2006-12-27 Gary Funck <gary@intrepid.com>
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support in dwarfread.c
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 2 of the License, or (at
19 your option) any later version.
20
21 This program is distributed in the hope that it will be useful, but
22 WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
24 General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the Free Software
28 Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "elf/dwarf2.h"
37 #include "buildsym.h"
38 #include "demangle.h"
39 #include "expression.h"
40 #include "filenames.h" /* for DOSish file names */
41 #include "macrotab.h"
42 #include "language.h"
43 #include "complaints.h"
44 #include "bcache.h"
45 #include "dwarf2expr.h"
46 #include "dwarf2loc.h"
47 #include "cp-support.h"
48 #include "hashtab.h"
49 #include "command.h"
50 #include "gdbcmd.h"
51
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_assert.h"
55 #include <sys/types.h>
56
57 /* A note on memory usage for this file.
58
59 At the present time, this code reads the debug info sections into
60 the objfile's objfile_obstack. A definite improvement for startup
61 time, on platforms which do not emit relocations for debug
62 sections, would be to use mmap instead. The object's complete
63 debug information is loaded into memory, partly to simplify
64 absolute DIE references.
65
66 Whether using obstacks or mmap, the sections should remain loaded
67 until the objfile is released, and pointers into the section data
68 can be used for any other data associated to the objfile (symbol
69 names, type names, location expressions to name a few). */
70
71 #ifndef DWARF2_REG_TO_REGNUM
72 #define DWARF2_REG_TO_REGNUM(REG) (REG)
73 #endif
74
75 #if 0
76 /* .debug_info header for a compilation unit
77 Because of alignment constraints, this structure has padding and cannot
78 be mapped directly onto the beginning of the .debug_info section. */
79 typedef struct comp_unit_header
80 {
81 unsigned int length; /* length of the .debug_info
82 contribution */
83 unsigned short version; /* version number -- 2 for DWARF
84 version 2 */
85 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
86 unsigned char addr_size; /* byte size of an address -- 4 */
87 }
88 _COMP_UNIT_HEADER;
89 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
90 #endif
91
92 /* .debug_pubnames header
93 Because of alignment constraints, this structure has padding and cannot
94 be mapped directly onto the beginning of the .debug_info section. */
95 typedef struct pubnames_header
96 {
97 unsigned int length; /* length of the .debug_pubnames
98 contribution */
99 unsigned char version; /* version number -- 2 for DWARF
100 version 2 */
101 unsigned int info_offset; /* offset into .debug_info section */
102 unsigned int info_size; /* byte size of .debug_info section
103 portion */
104 }
105 _PUBNAMES_HEADER;
106 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
107
108 /* .debug_pubnames header
109 Because of alignment constraints, this structure has padding and cannot
110 be mapped directly onto the beginning of the .debug_info section. */
111 typedef struct aranges_header
112 {
113 unsigned int length; /* byte len of the .debug_aranges
114 contribution */
115 unsigned short version; /* version number -- 2 for DWARF
116 version 2 */
117 unsigned int info_offset; /* offset into .debug_info section */
118 unsigned char addr_size; /* byte size of an address */
119 unsigned char seg_size; /* byte size of segment descriptor */
120 }
121 _ARANGES_HEADER;
122 #define _ACTUAL_ARANGES_HEADER_SIZE 12
123
124 /* .debug_line statement program prologue
125 Because of alignment constraints, this structure has padding and cannot
126 be mapped directly onto the beginning of the .debug_info section. */
127 typedef struct statement_prologue
128 {
129 unsigned int total_length; /* byte length of the statement
130 information */
131 unsigned short version; /* version number -- 2 for DWARF
132 version 2 */
133 unsigned int prologue_length; /* # bytes between prologue &
134 stmt program */
135 unsigned char minimum_instruction_length; /* byte size of
136 smallest instr */
137 unsigned char default_is_stmt; /* initial value of is_stmt
138 register */
139 char line_base;
140 unsigned char line_range;
141 unsigned char opcode_base; /* number assigned to first special
142 opcode */
143 unsigned char *standard_opcode_lengths;
144 }
145 _STATEMENT_PROLOGUE;
146
147 static const struct objfile_data *dwarf2_objfile_data_key;
148
149 struct dwarf2_per_objfile
150 {
151 /* Sizes of debugging sections. */
152 unsigned int info_size;
153 unsigned int abbrev_size;
154 unsigned int line_size;
155 unsigned int pubnames_size;
156 unsigned int aranges_size;
157 unsigned int loc_size;
158 unsigned int macinfo_size;
159 unsigned int str_size;
160 unsigned int ranges_size;
161 unsigned int frame_size;
162 unsigned int eh_frame_size;
163
164 /* Loaded data from the sections. */
165 gdb_byte *info_buffer;
166 gdb_byte *abbrev_buffer;
167 gdb_byte *line_buffer;
168 gdb_byte *str_buffer;
169 gdb_byte *macinfo_buffer;
170 gdb_byte *ranges_buffer;
171 gdb_byte *loc_buffer;
172
173 /* A list of all the compilation units. This is used to locate
174 the target compilation unit of a particular reference. */
175 struct dwarf2_per_cu_data **all_comp_units;
176
177 /* The number of compilation units in ALL_COMP_UNITS. */
178 int n_comp_units;
179
180 /* A chain of compilation units that are currently read in, so that
181 they can be freed later. */
182 struct dwarf2_per_cu_data *read_in_chain;
183
184 /* A flag indicating wether this objfile has a section loaded at a
185 VMA of 0. */
186 int has_section_at_zero;
187 };
188
189 static struct dwarf2_per_objfile *dwarf2_per_objfile;
190
191 static asection *dwarf_info_section;
192 static asection *dwarf_abbrev_section;
193 static asection *dwarf_line_section;
194 static asection *dwarf_pubnames_section;
195 static asection *dwarf_aranges_section;
196 static asection *dwarf_loc_section;
197 static asection *dwarf_macinfo_section;
198 static asection *dwarf_str_section;
199 static asection *dwarf_ranges_section;
200 asection *dwarf_frame_section;
201 asection *dwarf_eh_frame_section;
202
203 /* names of the debugging sections */
204
205 #define INFO_SECTION ".debug_info"
206 #define ABBREV_SECTION ".debug_abbrev"
207 #define LINE_SECTION ".debug_line"
208 #define PUBNAMES_SECTION ".debug_pubnames"
209 #define ARANGES_SECTION ".debug_aranges"
210 #define LOC_SECTION ".debug_loc"
211 #define MACINFO_SECTION ".debug_macinfo"
212 #define STR_SECTION ".debug_str"
213 #define RANGES_SECTION ".debug_ranges"
214 #define FRAME_SECTION ".debug_frame"
215 #define EH_FRAME_SECTION ".eh_frame"
216
217 /* local data types */
218
219 /* We hold several abbreviation tables in memory at the same time. */
220 #ifndef ABBREV_HASH_SIZE
221 #define ABBREV_HASH_SIZE 121
222 #endif
223
224 /* The data in a compilation unit header, after target2host
225 translation, looks like this. */
226 struct comp_unit_head
227 {
228 unsigned long length;
229 short version;
230 unsigned int abbrev_offset;
231 unsigned char addr_size;
232 unsigned char signed_addr_p;
233
234 /* Size of file offsets; either 4 or 8. */
235 unsigned int offset_size;
236
237 /* Size of the length field; either 4 or 12. */
238 unsigned int initial_length_size;
239
240 /* Offset to the first byte of this compilation unit header in the
241 .debug_info section, for resolving relative reference dies. */
242 unsigned int offset;
243
244 /* Pointer to this compilation unit header in the .debug_info
245 section. */
246 gdb_byte *cu_head_ptr;
247
248 /* Pointer to the first die of this compilation unit. This will be
249 the first byte following the compilation unit header. */
250 gdb_byte *first_die_ptr;
251
252 /* Pointer to the next compilation unit header in the program. */
253 struct comp_unit_head *next;
254
255 /* Base address of this compilation unit. */
256 CORE_ADDR base_address;
257
258 /* Non-zero if base_address has been set. */
259 int base_known;
260 };
261
262 /* Fixed size for the DIE hash table. */
263 #ifndef REF_HASH_SIZE
264 #define REF_HASH_SIZE 1021
265 #endif
266
267 /* Internal state when decoding a particular compilation unit. */
268 struct dwarf2_cu
269 {
270 /* The objfile containing this compilation unit. */
271 struct objfile *objfile;
272
273 /* The header of the compilation unit.
