gdb/
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2012 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "dwarf2.h"
37 #include "buildsym.h"
38 #include "demangle.h"
39 #include "gdb-demangle.h"
40 #include "expression.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "macrotab.h"
43 #include "language.h"
44 #include "complaints.h"
45 #include "bcache.h"
46 #include "dwarf2expr.h"
47 #include "dwarf2loc.h"
48 #include "cp-support.h"
49 #include "hashtab.h"
50 #include "command.h"
51 #include "gdbcmd.h"
52 #include "block.h"
53 #include "addrmap.h"
54 #include "typeprint.h"
55 #include "jv-lang.h"
56 #include "psympriv.h"
57 #include "exceptions.h"
58 #include "gdb_stat.h"
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "valprint.h"
63 #include <ctype.h>
64
65 #include <fcntl.h>
66 #include "gdb_string.h"
67 #include "gdb_assert.h"
68 #include <sys/types.h>
69 #ifdef HAVE_ZLIB_H
70 #include <zlib.h>
71 #endif
72 #ifdef HAVE_MMAP
73 #include <sys/mman.h>
74 #ifndef MAP_FAILED
75 #define MAP_FAILED ((void *) -1)
76 #endif
77 #endif
78
79 typedef struct symbol *symbolp;
80 DEF_VEC_P (symbolp);
81
82 /* When non-zero, dump DIEs after they are read in. */
83 static int dwarf2_die_debug = 0;
84
85 /* When non-zero, cross-check physname against demangler. */
86 static int check_physname = 0;
87
88 /* When non-zero, do not reject deprecated .gdb_index sections. */
89 int use_deprecated_index_sections = 0;
90
91 static int pagesize;
92
93 /* When set, the file that we're processing is known to have debugging
94 info for C++ namespaces. GCC 3.3.x did not produce this information,
95 but later versions do. */
96
97 static int processing_has_namespace_info;
98
99 static const struct objfile_data *dwarf2_objfile_data_key;
100
101 struct dwarf2_section_info
102 {
103 asection *asection;
104 gdb_byte *buffer;
105 bfd_size_type size;
106 /* Not NULL if the section was actually mmapped. */
107 void *map_addr;
108 /* Page aligned size of mmapped area. */
109 bfd_size_type map_len;
110 /* True if we have tried to read this section. */
111 int readin;
112 };
113
114 typedef struct dwarf2_section_info dwarf2_section_info_def;
115 DEF_VEC_O (dwarf2_section_info_def);
116
117 /* All offsets in the index are of this type. It must be
118 architecture-independent. */
119 typedef uint32_t offset_type;
120
121 DEF_VEC_I (offset_type);
122
123 /* A description of the mapped index. The file format is described in
124 a comment by the code that writes the index. */
125 struct mapped_index
126 {
127 /* Index data format version. */
128 int version;
129
130 /* The total length of the buffer. */
131 off_t total_size;
132
133 /* A pointer to the address table data. */
134 const gdb_byte *address_table;
135
136 /* Size of the address table data in bytes. */
137 offset_type address_table_size;
138
139 /* The symbol table, implemented as a hash table. */
140 const offset_type *symbol_table;
141
142 /* Size in slots, each slot is 2 offset_types. */
143 offset_type symbol_table_slots;
144
145 /* A pointer to the constant pool. */
146 const char *constant_pool;
147 };
148
149 /* Collection of data recorded per objfile.
150 This hangs off of dwarf2_objfile_data_key. */
151
152 struct dwarf2_per_objfile
153 {
154 struct dwarf2_section_info info;
155 struct dwarf2_section_info abbrev;
156 struct dwarf2_section_info line;
157 struct dwarf2_section_info loc;
158 struct dwarf2_section_info macinfo;
159 struct dwarf2_section_info macro;
160 struct dwarf2_section_info str;
161 struct dwarf2_section_info ranges;
162 struct dwarf2_section_info frame;
163 struct dwarf2_section_info eh_frame;
164 struct dwarf2_section_info gdb_index;
165
166 VEC (dwarf2_section_info_def) *types;
167
168 /* Back link. */
169 struct objfile *objfile;
170
171 /* Table of all the compilation units. This is used to locate
172 the target compilation unit of a particular reference. */
173 struct dwarf2_per_cu_data **all_comp_units;
174
175 /* The number of compilation units in ALL_COMP_UNITS. */
176 int n_comp_units;
177
178 /* The number of .debug_types-related CUs. */
179 int n_type_units;
180
181 /* The .debug_types-related CUs (TUs). */
182 struct dwarf2_per_cu_data **all_type_units;
183
184 /* A chain of compilation units that are currently read in, so that
185 they can be freed later. */
186 struct dwarf2_per_cu_data *read_in_chain;
187
188 /* A table mapping .debug_types signatures to its signatured_type entry.
189 This is NULL if the .debug_types section hasn't been read in yet. */
190 htab_t signatured_types;
191
192 /* A flag indicating wether this objfile has a section loaded at a
193 VMA of 0. */
194 int has_section_at_zero;
195
196 /* True if we are using the mapped index,
197 or we are faking it for OBJF_READNOW's sake. */
198 unsigned char using_index;
199
200 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
201 struct mapped_index *index_table;
202
203 /* When using index_table, this keeps track of all quick_file_names entries.
204 TUs can share line table entries with CUs or other TUs, and there can be
205 a lot more TUs than unique line tables, so we maintain a separate table
206 of all line table entries to support the sharing. */
207 htab_t quick_file_names_table;
208
209 /* Set during partial symbol reading, to prevent queueing of full
210 symbols. */
211 int reading_partial_symbols;
212
213 /* Table mapping type .debug_info DIE offsets to types.
214 This is NULL if not allocated yet.
215 It (currently) makes sense to allocate debug_types_type_hash lazily.
216 To keep things simple we allocate both lazily. */
217 htab_t debug_info_type_hash;
218
219 /* Table mapping type .debug_types DIE sect_offset to types.
220 This is NULL if not allocated yet. */
221 htab_t debug_types_type_hash;
222 };
223
224 static struct dwarf2_per_objfile *dwarf2_per_objfile;
225
226 /* Default names of the debugging sections. */
227
228 /* Note that if the debugging section has been compressed, it might
229 have a name like .zdebug_info. */
230
231 static const struct dwarf2_debug_sections dwarf2_elf_names =
232 {
233 { ".debug_info", ".zdebug_info" },
234 { ".debug_abbrev", ".zdebug_abbrev" },
235 { ".debug_line", ".zdebug_line" },
236 { ".debug_loc", ".zdebug_loc" },
237 { ".debug_macinfo", ".zdebug_macinfo" },
238 { ".debug_macro", ".zdebug_macro" },
239 { ".debug_str", ".zdebug_str" },
240 { ".debug_ranges", ".zdebug_ranges" },
241 { ".debug_types", ".zdebug_types" },
242 { ".debug_frame", ".zdebug_frame" },
243 { ".eh_frame", NULL },
244 { ".gdb_index", ".zgdb_index" },
245 23
246 };
247
248 /* local data types */
249
250 /* We hold several abbreviation tables in memory at the same time. */
251 #ifndef ABBREV_HASH_SIZE
252 #define ABBREV_HASH_SIZE 121
253 #endif
254
255 /* The data in a compilation unit header, after target2host
256 translation, looks like this. */
257 struct comp_unit_head
258 {
259 unsigned int length;
260 short version;
261 unsigned char addr_size;
262 unsigned char signed_addr_p;
263 sect_offset abbrev_offset;
264
265 /* Size of file offsets; either 4 or 8. */
266 unsigned int offset_size;
267
268 /* Size of the length field; either 4 or 12. */
269 unsigned int initial_length_size;
270
271 /* Offset to the first byte of this compilation unit header in the
272 .debug_info section, for resolving relative reference dies. */
273 sect_offset offset;
274
275 /* Offset to first die in this cu from the start of the cu.
276 This will be the first byte following the compilation unit header. */
277 cu_offset first_die_offset;
278 };
279
280 /* Type used for delaying computation of method physnames.
281 See comments for compute_delayed_physnames. */
282 struct delayed_method_info
283 {
284 /* The type to which the method is attached, i.e., its parent class. */
285 struct type *type;
286
287 /* The index of the method in the type's function fieldlists. */
288 int fnfield_index;
289
290 /* The index of the method in the fieldlist. */
291 int index;
292
293 /* The name of the DIE. */
294 const char *name;
295
296 /* The DIE associated with this method. */
297 struct die_info *die;
298 };
299
300 typedef struct delayed_method_info delayed_method_info;
301 DEF_VEC_O (delayed_method_info);
302
303 /* Internal state when decoding a particular compilation unit. */
304 struct dwarf2_cu
305 {
306 /* The objfile containing this compilation unit. */
307 struct objfile *objfile;
308
309 /* The header of the compilation unit. */
310 struct comp_unit_head header;
311
312 /* Base address of this compilation unit. */
313 CORE_ADDR base_address;
314
315 /* Non-zero if base_address has been set. */
316 int base_known;
317
318 /* The language we are debugging. */
319 enum language language;
320 const struct language_defn *language_defn;
321
322 const char *producer;
323
324 /* The generic symbol table building routines have separate lists for
325 file scope symbols and all all other scopes (local scopes). So
326 we need to select the right one to pass to add_symbol_to_list().
327 We do it by keeping a pointer to the correct list in list_in_scope.
328
329 FIXME: The original dwarf code just treated the file scope as the
330 first local scope, and all other local scopes as nested local
331 scopes, and worked fine. Check to see if we really need to
332 distinguish these in buildsym.c. */
333 struct pending **list_in_scope;
334
335 /* DWARF abbreviation table associated with this compilation unit. */
336 struct abbrev_info **dwarf2_abbrevs;
337
338 /* Storage for the abbrev table. */
339 struct obstack abbrev_obstack;
340
341 /* Hash table holding all the loaded partial DIEs
342 with partial_die->offset.SECT_OFF as hash. */
343 htab_t partial_dies;
344
345 /* Storage for things with the same lifetime as this read-in compilation
346 unit, including partial DIEs. */
347 struct obstack comp_unit_obstack;
348
349 /* When multiple dwarf2_cu structures are living in memory, this field
350 chains them all together, so that they can be released efficiently.
351 We will probably also want a generation counter so that most-recently-used
352 compilation units are cached... */
353 struct dwarf2_per_cu_data *read_in_chain;
354
355 /* Backchain to our per_cu entry if the tree has been built. */
356 struct dwarf2_per_cu_data *per_cu;
357
358 /* How many compilation units ago was this CU last referenced? */
359 int last_used;
360
361 /* A hash table of DIE cu_offset for following references with
362 die_info->offset.sect_off as hash. */
363 htab_t die_hash;
364
365 /* Full DIEs if read in. */
366 struct die_info *dies;
367
368 /* A set of pointers to dwarf2_per_cu_data objects for compilation
369 units referenced by this one. Only set during full symbol processing;
370 partial symbol tables do not have dependencies. */
371 htab_t dependencies;
372
373 /* Header data from the line table, during full symbol processing. */
374 struct line_header *line_header;
375
376 /* A list of methods which need to have physnames computed
377 after all type information has been read. */
378 VEC (delayed_method_info) *method_list;
379
380 /* To be copied to symtab->call_site_htab. */
381 htab_t call_site_htab;
382
383 /* Mark used when releasing cached dies. */
384 unsigned int mark : 1;
385
386 /* This CU references .debug_loc. See the symtab->locations_valid field.
387 This test is imperfect as there may exist optimized debug code not using
388 any location list and still facing inlining issues if handled as
389 unoptimized code. For a future better test see GCC PR other/32998. */
390 unsigned int has_loclist : 1;
391
392 /* These cache the results of producer_is_gxx_lt_4_6.
393 CHECKED_PRODUCER is set if PRODUCER_IS_GXX_LT_4_6 is valid. This
394 information is cached because profiling CU expansion showed
395 excessive time spent in producer_is_gxx_lt_4_6. */
396 unsigned int checked_producer : 1;
397 unsigned int producer_is_gxx_lt_4_6 : 1;
398 };
399
400 /* Persistent data held for a compilation unit, even when not
401 processing it. We put a pointer to this structure in the
402 read_symtab_private field of the psymtab. */
403
404 struct dwarf2_per_cu_data
405 {
406 /* The start offset and length of this compilation unit. 2**29-1
407 bytes should suffice to store the length of any compilation unit
408 - if it doesn't, GDB will fall over anyway.
409 NOTE: Unlike comp_unit_head.length, this length includes
410 initial_length_size. */
411 sect_offset offset;
412 unsigned int length : 29;
413
414 /* Flag indicating this compilation unit will be read in before
415 any of the current compilation units are processed. */
416 unsigned int queued : 1;
417
418 /* This flag will be set if we need to load absolutely all DIEs
419 for this compilation unit, instead of just the ones we think
420 are interesting. It gets set if we look for a DIE in the
421 hash table and don't find it. */
422 unsigned int load_all_dies : 1;
423
424 /* Non-null if this CU is from .debug_types; in which case it points
425 to the section. Otherwise it's from .debug_info. */
426 struct dwarf2_section_info *debug_types_section;
427
428 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
429 of the CU cache it gets reset to NULL again. */
430 struct dwarf2_cu *cu;
431
432 /* The corresponding objfile.
433 Normally we can get the objfile from dwarf2_per_objfile.
434 However we can enter this file with just a "per_cu" handle. */
435 struct objfile *objfile;
436
437 /* When using partial symbol tables, the 'psymtab' field is active.
438 Otherwise the 'quick' field is active. */
439 union
440 {
441 /* The partial symbol table associated with this compilation unit,
442 or NULL for partial units (which do not have an associated
443 symtab). */
444 struct partial_symtab *psymtab;
445
446 /* Data needed by the "quick" functions. */
447 struct dwarf2_per_cu_quick_data *quick;
448 } v;
449 };
450
451 /* Entry in the signatured_types hash table. */
452
453 struct signatured_type
454 {
455 ULONGEST signature;
456
457 /* Offset in this TU of the type defined by this TU. */
458 cu_offset type_offset;
459
460 /* The CU(/TU) of this type. */
461 struct dwarf2_per_cu_data per_cu;
462 };
463
464 /* Struct used to pass misc. parameters to read_die_and_children, et
465 al. which are used for both .debug_info and .debug_types dies.
466 All parameters here are unchanging for the life of the call. This
467 struct exists to abstract away the constant parameters of die
468 reading. */
469
470 struct die_reader_specs
471 {
472 /* The bfd of this objfile. */
473 bfd* abfd;
474
475 /* The CU of the DIE we are parsing. */
476 struct dwarf2_cu *cu;
477
478 /* Pointer to start of section buffer.
479 This is either the start of .debug_info or .debug_types. */
480 const gdb_byte *buffer;
481 };
482
483 /* The line number information for a compilation unit (found in the
484 .debug_line section) begins with a "statement program header",
485 which contains the following information. */
486 struct line_header
487 {
488 unsigned int total_length;
489 unsigned short version;
490 unsigned int header_length;
491 unsigned char minimum_instruction_length;
492 unsigned char maximum_ops_per_instruction;
493 unsigned char default_is_stmt;
494 int line_base;
495 unsigned char line_range;
496 unsigned char opcode_base;
497
498 /* standard_opcode_lengths[i] is the number of operands for the
499 standard opcode whose value is i. This means that
500 standard_opcode_lengths[0] is unused, and the last meaningful
501 element is standard_opcode_lengths[opcode_base - 1]. */
502 unsigned char *standard_opcode_lengths;
503
504 /* The include_directories table. NOTE! These strings are not
505 allocated with xmalloc; instead, they are pointers into
506 debug_line_buffer. If you try to free them, `free' will get
507 indigestion. */
508 unsigned int num_include_dirs, include_dirs_size;
509 char **include_dirs;
510
511 /* The file_names table. NOTE! These strings are not allocated
512 with xmalloc; instead, they are pointers into debug_line_buffer.
513 Don't try to free them directly. */
514 unsigned int num_file_names, file_names_size;
515 struct file_entry
516 {
517 char *name;
518 unsigned int dir_index;
519 unsigned int mod_time;
520 unsigned int length;
521 int included_p; /* Non-zero if referenced by the Line Number Program. */
522 struct symtab *symtab; /* The associated symbol table, if any. */
523 } *file_names;
524
525 /* The start and end of the statement program following this
526 header. These point into dwarf2_per_objfile->line_buffer. */
527 gdb_byte *statement_program_start, *statement_program_end;
528 };
529
530 /* When we construct a partial symbol table entry we only
531 need this much information. */
532 struct partial_die_info
533 {
534 /* Offset of this DIE. */
535 sect_offset offset;
536
537 /* DWARF-2 tag for this DIE. */
538 ENUM_BITFIELD(dwarf_tag) tag : 16;
539
540 /* Assorted flags describing the data found in this DIE. */
541 unsigned int has_children : 1;
542 unsigned int is_external : 1;
543 unsigned int is_declaration : 1;
544 unsigned int has_type : 1;
545 unsigned int has_specification : 1;
546 unsigned int has_pc_info : 1;
547 unsigned int may_be_inlined : 1;
548
549 /* Flag set if the SCOPE field of this structure has been
550 computed. */
551 unsigned int scope_set : 1;
552
553 /* Flag set if the DIE has a byte_size attribute. */
554 unsigned int has_byte_size : 1;
555
556 /* Flag set if any of the DIE's children are template arguments. */
557 unsigned int has_template_arguments : 1;
558
559 /* Flag set if fixup_partial_die has been called on this die. */
560 unsigned int fixup_called : 1;
561
562 /* The name of this DIE. Normally the value of DW_AT_name, but
563 sometimes a default name for unnamed DIEs. */
564 char *name;
565
566 /* The linkage name, if present. */
567 const char *linkage_name;
568
569 /* The scope to prepend to our children. This is generally
570 allocated on the comp_unit_obstack, so will disappear
571 when this compilation unit leaves the cache. */
572 char *scope;
573
574 /* The location description associated with this DIE, if any. */
575 struct dwarf_block *locdesc;
576
577 /* If HAS_PC_INFO, the PC range associated with this DIE. */
578 CORE_ADDR lowpc;
579 CORE_ADDR highpc;
580
581 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
582 DW_AT_sibling, if any. */
583 /* NOTE: This member isn't strictly necessary, read_partial_die could
584 return DW_AT_sibling values to its caller load_partial_dies. */
585 gdb_byte *sibling;
586
587 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
588 DW_AT_specification (or DW_AT_abstract_origin or
589 DW_AT_extension). */
590 sect_offset spec_offset;
591
592 /* Pointers to this DIE's parent, first child, and next sibling,
593 if any. */
594 struct partial_die_info *die_parent, *die_child, *die_sibling;
595 };
596
597 /* This data structure holds the information of an abbrev. */
598 struct abbrev_info
599 {
600 unsigned int number; /* number identifying abbrev */
601 enum dwarf_tag tag; /* dwarf tag */
602 unsigned short has_children; /* boolean */
603 unsigned short num_attrs; /* number of attributes */
604 struct attr_abbrev *attrs; /* an array of attribute descriptions */
605 struct abbrev_info *next; /* next in chain */
606 };
607
608 struct attr_abbrev
609 {
610 ENUM_BITFIELD(dwarf_attribute) name : 16;
611 ENUM_BITFIELD(dwarf_form) form : 16;
612 };
613
614 /* Attributes have a name and a value. */
615 struct attribute
616 {
617 ENUM_BITFIELD(dwarf_attribute) name : 16;
618 ENUM_BITFIELD(dwarf_form) form : 15;
619
620 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
621 field should be in u.str (existing only for DW_STRING) but it is kept
622 here for better struct attribute alignment. */
623 unsigned int string_is_canonical : 1;
624
625 union
626 {
627 char *str;
628 struct dwarf_block *blk;
629 ULONGEST unsnd;
630 LONGEST snd;
631 CORE_ADDR addr;
632 struct signatured_type *signatured_type;
633 }
634 u;
635 };
636
637 /* This data structure holds a complete die structure. */
638 struct die_info
639 {
640 /* DWARF-2 tag for this DIE. */
641 ENUM_BITFIELD(dwarf_tag) tag : 16;
642
643 /* Number of attributes */
644 unsigned char num_attrs;
645
646 /* True if we're presently building the full type name for the
647 type derived from this DIE. */
648 unsigned char building_fullname : 1;
649
650 /* Abbrev number */
651 unsigned int abbrev;
652
653 /* Offset in .debug_info or .debug_types section. */
654 sect_offset offset;
655
656 /* The dies in a compilation unit form an n-ary tree. PARENT
657 points to this die's parent; CHILD points to the first child of
658 this node; and all the children of a given node are chained
659 together via their SIBLING fields. */
660 struct die_info *child; /* Its first child, if any. */
661 struct die_info *sibling; /* Its next sibling, if any. */
662 struct die_info *parent; /* Its parent, if any. */
663
664 /* An array of attributes, with NUM_ATTRS elements. There may be
665 zero, but it's not common and zero-sized arrays are not
666 sufficiently portable C. */
667 struct attribute attrs[1];
668 };
669
670 /* Get at parts of an attribute structure. */
671
672 #define DW_STRING(attr) ((attr)->u.str)
673 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
674 #define DW_UNSND(attr) ((attr)->u.unsnd)
675 #define DW_BLOCK(attr) ((attr)->u.blk)
676 #define DW_SND(attr) ((attr)->u.snd)
677 #define DW_ADDR(attr) ((attr)->u.addr)
678 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
679
680 /* Blocks are a bunch of untyped bytes. */
681 struct dwarf_block
682 {
683 unsigned int size;
684
685 /* Valid only if SIZE is not zero. */
686 gdb_byte *data;
687 };
688
689 #ifndef ATTR_ALLOC_CHUNK
690 #define ATTR_ALLOC_CHUNK 4
691 #endif
692
693 /* Allocate fields for structs, unions and enums in this size. */
694 #ifndef DW_FIELD_ALLOC_CHUNK
695 #define DW_FIELD_ALLOC_CHUNK 4
696 #endif
697
698 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
699 but this would require a corresponding change in unpack_field_as_long
700 and friends. */
701 static int bits_per_byte = 8;
702
703 /* The routines that read and process dies for a C struct or C++ class
704 pass lists of data member fields and lists of member function fields
705 in an instance of a field_info structure, as defined below. */
706 struct field_info
707 {
708 /* List of data member and baseclasses fields. */
709 struct nextfield
710 {
711 struct nextfield *next;
712 int accessibility;
713 int virtuality;
714 struct field field;
715 }
716 *fields, *baseclasses;
717
718 /* Number of fields (including baseclasses). */
719 int nfields;
720
721 /* Number of baseclasses. */
722 int nbaseclasses;
723
724 /* Set if the accesibility of one of the fields is not public. */
725 int non_public_fields;
726
727 /* Member function fields array, entries are allocated in the order they
728 are encountered in the object file. */
729 struct nextfnfield
730 {
731 struct nextfnfield *next;
732 struct fn_field fnfield;
733 }
734 *fnfields;
735
736 /* Member function fieldlist array, contains name of possibly overloaded
737 member function, number of overloaded member functions and a pointer
738 to the head of the member function field chain. */
739 struct fnfieldlist
740 {
741 char *name;
742 int length;
743 struct nextfnfield *head;
744 }
745 *fnfieldlists;
746
747 /* Number of entries in the fnfieldlists array. */
748 int nfnfields;
749
750 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
751 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
752 struct typedef_field_list
753 {
754 struct typedef_field field;
755 struct typedef_field_list *next;
756 }
757 *typedef_field_list;
758 unsigned typedef_field_list_count;
759 };
760
761 /* One item on the queue of compilation units to read in full symbols
762 for. */
763 struct dwarf2_queue_item
764 {
765 struct dwarf2_per_cu_data *per_cu;
766 struct dwarf2_queue_item *next;
767 };
768
769 /* The current queue. */
770 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
771
772 /* Loaded secondary compilation units are kept in memory until they
773 have not been referenced for the processing of this many
774 compilation units. Set this to zero to disable caching. Cache
775 sizes of up to at least twenty will improve startup time for
776 typical inter-CU-reference binaries, at an obvious memory cost. */
777 static int dwarf2_max_cache_age = 5;
778 static void
779 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
780 struct cmd_list_element *c, const char *value)
781 {
782 fprintf_filtered (file, _("The upper bound on the age of cached "
783 "dwarf2 compilation units is %s.\n"),
784 value);
785 }
786
787
788 /* Various complaints about symbol reading that don't abort the process. */
789
790 static void
791 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
792 {
793 complaint (&symfile_complaints,
794 _("statement list doesn't fit in .debug_line section"));
795 }
796
797 static void
798 dwarf2_debug_line_missing_file_complaint (void)
799 {
800 complaint (&symfile_complaints,
801 _(".debug_line section has line data without a file"));
802 }
803
804 static void
805 dwarf2_debug_line_missing_end_sequence_complaint (void)
806 {
807 complaint (&symfile_complaints,
808 _(".debug_line section has line "
809 "program sequence without an end"));
810 }
811
812 static void
813 dwarf2_complex_location_expr_complaint (void)
814 {
815 complaint (&symfile_complaints, _("location expression too complex"));
816 }
817
818 static void
819 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
820 int arg3)
821 {
822 complaint (&symfile_complaints,
823 _("const value length mismatch for '%s', got %d, expected %d"),
824 arg1, arg2, arg3);
825 }
826
827 static void
828 dwarf2_macros_too_long_complaint (struct dwarf2_section_info *section)
829 {
830 complaint (&symfile_complaints,
831 _("macro info runs off end of `%s' section"),
832 section->asection->name);
833 }
834
835 static void
836 dwarf2_macro_malformed_definition_complaint (const char *arg1)
837 {
838 complaint (&symfile_complaints,
839 _("macro debug info contains a "
840 "malformed macro definition:\n`%s'"),
841 arg1);
842 }
843
844 static void
845 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
846 {
847 complaint (&symfile_complaints,
848 _("invalid attribute class or form for '%s' in '%s'"),
849 arg1, arg2);
850 }
851
852 /* local function prototypes */
853
854 static void dwarf2_locate_sections (bfd *, asection *, void *);
855
856 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
857 struct objfile *);
858
859 static void dwarf2_find_base_address (struct die_info *die,
860 struct dwarf2_cu *cu);
861
862 static void dwarf2_build_psymtabs_hard (struct objfile *);
863
864 static void scan_partial_symbols (struct partial_die_info *,
865 CORE_ADDR *, CORE_ADDR *,
866 int, struct dwarf2_cu *);
867
868 static void add_partial_symbol (struct partial_die_info *,
869 struct dwarf2_cu *);
870
871 static void add_partial_namespace (struct partial_die_info *pdi,
872 CORE_ADDR *lowpc, CORE_ADDR *highpc,
873 int need_pc, struct dwarf2_cu *cu);
874
875 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
876 CORE_ADDR *highpc, int need_pc,
877 struct dwarf2_cu *cu);
878
879 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
880 struct dwarf2_cu *cu);
881
882 static void add_partial_subprogram (struct partial_die_info *pdi,
883 CORE_ADDR *lowpc, CORE_ADDR *highpc,
884 int need_pc, struct dwarf2_cu *cu);
885
886 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
887 gdb_byte *buffer, gdb_byte *info_ptr,
888 bfd *abfd, struct dwarf2_cu *cu);
889
890 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
891
892 static void psymtab_to_symtab_1 (struct partial_symtab *);
893
894 static void dwarf2_read_abbrevs (struct dwarf2_cu *cu);
895
896 static void dwarf2_free_abbrev_table (void *);
897
898 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
899
900 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
901 struct dwarf2_cu *);
902
903 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
904 struct dwarf2_cu *);
905
906 static struct partial_die_info *load_partial_dies (bfd *,
907 gdb_byte *, gdb_byte *,
908 int, struct dwarf2_cu *);
909
910 static gdb_byte *read_partial_die (struct partial_die_info *,
911 struct abbrev_info *abbrev,
912 unsigned int, bfd *,
913 gdb_byte *, gdb_byte *,
914 struct dwarf2_cu *);
915
916 static struct partial_die_info *find_partial_die (sect_offset,
917 struct dwarf2_cu *);
918
919 static void fixup_partial_die (struct partial_die_info *,
920 struct dwarf2_cu *);
921
922 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
923 bfd *, gdb_byte *, struct dwarf2_cu *);
924
925 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
926 bfd *, gdb_byte *, struct dwarf2_cu *);
927
928 static unsigned int read_1_byte (bfd *, gdb_byte *);
929
930 static int read_1_signed_byte (bfd *, gdb_byte *);
931
932 static unsigned int read_2_bytes (bfd *, gdb_byte *);
933
934 static unsigned int read_4_bytes (bfd *, gdb_byte *);
935
936 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
937
938 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
939 unsigned int *);
940
941 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
942
943 static LONGEST read_checked_initial_length_and_offset
944 (bfd *, gdb_byte *, const struct comp_unit_head *,
945 unsigned int *, unsigned int *);
946
947 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
948 unsigned int *);
949
950 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
951
952 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
953
954 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
955
956 static char *read_indirect_string (bfd *, gdb_byte *,
957 const struct comp_unit_head *,
958 unsigned int *);
959
960 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
961
962 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
963
964 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
965
966 static void set_cu_language (unsigned int, struct dwarf2_cu *);
967
968 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
969 struct dwarf2_cu *);
970
971 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
972 unsigned int,
973 struct dwarf2_cu *);
974
975 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
976 struct dwarf2_cu *cu);
977
978 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
979
980 static struct die_info *die_specification (struct die_info *die,
981 struct dwarf2_cu **);
982
983 static void free_line_header (struct line_header *lh);
984
985 static void add_file_name (struct line_header *, char *, unsigned int,
986 unsigned int, unsigned int);
987
988 static struct line_header *(dwarf_decode_line_header
989 (unsigned int offset,
990 bfd *abfd, struct dwarf2_cu *cu));
991
992 static void dwarf_decode_lines (struct line_header *, const char *,
993 struct dwarf2_cu *, struct partial_symtab *,
994 int);
995
996 static void dwarf2_start_subfile (char *, const char *, const char *);
997
998 static struct symbol *new_symbol (struct die_info *, struct type *,
999 struct dwarf2_cu *);
1000
1001 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1002 struct dwarf2_cu *, struct symbol *);
1003
1004 static void dwarf2_const_value (struct attribute *, struct symbol *,
1005 struct dwarf2_cu *);
1006
1007 static void dwarf2_const_value_attr (struct attribute *attr,
1008 struct type *type,
1009 const char *name,
1010 struct obstack *obstack,
1011 struct dwarf2_cu *cu, long *value,
1012 gdb_byte **bytes,
1013 struct dwarf2_locexpr_baton **baton);
1014
1015 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1016
1017 static int need_gnat_info (struct dwarf2_cu *);
1018
1019 static struct type *die_descriptive_type (struct die_info *,
1020 struct dwarf2_cu *);
1021
1022 static void set_descriptive_type (struct type *, struct die_info *,
1023 struct dwarf2_cu *);
1024
1025 static struct type *die_containing_type (struct die_info *,
1026 struct dwarf2_cu *);
1027
1028 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1029 struct dwarf2_cu *);
1030
1031 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1032
1033 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1034
1035 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1036
1037 static char *typename_concat (struct obstack *obs, const char *prefix,
1038 const char *suffix, int physname,
1039 struct dwarf2_cu *cu);
1040
1041 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1042
1043 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1044
1045 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1046
1047 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1048
1049 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1050
1051 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1052 struct dwarf2_cu *, struct partial_symtab *);
1053
1054 static int dwarf2_get_pc_bounds (struct die_info *,
1055 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1056 struct partial_symtab *);
1057
1058 static void get_scope_pc_bounds (struct die_info *,
1059 CORE_ADDR *, CORE_ADDR *,
1060 struct dwarf2_cu *);
1061
1062 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1063 CORE_ADDR, struct dwarf2_cu *);
1064
1065 static void dwarf2_add_field (struct field_info *, struct die_info *,
1066 struct dwarf2_cu *);
1067
1068 static void dwarf2_attach_fields_to_type (struct field_info *,
1069 struct type *, struct dwarf2_cu *);
1070
1071 static void dwarf2_add_member_fn (struct field_info *,
1072 struct die_info *, struct type *,
1073 struct dwarf2_cu *);
1074
1075 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1076 struct type *,
1077 struct dwarf2_cu *);
1078
1079 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1080
1081 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1082
1083 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1084
1085 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1086
1087 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1088
1089 static struct type *read_module_type (struct die_info *die,
1090 struct dwarf2_cu *cu);
1091
1092 static const char *namespace_name (struct die_info *die,
1093 int *is_anonymous, struct dwarf2_cu *);
1094
1095 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1096
1097 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1098
1099 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1100 struct dwarf2_cu *);
1101
1102 static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
1103
1104 static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1105 gdb_byte *info_ptr,
1106 gdb_byte **new_info_ptr,
1107 struct die_info *parent);
1108
1109 static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1110 gdb_byte *info_ptr,
1111 gdb_byte **new_info_ptr,
1112 struct die_info *parent);
1113
1114 static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1115 gdb_byte *info_ptr,
1116 gdb_byte **new_info_ptr,
1117 struct die_info *parent);
1118
1119 static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1120 struct die_info **, gdb_byte *,
1121 int *);
1122
1123 static void process_die (struct die_info *, struct dwarf2_cu *);
1124
1125 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1126 struct obstack *);
1127
1128 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1129
1130 static const char *dwarf2_full_name (char *name,
1131 struct die_info *die,
1132 struct dwarf2_cu *cu);
1133
1134 static struct die_info *dwarf2_extension (struct die_info *die,
1135 struct dwarf2_cu **);
1136
1137 static char *dwarf_tag_name (unsigned int);
1138
1139 static char *dwarf_attr_name (unsigned int);
1140
1141 static char *dwarf_form_name (unsigned int);
1142
1143 static char *dwarf_bool_name (unsigned int);
1144
1145 static char *dwarf_type_encoding_name (unsigned int);
1146
1147 #if 0
1148 static char *dwarf_cfi_name (unsigned int);
1149 #endif
1150
1151 static struct die_info *sibling_die (struct die_info *);
1152
1153 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1154
1155 static void dump_die_for_error (struct die_info *);
1156
1157 static void dump_die_1 (struct ui_file *, int level, int max_level,
1158 struct die_info *);
1159
1160 /*static*/ void dump_die (struct die_info *, int max_level);
1161
1162 static void store_in_ref_table (struct die_info *,
1163 struct dwarf2_cu *);
1164
1165 static int is_ref_attr (struct attribute *);
1166
1167 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1168
1169 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1170
1171 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1172 struct attribute *,
1173 struct dwarf2_cu **);
1174
1175 static struct die_info *follow_die_ref (struct die_info *,
1176 struct attribute *,
1177 struct dwarf2_cu **);
1178
1179 static struct die_info *follow_die_sig (struct die_info *,
1180 struct attribute *,
1181 struct dwarf2_cu **);
1182
1183 static struct signatured_type *lookup_signatured_type_at_offset
1184 (struct objfile *objfile,
1185 struct dwarf2_section_info *section, sect_offset offset);
1186
1187 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1188
1189 static void read_signatured_type (struct signatured_type *type_sig);
1190
1191 /* memory allocation interface */
1192
1193 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1194
1195 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1196
1197 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1198
1199 static void dwarf_decode_macros (struct line_header *, unsigned int,
1200 char *, bfd *, struct dwarf2_cu *,
1201 struct dwarf2_section_info *,
1202 int);
1203
1204 static int attr_form_is_block (struct attribute *);
1205
1206 static int attr_form_is_section_offset (struct attribute *);
1207
1208 static int attr_form_is_constant (struct attribute *);
1209
1210 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1211 struct dwarf2_loclist_baton *baton,
1212 struct attribute *attr);
1213
1214 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1215 struct symbol *sym,
1216 struct dwarf2_cu *cu);
1217
1218 static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1219 struct abbrev_info *abbrev,
1220 struct dwarf2_cu *cu);
1221
1222 static void free_stack_comp_unit (void *);
1223
1224 static hashval_t partial_die_hash (const void *item);
1225
1226 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1227
1228 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1229 (sect_offset offset, struct objfile *objfile);
1230
1231 static void init_one_comp_unit (struct dwarf2_cu *cu,
1232 struct dwarf2_per_cu_data *per_cu);
1233
1234 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1235 struct die_info *comp_unit_die);
1236
1237 static void free_heap_comp_unit (void *);
1238
1239 static void free_cached_comp_units (void *);
1240
1241 static void age_cached_comp_units (void);
1242
1243 static void free_one_cached_comp_unit (void *);
1244
1245 static struct type *set_die_type (struct die_info *, struct type *,
1246 struct dwarf2_cu *);
1247
1248 static void create_all_comp_units (struct objfile *);
1249
1250 static int create_debug_types_hash_table (struct objfile *objfile);
1251
1252 static void load_full_comp_unit (struct dwarf2_per_cu_data *);
1253
1254 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1255
1256 static void dwarf2_add_dependence (struct dwarf2_cu *,
1257 struct dwarf2_per_cu_data *);
1258
1259 static void dwarf2_mark (struct dwarf2_cu *);
1260
1261 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1262
1263 static struct type *get_die_type_at_offset (sect_offset,
1264 struct dwarf2_per_cu_data *per_cu);
1265
1266 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1267
1268 static void dwarf2_release_queue (void *dummy);
1269
1270 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu);
1271
1272 static void process_queue (void);
1273
1274 static void find_file_and_directory (struct die_info *die,
1275 struct dwarf2_cu *cu,
1276 char **name, char **comp_dir);
1277
1278 static char *file_full_name (int file, struct line_header *lh,
1279 const char *comp_dir);
1280
1281 static gdb_byte *read_and_check_comp_unit_head
1282 (struct comp_unit_head *header,
1283 struct dwarf2_section_info *section, gdb_byte *info_ptr,
1284 int is_debug_types_section);
1285
1286 static void init_cu_die_reader (struct die_reader_specs *reader,
1287 struct dwarf2_cu *cu);
1288
1289 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1290
1291 #if WORDS_BIGENDIAN
1292
1293 /* Convert VALUE between big- and little-endian. */
1294 static offset_type
1295 byte_swap (offset_type value)
1296 {
1297 offset_type result;
1298
1299 result = (value & 0xff) << 24;
1300 result |= (value & 0xff00) << 8;
1301 result |= (value & 0xff0000) >> 8;
1302 result |= (value & 0xff000000) >> 24;
1303 return result;
1304 }
1305
1306 #define MAYBE_SWAP(V) byte_swap (V)
1307
1308 #else
1309 #define MAYBE_SWAP(V) (V)
1310 #endif /* WORDS_BIGENDIAN */
1311
1312 /* The suffix for an index file. */
1313 #define INDEX_SUFFIX ".gdb-index"
1314
1315 static const char *dwarf2_physname (char *name, struct die_info *die,
1316 struct dwarf2_cu *cu);
1317
1318 /* Try to locate the sections we need for DWARF 2 debugging
1319 information and return true if we have enough to do something.
1320 NAMES points to the dwarf2 section names, or is NULL if the standard
1321 ELF names are used. */
1322
1323 int
1324 dwarf2_has_info (struct objfile *objfile,
1325 const struct dwarf2_debug_sections *names)
1326 {
1327 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1328 if (!dwarf2_per_objfile)
1329 {
1330 /* Initialize per-objfile state. */
1331 struct dwarf2_per_objfile *data
1332 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1333
1334 memset (data, 0, sizeof (*data));
1335 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1336 dwarf2_per_objfile = data;
1337
1338 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1339 (void *) names);
1340 dwarf2_per_objfile->objfile = objfile;
1341 }
1342 return (dwarf2_per_objfile->info.asection != NULL
1343 && dwarf2_per_objfile->abbrev.asection != NULL);
1344 }
1345
1346 /* When loading sections, we look either for uncompressed section or for
1347 compressed section names. */
1348
1349 static int
1350 section_is_p (const char *section_name,
1351 const struct dwarf2_section_names *names)
1352 {
1353 if (names->normal != NULL
1354 && strcmp (section_name, names->normal) == 0)
1355 return 1;
1356 if (names->compressed != NULL
1357 && strcmp (section_name, names->compressed) == 0)
1358 return 1;
1359 return 0;
1360 }
1361
1362 /* This function is mapped across the sections and remembers the
1363 offset and size of each of the debugging sections we are interested
1364 in. */
1365
1366 static void
1367 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1368 {
1369 const struct dwarf2_debug_sections *names;
1370
1371 if (vnames == NULL)
1372 names = &dwarf2_elf_names;
1373 else
1374 names = (const struct dwarf2_debug_sections *) vnames;
1375
1376 if (section_is_p (sectp->name, &names->info))
1377 {
1378 dwarf2_per_objfile->info.asection = sectp;
1379 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1380 }
1381 else if (section_is_p (sectp->name, &names->abbrev))
1382 {
1383 dwarf2_per_objfile->abbrev.asection = sectp;
1384 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1385 }
1386 else if (section_is_p (sectp->name, &names->line))
1387 {
1388 dwarf2_per_objfile->line.asection = sectp;
1389 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1390 }
1391 else if (section_is_p (sectp->name, &names->loc))
1392 {
1393 dwarf2_per_objfile->loc.asection = sectp;
1394 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1395 }
1396 else if (section_is_p (sectp->name, &names->macinfo))
1397 {
1398 dwarf2_per_objfile->macinfo.asection = sectp;
1399 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1400 }
1401 else if (section_is_p (sectp->name, &names->macro))
1402 {
1403 dwarf2_per_objfile->macro.asection = sectp;
1404 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1405 }
1406 else if (section_is_p (sectp->name, &names->str))
1407 {
1408 dwarf2_per_objfile->str.asection = sectp;
1409 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1410 }
1411 else if (section_is_p (sectp->name, &names->frame))
1412 {
1413 dwarf2_per_objfile->frame.asection = sectp;
1414 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1415 }
1416 else if (section_is_p (sectp->name, &names->eh_frame))
1417 {
1418 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1419
1420 if (aflag & SEC_HAS_CONTENTS)
1421 {
1422 dwarf2_per_objfile->eh_frame.asection = sectp;
1423 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1424 }
1425 }
1426 else if (section_is_p (sectp->name, &names->ranges))
1427 {
1428 dwarf2_per_objfile->ranges.asection = sectp;
1429 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1430 }
1431 else if (section_is_p (sectp->name, &names->types))
1432 {
1433 struct dwarf2_section_info type_section;
1434
1435 memset (&type_section, 0, sizeof (type_section));
1436 type_section.asection = sectp;
1437 type_section.size = bfd_get_section_size (sectp);
1438
1439 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1440 &type_section);
1441 }
1442 else if (section_is_p (sectp->name, &names->gdb_index))
1443 {
1444 dwarf2_per_objfile->gdb_index.asection = sectp;
1445 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1446 }
1447
1448 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1449 && bfd_section_vma (abfd, sectp) == 0)
1450 dwarf2_per_objfile->has_section_at_zero = 1;
1451 }
1452
1453 /* Decompress a section that was compressed using zlib. Store the
1454 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1455
1456 static void
1457 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1458 gdb_byte **outbuf, bfd_size_type *outsize)
1459 {
1460 bfd *abfd = objfile->obfd;
1461 #ifndef HAVE_ZLIB_H
1462 error (_("Support for zlib-compressed DWARF data (from '%s') "
1463 "is disabled in this copy of GDB"),
1464 bfd_get_filename (abfd));
1465 #else
1466 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1467 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1468 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1469 bfd_size_type uncompressed_size;
1470 gdb_byte *uncompressed_buffer;
1471 z_stream strm;
1472 int rc;
1473 int header_size = 12;
1474
1475 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1476 || bfd_bread (compressed_buffer,
1477 compressed_size, abfd) != compressed_size)
1478 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1479 bfd_get_filename (abfd));
1480
1481 /* Read the zlib header. In this case, it should be "ZLIB" followed
1482 by the uncompressed section size, 8 bytes in big-endian order. */
1483 if (compressed_size < header_size
1484 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1485 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1486 bfd_get_filename (abfd));
1487 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1488 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1489 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1490 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1491 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1492 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1493 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1494 uncompressed_size += compressed_buffer[11];
1495
1496 /* It is possible the section consists of several compressed
1497 buffers concatenated together, so we uncompress in a loop. */
1498 strm.zalloc = NULL;
1499 strm.zfree = NULL;
1500 strm.opaque = NULL;
1501 strm.avail_in = compressed_size - header_size;
1502 strm.next_in = (Bytef*) compressed_buffer + header_size;
1503 strm.avail_out = uncompressed_size;
1504 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1505 uncompressed_size);
1506 rc = inflateInit (&strm);
1507 while (strm.avail_in > 0)
1508 {
1509 if (rc != Z_OK)
1510 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1511 bfd_get_filename (abfd), rc);
1512 strm.next_out = ((Bytef*) uncompressed_buffer
1513 + (uncompressed_size - strm.avail_out));
1514 rc = inflate (&strm, Z_FINISH);
1515 if (rc != Z_STREAM_END)
1516 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1517 bfd_get_filename (abfd), rc);
1518 rc = inflateReset (&strm);
1519 }
1520 rc = inflateEnd (&strm);
1521 if (rc != Z_OK
1522 || strm.avail_out != 0)
1523 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1524 bfd_get_filename (abfd), rc);
1525
1526 do_cleanups (cleanup);
1527 *outbuf = uncompressed_buffer;
1528 *outsize = uncompressed_size;
1529 #endif
1530 }
1531
1532 /* A helper function that decides whether a section is empty. */
1533
1534 static int
1535 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1536 {
1537 return info->asection == NULL || info->size == 0;
1538 }
1539
1540 /* Read the contents of the section INFO from object file specified by
1541 OBJFILE, store info about the section into INFO.
1542 If the section is compressed, uncompress it before returning. */
1543
1544 static void
1545 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1546 {
1547 bfd *abfd = objfile->obfd;
1548 asection *sectp = info->asection;
1549 gdb_byte *buf, *retbuf;
1550 unsigned char header[4];
1551
1552 if (info->readin)
1553 return;
1554 info->buffer = NULL;
1555 info->map_addr = NULL;
1556 info->readin = 1;
1557
1558 if (dwarf2_section_empty_p (info))
1559 return;
1560
1561 /* Check if the file has a 4-byte header indicating compression. */
1562 if (info->size > sizeof (header)
1563 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1564 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1565 {
1566 /* Upon decompression, update the buffer and its size. */
1567 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1568 {
1569 zlib_decompress_section (objfile, sectp, &info->buffer,
1570 &info->size);
1571 return;
1572 }
1573 }
1574
1575 #ifdef HAVE_MMAP
1576 if (pagesize == 0)
1577 pagesize = getpagesize ();
1578
1579 /* Only try to mmap sections which are large enough: we don't want to
1580 waste space due to fragmentation. Also, only try mmap for sections
1581 without relocations. */
1582
1583 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1584 {
1585 info->buffer = bfd_mmap (abfd, 0, info->size, PROT_READ,
1586 MAP_PRIVATE, sectp->filepos,
1587 &info->map_addr, &info->map_len);
1588
1589 if ((caddr_t)info->buffer != MAP_FAILED)
1590 {
1591 #if HAVE_POSIX_MADVISE
1592 posix_madvise (info->map_addr, info->map_len, POSIX_MADV_WILLNEED);
1593 #endif
1594 return;
1595 }
1596 }
1597 #endif
1598
1599 /* If we get here, we are a normal, not-compressed section. */
1600 info->buffer = buf
1601 = obstack_alloc (&objfile->objfile_obstack, info->size);
1602
1603 /* When debugging .o files, we may need to apply relocations; see
1604 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1605 We never compress sections in .o files, so we only need to
1606 try this when the section is not compressed. */
1607 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1608 if (retbuf != NULL)
1609 {
1610 info->buffer = retbuf;
1611 return;
1612 }
1613
1614 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1615 || bfd_bread (buf, info->size, abfd) != info->size)
1616 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1617 bfd_get_filename (abfd));
1618 }
1619
1620 /* A helper function that returns the size of a section in a safe way.
1621 If you are positive that the section has been read before using the
1622 size, then it is safe to refer to the dwarf2_section_info object's
1623 "size" field directly. In other cases, you must call this
1624 function, because for compressed sections the size field is not set
1625 correctly until the section has been read. */
1626
1627 static bfd_size_type
1628 dwarf2_section_size (struct objfile *objfile,
1629 struct dwarf2_section_info *info)
1630 {
1631 if (!info->readin)
1632 dwarf2_read_section (objfile, info);
1633 return info->size;
1634 }
1635
1636 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1637 SECTION_NAME. */
1638
1639 void
1640 dwarf2_get_section_info (struct objfile *objfile,
1641 enum dwarf2_section_enum sect,
1642 asection **sectp, gdb_byte **bufp,
1643 bfd_size_type *sizep)
1644 {
1645 struct dwarf2_per_objfile *data
1646 = objfile_data (objfile, dwarf2_objfile_data_key);
1647 struct dwarf2_section_info *info;
1648
1649 /* We may see an objfile without any DWARF, in which case we just
1650 return nothing. */
1651 if (data == NULL)
1652 {
1653 *sectp = NULL;
1654 *bufp = NULL;
1655 *sizep = 0;
1656 return;
1657 }
1658 switch (sect)
1659 {
1660 case DWARF2_DEBUG_FRAME:
1661 info = &data->frame;
1662 break;
1663 case DWARF2_EH_FRAME:
1664 info = &data->eh_frame;
1665 break;
1666 default:
1667 gdb_assert_not_reached ("unexpected section");
1668 }
1669
1670 dwarf2_read_section (objfile, info);
1671
1672 *sectp = info->asection;
1673 *bufp = info->buffer;
1674 *sizep = info->size;
1675 }
1676
1677 \f
1678 /* DWARF quick_symbols_functions support. */
1679
1680 /* TUs can share .debug_line entries, and there can be a lot more TUs than
1681 unique line tables, so we maintain a separate table of all .debug_line
1682 derived entries to support the sharing.
1683 All the quick functions need is the list of file names. We discard the
1684 line_header when we're done and don't need to record it here. */
1685 struct quick_file_names
1686 {
1687 /* The offset in .debug_line of the line table. We hash on this. */
1688 unsigned int offset;
1689
1690 /* The number of entries in file_names, real_names. */
1691 unsigned int num_file_names;
1692
1693 /* The file names from the line table, after being run through
1694 file_full_name. */
1695 const char **file_names;
1696
1697 /* The file names from the line table after being run through
1698 gdb_realpath. These are computed lazily. */
1699 const char **real_names;
1700 };
1701
1702 /* When using the index (and thus not using psymtabs), each CU has an
1703 object of this type. This is used to hold information needed by
1704 the various "quick" methods. */
1705 struct dwarf2_per_cu_quick_data
1706 {
1707 /* The file table. This can be NULL if there was no file table
1708 or it's currently not read in.
1709 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
1710 struct quick_file_names *file_names;
1711
1712 /* The corresponding symbol table. This is NULL if symbols for this
1713 CU have not yet been read. */
1714 struct symtab *symtab;
1715
1716 /* A temporary mark bit used when iterating over all CUs in
1717 expand_symtabs_matching. */
1718 unsigned int mark : 1;
1719
1720 /* True if we've tried to read the file table and found there isn't one.
1721 There will be no point in trying to read it again next time. */
1722 unsigned int no_file_data : 1;
1723 };
1724
1725 /* Hash function for a quick_file_names. */
1726
1727 static hashval_t
1728 hash_file_name_entry (const void *e)
1729 {
1730 const struct quick_file_names *file_data = e;
1731
1732 return file_data->offset;
1733 }
1734
1735 /* Equality function for a quick_file_names. */
1736
1737 static int
1738 eq_file_name_entry (const void *a, const void *b)
1739 {
1740 const struct quick_file_names *ea = a;
1741 const struct quick_file_names *eb = b;
1742
1743 return ea->offset == eb->offset;
1744 }
1745
1746 /* Delete function for a quick_file_names. */
1747
1748 static void
1749 delete_file_name_entry (void *e)
1750 {
1751 struct quick_file_names *file_data = e;
1752 int i;
1753
1754 for (i = 0; i < file_data->num_file_names; ++i)
1755 {
1756 xfree ((void*) file_data->file_names[i]);
1757 if (file_data->real_names)
1758 xfree ((void*) file_data->real_names[i]);
1759 }
1760
1761 /* The space for the struct itself lives on objfile_obstack,
1762 so we don't free it here. */
1763 }
1764
1765 /* Create a quick_file_names hash table. */
1766
1767 static htab_t
1768 create_quick_file_names_table (unsigned int nr_initial_entries)
1769 {
1770 return htab_create_alloc (nr_initial_entries,
1771 hash_file_name_entry, eq_file_name_entry,
1772 delete_file_name_entry, xcalloc, xfree);
1773 }
1774
1775 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
1776 have to be created afterwards. You should call age_cached_comp_units after
1777 processing PER_CU->CU. dw2_setup must have been already called. */
1778
1779 static void
1780 load_cu (struct dwarf2_per_cu_data *per_cu)
1781 {
1782 if (per_cu->debug_types_section)
1783 load_full_type_unit (per_cu);
1784 else
1785 load_full_comp_unit (per_cu);
1786
1787 gdb_assert (per_cu->cu != NULL);
1788
1789 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
1790 }
1791
1792 /* Read in the symbols for PER_CU. */
1793
1794 static void
1795 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
1796 {
1797 struct cleanup *back_to;
1798
1799 back_to = make_cleanup (dwarf2_release_queue, NULL);
1800
1801 queue_comp_unit (per_cu);
1802
1803 load_cu (per_cu);
1804
1805 process_queue ();
1806
1807 /* Age the cache, releasing compilation units that have not
1808 been used recently. */
1809 age_cached_comp_units ();
1810
1811 do_cleanups (back_to);
1812 }
1813
1814 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1815 the objfile from which this CU came. Returns the resulting symbol
1816 table. */
1817
1818 static struct symtab *
1819 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
1820 {
1821 if (!per_cu->v.quick->symtab)
1822 {
1823 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1824 increment_reading_symtab ();
1825 dw2_do_instantiate_symtab (per_cu);
1826 do_cleanups (back_to);
1827 }
1828 return per_cu->v.quick->symtab;
1829 }
1830
1831 /* Return the CU given its index. */
1832
1833 static struct dwarf2_per_cu_data *
1834 dw2_get_cu (int index)
1835 {
1836 if (index >= dwarf2_per_objfile->n_comp_units)
1837 {
1838 index -= dwarf2_per_objfile->n_comp_units;
1839 return dwarf2_per_objfile->all_type_units[index];
1840 }
1841 return dwarf2_per_objfile->all_comp_units[index];
1842 }
1843
1844 /* A helper function that knows how to read a 64-bit value in a way
1845 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1846 otherwise. */
1847
1848 static int
1849 extract_cu_value (const char *bytes, ULONGEST *result)
1850 {
1851 if (sizeof (ULONGEST) < 8)
1852 {
1853 int i;
1854
1855 /* Ignore the upper 4 bytes if they are all zero. */
1856 for (i = 0; i < 4; ++i)
1857 if (bytes[i + 4] != 0)
1858 return 0;
1859
1860 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1861 }
1862 else
1863 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1864 return 1;
1865 }
1866
1867 /* Read the CU list from the mapped index, and use it to create all
1868 the CU objects for this objfile. Return 0 if something went wrong,
1869 1 if everything went ok. */
1870
1871 static int
1872 create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1873 offset_type cu_list_elements)
1874 {
1875 offset_type i;
1876
1877 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1878 dwarf2_per_objfile->all_comp_units
1879 = obstack_alloc (&objfile->objfile_obstack,
1880 dwarf2_per_objfile->n_comp_units
1881 * sizeof (struct dwarf2_per_cu_data *));
1882
1883 for (i = 0; i < cu_list_elements; i += 2)
1884 {
1885 struct dwarf2_per_cu_data *the_cu;
1886 ULONGEST offset, length;
1887
1888 if (!extract_cu_value (cu_list, &offset)
1889 || !extract_cu_value (cu_list + 8, &length))
1890 return 0;
1891 cu_list += 2 * 8;
1892
1893 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1894 struct dwarf2_per_cu_data);
1895 the_cu->offset.sect_off = offset;
1896 the_cu->length = length;
1897 the_cu->objfile = objfile;
1898 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1899 struct dwarf2_per_cu_quick_data);
1900 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1901 }
1902
1903 return 1;
1904 }
1905
1906 /* Create the signatured type hash table from the index. */
1907
1908 static int
1909 create_signatured_type_table_from_index (struct objfile *objfile,
1910 struct dwarf2_section_info *section,
1911 const gdb_byte *bytes,
1912 offset_type elements)
1913 {
1914 offset_type i;
1915 htab_t sig_types_hash;
1916
1917 dwarf2_per_objfile->n_type_units = elements / 3;
1918 dwarf2_per_objfile->all_type_units
1919 = obstack_alloc (&objfile->objfile_obstack,
1920 dwarf2_per_objfile->n_type_units
1921 * sizeof (struct dwarf2_per_cu_data *));
1922
1923 sig_types_hash = allocate_signatured_type_table (objfile);
1924
1925 for (i = 0; i < elements; i += 3)
1926 {
1927 struct signatured_type *type_sig;
1928 ULONGEST offset, type_offset, signature;
1929 void **slot;
1930
1931 if (!extract_cu_value (bytes, &offset)
1932 || !extract_cu_value (bytes + 8, &type_offset))
1933 return 0;
1934 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1935 bytes += 3 * 8;
1936
1937 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1938 struct signatured_type);
1939 type_sig->signature = signature;
1940 type_sig->type_offset.cu_off = type_offset;
1941 type_sig->per_cu.debug_types_section = section;
1942 type_sig->per_cu.offset.sect_off = offset;
1943 type_sig->per_cu.objfile = objfile;
1944 type_sig->per_cu.v.quick
1945 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1946 struct dwarf2_per_cu_quick_data);
1947
1948 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
1949 *slot = type_sig;
1950
1951 dwarf2_per_objfile->all_type_units[i / 3] = &type_sig->per_cu;
1952 }
1953
1954 dwarf2_per_objfile->signatured_types = sig_types_hash;
1955
1956 return 1;
1957 }
1958
1959 /* Read the address map data from the mapped index, and use it to
1960 populate the objfile's psymtabs_addrmap. */
1961
1962 static void
1963 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1964 {
1965 const gdb_byte *iter, *end;
1966 struct obstack temp_obstack;
1967 struct addrmap *mutable_map;
1968 struct cleanup *cleanup;
1969 CORE_ADDR baseaddr;
1970
1971 obstack_init (&temp_obstack);
1972 cleanup = make_cleanup_obstack_free (&temp_obstack);
1973 mutable_map = addrmap_create_mutable (&temp_obstack);
1974
1975 iter = index->address_table;
1976 end = iter + index->address_table_size;
1977
1978 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1979
1980 while (iter < end)
1981 {
1982 ULONGEST hi, lo, cu_index;
1983 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1984 iter += 8;
1985 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1986 iter += 8;
1987 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1988 iter += 4;
1989
1990 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1991 dw2_get_cu (cu_index));
1992 }
1993
1994 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1995 &objfile->objfile_obstack);
1996 do_cleanups (cleanup);
1997 }
1998
1999 /* The hash function for strings in the mapped index. This is the same as
2000 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2001 implementation. This is necessary because the hash function is tied to the
2002 format of the mapped index file. The hash values do not have to match with
2003 SYMBOL_HASH_NEXT.
2004
2005 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2006
2007 static hashval_t
2008 mapped_index_string_hash (int index_version, const void *p)
2009 {
2010 const unsigned char *str = (const unsigned char *) p;
2011 hashval_t r = 0;
2012 unsigned char c;
2013
2014 while ((c = *str++) != 0)
2015 {
2016 if (index_version >= 5)
2017 c = tolower (c);
2018 r = r * 67 + c - 113;
2019 }
2020
2021 return r;
2022 }
2023
2024 /* Find a slot in the mapped index INDEX for the object named NAME.
2025 If NAME is found, set *VEC_OUT to point to the CU vector in the
2026 constant pool and return 1. If NAME cannot be found, return 0. */
2027
2028 static int
2029 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2030 offset_type **vec_out)
2031 {
2032 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2033 offset_type hash;
2034 offset_type slot, step;
2035 int (*cmp) (const char *, const char *);
2036
2037 if (current_language->la_language == language_cplus
2038 || current_language->la_language == language_java
2039 || current_language->la_language == language_fortran)
2040 {
2041 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2042 not contain any. */
2043 const char *paren = strchr (name, '(');
2044
2045 if (paren)
2046 {
2047 char *dup;
2048
2049 dup = xmalloc (paren - name + 1);
2050 memcpy (dup, name, paren - name);
2051 dup[paren - name] = 0;
2052
2053 make_cleanup (xfree, dup);
2054 name = dup;
2055 }
2056 }
2057
2058 /* Index version 4 did not support case insensitive searches. But the
2059 indices for case insensitive languages are built in lowercase, therefore
2060 simulate our NAME being searched is also lowercased. */
2061 hash = mapped_index_string_hash ((index->version == 4
2062 && case_sensitivity == case_sensitive_off
2063 ? 5 : index->version),
2064 name);
2065
2066 slot = hash & (index->symbol_table_slots - 1);
2067 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2068 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2069
2070 for (;;)
2071 {
2072 /* Convert a slot number to an offset into the table. */
2073 offset_type i = 2 * slot;
2074 const char *str;
2075 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2076 {
2077 do_cleanups (back_to);
2078 return 0;
2079 }
2080
2081 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2082 if (!cmp (name, str))
2083 {
2084 *vec_out = (offset_type *) (index->constant_pool
2085 + MAYBE_SWAP (index->symbol_table[i + 1]));
2086 do_cleanups (back_to);
2087 return 1;
2088 }
2089
2090 slot = (slot + step) & (index->symbol_table_slots - 1);
2091 }
2092 }
2093
2094 /* Read the index file. If everything went ok, initialize the "quick"
2095 elements of all the CUs and return 1. Otherwise, return 0. */
2096
2097 static int
2098 dwarf2_read_index (struct objfile *objfile)
2099 {
2100 char *addr;
2101 struct mapped_index *map;
2102 offset_type *metadata;
2103 const gdb_byte *cu_list;
2104 const gdb_byte *types_list = NULL;
2105 offset_type version, cu_list_elements;
2106 offset_type types_list_elements = 0;
2107 int i;
2108
2109 if (dwarf2_section_empty_p (&dwarf2_per_objfile->gdb_index))
2110 return 0;
2111
2112 /* Older elfutils strip versions could keep the section in the main
2113 executable while splitting it for the separate debug info file. */
2114 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
2115 & SEC_HAS_CONTENTS) == 0)
2116 return 0;
2117
2118 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
2119
2120 addr = dwarf2_per_objfile->gdb_index.buffer;
2121 /* Version check. */
2122 version = MAYBE_SWAP (*(offset_type *) addr);
2123 /* Versions earlier than 3 emitted every copy of a psymbol. This
2124 causes the index to behave very poorly for certain requests. Version 3
2125 contained incomplete addrmap. So, it seems better to just ignore such
2126 indices. */
2127 if (version < 4)
2128 {
2129 static int warning_printed = 0;
2130 if (!warning_printed)
2131 {
2132 warning (_("Skipping obsolete .gdb_index section in %s."),
2133 objfile->name);
2134 warning_printed = 1;
2135 }
2136 return 0;
2137 }
2138 /* Index version 4 uses a different hash function than index version
2139 5 and later.
2140
2141 Versions earlier than 6 did not emit psymbols for inlined
2142 functions. Using these files will cause GDB not to be able to
2143 set breakpoints on inlined functions by name, so we ignore these
2144 indices unless the --use-deprecated-index-sections command line
2145 option was supplied. */
2146 if (version < 6 && !use_deprecated_index_sections)
2147 {
2148 static int warning_printed = 0;
2149 if (!warning_printed)
2150 {
2151 warning (_("Skipping deprecated .gdb_index section in %s, pass "
2152 "--use-deprecated-index-sections to use them anyway"),
2153 objfile->name);
2154 warning_printed = 1;
2155 }
2156 return 0;
2157 }
2158 /* Indexes with higher version than the one supported by GDB may be no
2159 longer backward compatible. */
2160 if (version > 6)
2161 return 0;
2162
2163 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
2164 map->version = version;
2165 map->total_size = dwarf2_per_objfile->gdb_index.size;
2166
2167 metadata = (offset_type *) (addr + sizeof (offset_type));
2168
2169 i = 0;
2170 cu_list = addr + MAYBE_SWAP (metadata[i]);
2171 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2172 / 8);
2173 ++i;
2174
2175 types_list = addr + MAYBE_SWAP (metadata[i]);
2176 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2177 - MAYBE_SWAP (metadata[i]))
2178 / 8);
2179 ++i;
2180
2181 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2182 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2183 - MAYBE_SWAP (metadata[i]));
2184 ++i;
2185
2186 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2187 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2188 - MAYBE_SWAP (metadata[i]))
2189 / (2 * sizeof (offset_type)));
2190 ++i;
2191
2192 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2193
2194 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
2195 return 0;
2196
2197 if (types_list_elements)
2198 {
2199 struct dwarf2_section_info *section;
2200
2201 /* We can only handle a single .debug_types when we have an
2202 index. */
2203 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2204 return 0;
2205
2206 section = VEC_index (dwarf2_section_info_def,
2207 dwarf2_per_objfile->types, 0);
2208
2209 if (!create_signatured_type_table_from_index (objfile, section,
2210 types_list,
2211 types_list_elements))
2212 return 0;
2213 }
2214
2215 create_addrmap_from_index (objfile, map);
2216
2217 dwarf2_per_objfile->index_table = map;
2218 dwarf2_per_objfile->using_index = 1;
2219 dwarf2_per_objfile->quick_file_names_table =
2220 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2221
2222 return 1;
2223 }
2224
2225 /* A helper for the "quick" functions which sets the global
2226 dwarf2_per_objfile according to OBJFILE. */
2227
2228 static void
2229 dw2_setup (struct objfile *objfile)
2230 {
2231 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2232 gdb_assert (dwarf2_per_objfile);
2233 }
2234
2235 /* A helper for the "quick" functions which attempts to read the line
2236 table for THIS_CU. */
2237
2238 static struct quick_file_names *
2239 dw2_get_file_names (struct objfile *objfile,
2240 struct dwarf2_per_cu_data *this_cu)
2241 {
2242 bfd *abfd = objfile->obfd;
2243 struct line_header *lh;
2244 struct attribute *attr;
2245 struct cleanup *cleanups;
2246 struct die_info *comp_unit_die;
2247 struct dwarf2_section_info* sec;
2248 gdb_byte *info_ptr;
2249 int has_children, i;
2250 struct dwarf2_cu cu;
2251 unsigned int bytes_read;
2252 struct die_reader_specs reader_specs;
2253 char *name, *comp_dir;
2254 void **slot;
2255 struct quick_file_names *qfn;
2256 unsigned int line_offset;
2257
2258 if (this_cu->v.quick->file_names != NULL)
2259 return this_cu->v.quick->file_names;
2260 /* If we know there is no line data, no point in looking again. */
2261 if (this_cu->v.quick->no_file_data)
2262 return NULL;
2263
2264 init_one_comp_unit (&cu, this_cu);
2265 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2266
2267 if (this_cu->debug_types_section)
2268 sec = this_cu->debug_types_section;
2269 else
2270 sec = &dwarf2_per_objfile->info;
2271 dwarf2_read_section (objfile, sec);
2272 info_ptr = sec->buffer + this_cu->offset.sect_off;
2273
2274 info_ptr = read_and_check_comp_unit_head (&cu.header, sec, info_ptr,
2275 this_cu->debug_types_section != NULL);
2276
2277 /* Skip dummy compilation units. */
2278 if (info_ptr >= (sec->buffer + sec->size)
2279 || peek_abbrev_code (abfd, info_ptr) == 0)
2280 {
2281 do_cleanups (cleanups);
2282 return NULL;
2283 }
2284
2285 dwarf2_read_abbrevs (&cu);
2286 make_cleanup (dwarf2_free_abbrev_table, &cu);
2287
2288 init_cu_die_reader (&reader_specs, &cu);
2289 read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2290 &has_children);
2291
2292 lh = NULL;
2293 slot = NULL;
2294 line_offset = 0;
2295 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2296 if (attr)
2297 {
2298 struct quick_file_names find_entry;
2299
2300 line_offset = DW_UNSND (attr);
2301
2302 /* We may have already read in this line header (TU line header sharing).
