";
11203 case DW_OP_shr:
11204 return "DW_OP_shr";
11205 case DW_OP_shra:
11206 return "DW_OP_shra";
11207 case DW_OP_xor:
11208 return "DW_OP_xor";
11209 case DW_OP_bra:
11210 return "DW_OP_bra";
11211 case DW_OP_eq:
11212 return "DW_OP_eq";
11213 case DW_OP_ge:
11214 return "DW_OP_ge";
11215 case DW_OP_gt:
11216 return "DW_OP_gt";
11217 case DW_OP_le:
11218 return "DW_OP_le";
11219 case DW_OP_lt:
11220 return "DW_OP_lt";
11221 case DW_OP_ne:
11222 return "DW_OP_ne";
11223 case DW_OP_skip:
11224 return "DW_OP_skip";
11225 case DW_OP_lit0:
11226 return "DW_OP_lit0";
11227 case DW_OP_lit1:
11228 return "DW_OP_lit1";
11229 case DW_OP_lit2:
11230 return "DW_OP_lit2";
11231 case DW_OP_lit3:
11232 return "DW_OP_lit3";
11233 case DW_OP_lit4:
11234 return "DW_OP_lit4";
11235 case DW_OP_lit5:
11236 return "DW_OP_lit5";
11237 case DW_OP_lit6:
11238 return "DW_OP_lit6";
11239 case DW_OP_lit7:
11240 return "DW_OP_lit7";
11241 case DW_OP_lit8:
11242 return "DW_OP_lit8";
11243 case DW_OP_lit9:
11244 return "DW_OP_lit9";
11245 case DW_OP_lit10:
11246 return "DW_OP_lit10";
11247 case DW_OP_lit11:
11248 return "DW_OP_lit11";
11249 case DW_OP_lit12:
11250 return "DW_OP_lit12";
11251 case DW_OP_lit13:
11252 return "DW_OP_lit13";
11253 case DW_OP_lit14:
11254 return "DW_OP_lit14";
11255 case DW_OP_lit15:
11256 return "DW_OP_lit15";
11257 case DW_OP_lit16:
11258 return "DW_OP_lit16";
11259 case DW_OP_lit17:
11260 return "DW_OP_lit17";
11261 case DW_OP_lit18:
11262 return "DW_OP_lit18";
11263 case DW_OP_lit19:
11264 return "DW_OP_lit19";
11265 case DW_OP_lit20:
11266 return "DW_OP_lit20";
11267 case DW_OP_lit21:
11268 return "DW_OP_lit21";
11269 case DW_OP_lit22:
11270 return "DW_OP_lit22";
11271 case DW_OP_lit23:
11272 return "DW_OP_lit23";
11273 case DW_OP_lit24:
11274 return "DW_OP_lit24";
11275 case DW_OP_lit25:
11276 return "DW_OP_lit25";
11277 case DW_OP_lit26:
11278 return "DW_OP_lit26";
11279 case DW_OP_lit27:
11280 return "DW_OP_lit27";
11281 case DW_OP_lit28:
11282 return "DW_OP_lit28";
11283 case DW_OP_lit29:
11284 return "DW_OP_lit29";
11285 case DW_OP_lit30:
11286 return "DW_OP_lit30";
11287 case DW_OP_lit31:
11288 return "DW_OP_lit31";
11289 case DW_OP_reg0:
11290 return "DW_OP_reg0";
11291 case DW_OP_reg1:
11292 return "DW_OP_reg1";
11293 case DW_OP_reg2:
11294 return "DW_OP_reg2";
11295 case DW_OP_reg3:
11296 return "DW_OP_reg3";
11297 case DW_OP_reg4:
11298 return "DW_OP_reg4";
11299 case DW_OP_reg5:
11300 return "DW_OP_reg5";
11301 case DW_OP_reg6:
11302 return "DW_OP_reg6";
11303 case DW_OP_reg7:
11304 return "DW_OP_reg7";
11305 case DW_OP_reg8:
11306 return "DW_OP_reg8";
11307 case DW_OP_reg9:
11308 return "DW_OP_reg9";
11309 case DW_OP_reg10:
11310 return "DW_OP_reg10";
11311 case DW_OP_reg11:
11312 return "DW_OP_reg11";
11313 case DW_OP_reg12:
11314 return "DW_OP_reg12";
11315 case DW_OP_reg13:
11316 return "DW_OP_reg13";
11317 case DW_OP_reg14:
11318 return "DW_OP_reg14";
11319 case DW_OP_reg15:
11320 return "DW_OP_reg15";
11321 case DW_OP_reg16:
11322 return "DW_OP_reg16";
11323 case DW_OP_reg17:
11324 return "DW_OP_reg17";
11325 case DW_OP_reg18:
11326 return "DW_OP_reg18";
11327 case DW_OP_reg19:
11328 return "DW_OP_reg19";
11329 case DW_OP_reg20:
11330 return "DW_OP_reg20";
11331 case DW_OP_reg21:
11332 return "DW_OP_reg21";
11333 case DW_OP_reg22:
11334 return "DW_OP_reg22";
11335 case DW_OP_reg23:
11336 return "DW_OP_reg23";
11337 case DW_OP_reg24:
11338 return "DW_OP_reg24";
11339 case DW_OP_reg25:
11340 return "DW_OP_reg25";
11341 case DW_OP_reg26:
11342 return "DW_OP_reg26";
11343 case DW_OP_reg27:
11344 return "DW_OP_reg27";
11345 case DW_OP_reg28:
11346 return "DW_OP_reg28";
11347 case DW_OP_reg29:
11348 return "DW_OP_reg29";
11349 case DW_OP_reg30:
11350 return "DW_OP_reg30";
11351 case DW_OP_reg31:
11352 return "DW_OP_reg31";
11353 case DW_OP_breg0:
11354 return "DW_OP_breg0";
11355 case DW_OP_breg1:
11356 return "DW_OP_breg1";
11357 case DW_OP_breg2:
11358 return "DW_OP_breg2";
11359 case DW_OP_breg3:
11360 return "DW_OP_breg3";
11361 case DW_OP_breg4:
11362 return "DW_OP_breg4";
11363 case DW_OP_breg5:
11364 return "DW_OP_breg5";
11365 case DW_OP_breg6:
11366 return "DW_OP_breg6";
11367 case DW_OP_breg7:
11368 return "DW_OP_breg7";
11369 case DW_OP_breg8:
11370 return "DW_OP_breg8";
11371 case DW_OP_breg9:
11372 return "DW_OP_breg9";
11373 case DW_OP_breg10:
11374 return "DW_OP_breg10";
11375 case DW_OP_breg11:
11376 return "DW_OP_breg11";
11377 case DW_OP_breg12:
11378 return "DW_OP_breg12";
11379 case DW_OP_breg13:
11380 return "DW_OP_breg13";
11381 case DW_OP_breg14:
11382 return "DW_OP_breg14";
11383 case DW_OP_breg15:
11384 return "DW_OP_breg15";
11385 case DW_OP_breg16:
11386 return "DW_OP_breg16";
11387 case DW_OP_breg17:
11388 return "DW_OP_breg17";
11389 case DW_OP_breg18:
11390 return "DW_OP_breg18";
11391 case DW_OP_breg19:
11392 return "DW_OP_breg19";
11393 case DW_OP_breg20:
11394 return "DW_OP_breg20";
11395 case DW_OP_breg21:
11396 return "DW_OP_breg21";
11397 case DW_OP_breg22:
11398 return "DW_OP_breg22";
11399 case DW_OP_breg23:
11400 return "DW_OP_breg23";
11401 case DW_OP_breg24:
11402 return "DW_OP_breg24";
11403 case DW_OP_breg25:
11404 return "DW_OP_breg25";
11405 case DW_OP_breg26:
11406 return "DW_OP_breg26";
11407 case DW_OP_breg27:
11408 return "DW_OP_breg27";
11409 case DW_OP_breg28:
11410 return "DW_OP_breg28";
11411 case DW_OP_breg29:
11412 return "DW_OP_breg29";
11413 case DW_OP_breg30:
11414 return "DW_OP_breg30";
11415 case DW_OP_breg31:
11416 return "DW_OP_breg31";
11417 case DW_OP_regx:
11418 return "DW_OP_regx";
11419 case DW_OP_fbreg:
11420 return "DW_OP_fbreg";
11421 case DW_OP_bregx:
11422 return "DW_OP_bregx";
11423 case DW_OP_piece:
11424 return "DW_OP_piece";
11425 case DW_OP_deref_size:
11426 return "DW_OP_deref_size";
11427 case DW_OP_xderef_size:
11428 return "DW_OP_xderef_size";
11429 case DW_OP_nop:
11430 return "DW_OP_nop";
11431 /* DWARF 3 extensions. */
11432 case DW_OP_push_object_address:
11433 return "DW_OP_push_object_address";
11434 case DW_OP_call2:
11435 return "DW_OP_call2";
11436 case DW_OP_call4:
11437 return "DW_OP_call4";
11438 case DW_OP_call_ref:
11439 return "DW_OP_call_ref";
11440 case DW_OP_form_tls_address:
11441 return "DW_OP_form_tls_address";
11442 case DW_OP_call_frame_cfa:
11443 return "DW_OP_call_frame_cfa";
11444 case DW_OP_bit_piece:
11445 return "DW_OP_bit_piece";
11446 /* DWARF 4 extensions. */
11447 case DW_OP_implicit_value:
11448 return "DW_OP_implicit_value";
11449 case DW_OP_stack_value:
11450 return "DW_OP_stack_value";
11451 /* GNU extensions. */
11452 case DW_OP_GNU_push_tls_address:
11453 return "DW_OP_GNU_push_tls_address";
11454 case DW_OP_GNU_uninit:
11455 return "DW_OP_GNU_uninit";
11456 default:
11457 return def ? "OP_<unknown>" : NULL;
11458 }
11459 }
11460
11461 static char *
11462 dwarf_bool_name (unsigned mybool)
11463 {
11464 if (mybool)
11465 return "TRUE";
11466 else
11467 return "FALSE";
11468 }
11469
11470 /* Convert a DWARF type code into its string name. */
11471
11472 static char *
11473 dwarf_type_encoding_name (unsigned enc)
11474 {
11475 switch (enc)
11476 {
11477 case DW_ATE_void:
11478 return "DW_ATE_void";
11479 case DW_ATE_address:
11480 return "DW_ATE_address";
11481 case DW_ATE_boolean:
11482 return "DW_ATE_boolean";
11483 case DW_ATE_complex_float:
11484 return "DW_ATE_complex_float";
11485 case DW_ATE_float:
11486 return "DW_ATE_float";
11487 case DW_ATE_signed:
11488 return "DW_ATE_signed";
11489 case DW_ATE_signed_char:
11490 return "DW_ATE_signed_char";
11491 case DW_ATE_unsigned:
11492 return "DW_ATE_unsigned";
11493 case DW_ATE_unsigned_char:
11494 return "DW_ATE_unsigned_char";
11495 /* DWARF 3. */
11496 case DW_ATE_imaginary_float:
11497 return "DW_ATE_imaginary_float";
11498 case DW_ATE_packed_decimal:
11499 return "DW_ATE_packed_decimal";
11500 case DW_ATE_numeric_string:
11501 return "DW_ATE_numeric_string";
11502 case DW_ATE_edited:
11503 return "DW_ATE_edited";
11504 case DW_ATE_signed_fixed:
11505 return "DW_ATE_signed_fixed";
11506 case DW_ATE_unsigned_fixed:
11507 return "DW_ATE_unsigned_fixed";
11508 case DW_ATE_decimal_float:
11509 return "DW_ATE_decimal_float";
11510 /* DWARF 4. */
11511 case DW_ATE_UTF:
11512 return "DW_ATE_UTF";
11513 /* HP extensions. */
11514 case DW_ATE_HP_float80:
11515 return "DW_ATE_HP_float80";
11516 case DW_ATE_HP_complex_float80:
11517 return "DW_ATE_HP_complex_float80";
11518 case DW_ATE_HP_float128:
11519 return "DW_ATE_HP_float128";
11520 case DW_ATE_HP_complex_float128:
11521 return "DW_ATE_HP_complex_float128";
11522 case DW_ATE_HP_floathpintel:
11523 return "DW_ATE_HP_floathpintel";
11524 case DW_ATE_HP_imaginary_float80:
11525 return "DW_ATE_HP_imaginary_float80";
11526 case DW_ATE_HP_imaginary_float128:
11527 return "DW_ATE_HP_imaginary_float128";
11528 default:
11529 return "DW_ATE_<unknown>";
11530 }
11531 }
11532
11533 /* Convert a DWARF call frame info operation to its string name. */
11534
11535 #if 0
11536 static char *
11537 dwarf_cfi_name (unsigned cfi_opc)
11538 {
11539 switch (cfi_opc)
11540 {
11541 case DW_CFA_advance_loc:
11542 return "DW_CFA_advance_loc";
11543 case DW_CFA_offset:
11544 return "DW_CFA_offset";
11545 case DW_CFA_restore:
11546 return "DW_CFA_restore";
11547 case DW_CFA_nop:
11548 return "DW_CFA_nop";
11549 case DW_CFA_set_loc:
11550 return "DW_CFA_set_loc";
11551 case DW_CFA_advance_loc1:
11552 return "DW_CFA_advance_loc1";
11553 case DW_CFA_advance_loc2:
11554 return "DW_CFA_advance_loc2";
11555 case DW_CFA_advance_loc4:
11556 return "DW_CFA_advance_loc4";
11557 case DW_CFA_offset_extended:
11558 return "DW_CFA_offset_extended";
11559 case DW_CFA_restore_extended:
11560 return "DW_CFA_restore_extended";