274
275 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
276 should logically be moved to the dwarf2_cu structure. */
277 struct comp_unit_head header;
278
279 struct function_range *first_fn, *last_fn, *cached_fn;
280
281 /* The language we are debugging. */
282 enum language language;
283 const struct language_defn *language_defn;
284
285 const char *producer;
286
287 /* The generic symbol table building routines have separate lists for
288 file scope symbols and all all other scopes (local scopes). So
289 we need to select the right one to pass to add_symbol_to_list().
290 We do it by keeping a pointer to the correct list in list_in_scope.
291
292 FIXME: The original dwarf code just treated the file scope as the
293 first local scope, and all other local scopes as nested local
294 scopes, and worked fine. Check to see if we really need to
295 distinguish these in buildsym.c. */
296 struct pending **list_in_scope;
297
298 /* Maintain an array of referenced fundamental types for the current
299 compilation unit being read. For DWARF version 1, we have to construct
300 the fundamental types on the fly, since no information about the
301 fundamental types is supplied. Each such fundamental type is created by
302 calling a language dependent routine to create the type, and then a
303 pointer to that type is then placed in the array at the index specified
304 by it's FT_<TYPENAME> value. The array has a fixed size set by the
305 FT_NUM_MEMBERS compile time constant, which is the number of predefined
306 fundamental types gdb knows how to construct. */
307 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
308
309 /* DWARF abbreviation table associated with this compilation unit. */
310 struct abbrev_info **dwarf2_abbrevs;
311
312 /* Storage for the abbrev table. */
313 struct obstack abbrev_obstack;
314
315 /* Hash table holding all the loaded partial DIEs. */
316 htab_t partial_dies;
317
318 /* Storage for things with the same lifetime as this read-in compilation
319 unit, including partial DIEs. */
320 struct obstack comp_unit_obstack;
321
322 /* When multiple dwarf2_cu structures are living in memory, this field
323 chains them all together, so that they can be released efficiently.
324 We will probably also want a generation counter so that most-recently-used
325 compilation units are cached... */
326 struct dwarf2_per_cu_data *read_in_chain;
327
328 /* Backchain to our per_cu entry if the tree has been built. */
329 struct dwarf2_per_cu_data *per_cu;
330
331 /* How many compilation units ago was this CU last referenced? */
332 int last_used;
333
334 /* A hash table of die offsets for following references. */
335 struct die_info *die_ref_table[REF_HASH_SIZE];
336
337 /* Full DIEs if read in. */
338 struct die_info *dies;
339
340 /* A set of pointers to dwarf2_per_cu_data objects for compilation
341 units referenced by this one. Only set during full symbol processing;
342 partial symbol tables do not have dependencies. */
343 htab_t dependencies;
344
345 /* Mark used when releasing cached dies. */
346 unsigned int mark : 1;
347
348 /* This flag will be set if this compilation unit might include
349 inter-compilation-unit references. */
350 unsigned int has_form_ref_addr : 1;
351
352 /* This flag will be set if this compilation unit includes any
353 DW_TAG_namespace DIEs. If we know that there are explicit
354 DIEs for namespaces, we don't need to try to infer them
355 from mangled names. */
356 unsigned int has_namespace_info : 1;
357 };
358
359 /* Persistent data held for a compilation unit, even when not
360 processing it. We put a pointer to this structure in the
361 read_symtab_private field of the psymtab. If we encounter
362 inter-compilation-unit references, we also maintain a sorted
363 list of all compilation units. */
364
365 struct dwarf2_per_cu_data
366 {
367 /* The start offset and length of this compilation unit. 2**30-1
368 bytes should suffice to store the length of any compilation unit
369 - if it doesn't, GDB will fall over anyway. */
370 unsigned long offset;
371 unsigned long length : 30;
372
373 /* Flag indicating this compilation unit will be read in before
374 any of the current compilation units are processed. */
375 unsigned long queued : 1;
376
377 /* This flag will be set if we need to load absolutely all DIEs
378 for this compilation unit, instead of just the ones we think
379 are interesting. It gets set if we look for a DIE in the
380 hash table and don't find it. */
381 unsigned int load_all_dies : 1;
382
383 /* Set iff currently read in. */
384 struct dwarf2_cu *cu;
385
386 /* If full symbols for this CU have been read in, then this field
387 holds a map of DIE offsets to types. It isn't always possible
388 to reconstruct this information later, so we have to preserve
389 it. */
390 htab_t type_hash;
391
392 /* The partial symbol table associated with this compilation unit,
393 or NULL for partial units (which do not have an associated
394 symtab). */
395 struct partial_symtab *psymtab;
396 };
397
398 /* The line number information for a compilation unit (found in the
399 .debug_line section) begins with a "statement program header",
400 which contains the following information. */
401 struct line_header
402 {
403 unsigned int total_length;
404 unsigned short version;
405 unsigned int header_length;
406 unsigned char minimum_instruction_length;
407 unsigned char default_is_stmt;
408 int line_base;
409 unsigned char line_range;
410 unsigned char opcode_base;
411
412 /* standard_opcode_lengths[i] is the number of operands for the
413 standard opcode whose value is i. This means that
414 standard_opcode_lengths[0] is unused, and the last meaningful
415 element is standard_opcode_lengths[opcode_base - 1]. */
416 unsigned char *standard_opcode_lengths;
417
418 /* The include_directories table. NOTE! These strings are not
419 allocated with xmalloc; instead, they are pointers into
420 debug_line_buffer. If you try to free them, `free' will get
421 indigestion. */
422 unsigned int num_include_dirs, include_dirs_size;
423 char **include_dirs;
424
425 /* The file_names table. NOTE! These strings are not allocated
426 with xmalloc; instead, they are pointers into debug_line_buffer.