2303 If we have we're done. */
2304 find_entry.offset = line_offset;
2305 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2306 &find_entry, INSERT);
2307 if (*slot != NULL)
2308 {
2309 do_cleanups (cleanups);
2310 this_cu->v.quick->file_names = *slot;
2311 return *slot;
2312 }
2313
2314 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2315 }
2316 if (lh == NULL)
2317 {
2318 do_cleanups (cleanups);
2319 this_cu->v.quick->no_file_data = 1;
2320 return NULL;
2321 }
2322
2323 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2324 qfn->offset = line_offset;
2325 gdb_assert (slot != NULL);
2326 *slot = qfn;
2327
2328 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
2329
2330 qfn->num_file_names = lh->num_file_names;
2331 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2332 lh->num_file_names * sizeof (char *));
2333 for (i = 0; i < lh->num_file_names; ++i)
2334 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2335 qfn->real_names = NULL;
2336
2337 free_line_header (lh);
2338 do_cleanups (cleanups);
2339
2340 this_cu->v.quick->file_names = qfn;
2341 return qfn;
2342 }
2343
2344 /* A helper for the "quick" functions which computes and caches the
2345 real path for a given file name from the line table. */
2346
2347 static const char *
2348 dw2_get_real_path (struct objfile *objfile,
2349 struct quick_file_names *qfn, int index)
2350 {
2351 if (qfn->real_names == NULL)
2352 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2353 qfn->num_file_names, sizeof (char *));
2354
2355 if (qfn->real_names[index] == NULL)
2356 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2357
2358 return qfn->real_names[index];
2359 }
2360
2361 static struct symtab *
2362 dw2_find_last_source_symtab (struct objfile *objfile)
2363 {
2364 int index;
2365
2366 dw2_setup (objfile);
2367 index = dwarf2_per_objfile->n_comp_units - 1;
2368 return dw2_instantiate_symtab (dw2_get_cu (index));
2369 }
2370
2371 /* Traversal function for dw2_forget_cached_source_info. */
2372
2373 static int
2374 dw2_free_cached_file_names (void **slot, void *info)
2375 {
2376 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2377
2378 if (file_data->real_names)
2379 {
2380 int i;
2381
2382 for (i = 0; i < file_data->num_file_names; ++i)
2383 {
2384 xfree ((void*) file_data->real_names[i]);
2385 file_data->real_names[i] = NULL;
2386 }
2387 }
2388
2389 return 1;
2390 }
2391
2392 static void
2393 dw2_forget_cached_source_info (struct objfile *objfile)
2394 {
2395 dw2_setup (objfile);
2396
2397 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2398 dw2_free_cached_file_names, NULL);
2399 }
2400
2401 /* Helper function for dw2_map_symtabs_matching_filename that expands
2402 the symtabs and calls the iterator. */
2403
2404 static int
2405 dw2_map_expand_apply (struct objfile *objfile,
2406 struct dwarf2_per_cu_data *per_cu,
2407 const char *name,
2408 const char *full_path, const char *real_path,
2409 int (*callback) (struct symtab *, void *),
2410 void *data)
2411 {
2412 struct symtab *last_made = objfile->symtabs;
2413
2414 /* Don't visit already-expanded CUs. */
2415 if (per_cu->v.quick->symtab)
2416 return 0;
2417
2418 /* This may expand more than one symtab, and we want to iterate over
2419 all of them. */
2420 dw2_instantiate_symtab (per_cu);
2421
2422 return iterate_over_some_symtabs (name, full_path, real_path, callback, data,
2423 objfile->symtabs, last_made);
2424 }
2425
2426 /* Implementation of the map_symtabs_matching_filename method. */
2427
2428 static int
2429 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
2430 const char *full_path, const char *real_path,
2431 int (*callback) (struct symtab *, void *),
2432 void *data)
2433 {
2434 int i;
2435 const char *name_basename = lbasename (name);
2436 int name_len = strlen (name);
2437 int is_abs = IS_ABSOLUTE_PATH (name);
2438
2439 dw2_setup (objfile);
2440
2441 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2442 + dwarf2_per_objfile->n_type_units); ++i)
2443 {
2444 int j;
2445 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2446 struct quick_file_names *file_data;
2447
2448 /* We only need to look at symtabs not already expanded. */
2449 if (per_cu->v.quick->symtab)
2450 continue;
2451
2452 file_data = dw2_get_file_names (objfile, per_cu);
2453 if (file_data == NULL)
2454 continue;
2455
2456 for (j = 0; j < file_data->num_file_names; ++j)
2457 {
2458 const char *this_name = file_data->file_names[j];
2459
2460 if (FILENAME_CMP (name, this_name) == 0
2461 || (!is_abs && compare_filenames_for_search (this_name,
2462 name, name_len)))
2463 {
2464 if (dw2_map_expand_apply (objfile, per_cu,
2465 name, full_path, real_path,
2466 callback, data))
2467 return 1;
2468 }
2469
2470 /* Before we invoke realpath, which can get expensive when many
2471 files are involved, do a quick comparison of the basenames. */
2472 if (! basenames_may_differ
2473 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
2474 continue;
2475
2476 if (full_path != NULL)
2477 {
2478 const char *this_real_name = dw2_get_real_path (objfile,
2479 file_data, j);
2480
2481 if (this_real_name != NULL
2482 && (FILENAME_CMP (full_path, this_real_name) == 0
2483 || (!is_abs
2484 && compare_filenames_for_search (this_real_name,
2485 name, name_len))))
2486 {
2487 if (dw2_map_expand_apply (objfile, per_cu,
2488 name, full_path, real_path,
2489 callback, data))
2490 return 1;
2491 }
2492 }
2493
2494 if (real_path != NULL)
2495 {
2496 const char *this_real_name = dw2_get_real_path (objfile,
2497 file_data, j);
2498
2499 if (this_real_name != NULL
2500 && (FILENAME_CMP (real_path, this_real_name) == 0
2501 || (!is_abs
2502 && compare_filenames_for_search (this_real_name,
2503 name, name_len))))
2504 {
2505 if (dw2_map_expand_apply (objfile, per_cu,
2506 name, full_path, real_path,
2507 callback, data))
2508 return 1;
2509 }
2510 }
2511 }
2512 }
2513
2514 return 0;
2515 }
2516
2517 static struct symtab *
2518 dw2_lookup_symbol (struct objfile *objfile, int block_index,
2519 const char *name, domain_enum domain)
2520 {
2521 /* We do all the work in the pre_expand_symtabs_matching hook
2522 instead. */
2523 return NULL;
2524 }
2525
2526 /* A helper function that expands all symtabs that hold an object
2527 named NAME. */
2528
2529 static void
2530 dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2531 {
2532 dw2_setup (objfile);
2533
2534 /* index_table is NULL if OBJF_READNOW. */
2535 if (dwarf2_per_objfile->index_table)
2536 {
2537 offset_type *vec;
2538
2539 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2540 name, &vec))
2541 {
2542 offset_type i, len = MAYBE_SWAP (*vec);
2543 for (i = 0; i < len; ++i)
2544 {
2545 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
2546 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
2547
2548 dw2_instantiate_symtab (per_cu);
2549 }
2550 }
2551 }
2552 }
2553
2554 static void
2555 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2556 enum block_enum block_kind, const char *name,
2557 domain_enum domain)
2558 {
2559 dw2_do_expand_symtabs_matching (objfile, name);
2560 }
2561
2562 static void
2563 dw2_print_stats (struct objfile *objfile)
2564 {
2565 int i, count;
2566
2567 dw2_setup (objfile);
2568 count = 0;
2569 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2570 + dwarf2_per_objfile->n_type_units); ++i)
2571 {
2572 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2573
2574 if (!per_cu->v.quick->symtab)
2575 ++count;
2576 }
2577 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2578 }
2579
2580 static void
2581 dw2_dump (struct objfile *objfile)
2582 {
2583 /* Nothing worth printing. */
2584 }
2585
2586 static void
2587 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2588 struct section_offsets *delta)
2589 {
2590 /* There's nothing to relocate here. */
2591 }
2592
2593 static void
2594 dw2_expand_symtabs_for_function (struct objfile *objfile,
2595 const char *func_name)
2596 {
2597 dw2_do_expand_symtabs_matching (objfile, func_name);
2598 }
2599
2600 static void
2601 dw2_expand_all_symtabs (struct objfile *objfile)
2602 {
2603 int i;
2604
2605 dw2_setup (objfile);
2606
2607 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2608 + dwarf2_per_objfile->n_type_units); ++i)
2609 {
2610 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2611
2612 dw2_instantiate_symtab (per_cu);
2613 }
2614 }
2615
2616 static void
2617 dw2_expand_symtabs_with_filename (struct objfile *objfile,
2618 const char *filename)
2619 {
2620 int i;
2621
2622 dw2_setup (objfile);
2623
2624 /* We don't need to consider type units here.
2625 This is only called for examining code, e.g. expand_line_sal.
2626 There can be an order of magnitude (or more) more type units
2627 than comp units, and we avoid them if we can. */
2628
2629 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2630 {
2631 int j;
2632 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2633 struct quick_file_names *file_data;
2634
2635 /* We only need to look at symtabs not already expanded. */
2636 if (per_cu->v.quick->symtab)
2637 continue;
2638
2639 file_data = dw2_get_file_names (objfile, per_cu);
2640 if (file_data == NULL)
2641 continue;
2642
2643 for (j = 0; j < file_data->num_file_names; ++j)
2644 {
2645 const char *this_name = file_data->file_names[j];
2646 if (FILENAME_CMP (this_name, filename) == 0)
2647 {
2648 dw2_instantiate_symtab (per_cu);
2649 break;
2650 }
2651 }
2652 }
2653 }
2654
2655 static const char *
2656 dw2_find_symbol_file (struct objfile *objfile, const char *name)
2657 {
2658 struct dwarf2_per_cu_data *per_cu;
2659 offset_type *vec;
2660 struct quick_file_names *file_data;
2661
2662 dw2_setup (objfile);
2663
2664 /* index_table is NULL if OBJF_READNOW. */
2665 if (!dwarf2_per_objfile->index_table)
2666 {
2667 struct symtab *s;
2668
2669 ALL_OBJFILE_SYMTABS (objfile, s)
2670 if (s->primary)
2671 {
2672 struct blockvector *bv = BLOCKVECTOR (s);
2673 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2674 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
2675
2676 if (sym)
2677 return sym->symtab->filename;
2678 }
2679 return NULL;
2680 }
2681
2682 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2683 name, &vec))
2684 return NULL;
2685
2686 /* Note that this just looks at the very first one named NAME -- but
2687 actually we are looking for a function. find_main_filename
2688 should be rewritten so that it doesn't require a custom hook. It
2689 could just use the ordinary symbol tables. */
2690 /* vec[0] is the length, which must always be >0. */
2691 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
2692
2693 file_data = dw2_get_file_names (objfile, per_cu);
2694 if (file_data == NULL)
2695 return NULL;
2696
2697 return file_data->file_names[file_data->num_file_names - 1];
2698 }
2699
2700 static void
2701 dw2_map_matching_symbols (const char * name, domain_enum namespace,
2702 struct objfile *objfile, int global,
2703 int (*callback) (struct block *,
2704 struct symbol *, void *),
2705 void *data, symbol_compare_ftype *match,
2706 symbol_compare_ftype *ordered_compare)
2707 {
2708 /* Currently unimplemented; used for Ada. The function can be called if the
2709 current language is Ada for a non-Ada objfile using GNU index. As Ada
2710 does not look for non-Ada symbols this function should just return. */
2711 }
2712
2713 static void
2714 dw2_expand_symtabs_matching
2715 (struct objfile *objfile,
2716 int (*file_matcher) (const char *, void *),
2717 int (*name_matcher) (const char *, void *),
2718 enum search_domain kind,
2719 void *data)
2720 {
2721 int i;
2722 offset_type iter;
2723 struct mapped_index *index;
2724
2725 dw2_setup (objfile);
2726
2727 /* index_table is NULL if OBJF_READNOW. */
2728 if (!dwarf2_per_objfile->index_table)
2729 return;
2730 index = dwarf2_per_objfile->index_table;
2731
2732 if (file_matcher != NULL)
2733 {
2734 struct cleanup *cleanup;
2735 htab_t visited_found, visited_not_found;
2736
2737 visited_found = htab_create_alloc (10,
2738 htab_hash_pointer, htab_eq_pointer,
2739 NULL, xcalloc, xfree);
2740 cleanup = make_cleanup_htab_delete (visited_found);
2741 visited_not_found = htab_create_alloc (10,
2742 htab_hash_pointer, htab_eq_pointer,
2743 NULL, xcalloc, xfree);
2744 make_cleanup_htab_delete (visited_not_found);
2745
2746 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2747 + dwarf2_per_objfile->n_type_units); ++i)
2748 {
2749 int j;
2750 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2751 struct quick_file_names *file_data;
2752 void **slot;
2753
2754 per_cu->v.quick->mark = 0;
2755
2756 /* We only need to look at symtabs not already expanded. */
2757 if (per_cu->v.quick->symtab)
2758 continue;
2759
2760 file_data = dw2_get_file_names (objfile, per_cu);
2761 if (file_data == NULL)
2762 continue;
2763
2764 if (htab_find (visited_not_found, file_data) != NULL)
2765 continue;
2766 else if (htab_find (visited_found, file_data) != NULL)
2767 {
2768 per_cu->v.quick->mark = 1;
2769 continue;
2770 }
2771
2772 for (j = 0; j < file_data->num_file_names; ++j)
2773 {
2774 if (file_matcher (file_data->file_names[j], data))
2775 {
2776 per_cu->v.quick->mark = 1;
2777 break;
2778 }
2779 }
2780
2781 slot = htab_find_slot (per_cu->v.quick->mark
2782 ? visited_found
2783 : visited_not_found,
2784 file_data, INSERT);
2785 *slot = file_data;
2786 }
2787
2788 do_cleanups (cleanup);
2789 }
2790
2791 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2792 {
2793 offset_type idx = 2 * iter;
2794 const char *name;
2795 offset_type *vec, vec_len, vec_idx;
2796
2797 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2798 continue;
2799
2800 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
2801
2802 if (! (*name_matcher) (name, data))
2803 continue;
2804
2805 /* The name was matched, now expand corresponding CUs that were
2806 marked. */
2807 vec = (offset_type *) (index->constant_pool
2808 + MAYBE_SWAP (index->symbol_table[idx + 1]));
2809 vec_len = MAYBE_SWAP (vec[0]);
2810 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2811 {
2812 struct dwarf2_per_cu_data *per_cu;
2813
2814 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2815 if (file_matcher == NULL || per_cu->v.quick->mark)
2816 dw2_instantiate_symtab (per_cu);
2817 }
2818 }
2819 }
2820
2821 static struct symtab *
2822 dw2_find_pc_sect_symtab (struct objfile *objfile,
2823 struct minimal_symbol *msymbol,
2824 CORE_ADDR pc,
2825 struct obj_section *section,
2826 int warn_if_readin)
2827 {
2828 struct dwarf2_per_cu_data *data;
2829
2830 dw2_setup (objfile);
2831
2832 if (!objfile->psymtabs_addrmap)
2833 return NULL;
2834
2835 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2836 if (!data)
2837 return NULL;
2838
2839 if (warn_if_readin && data->v.quick->symtab)
2840 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
2841 paddress (get_objfile_arch (objfile), pc));
2842
2843 return dw2_instantiate_symtab (data);
2844 }
2845
2846 static void
2847 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
2848 void *data, int need_fullname)
2849 {
2850 int i;
2851 struct cleanup *cleanup;
2852 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
2853 NULL, xcalloc, xfree);
2854
2855 cleanup = make_cleanup_htab_delete (visited);
2856 dw2_setup (objfile);
2857
2858 /* We can ignore file names coming from already-expanded CUs. */
2859 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2860 + dwarf2_per_objfile->n_type_units); ++i)
2861 {
2862 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2863
2864 if (per_cu->v.quick->symtab)
2865 {
2866 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
2867 INSERT);
2868
2869 *slot = per_cu->v.quick->file_names;
2870 }
2871 }
2872
2873 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2874 + dwarf2_per_objfile->n_type_units); ++i)
2875 {
2876 int j;
2877 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2878 struct quick_file_names *file_data;
2879 void **slot;
2880
2881 /* We only need to look at symtabs not already expanded. */
2882 if (per_cu->v.quick->symtab)
2883 continue;
2884
2885 file_data = dw2_get_file_names (objfile, per_cu);
2886 if (file_data == NULL)
2887 continue;
2888
2889 slot = htab_find_slot (visited, file_data, INSERT);
2890 if (*slot)
2891 {
2892 /* Already visited. */
2893 continue;
2894 }
2895 *slot = file_data;
2896
2897 for (j = 0; j < file_data->num_file_names; ++j)
2898 {
2899 const char *this_real_name;
2900
2901 if (need_fullname)
2902 this_real_name = dw2_get_real_path (objfile, file_data, j);
2903 else
2904 this_real_name = NULL;
2905 (*fun) (file_data->file_names[j], this_real_name, data);
2906 }
2907 }
2908
2909 do_cleanups (cleanup);
2910 }
2911
2912 static int
2913 dw2_has_symbols (struct objfile *objfile)
2914 {
2915 return 1;
2916 }
2917
2918 const struct quick_symbol_functions dwarf2_gdb_index_functions =
2919 {
2920 dw2_has_symbols,
2921 dw2_find_last_source_symtab,
2922 dw2_forget_cached_source_info,
2923 dw2_map_symtabs_matching_filename,
2924 dw2_lookup_symbol,
2925 dw2_pre_expand_symtabs_matching,
2926 dw2_print_stats,
2927 dw2_dump,
2928 dw2_relocate,
2929 dw2_expand_symtabs_for_function,
2930 dw2_expand_all_symtabs,
2931 dw2_expand_symtabs_with_filename,
2932 dw2_find_symbol_file,
2933 dw2_map_matching_symbols,
2934 dw2_expand_symtabs_matching,
2935 dw2_find_pc_sect_symtab,
2936 dw2_map_symbol_filenames
2937 };
2938
2939 /* Initialize for reading DWARF for this objfile. Return 0 if this
2940 file will use psymtabs, or 1 if using the GNU index. */
2941
2942 int
2943 dwarf2_initialize_objfile (struct objfile *objfile)
2944 {
2945 /* If we're about to read full symbols, don't bother with the
2946 indices. In this case we also don't care if some other debug
2947 format is making psymtabs, because they are all about to be
2948 expanded anyway. */
2949 if ((objfile->flags & OBJF_READNOW))
2950 {
2951 int i;
2952
2953 dwarf2_per_objfile->using_index = 1;
2954 create_all_comp_units (objfile);
2955 create_debug_types_hash_table (objfile);
2956 dwarf2_per_objfile->quick_file_names_table =
2957 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2958
2959 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2960 + dwarf2_per_objfile->n_type_units); ++i)
2961 {
2962 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2963
2964 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2965 struct dwarf2_per_cu_quick_data);
2966 }
2967
2968 /* Return 1 so that gdb sees the "quick" functions. However,
2969 these functions will be no-ops because we will have expanded
2970 all symtabs. */
2971 return 1;
2972 }
2973
2974 if (dwarf2_read_index (objfile))
2975 return 1;
2976
2977 return 0;
2978 }
2979
2980 \f
2981
2982 /* Build a partial symbol table. */
2983
2984 void
2985 dwarf2_build_psymtabs (struct objfile *objfile)
2986 {
2987 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
2988 {
2989 init_psymbol_list (objfile, 1024);
2990 }
2991
2992 dwarf2_build_psymtabs_hard (objfile);
2993 }
2994
2995 /* Return TRUE if OFFSET is within CU_HEADER. */
2996
2997 static inline int
2998 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
2999 {
3000 sect_offset bottom = { cu_header->offset.sect_off };
3001 sect_offset top = { (cu_header->offset.sect_off + cu_header->length
3002 + cu_header->initial_length_size) };
3003
3004 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3005 }
3006
3007 /* Read in the comp unit header information from the debug_info at info_ptr.
3008 NOTE: This leaves members offset, first_die_offset to be filled in
3009 by the caller. */
3010
3011 static gdb_byte *
3012 read_comp_unit_head (struct comp_unit_head *cu_header,
3013 gdb_byte *info_ptr, bfd *abfd)
3014 {
3015 int signed_addr;
3016 unsigned int bytes_read;
3017
3018 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3019 cu_header->initial_length_size = bytes_read;
3020 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3021 info_ptr += bytes_read;
3022 cu_header->version = read_2_bytes (abfd, info_ptr);
3023 info_ptr += 2;
3024 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3025 &bytes_read);
3026 info_ptr += bytes_read;
3027 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3028 info_ptr += 1;
3029 signed_addr = bfd_get_sign_extend_vma (abfd);
3030 if (signed_addr < 0)
3031 internal_error (__FILE__, __LINE__,
3032 _("read_comp_unit_head: dwarf from non elf file"));
3033 cu_header->signed_addr_p = signed_addr;
3034
3035 return info_ptr;
3036 }
3037
3038 /* Subroutine of read_and_check_comp_unit_head and
3039 read_and_check_type_unit_head to simplify them.
3040 Perform various error checking on the header. */
3041
3042 static void
3043 error_check_comp_unit_head (struct comp_unit_head *header,
3044 struct dwarf2_section_info *section)
3045 {
3046 bfd *abfd = section->asection->owner;
3047 const char *filename = bfd_get_filename (abfd);
3048
3049 if (header->version != 2 && header->version != 3 && header->version != 4)
3050 error (_("Dwarf Error: wrong version in compilation unit header "
3051 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3052 filename);
3053
3054 if (header->abbrev_offset.sect_off
3055 >= dwarf2_section_size (dwarf2_per_objfile->objfile,
3056 &dwarf2_per_objfile->abbrev))
3057 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3058 "(offset 0x%lx + 6) [in module %s]"),
3059 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3060 filename);
3061
3062 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3063 avoid potential 32-bit overflow. */
3064 if (((unsigned long) header->offset.sect_off
3065 + header->length + header->initial_length_size)
3066 > section->size)
3067 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3068 "(offset 0x%lx + 0) [in module %s]"),
3069 (long) header->length, (long) header->offset.sect_off,
3070 filename);
3071 }
3072
3073 /* Read in a CU/TU header and perform some basic error checking.
3074 The contents of the header are stored in HEADER.
3075 The result is a pointer to the start of the first DIE. */
3076
3077 static gdb_byte *
3078 read_and_check_comp_unit_head (struct comp_unit_head *header,
3079 struct dwarf2_section_info *section,
3080 gdb_byte *info_ptr,
3081 int is_debug_types_section)
3082 {
3083 gdb_byte *beg_of_comp_unit = info_ptr;
3084 bfd *abfd = section->asection->owner;
3085
3086 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3087
3088 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3089
3090 /* If we're reading a type unit, skip over the signature and
3091 type_offset fields. */
3092 if (is_debug_types_section)
3093 info_ptr += 8 /*signature*/ + header->offset_size;
3094
3095 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3096
3097 error_check_comp_unit_head (header, section);
3098
3099 return info_ptr;
3100 }
3101
3102 /* Read in the types comp unit header information from .debug_types entry at
3103 types_ptr. The result is a pointer to one past the end of the header. */
3104
3105 static gdb_byte *
3106 read_and_check_type_unit_head (struct comp_unit_head *header,
3107 struct dwarf2_section_info *section,
3108 gdb_byte *info_ptr,
3109 ULONGEST *signature, cu_offset *type_offset)
3110 {
3111 gdb_byte *beg_of_comp_unit = info_ptr;
3112 bfd *abfd = section->asection->owner;
3113
3114 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3115
3116 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3117
3118 /* If we're reading a type unit, skip over the signature and
3119 type_offset fields. */
3120 if (signature != NULL)
3121 *signature = read_8_bytes (abfd, info_ptr);
3122 info_ptr += 8;
3123 if (type_offset != NULL)
3124 type_offset->cu_off = read_offset_1 (abfd, info_ptr, header->offset_size);
3125 info_ptr += header->offset_size;
3126
3127 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3128
3129 error_check_comp_unit_head (header, section);
3130
3131 return info_ptr;
3132 }
3133
3134 /* Allocate a new partial symtab for file named NAME and mark this new
3135 partial symtab as being an include of PST. */
3136
3137 static void
3138 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
3139 struct objfile *objfile)
3140 {
3141 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
3142
3143 subpst->section_offsets = pst->section_offsets;
3144 subpst->textlow = 0;
3145 subpst->texthigh = 0;
3146
3147 subpst->dependencies = (struct partial_symtab **)
3148 obstack_alloc (&objfile->objfile_obstack,
3149 sizeof (struct partial_symtab *));
3150 subpst->dependencies[0] = pst;
3151 subpst->number_of_dependencies = 1;
3152
3153 subpst->globals_offset = 0;
3154 subpst->n_global_syms = 0;
3155 subpst->statics_offset = 0;
3156 subpst->n_static_syms = 0;
3157 subpst->symtab = NULL;
3158 subpst->read_symtab = pst->read_symtab;
3159 subpst->readin = 0;
3160
3161 /* No private part is necessary for include psymtabs. This property
3162 can be used to differentiate between such include psymtabs and
3163 the regular ones. */
3164 subpst->read_symtab_private = NULL;
3165 }
3166
3167 /* Read the Line Number Program data and extract the list of files
3168 included by the source file represented by PST. Build an include
3169 partial symtab for each of these included files. */
3170
3171 static void
3172 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
3173 struct die_info *die,
3174 struct partial_symtab *pst)
3175 {
3176 struct objfile *objfile = cu->objfile;
3177 bfd *abfd = objfile->obfd;
3178 struct line_header *lh = NULL;
3179 struct attribute *attr;
3180
3181 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3182 if (attr)
3183 {
3184 unsigned int line_offset = DW_UNSND (attr);
3185
3186 lh = dwarf_decode_line_header (line_offset, abfd, cu);
3187 }
3188 if (lh == NULL)
3189 return; /* No linetable, so no includes. */
3190
3191 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
3192 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
3193
3194 free_line_header (lh);
3195 }
3196
3197 static hashval_t
3198 hash_type_signature (const void *item)
3199 {
3200 const struct signatured_type *type_sig = item;
3201
3202 /* This drops the top 32 bits of the signature, but is ok for a hash. */
3203 return type_sig->signature;
3204 }
3205
3206 static int
3207 eq_type_signature (const void *item_lhs, const void *item_rhs)
3208 {
3209 const struct signatured_type *lhs = item_lhs;
3210 const struct signatured_type *rhs = item_rhs;
3211
3212 return lhs->signature == rhs->signature;
3213 }
3214
3215 /* Allocate a hash table for signatured types. */
3216
3217 static htab_t
3218 allocate_signatured_type_table (struct objfile *objfile)
3219 {
3220 return htab_create_alloc_ex (41,
3221 hash_type_signature,
3222 eq_type_signature,
3223 NULL,
3224 &objfile->objfile_obstack,
3225 hashtab_obstack_allocate,
3226 dummy_obstack_deallocate);
3227 }
3228
3229 /* A helper function to add a signatured type CU to a table. */
3230
3231 static int
3232 add_signatured_type_cu_to_table (void **slot, void *datum)
3233 {
3234 struct signatured_type *sigt = *slot;
3235 struct dwarf2_per_cu_data ***datap = datum;
3236
3237 **datap = &sigt->per_cu;
3238 ++*datap;
3239
3240 return 1;
3241 }
3242
3243 /* Create the hash table of all entries in the .debug_types section(s).
3244 The result is zero if there is an error (e.g. missing .debug_types section),
3245 otherwise non-zero. */
3246
3247 static int
3248 create_debug_types_hash_table (struct objfile *objfile)
3249 {
3250 htab_t types_htab = NULL;
3251 struct dwarf2_per_cu_data **iter;
3252 int ix;
3253 struct dwarf2_section_info *section;
3254
3255 if (VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types))
3256 {
3257 dwarf2_per_objfile->signatured_types = NULL;
3258 return 0;
3259 }
3260
3261 for (ix = 0;
3262 VEC_iterate (dwarf2_section_info_def, dwarf2_per_objfile->types,
3263 ix, section);
3264 ++ix)
3265 {
3266 gdb_byte *info_ptr, *end_ptr;
3267
3268 dwarf2_read_section (objfile, section);
3269 info_ptr = section->buffer;
3270
3271 if (info_ptr == NULL)
3272 continue;
3273
3274 if (types_htab == NULL)
3275 types_htab = allocate_signatured_type_table (objfile);
3276
3277 if (dwarf2_die_debug)
3278 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
3279
3280 end_ptr = info_ptr + section->size;
3281 while (info_ptr < end_ptr)
3282 {
3283 sect_offset offset;
3284 cu_offset type_offset;
3285 ULONGEST signature;
3286 struct signatured_type *type_sig;
3287 void **slot;
3288 gdb_byte *ptr = info_ptr;
3289 struct comp_unit_head header;
3290
3291 offset.sect_off = ptr - section->buffer;
3292
3293 /* We need to read the type's signature in order to build the hash
3294 table, but we don't need anything else just yet. */
3295
3296 ptr = read_and_check_type_unit_head (&header, section, ptr,
3297 &signature, &type_offset);
3298
3299 /* Skip dummy type units. */
3300 if (ptr >= end_ptr || peek_abbrev_code (objfile->obfd, ptr) == 0)
3301 {
3302 info_ptr = info_ptr + header.initial_length_size + header.length;
3303 continue;
3304 }
3305
3306 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
3307 memset (type_sig, 0, sizeof (*type_sig));
3308 type_sig->signature = signature;
3309 type_sig->type_offset = type_offset;
3310 type_sig->per_cu.objfile = objfile;
3311 type_sig->per_cu.debug_types_section = section;
3312 type_sig->per_cu.offset = offset;
3313
3314 slot = htab_find_slot (types_htab, type_sig, INSERT);
3315 gdb_assert (slot != NULL);
3316 if (*slot != NULL)
3317 {
3318 const struct signatured_type *dup_sig = *slot;
3319
3320 complaint (&symfile_complaints,
3321 _("debug type entry at offset 0x%x is duplicate to the "
3322 "entry at offset 0x%x, signature 0x%s"),
3323 offset.sect_off, dup_sig->per_cu.offset.sect_off,
3324 phex (signature, sizeof (signature)));
3325 gdb_assert (signature == dup_sig->signature);
3326 }
3327 *slot = type_sig;
3328
3329 if (dwarf2_die_debug)
3330 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
3331 offset.sect_off,
3332 phex (signature, sizeof (signature)));
3333
3334 info_ptr = info_ptr + header.initial_length_size + header.length;
3335 }
3336 }
3337
3338 dwarf2_per_objfile->signatured_types = types_htab;
3339
3340 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
3341 dwarf2_per_objfile->all_type_units
3342 = obstack_alloc (&objfile->objfile_obstack,
3343 dwarf2_per_objfile->n_type_units
3344 * sizeof (struct dwarf2_per_cu_data *));
3345 iter = &dwarf2_per_objfile->all_type_units[0];
3346 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
3347 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
3348 == dwarf2_per_objfile->n_type_units);
3349
3350 return 1;
3351 }
3352
3353 /* Lookup a signature based type.
3354 Returns NULL if SIG is not present in the table. */
3355
3356 static struct signatured_type *
3357 lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
3358 {
3359 struct signatured_type find_entry, *entry;
3360
3361 if (dwarf2_per_objfile->signatured_types == NULL)
3362 {
3363 complaint (&symfile_complaints,
3364 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
3365 return 0;
3366 }
3367
3368 find_entry.signature = sig;
3369 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
3370 return entry;
3371 }
3372
3373 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
3374
3375 static void
3376 init_cu_die_reader (struct die_reader_specs *reader,
3377 struct dwarf2_cu *cu)
3378 {
3379 reader->abfd = cu->objfile->obfd;
3380 reader->cu = cu;
3381 if (cu->per_cu->debug_types_section)
3382 {
3383 gdb_assert (cu->per_cu->debug_types_section->readin);
3384 reader->buffer = cu->per_cu->debug_types_section->buffer;
3385 }
3386 else
3387 {
3388 gdb_assert (dwarf2_per_objfile->info.readin);
3389 reader->buffer = dwarf2_per_objfile->info.buffer;
3390 }
3391 }
3392
3393 /* Find the base address of the compilation unit for range lists and
3394 location lists. It will normally be specified by DW_AT_low_pc.
3395 In DWARF-3 draft 4, the base address could be overridden by
3396 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3397 compilation units with discontinuous ranges. */
3398
3399 static void
3400 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3401 {
3402 struct attribute *attr;
3403
3404 cu->base_known = 0;
3405 cu->base_address = 0;
3406
3407 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3408 if (attr)
3409 {
3410 cu->base_address = DW_ADDR (attr);
3411 cu->base_known = 1;
3412 }
3413 else
3414 {
3415 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3416 if (attr)
3417 {
3418 cu->base_address = DW_ADDR (attr);
3419 cu->base_known = 1;
3420 }
3421 }
3422 }
3423
3424 /* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3425 to combine the common parts.
3426 Process compilation unit THIS_CU for a psymtab.
3427 SECTION is the section the CU/TU comes from,
3428 either .debug_info or .debug_types. */
3429
3430 static void
3431 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
3432 struct dwarf2_section_info *section,
3433 int is_debug_types_section)
3434 {
3435 struct objfile *objfile = this_cu->objfile;
3436 bfd *abfd = objfile->obfd;
3437 gdb_byte *buffer = section->buffer;
3438 gdb_byte *info_ptr = buffer + this_cu->offset.sect_off;
3439 unsigned int buffer_size = section->size;
3440 gdb_byte *beg_of_comp_unit = info_ptr;
3441 struct die_info *comp_unit_die;
3442 struct partial_symtab *pst;
3443 CORE_ADDR baseaddr;
3444 struct cleanup *back_to_inner;
3445 struct dwarf2_cu cu;
3446 int has_children, has_pc_info;
3447 struct attribute *attr;
3448 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3449 struct die_reader_specs reader_specs;
3450 const char *filename;
3451
3452 /* If this compilation unit was already read in, free the
3453 cached copy in order to read it in again. This is
3454 necessary because we skipped some symbols when we first
3455 read in the compilation unit (see load_partial_dies).
3456 This problem could be avoided, but the benefit is
3457 unclear. */
3458 if (this_cu->cu != NULL)
3459 free_one_cached_comp_unit (this_cu->cu);
3460
3461 /* Note that this is a pointer to our stack frame, being
3462 added to a global data structure. It will be cleaned up
3463 in free_stack_comp_unit when we finish with this
3464 compilation unit. */
3465 init_one_comp_unit (&cu, this_cu);
3466 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
3467
3468 info_ptr = read_and_check_comp_unit_head (&cu.header, section, info_ptr,
3469 is_debug_types_section);
3470
3471 /* Skip dummy compilation units. */
3472 if (info_ptr >= buffer + buffer_size
3473 || peek_abbrev_code (abfd, info_ptr) == 0)
3474 {
3475 do_cleanups (back_to_inner);
3476 return;
3477 }
3478
3479 cu.list_in_scope = &file_symbols;
3480
3481 /* Read the abbrevs for this compilation unit into a table. */
3482 dwarf2_read_abbrevs (&cu);
3483 make_cleanup (dwarf2_free_abbrev_table, &cu);
3484
3485 /* Read the compilation unit die. */
3486 init_cu_die_reader (&reader_specs, &cu);
3487 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3488 &has_children);
3489
3490 if (is_debug_types_section)
3491 {
3492 /* LENGTH has not been set yet for type units. */
3493 gdb_assert (this_cu->offset.sect_off == cu.header.offset.sect_off);
3494 this_cu->length = cu.header.length + cu.header.initial_length_size;
3495 }
3496 else if (comp_unit_die->tag == DW_TAG_partial_unit)
3497 {
3498 do_cleanups (back_to_inner);
3499 return;
3500 }
3501
3502 prepare_one_comp_unit (&cu, comp_unit_die);
3503
3504 /* Allocate a new partial symbol table structure. */
3505 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3506 if (attr == NULL || !DW_STRING (attr))
3507 filename = "";
3508 else
3509 filename = DW_STRING (attr);
3510 pst = start_psymtab_common (objfile, objfile->section_offsets,
3511 filename,
3512 /* TEXTLOW and TEXTHIGH are set below. */
3513 0,
3514 objfile->global_psymbols.next,
3515 objfile->static_psymbols.next);
3516 pst->psymtabs_addrmap_supported = 1;
3517
3518 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3519 if (attr != NULL)
3520 pst->dirname = DW_STRING (attr);
3521
3522 pst->read_symtab_private = this_cu;
3523
3524 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3525
3526 /* Store the function that reads in the rest of the symbol table. */
3527 pst->read_symtab = dwarf2_psymtab_to_symtab;
3528
3529 this_cu->v.psymtab = pst;
3530
3531 dwarf2_find_base_address (comp_unit_die, &cu);
3532
3533 /* Possibly set the default values of LOWPC and HIGHPC from
3534 `DW_AT_ranges'. */
3535 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3536 &best_highpc, &cu, pst);
3537 if (has_pc_info == 1 && best_lowpc < best_highpc)
3538 /* Store the contiguous range if it is not empty; it can be empty for
3539 CUs with no code. */
3540 addrmap_set_empty (objfile->psymtabs_addrmap,
3541 best_lowpc + baseaddr,
3542 best_highpc + baseaddr - 1, pst);
3543
3544 /* Check if comp unit has_children.
3545 If so, read the rest of the partial symbols from this comp unit.
3546 If not, there's no more debug_info for this comp unit. */
3547 if (has_children)
3548 {
3549 struct partial_die_info *first_die;
3550 CORE_ADDR lowpc, highpc;
3551
3552 lowpc = ((CORE_ADDR) -1);
3553 highpc = ((CORE_ADDR) 0);
3554
3555 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
3556
3557 scan_partial_symbols (first_die, &lowpc, &highpc,
3558 ! has_pc_info, &cu);
3559
3560 /* If we didn't find a lowpc, set it to highpc to avoid
3561 complaints from `maint check'. */
3562 if (lowpc == ((CORE_ADDR) -1))
3563 lowpc = highpc;
3564
3565 /* If the compilation unit didn't have an explicit address range,
3566 then use the information extracted from its child dies. */
3567 if (! has_pc_info)
3568 {
3569 best_lowpc = lowpc;
3570 best_highpc = highpc;
3571 }
3572 }
3573 pst->textlow = best_lowpc + baseaddr;
3574 pst->texthigh = best_highpc + baseaddr;
3575
3576 pst->n_global_syms = objfile->global_psymbols.next -
3577 (objfile->global_psymbols.list + pst->globals_offset);
3578 pst->n_static_syms = objfile->static_psymbols.next -
3579 (objfile->static_psymbols.list + pst->statics_offset);
3580 sort_pst_symbols (pst);
3581
3582 if (is_debug_types_section)
3583 {
3584 /* It's not clear we want to do anything with stmt lists here.
3585 Waiting to see what gcc ultimately does. */
3586 }
3587 else
3588 {
3589 /* Get the list of files included in the current compilation unit,
3590 and build a psymtab for each of them. */
3591 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
3592 }
3593
3594 do_cleanups (back_to_inner);
3595 }
3596
3597 /* Traversal function for htab_traverse_noresize.
3598 Process one .debug_types comp-unit. */
3599
3600 static int
3601 process_type_comp_unit (void **slot, void *info)
3602 {
3603 struct signatured_type *entry = (struct signatured_type *) *slot;
3604 struct dwarf2_per_cu_data *this_cu;
3605
3606 gdb_assert (info == NULL);
3607 this_cu = &entry->per_cu;
3608
3609 gdb_assert (this_cu->debug_types_section->readin);
3610 process_psymtab_comp_unit (this_cu, this_cu->debug_types_section, 1);
3611
3612 return 1;
3613 }
3614
3615 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3616 Build partial symbol tables for the .debug_types comp-units. */
3617
3618 static void
3619 build_type_psymtabs (struct objfile *objfile)
3620 {
3621 if (! create_debug_types_hash_table (objfile))
3622 return;
3623
3624 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3625 process_type_comp_unit, NULL);
3626 }
3627
3628 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
3629
3630 static void
3631 psymtabs_addrmap_cleanup (void *o)
3632 {
3633 struct objfile *objfile = o;
3634
3635 objfile->psymtabs_addrmap = NULL;
3636 }
3637
3638 /* Build the partial symbol table by doing a quick pass through the
3639 .debug_info and .debug_abbrev sections. */
3640
3641 static void
3642 dwarf2_build_psymtabs_hard (struct objfile *objfile)
3643 {
3644 struct cleanup *back_to, *addrmap_cleanup;
3645 struct obstack temp_obstack;
3646 int i;
3647
3648 dwarf2_per_objfile->reading_partial_symbols = 1;
3649
3650 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3651
3652 /* Any cached compilation units will be linked by the per-objfile
3653 read_in_chain. Make sure to free them when we're done. */
3654 back_to = make_cleanup (free_cached_comp_units, NULL);
3655
3656 build_type_psymtabs (objfile);
3657
3658 create_all_comp_units (objfile);
3659
3660 /* Create a temporary address map on a temporary obstack. We later
3661 copy this to the final obstack. */
3662 obstack_init (&temp_obstack);
3663 make_cleanup_obstack_free (&temp_obstack);
3664 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3665 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
3666
3667 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3668 {
3669 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3670
3671 process_psymtab_comp_unit (per_cu, &dwarf2_per_objfile->info, 0);
3672 }
3673
3674 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3675 &objfile->objfile_obstack);
3676 discard_cleanups (addrmap_cleanup);
3677
3678 do_cleanups (back_to);
3679 }
3680
3681 /* Load the partial DIEs for a secondary CU into memory. */
3682
3683 static void
3684 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
3685 {
3686 struct objfile *objfile = this_cu->objfile;
3687 bfd *abfd = objfile->obfd;
3688 gdb_byte *info_ptr;
3689 struct die_info *comp_unit_die;
3690 struct dwarf2_cu *cu;
3691 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
3692 int has_children;
3693 struct die_reader_specs reader_specs;
3694 int read_cu = 0;
3695 struct dwarf2_section_info *section = &dwarf2_per_objfile->info;
3696
3697 gdb_assert (! this_cu->debug_types_section);
3698
3699 gdb_assert (section->readin);
3700 info_ptr = section->buffer + this_cu->offset.sect_off;
3701
3702 if (this_cu->cu == NULL)
3703 {
3704 cu = xmalloc (sizeof (*cu));
3705 init_one_comp_unit (cu, this_cu);
3706
3707 read_cu = 1;
3708
3709 /* If an error occurs while loading, release our storage. */
3710 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
3711
3712 info_ptr = read_and_check_comp_unit_head (&cu->header, section, info_ptr,
3713 0);
3714
3715 /* Skip dummy compilation units. */
3716 if (info_ptr >= (section->buffer + section->size)
3717 || peek_abbrev_code (abfd, info_ptr) == 0)
3718 {
3719 do_cleanups (free_cu_cleanup);
3720 return;
3721 }
3722 }
3723 else
3724 {
3725 cu = this_cu->cu;
3726 info_ptr += cu->header.first_die_offset.cu_off;
3727 }
3728
3729 /* Read the abbrevs for this compilation unit into a table. */
3730 gdb_assert (cu->dwarf2_abbrevs == NULL);
3731 dwarf2_read_abbrevs (cu);
3732 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
3733
3734 /* Read the compilation unit die. */
3735 init_cu_die_reader (&reader_specs, cu);
3736 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3737 &has_children);
3738
3739 prepare_one_comp_unit (cu, comp_unit_die);
3740
3741 /* Check if comp unit has_children.
3742 If so, read the rest of the partial symbols from this comp unit.
3743 If not, there's no more debug_info for this comp unit. */
3744 if (has_children)
3745 load_partial_dies (abfd, section->buffer, info_ptr, 0, cu);
3746
3747 do_cleanups (free_abbrevs_cleanup);
3748
3749 if (read_cu)
3750 {
3751 /* We've successfully allocated this compilation unit. Let our
3752 caller clean it up when finished with it. */
3753 discard_cleanups (free_cu_cleanup);
3754
3755 /* Link this CU into read_in_chain. */
3756 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3757 dwarf2_per_objfile->read_in_chain = this_cu;
3758 }
3759 }
3760
3761 /* Create a list of all compilation units in OBJFILE.
3762 This is only done for -readnow and building partial symtabs. */
3763
3764 static void
3765 create_all_comp_units (struct objfile *objfile)
3766 {
3767 int n_allocated;
3768 int n_comp_units;
3769 struct dwarf2_per_cu_data **all_comp_units;
3770 gdb_byte *info_ptr;
3771
3772 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3773 info_ptr = dwarf2_per_objfile->info.buffer;
3774
3775 n_comp_units = 0;
3776 n_allocated = 10;
3777 all_comp_units = xmalloc (n_allocated
3778 * sizeof (struct dwarf2_per_cu_data *));
3779
3780 while (info_ptr < dwarf2_per_objfile->info.buffer
3781 + dwarf2_per_objfile->info.size)
3782 {
3783 unsigned int length, initial_length_size;
3784 struct dwarf2_per_cu_data *this_cu;
3785 sect_offset offset;
3786
3787 offset.sect_off = info_ptr - dwarf2_per_objfile->info.buffer;
3788
3789 /* Read just enough information to find out where the next
3790 compilation unit is. */
3791 length = read_initial_length (objfile->obfd, info_ptr,
3792 &initial_length_size);
3793
3794 /* Save the compilation unit for later lookup. */
3795 this_cu = obstack_alloc (&objfile->objfile_obstack,
3796 sizeof (struct dwarf2_per_cu_data));
3797 memset (this_cu, 0, sizeof (*this_cu));
3798 this_cu->offset = offset;
3799 this_cu->length = length + initial_length_size;
3800 this_cu->objfile = objfile;
3801
3802 if (n_comp_units == n_allocated)
3803 {
3804 n_allocated *= 2;
3805 all_comp_units = xrealloc (all_comp_units,
3806 n_allocated
3807 * sizeof (struct dwarf2_per_cu_data *));
3808 }
3809 all_comp_units[n_comp_units++] = this_cu;
3810
3811 info_ptr = info_ptr + this_cu->length;
3812 }
3813
3814 dwarf2_per_objfile->all_comp_units
3815 = obstack_alloc (&objfile->objfile_obstack,
3816 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3817 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3818 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3819 xfree (all_comp_units);
3820 dwarf2_per_objfile->n_comp_units = n_comp_units;
3821 }
3822
3823 /* Process all loaded DIEs for compilation unit CU, starting at
3824 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3825 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3826 DW_AT_ranges). If NEED_PC is set, then this function will set
3827 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3828 and record the covered ranges in the addrmap. */
3829
3830 static void
3831 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
3832 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3833 {
3834 struct partial_die_info *pdi;
3835
3836 /* Now, march along the PDI's, descending into ones which have
3837 interesting children but skipping the children of the other ones,
3838 until we reach the end of the compilation unit. */
3839
3840 pdi = first_die;
3841
3842 while (pdi != NULL)
3843 {
3844 fixup_partial_die (pdi, cu);
3845
3846 /* Anonymous namespaces or modules have no name but have interesting
3847 children, so we need to look at them. Ditto for anonymous
3848 enums. */
3849
3850 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
3851 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
3852 {
3853 switch (pdi->tag)
3854 {
3855 case DW_TAG_subprogram:
3856 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3857 break;
3858 case DW_TAG_constant:
3859 case DW_TAG_variable:
3860 case DW_TAG_typedef:
3861 case DW_TAG_union_type:
3862 if (!pdi->is_declaration)
3863 {
3864 add_partial_symbol (pdi, cu);
3865 }
3866 break;
3867 case DW_TAG_class_type:
3868 case DW_TAG_interface_type:
3869 case DW_TAG_structure_type:
3870 if (!pdi->is_declaration)
3871 {
3872 add_partial_symbol (pdi, cu);
3873 }
3874 break;
3875 case DW_TAG_enumeration_type:
3876 if (!pdi->is_declaration)
3877 add_partial_enumeration (pdi, cu);
3878 break;
3879 case DW_TAG_base_type:
3880 case DW_TAG_subrange_type:
3881 /* File scope base type definitions are added to the partial
3882 symbol table. */
3883 add_partial_symbol (pdi, cu);
3884 break;
3885 case DW_TAG_namespace:
3886 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
3887 break;
3888 case DW_TAG_module:
3889 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3890 break;
3891 default:
3892 break;
3893 }
3894 }
3895
3896 /* If the die has a sibling, skip to the sibling. */
3897
3898 pdi = pdi->die_sibling;
3899 }
3900 }
3901
3902 /* Functions used to compute the fully scoped name of a partial DIE.
3903
3904 Normally, this is simple. For C++, the parent DIE's fully scoped
3905 name is concatenated with "::" and the partial DIE's name. For
3906 Java, the same thing occurs except that "." is used instead of "::".
3907 Enumerators are an exception; they use the scope of their parent
3908 enumeration type, i.e. the name of the enumeration type is not
3909 prepended to the enumerator.
3910
3911 There are two complexities. One is DW_AT_specification; in this
3912 case "parent" means the parent of the target of the specification,
3913 instead of the direct parent of the DIE. The other is compilers
3914 which do not emit DW_TAG_namespace; in this case we try to guess
3915 the fully qualified name of structure types from their members'
3916 linkage names. This must be done using the DIE's children rather
3917 than the children of any DW_AT_specification target. We only need
3918 to do this for structures at the top level, i.e. if the target of
3919 any DW_AT_specification (if any; otherwise the DIE itself) does not
3920 have a parent. */
3921
3922 /* Compute the scope prefix associated with PDI's parent, in
3923 compilation unit CU. The result will be allocated on CU's
3924 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3925 field. NULL is returned if no prefix is necessary. */
3926 static char *
3927 partial_die_parent_scope (struct partial_die_info *pdi,
3928 struct dwarf2_cu *cu)
3929 {
3930 char *grandparent_scope;
3931 struct partial_die_info *parent, *real_pdi;
3932
3933 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3934 then this means the parent of the specification DIE. */
3935
3936 real_pdi = pdi;
3937 while (real_pdi->has_specification)
3938 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
3939
3940 parent = real_pdi->die_parent;
3941 if (parent == NULL)
3942 return NULL;
3943
3944 if (parent->scope_set)
3945 return parent->scope;
3946
3947 fixup_partial_die (parent, cu);
3948
3949 grandparent_scope = partial_die_parent_scope (parent, cu);
3950
3951 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3952 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3953 Work around this problem here. */
3954 if (cu->language == language_cplus
3955 && parent->tag == DW_TAG_namespace
3956 && strcmp (parent->name, "::") == 0
3957 && grandparent_scope == NULL)
3958 {
3959 parent->scope = NULL;
3960 parent->scope_set = 1;
3961 return NULL;
3962 }
3963
3964 if (pdi->tag == DW_TAG_enumerator)
3965 /* Enumerators should not get the name of the enumeration as a prefix. */
3966 parent->scope = grandparent_scope;
3967 else if (parent->tag == DW_TAG_namespace
3968 || parent->tag == DW_TAG_module
3969 || parent->tag == DW_TAG_structure_type
3970 || parent->tag == DW_TAG_class_type
3971 || parent->tag == DW_TAG_interface_type
3972 || parent->tag == DW_TAG_union_type
3973 || parent->tag == DW_TAG_enumeration_type)
3974 {
3975 if (grandparent_scope == NULL)
3976 parent->scope = parent->name;
3977 else
3978 parent->scope = typename_concat (&cu->comp_unit_obstack,
3979 grandparent_scope,
3980 parent->name, 0, cu);
3981 }
3982 else
3983 {
3984 /* FIXME drow/2004-04-01: What should we be doing with
3985 function-local names? For partial symbols, we should probably be
3986 ignoring them. */
3987 complaint (&symfile_complaints,
3988 _("unhandled containing DIE tag %d for DIE at %d"),
3989 parent->tag, pdi->offset.sect_off);
3990 parent->scope = grandparent_scope;
3991 }
3992
3993 parent->scope_set = 1;
3994 return parent->scope;
3995 }
3996
3997 /* Return the fully scoped name associated with PDI, from compilation unit
3998 CU. The result will be allocated with malloc. */
3999 static char *
4000 partial_die_full_name (struct partial_die_info *pdi,
4001 struct dwarf2_cu *cu)
4002 {
4003 char *parent_scope;
4004
4005 /* If this is a template instantiation, we can not work out the
4006 template arguments from partial DIEs. So, unfortunately, we have
4007 to go through the full DIEs. At least any work we do building
4008 types here will be reused if full symbols are loaded later. */
4009 if (pdi->has_template_arguments)
4010 {
4011 fixup_partial_die (pdi, cu);
4012
4013 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
4014 {
4015 struct die_info *die;
4016 struct attribute attr;
4017 struct dwarf2_cu *ref_cu = cu;
4018
4019 /* DW_FORM_ref_addr is using section offset. */
4020 attr.name = 0;
4021 attr.form = DW_FORM_ref_addr;
4022 attr.u.addr = pdi->offset.sect_off;
4023 die = follow_die_ref (NULL, &attr, &ref_cu);
4024
4025 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
4026 }
4027 }
4028
4029 parent_scope = partial_die_parent_scope (pdi, cu);
4030 if (parent_scope == NULL)
4031 return NULL;
4032 else
4033 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
4034 }
4035
4036 static void
4037 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
4038 {
4039 struct objfile *objfile = cu->objfile;
4040 CORE_ADDR addr = 0;
4041 char *actual_name = NULL;
4042 CORE_ADDR baseaddr;
4043 int built_actual_name = 0;
4044
4045 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4046
4047 actual_name = partial_die_full_name (pdi, cu);
4048 if (actual_name)
4049 built_actual_name = 1;
4050
4051 if (actual_name == NULL)
4052 actual_name = pdi->name;
4053
4054 switch (pdi->tag)
4055 {
4056 case DW_TAG_subprogram:
4057 if (pdi->is_external || cu->language == language_ada)
4058 {
4059 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
4060 of the global scope. But in Ada, we want to be able to access
4061 nested procedures globally. So all Ada subprograms are stored
4062 in the global scope. */
4063 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
4064 mst_text, objfile); */
4065 add_psymbol_to_list (actual_name, strlen (actual_name),
4066 built_actual_name,
4067 VAR_DOMAIN, LOC_BLOCK,
4068 &objfile->global_psymbols,
4069 0, pdi->lowpc + baseaddr,
4070 cu->language, objfile);
4071 }
4072 else
4073 {
4074 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
4075 mst_file_text, objfile); */
4076 add_psymbol_to_list (actual_name, strlen (actual_name),
4077 built_actual_name,
4078 VAR_DOMAIN, LOC_BLOCK,
4079 &objfile->static_psymbols,
4080 0, pdi->lowpc + baseaddr,
4081 cu->language, objfile);
4082 }
4083 break;
4084 case DW_TAG_constant:
4085 {
4086 struct psymbol_allocation_list *list;
4087
4088 if (pdi->is_external)
4089 list = &objfile->global_psymbols;
4090 else
4091 list = &objfile->static_psymbols;
4092 add_psymbol_to_list (actual_name, strlen (actual_name),
4093 built_actual_name, VAR_DOMAIN, LOC_STATIC,
4094 list, 0, 0, cu->language, objfile);
4095 }
4096 break;
4097 case DW_TAG_variable:
4098 if (pdi->locdesc)
4099 addr = decode_locdesc (pdi->locdesc, cu);
4100
4101 if (pdi->locdesc
4102 && addr == 0
4103 && !dwarf2_per_objfile->has_section_at_zero)
4104 {
4105 /* A global or static variable may also have been stripped
4106 out by the linker if unused, in which case its address
4107 will be nullified; do not add such variables into partial
4108 symbol table then. */
4109 }
4110 else if (pdi->is_external)
4111 {
4112 /* Global Variable.
4113 Don't enter into the minimal symbol tables as there is
4114 a minimal symbol table entry from the ELF symbols already.
4115 Enter into partial symbol table if it has a location
4116 descriptor or a type.
4117 If the location descriptor is missing, new_symbol will create
4118 a LOC_UNRESOLVED symbol, the address of the variable will then
4119 be determined from the minimal symbol table whenever the variable
4120 is referenced.
4121 The address for the partial symbol table entry is not
4122 used by GDB, but it comes in handy for debugging partial symbol
4123 table building. */
4124
4125 if (pdi->locdesc || pdi->has_type)
4126 add_psymbol_to_list (actual_name, strlen (actual_name),
4127 built_actual_name,
4128 VAR_DOMAIN, LOC_STATIC,
4129 &objfile->global_psymbols,
4130 0, addr + baseaddr,
4131 cu->language, objfile);
4132 }
4133 else
4134 {
4135 /* Static Variable. Skip symbols without location descriptors. */
4136 if (pdi->locdesc == NULL)
4137 {
4138 if (built_actual_name)
4139 xfree (actual_name);
4140 return;
4141 }
4142 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
4143 mst_file_data, objfile); */
4144 add_psymbol_to_list (actual_name, strlen (actual_name),
4145 built_actual_name,
4146 VAR_DOMAIN, LOC_STATIC,
4147 &objfile->static_psymbols,
4148 0, addr + baseaddr,
4149 cu->language, objfile);
4150 }
4151 break;
4152 case DW_TAG_typedef:
4153 case DW_TAG_base_type:
4154 case DW_TAG_subrange_type:
4155 add_psymbol_to_list (actual_name, strlen (actual_name),
4156 built_actual_name,
4157 VAR_DOMAIN, LOC_TYPEDEF,
4158 &objfile->static_psymbols,
4159 0, (CORE_ADDR) 0, cu->language, objfile);
4160 break;
4161 case DW_TAG_namespace:
4162 add_psymbol_to_list (actual_name, strlen (actual_name),
4163 built_actual_name,
4164 VAR_DOMAIN, LOC_TYPEDEF,
4165 &objfile->global_psymbols,
4166 0, (CORE_ADDR) 0, cu->language, objfile);
4167 break;
4168 case DW_TAG_class_type:
4169 case DW_TAG_interface_type:
4170 case DW_TAG_structure_type:
4171 case DW_TAG_union_type:
4172 case DW_TAG_enumeration_type:
4173 /* Skip external references. The DWARF standard says in the section
4174 about "Structure, Union, and Class Type Entries": "An incomplete
4175 structure, union or class type is represented by a structure,
4176 union or class entry that does not have a byte size attribute
4177 and that has a DW_AT_declaration attribute." */
4178 if (!pdi->has_byte_size && pdi->is_declaration)
4179 {
4180 if (built_actual_name)
4181 xfree (actual_name);
4182 return;
4183 }
4184
4185 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
4186 static vs. global. */
4187 add_psymbol_to_list (actual_name, strlen (actual_name),
4188 built_actual_name,
4189 STRUCT_DOMAIN, LOC_TYPEDEF,
4190 (cu->language == language_cplus
4191 || cu->language == language_java)
4192 ? &objfile->global_psymbols
4193 : &objfile->static_psymbols,
4194 0, (CORE_ADDR) 0, cu->language, objfile);
4195
4196 break;
4197 case DW_TAG_enumerator:
4198 add_psymbol_to_list (actual_name, strlen (actual_name),
4199 built_actual_name,
4200 VAR_DOMAIN, LOC_CONST,
4201 (cu->language == language_cplus
4202 || cu->language == language_java)
4203 ? &objfile->global_psymbols
4204 : &objfile->static_psymbols,
4205 0, (CORE_ADDR) 0, cu->language, objfile);
4206 break;
4207 default:
4208 break;
4209 }
4210
4211 if (built_actual_name)
4212 xfree (actual_name);
4213 }
4214
4215 /* Read a partial die corresponding to a namespace; also, add a symbol
4216 corresponding to that namespace to the symbol table. NAMESPACE is
4217 the name of the enclosing namespace. */
4218
4219 static void
4220 add_partial_namespace (struct partial_die_info *pdi,
4221 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4222 int need_pc, struct dwarf2_cu *cu)
4223 {
4224 /* Add a symbol for the namespace. */
4225
4226 add_partial_symbol (pdi, cu);
4227
4228 /* Now scan partial symbols in that namespace. */
4229
4230 if (pdi->has_children)
4231 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4232 }
4233
4234 /* Read a partial die corresponding to a Fortran module. */
4235
4236 static void
4237 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
4238 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
4239 {
4240 /* Now scan partial symbols in that module. */
4241
4242 if (pdi->has_children)
4243 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4244 }
4245
4246 /* Read a partial die corresponding to a subprogram and create a partial
4247 symbol for that subprogram. When the CU language allows it, this
4248 routine also defines a partial symbol for each nested subprogram
4249 that this subprogram contains.
4250
4251 DIE my also be a lexical block, in which case we simply search
4252 recursively for suprograms defined inside that lexical block.
4253 Again, this is only performed when the CU language allows this
4254 type of definitions. */
4255
4256 static void
4257 add_partial_subprogram (struct partial_die_info *pdi,
4258 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4259 int need_pc, struct dwarf2_cu *cu)
4260 {
4261 if (pdi->tag == DW_TAG_subprogram)
4262 {
4263 if (pdi->has_pc_info)
4264 {
4265 if (pdi->lowpc < *lowpc)
4266 *lowpc = pdi->lowpc;
4267 if (pdi->highpc > *highpc)
4268 *highpc = pdi->highpc;
4269 if (need_pc)
4270 {
4271 CORE_ADDR baseaddr;
4272 struct objfile *objfile = cu->objfile;
4273
4274 baseaddr = ANOFFSET (objfile->section_offsets,
4275 SECT_OFF_TEXT (objfile));
4276 addrmap_set_empty (objfile->psymtabs_addrmap,
4277 pdi->lowpc + baseaddr,
4278 pdi->highpc - 1 + baseaddr,
4279 cu->per_cu->v.psymtab);
4280 }
4281 }
4282
4283 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
4284 {
4285 if (!pdi->is_declaration)
4286 /* Ignore subprogram DIEs that do not have a name, they are
4287 illegal. Do not emit a complaint at this point, we will
4288 do so when we convert this psymtab into a symtab. */
4289 if (pdi->name)
4290 add_partial_symbol (pdi, cu);
4291 }
4292 }
4293
4294 if (! pdi->has_children)
4295 return;
4296
4297 if (cu->language == language_ada)
4298 {
4299 pdi = pdi->die_child;
4300 while (pdi != NULL)
4301 {
4302 fixup_partial_die (pdi, cu);
4303 if (pdi->tag == DW_TAG_subprogram
4304 || pdi->tag == DW_TAG_lexical_block)
4305 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
4306 pdi = pdi->die_sibling;
4307 }
4308 }
4309 }
4310
4311 /* Read a partial die corresponding to an enumeration type. */
4312
4313 static void
4314 add_partial_enumeration (struct partial_die_info *enum_pdi,
4315 struct dwarf2_cu *cu)
4316 {
4317 struct partial_die_info *pdi;
4318
4319 if (enum_pdi->name != NULL)
4320 add_partial_symbol (enum_pdi, cu);
4321
4322 pdi = enum_pdi->die_child;
4323 while (pdi)
4324 {
4325 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
4326 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
4327 else
4328 add_partial_symbol (pdi, cu);
4329 pdi = pdi->die_sibling;
4330 }
4331 }
4332
4333 /* Return the initial uleb128 in the die at INFO_PTR. */
4334
4335 static unsigned int
4336 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
4337 {
4338 unsigned int bytes_read;
4339
4340 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4341 }
4342
4343 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
4344 Return the corresponding abbrev, or NULL if the number is zero (indicating
4345 an empty DIE). In either case *BYTES_READ will be set to the length of
4346 the initial number. */
4347
4348 static struct abbrev_info *
4349 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
4350 struct dwarf2_cu *cu)
4351 {
4352 bfd *abfd = cu->objfile->obfd;
4353 unsigned int abbrev_number;
4354 struct abbrev_info *abbrev;
4355
4356 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4357
4358 if (abbrev_number == 0)
4359 return NULL;
4360
4361 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
4362 if (!abbrev)
4363 {
4364 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
4365 abbrev_number, bfd_get_filename (abfd));
4366 }
4367
4368 return abbrev;
4369 }
4370
4371 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4372 Returns a pointer to the end of a series of DIEs, terminated by an empty
4373 DIE. Any children of the skipped DIEs will also be skipped. */
4374
4375 static gdb_byte *
4376 skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4377 {
4378 struct abbrev_info *abbrev;
4379 unsigned int bytes_read;
4380
4381 while (1)
4382 {
4383 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
4384 if (abbrev == NULL)
4385 return info_ptr + bytes_read;
4386 else
4387 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4388 }
4389 }
4390
4391 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4392 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4393 abbrev corresponding to that skipped uleb128 should be passed in
4394 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4395 children. */
4396
4397 static gdb_byte *
4398 skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4399 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4400 {
4401 unsigned int bytes_read;
4402 struct attribute attr;
4403 bfd *abfd = cu->objfile->obfd;
4404 unsigned int form, i;
4405
4406 for (i = 0; i < abbrev->num_attrs; i++)
4407 {
4408 /* The only abbrev we care about is DW_AT_sibling. */
4409 if (abbrev->attrs[i].name == DW_AT_sibling)
4410 {
4411 read_attribute (&attr, &abbrev->attrs[i],
4412 abfd, info_ptr, cu);
4413 if (attr.form == DW_FORM_ref_addr)
4414 complaint (&symfile_complaints,
4415 _("ignoring absolute DW_AT_sibling"));
4416 else
4417 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
4418 }
4419
4420 /* If it isn't DW_AT_sibling, skip this attribute. */
4421 form = abbrev->attrs[i].form;
4422 skip_attribute:
4423 switch (form)
4424 {
4425 case DW_FORM_ref_addr:
4426 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4427 and later it is offset sized. */
4428 if (cu->header.version == 2)
4429 info_ptr += cu->header.addr_size;
4430 else
4431 info_ptr += cu->header.offset_size;
4432 break;
4433 case DW_FORM_addr:
4434 info_ptr += cu->header.addr_size;
4435 break;
4436 case DW_FORM_data1:
4437 case DW_FORM_ref1:
4438 case DW_FORM_flag:
4439 info_ptr += 1;
4440 break;
4441 case DW_FORM_flag_present:
4442 break;
4443 case DW_FORM_data2:
4444 case DW_FORM_ref2:
4445 info_ptr += 2;
4446 break;
4447 case DW_FORM_data4:
4448 case DW_FORM_ref4:
4449 info_ptr += 4;
4450 break;
4451 case DW_FORM_data8:
4452 case DW_FORM_ref8:
4453 case DW_FORM_ref_sig8:
4454 info_ptr += 8;
4455 break;
4456 case DW_FORM_string:
4457 read_direct_string (abfd, info_ptr, &bytes_read);
4458 info_ptr += bytes_read;
4459 break;
4460 case DW_FORM_sec_offset:
4461 case DW_FORM_strp:
4462 info_ptr += cu->header.offset_size;
4463 break;
4464 case DW_FORM_exprloc:
4465 case DW_FORM_block:
4466 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4467 info_ptr += bytes_read;
4468 break;
4469 case DW_FORM_block1:
4470 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4471 break;
4472 case DW_FORM_block2:
4473 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4474 break;
4475 case DW_FORM_block4:
4476 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4477 break;
4478 case DW_FORM_sdata:
4479 case DW_FORM_udata:
4480 case DW_FORM_ref_udata:
4481 info_ptr = skip_leb128 (abfd, info_ptr);
4482 break;
4483 case DW_FORM_indirect:
4484 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4485 info_ptr += bytes_read;
4486 /* We need to continue parsing from here, so just go back to
4487 the top. */
4488 goto skip_attribute;
4489
4490 default:
4491 error (_("Dwarf Error: Cannot handle %s "
4492 "in DWARF reader [in module %s]"),
4493 dwarf_form_name (form),
4494 bfd_get_filename (abfd));
4495 }
4496 }
4497
4498 if (abbrev->has_children)
4499 return skip_children (buffer, info_ptr, cu);
4500 else
4501 return info_ptr;
4502 }
4503
4504 /* Locate ORIG_PDI's sibling.