11561 case DW_CFA_undefined:
11562 return "DW_CFA_undefined";
11563 case DW_CFA_same_value:
11564 return "DW_CFA_same_value";
11565 case DW_CFA_register:
11566 return "DW_CFA_register";
11567 case DW_CFA_remember_state:
11568 return "DW_CFA_remember_state";
11569 case DW_CFA_restore_state:
11570 return "DW_CFA_restore_state";
11571 case DW_CFA_def_cfa:
11572 return "DW_CFA_def_cfa";
11573 case DW_CFA_def_cfa_register:
11574 return "DW_CFA_def_cfa_register";
11575 case DW_CFA_def_cfa_offset:
11576 return "DW_CFA_def_cfa_offset";
11577 /* DWARF 3. */
11578 case DW_CFA_def_cfa_expression:
11579 return "DW_CFA_def_cfa_expression";
11580 case DW_CFA_expression:
11581 return "DW_CFA_expression";
11582 case DW_CFA_offset_extended_sf:
11583 return "DW_CFA_offset_extended_sf";
11584 case DW_CFA_def_cfa_sf:
11585 return "DW_CFA_def_cfa_sf";
11586 case DW_CFA_def_cfa_offset_sf:
11587 return "DW_CFA_def_cfa_offset_sf";
11588 case DW_CFA_val_offset:
11589 return "DW_CFA_val_offset";
11590 case DW_CFA_val_offset_sf:
11591 return "DW_CFA_val_offset_sf";
11592 case DW_CFA_val_expression:
11593 return "DW_CFA_val_expression";
11594 /* SGI/MIPS specific. */
11595 case DW_CFA_MIPS_advance_loc8:
11596 return "DW_CFA_MIPS_advance_loc8";
11597 /* GNU extensions. */
11598 case DW_CFA_GNU_window_save:
11599 return "DW_CFA_GNU_window_save";
11600 case DW_CFA_GNU_args_size:
11601 return "DW_CFA_GNU_args_size";
11602 case DW_CFA_GNU_negative_offset_extended:
11603 return "DW_CFA_GNU_negative_offset_extended";
11604 default:
11605 return "DW_CFA_<unknown>";
11606 }
11607 }
11608 #endif
11609
11610 static void
11611 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
11612 {
11613 unsigned int i;
11614
11615 print_spaces (indent, f);
11616 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
11617 dwarf_tag_name (die->tag), die->abbrev, die->offset);
11618
11619 if (die->parent != NULL)
11620 {
11621 print_spaces (indent, f);
11622 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
11623 die->parent->offset);
11624 }
11625
11626 print_spaces (indent, f);
11627 fprintf_unfiltered (f, " has children: %s\n",
11628 dwarf_bool_name (die->child != NULL));
11629
11630 print_spaces (indent, f);
11631 fprintf_unfiltered (f, " attributes:\n");
11632
11633 for (i = 0; i < die->num_attrs; ++i)
11634 {
11635 print_spaces (indent, f);
11636 fprintf_unfiltered (f, " %s (%s) ",
11637 dwarf_attr_name (die->attrs[i].name),
11638 dwarf_form_name (die->attrs[i].form));
11639
11640 switch (die->attrs[i].form)
11641 {
11642 case DW_FORM_ref_addr:
11643 case DW_FORM_addr:
11644 fprintf_unfiltered (f, "address: ");
11645 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
11646 break;
11647 case DW_FORM_block2:
11648 case DW_FORM_block4:
11649 case DW_FORM_block:
11650 case DW_FORM_block1:
11651 fprintf_unfiltered (f, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
11652 break;
11653 case DW_FORM_exprloc:
11654 fprintf_unfiltered (f, "expression: size %u",
11655 DW_BLOCK (&die->attrs[i])->size);
11656 break;
11657 case DW_FORM_ref1:
11658 case DW_FORM_ref2:
11659 case DW_FORM_ref4:
11660 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
11661 (long) (DW_ADDR (&die->attrs[i])));
11662 break;
11663 case DW_FORM_data1:
11664 case DW_FORM_data2:
11665 case DW_FORM_data4:
11666 case DW_FORM_data8:
11667 case DW_FORM_udata:
11668 case DW_FORM_sdata:
11669 fprintf_unfiltered (f, "constant: %s",
11670 pulongest (DW_UNSND (&die->attrs[i])));
11671 break;
11672 case DW_FORM_sec_offset:
11673 fprintf_unfiltered (f, "section offset: %s",
11674 pulongest (DW_UNSND (&die->attrs[i])));
11675 break;
11676 case DW_FORM_sig8:
11677 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
11678 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
11679 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
11680 else
11681 fprintf_unfiltered (f, "signatured type, offset: unknown");
11682 break;
11683 case DW_FORM_string:
11684 case DW_FORM_strp:
11685 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
11686 DW_STRING (&die->attrs[i])
11687 ? DW_STRING (&die->attrs[i]) : "",
11688 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
11689 break;
11690 case DW_FORM_flag:
11691 if (DW_UNSND (&die->attrs[i]))
11692 fprintf_unfiltered (f, "flag: TRUE");
11693 else
11694 fprintf_unfiltered (f, "flag: FALSE");
11695 break;
11696 case DW_FORM_flag_present:
11697 fprintf_unfiltered (f, "flag: TRUE");
11698 break;
11699 case DW_FORM_indirect:
11700 /* the reader will have reduced the indirect form to
11701 the "base form" so this form should not occur */
11702 fprintf_unfiltered (f, "unexpected attribute form: DW_FORM_indirect");
11703 break;
11704 default:
11705 fprintf_unfiltered (f, "unsupported attribute form: %d.",
11706 die->attrs[i].form);
11707 break;
11708 }
11709 fprintf_unfiltered (f, "\n");
11710 }
11711 }
11712
11713 static void
11714 dump_die_for_error (struct die_info *die)
11715 {
11716 dump_die_shallow (gdb_stderr, 0, die);
11717 }
11718
11719 static void
11720 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
11721 {
11722 int indent = level * 4;
11723
11724 gdb_assert (die != NULL);
11725
11726 if (level >= max_level)
11727 return;
11728
11729 dump_die_shallow (f, indent, die);
11730
11731 if (die->child != NULL)
11732 {
11733 print_spaces (indent, f);
11734 fprintf_unfiltered (f, " Children:");
11735 if (level + 1 < max_level)
11736 {
11737 fprintf_unfiltered (f, "\n");
11738 dump_die_1 (f, level + 1, max_level, die->child);
11739 }
11740 else
11741 {
11742 fprintf_unfiltered (f, " [not printed, max nesting level reached]\n");
11743 }
11744 }
11745
11746 if (die->sibling != NULL && level > 0)
11747 {
11748 dump_die_1 (f, level, max_level, die->sibling);
11749 }
11750 }
11751
11752 /* This is called from the pdie macro in gdbinit.in.
11753 It's not static so gcc will keep a copy callable from gdb. */
11754
11755 void
11756 dump_die (struct die_info *die, int max_level)
11757 {
11758 dump_die_1 (gdb_stdlog, 0, max_level, die);
11759 }
11760
11761 static void
11762 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
11763 {
11764 void **slot;
11765
11766 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
11767
11768 *slot = die;
11769 }
11770
11771 static int
11772 is_ref_attr (struct attribute *attr)
11773 {
11774 switch (attr->form)
11775 {
11776 case DW_FORM_ref_addr:
11777 case DW_FORM_ref1:
11778 case DW_FORM_ref2:
11779 case DW_FORM_ref4:
11780 case DW_FORM_ref8:
11781 case DW_FORM_ref_udata:
11782 return 1;
11783 default:
11784 return 0;
11785 }
11786 }
11787
11788 static unsigned int
11789 dwarf2_get_ref_die_offset (struct attribute *attr)
11790 {
11791 if (is_ref_attr (attr))
11792 return DW_ADDR (attr);
11793
11794 complaint (&symfile_complaints,
11795 _("unsupported die ref attribute form: '%s'"),
11796 dwarf_form_name (attr->form));
11797 return 0;
11798 }
11799
11800 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
11801 * the value held by the attribute is not constant. */
11802
11803 static LONGEST
11804 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
11805 {
11806 if (attr->form == DW_FORM_sdata)
11807 return DW_SND (attr);
11808 else if (attr->form == DW_FORM_udata
11809 || attr->form == DW_FORM_data1
11810 || attr->form == DW_FORM_data2
11811 || attr->form == DW_FORM_data4
11812 || attr->form == DW_FORM_data8)
11813 return DW_UNSND (attr);
11814 else
11815 {
11816 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
11817 dwarf_form_name (attr->form));
11818 return default_value;
11819 }
11820 }
11821
11822 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
11823 unit and add it to our queue.
11824 The result is non-zero if PER_CU was queued, otherwise the result is zero
11825 meaning either PER_CU is already queued or it is already loaded. */
11826
11827 static int
11828 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
11829 struct dwarf2_per_cu_data *per_cu)
11830 {
11831 /* Mark the dependence relation so that we don't flush PER_CU
11832 too early. */
11833 dwarf2_add_dependence (this_cu, per_cu);
11834
11835 /* If it's already on the queue, we have nothing to do. */
11836 if (per_cu->queued)
11837 return 0;
11838
11839 /* If the compilation unit is already loaded, just mark it as
11840 used. */
11841 if (per_cu->cu != NULL)
11842 {
11843 per_cu->cu->last_used = 0;
11844 return 0;
11845 }
11846
11847 /* Add it to the queue. */
11848 queue_comp_unit (per_cu, this_cu->objfile);
11849
11850 return 1;
11851 }
11852
11853 /* Follow reference or signature attribute ATTR of SRC_DIE.
11854 On entry *REF_CU is the CU of SRC_DIE.
11855 On exit *REF_CU is the CU of the result. */
11856
11857 static struct die_info *
11858 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
11859 struct dwarf2_cu **ref_cu)
11860 {
11861 struct die_info *die;
11862
11863 if (is_ref_attr (attr))
11864 die = follow_die_ref (src_die, attr, ref_cu);
11865 else if (attr->form == DW_FORM_sig8)
11866 die = follow_die_sig (src_die, attr, ref_cu);
11867 else
11868 {
11869 dump_die_for_error (src_die);
11870 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
11871 (*ref_cu)->objfile->name);
11872 }
11873
11874 return die;
11875 }
11876
11877 /* Follow reference OFFSET.
11878 On entry *REF_CU is the CU of source DIE referencing OFFSET.
11879 On exit *REF_CU is the CU of the result. */
11880
11881 static struct die_info *
11882 follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
11883 {
11884 struct die_info temp_die;
11885 struct dwarf2_cu *target_cu, *cu = *ref_cu;
11886
11887 gdb_assert (cu->per_cu != NULL);
11888
11889 if (cu->per_cu->from_debug_types)
11890 {
11891 /* .debug_types CUs cannot reference anything outside their CU.