427 Don't try to free them directly. */
428 unsigned int num_file_names, file_names_size;
429 struct file_entry
430 {
431 char *name;
432 unsigned int dir_index;
433 unsigned int mod_time;
434 unsigned int length;
435 int included_p; /* Non-zero if referenced by the Line Number Program. */
436 } *file_names;
437
438 /* The start and end of the statement program following this
439 header. These point into dwarf2_per_objfile->line_buffer. */
440 gdb_byte *statement_program_start, *statement_program_end;
441 };
442
443 /* When we construct a partial symbol table entry we only
444 need this much information. */
445 struct partial_die_info
446 {
447 /* Offset of this DIE. */
448 unsigned int offset;
449
450 /* DWARF-2 tag for this DIE. */
451 ENUM_BITFIELD(dwarf_tag) tag : 16;
452
453 /* Language code associated with this DIE. This is only used
454 for the compilation unit DIE. */
455 unsigned int language : 8;
456
457 /* Assorted flags describing the data found in this DIE. */
458 unsigned int has_children : 1;
459 unsigned int is_external : 1;
460 unsigned int is_declaration : 1;
461 unsigned int has_type : 1;
462 unsigned int has_specification : 1;
463 unsigned int has_stmt_list : 1;
464 unsigned int has_pc_info : 1;
465
466 /* Flag set if the SCOPE field of this structure has been
467 computed. */
468 unsigned int scope_set : 1;
469
470 /* The name of this DIE. Normally the value of DW_AT_name, but
471 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
472 other fashion. */
473 char *name;
474 char *dirname;
475
476 /* The scope to prepend to our children. This is generally
477 allocated on the comp_unit_obstack, so will disappear
478 when this compilation unit leaves the cache. */
479 char *scope;
480
481 /* The location description associated with this DIE, if any. */
482 struct dwarf_block *locdesc;
483
484 /* If HAS_PC_INFO, the PC range associated with this DIE. */
485 CORE_ADDR lowpc;
486 CORE_ADDR highpc;
487
488 /* Pointer into the info_buffer pointing at the target of
489 DW_AT_sibling, if any. */
490 gdb_byte *sibling;
491
492 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
493 DW_AT_specification (or DW_AT_abstract_origin or
494 DW_AT_extension). */
495 unsigned int spec_offset;
496
497 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
498 unsigned int line_offset;
499
500 /* Pointers to this DIE's parent, first child, and next sibling,
501 if any. */
502 struct partial_die_info *die_parent, *die_child, *die_sibling;
503 };
504
505 /* This data structure holds the information of an abbrev. */
506 struct abbrev_info
507 {
508 unsigned int number; /* number identifying abbrev */
509 enum dwarf_tag tag; /* dwarf tag */
510 unsigned short has_children; /* boolean */
511 unsigned short num_attrs; /* number of attributes */
512 struct attr_abbrev *attrs; /* an array of attribute descriptions */
513 struct abbrev_info *next; /* next in chain */
514 };
515
516 struct attr_abbrev
517 {
518 enum dwarf_attribute name;
519 enum dwarf_form form;
520 };
521
522 /* This data structure holds a complete die structure. */
523 struct die_info
524 {
525 enum dwarf_tag tag; /* Tag indicating type of die */
526 unsigned int abbrev; /* Abbrev number */
527 unsigned int offset; /* Offset in .debug_info section */
528 unsigned int num_attrs; /* Number of attributes */
529 struct attribute *attrs; /* An array of attributes */
530 struct die_info *next_ref; /* Next die in ref hash table */
531
532 /* The dies in a compilation unit form an n-ary tree. PARENT
533 points to this die's parent; CHILD points to the first child of
534 this node; and all the children of a given node are chained
535 together via their SIBLING fields, terminated by a die whose
536 tag is zero. */
537 struct die_info *child; /* Its first child, if any. */
538 struct die_info *sibling; /* Its next sibling, if any. */
539 struct die_info *parent; /* Its parent, if any. */
540
541 struct type *type; /* Cached type information */
542 };
543
544 /* Attributes have a name and a value */
545 struct attribute
546 {
547 enum dwarf_attribute name;
548 enum dwarf_form form;
549 union
550 {
551 char *str;
552 struct dwarf_block *blk;
553 unsigned long unsnd;
554 long int snd;
555 CORE_ADDR addr;
556 }
557 u;
558 };
559
560 struct function_range
561 {
562 const char *name;
563 CORE_ADDR lowpc, highpc;
564 int seen_line;
565 struct function_range *next;
566 };
567
568 /* Get at parts of an attribute structure */
569
570 #define DW_STRING(attr) ((attr)->u.str)
571 #define DW_UNSND(attr) ((attr)->u.unsnd)
572 #define DW_BLOCK(attr) ((attr)->u.blk)
573 #define DW_SND(attr) ((attr)->u.snd)
574 #define DW_ADDR(attr) ((attr)->u.addr)
575
576 /* Blocks are a bunch of untyped bytes. */
577 struct dwarf_block
578 {
579 unsigned int size;
580 gdb_byte *data;
581 };
582
583 #ifndef ATTR_ALLOC_CHUNK
584 #define ATTR_ALLOC_CHUNK 4
585 #endif
586
587 /* Allocate fields for structs, unions and enums in this size. */
588 #ifndef DW_FIELD_ALLOC_CHUNK
589 #define DW_FIELD_ALLOC_CHUNK 4
590 #endif
591
592 /* A zeroed version of a partial die for initialization purposes. */
593 static struct partial_die_info zeroed_partial_die;
594
595 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
596 but this would require a corresponding change in unpack_field_as_long
597 and friends. */
598 static int bits_per_byte = 8;
599
600 /* The routines that read and process dies for a C struct or C++ class
601 pass lists of data member fields and lists of member function fields
602 in an instance of a field_info structure, as defined below. */
603 struct field_info
604 {
605 /* List of data member and baseclasses fields. */
606 struct nextfield
607 {
608 struct nextfield *next;
609 int accessibility;
610 int virtuality;
611 struct field field;
612 }
613 *fields;
614
615 /* Number of fields. */
616 int nfields;
617
618 /* Number of baseclasses. */
619 int nbaseclasses;
620
621 /* Set if the accesibility of one of the fields is not public. */
622 int non_public_fields;
623
624 /* Member function fields array, entries are allocated in the order they
625 are encountered in the object file. */
626 struct nextfnfield
627 {
628 struct nextfnfield *next;
629 struct fn_field fnfield;
630 }
631 *fnfields;
632
633 /* Member function fieldlist array, contains name of possibly overloaded
634 member function, number of overloaded member functions and a pointer
635 to the head of the member function field chain. */
636 struct fnfieldlist
637 {
638 char *name;
639 int length;
640 struct nextfnfield *head;
641 }
642 *fnfieldlists;
643
644 /* Number of entries in the fnfieldlists array. */
645 int nfnfields;
646 };
647
648 /* One item on the queue of compilation units to read in full symbols
649 for. */
650 struct dwarf2_queue_item
651 {
652 struct dwarf2_per_cu_data *per_cu;
653 struct dwarf2_queue_item *next;
654 };
655
656 /* The current queue. */
657 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
658
659 /* Loaded secondary compilation units are kept in memory until they
660 have not been referenced for the processing of this many
661 compilation units. Set this to zero to disable caching. Cache
662 sizes of up to at least twenty will improve startup time for
663 typical inter-CU-reference binaries, at an obvious memory cost. */
664 static int dwarf2_max_cache_age = 5;
665 static void
666 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
667 struct cmd_list_element *c, const char *value)
668 {
669 fprintf_filtered (file, _("\
670 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
671 value);
672 }
673
674
675 /* Various complaints about symbol reading that don't abort the process */
676
677 static void
678 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
679 {
680 complaint (&symfile_complaints,
681 _("statement list doesn't fit in .debug_line section"));
682 }
683
684 static void
685 dwarf2_complex_location_expr_complaint (void)
686 {
687 complaint (&symfile_complaints, _("location expression too complex"));
688 }
689
690 static void
691 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
692 int arg3)
693 {
694 complaint (&symfile_complaints,
695 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
696 arg2, arg3);
697 }
698
699 static void
700 dwarf2_macros_too_long_complaint (void)
701 {
702 complaint (&symfile_complaints,
703 _("macro info runs off end of `.debug_macinfo' section"));
704 }
705
706 static void
707 dwarf2_macro_malformed_definition_complaint (const char *arg1)
708 {
709 complaint (&symfile_complaints,
710 _("macro debug info contains a malformed macro definition:\n`%s'"),