4505 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4506 in BUFFER. */
4507
4508 static gdb_byte *
4509 locate_pdi_sibling (struct partial_die_info *orig_pdi,
4510 gdb_byte *buffer, gdb_byte *info_ptr,
4511 bfd *abfd, struct dwarf2_cu *cu)
4512 {
4513 /* Do we know the sibling already? */
4514
4515 if (orig_pdi->sibling)
4516 return orig_pdi->sibling;
4517
4518 /* Are there any children to deal with? */
4519
4520 if (!orig_pdi->has_children)
4521 return info_ptr;
4522
4523 /* Skip the children the long way. */
4524
4525 return skip_children (buffer, info_ptr, cu);
4526 }
4527
4528 /* Expand this partial symbol table into a full symbol table. */
4529
4530 static void
4531 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
4532 {
4533 if (pst != NULL)
4534 {
4535 if (pst->readin)
4536 {
4537 warning (_("bug: psymtab for %s is already read in."),
4538 pst->filename);
4539 }
4540 else
4541 {
4542 if (info_verbose)
4543 {
4544 printf_filtered (_("Reading in symbols for %s..."),
4545 pst->filename);
4546 gdb_flush (gdb_stdout);
4547 }
4548
4549 /* Restore our global data. */
4550 dwarf2_per_objfile = objfile_data (pst->objfile,
4551 dwarf2_objfile_data_key);
4552
4553 /* If this psymtab is constructed from a debug-only objfile, the
4554 has_section_at_zero flag will not necessarily be correct. We
4555 can get the correct value for this flag by looking at the data
4556 associated with the (presumably stripped) associated objfile. */
4557 if (pst->objfile->separate_debug_objfile_backlink)
4558 {
4559 struct dwarf2_per_objfile *dpo_backlink
4560 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4561 dwarf2_objfile_data_key);
4562
4563 dwarf2_per_objfile->has_section_at_zero
4564 = dpo_backlink->has_section_at_zero;
4565 }
4566
4567 dwarf2_per_objfile->reading_partial_symbols = 0;
4568
4569 psymtab_to_symtab_1 (pst);
4570
4571 /* Finish up the debug error message. */
4572 if (info_verbose)
4573 printf_filtered (_("done.\n"));
4574 }
4575 }
4576 }
4577 \f
4578 /* Reading in full CUs. */
4579
4580 /* Add PER_CU to the queue. */
4581
4582 static void
4583 queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
4584 {
4585 struct dwarf2_queue_item *item;
4586
4587 per_cu->queued = 1;
4588 item = xmalloc (sizeof (*item));
4589 item->per_cu = per_cu;
4590 item->next = NULL;
4591
4592 if (dwarf2_queue == NULL)
4593 dwarf2_queue = item;
4594 else
4595 dwarf2_queue_tail->next = item;
4596
4597 dwarf2_queue_tail = item;
4598 }
4599
4600 /* Process the queue. */
4601
4602 static void
4603 process_queue (void)
4604 {
4605 struct dwarf2_queue_item *item, *next_item;
4606
4607 /* The queue starts out with one item, but following a DIE reference
4608 may load a new CU, adding it to the end of the queue. */
4609 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4610 {
4611 if (dwarf2_per_objfile->using_index
4612 ? !item->per_cu->v.quick->symtab
4613 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
4614 process_full_comp_unit (item->per_cu);
4615
4616 item->per_cu->queued = 0;
4617 next_item = item->next;
4618 xfree (item);
4619 }
4620
4621 dwarf2_queue_tail = NULL;
4622 }
4623
4624 /* Free all allocated queue entries. This function only releases anything if
4625 an error was thrown; if the queue was processed then it would have been
4626 freed as we went along. */
4627
4628 static void
4629 dwarf2_release_queue (void *dummy)
4630 {
4631 struct dwarf2_queue_item *item, *last;
4632
4633 item = dwarf2_queue;
4634 while (item)
4635 {
4636 /* Anything still marked queued is likely to be in an
4637 inconsistent state, so discard it. */
4638 if (item->per_cu->queued)
4639 {
4640 if (item->per_cu->cu != NULL)
4641 free_one_cached_comp_unit (item->per_cu->cu);
4642 item->per_cu->queued = 0;
4643 }
4644
4645 last = item;
4646 item = item->next;
4647 xfree (last);
4648 }
4649
4650 dwarf2_queue = dwarf2_queue_tail = NULL;
4651 }
4652
4653 /* Read in full symbols for PST, and anything it depends on. */
4654
4655 static void
4656 psymtab_to_symtab_1 (struct partial_symtab *pst)
4657 {
4658 struct dwarf2_per_cu_data *per_cu;
4659 struct cleanup *back_to;
4660 int i;
4661
4662 for (i = 0; i < pst->number_of_dependencies; i++)
4663 if (!pst->dependencies[i]->readin)
4664 {
4665 /* Inform about additional files that need to be read in. */
4666 if (info_verbose)
4667 {
4668 /* FIXME: i18n: Need to make this a single string. */
4669 fputs_filtered (" ", gdb_stdout);
4670 wrap_here ("");
4671 fputs_filtered ("and ", gdb_stdout);
4672 wrap_here ("");
4673 printf_filtered ("%s...", pst->dependencies[i]->filename);
4674 wrap_here (""); /* Flush output. */
4675 gdb_flush (gdb_stdout);
4676 }
4677 psymtab_to_symtab_1 (pst->dependencies[i]);
4678 }
4679
4680 per_cu = pst->read_symtab_private;
4681
4682 if (per_cu == NULL)
4683 {
4684 /* It's an include file, no symbols to read for it.
4685 Everything is in the parent symtab. */
4686 pst->readin = 1;
4687 return;
4688 }
4689
4690 dw2_do_instantiate_symtab (per_cu);
4691 }
4692
4693 /* Load the DIEs associated with PER_CU into memory. */
4694
4695 static void
4696 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4697 {
4698 struct objfile *objfile = per_cu->objfile;
4699 bfd *abfd = objfile->obfd;
4700 struct dwarf2_cu *cu;
4701 sect_offset offset;
4702 gdb_byte *info_ptr, *beg_of_comp_unit;
4703 struct cleanup *free_cu_cleanup = NULL;
4704 struct attribute *attr;
4705 int read_cu = 0;
4706
4707 gdb_assert (! per_cu->debug_types_section);
4708
4709 /* Set local variables from the partial symbol table info. */
4710 offset = per_cu->offset;
4711
4712 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
4713 info_ptr = dwarf2_per_objfile->info.buffer + offset.sect_off;
4714 beg_of_comp_unit = info_ptr;
4715
4716 if (per_cu->cu == NULL)
4717 {
4718 cu = xmalloc (sizeof (*cu));
4719 init_one_comp_unit (cu, per_cu);
4720
4721 read_cu = 1;
4722
4723 /* If an error occurs while loading, release our storage. */
4724 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4725
4726 /* Read in the comp_unit header. */
4727 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
4728
4729 /* Skip dummy compilation units. */
4730 if (info_ptr >= (dwarf2_per_objfile->info.buffer
4731 + dwarf2_per_objfile->info.size)
4732 || peek_abbrev_code (abfd, info_ptr) == 0)
4733 {
4734 do_cleanups (free_cu_cleanup);
4735 return;
4736 }
4737
4738 /* Complete the cu_header. */
4739 cu->header.offset = offset;
4740 cu->header.first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4741 }
4742 else
4743 {
4744 cu = per_cu->cu;
4745 info_ptr += cu->header.first_die_offset.cu_off;
4746 }
4747
4748 cu->dies = read_comp_unit (info_ptr, cu);
4749
4750 /* We try not to read any attributes in this function, because not
4751 all CUs needed for references have been loaded yet, and symbol
4752 table processing isn't initialized. But we have to set the CU language,
4753 or we won't be able to build types correctly. */
4754 prepare_one_comp_unit (cu, cu->dies);
4755
4756 /* Similarly, if we do not read the producer, we can not apply
4757 producer-specific interpretation. */
4758 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4759 if (attr)
4760 cu->producer = DW_STRING (attr);
4761
4762 if (read_cu)
4763 {
4764 /* We've successfully allocated this compilation unit. Let our
4765 caller clean it up when finished with it. */
4766 discard_cleanups (free_cu_cleanup);
4767
4768 /* Link this CU into read_in_chain. */
4769 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4770 dwarf2_per_objfile->read_in_chain = per_cu;
4771 }
4772 }
4773
4774 /* Add a DIE to the delayed physname list. */
4775
4776 static void
4777 add_to_method_list (struct type *type, int fnfield_index, int index,
4778 const char *name, struct die_info *die,
4779 struct dwarf2_cu *cu)
4780 {
4781 struct delayed_method_info mi;
4782 mi.type = type;
4783 mi.fnfield_index = fnfield_index;
4784 mi.index = index;
4785 mi.name = name;
4786 mi.die = die;
4787 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4788 }
4789
4790 /* A cleanup for freeing the delayed method list. */
4791
4792 static void
4793 free_delayed_list (void *ptr)
4794 {
4795 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4796 if (cu->method_list != NULL)
4797 {
4798 VEC_free (delayed_method_info, cu->method_list);
4799 cu->method_list = NULL;
4800 }
4801 }
4802
4803 /* Compute the physnames of any methods on the CU's method list.
4804
4805 The computation of method physnames is delayed in order to avoid the
4806 (bad) condition that one of the method's formal parameters is of an as yet
4807 incomplete type. */
4808
4809 static void
4810 compute_delayed_physnames (struct dwarf2_cu *cu)
4811 {
4812 int i;
4813 struct delayed_method_info *mi;
4814 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4815 {
4816 const char *physname;
4817 struct fn_fieldlist *fn_flp
4818 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4819 physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
4820 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4821 }
4822 }
4823
4824 /* Generate full symbol information for PER_CU, whose DIEs have
4825 already been loaded into memory. */
4826
4827 static void
4828 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4829 {
4830 struct dwarf2_cu *cu = per_cu->cu;
4831 struct objfile *objfile = per_cu->objfile;
4832 CORE_ADDR lowpc, highpc;
4833 struct symtab *symtab;
4834 struct cleanup *back_to, *delayed_list_cleanup;
4835 CORE_ADDR baseaddr;
4836
4837 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4838
4839 buildsym_init ();
4840 back_to = make_cleanup (really_free_pendings, NULL);
4841 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
4842
4843 cu->list_in_scope = &file_symbols;
4844
4845 /* Do line number decoding in read_file_scope () */
4846 process_die (cu->dies, cu);
4847
4848 /* Now that we have processed all the DIEs in the CU, all the types
4849 should be complete, and it should now be safe to compute all of the
4850 physnames. */
4851 compute_delayed_physnames (cu);
4852 do_cleanups (delayed_list_cleanup);
4853
4854 /* Some compilers don't define a DW_AT_high_pc attribute for the
4855 compilation unit. If the DW_AT_high_pc is missing, synthesize
4856 it, by scanning the DIE's below the compilation unit. */
4857 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
4858
4859 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
4860
4861 if (symtab != NULL)
4862 {
4863 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4864
4865 /* Set symtab language to language from DW_AT_language. If the
4866 compilation is from a C file generated by language preprocessors, do
4867 not set the language if it was already deduced by start_subfile. */
4868 if (!(cu->language == language_c && symtab->language != language_c))
4869 symtab->language = cu->language;
4870
4871 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
4872 produce DW_AT_location with location lists but it can be possibly
4873 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
4874 there were bugs in prologue debug info, fixed later in GCC-4.5
4875 by "unwind info for epilogues" patch (which is not directly related).
4876
4877 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
4878 needed, it would be wrong due to missing DW_AT_producer there.
4879
4880 Still one can confuse GDB by using non-standard GCC compilation
4881 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
4882 */
4883 if (cu->has_loclist && gcc_4_minor >= 5)
4884 symtab->locations_valid = 1;
4885
4886 if (gcc_4_minor >= 5)
4887 symtab->epilogue_unwind_valid = 1;
4888
4889 symtab->call_site_htab = cu->call_site_htab;
4890 }
4891
4892 if (dwarf2_per_objfile->using_index)
4893 per_cu->v.quick->symtab = symtab;
4894 else
4895 {
4896 struct partial_symtab *pst = per_cu->v.psymtab;
4897 pst->symtab = symtab;
4898 pst->readin = 1;
4899 }
4900
4901 do_cleanups (back_to);
4902 }
4903
4904 /* Process a die and its children. */
4905
4906 static void
4907 process_die (struct die_info *die, struct dwarf2_cu *cu)
4908 {
4909 switch (die->tag)
4910 {
4911 case DW_TAG_padding:
4912 break;
4913 case DW_TAG_compile_unit:
4914 read_file_scope (die, cu);
4915 break;
4916 case DW_TAG_type_unit:
4917 read_type_unit_scope (die, cu);
4918 break;
4919 case DW_TAG_subprogram:
4920 case DW_TAG_inlined_subroutine:
4921 read_func_scope (die, cu);
4922 break;
4923 case DW_TAG_lexical_block:
4924 case DW_TAG_try_block:
4925 case DW_TAG_catch_block:
4926 read_lexical_block_scope (die, cu);
4927 break;
4928 case DW_TAG_GNU_call_site:
4929 read_call_site_scope (die, cu);
4930 break;
4931 case DW_TAG_class_type:
4932 case DW_TAG_interface_type:
4933 case DW_TAG_structure_type:
4934 case DW_TAG_union_type:
4935 process_structure_scope (die, cu);
4936 break;
4937 case DW_TAG_enumeration_type:
4938 process_enumeration_scope (die, cu);
4939 break;
4940
4941 /* These dies have a type, but processing them does not create
4942 a symbol or recurse to process the children. Therefore we can
4943 read them on-demand through read_type_die. */
4944 case DW_TAG_subroutine_type:
4945 case DW_TAG_set_type:
4946 case DW_TAG_array_type:
4947 case DW_TAG_pointer_type:
4948 case DW_TAG_ptr_to_member_type:
4949 case DW_TAG_reference_type:
4950 case DW_TAG_string_type:
4951 break;
4952
4953 case DW_TAG_base_type:
4954 case DW_TAG_subrange_type:
4955 case DW_TAG_typedef:
4956 /* Add a typedef symbol for the type definition, if it has a
4957 DW_AT_name. */
4958 new_symbol (die, read_type_die (die, cu), cu);
4959 break;
4960 case DW_TAG_common_block:
4961 read_common_block (die, cu);
4962 break;
4963 case DW_TAG_common_inclusion:
4964 break;
4965 case DW_TAG_namespace:
4966 processing_has_namespace_info = 1;
4967 read_namespace (die, cu);
4968 break;
4969 case DW_TAG_module:
4970 processing_has_namespace_info = 1;
4971 read_module (die, cu);
4972 break;
4973 case DW_TAG_imported_declaration:
4974 case DW_TAG_imported_module:
4975 processing_has_namespace_info = 1;
4976 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4977 || cu->language != language_fortran))
4978 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4979 dwarf_tag_name (die->tag));
4980 read_import_statement (die, cu);
4981 break;
4982 default:
4983 new_symbol (die, NULL, cu);
4984 break;
4985 }
4986 }
4987
4988 /* A helper function for dwarf2_compute_name which determines whether DIE
4989 needs to have the name of the scope prepended to the name listed in the
4990 die. */
4991
4992 static int
4993 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4994 {
4995 struct attribute *attr;
4996
4997 switch (die->tag)
4998 {
4999 case DW_TAG_namespace:
5000 case DW_TAG_typedef:
5001 case DW_TAG_class_type:
5002 case DW_TAG_interface_type:
5003 case DW_TAG_structure_type:
5004 case DW_TAG_union_type:
5005 case DW_TAG_enumeration_type:
5006 case DW_TAG_enumerator:
5007 case DW_TAG_subprogram:
5008 case DW_TAG_member:
5009 return 1;
5010
5011 case DW_TAG_variable:
5012 case DW_TAG_constant:
5013 /* We only need to prefix "globally" visible variables. These include
5014 any variable marked with DW_AT_external or any variable that
5015 lives in a namespace. [Variables in anonymous namespaces
5016 require prefixing, but they are not DW_AT_external.] */
5017
5018 if (dwarf2_attr (die, DW_AT_specification, cu))
5019 {
5020 struct dwarf2_cu *spec_cu = cu;
5021
5022 return die_needs_namespace (die_specification (die, &spec_cu),
5023 spec_cu);
5024 }
5025
5026 attr = dwarf2_attr (die, DW_AT_external, cu);
5027 if (attr == NULL && die->parent->tag != DW_TAG_namespace
5028 && die->parent->tag != DW_TAG_module)
5029 return 0;
5030 /* A variable in a lexical block of some kind does not need a
5031 namespace, even though in C++ such variables may be external
5032 and have a mangled name. */
5033 if (die->parent->tag == DW_TAG_lexical_block
5034 || die->parent->tag == DW_TAG_try_block
5035 || die->parent->tag == DW_TAG_catch_block
5036 || die->parent->tag == DW_TAG_subprogram)
5037 return 0;
5038 return 1;
5039
5040 default:
5041 return 0;
5042 }
5043 }
5044
5045 /* Retrieve the last character from a mem_file. */
5046
5047 static void
5048 do_ui_file_peek_last (void *object, const char *buffer, long length)
5049 {
5050 char *last_char_p = (char *) object;
5051
5052 if (length > 0)
5053 *last_char_p = buffer[length - 1];
5054 }
5055
5056 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
5057 compute the physname for the object, which include a method's
5058 formal parameters (C++/Java) and return type (Java).
5059
5060 For Ada, return the DIE's linkage name rather than the fully qualified
5061 name. PHYSNAME is ignored..
5062
5063 The result is allocated on the objfile_obstack and canonicalized. */
5064
5065 static const char *
5066 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
5067 int physname)
5068 {
5069 struct objfile *objfile = cu->objfile;
5070
5071 if (name == NULL)
5072 name = dwarf2_name (die, cu);
5073
5074 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
5075 compute it by typename_concat inside GDB. */
5076 if (cu->language == language_ada
5077 || (cu->language == language_fortran && physname))
5078 {
5079 /* For Ada unit, we prefer the linkage name over the name, as
5080 the former contains the exported name, which the user expects
5081 to be able to reference. Ideally, we want the user to be able
5082 to reference this entity using either natural or linkage name,
5083 but we haven't started looking at this enhancement yet. */
5084 struct attribute *attr;
5085
5086 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
5087 if (attr == NULL)
5088 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
5089 if (attr && DW_STRING (attr))
5090 return DW_STRING (attr);
5091 }
5092
5093 /* These are the only languages we know how to qualify names in. */
5094 if (name != NULL
5095 && (cu->language == language_cplus || cu->language == language_java
5096 || cu->language == language_fortran))
5097 {
5098 if (die_needs_namespace (die, cu))
5099 {
5100 long length;
5101 const char *prefix;
5102 struct ui_file *buf;
5103
5104 prefix = determine_prefix (die, cu);
5105 buf = mem_fileopen ();
5106 if (*prefix != '\0')
5107 {
5108 char *prefixed_name = typename_concat (NULL, prefix, name,
5109 physname, cu);
5110
5111 fputs_unfiltered (prefixed_name, buf);
5112 xfree (prefixed_name);
5113 }
5114 else
5115 fputs_unfiltered (name, buf);
5116
5117 /* Template parameters may be specified in the DIE's DW_AT_name, or
5118 as children with DW_TAG_template_type_param or
5119 DW_TAG_value_type_param. If the latter, add them to the name
5120 here. If the name already has template parameters, then
5121 skip this step; some versions of GCC emit both, and
5122 it is more efficient to use the pre-computed name.
5123
5124 Something to keep in mind about this process: it is very
5125 unlikely, or in some cases downright impossible, to produce
5126 something that will match the mangled name of a function.
5127 If the definition of the function has the same debug info,
5128 we should be able to match up with it anyway. But fallbacks
5129 using the minimal symbol, for instance to find a method
5130 implemented in a stripped copy of libstdc++, will not work.
5131 If we do not have debug info for the definition, we will have to
5132 match them up some other way.
5133
5134 When we do name matching there is a related problem with function
5135 templates; two instantiated function templates are allowed to
5136 differ only by their return types, which we do not add here. */
5137
5138 if (cu->language == language_cplus && strchr (name, '<') == NULL)
5139 {
5140 struct attribute *attr;
5141 struct die_info *child;
5142 int first = 1;
5143
5144 die->building_fullname = 1;
5145
5146 for (child = die->child; child != NULL; child = child->sibling)
5147 {
5148 struct type *type;
5149 long value;
5150 gdb_byte *bytes;
5151 struct dwarf2_locexpr_baton *baton;
5152 struct value *v;
5153
5154 if (child->tag != DW_TAG_template_type_param
5155 && child->tag != DW_TAG_template_value_param)
5156 continue;
5157
5158 if (first)
5159 {
5160 fputs_unfiltered ("<", buf);
5161 first = 0;
5162 }
5163 else
5164 fputs_unfiltered (", ", buf);
5165
5166 attr = dwarf2_attr (child, DW_AT_type, cu);
5167 if (attr == NULL)
5168 {
5169 complaint (&symfile_complaints,
5170 _("template parameter missing DW_AT_type"));
5171 fputs_unfiltered ("UNKNOWN_TYPE", buf);
5172 continue;
5173 }
5174 type = die_type (child, cu);
5175
5176 if (child->tag == DW_TAG_template_type_param)
5177 {
5178 c_print_type (type, "", buf, -1, 0);
5179 continue;
5180 }
5181
5182 attr = dwarf2_attr (child, DW_AT_const_value, cu);
5183 if (attr == NULL)
5184 {
5185 complaint (&symfile_complaints,
5186 _("template parameter missing "
5187 "DW_AT_const_value"));
5188 fputs_unfiltered ("UNKNOWN_VALUE", buf);
5189 continue;
5190 }
5191
5192 dwarf2_const_value_attr (attr, type, name,
5193 &cu->comp_unit_obstack, cu,
5194 &value, &bytes, &baton);
5195
5196 if (TYPE_NOSIGN (type))
5197 /* GDB prints characters as NUMBER 'CHAR'. If that's
5198 changed, this can use value_print instead. */
5199 c_printchar (value, type, buf);
5200 else
5201 {
5202 struct value_print_options opts;
5203
5204 if (baton != NULL)
5205 v = dwarf2_evaluate_loc_desc (type, NULL,
5206 baton->data,
5207 baton->size,
5208 baton->per_cu);
5209 else if (bytes != NULL)
5210 {
5211 v = allocate_value (type);
5212 memcpy (value_contents_writeable (v), bytes,
5213 TYPE_LENGTH (type));
5214 }
5215 else
5216 v = value_from_longest (type, value);
5217
5218 /* Specify decimal so that we do not depend on
5219 the radix. */
5220 get_formatted_print_options (&opts, 'd');
5221 opts.raw = 1;
5222 value_print (v, buf, &opts);
5223 release_value (v);
5224 value_free (v);
5225 }
5226 }
5227
5228 die->building_fullname = 0;
5229
5230 if (!first)
5231 {
5232 /* Close the argument list, with a space if necessary
5233 (nested templates). */
5234 char last_char = '\0';
5235 ui_file_put (buf, do_ui_file_peek_last, &last_char);
5236 if (last_char == '>')
5237 fputs_unfiltered (" >", buf);
5238 else
5239 fputs_unfiltered (">", buf);
5240 }
5241 }
5242
5243 /* For Java and C++ methods, append formal parameter type
5244 information, if PHYSNAME. */
5245
5246 if (physname && die->tag == DW_TAG_subprogram
5247 && (cu->language == language_cplus
5248 || cu->language == language_java))
5249 {
5250 struct type *type = read_type_die (die, cu);
5251
5252 c_type_print_args (type, buf, 1, cu->language);
5253
5254 if (cu->language == language_java)
5255 {
5256 /* For java, we must append the return type to method
5257 names. */
5258 if (die->tag == DW_TAG_subprogram)
5259 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
5260 0, 0);
5261 }
5262 else if (cu->language == language_cplus)
5263 {
5264 /* Assume that an artificial first parameter is
5265 "this", but do not crash if it is not. RealView
5266 marks unnamed (and thus unused) parameters as
5267 artificial; there is no way to differentiate
5268 the two cases. */
5269 if (TYPE_NFIELDS (type) > 0
5270 && TYPE_FIELD_ARTIFICIAL (type, 0)
5271 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
5272 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
5273 0))))
5274 fputs_unfiltered (" const", buf);
5275 }
5276 }
5277
5278 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
5279 &length);
5280 ui_file_delete (buf);
5281
5282 if (cu->language == language_cplus)
5283 {
5284 char *cname
5285 = dwarf2_canonicalize_name (name, cu,
5286 &objfile->objfile_obstack);
5287
5288 if (cname != NULL)
5289 name = cname;
5290 }
5291 }
5292 }
5293
5294 return name;
5295 }
5296
5297 /* Return the fully qualified name of DIE, based on its DW_AT_name.
5298 If scope qualifiers are appropriate they will be added. The result
5299 will be allocated on the objfile_obstack, or NULL if the DIE does
5300 not have a name. NAME may either be from a previous call to
5301 dwarf2_name or NULL.
5302
5303 The output string will be canonicalized (if C++/Java). */
5304
5305 static const char *
5306 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
5307 {
5308 return dwarf2_compute_name (name, die, cu, 0);
5309 }
5310
5311 /* Construct a physname for the given DIE in CU. NAME may either be
5312 from a previous call to dwarf2_name or NULL. The result will be
5313 allocated on the objfile_objstack or NULL if the DIE does not have a
5314 name.
5315
5316 The output string will be canonicalized (if C++/Java). */
5317
5318 static const char *
5319 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
5320 {
5321 struct objfile *objfile = cu->objfile;
5322 struct attribute *attr;
5323 const char *retval, *mangled = NULL, *canon = NULL;
5324 struct cleanup *back_to;
5325 int need_copy = 1;
5326
5327 /* In this case dwarf2_compute_name is just a shortcut not building anything
5328 on its own. */
5329 if (!die_needs_namespace (die, cu))
5330 return dwarf2_compute_name (name, die, cu, 1);
5331
5332 back_to = make_cleanup (null_cleanup, NULL);
5333
5334 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
5335 if (!attr)
5336 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
5337
5338 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
5339 has computed. */
5340 if (attr && DW_STRING (attr))
5341 {
5342 char *demangled;
5343
5344 mangled = DW_STRING (attr);
5345
5346 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
5347 type. It is easier for GDB users to search for such functions as
5348 `name(params)' than `long name(params)'. In such case the minimal
5349 symbol names do not match the full symbol names but for template
5350 functions there is never a need to look up their definition from their
5351 declaration so the only disadvantage remains the minimal symbol
5352 variant `long name(params)' does not have the proper inferior type.
5353 */
5354
5355 demangled = cplus_demangle (mangled, (DMGL_PARAMS | DMGL_ANSI
5356 | (cu->language == language_java
5357 ? DMGL_JAVA | DMGL_RET_POSTFIX
5358 : DMGL_RET_DROP)));
5359 if (demangled)
5360 {
5361 make_cleanup (xfree, demangled);
5362 canon = demangled;
5363 }
5364 else
5365 {
5366 canon = mangled;
5367 need_copy = 0;
5368 }
5369 }
5370
5371 if (canon == NULL || check_physname)
5372 {
5373 const char *physname = dwarf2_compute_name (name, die, cu, 1);
5374
5375 if (canon != NULL && strcmp (physname, canon) != 0)
5376 {
5377 /* It may not mean a bug in GDB. The compiler could also
5378 compute DW_AT_linkage_name incorrectly. But in such case
5379 GDB would need to be bug-to-bug compatible. */
5380
5381 complaint (&symfile_complaints,
5382 _("Computed physname <%s> does not match demangled <%s> "
5383 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
5384 physname, canon, mangled, die->offset.sect_off, objfile->name);
5385
5386 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
5387 is available here - over computed PHYSNAME. It is safer
5388 against both buggy GDB and buggy compilers. */
5389
5390 retval = canon;
5391 }
5392 else
5393 {
5394 retval = physname;
5395 need_copy = 0;
5396 }
5397 }
5398 else
5399 retval = canon;
5400
5401 if (need_copy)
5402 retval = obsavestring (retval, strlen (retval),
5403 &objfile->objfile_obstack);
5404
5405 do_cleanups (back_to);
5406 return retval;
5407 }
5408
5409 /* Read the import statement specified by the given die and record it. */
5410
5411 static void
5412 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
5413 {
5414 struct objfile *objfile = cu->objfile;
5415 struct attribute *import_attr;
5416 struct die_info *imported_die, *child_die;
5417 struct dwarf2_cu *imported_cu;
5418 const char *imported_name;
5419 const char *imported_name_prefix;
5420 const char *canonical_name;
5421 const char *import_alias;
5422 const char *imported_declaration = NULL;
5423 const char *import_prefix;
5424 VEC (const_char_ptr) *excludes = NULL;
5425 struct cleanup *cleanups;
5426
5427 char *temp;
5428
5429 import_attr = dwarf2_attr (die, DW_AT_import, cu);
5430 if (import_attr == NULL)
5431 {
5432 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5433 dwarf_tag_name (die->tag));
5434 return;
5435 }
5436
5437 imported_cu = cu;
5438 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
5439 imported_name = dwarf2_name (imported_die, imported_cu);
5440 if (imported_name == NULL)
5441 {
5442 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
5443
5444 The import in the following code:
5445 namespace A
5446 {
5447 typedef int B;
5448 }
5449
5450 int main ()
5451 {
5452 using A::B;
5453 B b;
5454 return b;
5455 }
5456
5457 ...
5458 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
5459 <52> DW_AT_decl_file : 1
5460 <53> DW_AT_decl_line : 6
5461 <54> DW_AT_import : <0x75>
5462 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
5463 <59> DW_AT_name : B
5464 <5b> DW_AT_decl_file : 1
5465 <5c> DW_AT_decl_line : 2
5466 <5d> DW_AT_type : <0x6e>
5467 ...
5468 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
5469 <76> DW_AT_byte_size : 4
5470 <77> DW_AT_encoding : 5 (signed)
5471
5472 imports the wrong die ( 0x75 instead of 0x58 ).
5473 This case will be ignored until the gcc bug is fixed. */
5474 return;
5475 }
5476
5477 /* Figure out the local name after import. */
5478 import_alias = dwarf2_name (die, cu);
5479
5480 /* Figure out where the statement is being imported to. */
5481 import_prefix = determine_prefix (die, cu);
5482
5483 /* Figure out what the scope of the imported die is and prepend it
5484 to the name of the imported die. */
5485 imported_name_prefix = determine_prefix (imported_die, imported_cu);
5486
5487 if (imported_die->tag != DW_TAG_namespace
5488 && imported_die->tag != DW_TAG_module)
5489 {
5490 imported_declaration = imported_name;
5491 canonical_name = imported_name_prefix;
5492 }
5493 else if (strlen (imported_name_prefix) > 0)
5494 {
5495 temp = alloca (strlen (imported_name_prefix)
5496 + 2 + strlen (imported_name) + 1);
5497 strcpy (temp, imported_name_prefix);
5498 strcat (temp, "::");
5499 strcat (temp, imported_name);
5500 canonical_name = temp;
5501 }
5502 else
5503 canonical_name = imported_name;
5504
5505 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
5506
5507 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
5508 for (child_die = die->child; child_die && child_die->tag;
5509 child_die = sibling_die (child_die))
5510 {
5511 /* DWARF-4: A Fortran use statement with a “rename list” may be
5512 represented by an imported module entry with an import attribute
5513 referring to the module and owned entries corresponding to those
5514 entities that are renamed as part of being imported. */
5515
5516 if (child_die->tag != DW_TAG_imported_declaration)
5517 {
5518 complaint (&symfile_complaints,
5519 _("child DW_TAG_imported_declaration expected "
5520 "- DIE at 0x%x [in module %s]"),
5521 child_die->offset.sect_off, objfile->name);
5522 continue;
5523 }
5524
5525 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
5526 if (import_attr == NULL)
5527 {
5528 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5529 dwarf_tag_name (child_die->tag));
5530 continue;
5531 }
5532
5533 imported_cu = cu;
5534 imported_die = follow_die_ref_or_sig (child_die, import_attr,
5535 &imported_cu);
5536 imported_name = dwarf2_name (imported_die, imported_cu);
5537 if (imported_name == NULL)
5538 {
5539 complaint (&symfile_complaints,
5540 _("child DW_TAG_imported_declaration has unknown "
5541 "imported name - DIE at 0x%x [in module %s]"),
5542 child_die->offset.sect_off, objfile->name);
5543 continue;
5544 }
5545
5546 VEC_safe_push (const_char_ptr, excludes, imported_name);
5547
5548 process_die (child_die, cu);
5549 }
5550
5551 cp_add_using_directive (import_prefix,
5552 canonical_name,
5553 import_alias,
5554 imported_declaration,
5555 excludes,
5556 &objfile->objfile_obstack);
5557
5558 do_cleanups (cleanups);
5559 }
5560
5561 /* Cleanup function for read_file_scope. */
5562
5563 static void
5564 free_cu_line_header (void *arg)
5565 {
5566 struct dwarf2_cu *cu = arg;
5567
5568 free_line_header (cu->line_header);
5569 cu->line_header = NULL;
5570 }
5571
5572 static void
5573 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5574 char **name, char **comp_dir)
5575 {
5576 struct attribute *attr;
5577
5578 *name = NULL;
5579 *comp_dir = NULL;
5580
5581 /* Find the filename. Do not use dwarf2_name here, since the filename
5582 is not a source language identifier. */
5583 attr = dwarf2_attr (die, DW_AT_name, cu);
5584 if (attr)
5585 {
5586 *name = DW_STRING (attr);
5587 }
5588
5589 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5590 if (attr)
5591 *comp_dir = DW_STRING (attr);
5592 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5593 {
5594 *comp_dir = ldirname (*name);
5595 if (*comp_dir != NULL)
5596 make_cleanup (xfree, *comp_dir);
5597 }
5598 if (*comp_dir != NULL)
5599 {
5600 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5601 directory, get rid of it. */
5602 char *cp = strchr (*comp_dir, ':');
5603
5604 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5605 *comp_dir = cp + 1;
5606 }
5607
5608 if (*name == NULL)
5609 *name = "<unknown>";
5610 }
5611
5612 /* Handle DW_AT_stmt_list for a compilation unit or type unit.
5613 DIE is the DW_TAG_compile_unit or DW_TAG_type_unit die for CU.
5614 COMP_DIR is the compilation directory.
5615 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
5616
5617 static void
5618 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
5619 const char *comp_dir, int want_line_info)
5620 {
5621 struct attribute *attr;
5622 struct objfile *objfile = cu->objfile;
5623 bfd *abfd = objfile->obfd;
5624
5625 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5626 if (attr)
5627 {
5628 unsigned int line_offset = DW_UNSND (attr);
5629 struct line_header *line_header
5630 = dwarf_decode_line_header (line_offset, abfd, cu);
5631
5632 if (line_header)
5633 {
5634 cu->line_header = line_header;
5635 make_cleanup (free_cu_line_header, cu);
5636 dwarf_decode_lines (line_header, comp_dir, cu, NULL, want_line_info);
5637 }
5638 }
5639 }
5640
5641 /* Process DW_TAG_compile_unit. */
5642
5643 static void
5644 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
5645 {
5646 struct objfile *objfile = cu->objfile;
5647 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5648 CORE_ADDR lowpc = ((CORE_ADDR) -1);
5649 CORE_ADDR highpc = ((CORE_ADDR) 0);
5650 struct attribute *attr;
5651 char *name = NULL;
5652 char *comp_dir = NULL;
5653 struct die_info *child_die;
5654 bfd *abfd = objfile->obfd;
5655 CORE_ADDR baseaddr;
5656
5657 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5658
5659 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
5660
5661 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5662 from finish_block. */
5663 if (lowpc == ((CORE_ADDR) -1))
5664 lowpc = highpc;
5665 lowpc += baseaddr;
5666 highpc += baseaddr;
5667
5668 find_file_and_directory (die, cu, &name, &comp_dir);
5669
5670 attr = dwarf2_attr (die, DW_AT_language, cu);
5671 if (attr)
5672 {
5673 set_cu_language (DW_UNSND (attr), cu);
5674 }
5675
5676 attr = dwarf2_attr (die, DW_AT_producer, cu);
5677 if (attr)
5678 cu->producer = DW_STRING (attr);
5679
5680 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
5681 standardised yet. As a workaround for the language detection we fall
5682 back to the DW_AT_producer string. */
5683 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
5684 cu->language = language_opencl;
5685
5686 /* We assume that we're processing GCC output. */
5687 processing_gcc_compilation = 2;
5688
5689 processing_has_namespace_info = 0;
5690
5691 start_symtab (name, comp_dir, lowpc);
5692 record_debugformat ("DWARF 2");
5693 record_producer (cu->producer);
5694
5695 /* Decode line number information if present. We do this before
5696 processing child DIEs, so that the line header table is available
5697 for DW_AT_decl_file. */
5698 handle_DW_AT_stmt_list (die, cu, comp_dir, 1);
5699
5700 /* Process all dies in compilation unit. */
5701 if (die->child != NULL)
5702 {
5703 child_die = die->child;
5704 while (child_die && child_die->tag)
5705 {
5706 process_die (child_die, cu);
5707 child_die = sibling_die (child_die);
5708 }
5709 }
5710
5711 /* Decode macro information, if present. Dwarf 2 macro information
5712 refers to information in the line number info statement program
5713 header, so we can only read it if we've read the header
5714 successfully. */
5715 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
5716 if (attr && cu->line_header)
5717 {
5718 if (dwarf2_attr (die, DW_AT_macro_info, cu))
5719 complaint (&symfile_complaints,
5720 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
5721
5722 dwarf_decode_macros (cu->line_header, DW_UNSND (attr),
5723 comp_dir, abfd, cu,
5724 &dwarf2_per_objfile->macro, 1);
5725 }
5726 else
5727 {
5728 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
5729 if (attr && cu->line_header)
5730 {
5731 unsigned int macro_offset = DW_UNSND (attr);
5732
5733 dwarf_decode_macros (cu->line_header, macro_offset,
5734 comp_dir, abfd, cu,
5735 &dwarf2_per_objfile->macinfo, 0);
5736 }
5737 }
5738
5739 do_cleanups (back_to);
5740 }
5741
5742 /* Process DW_TAG_type_unit.
5743 For TUs we want to skip the first top level sibling if it's not the
5744 actual type being defined by this TU. In this case the first top
5745 level sibling is there to provide context only. */
5746
5747 static void
5748 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5749 {
5750 struct objfile *objfile = cu->objfile;
5751 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5752 CORE_ADDR lowpc;
5753 struct attribute *attr;
5754 char *name = NULL;
5755 char *comp_dir = NULL;
5756 struct die_info *child_die;
5757 bfd *abfd = objfile->obfd;
5758
5759 /* start_symtab needs a low pc, but we don't really have one.
5760 Do what read_file_scope would do in the absence of such info. */
5761 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5762
5763 /* Find the filename. Do not use dwarf2_name here, since the filename
5764 is not a source language identifier. */
5765 attr = dwarf2_attr (die, DW_AT_name, cu);
5766 if (attr)
5767 name = DW_STRING (attr);
5768
5769 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5770 if (attr)
5771 comp_dir = DW_STRING (attr);
5772 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5773 {
5774 comp_dir = ldirname (name);
5775 if (comp_dir != NULL)
5776 make_cleanup (xfree, comp_dir);
5777 }
5778
5779 if (name == NULL)
5780 name = "<unknown>";
5781
5782 attr = dwarf2_attr (die, DW_AT_language, cu);
5783 if (attr)
5784 set_cu_language (DW_UNSND (attr), cu);
5785
5786 /* This isn't technically needed today. It is done for symmetry
5787 with read_file_scope. */
5788 attr = dwarf2_attr (die, DW_AT_producer, cu);
5789 if (attr)
5790 cu->producer = DW_STRING (attr);
5791
5792 /* We assume that we're processing GCC output. */
5793 processing_gcc_compilation = 2;
5794
5795 processing_has_namespace_info = 0;
5796
5797 start_symtab (name, comp_dir, lowpc);
5798 record_debugformat ("DWARF 2");
5799 record_producer (cu->producer);
5800
5801 /* Decode line number information if present. We do this before
5802 processing child DIEs, so that the line header table is available
5803 for DW_AT_decl_file.
5804 We don't need the pc/line-number mapping for type units. */
5805 handle_DW_AT_stmt_list (die, cu, comp_dir, 0);
5806
5807 /* Process the dies in the type unit. */
5808 if (die->child == NULL)
5809 {
5810 dump_die_for_error (die);
5811 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5812 bfd_get_filename (abfd));
5813 }
5814
5815 child_die = die->child;
5816
5817 while (child_die && child_die->tag)
5818 {
5819 process_die (child_die, cu);
5820
5821 child_die = sibling_die (child_die);
5822 }
5823
5824 do_cleanups (back_to);
5825 }
5826
5827 /* qsort helper for inherit_abstract_dies. */
5828
5829 static int
5830 unsigned_int_compar (const void *ap, const void *bp)
5831 {
5832 unsigned int a = *(unsigned int *) ap;
5833 unsigned int b = *(unsigned int *) bp;
5834
5835 return (a > b) - (b > a);
5836 }
5837
5838 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
5839 Inherit only the children of the DW_AT_abstract_origin DIE not being
5840 already referenced by DW_AT_abstract_origin from the children of the
5841 current DIE. */
5842
5843 static void
5844 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5845 {
5846 struct die_info *child_die;
5847 unsigned die_children_count;
5848 /* CU offsets which were referenced by children of the current DIE. */
5849 sect_offset *offsets;
5850 sect_offset *offsets_end, *offsetp;
5851 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5852 struct die_info *origin_die;
5853 /* Iterator of the ORIGIN_DIE children. */
5854 struct die_info *origin_child_die;
5855 struct cleanup *cleanups;
5856 struct attribute *attr;
5857 struct dwarf2_cu *origin_cu;
5858 struct pending **origin_previous_list_in_scope;
5859
5860 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5861 if (!attr)
5862 return;
5863
5864 /* Note that following die references may follow to a die in a
5865 different cu. */
5866
5867 origin_cu = cu;
5868 origin_die = follow_die_ref (die, attr, &origin_cu);
5869
5870 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5871 symbols in. */
5872 origin_previous_list_in_scope = origin_cu->list_in_scope;
5873 origin_cu->list_in_scope = cu->list_in_scope;
5874
5875 if (die->tag != origin_die->tag
5876 && !(die->tag == DW_TAG_inlined_subroutine
5877 && origin_die->tag == DW_TAG_subprogram))
5878 complaint (&symfile_complaints,
5879 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5880 die->offset.sect_off, origin_die->offset.sect_off);
5881
5882 child_die = die->child;
5883 die_children_count = 0;
5884 while (child_die && child_die->tag)
5885 {
5886 child_die = sibling_die (child_die);
5887 die_children_count++;
5888 }
5889 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5890 cleanups = make_cleanup (xfree, offsets);
5891
5892 offsets_end = offsets;
5893 child_die = die->child;
5894 while (child_die && child_die->tag)
5895 {
5896 /* For each CHILD_DIE, find the corresponding child of
5897 ORIGIN_DIE. If there is more than one layer of
5898 DW_AT_abstract_origin, follow them all; there shouldn't be,
5899 but GCC versions at least through 4.4 generate this (GCC PR
5900 40573). */
5901 struct die_info *child_origin_die = child_die;
5902 struct dwarf2_cu *child_origin_cu = cu;
5903
5904 while (1)
5905 {
5906 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5907 child_origin_cu);
5908 if (attr == NULL)
5909 break;
5910 child_origin_die = follow_die_ref (child_origin_die, attr,
5911 &child_origin_cu);
5912 }
5913
5914 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5915 counterpart may exist. */
5916 if (child_origin_die != child_die)
5917 {
5918 if (child_die->tag != child_origin_die->tag
5919 && !(child_die->tag == DW_TAG_inlined_subroutine
5920 && child_origin_die->tag == DW_TAG_subprogram))
5921 complaint (&symfile_complaints,
5922 _("Child DIE 0x%x and its abstract origin 0x%x have "
5923 "different tags"), child_die->offset.sect_off,
5924 child_origin_die->offset.sect_off);
5925 if (child_origin_die->parent != origin_die)
5926 complaint (&symfile_complaints,
5927 _("Child DIE 0x%x and its abstract origin 0x%x have "
5928 "different parents"), child_die->offset.sect_off,
5929 child_origin_die->offset.sect_off);
5930 else
5931 *offsets_end++ = child_origin_die->offset;
5932 }
5933 child_die = sibling_die (child_die);
5934 }
5935 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5936 unsigned_int_compar);
5937 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5938 if (offsetp[-1].sect_off == offsetp->sect_off)
5939 complaint (&symfile_complaints,
5940 _("Multiple children of DIE 0x%x refer "
5941 "to DIE 0x%x as their abstract origin"),
5942 die->offset.sect_off, offsetp->sect_off);
5943
5944 offsetp = offsets;
5945 origin_child_die = origin_die->child;
5946 while (origin_child_die && origin_child_die->tag)
5947 {
5948 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5949 while (offsetp < offsets_end
5950 && offsetp->sect_off < origin_child_die->offset.sect_off)
5951 offsetp++;
5952 if (offsetp >= offsets_end
5953 || offsetp->sect_off > origin_child_die->offset.sect_off)
5954 {
5955 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
5956 process_die (origin_child_die, origin_cu);
5957 }
5958 origin_child_die = sibling_die (origin_child_die);
5959 }
5960 origin_cu->list_in_scope = origin_previous_list_in_scope;
5961
5962 do_cleanups (cleanups);
5963 }
5964
5965 static void
5966 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
5967 {
5968 struct objfile *objfile = cu->objfile;
5969 struct context_stack *new;
5970 CORE_ADDR lowpc;
5971 CORE_ADDR highpc;
5972 struct die_info *child_die;
5973 struct attribute *attr, *call_line, *call_file;
5974 char *name;
5975 CORE_ADDR baseaddr;
5976 struct block *block;
5977 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
5978 VEC (symbolp) *template_args = NULL;
5979 struct template_symbol *templ_func = NULL;
5980
5981 if (inlined_func)
5982 {
5983 /* If we do not have call site information, we can't show the
5984 caller of this inlined function. That's too confusing, so
5985 only use the scope for local variables. */
5986 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5987 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5988 if (call_line == NULL || call_file == NULL)
5989 {
5990 read_lexical_block_scope (die, cu);
5991 return;
5992 }
5993 }
5994
5995 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5996
5997 name = dwarf2_name (die, cu);
5998
5999 /* Ignore functions with missing or empty names. These are actually
6000 illegal according to the DWARF standard. */
6001 if (name == NULL)
6002 {
6003 complaint (&symfile_complaints,
6004 _("missing name for subprogram DIE at %d"),
6005 die->offset.sect_off);
6006 return;
6007 }
6008
6009 /* Ignore functions with missing or invalid low and high pc attributes. */
6010 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
6011 {
6012 attr = dwarf2_attr (die, DW_AT_external, cu);
6013 if (!attr || !DW_UNSND (attr))
6014 complaint (&symfile_complaints,
6015 _("cannot get low and high bounds "
6016 "for subprogram DIE at %d"),
6017 die->offset.sect_off);
6018 return;
6019 }
6020
6021 lowpc += baseaddr;
6022 highpc += baseaddr;
6023
6024 /* If we have any template arguments, then we must allocate a
6025 different sort of symbol. */
6026 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
6027 {
6028 if (child_die->tag == DW_TAG_template_type_param
6029 || child_die->tag == DW_TAG_template_value_param)
6030 {
6031 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6032 struct template_symbol);
6033 templ_func->base.is_cplus_template_function = 1;
6034 break;
6035 }
6036 }
6037
6038 new = push_context (0, lowpc);
6039 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
6040 (struct symbol *) templ_func);
6041
6042 /* If there is a location expression for DW_AT_frame_base, record
6043 it. */
6044 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
6045 if (attr)
6046 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
6047 expression is being recorded directly in the function's symbol
6048 and not in a separate frame-base object. I guess this hack is
6049 to avoid adding some sort of frame-base adjunct/annex to the
6050 function's symbol :-(. The problem with doing this is that it
6051 results in a function symbol with a location expression that
6052 has nothing to do with the location of the function, ouch! The
6053 relationship should be: a function's symbol has-a frame base; a
6054 frame-base has-a location expression. */
6055 dwarf2_symbol_mark_computed (attr, new->name, cu);
6056
6057 cu->list_in_scope = &local_symbols;
6058
6059 if (die->child != NULL)
6060 {
6061 child_die = die->child;
6062 while (child_die && child_die->tag)
6063 {
6064 if (child_die->tag == DW_TAG_template_type_param
6065 || child_die->tag == DW_TAG_template_value_param)
6066 {
6067 struct symbol *arg = new_symbol (child_die, NULL, cu);
6068
6069 if (arg != NULL)
6070 VEC_safe_push (symbolp, template_args, arg);
6071 }
6072 else
6073 process_die (child_die, cu);
6074 child_die = sibling_die (child_die);
6075 }
6076 }
6077
6078 inherit_abstract_dies (die, cu);
6079
6080 /* If we have a DW_AT_specification, we might need to import using
6081 directives from the context of the specification DIE. See the
6082 comment in determine_prefix. */
6083 if (cu->language == language_cplus
6084 && dwarf2_attr (die, DW_AT_specification, cu))
6085 {
6086 struct dwarf2_cu *spec_cu = cu;
6087 struct die_info *spec_die = die_specification (die, &spec_cu);
6088
6089 while (spec_die)
6090 {
6091 child_die = spec_die->child;
6092 while (child_die && child_die->tag)
6093 {
6094 if (child_die->tag == DW_TAG_imported_module)
6095 process_die (child_die, spec_cu);
6096 child_die = sibling_die (child_die);
6097 }
6098
6099 /* In some cases, GCC generates specification DIEs that
6100 themselves contain DW_AT_specification attributes. */
6101 spec_die = die_specification (spec_die, &spec_cu);
6102 }
6103 }
6104
6105 new = pop_context ();
6106 /* Make a block for the local symbols within. */
6107 block = finish_block (new->name, &local_symbols, new->old_blocks,
6108 lowpc, highpc, objfile);
6109
6110 /* For C++, set the block's scope. */
6111 if (cu->language == language_cplus || cu->language == language_fortran)
6112 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
6113 determine_prefix (die, cu),
6114 processing_has_namespace_info);
6115
6116 /* If we have address ranges, record them. */
6117 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6118
6119 /* Attach template arguments to function. */
6120 if (! VEC_empty (symbolp, template_args))
6121 {
6122 gdb_assert (templ_func != NULL);
6123
6124 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
6125 templ_func->template_arguments
6126 = obstack_alloc (&objfile->objfile_obstack,
6127 (templ_func->n_template_arguments
6128 * sizeof (struct symbol *)));
6129 memcpy (templ_func->template_arguments,
6130 VEC_address (symbolp, template_args),
6131 (templ_func->n_template_arguments * sizeof (struct symbol *)));
6132 VEC_free (symbolp, template_args);
6133 }
6134
6135 /* In C++, we can have functions nested inside functions (e.g., when
6136 a function declares a class that has methods). This means that
6137 when we finish processing a function scope, we may need to go
6138 back to building a containing block's symbol lists. */
6139 local_symbols = new->locals;
6140 param_symbols = new->params;
6141 using_directives = new->using_directives;
6142
6143 /* If we've finished processing a top-level function, subsequent
6144 symbols go in the file symbol list. */
6145 if (outermost_context_p ())
6146 cu->list_in_scope = &file_symbols;
6147 }
6148
6149 /* Process all the DIES contained within a lexical block scope. Start
6150 a new scope, process the dies, and then close the scope. */
6151
6152 static void
6153 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
6154 {
6155 struct objfile *objfile = cu->objfile;
6156 struct context_stack *new;
6157 CORE_ADDR lowpc, highpc;
6158 struct die_info *child_die;
6159 CORE_ADDR baseaddr;
6160
6161 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6162
6163 /* Ignore blocks with missing or invalid low and high pc attributes. */
6164 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
6165 as multiple lexical blocks? Handling children in a sane way would
6166 be nasty. Might be easier to properly extend generic blocks to
6167 describe ranges. */
6168 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
6169 return;
6170 lowpc += baseaddr;
6171 highpc += baseaddr;
6172
6173 push_context (0, lowpc);
6174 if (die->child != NULL)
6175 {
6176 child_die = die->child;
6177 while (child_die && child_die->tag)
6178 {
6179 process_die (child_die, cu);
6180 child_die = sibling_die (child_die);
6181 }
6182 }
6183 new = pop_context ();
6184
6185 if (local_symbols != NULL || using_directives != NULL)
6186 {
6187 struct block *block
6188 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
6189 highpc, objfile);
6190
6191 /* Note that recording ranges after traversing children, as we
6192 do here, means that recording a parent's ranges entails
6193 walking across all its children's ranges as they appear in
6194 the address map, which is quadratic behavior.
6195
6196 It would be nicer to record the parent's ranges before
6197 traversing its children, simply overriding whatever you find
6198 there. But since we don't even decide whether to create a
6199 block until after we've traversed its children, that's hard
6200 to do. */
6201 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6202 }
6203 local_symbols = new->locals;
6204 using_directives = new->using_directives;
6205 }
6206
6207 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
6208
6209 static void
6210 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
6211 {
6212 struct objfile *objfile = cu->objfile;
6213 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6214 CORE_ADDR pc, baseaddr;
6215 struct attribute *attr;
6216 struct call_site *call_site, call_site_local;
6217 void **slot;
6218 int nparams;
6219 struct die_info *child_die;
6220
6221 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6222
6223 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6224 if (!attr)
6225 {
6226 complaint (&symfile_complaints,
6227 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
6228 "DIE 0x%x [in module %s]"),
6229 die->offset.sect_off, objfile->name);
6230 return;
6231 }
6232 pc = DW_ADDR (attr) + baseaddr;
6233
6234 if (cu->call_site_htab == NULL)
6235 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
6236 NULL, &objfile->objfile_obstack,
6237 hashtab_obstack_allocate, NULL);
6238 call_site_local.pc = pc;
6239 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
6240 if (*slot != NULL)
6241 {
6242 complaint (&symfile_complaints,
6243 _("Duplicate PC %s for DW_TAG_GNU_call_site "
6244 "DIE 0x%x [in module %s]"),
6245 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
6246 return;
6247 }
6248
6249 /* Count parameters at the caller. */
6250
6251 nparams = 0;
6252 for (child_die = die->child; child_die && child_die->tag;
6253 child_die = sibling_die (child_die))
6254 {
6255 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
6256 {
6257 complaint (&symfile_complaints,
6258 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
6259 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6260 child_die->tag, child_die->offset.sect_off, objfile->name);
6261 continue;
6262 }
6263
6264 nparams++;
6265 }
6266
6267 call_site = obstack_alloc (&objfile->objfile_obstack,
6268 (sizeof (*call_site)
6269 + (sizeof (*call_site->parameter)
6270 * (nparams - 1))));
6271 *slot = call_site;
6272 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
6273 call_site->pc = pc;
6274
6275 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
6276 {
6277 struct die_info *func_die;
6278
6279 /* Skip also over DW_TAG_inlined_subroutine. */
6280 for (func_die = die->parent;
6281 func_die && func_die->tag != DW_TAG_subprogram
6282 && func_die->tag != DW_TAG_subroutine_type;
6283 func_die = func_die->parent);
6284
6285 /* DW_AT_GNU_all_call_sites is a superset
6286 of DW_AT_GNU_all_tail_call_sites. */
6287 if (func_die
6288 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
6289 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
6290 {
6291 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
6292 not complete. But keep CALL_SITE for look ups via call_site_htab,
6293 both the initial caller containing the real return address PC and
6294 the final callee containing the current PC of a chain of tail
6295 calls do not need to have the tail call list complete. But any
6296 function candidate for a virtual tail call frame searched via
6297 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
6298 determined unambiguously. */
6299 }
6300 else
6301 {
6302 struct type *func_type = NULL;
6303
6304 if (func_die)
6305 func_type = get_die_type (func_die, cu);
6306 if (func_type != NULL)
6307 {
6308 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
6309
6310 /* Enlist this call site to the function. */
6311 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
6312 TYPE_TAIL_CALL_LIST (func_type) = call_site;
6313 }
6314 else
6315 complaint (&symfile_complaints,
6316 _("Cannot find function owning DW_TAG_GNU_call_site "
6317 "DIE 0x%x [in module %s]"),
6318 die->offset.sect_off, objfile->name);
6319 }
6320 }
6321
6322 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
6323 if (attr == NULL)
6324 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
6325 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
6326 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
6327 /* Keep NULL DWARF_BLOCK. */;
6328 else if (attr_form_is_block (attr))
6329 {
6330 struct dwarf2_locexpr_baton *dlbaton;
6331
6332 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
6333 dlbaton->data = DW_BLOCK (attr)->data;
6334 dlbaton->size = DW_BLOCK (attr)->size;
6335 dlbaton->per_cu = cu->per_cu;
6336
6337 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
6338 }
6339 else if (is_ref_attr (attr))
6340 {
6341 struct dwarf2_cu *target_cu = cu;
6342 struct die_info *target_die;
6343
6344 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
6345 gdb_assert (target_cu->objfile == objfile);
6346 if (die_is_declaration (target_die, target_cu))
6347 {
6348 const char *target_physname;
6349
6350 target_physname = dwarf2_physname (NULL, target_die, target_cu);
6351 if (target_physname == NULL)
6352 complaint (&symfile_complaints,
6353 _("DW_AT_GNU_call_site_target target DIE has invalid "
6354 "physname, for referencing DIE 0x%x [in module %s]"),
6355 die->offset.sect_off, objfile->name);
6356 else
6357 SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname);
6358 }
6359 else
6360 {
6361 CORE_ADDR lowpc;
6362
6363 /* DW_AT_entry_pc should be preferred. */
6364 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
6365 complaint (&symfile_complaints,
6366 _("DW_AT_GNU_call_site_target target DIE has invalid "
6367 "low pc, for referencing DIE 0x%x [in module %s]"),
6368 die->offset.sect_off, objfile->name);
6369 else
6370 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
6371 }
6372 }
6373 else
6374 complaint (&symfile_complaints,
6375 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
6376 "block nor reference, for DIE 0x%x [in module %s]"),
6377 die->offset.sect_off, objfile->name);
6378
6379 call_site->per_cu = cu->per_cu;
6380
6381 for (child_die = die->child;
6382 child_die && child_die->tag;
6383 child_die = sibling_die (child_die))
6384 {
6385 struct dwarf2_locexpr_baton *dlbaton;
6386 struct call_site_parameter *parameter;
6387
6388 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
6389 {
6390 /* Already printed the complaint above. */
6391 continue;
6392 }
6393
6394 gdb_assert (call_site->parameter_count < nparams);
6395 parameter = &call_site->parameter[call_site->parameter_count];
6396
6397 /* DW_AT_location specifies the register number. Value of the data
6398 assumed for the register is contained in DW_AT_GNU_call_site_value. */
6399
6400 attr = dwarf2_attr (child_die, DW_AT_location, cu);
6401 if (!attr || !attr_form_is_block (attr))
6402 {
6403 complaint (&symfile_complaints,
6404 _("No DW_FORM_block* DW_AT_location for "
6405 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6406 child_die->offset.sect_off, objfile->name);
6407 continue;
6408 }
6409 parameter->dwarf_reg = dwarf_block_to_dwarf_reg (DW_BLOCK (attr)->data,
6410 &DW_BLOCK (attr)->data[DW_BLOCK (attr)->size]);
6411 if (parameter->dwarf_reg == -1
6412 && !dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (attr)->data,
6413 &DW_BLOCK (attr)->data[DW_BLOCK (attr)->size],
6414 &parameter->fb_offset))
6415 {
6416 complaint (&symfile_complaints,
6417 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
6418 "for DW_FORM_block* DW_AT_location for "
6419 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6420 child_die->offset.sect_off, objfile->name);
6421 continue;
6422 }
6423
6424 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
6425 if (!attr_form_is_block (attr))
6426 {
6427 complaint (&symfile_complaints,
6428 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
6429 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6430 child_die->offset.sect_off, objfile->name);
6431 continue;
6432 }
6433 parameter->value = DW_BLOCK (attr)->data;
6434 parameter->value_size = DW_BLOCK (attr)->size;
6435
6436 /* Parameters are not pre-cleared by memset above. */
6437 parameter->data_value = NULL;
6438 parameter->data_value_size = 0;
6439 call_site->parameter_count++;
6440
6441 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
6442 if (attr)
6443 {
6444 if (!attr_form_is_block (attr))
6445 complaint (&symfile_complaints,
6446 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
6447 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6448 child_die->offset.sect_off, objfile->name);
6449 else
6450 {
6451 parameter->data_value = DW_BLOCK (attr)->data;
6452 parameter->data_value_size = DW_BLOCK (attr)->size;
6453 }
6454 }
6455 }
6456 }
6457
6458 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
6459 Return 1 if the attributes are present and valid, otherwise, return 0.
6460 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
6461
6462 static int
6463 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
6464 CORE_ADDR *high_return, struct dwarf2_cu *cu,
6465 struct partial_symtab *ranges_pst)
6466 {
6467 struct objfile *objfile = cu->objfile;
6468 struct comp_unit_head *cu_header = &cu->header;
6469 bfd *obfd = objfile->obfd;
6470 unsigned int addr_size = cu_header->addr_size;
6471 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6472 /* Base address selection entry. */
6473 CORE_ADDR base;
6474 int found_base;
6475 unsigned int dummy;
6476 gdb_byte *buffer;
6477 CORE_ADDR marker;
6478 int low_set;
6479 CORE_ADDR low = 0;
6480 CORE_ADDR high = 0;
6481 CORE_ADDR baseaddr;
6482
6483 found_base = cu->base_known;
6484 base = cu->base_address;
6485
6486 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
6487 if (offset >= dwarf2_per_objfile->ranges.size)
6488 {
6489 complaint (&symfile_complaints,
6490 _("Offset %d out of bounds for DW_AT_ranges attribute"),
6491 offset);
6492 return 0;
6493 }
6494 buffer = dwarf2_per_objfile->ranges.buffer + offset;
6495
6496 /* Read in the largest possible address. */
6497 marker = read_address (obfd, buffer, cu, &dummy);
6498 if ((marker & mask) == mask)
6499 {
6500 /* If we found the largest possible address, then
6501 read the base address. */
6502 base = read_address (obfd, buffer + addr_size, cu, &dummy);
6503 buffer += 2 * addr_size;
6504 offset += 2 * addr_size;
6505 found_base = 1;
6506 }
6507
6508 low_set = 0;
6509
6510 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6511
6512 while (1)
6513 {
6514 CORE_ADDR range_beginning, range_end;
6515
6516 range_beginning = read_address (obfd, buffer, cu, &dummy);
6517 buffer += addr_size;
6518 range_end = read_address (obfd, buffer, cu, &dummy);
6519 buffer += addr_size;
6520 offset += 2 * addr_size;
6521
6522 /* An end of list marker is a pair of zero addresses. */
6523 if (range_beginning == 0 && range_end == 0)
6524 /* Found the end of list entry. */
6525 break;
6526
6527 /* Each base address selection entry is a pair of 2 values.
6528 The first is the largest possible address, the second is
6529 the base address. Check for a base address here. */
6530 if ((range_beginning & mask) == mask)
6531 {
6532 /* If we found the largest possible address, then
6533 read the base address. */
6534 base = read_address (obfd, buffer + addr_size, cu, &dummy);
6535 found_base = 1;
6536 continue;
6537 }
6538
6539 if (!found_base)
6540 {
6541 /* We have no valid base address for the ranges
6542 data. */
6543 complaint (&symfile_complaints,
6544 _("Invalid .debug_ranges data (no base address)"));
6545 return 0;
6546 }
6547
6548 if (range_beginning > range_end)
6549 {
6550 /* Inverted range entries are invalid. */
6551 complaint (&symfile_complaints,
6552 _("Invalid .debug_ranges data (inverted range)"));
6553 return 0;
6554 }
6555
6556 /* Empty range entries have no effect. */
6557 if (range_beginning == range_end)
6558 continue;
6559
6560 range_beginning += base;
6561 range_end += base;
6562
6563 if (ranges_pst != NULL)
6564 addrmap_set_empty (objfile->psymtabs_addrmap,
6565 range_beginning + baseaddr,
6566 range_end - 1 + baseaddr,
6567 ranges_pst);
6568
6569 /* FIXME: This is recording everything as a low-high
6570 segment of consecutive addresses. We should have a
6571 data structure for discontiguous block ranges
6572 instead. */
6573 if (! low_set)
6574 {
6575 low = range_beginning;
6576 high = range_end;
6577 low_set = 1;
6578 }
6579 else
6580 {
6581 if (range_beginning < low)
6582 low = range_beginning;
6583 if (range_end > high)
6584 high = range_end;
6585 }
6586 }
6587
6588 if (! low_set)
6589 /* If the first entry is an end-of-list marker, the range
6590 describes an empty scope, i.e. no instructions. */
6591 return 0;
6592
6593 if (low_return)
6594 *low_return = low;
6595 if (high_return)
6596 *high_return = high;
6597 return 1;
6598 }
6599
6600 /* Get low and high pc attributes from a die. Return 1 if the attributes
6601 are present and valid, otherwise, return 0. Return -1 if the range is
6602 discontinuous, i.e. derived from DW_AT_ranges information. */
6603 static int
6604 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
6605 CORE_ADDR *highpc, struct dwarf2_cu *cu,
6606 struct partial_symtab *pst)
6607 {
6608 struct attribute *attr;
6609 CORE_ADDR low = 0;
6610 CORE_ADDR high = 0;
6611 int ret = 0;
6612
6613 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6614 if (attr)
6615 {
6616 high = DW_ADDR (attr);
6617 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6618 if (attr)
6619 low = DW_ADDR (attr);
6620 else
6621 /* Found high w/o low attribute. */
6622 return 0;
6623
6624 /* Found consecutive range of addresses. */
6625 ret = 1;
6626 }
6627 else
6628 {
6629 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6630 if (attr != NULL)
6631 {
6632 /* Value of the DW_AT_ranges attribute is the offset in the
6633 .debug_ranges section. */
6634 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
6635 return 0;
6636 /* Found discontinuous range of addresses. */
6637 ret = -1;
6638 }
6639 }
6640
6641 /* read_partial_die has also the strict LOW < HIGH requirement. */
6642 if (high <= low)
6643 return 0;
6644
6645 /* When using the GNU linker, .gnu.linkonce. sections are used to
6646 eliminate duplicate copies of functions and vtables and such.
6647 The linker will arbitrarily choose one and discard the others.
6648 The AT_*_pc values for such functions refer to local labels in
6649 these sections. If the section from that file was discarded, the
6650 labels are not in the output, so the relocs get a value of 0.