11892 If they need to, they have to reference a signatured type via
11893 DW_FORM_sig8. */
11894 if (! offset_in_cu_p (&cu->header, offset))
11895 return NULL;
11896 target_cu = cu;
11897 }
11898 else if (! offset_in_cu_p (&cu->header, offset))
11899 {
11900 struct dwarf2_per_cu_data *per_cu;
11901
11902 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
11903
11904 /* If necessary, add it to the queue and load its DIEs. */
11905 if (maybe_queue_comp_unit (cu, per_cu))
11906 load_full_comp_unit (per_cu, cu->objfile);
11907
11908 target_cu = per_cu->cu;
11909 }
11910 else
11911 target_cu = cu;
11912
11913 *ref_cu = target_cu;
11914 temp_die.offset = offset;
11915 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
11916 }
11917
11918 /* Follow reference attribute ATTR of SRC_DIE.
11919 On entry *REF_CU is the CU of SRC_DIE.
11920 On exit *REF_CU is the CU of the result. */
11921
11922 static struct die_info *
11923 follow_die_ref (struct die_info *src_die, struct attribute *attr,
11924 struct dwarf2_cu **ref_cu)
11925 {
11926 unsigned int offset = dwarf2_get_ref_die_offset (attr);
11927 struct dwarf2_cu *cu = *ref_cu;
11928 struct die_info *die;
11929
11930 die = follow_die_offset (offset, ref_cu);
11931 if (!die)
11932 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
11933 "at 0x%x [in module %s]"),
11934 offset, src_die->offset, cu->objfile->name);
11935
11936 return die;
11937 }
11938
11939 /* Return DWARF block and its CU referenced by OFFSET at PER_CU. Returned
11940 value is intended for DW_OP_call*. */
11941
11942 struct dwarf2_locexpr_baton
11943 dwarf2_fetch_die_location_block (unsigned int offset,
11944 struct dwarf2_per_cu_data *per_cu)
11945 {
11946 struct dwarf2_cu *cu = per_cu->cu;
11947 struct die_info *die;
11948 struct attribute *attr;
11949 struct dwarf2_locexpr_baton retval;
11950
11951 die = follow_die_offset (offset, &cu);
11952 if (!die)
11953 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
11954 offset, per_cu->cu->objfile->name);
11955
11956 attr = dwarf2_attr (die, DW_AT_location, cu);
11957 if (!attr)
11958 {
11959 /* DWARF: "If there is no such attribute, then there is no effect.". */
11960
11961 retval.data = NULL;
11962 retval.size = 0;
11963 }
11964 else
11965 {
11966 if (!attr_form_is_block (attr))
11967 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
11968 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
11969 offset, per_cu->cu->objfile->name);
11970
11971 retval.data = DW_BLOCK (attr)->data;
11972 retval.size = DW_BLOCK (attr)->size;
11973 }
11974 retval.per_cu = cu->per_cu;
11975 return retval;
11976 }
11977
11978 /* Follow the signature attribute ATTR in SRC_DIE.
11979 On entry *REF_CU is the CU of SRC_DIE.
11980 On exit *REF_CU is the CU of the result. */
11981
11982 static struct die_info *
11983 follow_die_sig (struct die_info *src_die, struct attribute *attr,
11984 struct dwarf2_cu **ref_cu)
11985 {
11986 struct objfile *objfile = (*ref_cu)->objfile;
11987 struct die_info temp_die;
11988 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
11989 struct dwarf2_cu *sig_cu;
11990 struct die_info *die;
11991
11992 /* sig_type will be NULL if the signatured type is missing from
11993 the debug info. */
11994 if (sig_type == NULL)
11995 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
11996 "at 0x%x [in module %s]"),
11997 src_die->offset, objfile->name);
11998
11999 /* If necessary, add it to the queue and load its DIEs. */
12000
12001 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
12002 read_signatured_type (objfile, sig_type);
12003
12004 gdb_assert (sig_type->per_cu.cu != NULL);
12005
12006 sig_cu = sig_type->per_cu.cu;
12007 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
12008 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
12009 if (die)
12010 {
12011 *ref_cu = sig_cu;
12012 return die;
12013 }
12014
12015 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced from DIE "
12016 "at 0x%x [in module %s]"),
12017 sig_type->type_offset, src_die->offset, objfile->name);
12018 }
12019
12020 /* Given an offset of a signatured type, return its signatured_type. */
12021
12022 static struct signatured_type *
12023 lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
12024 {
12025 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
12026 unsigned int length, initial_length_size;
12027 unsigned int sig_offset;
12028 struct signatured_type find_entry, *type_sig;
12029
12030 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
12031 sig_offset = (initial_length_size
12032 + 2 /*version*/
12033 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
12034 + 1 /*address_size*/);
12035 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
12036 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
12037
12038 /* This is only used to lookup previously recorded types.
12039 If we didn't find it, it's our bug. */
12040 gdb_assert (type_sig != NULL);
12041 gdb_assert (offset == type_sig->offset);
12042
12043 return type_sig;
12044 }
12045
12046 /* Read in signatured type at OFFSET and build its CU and die(s). */
12047
12048 static void
12049 read_signatured_type_at_offset (struct objfile *objfile,
12050 unsigned int offset)
12051 {
12052 struct signatured_type *type_sig;
12053
12054 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
12055
12056 /* We have the section offset, but we need the signature to do the
12057 hash table lookup. */
12058 type_sig = lookup_signatured_type_at_offset (objfile, offset);
12059
12060 gdb_assert (type_sig->per_cu.cu == NULL);
12061
12062 read_signatured_type (objfile, type_sig);
12063
12064 gdb_assert (type_sig->per_cu.cu != NULL);
12065 }
12066
12067 /* Read in a signatured type and build its CU and DIEs. */
12068
12069 static void
12070 read_signatured_type (struct objfile *objfile,
12071 struct signatured_type *type_sig)
12072 {
12073 gdb_byte *types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
12074 struct die_reader_specs reader_specs;
12075 struct dwarf2_cu *cu;
12076 ULONGEST signature;
12077 struct cleanup *back_to, *free_cu_cleanup;
12078 struct attribute *attr;
12079
12080 gdb_assert (type_sig->per_cu.cu == NULL);
12081
12082 cu = xmalloc (sizeof (struct dwarf2_cu));
12083 memset (cu, 0, sizeof (struct dwarf2_cu));
12084 obstack_init (&cu->comp_unit_obstack);
12085 cu->objfile = objfile;
12086 type_sig->per_cu.cu = cu;
12087 cu->per_cu = &type_sig->per_cu;
12088
12089 /* If an error occurs while loading, release our storage. */
12090 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
12091
12092 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
12093 types_ptr, objfile->obfd);
12094 gdb_assert (signature == type_sig->signature);
12095
12096 cu->die_hash
12097 = htab_create_alloc_ex (cu->header.length / 12,
12098 die_hash,
12099 die_eq,
12100 NULL,
12101 &cu->comp_unit_obstack,
12102 hashtab_obstack_allocate,
12103 dummy_obstack_deallocate);
12104
12105 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
12106 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
12107
12108 init_cu_die_reader (&reader_specs, cu);
12109
12110 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
12111 NULL /*parent*/);
12112
12113 /* We try not to read any attributes in this function, because not
12114 all objfiles needed for references have been loaded yet, and symbol
12115 table processing isn't initialized. But we have to set the CU language,
12116 or we won't be able to build types correctly. */
12117 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
12118 if (attr)
12119 set_cu_language (DW_UNSND (attr), cu);
12120 else
12121 set_cu_language (language_minimal, cu);
12122
12123 do_cleanups (back_to);
12124
12125 /* We've successfully allocated this compilation unit. Let our caller
12126 clean it up when finished with it. */
12127 discard_cleanups (free_cu_cleanup);
12128
12129 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
12130 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
12131 }
12132
12133 /* Decode simple location descriptions.
12134 Given a pointer to a dwarf block that defines a location, compute
12135 the location and return the value.
12136
12137 NOTE drow/2003-11-18: This function is called in two situations
12138 now: for the address of static or global variables (partial symbols
12139 only) and for offsets into structures which are expected to be
12140 (more or less) constant. The partial symbol case should go away,
12141 and only the constant case should remain. That will let this
12142 function complain more accurately. A few special modes are allowed
12143 without complaint for global variables (for instance, global
12144 register values and thread-local values).
12145
12146 A location description containing no operations indicates that the
12147 object is optimized out. The return value is 0 for that case.
12148 FIXME drow/2003-11-16: No callers check for this case any more; soon all
12149 callers will only want a very basic result and this can become a
12150 complaint.
12151
12152 Note that stack[0] is unused except as a default error return.
12153 Note that stack overflow is not yet handled. */
12154
12155 static CORE_ADDR
12156 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
12157 {
12158 struct objfile *objfile = cu->objfile;
12159 int i;
12160 int size = blk->size;
12161 gdb_byte *data = blk->data;
12162 CORE_ADDR stack[64];
12163 int stacki;
12164 unsigned int bytes_read, unsnd;
12165 gdb_byte op;
12166
12167 i = 0;
12168 stacki = 0;
12169 stack[stacki] = 0;
12170
12171 while (i < size)
12172 {
12173 op = data[i++];
12174 switch (op)
12175 {
12176 case DW_OP_lit0:
12177 case DW_OP_lit1:
12178 case DW_OP_lit2:
12179 case DW_OP_lit3:
12180 case DW_OP_lit4:
12181 case DW_OP_lit5:
12182 case DW_OP_lit6:
12183 case DW_OP_lit7:
12184 case DW_OP_lit8:
12185 case DW_OP_lit9:
12186 case DW_OP_lit10:
12187 case DW_OP_lit11:
12188 case DW_OP_lit12:
12189 case DW_OP_lit13:
12190 case DW_OP_lit14:
12191 case DW_OP_lit15:
12192 case DW_OP_lit16:
12193 case DW_OP_lit17:
12194 case DW_OP_lit18:
12195 case DW_OP_lit19:
12196 case DW_OP_lit20:
12197 case DW_OP_lit21:
12198 case DW_OP_lit22:
12199 case DW_OP_lit23:
12200 case DW_OP_lit24:
12201 case DW_OP_lit25:
12202 case DW_OP_lit26:
12203 case DW_OP_lit27:
12204 case DW_OP_lit28:
12205 case DW_OP_lit29:
12206 case DW_OP_lit30:
12207 case DW_OP_lit31:
12208 stack[++stacki] = op - DW_OP_lit0;
12209 break;
12210
12211 case DW_OP_reg0:
12212 case DW_OP_reg1:
12213 case DW_OP_reg2:
12214 case DW_OP_reg3:
12215 case DW_OP_reg4:
12216 case DW_OP_reg5:
12217 case DW_OP_reg6:
12218 case DW_OP_reg7:
12219 case DW_OP_reg8:
12220 case DW_OP_reg9:
12221 case DW_OP_reg10:
12222 case DW_OP_reg11:
12223 case DW_OP_reg12:
12224 case DW_OP_reg13:
12225 case DW_OP_reg14:
12226 case DW_OP_reg15:
12227 case DW_OP_reg16:
12228 case DW_OP_reg17:
12229 case DW_OP_reg18:
12230 case DW_OP_reg19:
12231 case DW_OP_reg20:
12232 case DW_OP_reg21:
12233 case DW_OP_reg22:
12234 case DW_OP_reg23:
12235 case DW_OP_reg24:
12236 case DW_OP_reg25:
12237 case DW_OP_reg26:
12238 case DW_OP_reg27:
12239 case DW_OP_reg28:
12240 case DW_OP_reg29:
12241 case DW_OP_reg30:
12242 case DW_OP_reg31:
12243 stack[++stacki] = op - DW_OP_reg0;
12244 if (i < size)
12245 dwarf2_complex_location_expr_complaint ();
12246 break;
12247
12248 case DW_OP_regx:
12249 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
12250 i += bytes_read;
12251 stack[++stacki] = unsnd;
12252 if (i < size)
12253 dwarf2_complex_location_expr_complaint ();
12254 break;
12255
12256 case DW_OP_addr:
12257 stack[++stacki] = read_address (objfile->obfd, &data[i],
12258 cu, &bytes_read);
12259 i += bytes_read;
12260 break;
12261
12262 case DW_OP_const1u:
12263 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
12264 i += 1;
12265 break;
12266
12267 case DW_OP_const1s:
12268 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
12269 i += 1;
12270 break;
12271
12272 case DW_OP_const2u:
12273 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
12274 i += 2;
12275 break;
12276
12277 case DW_OP_const2s:
12278 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
12279 i += 2;
12280 break;
12281
12282 case DW_OP_const4u:
12283 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
12284 i += 4;
12285 break;
12286
12287 case DW_OP_const4s:
12288 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
12289 i += 4;
12290 break;
12291
12292 case DW_OP_constu:
12293 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
12294 &bytes_read);
12295 i += bytes_read;
12296 break;
12297
12298 case DW_OP_consts:
12299 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
12300 i += bytes_read;
12301 break;
12302
12303 case DW_OP_dup:
12304 stack[stacki + 1] = stack[stacki];
12305 stacki++;
12306 break;
12307
12308 case DW_OP_plus:
12309 stack[stacki - 1] += stack[stacki];
12310 stacki--;
12311 break;
12312
12313 case DW_OP_plus_uconst:
12314 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
12315 i += bytes_read;
12316 break;
12317
12318 case DW_OP_minus:
12319 stack[stacki - 1] -= stack[stacki];
12320 stacki--;
12321 break;
12322
12323 case DW_OP_deref:
12324 /* If we're not the last op, then we definitely can't encode
12325 this using GDB's address_class enum. This is valid for partial
12326 global symbols, although the variable's address will be bogus
12327 in the psymtab. */
12328 if (i < size)
12329 dwarf2_complex_location_expr_complaint ();
12330 break;
12331
12332 case DW_OP_GNU_push_tls_address:
12333 /* The top of the stack has the offset from the beginning
12334 of the thread control block at which the variable is located. */
12335 /* Nothing should follow this operator, so the top of stack would
12336 be returned. */
12337 /* This is valid for partial global symbols, but the variable's
12338 address will be bogus in the psymtab. */
12339 if (i < size)
12340 dwarf2_complex_location_expr_complaint ();
12341 break;
12342
12343 case DW_OP_GNU_uninit:
12344 break;
12345
12346 default:
12347 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
12348 dwarf_stack_op_name (op, 1));
12349 return (stack[stacki]);
12350 }
12351 }
12352 return (stack[stacki]);
12353 }
12354
12355 /* memory allocation interface */
12356
12357 static struct dwarf_block *
12358 dwarf_alloc_block (struct dwarf2_cu *cu)
12359 {
12360 struct dwarf_block *blk;
12361
12362 blk = (struct dwarf_block *)
12363 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
12364 return (blk);
12365 }
12366
12367 static struct abbrev_info *
12368 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
12369 {
12370 struct abbrev_info *abbrev;
12371
12372 abbrev = (struct abbrev_info *)
12373 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
12374 memset (abbrev, 0, sizeof (struct abbrev_info));
12375 return (abbrev);
12376 }
12377
12378 static struct die_info *
12379 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
12380 {
12381 struct die_info *die;
12382 size_t size = sizeof (struct die_info);
12383
12384 if (num_attrs > 1)
12385 size += (num_attrs - 1) * sizeof (struct attribute);
12386
12387 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
12388 memset (die, 0, sizeof (struct die_info));
12389 return (die);
12390 }
12391
12392 \f
12393 /* Macro support. */
12394
12395
12396 /* Return the full name of file number I in *LH's file name table.