711 arg1);
712 }
713
714 static void
715 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
716 {
717 complaint (&symfile_complaints,
718 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
719 }
720
721 /* local function prototypes */
722
723 static void dwarf2_locate_sections (bfd *, asection *, void *);
724
725 #if 0
726 static void dwarf2_build_psymtabs_easy (struct objfile *, int);
727 #endif
728
729 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
730 struct objfile *);
731
732 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
733 struct partial_die_info *,
734 struct partial_symtab *);
735
736 static void dwarf2_build_psymtabs_hard (struct objfile *, int);
737
738 static void scan_partial_symbols (struct partial_die_info *,
739 CORE_ADDR *, CORE_ADDR *,
740 struct dwarf2_cu *);
741
742 static void add_partial_symbol (struct partial_die_info *,
743 struct dwarf2_cu *);
744
745 static int pdi_needs_namespace (enum dwarf_tag tag);
746
747 static void add_partial_namespace (struct partial_die_info *pdi,
748 CORE_ADDR *lowpc, CORE_ADDR *highpc,
749 struct dwarf2_cu *cu);
750
751 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
752 struct dwarf2_cu *cu);
753
754 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
755 gdb_byte *info_ptr,
756 bfd *abfd,
757 struct dwarf2_cu *cu);
758
759 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
760
761 static void psymtab_to_symtab_1 (struct partial_symtab *);
762
763 gdb_byte *dwarf2_read_section (struct objfile *, asection *);
764
765 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
766
767 static void dwarf2_free_abbrev_table (void *);
768
769 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
770 struct dwarf2_cu *);
771
772 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
773 struct dwarf2_cu *);
774
775 static struct partial_die_info *load_partial_dies (bfd *, gdb_byte *, int,
776 struct dwarf2_cu *);
777
778 static gdb_byte *read_partial_die (struct partial_die_info *,
779 struct abbrev_info *abbrev, unsigned int,
780 bfd *, gdb_byte *, struct dwarf2_cu *);
781
782 static struct partial_die_info *find_partial_die (unsigned long,
783 struct dwarf2_cu *);
784
785 static void fixup_partial_die (struct partial_die_info *,
786 struct dwarf2_cu *);
787
788 static gdb_byte *read_full_die (struct die_info **, bfd *, gdb_byte *,
789 struct dwarf2_cu *, int *);
790
791 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
792 bfd *, gdb_byte *, struct dwarf2_cu *);
793
794 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
795 bfd *, gdb_byte *, struct dwarf2_cu *);
796
797 static unsigned int read_1_byte (bfd *, gdb_byte *);
798
799 static int read_1_signed_byte (bfd *, gdb_byte *);
800
801 static unsigned int read_2_bytes (bfd *, gdb_byte *);
802
803 static unsigned int read_4_bytes (bfd *, gdb_byte *);
804
805 static unsigned long read_8_bytes (bfd *, gdb_byte *);
806
807 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
808 unsigned int *);
809
810 static LONGEST read_initial_length (bfd *, gdb_byte *,
811 struct comp_unit_head *, unsigned int *);
812
813 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
814 unsigned int *);
815
816 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
817
818 static char *read_string (bfd *, gdb_byte *, unsigned int *);
819
820 static char *read_indirect_string (bfd *, gdb_byte *,
821 const struct comp_unit_head *,
822 unsigned int *);
823
824 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
825
826 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
827
828 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
829
830 static void set_cu_language (unsigned int, struct dwarf2_cu *);
831
832 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
833 struct dwarf2_cu *);
834
835 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
836 struct dwarf2_cu *cu);
837
838 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
839
840 static struct die_info *die_specification (struct die_info *die,
841 struct dwarf2_cu *);
842
843 static void free_line_header (struct line_header *lh);
844
845 static void add_file_name (struct line_header *, char *, unsigned int,
846 unsigned int, unsigned int);
847
848 static struct line_header *(dwarf_decode_line_header
849 (unsigned int offset,
850 bfd *abfd, struct dwarf2_cu *cu));
851
852 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
853 struct dwarf2_cu *, struct partial_symtab *);
854
855 static void dwarf2_start_subfile (char *, char *, char *);
856
857 static struct symbol *new_symbol (struct die_info *, struct type *,
858 struct dwarf2_cu *);
859
860 static void dwarf2_const_value (struct attribute *, struct symbol *,
861 struct dwarf2_cu *);
862
863 static void dwarf2_const_value_data (struct attribute *attr,
864 struct symbol *sym,
865 int bits);
866
867 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
868
869 static struct type *die_containing_type (struct die_info *,
870 struct dwarf2_cu *);
871
872 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
873
874 static void read_type_die (struct die_info *, struct dwarf2_cu *);
875
876 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
877
878 static char *typename_concat (struct obstack *,
879 const char *prefix,
880 const char *suffix,
881 struct dwarf2_cu *);
882
883 static void read_typedef (struct die_info *, struct dwarf2_cu *);
884
885 static void read_base_type (struct die_info *, struct dwarf2_cu *);
886
887 static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
888
889 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
890
891 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
892
893 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
894
895 static int dwarf2_get_pc_bounds (struct die_info *,
896 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
897
898 static void get_scope_pc_bounds (struct die_info *,
899 CORE_ADDR *, CORE_ADDR *,
900 struct dwarf2_cu *);
901
902 static void dwarf2_add_field (struct field_info *, struct die_info *,
903 struct dwarf2_cu *);
904
905 static void dwarf2_attach_fields_to_type (struct field_info *,
906 struct type *, struct dwarf2_cu *);
907
908 static void dwarf2_add_member_fn (struct field_info *,
909 struct die_info *, struct type *,
910 struct dwarf2_cu *);
911
912 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
913 struct type *, struct dwarf2_cu *);
914
915 static void read_structure_type (struct die_info *, struct dwarf2_cu *);
916
917 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
918
919 static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
920
921 static void read_common_block (struct die_info *, struct dwarf2_cu *);
922
923 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
924
925 static const char *namespace_name (struct die_info *die,
926 int *is_anonymous, struct dwarf2_cu *);
927
928 static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
929
930 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
931
932 static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
933
934 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
935
936 static void read_array_type (struct die_info *, struct dwarf2_cu *);
937
938 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
939 struct dwarf2_cu *);
940
941 static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
942
943 static void read_tag_ptr_to_member_type (struct die_info *,
944 struct dwarf2_cu *);
945
946 static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
947
948 static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
949
950 static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
951
952 static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
953
954 static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
955
956 static struct die_info *read_comp_unit (gdb_byte *, bfd *, struct dwarf2_cu *);
957
958 static struct die_info *read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
959 struct dwarf2_cu *,
960 gdb_byte **new_info_ptr,
961 struct die_info *parent);
962
963 static struct die_info *read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
964 struct dwarf2_cu *,
965 gdb_byte **new_info_ptr,
966 struct die_info *parent);
967
968 static void free_die_list (struct die_info *);
969
970 static void process_die (struct die_info *, struct dwarf2_cu *);
971
972 static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
973
974 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
975
976 static struct die_info *dwarf2_extension (struct die_info *die,
977 struct dwarf2_cu *);
978
979 static char *dwarf_tag_name (unsigned int);