6651 If this is a discarded function, mark the pc bounds as invalid,
6652 so that GDB will ignore it. */
6653 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
6654 return 0;
6655
6656 *lowpc = low;
6657 if (highpc)
6658 *highpc = high;
6659 return ret;
6660 }
6661
6662 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
6663 its low and high PC addresses. Do nothing if these addresses could not
6664 be determined. Otherwise, set LOWPC to the low address if it is smaller,
6665 and HIGHPC to the high address if greater than HIGHPC. */
6666
6667 static void
6668 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
6669 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6670 struct dwarf2_cu *cu)
6671 {
6672 CORE_ADDR low, high;
6673 struct die_info *child = die->child;
6674
6675 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
6676 {
6677 *lowpc = min (*lowpc, low);
6678 *highpc = max (*highpc, high);
6679 }
6680
6681 /* If the language does not allow nested subprograms (either inside
6682 subprograms or lexical blocks), we're done. */
6683 if (cu->language != language_ada)
6684 return;
6685
6686 /* Check all the children of the given DIE. If it contains nested
6687 subprograms, then check their pc bounds. Likewise, we need to
6688 check lexical blocks as well, as they may also contain subprogram
6689 definitions. */
6690 while (child && child->tag)
6691 {
6692 if (child->tag == DW_TAG_subprogram
6693 || child->tag == DW_TAG_lexical_block)
6694 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
6695 child = sibling_die (child);
6696 }
6697 }
6698
6699 /* Get the low and high pc's represented by the scope DIE, and store
6700 them in *LOWPC and *HIGHPC. If the correct values can't be
6701 determined, set *LOWPC to -1 and *HIGHPC to 0. */
6702
6703 static void
6704 get_scope_pc_bounds (struct die_info *die,
6705 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6706 struct dwarf2_cu *cu)
6707 {
6708 CORE_ADDR best_low = (CORE_ADDR) -1;
6709 CORE_ADDR best_high = (CORE_ADDR) 0;
6710 CORE_ADDR current_low, current_high;
6711
6712 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
6713 {
6714 best_low = current_low;
6715 best_high = current_high;
6716 }
6717 else
6718 {
6719 struct die_info *child = die->child;
6720
6721 while (child && child->tag)
6722 {
6723 switch (child->tag) {
6724 case DW_TAG_subprogram:
6725 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
6726 break;
6727 case DW_TAG_namespace:
6728 case DW_TAG_module:
6729 /* FIXME: carlton/2004-01-16: Should we do this for
6730 DW_TAG_class_type/DW_TAG_structure_type, too? I think
6731 that current GCC's always emit the DIEs corresponding
6732 to definitions of methods of classes as children of a
6733 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
6734 the DIEs giving the declarations, which could be
6735 anywhere). But I don't see any reason why the
6736 standards says that they have to be there. */
6737 get_scope_pc_bounds (child, &current_low, &current_high, cu);
6738
6739 if (current_low != ((CORE_ADDR) -1))
6740 {
6741 best_low = min (best_low, current_low);
6742 best_high = max (best_high, current_high);
6743 }
6744 break;
6745 default:
6746 /* Ignore. */
6747 break;
6748 }
6749
6750 child = sibling_die (child);
6751 }
6752 }
6753
6754 *lowpc = best_low;
6755 *highpc = best_high;
6756 }
6757
6758 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
6759 in DIE. */
6760 static void
6761 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
6762 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
6763 {
6764 struct objfile *objfile = cu->objfile;
6765 struct attribute *attr;
6766
6767 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6768 if (attr)
6769 {
6770 CORE_ADDR high = DW_ADDR (attr);
6771
6772 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6773 if (attr)
6774 {
6775 CORE_ADDR low = DW_ADDR (attr);
6776
6777 record_block_range (block, baseaddr + low, baseaddr + high - 1);
6778 }
6779 }
6780
6781 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6782 if (attr)
6783 {
6784 bfd *obfd = objfile->obfd;
6785
6786 /* The value of the DW_AT_ranges attribute is the offset of the
6787 address range list in the .debug_ranges section. */
6788 unsigned long offset = DW_UNSND (attr);
6789 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
6790
6791 /* For some target architectures, but not others, the
6792 read_address function sign-extends the addresses it returns.
6793 To recognize base address selection entries, we need a
6794 mask. */
6795 unsigned int addr_size = cu->header.addr_size;
6796 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6797
6798 /* The base address, to which the next pair is relative. Note
6799 that this 'base' is a DWARF concept: most entries in a range
6800 list are relative, to reduce the number of relocs against the
6801 debugging information. This is separate from this function's
6802 'baseaddr' argument, which GDB uses to relocate debugging
6803 information from a shared library based on the address at
6804 which the library was loaded. */
6805 CORE_ADDR base = cu->base_address;
6806 int base_known = cu->base_known;
6807
6808 gdb_assert (dwarf2_per_objfile->ranges.readin);
6809 if (offset >= dwarf2_per_objfile->ranges.size)
6810 {
6811 complaint (&symfile_complaints,
6812 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
6813 offset);
6814 return;
6815 }
6816
6817 for (;;)
6818 {
6819 unsigned int bytes_read;
6820 CORE_ADDR start, end;
6821
6822 start = read_address (obfd, buffer, cu, &bytes_read);
6823 buffer += bytes_read;
6824 end = read_address (obfd, buffer, cu, &bytes_read);
6825 buffer += bytes_read;
6826
6827 /* Did we find the end of the range list? */
6828 if (start == 0 && end == 0)
6829 break;
6830
6831 /* Did we find a base address selection entry? */
6832 else if ((start & base_select_mask) == base_select_mask)
6833 {
6834 base = end;
6835 base_known = 1;
6836 }
6837
6838 /* We found an ordinary address range. */
6839 else
6840 {
6841 if (!base_known)
6842 {
6843 complaint (&symfile_complaints,
6844 _("Invalid .debug_ranges data "
6845 "(no base address)"));
6846 return;
6847 }
6848
6849 if (start > end)
6850 {
6851 /* Inverted range entries are invalid. */
6852 complaint (&symfile_complaints,
6853 _("Invalid .debug_ranges data "
6854 "(inverted range)"));
6855 return;
6856 }
6857
6858 /* Empty range entries have no effect. */
6859 if (start == end)
6860 continue;
6861
6862 record_block_range (block,
6863 baseaddr + base + start,
6864 baseaddr + base + end - 1);
6865 }
6866 }
6867 }
6868 }
6869
6870 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
6871 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
6872 during 4.6.0 experimental. */
6873
6874 static int
6875 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
6876 {
6877 const char *cs;
6878 int major, minor, release;
6879 int result = 0;
6880
6881 if (cu->producer == NULL)
6882 {
6883 /* For unknown compilers expect their behavior is DWARF version
6884 compliant.
6885
6886 GCC started to support .debug_types sections by -gdwarf-4 since
6887 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
6888 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
6889 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
6890 interpreted incorrectly by GDB now - GCC PR debug/48229. */
6891
6892 return 0;
6893 }
6894
6895 if (cu->checked_producer)
6896 return cu->producer_is_gxx_lt_4_6;
6897
6898 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
6899
6900 if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) != 0)
6901 {
6902 /* For non-GCC compilers expect their behavior is DWARF version
6903 compliant. */
6904 }
6905 else
6906 {
6907 cs = &cu->producer[strlen ("GNU ")];
6908 while (*cs && !isdigit (*cs))
6909 cs++;
6910 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
6911 {
6912 /* Not recognized as GCC. */
6913 }
6914 else
6915 result = major < 4 || (major == 4 && minor < 6);
6916 }
6917
6918 cu->checked_producer = 1;
6919 cu->producer_is_gxx_lt_4_6 = result;
6920
6921 return result;
6922 }
6923
6924 /* Return the default accessibility type if it is not overriden by
6925 DW_AT_accessibility. */
6926
6927 static enum dwarf_access_attribute
6928 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
6929 {
6930 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
6931 {
6932 /* The default DWARF 2 accessibility for members is public, the default
6933 accessibility for inheritance is private. */
6934
6935 if (die->tag != DW_TAG_inheritance)
6936 return DW_ACCESS_public;
6937 else
6938 return DW_ACCESS_private;
6939 }
6940 else
6941 {
6942 /* DWARF 3+ defines the default accessibility a different way. The same
6943 rules apply now for DW_TAG_inheritance as for the members and it only
6944 depends on the container kind. */
6945
6946 if (die->parent->tag == DW_TAG_class_type)
6947 return DW_ACCESS_private;
6948 else
6949 return DW_ACCESS_public;
6950 }
6951 }
6952
6953 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
6954 offset. If the attribute was not found return 0, otherwise return
6955 1. If it was found but could not properly be handled, set *OFFSET
6956 to 0. */
6957
6958 static int
6959 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
6960 LONGEST *offset)
6961 {
6962 struct attribute *attr;
6963
6964 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6965 if (attr != NULL)
6966 {
6967 *offset = 0;
6968
6969 /* Note that we do not check for a section offset first here.
6970 This is because DW_AT_data_member_location is new in DWARF 4,
6971 so if we see it, we can assume that a constant form is really
6972 a constant and not a section offset. */
6973 if (attr_form_is_constant (attr))
6974 *offset = dwarf2_get_attr_constant_value (attr, 0);
6975 else if (attr_form_is_section_offset (attr))
6976 dwarf2_complex_location_expr_complaint ();
6977 else if (attr_form_is_block (attr))
6978 *offset = decode_locdesc (DW_BLOCK (attr), cu);
6979 else
6980 dwarf2_complex_location_expr_complaint ();
6981
6982 return 1;
6983 }
6984
6985 return 0;
6986 }
6987
6988 /* Add an aggregate field to the field list. */
6989
6990 static void
6991 dwarf2_add_field (struct field_info *fip, struct die_info *die,
6992 struct dwarf2_cu *cu)
6993 {
6994 struct objfile *objfile = cu->objfile;
6995 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6996 struct nextfield *new_field;
6997 struct attribute *attr;
6998 struct field *fp;
6999 char *fieldname = "";
7000
7001 /* Allocate a new field list entry and link it in. */
7002 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
7003 make_cleanup (xfree, new_field);
7004 memset (new_field, 0, sizeof (struct nextfield));
7005
7006 if (die->tag == DW_TAG_inheritance)
7007 {
7008 new_field->next = fip->baseclasses;
7009 fip->baseclasses = new_field;
7010 }
7011 else
7012 {
7013 new_field->next = fip->fields;
7014 fip->fields = new_field;
7015 }
7016 fip->nfields++;
7017
7018 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
7019 if (attr)
7020 new_field->accessibility = DW_UNSND (attr);
7021 else
7022 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
7023 if (new_field->accessibility != DW_ACCESS_public)
7024 fip->non_public_fields = 1;
7025
7026 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
7027 if (attr)
7028 new_field->virtuality = DW_UNSND (attr);
7029 else
7030 new_field->virtuality = DW_VIRTUALITY_none;
7031
7032 fp = &new_field->field;
7033
7034 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
7035 {
7036 LONGEST offset;
7037
7038 /* Data member other than a C++ static data member. */
7039
7040 /* Get type of field. */
7041 fp->type = die_type (die, cu);
7042
7043 SET_FIELD_BITPOS (*fp, 0);
7044
7045 /* Get bit size of field (zero if none). */
7046 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
7047 if (attr)
7048 {
7049 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
7050 }
7051 else
7052 {
7053 FIELD_BITSIZE (*fp) = 0;
7054 }
7055
7056 /* Get bit offset of field. */
7057 if (handle_data_member_location (die, cu, &offset))
7058 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
7059 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
7060 if (attr)
7061 {
7062 if (gdbarch_bits_big_endian (gdbarch))
7063 {
7064 /* For big endian bits, the DW_AT_bit_offset gives the
7065 additional bit offset from the MSB of the containing
7066 anonymous object to the MSB of the field. We don't
7067 have to do anything special since we don't need to
7068 know the size of the anonymous object. */
7069 FIELD_BITPOS (*fp) += DW_UNSND (attr);
7070 }
7071 else
7072 {
7073 /* For little endian bits, compute the bit offset to the
7074 MSB of the anonymous object, subtract off the number of
7075 bits from the MSB of the field to the MSB of the
7076 object, and then subtract off the number of bits of
7077 the field itself. The result is the bit offset of
7078 the LSB of the field. */
7079 int anonymous_size;
7080 int bit_offset = DW_UNSND (attr);
7081
7082 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7083 if (attr)
7084 {
7085 /* The size of the anonymous object containing
7086 the bit field is explicit, so use the
7087 indicated size (in bytes). */
7088 anonymous_size = DW_UNSND (attr);
7089 }
7090 else
7091 {
7092 /* The size of the anonymous object containing
7093 the bit field must be inferred from the type
7094 attribute of the data member containing the
7095 bit field. */
7096 anonymous_size = TYPE_LENGTH (fp->type);
7097 }
7098 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
7099 - bit_offset - FIELD_BITSIZE (*fp);
7100 }
7101 }
7102
7103 /* Get name of field. */
7104 fieldname = dwarf2_name (die, cu);
7105 if (fieldname == NULL)
7106 fieldname = "";
7107
7108 /* The name is already allocated along with this objfile, so we don't
7109 need to duplicate it for the type. */
7110 fp->name = fieldname;
7111
7112 /* Change accessibility for artificial fields (e.g. virtual table
7113 pointer or virtual base class pointer) to private. */
7114 if (dwarf2_attr (die, DW_AT_artificial, cu))
7115 {
7116 FIELD_ARTIFICIAL (*fp) = 1;
7117 new_field->accessibility = DW_ACCESS_private;
7118 fip->non_public_fields = 1;
7119 }
7120 }
7121 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
7122 {
7123 /* C++ static member. */
7124
7125 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
7126 is a declaration, but all versions of G++ as of this writing
7127 (so through at least 3.2.1) incorrectly generate
7128 DW_TAG_variable tags. */
7129
7130 const char *physname;
7131
7132 /* Get name of field. */
7133 fieldname = dwarf2_name (die, cu);
7134 if (fieldname == NULL)
7135 return;
7136
7137 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7138 if (attr
7139 /* Only create a symbol if this is an external value.
7140 new_symbol checks this and puts the value in the global symbol
7141 table, which we want. If it is not external, new_symbol
7142 will try to put the value in cu->list_in_scope which is wrong. */
7143 && dwarf2_flag_true_p (die, DW_AT_external, cu))
7144 {
7145 /* A static const member, not much different than an enum as far as
7146 we're concerned, except that we can support more types. */
7147 new_symbol (die, NULL, cu);
7148 }
7149
7150 /* Get physical name. */
7151 physname = dwarf2_physname (fieldname, die, cu);
7152
7153 /* The name is already allocated along with this objfile, so we don't
7154 need to duplicate it for the type. */
7155 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
7156 FIELD_TYPE (*fp) = die_type (die, cu);
7157 FIELD_NAME (*fp) = fieldname;
7158 }
7159 else if (die->tag == DW_TAG_inheritance)
7160 {
7161 LONGEST offset;
7162
7163 /* C++ base class field. */
7164 if (handle_data_member_location (die, cu, &offset))
7165 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
7166 FIELD_BITSIZE (*fp) = 0;
7167 FIELD_TYPE (*fp) = die_type (die, cu);
7168 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
7169 fip->nbaseclasses++;
7170 }
7171 }
7172
7173 /* Add a typedef defined in the scope of the FIP's class. */
7174
7175 static void
7176 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
7177 struct dwarf2_cu *cu)
7178 {
7179 struct objfile *objfile = cu->objfile;
7180 struct typedef_field_list *new_field;
7181 struct attribute *attr;
7182 struct typedef_field *fp;
7183 char *fieldname = "";
7184
7185 /* Allocate a new field list entry and link it in. */
7186 new_field = xzalloc (sizeof (*new_field));
7187 make_cleanup (xfree, new_field);
7188
7189 gdb_assert (die->tag == DW_TAG_typedef);
7190
7191 fp = &new_field->field;
7192
7193 /* Get name of field. */
7194 fp->name = dwarf2_name (die, cu);
7195 if (fp->name == NULL)
7196 return;
7197
7198 fp->type = read_type_die (die, cu);
7199
7200 new_field->next = fip->typedef_field_list;
7201 fip->typedef_field_list = new_field;
7202 fip->typedef_field_list_count++;
7203 }
7204
7205 /* Create the vector of fields, and attach it to the type. */
7206
7207 static void
7208 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
7209 struct dwarf2_cu *cu)
7210 {
7211 int nfields = fip->nfields;
7212
7213 /* Record the field count, allocate space for the array of fields,
7214 and create blank accessibility bitfields if necessary. */
7215 TYPE_NFIELDS (type) = nfields;
7216 TYPE_FIELDS (type) = (struct field *)
7217 TYPE_ALLOC (type, sizeof (struct field) * nfields);
7218 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
7219
7220 if (fip->non_public_fields && cu->language != language_ada)
7221 {
7222 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7223
7224 TYPE_FIELD_PRIVATE_BITS (type) =
7225 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7226 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
7227
7228 TYPE_FIELD_PROTECTED_BITS (type) =
7229 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7230 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
7231
7232 TYPE_FIELD_IGNORE_BITS (type) =
7233 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7234 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
7235 }
7236
7237 /* If the type has baseclasses, allocate and clear a bit vector for
7238 TYPE_FIELD_VIRTUAL_BITS. */
7239 if (fip->nbaseclasses && cu->language != language_ada)
7240 {
7241 int num_bytes = B_BYTES (fip->nbaseclasses);
7242 unsigned char *pointer;
7243
7244 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7245 pointer = TYPE_ALLOC (type, num_bytes);
7246 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
7247 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
7248 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
7249 }
7250
7251 /* Copy the saved-up fields into the field vector. Start from the head of
7252 the list, adding to the tail of the field array, so that they end up in
7253 the same order in the array in which they were added to the list. */
7254 while (nfields-- > 0)
7255 {
7256 struct nextfield *fieldp;
7257
7258 if (fip->fields)
7259 {
7260 fieldp = fip->fields;
7261 fip->fields = fieldp->next;
7262 }
7263 else
7264 {
7265 fieldp = fip->baseclasses;
7266 fip->baseclasses = fieldp->next;
7267 }
7268
7269 TYPE_FIELD (type, nfields) = fieldp->field;
7270 switch (fieldp->accessibility)
7271 {
7272 case DW_ACCESS_private:
7273 if (cu->language != language_ada)
7274 SET_TYPE_FIELD_PRIVATE (type, nfields);
7275 break;
7276
7277 case DW_ACCESS_protected:
7278 if (cu->language != language_ada)
7279 SET_TYPE_FIELD_PROTECTED (type, nfields);
7280 break;
7281
7282 case DW_ACCESS_public:
7283 break;
7284
7285 default:
7286 /* Unknown accessibility. Complain and treat it as public. */
7287 {
7288 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7289 fieldp->accessibility);
7290 }
7291 break;
7292 }
7293 if (nfields < fip->nbaseclasses)
7294 {
7295 switch (fieldp->virtuality)
7296 {
7297 case DW_VIRTUALITY_virtual:
7298 case DW_VIRTUALITY_pure_virtual:
7299 if (cu->language == language_ada)
7300 error (_("unexpected virtuality in component of Ada type"));
7301 SET_TYPE_FIELD_VIRTUAL (type, nfields);
7302 break;
7303 }
7304 }
7305 }
7306 }
7307
7308 /* Add a member function to the proper fieldlist. */
7309
7310 static void
7311 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
7312 struct type *type, struct dwarf2_cu *cu)
7313 {
7314 struct objfile *objfile = cu->objfile;
7315 struct attribute *attr;
7316 struct fnfieldlist *flp;
7317 int i;
7318 struct fn_field *fnp;
7319 char *fieldname;
7320 struct nextfnfield *new_fnfield;
7321 struct type *this_type;
7322 enum dwarf_access_attribute accessibility;
7323
7324 if (cu->language == language_ada)
7325 error (_("unexpected member function in Ada type"));
7326
7327 /* Get name of member function. */
7328 fieldname = dwarf2_name (die, cu);
7329 if (fieldname == NULL)
7330 return;
7331
7332 /* Look up member function name in fieldlist. */
7333 for (i = 0; i < fip->nfnfields; i++)
7334 {
7335 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
7336 break;
7337 }
7338
7339 /* Create new list element if necessary. */
7340 if (i < fip->nfnfields)
7341 flp = &fip->fnfieldlists[i];
7342 else
7343 {
7344 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
7345 {
7346 fip->fnfieldlists = (struct fnfieldlist *)
7347 xrealloc (fip->fnfieldlists,
7348 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
7349 * sizeof (struct fnfieldlist));
7350 if (fip->nfnfields == 0)
7351 make_cleanup (free_current_contents, &fip->fnfieldlists);
7352 }
7353 flp = &fip->fnfieldlists[fip->nfnfields];
7354 flp->name = fieldname;
7355 flp->length = 0;
7356 flp->head = NULL;
7357 i = fip->nfnfields++;
7358 }
7359
7360 /* Create a new member function field and chain it to the field list
7361 entry. */
7362 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
7363 make_cleanup (xfree, new_fnfield);
7364 memset (new_fnfield, 0, sizeof (struct nextfnfield));
7365 new_fnfield->next = flp->head;
7366 flp->head = new_fnfield;
7367 flp->length++;
7368
7369 /* Fill in the member function field info. */
7370 fnp = &new_fnfield->fnfield;
7371
7372 /* Delay processing of the physname until later. */
7373 if (cu->language == language_cplus || cu->language == language_java)
7374 {
7375 add_to_method_list (type, i, flp->length - 1, fieldname,
7376 die, cu);
7377 }
7378 else
7379 {
7380 const char *physname = dwarf2_physname (fieldname, die, cu);
7381 fnp->physname = physname ? physname : "";
7382 }
7383
7384 fnp->type = alloc_type (objfile);
7385 this_type = read_type_die (die, cu);
7386 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
7387 {
7388 int nparams = TYPE_NFIELDS (this_type);
7389
7390 /* TYPE is the domain of this method, and THIS_TYPE is the type
7391 of the method itself (TYPE_CODE_METHOD). */
7392 smash_to_method_type (fnp->type, type,
7393 TYPE_TARGET_TYPE (this_type),
7394 TYPE_FIELDS (this_type),
7395 TYPE_NFIELDS (this_type),
7396 TYPE_VARARGS (this_type));
7397
7398 /* Handle static member functions.
7399 Dwarf2 has no clean way to discern C++ static and non-static
7400 member functions. G++ helps GDB by marking the first
7401 parameter for non-static member functions (which is the this
7402 pointer) as artificial. We obtain this information from
7403 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
7404 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
7405 fnp->voffset = VOFFSET_STATIC;
7406 }
7407 else
7408 complaint (&symfile_complaints, _("member function type missing for '%s'"),
7409 dwarf2_full_name (fieldname, die, cu));
7410
7411 /* Get fcontext from DW_AT_containing_type if present. */
7412 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7413 fnp->fcontext = die_containing_type (die, cu);
7414
7415 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
7416 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
7417
7418 /* Get accessibility. */
7419 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
7420 if (attr)
7421 accessibility = DW_UNSND (attr);
7422 else
7423 accessibility = dwarf2_default_access_attribute (die, cu);
7424 switch (accessibility)
7425 {
7426 case DW_ACCESS_private:
7427 fnp->is_private = 1;
7428 break;
7429 case DW_ACCESS_protected:
7430 fnp->is_protected = 1;
7431 break;
7432 }
7433
7434 /* Check for artificial methods. */
7435 attr = dwarf2_attr (die, DW_AT_artificial, cu);
7436 if (attr && DW_UNSND (attr) != 0)
7437 fnp->is_artificial = 1;
7438
7439 /* Get index in virtual function table if it is a virtual member
7440 function. For older versions of GCC, this is an offset in the
7441 appropriate virtual table, as specified by DW_AT_containing_type.
7442 For everyone else, it is an expression to be evaluated relative
7443 to the object address. */
7444
7445 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
7446 if (attr)
7447 {
7448 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
7449 {
7450 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
7451 {
7452 /* Old-style GCC. */
7453 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
7454 }
7455 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
7456 || (DW_BLOCK (attr)->size > 1
7457 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
7458 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
7459 {
7460 struct dwarf_block blk;
7461 int offset;
7462
7463 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
7464 ? 1 : 2);
7465 blk.size = DW_BLOCK (attr)->size - offset;
7466 blk.data = DW_BLOCK (attr)->data + offset;
7467 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
7468 if ((fnp->voffset % cu->header.addr_size) != 0)
7469 dwarf2_complex_location_expr_complaint ();
7470 else
7471 fnp->voffset /= cu->header.addr_size;
7472 fnp->voffset += 2;
7473 }
7474 else
7475 dwarf2_complex_location_expr_complaint ();
7476
7477 if (!fnp->fcontext)
7478 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
7479 }
7480 else if (attr_form_is_section_offset (attr))
7481 {
7482 dwarf2_complex_location_expr_complaint ();
7483 }
7484 else
7485 {
7486 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
7487 fieldname);
7488 }
7489 }
7490 else
7491 {
7492 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
7493 if (attr && DW_UNSND (attr))
7494 {
7495 /* GCC does this, as of 2008-08-25; PR debug/37237. */
7496 complaint (&symfile_complaints,
7497 _("Member function \"%s\" (offset %d) is virtual "
7498 "but the vtable offset is not specified"),
7499 fieldname, die->offset.sect_off);
7500 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7501 TYPE_CPLUS_DYNAMIC (type) = 1;
7502 }
7503 }
7504 }
7505
7506 /* Create the vector of member function fields, and attach it to the type. */
7507
7508 static void
7509 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
7510 struct dwarf2_cu *cu)
7511 {
7512 struct fnfieldlist *flp;
7513 int i;
7514
7515 if (cu->language == language_ada)
7516 error (_("unexpected member functions in Ada type"));
7517
7518 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7519 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
7520 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
7521
7522 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
7523 {
7524 struct nextfnfield *nfp = flp->head;
7525 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
7526 int k;
7527
7528 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
7529 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
7530 fn_flp->fn_fields = (struct fn_field *)
7531 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
7532 for (k = flp->length; (k--, nfp); nfp = nfp->next)
7533 fn_flp->fn_fields[k] = nfp->fnfield;
7534 }
7535
7536 TYPE_NFN_FIELDS (type) = fip->nfnfields;
7537 }
7538
7539 /* Returns non-zero if NAME is the name of a vtable member in CU's
7540 language, zero otherwise. */
7541 static int
7542 is_vtable_name (const char *name, struct dwarf2_cu *cu)
7543 {
7544 static const char vptr[] = "_vptr";
7545 static const char vtable[] = "vtable";
7546
7547 /* Look for the C++ and Java forms of the vtable. */
7548 if ((cu->language == language_java
7549 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
7550 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
7551 && is_cplus_marker (name[sizeof (vptr) - 1])))
7552 return 1;
7553
7554 return 0;
7555 }
7556
7557 /* GCC outputs unnamed structures that are really pointers to member
7558 functions, with the ABI-specified layout. If TYPE describes
7559 such a structure, smash it into a member function type.
7560
7561 GCC shouldn't do this; it should just output pointer to member DIEs.
7562 This is GCC PR debug/28767. */
7563
7564 static void
7565 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
7566 {
7567 struct type *pfn_type, *domain_type, *new_type;
7568
7569 /* Check for a structure with no name and two children. */
7570 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
7571 return;
7572
7573 /* Check for __pfn and __delta members. */
7574 if (TYPE_FIELD_NAME (type, 0) == NULL
7575 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
7576 || TYPE_FIELD_NAME (type, 1) == NULL
7577 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
7578 return;
7579
7580 /* Find the type of the method. */
7581 pfn_type = TYPE_FIELD_TYPE (type, 0);
7582 if (pfn_type == NULL
7583 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
7584 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
7585 return;
7586
7587 /* Look for the "this" argument. */
7588 pfn_type = TYPE_TARGET_TYPE (pfn_type);
7589 if (TYPE_NFIELDS (pfn_type) == 0
7590 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
7591 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
7592 return;
7593
7594 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
7595 new_type = alloc_type (objfile);
7596 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
7597 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
7598 TYPE_VARARGS (pfn_type));
7599 smash_to_methodptr_type (type, new_type);
7600 }
7601
7602 /* Called when we find the DIE that starts a structure or union scope
7603 (definition) to create a type for the structure or union. Fill in
7604 the type's name and general properties; the members will not be
7605 processed until process_structure_type.
7606
7607 NOTE: we need to call these functions regardless of whether or not the
7608 DIE has a DW_AT_name attribute, since it might be an anonymous
7609 structure or union. This gets the type entered into our set of
7610 user defined types.
7611
7612 However, if the structure is incomplete (an opaque struct/union)
7613 then suppress creating a symbol table entry for it since gdb only
7614 wants to find the one with the complete definition. Note that if
7615 it is complete, we just call new_symbol, which does it's own
7616 checking about whether the struct/union is anonymous or not (and
7617 suppresses creating a symbol table entry itself). */
7618
7619 static struct type *
7620 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
7621 {
7622 struct objfile *objfile = cu->objfile;
7623 struct type *type;
7624 struct attribute *attr;
7625 char *name;
7626
7627 /* If the definition of this type lives in .debug_types, read that type.
7628 Don't follow DW_AT_specification though, that will take us back up
7629 the chain and we want to go down. */
7630 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7631 if (attr)
7632 {
7633 struct dwarf2_cu *type_cu = cu;
7634 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7635
7636 /* We could just recurse on read_structure_type, but we need to call
7637 get_die_type to ensure only one type for this DIE is created.
7638 This is important, for example, because for c++ classes we need
7639 TYPE_NAME set which is only done by new_symbol. Blech. */
7640 type = read_type_die (type_die, type_cu);
7641
7642 /* TYPE_CU may not be the same as CU.
7643 Ensure TYPE is recorded in CU's type_hash table. */
7644 return set_die_type (die, type, cu);
7645 }
7646
7647 type = alloc_type (objfile);
7648 INIT_CPLUS_SPECIFIC (type);
7649
7650 name = dwarf2_name (die, cu);
7651 if (name != NULL)
7652 {
7653 if (cu->language == language_cplus
7654 || cu->language == language_java)
7655 {
7656 char *full_name = (char *) dwarf2_full_name (name, die, cu);
7657
7658 /* dwarf2_full_name might have already finished building the DIE's
7659 type. If so, there is no need to continue. */
7660 if (get_die_type (die, cu) != NULL)
7661 return get_die_type (die, cu);
7662
7663 TYPE_TAG_NAME (type) = full_name;
7664 if (die->tag == DW_TAG_structure_type
7665 || die->tag == DW_TAG_class_type)
7666 TYPE_NAME (type) = TYPE_TAG_NAME (type);
7667 }
7668 else
7669 {
7670 /* The name is already allocated along with this objfile, so
7671 we don't need to duplicate it for the type. */
7672 TYPE_TAG_NAME (type) = (char *) name;
7673 if (die->tag == DW_TAG_class_type)
7674 TYPE_NAME (type) = TYPE_TAG_NAME (type);
7675 }
7676 }
7677
7678 if (die->tag == DW_TAG_structure_type)
7679 {
7680 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7681 }
7682 else if (die->tag == DW_TAG_union_type)
7683 {
7684 TYPE_CODE (type) = TYPE_CODE_UNION;
7685 }
7686 else
7687 {
7688 TYPE_CODE (type) = TYPE_CODE_CLASS;
7689 }
7690
7691 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
7692 TYPE_DECLARED_CLASS (type) = 1;
7693
7694 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7695 if (attr)
7696 {
7697 TYPE_LENGTH (type) = DW_UNSND (attr);
7698 }
7699 else
7700 {
7701 TYPE_LENGTH (type) = 0;
7702 }
7703
7704 TYPE_STUB_SUPPORTED (type) = 1;
7705 if (die_is_declaration (die, cu))
7706 TYPE_STUB (type) = 1;
7707 else if (attr == NULL && die->child == NULL
7708 && producer_is_realview (cu->producer))
7709 /* RealView does not output the required DW_AT_declaration
7710 on incomplete types. */
7711 TYPE_STUB (type) = 1;
7712
7713 /* We need to add the type field to the die immediately so we don't
7714 infinitely recurse when dealing with pointers to the structure
7715 type within the structure itself. */
7716 set_die_type (die, type, cu);
7717
7718 /* set_die_type should be already done. */
7719 set_descriptive_type (type, die, cu);
7720
7721 return type;
7722 }
7723
7724 /* Finish creating a structure or union type, including filling in
7725 its members and creating a symbol for it. */
7726
7727 static void
7728 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
7729 {
7730 struct objfile *objfile = cu->objfile;
7731 struct die_info *child_die = die->child;
7732 struct type *type;
7733
7734 type = get_die_type (die, cu);
7735 if (type == NULL)
7736 type = read_structure_type (die, cu);
7737
7738 if (die->child != NULL && ! die_is_declaration (die, cu))
7739 {
7740 struct field_info fi;
7741 struct die_info *child_die;
7742 VEC (symbolp) *template_args = NULL;
7743 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7744
7745 memset (&fi, 0, sizeof (struct field_info));
7746
7747 child_die = die->child;
7748
7749 while (child_die && child_die->tag)
7750 {
7751 if (child_die->tag == DW_TAG_member
7752 || child_die->tag == DW_TAG_variable)
7753 {
7754 /* NOTE: carlton/2002-11-05: A C++ static data member
7755 should be a DW_TAG_member that is a declaration, but
7756 all versions of G++ as of this writing (so through at
7757 least 3.2.1) incorrectly generate DW_TAG_variable
7758 tags for them instead. */
7759 dwarf2_add_field (&fi, child_die, cu);
7760 }
7761 else if (child_die->tag == DW_TAG_subprogram)
7762 {
7763 /* C++ member function. */
7764 dwarf2_add_member_fn (&fi, child_die, type, cu);
7765 }
7766 else if (child_die->tag == DW_TAG_inheritance)
7767 {
7768 /* C++ base class field. */
7769 dwarf2_add_field (&fi, child_die, cu);
7770 }
7771 else if (child_die->tag == DW_TAG_typedef)
7772 dwarf2_add_typedef (&fi, child_die, cu);
7773 else if (child_die->tag == DW_TAG_template_type_param
7774 || child_die->tag == DW_TAG_template_value_param)
7775 {
7776 struct symbol *arg = new_symbol (child_die, NULL, cu);
7777
7778 if (arg != NULL)
7779 VEC_safe_push (symbolp, template_args, arg);
7780 }
7781
7782 child_die = sibling_die (child_die);
7783 }
7784
7785 /* Attach template arguments to type. */
7786 if (! VEC_empty (symbolp, template_args))
7787 {
7788 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7789 TYPE_N_TEMPLATE_ARGUMENTS (type)
7790 = VEC_length (symbolp, template_args);
7791 TYPE_TEMPLATE_ARGUMENTS (type)
7792 = obstack_alloc (&objfile->objfile_obstack,
7793 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7794 * sizeof (struct symbol *)));
7795 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
7796 VEC_address (symbolp, template_args),
7797 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7798 * sizeof (struct symbol *)));
7799 VEC_free (symbolp, template_args);
7800 }
7801
7802 /* Attach fields and member functions to the type. */
7803 if (fi.nfields)
7804 dwarf2_attach_fields_to_type (&fi, type, cu);
7805 if (fi.nfnfields)
7806 {
7807 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
7808
7809 /* Get the type which refers to the base class (possibly this
7810 class itself) which contains the vtable pointer for the current
7811 class from the DW_AT_containing_type attribute. This use of
7812 DW_AT_containing_type is a GNU extension. */
7813
7814 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7815 {
7816 struct type *t = die_containing_type (die, cu);
7817
7818 TYPE_VPTR_BASETYPE (type) = t;
7819 if (type == t)
7820 {
7821 int i;
7822
7823 /* Our own class provides vtbl ptr. */
7824 for (i = TYPE_NFIELDS (t) - 1;
7825 i >= TYPE_N_BASECLASSES (t);
7826 --i)
7827 {
7828 const char *fieldname = TYPE_FIELD_NAME (t, i);
7829
7830 if (is_vtable_name (fieldname, cu))
7831 {
7832 TYPE_VPTR_FIELDNO (type) = i;
7833 break;
7834 }
7835 }
7836
7837 /* Complain if virtual function table field not found. */
7838 if (i < TYPE_N_BASECLASSES (t))
7839 complaint (&symfile_complaints,
7840 _("virtual function table pointer "
7841 "not found when defining class '%s'"),
7842 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
7843 "");
7844 }
7845 else
7846 {
7847 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
7848 }
7849 }
7850 else if (cu->producer
7851 && strncmp (cu->producer,
7852 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
7853 {
7854 /* The IBM XLC compiler does not provide direct indication
7855 of the containing type, but the vtable pointer is
7856 always named __vfp. */
7857
7858 int i;
7859
7860 for (i = TYPE_NFIELDS (type) - 1;
7861 i >= TYPE_N_BASECLASSES (type);
7862 --i)
7863 {
7864 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
7865 {
7866 TYPE_VPTR_FIELDNO (type) = i;
7867 TYPE_VPTR_BASETYPE (type) = type;
7868 break;
7869 }
7870 }
7871 }
7872 }
7873
7874 /* Copy fi.typedef_field_list linked list elements content into the
7875 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
7876 if (fi.typedef_field_list)
7877 {
7878 int i = fi.typedef_field_list_count;
7879
7880 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7881 TYPE_TYPEDEF_FIELD_ARRAY (type)
7882 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
7883 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
7884
7885 /* Reverse the list order to keep the debug info elements order. */
7886 while (--i >= 0)
7887 {
7888 struct typedef_field *dest, *src;
7889
7890 dest = &TYPE_TYPEDEF_FIELD (type, i);
7891 src = &fi.typedef_field_list->field;
7892 fi.typedef_field_list = fi.typedef_field_list->next;
7893 *dest = *src;
7894 }
7895 }
7896
7897 do_cleanups (back_to);
7898
7899 if (HAVE_CPLUS_STRUCT (type))
7900 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
7901 }
7902
7903 quirk_gcc_member_function_pointer (type, objfile);
7904
7905 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
7906 snapshots) has been known to create a die giving a declaration
7907 for a class that has, as a child, a die giving a definition for a
7908 nested class. So we have to process our children even if the
7909 current die is a declaration. Normally, of course, a declaration
7910 won't have any children at all. */
7911
7912 while (child_die != NULL && child_die->tag)
7913 {
7914 if (child_die->tag == DW_TAG_member
7915 || child_die->tag == DW_TAG_variable
7916 || child_die->tag == DW_TAG_inheritance
7917 || child_die->tag == DW_TAG_template_value_param
7918 || child_die->tag == DW_TAG_template_type_param)
7919 {
7920 /* Do nothing. */
7921 }
7922 else
7923 process_die (child_die, cu);
7924
7925 child_die = sibling_die (child_die);
7926 }
7927
7928 /* Do not consider external references. According to the DWARF standard,
7929 these DIEs are identified by the fact that they have no byte_size
7930 attribute, and a declaration attribute. */
7931 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
7932 || !die_is_declaration (die, cu))
7933 new_symbol (die, type, cu);
7934 }
7935
7936 /* Given a DW_AT_enumeration_type die, set its type. We do not
7937 complete the type's fields yet, or create any symbols. */
7938
7939 static struct type *
7940 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
7941 {
7942 struct objfile *objfile = cu->objfile;
7943 struct type *type;
7944 struct attribute *attr;
7945 const char *name;
7946
7947 /* If the definition of this type lives in .debug_types, read that type.
7948 Don't follow DW_AT_specification though, that will take us back up
7949 the chain and we want to go down. */
7950 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7951 if (attr)
7952 {
7953 struct dwarf2_cu *type_cu = cu;
7954 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7955
7956 type = read_type_die (type_die, type_cu);
7957
7958 /* TYPE_CU may not be the same as CU.
7959 Ensure TYPE is recorded in CU's type_hash table. */
7960 return set_die_type (die, type, cu);
7961 }
7962
7963 type = alloc_type (objfile);
7964
7965 TYPE_CODE (type) = TYPE_CODE_ENUM;
7966 name = dwarf2_full_name (NULL, die, cu);
7967 if (name != NULL)
7968 TYPE_TAG_NAME (type) = (char *) name;
7969
7970 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7971 if (attr)
7972 {
7973 TYPE_LENGTH (type) = DW_UNSND (attr);
7974 }
7975 else
7976 {
7977 TYPE_LENGTH (type) = 0;
7978 }
7979
7980 /* The enumeration DIE can be incomplete. In Ada, any type can be
7981 declared as private in the package spec, and then defined only
7982 inside the package body. Such types are known as Taft Amendment
7983 Types. When another package uses such a type, an incomplete DIE
7984 may be generated by the compiler. */
7985 if (die_is_declaration (die, cu))
7986 TYPE_STUB (type) = 1;
7987
7988 return set_die_type (die, type, cu);
7989 }
7990
7991 /* Given a pointer to a die which begins an enumeration, process all
7992 the dies that define the members of the enumeration, and create the
7993 symbol for the enumeration type.
7994
7995 NOTE: We reverse the order of the element list. */
7996
7997 static void
7998 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7999 {
8000 struct type *this_type;
8001
8002 this_type = get_die_type (die, cu);
8003 if (this_type == NULL)
8004 this_type = read_enumeration_type (die, cu);
8005
8006 if (die->child != NULL)
8007 {
8008 struct die_info *child_die;
8009 struct symbol *sym;
8010 struct field *fields = NULL;
8011 int num_fields = 0;
8012 int unsigned_enum = 1;
8013 char *name;
8014 int flag_enum = 1;
8015 ULONGEST mask = 0;
8016
8017 child_die = die->child;
8018 while (child_die && child_die->tag)
8019 {
8020 if (child_die->tag != DW_TAG_enumerator)
8021 {
8022 process_die (child_die, cu);
8023 }
8024 else
8025 {
8026 name = dwarf2_name (child_die, cu);
8027 if (name)
8028 {
8029 sym = new_symbol (child_die, this_type, cu);
8030 if (SYMBOL_VALUE (sym) < 0)
8031 {
8032 unsigned_enum = 0;
8033 flag_enum = 0;
8034 }
8035 else if ((mask & SYMBOL_VALUE (sym)) != 0)
8036 flag_enum = 0;
8037 else
8038 mask |= SYMBOL_VALUE (sym);
8039
8040 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
8041 {
8042 fields = (struct field *)
8043 xrealloc (fields,
8044 (num_fields + DW_FIELD_ALLOC_CHUNK)
8045 * sizeof (struct field));
8046 }
8047
8048 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
8049 FIELD_TYPE (fields[num_fields]) = NULL;
8050 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
8051 FIELD_BITSIZE (fields[num_fields]) = 0;
8052
8053 num_fields++;
8054 }
8055 }
8056
8057 child_die = sibling_die (child_die);
8058 }
8059
8060 if (num_fields)
8061 {
8062 TYPE_NFIELDS (this_type) = num_fields;
8063 TYPE_FIELDS (this_type) = (struct field *)
8064 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
8065 memcpy (TYPE_FIELDS (this_type), fields,
8066 sizeof (struct field) * num_fields);
8067 xfree (fields);
8068 }
8069 if (unsigned_enum)
8070 TYPE_UNSIGNED (this_type) = 1;
8071 if (flag_enum)
8072 TYPE_FLAG_ENUM (this_type) = 1;
8073 }
8074
8075 /* If we are reading an enum from a .debug_types unit, and the enum
8076 is a declaration, and the enum is not the signatured type in the
8077 unit, then we do not want to add a symbol for it. Adding a
8078 symbol would in some cases obscure the true definition of the
8079 enum, giving users an incomplete type when the definition is
8080 actually available. Note that we do not want to do this for all
8081 enums which are just declarations, because C++0x allows forward
8082 enum declarations. */
8083 if (cu->per_cu->debug_types_section
8084 && die_is_declaration (die, cu))
8085 {
8086 struct signatured_type *type_sig;
8087
8088 type_sig
8089 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
8090 cu->per_cu->debug_types_section,
8091 cu->per_cu->offset);
8092 if (type_sig->per_cu.offset.sect_off + type_sig->type_offset.cu_off
8093 != die->offset.sect_off)
8094 return;
8095 }
8096
8097 new_symbol (die, this_type, cu);
8098 }
8099
8100 /* Extract all information from a DW_TAG_array_type DIE and put it in
8101 the DIE's type field. For now, this only handles one dimensional
8102 arrays. */
8103
8104 static struct type *
8105 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
8106 {
8107 struct objfile *objfile = cu->objfile;
8108 struct die_info *child_die;
8109 struct type *type;
8110 struct type *element_type, *range_type, *index_type;
8111 struct type **range_types = NULL;
8112 struct attribute *attr;
8113 int ndim = 0;
8114 struct cleanup *back_to;
8115 char *name;
8116
8117 element_type = die_type (die, cu);
8118
8119 /* The die_type call above may have already set the type for this DIE. */
8120 type = get_die_type (die, cu);
8121 if (type)
8122 return type;
8123
8124 /* Irix 6.2 native cc creates array types without children for
8125 arrays with unspecified length. */
8126 if (die->child == NULL)
8127 {
8128 index_type = objfile_type (objfile)->builtin_int;
8129 range_type = create_range_type (NULL, index_type, 0, -1);
8130 type = create_array_type (NULL, element_type, range_type);
8131 return set_die_type (die, type, cu);
8132 }
8133
8134 back_to = make_cleanup (null_cleanup, NULL);
8135 child_die = die->child;
8136 while (child_die && child_die->tag)
8137 {
8138 if (child_die->tag == DW_TAG_subrange_type)
8139 {
8140 struct type *child_type = read_type_die (child_die, cu);
8141
8142 if (child_type != NULL)
8143 {
8144 /* The range type was succesfully read. Save it for the
8145 array type creation. */
8146 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
8147 {
8148 range_types = (struct type **)
8149 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
8150 * sizeof (struct type *));
8151 if (ndim == 0)
8152 make_cleanup (free_current_contents, &range_types);
8153 }
8154 range_types[ndim++] = child_type;
8155 }
8156 }
8157 child_die = sibling_die (child_die);
8158 }
8159
8160 /* Dwarf2 dimensions are output from left to right, create the
8161 necessary array types in backwards order. */
8162
8163 type = element_type;
8164
8165 if (read_array_order (die, cu) == DW_ORD_col_major)
8166 {
8167 int i = 0;
8168
8169 while (i < ndim)
8170 type = create_array_type (NULL, type, range_types[i++]);
8171 }
8172 else
8173 {
8174 while (ndim-- > 0)
8175 type = create_array_type (NULL, type, range_types[ndim]);
8176 }
8177
8178 /* Understand Dwarf2 support for vector types (like they occur on
8179 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
8180 array type. This is not part of the Dwarf2/3 standard yet, but a
8181 custom vendor extension. The main difference between a regular
8182 array and the vector variant is that vectors are passed by value
8183 to functions. */
8184 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
8185 if (attr)
8186 make_vector_type (type);
8187
8188 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
8189 implementation may choose to implement triple vectors using this
8190 attribute. */
8191 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8192 if (attr)
8193 {
8194 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
8195 TYPE_LENGTH (type) = DW_UNSND (attr);
8196 else
8197 complaint (&symfile_complaints,
8198 _("DW_AT_byte_size for array type smaller "
8199 "than the total size of elements"));
8200 }
8201
8202 name = dwarf2_name (die, cu);
8203 if (name)
8204 TYPE_NAME (type) = name;
8205
8206 /* Install the type in the die. */
8207 set_die_type (die, type, cu);
8208
8209 /* set_die_type should be already done. */
8210 set_descriptive_type (type, die, cu);
8211
8212 do_cleanups (back_to);
8213
8214 return type;
8215 }
8216
8217 static enum dwarf_array_dim_ordering
8218 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
8219 {
8220 struct attribute *attr;
8221
8222 attr = dwarf2_attr (die, DW_AT_ordering, cu);
8223
8224 if (attr) return DW_SND (attr);
8225
8226 /* GNU F77 is a special case, as at 08/2004 array type info is the
8227 opposite order to the dwarf2 specification, but data is still
8228 laid out as per normal fortran.
8229
8230 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
8231 version checking. */
8232
8233 if (cu->language == language_fortran
8234 && cu->producer && strstr (cu->producer, "GNU F77"))
8235 {
8236 return DW_ORD_row_major;
8237 }
8238
8239 switch (cu->language_defn->la_array_ordering)
8240 {
8241 case array_column_major:
8242 return DW_ORD_col_major;
8243 case array_row_major:
8244 default:
8245 return DW_ORD_row_major;
8246 };
8247 }
8248
8249 /* Extract all information from a DW_TAG_set_type DIE and put it in
8250 the DIE's type field. */
8251
8252 static struct type *
8253 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
8254 {
8255 struct type *domain_type, *set_type;
8256 struct attribute *attr;
8257
8258 domain_type = die_type (die, cu);
8259
8260 /* The die_type call above may have already set the type for this DIE. */
8261 set_type = get_die_type (die, cu);
8262 if (set_type)
8263 return set_type;
8264
8265 set_type = create_set_type (NULL, domain_type);
8266
8267 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8268 if (attr)
8269 TYPE_LENGTH (set_type) = DW_UNSND (attr);
8270
8271 return set_die_type (die, set_type, cu);
8272 }
8273
8274 /* First cut: install each common block member as a global variable. */
8275
8276 static void
8277 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
8278 {
8279 struct die_info *child_die;
8280 struct attribute *attr;
8281 struct symbol *sym;
8282 CORE_ADDR base = (CORE_ADDR) 0;
8283
8284 attr = dwarf2_attr (die, DW_AT_location, cu);
8285 if (attr)
8286 {
8287 /* Support the .debug_loc offsets. */
8288 if (attr_form_is_block (attr))
8289 {
8290 base = decode_locdesc (DW_BLOCK (attr), cu);
8291 }
8292 else if (attr_form_is_section_offset (attr))
8293 {
8294 dwarf2_complex_location_expr_complaint ();
8295 }
8296 else
8297 {
8298 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
8299 "common block member");
8300 }
8301 }
8302 if (die->child != NULL)
8303 {
8304 child_die = die->child;
8305 while (child_die && child_die->tag)
8306 {
8307 LONGEST offset;
8308
8309 sym = new_symbol (child_die, NULL, cu);
8310 if (sym != NULL
8311 && handle_data_member_location (child_die, cu, &offset))
8312 {
8313 SYMBOL_VALUE_ADDRESS (sym) = base + offset;
8314 add_symbol_to_list (sym, &global_symbols);
8315 }
8316 child_die = sibling_die (child_die);
8317 }
8318 }
8319 }
8320
8321 /* Create a type for a C++ namespace. */
8322
8323 static struct type *
8324 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
8325 {
8326 struct objfile *objfile = cu->objfile;
8327 const char *previous_prefix, *name;
8328 int is_anonymous;
8329 struct type *type;
8330
8331 /* For extensions, reuse the type of the original namespace. */
8332 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
8333 {
8334 struct die_info *ext_die;
8335 struct dwarf2_cu *ext_cu = cu;
8336
8337 ext_die = dwarf2_extension (die, &ext_cu);
8338 type = read_type_die (ext_die, ext_cu);
8339
8340 /* EXT_CU may not be the same as CU.
8341 Ensure TYPE is recorded in CU's type_hash table. */
8342 return set_die_type (die, type, cu);
8343 }
8344
8345 name = namespace_name (die, &is_anonymous, cu);
8346
8347 /* Now build the name of the current namespace. */
8348
8349 previous_prefix = determine_prefix (die, cu);
8350 if (previous_prefix[0] != '\0')
8351 name = typename_concat (&objfile->objfile_obstack,
8352 previous_prefix, name, 0, cu);
8353
8354 /* Create the type. */
8355 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
8356 objfile);
8357 TYPE_NAME (type) = (char *) name;
8358 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8359
8360 return set_die_type (die, type, cu);
8361 }
8362
8363 /* Read a C++ namespace. */
8364
8365 static void
8366 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
8367 {
8368 struct objfile *objfile = cu->objfile;
8369 int is_anonymous;
8370
8371 /* Add a symbol associated to this if we haven't seen the namespace
8372 before. Also, add a using directive if it's an anonymous
8373 namespace. */
8374
8375 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
8376 {
8377 struct type *type;
8378
8379 type = read_type_die (die, cu);
8380 new_symbol (die, type, cu);
8381
8382 namespace_name (die, &is_anonymous, cu);
8383 if (is_anonymous)
8384 {
8385 const char *previous_prefix = determine_prefix (die, cu);
8386
8387 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
8388 NULL, NULL, &objfile->objfile_obstack);
8389 }
8390 }
8391
8392 if (die->child != NULL)
8393 {
8394 struct die_info *child_die = die->child;
8395
8396 while (child_die && child_die->tag)
8397 {
8398 process_die (child_die, cu);
8399 child_die = sibling_die (child_die);
8400 }
8401 }
8402 }
8403
8404 /* Read a Fortran module as type. This DIE can be only a declaration used for
8405 imported module. Still we need that type as local Fortran "use ... only"
8406 declaration imports depend on the created type in determine_prefix. */
8407
8408 static struct type *
8409 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
8410 {
8411 struct objfile *objfile = cu->objfile;
8412 char *module_name;
8413 struct type *type;
8414
8415 module_name = dwarf2_name (die, cu);
8416 if (!module_name)
8417 complaint (&symfile_complaints,
8418 _("DW_TAG_module has no name, offset 0x%x"),
8419 die->offset.sect_off);
8420 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
8421
8422 /* determine_prefix uses TYPE_TAG_NAME. */
8423 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8424
8425 return set_die_type (die, type, cu);
8426 }
8427
8428 /* Read a Fortran module. */
8429
8430 static void
8431 read_module (struct die_info *die, struct dwarf2_cu *cu)
8432 {
8433 struct die_info *child_die = die->child;
8434
8435 while (child_die && child_die->tag)
8436 {
8437 process_die (child_die, cu);
8438 child_die = sibling_die (child_die);
8439 }
8440 }
8441
8442 /* Return the name of the namespace represented by DIE. Set
8443 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
8444 namespace. */
8445
8446 static const char *
8447 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
8448 {
8449 struct die_info *current_die;
8450 const char *name = NULL;
8451
8452 /* Loop through the extensions until we find a name. */
8453
8454 for (current_die = die;
8455 current_die != NULL;
8456 current_die = dwarf2_extension (die, &cu))
8457 {
8458 name = dwarf2_name (current_die, cu);
8459 if (name != NULL)
8460 break;
8461 }
8462
8463 /* Is it an anonymous namespace? */
8464
8465 *is_anonymous = (name == NULL);
8466 if (*is_anonymous)
8467 name = CP_ANONYMOUS_NAMESPACE_STR;
8468
8469 return name;
8470 }
8471
8472 /* Extract all information from a DW_TAG_pointer_type DIE and add to
8473 the user defined type vector. */
8474
8475 static struct type *
8476 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
8477 {
8478 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
8479 struct comp_unit_head *cu_header = &cu->header;
8480 struct type *type;
8481 struct attribute *attr_byte_size;
8482 struct attribute *attr_address_class;
8483 int byte_size, addr_class;
8484 struct type *target_type;
8485
8486 target_type = die_type (die, cu);
8487
8488 /* The die_type call above may have already set the type for this DIE. */
8489 type = get_die_type (die, cu);
8490 if (type)
8491 return type;
8492
8493 type = lookup_pointer_type (target_type);
8494
8495 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8496 if (attr_byte_size)
8497 byte_size = DW_UNSND (attr_byte_size);
8498 else
8499 byte_size = cu_header->addr_size;
8500
8501 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8502 if (attr_address_class)
8503 addr_class = DW_UNSND (attr_address_class);
8504 else
8505 addr_class = DW_ADDR_none;
8506
8507 /* If the pointer size or address class is different than the
8508 default, create a type variant marked as such and set the
8509 length accordingly. */
8510 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
8511 {
8512 if (gdbarch_address_class_type_flags_p (gdbarch))
8513 {
8514 int type_flags;
8515
8516 type_flags = gdbarch_address_class_type_flags
8517 (gdbarch, byte_size, addr_class);
8518 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
8519 == 0);
8520 type = make_type_with_address_space (type, type_flags);
8521 }
8522 else if (TYPE_LENGTH (type) != byte_size)
8523 {
8524 complaint (&symfile_complaints,
8525 _("invalid pointer size %d"), byte_size);
8526 }
8527 else
8528 {
8529 /* Should we also complain about unhandled address classes? */
8530 }
8531 }
8532
8533 TYPE_LENGTH (type) = byte_size;
8534 return set_die_type (die, type, cu);
8535 }
8536
8537 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
8538 the user defined type vector. */
8539
8540 static struct type *
8541 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
8542 {
8543 struct type *type;
8544 struct type *to_type;
8545 struct type *domain;
8546
8547 to_type = die_type (die, cu);
8548 domain = die_containing_type (die, cu);
8549
8550 /* The calls above may have already set the type for this DIE. */
8551 type = get_die_type (die, cu);
8552 if (type)
8553 return type;
8554
8555 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
8556 type = lookup_methodptr_type (to_type);
8557 else
8558 type = lookup_memberptr_type (to_type, domain);
8559
8560 return set_die_type (die, type, cu);
8561 }
8562
8563 /* Extract all information from a DW_TAG_reference_type DIE and add to
8564 the user defined type vector. */
8565
8566 static struct type *
8567 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
8568 {
8569 struct comp_unit_head *cu_header = &cu->header;
8570 struct type *type, *target_type;
8571 struct attribute *attr;
8572
8573 target_type = die_type (die, cu);
8574
8575 /* The die_type call above may have already set the type for this DIE. */
8576 type = get_die_type (die, cu);
8577 if (type)
8578 return type;
8579
8580 type = lookup_reference_type (target_type);
8581 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8582 if (attr)
8583 {
8584 TYPE_LENGTH (type) = DW_UNSND (attr);
8585 }
8586 else
8587 {
8588 TYPE_LENGTH (type) = cu_header->addr_size;
8589 }
8590 return set_die_type (die, type, cu);
8591 }
8592
8593 static struct type *
8594 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
8595 {
8596 struct type *base_type, *cv_type;
8597
8598 base_type = die_type (die, cu);
8599
8600 /* The die_type call above may have already set the type for this DIE. */
8601 cv_type = get_die_type (die, cu);
8602 if (cv_type)
8603 return cv_type;
8604
8605 /* In case the const qualifier is applied to an array type, the element type
8606 is so qualified, not the array type (section 6.7.3 of C99). */
8607 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
8608 {
8609 struct type *el_type, *inner_array;
8610
8611 base_type = copy_type (base_type);
8612 inner_array = base_type;
8613
8614 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
8615 {
8616 TYPE_TARGET_TYPE (inner_array) =
8617 copy_type (TYPE_TARGET_TYPE (inner_array));
8618 inner_array = TYPE_TARGET_TYPE (inner_array);
8619 }
8620
8621 el_type = TYPE_TARGET_TYPE (inner_array);
8622 TYPE_TARGET_TYPE (inner_array) =
8623 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
8624
8625 return set_die_type (die, base_type, cu);
8626 }
8627
8628 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
8629 return set_die_type (die, cv_type, cu);
8630 }
8631
8632 static struct type *
8633 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
8634 {
8635 struct type *base_type, *cv_type;
8636
8637 base_type = die_type (die, cu);
8638
8639 /* The die_type call above may have already set the type for this DIE. */
8640 cv_type = get_die_type (die, cu);
8641 if (cv_type)
8642 return cv_type;
8643
8644 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
8645 return set_die_type (die, cv_type, cu);
8646 }
8647
8648 /* Extract all information from a DW_TAG_string_type DIE and add to
8649 the user defined type vector. It isn't really a user defined type,
8650 but it behaves like one, with other DIE's using an AT_user_def_type
8651 attribute to reference it. */
8652
8653 static struct type *
8654 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
8655 {
8656 struct objfile *objfile = cu->objfile;
8657 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8658 struct type *type, *range_type, *index_type, *char_type;
8659 struct attribute *attr;
8660 unsigned int length;
8661
8662 attr = dwarf2_attr (die, DW_AT_string_length, cu);
8663 if (attr)
8664 {
8665 length = DW_UNSND (attr);
8666 }
8667 else
8668 {
8669 /* Check for the DW_AT_byte_size attribute. */
8670 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8671 if (attr)
8672 {
8673 length = DW_UNSND (attr);
8674 }
8675 else
8676 {
8677 length = 1;
8678 }
8679 }
8680
8681 index_type = objfile_type (objfile)->builtin_int;
8682 range_type = create_range_type (NULL, index_type, 1, length);
8683 char_type = language_string_char_type (cu->language_defn, gdbarch);
8684 type = create_string_type (NULL, char_type, range_type);
8685
8686 return set_die_type (die, type, cu);
8687 }
8688
8689 /* Handle DIES due to C code like:
8690
8691 struct foo
8692 {
8693 int (*funcp)(int a, long l);
8694 int b;
8695 };
8696
8697 ('funcp' generates a DW_TAG_subroutine_type DIE). */
8698
8699 static struct type *
8700 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
8701 {
8702 struct objfile *objfile = cu->objfile;
8703 struct type *type; /* Type that this function returns. */
8704 struct type *ftype; /* Function that returns above type. */
8705 struct attribute *attr;
8706
8707 type = die_type (die, cu);
8708
8709 /* The die_type call above may have already set the type for this DIE. */
8710 ftype = get_die_type (die, cu);
8711 if (ftype)
8712 return ftype;
8713
8714 ftype = lookup_function_type (type);
8715
8716 /* All functions in C++, Pascal and Java have prototypes. */
8717 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
8718 if ((attr && (DW_UNSND (attr) != 0))
8719 || cu->language == language_cplus
8720 || cu->language == language_java
8721 || cu->language == language_pascal)
8722 TYPE_PROTOTYPED (ftype) = 1;
8723 else if (producer_is_realview (cu->producer))
8724 /* RealView does not emit DW_AT_prototyped. We can not
8725 distinguish prototyped and unprototyped functions; default to
8726 prototyped, since that is more common in modern code (and
8727 RealView warns about unprototyped functions). */
8728 TYPE_PROTOTYPED (ftype) = 1;
8729
8730 /* Store the calling convention in the type if it's available in
8731 the subroutine die. Otherwise set the calling convention to
8732 the default value DW_CC_normal. */
8733 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
8734 if (attr)
8735 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
8736 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
8737 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
8738 else
8739 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
8740
8741 /* We need to add the subroutine type to the die immediately so
8742 we don't infinitely recurse when dealing with parameters
8743 declared as the same subroutine type. */
8744 set_die_type (die, ftype, cu);
8745
8746 if (die->child != NULL)
8747 {
8748 struct type *void_type = objfile_type (objfile)->builtin_void;
8749 struct die_info *child_die;
8750 int nparams, iparams;
8751
8752 /* Count the number of parameters.
8753 FIXME: GDB currently ignores vararg functions, but knows about
8754 vararg member functions. */
8755 nparams = 0;
8756 child_die = die->child;
8757 while (child_die && child_die->tag)
8758 {
8759 if (child_die->tag == DW_TAG_formal_parameter)
8760 nparams++;
8761 else if (child_die->tag == DW_TAG_unspecified_parameters)
8762 TYPE_VARARGS (ftype) = 1;
8763 child_die = sibling_die (child_die);
8764 }
8765
8766 /* Allocate storage for parameters and fill them in. */
8767 TYPE_NFIELDS (ftype) = nparams;
8768 TYPE_FIELDS (ftype) = (struct field *)
8769 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
8770
8771 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
8772 even if we error out during the parameters reading below. */
8773 for (iparams = 0; iparams < nparams; iparams++)
8774 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
8775
8776 iparams = 0;
8777 child_die = die->child;
8778 while (child_die && child_die->tag)
8779 {
8780 if (child_die->tag == DW_TAG_formal_parameter)
8781 {
8782 struct type *arg_type;
8783
8784 /* DWARF version 2 has no clean way to discern C++
8785 static and non-static member functions. G++ helps
8786 GDB by marking the first parameter for non-static
8787 member functions (which is the this pointer) as
8788 artificial. We pass this information to
8789 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
8790
8791 DWARF version 3 added DW_AT_object_pointer, which GCC
8792 4.5 does not yet generate. */
8793 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
8794 if (attr)
8795 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
8796 else
8797 {
8798 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
8799
8800 /* GCC/43521: In java, the formal parameter
8801 "this" is sometimes not marked with DW_AT_artificial. */
8802 if (cu->language == language_java)
8803 {
8804 const char *name = dwarf2_name (child_die, cu);
8805
8806 if (name && !strcmp (name, "this"))
8807 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
8808 }
8809 }
8810 arg_type = die_type (child_die, cu);
8811
8812 /* RealView does not mark THIS as const, which the testsuite
8813 expects. GCC marks THIS as const in method definitions,
8814 but not in the class specifications (GCC PR 43053). */
8815 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
8816 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
8817 {
8818 int is_this = 0;
8819 struct dwarf2_cu *arg_cu = cu;
8820 const char *name = dwarf2_name (child_die, cu);
8821
8822 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
8823 if (attr)
8824 {
8825 /* If the compiler emits this, use it. */
8826 if (follow_die_ref (die, attr, &arg_cu) == child_die)
8827 is_this = 1;
8828 }
8829 else if (name && strcmp (name, "this") == 0)
8830 /* Function definitions will have the argument names. */
8831 is_this = 1;
8832 else if (name == NULL && iparams == 0)
8833 /* Declarations may not have the names, so like
8834 elsewhere in GDB, assume an artificial first
8835 argument is "this". */
8836 is_this = 1;
8837
8838 if (is_this)
8839 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
8840 arg_type, 0);
8841 }
8842
8843 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
8844 iparams++;
8845 }
8846 child_die = sibling_die (child_die);
8847 }
8848 }
8849
8850 return ftype;
8851 }
8852
8853 static struct type *
8854 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
8855 {
8856 struct objfile *objfile = cu->objfile;
8857 const char *name = NULL;
8858 struct type *this_type, *target_type;
8859
8860 name = dwarf2_full_name (NULL, die, cu);
8861 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
8862 TYPE_FLAG_TARGET_STUB, NULL, objfile);
8863 TYPE_NAME (this_type) = (char *) name;
8864 set_die_type (die, this_type, cu);
8865 target_type = die_type (die, cu);
8866 if (target_type != this_type)
8867 TYPE_TARGET_TYPE (this_type) = target_type;
8868 else
8869 {
8870 /* Self-referential typedefs are, it seems, not allowed by the DWARF
8871 spec and cause infinite loops in GDB. */
8872 complaint (&symfile_complaints,
8873 _("Self-referential DW_TAG_typedef "
8874 "- DIE at 0x%x [in module %s]"),
8875 die->offset.sect_off, objfile->name);
8876 TYPE_TARGET_TYPE (this_type) = NULL;
8877 }
8878 return this_type;
8879 }
8880
8881 /* Find a representation of a given base type and install
8882 it in the TYPE field of the die. */
8883
8884 static struct type *
8885 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
8886 {
8887 struct objfile *objfile = cu->objfile;
8888 struct type *type;
8889 struct attribute *attr;
8890 int encoding = 0, size = 0;
8891 char *name;
8892 enum type_code code = TYPE_CODE_INT;
8893 int type_flags = 0;
8894 struct type *target_type = NULL;
8895
8896 attr = dwarf2_attr (die, DW_AT_encoding, cu);
8897 if (attr)
8898 {
8899 encoding = DW_UNSND (attr);
8900 }
8901 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8902 if (attr)
8903 {
8904 size = DW_UNSND (attr);
8905 }
8906 name = dwarf2_name (die, cu);
8907 if (!name)
8908 {
8909 complaint (&symfile_complaints,
8910 _("DW_AT_name missing from DW_TAG_base_type"));
8911 }
8912
8913 switch (encoding)
8914 {
8915 case DW_ATE_address:
8916 /* Turn DW_ATE_address into a void * pointer. */
8917 code = TYPE_CODE_PTR;
8918 type_flags |= TYPE_FLAG_UNSIGNED;
8919 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
8920 break;
8921 case DW_ATE_boolean:
8922 code = TYPE_CODE_BOOL;
8923 type_flags |= TYPE_FLAG_UNSIGNED;
8924 break;
8925 case DW_ATE_complex_float:
8926 code = TYPE_CODE_COMPLEX;
8927 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
8928 break;
8929 case DW_ATE_decimal_float:
8930 code = TYPE_CODE_DECFLOAT;
8931 break;
8932 case DW_ATE_float:
8933 code = TYPE_CODE_FLT;
8934 break;
8935 case DW_ATE_signed:
8936 break;
8937 case DW_ATE_unsigned:
8938 type_flags |= TYPE_FLAG_UNSIGNED;
8939 if (cu->language == language_fortran
8940 && name
8941 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
8942 code = TYPE_CODE_CHAR;
8943 break;
8944 case DW_ATE_signed_char:
8945 if (cu->language == language_ada || cu->language == language_m2
8946 || cu->language == language_pascal
8947 || cu->language == language_fortran)
8948 code = TYPE_CODE_CHAR;
8949 break;
8950 case DW_ATE_unsigned_char:
8951 if (cu->language == language_ada || cu->language == language_m2
8952 || cu->language == language_pascal
8953 || cu->language == language_fortran)
8954 code = TYPE_CODE_CHAR;
8955 type_flags |= TYPE_FLAG_UNSIGNED;
8956 break;
8957 case DW_ATE_UTF:
8958 /* We just treat this as an integer and then recognize the
8959 type by name elsewhere. */
8960 break;
8961
8962 default:
8963 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
8964 dwarf_type_encoding_name (encoding));
8965 break;
8966 }
8967
8968 type = init_type (code, size, type_flags, NULL, objfile);
8969 TYPE_NAME (type) = name;
8970 TYPE_TARGET_TYPE (type) = target_type;
8971
8972 if (name && strcmp (name, "char") == 0)
8973 TYPE_NOSIGN (type) = 1;
8974
8975 return set_die_type (die, type, cu);
8976 }
8977
8978 /* Read the given DW_AT_subrange DIE. */
8979
8980 static struct type *
8981 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
8982 {
8983 struct type *base_type;
8984 struct type *range_type;
8985 struct attribute *attr;
8986 LONGEST low = 0;
8987 LONGEST high = -1;
8988 char *name;
8989 LONGEST negative_mask;
8990
8991 base_type = die_type (die, cu);
8992 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
8993 check_typedef (base_type);
8994
8995 /* The die_type call above may have already set the type for this DIE. */
8996 range_type = get_die_type (die, cu);
8997 if (range_type)
8998 return range_type;
8999
9000 if (cu->language == language_fortran)
9001 {
9002 /* FORTRAN implies a lower bound of 1, if not given. */
9003 low = 1;
9004 }
9005
9006 /* FIXME: For variable sized arrays either of these could be
9007 a variable rather than a constant value. We'll allow it,
9008 but we don't know how to handle it. */
9009 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
9010 if (attr)
9011 low = dwarf2_get_attr_constant_value (attr, 0);
9012
9013 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
9014 if (attr)
9015 {
9016 if (attr_form_is_block (attr) || is_ref_attr (attr))
9017 {
9018 /* GCC encodes arrays with unspecified or dynamic length
9019 with a DW_FORM_block1 attribute or a reference attribute.