12397 Use COMP_DIR as the name of the current directory of the
12398 compilation. The result is allocated using xmalloc; the caller is
12399 responsible for freeing it. */
12400 static char *
12401 file_full_name (int file, struct line_header *lh, const char *comp_dir)
12402 {
12403 /* Is the file number a valid index into the line header's file name
12404 table? Remember that file numbers start with one, not zero. */
12405 if (1 <= file && file <= lh->num_file_names)
12406 {
12407 struct file_entry *fe = &lh->file_names[file - 1];
12408
12409 if (IS_ABSOLUTE_PATH (fe->name))
12410 return xstrdup (fe->name);
12411 else
12412 {
12413 const char *dir;
12414 int dir_len;
12415 char *full_name;
12416
12417 if (fe->dir_index)
12418 dir = lh->include_dirs[fe->dir_index - 1];
12419 else
12420 dir = comp_dir;
12421
12422 if (dir)
12423 {
12424 dir_len = strlen (dir);
12425 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
12426 strcpy (full_name, dir);
12427 full_name[dir_len] = '/';
12428 strcpy (full_name + dir_len + 1, fe->name);
12429 return full_name;
12430 }
12431 else
12432 return xstrdup (fe->name);
12433 }
12434 }
12435 else
12436 {
12437 /* The compiler produced a bogus file number. We can at least
12438 record the macro definitions made in the file, even if we
12439 won't be able to find the file by name. */
12440 char fake_name[80];
12441
12442 sprintf (fake_name, "<bad macro file number %d>", file);
12443
12444 complaint (&symfile_complaints,
12445 _("bad file number in macro information (%d)"),
12446 file);
12447
12448 return xstrdup (fake_name);
12449 }
12450 }
12451
12452
12453 static struct macro_source_file *
12454 macro_start_file (int file, int line,
12455 struct macro_source_file *current_file,
12456 const char *comp_dir,
12457 struct line_header *lh, struct objfile *objfile)
12458 {
12459 /* The full name of this source file. */
12460 char *full_name = file_full_name (file, lh, comp_dir);
12461
12462 /* We don't create a macro table for this compilation unit
12463 at all until we actually get a filename. */
12464 if (! pending_macros)
12465 pending_macros = new_macro_table (&objfile->objfile_obstack,
12466 objfile->macro_cache);
12467
12468 if (! current_file)
12469 /* If we have no current file, then this must be the start_file
12470 directive for the compilation unit's main source file. */
12471 current_file = macro_set_main (pending_macros, full_name);
12472 else
12473 current_file = macro_include (current_file, line, full_name);
12474
12475 xfree (full_name);
12476
12477 return current_file;
12478 }
12479
12480
12481 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
12482 followed by a null byte. */
12483 static char *
12484 copy_string (const char *buf, int len)
12485 {
12486 char *s = xmalloc (len + 1);
12487
12488 memcpy (s, buf, len);
12489 s[len] = '\0';
12490 return s;
12491 }
12492
12493
12494 static const char *
12495 consume_improper_spaces (const char *p, const char *body)
12496 {
12497 if (*p == ' ')
12498 {
12499 complaint (&symfile_complaints,
12500 _("macro definition contains spaces in formal argument list:\n`%s'"),
12501 body);
12502
12503 while (*p == ' ')
12504 p++;
12505 }
12506
12507 return p;
12508 }
12509
12510
12511 static void
12512 parse_macro_definition (struct macro_source_file *file, int line,
12513 const char *body)
12514 {
12515 const char *p;
12516
12517 /* The body string takes one of two forms. For object-like macro
12518 definitions, it should be:
12519
12520 <macro name> " " <definition>
12521
12522 For function-like macro definitions, it should be:
12523
12524 <macro name> "() " <definition>
12525 or
12526 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
12527
12528 Spaces may appear only where explicitly indicated, and in the
12529 <definition>.
12530
12531 The Dwarf 2 spec says that an object-like macro's name is always
12532 followed by a space, but versions of GCC around March 2002 omit
12533 the space when the macro's definition is the empty string.
12534
12535 The Dwarf 2 spec says that there should be no spaces between the
12536 formal arguments in a function-like macro's formal argument list,
12537 but versions of GCC around March 2002 include spaces after the
12538 commas. */
12539
12540
12541 /* Find the extent of the macro name. The macro name is terminated
12542 by either a space or null character (for an object-like macro) or
12543 an opening paren (for a function-like macro). */
12544 for (p = body; *p; p++)
12545 if (*p == ' ' || *p == '(')
12546 break;
12547
12548 if (*p == ' ' || *p == '\0')
12549 {
12550 /* It's an object-like macro. */
12551 int name_len = p - body;
12552 char *name = copy_string (body, name_len);
12553 const char *replacement;
12554
12555 if (*p == ' ')
12556 replacement = body + name_len + 1;
12557 else
12558 {
12559 dwarf2_macro_malformed_definition_complaint (body);
12560 replacement = body + name_len;
12561 }
12562
12563 macro_define_object (file, line, name, replacement);
12564
12565 xfree (name);
12566 }
12567 else if (*p == '(')
12568 {
12569 /* It's a function-like macro. */
12570 char *name = copy_string (body, p - body);
12571 int argc = 0;
12572 int argv_size = 1;
12573 char **argv = xmalloc (argv_size * sizeof (*argv));
12574
12575 p++;
12576
12577 p = consume_improper_spaces (p, body);
12578
12579 /* Parse the formal argument list. */
12580 while (*p && *p != ')')
12581 {
12582 /* Find the extent of the current argument name. */
12583 const char *arg_start = p;
12584
12585 while (*p && *p != ',' && *p != ')' && *p != ' ')
12586 p++;
12587
12588 if (! *p || p == arg_start)
12589 dwarf2_macro_malformed_definition_complaint (body);
12590 else
12591 {
12592 /* Make sure argv has room for the new argument. */
12593 if (argc >= argv_size)
12594 {
12595 argv_size *= 2;
12596 argv = xrealloc (argv, argv_size * sizeof (*argv));
12597 }
12598
12599 argv[argc++] = copy_string (arg_start, p - arg_start);
12600 }
12601
12602 p = consume_improper_spaces (p, body);
12603
12604 /* Consume the comma, if present. */
12605 if (*p == ',')
12606 {
12607 p++;
12608
12609 p = consume_improper_spaces (p, body);
12610 }
12611 }
12612
12613 if (*p == ')')
12614 {
12615 p++;
12616
12617 if (*p == ' ')
12618 /* Perfectly formed definition, no complaints. */
12619 macro_define_function (file, line, name,
12620 argc, (const char **) argv,
12621 p + 1);
12622 else if (*p == '\0')
12623 {
12624 /* Complain, but do define it. */
12625 dwarf2_macro_malformed_definition_complaint (body);
12626 macro_define_function (file, line, name,
12627 argc, (const char **) argv,
12628 p);
12629 }
12630 else
12631 /* Just complain. */
12632 dwarf2_macro_malformed_definition_complaint (body);
12633 }
12634 else
12635 /* Just complain. */
12636 dwarf2_macro_malformed_definition_complaint (body);
12637
12638 xfree (name);
12639 {
12640 int i;
12641
12642 for (i = 0; i < argc; i++)
12643 xfree (argv[i]);
12644 }
12645 xfree (argv);
12646 }
12647 else
12648 dwarf2_macro_malformed_definition_complaint (body);
12649 }
12650
12651
12652 static void
12653 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
12654 char *comp_dir, bfd *abfd,
12655 struct dwarf2_cu *cu)
12656 {
12657 gdb_byte *mac_ptr, *mac_end;
12658 struct macro_source_file *current_file = 0;
12659 enum dwarf_macinfo_record_type macinfo_type;
12660 int at_commandline;
12661
12662 dwarf2_read_section (dwarf2_per_objfile->objfile,
12663 &dwarf2_per_objfile->macinfo);
12664 if (dwarf2_per_objfile->macinfo.buffer == NULL)
12665 {
12666 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
12667 return;
12668 }
12669
12670 /* First pass: Find the name of the base filename.
12671 This filename is needed in order to process all macros whose definition
12672 (or undefinition) comes from the command line. These macros are defined
12673 before the first DW_MACINFO_start_file entry, and yet still need to be
12674 associated to the base file.
12675
12676 To determine the base file name, we scan the macro definitions until we
12677 reach the first DW_MACINFO_start_file entry. We then initialize
12678 CURRENT_FILE accordingly so that any macro definition found before the
12679 first DW_MACINFO_start_file can still be associated to the base file. */
12680
12681 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
12682 mac_end = dwarf2_per_objfile->macinfo.buffer
12683 + dwarf2_per_objfile->macinfo.size;
12684
12685 do
12686 {
12687 /* Do we at least have room for a macinfo type byte? */
12688 if (mac_ptr >= mac_end)
12689 {
12690 /* Complaint is printed during the second pass as GDB will probably
12691 stop the first pass earlier upon finding DW_MACINFO_start_file. */
12692 break;
12693 }
12694
12695 macinfo_type = read_1_byte (abfd, mac_ptr);
12696 mac_ptr++;
12697
12698 switch (macinfo_type)
12699 {
12700 /* A zero macinfo type indicates the end of the macro
12701 information. */
12702 case 0:
12703 break;
12704
12705 case DW_MACINFO_define:
12706 case DW_MACINFO_undef:
12707 /* Only skip the data by MAC_PTR. */
12708 {
12709 unsigned int bytes_read;
12710
12711 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
12712 mac_ptr += bytes_read;
12713 read_string (abfd, mac_ptr, &bytes_read);
12714 mac_ptr += bytes_read;
12715 }
12716 break;
12717
12718 case DW_MACINFO_start_file:
12719 {
12720 unsigned int bytes_read;
12721 int line, file;
12722
12723 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
12724 mac_ptr += bytes_read;
12725 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
12726 mac_ptr += bytes_read;
12727
12728 current_file = macro_start_file (file, line, current_file, comp_dir,
12729 lh, cu->objfile);
12730 }
12731 break;
12732
12733 case DW_MACINFO_end_file:
12734 /* No data to skip by MAC_PTR. */
12735 break;
12736
12737 case DW_MACINFO_vendor_ext:
12738 /* Only skip the data by MAC_PTR. */
12739 {
12740 unsigned int bytes_read;
12741
12742 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
12743 mac_ptr += bytes_read;
12744 read_string (abfd, mac_ptr, &bytes_read);
12745 mac_ptr += bytes_read;
12746 }
12747 break;
12748
12749 default:
12750 break;
12751 }
12752 } while (macinfo_type != 0 && current_file == NULL);
12753
12754 /* Second pass: Process all entries.