980
981 static char *dwarf_attr_name (unsigned int);
982
983 static char *dwarf_form_name (unsigned int);
984
985 static char *dwarf_stack_op_name (unsigned int);
986
987 static char *dwarf_bool_name (unsigned int);
988
989 static char *dwarf_type_encoding_name (unsigned int);
990
991 #if 0
992 static char *dwarf_cfi_name (unsigned int);
993
994 struct die_info *copy_die (struct die_info *);
995 #endif
996
997 static struct die_info *sibling_die (struct die_info *);
998
999 static void dump_die (struct die_info *);
1000
1001 static void dump_die_list (struct die_info *);
1002
1003 static void store_in_ref_table (unsigned int, struct die_info *,
1004 struct dwarf2_cu *);
1005
1006 static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
1007 struct dwarf2_cu *);
1008
1009 static int dwarf2_get_attr_constant_value (struct attribute *, int);
1010
1011 static struct die_info *follow_die_ref (struct die_info *,
1012 struct attribute *,
1013 struct dwarf2_cu *);
1014
1015 static struct type *dwarf2_fundamental_type (struct objfile *, int,
1016 struct dwarf2_cu *);
1017
1018 /* memory allocation interface */
1019
1020 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1021
1022 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1023
1024 static struct die_info *dwarf_alloc_die (void);
1025
1026 static void initialize_cu_func_list (struct dwarf2_cu *);
1027
1028 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1029 struct dwarf2_cu *);
1030
1031 static void dwarf_decode_macros (struct line_header *, unsigned int,
1032 char *, bfd *, struct dwarf2_cu *);
1033
1034 static int attr_form_is_block (struct attribute *);
1035
1036 static void
1037 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
1038 struct dwarf2_cu *cu);
1039
1040 static gdb_byte *skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
1041 struct dwarf2_cu *cu);
1042
1043 static void free_stack_comp_unit (void *);
1044
1045 static hashval_t partial_die_hash (const void *item);
1046
1047 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1048
1049 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1050 (unsigned long offset, struct objfile *objfile);
1051
1052 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1053 (unsigned long offset, struct objfile *objfile);
1054
1055 static void free_one_comp_unit (void *);
1056
1057 static void free_cached_comp_units (void *);
1058
1059 static void age_cached_comp_units (void);
1060
1061 static void free_one_cached_comp_unit (void *);
1062
1063 static void set_die_type (struct die_info *, struct type *,
1064 struct dwarf2_cu *);
1065
1066 static void reset_die_and_siblings_types (struct die_info *,
1067 struct dwarf2_cu *);
1068
1069 static void create_all_comp_units (struct objfile *);
1070
1071 static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *,
1072 struct objfile *);
1073
1074 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1075
1076 static void dwarf2_add_dependence (struct dwarf2_cu *,
1077 struct dwarf2_per_cu_data *);
1078
1079 static void dwarf2_mark (struct dwarf2_cu *);
1080
1081 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1082
1083 static void read_set_type (struct die_info *, struct dwarf2_cu *);
1084
1085
1086 /* Try to locate the sections we need for DWARF 2 debugging
1087 information and return true if we have enough to do something. */
1088
1089 int
1090 dwarf2_has_info (struct objfile *objfile)
1091 {
1092 struct dwarf2_per_objfile *data;
1093
1094 /* Initialize per-objfile state. */
1095 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1096 memset (data, 0, sizeof (*data));
1097 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1098 dwarf2_per_objfile = data;
1099
1100 dwarf_info_section = 0;
1101 dwarf_abbrev_section = 0;
1102 dwarf_line_section = 0;
1103 dwarf_str_section = 0;
1104 dwarf_macinfo_section = 0;
1105 dwarf_frame_section = 0;
1106 dwarf_eh_frame_section = 0;
1107 dwarf_ranges_section = 0;
1108 dwarf_loc_section = 0;
1109
1110 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1111 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
1112 }
1113
1114 /* This function is mapped across the sections and remembers the
1115 offset and size of each of the debugging sections we are interested
1116 in. */
1117
1118 static void
1119 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1120 {
1121 if (strcmp (sectp->name, INFO_SECTION) == 0)
1122 {
1123 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
1124 dwarf_info_section = sectp;
1125 }
1126 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
1127 {
1128 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
1129 dwarf_abbrev_section = sectp;
1130 }
1131 else if (strcmp (sectp->name, LINE_SECTION) == 0)
1132 {
1133 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
1134 dwarf_line_section = sectp;
1135 }
1136 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
1137 {
1138 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
1139 dwarf_pubnames_section = sectp;
1140 }
1141 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
1142 {
1143 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
1144 dwarf_aranges_section = sectp;
1145 }
1146 else if (strcmp (sectp->name, LOC_SECTION) == 0)
1147 {
1148 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
1149 dwarf_loc_section = sectp;
1150 }
1151 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
1152 {
1153 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
1154 dwarf_macinfo_section = sectp;
1155 }
1156 else if (strcmp (sectp->name, STR_SECTION) == 0)
1157 {
1158 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
1159 dwarf_str_section = sectp;
1160 }
1161 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
1162 {
1163 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
1164 dwarf_frame_section = sectp;
1165 }
1166 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
1167 {
1168 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1169 if (aflag & SEC_HAS_CONTENTS)
1170 {
1171 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
1172 dwarf_eh_frame_section = sectp;
1173 }
1174 }
1175 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
1176 {
1177 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
1178 dwarf_ranges_section = sectp;
1179 }
1180
1181 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1182 && bfd_section_vma (abfd, sectp) == 0)
1183 dwarf2_per_objfile->has_section_at_zero = 1;
1184 }
1185
1186 /* Build a partial symbol table. */
1187
1188 void
1189 dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1190 {
1191 /* We definitely need the .debug_info and .debug_abbrev sections */
1192
1193 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1194 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
1195
1196 if (dwarf_line_section)
1197 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
1198 else
1199 dwarf2_per_objfile->line_buffer = NULL;
1200
1201 if (dwarf_str_section)
1202 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
1203 else
1204 dwarf2_per_objfile->str_buffer = NULL;
1205
1206 if (dwarf_macinfo_section)
1207 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
1208 dwarf_macinfo_section);
1209 else
1210 dwarf2_per_objfile->macinfo_buffer = NULL;
1211
1212 if (dwarf_ranges_section)
1213 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
1214 else
1215 dwarf2_per_objfile->ranges_buffer = NULL;
1216
1217 if (dwarf_loc_section)
1218 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
1219 else
1220 dwarf2_per_objfile->loc_buffer = NULL;
1221
1222 if (mainline
1223 || (objfile->global_psymbols.size == 0
1224 && objfile->static_psymbols.size == 0))
1225 {
1226 init_psymbol_list (objfile, 1024);
1227 }
1228
1229 #if 0
1230 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1231 {
1232 /* Things are significantly easier if we have .debug_aranges and
1233 .debug_pubnames sections */
1234
1235 dwarf2_build_psymtabs_easy (objfile, mainline);
1236 }
1237 else
1238 #endif
1239 /* only test this case for now */
1240 {
1241 /* In this case we have to work a bit harder */
1242 dwarf2_build_psymtabs_hard (objfile, mainline);
1243 }
1244 }
1245
1246 #if 0
1247 /* Build the partial symbol table from the information in the
1248 .debug_pubnames and .debug_aranges sections. */
1249
1250 static void
1251 dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1252 {
1253 bfd *abfd = objfile->obfd;
1254 char *aranges_buffer, *pubnames_buffer;
1255 char *aranges_ptr, *pubnames_ptr;
1256 unsigned int entry_length, version, info_offset, info_size;
1257
1258 pubnames_buffer = dwarf2_read_section (objfile,