9020 FIXME: GDB does not yet know how to handle dynamic
9021 arrays properly, treat them as arrays with unspecified
9022 length for now.
9023
9024 FIXME: jimb/2003-09-22: GDB does not really know
9025 how to handle arrays of unspecified length
9026 either; we just represent them as zero-length
9027 arrays. Choose an appropriate upper bound given
9028 the lower bound we've computed above. */
9029 high = low - 1;
9030 }
9031 else
9032 high = dwarf2_get_attr_constant_value (attr, 1);
9033 }
9034 else
9035 {
9036 attr = dwarf2_attr (die, DW_AT_count, cu);
9037 if (attr)
9038 {
9039 int count = dwarf2_get_attr_constant_value (attr, 1);
9040 high = low + count - 1;
9041 }
9042 else
9043 {
9044 /* Unspecified array length. */
9045 high = low - 1;
9046 }
9047 }
9048
9049 /* Dwarf-2 specifications explicitly allows to create subrange types
9050 without specifying a base type.
9051 In that case, the base type must be set to the type of
9052 the lower bound, upper bound or count, in that order, if any of these
9053 three attributes references an object that has a type.
9054 If no base type is found, the Dwarf-2 specifications say that
9055 a signed integer type of size equal to the size of an address should
9056 be used.
9057 For the following C code: `extern char gdb_int [];'
9058 GCC produces an empty range DIE.
9059 FIXME: muller/2010-05-28: Possible references to object for low bound,
9060 high bound or count are not yet handled by this code. */
9061 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
9062 {
9063 struct objfile *objfile = cu->objfile;
9064 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9065 int addr_size = gdbarch_addr_bit (gdbarch) /8;
9066 struct type *int_type = objfile_type (objfile)->builtin_int;
9067
9068 /* Test "int", "long int", and "long long int" objfile types,
9069 and select the first one having a size above or equal to the
9070 architecture address size. */
9071 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9072 base_type = int_type;
9073 else
9074 {
9075 int_type = objfile_type (objfile)->builtin_long;
9076 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9077 base_type = int_type;
9078 else
9079 {
9080 int_type = objfile_type (objfile)->builtin_long_long;
9081 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9082 base_type = int_type;
9083 }
9084 }
9085 }
9086
9087 negative_mask =
9088 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
9089 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
9090 low |= negative_mask;
9091 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
9092 high |= negative_mask;
9093
9094 range_type = create_range_type (NULL, base_type, low, high);
9095
9096 /* Mark arrays with dynamic length at least as an array of unspecified
9097 length. GDB could check the boundary but before it gets implemented at
9098 least allow accessing the array elements. */
9099 if (attr && attr_form_is_block (attr))
9100 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
9101
9102 /* Ada expects an empty array on no boundary attributes. */
9103 if (attr == NULL && cu->language != language_ada)
9104 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
9105
9106 name = dwarf2_name (die, cu);
9107 if (name)
9108 TYPE_NAME (range_type) = name;
9109
9110 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
9111 if (attr)
9112 TYPE_LENGTH (range_type) = DW_UNSND (attr);
9113
9114 set_die_type (die, range_type, cu);
9115
9116 /* set_die_type should be already done. */
9117 set_descriptive_type (range_type, die, cu);
9118
9119 return range_type;
9120 }
9121
9122 static struct type *
9123 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
9124 {
9125 struct type *type;
9126
9127 /* For now, we only support the C meaning of an unspecified type: void. */
9128
9129 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
9130 TYPE_NAME (type) = dwarf2_name (die, cu);
9131
9132 return set_die_type (die, type, cu);
9133 }
9134
9135 /* Trivial hash function for die_info: the hash value of a DIE
9136 is its offset in .debug_info for this objfile. */
9137
9138 static hashval_t
9139 die_hash (const void *item)
9140 {
9141 const struct die_info *die = item;
9142
9143 return die->offset.sect_off;
9144 }
9145
9146 /* Trivial comparison function for die_info structures: two DIEs
9147 are equal if they have the same offset. */
9148
9149 static int
9150 die_eq (const void *item_lhs, const void *item_rhs)
9151 {
9152 const struct die_info *die_lhs = item_lhs;
9153 const struct die_info *die_rhs = item_rhs;
9154
9155 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
9156 }
9157
9158 /* Read a whole compilation unit into a linked list of dies. */
9159
9160 static struct die_info *
9161 read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
9162 {
9163 struct die_reader_specs reader_specs;
9164 int read_abbrevs = 0;
9165 struct cleanup *back_to = NULL;
9166 struct die_info *die;
9167
9168 if (cu->dwarf2_abbrevs == NULL)
9169 {
9170 dwarf2_read_abbrevs (cu);
9171 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
9172 read_abbrevs = 1;
9173 }
9174
9175 gdb_assert (cu->die_hash == NULL);
9176 cu->die_hash
9177 = htab_create_alloc_ex (cu->header.length / 12,
9178 die_hash,
9179 die_eq,
9180 NULL,
9181 &cu->comp_unit_obstack,
9182 hashtab_obstack_allocate,
9183 dummy_obstack_deallocate);
9184
9185 init_cu_die_reader (&reader_specs, cu);
9186
9187 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
9188
9189 if (read_abbrevs)
9190 do_cleanups (back_to);
9191
9192 return die;
9193 }
9194
9195 /* Main entry point for reading a DIE and all children.
9196 Read the DIE and dump it if requested. */
9197
9198 static struct die_info *
9199 read_die_and_children (const struct die_reader_specs *reader,
9200 gdb_byte *info_ptr,
9201 gdb_byte **new_info_ptr,
9202 struct die_info *parent)
9203 {
9204 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
9205 new_info_ptr, parent);
9206
9207 if (dwarf2_die_debug)
9208 {
9209 fprintf_unfiltered (gdb_stdlog,
9210 "\nRead die from %s of %s:\n",
9211 (reader->cu->per_cu->debug_types_section
9212 ? ".debug_types"
9213 : ".debug_info"),
9214 reader->abfd->filename);
9215 dump_die (result, dwarf2_die_debug);
9216 }
9217
9218 return result;
9219 }
9220
9221 /* Read a single die and all its descendents. Set the die's sibling
9222 field to NULL; set other fields in the die correctly, and set all
9223 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
9224 location of the info_ptr after reading all of those dies. PARENT
9225 is the parent of the die in question. */
9226
9227 static struct die_info *
9228 read_die_and_children_1 (const struct die_reader_specs *reader,
9229 gdb_byte *info_ptr,
9230 gdb_byte **new_info_ptr,
9231 struct die_info *parent)
9232 {
9233 struct die_info *die;
9234 gdb_byte *cur_ptr;
9235 int has_children;
9236
9237 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
9238 if (die == NULL)
9239 {
9240 *new_info_ptr = cur_ptr;
9241 return NULL;
9242 }
9243 store_in_ref_table (die, reader->cu);
9244
9245 if (has_children)
9246 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
9247 else
9248 {
9249 die->child = NULL;
9250 *new_info_ptr = cur_ptr;
9251 }
9252
9253 die->sibling = NULL;
9254 die->parent = parent;
9255 return die;
9256 }
9257
9258 /* Read a die, all of its descendents, and all of its siblings; set
9259 all of the fields of all of the dies correctly. Arguments are as
9260 in read_die_and_children. */
9261
9262 static struct die_info *
9263 read_die_and_siblings (const struct die_reader_specs *reader,
9264 gdb_byte *info_ptr,
9265 gdb_byte **new_info_ptr,
9266 struct die_info *parent)
9267 {
9268 struct die_info *first_die, *last_sibling;
9269 gdb_byte *cur_ptr;
9270
9271 cur_ptr = info_ptr;
9272 first_die = last_sibling = NULL;
9273
9274 while (1)
9275 {
9276 struct die_info *die
9277 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
9278
9279 if (die == NULL)
9280 {
9281 *new_info_ptr = cur_ptr;
9282 return first_die;
9283 }
9284
9285 if (!first_die)
9286 first_die = die;
9287 else
9288 last_sibling->sibling = die;
9289
9290 last_sibling = die;
9291 }
9292 }
9293
9294 /* Read the die from the .debug_info section buffer. Set DIEP to
9295 point to a newly allocated die with its information, except for its
9296 child, sibling, and parent fields. Set HAS_CHILDREN to tell
9297 whether the die has children or not. */
9298
9299 static gdb_byte *
9300 read_full_die (const struct die_reader_specs *reader,
9301 struct die_info **diep, gdb_byte *info_ptr,
9302 int *has_children)
9303 {
9304 unsigned int abbrev_number, bytes_read, i;
9305 sect_offset offset;
9306 struct abbrev_info *abbrev;
9307 struct die_info *die;
9308 struct dwarf2_cu *cu = reader->cu;
9309 bfd *abfd = reader->abfd;
9310
9311 offset.sect_off = info_ptr - reader->buffer;
9312 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9313 info_ptr += bytes_read;
9314 if (!abbrev_number)
9315 {
9316 *diep = NULL;
9317 *has_children = 0;
9318 return info_ptr;
9319 }
9320
9321 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
9322 if (!abbrev)
9323 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
9324 abbrev_number,
9325 bfd_get_filename (abfd));
9326
9327 die = dwarf_alloc_die (cu, abbrev->num_attrs);
9328 die->offset = offset;
9329 die->tag = abbrev->tag;
9330 die->abbrev = abbrev_number;
9331
9332 die->num_attrs = abbrev->num_attrs;
9333
9334 for (i = 0; i < abbrev->num_attrs; ++i)
9335 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
9336 abfd, info_ptr, cu);
9337
9338 *diep = die;
9339 *has_children = abbrev->has_children;
9340 return info_ptr;
9341 }
9342
9343 /* In DWARF version 2, the description of the debugging information is
9344 stored in a separate .debug_abbrev section. Before we read any
9345 dies from a section we read in all abbreviations and install them
9346 in a hash table. This function also sets flags in CU describing
9347 the data found in the abbrev table. */
9348
9349 static void
9350 dwarf2_read_abbrevs (struct dwarf2_cu *cu)
9351 {
9352 bfd *abfd = cu->objfile->obfd;
9353 struct comp_unit_head *cu_header = &cu->header;
9354 gdb_byte *abbrev_ptr;
9355 struct abbrev_info *cur_abbrev;
9356 unsigned int abbrev_number, bytes_read, abbrev_name;
9357 unsigned int abbrev_form, hash_number;
9358 struct attr_abbrev *cur_attrs;
9359 unsigned int allocated_attrs;
9360
9361 /* Initialize dwarf2 abbrevs. */
9362 obstack_init (&cu->abbrev_obstack);
9363 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
9364 (ABBREV_HASH_SIZE
9365 * sizeof (struct abbrev_info *)));
9366 memset (cu->dwarf2_abbrevs, 0,
9367 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
9368
9369 dwarf2_read_section (dwarf2_per_objfile->objfile,
9370 &dwarf2_per_objfile->abbrev);
9371 abbrev_ptr = (dwarf2_per_objfile->abbrev.buffer
9372 + cu_header->abbrev_offset.sect_off);
9373 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9374 abbrev_ptr += bytes_read;
9375
9376 allocated_attrs = ATTR_ALLOC_CHUNK;
9377 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
9378
9379 /* Loop until we reach an abbrev number of 0. */
9380 while (abbrev_number)
9381 {
9382 cur_abbrev = dwarf_alloc_abbrev (cu);
9383
9384 /* read in abbrev header */
9385 cur_abbrev->number = abbrev_number;
9386 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9387 abbrev_ptr += bytes_read;
9388 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
9389 abbrev_ptr += 1;
9390
9391 /* now read in declarations */
9392 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9393 abbrev_ptr += bytes_read;
9394 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9395 abbrev_ptr += bytes_read;
9396 while (abbrev_name)
9397 {
9398 if (cur_abbrev->num_attrs == allocated_attrs)
9399 {
9400 allocated_attrs += ATTR_ALLOC_CHUNK;
9401 cur_attrs
9402 = xrealloc (cur_attrs, (allocated_attrs
9403 * sizeof (struct attr_abbrev)));
9404 }
9405
9406 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
9407 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
9408 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9409 abbrev_ptr += bytes_read;
9410 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9411 abbrev_ptr += bytes_read;
9412 }
9413
9414 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
9415 (cur_abbrev->num_attrs
9416 * sizeof (struct attr_abbrev)));
9417 memcpy (cur_abbrev->attrs, cur_attrs,
9418 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
9419
9420 hash_number = abbrev_number % ABBREV_HASH_SIZE;
9421 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
9422 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
9423
9424 /* Get next abbreviation.
9425 Under Irix6 the abbreviations for a compilation unit are not
9426 always properly terminated with an abbrev number of 0.
9427 Exit loop if we encounter an abbreviation which we have
9428 already read (which means we are about to read the abbreviations
9429 for the next compile unit) or if the end of the abbreviation
9430 table is reached. */
9431 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
9432 >= dwarf2_per_objfile->abbrev.size)
9433 break;
9434 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9435 abbrev_ptr += bytes_read;
9436 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
9437 break;
9438 }
9439
9440 xfree (cur_attrs);
9441 }
9442
9443 /* Release the memory used by the abbrev table for a compilation unit. */
9444
9445 static void
9446 dwarf2_free_abbrev_table (void *ptr_to_cu)
9447 {
9448 struct dwarf2_cu *cu = ptr_to_cu;
9449
9450 obstack_free (&cu->abbrev_obstack, NULL);
9451 cu->dwarf2_abbrevs = NULL;
9452 }
9453
9454 /* Lookup an abbrev_info structure in the abbrev hash table. */
9455
9456 static struct abbrev_info *
9457 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
9458 {
9459 unsigned int hash_number;
9460 struct abbrev_info *abbrev;
9461
9462 hash_number = number % ABBREV_HASH_SIZE;
9463 abbrev = cu->dwarf2_abbrevs[hash_number];
9464
9465 while (abbrev)
9466 {
9467 if (abbrev->number == number)
9468 return abbrev;
9469 else
9470 abbrev = abbrev->next;
9471 }
9472 return NULL;
9473 }
9474
9475 /* Returns nonzero if TAG represents a type that we might generate a partial
9476 symbol for. */
9477
9478 static int
9479 is_type_tag_for_partial (int tag)
9480 {
9481 switch (tag)
9482 {
9483 #if 0
9484 /* Some types that would be reasonable to generate partial symbols for,
9485 that we don't at present. */
9486 case DW_TAG_array_type:
9487 case DW_TAG_file_type:
9488 case DW_TAG_ptr_to_member_type:
9489 case DW_TAG_set_type:
9490 case DW_TAG_string_type:
9491 case DW_TAG_subroutine_type:
9492 #endif
9493 case DW_TAG_base_type:
9494 case DW_TAG_class_type:
9495 case DW_TAG_interface_type:
9496 case DW_TAG_enumeration_type:
9497 case DW_TAG_structure_type:
9498 case DW_TAG_subrange_type:
9499 case DW_TAG_typedef:
9500 case DW_TAG_union_type:
9501 return 1;
9502 default:
9503 return 0;
9504 }
9505 }
9506
9507 /* Load all DIEs that are interesting for partial symbols into memory. */
9508
9509 static struct partial_die_info *
9510 load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
9511 int building_psymtab, struct dwarf2_cu *cu)
9512 {
9513 struct objfile *objfile = cu->objfile;
9514 struct partial_die_info *part_die;
9515 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
9516 struct abbrev_info *abbrev;
9517 unsigned int bytes_read;
9518 unsigned int load_all = 0;
9519
9520 int nesting_level = 1;
9521
9522 parent_die = NULL;
9523 last_die = NULL;
9524
9525 if (cu->per_cu && cu->per_cu->load_all_dies)
9526 load_all = 1;
9527
9528 cu->partial_dies
9529 = htab_create_alloc_ex (cu->header.length / 12,
9530 partial_die_hash,
9531 partial_die_eq,
9532 NULL,
9533 &cu->comp_unit_obstack,
9534 hashtab_obstack_allocate,
9535 dummy_obstack_deallocate);
9536
9537 part_die = obstack_alloc (&cu->comp_unit_obstack,
9538 sizeof (struct partial_die_info));
9539
9540 while (1)
9541 {
9542 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
9543
9544 /* A NULL abbrev means the end of a series of children. */
9545 if (abbrev == NULL)
9546 {
9547 if (--nesting_level == 0)
9548 {
9549 /* PART_DIE was probably the last thing allocated on the
9550 comp_unit_obstack, so we could call obstack_free
9551 here. We don't do that because the waste is small,
9552 and will be cleaned up when we're done with this
9553 compilation unit. This way, we're also more robust
9554 against other users of the comp_unit_obstack. */
9555 return first_die;
9556 }
9557 info_ptr += bytes_read;
9558 last_die = parent_die;
9559 parent_die = parent_die->die_parent;
9560 continue;
9561 }
9562
9563 /* Check for template arguments. We never save these; if
9564 they're seen, we just mark the parent, and go on our way. */
9565 if (parent_die != NULL
9566 && cu->language == language_cplus
9567 && (abbrev->tag == DW_TAG_template_type_param
9568 || abbrev->tag == DW_TAG_template_value_param))
9569 {
9570 parent_die->has_template_arguments = 1;
9571
9572 if (!load_all)
9573 {
9574 /* We don't need a partial DIE for the template argument. */
9575 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
9576 cu);
9577 continue;
9578 }
9579 }
9580
9581 /* We only recurse into subprograms looking for template arguments.
9582 Skip their other children. */
9583 if (!load_all
9584 && cu->language == language_cplus
9585 && parent_die != NULL
9586 && parent_die->tag == DW_TAG_subprogram)
9587 {
9588 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
9589 continue;
9590 }
9591
9592 /* Check whether this DIE is interesting enough to save. Normally
9593 we would not be interested in members here, but there may be
9594 later variables referencing them via DW_AT_specification (for
9595 static members). */
9596 if (!load_all
9597 && !is_type_tag_for_partial (abbrev->tag)
9598 && abbrev->tag != DW_TAG_constant
9599 && abbrev->tag != DW_TAG_enumerator
9600 && abbrev->tag != DW_TAG_subprogram
9601 && abbrev->tag != DW_TAG_lexical_block
9602 && abbrev->tag != DW_TAG_variable
9603 && abbrev->tag != DW_TAG_namespace
9604 && abbrev->tag != DW_TAG_module
9605 && abbrev->tag != DW_TAG_member)
9606 {
9607 /* Otherwise we skip to the next sibling, if any. */
9608 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
9609 continue;
9610 }
9611
9612 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
9613 buffer, info_ptr, cu);
9614
9615 /* This two-pass algorithm for processing partial symbols has a
9616 high cost in cache pressure. Thus, handle some simple cases
9617 here which cover the majority of C partial symbols. DIEs
9618 which neither have specification tags in them, nor could have
9619 specification tags elsewhere pointing at them, can simply be
9620 processed and discarded.
9621
9622 This segment is also optional; scan_partial_symbols and
9623 add_partial_symbol will handle these DIEs if we chain
9624 them in normally. When compilers which do not emit large
9625 quantities of duplicate debug information are more common,
9626 this code can probably be removed. */
9627
9628 /* Any complete simple types at the top level (pretty much all
9629 of them, for a language without namespaces), can be processed
9630 directly. */
9631 if (parent_die == NULL
9632 && part_die->has_specification == 0
9633 && part_die->is_declaration == 0
9634 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
9635 || part_die->tag == DW_TAG_base_type
9636 || part_die->tag == DW_TAG_subrange_type))
9637 {
9638 if (building_psymtab && part_die->name != NULL)
9639 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
9640 VAR_DOMAIN, LOC_TYPEDEF,
9641 &objfile->static_psymbols,
9642 0, (CORE_ADDR) 0, cu->language, objfile);
9643 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
9644 continue;
9645 }
9646
9647 /* The exception for DW_TAG_typedef with has_children above is
9648 a workaround of GCC PR debug/47510. In the case of this complaint
9649 type_name_no_tag_or_error will error on such types later.
9650
9651 GDB skipped children of DW_TAG_typedef by the shortcut above and then
9652 it could not find the child DIEs referenced later, this is checked
9653 above. In correct DWARF DW_TAG_typedef should have no children. */
9654
9655 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
9656 complaint (&symfile_complaints,
9657 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
9658 "- DIE at 0x%x [in module %s]"),
9659 part_die->offset.sect_off, objfile->name);
9660
9661 /* If we're at the second level, and we're an enumerator, and
9662 our parent has no specification (meaning possibly lives in a
9663 namespace elsewhere), then we can add the partial symbol now
9664 instead of queueing it. */
9665 if (part_die->tag == DW_TAG_enumerator
9666 && parent_die != NULL
9667 && parent_die->die_parent == NULL
9668 && parent_die->tag == DW_TAG_enumeration_type
9669 && parent_die->has_specification == 0)
9670 {
9671 if (part_die->name == NULL)
9672 complaint (&symfile_complaints,
9673 _("malformed enumerator DIE ignored"));
9674 else if (building_psymtab)
9675 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
9676 VAR_DOMAIN, LOC_CONST,
9677 (cu->language == language_cplus
9678 || cu->language == language_java)
9679 ? &objfile->global_psymbols
9680 : &objfile->static_psymbols,
9681 0, (CORE_ADDR) 0, cu->language, objfile);
9682
9683 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
9684 continue;
9685 }
9686
9687 /* We'll save this DIE so link it in. */
9688 part_die->die_parent = parent_die;
9689 part_die->die_sibling = NULL;
9690 part_die->die_child = NULL;
9691
9692 if (last_die && last_die == parent_die)
9693 last_die->die_child = part_die;
9694 else if (last_die)
9695 last_die->die_sibling = part_die;
9696
9697 last_die = part_die;
9698
9699 if (first_die == NULL)
9700 first_die = part_die;
9701
9702 /* Maybe add the DIE to the hash table. Not all DIEs that we
9703 find interesting need to be in the hash table, because we
9704 also have the parent/sibling/child chains; only those that we
9705 might refer to by offset later during partial symbol reading.
9706
9707 For now this means things that might have be the target of a
9708 DW_AT_specification, DW_AT_abstract_origin, or
9709 DW_AT_extension. DW_AT_extension will refer only to
9710 namespaces; DW_AT_abstract_origin refers to functions (and
9711 many things under the function DIE, but we do not recurse
9712 into function DIEs during partial symbol reading) and
9713 possibly variables as well; DW_AT_specification refers to
9714 declarations. Declarations ought to have the DW_AT_declaration
9715 flag. It happens that GCC forgets to put it in sometimes, but
9716 only for functions, not for types.
9717
9718 Adding more things than necessary to the hash table is harmless
9719 except for the performance cost. Adding too few will result in
9720 wasted time in find_partial_die, when we reread the compilation
9721 unit with load_all_dies set. */
9722
9723 if (load_all
9724 || abbrev->tag == DW_TAG_constant
9725 || abbrev->tag == DW_TAG_subprogram
9726 || abbrev->tag == DW_TAG_variable
9727 || abbrev->tag == DW_TAG_namespace
9728 || part_die->is_declaration)
9729 {
9730 void **slot;
9731
9732 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
9733 part_die->offset.sect_off, INSERT);
9734 *slot = part_die;
9735 }
9736
9737 part_die = obstack_alloc (&cu->comp_unit_obstack,
9738 sizeof (struct partial_die_info));
9739
9740 /* For some DIEs we want to follow their children (if any). For C
9741 we have no reason to follow the children of structures; for other
9742 languages we have to, so that we can get at method physnames
9743 to infer fully qualified class names, for DW_AT_specification,
9744 and for C++ template arguments. For C++, we also look one level
9745 inside functions to find template arguments (if the name of the
9746 function does not already contain the template arguments).
9747
9748 For Ada, we need to scan the children of subprograms and lexical
9749 blocks as well because Ada allows the definition of nested
9750 entities that could be interesting for the debugger, such as
9751 nested subprograms for instance. */
9752 if (last_die->has_children
9753 && (load_all
9754 || last_die->tag == DW_TAG_namespace
9755 || last_die->tag == DW_TAG_module
9756 || last_die->tag == DW_TAG_enumeration_type
9757 || (cu->language == language_cplus
9758 && last_die->tag == DW_TAG_subprogram
9759 && (last_die->name == NULL
9760 || strchr (last_die->name, '<') == NULL))
9761 || (cu->language != language_c
9762 && (last_die->tag == DW_TAG_class_type
9763 || last_die->tag == DW_TAG_interface_type
9764 || last_die->tag == DW_TAG_structure_type
9765 || last_die->tag == DW_TAG_union_type))
9766 || (cu->language == language_ada
9767 && (last_die->tag == DW_TAG_subprogram
9768 || last_die->tag == DW_TAG_lexical_block))))
9769 {
9770 nesting_level++;
9771 parent_die = last_die;
9772 continue;
9773 }
9774
9775 /* Otherwise we skip to the next sibling, if any. */
9776 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
9777
9778 /* Back to the top, do it again. */
9779 }
9780 }
9781
9782 /* Read a minimal amount of information into the minimal die structure. */
9783
9784 static gdb_byte *
9785 read_partial_die (struct partial_die_info *part_die,
9786 struct abbrev_info *abbrev,
9787 unsigned int abbrev_len, bfd *abfd,
9788 gdb_byte *buffer, gdb_byte *info_ptr,
9789 struct dwarf2_cu *cu)
9790 {
9791 struct objfile *objfile = cu->objfile;
9792 unsigned int i;
9793 struct attribute attr;
9794 int has_low_pc_attr = 0;
9795 int has_high_pc_attr = 0;
9796
9797 memset (part_die, 0, sizeof (struct partial_die_info));
9798
9799 part_die->offset.sect_off = info_ptr - buffer;
9800
9801 info_ptr += abbrev_len;
9802
9803 if (abbrev == NULL)
9804 return info_ptr;
9805
9806 part_die->tag = abbrev->tag;
9807 part_die->has_children = abbrev->has_children;
9808
9809 for (i = 0; i < abbrev->num_attrs; ++i)
9810 {
9811 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
9812
9813 /* Store the data if it is of an attribute we want to keep in a
9814 partial symbol table. */
9815 switch (attr.name)
9816 {
9817 case DW_AT_name:
9818 switch (part_die->tag)
9819 {
9820 case DW_TAG_compile_unit:
9821 case DW_TAG_type_unit:
9822 /* Compilation units have a DW_AT_name that is a filename, not
9823 a source language identifier. */
9824 case DW_TAG_enumeration_type:
9825 case DW_TAG_enumerator:
9826 /* These tags always have simple identifiers already; no need
9827 to canonicalize them. */
9828 part_die->name = DW_STRING (&attr);
9829 break;
9830 default:
9831 part_die->name
9832 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
9833 &objfile->objfile_obstack);
9834 break;
9835 }
9836 break;
9837 case DW_AT_linkage_name:
9838 case DW_AT_MIPS_linkage_name:
9839 /* Note that both forms of linkage name might appear. We
9840 assume they will be the same, and we only store the last
9841 one we see. */
9842 if (cu->language == language_ada)
9843 part_die->name = DW_STRING (&attr);
9844 part_die->linkage_name = DW_STRING (&attr);
9845 break;
9846 case DW_AT_low_pc:
9847 has_low_pc_attr = 1;
9848 part_die->lowpc = DW_ADDR (&attr);
9849 break;
9850 case DW_AT_high_pc:
9851 has_high_pc_attr = 1;
9852 part_die->highpc = DW_ADDR (&attr);
9853 break;
9854 case DW_AT_location:
9855 /* Support the .debug_loc offsets. */
9856 if (attr_form_is_block (&attr))
9857 {
9858 part_die->locdesc = DW_BLOCK (&attr);
9859 }
9860 else if (attr_form_is_section_offset (&attr))
9861 {
9862 dwarf2_complex_location_expr_complaint ();
9863 }
9864 else
9865 {
9866 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
9867 "partial symbol information");
9868 }
9869 break;
9870 case DW_AT_external:
9871 part_die->is_external = DW_UNSND (&attr);
9872 break;
9873 case DW_AT_declaration:
9874 part_die->is_declaration = DW_UNSND (&attr);
9875 break;
9876 case DW_AT_type:
9877 part_die->has_type = 1;
9878 break;
9879 case DW_AT_abstract_origin:
9880 case DW_AT_specification:
9881 case DW_AT_extension:
9882 part_die->has_specification = 1;
9883 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
9884 break;
9885 case DW_AT_sibling:
9886 /* Ignore absolute siblings, they might point outside of
9887 the current compile unit. */
9888 if (attr.form == DW_FORM_ref_addr)
9889 complaint (&symfile_complaints,
9890 _("ignoring absolute DW_AT_sibling"));
9891 else
9892 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
9893 break;
9894 case DW_AT_byte_size:
9895 part_die->has_byte_size = 1;
9896 break;
9897 case DW_AT_calling_convention:
9898 /* DWARF doesn't provide a way to identify a program's source-level
9899 entry point. DW_AT_calling_convention attributes are only meant
9900 to describe functions' calling conventions.
9901
9902 However, because it's a necessary piece of information in
9903 Fortran, and because DW_CC_program is the only piece of debugging
9904 information whose definition refers to a 'main program' at all,
9905 several compilers have begun marking Fortran main programs with
9906 DW_CC_program --- even when those functions use the standard
9907 calling conventions.
9908
9909 So until DWARF specifies a way to provide this information and
9910 compilers pick up the new representation, we'll support this
9911 practice. */
9912 if (DW_UNSND (&attr) == DW_CC_program
9913 && cu->language == language_fortran)
9914 {
9915 set_main_name (part_die->name);
9916
9917 /* As this DIE has a static linkage the name would be difficult
9918 to look up later. */
9919 language_of_main = language_fortran;
9920 }
9921 break;
9922 case DW_AT_inline:
9923 if (DW_UNSND (&attr) == DW_INL_inlined
9924 || DW_UNSND (&attr) == DW_INL_declared_inlined)
9925 part_die->may_be_inlined = 1;
9926 break;
9927 default:
9928 break;
9929 }
9930 }
9931
9932 if (has_low_pc_attr && has_high_pc_attr)
9933 {
9934 /* When using the GNU linker, .gnu.linkonce. sections are used to
9935 eliminate duplicate copies of functions and vtables and such.
9936 The linker will arbitrarily choose one and discard the others.
9937 The AT_*_pc values for such functions refer to local labels in
9938 these sections. If the section from that file was discarded, the
9939 labels are not in the output, so the relocs get a value of 0.
9940 If this is a discarded function, mark the pc bounds as invalid,
9941 so that GDB will ignore it. */
9942 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
9943 {
9944 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9945
9946 complaint (&symfile_complaints,
9947 _("DW_AT_low_pc %s is zero "
9948 "for DIE at 0x%x [in module %s]"),
9949 paddress (gdbarch, part_die->lowpc),
9950 part_die->offset.sect_off, objfile->name);
9951 }
9952 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
9953 else if (part_die->lowpc >= part_die->highpc)
9954 {
9955 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9956
9957 complaint (&symfile_complaints,
9958 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
9959 "for DIE at 0x%x [in module %s]"),
9960 paddress (gdbarch, part_die->lowpc),
9961 paddress (gdbarch, part_die->highpc),
9962 part_die->offset.sect_off, objfile->name);
9963 }
9964 else
9965 part_die->has_pc_info = 1;
9966 }
9967
9968 return info_ptr;
9969 }
9970
9971 /* Find a cached partial DIE at OFFSET in CU. */
9972
9973 static struct partial_die_info *
9974 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
9975 {
9976 struct partial_die_info *lookup_die = NULL;
9977 struct partial_die_info part_die;
9978
9979 part_die.offset = offset;
9980 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
9981 offset.sect_off);
9982
9983 return lookup_die;
9984 }
9985
9986 /* Find a partial DIE at OFFSET, which may or may not be in CU,
9987 except in the case of .debug_types DIEs which do not reference
9988 outside their CU (they do however referencing other types via
9989 DW_FORM_ref_sig8). */
9990
9991 static struct partial_die_info *
9992 find_partial_die (sect_offset offset, struct dwarf2_cu *cu)
9993 {
9994 struct objfile *objfile = cu->objfile;
9995 struct dwarf2_per_cu_data *per_cu = NULL;
9996 struct partial_die_info *pd = NULL;
9997
9998 if (cu->per_cu->debug_types_section)
9999 {
10000 pd = find_partial_die_in_comp_unit (offset, cu);
10001 if (pd != NULL)
10002 return pd;
10003 goto not_found;
10004 }
10005
10006 if (offset_in_cu_p (&cu->header, offset))
10007 {
10008 pd = find_partial_die_in_comp_unit (offset, cu);
10009 if (pd != NULL)
10010 return pd;
10011 }
10012
10013 per_cu = dwarf2_find_containing_comp_unit (offset, objfile);
10014
10015 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
10016 load_partial_comp_unit (per_cu);
10017
10018 per_cu->cu->last_used = 0;
10019 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
10020
10021 if (pd == NULL && per_cu->load_all_dies == 0)
10022 {
10023 struct cleanup *back_to;
10024 struct partial_die_info comp_unit_die;
10025 struct abbrev_info *abbrev;
10026 unsigned int bytes_read;
10027 char *info_ptr;
10028
10029 per_cu->load_all_dies = 1;
10030
10031 /* Re-read the DIEs. */
10032 back_to = make_cleanup (null_cleanup, 0);
10033 if (per_cu->cu->dwarf2_abbrevs == NULL)
10034 {
10035 dwarf2_read_abbrevs (per_cu->cu);
10036 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
10037 }
10038 info_ptr = (dwarf2_per_objfile->info.buffer
10039 + per_cu->cu->header.offset.sect_off
10040 + per_cu->cu->header.first_die_offset.cu_off);
10041 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
10042 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
10043 objfile->obfd,
10044 dwarf2_per_objfile->info.buffer, info_ptr,
10045 per_cu->cu);
10046 if (comp_unit_die.has_children)
10047 load_partial_dies (objfile->obfd,
10048 dwarf2_per_objfile->info.buffer, info_ptr,
10049 0, per_cu->cu);
10050 do_cleanups (back_to);
10051
10052 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
10053 }
10054
10055 not_found:
10056
10057 if (pd == NULL)
10058 internal_error (__FILE__, __LINE__,
10059 _("could not find partial DIE 0x%x "
10060 "in cache [from module %s]\n"),
10061 offset.sect_off, bfd_get_filename (objfile->obfd));
10062 return pd;
10063 }
10064
10065 /* See if we can figure out if the class lives in a namespace. We do
10066 this by looking for a member function; its demangled name will
10067 contain namespace info, if there is any. */
10068
10069 static void
10070 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
10071 struct dwarf2_cu *cu)
10072 {
10073 /* NOTE: carlton/2003-10-07: Getting the info this way changes
10074 what template types look like, because the demangler
10075 frequently doesn't give the same name as the debug info. We
10076 could fix this by only using the demangled name to get the
10077 prefix (but see comment in read_structure_type). */
10078
10079 struct partial_die_info *real_pdi;
10080 struct partial_die_info *child_pdi;
10081
10082 /* If this DIE (this DIE's specification, if any) has a parent, then
10083 we should not do this. We'll prepend the parent's fully qualified
10084 name when we create the partial symbol. */
10085
10086 real_pdi = struct_pdi;
10087 while (real_pdi->has_specification)
10088 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
10089
10090 if (real_pdi->die_parent != NULL)
10091 return;
10092
10093 for (child_pdi = struct_pdi->die_child;
10094 child_pdi != NULL;
10095 child_pdi = child_pdi->die_sibling)
10096 {
10097 if (child_pdi->tag == DW_TAG_subprogram
10098 && child_pdi->linkage_name != NULL)
10099 {
10100 char *actual_class_name
10101 = language_class_name_from_physname (cu->language_defn,
10102 child_pdi->linkage_name);
10103 if (actual_class_name != NULL)
10104 {
10105 struct_pdi->name
10106 = obsavestring (actual_class_name,
10107 strlen (actual_class_name),
10108 &cu->objfile->objfile_obstack);
10109 xfree (actual_class_name);
10110 }
10111 break;
10112 }
10113 }
10114 }
10115
10116 /* Adjust PART_DIE before generating a symbol for it. This function
10117 may set the is_external flag or change the DIE's name. */
10118
10119 static void
10120 fixup_partial_die (struct partial_die_info *part_die,
10121 struct dwarf2_cu *cu)
10122 {
10123 /* Once we've fixed up a die, there's no point in doing so again.
10124 This also avoids a memory leak if we were to call
10125 guess_partial_die_structure_name multiple times. */
10126 if (part_die->fixup_called)
10127 return;
10128
10129 /* If we found a reference attribute and the DIE has no name, try
10130 to find a name in the referred to DIE. */
10131
10132 if (part_die->name == NULL && part_die->has_specification)
10133 {
10134 struct partial_die_info *spec_die;
10135
10136 spec_die = find_partial_die (part_die->spec_offset, cu);
10137
10138 fixup_partial_die (spec_die, cu);
10139
10140 if (spec_die->name)
10141 {
10142 part_die->name = spec_die->name;
10143
10144 /* Copy DW_AT_external attribute if it is set. */
10145 if (spec_die->is_external)
10146 part_die->is_external = spec_die->is_external;
10147 }
10148 }
10149
10150 /* Set default names for some unnamed DIEs. */
10151
10152 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
10153 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
10154
10155 /* If there is no parent die to provide a namespace, and there are
10156 children, see if we can determine the namespace from their linkage
10157 name. */
10158 if (cu->language == language_cplus
10159 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
10160 && part_die->die_parent == NULL
10161 && part_die->has_children
10162 && (part_die->tag == DW_TAG_class_type
10163 || part_die->tag == DW_TAG_structure_type
10164 || part_die->tag == DW_TAG_union_type))
10165 guess_partial_die_structure_name (part_die, cu);
10166
10167 /* GCC might emit a nameless struct or union that has a linkage
10168 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
10169 if (part_die->name == NULL
10170 && (part_die->tag == DW_TAG_class_type
10171 || part_die->tag == DW_TAG_interface_type
10172 || part_die->tag == DW_TAG_structure_type
10173 || part_die->tag == DW_TAG_union_type)
10174 && part_die->linkage_name != NULL)
10175 {
10176 char *demangled;
10177
10178 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
10179 if (demangled)
10180 {
10181 const char *base;
10182
10183 /* Strip any leading namespaces/classes, keep only the base name.
10184 DW_AT_name for named DIEs does not contain the prefixes. */
10185 base = strrchr (demangled, ':');
10186 if (base && base > demangled && base[-1] == ':')
10187 base++;
10188 else
10189 base = demangled;
10190
10191 part_die->name = obsavestring (base, strlen (base),
10192 &cu->objfile->objfile_obstack);
10193 xfree (demangled);
10194 }
10195 }
10196
10197 part_die->fixup_called = 1;
10198 }
10199
10200 /* Read an attribute value described by an attribute form. */
10201
10202 static gdb_byte *
10203 read_attribute_value (struct attribute *attr, unsigned form,
10204 bfd *abfd, gdb_byte *info_ptr,
10205 struct dwarf2_cu *cu)
10206 {
10207 struct comp_unit_head *cu_header = &cu->header;
10208 unsigned int bytes_read;
10209 struct dwarf_block *blk;
10210
10211 attr->form = form;
10212 switch (form)
10213 {
10214 case DW_FORM_ref_addr:
10215 if (cu->header.version == 2)
10216 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
10217 else
10218 DW_ADDR (attr) = read_offset (abfd, info_ptr,
10219 &cu->header, &bytes_read);
10220 info_ptr += bytes_read;
10221 break;
10222 case DW_FORM_addr:
10223 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
10224 info_ptr += bytes_read;
10225 break;
10226 case DW_FORM_block2:
10227 blk = dwarf_alloc_block (cu);
10228 blk->size = read_2_bytes (abfd, info_ptr);
10229 info_ptr += 2;
10230 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10231 info_ptr += blk->size;
10232 DW_BLOCK (attr) = blk;
10233 break;
10234 case DW_FORM_block4:
10235 blk = dwarf_alloc_block (cu);
10236 blk->size = read_4_bytes (abfd, info_ptr);
10237 info_ptr += 4;
10238 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10239 info_ptr += blk->size;
10240 DW_BLOCK (attr) = blk;
10241 break;
10242 case DW_FORM_data2:
10243 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
10244 info_ptr += 2;
10245 break;
10246 case DW_FORM_data4:
10247 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
10248 info_ptr += 4;
10249 break;
10250 case DW_FORM_data8:
10251 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
10252 info_ptr += 8;
10253 break;
10254 case DW_FORM_sec_offset:
10255 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
10256 info_ptr += bytes_read;
10257 break;
10258 case DW_FORM_string:
10259 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
10260 DW_STRING_IS_CANONICAL (attr) = 0;
10261 info_ptr += bytes_read;
10262 break;
10263 case DW_FORM_strp:
10264 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
10265 &bytes_read);
10266 DW_STRING_IS_CANONICAL (attr) = 0;
10267 info_ptr += bytes_read;
10268 break;
10269 case DW_FORM_exprloc:
10270 case DW_FORM_block:
10271 blk = dwarf_alloc_block (cu);
10272 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10273 info_ptr += bytes_read;
10274 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10275 info_ptr += blk->size;
10276 DW_BLOCK (attr) = blk;
10277 break;
10278 case DW_FORM_block1:
10279 blk = dwarf_alloc_block (cu);
10280 blk->size = read_1_byte (abfd, info_ptr);
10281 info_ptr += 1;
10282 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10283 info_ptr += blk->size;
10284 DW_BLOCK (attr) = blk;
10285 break;
10286 case DW_FORM_data1:
10287 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
10288 info_ptr += 1;
10289 break;
10290 case DW_FORM_flag:
10291 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
10292 info_ptr += 1;
10293 break;
10294 case DW_FORM_flag_present:
10295 DW_UNSND (attr) = 1;
10296 break;
10297 case DW_FORM_sdata:
10298 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
10299 info_ptr += bytes_read;
10300 break;
10301 case DW_FORM_udata:
10302 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10303 info_ptr += bytes_read;
10304 break;
10305 case DW_FORM_ref1:
10306 DW_ADDR (attr) = (cu->header.offset.sect_off
10307 + read_1_byte (abfd, info_ptr));
10308 info_ptr += 1;
10309 break;
10310 case DW_FORM_ref2:
10311 DW_ADDR (attr) = (cu->header.offset.sect_off
10312 + read_2_bytes (abfd, info_ptr));
10313 info_ptr += 2;
10314 break;
10315 case DW_FORM_ref4:
10316 DW_ADDR (attr) = (cu->header.offset.sect_off
10317 + read_4_bytes (abfd, info_ptr));
10318 info_ptr += 4;
10319 break;
10320 case DW_FORM_ref8:
10321 DW_ADDR (attr) = (cu->header.offset.sect_off
10322 + read_8_bytes (abfd, info_ptr));
10323 info_ptr += 8;
10324 break;
10325 case DW_FORM_ref_sig8:
10326 /* Convert the signature to something we can record in DW_UNSND
10327 for later lookup.
10328 NOTE: This is NULL if the type wasn't found. */
10329 DW_SIGNATURED_TYPE (attr) =
10330 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
10331 info_ptr += 8;
10332 break;
10333 case DW_FORM_ref_udata:
10334 DW_ADDR (attr) = (cu->header.offset.sect_off
10335 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
10336 info_ptr += bytes_read;
10337 break;
10338 case DW_FORM_indirect:
10339 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10340 info_ptr += bytes_read;
10341 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
10342 break;
10343 default:
10344 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
10345 dwarf_form_name (form),
10346 bfd_get_filename (abfd));
10347 }
10348
10349 /* We have seen instances where the compiler tried to emit a byte
10350 size attribute of -1 which ended up being encoded as an unsigned
10351 0xffffffff. Although 0xffffffff is technically a valid size value,
10352 an object of this size seems pretty unlikely so we can relatively
10353 safely treat these cases as if the size attribute was invalid and
10354 treat them as zero by default. */
10355 if (attr->name == DW_AT_byte_size
10356 && form == DW_FORM_data4
10357 && DW_UNSND (attr) >= 0xffffffff)
10358 {
10359 complaint
10360 (&symfile_complaints,
10361 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
10362 hex_string (DW_UNSND (attr)));
10363 DW_UNSND (attr) = 0;
10364 }
10365
10366 return info_ptr;
10367 }
10368
10369 /* Read an attribute described by an abbreviated attribute. */
10370
10371 static gdb_byte *
10372 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
10373 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
10374 {
10375 attr->name = abbrev->name;
10376 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
10377 }
10378
10379 /* Read dwarf information from a buffer. */
10380
10381 static unsigned int
10382 read_1_byte (bfd *abfd, gdb_byte *buf)
10383 {
10384 return bfd_get_8 (abfd, buf);
10385 }
10386
10387 static int
10388 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
10389 {
10390 return bfd_get_signed_8 (abfd, buf);
10391 }
10392
10393 static unsigned int
10394 read_2_bytes (bfd *abfd, gdb_byte *buf)
10395 {
10396 return bfd_get_16 (abfd, buf);
10397 }
10398
10399 static int
10400 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
10401 {
10402 return bfd_get_signed_16 (abfd, buf);
10403 }
10404
10405 static unsigned int
10406 read_4_bytes (bfd *abfd, gdb_byte *buf)
10407 {
10408 return bfd_get_32 (abfd, buf);
10409 }
10410
10411 static int
10412 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
10413 {
10414 return bfd_get_signed_32 (abfd, buf);
10415 }
10416
10417 static ULONGEST
10418 read_8_bytes (bfd *abfd, gdb_byte *buf)
10419 {
10420 return bfd_get_64 (abfd, buf);
10421 }
10422
10423 static CORE_ADDR
10424 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
10425 unsigned int *bytes_read)
10426 {
10427 struct comp_unit_head *cu_header = &cu->header;
10428 CORE_ADDR retval = 0;
10429
10430 if (cu_header->signed_addr_p)
10431 {
10432 switch (cu_header->addr_size)
10433 {
10434 case 2:
10435 retval = bfd_get_signed_16 (abfd, buf);
10436 break;
10437 case 4:
10438 retval = bfd_get_signed_32 (abfd, buf);
10439 break;
10440 case 8:
10441 retval = bfd_get_signed_64 (abfd, buf);
10442 break;
10443 default:
10444 internal_error (__FILE__, __LINE__,
10445 _("read_address: bad switch, signed [in module %s]"),
10446 bfd_get_filename (abfd));
10447 }
10448 }
10449 else
10450 {
10451 switch (cu_header->addr_size)
10452 {
10453 case 2:
10454 retval = bfd_get_16 (abfd, buf);
10455 break;
10456 case 4:
10457 retval = bfd_get_32 (abfd, buf);
10458 break;
10459 case 8:
10460 retval = bfd_get_64 (abfd, buf);
10461 break;
10462 default:
10463 internal_error (__FILE__, __LINE__,
10464 _("read_address: bad switch, "
10465 "unsigned [in module %s]"),
10466 bfd_get_filename (abfd));
10467 }
10468 }
10469
10470 *bytes_read = cu_header->addr_size;
10471 return retval;
10472 }
10473
10474 /* Read the initial length from a section. The (draft) DWARF 3
10475 specification allows the initial length to take up either 4 bytes
10476 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
10477 bytes describe the length and all offsets will be 8 bytes in length
10478 instead of 4.
10479
10480 An older, non-standard 64-bit format is also handled by this
10481 function. The older format in question stores the initial length
10482 as an 8-byte quantity without an escape value. Lengths greater
10483 than 2^32 aren't very common which means that the initial 4 bytes
10484 is almost always zero. Since a length value of zero doesn't make
10485 sense for the 32-bit format, this initial zero can be considered to
10486 be an escape value which indicates the presence of the older 64-bit
10487 format. As written, the code can't detect (old format) lengths
10488 greater than 4GB. If it becomes necessary to handle lengths
10489 somewhat larger than 4GB, we could allow other small values (such
10490 as the non-sensical values of 1, 2, and 3) to also be used as
10491 escape values indicating the presence of the old format.
10492
10493 The value returned via bytes_read should be used to increment the
10494 relevant pointer after calling read_initial_length().
10495
10496 [ Note: read_initial_length() and read_offset() are based on the
10497 document entitled "DWARF Debugging Information Format", revision
10498 3, draft 8, dated November 19, 2001. This document was obtained
10499 from:
10500
10501 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
10502
10503 This document is only a draft and is subject to change. (So beware.)
10504
10505 Details regarding the older, non-standard 64-bit format were
10506 determined empirically by examining 64-bit ELF files produced by
10507 the SGI toolchain on an IRIX 6.5 machine.
10508
10509 - Kevin, July 16, 2002
10510 ] */
10511
10512 static LONGEST
10513 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
10514 {
10515 LONGEST length = bfd_get_32 (abfd, buf);
10516
10517 if (length == 0xffffffff)
10518 {
10519 length = bfd_get_64 (abfd, buf + 4);
10520 *bytes_read = 12;
10521 }
10522 else if (length == 0)
10523 {
10524 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
10525 length = bfd_get_64 (abfd, buf);
10526 *bytes_read = 8;
10527 }
10528 else
10529 {
10530 *bytes_read = 4;
10531 }
10532
10533 return length;
10534 }
10535
10536 /* Cover function for read_initial_length.
10537 Returns the length of the object at BUF, and stores the size of the
10538 initial length in *BYTES_READ and stores the size that offsets will be in
10539 *OFFSET_SIZE.
10540 If the initial length size is not equivalent to that specified in
10541 CU_HEADER then issue a complaint.
10542 This is useful when reading non-comp-unit headers. */
10543
10544 static LONGEST
10545 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
10546 const struct comp_unit_head *cu_header,
10547 unsigned int *bytes_read,
10548 unsigned int *offset_size)
10549 {
10550 LONGEST length = read_initial_length (abfd, buf, bytes_read);
10551
10552 gdb_assert (cu_header->initial_length_size == 4
10553 || cu_header->initial_length_size == 8
10554 || cu_header->initial_length_size == 12);
10555
10556 if (cu_header->initial_length_size != *bytes_read)
10557 complaint (&symfile_complaints,
10558 _("intermixed 32-bit and 64-bit DWARF sections"));
10559
10560 *offset_size = (*bytes_read == 4) ? 4 : 8;
10561 return length;
10562 }
10563
10564 /* Read an offset from the data stream. The size of the offset is
10565 given by cu_header->offset_size. */
10566
10567 static LONGEST
10568 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
10569 unsigned int *bytes_read)
10570 {
10571 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
10572
10573 *bytes_read = cu_header->offset_size;
10574 return offset;
10575 }
10576
10577 /* Read an offset from the data stream. */
10578
10579 static LONGEST
10580 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
10581 {
10582 LONGEST retval = 0;
10583
10584 switch (offset_size)
10585 {
10586 case 4:
10587 retval = bfd_get_32 (abfd, buf);
10588 break;
10589 case 8:
10590 retval = bfd_get_64 (abfd, buf);
10591 break;
10592 default:
10593 internal_error (__FILE__, __LINE__,
10594 _("read_offset_1: bad switch [in module %s]"),
10595 bfd_get_filename (abfd));
10596 }
10597
10598 return retval;
10599 }
10600
10601 static gdb_byte *
10602 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
10603 {
10604 /* If the size of a host char is 8 bits, we can return a pointer
10605 to the buffer, otherwise we have to copy the data to a buffer
10606 allocated on the temporary obstack. */
10607 gdb_assert (HOST_CHAR_BIT == 8);
10608 return buf;
10609 }
10610
10611 static char *
10612 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10613 {
10614 /* If the size of a host char is 8 bits, we can return a pointer
10615 to the string, otherwise we have to copy the string to a buffer
10616 allocated on the temporary obstack. */
10617 gdb_assert (HOST_CHAR_BIT == 8);
10618 if (*buf == '\0')
10619 {
10620 *bytes_read_ptr = 1;
10621 return NULL;
10622 }
10623 *bytes_read_ptr = strlen ((char *) buf) + 1;
10624 return (char *) buf;
10625 }
10626
10627 static char *
10628 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
10629 {
10630 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
10631 if (dwarf2_per_objfile->str.buffer == NULL)
10632 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
10633 bfd_get_filename (abfd));
10634 if (str_offset >= dwarf2_per_objfile->str.size)
10635 error (_("DW_FORM_strp pointing outside of "
10636 ".debug_str section [in module %s]"),
10637 bfd_get_filename (abfd));
10638 gdb_assert (HOST_CHAR_BIT == 8);
10639 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
10640 return NULL;
10641 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
10642 }
10643
10644 static char *
10645 read_indirect_string (bfd *abfd, gdb_byte *buf,
10646 const struct comp_unit_head *cu_header,
10647 unsigned int *bytes_read_ptr)
10648 {
10649 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
10650
10651 return read_indirect_string_at_offset (abfd, str_offset);
10652 }
10653
10654 static unsigned long
10655 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10656 {
10657 unsigned long result;
10658 unsigned int num_read;
10659 int i, shift;
10660 unsigned char byte;
10661
10662 result = 0;
10663 shift = 0;
10664 num_read = 0;
10665 i = 0;
10666 while (1)
10667 {
10668 byte = bfd_get_8 (abfd, buf);
10669 buf++;
10670 num_read++;
10671 result |= ((unsigned long)(byte & 127) << shift);
10672 if ((byte & 128) == 0)
10673 {
10674 break;
10675 }
10676 shift += 7;
10677 }
10678 *bytes_read_ptr = num_read;
10679 return result;
10680 }
10681
10682 static long
10683 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10684 {
10685 long result;
10686 int i, shift, num_read;
10687 unsigned char byte;
10688
10689 result = 0;
10690 shift = 0;
10691 num_read = 0;
10692 i = 0;
10693 while (1)
10694 {
10695 byte = bfd_get_8 (abfd, buf);
10696 buf++;
10697 num_read++;
10698 result |= ((long)(byte & 127) << shift);
10699 shift += 7;
10700 if ((byte & 128) == 0)
10701 {
10702 break;
10703 }
10704 }
10705 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
10706 result |= -(((long)1) << shift);
10707 *bytes_read_ptr = num_read;
10708 return result;
10709 }
10710
10711 /* Return a pointer to just past the end of an LEB128 number in BUF. */
10712
10713 static gdb_byte *
10714 skip_leb128 (bfd *abfd, gdb_byte *buf)
10715 {
10716 int byte;
10717
10718 while (1)
10719 {
10720 byte = bfd_get_8 (abfd, buf);
10721 buf++;
10722 if ((byte & 128) == 0)
10723 return buf;
10724 }
10725 }
10726
10727 static void
10728 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
10729 {
10730 switch (lang)
10731 {
10732 case DW_LANG_C89:
10733 case DW_LANG_C99:
10734 case DW_LANG_C:
10735 cu->language = language_c;
10736 break;
10737 case DW_LANG_C_plus_plus:
10738 cu->language = language_cplus;
10739 break;
10740 case DW_LANG_D:
10741 cu->language = language_d;
10742 break;
10743 case DW_LANG_Fortran77:
10744 case DW_LANG_Fortran90:
10745 case DW_LANG_Fortran95:
10746 cu->language = language_fortran;
10747 break;
10748 case DW_LANG_Mips_Assembler:
10749 cu->language = language_asm;
10750 break;
10751 case DW_LANG_Java:
10752 cu->language = language_java;
10753 break;
10754 case DW_LANG_Ada83:
10755 case DW_LANG_Ada95:
10756 cu->language = language_ada;
10757 break;
10758 case DW_LANG_Modula2:
10759 cu->language = language_m2;
10760 break;
10761 case DW_LANG_Pascal83:
10762 cu->language = language_pascal;
10763 break;
10764 case DW_LANG_ObjC:
10765 cu->language = language_objc;
10766 break;
10767 case DW_LANG_Cobol74:
10768 case DW_LANG_Cobol85:
10769 default:
10770 cu->language = language_minimal;
10771 break;
10772 }
10773 cu->language_defn = language_def (cu->language);
10774 }
10775
10776 /* Return the named attribute or NULL if not there. */
10777
10778 static struct attribute *
10779 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
10780 {
10781 for (;;)
10782 {
10783 unsigned int i;
10784 struct attribute *spec = NULL;
10785
10786 for (i = 0; i < die->num_attrs; ++i)
10787 {
10788 if (die->attrs[i].name == name)
10789 return &die->attrs[i];
10790 if (die->attrs[i].name == DW_AT_specification
10791 || die->attrs[i].name == DW_AT_abstract_origin)
10792 spec = &die->attrs[i];
10793 }
10794
10795 if (!spec)
10796 break;
10797
10798 die = follow_die_ref (die, spec, &cu);
10799 }
10800
10801 return NULL;
10802 }
10803
10804 /* Return the named attribute or NULL if not there,
10805 but do not follow DW_AT_specification, etc.
10806 This is for use in contexts where we're reading .debug_types dies.
10807 Following DW_AT_specification, DW_AT_abstract_origin will take us
10808 back up the chain, and we want to go down. */
10809
10810 static struct attribute *
10811 dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
10812 struct dwarf2_cu *cu)
10813 {
10814 unsigned int i;
10815
10816 for (i = 0; i < die->num_attrs; ++i)
10817 if (die->attrs[i].name == name)
10818 return &die->attrs[i];
10819
10820 return NULL;
10821 }
10822
10823 /* Return non-zero iff the attribute NAME is defined for the given DIE,
10824 and holds a non-zero value. This function should only be used for
10825 DW_FORM_flag or DW_FORM_flag_present attributes. */
10826
10827 static int
10828 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
10829 {
10830 struct attribute *attr = dwarf2_attr (die, name, cu);
10831
10832 return (attr && DW_UNSND (attr));
10833 }
10834
10835 static int
10836 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
10837 {
10838 /* A DIE is a declaration if it has a DW_AT_declaration attribute
10839 which value is non-zero. However, we have to be careful with
10840 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
10841 (via dwarf2_flag_true_p) follows this attribute. So we may
10842 end up accidently finding a declaration attribute that belongs
10843 to a different DIE referenced by the specification attribute,
10844 even though the given DIE does not have a declaration attribute. */
10845 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
10846 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
10847 }
10848
10849 /* Return the die giving the specification for DIE, if there is
10850 one. *SPEC_CU is the CU containing DIE on input, and the CU
10851 containing the return value on output. If there is no
10852 specification, but there is an abstract origin, that is
10853 returned. */
10854
10855 static struct die_info *
10856 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
10857 {
10858 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
10859 *spec_cu);
10860
10861 if (spec_attr == NULL)
10862 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
10863
10864 if (spec_attr == NULL)
10865 return NULL;
10866 else
10867 return follow_die_ref (die, spec_attr, spec_cu);
10868 }
10869
10870 /* Free the line_header structure *LH, and any arrays and strings it
10871 refers to.
10872 NOTE: This is also used as a "cleanup" function. */
10873
10874 static void
10875 free_line_header (struct line_header *lh)
10876 {
10877 if (lh->standard_opcode_lengths)
10878 xfree (lh->standard_opcode_lengths);
10879
10880 /* Remember that all the lh->file_names[i].name pointers are
10881 pointers into debug_line_buffer, and don't need to be freed. */
10882 if (lh->file_names)
10883 xfree (lh->file_names);
10884
10885 /* Similarly for the include directory names. */
10886 if (lh->include_dirs)
10887 xfree (lh->include_dirs);
10888
10889 xfree (lh);
10890 }
10891
10892 /* Add an entry to LH's include directory table. */
10893
10894 static void
10895 add_include_dir (struct line_header *lh, char *include_dir)
10896 {
10897 /* Grow the array if necessary. */
10898 if (lh->include_dirs_size == 0)
10899 {
10900 lh->include_dirs_size = 1; /* for testing */
10901 lh->include_dirs = xmalloc (lh->include_dirs_size
10902 * sizeof (*lh->include_dirs));
10903 }
10904 else if (lh->num_include_dirs >= lh->include_dirs_size)
10905 {
10906 lh->include_dirs_size *= 2;
10907 lh->include_dirs = xrealloc (lh->include_dirs,
10908 (lh->include_dirs_size
10909 * sizeof (*lh->include_dirs)));
10910 }
10911
10912 lh->include_dirs[lh->num_include_dirs++] = include_dir;
10913 }
10914
10915 /* Add an entry to LH's file name table. */
10916
10917 static void
10918 add_file_name (struct line_header *lh,
10919 char *name,
10920 unsigned int dir_index,
10921 unsigned int mod_time,
10922 unsigned int length)
10923 {
10924 struct file_entry *fe;
10925
10926 /* Grow the array if necessary. */
10927 if (lh->file_names_size == 0)
10928 {
10929 lh->file_names_size = 1; /* for testing */
10930 lh->file_names = xmalloc (lh->file_names_size
10931 * sizeof (*lh->file_names));
10932 }
10933 else if (lh->num_file_names >= lh->file_names_size)
10934 {
10935 lh->file_names_size *= 2;
10936 lh->file_names = xrealloc (lh->file_names,
10937 (lh->file_names_size
10938 * sizeof (*lh->file_names)));
10939 }
10940
10941 fe = &lh->file_names[lh->num_file_names++];
10942 fe->name = name;
10943 fe->dir_index = dir_index;
10944 fe->mod_time = mod_time;
10945 fe->length = length;
10946 fe->included_p = 0;
10947 fe->symtab = NULL;
10948 }
10949
10950 /* Read the statement program header starting at OFFSET in
10951 .debug_line, according to the endianness of ABFD. Return a pointer
10952 to a struct line_header, allocated using xmalloc.
10953
10954 NOTE: the strings in the include directory and file name tables of
10955 the returned object point into debug_line_buffer, and must not be
10956 freed. */
10957
10958 static struct line_header *
10959 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
10960 struct dwarf2_cu *cu)
10961 {
10962 struct cleanup *back_to;
10963 struct line_header *lh;
10964 gdb_byte *line_ptr;
10965 unsigned int bytes_read, offset_size;
10966 int i;
10967 char *cur_dir, *cur_file;
10968
10969 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
10970 if (dwarf2_per_objfile->line.buffer == NULL)
10971 {
10972 complaint (&symfile_complaints, _("missing .debug_line section"));
10973 return 0;
10974 }
10975
10976 /* Make sure that at least there's room for the total_length field.
10977 That could be 12 bytes long, but we're just going to fudge that. */
10978 if (offset + 4 >= dwarf2_per_objfile->line.size)
10979 {
10980 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10981 return 0;
10982 }
10983
10984 lh = xmalloc (sizeof (*lh));
10985 memset (lh, 0, sizeof (*lh));
10986 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
10987 (void *) lh);
10988
10989 line_ptr = dwarf2_per_objfile->line.buffer + offset;
10990
10991 /* Read in the header. */
10992 lh->total_length =
10993 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
10994 &bytes_read, &offset_size);
10995 line_ptr += bytes_read;
10996 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
10997 + dwarf2_per_objfile->line.size))
10998 {
10999 dwarf2_statement_list_fits_in_line_number_section_complaint ();
11000 return 0;
11001 }
11002 lh->statement_program_end = line_ptr + lh->total_length;
11003 lh->version = read_2_bytes (abfd, line_ptr);
11004 line_ptr += 2;
11005 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
11006 line_ptr += offset_size;
11007 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
11008 line_ptr += 1;
11009 if (lh->version >= 4)
11010 {
11011 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
11012 line_ptr += 1;
11013 }
11014 else
11015 lh->maximum_ops_per_instruction = 1;
11016
11017 if (lh->maximum_ops_per_instruction == 0)
11018 {
11019 lh->maximum_ops_per_instruction = 1;
11020 complaint (&symfile_complaints,
11021 _("invalid maximum_ops_per_instruction "
11022 "in `.debug_line' section"));
11023 }
11024
11025 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
11026 line_ptr += 1;
11027 lh->line_base = read_1_signed_byte (abfd, line_ptr);
11028 line_ptr += 1;
11029 lh->line_range = read_1_byte (abfd, line_ptr);
11030 line_ptr += 1;
11031 lh->opcode_base = read_1_byte (abfd, line_ptr);
11032 line_ptr += 1;
11033 lh->standard_opcode_lengths
11034 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
11035
11036 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
11037 for (i = 1; i < lh->opcode_base; ++i)
11038 {
11039 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
11040 line_ptr += 1;
11041 }
11042
11043 /* Read directory table. */
11044 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
11045 {
11046 line_ptr += bytes_read;
11047 add_include_dir (lh, cur_dir);
11048 }
11049 line_ptr += bytes_read;
11050
11051 /* Read file name table. */
11052 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
11053 {
11054 unsigned int dir_index, mod_time, length;
11055
11056 line_ptr += bytes_read;
11057 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11058 line_ptr += bytes_read;
11059 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11060 line_ptr += bytes_read;
11061 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11062 line_ptr += bytes_read;
11063
11064 add_file_name (lh, cur_file, dir_index, mod_time, length);
11065 }
11066 line_ptr += bytes_read;
11067 lh->statement_program_start = line_ptr;
11068
11069 if (line_ptr > (dwarf2_per_objfile->line.buffer
11070 + dwarf2_per_objfile->line.size))
11071 complaint (&symfile_complaints,
11072 _("line number info header doesn't "
11073 "fit in `.debug_line' section"));
11074
11075 discard_cleanups (back_to);
11076 return lh;
11077 }
11078
11079 /* Subroutine of dwarf_decode_lines to simplify it.