12755
12756 Use the AT_COMMAND_LINE flag to determine whether we are still processing
12757 command-line macro definitions/undefinitions. This flag is unset when we
12758 reach the first DW_MACINFO_start_file entry. */
12759
12760 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
12761
12762 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
12763 GDB is still reading the definitions from command line. First
12764 DW_MACINFO_start_file will need to be ignored as it was already executed
12765 to create CURRENT_FILE for the main source holding also the command line
12766 definitions. On first met DW_MACINFO_start_file this flag is reset to
12767 normally execute all the remaining DW_MACINFO_start_file macinfos. */
12768
12769 at_commandline = 1;
12770
12771 do
12772 {
12773 /* Do we at least have room for a macinfo type byte? */
12774 if (mac_ptr >= mac_end)
12775 {
12776 dwarf2_macros_too_long_complaint ();
12777 break;
12778 }
12779
12780 macinfo_type = read_1_byte (abfd, mac_ptr);
12781 mac_ptr++;
12782
12783 switch (macinfo_type)
12784 {
12785 /* A zero macinfo type indicates the end of the macro
12786 information. */
12787 case 0:
12788 break;
12789
12790 case DW_MACINFO_define:
12791 case DW_MACINFO_undef:
12792 {
12793 unsigned int bytes_read;
12794 int line;
12795 char *body;
12796
12797 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
12798 mac_ptr += bytes_read;
12799 body = read_string (abfd, mac_ptr, &bytes_read);
12800 mac_ptr += bytes_read;
12801
12802 if (! current_file)
12803 {
12804 /* DWARF violation as no main source is present. */
12805 complaint (&symfile_complaints,
12806 _("debug info with no main source gives macro %s "
12807 "on line %d: %s"),
12808 macinfo_type == DW_MACINFO_define ?
12809 _("definition") :
12810 macinfo_type == DW_MACINFO_undef ?
12811 _("undefinition") :
12812 _("something-or-other"), line, body);
12813 break;
12814 }
12815 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
12816 complaint (&symfile_complaints,
12817 _("debug info gives %s macro %s with %s line %d: %s"),
12818 at_commandline ? _("command-line") : _("in-file"),
12819 macinfo_type == DW_MACINFO_define ?
12820 _("definition") :
12821 macinfo_type == DW_MACINFO_undef ?
12822 _("undefinition") :
12823 _("something-or-other"),
12824 line == 0 ? _("zero") : _("non-zero"), line, body);
12825
12826 if (macinfo_type == DW_MACINFO_define)
12827 parse_macro_definition (current_file, line, body);
12828 else if (macinfo_type == DW_MACINFO_undef)
12829 macro_undef (current_file, line, body);
12830 }
12831 break;
12832
12833 case DW_MACINFO_start_file:
12834 {
12835 unsigned int bytes_read;
12836 int line, file;
12837
12838 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
12839 mac_ptr += bytes_read;
12840 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
12841 mac_ptr += bytes_read;
12842
12843 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
12844 complaint (&symfile_complaints,
12845 _("debug info gives source %d included "
12846 "from %s at %s line %d"),
12847 file, at_commandline ? _("command-line") : _("file"),
12848 line == 0 ? _("zero") : _("non-zero"), line);
12849
12850 if (at_commandline)
12851 {
12852 /* This DW_MACINFO_start_file was executed in the pass one. */
12853 at_commandline = 0;
12854 }
12855 else
12856 current_file = macro_start_file (file, line,
12857 current_file, comp_dir,
12858 lh, cu->objfile);
12859 }
12860 break;
12861
12862 case DW_MACINFO_end_file:
12863 if (! current_file)
12864 complaint (&symfile_complaints,
12865 _("macro debug info has an unmatched `close_file' directive"));
12866 else
12867 {
12868 current_file = current_file->included_by;
12869 if (! current_file)
12870 {
12871 enum dwarf_macinfo_record_type next_type;
12872
12873 /* GCC circa March 2002 doesn't produce the zero
12874 type byte marking the end of the compilation
12875 unit. Complain if it's not there, but exit no
12876 matter what. */
12877
12878 /* Do we at least have room for a macinfo type byte? */
12879 if (mac_ptr >= mac_end)
12880 {
12881 dwarf2_macros_too_long_complaint ();
12882 return;
12883 }
12884
12885 /* We don't increment mac_ptr here, so this is just
12886 a look-ahead. */
12887 next_type = read_1_byte (abfd, mac_ptr);
12888 if (next_type != 0)
12889 complaint (&symfile_complaints,
12890 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
12891
12892 return;
12893 }
12894 }
12895 break;
12896
12897 case DW_MACINFO_vendor_ext:
12898 {
12899 unsigned int bytes_read;
12900 int constant;
12901 char *string;
12902
12903 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
12904 mac_ptr += bytes_read;
12905 string = read_string (abfd, mac_ptr, &bytes_read);
12906 mac_ptr += bytes_read;
12907
12908 /* We don't recognize any vendor extensions. */
12909 }
12910 break;
12911 }
12912 } while (macinfo_type != 0);
12913 }
12914
12915 /* Check if the attribute's form is a DW_FORM_block*
12916 if so return true else false. */
12917 static int
12918 attr_form_is_block (struct attribute *attr)
12919 {
12920 return (attr == NULL ? 0 :
12921 attr->form == DW_FORM_block1
12922 || attr->form == DW_FORM_block2
12923 || attr->form == DW_FORM_block4
12924 || attr->form == DW_FORM_block
12925 || attr->form == DW_FORM_exprloc);
12926 }
12927
12928 /* Return non-zero if ATTR's value is a section offset --- classes
12929 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
12930 You may use DW_UNSND (attr) to retrieve such offsets.
12931
12932 Section 7.5.4, "Attribute Encodings", explains that no attribute
12933 may have a value that belongs to more than one of these classes; it
12934 would be ambiguous if we did, because we use the same forms for all
12935 of them. */
12936 static int
12937 attr_form_is_section_offset (struct attribute *attr)
12938 {
12939 return (attr->form == DW_FORM_data4
12940 || attr->form == DW_FORM_data8
12941 || attr->form == DW_FORM_sec_offset);
12942 }
12943
12944
12945 /* Return non-zero if ATTR's value falls in the 'constant' class, or
12946 zero otherwise. When this function returns true, you can apply
12947 dwarf2_get_attr_constant_value to it.
12948
12949 However, note that for some attributes you must check
12950 attr_form_is_section_offset before using this test. DW_FORM_data4
12951 and DW_FORM_data8 are members of both the constant class, and of
12952 the classes that contain offsets into other debug sections
12953 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
12954 that, if an attribute's can be either a constant or one of the
12955 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
12956 taken as section offsets, not constants. */
12957 static int
12958 attr_form_is_constant (struct attribute *attr)
12959 {
12960 switch (attr->form)
12961 {
12962 case DW_FORM_sdata:
12963 case DW_FORM_udata:
12964 case DW_FORM_data1:
12965 case DW_FORM_data2:
12966 case DW_FORM_data4:
12967 case DW_FORM_data8:
12968 return 1;
12969 default:
12970 return 0;
12971 }
12972 }
12973
12974 static void
12975 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
12976 struct dwarf2_cu *cu)
12977 {
12978 if (attr_form_is_section_offset (attr)
12979 /* ".debug_loc" may not exist at all, or the offset may be outside
12980 the section. If so, fall through to the complaint in the
12981 other branch. */
12982 && DW_UNSND (attr) < dwarf2_per_objfile->loc.size)
12983 {
12984 struct dwarf2_loclist_baton *baton;
12985
12986 baton = obstack_alloc (&cu->objfile->objfile_obstack,
12987 sizeof (struct dwarf2_loclist_baton));
12988 baton->per_cu = cu->per_cu;
12989 gdb_assert (baton->per_cu);
12990
12991 dwarf2_read_section (dwarf2_per_objfile->objfile,
12992 &dwarf2_per_objfile->loc);
12993
12994 /* We don't know how long the location list is, but make sure we
12995 don't run off the edge of the section. */
12996 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
12997 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
12998 baton->base_address = cu->base_address;
12999 if (cu->base_known == 0)
13000 complaint (&symfile_complaints,
13001 _("Location list used without specifying the CU base address."));
13002
13003 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
13004 SYMBOL_LOCATION_BATON (sym) = baton;
13005 }
13006 else
13007 {
13008 struct dwarf2_locexpr_baton *baton;
13009
13010 baton = obstack_alloc (&cu->objfile->objfile_obstack,
13011 sizeof (struct dwarf2_locexpr_baton));
13012 baton->per_cu = cu->per_cu;
13013 gdb_assert (baton->per_cu);
13014
13015 if (attr_form_is_block (attr))
13016 {
13017 /* Note that we're just copying the block's data pointer
13018 here, not the actual data. We're still pointing into the
13019 info_buffer for SYM's objfile; right now we never release
13020 that buffer, but when we do clean up properly this may
13021 need to change. */
13022 baton->size = DW_BLOCK (attr)->size;
13023 baton->data = DW_BLOCK (attr)->data;
13024 }
13025 else
13026 {
13027 dwarf2_invalid_attrib_class_complaint ("location description",
13028 SYMBOL_NATURAL_NAME (sym));
13029 baton->size = 0;
13030 baton->data = NULL;
13031 }
13032
13033 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
13034 SYMBOL_LOCATION_BATON (sym) = baton;
13035 }
13036 }
13037
13038 /* Return the OBJFILE associated with the compilation unit CU. If CU
13039 came from a separate debuginfo file, then the master objfile is
13040 returned. */
13041
13042 struct objfile *
13043 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
13044 {
13045 struct objfile *objfile = per_cu->objfile;
13046
13047 /* Return the master objfile, so that we can report and look up the
13048 correct file containing this variable. */
13049 if (objfile->separate_debug_objfile_backlink)
13050 objfile = objfile->separate_debug_objfile_backlink;
13051
13052 return objfile;
13053 }
13054
13055 /* Return the address size given in the compilation unit header for CU. */
13056
13057 CORE_ADDR
13058 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
13059 {
13060 if (per_cu->cu)
13061 return per_cu->cu->header.addr_size;
13062 else
13063 {
13064 /* If the CU is not currently read in, we re-read its header. */
13065 struct objfile *objfile = per_cu->objfile;
13066 struct dwarf2_per_objfile *per_objfile
13067 = objfile_data (objfile, dwarf2_objfile_data_key);
13068 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
13069 struct comp_unit_head cu_header;
13070
13071 memset (&cu_header, 0, sizeof cu_header);
13072 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
13073 return cu_header.addr_size;
13074 }
13075 }
13076
13077 /* Return the offset size given in the compilation unit header for CU. */
13078
13079 int
13080 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
13081 {
13082 if (per_cu->cu)
13083 return per_cu->cu->header.offset_size;
13084 else
13085 {
13086 /* If the CU is not currently read in, we re-read its header. */
13087 struct objfile *objfile = per_cu->objfile;
13088 struct dwarf2_per_objfile *per_objfile
13089 = objfile_data (objfile, dwarf2_objfile_data_key);
13090 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
13091 struct comp_unit_head cu_header;
13092
13093 memset (&cu_header, 0, sizeof cu_header);
13094 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
13095 return cu_header.offset_size;
13096 }
13097 }
13098
13099 /* Return the text offset of the CU. The returned offset comes from
13100 this CU's objfile. If this objfile came from a separate debuginfo
13101 file, then the offset may be different from the corresponding
13102 offset in the parent objfile. */
13103
13104 CORE_ADDR
13105 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
13106 {
13107 struct objfile *objfile = per_cu->objfile;
13108
13109 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13110 }
13111
13112 /* Locate the .debug_info compilation unit from CU's objfile which contains
13113 the DIE at OFFSET. Raises an error on failure. */
13114
13115 static struct dwarf2_per_cu_data *
13116 dwarf2_find_containing_comp_unit (unsigned int offset,
13117 struct objfile *objfile)
13118 {
13119 struct dwarf2_per_cu_data *this_cu;
13120 int low, high;
13121
13122 low = 0;
13123 high = dwarf2_per_objfile->n_comp_units - 1;
13124 while (high > low)
13125 {
13126 int mid = low + (high - low) / 2;
13127
13128 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
13129 high = mid;
13130 else
13131 low = mid + 1;
13132 }
13133 gdb_assert (low == high);
13134 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
13135 {
13136 if (low == 0)
13137 error (_("Dwarf Error: could not find partial DIE containing "
13138 "offset 0x%lx [in module %s]"),
13139 (long) offset, bfd_get_filename (objfile->obfd));
13140
13141 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
13142 return dwarf2_per_objfile->all_comp_units[low-1];
13143 }
13144 else
13145 {
13146 this_cu = dwarf2_per_objfile->all_comp_units[low];
13147 if (low == dwarf2_per_objfile->n_comp_units - 1
13148 && offset >= this_cu->offset + this_cu->length)
13149 error (_("invalid dwarf2 offset %u"), offset);
13150 gdb_assert (offset < this_cu->offset + this_cu->length);
13151 return this_cu;
13152 }
13153 }
13154
13155 /* Locate the compilation unit from OBJFILE which is located at exactly
13156 OFFSET. Raises an error on failure. */
13157
13158 static struct dwarf2_per_cu_data *
13159 dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
13160 {
13161 struct dwarf2_per_cu_data *this_cu;
13162
13163 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
13164 if (this_cu->offset != offset)
13165 error (_("no compilation unit with offset %u."), offset);
13166 return this_cu;
13167 }
13168
13169 /* Malloc space for a dwarf2_cu for OBJFILE and initialize it. */
13170
13171 static struct dwarf2_cu *
13172 alloc_one_comp_unit (struct objfile *objfile)
13173 {
13174 struct dwarf2_cu *cu = xcalloc (1, sizeof (struct dwarf2_cu));
13175 cu->objfile = objfile;
13176 obstack_init (&cu->comp_unit_obstack);
13177 return cu;
13178 }
13179
13180 /* Release one cached compilation unit, CU. We unlink it from the tree
13181 of compilation units, but we don't remove it from the read_in_chain;
13182 the caller is responsible for that.