1259 dwarf_pubnames_section);
1260 pubnames_ptr = pubnames_buffer;
1261 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
1262 {
1263 struct comp_unit_head cu_header;
1264 unsigned int bytes_read;
1265
1266 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1267 &bytes_read);
1268 pubnames_ptr += bytes_read;
1269 version = read_1_byte (abfd, pubnames_ptr);
1270 pubnames_ptr += 1;
1271 info_offset = read_4_bytes (abfd, pubnames_ptr);
1272 pubnames_ptr += 4;
1273 info_size = read_4_bytes (abfd, pubnames_ptr);
1274 pubnames_ptr += 4;
1275 }
1276
1277 aranges_buffer = dwarf2_read_section (objfile,
1278 dwarf_aranges_section);
1279
1280 }
1281 #endif
1282
1283 /* Read in the comp unit header information from the debug_info at
1284 info_ptr. */
1285
1286 static gdb_byte *
1287 read_comp_unit_head (struct comp_unit_head *cu_header,
1288 gdb_byte *info_ptr, bfd *abfd)
1289 {
1290 int signed_addr;
1291 unsigned int bytes_read;
1292 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1293 &bytes_read);
1294 info_ptr += bytes_read;
1295 cu_header->version = read_2_bytes (abfd, info_ptr);
1296 info_ptr += 2;
1297 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1298 &bytes_read);
1299 info_ptr += bytes_read;
1300 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1301 info_ptr += 1;
1302 signed_addr = bfd_get_sign_extend_vma (abfd);
1303 if (signed_addr < 0)
1304 internal_error (__FILE__, __LINE__,
1305 _("read_comp_unit_head: dwarf from non elf file"));
1306 cu_header->signed_addr_p = signed_addr;
1307 return info_ptr;
1308 }
1309
1310 static gdb_byte *
1311 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
1312 bfd *abfd)
1313 {
1314 gdb_byte *beg_of_comp_unit = info_ptr;
1315
1316 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1317
1318 if (header->version != 2 && header->version != 3)
1319 error (_("Dwarf Error: wrong version in compilation unit header "
1320 "(is %d, should be %d) [in module %s]"), header->version,
1321 2, bfd_get_filename (abfd));
1322
1323 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
1324 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1325 "(offset 0x%lx + 6) [in module %s]"),
1326 (long) header->abbrev_offset,
1327 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1328 bfd_get_filename (abfd));
1329
1330 if (beg_of_comp_unit + header->length + header->initial_length_size
1331 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1332 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1333 "(offset 0x%lx + 0) [in module %s]"),
1334 (long) header->length,
1335 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1336 bfd_get_filename (abfd));
1337
1338 return info_ptr;
1339 }
1340
1341 /* Allocate a new partial symtab for file named NAME and mark this new
1342 partial symtab as being an include of PST. */
1343
1344 static void
1345 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1346 struct objfile *objfile)
1347 {
1348 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1349
1350 subpst->section_offsets = pst->section_offsets;
1351 subpst->textlow = 0;
1352 subpst->texthigh = 0;
1353
1354 subpst->dependencies = (struct partial_symtab **)
1355 obstack_alloc (&objfile->objfile_obstack,
1356 sizeof (struct partial_symtab *));
1357 subpst->dependencies[0] = pst;
1358 subpst->number_of_dependencies = 1;
1359
1360 subpst->globals_offset = 0;
1361 subpst->n_global_syms = 0;
1362 subpst->statics_offset = 0;
1363 subpst->n_static_syms = 0;
1364 subpst->symtab = NULL;
1365 subpst->read_symtab = pst->read_symtab;
1366 subpst->readin = 0;
1367
1368 /* No private part is necessary for include psymtabs. This property
1369 can be used to differentiate between such include psymtabs and
1370 the regular ones. */
1371 subpst->read_symtab_private = NULL;
1372 }
1373
1374 /* Read the Line Number Program data and extract the list of files
1375 included by the source file represented by PST. Build an include
1376 partial symtab for each of these included files.
1377
1378 This procedure assumes that there *is* a Line Number Program in
1379 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1380 before calling this procedure. */
1381
1382 static void
1383 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1384 struct partial_die_info *pdi,
1385 struct partial_symtab *pst)
1386 {
1387 struct objfile *objfile = cu->objfile;
1388 bfd *abfd = objfile->obfd;
1389 struct line_header *lh;
1390
1391 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1392 if (lh == NULL)
1393 return; /* No linetable, so no includes. */
1394
1395 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1396
1397 free_line_header (lh);
1398 }
1399
1400
1401 /* Build the partial symbol table by doing a quick pass through the
1402 .debug_info and .debug_abbrev sections. */
1403
1404 static void
1405 dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
1406 {
1407 /* Instead of reading this into a big buffer, we should probably use
1408 mmap() on architectures that support it. (FIXME) */
1409 bfd *abfd = objfile->obfd;
1410 gdb_byte *info_ptr;
1411 gdb_byte *beg_of_comp_unit;
1412 struct partial_die_info comp_unit_die;
1413 struct partial_symtab *pst;
1414 struct cleanup *back_to;
1415 CORE_ADDR lowpc, highpc, baseaddr;
1416
1417 info_ptr = dwarf2_per_objfile->info_buffer;
1418
1419 /* Any cached compilation units will be linked by the per-objfile
1420 read_in_chain. Make sure to free them when we're done. */
1421 back_to = make_cleanup (free_cached_comp_units, NULL);
1422
1423 create_all_comp_units (objfile);
1424
1425 /* Since the objects we're extracting from .debug_info vary in
1426 length, only the individual functions to extract them (like
1427 read_comp_unit_head and load_partial_die) can really know whether
1428 the buffer is large enough to hold another complete object.
1429
1430 At the moment, they don't actually check that. If .debug_info
1431 holds just one extra byte after the last compilation unit's dies,
1432 then read_comp_unit_head will happily read off the end of the
1433 buffer. read_partial_die is similarly casual. Those functions
1434 should be fixed.
1435
1436 For this loop condition, simply checking whether there's any data
1437 left at all should be sufficient. */
1438 while (info_ptr < (dwarf2_per_objfile->info_buffer
1439 + dwarf2_per_objfile->info_size))
1440 {
1441 struct cleanup *back_to_inner;
1442 struct dwarf2_cu cu;
1443 struct abbrev_info *abbrev;
1444 unsigned int bytes_read;
1445 struct dwarf2_per_cu_data *this_cu;
1446
1447 beg_of_comp_unit = info_ptr;
1448
1449 memset (&cu, 0, sizeof (cu));
1450
1451 obstack_init (&cu.comp_unit_obstack);
1452
1453 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1454
1455 cu.objfile = objfile;
1456 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
1457
1458 /* Complete the cu_header */
1459 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1460 cu.header.first_die_ptr = info_ptr;
1461 cu.header.cu_head_ptr = beg_of_comp_unit;
1462
1463 cu.list_in_scope = &file_symbols;
1464
1465 /* Read the abbrevs for this compilation unit into a table */
1466 dwarf2_read_abbrevs (abfd, &cu);
1467 make_cleanup (dwarf2_free_abbrev_table, &cu);
1468
1469 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
1470
1471 /* Read the compilation unit die */
1472 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1473 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1474 abfd, info_ptr, &cu);
1475
1476 if (comp_unit_die.tag == DW_TAG_partial_unit)
1477 {
1478 info_ptr = (beg_of_comp_unit + cu.header.length
1479 + cu.header.initial_length_size);
1480 do_cleanups (back_to_inner);
1481 continue;
1482 }
1483
1484 /* Set the language we're debugging */
1485 set_cu_language (comp_unit_die.language, &cu);
1486
1487 /* Allocate a new partial symbol table structure */
1488 pst = start_psymtab_common (objfile, objfile->section_offsets,
1489 comp_unit_die.name ? comp_unit_die.name : "",
1490 comp_unit_die.lowpc,
1491 objfile->global_psymbols.next,
1492 objfile->static_psymbols.next);
1493
1494 if (comp_unit_die.dirname)
1495 pst->dirname = xstrdup (comp_unit_die.dirname);
1496
1497 pst->read_symtab_private = (char *) this_cu;
1498
1499 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1500
1501 /* Store the function that reads in the rest of the symbol table */
1502 pst->read_symtab = dwarf2_psymtab_to_symtab;
1503
1504 /* If this compilation unit was already read in, free the
1505 cached copy in order to read it in again. This is
1506 necessary because we skipped some symbols when we first
1507 read in the compilation unit (see load_partial_dies).