11080 Return the file name of the psymtab for included file FILE_INDEX
11081 in line header LH of PST.
11082 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
11083 If space for the result is malloc'd, it will be freed by a cleanup.
11084 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
11085
11086 static char *
11087 psymtab_include_file_name (const struct line_header *lh, int file_index,
11088 const struct partial_symtab *pst,
11089 const char *comp_dir)
11090 {
11091 const struct file_entry fe = lh->file_names [file_index];
11092 char *include_name = fe.name;
11093 char *include_name_to_compare = include_name;
11094 char *dir_name = NULL;
11095 const char *pst_filename;
11096 char *copied_name = NULL;
11097 int file_is_pst;
11098
11099 if (fe.dir_index)
11100 dir_name = lh->include_dirs[fe.dir_index - 1];
11101
11102 if (!IS_ABSOLUTE_PATH (include_name)
11103 && (dir_name != NULL || comp_dir != NULL))
11104 {
11105 /* Avoid creating a duplicate psymtab for PST.
11106 We do this by comparing INCLUDE_NAME and PST_FILENAME.
11107 Before we do the comparison, however, we need to account
11108 for DIR_NAME and COMP_DIR.
11109 First prepend dir_name (if non-NULL). If we still don't
11110 have an absolute path prepend comp_dir (if non-NULL).
11111 However, the directory we record in the include-file's
11112 psymtab does not contain COMP_DIR (to match the
11113 corresponding symtab(s)).
11114
11115 Example:
11116
11117 bash$ cd /tmp
11118 bash$ gcc -g ./hello.c
11119 include_name = "hello.c"
11120 dir_name = "."
11121 DW_AT_comp_dir = comp_dir = "/tmp"
11122 DW_AT_name = "./hello.c" */
11123
11124 if (dir_name != NULL)
11125 {
11126 include_name = concat (dir_name, SLASH_STRING,
11127 include_name, (char *)NULL);
11128 include_name_to_compare = include_name;
11129 make_cleanup (xfree, include_name);
11130 }
11131 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
11132 {
11133 include_name_to_compare = concat (comp_dir, SLASH_STRING,
11134 include_name, (char *)NULL);
11135 }
11136 }
11137
11138 pst_filename = pst->filename;
11139 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
11140 {
11141 copied_name = concat (pst->dirname, SLASH_STRING,
11142 pst_filename, (char *)NULL);
11143 pst_filename = copied_name;
11144 }
11145
11146 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
11147
11148 if (include_name_to_compare != include_name)
11149 xfree (include_name_to_compare);
11150 if (copied_name != NULL)
11151 xfree (copied_name);
11152
11153 if (file_is_pst)
11154 return NULL;
11155 return include_name;
11156 }
11157
11158 /* Ignore this record_line request. */
11159
11160 static void
11161 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
11162 {
11163 return;
11164 }
11165
11166 /* Subroutine of dwarf_decode_lines to simplify it.
11167 Process the line number information in LH. */
11168
11169 static void
11170 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
11171 struct dwarf2_cu *cu, struct partial_symtab *pst)
11172 {
11173 gdb_byte *line_ptr, *extended_end;
11174 gdb_byte *line_end;
11175 unsigned int bytes_read, extended_len;
11176 unsigned char op_code, extended_op, adj_opcode;
11177 CORE_ADDR baseaddr;
11178 struct objfile *objfile = cu->objfile;
11179 bfd *abfd = objfile->obfd;
11180 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11181 const int decode_for_pst_p = (pst != NULL);
11182 struct subfile *last_subfile = NULL;
11183 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
11184 = record_line;
11185
11186 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11187
11188 line_ptr = lh->statement_program_start;
11189 line_end = lh->statement_program_end;
11190
11191 /* Read the statement sequences until there's nothing left. */
11192 while (line_ptr < line_end)
11193 {
11194 /* state machine registers */
11195 CORE_ADDR address = 0;
11196 unsigned int file = 1;
11197 unsigned int line = 1;
11198 unsigned int column = 0;
11199 int is_stmt = lh->default_is_stmt;
11200 int basic_block = 0;
11201 int end_sequence = 0;
11202 CORE_ADDR addr;
11203 unsigned char op_index = 0;
11204
11205 if (!decode_for_pst_p && lh->num_file_names >= file)
11206 {
11207 /* Start a subfile for the current file of the state machine. */
11208 /* lh->include_dirs and lh->file_names are 0-based, but the
11209 directory and file name numbers in the statement program
11210 are 1-based. */
11211 struct file_entry *fe = &lh->file_names[file - 1];
11212 char *dir = NULL;
11213
11214 if (fe->dir_index)
11215 dir = lh->include_dirs[fe->dir_index - 1];
11216
11217 dwarf2_start_subfile (fe->name, dir, comp_dir);
11218 }
11219
11220 /* Decode the table. */
11221 while (!end_sequence)
11222 {
11223 op_code = read_1_byte (abfd, line_ptr);
11224 line_ptr += 1;
11225 if (line_ptr > line_end)
11226 {
11227 dwarf2_debug_line_missing_end_sequence_complaint ();
11228 break;
11229 }
11230
11231 if (op_code >= lh->opcode_base)
11232 {
11233 /* Special operand. */
11234 adj_opcode = op_code - lh->opcode_base;
11235 address += (((op_index + (adj_opcode / lh->line_range))
11236 / lh->maximum_ops_per_instruction)
11237 * lh->minimum_instruction_length);
11238 op_index = ((op_index + (adj_opcode / lh->line_range))
11239 % lh->maximum_ops_per_instruction);
11240 line += lh->line_base + (adj_opcode % lh->line_range);
11241 if (lh->num_file_names < file || file == 0)
11242 dwarf2_debug_line_missing_file_complaint ();
11243 /* For now we ignore lines not starting on an
11244 instruction boundary. */
11245 else if (op_index == 0)
11246 {
11247 lh->file_names[file - 1].included_p = 1;
11248 if (!decode_for_pst_p && is_stmt)
11249 {
11250 if (last_subfile != current_subfile)
11251 {
11252 addr = gdbarch_addr_bits_remove (gdbarch, address);
11253 if (last_subfile)
11254 (*p_record_line) (last_subfile, 0, addr);
11255 last_subfile = current_subfile;
11256 }
11257 /* Append row to matrix using current values. */
11258 addr = gdbarch_addr_bits_remove (gdbarch, address);
11259 (*p_record_line) (current_subfile, line, addr);
11260 }
11261 }
11262 basic_block = 0;
11263 }
11264 else switch (op_code)
11265 {
11266 case DW_LNS_extended_op:
11267 extended_len = read_unsigned_leb128 (abfd, line_ptr,
11268 &bytes_read);
11269 line_ptr += bytes_read;
11270 extended_end = line_ptr + extended_len;
11271 extended_op = read_1_byte (abfd, line_ptr);
11272 line_ptr += 1;
11273 switch (extended_op)
11274 {
11275 case DW_LNE_end_sequence:
11276 p_record_line = record_line;
11277 end_sequence = 1;
11278 break;
11279 case DW_LNE_set_address:
11280 address = read_address (abfd, line_ptr, cu, &bytes_read);
11281
11282 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
11283 {
11284 /* This line table is for a function which has been
11285 GCd by the linker. Ignore it. PR gdb/12528 */
11286
11287 long line_offset
11288 = line_ptr - dwarf2_per_objfile->line.buffer;
11289
11290 complaint (&symfile_complaints,
11291 _(".debug_line address at offset 0x%lx is 0 "
11292 "[in module %s]"),
11293 line_offset, objfile->name);
11294 p_record_line = noop_record_line;
11295 }
11296
11297 op_index = 0;
11298 line_ptr += bytes_read;
11299 address += baseaddr;
11300 break;
11301 case DW_LNE_define_file:
11302 {
11303 char *cur_file;
11304 unsigned int dir_index, mod_time, length;
11305
11306 cur_file = read_direct_string (abfd, line_ptr,
11307 &bytes_read);
11308 line_ptr += bytes_read;
11309 dir_index =
11310 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11311 line_ptr += bytes_read;
11312 mod_time =
11313 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11314 line_ptr += bytes_read;
11315 length =
11316 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11317 line_ptr += bytes_read;
11318 add_file_name (lh, cur_file, dir_index, mod_time, length);
11319 }
11320 break;
11321 case DW_LNE_set_discriminator:
11322 /* The discriminator is not interesting to the debugger;
11323 just ignore it. */
11324 line_ptr = extended_end;
11325 break;
11326 default:
11327 complaint (&symfile_complaints,
11328 _("mangled .debug_line section"));
11329 return;
11330 }
11331 /* Make sure that we parsed the extended op correctly. If e.g.
11332 we expected a different address size than the producer used,
11333 we may have read the wrong number of bytes. */
11334 if (line_ptr != extended_end)
11335 {
11336 complaint (&symfile_complaints,
11337 _("mangled .debug_line section"));
11338 return;
11339 }
11340 break;
11341 case DW_LNS_copy:
11342 if (lh->num_file_names < file || file == 0)
11343 dwarf2_debug_line_missing_file_complaint ();
11344 else
11345 {
11346 lh->file_names[file - 1].included_p = 1;
11347 if (!decode_for_pst_p && is_stmt)
11348 {
11349 if (last_subfile != current_subfile)
11350 {
11351 addr = gdbarch_addr_bits_remove (gdbarch, address);
11352 if (last_subfile)
11353 (*p_record_line) (last_subfile, 0, addr);
11354 last_subfile = current_subfile;
11355 }
11356 addr = gdbarch_addr_bits_remove (gdbarch, address);
11357 (*p_record_line) (current_subfile, line, addr);
11358 }
11359 }
11360 basic_block = 0;
11361 break;
11362 case DW_LNS_advance_pc:
11363 {
11364 CORE_ADDR adjust
11365 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11366
11367 address += (((op_index + adjust)
11368 / lh->maximum_ops_per_instruction)
11369 * lh->minimum_instruction_length);
11370 op_index = ((op_index + adjust)
11371 % lh->maximum_ops_per_instruction);
11372 line_ptr += bytes_read;
11373 }
11374 break;
11375 case DW_LNS_advance_line:
11376 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
11377 line_ptr += bytes_read;
11378 break;
11379 case DW_LNS_set_file:
11380 {
11381 /* The arrays lh->include_dirs and lh->file_names are
11382 0-based, but the directory and file name numbers in
11383 the statement program are 1-based. */
11384 struct file_entry *fe;
11385 char *dir = NULL;
11386
11387 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11388 line_ptr += bytes_read;
11389 if (lh->num_file_names < file || file == 0)
11390 dwarf2_debug_line_missing_file_complaint ();
11391 else
11392 {
11393 fe = &lh->file_names[file - 1];
11394 if (fe->dir_index)
11395 dir = lh->include_dirs[fe->dir_index - 1];
11396 if (!decode_for_pst_p)
11397 {
11398 last_subfile = current_subfile;
11399 dwarf2_start_subfile (fe->name, dir, comp_dir);
11400 }
11401 }
11402 }
11403 break;
11404 case DW_LNS_set_column:
11405 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11406 line_ptr += bytes_read;
11407 break;
11408 case DW_LNS_negate_stmt:
11409 is_stmt = (!is_stmt);
11410 break;
11411 case DW_LNS_set_basic_block:
11412 basic_block = 1;
11413 break;
11414 /* Add to the address register of the state machine the
11415 address increment value corresponding to special opcode
11416 255. I.e., this value is scaled by the minimum
11417 instruction length since special opcode 255 would have
11418 scaled the increment. */
11419 case DW_LNS_const_add_pc:
11420 {
11421 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
11422
11423 address += (((op_index + adjust)
11424 / lh->maximum_ops_per_instruction)
11425 * lh->minimum_instruction_length);
11426 op_index = ((op_index + adjust)
11427 % lh->maximum_ops_per_instruction);
11428 }
11429 break;
11430 case DW_LNS_fixed_advance_pc:
11431 address += read_2_bytes (abfd, line_ptr);
11432 op_index = 0;
11433 line_ptr += 2;
11434 break;
11435 default:
11436 {
11437 /* Unknown standard opcode, ignore it. */
11438 int i;
11439
11440 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
11441 {
11442 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11443 line_ptr += bytes_read;
11444 }
11445 }
11446 }
11447 }
11448 if (lh->num_file_names < file || file == 0)
11449 dwarf2_debug_line_missing_file_complaint ();
11450 else
11451 {
11452 lh->file_names[file - 1].included_p = 1;
11453 if (!decode_for_pst_p)
11454 {
11455 addr = gdbarch_addr_bits_remove (gdbarch, address);
11456 (*p_record_line) (current_subfile, 0, addr);
11457 }
11458 }
11459 }
11460 }
11461
11462 /* Decode the Line Number Program (LNP) for the given line_header
11463 structure and CU. The actual information extracted and the type
11464 of structures created from the LNP depends on the value of PST.
11465
11466 1. If PST is NULL, then this procedure uses the data from the program
11467 to create all necessary symbol tables, and their linetables.
11468
11469 2. If PST is not NULL, this procedure reads the program to determine
11470 the list of files included by the unit represented by PST, and
11471 builds all the associated partial symbol tables.
11472
11473 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
11474 It is used for relative paths in the line table.
11475 NOTE: When processing partial symtabs (pst != NULL),
11476 comp_dir == pst->dirname.
11477
11478 NOTE: It is important that psymtabs have the same file name (via strcmp)
11479 as the corresponding symtab. Since COMP_DIR is not used in the name of the
11480 symtab we don't use it in the name of the psymtabs we create.
11481 E.g. expand_line_sal requires this when finding psymtabs to expand.
11482 A good testcase for this is mb-inline.exp. */
11483
11484 static void
11485 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
11486 struct dwarf2_cu *cu, struct partial_symtab *pst,
11487 int want_line_info)
11488 {
11489 struct objfile *objfile = cu->objfile;
11490 const int decode_for_pst_p = (pst != NULL);
11491 struct subfile *first_subfile = current_subfile;
11492
11493 if (want_line_info)
11494 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
11495
11496 if (decode_for_pst_p)
11497 {
11498 int file_index;
11499
11500 /* Now that we're done scanning the Line Header Program, we can
11501 create the psymtab of each included file. */
11502 for (file_index = 0; file_index < lh->num_file_names; file_index++)
11503 if (lh->file_names[file_index].included_p == 1)
11504 {
11505 char *include_name =
11506 psymtab_include_file_name (lh, file_index, pst, comp_dir);
11507 if (include_name != NULL)
11508 dwarf2_create_include_psymtab (include_name, pst, objfile);
11509 }
11510 }
11511 else
11512 {
11513 /* Make sure a symtab is created for every file, even files
11514 which contain only variables (i.e. no code with associated
11515 line numbers). */
11516 int i;
11517
11518 for (i = 0; i < lh->num_file_names; i++)
11519 {
11520 char *dir = NULL;
11521 struct file_entry *fe;
11522
11523 fe = &lh->file_names[i];
11524 if (fe->dir_index)
11525 dir = lh->include_dirs[fe->dir_index - 1];
11526 dwarf2_start_subfile (fe->name, dir, comp_dir);
11527
11528 /* Skip the main file; we don't need it, and it must be
11529 allocated last, so that it will show up before the
11530 non-primary symtabs in the objfile's symtab list. */
11531 if (current_subfile == first_subfile)
11532 continue;
11533
11534 if (current_subfile->symtab == NULL)
11535 current_subfile->symtab = allocate_symtab (current_subfile->name,
11536 objfile);
11537 fe->symtab = current_subfile->symtab;
11538 }
11539 }
11540 }
11541
11542 /* Start a subfile for DWARF. FILENAME is the name of the file and
11543 DIRNAME the name of the source directory which contains FILENAME
11544 or NULL if not known. COMP_DIR is the compilation directory for the
11545 linetable's compilation unit or NULL if not known.
11546 This routine tries to keep line numbers from identical absolute and
11547 relative file names in a common subfile.
11548
11549 Using the `list' example from the GDB testsuite, which resides in
11550 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
11551 of /srcdir/list0.c yields the following debugging information for list0.c:
11552
11553 DW_AT_name: /srcdir/list0.c
11554 DW_AT_comp_dir: /compdir
11555 files.files[0].name: list0.h
11556 files.files[0].dir: /srcdir
11557 files.files[1].name: list0.c
11558 files.files[1].dir: /srcdir
11559
11560 The line number information for list0.c has to end up in a single
11561 subfile, so that `break /srcdir/list0.c:1' works as expected.
11562 start_subfile will ensure that this happens provided that we pass the
11563 concatenation of files.files[1].dir and files.files[1].name as the
11564 subfile's name. */
11565
11566 static void
11567 dwarf2_start_subfile (char *filename, const char *dirname,
11568 const char *comp_dir)
11569 {
11570 char *fullname;
11571
11572 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
11573 `start_symtab' will always pass the contents of DW_AT_comp_dir as
11574 second argument to start_subfile. To be consistent, we do the
11575 same here. In order not to lose the line information directory,
11576 we concatenate it to the filename when it makes sense.
11577 Note that the Dwarf3 standard says (speaking of filenames in line
11578 information): ``The directory index is ignored for file names
11579 that represent full path names''. Thus ignoring dirname in the
11580 `else' branch below isn't an issue. */
11581
11582 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
11583 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
11584 else
11585 fullname = filename;
11586
11587 start_subfile (fullname, comp_dir);
11588
11589 if (fullname != filename)
11590 xfree (fullname);
11591 }
11592
11593 static void
11594 var_decode_location (struct attribute *attr, struct symbol *sym,
11595 struct dwarf2_cu *cu)
11596 {
11597 struct objfile *objfile = cu->objfile;
11598 struct comp_unit_head *cu_header = &cu->header;
11599
11600 /* NOTE drow/2003-01-30: There used to be a comment and some special
11601 code here to turn a symbol with DW_AT_external and a
11602 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
11603 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
11604 with some versions of binutils) where shared libraries could have
11605 relocations against symbols in their debug information - the
11606 minimal symbol would have the right address, but the debug info
11607 would not. It's no longer necessary, because we will explicitly
11608 apply relocations when we read in the debug information now. */
11609
11610 /* A DW_AT_location attribute with no contents indicates that a
11611 variable has been optimized away. */
11612 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
11613 {
11614 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
11615 return;
11616 }
11617
11618 /* Handle one degenerate form of location expression specially, to
11619 preserve GDB's previous behavior when section offsets are
11620 specified. If this is just a DW_OP_addr then mark this symbol
11621 as LOC_STATIC. */
11622
11623 if (attr_form_is_block (attr)
11624 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
11625 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
11626 {
11627 unsigned int dummy;
11628
11629 SYMBOL_VALUE_ADDRESS (sym) =
11630 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
11631 SYMBOL_CLASS (sym) = LOC_STATIC;
11632 fixup_symbol_section (sym, objfile);
11633 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
11634 SYMBOL_SECTION (sym));
11635 return;
11636 }
11637
11638 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
11639 expression evaluator, and use LOC_COMPUTED only when necessary
11640 (i.e. when the value of a register or memory location is
11641 referenced, or a thread-local block, etc.). Then again, it might
11642 not be worthwhile. I'm assuming that it isn't unless performance
11643 or memory numbers show me otherwise. */
11644
11645 dwarf2_symbol_mark_computed (attr, sym, cu);
11646 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11647
11648 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
11649 cu->has_loclist = 1;
11650 }
11651
11652 /* Given a pointer to a DWARF information entry, figure out if we need
11653 to make a symbol table entry for it, and if so, create a new entry
11654 and return a pointer to it.
11655 If TYPE is NULL, determine symbol type from the die, otherwise
11656 used the passed type.
11657 If SPACE is not NULL, use it to hold the new symbol. If it is
11658 NULL, allocate a new symbol on the objfile's obstack. */
11659
11660 static struct symbol *
11661 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
11662 struct symbol *space)
11663 {
11664 struct objfile *objfile = cu->objfile;
11665 struct symbol *sym = NULL;
11666 char *name;
11667 struct attribute *attr = NULL;
11668 struct attribute *attr2 = NULL;
11669 CORE_ADDR baseaddr;
11670 struct pending **list_to_add = NULL;
11671
11672 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11673
11674 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11675
11676 name = dwarf2_name (die, cu);
11677 if (name)
11678 {
11679 const char *linkagename;
11680 int suppress_add = 0;
11681
11682 if (space)
11683 sym = space;
11684 else
11685 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
11686 OBJSTAT (objfile, n_syms++);
11687
11688 /* Cache this symbol's name and the name's demangled form (if any). */
11689 SYMBOL_SET_LANGUAGE (sym, cu->language);
11690 linkagename = dwarf2_physname (name, die, cu);
11691 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
11692
11693 /* Fortran does not have mangling standard and the mangling does differ
11694 between gfortran, iFort etc. */
11695 if (cu->language == language_fortran
11696 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
11697 symbol_set_demangled_name (&(sym->ginfo),
11698 (char *) dwarf2_full_name (name, die, cu),
11699 NULL);
11700
11701 /* Default assumptions.
11702 Use the passed type or decode it from the die. */
11703 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11704 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
11705 if (type != NULL)
11706 SYMBOL_TYPE (sym) = type;
11707 else
11708 SYMBOL_TYPE (sym) = die_type (die, cu);
11709 attr = dwarf2_attr (die,
11710 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
11711 cu);
11712 if (attr)
11713 {
11714 SYMBOL_LINE (sym) = DW_UNSND (attr);
11715 }
11716
11717 attr = dwarf2_attr (die,
11718 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
11719 cu);
11720 if (attr)
11721 {
11722 int file_index = DW_UNSND (attr);
11723
11724 if (cu->line_header == NULL
11725 || file_index > cu->line_header->num_file_names)
11726 complaint (&symfile_complaints,
11727 _("file index out of range"));
11728 else if (file_index > 0)
11729 {
11730 struct file_entry *fe;
11731
11732 fe = &cu->line_header->file_names[file_index - 1];
11733 SYMBOL_SYMTAB (sym) = fe->symtab;
11734 }
11735 }
11736
11737 switch (die->tag)
11738 {
11739 case DW_TAG_label:
11740 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11741 if (attr)
11742 {
11743 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
11744 }
11745 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
11746 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
11747 SYMBOL_CLASS (sym) = LOC_LABEL;
11748 add_symbol_to_list (sym, cu->list_in_scope);
11749 break;
11750 case DW_TAG_subprogram:
11751 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
11752 finish_block. */
11753 SYMBOL_CLASS (sym) = LOC_BLOCK;
11754 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11755 if ((attr2 && (DW_UNSND (attr2) != 0))
11756 || cu->language == language_ada)
11757 {
11758 /* Subprograms marked external are stored as a global symbol.
11759 Ada subprograms, whether marked external or not, are always
11760 stored as a global symbol, because we want to be able to
11761 access them globally. For instance, we want to be able
11762 to break on a nested subprogram without having to
11763 specify the context. */
11764 list_to_add = &global_symbols;
11765 }
11766 else
11767 {
11768 list_to_add = cu->list_in_scope;
11769 }
11770 break;
11771 case DW_TAG_inlined_subroutine:
11772 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
11773 finish_block. */
11774 SYMBOL_CLASS (sym) = LOC_BLOCK;
11775 SYMBOL_INLINED (sym) = 1;
11776 list_to_add = cu->list_in_scope;
11777 break;
11778 case DW_TAG_template_value_param:
11779 suppress_add = 1;
11780 /* Fall through. */
11781 case DW_TAG_constant:
11782 case DW_TAG_variable:
11783 case DW_TAG_member:
11784 /* Compilation with minimal debug info may result in
11785 variables with missing type entries. Change the
11786 misleading `void' type to something sensible. */
11787 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
11788 SYMBOL_TYPE (sym)
11789 = objfile_type (objfile)->nodebug_data_symbol;
11790
11791 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11792 /* In the case of DW_TAG_member, we should only be called for
11793 static const members. */
11794 if (die->tag == DW_TAG_member)
11795 {
11796 /* dwarf2_add_field uses die_is_declaration,
11797 so we do the same. */
11798 gdb_assert (die_is_declaration (die, cu));
11799 gdb_assert (attr);
11800 }
11801 if (attr)
11802 {
11803 dwarf2_const_value (attr, sym, cu);
11804 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11805 if (!suppress_add)
11806 {
11807 if (attr2 && (DW_UNSND (attr2) != 0))
11808 list_to_add = &global_symbols;
11809 else
11810 list_to_add = cu->list_in_scope;
11811 }
11812 break;
11813 }
11814 attr = dwarf2_attr (die, DW_AT_location, cu);
11815 if (attr)
11816 {
11817 var_decode_location (attr, sym, cu);
11818 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11819 if (SYMBOL_CLASS (sym) == LOC_STATIC
11820 && SYMBOL_VALUE_ADDRESS (sym) == 0
11821 && !dwarf2_per_objfile->has_section_at_zero)
11822 {
11823 /* When a static variable is eliminated by the linker,
11824 the corresponding debug information is not stripped
11825 out, but the variable address is set to null;
11826 do not add such variables into symbol table. */
11827 }
11828 else if (attr2 && (DW_UNSND (attr2) != 0))
11829 {
11830 /* Workaround gfortran PR debug/40040 - it uses
11831 DW_AT_location for variables in -fPIC libraries which may
11832 get overriden by other libraries/executable and get
11833 a different address. Resolve it by the minimal symbol
11834 which may come from inferior's executable using copy
11835 relocation. Make this workaround only for gfortran as for
11836 other compilers GDB cannot guess the minimal symbol
11837 Fortran mangling kind. */
11838 if (cu->language == language_fortran && die->parent
11839 && die->parent->tag == DW_TAG_module
11840 && cu->producer
11841 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
11842 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11843
11844 /* A variable with DW_AT_external is never static,
11845 but it may be block-scoped. */
11846 list_to_add = (cu->list_in_scope == &file_symbols
11847 ? &global_symbols : cu->list_in_scope);
11848 }
11849 else
11850 list_to_add = cu->list_in_scope;
11851 }
11852 else
11853 {
11854 /* We do not know the address of this symbol.
11855 If it is an external symbol and we have type information
11856 for it, enter the symbol as a LOC_UNRESOLVED symbol.
11857 The address of the variable will then be determined from
11858 the minimal symbol table whenever the variable is
11859 referenced. */
11860 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11861 if (attr2 && (DW_UNSND (attr2) != 0)
11862 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
11863 {
11864 /* A variable with DW_AT_external is never static, but it
11865 may be block-scoped. */
11866 list_to_add = (cu->list_in_scope == &file_symbols
11867 ? &global_symbols : cu->list_in_scope);
11868
11869 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11870 }
11871 else if (!die_is_declaration (die, cu))
11872 {
11873 /* Use the default LOC_OPTIMIZED_OUT class. */
11874 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
11875 if (!suppress_add)
11876 list_to_add = cu->list_in_scope;
11877 }
11878 }
11879 break;
11880 case DW_TAG_formal_parameter:
11881 /* If we are inside a function, mark this as an argument. If
11882 not, we might be looking at an argument to an inlined function
11883 when we do not have enough information to show inlined frames;
11884 pretend it's a local variable in that case so that the user can
11885 still see it. */
11886 if (context_stack_depth > 0
11887 && context_stack[context_stack_depth - 1].name != NULL)
11888 SYMBOL_IS_ARGUMENT (sym) = 1;
11889 attr = dwarf2_attr (die, DW_AT_location, cu);
11890 if (attr)
11891 {
11892 var_decode_location (attr, sym, cu);
11893 }
11894 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11895 if (attr)
11896 {
11897 dwarf2_const_value (attr, sym, cu);
11898 }
11899
11900 list_to_add = cu->list_in_scope;
11901 break;
11902 case DW_TAG_unspecified_parameters:
11903 /* From varargs functions; gdb doesn't seem to have any
11904 interest in this information, so just ignore it for now.
11905 (FIXME?) */
11906 break;
11907 case DW_TAG_template_type_param:
11908 suppress_add = 1;
11909 /* Fall through. */
11910 case DW_TAG_class_type:
11911 case DW_TAG_interface_type:
11912 case DW_TAG_structure_type:
11913 case DW_TAG_union_type:
11914 case DW_TAG_set_type:
11915 case DW_TAG_enumeration_type:
11916 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11917 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
11918
11919 {
11920 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
11921 really ever be static objects: otherwise, if you try
11922 to, say, break of a class's method and you're in a file
11923 which doesn't mention that class, it won't work unless
11924 the check for all static symbols in lookup_symbol_aux
11925 saves you. See the OtherFileClass tests in
11926 gdb.c++/namespace.exp. */
11927
11928 if (!suppress_add)
11929 {
11930 list_to_add = (cu->list_in_scope == &file_symbols
11931 && (cu->language == language_cplus
11932 || cu->language == language_java)
11933 ? &global_symbols : cu->list_in_scope);
11934
11935 /* The semantics of C++ state that "struct foo {
11936 ... }" also defines a typedef for "foo". A Java
11937 class declaration also defines a typedef for the
11938 class. */
11939 if (cu->language == language_cplus
11940 || cu->language == language_java
11941 || cu->language == language_ada)
11942 {
11943 /* The symbol's name is already allocated along
11944 with this objfile, so we don't need to
11945 duplicate it for the type. */
11946 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
11947 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
11948 }
11949 }
11950 }
11951 break;
11952 case DW_TAG_typedef:
11953 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11954 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11955 list_to_add = cu->list_in_scope;
11956 break;
11957 case DW_TAG_base_type:
11958 case DW_TAG_subrange_type:
11959 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11960 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11961 list_to_add = cu->list_in_scope;
11962 break;
11963 case DW_TAG_enumerator:
11964 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11965 if (attr)
11966 {
11967 dwarf2_const_value (attr, sym, cu);
11968 }
11969 {
11970 /* NOTE: carlton/2003-11-10: See comment above in the
11971 DW_TAG_class_type, etc. block. */
11972
11973 list_to_add = (cu->list_in_scope == &file_symbols
11974 && (cu->language == language_cplus
11975 || cu->language == language_java)
11976 ? &global_symbols : cu->list_in_scope);
11977 }
11978 break;
11979 case DW_TAG_namespace:
11980 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11981 list_to_add = &global_symbols;
11982 break;
11983 default:
11984 /* Not a tag we recognize. Hopefully we aren't processing
11985 trash data, but since we must specifically ignore things
11986 we don't recognize, there is nothing else we should do at
11987 this point. */
11988 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
11989 dwarf_tag_name (die->tag));
11990 break;
11991 }
11992
11993 if (suppress_add)
11994 {
11995 sym->hash_next = objfile->template_symbols;
11996 objfile->template_symbols = sym;
11997 list_to_add = NULL;
11998 }
11999
12000 if (list_to_add != NULL)
12001 add_symbol_to_list (sym, list_to_add);
12002
12003 /* For the benefit of old versions of GCC, check for anonymous
12004 namespaces based on the demangled name. */
12005 if (!processing_has_namespace_info
12006 && cu->language == language_cplus)
12007 cp_scan_for_anonymous_namespaces (sym, objfile);
12008 }
12009 return (sym);
12010 }
12011
12012 /* A wrapper for new_symbol_full that always allocates a new symbol. */
12013
12014 static struct symbol *
12015 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
12016 {
12017 return new_symbol_full (die, type, cu, NULL);
12018 }
12019
12020 /* Given an attr with a DW_FORM_dataN value in host byte order,
12021 zero-extend it as appropriate for the symbol's type. The DWARF
12022 standard (v4) is not entirely clear about the meaning of using
12023 DW_FORM_dataN for a constant with a signed type, where the type is
12024 wider than the data. The conclusion of a discussion on the DWARF
12025 list was that this is unspecified. We choose to always zero-extend
12026 because that is the interpretation long in use by GCC. */
12027
12028 static gdb_byte *
12029 dwarf2_const_value_data (struct attribute *attr, struct type *type,
12030 const char *name, struct obstack *obstack,
12031 struct dwarf2_cu *cu, long *value, int bits)
12032 {
12033 struct objfile *objfile = cu->objfile;
12034 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
12035 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
12036 LONGEST l = DW_UNSND (attr);
12037
12038 if (bits < sizeof (*value) * 8)
12039 {
12040 l &= ((LONGEST) 1 << bits) - 1;
12041 *value = l;
12042 }
12043 else if (bits == sizeof (*value) * 8)
12044 *value = l;
12045 else
12046 {
12047 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
12048 store_unsigned_integer (bytes, bits / 8, byte_order, l);
12049 return bytes;
12050 }
12051
12052 return NULL;
12053 }
12054
12055 /* Read a constant value from an attribute. Either set *VALUE, or if
12056 the value does not fit in *VALUE, set *BYTES - either already
12057 allocated on the objfile obstack, or newly allocated on OBSTACK,
12058 or, set *BATON, if we translated the constant to a location
12059 expression. */
12060
12061 static void
12062 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
12063 const char *name, struct obstack *obstack,
12064 struct dwarf2_cu *cu,
12065 long *value, gdb_byte **bytes,
12066 struct dwarf2_locexpr_baton **baton)
12067 {
12068 struct objfile *objfile = cu->objfile;
12069 struct comp_unit_head *cu_header = &cu->header;
12070 struct dwarf_block *blk;
12071 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
12072 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
12073
12074 *value = 0;
12075 *bytes = NULL;
12076 *baton = NULL;
12077
12078 switch (attr->form)
12079 {
12080 case DW_FORM_addr:
12081 {
12082 gdb_byte *data;
12083
12084 if (TYPE_LENGTH (type) != cu_header->addr_size)
12085 dwarf2_const_value_length_mismatch_complaint (name,
12086 cu_header->addr_size,
12087 TYPE_LENGTH (type));
12088 /* Symbols of this form are reasonably rare, so we just
12089 piggyback on the existing location code rather than writing
12090 a new implementation of symbol_computed_ops. */
12091 *baton = obstack_alloc (&objfile->objfile_obstack,
12092 sizeof (struct dwarf2_locexpr_baton));
12093 (*baton)->per_cu = cu->per_cu;
12094 gdb_assert ((*baton)->per_cu);
12095
12096 (*baton)->size = 2 + cu_header->addr_size;
12097 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
12098 (*baton)->data = data;
12099
12100 data[0] = DW_OP_addr;
12101 store_unsigned_integer (&data[1], cu_header->addr_size,
12102 byte_order, DW_ADDR (attr));
12103 data[cu_header->addr_size + 1] = DW_OP_stack_value;
12104 }
12105 break;
12106 case DW_FORM_string:
12107 case DW_FORM_strp:
12108 /* DW_STRING is already allocated on the objfile obstack, point
12109 directly to it. */
12110 *bytes = (gdb_byte *) DW_STRING (attr);
12111 break;
12112 case DW_FORM_block1:
12113 case DW_FORM_block2:
12114 case DW_FORM_block4:
12115 case DW_FORM_block:
12116 case DW_FORM_exprloc:
12117 blk = DW_BLOCK (attr);
12118 if (TYPE_LENGTH (type) != blk->size)
12119 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
12120 TYPE_LENGTH (type));
12121 *bytes = blk->data;
12122 break;
12123
12124 /* The DW_AT_const_value attributes are supposed to carry the
12125 symbol's value "represented as it would be on the target
12126 architecture." By the time we get here, it's already been
12127 converted to host endianness, so we just need to sign- or
12128 zero-extend it as appropriate. */
12129 case DW_FORM_data1:
12130 *bytes = dwarf2_const_value_data (attr, type, name,
12131 obstack, cu, value, 8);
12132 break;
12133 case DW_FORM_data2:
12134 *bytes = dwarf2_const_value_data (attr, type, name,
12135 obstack, cu, value, 16);
12136 break;
12137 case DW_FORM_data4:
12138 *bytes = dwarf2_const_value_data (attr, type, name,
12139 obstack, cu, value, 32);
12140 break;
12141 case DW_FORM_data8:
12142 *bytes = dwarf2_const_value_data (attr, type, name,
12143 obstack, cu, value, 64);
12144 break;
12145
12146 case DW_FORM_sdata:
12147 *value = DW_SND (attr);
12148 break;
12149
12150 case DW_FORM_udata:
12151 *value = DW_UNSND (attr);
12152 break;
12153
12154 default:
12155 complaint (&symfile_complaints,
12156 _("unsupported const value attribute form: '%s'"),
12157 dwarf_form_name (attr->form));
12158 *value = 0;
12159 break;
12160 }
12161 }
12162
12163
12164 /* Copy constant value from an attribute to a symbol. */
12165
12166 static void
12167 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
12168 struct dwarf2_cu *cu)
12169 {
12170 struct objfile *objfile = cu->objfile;
12171 struct comp_unit_head *cu_header = &cu->header;
12172 long value;
12173 gdb_byte *bytes;
12174 struct dwarf2_locexpr_baton *baton;
12175
12176 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
12177 SYMBOL_PRINT_NAME (sym),
12178 &objfile->objfile_obstack, cu,
12179 &value, &bytes, &baton);
12180
12181 if (baton != NULL)
12182 {
12183 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
12184 SYMBOL_LOCATION_BATON (sym) = baton;
12185 SYMBOL_CLASS (sym) = LOC_COMPUTED;
12186 }
12187 else if (bytes != NULL)
12188 {
12189 SYMBOL_VALUE_BYTES (sym) = bytes;
12190 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
12191 }
12192 else
12193 {
12194 SYMBOL_VALUE (sym) = value;
12195 SYMBOL_CLASS (sym) = LOC_CONST;
12196 }
12197 }
12198
12199 /* Return the type of the die in question using its DW_AT_type attribute. */
12200
12201 static struct type *
12202 die_type (struct die_info *die, struct dwarf2_cu *cu)
12203 {
12204 struct attribute *type_attr;
12205
12206 type_attr = dwarf2_attr (die, DW_AT_type, cu);
12207 if (!type_attr)
12208 {
12209 /* A missing DW_AT_type represents a void type. */
12210 return objfile_type (cu->objfile)->builtin_void;
12211 }
12212
12213 return lookup_die_type (die, type_attr, cu);
12214 }
12215
12216 /* True iff CU's producer generates GNAT Ada auxiliary information
12217 that allows to find parallel types through that information instead
12218 of having to do expensive parallel lookups by type name. */
12219
12220 static int
12221 need_gnat_info (struct dwarf2_cu *cu)
12222 {
12223 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
12224 of GNAT produces this auxiliary information, without any indication
12225 that it is produced. Part of enhancing the FSF version of GNAT
12226 to produce that information will be to put in place an indicator
12227 that we can use in order to determine whether the descriptive type
12228 info is available or not. One suggestion that has been made is
12229 to use a new attribute, attached to the CU die. For now, assume
12230 that the descriptive type info is not available. */
12231 return 0;
12232 }
12233
12234 /* Return the auxiliary type of the die in question using its
12235 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
12236 attribute is not present. */
12237
12238 static struct type *
12239 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
12240 {
12241 struct attribute *type_attr;
12242
12243 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
12244 if (!type_attr)
12245 return NULL;
12246
12247 return lookup_die_type (die, type_attr, cu);
12248 }
12249
12250 /* If DIE has a descriptive_type attribute, then set the TYPE's
12251 descriptive type accordingly. */
12252
12253 static void
12254 set_descriptive_type (struct type *type, struct die_info *die,
12255 struct dwarf2_cu *cu)
12256 {
12257 struct type *descriptive_type = die_descriptive_type (die, cu);
12258
12259 if (descriptive_type)
12260 {
12261 ALLOCATE_GNAT_AUX_TYPE (type);
12262 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
12263 }
12264 }
12265
12266 /* Return the containing type of the die in question using its
12267 DW_AT_containing_type attribute. */
12268
12269 static struct type *
12270 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
12271 {
12272 struct attribute *type_attr;
12273
12274 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
12275 if (!type_attr)
12276 error (_("Dwarf Error: Problem turning containing type into gdb type "
12277 "[in module %s]"), cu->objfile->name);
12278
12279 return lookup_die_type (die, type_attr, cu);
12280 }
12281
12282 /* Look up the type of DIE in CU using its type attribute ATTR.
12283 If there is no type substitute an error marker. */
12284
12285 static struct type *
12286 lookup_die_type (struct die_info *die, struct attribute *attr,
12287 struct dwarf2_cu *cu)
12288 {
12289 struct objfile *objfile = cu->objfile;
12290 struct type *this_type;
12291
12292 /* First see if we have it cached. */
12293
12294 if (is_ref_attr (attr))
12295 {
12296 sect_offset offset = dwarf2_get_ref_die_offset (attr);
12297
12298 this_type = get_die_type_at_offset (offset, cu->per_cu);
12299 }
12300 else if (attr->form == DW_FORM_ref_sig8)
12301 {
12302 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
12303 struct dwarf2_cu *sig_cu;
12304 sect_offset offset;
12305
12306 /* sig_type will be NULL if the signatured type is missing from
12307 the debug info. */
12308 if (sig_type == NULL)
12309 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
12310 "at 0x%x [in module %s]"),
12311 die->offset.sect_off, objfile->name);
12312
12313 gdb_assert (sig_type->per_cu.debug_types_section);
12314 offset.sect_off = (sig_type->per_cu.offset.sect_off
12315 + sig_type->type_offset.cu_off);
12316 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
12317 }
12318 else
12319 {
12320 dump_die_for_error (die);
12321 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
12322 dwarf_attr_name (attr->name), objfile->name);
12323 }
12324
12325 /* If not cached we need to read it in. */
12326
12327 if (this_type == NULL)
12328 {
12329 struct die_info *type_die;
12330 struct dwarf2_cu *type_cu = cu;
12331
12332 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
12333 /* If the type is cached, we should have found it above. */
12334 gdb_assert (get_die_type (type_die, type_cu) == NULL);
12335 this_type = read_type_die_1 (type_die, type_cu);
12336 }
12337
12338 /* If we still don't have a type use an error marker. */
12339
12340 if (this_type == NULL)
12341 {
12342 char *message, *saved;
12343
12344 /* read_type_die already issued a complaint. */
12345 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
12346 objfile->name,
12347 cu->header.offset.sect_off,
12348 die->offset.sect_off);
12349 saved = obstack_copy0 (&objfile->objfile_obstack,
12350 message, strlen (message));
12351 xfree (message);
12352
12353 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
12354 }
12355
12356 return this_type;
12357 }
12358
12359 /* Return the type in DIE, CU.
12360 Returns NULL for invalid types.
12361
12362 This first does a lookup in the appropriate type_hash table,
12363 and only reads the die in if necessary.
12364
12365 NOTE: This can be called when reading in partial or full symbols. */
12366
12367 static struct type *
12368 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
12369 {
12370 struct type *this_type;
12371
12372 this_type = get_die_type (die, cu);
12373 if (this_type)
12374 return this_type;
12375
12376 return read_type_die_1 (die, cu);
12377 }
12378
12379 /* Read the type in DIE, CU.
12380 Returns NULL for invalid types. */
12381
12382 static struct type *
12383 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
12384 {
12385 struct type *this_type = NULL;
12386
12387 switch (die->tag)
12388 {
12389 case DW_TAG_class_type:
12390 case DW_TAG_interface_type:
12391 case DW_TAG_structure_type:
12392 case DW_TAG_union_type:
12393 this_type = read_structure_type (die, cu);
12394 break;
12395 case DW_TAG_enumeration_type:
12396 this_type = read_enumeration_type (die, cu);
12397 break;
12398 case DW_TAG_subprogram:
12399 case DW_TAG_subroutine_type:
12400 case DW_TAG_inlined_subroutine:
12401 this_type = read_subroutine_type (die, cu);
12402 break;
12403 case DW_TAG_array_type:
12404 this_type = read_array_type (die, cu);
12405 break;
12406 case DW_TAG_set_type:
12407 this_type = read_set_type (die, cu);
12408 break;
12409 case DW_TAG_pointer_type:
12410 this_type = read_tag_pointer_type (die, cu);
12411 break;
12412 case DW_TAG_ptr_to_member_type:
12413 this_type = read_tag_ptr_to_member_type (die, cu);
12414 break;
12415 case DW_TAG_reference_type:
12416 this_type = read_tag_reference_type (die, cu);
12417 break;
12418 case DW_TAG_const_type:
12419 this_type = read_tag_const_type (die, cu);
12420 break;
12421 case DW_TAG_volatile_type:
12422 this_type = read_tag_volatile_type (die, cu);
12423 break;
12424 case DW_TAG_string_type:
12425 this_type = read_tag_string_type (die, cu);
12426 break;
12427 case DW_TAG_typedef:
12428 this_type = read_typedef (die, cu);
12429 break;
12430 case DW_TAG_subrange_type:
12431 this_type = read_subrange_type (die, cu);
12432 break;
12433 case DW_TAG_base_type:
12434 this_type = read_base_type (die, cu);
12435 break;
12436 case DW_TAG_unspecified_type:
12437 this_type = read_unspecified_type (die, cu);
12438 break;
12439 case DW_TAG_namespace:
12440 this_type = read_namespace_type (die, cu);
12441 break;
12442 case DW_TAG_module:
12443 this_type = read_module_type (die, cu);
12444 break;
12445 default:
12446 complaint (&symfile_complaints,
12447 _("unexpected tag in read_type_die: '%s'"),
12448 dwarf_tag_name (die->tag));
12449 break;
12450 }
12451
12452 return this_type;
12453 }
12454
12455 /* See if we can figure out if the class lives in a namespace. We do
12456 this by looking for a member function; its demangled name will
12457 contain namespace info, if there is any.
12458 Return the computed name or NULL.
12459 Space for the result is allocated on the objfile's obstack.
12460 This is the full-die version of guess_partial_die_structure_name.
12461 In this case we know DIE has no useful parent. */
12462
12463 static char *
12464 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
12465 {
12466 struct die_info *spec_die;
12467 struct dwarf2_cu *spec_cu;
12468 struct die_info *child;
12469
12470 spec_cu = cu;
12471 spec_die = die_specification (die, &spec_cu);
12472 if (spec_die != NULL)
12473 {
12474 die = spec_die;
12475 cu = spec_cu;
12476 }
12477
12478 for (child = die->child;
12479 child != NULL;
12480 child = child->sibling)
12481 {
12482 if (child->tag == DW_TAG_subprogram)
12483 {
12484 struct attribute *attr;
12485
12486 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
12487 if (attr == NULL)
12488 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
12489 if (attr != NULL)
12490 {
12491 char *actual_name
12492 = language_class_name_from_physname (cu->language_defn,
12493 DW_STRING (attr));
12494 char *name = NULL;
12495
12496 if (actual_name != NULL)
12497 {
12498 char *die_name = dwarf2_name (die, cu);
12499
12500 if (die_name != NULL
12501 && strcmp (die_name, actual_name) != 0)
12502 {
12503 /* Strip off the class name from the full name.
12504 We want the prefix. */
12505 int die_name_len = strlen (die_name);
12506 int actual_name_len = strlen (actual_name);
12507
12508 /* Test for '::' as a sanity check. */
12509 if (actual_name_len > die_name_len + 2
12510 && actual_name[actual_name_len
12511 - die_name_len - 1] == ':')
12512 name =
12513 obsavestring (actual_name,
12514 actual_name_len - die_name_len - 2,
12515 &cu->objfile->objfile_obstack);
12516 }
12517 }
12518 xfree (actual_name);
12519 return name;
12520 }
12521 }
12522 }
12523
12524 return NULL;
12525 }
12526
12527 /* GCC might emit a nameless typedef that has a linkage name. Determine the
12528 prefix part in such case. See
12529 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
12530
12531 static char *
12532 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
12533 {
12534 struct attribute *attr;
12535 char *base;
12536
12537 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
12538 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
12539 return NULL;
12540
12541 attr = dwarf2_attr (die, DW_AT_name, cu);
12542 if (attr != NULL && DW_STRING (attr) != NULL)
12543 return NULL;
12544
12545 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
12546 if (attr == NULL)
12547 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
12548 if (attr == NULL || DW_STRING (attr) == NULL)
12549 return NULL;
12550
12551 /* dwarf2_name had to be already called. */
12552 gdb_assert (DW_STRING_IS_CANONICAL (attr));
12553
12554 /* Strip the base name, keep any leading namespaces/classes. */
12555 base = strrchr (DW_STRING (attr), ':');
12556 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
12557 return "";
12558
12559 return obsavestring (DW_STRING (attr), &base[-1] - DW_STRING (attr),
12560 &cu->objfile->objfile_obstack);
12561 }
12562
12563 /* Return the name of the namespace/class that DIE is defined within,
12564 or "" if we can't tell. The caller should not xfree the result.
12565
12566 For example, if we're within the method foo() in the following
12567 code:
12568
12569 namespace N {
12570 class C {
12571 void foo () {
12572 }
12573 };
12574 }
12575
12576 then determine_prefix on foo's die will return "N::C". */
12577
12578 static const char *
12579 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
12580 {
12581 struct die_info *parent, *spec_die;
12582 struct dwarf2_cu *spec_cu;
12583 struct type *parent_type;
12584 char *retval;
12585
12586 if (cu->language != language_cplus && cu->language != language_java
12587 && cu->language != language_fortran)
12588 return "";
12589
12590 retval = anonymous_struct_prefix (die, cu);
12591 if (retval)
12592 return retval;
12593
12594 /* We have to be careful in the presence of DW_AT_specification.
12595 For example, with GCC 3.4, given the code
12596
12597 namespace N {
12598 void foo() {
12599 // Definition of N::foo.
12600 }
12601 }
12602
12603 then we'll have a tree of DIEs like this:
12604
12605 1: DW_TAG_compile_unit
12606 2: DW_TAG_namespace // N
12607 3: DW_TAG_subprogram // declaration of N::foo
12608 4: DW_TAG_subprogram // definition of N::foo
12609 DW_AT_specification // refers to die #3
12610
12611 Thus, when processing die #4, we have to pretend that we're in
12612 the context of its DW_AT_specification, namely the contex of die
12613 #3. */
12614 spec_cu = cu;
12615 spec_die = die_specification (die, &spec_cu);
12616 if (spec_die == NULL)
12617 parent = die->parent;
12618 else
12619 {
12620 parent = spec_die->parent;
12621 cu = spec_cu;
12622 }
12623
12624 if (parent == NULL)
12625 return "";
12626 else if (parent->building_fullname)
12627 {
12628 const char *name;
12629 const char *parent_name;
12630
12631 /* It has been seen on RealView 2.2 built binaries,
12632 DW_TAG_template_type_param types actually _defined_ as
12633 children of the parent class:
12634
12635 enum E {};
12636 template class <class Enum> Class{};
12637 Class<enum E> class_e;
12638
12639 1: DW_TAG_class_type (Class)
12640 2: DW_TAG_enumeration_type (E)
12641 3: DW_TAG_enumerator (enum1:0)
12642 3: DW_TAG_enumerator (enum2:1)
12643 ...
12644 2: DW_TAG_template_type_param
12645 DW_AT_type DW_FORM_ref_udata (E)
12646
12647 Besides being broken debug info, it can put GDB into an
12648 infinite loop. Consider:
12649
12650 When we're building the full name for Class<E>, we'll start
12651 at Class, and go look over its template type parameters,
12652 finding E. We'll then try to build the full name of E, and
12653 reach here. We're now trying to build the full name of E,
12654 and look over the parent DIE for containing scope. In the
12655 broken case, if we followed the parent DIE of E, we'd again
12656 find Class, and once again go look at its template type
12657 arguments, etc., etc. Simply don't consider such parent die
12658 as source-level parent of this die (it can't be, the language
12659 doesn't allow it), and break the loop here. */
12660 name = dwarf2_name (die, cu);
12661 parent_name = dwarf2_name (parent, cu);
12662 complaint (&symfile_complaints,
12663 _("template param type '%s' defined within parent '%s'"),
12664 name ? name : "<unknown>",
12665 parent_name ? parent_name : "<unknown>");
12666 return "";
12667 }
12668 else
12669 switch (parent->tag)
12670 {
12671 case DW_TAG_namespace:
12672 parent_type = read_type_die (parent, cu);
12673 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
12674 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
12675 Work around this problem here. */
12676 if (cu->language == language_cplus
12677 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
12678 return "";
12679 /* We give a name to even anonymous namespaces. */
12680 return TYPE_TAG_NAME (parent_type);
12681 case DW_TAG_class_type:
12682 case DW_TAG_interface_type:
12683 case DW_TAG_structure_type:
12684 case DW_TAG_union_type:
12685 case DW_TAG_module:
12686 parent_type = read_type_die (parent, cu);
12687 if (TYPE_TAG_NAME (parent_type) != NULL)
12688 return TYPE_TAG_NAME (parent_type);
12689 else
12690 /* An anonymous structure is only allowed non-static data
12691 members; no typedefs, no member functions, et cetera.
12692 So it does not need a prefix. */
12693 return "";
12694 case DW_TAG_compile_unit:
12695 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
12696 if (cu->language == language_cplus
12697 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
12698 && die->child != NULL
12699 && (die->tag == DW_TAG_class_type
12700 || die->tag == DW_TAG_structure_type
12701 || die->tag == DW_TAG_union_type))
12702 {
12703 char *name = guess_full_die_structure_name (die, cu);
12704 if (name != NULL)
12705 return name;
12706 }
12707 return "";
12708 default:
12709 return determine_prefix (parent, cu);
12710 }
12711 }
12712
12713 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
12714 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
12715 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
12716 an obconcat, otherwise allocate storage for the result. The CU argument is
12717 used to determine the language and hence, the appropriate separator. */
12718
12719 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
12720
12721 static char *
12722 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
12723 int physname, struct dwarf2_cu *cu)
12724 {
12725 const char *lead = "";
12726 const char *sep;
12727
12728 if (suffix == NULL || suffix[0] == '\0'
12729 || prefix == NULL || prefix[0] == '\0')
12730 sep = "";
12731 else if (cu->language == language_java)
12732 sep = ".";
12733 else if (cu->language == language_fortran && physname)
12734 {
12735 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
12736 DW_AT_MIPS_linkage_name is preferred and used instead. */
12737
12738 lead = "__";
12739 sep = "_MOD_";
12740 }
12741 else
12742 sep = "::";
12743
12744 if (prefix == NULL)
12745 prefix = "";
12746 if (suffix == NULL)
12747 suffix = "";
12748
12749 if (obs == NULL)
12750 {
12751 char *retval
12752 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
12753
12754 strcpy (retval, lead);
12755 strcat (retval, prefix);
12756 strcat (retval, sep);
12757 strcat (retval, suffix);
12758 return retval;
12759 }
12760 else
12761 {
12762 /* We have an obstack. */
12763 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
12764 }
12765 }
12766
12767 /* Return sibling of die, NULL if no sibling. */
12768
12769 static struct die_info *
12770 sibling_die (struct die_info *die)
12771 {
12772 return die->sibling;
12773 }
12774
12775 /* Get name of a die, return NULL if not found. */
12776
12777 static char *
12778 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
12779 struct obstack *obstack)
12780 {
12781 if (name && cu->language == language_cplus)
12782 {
12783 char *canon_name = cp_canonicalize_string (name);
12784
12785 if (canon_name != NULL)
12786 {
12787 if (strcmp (canon_name, name) != 0)
12788 name = obsavestring (canon_name, strlen (canon_name),
12789 obstack);
12790 xfree (canon_name);
12791 }
12792 }
12793
12794 return name;
12795 }
12796
12797 /* Get name of a die, return NULL if not found. */
12798
12799 static char *
12800 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
12801 {
12802 struct attribute *attr;
12803
12804 attr = dwarf2_attr (die, DW_AT_name, cu);
12805 if ((!attr || !DW_STRING (attr))
12806 && die->tag != DW_TAG_class_type
12807 && die->tag != DW_TAG_interface_type
12808 && die->tag != DW_TAG_structure_type
12809 && die->tag != DW_TAG_union_type)
12810 return NULL;
12811
12812 switch (die->tag)
12813 {
12814 case DW_TAG_compile_unit:
12815 /* Compilation units have a DW_AT_name that is a filename, not
12816 a source language identifier. */
12817 case DW_TAG_enumeration_type:
12818 case DW_TAG_enumerator:
12819 /* These tags always have simple identifiers already; no need
12820 to canonicalize them. */
12821 return DW_STRING (attr);
12822
12823 case DW_TAG_subprogram:
12824 /* Java constructors will all be named "<init>", so return
12825 the class name when we see this special case. */
12826 if (cu->language == language_java
12827 && DW_STRING (attr) != NULL
12828 && strcmp (DW_STRING (attr), "<init>") == 0)
12829 {
12830 struct dwarf2_cu *spec_cu = cu;
12831 struct die_info *spec_die;
12832
12833 /* GCJ will output '<init>' for Java constructor names.
12834 For this special case, return the name of the parent class. */
12835
12836 /* GCJ may output suprogram DIEs with AT_specification set.
12837 If so, use the name of the specified DIE. */
12838 spec_die = die_specification (die, &spec_cu);
12839 if (spec_die != NULL)
12840 return dwarf2_name (spec_die, spec_cu);
12841
12842 do
12843 {
12844 die = die->parent;
12845 if (die->tag == DW_TAG_class_type)
12846 return dwarf2_name (die, cu);
12847 }
12848 while (die->tag != DW_TAG_compile_unit);
12849 }
12850 break;
12851
12852 case DW_TAG_class_type:
12853 case DW_TAG_interface_type:
12854 case DW_TAG_structure_type:
12855 case DW_TAG_union_type:
12856 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
12857 structures or unions. These were of the form "._%d" in GCC 4.1,
12858 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
12859 and GCC 4.4. We work around this problem by ignoring these. */
12860 if (attr && DW_STRING (attr)
12861 && (strncmp (DW_STRING (attr), "._", 2) == 0
12862 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
12863 return NULL;
12864
12865 /* GCC might emit a nameless typedef that has a linkage name. See
12866 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
12867 if (!attr || DW_STRING (attr) == NULL)
12868 {
12869 char *demangled = NULL;
12870
12871 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
12872 if (attr == NULL)
12873 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
12874
12875 if (attr == NULL || DW_STRING (attr) == NULL)
12876 return NULL;
12877
12878 /* Avoid demangling DW_STRING (attr) the second time on a second
12879 call for the same DIE. */
12880 if (!DW_STRING_IS_CANONICAL (attr))
12881 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
12882
12883 if (demangled)
12884 {
12885 char *base;
12886
12887 /* FIXME: we already did this for the partial symbol... */
12888 DW_STRING (attr) = obsavestring (demangled, strlen (demangled),
12889 &cu->objfile->objfile_obstack);
12890 DW_STRING_IS_CANONICAL (attr) = 1;
12891 xfree (demangled);
12892
12893 /* Strip any leading namespaces/classes, keep only the base name.