13183 NOTE: DATA is a void * because this function is also used as a
13184 cleanup routine. */
13185
13186 static void
13187 free_one_comp_unit (void *data)
13188 {
13189 struct dwarf2_cu *cu = data;
13190
13191 if (cu->per_cu != NULL)
13192 cu->per_cu->cu = NULL;
13193 cu->per_cu = NULL;
13194
13195 obstack_free (&cu->comp_unit_obstack, NULL);
13196
13197 xfree (cu);
13198 }
13199
13200 /* This cleanup function is passed the address of a dwarf2_cu on the stack
13201 when we're finished with it. We can't free the pointer itself, but be
13202 sure to unlink it from the cache. Also release any associated storage
13203 and perform cache maintenance.
13204
13205 Only used during partial symbol parsing. */
13206
13207 static void
13208 free_stack_comp_unit (void *data)
13209 {
13210 struct dwarf2_cu *cu = data;
13211
13212 obstack_free (&cu->comp_unit_obstack, NULL);
13213 cu->partial_dies = NULL;
13214
13215 if (cu->per_cu != NULL)
13216 {
13217 /* This compilation unit is on the stack in our caller, so we
13218 should not xfree it. Just unlink it. */
13219 cu->per_cu->cu = NULL;
13220 cu->per_cu = NULL;
13221
13222 /* If we had a per-cu pointer, then we may have other compilation
13223 units loaded, so age them now. */
13224 age_cached_comp_units ();
13225 }
13226 }
13227
13228 /* Free all cached compilation units. */
13229
13230 static void
13231 free_cached_comp_units (void *data)
13232 {
13233 struct dwarf2_per_cu_data *per_cu, **last_chain;
13234
13235 per_cu = dwarf2_per_objfile->read_in_chain;
13236 last_chain = &dwarf2_per_objfile->read_in_chain;
13237 while (per_cu != NULL)
13238 {
13239 struct dwarf2_per_cu_data *next_cu;
13240
13241 next_cu = per_cu->cu->read_in_chain;
13242
13243 free_one_comp_unit (per_cu->cu);
13244 *last_chain = next_cu;
13245
13246 per_cu = next_cu;
13247 }
13248 }
13249
13250 /* Increase the age counter on each cached compilation unit, and free
13251 any that are too old. */
13252
13253 static void
13254 age_cached_comp_units (void)
13255 {
13256 struct dwarf2_per_cu_data *per_cu, **last_chain;
13257
13258 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
13259 per_cu = dwarf2_per_objfile->read_in_chain;
13260 while (per_cu != NULL)
13261 {
13262 per_cu->cu->last_used ++;
13263 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
13264 dwarf2_mark (per_cu->cu);
13265 per_cu = per_cu->cu->read_in_chain;
13266 }
13267
13268 per_cu = dwarf2_per_objfile->read_in_chain;
13269 last_chain = &dwarf2_per_objfile->read_in_chain;
13270 while (per_cu != NULL)
13271 {
13272 struct dwarf2_per_cu_data *next_cu;
13273
13274 next_cu = per_cu->cu->read_in_chain;
13275
13276 if (!per_cu->cu->mark)
13277 {
13278 free_one_comp_unit (per_cu->cu);
13279 *last_chain = next_cu;
13280 }
13281 else
13282 last_chain = &per_cu->cu->read_in_chain;
13283
13284 per_cu = next_cu;
13285 }
13286 }
13287
13288 /* Remove a single compilation unit from the cache. */
13289
13290 static void
13291 free_one_cached_comp_unit (void *target_cu)
13292 {
13293 struct dwarf2_per_cu_data *per_cu, **last_chain;
13294
13295 per_cu = dwarf2_per_objfile->read_in_chain;
13296 last_chain = &dwarf2_per_objfile->read_in_chain;
13297 while (per_cu != NULL)
13298 {
13299 struct dwarf2_per_cu_data *next_cu;
13300
13301 next_cu = per_cu->cu->read_in_chain;
13302
13303 if (per_cu->cu == target_cu)
13304 {
13305 free_one_comp_unit (per_cu->cu);
13306 *last_chain = next_cu;
13307 break;
13308 }
13309 else
13310 last_chain = &per_cu->cu->read_in_chain;
13311
13312 per_cu = next_cu;
13313 }
13314 }
13315
13316 /* Release all extra memory associated with OBJFILE. */
13317
13318 void
13319 dwarf2_free_objfile (struct objfile *objfile)
13320 {
13321 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
13322
13323 if (dwarf2_per_objfile == NULL)
13324 return;
13325
13326 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
13327 free_cached_comp_units (NULL);
13328
13329 if (dwarf2_per_objfile->using_index)
13330 {
13331 int i;
13332
13333 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
13334 {
13335 int j;
13336 struct dwarf2_per_cu_data *cu = dwarf2_per_objfile->all_comp_units[i];
13337
13338 if (!cu->v.quick->lines)
13339 continue;
13340
13341 for (j = 0; j < cu->v.quick->lines->num_file_names; ++j)
13342 {
13343 if (cu->v.quick->file_names)
13344 xfree ((void *) cu->v.quick->file_names[j]);
13345 if (cu->v.quick->full_names)
13346 xfree ((void *) cu->v.quick->full_names[j]);
13347 }
13348
13349 free_line_header (cu->v.quick->lines);
13350 }
13351 }
13352
13353 /* Everything else should be on the objfile obstack. */
13354 }
13355
13356 /* A pair of DIE offset and GDB type pointer. We store these
13357 in a hash table separate from the DIEs, and preserve them
13358 when the DIEs are flushed out of cache. */
13359
13360 struct dwarf2_offset_and_type
13361 {
13362 unsigned int offset;
13363 struct type *type;
13364 };
13365
13366 /* Hash function for a dwarf2_offset_and_type. */
13367
13368 static hashval_t
13369 offset_and_type_hash (const void *item)
13370 {
13371 const struct dwarf2_offset_and_type *ofs = item;
13372
13373 return ofs->offset;
13374 }
13375
13376 /* Equality function for a dwarf2_offset_and_type. */
13377
13378 static int
13379 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
13380 {
13381 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
13382 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
13383
13384 return ofs_lhs->offset == ofs_rhs->offset;
13385 }
13386
13387 /* Set the type associated with DIE to TYPE. Save it in CU's hash
13388 table if necessary. For convenience, return TYPE.
13389
13390 The DIEs reading must have careful ordering to:
13391 * Not cause infite loops trying to read in DIEs as a prerequisite for
13392 reading current DIE.
13393 * Not trying to dereference contents of still incompletely read in types
13394 while reading in other DIEs.
13395 * Enable referencing still incompletely read in types just by a pointer to
13396 the type without accessing its fields.
13397
13398 Therefore caller should follow these rules:
13399 * Try to fetch any prerequisite types we may need to build this DIE type
13400 before building the type and calling set_die_type.
13401 * After building typer call set_die_type for current DIE as soon as
13402 possible before fetching more types to complete the current type.
13403 * Make the type as complete as possible before fetching more types. */
13404
13405 static struct type *
13406 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
13407 {
13408 struct dwarf2_offset_and_type **slot, ofs;
13409
13410 /* For Ada types, make sure that the gnat-specific data is always
13411 initialized (if not already set). There are a few types where
13412 we should not be doing so, because the type-specific area is
13413 already used to hold some other piece of info (eg: TYPE_CODE_FLT
13414 where the type-specific area is used to store the floatformat).
13415 But this is not a problem, because the gnat-specific information
13416 is actually not needed for these types. */
13417 if (need_gnat_info (cu)
13418 && TYPE_CODE (type) != TYPE_CODE_FUNC
13419 && TYPE_CODE (type) != TYPE_CODE_FLT
13420 && !HAVE_GNAT_AUX_INFO (type))
13421 INIT_GNAT_SPECIFIC (type);
13422
13423 if (cu->type_hash == NULL)
13424 {
13425 gdb_assert (cu->per_cu != NULL);
13426 cu->per_cu->type_hash
13427 = htab_create_alloc_ex (cu->header.length / 24,
13428 offset_and_type_hash,
13429 offset_and_type_eq,
13430 NULL,
13431 &cu->objfile->objfile_obstack,
13432 hashtab_obstack_allocate,
13433 dummy_obstack_deallocate);
13434 cu->type_hash = cu->per_cu->type_hash;
13435 }
13436
13437 ofs.offset = die->offset;
13438 ofs.type = type;
13439 slot = (struct dwarf2_offset_and_type **)
13440 htab_find_slot_with_hash (cu->type_hash, &ofs, ofs.offset, INSERT);
13441 if (*slot)
13442 complaint (&symfile_complaints,
13443 _("A problem internal to GDB: DIE 0x%x has type already set"),
13444 die->offset);
13445 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
13446 **slot = ofs;
13447 return type;
13448 }
13449
13450 /* Find the type for DIE in CU's type_hash, or return NULL if DIE does
13451 not have a saved type. */
13452
13453 static struct type *
13454 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
13455 {
13456 struct dwarf2_offset_and_type *slot, ofs;
13457 htab_t type_hash = cu->type_hash;
13458
13459 if (type_hash == NULL)
13460 return NULL;
13461
13462 ofs.offset = die->offset;
13463 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
13464 if (slot)
13465 return slot->type;
13466 else
13467 return NULL;
13468 }
13469
13470 /* Add a dependence relationship from CU to REF_PER_CU. */
13471
13472 static void
13473 dwarf2_add_dependence (struct dwarf2_cu *cu,
13474 struct dwarf2_per_cu_data *ref_per_cu)
13475 {
13476 void **slot;
13477
13478 if (cu->dependencies == NULL)
13479 cu->dependencies
13480 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
13481 NULL, &cu->comp_unit_obstack,
13482 hashtab_obstack_allocate,
13483 dummy_obstack_deallocate);
13484
13485 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
13486 if (*slot == NULL)
13487 *slot = ref_per_cu;
13488 }
13489
13490 /* Subroutine of dwarf2_mark to pass to htab_traverse.