1508 This problem could be avoided, but the benefit is
1509 unclear. */
1510 if (this_cu->cu != NULL)
1511 free_one_cached_comp_unit (this_cu->cu);
1512
1513 cu.per_cu = this_cu;
1514
1515 /* Note that this is a pointer to our stack frame, being
1516 added to a global data structure. It will be cleaned up
1517 in free_stack_comp_unit when we finish with this
1518 compilation unit. */
1519 this_cu->cu = &cu;
1520
1521 this_cu->psymtab = pst;
1522
1523 /* Check if comp unit has_children.
1524 If so, read the rest of the partial symbols from this comp unit.
1525 If not, there's no more debug_info for this comp unit. */
1526 if (comp_unit_die.has_children)
1527 {
1528 struct partial_die_info *first_die;
1529
1530 lowpc = ((CORE_ADDR) -1);
1531 highpc = ((CORE_ADDR) 0);
1532
1533 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1534
1535 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
1536
1537 /* If we didn't find a lowpc, set it to highpc to avoid
1538 complaints from `maint check'. */
1539 if (lowpc == ((CORE_ADDR) -1))
1540 lowpc = highpc;
1541
1542 /* If the compilation unit didn't have an explicit address range,
1543 then use the information extracted from its child dies. */
1544 if (! comp_unit_die.has_pc_info)
1545 {
1546 comp_unit_die.lowpc = lowpc;
1547 comp_unit_die.highpc = highpc;
1548 }
1549 }
1550 pst->textlow = comp_unit_die.lowpc + baseaddr;
1551 pst->texthigh = comp_unit_die.highpc + baseaddr;
1552
1553 pst->n_global_syms = objfile->global_psymbols.next -
1554 (objfile->global_psymbols.list + pst->globals_offset);
1555 pst->n_static_syms = objfile->static_psymbols.next -
1556 (objfile->static_psymbols.list + pst->statics_offset);
1557 sort_pst_symbols (pst);
1558
1559 /* If there is already a psymtab or symtab for a file of this
1560 name, remove it. (If there is a symtab, more drastic things
1561 also happen.) This happens in VxWorks. */
1562 free_named_symtabs (pst->filename);
1563
1564 info_ptr = beg_of_comp_unit + cu.header.length
1565 + cu.header.initial_length_size;
1566
1567 if (comp_unit_die.has_stmt_list)
1568 {
1569 /* Get the list of files included in the current compilation unit,
1570 and build a psymtab for each of them. */
1571 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1572 }
1573
1574 do_cleanups (back_to_inner);
1575 }
1576 do_cleanups (back_to);
1577 }
1578
1579 /* Load the DIEs for a secondary CU into memory. */
1580
1581 static void
1582 load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1583 {
1584 bfd *abfd = objfile->obfd;
1585 gdb_byte *info_ptr, *beg_of_comp_unit;
1586 struct partial_die_info comp_unit_die;
1587 struct dwarf2_cu *cu;
1588 struct abbrev_info *abbrev;
1589 unsigned int bytes_read;
1590 struct cleanup *back_to;
1591
1592 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1593 beg_of_comp_unit = info_ptr;
1594
1595 cu = xmalloc (sizeof (struct dwarf2_cu));
1596 memset (cu, 0, sizeof (struct dwarf2_cu));
1597
1598 obstack_init (&cu->comp_unit_obstack);
1599
1600 cu->objfile = objfile;
1601 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1602
1603 /* Complete the cu_header. */
1604 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1605 cu->header.first_die_ptr = info_ptr;
1606 cu->header.cu_head_ptr = beg_of_comp_unit;
1607
1608 /* Read the abbrevs for this compilation unit into a table. */
1609 dwarf2_read_abbrevs (abfd, cu);
1610 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1611
1612 /* Read the compilation unit die. */
1613 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1614 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1615 abfd, info_ptr, cu);
1616
1617 /* Set the language we're debugging. */
1618 set_cu_language (comp_unit_die.language, cu);
1619
1620 /* Link this compilation unit into the compilation unit tree. */
1621 this_cu->cu = cu;
1622 cu->per_cu = this_cu;
1623
1624 /* Check if comp unit has_children.
1625 If so, read the rest of the partial symbols from this comp unit.
1626 If not, there's no more debug_info for this comp unit. */
1627 if (comp_unit_die.has_children)
1628 load_partial_dies (abfd, info_ptr, 0, cu);
1629
1630 do_cleanups (back_to);
1631 }
1632
1633 /* Create a list of all compilation units in OBJFILE. We do this only
1634 if an inter-comp-unit reference is found; presumably if there is one,
1635 there will be many, and one will occur early in the .debug_info section.
1636 So there's no point in building this list incrementally. */
1637
1638 static void
1639 create_all_comp_units (struct objfile *objfile)
1640 {
1641 int n_allocated;
1642 int n_comp_units;
1643 struct dwarf2_per_cu_data **all_comp_units;
1644 gdb_byte *info_ptr = dwarf2_per_objfile->info_buffer;
1645
1646 n_comp_units = 0;
1647 n_allocated = 10;
1648 all_comp_units = xmalloc (n_allocated
1649 * sizeof (struct dwarf2_per_cu_data *));
1650
1651 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1652 {
1653 struct comp_unit_head cu_header;
1654 gdb_byte *beg_of_comp_unit;
1655 struct dwarf2_per_cu_data *this_cu;
1656 unsigned long offset;
1657 unsigned int bytes_read;
1658
1659 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1660
1661 /* Read just enough information to find out where the next
1662 compilation unit is. */
1663 cu_header.initial_length_size = 0;
1664 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1665 &cu_header, &bytes_read);
1666
1667 /* Save the compilation unit for later lookup. */
1668 this_cu = obstack_alloc (&objfile->objfile_obstack,
1669 sizeof (struct dwarf2_per_cu_data));
1670 memset (this_cu, 0, sizeof (*this_cu));
1671 this_cu->offset = offset;
1672 this_cu->length = cu_header.length + cu_header.initial_length_size;
1673
1674 if (n_comp_units == n_allocated)
1675 {
1676 n_allocated *= 2;
1677 all_comp_units = xrealloc (all_comp_units,
1678 n_allocated
1679 * sizeof (struct dwarf2_per_cu_data *));
1680 }
1681 all_comp_units[n_comp_units++] = this_cu;
1682
1683 info_ptr = info_ptr + this_cu->length;
1684 }
1685
1686 dwarf2_per_objfile->all_comp_units
1687 = obstack_alloc (&objfile->objfile_obstack,
1688 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1689 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1690 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1691 xfree (all_comp_units);
1692 dwarf2_per_objfile->n_comp_units = n_comp_units;
1693 }
1694
1695 /* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1696 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1697 in CU. */
1698
1699 static void
1700 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1701 CORE_ADDR *highpc, struct dwarf2_cu *cu)
1702 {
1703 struct objfile *objfile = cu->objfile;
1704 bfd *abfd = objfile->obfd;
1705 struct partial_die_info *pdi;
1706
1707 /* Now, march along the PDI's, descending into ones which have
1708 interesting children but skipping the children of the other ones,
1709 until we reach the end of the compilation unit. */
1710
1711 pdi = first_die;
1712
1713 while (pdi != NULL)
1714 {
1715 fixup_partial_die (pdi, cu);
1716
1717 /* Anonymous namespaces have no name but have interesting
1718 children, so we need to look at them. Ditto for anonymous
1719 enums. */
1720
1721 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1722 || pdi->tag == DW_TAG_enumeration_type)
1723 {
1724 switch (pdi->tag)
1725 {
1726 case DW_TAG_subprogram:
1727 if (pdi->has_pc_info)
1728 {
1729 if (pdi->lowpc < *lowpc)
1730 {
1731 *lowpc = pdi->lowpc;
1732 }
1733 if (pdi->highpc > *highpc)
1734 {
1735 *highpc = pdi->highpc;
1736 }
1737 if (!pdi->is_declaration)
1738 {
1739 add_partial_symbol (pdi, cu);
1740 }
1741 }
1742 break;
1743 case DW_TAG_variable:
1744 case DW_TAG_typedef:
1745 case DW_TAG_union_type:
1746 if (!pdi->is_declaration)
1747 {
1748 add_partial_symbol (pdi, cu);
1749 }
1750 break;
1751 case DW_TAG_class_type:
1752 case DW_TAG_structure_type:
1753 if (!pdi->is_declaration)
1754 {
1755 add_partial_symbol (pdi, cu);
1756 }
1757 break;
1758 case DW_TAG_enumeration_type:
1759 if (!pdi->is_declaration)
1760 add_partial_enumeration (pdi, cu);
1761 break;
1762 case DW_TAG_base_type:
1763 case DW_TAG_subrange_type:
1764 /* File scope base type definitions are added to the partial
1765 symbol table. */
1766 add_partial_symbol (pdi, cu);
1767 break;
1768 case DW_TAG_namespace:
1769 add_partial_namespace (pdi, lowpc, highpc, cu);
1770 break;
1771 default:
1772 break;
1773 }
1774 }
1775
1776 /* If the die has a sibling, skip to the sibling. */
1777
1778 pdi = pdi->die_sibling;
1779 }
1780 }
1781
1782 /* Functions used to compute the fully scoped name of a partial DIE.