12894 DW_AT_name for named DIEs does not contain the prefixes. */
12895 base = strrchr (DW_STRING (attr), ':');
12896 if (base && base > DW_STRING (attr) && base[-1] == ':')
12897 return &base[1];
12898 else
12899 return DW_STRING (attr);
12900 }
12901 }
12902 break;
12903
12904 default:
12905 break;
12906 }
12907
12908 if (!DW_STRING_IS_CANONICAL (attr))
12909 {
12910 DW_STRING (attr)
12911 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
12912 &cu->objfile->objfile_obstack);
12913 DW_STRING_IS_CANONICAL (attr) = 1;
12914 }
12915 return DW_STRING (attr);
12916 }
12917
12918 /* Return the die that this die in an extension of, or NULL if there
12919 is none. *EXT_CU is the CU containing DIE on input, and the CU
12920 containing the return value on output. */
12921
12922 static struct die_info *
12923 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
12924 {
12925 struct attribute *attr;
12926
12927 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
12928 if (attr == NULL)
12929 return NULL;
12930
12931 return follow_die_ref (die, attr, ext_cu);
12932 }
12933
12934 /* Convert a DIE tag into its string name. */
12935
12936 static char *
12937 dwarf_tag_name (unsigned tag)
12938 {
12939 switch (tag)
12940 {
12941 case DW_TAG_padding:
12942 return "DW_TAG_padding";
12943 case DW_TAG_array_type:
12944 return "DW_TAG_array_type";
12945 case DW_TAG_class_type:
12946 return "DW_TAG_class_type";
12947 case DW_TAG_entry_point:
12948 return "DW_TAG_entry_point";
12949 case DW_TAG_enumeration_type:
12950 return "DW_TAG_enumeration_type";
12951 case DW_TAG_formal_parameter:
12952 return "DW_TAG_formal_parameter";
12953 case DW_TAG_imported_declaration:
12954 return "DW_TAG_imported_declaration";
12955 case DW_TAG_label:
12956 return "DW_TAG_label";
12957 case DW_TAG_lexical_block:
12958 return "DW_TAG_lexical_block";
12959 case DW_TAG_member:
12960 return "DW_TAG_member";
12961 case DW_TAG_pointer_type:
12962 return "DW_TAG_pointer_type";
12963 case DW_TAG_reference_type:
12964 return "DW_TAG_reference_type";
12965 case DW_TAG_compile_unit:
12966 return "DW_TAG_compile_unit";
12967 case DW_TAG_string_type:
12968 return "DW_TAG_string_type";
12969 case DW_TAG_structure_type:
12970 return "DW_TAG_structure_type";
12971 case DW_TAG_subroutine_type:
12972 return "DW_TAG_subroutine_type";
12973 case DW_TAG_typedef:
12974 return "DW_TAG_typedef";
12975 case DW_TAG_union_type:
12976 return "DW_TAG_union_type";
12977 case DW_TAG_unspecified_parameters:
12978 return "DW_TAG_unspecified_parameters";
12979 case DW_TAG_variant:
12980 return "DW_TAG_variant";
12981 case DW_TAG_common_block:
12982 return "DW_TAG_common_block";
12983 case DW_TAG_common_inclusion:
12984 return "DW_TAG_common_inclusion";
12985 case DW_TAG_inheritance:
12986 return "DW_TAG_inheritance";
12987 case DW_TAG_inlined_subroutine:
12988 return "DW_TAG_inlined_subroutine";
12989 case DW_TAG_module:
12990 return "DW_TAG_module";
12991 case DW_TAG_ptr_to_member_type:
12992 return "DW_TAG_ptr_to_member_type";
12993 case DW_TAG_set_type:
12994 return "DW_TAG_set_type";
12995 case DW_TAG_subrange_type:
12996 return "DW_TAG_subrange_type";
12997 case DW_TAG_with_stmt:
12998 return "DW_TAG_with_stmt";
12999 case DW_TAG_access_declaration:
13000 return "DW_TAG_access_declaration";
13001 case DW_TAG_base_type:
13002 return "DW_TAG_base_type";
13003 case DW_TAG_catch_block:
13004 return "DW_TAG_catch_block";
13005 case DW_TAG_const_type:
13006 return "DW_TAG_const_type";
13007 case DW_TAG_constant:
13008 return "DW_TAG_constant";
13009 case DW_TAG_enumerator:
13010 return "DW_TAG_enumerator";
13011 case DW_TAG_file_type:
13012 return "DW_TAG_file_type";
13013 case DW_TAG_friend:
13014 return "DW_TAG_friend";
13015 case DW_TAG_namelist:
13016 return "DW_TAG_namelist";
13017 case DW_TAG_namelist_item:
13018 return "DW_TAG_namelist_item";
13019 case DW_TAG_packed_type:
13020 return "DW_TAG_packed_type";
13021 case DW_TAG_subprogram:
13022 return "DW_TAG_subprogram";
13023 case DW_TAG_template_type_param:
13024 return "DW_TAG_template_type_param";
13025 case DW_TAG_template_value_param:
13026 return "DW_TAG_template_value_param";
13027 case DW_TAG_thrown_type:
13028 return "DW_TAG_thrown_type";
13029 case DW_TAG_try_block:
13030 return "DW_TAG_try_block";
13031 case DW_TAG_variant_part:
13032 return "DW_TAG_variant_part";
13033 case DW_TAG_variable:
13034 return "DW_TAG_variable";
13035 case DW_TAG_volatile_type:
13036 return "DW_TAG_volatile_type";
13037 case DW_TAG_dwarf_procedure:
13038 return "DW_TAG_dwarf_procedure";
13039 case DW_TAG_restrict_type:
13040 return "DW_TAG_restrict_type";
13041 case DW_TAG_interface_type:
13042 return "DW_TAG_interface_type";
13043 case DW_TAG_namespace:
13044 return "DW_TAG_namespace";
13045 case DW_TAG_imported_module:
13046 return "DW_TAG_imported_module";
13047 case DW_TAG_unspecified_type:
13048 return "DW_TAG_unspecified_type";
13049 case DW_TAG_partial_unit:
13050 return "DW_TAG_partial_unit";
13051 case DW_TAG_imported_unit:
13052 return "DW_TAG_imported_unit";
13053 case DW_TAG_condition:
13054 return "DW_TAG_condition";
13055 case DW_TAG_shared_type:
13056 return "DW_TAG_shared_type";
13057 case DW_TAG_type_unit:
13058 return "DW_TAG_type_unit";
13059 case DW_TAG_MIPS_loop:
13060 return "DW_TAG_MIPS_loop";
13061 case DW_TAG_HP_array_descriptor:
13062 return "DW_TAG_HP_array_descriptor";
13063 case DW_TAG_format_label:
13064 return "DW_TAG_format_label";
13065 case DW_TAG_function_template:
13066 return "DW_TAG_function_template";
13067 case DW_TAG_class_template:
13068 return "DW_TAG_class_template";
13069 case DW_TAG_GNU_BINCL:
13070 return "DW_TAG_GNU_BINCL";
13071 case DW_TAG_GNU_EINCL:
13072 return "DW_TAG_GNU_EINCL";
13073 case DW_TAG_upc_shared_type:
13074 return "DW_TAG_upc_shared_type";
13075 case DW_TAG_upc_strict_type:
13076 return "DW_TAG_upc_strict_type";
13077 case DW_TAG_upc_relaxed_type:
13078 return "DW_TAG_upc_relaxed_type";
13079 case DW_TAG_PGI_kanji_type:
13080 return "DW_TAG_PGI_kanji_type";
13081 case DW_TAG_PGI_interface_block:
13082 return "DW_TAG_PGI_interface_block";
13083 case DW_TAG_GNU_call_site:
13084 return "DW_TAG_GNU_call_site";
13085 default:
13086 return "DW_TAG_<unknown>";
13087 }
13088 }
13089
13090 /* Convert a DWARF attribute code into its string name. */
13091
13092 static char *
13093 dwarf_attr_name (unsigned attr)
13094 {
13095 switch (attr)
13096 {
13097 case DW_AT_sibling:
13098 return "DW_AT_sibling";
13099 case DW_AT_location:
13100 return "DW_AT_location";
13101 case DW_AT_name:
13102 return "DW_AT_name";
13103 case DW_AT_ordering:
13104 return "DW_AT_ordering";
13105 case DW_AT_subscr_data:
13106 return "DW_AT_subscr_data";
13107 case DW_AT_byte_size:
13108 return "DW_AT_byte_size";
13109 case DW_AT_bit_offset:
13110 return "DW_AT_bit_offset";
13111 case DW_AT_bit_size:
13112 return "DW_AT_bit_size";
13113 case DW_AT_element_list:
13114 return "DW_AT_element_list";
13115 case DW_AT_stmt_list:
13116 return "DW_AT_stmt_list";
13117 case DW_AT_low_pc:
13118 return "DW_AT_low_pc";
13119 case DW_AT_high_pc:
13120 return "DW_AT_high_pc";
13121 case DW_AT_language:
13122 return "DW_AT_language";
13123 case DW_AT_member:
13124 return "DW_AT_member";
13125 case DW_AT_discr:
13126 return "DW_AT_discr";
13127 case DW_AT_discr_value:
13128 return "DW_AT_discr_value";
13129 case DW_AT_visibility:
13130 return "DW_AT_visibility";
13131 case DW_AT_import:
13132 return "DW_AT_import";
13133 case DW_AT_string_length:
13134 return "DW_AT_string_length";
13135 case DW_AT_common_reference:
13136 return "DW_AT_common_reference";
13137 case DW_AT_comp_dir:
13138 return "DW_AT_comp_dir";
13139 case DW_AT_const_value:
13140 return "DW_AT_const_value";
13141 case DW_AT_containing_type:
13142 return "DW_AT_containing_type";
13143 case DW_AT_default_value:
13144 return "DW_AT_default_value";
13145 case DW_AT_inline:
13146 return "DW_AT_inline";
13147 case DW_AT_is_optional:
13148 return "DW_AT_is_optional";
13149 case DW_AT_lower_bound:
13150 return "DW_AT_lower_bound";
13151 case DW_AT_producer:
13152 return "DW_AT_producer";
13153 case DW_AT_prototyped:
13154 return "DW_AT_prototyped";
13155 case DW_AT_return_addr:
13156 return "DW_AT_return_addr";
13157 case DW_AT_start_scope:
13158 return "DW_AT_start_scope";
13159 case DW_AT_bit_stride:
13160 return "DW_AT_bit_stride";
13161 case DW_AT_upper_bound:
13162 return "DW_AT_upper_bound";
13163 case DW_AT_abstract_origin:
13164 return "DW_AT_abstract_origin";
13165 case DW_AT_accessibility:
13166 return "DW_AT_accessibility";
13167 case DW_AT_address_class:
13168 return "DW_AT_address_class";
13169 case DW_AT_artificial:
13170 return "DW_AT_artificial";
13171 case DW_AT_base_types:
13172 return "DW_AT_base_types";
13173 case DW_AT_calling_convention:
13174 return "DW_AT_calling_convention";
13175 case DW_AT_count:
13176 return "DW_AT_count";
13177 case DW_AT_data_member_location:
13178 return "DW_AT_data_member_location";
13179 case DW_AT_decl_column:
13180 return "DW_AT_decl_column";
13181 case DW_AT_decl_file:
13182 return "DW_AT_decl_file";
13183 case DW_AT_decl_line:
13184 return "DW_AT_decl_line";
13185 case DW_AT_declaration:
13186 return "DW_AT_declaration";
13187 case DW_AT_discr_list:
13188 return "DW_AT_discr_list";
13189 case DW_AT_encoding:
13190 return "DW_AT_encoding";
13191 case DW_AT_external:
13192 return "DW_AT_external";
13193 case DW_AT_frame_base:
13194 return "DW_AT_frame_base";
13195 case DW_AT_friend:
13196 return "DW_AT_friend";
13197 case DW_AT_identifier_case:
13198 return "DW_AT_identifier_case";
13199 case DW_AT_macro_info:
13200 return "DW_AT_macro_info";
13201 case DW_AT_namelist_items:
13202 return "DW_AT_namelist_items";
13203 case DW_AT_priority:
13204 return "DW_AT_priority";
13205 case DW_AT_segment:
13206 return "DW_AT_segment";
13207 case DW_AT_specification:
13208 return "DW_AT_specification";
13209 case DW_AT_static_link:
13210 return "DW_AT_static_link";
13211 case DW_AT_type:
13212 return "DW_AT_type";
13213 case DW_AT_use_location:
13214 return "DW_AT_use_location";
13215 case DW_AT_variable_parameter:
13216 return "DW_AT_variable_parameter";
13217 case DW_AT_virtuality:
13218 return "DW_AT_virtuality";
13219 case DW_AT_vtable_elem_location:
13220 return "DW_AT_vtable_elem_location";
13221 /* DWARF 3 values. */
13222 case DW_AT_allocated:
13223 return "DW_AT_allocated";
13224 case DW_AT_associated:
13225 return "DW_AT_associated";
13226 case DW_AT_data_location:
13227 return "DW_AT_data_location";
13228 case DW_AT_byte_stride:
13229 return "DW_AT_byte_stride";
13230 case DW_AT_entry_pc:
13231 return "DW_AT_entry_pc";
13232 case DW_AT_use_UTF8:
13233 return "DW_AT_use_UTF8";
13234 case DW_AT_extension:
13235 return "DW_AT_extension";
13236 case DW_AT_ranges:
13237 return "DW_AT_ranges";
13238 case DW_AT_trampoline:
13239 return "DW_AT_trampoline";
13240 case DW_AT_call_column:
13241 return "DW_AT_call_column";
13242 case DW_AT_call_file:
13243 return "DW_AT_call_file";
13244 case DW_AT_call_line:
13245 return "DW_AT_call_line";
13246 case DW_AT_description:
13247 return "DW_AT_description";
13248 case DW_AT_binary_scale:
13249 return "DW_AT_binary_scale";
13250 case DW_AT_decimal_scale:
13251 return "DW_AT_decimal_scale";
13252 case DW_AT_small:
13253 return "DW_AT_small";
13254 case DW_AT_decimal_sign:
13255 return "DW_AT_decimal_sign";
13256 case DW_AT_digit_count:
13257 return "DW_AT_digit_count";
13258 case DW_AT_picture_string:
13259 return "DW_AT_picture_string";
13260 case DW_AT_mutable:
13261 return "DW_AT_mutable";
13262 case DW_AT_threads_scaled:
13263 return "DW_AT_threads_scaled";
13264 case DW_AT_explicit:
13265 return "DW_AT_explicit";
13266 case DW_AT_object_pointer:
13267 return "DW_AT_object_pointer";
13268 case DW_AT_endianity:
13269 return "DW_AT_endianity";
13270 case DW_AT_elemental:
13271 return "DW_AT_elemental";
13272 case DW_AT_pure:
13273 return "DW_AT_pure";
13274 case DW_AT_recursive:
13275 return "DW_AT_recursive";
13276 /* DWARF 4 values. */
13277 case DW_AT_signature:
13278 return "DW_AT_signature";
13279 case DW_AT_linkage_name:
13280 return "DW_AT_linkage_name";
13281 /* SGI/MIPS extensions. */
13282 #ifdef MIPS /* collides with DW_AT_HP_block_index */
13283 case DW_AT_MIPS_fde:
13284 return "DW_AT_MIPS_fde";
13285 #endif
13286 case DW_AT_MIPS_loop_begin:
13287 return "DW_AT_MIPS_loop_begin";
13288 case DW_AT_MIPS_tail_loop_begin:
13289 return "DW_AT_MIPS_tail_loop_begin";
13290 case DW_AT_MIPS_epilog_begin:
13291 return "DW_AT_MIPS_epilog_begin";
13292 case DW_AT_MIPS_loop_unroll_factor:
13293 return "DW_AT_MIPS_loop_unroll_factor";
13294 case DW_AT_MIPS_software_pipeline_depth:
13295 return "DW_AT_MIPS_software_pipeline_depth";
13296 case DW_AT_MIPS_linkage_name:
13297 return "DW_AT_MIPS_linkage_name";
13298 case DW_AT_MIPS_stride:
13299 return "DW_AT_MIPS_stride";
13300 case DW_AT_MIPS_abstract_name:
13301 return "DW_AT_MIPS_abstract_name";
13302 case DW_AT_MIPS_clone_origin:
13303 return "DW_AT_MIPS_clone_origin";
13304 case DW_AT_MIPS_has_inlines:
13305 return "DW_AT_MIPS_has_inlines";
13306 /* HP extensions. */
13307 #ifndef MIPS /* collides with DW_AT_MIPS_fde */
13308 case DW_AT_HP_block_index:
13309 return "DW_AT_HP_block_index";
13310 #endif
13311 case DW_AT_HP_unmodifiable:
13312 return "DW_AT_HP_unmodifiable";
13313 case DW_AT_HP_actuals_stmt_list:
13314 return "DW_AT_HP_actuals_stmt_list";
13315 case DW_AT_HP_proc_per_section:
13316 return "DW_AT_HP_proc_per_section";
13317 case DW_AT_HP_raw_data_ptr:
13318 return "DW_AT_HP_raw_data_ptr";
13319 case DW_AT_HP_pass_by_reference:
13320 return "DW_AT_HP_pass_by_reference";
13321 case DW_AT_HP_opt_level:
13322 return "DW_AT_HP_opt_level";
13323 case DW_AT_HP_prof_version_id:
13324 return "DW_AT_HP_prof_version_id";
13325 case DW_AT_HP_opt_flags:
13326 return "DW_AT_HP_opt_flags";
13327 case DW_AT_HP_cold_region_low_pc:
13328 return "DW_AT_HP_cold_region_low_pc";
13329 case DW_AT_HP_cold_region_high_pc:
13330 return "DW_AT_HP_cold_region_high_pc";
13331 case DW_AT_HP_all_variables_modifiable:
13332 return "DW_AT_HP_all_variables_modifiable";
13333 case DW_AT_HP_linkage_name:
13334 return "DW_AT_HP_linkage_name";
13335 case DW_AT_HP_prof_flags:
13336 return "DW_AT_HP_prof_flags";
13337 /* GNU extensions. */
13338 case DW_AT_sf_names:
13339 return "DW_AT_sf_names";
13340 case DW_AT_src_info:
13341 return "DW_AT_src_info";
13342 case DW_AT_mac_info:
13343 return "DW_AT_mac_info";
13344 case DW_AT_src_coords:
13345 return "DW_AT_src_coords";
13346 case DW_AT_body_begin:
13347 return "DW_AT_body_begin";
13348 case DW_AT_body_end:
13349 return "DW_AT_body_end";
13350 case DW_AT_GNU_vector:
13351 return "DW_AT_GNU_vector";
13352 case DW_AT_GNU_odr_signature:
13353 return "DW_AT_GNU_odr_signature";
13354 /* VMS extensions. */
13355 case DW_AT_VMS_rtnbeg_pd_address:
13356 return "DW_AT_VMS_rtnbeg_pd_address";
13357 /* UPC extension. */
13358 case DW_AT_upc_threads_scaled:
13359 return "DW_AT_upc_threads_scaled";
13360 /* PGI (STMicroelectronics) extensions. */
13361 case DW_AT_PGI_lbase:
13362 return "DW_AT_PGI_lbase";
13363 case DW_AT_PGI_soffset:
13364 return "DW_AT_PGI_soffset";
13365 case DW_AT_PGI_lstride:
13366 return "DW_AT_PGI_lstride";
13367 default:
13368 return "DW_AT_<unknown>";
13369 }
13370 }
13371
13372 /* Convert a DWARF value form code into its string name. */
13373
13374 static char *
13375 dwarf_form_name (unsigned form)
13376 {
13377 switch (form)
13378 {
13379 case DW_FORM_addr:
13380 return "DW_FORM_addr";
13381 case DW_FORM_block2:
13382 return "DW_FORM_block2";
13383 case DW_FORM_block4:
13384 return "DW_FORM_block4";
13385 case DW_FORM_data2:
13386 return "DW_FORM_data2";
13387 case DW_FORM_data4:
13388 return "DW_FORM_data4";
13389 case DW_FORM_data8:
13390 return "DW_FORM_data8";
13391 case DW_FORM_string:
13392 return "DW_FORM_string";
13393 case DW_FORM_block:
13394 return "DW_FORM_block";
13395 case DW_FORM_block1:
13396 return "DW_FORM_block1";
13397 case DW_FORM_data1:
13398 return "DW_FORM_data1";
13399 case DW_FORM_flag:
13400 return "DW_FORM_flag";
13401 case DW_FORM_sdata:
13402 return "DW_FORM_sdata";
13403 case DW_FORM_strp:
13404 return "DW_FORM_strp";
13405 case DW_FORM_udata:
13406 return "DW_FORM_udata";
13407 case DW_FORM_ref_addr:
13408 return "DW_FORM_ref_addr";
13409 case DW_FORM_ref1:
13410 return "DW_FORM_ref1";
13411 case DW_FORM_ref2:
13412 return "DW_FORM_ref2";
13413 case DW_FORM_ref4:
13414 return "DW_FORM_ref4";
13415 case DW_FORM_ref8:
13416 return "DW_FORM_ref8";
13417 case DW_FORM_ref_udata:
13418 return "DW_FORM_ref_udata";
13419 case DW_FORM_indirect:
13420 return "DW_FORM_indirect";
13421 case DW_FORM_sec_offset:
13422 return "DW_FORM_sec_offset";
13423 case DW_FORM_exprloc:
13424 return "DW_FORM_exprloc";
13425 case DW_FORM_flag_present:
13426 return "DW_FORM_flag_present";
13427 case DW_FORM_ref_sig8:
13428 return "DW_FORM_ref_sig8";
13429 default:
13430 return "DW_FORM_<unknown>";
13431 }
13432 }
13433
13434 /* Convert a DWARF stack opcode into its string name. */
13435
13436 const char *
13437 dwarf_stack_op_name (unsigned op)
13438 {
13439 switch (op)
13440 {
13441 case DW_OP_addr:
13442 return "DW_OP_addr";
13443 case DW_OP_deref:
13444 return "DW_OP_deref";
13445 case DW_OP_const1u:
13446 return "DW_OP_const1u";
13447 case DW_OP_const1s:
13448 return "DW_OP_const1s";
13449 case DW_OP_const2u:
13450 return "DW_OP_const2u";
13451 case DW_OP_const2s:
13452 return "DW_OP_const2s";
13453 case DW_OP_const4u:
13454 return "DW_OP_const4u";
13455 case DW_OP_const4s:
13456 return "DW_OP_const4s";
13457 case DW_OP_const8u:
13458 return "DW_OP_const8u";
13459 case DW_OP_const8s:
13460 return "DW_OP_const8s";
13461 case DW_OP_constu:
13462 return "DW_OP_constu";
13463 case DW_OP_consts:
13464 return "DW_OP_consts";
13465 case DW_OP_dup:
13466 return "DW_OP_dup";
13467 case DW_OP_drop:
13468 return "DW_OP_drop";
13469 case DW_OP_over:
13470 return "DW_OP_over";
13471 case DW_OP_pick:
13472 return "DW_OP_pick";
13473 case DW_OP_swap:
13474 return "DW_OP_swap";
13475 case DW_OP_rot:
13476 return "DW_OP_rot";
13477 case DW_OP_xderef:
13478 return "DW_OP_xderef";
13479 case DW_OP_abs:
13480 return "DW_OP_abs";
13481 case DW_OP_and:
13482 return "DW_OP_and";
13483 case DW_OP_div:
13484 return "DW_OP_div";
13485 case DW_OP_minus:
13486 return "DW_OP_minus";
13487 case DW_OP_mod:
13488 return "DW_OP_mod";
13489 case DW_OP_mul:
13490 return "DW_OP_mul";
13491 case DW_OP_neg:
13492 return "DW_OP_neg";
13493 case DW_OP_not:
13494 return "DW_OP_not";
13495 case DW_OP_or:
13496 return "DW_OP_or";
13497 case DW_OP_plus:
13498 return "DW_OP_plus";
13499 case DW_OP_plus_uconst:
13500 return "DW_OP_plus_uconst";
13501 case DW_OP_shl:
13502 return "DW_OP_shl";
13503 case DW_OP_shr:
13504 return "DW_OP_shr";
13505 case DW_OP_shra:
13506 return "DW_OP_shra";
13507 case DW_OP_xor:
13508 return "DW_OP_xor";
13509 case DW_OP_bra:
13510 return "DW_OP_bra";
13511 case DW_OP_eq:
13512 return "DW_OP_eq";
13513 case DW_OP_ge:
13514 return "DW_OP_ge";
13515 case DW_OP_gt:
13516 return "DW_OP_gt";
13517 case DW_OP_le:
13518 return "DW_OP_le";
13519 case DW_OP_lt:
13520 return "DW_OP_lt";
13521 case DW_OP_ne:
13522 return "DW_OP_ne";
13523 case DW_OP_skip:
13524 return "DW_OP_skip";
13525 case DW_OP_lit0:
13526 return "DW_OP_lit0";
13527 case DW_OP_lit1:
13528 return "DW_OP_lit1";
13529 case DW_OP_lit2:
13530 return "DW_OP_lit2";
13531 case DW_OP_lit3:
13532 return "DW_OP_lit3";
13533 case DW_OP_lit4:
13534 return "DW_OP_lit4";
13535 case DW_OP_lit5:
13536 return "DW_OP_lit5";
13537 case DW_OP_lit6:
13538 return "DW_OP_lit6";
13539 case DW_OP_lit7:
13540 return "DW_OP_lit7";
13541 case DW_OP_lit8:
13542 return "DW_OP_lit8";
13543 case DW_OP_lit9:
13544 return "DW_OP_lit9";
13545 case DW_OP_lit10:
13546 return "DW_OP_lit10";
13547 case DW_OP_lit11:
13548 return "DW_OP_lit11";
13549 case DW_OP_lit12:
13550 return "DW_OP_lit12";
13551 case DW_OP_lit13:
13552 return "DW_OP_lit13";
13553 case DW_OP_lit14:
13554 return "DW_OP_lit14";
13555 case DW_OP_lit15:
13556 return "DW_OP_lit15";
13557 case DW_OP_lit16:
13558 return "DW_OP_lit16";
13559 case DW_OP_lit17:
13560 return "DW_OP_lit17";
13561 case DW_OP_lit18:
13562 return "DW_OP_lit18";
13563 case DW_OP_lit19:
13564 return "DW_OP_lit19";
13565 case DW_OP_lit20:
13566 return "DW_OP_lit20";
13567 case DW_OP_lit21:
13568 return "DW_OP_lit21";
13569 case DW_OP_lit22:
13570 return "DW_OP_lit22";
13571 case DW_OP_lit23:
13572 return "DW_OP_lit23";
13573 case DW_OP_lit24:
13574 return "DW_OP_lit24";
13575 case DW_OP_lit25:
13576 return "DW_OP_lit25";
13577 case DW_OP_lit26:
13578 return "DW_OP_lit26";
13579 case DW_OP_lit27:
13580 return "DW_OP_lit27";
13581 case DW_OP_lit28:
13582 return "DW_OP_lit28";
13583 case DW_OP_lit29:
13584 return "DW_OP_lit29";
13585 case DW_OP_lit30:
13586 return "DW_OP_lit30";
13587 case DW_OP_lit31:
13588 return "DW_OP_lit31";
13589 case DW_OP_reg0:
13590 return "DW_OP_reg0";
13591 case DW_OP_reg1:
13592 return "DW_OP_reg1";
13593 case DW_OP_reg2:
13594 return "DW_OP_reg2";
13595 case DW_OP_reg3:
13596 return "DW_OP_reg3";
13597 case DW_OP_reg4:
13598 return "DW_OP_reg4";
13599 case DW_OP_reg5:
13600 return "DW_OP_reg5";
13601 case DW_OP_reg6:
13602 return "DW_OP_reg6";
13603 case DW_OP_reg7:
13604 return "DW_OP_reg7";
13605 case DW_OP_reg8:
13606 return "DW_OP_reg8";
13607 case DW_OP_reg9:
13608 return "DW_OP_reg9";
13609 case DW_OP_reg10:
13610 return "DW_OP_reg10";
13611 case DW_OP_reg11:
13612 return "DW_OP_reg11";
13613 case DW_OP_reg12:
13614 return "DW_OP_reg12";
13615 case DW_OP_reg13:
13616 return "DW_OP_reg13";
13617 case DW_OP_reg14:
13618 return "DW_OP_reg14";
13619 case DW_OP_reg15:
13620 return "DW_OP_reg15";
13621 case DW_OP_reg16:
13622 return "DW_OP_reg16";
13623 case DW_OP_reg17:
13624 return "DW_OP_reg17";
13625 case DW_OP_reg18:
13626 return "DW_OP_reg18";
13627 case DW_OP_reg19:
13628 return "DW_OP_reg19";
13629 case DW_OP_reg20:
13630 return "DW_OP_reg20";
13631 case DW_OP_reg21:
13632 return "DW_OP_reg21";
13633 case DW_OP_reg22:
13634 return "DW_OP_reg22";
13635 case DW_OP_reg23:
13636 return "DW_OP_reg23";
13637 case DW_OP_reg24:
13638 return "DW_OP_reg24";
13639 case DW_OP_reg25:
13640 return "DW_OP_reg25";
13641 case DW_OP_reg26:
13642 return "DW_OP_reg26";
13643 case DW_OP_reg27:
13644 return "DW_OP_reg27";
13645 case DW_OP_reg28:
13646 return "DW_OP_reg28";
13647 case DW_OP_reg29:
13648 return "DW_OP_reg29";
13649 case DW_OP_reg30:
13650 return "DW_OP_reg30";
13651 case DW_OP_reg31:
13652 return "DW_OP_reg31";
13653 case DW_OP_breg0:
13654 return "DW_OP_breg0";
13655 case DW_OP_breg1:
13656 return "DW_OP_breg1";
13657 case DW_OP_breg2:
13658 return "DW_OP_breg2";
13659 case DW_OP_breg3:
13660 return "DW_OP_breg3";
13661 case DW_OP_breg4:
13662 return "DW_OP_breg4";
13663 case DW_OP_breg5:
13664 return "DW_OP_breg5";
13665 case DW_OP_breg6:
13666 return "DW_OP_breg6";
13667 case DW_OP_breg7:
13668 return "DW_OP_breg7";
13669 case DW_OP_breg8:
13670 return "DW_OP_breg8";
13671 case DW_OP_breg9:
13672 return "DW_OP_breg9";
13673 case DW_OP_breg10:
13674 return "DW_OP_breg10";
13675 case DW_OP_breg11:
13676 return "DW_OP_breg11";
13677 case DW_OP_breg12:
13678 return "DW_OP_breg12";
13679 case DW_OP_breg13:
13680 return "DW_OP_breg13";
13681 case DW_OP_breg14:
13682 return "DW_OP_breg14";
13683 case DW_OP_breg15:
13684 return "DW_OP_breg15";
13685 case DW_OP_breg16:
13686 return "DW_OP_breg16";
13687 case DW_OP_breg17:
13688 return "DW_OP_breg17";
13689 case DW_OP_breg18:
13690 return "DW_OP_breg18";
13691 case DW_OP_breg19:
13692 return "DW_OP_breg19";
13693 case DW_OP_breg20:
13694 return "DW_OP_breg20";
13695 case DW_OP_breg21:
13696 return "DW_OP_breg21";
13697 case DW_OP_breg22:
13698 return "DW_OP_breg22";
13699 case DW_OP_breg23:
13700 return "DW_OP_breg23";
13701 case DW_OP_breg24:
13702 return "DW_OP_breg24";
13703 case DW_OP_breg25:
13704 return "DW_OP_breg25";
13705 case DW_OP_breg26:
13706 return "DW_OP_breg26";
13707 case DW_OP_breg27:
13708 return "DW_OP_breg27";
13709 case DW_OP_breg28:
13710 return "DW_OP_breg28";
13711 case DW_OP_breg29:
13712 return "DW_OP_breg29";
13713 case DW_OP_breg30:
13714 return "DW_OP_breg30";
13715 case DW_OP_breg31:
13716 return "DW_OP_breg31";
13717 case DW_OP_regx:
13718 return "DW_OP_regx";
13719 case DW_OP_fbreg:
13720 return "DW_OP_fbreg";
13721 case DW_OP_bregx:
13722 return "DW_OP_bregx";
13723 case DW_OP_piece:
13724 return "DW_OP_piece";
13725 case DW_OP_deref_size:
13726 return "DW_OP_deref_size";
13727 case DW_OP_xderef_size:
13728 return "DW_OP_xderef_size";
13729 case DW_OP_nop:
13730 return "DW_OP_nop";
13731 /* DWARF 3 extensions. */
13732 case DW_OP_push_object_address:
13733 return "DW_OP_push_object_address";
13734 case DW_OP_call2:
13735 return "DW_OP_call2";
13736 case DW_OP_call4:
13737 return "DW_OP_call4";
13738 case DW_OP_call_ref:
13739 return "DW_OP_call_ref";
13740 case DW_OP_form_tls_address:
13741 return "DW_OP_form_tls_address";
13742 case DW_OP_call_frame_cfa:
13743 return "DW_OP_call_frame_cfa";
13744 case DW_OP_bit_piece:
13745 return "DW_OP_bit_piece";
13746 /* DWARF 4 extensions. */
13747 case DW_OP_implicit_value:
13748 return "DW_OP_implicit_value";
13749 case DW_OP_stack_value:
13750 return "DW_OP_stack_value";
13751 /* GNU extensions. */
13752 case DW_OP_GNU_push_tls_address:
13753 return "DW_OP_GNU_push_tls_address";
13754 case DW_OP_GNU_uninit:
13755 return "DW_OP_GNU_uninit";
13756 case DW_OP_GNU_encoded_addr:
13757 return "DW_OP_GNU_encoded_addr";
13758 case DW_OP_GNU_implicit_pointer:
13759 return "DW_OP_GNU_implicit_pointer";
13760 case DW_OP_GNU_entry_value:
13761 return "DW_OP_GNU_entry_value";
13762 case DW_OP_GNU_const_type:
13763 return "DW_OP_GNU_const_type";
13764 case DW_OP_GNU_regval_type:
13765 return "DW_OP_GNU_regval_type";
13766 case DW_OP_GNU_deref_type:
13767 return "DW_OP_GNU_deref_type";
13768 case DW_OP_GNU_convert:
13769 return "DW_OP_GNU_convert";
13770 case DW_OP_GNU_reinterpret:
13771 return "DW_OP_GNU_reinterpret";
13772 case DW_OP_GNU_parameter_ref:
13773 return "DW_OP_GNU_parameter_ref";
13774 default:
13775 return NULL;
13776 }
13777 }
13778
13779 static char *
13780 dwarf_bool_name (unsigned mybool)
13781 {
13782 if (mybool)
13783 return "TRUE";
13784 else
13785 return "FALSE";
13786 }
13787
13788 /* Convert a DWARF type code into its string name. */
13789
13790 static char *
13791 dwarf_type_encoding_name (unsigned enc)
13792 {
13793 switch (enc)
13794 {
13795 case DW_ATE_void:
13796 return "DW_ATE_void";
13797 case DW_ATE_address:
13798 return "DW_ATE_address";
13799 case DW_ATE_boolean:
13800 return "DW_ATE_boolean";
13801 case DW_ATE_complex_float:
13802 return "DW_ATE_complex_float";
13803 case DW_ATE_float:
13804 return "DW_ATE_float";
13805 case DW_ATE_signed:
13806 return "DW_ATE_signed";
13807 case DW_ATE_signed_char:
13808 return "DW_ATE_signed_char";
13809 case DW_ATE_unsigned:
13810 return "DW_ATE_unsigned";
13811 case DW_ATE_unsigned_char:
13812 return "DW_ATE_unsigned_char";
13813 /* DWARF 3. */
13814 case DW_ATE_imaginary_float:
13815 return "DW_ATE_imaginary_float";
13816 case DW_ATE_packed_decimal:
13817 return "DW_ATE_packed_decimal";
13818 case DW_ATE_numeric_string:
13819 return "DW_ATE_numeric_string";
13820 case DW_ATE_edited:
13821 return "DW_ATE_edited";
13822 case DW_ATE_signed_fixed:
13823 return "DW_ATE_signed_fixed";
13824 case DW_ATE_unsigned_fixed:
13825 return "DW_ATE_unsigned_fixed";
13826 case DW_ATE_decimal_float:
13827 return "DW_ATE_decimal_float";
13828 /* DWARF 4. */
13829 case DW_ATE_UTF:
13830 return "DW_ATE_UTF";
13831 /* HP extensions. */
13832 case DW_ATE_HP_float80:
13833 return "DW_ATE_HP_float80";
13834 case DW_ATE_HP_complex_float80:
13835 return "DW_ATE_HP_complex_float80";
13836 case DW_ATE_HP_float128:
13837 return "DW_ATE_HP_float128";
13838 case DW_ATE_HP_complex_float128:
13839 return "DW_ATE_HP_complex_float128";
13840 case DW_ATE_HP_floathpintel:
13841 return "DW_ATE_HP_floathpintel";
13842 case DW_ATE_HP_imaginary_float80:
13843 return "DW_ATE_HP_imaginary_float80";
13844 case DW_ATE_HP_imaginary_float128:
13845 return "DW_ATE_HP_imaginary_float128";
13846 default:
13847 return "DW_ATE_<unknown>";
13848 }
13849 }
13850
13851 /* Convert a DWARF call frame info operation to its string name. */
13852
13853 #if 0
13854 static char *
13855 dwarf_cfi_name (unsigned cfi_opc)
13856 {
13857 switch (cfi_opc)
13858 {
13859 case DW_CFA_advance_loc:
13860 return "DW_CFA_advance_loc";
13861 case DW_CFA_offset:
13862 return "DW_CFA_offset";
13863 case DW_CFA_restore:
13864 return "DW_CFA_restore";
13865 case DW_CFA_nop:
13866 return "DW_CFA_nop";
13867 case DW_CFA_set_loc:
13868 return "DW_CFA_set_loc";
13869 case DW_CFA_advance_loc1:
13870 return "DW_CFA_advance_loc1";
13871 case DW_CFA_advance_loc2:
13872 return "DW_CFA_advance_loc2";
13873 case DW_CFA_advance_loc4:
13874 return "DW_CFA_advance_loc4";
13875 case DW_CFA_offset_extended:
13876 return "DW_CFA_offset_extended";
13877 case DW_CFA_restore_extended:
13878 return "DW_CFA_restore_extended";
13879 case DW_CFA_undefined:
13880 return "DW_CFA_undefined";
13881 case DW_CFA_same_value:
13882 return "DW_CFA_same_value";
13883 case DW_CFA_register:
13884 return "DW_CFA_register";
13885 case DW_CFA_remember_state:
13886 return "DW_CFA_remember_state";
13887 case DW_CFA_restore_state:
13888 return "DW_CFA_restore_state";
13889 case DW_CFA_def_cfa:
13890 return "DW_CFA_def_cfa";
13891 case DW_CFA_def_cfa_register:
13892 return "DW_CFA_def_cfa_register";
13893 case DW_CFA_def_cfa_offset:
13894 return "DW_CFA_def_cfa_offset";
13895 /* DWARF 3. */
13896 case DW_CFA_def_cfa_expression:
13897 return "DW_CFA_def_cfa_expression";
13898 case DW_CFA_expression:
13899 return "DW_CFA_expression";
13900 case DW_CFA_offset_extended_sf:
13901 return "DW_CFA_offset_extended_sf";
13902 case DW_CFA_def_cfa_sf:
13903 return "DW_CFA_def_cfa_sf";
13904 case DW_CFA_def_cfa_offset_sf:
13905 return "DW_CFA_def_cfa_offset_sf";
13906 case DW_CFA_val_offset:
13907 return "DW_CFA_val_offset";
13908 case DW_CFA_val_offset_sf:
13909 return "DW_CFA_val_offset_sf";
13910 case DW_CFA_val_expression:
13911 return "DW_CFA_val_expression";
13912 /* SGI/MIPS specific. */
13913 case DW_CFA_MIPS_advance_loc8:
13914 return "DW_CFA_MIPS_advance_loc8";
13915 /* GNU extensions. */
13916 case DW_CFA_GNU_window_save:
13917 return "DW_CFA_GNU_window_save";
13918 case DW_CFA_GNU_args_size:
13919 return "DW_CFA_GNU_args_size";
13920 case DW_CFA_GNU_negative_offset_extended:
13921 return "DW_CFA_GNU_negative_offset_extended";
13922 default:
13923 return "DW_CFA_<unknown>";
13924 }
13925 }
13926 #endif
13927
13928 static void
13929 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
13930 {
13931 unsigned int i;
13932
13933 print_spaces (indent, f);
13934 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
13935 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
13936
13937 if (die->parent != NULL)
13938 {
13939 print_spaces (indent, f);
13940 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
13941 die->parent->offset.sect_off);
13942 }
13943
13944 print_spaces (indent, f);
13945 fprintf_unfiltered (f, " has children: %s\n",
13946 dwarf_bool_name (die->child != NULL));
13947
13948 print_spaces (indent, f);
13949 fprintf_unfiltered (f, " attributes:\n");
13950
13951 for (i = 0; i < die->num_attrs; ++i)
13952 {
13953 print_spaces (indent, f);
13954 fprintf_unfiltered (f, " %s (%s) ",
13955 dwarf_attr_name (die->attrs[i].name),
13956 dwarf_form_name (die->attrs[i].form));
13957
13958 switch (die->attrs[i].form)
13959 {
13960 case DW_FORM_ref_addr:
13961 case DW_FORM_addr:
13962 fprintf_unfiltered (f, "address: ");
13963 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
13964 break;
13965 case DW_FORM_block2:
13966 case DW_FORM_block4:
13967 case DW_FORM_block:
13968 case DW_FORM_block1:
13969 fprintf_unfiltered (f, "block: size %d",
13970 DW_BLOCK (&die->attrs[i])->size);
13971 break;
13972 case DW_FORM_exprloc:
13973 fprintf_unfiltered (f, "expression: size %u",
13974 DW_BLOCK (&die->attrs[i])->size);
13975 break;
13976 case DW_FORM_ref1:
13977 case DW_FORM_ref2:
13978 case DW_FORM_ref4:
13979 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
13980 (long) (DW_ADDR (&die->attrs[i])));
13981 break;
13982 case DW_FORM_data1:
13983 case DW_FORM_data2:
13984 case DW_FORM_data4:
13985 case DW_FORM_data8:
13986 case DW_FORM_udata:
13987 case DW_FORM_sdata:
13988 fprintf_unfiltered (f, "constant: %s",
13989 pulongest (DW_UNSND (&die->attrs[i])));
13990 break;
13991 case DW_FORM_sec_offset:
13992 fprintf_unfiltered (f, "section offset: %s",
13993 pulongest (DW_UNSND (&die->attrs[i])));
13994 break;
13995 case DW_FORM_ref_sig8:
13996 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
13997 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
13998 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset.sect_off);
13999 else
14000 fprintf_unfiltered (f, "signatured type, offset: unknown");
14001 break;
14002 case DW_FORM_string:
14003 case DW_FORM_strp:
14004 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
14005 DW_STRING (&die->attrs[i])
14006 ? DW_STRING (&die->attrs[i]) : "",
14007 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
14008 break;
14009 case DW_FORM_flag:
14010 if (DW_UNSND (&die->attrs[i]))
14011 fprintf_unfiltered (f, "flag: TRUE");
14012 else
14013 fprintf_unfiltered (f, "flag: FALSE");
14014 break;
14015 case DW_FORM_flag_present:
14016 fprintf_unfiltered (f, "flag: TRUE");
14017 break;
14018 case DW_FORM_indirect:
14019 /* The reader will have reduced the indirect form to
14020 the "base form" so this form should not occur. */
14021 fprintf_unfiltered (f,
14022 "unexpected attribute form: DW_FORM_indirect");
14023 break;
14024 default:
14025 fprintf_unfiltered (f, "unsupported attribute form: %d.",
14026 die->attrs[i].form);
14027 break;
14028 }
14029 fprintf_unfiltered (f, "\n");
14030 }
14031 }
14032
14033 static void
14034 dump_die_for_error (struct die_info *die)
14035 {
14036 dump_die_shallow (gdb_stderr, 0, die);
14037 }
14038
14039 static void
14040 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
14041 {
14042 int indent = level * 4;
14043
14044 gdb_assert (die != NULL);
14045
14046 if (level >= max_level)
14047 return;
14048
14049 dump_die_shallow (f, indent, die);
14050
14051 if (die->child != NULL)
14052 {
14053 print_spaces (indent, f);
14054 fprintf_unfiltered (f, " Children:");
14055 if (level + 1 < max_level)
14056 {
14057 fprintf_unfiltered (f, "\n");
14058 dump_die_1 (f, level + 1, max_level, die->child);
14059 }
14060 else
14061 {
14062 fprintf_unfiltered (f,
14063 " [not printed, max nesting level reached]\n");
14064 }
14065 }
14066
14067 if (die->sibling != NULL && level > 0)
14068 {
14069 dump_die_1 (f, level, max_level, die->sibling);
14070 }
14071 }
14072
14073 /* This is called from the pdie macro in gdbinit.in.
14074 It's not static so gcc will keep a copy callable from gdb. */
14075
14076 void
14077 dump_die (struct die_info *die, int max_level)
14078 {
14079 dump_die_1 (gdb_stdlog, 0, max_level, die);
14080 }
14081
14082 static void
14083 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
14084 {
14085 void **slot;
14086
14087 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
14088 INSERT);
14089
14090 *slot = die;
14091 }
14092
14093 /* DW_ADDR is always stored already as sect_offset; despite for the forms
14094 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
14095
14096 static int
14097 is_ref_attr (struct attribute *attr)
14098 {
14099 switch (attr->form)
14100 {
14101 case DW_FORM_ref_addr:
14102 case DW_FORM_ref1:
14103 case DW_FORM_ref2:
14104 case DW_FORM_ref4:
14105 case DW_FORM_ref8:
14106 case DW_FORM_ref_udata:
14107 return 1;
14108 default:
14109 return 0;
14110 }
14111 }
14112
14113 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
14114 required kind. */
14115
14116 static sect_offset
14117 dwarf2_get_ref_die_offset (struct attribute *attr)
14118 {
14119 sect_offset retval = { DW_ADDR (attr) };
14120
14121 if (is_ref_attr (attr))
14122 return retval;
14123
14124 retval.sect_off = 0;
14125 complaint (&symfile_complaints,
14126 _("unsupported die ref attribute form: '%s'"),
14127 dwarf_form_name (attr->form));
14128 return retval;
14129 }
14130
14131 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
14132 * the value held by the attribute is not constant. */
14133
14134 static LONGEST
14135 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
14136 {
14137 if (attr->form == DW_FORM_sdata)
14138 return DW_SND (attr);
14139 else if (attr->form == DW_FORM_udata
14140 || attr->form == DW_FORM_data1
14141 || attr->form == DW_FORM_data2
14142 || attr->form == DW_FORM_data4
14143 || attr->form == DW_FORM_data8)
14144 return DW_UNSND (attr);
14145 else
14146 {
14147 complaint (&symfile_complaints,
14148 _("Attribute value is not a constant (%s)"),
14149 dwarf_form_name (attr->form));
14150 return default_value;
14151 }
14152 }
14153
14154 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
14155 unit and add it to our queue.
14156 The result is non-zero if PER_CU was queued, otherwise the result is zero
14157 meaning either PER_CU is already queued or it is already loaded. */
14158
14159 static int
14160 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
14161 struct dwarf2_per_cu_data *per_cu)
14162 {
14163 /* We may arrive here during partial symbol reading, if we need full
14164 DIEs to process an unusual case (e.g. template arguments). Do
14165 not queue PER_CU, just tell our caller to load its DIEs. */
14166 if (dwarf2_per_objfile->reading_partial_symbols)
14167 {
14168 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
14169 return 1;
14170 return 0;
14171 }
14172
14173 /* Mark the dependence relation so that we don't flush PER_CU
14174 too early. */
14175 dwarf2_add_dependence (this_cu, per_cu);
14176
14177 /* If it's already on the queue, we have nothing to do. */
14178 if (per_cu->queued)
14179 return 0;
14180
14181 /* If the compilation unit is already loaded, just mark it as
14182 used. */
14183 if (per_cu->cu != NULL)
14184 {
14185 per_cu->cu->last_used = 0;
14186 return 0;
14187 }
14188
14189 /* Add it to the queue. */
14190 queue_comp_unit (per_cu);
14191
14192 return 1;
14193 }
14194
14195 /* Follow reference or signature attribute ATTR of SRC_DIE.
14196 On entry *REF_CU is the CU of SRC_DIE.
14197 On exit *REF_CU is the CU of the result. */
14198
14199 static struct die_info *
14200 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
14201 struct dwarf2_cu **ref_cu)
14202 {
14203 struct die_info *die;
14204
14205 if (is_ref_attr (attr))
14206 die = follow_die_ref (src_die, attr, ref_cu);
14207 else if (attr->form == DW_FORM_ref_sig8)
14208 die = follow_die_sig (src_die, attr, ref_cu);
14209 else
14210 {
14211 dump_die_for_error (src_die);
14212 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
14213 (*ref_cu)->objfile->name);
14214 }
14215
14216 return die;
14217 }
14218
14219 /* Follow reference OFFSET.
14220 On entry *REF_CU is the CU of the source die referencing OFFSET.
14221 On exit *REF_CU is the CU of the result.
14222 Returns NULL if OFFSET is invalid. */
14223
14224 static struct die_info *
14225 follow_die_offset (sect_offset offset, struct dwarf2_cu **ref_cu)
14226 {
14227 struct die_info temp_die;
14228 struct dwarf2_cu *target_cu, *cu = *ref_cu;
14229
14230 gdb_assert (cu->per_cu != NULL);
14231
14232 target_cu = cu;
14233
14234 if (cu->per_cu->debug_types_section)
14235 {
14236 /* .debug_types CUs cannot reference anything outside their CU.
14237 If they need to, they have to reference a signatured type via
14238 DW_FORM_ref_sig8. */
14239 if (! offset_in_cu_p (&cu->header, offset))
14240 return NULL;
14241 }
14242 else if (! offset_in_cu_p (&cu->header, offset))
14243 {
14244 struct dwarf2_per_cu_data *per_cu;
14245
14246 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
14247
14248 /* If necessary, add it to the queue and load its DIEs. */
14249 if (maybe_queue_comp_unit (cu, per_cu))
14250 load_full_comp_unit (per_cu);
14251
14252 target_cu = per_cu->cu;
14253 }
14254 else if (cu->dies == NULL)
14255 {
14256 /* We're loading full DIEs during partial symbol reading. */
14257 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
14258 load_full_comp_unit (cu->per_cu);
14259 }
14260
14261 *ref_cu = target_cu;
14262 temp_die.offset = offset;
14263 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
14264 }
14265
14266 /* Follow reference attribute ATTR of SRC_DIE.
14267 On entry *REF_CU is the CU of SRC_DIE.
14268 On exit *REF_CU is the CU of the result. */
14269
14270 static struct die_info *
14271 follow_die_ref (struct die_info *src_die, struct attribute *attr,
14272 struct dwarf2_cu **ref_cu)
14273 {
14274 sect_offset offset = dwarf2_get_ref_die_offset (attr);
14275 struct dwarf2_cu *cu = *ref_cu;
14276 struct die_info *die;
14277
14278 die = follow_die_offset (offset, ref_cu);
14279 if (!die)
14280 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
14281 "at 0x%x [in module %s]"),
14282 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
14283
14284 return die;
14285 }
14286
14287 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
14288 Returned value is intended for DW_OP_call*. Returned
14289 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
14290
14291 struct dwarf2_locexpr_baton
14292 dwarf2_fetch_die_location_block (cu_offset offset_in_cu,
14293 struct dwarf2_per_cu_data *per_cu,
14294 CORE_ADDR (*get_frame_pc) (void *baton),
14295 void *baton)
14296 {
14297 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
14298 struct dwarf2_cu *cu;
14299 struct die_info *die;
14300 struct attribute *attr;
14301 struct dwarf2_locexpr_baton retval;
14302
14303 dw2_setup (per_cu->objfile);
14304
14305 if (per_cu->cu == NULL)
14306 load_cu (per_cu);
14307 cu = per_cu->cu;
14308
14309 die = follow_die_offset (offset, &cu);
14310 if (!die)
14311 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
14312 offset.sect_off, per_cu->objfile->name);
14313
14314 attr = dwarf2_attr (die, DW_AT_location, cu);
14315 if (!attr)
14316 {
14317 /* DWARF: "If there is no such attribute, then there is no effect.".
14318 DATA is ignored if SIZE is 0. */
14319
14320 retval.data = NULL;
14321 retval.size = 0;
14322 }
14323 else if (attr_form_is_section_offset (attr))
14324 {
14325 struct dwarf2_loclist_baton loclist_baton;
14326 CORE_ADDR pc = (*get_frame_pc) (baton);
14327 size_t size;
14328
14329 fill_in_loclist_baton (cu, &loclist_baton, attr);
14330
14331 retval.data = dwarf2_find_location_expression (&loclist_baton,
14332 &size, pc);
14333 retval.size = size;
14334 }
14335 else
14336 {
14337 if (!attr_form_is_block (attr))
14338 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
14339 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
14340 offset.sect_off, per_cu->objfile->name);
14341
14342 retval.data = DW_BLOCK (attr)->data;
14343 retval.size = DW_BLOCK (attr)->size;
14344 }
14345 retval.per_cu = cu->per_cu;
14346
14347 age_cached_comp_units ();
14348
14349 return retval;
14350 }
14351
14352 /* Return the type of the DIE at DIE_OFFSET in the CU named by
14353 PER_CU. */
14354
14355 struct type *
14356 dwarf2_get_die_type (cu_offset die_offset,
14357 struct dwarf2_per_cu_data *per_cu)
14358 {
14359 sect_offset die_offset_sect;
14360
14361 dw2_setup (per_cu->objfile);
14362
14363 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
14364 return get_die_type_at_offset (die_offset_sect, per_cu);
14365 }
14366
14367 /* Follow the signature attribute ATTR in SRC_DIE.
14368 On entry *REF_CU is the CU of SRC_DIE.
14369 On exit *REF_CU is the CU of the result. */
14370
14371 static struct die_info *
14372 follow_die_sig (struct die_info *src_die, struct attribute *attr,
14373 struct dwarf2_cu **ref_cu)
14374 {
14375 struct objfile *objfile = (*ref_cu)->objfile;
14376 struct die_info temp_die;
14377 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
14378 struct dwarf2_cu *sig_cu;
14379 struct die_info *die;
14380
14381 /* sig_type will be NULL if the signatured type is missing from
14382 the debug info. */
14383 if (sig_type == NULL)
14384 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
14385 "at 0x%x [in module %s]"),
14386 src_die->offset.sect_off, objfile->name);
14387
14388 /* If necessary, add it to the queue and load its DIEs. */
14389
14390 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
14391 read_signatured_type (sig_type);
14392
14393 gdb_assert (sig_type->per_cu.cu != NULL);
14394
14395 sig_cu = sig_type->per_cu.cu;
14396 temp_die.offset.sect_off = (sig_type->per_cu.offset.sect_off
14397 + sig_type->type_offset.cu_off);
14398 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
14399 temp_die.offset.sect_off);
14400 if (die)
14401 {
14402 *ref_cu = sig_cu;
14403 return die;
14404 }
14405
14406 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
14407 "from DIE at 0x%x [in module %s]"),
14408 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
14409 }
14410
14411 /* Given an offset of a signatured type, return its signatured_type. */
14412
14413 static struct signatured_type *
14414 lookup_signatured_type_at_offset (struct objfile *objfile,
14415 struct dwarf2_section_info *section,
14416 sect_offset offset)
14417 {
14418 gdb_byte *info_ptr = section->buffer + offset.sect_off;
14419 unsigned int length, initial_length_size;
14420 unsigned int sig_offset;
14421 struct signatured_type find_entry, *type_sig;
14422
14423 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
14424 sig_offset = (initial_length_size
14425 + 2 /*version*/
14426 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
14427 + 1 /*address_size*/);
14428 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
14429 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
14430
14431 /* This is only used to lookup previously recorded types.
14432 If we didn't find it, it's our bug. */
14433 gdb_assert (type_sig != NULL);
14434 gdb_assert (offset.sect_off == type_sig->per_cu.offset.sect_off);
14435
14436 return type_sig;
14437 }
14438
14439 /* Load the DIEs associated with type unit PER_CU into memory. */
14440
14441 static void
14442 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
14443 {
14444 struct objfile *objfile = per_cu->objfile;
14445 struct dwarf2_section_info *sect = per_cu->debug_types_section;
14446 sect_offset offset = per_cu->offset;
14447 struct signatured_type *type_sig;
14448
14449 dwarf2_read_section (objfile, sect);
14450
14451 /* We have the section offset, but we need the signature to do the
14452 hash table lookup. */
14453 /* FIXME: This is sorta unnecessary, read_signatured_type only uses
14454 the signature to assert we found the right one.
14455 Ok, but it's a lot of work. We should simplify things so any needed
14456 assert doesn't require all this clumsiness. */
14457 type_sig = lookup_signatured_type_at_offset (objfile, sect, offset);
14458
14459 gdb_assert (type_sig->per_cu.cu == NULL);
14460
14461 read_signatured_type (type_sig);
14462
14463 gdb_assert (type_sig->per_cu.cu != NULL);
14464 }
14465
14466 /* Read in a signatured type and build its CU and DIEs. */
14467
14468 static void
14469 read_signatured_type (struct signatured_type *type_sig)
14470 {
14471 struct objfile *objfile = type_sig->per_cu.objfile;
14472 gdb_byte *types_ptr;
14473 struct die_reader_specs reader_specs;
14474 struct dwarf2_cu *cu;
14475 ULONGEST signature;
14476 struct cleanup *back_to, *free_cu_cleanup;
14477 struct dwarf2_section_info *section = type_sig->per_cu.debug_types_section;
14478
14479 dwarf2_read_section (objfile, section);
14480 types_ptr = section->buffer + type_sig->per_cu.offset.sect_off;
14481
14482 gdb_assert (type_sig->per_cu.cu == NULL);
14483
14484 cu = xmalloc (sizeof (*cu));
14485 init_one_comp_unit (cu, &type_sig->per_cu);
14486
14487 /* If an error occurs while loading, release our storage. */
14488 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
14489
14490 types_ptr = read_and_check_type_unit_head (&cu->header, section, types_ptr,
14491 &signature, NULL);
14492 gdb_assert (signature == type_sig->signature);
14493
14494 cu->die_hash
14495 = htab_create_alloc_ex (cu->header.length / 12,
14496 die_hash,
14497 die_eq,
14498 NULL,
14499 &cu->comp_unit_obstack,
14500 hashtab_obstack_allocate,
14501 dummy_obstack_deallocate);
14502
14503 dwarf2_read_abbrevs (cu);
14504 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
14505
14506 init_cu_die_reader (&reader_specs, cu);
14507
14508 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
14509 NULL /*parent*/);
14510
14511 /* We try not to read any attributes in this function, because not
14512 all CUs needed for references have been loaded yet, and symbol
14513 table processing isn't initialized. But we have to set the CU language,
14514 or we won't be able to build types correctly. */
14515 prepare_one_comp_unit (cu, cu->dies);
14516
14517 do_cleanups (back_to);
14518
14519 /* We've successfully allocated this compilation unit. Let our caller
14520 clean it up when finished with it. */
14521 discard_cleanups (free_cu_cleanup);
14522
14523 /* Link this TU into read_in_chain. */
14524 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
14525 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
14526 }
14527
14528 /* Decode simple location descriptions.
14529 Given a pointer to a dwarf block that defines a location, compute
14530 the location and return the value.
14531
14532 NOTE drow/2003-11-18: This function is called in two situations
14533 now: for the address of static or global variables (partial symbols
14534 only) and for offsets into structures which are expected to be
14535 (more or less) constant. The partial symbol case should go away,
14536 and only the constant case should remain. That will let this
14537 function complain more accurately. A few special modes are allowed
14538 without complaint for global variables (for instance, global
14539 register values and thread-local values).
14540
14541 A location description containing no operations indicates that the
14542 object is optimized out. The return value is 0 for that case.
14543 FIXME drow/2003-11-16: No callers check for this case any more; soon all
14544 callers will only want a very basic result and this can become a
14545 complaint.
14546
14547 Note that stack[0] is unused except as a default error return. */
14548
14549 static CORE_ADDR
14550 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
14551 {
14552 struct objfile *objfile = cu->objfile;
14553 int i;
14554 int size = blk->size;
14555 gdb_byte *data = blk->data;
14556 CORE_ADDR stack[64];
14557 int stacki;
14558 unsigned int bytes_read, unsnd;
14559 gdb_byte op;
14560
14561 i = 0;
14562 stacki = 0;
14563 stack[stacki] = 0;
14564 stack[++stacki] = 0;
14565
14566 while (i < size)
14567 {
14568 op = data[i++];
14569 switch (op)
14570 {
14571 case DW_OP_lit0:
14572 case DW_OP_lit1:
14573 case DW_OP_lit2:
14574 case DW_OP_lit3:
14575 case DW_OP_lit4:
14576 case DW_OP_lit5:
14577 case DW_OP_lit6:
14578 case DW_OP_lit7:
14579 case DW_OP_lit8:
14580 case DW_OP_lit9:
14581 case DW_OP_lit10:
14582 case DW_OP_lit11:
14583 case DW_OP_lit12:
14584 case DW_OP_lit13:
14585 case DW_OP_lit14:
14586 case DW_OP_lit15:
14587 case DW_OP_lit16:
14588 case DW_OP_lit17:
14589 case DW_OP_lit18:
14590 case DW_OP_lit19:
14591 case DW_OP_lit20:
14592 case DW_OP_lit21:
14593 case DW_OP_lit22:
14594 case DW_OP_lit23:
14595 case DW_OP_lit24:
14596 case DW_OP_lit25:
14597 case DW_OP_lit26:
14598 case DW_OP_lit27:
14599 case DW_OP_lit28:
14600 case DW_OP_lit29:
14601 case DW_OP_lit30:
14602 case DW_OP_lit31:
14603 stack[++stacki] = op - DW_OP_lit0;
14604 break;
14605
14606 case DW_OP_reg0:
14607 case DW_OP_reg1:
14608 case DW_OP_reg2:
14609 case DW_OP_reg3:
14610 case DW_OP_reg4:
14611 case DW_OP_reg5:
14612 case DW_OP_reg6:
14613 case DW_OP_reg7:
14614 case DW_OP_reg8:
14615 case DW_OP_reg9:
14616 case DW_OP_reg10:
14617 case DW_OP_reg11:
14618 case DW_OP_reg12:
14619 case DW_OP_reg13:
14620 case DW_OP_reg14:
14621 case DW_OP_reg15:
14622 case DW_OP_reg16:
14623 case DW_OP_reg17:
14624 case DW_OP_reg18:
14625 case DW_OP_reg19:
14626 case DW_OP_reg20:
14627 case DW_OP_reg21:
14628 case DW_OP_reg22:
14629 case DW_OP_reg23:
14630 case DW_OP_reg24:
14631 case DW_OP_reg25:
14632 case DW_OP_reg26:
14633 case DW_OP_reg27:
14634 case DW_OP_reg28:
14635 case DW_OP_reg29:
14636 case DW_OP_reg30:
14637 case DW_OP_reg31:
14638 stack[++stacki] = op - DW_OP_reg0;
14639 if (i < size)
14640 dwarf2_complex_location_expr_complaint ();
14641 break;
14642
14643 case DW_OP_regx:
14644 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
14645 i += bytes_read;
14646 stack[++stacki] = unsnd;
14647 if (i < size)
14648 dwarf2_complex_location_expr_complaint ();
14649 break;
14650
14651 case DW_OP_addr:
14652 stack[++stacki] = read_address (objfile->obfd, &data[i],
14653 cu, &bytes_read);
14654 i += bytes_read;
14655 break;
14656
14657 case DW_OP_const1u:
14658 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
14659 i += 1;
14660 break;
14661
14662 case DW_OP_const1s:
14663 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
14664 i += 1;
14665 break;
14666
14667 case DW_OP_const2u:
14668 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
14669 i += 2;
14670 break;
14671
14672 case DW_OP_const2s:
14673 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
14674 i += 2;
14675 break;
14676
14677 case DW_OP_const4u:
14678 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
14679 i += 4;
14680 break;
14681
14682 case DW_OP_const4s:
14683 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
14684 i += 4;
14685 break;
14686
14687 case DW_OP_const8u:
14688 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
14689 i += 8;
14690 break;
14691
14692 case DW_OP_constu:
14693 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
14694 &bytes_read);
14695 i += bytes_read;
14696 break;
14697
14698 case DW_OP_consts:
14699 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
14700 i += bytes_read;
14701 break;
14702
14703 case DW_OP_dup:
14704 stack[stacki + 1] = stack[stacki];
14705 stacki++;
14706 break;
14707
14708 case DW_OP_plus:
14709 stack[stacki - 1] += stack[stacki];
14710 stacki--;
14711 break;
14712
14713 case DW_OP_plus_uconst:
14714 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
14715 &bytes_read);
14716 i += bytes_read;
14717 break;
14718
14719 case DW_OP_minus:
14720 stack[stacki - 1] -= stack[stacki];
14721 stacki--;
14722 break;
14723
14724 case DW_OP_deref:
14725 /* If we're not the last op, then we definitely can't encode
14726 this using GDB's address_class enum. This is valid for partial
14727 global symbols, although the variable's address will be bogus
14728 in the psymtab. */
14729 if (i < size)
14730 dwarf2_complex_location_expr_complaint ();
14731 break;
14732
14733 case DW_OP_GNU_push_tls_address:
14734 /* The top of the stack has the offset from the beginning
14735 of the thread control block at which the variable is located. */
14736 /* Nothing should follow this operator, so the top of stack would
14737 be returned. */
14738 /* This is valid for partial global symbols, but the variable's
14739 address will be bogus in the psymtab. Make it always at least
14740 non-zero to not look as a variable garbage collected by linker
14741 which have DW_OP_addr 0. */
14742 if (i < size)
14743 dwarf2_complex_location_expr_complaint ();
14744 stack[stacki]++;
14745 break;
14746
14747 case DW_OP_GNU_uninit:
14748 break;
14749
14750 default:
14751 {
14752 const char *name = dwarf_stack_op_name (op);
14753
14754 if (name)
14755 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
14756 name);
14757 else
14758 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
14759 op);
14760 }
14761
14762 return (stack[stacki]);
14763 }
14764
14765 /* Enforce maximum stack depth of SIZE-1 to avoid writing
14766 outside of the allocated space. Also enforce minimum>0. */
14767 if (stacki >= ARRAY_SIZE (stack) - 1)
14768 {
14769 complaint (&symfile_complaints,
14770 _("location description stack overflow"));
14771 return 0;
14772 }
14773
14774 if (stacki <= 0)
14775 {
14776 complaint (&symfile_complaints,
14777 _("location description stack underflow"));
14778 return 0;
14779 }
14780 }
14781 return (stack[stacki]);
14782 }
14783
14784 /* memory allocation interface */
14785
14786 static struct dwarf_block *
14787 dwarf_alloc_block (struct dwarf2_cu *cu)
14788 {
14789 struct dwarf_block *blk;
14790
14791 blk = (struct dwarf_block *)
14792 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
14793 return (blk);
14794 }
14795
14796 static struct abbrev_info *
14797 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
14798 {
14799 struct abbrev_info *abbrev;
14800
14801 abbrev = (struct abbrev_info *)
14802 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
14803 memset (abbrev, 0, sizeof (struct abbrev_info));
14804 return (abbrev);
14805 }
14806
14807 static struct die_info *
14808 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
14809 {
14810 struct die_info *die;
14811 size_t size = sizeof (struct die_info);
14812
14813 if (num_attrs > 1)
14814 size += (num_attrs - 1) * sizeof (struct attribute);
14815
14816 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
14817 memset (die, 0, sizeof (struct die_info));
14818 return (die);
14819 }
14820
14821 \f
14822 /* Macro support. */
14823
14824 /* Return the full name of file number I in *LH's file name table.
14825 Use COMP_DIR as the name of the current directory of the
14826 compilation. The result is allocated using xmalloc; the caller is
14827 responsible for freeing it. */
14828 static char *
14829 file_full_name (int file, struct line_header *lh, const char *comp_dir)
14830 {
14831 /* Is the file number a valid index into the line header's file name
14832 table? Remember that file numbers start with one, not zero. */
14833 if (1 <= file && file <= lh->num_file_names)
14834 {
14835 struct file_entry *fe = &lh->file_names[file - 1];
14836
14837 if (IS_ABSOLUTE_PATH (fe->name))
14838 return xstrdup (fe->name);
14839 else
14840 {
14841 const char *dir;
14842 int dir_len;
14843 char *full_name;
14844
14845 if (fe->dir_index)
14846 dir = lh->include_dirs[fe->dir_index - 1];
14847 else
14848 dir = comp_dir;
14849
14850 if (dir)
14851 {
14852 dir_len = strlen (dir);
14853 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
14854 strcpy (full_name, dir);
14855 full_name[dir_len] = '/';
14856 strcpy (full_name + dir_len + 1, fe->name);
14857 return full_name;
14858 }
14859 else
14860 return xstrdup (fe->name);
14861 }
14862 }
14863 else
14864 {
14865 /* The compiler produced a bogus file number. We can at least
14866 record the macro definitions made in the file, even if we
14867 won't be able to find the file by name. */
14868 char fake_name[80];
14869
14870 sprintf (fake_name, "<bad macro file number %d>", file);
14871
14872 complaint (&symfile_complaints,
14873 _("bad file number in macro information (%d)"),
14874 file);
14875
14876 return xstrdup (fake_name);
14877 }
14878 }
14879
14880
14881 static struct macro_source_file *
14882 macro_start_file (int file, int line,
14883 struct macro_source_file *current_file,
14884 const char *comp_dir,
14885 struct line_header *lh, struct objfile *objfile)
14886 {
14887 /* The full name of this source file. */
14888 char *full_name = file_full_name (file, lh, comp_dir);
14889
14890 /* We don't create a macro table for this compilation unit
14891 at all until we actually get a filename. */
14892 if (! pending_macros)
14893 pending_macros = new_macro_table (&objfile->objfile_obstack,
14894 objfile->macro_cache);
14895
14896 if (! current_file)
14897 /* If we have no current file, then this must be the start_file
14898 directive for the compilation unit's main source file. */
14899 current_file = macro_set_main (pending_macros, full_name);
14900 else
14901 current_file = macro_include (current_file, line, full_name);
14902
14903 xfree (full_name);
14904
14905 return current_file;
14906 }
14907
14908
14909 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
14910 followed by a null byte. */
14911 static char *
14912 copy_string (const char *buf, int len)
14913 {
14914 char *s = xmalloc (len + 1);
14915
14916 memcpy (s, buf, len);
14917 s[len] = '\0';
14918 return s;
14919 }
14920
14921
14922 static const char *
14923 consume_improper_spaces (const char *p, const char *body)
14924 {
14925 if (*p == ' ')
14926 {
14927 complaint (&symfile_complaints,
14928 _("macro definition contains spaces "
14929 "in formal argument list:\n`%s'"),
14930 body);
14931
14932 while (*p == ' ')
14933 p++;
14934 }
14935
14936 return p;
14937 }
14938
14939
14940 static void
14941 parse_macro_definition (struct macro_source_file *file, int line,
14942 const char *body)
14943 {
14944 const char *p;
14945
14946 /* The body string takes one of two forms. For object-like macro
14947 definitions, it should be:
14948
14949 <macro name> " " <definition>
14950
14951 For function-like macro definitions, it should be:
14952
14953 <macro name> "() " <definition>
14954 or
14955 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
14956
14957 Spaces may appear only where explicitly indicated, and in the
14958 <definition>.
14959
14960 The Dwarf 2 spec says that an object-like macro's name is always
14961 followed by a space, but versions of GCC around March 2002 omit
14962 the space when the macro's definition is the empty string.
14963
14964 The Dwarf 2 spec says that there should be no spaces between the
14965 formal arguments in a function-like macro's formal argument list,
14966 but versions of GCC around March 2002 include spaces after the
14967 commas. */
14968
14969
14970 /* Find the extent of the macro name. The macro name is terminated
14971 by either a space or null character (for an object-like macro) or
14972 an opening paren (for a function-like macro). */
14973 for (p = body; *p; p++)
14974 if (*p == ' ' || *p == '(')
14975 break;
14976
14977 if (*p == ' ' || *p == '\0')
14978 {
14979 /* It's an object-like macro. */
14980 int name_len = p - body;
14981 char *name = copy_string (body, name_len);
14982 const char *replacement;
14983
14984 if (*p == ' ')
14985 replacement = body + name_len + 1;
14986 else
14987 {
14988 dwarf2_macro_malformed_definition_complaint (body);
14989 replacement = body + name_len;
14990 }
14991
14992 macro_define_object (file, line, name, replacement);
14993
14994 xfree (name);
14995 }
14996 else if (*p == '(')
14997 {
14998 /* It's a function-like macro. */
14999 char *name = copy_string (body, p - body);
15000 int argc = 0;
15001 int argv_size = 1;
15002 char **argv = xmalloc (argv_size * sizeof (*argv));
15003
15004 p++;
15005
15006 p = consume_improper_spaces (p, body);
15007
15008 /* Parse the formal argument list. */
15009 while (*p && *p != ')')
15010 {
15011 /* Find the extent of the current argument name. */
15012 const char *arg_start = p;
15013
15014 while (*p && *p != ',' && *p != ')' && *p != ' ')
15015 p++;
15016
15017 if (! *p || p == arg_start)
15018 dwarf2_macro_malformed_definition_complaint (body);
15019 else
15020 {
15021 /* Make sure argv has room for the new argument. */
15022 if (argc >= argv_size)
15023 {
15024 argv_size *= 2;
15025 argv = xrealloc (argv, argv_size * sizeof (*argv));
15026 }
15027
15028 argv[argc++] = copy_string (arg_start, p - arg_start);
15029 }
15030
15031 p = consume_improper_spaces (p, body);
15032
15033 /* Consume the comma, if present. */
15034 if (*p == ',')
15035 {
15036 p++;
15037
15038 p = consume_improper_spaces (p, body);
15039 }
15040 }
15041
15042 if (*p == ')')
15043 {
15044 p++;
15045
15046 if (*p == ' ')
15047 /* Perfectly formed definition, no complaints. */
15048 macro_define_function (file, line, name,
15049 argc, (const char **) argv,
15050 p + 1);
15051 else if (*p == '\0')
15052 {
15053 /* Complain, but do define it. */
15054 dwarf2_macro_malformed_definition_complaint (body);
15055 macro_define_function (file, line, name,
15056 argc, (const char **) argv,
15057 p);
15058 }
15059 else
15060 /* Just complain. */
15061 dwarf2_macro_malformed_definition_complaint (body);
15062 }
15063 else
15064 /* Just complain. */
15065 dwarf2_macro_malformed_definition_complaint (body);
15066
15067 xfree (name);
15068 {
15069 int i;
15070
15071 for (i = 0; i < argc; i++)
15072 xfree (argv[i]);
15073 }
15074 xfree (argv);
15075 }
15076 else
15077 dwarf2_macro_malformed_definition_complaint (body);
15078 }
15079
15080 /* Skip some bytes from BYTES according to the form given in FORM.