13491 Set the mark field in every compilation unit in the
13492 cache that we must keep because we are keeping CU. */
13493
13494 static int
13495 dwarf2_mark_helper (void **slot, void *data)
13496 {
13497 struct dwarf2_per_cu_data *per_cu;
13498
13499 per_cu = (struct dwarf2_per_cu_data *) *slot;
13500 if (per_cu->cu->mark)
13501 return 1;
13502 per_cu->cu->mark = 1;
13503
13504 if (per_cu->cu->dependencies != NULL)
13505 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
13506
13507 return 1;
13508 }
13509
13510 /* Set the mark field in CU and in every other compilation unit in the
13511 cache that we must keep because we are keeping CU. */
13512
13513 static void
13514 dwarf2_mark (struct dwarf2_cu *cu)
13515 {
13516 if (cu->mark)
13517 return;
13518 cu->mark = 1;
13519 if (cu->dependencies != NULL)
13520 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
13521 }
13522
13523 static void
13524 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
13525 {
13526 while (per_cu)
13527 {
13528 per_cu->cu->mark = 0;
13529 per_cu = per_cu->cu->read_in_chain;
13530 }
13531 }
13532
13533 /* Trivial hash function for partial_die_info: the hash value of a DIE
13534 is its offset in .debug_info for this objfile. */
13535
13536 static hashval_t
13537 partial_die_hash (const void *item)
13538 {
13539 const struct partial_die_info *part_die = item;
13540
13541 return part_die->offset;
13542 }
13543
13544 /* Trivial comparison function for partial_die_info structures: two DIEs
13545 are equal if they have the same offset. */
13546
13547 static int
13548 partial_die_eq (const void *item_lhs, const void *item_rhs)
13549 {
13550 const struct partial_die_info *part_die_lhs = item_lhs;
13551 const struct partial_die_info *part_die_rhs = item_rhs;
13552
13553 return part_die_lhs->offset == part_die_rhs->offset;
13554 }
13555
13556 static struct cmd_list_element *set_dwarf2_cmdlist;
13557 static struct cmd_list_element *show_dwarf2_cmdlist;
13558
13559 static void
13560 set_dwarf2_cmd (char *args, int from_tty)
13561 {
13562 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
13563 }
13564
13565 static void
13566 show_dwarf2_cmd (char *args, int from_tty)
13567 {
13568 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
13569 }
13570
13571 /* If section described by INFO was mmapped, munmap it now. */
13572
13573 static void
13574 munmap_section_buffer (struct dwarf2_section_info *info)
13575 {
13576 if (info->was_mmapped)
13577 {
13578 #ifdef HAVE_MMAP
13579 intptr_t begin = (intptr_t) info->buffer;
13580 intptr_t map_begin = begin & ~(pagesize - 1);
13581 size_t map_length = info->size + begin - map_begin;
13582
13583 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
13584 #else
13585 /* Without HAVE_MMAP, we should never be here to begin with. */
13586 gdb_assert (0);
13587 #endif
13588 }
13589 }
13590
13591 /* munmap debug sections for OBJFILE, if necessary. */
13592
13593 static void
13594 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
13595 {
13596 struct dwarf2_per_objfile *data = d;
13597
13598 munmap_section_buffer (&data->info);
13599 munmap_section_buffer (&data->abbrev);
13600 munmap_section_buffer (&data->line);
13601 munmap_section_buffer (&data->str);
13602 munmap_section_buffer (&data->macinfo);
13603 munmap_section_buffer (&data->ranges);
13604 munmap_section_buffer (&data->loc);
13605 munmap_section_buffer (&data->frame);
13606 munmap_section_buffer (&data->eh_frame);
13607 munmap_section_buffer (&data->gdb_index);
13608 }
13609
13610 \f
13611
13612 /* The contents of the hash table we create when building the string
13613 table. */
13614 struct strtab_entry
13615 {
13616 offset_type offset;
13617 const char *str;
13618 };
13619
13620 /* Hash function for a strtab_entry. */
13621 static hashval_t
13622 hash_strtab_entry (const void *e)
13623 {
13624 const struct strtab_entry *entry = e;
13625 return mapped_index_string_hash (entry->str);
13626 }
13627
13628 /* Equality function for a strtab_entry. */
13629 static int
13630 eq_strtab_entry (const void *a, const void *b)
13631 {
13632 const struct strtab_entry *ea = a;
13633 const struct strtab_entry *eb = b;
13634 return !strcmp (ea->str, eb->str);
13635 }
13636
13637 /* Create a strtab_entry hash table. */
13638 static htab_t
13639 create_strtab (void)
13640 {
13641 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
13642 xfree, xcalloc, xfree);
13643 }
13644
13645 /* Add a string to the constant pool. Return the string's offset in
13646 host order. */
13647 static offset_type
13648 add_string (htab_t table, struct obstack *cpool, const char *str)
13649 {
13650 void **slot;
13651 struct strtab_entry entry;
13652 struct strtab_entry *result;
13653
13654 entry.str = str;
13655 slot = htab_find_slot (table, &entry, INSERT);
13656 if (*slot)
13657 result = *slot;
13658 else
13659 {
13660 result = XNEW (struct strtab_entry);
13661 result->offset = obstack_object_size (cpool);
13662 result->str = str;
13663 obstack_grow_str0 (cpool, str);
13664 *slot = result;
13665 }
13666 return result->offset;
13667 }
13668
13669 /* An entry in the symbol table. */
13670 struct symtab_index_entry
13671 {
13672 /* The name of the symbol. */
13673 const char *name;
13674 /* The offset of the name in the constant pool. */
13675 offset_type index_offset;
13676 /* A sorted vector of the indices of all the CUs that hold an object
13677 of this name. */
13678 VEC (offset_type) *cu_indices;
13679 };
13680
13681 /* The symbol table. This is a power-of-2-sized hash table. */
13682 struct mapped_symtab
13683 {
13684 offset_type n_elements;
13685 offset_type size;
13686 struct symtab_index_entry **data;
13687 };
13688
13689 /* Hash function for a symtab_index_entry. */
13690 static hashval_t
13691 hash_symtab_entry (const void *e)
13692 {
13693 const struct symtab_index_entry *entry = e;
13694 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
13695 sizeof (offset_type) * VEC_length (offset_type,
13696 entry->cu_indices),
13697 0);
13698 }
13699
13700 /* Equality function for a symtab_index_entry. */
13701 static int
13702 eq_symtab_entry (const void *a, const void *b)
13703 {
13704 const struct symtab_index_entry *ea = a;
13705 const struct symtab_index_entry *eb = b;
13706 int len = VEC_length (offset_type, ea->cu_indices);
13707 if (len != VEC_length (offset_type, eb->cu_indices))
13708 return 0;
13709 return !memcmp (VEC_address (offset_type, ea->cu_indices),
13710 VEC_address (offset_type, eb->cu_indices),
13711 sizeof (offset_type) * len);
13712 }
13713
13714 /* Destroy a symtab_index_entry. */
13715 static void
13716 delete_symtab_entry (void *p)
13717 {
13718 struct symtab_index_entry *entry = p;
13719 VEC_free (offset_type, entry->cu_indices);
13720 xfree (entry);
13721 }
13722
13723 /* Create a hash table holding symtab_index_entry objects. */
13724 static htab_t
13725 create_index_table (void)
13726 {
13727 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
13728 delete_symtab_entry, xcalloc, xfree);
13729 }
13730
13731 /* Create a new mapped symtab object. */
13732 static struct mapped_symtab *
13733 create_mapped_symtab (void)
13734 {
13735 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
13736 symtab->n_elements = 0;
13737 symtab->size = 1024;
13738 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
13739 return symtab;
13740 }
13741
13742 /* Destroy a mapped_symtab. */
13743 static void
13744 cleanup_mapped_symtab (void *p)
13745 {
13746 struct mapped_symtab *symtab = p;
13747 /* The contents of the array are freed when the other hash table is
13748 destroyed. */
13749 xfree (symtab->data);
13750 xfree (symtab);
13751 }
13752
13753 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
13754 the slot. */
13755 static struct symtab_index_entry **
13756 find_slot (struct mapped_symtab *symtab, const char *name)
13757 {
13758 offset_type index, step, hash = mapped_index_string_hash (name);
13759
13760 index = hash & (symtab->size - 1);
13761 step = ((hash * 17) & (symtab->size - 1)) | 1;
13762
13763 for (;;)
13764 {
13765 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
13766 return &symtab->data[index];
13767 index = (index + step) & (symtab->size - 1);
13768 }
13769 }
13770
13771 /* Expand SYMTAB's hash table. */
13772 static void
13773 hash_expand (struct mapped_symtab *symtab)
13774 {
13775 offset_type old_size = symtab->size;
13776 offset_type i;
13777 struct symtab_index_entry **old_entries = symtab->data;
13778
13779 symtab->size *= 2;
13780 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
13781
13782 for (i = 0; i < old_size; ++i)
13783 {
13784 if (old_entries[i])
13785 {
13786 struct symtab_index_entry **slot = find_slot (symtab,
13787 old_entries[i]->name);
13788 *slot = old_entries[i];
13789 }
13790 }
13791
13792 xfree (old_entries);
13793 }
13794
13795 /* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
13796 is the index of the CU in which the symbol appears. */
13797 static void
13798 add_index_entry (struct mapped_symtab *symtab, const char *name,
13799 offset_type cu_index)
13800 {
13801 struct symtab_index_entry **slot;
13802
13803 ++symtab->n_elements;
13804 if (4 * symtab->n_elements / 3 >= symtab->size)
13805 hash_expand (symtab);
13806
13807 slot = find_slot (symtab, name);
13808 if (!*slot)
13809 {
13810 *slot = XNEW (struct symtab_index_entry);
13811 (*slot)->name = name;
13812 (*slot)->cu_indices = NULL;
13813 }
13814 /* Don't push an index twice. Due to how we add entries we only
13815 have to check the last one. */
13816 if (VEC_empty (offset_type, (*slot)->cu_indices)
13817 || VEC_length (offset_type, (*slot)->cu_indices) != cu_index)
13818 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
13819 }
13820
13821 /* Add a vector of indices to the constant pool. */
13822 static offset_type
13823 add_indices_to_cpool (htab_t index_table, struct obstack *cpool,
13824 struct symtab_index_entry *entry)
13825 {
13826 void **slot;
13827
13828 slot = htab_find_slot (index_table, entry, INSERT);
13829 if (!*slot)
13830 {
13831 offset_type len = VEC_length (offset_type, entry->cu_indices);
13832 offset_type val = MAYBE_SWAP (len);
13833 offset_type iter;
13834 int i;
13835
13836 *slot = entry;
13837 entry->index_offset = obstack_object_size (cpool);
13838
13839 obstack_grow (cpool, &val, sizeof (val));
13840 for (i = 0;
13841 VEC_iterate (offset_type, entry->cu_indices, i, iter);
13842 ++i)
13843 {
13844 val = MAYBE_SWAP (iter);
13845 obstack_grow (cpool, &val, sizeof (val));
13846 }
13847 }
13848 else
13849 {
13850 struct symtab_index_entry *old_entry = *slot;
13851 entry->index_offset = old_entry->index_offset;
13852 entry = old_entry;
13853 }
13854 return entry->index_offset;
13855 }
13856
13857 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
13858 constant pool entries going into the obstack CPOOL. */
13859 static void
13860 write_hash_table (struct mapped_symtab *symtab,
13861 struct obstack *output, struct obstack *cpool)
13862 {
13863 offset_type i;
13864 htab_t index_table;
13865 htab_t str_table;
13866
13867 index_table = create_index_table ();
13868 str_table = create_strtab ();
13869 /* We add all the index vectors to the constant pool first, to
13870 ensure alignment is ok. */
13871 for (i = 0; i < symtab->size; ++i)
13872 {
13873 if (symtab->data[i])
13874 add_indices_to_cpool (index_table, cpool, symtab->data[i]);
13875 }
13876
13877 /* Now write out the hash table. */
13878 for (i = 0; i < symtab->size; ++i)
13879 {
13880 offset_type str_off, vec_off;
13881
13882 if (symtab->data[i])
13883 {
13884 str_off = add_string (str_table, cpool, symtab->data[i]->name);
13885 vec_off = symtab->data[i]->index_offset;
13886 }
13887 else
13888 {
13889 /* While 0 is a valid constant pool index, it is not valid
13890 to have 0 for both offsets. */
13891 str_off = 0;
13892 vec_off = 0;
13893 }
13894
13895 str_off = MAYBE_SWAP (str_off);
13896 vec_off = MAYBE_SWAP (vec_off);
13897
13898 obstack_grow (output, &str_off, sizeof (str_off));
13899 obstack_grow (output, &vec_off, sizeof (vec_off));
13900 }
13901
13902 htab_delete (str_table);
13903 htab_delete (index_table);
13904 }
13905
13906 /* Write an address entry to ADDR_OBSTACK. The addresses are taken
13907 from PST; CU_INDEX is the index of the CU in the vector of all