15081 Returns the new pointer. */
15082
15083 static gdb_byte *
15084 skip_form_bytes (bfd *abfd, gdb_byte *bytes,
15085 enum dwarf_form form,
15086 unsigned int offset_size,
15087 struct dwarf2_section_info *section)
15088 {
15089 unsigned int bytes_read;
15090
15091 switch (form)
15092 {
15093 case DW_FORM_data1:
15094 case DW_FORM_flag:
15095 ++bytes;
15096 break;
15097
15098 case DW_FORM_data2:
15099 bytes += 2;
15100 break;
15101
15102 case DW_FORM_data4:
15103 bytes += 4;
15104 break;
15105
15106 case DW_FORM_data8:
15107 bytes += 8;
15108 break;
15109
15110 case DW_FORM_string:
15111 read_direct_string (abfd, bytes, &bytes_read);
15112 bytes += bytes_read;
15113 break;
15114
15115 case DW_FORM_sec_offset:
15116 case DW_FORM_strp:
15117 bytes += offset_size;
15118 break;
15119
15120 case DW_FORM_block:
15121 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
15122 bytes += bytes_read;
15123 break;
15124
15125 case DW_FORM_block1:
15126 bytes += 1 + read_1_byte (abfd, bytes);
15127 break;
15128 case DW_FORM_block2:
15129 bytes += 2 + read_2_bytes (abfd, bytes);
15130 break;
15131 case DW_FORM_block4:
15132 bytes += 4 + read_4_bytes (abfd, bytes);
15133 break;
15134
15135 case DW_FORM_sdata:
15136 case DW_FORM_udata:
15137 bytes = skip_leb128 (abfd, bytes);
15138 break;
15139
15140 default:
15141 {
15142 complain:
15143 complaint (&symfile_complaints,
15144 _("invalid form 0x%x in `%s'"),
15145 form,
15146 section->asection->name);
15147 return NULL;
15148 }
15149 }
15150
15151 return bytes;
15152 }
15153
15154 /* A helper for dwarf_decode_macros that handles skipping an unknown
15155 opcode. Returns an updated pointer to the macro data buffer; or,
15156 on error, issues a complaint and returns NULL. */
15157
15158 static gdb_byte *
15159 skip_unknown_opcode (unsigned int opcode,
15160 gdb_byte **opcode_definitions,
15161 gdb_byte *mac_ptr,
15162 bfd *abfd,
15163 unsigned int offset_size,
15164 struct dwarf2_section_info *section)
15165 {
15166 unsigned int bytes_read, i;
15167 unsigned long arg;
15168 gdb_byte *defn;
15169
15170 if (opcode_definitions[opcode] == NULL)
15171 {
15172 complaint (&symfile_complaints,
15173 _("unrecognized DW_MACFINO opcode 0x%x"),
15174 opcode);
15175 return NULL;
15176 }
15177
15178 defn = opcode_definitions[opcode];
15179 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
15180 defn += bytes_read;
15181
15182 for (i = 0; i < arg; ++i)
15183 {
15184 mac_ptr = skip_form_bytes (abfd, mac_ptr, defn[i], offset_size, section);
15185 if (mac_ptr == NULL)
15186 {
15187 /* skip_form_bytes already issued the complaint. */
15188 return NULL;
15189 }
15190 }
15191
15192 return mac_ptr;
15193 }
15194
15195 /* A helper function which parses the header of a macro section.
15196 If the macro section is the extended (for now called "GNU") type,
15197 then this updates *OFFSET_SIZE. Returns a pointer to just after
15198 the header, or issues a complaint and returns NULL on error. */
15199
15200 static gdb_byte *
15201 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
15202 bfd *abfd,
15203 gdb_byte *mac_ptr,
15204 unsigned int *offset_size,
15205 int section_is_gnu)
15206 {
15207 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
15208
15209 if (section_is_gnu)
15210 {
15211 unsigned int version, flags;
15212
15213 version = read_2_bytes (abfd, mac_ptr);
15214 if (version != 4)
15215 {
15216 complaint (&symfile_complaints,
15217 _("unrecognized version `%d' in .debug_macro section"),
15218 version);
15219 return NULL;
15220 }
15221 mac_ptr += 2;
15222
15223 flags = read_1_byte (abfd, mac_ptr);
15224 ++mac_ptr;
15225 *offset_size = (flags & 1) ? 8 : 4;
15226
15227 if ((flags & 2) != 0)
15228 /* We don't need the line table offset. */
15229 mac_ptr += *offset_size;
15230
15231 /* Vendor opcode descriptions. */
15232 if ((flags & 4) != 0)
15233 {
15234 unsigned int i, count;
15235
15236 count = read_1_byte (abfd, mac_ptr);
15237 ++mac_ptr;
15238 for (i = 0; i < count; ++i)
15239 {
15240 unsigned int opcode, bytes_read;
15241 unsigned long arg;
15242
15243 opcode = read_1_byte (abfd, mac_ptr);
15244 ++mac_ptr;
15245 opcode_definitions[opcode] = mac_ptr;
15246 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15247 mac_ptr += bytes_read;
15248 mac_ptr += arg;
15249 }
15250 }
15251 }
15252
15253 return mac_ptr;
15254 }
15255
15256 /* A helper for dwarf_decode_macros that handles the GNU extensions,
15257 including DW_MACRO_GNU_transparent_include. */
15258
15259 static void
15260 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
15261 struct macro_source_file *current_file,
15262 struct line_header *lh, char *comp_dir,
15263 struct dwarf2_section_info *section,
15264 int section_is_gnu,
15265 unsigned int offset_size,
15266 struct objfile *objfile,
15267 htab_t include_hash)
15268 {
15269 enum dwarf_macro_record_type macinfo_type;
15270 int at_commandline;
15271 gdb_byte *opcode_definitions[256];
15272
15273 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
15274 &offset_size, section_is_gnu);
15275 if (mac_ptr == NULL)
15276 {
15277 /* We already issued a complaint. */
15278 return;
15279 }
15280
15281 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
15282 GDB is still reading the definitions from command line. First
15283 DW_MACINFO_start_file will need to be ignored as it was already executed
15284 to create CURRENT_FILE for the main source holding also the command line
15285 definitions. On first met DW_MACINFO_start_file this flag is reset to
15286 normally execute all the remaining DW_MACINFO_start_file macinfos. */
15287
15288 at_commandline = 1;
15289
15290 do
15291 {
15292 /* Do we at least have room for a macinfo type byte? */
15293 if (mac_ptr >= mac_end)
15294 {
15295 dwarf2_macros_too_long_complaint (section);
15296 break;
15297 }
15298
15299 macinfo_type = read_1_byte (abfd, mac_ptr);
15300 mac_ptr++;
15301
15302 /* Note that we rely on the fact that the corresponding GNU and
15303 DWARF constants are the same. */
15304 switch (macinfo_type)
15305 {
15306 /* A zero macinfo type indicates the end of the macro
15307 information. */
15308 case 0:
15309 break;
15310
15311 case DW_MACRO_GNU_define:
15312 case DW_MACRO_GNU_undef:
15313 case DW_MACRO_GNU_define_indirect:
15314 case DW_MACRO_GNU_undef_indirect:
15315 {
15316 unsigned int bytes_read;
15317 int line;
15318 char *body;
15319 int is_define;
15320
15321 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15322 mac_ptr += bytes_read;
15323
15324 if (macinfo_type == DW_MACRO_GNU_define
15325 || macinfo_type == DW_MACRO_GNU_undef)
15326 {
15327 body = read_direct_string (abfd, mac_ptr, &bytes_read);
15328 mac_ptr += bytes_read;
15329 }
15330 else
15331 {
15332 LONGEST str_offset;
15333
15334 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
15335 mac_ptr += offset_size;
15336
15337 body = read_indirect_string_at_offset (abfd, str_offset);
15338 }
15339
15340 is_define = (macinfo_type == DW_MACRO_GNU_define
15341 || macinfo_type == DW_MACRO_GNU_define_indirect);
15342 if (! current_file)
15343 {
15344 /* DWARF violation as no main source is present. */
15345 complaint (&symfile_complaints,
15346 _("debug info with no main source gives macro %s "
15347 "on line %d: %s"),
15348 is_define ? _("definition") : _("undefinition"),
15349 line, body);
15350 break;
15351 }
15352 if ((line == 0 && !at_commandline)
15353 || (line != 0 && at_commandline))
15354 complaint (&symfile_complaints,
15355 _("debug info gives %s macro %s with %s line %d: %s"),
15356 at_commandline ? _("command-line") : _("in-file"),
15357 is_define ? _("definition") : _("undefinition"),
15358 line == 0 ? _("zero") : _("non-zero"), line, body);
15359
15360 if (is_define)
15361 parse_macro_definition (current_file, line, body);
15362 else
15363 {
15364 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
15365 || macinfo_type == DW_MACRO_GNU_undef_indirect);
15366 macro_undef (current_file, line, body);
15367 }
15368 }
15369 break;
15370
15371 case DW_MACRO_GNU_start_file:
15372 {
15373 unsigned int bytes_read;
15374 int line, file;
15375
15376 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15377 mac_ptr += bytes_read;
15378 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15379 mac_ptr += bytes_read;
15380
15381 if ((line == 0 && !at_commandline)
15382 || (line != 0 && at_commandline))
15383 complaint (&symfile_complaints,
15384 _("debug info gives source %d included "
15385 "from %s at %s line %d"),
15386 file, at_commandline ? _("command-line") : _("file"),
15387 line == 0 ? _("zero") : _("non-zero"), line);
15388
15389 if (at_commandline)
15390 {
15391 /* This DW_MACRO_GNU_start_file was executed in the
15392 pass one. */
15393 at_commandline = 0;
15394 }
15395 else
15396 current_file = macro_start_file (file, line,
15397 current_file, comp_dir,
15398 lh, objfile);
15399 }
15400 break;
15401
15402 case DW_MACRO_GNU_end_file:
15403 if (! current_file)
15404 complaint (&symfile_complaints,
15405 _("macro debug info has an unmatched "
15406 "`close_file' directive"));
15407 else
15408 {
15409 current_file = current_file->included_by;
15410 if (! current_file)
15411 {
15412 enum dwarf_macro_record_type next_type;
15413
15414 /* GCC circa March 2002 doesn't produce the zero
15415 type byte marking the end of the compilation
15416 unit. Complain if it's not there, but exit no
15417 matter what. */
15418
15419 /* Do we at least have room for a macinfo type byte? */
15420 if (mac_ptr >= mac_end)
15421 {
15422 dwarf2_macros_too_long_complaint (section);
15423 return;
15424 }
15425
15426 /* We don't increment mac_ptr here, so this is just
15427 a look-ahead. */
15428 next_type = read_1_byte (abfd, mac_ptr);
15429 if (next_type != 0)
15430 complaint (&symfile_complaints,
15431 _("no terminating 0-type entry for "
15432 "macros in `.debug_macinfo' section"));
15433
15434 return;
15435 }
15436 }
15437 break;
15438
15439 case DW_MACRO_GNU_transparent_include:
15440 {
15441 LONGEST offset;
15442 void **slot;
15443
15444 offset = read_offset_1 (abfd, mac_ptr, offset_size);
15445 mac_ptr += offset_size;
15446
15447 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
15448 if (*slot != NULL)
15449 {
15450 /* This has actually happened; see
15451 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
15452 complaint (&symfile_complaints,
15453 _("recursive DW_MACRO_GNU_transparent_include in "
15454 ".debug_macro section"));
15455 }
15456 else
15457 {
15458 *slot = mac_ptr;
15459
15460 dwarf_decode_macro_bytes (abfd,
15461 section->buffer + offset,
15462 mac_end, current_file,
15463 lh, comp_dir,
15464 section, section_is_gnu,
15465 offset_size, objfile, include_hash);
15466
15467 htab_remove_elt (include_hash, mac_ptr);
15468 }
15469 }
15470 break;
15471
15472 case DW_MACINFO_vendor_ext:
15473 if (!section_is_gnu)
15474 {
15475 unsigned int bytes_read;
15476 int constant;
15477
15478 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15479 mac_ptr += bytes_read;
15480 read_direct_string (abfd, mac_ptr, &bytes_read);
15481 mac_ptr += bytes_read;
15482
15483 /* We don't recognize any vendor extensions. */
15484 break;
15485 }
15486 /* FALLTHROUGH */
15487
15488 default:
15489 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
15490 mac_ptr, abfd, offset_size,
15491 section);
15492 if (mac_ptr == NULL)
15493 return;
15494 break;
15495 }
15496 } while (macinfo_type != 0);
15497 }
15498
15499 static void
15500 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
15501 char *comp_dir, bfd *abfd,
15502 struct dwarf2_cu *cu,
15503 struct dwarf2_section_info *section,
15504 int section_is_gnu)
15505 {
15506 struct objfile *objfile = dwarf2_per_objfile->objfile;
15507 gdb_byte *mac_ptr, *mac_end;
15508 struct macro_source_file *current_file = 0;
15509 enum dwarf_macro_record_type macinfo_type;
15510 unsigned int offset_size = cu->header.offset_size;
15511 gdb_byte *opcode_definitions[256];
15512 struct cleanup *cleanup;
15513 htab_t include_hash;
15514 void **slot;
15515
15516 dwarf2_read_section (objfile, section);
15517 if (section->buffer == NULL)
15518 {
15519 complaint (&symfile_complaints, _("missing %s section"),
15520 section->asection->name);
15521 return;
15522 }
15523
15524 /* First pass: Find the name of the base filename.
15525 This filename is needed in order to process all macros whose definition
15526 (or undefinition) comes from the command line. These macros are defined
15527 before the first DW_MACINFO_start_file entry, and yet still need to be
15528 associated to the base file.
15529
15530 To determine the base file name, we scan the macro definitions until we
15531 reach the first DW_MACINFO_start_file entry. We then initialize
15532 CURRENT_FILE accordingly so that any macro definition found before the
15533 first DW_MACINFO_start_file can still be associated to the base file. */
15534
15535 mac_ptr = section->buffer + offset;
15536 mac_end = section->buffer + section->size;
15537
15538 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
15539 &offset_size, section_is_gnu);
15540 if (mac_ptr == NULL)
15541 {
15542 /* We already issued a complaint. */
15543 return;
15544 }
15545
15546 do
15547 {
15548 /* Do we at least have room for a macinfo type byte? */
15549 if (mac_ptr >= mac_end)
15550 {
15551 /* Complaint is printed during the second pass as GDB will probably
15552 stop the first pass earlier upon finding
15553 DW_MACINFO_start_file. */
15554 break;
15555 }
15556
15557 macinfo_type = read_1_byte (abfd, mac_ptr);
15558 mac_ptr++;
15559
15560 /* Note that we rely on the fact that the corresponding GNU and
15561 DWARF constants are the same. */
15562 switch (macinfo_type)
15563 {
15564 /* A zero macinfo type indicates the end of the macro
15565 information. */
15566 case 0:
15567 break;
15568
15569 case DW_MACRO_GNU_define:
15570 case DW_MACRO_GNU_undef:
15571 /* Only skip the data by MAC_PTR. */
15572 {
15573 unsigned int bytes_read;
15574
15575 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15576 mac_ptr += bytes_read;
15577 read_direct_string (abfd, mac_ptr, &bytes_read);
15578 mac_ptr += bytes_read;
15579 }
15580 break;
15581
15582 case DW_MACRO_GNU_start_file:
15583 {
15584 unsigned int bytes_read;
15585 int line, file;
15586
15587 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15588 mac_ptr += bytes_read;
15589 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15590 mac_ptr += bytes_read;
15591
15592 current_file = macro_start_file (file, line, current_file,
15593 comp_dir, lh, objfile);
15594 }
15595 break;
15596
15597 case DW_MACRO_GNU_end_file:
15598 /* No data to skip by MAC_PTR. */
15599 break;
15600
15601 case DW_MACRO_GNU_define_indirect:
15602 case DW_MACRO_GNU_undef_indirect:
15603 {
15604 unsigned int bytes_read;
15605
15606 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15607 mac_ptr += bytes_read;
15608 mac_ptr += offset_size;
15609 }
15610 break;
15611
15612 case DW_MACRO_GNU_transparent_include:
15613 /* Note that, according to the spec, a transparent include
15614 chain cannot call DW_MACRO_GNU_start_file. So, we can just
15615 skip this opcode. */
15616 mac_ptr += offset_size;
15617 break;
15618
15619 case DW_MACINFO_vendor_ext:
15620 /* Only skip the data by MAC_PTR. */
15621 if (!section_is_gnu)
15622 {
15623 unsigned int bytes_read;
15624
15625 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15626 mac_ptr += bytes_read;
15627 read_direct_string (abfd, mac_ptr, &bytes_read);
15628 mac_ptr += bytes_read;
15629 }
15630 /* FALLTHROUGH */
15631
15632 default:
15633 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
15634 mac_ptr, abfd, offset_size,
15635 section);
15636 if (mac_ptr == NULL)
15637 return;
15638 break;
15639 }
15640 } while (macinfo_type != 0 && current_file == NULL);
15641
15642 /* Second pass: Process all entries.
15643
15644 Use the AT_COMMAND_LINE flag to determine whether we are still processing
15645 command-line macro definitions/undefinitions. This flag is unset when we
15646 reach the first DW_MACINFO_start_file entry. */
15647
15648 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
15649 NULL, xcalloc, xfree);
15650 cleanup = make_cleanup_htab_delete (include_hash);
15651 mac_ptr = section->buffer + offset;
15652 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
15653 *slot = mac_ptr;
15654 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
15655 current_file, lh, comp_dir, section, section_is_gnu,
15656 offset_size, objfile, include_hash);
15657 do_cleanups (cleanup);
15658 }
15659
15660 /* Check if the attribute's form is a DW_FORM_block*
15661 if so return true else false. */
15662 static int
15663 attr_form_is_block (struct attribute *attr)
15664 {
15665 return (attr == NULL ? 0 :
15666 attr->form == DW_FORM_block1
15667 || attr->form == DW_FORM_block2
15668 || attr->form == DW_FORM_block4
15669 || attr->form == DW_FORM_block
15670 || attr->form == DW_FORM_exprloc);
15671 }
15672
15673 /* Return non-zero if ATTR's value is a section offset --- classes
15674 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
15675 You may use DW_UNSND (attr) to retrieve such offsets.
15676
15677 Section 7.5.4, "Attribute Encodings", explains that no attribute
15678 may have a value that belongs to more than one of these classes; it
15679 would be ambiguous if we did, because we use the same forms for all
15680 of them. */
15681 static int
15682 attr_form_is_section_offset (struct attribute *attr)
15683 {
15684 return (attr->form == DW_FORM_data4
15685 || attr->form == DW_FORM_data8
15686 || attr->form == DW_FORM_sec_offset);
15687 }
15688
15689
15690 /* Return non-zero if ATTR's value falls in the 'constant' class, or
15691 zero otherwise. When this function returns true, you can apply
15692 dwarf2_get_attr_constant_value to it.
15693
15694 However, note that for some attributes you must check
15695 attr_form_is_section_offset before using this test. DW_FORM_data4
15696 and DW_FORM_data8 are members of both the constant class, and of
15697 the classes that contain offsets into other debug sections
15698 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
15699 that, if an attribute's can be either a constant or one of the
15700 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
15701 taken as section offsets, not constants. */
15702 static int
15703 attr_form_is_constant (struct attribute *attr)
15704 {
15705 switch (attr->form)
15706 {
15707 case DW_FORM_sdata:
15708 case DW_FORM_udata:
15709 case DW_FORM_data1:
15710 case DW_FORM_data2:
15711 case DW_FORM_data4:
15712 case DW_FORM_data8:
15713 return 1;
15714 default:
15715 return 0;
15716 }
15717 }
15718
15719 /* A helper function that fills in a dwarf2_loclist_baton. */
15720
15721 static void
15722 fill_in_loclist_baton (struct dwarf2_cu *cu,
15723 struct dwarf2_loclist_baton *baton,
15724 struct attribute *attr)
15725 {
15726 dwarf2_read_section (dwarf2_per_objfile->objfile,
15727 &dwarf2_per_objfile->loc);
15728
15729 baton->per_cu = cu->per_cu;
15730 gdb_assert (baton->per_cu);
15731 /* We don't know how long the location list is, but make sure we
15732 don't run off the edge of the section. */
15733 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
15734 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
15735 baton->base_address = cu->base_address;
15736 }
15737
15738 static void
15739 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
15740 struct dwarf2_cu *cu)
15741 {
15742 struct objfile *objfile = dwarf2_per_objfile->objfile;
15743
15744 if (attr_form_is_section_offset (attr)
15745 /* ".debug_loc" may not exist at all, or the offset may be outside
15746 the section. If so, fall through to the complaint in the
15747 other branch. */
15748 && DW_UNSND (attr) < dwarf2_section_size (objfile,
15749 &dwarf2_per_objfile->loc))
15750 {
15751 struct dwarf2_loclist_baton *baton;
15752
15753 baton = obstack_alloc (&objfile->objfile_obstack,
15754 sizeof (struct dwarf2_loclist_baton));
15755
15756 fill_in_loclist_baton (cu, baton, attr);
15757
15758 if (cu->base_known == 0)
15759 complaint (&symfile_complaints,
15760 _("Location list used without "
15761 "specifying the CU base address."));
15762
15763 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
15764 SYMBOL_LOCATION_BATON (sym) = baton;
15765 }
15766 else
15767 {
15768 struct dwarf2_locexpr_baton *baton;
15769
15770 baton = obstack_alloc (&objfile->objfile_obstack,
15771 sizeof (struct dwarf2_locexpr_baton));
15772 baton->per_cu = cu->per_cu;
15773 gdb_assert (baton->per_cu);
15774
15775 if (attr_form_is_block (attr))
15776 {
15777 /* Note that we're just copying the block's data pointer
15778 here, not the actual data. We're still pointing into the
15779 info_buffer for SYM's objfile; right now we never release
15780 that buffer, but when we do clean up properly this may
15781 need to change. */
15782 baton->size = DW_BLOCK (attr)->size;
15783 baton->data = DW_BLOCK (attr)->data;
15784 }
15785 else
15786 {
15787 dwarf2_invalid_attrib_class_complaint ("location description",
15788 SYMBOL_NATURAL_NAME (sym));
15789 baton->size = 0;
15790 }
15791
15792 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
15793 SYMBOL_LOCATION_BATON (sym) = baton;
15794 }
15795 }
15796
15797 /* Return the OBJFILE associated with the compilation unit CU. If CU
15798 came from a separate debuginfo file, then the master objfile is
15799 returned. */
15800
15801 struct objfile *
15802 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
15803 {
15804 struct objfile *objfile = per_cu->objfile;
15805
15806 /* Return the master objfile, so that we can report and look up the
15807 correct file containing this variable. */
15808 if (objfile->separate_debug_objfile_backlink)
15809 objfile = objfile->separate_debug_objfile_backlink;
15810
15811 return objfile;
15812 }
15813
15814 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
15815 (CU_HEADERP is unused in such case) or prepare a temporary copy at
15816 CU_HEADERP first. */
15817
15818 static const struct comp_unit_head *
15819 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
15820 struct dwarf2_per_cu_data *per_cu)
15821 {
15822 struct objfile *objfile;
15823 struct dwarf2_per_objfile *per_objfile;
15824 gdb_byte *info_ptr;
15825
15826 if (per_cu->cu)
15827 return &per_cu->cu->header;
15828
15829 objfile = per_cu->objfile;
15830 per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15831 info_ptr = per_objfile->info.buffer + per_cu->offset.sect_off;
15832
15833 memset (cu_headerp, 0, sizeof (*cu_headerp));
15834 read_comp_unit_head (cu_headerp, info_ptr, objfile->obfd);
15835
15836 return cu_headerp;
15837 }
15838
15839 /* Return the address size given in the compilation unit header for CU. */
15840
15841 int
15842 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
15843 {
15844 struct comp_unit_head cu_header_local;
15845 const struct comp_unit_head *cu_headerp;
15846
15847 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15848
15849 return cu_headerp->addr_size;
15850 }
15851
15852 /* Return the offset size given in the compilation unit header for CU. */
15853
15854 int
15855 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
15856 {
15857 struct comp_unit_head cu_header_local;
15858 const struct comp_unit_head *cu_headerp;
15859
15860 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15861
15862 return cu_headerp->offset_size;
15863 }
15864
15865 /* See its dwarf2loc.h declaration. */
15866
15867 int
15868 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
15869 {
15870 struct comp_unit_head cu_header_local;
15871 const struct comp_unit_head *cu_headerp;
15872
15873 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15874
15875 if (cu_headerp->version == 2)
15876 return cu_headerp->addr_size;
15877 else
15878 return cu_headerp->offset_size;
15879 }
15880
15881 /* Return the text offset of the CU. The returned offset comes from
15882 this CU's objfile. If this objfile came from a separate debuginfo
15883 file, then the offset may be different from the corresponding
15884 offset in the parent objfile. */
15885
15886 CORE_ADDR
15887 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
15888 {
15889 struct objfile *objfile = per_cu->objfile;
15890
15891 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15892 }
15893
15894 /* Locate the .debug_info compilation unit from CU's objfile which contains
15895 the DIE at OFFSET. Raises an error on failure. */
15896
15897 static struct dwarf2_per_cu_data *
15898 dwarf2_find_containing_comp_unit (sect_offset offset,
15899 struct objfile *objfile)
15900 {
15901 struct dwarf2_per_cu_data *this_cu;
15902 int low, high;
15903
15904 low = 0;
15905 high = dwarf2_per_objfile->n_comp_units - 1;
15906 while (high > low)
15907 {
15908 int mid = low + (high - low) / 2;
15909
15910 if (dwarf2_per_objfile->all_comp_units[mid]->offset.sect_off
15911 >= offset.sect_off)
15912 high = mid;
15913 else
15914 low = mid + 1;
15915 }
15916 gdb_assert (low == high);
15917 if (dwarf2_per_objfile->all_comp_units[low]->offset.sect_off
15918 > offset.sect_off)
15919 {
15920 if (low == 0)
15921 error (_("Dwarf Error: could not find partial DIE containing "
15922 "offset 0x%lx [in module %s]"),
15923 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
15924
15925 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
15926 <= offset.sect_off);
15927 return dwarf2_per_objfile->all_comp_units[low-1];
15928 }
15929 else
15930 {
15931 this_cu = dwarf2_per_objfile->all_comp_units[low];
15932 if (low == dwarf2_per_objfile->n_comp_units - 1
15933 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
15934 error (_("invalid dwarf2 offset %u"), offset.sect_off);
15935 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
15936 return this_cu;
15937 }
15938 }
15939
15940 /* Initialize dwarf2_cu CU, owned by PER_CU. */
15941
15942 static void
15943 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
15944 {
15945 memset (cu, 0, sizeof (*cu));
15946 per_cu->cu = cu;
15947 cu->per_cu = per_cu;
15948 cu->objfile = per_cu->objfile;
15949 obstack_init (&cu->comp_unit_obstack);
15950 }
15951
15952 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
15953
15954 static void
15955 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die)
15956 {
15957 struct attribute *attr;
15958
15959 /* Set the language we're debugging. */
15960 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
15961 if (attr)
15962 set_cu_language (DW_UNSND (attr), cu);
15963 else
15964 {
15965 cu->language = language_minimal;
15966 cu->language_defn = language_def (cu->language);
15967 }
15968 }
15969
15970 /* Release one cached compilation unit, CU. We unlink it from the tree
15971 of compilation units, but we don't remove it from the read_in_chain;
15972 the caller is responsible for that.
15973 NOTE: DATA is a void * because this function is also used as a
15974 cleanup routine. */
15975
15976 static void
15977 free_heap_comp_unit (void *data)
15978 {
15979 struct dwarf2_cu *cu = data;
15980
15981 gdb_assert (cu->per_cu != NULL);
15982 cu->per_cu->cu = NULL;
15983 cu->per_cu = NULL;
15984
15985 obstack_free (&cu->comp_unit_obstack, NULL);
15986
15987 xfree (cu);
15988 }
15989
15990 /* This cleanup function is passed the address of a dwarf2_cu on the stack
15991 when we're finished with it. We can't free the pointer itself, but be
15992 sure to unlink it from the cache. Also release any associated storage
15993 and perform cache maintenance.
15994
15995 Only used during partial symbol parsing. */
15996
15997 static void
15998 free_stack_comp_unit (void *data)
15999 {
16000 struct dwarf2_cu *cu = data;
16001
16002 gdb_assert (cu->per_cu != NULL);
16003 cu->per_cu->cu = NULL;
16004 cu->per_cu = NULL;
16005
16006 obstack_free (&cu->comp_unit_obstack, NULL);
16007 cu->partial_dies = NULL;
16008
16009 /* The previous code only did this if per_cu != NULL.
16010 But that would always succeed, so now we just unconditionally do
16011 the aging. This seems like the wrong place to do such aging,
16012 but cleaning that up is left for later. */
16013 age_cached_comp_units ();
16014 }
16015
16016 /* Free all cached compilation units. */
16017
16018 static void
16019 free_cached_comp_units (void *data)
16020 {
16021 struct dwarf2_per_cu_data *per_cu, **last_chain;
16022
16023 per_cu = dwarf2_per_objfile->read_in_chain;
16024 last_chain = &dwarf2_per_objfile->read_in_chain;
16025 while (per_cu != NULL)
16026 {
16027 struct dwarf2_per_cu_data *next_cu;
16028
16029 next_cu = per_cu->cu->read_in_chain;
16030
16031 free_heap_comp_unit (per_cu->cu);
16032 *last_chain = next_cu;
16033
16034 per_cu = next_cu;
16035 }
16036 }
16037
16038 /* Increase the age counter on each cached compilation unit, and free
16039 any that are too old. */
16040
16041 static void
16042 age_cached_comp_units (void)
16043 {
16044 struct dwarf2_per_cu_data *per_cu, **last_chain;
16045
16046 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
16047 per_cu = dwarf2_per_objfile->read_in_chain;
16048 while (per_cu != NULL)
16049 {
16050 per_cu->cu->last_used ++;
16051 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
16052 dwarf2_mark (per_cu->cu);
16053 per_cu = per_cu->cu->read_in_chain;
16054 }
16055
16056 per_cu = dwarf2_per_objfile->read_in_chain;
16057 last_chain = &dwarf2_per_objfile->read_in_chain;
16058 while (per_cu != NULL)
16059 {
16060 struct dwarf2_per_cu_data *next_cu;
16061
16062 next_cu = per_cu->cu->read_in_chain;
16063
16064 if (!per_cu->cu->mark)
16065 {
16066 free_heap_comp_unit (per_cu->cu);
16067 *last_chain = next_cu;
16068 }
16069 else
16070 last_chain = &per_cu->cu->read_in_chain;
16071
16072 per_cu = next_cu;
16073 }
16074 }
16075
16076 /* Remove a single compilation unit from the cache. */
16077
16078 static void
16079 free_one_cached_comp_unit (void *target_cu)
16080 {
16081 struct dwarf2_per_cu_data *per_cu, **last_chain;
16082
16083 per_cu = dwarf2_per_objfile->read_in_chain;
16084 last_chain = &dwarf2_per_objfile->read_in_chain;
16085 while (per_cu != NULL)
16086 {
16087 struct dwarf2_per_cu_data *next_cu;
16088
16089 next_cu = per_cu->cu->read_in_chain;
16090
16091 if (per_cu->cu == target_cu)
16092 {
16093 free_heap_comp_unit (per_cu->cu);
16094 *last_chain = next_cu;
16095 break;
16096 }
16097 else
16098 last_chain = &per_cu->cu->read_in_chain;
16099
16100 per_cu = next_cu;
16101 }
16102 }
16103
16104 /* Release all extra memory associated with OBJFILE. */
16105
16106 void
16107 dwarf2_free_objfile (struct objfile *objfile)
16108 {
16109 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
16110
16111 if (dwarf2_per_objfile == NULL)
16112 return;
16113
16114 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
16115 free_cached_comp_units (NULL);
16116
16117 if (dwarf2_per_objfile->quick_file_names_table)
16118 htab_delete (dwarf2_per_objfile->quick_file_names_table);
16119
16120 /* Everything else should be on the objfile obstack. */
16121 }
16122
16123 /* A pair of DIE offset and GDB type pointer. We store these
16124 in a hash table separate from the DIEs, and preserve them
16125 when the DIEs are flushed out of cache. */
16126
16127 struct dwarf2_offset_and_type
16128 {
16129 sect_offset offset;
16130 struct type *type;
16131 };
16132
16133 /* Hash function for a dwarf2_offset_and_type. */
16134
16135 static hashval_t
16136 offset_and_type_hash (const void *item)
16137 {
16138 const struct dwarf2_offset_and_type *ofs = item;
16139
16140 return ofs->offset.sect_off;
16141 }
16142
16143 /* Equality function for a dwarf2_offset_and_type. */
16144
16145 static int
16146 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
16147 {
16148 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
16149 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
16150
16151 return ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off;
16152 }
16153
16154 /* Set the type associated with DIE to TYPE. Save it in CU's hash
16155 table if necessary. For convenience, return TYPE.
16156
16157 The DIEs reading must have careful ordering to:
16158 * Not cause infite loops trying to read in DIEs as a prerequisite for
16159 reading current DIE.
16160 * Not trying to dereference contents of still incompletely read in types
16161 while reading in other DIEs.
16162 * Enable referencing still incompletely read in types just by a pointer to
16163 the type without accessing its fields.
16164
16165 Therefore caller should follow these rules:
16166 * Try to fetch any prerequisite types we may need to build this DIE type
16167 before building the type and calling set_die_type.
16168 * After building type call set_die_type for current DIE as soon as
16169 possible before fetching more types to complete the current type.
16170 * Make the type as complete as possible before fetching more types. */
16171
16172 static struct type *
16173 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16174 {
16175 struct dwarf2_offset_and_type **slot, ofs;
16176 struct objfile *objfile = cu->objfile;
16177 htab_t *type_hash_ptr;
16178
16179 /* For Ada types, make sure that the gnat-specific data is always
16180 initialized (if not already set). There are a few types where
16181 we should not be doing so, because the type-specific area is
16182 already used to hold some other piece of info (eg: TYPE_CODE_FLT
16183 where the type-specific area is used to store the floatformat).
16184 But this is not a problem, because the gnat-specific information
16185 is actually not needed for these types. */
16186 if (need_gnat_info (cu)
16187 && TYPE_CODE (type) != TYPE_CODE_FUNC
16188 && TYPE_CODE (type) != TYPE_CODE_FLT
16189 && !HAVE_GNAT_AUX_INFO (type))
16190 INIT_GNAT_SPECIFIC (type);
16191
16192 if (cu->per_cu->debug_types_section)
16193 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
16194 else
16195 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
16196
16197 if (*type_hash_ptr == NULL)
16198 {
16199 *type_hash_ptr
16200 = htab_create_alloc_ex (127,
16201 offset_and_type_hash,
16202 offset_and_type_eq,
16203 NULL,
16204 &objfile->objfile_obstack,
16205 hashtab_obstack_allocate,
16206 dummy_obstack_deallocate);
16207 }
16208
16209 ofs.offset = die->offset;
16210 ofs.type = type;
16211 slot = (struct dwarf2_offset_and_type **)
16212 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset.sect_off,
16213 INSERT);
16214 if (*slot)
16215 complaint (&symfile_complaints,
16216 _("A problem internal to GDB: DIE 0x%x has type already set"),
16217 die->offset.sect_off);
16218 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
16219 **slot = ofs;
16220 return type;
16221 }
16222
16223 /* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
16224 table, or return NULL if the die does not have a saved type. */
16225
16226 static struct type *
16227 get_die_type_at_offset (sect_offset offset,
16228 struct dwarf2_per_cu_data *per_cu)
16229 {
16230 struct dwarf2_offset_and_type *slot, ofs;
16231 htab_t type_hash;
16232
16233 if (per_cu->debug_types_section)
16234 type_hash = dwarf2_per_objfile->debug_types_type_hash;
16235 else
16236 type_hash = dwarf2_per_objfile->debug_info_type_hash;
16237 if (type_hash == NULL)
16238 return NULL;
16239
16240 ofs.offset = offset;
16241 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset.sect_off);
16242 if (slot)
16243 return slot->type;
16244 else
16245 return NULL;
16246 }
16247
16248 /* Look up the type for DIE in the appropriate type_hash table,
16249 or return NULL if DIE does not have a saved type. */
16250
16251 static struct type *
16252 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
16253 {
16254 return get_die_type_at_offset (die->offset, cu->per_cu);
16255 }
16256
16257 /* Add a dependence relationship from CU to REF_PER_CU. */
16258
16259 static void
16260 dwarf2_add_dependence (struct dwarf2_cu *cu,
16261 struct dwarf2_per_cu_data *ref_per_cu)
16262 {
16263 void **slot;
16264
16265 if (cu->dependencies == NULL)
16266 cu->dependencies
16267 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
16268 NULL, &cu->comp_unit_obstack,
16269 hashtab_obstack_allocate,
16270 dummy_obstack_deallocate);
16271
16272 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
16273 if (*slot == NULL)
16274 *slot = ref_per_cu;
16275 }
16276
16277 /* Subroutine of dwarf2_mark to pass to htab_traverse.
16278 Set the mark field in every compilation unit in the
16279 cache that we must keep because we are keeping CU. */
16280
16281 static int
16282 dwarf2_mark_helper (void **slot, void *data)
16283 {
16284 struct dwarf2_per_cu_data *per_cu;
16285
16286 per_cu = (struct dwarf2_per_cu_data *) *slot;
16287
16288 /* cu->dependencies references may not yet have been ever read if QUIT aborts
16289 reading of the chain. As such dependencies remain valid it is not much
16290 useful to track and undo them during QUIT cleanups. */
16291 if (per_cu->cu == NULL)
16292 return 1;
16293
16294 if (per_cu->cu->mark)
16295 return 1;
16296 per_cu->cu->mark = 1;
16297
16298 if (per_cu->cu->dependencies != NULL)
16299 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
16300
16301 return 1;
16302 }
16303
16304 /* Set the mark field in CU and in every other compilation unit in the
16305 cache that we must keep because we are keeping CU. */
16306
16307 static void
16308 dwarf2_mark (struct dwarf2_cu *cu)
16309 {
16310 if (cu->mark)
16311 return;
16312 cu->mark = 1;
16313 if (cu->dependencies != NULL)
16314 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
16315 }
16316
16317 static void
16318 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
16319 {
16320 while (per_cu)
16321 {
16322 per_cu->cu->mark = 0;
16323 per_cu = per_cu->cu->read_in_chain;
16324 }
16325 }
16326
16327 /* Trivial hash function for partial_die_info: the hash value of a DIE
16328 is its offset in .debug_info for this objfile. */
16329
16330 static hashval_t
16331 partial_die_hash (const void *item)
16332 {
16333 const struct partial_die_info *part_die = item;
16334
16335 return part_die->offset.sect_off;
16336 }
16337
16338 /* Trivial comparison function for partial_die_info structures: two DIEs
16339 are equal if they have the same offset. */
16340
16341 static int
16342 partial_die_eq (const void *item_lhs, const void *item_rhs)
16343 {
16344 const struct partial_die_info *part_die_lhs = item_lhs;
16345 const struct partial_die_info *part_die_rhs = item_rhs;
16346
16347 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
16348 }
16349
16350 static struct cmd_list_element *set_dwarf2_cmdlist;
16351 static struct cmd_list_element *show_dwarf2_cmdlist;
16352
16353 static void
16354 set_dwarf2_cmd (char *args, int from_tty)
16355 {
16356 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
16357 }
16358
16359 static void
16360 show_dwarf2_cmd (char *args, int from_tty)
16361 {
16362 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
16363 }
16364
16365 /* If section described by INFO was mmapped, munmap it now. */
16366
16367 static void
16368 munmap_section_buffer (struct dwarf2_section_info *info)
16369 {
16370 if (info->map_addr != NULL)
16371 {
16372 #ifdef HAVE_MMAP
16373 int res;
16374
16375 res = munmap (info->map_addr, info->map_len);
16376 gdb_assert (res == 0);
16377 #else
16378 /* Without HAVE_MMAP, we should never be here to begin with. */
16379 gdb_assert_not_reached ("no mmap support");
16380 #endif
16381 }
16382 }
16383
16384 /* munmap debug sections for OBJFILE, if necessary. */
16385
16386 static void
16387 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
16388 {
16389 struct dwarf2_per_objfile *data = d;
16390 int ix;
16391 struct dwarf2_section_info *section;
16392
16393 /* This is sorted according to the order they're defined in to make it easier
16394 to keep in sync. */
16395 munmap_section_buffer (&data->info);
16396 munmap_section_buffer (&data->abbrev);
16397 munmap_section_buffer (&data->line);
16398 munmap_section_buffer (&data->loc);
16399 munmap_section_buffer (&data->macinfo);
16400 munmap_section_buffer (&data->macro);
16401 munmap_section_buffer (&data->str);
16402 munmap_section_buffer (&data->ranges);
16403 munmap_section_buffer (&data->frame);
16404 munmap_section_buffer (&data->eh_frame);
16405 munmap_section_buffer (&data->gdb_index);
16406
16407 for (ix = 0;
16408 VEC_iterate (dwarf2_section_info_def, data->types, ix, section);
16409 ++ix)
16410 munmap_section_buffer (section);
16411
16412 VEC_free (dwarf2_section_info_def, data->types);
16413 }
16414
16415 \f
16416 /* The "save gdb-index" command. */
16417
16418 /* The contents of the hash table we create when building the string
16419 table. */
16420 struct strtab_entry
16421 {
16422 offset_type offset;
16423 const char *str;
16424 };
16425
16426 /* Hash function for a strtab_entry.
16427
16428 Function is used only during write_hash_table so no index format backward
16429 compatibility is needed. */
16430
16431 static hashval_t
16432 hash_strtab_entry (const void *e)
16433 {
16434 const struct strtab_entry *entry = e;
16435 return mapped_index_string_hash (INT_MAX, entry->str);
16436 }
16437
16438 /* Equality function for a strtab_entry. */
16439
16440 static int
16441 eq_strtab_entry (const void *a, const void *b)
16442 {
16443 const struct strtab_entry *ea = a;
16444 const struct strtab_entry *eb = b;
16445 return !strcmp (ea->str, eb->str);
16446 }
16447
16448 /* Create a strtab_entry hash table. */
16449
16450 static htab_t
16451 create_strtab (void)
16452 {
16453 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
16454 xfree, xcalloc, xfree);
16455 }
16456
16457 /* Add a string to the constant pool. Return the string's offset in
16458 host order. */
16459
16460 static offset_type
16461 add_string (htab_t table, struct obstack *cpool, const char *str)
16462 {
16463 void **slot;
16464 struct strtab_entry entry;
16465 struct strtab_entry *result;
16466
16467 entry.str = str;
16468 slot = htab_find_slot (table, &entry, INSERT);
16469 if (*slot)
16470 result = *slot;
16471 else
16472 {
16473 result = XNEW (struct strtab_entry);
16474 result->offset = obstack_object_size (cpool);
16475 result->str = str;
16476 obstack_grow_str0 (cpool, str);
16477 *slot = result;
16478 }
16479 return result->offset;
16480 }
16481
16482 /* An entry in the symbol table. */
16483 struct symtab_index_entry
16484 {
16485 /* The name of the symbol. */
16486 const char *name;
16487 /* The offset of the name in the constant pool. */
16488 offset_type index_offset;
16489 /* A sorted vector of the indices of all the CUs that hold an object
16490 of this name. */
16491 VEC (offset_type) *cu_indices;
16492 };
16493
16494 /* The symbol table. This is a power-of-2-sized hash table. */
16495 struct mapped_symtab
16496 {
16497 offset_type n_elements;
16498 offset_type size;
16499 struct symtab_index_entry **data;
16500 };
16501
16502 /* Hash function for a symtab_index_entry. */
16503
16504 static hashval_t
16505 hash_symtab_entry (const void *e)
16506 {
16507 const struct symtab_index_entry *entry = e;
16508 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
16509 sizeof (offset_type) * VEC_length (offset_type,
16510 entry->cu_indices),
16511 0);
16512 }
16513
16514 /* Equality function for a symtab_index_entry. */
16515
16516 static int
16517 eq_symtab_entry (const void *a, const void *b)
16518 {
16519 const struct symtab_index_entry *ea = a;
16520 const struct symtab_index_entry *eb = b;
16521 int len = VEC_length (offset_type, ea->cu_indices);
16522 if (len != VEC_length (offset_type, eb->cu_indices))
16523 return 0;
16524 return !memcmp (VEC_address (offset_type, ea->cu_indices),
16525 VEC_address (offset_type, eb->cu_indices),
16526 sizeof (offset_type) * len);
16527 }
16528
16529 /* Destroy a symtab_index_entry. */
16530
16531 static void
16532 delete_symtab_entry (void *p)
16533 {
16534 struct symtab_index_entry *entry = p;
16535 VEC_free (offset_type, entry->cu_indices);
16536 xfree (entry);
16537 }
16538
16539 /* Create a hash table holding symtab_index_entry objects. */
16540
16541 static htab_t
16542 create_symbol_hash_table (void)
16543 {
16544 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
16545 delete_symtab_entry, xcalloc, xfree);
16546 }
16547
16548 /* Create a new mapped symtab object. */
16549
16550 static struct mapped_symtab *
16551 create_mapped_symtab (void)
16552 {
16553 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
16554 symtab->n_elements = 0;
16555 symtab->size = 1024;
16556 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
16557 return symtab;
16558 }
16559
16560 /* Destroy a mapped_symtab. */
16561
16562 static void
16563 cleanup_mapped_symtab (void *p)
16564 {
16565 struct mapped_symtab *symtab = p;
16566 /* The contents of the array are freed when the other hash table is
16567 destroyed. */
16568 xfree (symtab->data);
16569 xfree (symtab);
16570 }
16571
16572 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
16573 the slot.
16574
16575 Function is used only during write_hash_table so no index format backward
16576 compatibility is needed. */
16577
16578 static struct symtab_index_entry **
16579 find_slot (struct mapped_symtab *symtab, const char *name)
16580 {
16581 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
16582
16583 index = hash & (symtab->size - 1);
16584 step = ((hash * 17) & (symtab->size - 1)) | 1;
16585
16586 for (;;)
16587 {
16588 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
16589 return &symtab->data[index];
16590 index = (index + step) & (symtab->size - 1);
16591 }
16592 }
16593
16594 /* Expand SYMTAB's hash table. */
16595
16596 static void
16597 hash_expand (struct mapped_symtab *symtab)
16598 {
16599 offset_type old_size = symtab->size;
16600 offset_type i;
16601 struct symtab_index_entry **old_entries = symtab->data;
16602
16603 symtab->size *= 2;
16604 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
16605
16606 for (i = 0; i < old_size; ++i)
16607 {
16608 if (old_entries[i])
16609 {
16610 struct symtab_index_entry **slot = find_slot (symtab,
16611 old_entries[i]->name);
16612 *slot = old_entries[i];
16613 }
16614 }
16615
16616 xfree (old_entries);
16617 }
16618
16619 /* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
16620 is the index of the CU in which the symbol appears. */
16621
16622 static void
16623 add_index_entry (struct mapped_symtab *symtab, const char *name,
16624 offset_type cu_index)
16625 {
16626 struct symtab_index_entry **slot;
16627
16628 ++symtab->n_elements;
16629 if (4 * symtab->n_elements / 3 >= symtab->size)
16630 hash_expand (symtab);
16631
16632 slot = find_slot (symtab, name);
16633 if (!*slot)
16634 {
16635 *slot = XNEW (struct symtab_index_entry);
16636 (*slot)->name = name;
16637 (*slot)->cu_indices = NULL;
16638 }
16639 /* Don't push an index twice. Due to how we add entries we only
16640 have to check the last one. */
16641 if (VEC_empty (offset_type, (*slot)->cu_indices)
16642 || VEC_last (offset_type, (*slot)->cu_indices) != cu_index)
16643 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
16644 }
16645
16646 /* Add a vector of indices to the constant pool. */
16647
16648 static offset_type
16649 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
16650 struct symtab_index_entry *entry)
16651 {
16652 void **slot;
16653
16654 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
16655 if (!*slot)
16656 {
16657 offset_type len = VEC_length (offset_type, entry->cu_indices);
16658 offset_type val = MAYBE_SWAP (len);
16659 offset_type iter;
16660 int i;
16661
16662 *slot = entry;
16663 entry->index_offset = obstack_object_size (cpool);
16664
16665 obstack_grow (cpool, &val, sizeof (val));
16666 for (i = 0;
16667 VEC_iterate (offset_type, entry->cu_indices, i, iter);
16668 ++i)
16669 {
16670 val = MAYBE_SWAP (iter);
16671 obstack_grow (cpool, &val, sizeof (val));
16672 }
16673 }
16674 else
16675 {
16676 struct symtab_index_entry *old_entry = *slot;
16677 entry->index_offset = old_entry->index_offset;
16678 entry = old_entry;
16679 }
16680 return entry->index_offset;
16681 }
16682
16683 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
16684 constant pool entries going into the obstack CPOOL. */
16685
16686 static void
16687 write_hash_table (struct mapped_symtab *symtab,
16688 struct obstack *output, struct obstack *cpool)
16689 {
16690 offset_type i;
16691 htab_t symbol_hash_table;
16692 htab_t str_table;
16693
16694 symbol_hash_table = create_symbol_hash_table ();
16695 str_table = create_strtab ();
16696
16697 /* We add all the index vectors to the constant pool first, to
16698 ensure alignment is ok. */
16699 for (i = 0; i < symtab->size; ++i)
16700 {
16701 if (symtab->data[i])
16702 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
16703 }
16704
16705 /* Now write out the hash table. */
16706 for (i = 0; i < symtab->size; ++i)
16707 {
16708 offset_type str_off, vec_off;
16709
16710 if (symtab->data[i])
16711 {
16712 str_off = add_string (str_table, cpool, symtab->data[i]->name);
16713 vec_off = symtab->data[i]->index_offset;
16714 }
16715 else
16716 {
16717 /* While 0 is a valid constant pool index, it is not valid
16718 to have 0 for both offsets. */
16719 str_off = 0;
16720 vec_off = 0;
16721 }
16722
16723 str_off = MAYBE_SWAP (str_off);
16724 vec_off = MAYBE_SWAP (vec_off);
16725
16726 obstack_grow (output, &str_off, sizeof (str_off));
16727 obstack_grow (output, &vec_off, sizeof (vec_off));
16728 }
16729
16730 htab_delete (str_table);
16731 htab_delete (symbol_hash_table);
16732 }
16733
16734 /* Struct to map psymtab to CU index in the index file. */
16735 struct psymtab_cu_index_map
16736 {
16737 struct partial_symtab *psymtab;
16738 unsigned int cu_index;
16739 };
16740
16741 static hashval_t
16742 hash_psymtab_cu_index (const void *item)
16743 {
16744 const struct psymtab_cu_index_map *map = item;
16745
16746 return htab_hash_pointer (map->psymtab);
16747 }
16748
16749 static int
16750 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
16751 {
16752 const struct psymtab_cu_index_map *lhs = item_lhs;
16753 const struct psymtab_cu_index_map *rhs = item_rhs;
16754
16755 return lhs->psymtab == rhs->psymtab;
16756 }
16757
16758 /* Helper struct for building the address table. */
16759 struct addrmap_index_data
16760 {
16761 struct objfile *objfile;
16762 struct obstack *addr_obstack;
16763 htab_t cu_index_htab;
16764
16765 /* Non-zero if the previous_* fields are valid.
16766 We can't write an entry until we see the next entry (since it is only then
16767 that we know the end of the entry). */
16768 int previous_valid;
16769 /* Index of the CU in the table of all CUs in the index file. */
16770 unsigned int previous_cu_index;
16771 /* Start address of the CU. */
16772 CORE_ADDR previous_cu_start;
16773 };
16774
16775 /* Write an address entry to OBSTACK. */
16776
16777 static void
16778 add_address_entry (struct objfile *objfile, struct obstack *obstack,
16779 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
16780 {
16781 offset_type cu_index_to_write;
16782 char addr[8];
16783 CORE_ADDR baseaddr;
16784
16785 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16786
16787 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
16788 obstack_grow (obstack, addr, 8);
16789 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
16790 obstack_grow (obstack, addr, 8);
16791 cu_index_to_write = MAYBE_SWAP (cu_index);
16792 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
16793 }
16794
16795 /* Worker function for traversing an addrmap to build the address table. */
16796
16797 static int
16798 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
16799 {
16800 struct addrmap_index_data *data = datap;
16801 struct partial_symtab *pst = obj;
16802 offset_type cu_index;
16803 void **slot;
16804
16805 if (data->previous_valid)
16806 add_address_entry (data->objfile, data->addr_obstack,
16807 data->previous_cu_start, start_addr,
16808 data->previous_cu_index);
16809
16810 data->previous_cu_start = start_addr;
16811 if (pst != NULL)
16812 {
16813 struct psymtab_cu_index_map find_map, *map;
16814 find_map.psymtab = pst;
16815 map = htab_find (data->cu_index_htab, &find_map);
16816 gdb_assert (map != NULL);
16817 data->previous_cu_index = map->cu_index;
16818 data->previous_valid = 1;
16819 }
16820 else
16821 data->previous_valid = 0;
16822
16823 return 0;
16824 }
16825
16826 /* Write OBJFILE's address map to OBSTACK.
16827 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
16828 in the index file. */
16829
16830 static void
16831 write_address_map (struct objfile *objfile, struct obstack *obstack,
16832 htab_t cu_index_htab)
16833 {
16834 struct addrmap_index_data addrmap_index_data;
16835
16836 /* When writing the address table, we have to cope with the fact that
16837 the addrmap iterator only provides the start of a region; we have to
16838 wait until the next invocation to get the start of the next region. */
16839
16840 addrmap_index_data.objfile = objfile;
16841 addrmap_index_data.addr_obstack = obstack;
16842 addrmap_index_data.cu_index_htab = cu_index_htab;
16843 addrmap_index_data.previous_valid = 0;
16844
16845 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
16846 &addrmap_index_data);
16847
16848 /* It's highly unlikely the last entry (end address = 0xff...ff)
16849 is valid, but we should still handle it.
16850 The end address is recorded as the start of the next region, but that
16851 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
16852 anyway. */
16853 if (addrmap_index_data.previous_valid)
16854 add_address_entry (objfile, obstack,
16855 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
16856 addrmap_index_data.previous_cu_index);
16857 }
16858
16859 /* Add a list of partial symbols to SYMTAB. */
16860
16861 static void
16862 write_psymbols (struct mapped_symtab *symtab,
16863 htab_t psyms_seen,
16864 struct partial_symbol **psymp,
16865 int count,
16866 offset_type cu_index,
16867 int is_static)
16868 {
16869 for (; count-- > 0; ++psymp)
16870 {
16871 void **slot, *lookup;
16872
16873 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
16874 error (_("Ada is not currently supported by the index"));
16875
16876 /* We only want to add a given psymbol once. However, we also
16877 want to account for whether it is global or static. So, we
16878 may add it twice, using slightly different values. */
16879 if (is_static)
16880 {
16881 uintptr_t val = 1 | (uintptr_t) *psymp;
16882
16883 lookup = (void *) val;
16884 }
16885 else
16886 lookup = *psymp;
16887
16888 /* Only add a given psymbol once. */
16889 slot = htab_find_slot (psyms_seen, lookup, INSERT);
16890 if (!*slot)
16891 {
16892 *slot = lookup;
16893 add_index_entry (symtab, SYMBOL_SEARCH_NAME (*psymp), cu_index);
16894 }
16895 }
16896 }
16897
16898 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
16899 exception if there is an error. */
16900
16901 static void
16902 write_obstack (FILE *file, struct obstack *obstack)
16903 {
16904 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
16905 file)
16906 != obstack_object_size (obstack))
16907 error (_("couldn't data write to file"));
16908 }
16909
16910 /* Unlink a file if the argument is not NULL. */
16911
16912 static void
16913 unlink_if_set (void *p)
16914 {
16915 char **filename = p;
16916 if (*filename)
16917 unlink (*filename);
16918 }
16919
16920 /* A helper struct used when iterating over debug_types. */
16921 struct signatured_type_index_data
16922 {
16923 struct objfile *objfile;
16924 struct mapped_symtab *symtab;
16925 struct obstack *types_list;
16926 htab_t psyms_seen;
16927 int cu_index;
16928 };
16929
16930 /* A helper function that writes a single signatured_type to an
16931 obstack. */
16932
16933 static int
16934 write_one_signatured_type (void **slot, void *d)
16935 {
16936 struct signatured_type_index_data *info = d;
16937 struct signatured_type *entry = (struct signatured_type *) *slot;
16938 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
16939 struct partial_symtab *psymtab = per_cu->v.psymtab;
16940 gdb_byte val[8];
16941
16942 write_psymbols (info->symtab,
16943 info->psyms_seen,
16944 info->objfile->global_psymbols.list
16945 + psymtab->globals_offset,
16946 psymtab->n_global_syms, info->cu_index,
16947 0);
16948 write_psymbols (info->symtab,
16949 info->psyms_seen,
16950 info->objfile->static_psymbols.list
16951 + psymtab->statics_offset,
16952 psymtab->n_static_syms, info->cu_index,
16953 1);
16954
16955 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
16956 entry->per_cu.offset.sect_off);
16957 obstack_grow (info->types_list, val, 8);
16958 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset.cu_off);
16959 obstack_grow (info->types_list, val, 8);
16960 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
16961 obstack_grow (info->types_list, val, 8);
16962
16963 ++info->cu_index;
16964
16965 return 1;
16966 }
16967
16968 /* Create an index file for OBJFILE in the directory DIR. */
16969
16970 static void
16971 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
16972 {
16973 struct cleanup *cleanup;
16974 char *filename, *cleanup_filename;
16975 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
16976 struct obstack cu_list, types_cu_list;
16977 int i;
16978 FILE *out_file;
16979 struct mapped_symtab *symtab;
16980 offset_type val, size_of_contents, total_len;
16981 struct stat st;
16982 char buf[8];
16983 htab_t psyms_seen;
16984 htab_t cu_index_htab;
16985 struct psymtab_cu_index_map *psymtab_cu_index_map;
16986
16987 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
16988 return;
16989
16990 if (dwarf2_per_objfile->using_index)
16991 error (_("Cannot use an index to create the index"));
16992
16993 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
16994 error (_("Cannot make an index when the file has multiple .debug_types sections"));
16995
16996 if (stat (objfile->name, &st) < 0)
16997 perror_with_name (objfile->name);
16998
16999 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
17000 INDEX_SUFFIX, (char *) NULL);
17001 cleanup = make_cleanup (xfree, filename);
17002
17003 out_file = fopen (filename, "wb");
17004 if (!out_file)
17005 error (_("Can't open `%s' for writing"), filename);
17006
17007 cleanup_filename = filename;
17008 make_cleanup (unlink_if_set, &cleanup_filename);
17009
17010 symtab = create_mapped_symtab ();
17011 make_cleanup (cleanup_mapped_symtab, symtab);
17012
17013 obstack_init (&addr_obstack);
17014 make_cleanup_obstack_free (&addr_obstack);
17015
17016 obstack_init (&cu_list);
17017 make_cleanup_obstack_free (&cu_list);
17018
17019 obstack_init (&types_cu_list);
17020 make_cleanup_obstack_free (&types_cu_list);
17021
17022 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
17023 NULL, xcalloc, xfree);
17024 make_cleanup_htab_delete (psyms_seen);
17025
17026 /* While we're scanning CU's create a table that maps a psymtab pointer
17027 (which is what addrmap records) to its index (which is what is recorded
17028 in the index file). This will later be needed to write the address
17029 table. */
17030 cu_index_htab = htab_create_alloc (100,
17031 hash_psymtab_cu_index,
17032 eq_psymtab_cu_index,
17033 NULL, xcalloc, xfree);
17034 make_cleanup_htab_delete (cu_index_htab);
17035 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
17036 xmalloc (sizeof (struct psymtab_cu_index_map)
17037 * dwarf2_per_objfile->n_comp_units);
17038 make_cleanup (xfree, psymtab_cu_index_map);
17039
17040 /* The CU list is already sorted, so we don't need to do additional
17041 work here. Also, the debug_types entries do not appear in
17042 all_comp_units, but only in their own hash table. */
17043 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
17044 {
17045 struct dwarf2_per_cu_data *per_cu
17046 = dwarf2_per_objfile->all_comp_units[i];
17047 struct partial_symtab *psymtab = per_cu->v.psymtab;
17048 gdb_byte val[8];
17049 struct psymtab_cu_index_map *map;
17050 void **slot;
17051
17052 write_psymbols (symtab,
17053 psyms_seen,
17054 objfile->global_psymbols.list + psymtab->globals_offset,
17055 psymtab->n_global_syms, i,
17056 0);
17057 write_psymbols (symtab,
17058 psyms_seen,
17059 objfile->static_psymbols.list + psymtab->statics_offset,
17060 psymtab->n_static_syms, i,
17061 1);
17062
17063 map = &psymtab_cu_index_map[i];
17064 map->psymtab = psymtab;
17065 map->cu_index = i;
17066 slot = htab_find_slot (cu_index_htab, map, INSERT);
17067 gdb_assert (slot != NULL);
17068 gdb_assert (*slot == NULL);
17069 *slot = map;
17070
17071 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
17072 per_cu->offset.sect_off);
17073 obstack_grow (&cu_list, val, 8);
17074 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
17075 obstack_grow (&cu_list, val, 8);
17076 }
17077
17078 /* Dump the address map. */
17079 write_address_map (objfile, &addr_obstack, cu_index_htab);
17080
17081 /* Write out the .debug_type entries, if any. */
17082 if (dwarf2_per_objfile->signatured_types)
17083 {
17084 struct signatured_type_index_data sig_data;
17085
17086 sig_data.objfile = objfile;
17087 sig_data.symtab = symtab;
17088 sig_data.types_list = &types_cu_list;
17089 sig_data.psyms_seen = psyms_seen;
17090 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
17091 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
17092 write_one_signatured_type, &sig_data);
17093 }
17094
17095 obstack_init (&constant_pool);
17096 make_cleanup_obstack_free (&constant_pool);
17097 obstack_init (&symtab_obstack);
17098 make_cleanup_obstack_free (&symtab_obstack);
17099 write_hash_table (symtab, &symtab_obstack, &constant_pool);
17100
17101 obstack_init (&contents);
17102 make_cleanup_obstack_free (&contents);
17103 size_of_contents = 6 * sizeof (offset_type);
17104 total_len = size_of_contents;
17105
17106 /* The version number. */
17107 val = MAYBE_SWAP (6);
17108 obstack_grow (&contents, &val, sizeof (val));
17109
17110 /* The offset of the CU list from the start of the file. */
17111 val = MAYBE_SWAP (total_len);
17112 obstack_grow (&contents, &val, sizeof (val));
17113 total_len += obstack_object_size (&cu_list);
17114
17115 /* The offset of the types CU list from the start of the file. */
17116 val = MAYBE_SWAP (total_len);
17117 obstack_grow (&contents, &val, sizeof (val));
17118 total_len += obstack_object_size (&types_cu_list);
17119
17120 /* The offset of the address table from the start of the file. */
17121 val = MAYBE_SWAP (total_len);
17122 obstack_grow (&contents, &val, sizeof (val));
17123 total_len += obstack_object_size (&addr_obstack);
17124
17125 /* The offset of the symbol table from the start of the file. */
17126 val = MAYBE_SWAP (total_len);
17127 obstack_grow (&contents, &val, sizeof (val));
17128 total_len += obstack_object_size (&symtab_obstack);
17129
17130 /* The offset of the constant pool from the start of the file. */
17131 val = MAYBE_SWAP (total_len);
17132 obstack_grow (&contents, &val, sizeof (val));
17133 total_len += obstack_object_size (&constant_pool);
17134
17135 gdb_assert (obstack_object_size (&contents) == size_of_contents);
17136
17137 write_obstack (out_file, &contents);
17138 write_obstack (out_file, &cu_list);
17139 write_obstack (out_file, &types_cu_list);
17140 write_obstack (out_file, &addr_obstack);
17141 write_obstack (out_file, &symtab_obstack);
17142 write_obstack (out_file, &constant_pool);
17143
17144 fclose (out_file);
17145
17146 /* We want to keep the file, so we set cleanup_filename to NULL
17147 here. See unlink_if_set. */
17148 cleanup_filename = NULL;
17149
17150 do_cleanups (cleanup);
17151 }
17152
17153 /* Implementation of the `save gdb-index' command.
17154
17155 Note that the file format used by this command is documented in the
17156 GDB manual. Any changes here must be documented there. */
17157
17158 static void
17159 save_gdb_index_command (char *arg, int from_tty)
17160 {
17161 struct objfile *objfile;
17162
17163 if (!arg || !*arg)
17164 error (_("usage: save gdb-index DIRECTORY"));
17165
17166 ALL_OBJFILES (objfile)
17167 {
17168 struct stat st;
17169
17170 /* If the objfile does not correspond to an actual file, skip it. */
17171 if (stat (objfile->name, &st) < 0)
17172 continue;
17173
17174 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
17175 if (dwarf2_per_objfile)
17176 {
17177 volatile struct gdb_exception except;
17178
17179 TRY_CATCH (except, RETURN_MASK_ERROR)
17180 {
17181 write_psymtabs_to_index (objfile, arg);
17182 }
17183 if (except.reason < 0)
17184 exception_fprintf (gdb_stderr, except,
17185 _("Error while writing index for `%s': "),
17186 objfile->name);
17187 }
17188 }
17189 }
17190
17191 \f
17192
17193 int dwarf2_always_disassemble;
17194
17195 static void
17196 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
17197 struct cmd_list_element *c, const char *value)
17198 {
17199 fprintf_filtered (file,
17200 _("Whether to always disassemble "
17201 "DWARF expressions is %s.\n"),
17202 value);
17203 }
17204
17205 static void
17206 show_check_physname (struct ui_file *file, int from_tty,
17207 struct cmd_list_element *c, const char *value)
17208 {
17209 fprintf_filtered (file,
17210 _("Whether to check \"physname\" is %s.\n"),
17211 value);
17212 }
17213
17214 void _initialize_dwarf2_read (void);
17215
17216 void
17217 _initialize_dwarf2_read (void)
17218 {
17219 struct cmd_list_element *c;
17220
17221 dwarf2_objfile_data_key
17222 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
17223
17224 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
17225 Set DWARF 2 specific variables.\n\
17226 Configure DWARF 2 variables such as the cache size"),
17227 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
17228 0/*allow-unknown*/, &maintenance_set_cmdlist);
17229
17230 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
17231 Show DWARF 2 specific variables\n\
17232 Show DWARF 2 variables such as the cache size"),
17233 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
17234 0/*allow-unknown*/, &maintenance_show_cmdlist);
17235
17236 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
17237 &dwarf2_max_cache_age, _("\
17238 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
17239 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
17240 A higher limit means that cached compilation units will be stored\n\
17241 in memory longer, and more total memory will be used. Zero disables\n\
17242 caching, which can slow down startup."),
17243 NULL,
17244 show_dwarf2_max_cache_age,
17245 &set_dwarf2_cmdlist,
17246 &show_dwarf2_cmdlist);
17247
17248 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
17249 &dwarf2_always_disassemble, _("\
17250 Set whether `info address' always disassembles DWARF expressions."), _("\
17251 Show whether `info address' always disassembles DWARF expressions."), _("\
17252 When enabled, DWARF expressions are always printed in an assembly-like\n\
17253 syntax. When disabled, expressions will be printed in a more\n\
17254 conversational style, when possible."),
17255 NULL,
17256 show_dwarf2_always_disassemble,
17257 &set_dwarf2_cmdlist,
17258 &show_dwarf2_cmdlist);
17259
17260 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
17261 Set debugging of the dwarf2 DIE reader."), _("\
17262 Show debugging of the dwarf2 DIE reader."), _("\
17263 When enabled (non-zero), DIEs are dumped after they are read in.\n\
17264 The value is the maximum depth to print."),
17265 NULL,
17266 NULL,
17267 &setdebuglist, &showdebuglist);
17268
17269 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
17270 Set cross-checking of \"physname\" code against demangler."), _("\
17271 Show cross-checking of \"physname\" code against demangler."), _("\
17272 When enabled, GDB's internal \"physname\" code is checked against\n\
17273 the demangler."),
17274 NULL, show_check_physname,
17275 &setdebuglist, &showdebuglist);
17276
17277 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
17278 _("\
17279 Save a gdb-index file.\n\
17280 Usage: save gdb-index DIRECTORY"),
17281 &save_cmdlist);
17282 set_cmd_completer (c, filename_completer);
17283 }
This page took 0.576618 seconds and 5 git commands to generate.