13908 CUs. */
13909 static void
13910 add_address_entry (struct objfile *objfile,
13911 struct obstack *addr_obstack, struct partial_symtab *pst,
13912 unsigned int cu_index)
13913 {
13914 offset_type offset;
13915 char addr[8];
13916 CORE_ADDR baseaddr;
13917
13918 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13919
13920 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, pst->textlow - baseaddr);
13921 obstack_grow (addr_obstack, addr, 8);
13922 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, pst->texthigh - baseaddr);
13923 obstack_grow (addr_obstack, addr, 8);
13924 offset = MAYBE_SWAP (cu_index);
13925 obstack_grow (addr_obstack, &offset, sizeof (offset_type));
13926 }
13927
13928 /* Add a list of partial symbols to SYMTAB. */
13929 static void
13930 write_psymbols (struct mapped_symtab *symtab,
13931 struct partial_symbol **psymp,
13932 int count,
13933 offset_type cu_index)
13934 {
13935 for (; count-- > 0; ++psymp)
13936 {
13937 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
13938 error (_("Ada is not currently supported by the index"));
13939 add_index_entry (symtab, SYMBOL_NATURAL_NAME (*psymp), cu_index);
13940 }
13941 }
13942
13943 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
13944 exception if there is an error. */
13945 static void
13946 write_obstack (FILE *file, struct obstack *obstack)
13947 {
13948 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
13949 file)
13950 != obstack_object_size (obstack))
13951 error (_("couldn't data write to file"));
13952 }
13953
13954 /* Unlink a file if the argument is not NULL. */
13955 static void
13956 unlink_if_set (void *p)
13957 {
13958 char **filename = p;
13959 if (*filename)
13960 unlink (*filename);
13961 }
13962
13963 /* Create an index file for OBJFILE in the directory DIR. */
13964 static void
13965 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
13966 {
13967 struct cleanup *cleanup;
13968 char *filename, *cleanup_filename;
13969 struct obstack contents, addr_obstack, constant_pool, symtab_obstack, cu_list;
13970 int i;
13971 FILE *out_file;
13972 struct mapped_symtab *symtab;
13973 offset_type val, size_of_contents, total_len;
13974 struct stat st;
13975 char buf[8];
13976
13977 if (!objfile->psymtabs)
13978 return;
13979 if (dwarf2_per_objfile->using_index)
13980 error (_("Cannot use an index to create the index"));
13981
13982 if (stat (objfile->name, &st) < 0)
13983 perror_with_name (_("Could not stat"));
13984
13985 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
13986 INDEX_SUFFIX, (char *) NULL);
13987 cleanup = make_cleanup (xfree, filename);
13988
13989 out_file = fopen (filename, "wb");
13990 if (!out_file)
13991 error (_("Can't open `%s' for writing"), filename);
13992
13993 cleanup_filename = filename;
13994 make_cleanup (unlink_if_set, &cleanup_filename);
13995
13996 symtab = create_mapped_symtab ();
13997 make_cleanup (cleanup_mapped_symtab, symtab);
13998
13999 obstack_init (&addr_obstack);
14000 make_cleanup_obstack_free (&addr_obstack);
14001
14002 obstack_init (&cu_list);
14003 make_cleanup_obstack_free (&cu_list);
14004
14005 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
14006 {
14007 struct dwarf2_per_cu_data *cu = dwarf2_per_objfile->all_comp_units[i];
14008 struct partial_symtab *psymtab = cu->v.psymtab;
14009 gdb_byte val[8];
14010
14011 write_psymbols (symtab,
14012 objfile->global_psymbols.list + psymtab->globals_offset,
14013 psymtab->n_global_syms, i);
14014 write_psymbols (symtab,
14015 objfile->static_psymbols.list + psymtab->statics_offset,
14016 psymtab->n_static_syms, i);
14017
14018 add_address_entry (objfile, &addr_obstack, psymtab, i);
14019
14020 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, cu->offset);
14021 obstack_grow (&cu_list, val, 8);
14022 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, cu->length);
14023 obstack_grow (&cu_list, val, 8);
14024 }
14025
14026 obstack_init (&constant_pool);
14027 make_cleanup_obstack_free (&constant_pool);
14028 obstack_init (&symtab_obstack);
14029 make_cleanup_obstack_free (&symtab_obstack);
14030 write_hash_table (symtab, &symtab_obstack, &constant_pool);
14031
14032 obstack_init (&contents);
14033 make_cleanup_obstack_free (&contents);
14034 size_of_contents = 5 * sizeof (offset_type);
14035 total_len = size_of_contents;
14036
14037 /* The version number. */
14038 val = MAYBE_SWAP (1);
14039 obstack_grow (&contents, &val, sizeof (val));
14040
14041 /* The offset of the CU list from the start of the file. */
14042 val = MAYBE_SWAP (total_len);
14043 obstack_grow (&contents, &val, sizeof (val));
14044 total_len += obstack_object_size (&cu_list);
14045
14046 /* The offset of the address table from the start of the file. */
14047 val = MAYBE_SWAP (total_len);
14048 obstack_grow (&contents, &val, sizeof (val));
14049 total_len += obstack_object_size (&addr_obstack);
14050
14051 /* The offset of the symbol table from the start of the file. */
14052 val = MAYBE_SWAP (total_len);
14053 obstack_grow (&contents, &val, sizeof (val));
14054 total_len += obstack_object_size (&symtab_obstack);
14055
14056 /* The offset of the constant pool from the start of the file. */
14057 val = MAYBE_SWAP (total_len);
14058 obstack_grow (&contents, &val, sizeof (val));
14059 total_len += obstack_object_size (&constant_pool);
14060
14061 gdb_assert (obstack_object_size (&contents) == size_of_contents);
14062
14063 write_obstack (out_file, &contents);
14064 write_obstack (out_file, &cu_list);
14065 write_obstack (out_file, &addr_obstack);
14066 write_obstack (out_file, &symtab_obstack);
14067 write_obstack (out_file, &constant_pool);
14068
14069 fclose (out_file);
14070
14071 /* We want to keep the file, so we set cleanup_filename to NULL
14072 here. See unlink_if_set. */
14073 cleanup_filename = NULL;
14074
14075 do_cleanups (cleanup);
14076 }
14077
14078 /* The mapped index file format is designed to be directly mmap()able
14079 on any architecture. In most cases, a datum is represented using a
14080 little-endian 32-bit integer value, called an offset_type. Big
14081 endian machines must byte-swap the values before using them.
14082 Exceptions to this rule are noted. The data is laid out such that
14083 alignment is always respected.
14084
14085 A mapped index consists of several sections.
14086
14087 1. The file header. This is a sequence of values, of offset_type
14088 unless otherwise noted:
14089 [0] The version number. Currently 1.
14090 [1] The offset, from the start of the file, of the CU list.
14091 [2] The offset, from the start of the file, of the address section.
14092 [3] The offset, from the start of the file, of the symbol table.
14093 [4] The offset, from the start of the file, of the constant pool.
14094
14095 2. The CU list. This is a sequence of pairs of 64-bit
14096 little-endian values. The first element in each pair is the offset
14097 of a CU in the .debug_info section. The second element in each
14098 pair is the length of that CU. References to a CU elsewhere in the
14099 map are done using a CU index, which is just the 0-based index into
14100 this table.
14101
14102 3. The address section. The address section consists of a sequence
14103 of address entries. Each address entry has three elements.
14104 [0] The low address. This is a 64-bit little-endian value.
14105 [1] The high address. This is a 64-bit little-endian value.
14106 [2] The CU index. This is an offset_type value.
14107
14108 4. The symbol table. This is a hash table. The size of the hash
14109 table is always a power of 2. The initial hash and the step are
14110 currently defined by the `find_slot' function.
14111
14112 Each slot in the hash table consists of a pair of offset_type
14113 values. The first value is the offset of the symbol's name in the
14114 constant pool. The second value is the offset of the CU vector in
14115 the constant pool.
14116
14117 If both values are 0, then this slot in the hash table is empty.
14118 This is ok because while 0 is a valid constant pool index, it
14119 cannot be a valid index for both a string and a CU vector.
14120
14121 A string in the constant pool is stored as a \0-terminated string,
14122 as you'd expect.
14123
14124 A CU vector in the constant pool is a sequence of offset_type
14125 values. The first value is the number of CU indices in the vector.
14126 Each subsequent value is the index of a CU in the CU list. This
14127 element in the hash table is used to indicate which CUs define the
14128 symbol.
14129
14130 5. The constant pool. This is simply a bunch of bytes. It is
14131 organized so that alignment is correct: CU vectors are stored
14132 first, followed by strings. */
14133 static void
14134 save_gdb_index_command (char *arg, int from_tty)
14135 {
14136 struct objfile *objfile;
14137
14138 if (!arg || !*arg)
14139 error (_("usage: maintenance save-gdb-index DIRECTORY"));
14140
14141 ALL_OBJFILES (objfile)
14142 {
14143 struct stat st;
14144
14145 /* If the objfile does not correspond to an actual file, skip it. */
14146 if (stat (objfile->name, &st) < 0)
14147 continue;
14148
14149 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
14150 if (dwarf2_per_objfile)
14151 {
14152 volatile struct gdb_exception except;
14153
14154 TRY_CATCH (except, RETURN_MASK_ERROR)
14155 {
14156 write_psymtabs_to_index (objfile, arg);
14157 }
14158 if (except.reason < 0)
14159 exception_fprintf (gdb_stderr, except,
14160 _("Error while writing index for `%s': "),
14161 objfile->name);
14162 }
14163 }
14164 }
14165
14166 \f
14167
14168 int dwarf2_always_disassemble;
14169
14170 static void
14171 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
14172 struct cmd_list_element *c, const char *value)
14173 {
14174 fprintf_filtered (file, _("\
14175 Whether to always disassemble DWARF expressions is %s.\n"),
14176 value);
14177 }
14178
14179 void _initialize_dwarf2_read (void);
14180
14181 void
14182 _initialize_dwarf2_read (void)
14183 {
14184 dwarf2_objfile_data_key
14185 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
14186
14187 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
14188 Set DWARF 2 specific variables.\n\
14189 Configure DWARF 2 variables such as the cache size"),
14190 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
14191 0/*allow-unknown*/, &maintenance_set_cmdlist);
14192
14193 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
14194 Show DWARF 2 specific variables\n\
14195 Show DWARF 2 variables such as the cache size"),
14196 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
14197 0/*allow-unknown*/, &maintenance_show_cmdlist);
14198
14199 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
14200 &dwarf2_max_cache_age, _("\
14201 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
14202 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
14203 A higher limit means that cached compilation units will be stored\n\
14204 in memory longer, and more total memory will be used. Zero disables\n\
14205 caching, which can slow down startup."),
14206 NULL,
14207 show_dwarf2_max_cache_age,
14208 &set_dwarf2_cmdlist,
14209 &show_dwarf2_cmdlist);
14210
14211 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
14212 &dwarf2_always_disassemble, _("\
14213 Set whether `info address' always disassembles DWARF expressions."), _("\
14214 Show whether `info address' always disassembles DWARF expressions."), _("\
14215 When enabled, DWARF expressions are always printed in an assembly-like\n\
14216 syntax. When disabled, expressions will be printed in a more\n\
14217 conversational style, when possible."),
14218 NULL,
14219 show_dwarf2_always_disassemble,
14220 &set_dwarf2_cmdlist,
14221 &show_dwarf2_cmdlist);
14222
14223 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
14224 Set debugging of the dwarf2 DIE reader."), _("\
14225 Show debugging of the dwarf2 DIE reader."), _("\
14226 When enabled (non-zero), DIEs are dumped after they are read in.\n\
14227 The value is the maximum depth to print."),
14228 NULL,
14229 NULL,
14230 &setdebuglist, &showdebuglist);
14231
14232 add_cmd ("gdb-index", class_files, save_gdb_index_command,
14233 _("Save a .gdb-index file"),
14234 &save_cmdlist);
14235 }
This page took 0.308916 seconds and 5 git commands to generate.