1783
1784 Normally, this is simple. For C++, the parent DIE's fully scoped
1785 name is concatenated with "::" and the partial DIE's name. For
1786 Java, the same thing occurs except that "." is used instead of "::".
1787 Enumerators are an exception; they use the scope of their parent
1788 enumeration type, i.e. the name of the enumeration type is not
1789 prepended to the enumerator.
1790
1791 There are two complexities. One is DW_AT_specification; in this
1792 case "parent" means the parent of the target of the specification,
1793 instead of the direct parent of the DIE. The other is compilers
1794 which do not emit DW_TAG_namespace; in this case we try to guess
1795 the fully qualified name of structure types from their members'
1796 linkage names. This must be done using the DIE's children rather
1797 than the children of any DW_AT_specification target. We only need
1798 to do this for structures at the top level, i.e. if the target of
1799 any DW_AT_specification (if any; otherwise the DIE itself) does not
1800 have a parent. */
1801
1802 /* Compute the scope prefix associated with PDI's parent, in
1803 compilation unit CU. The result will be allocated on CU's
1804 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1805 field. NULL is returned if no prefix is necessary. */
1806 static char *
1807 partial_die_parent_scope (struct partial_die_info *pdi,
1808 struct dwarf2_cu *cu)
1809 {
1810 char *grandparent_scope;
1811 struct partial_die_info *parent, *real_pdi;
1812
1813 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1814 then this means the parent of the specification DIE. */
1815
1816 real_pdi = pdi;
1817 while (real_pdi->has_specification)
1818 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
1819
1820 parent = real_pdi->die_parent;
1821 if (parent == NULL)
1822 return NULL;
1823
1824 if (parent->scope_set)
1825 return parent->scope;
1826
1827 fixup_partial_die (parent, cu);
1828
1829 grandparent_scope = partial_die_parent_scope (parent, cu);
1830
1831 if (parent->tag == DW_TAG_namespace
1832 || parent->tag == DW_TAG_structure_type
1833 || parent->tag == DW_TAG_class_type
1834 || parent->tag == DW_TAG_union_type)
1835 {
1836 if (grandparent_scope == NULL)
1837 parent->scope = parent->name;
1838 else
1839 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1840 parent->name, cu);
1841 }
1842 else if (parent->tag == DW_TAG_enumeration_type)
1843 /* Enumerators should not get the name of the enumeration as a prefix. */
1844 parent->scope = grandparent_scope;
1845 else
1846 {
1847 /* FIXME drow/2004-04-01: What should we be doing with
1848 function-local names? For partial symbols, we should probably be
1849 ignoring them. */
1850 complaint (&symfile_complaints,
1851 _("unhandled containing DIE tag %d for DIE at %d"),
1852 parent->tag, pdi->offset);
1853 parent->scope = grandparent_scope;
1854 }
1855
1856 parent->scope_set = 1;
1857 return parent->scope;
1858 }
1859
1860 /* Return the fully scoped name associated with PDI, from compilation unit
1861 CU. The result will be allocated with malloc. */
1862 static char *
1863 partial_die_full_name (struct partial_die_info *pdi,
1864 struct dwarf2_cu *cu)
1865 {
1866 char *parent_scope;
1867
1868 parent_scope = partial_die_parent_scope (pdi, cu);
1869 if (parent_scope == NULL)
1870 return NULL;
1871 else
1872 return typename_concat (NULL, parent_scope, pdi->name, cu);
1873 }
1874
1875 static void
1876 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
1877 {
1878 struct objfile *objfile = cu->objfile;
1879 CORE_ADDR addr = 0;
1880 char *actual_name;
1881 const char *my_prefix;
1882 const struct partial_symbol *psym = NULL;
1883 CORE_ADDR baseaddr;
1884 int built_actual_name = 0;
1885
1886 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1887
1888 actual_name = NULL;
1889
1890 if (pdi_needs_namespace (pdi->tag))
1891 {
1892 actual_name = partial_die_full_name (pdi, cu);
1893 if (actual_name)
1894 built_actual_name = 1;
1895 }
1896
1897 if (actual_name == NULL)
1898 actual_name = pdi->name;
1899
1900 switch (pdi->tag)
1901 {
1902 case DW_TAG_subprogram:
1903 if (pdi->is_external)
1904 {
1905 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1906 mst_text, objfile); */
1907 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1908 VAR_DOMAIN, LOC_BLOCK,
1909 &objfile->global_psymbols,
1910 0, pdi->lowpc + baseaddr,
1911 cu->language, objfile);
1912 }
1913 else
1914 {
1915 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1916 mst_file_text, objfile); */
1917 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1918 VAR_DOMAIN, LOC_BLOCK,
1919 &objfile->static_psymbols,
1920 0, pdi->lowpc + baseaddr,
1921 cu->language, objfile);
1922 }
1923 break;
1924 case DW_TAG_variable:
1925 if (pdi->is_external)
1926 {
1927 /* Global Variable.
1928 Don't enter into the minimal symbol tables as there is
1929 a minimal symbol table entry from the ELF symbols already.
1930 Enter into partial symbol table if it has a location
1931 descriptor or a type.
1932 If the location descriptor is missing, new_symbol will create
1933 a LOC_UNRESOLVED symbol, the address of the variable will then
1934 be determined from the minimal symbol table whenever the variable
1935 is referenced.
1936 The address for the partial symbol table entry is not
1937 used by GDB, but it comes in handy for debugging partial symbol
1938 table building. */
1939
1940 if (pdi->locdesc)
1941 addr = decode_locdesc (pdi->locdesc, cu);
1942 if (pdi->locdesc || pdi->has_type)
1943 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1944 VAR_DOMAIN, LOC_STATIC,
1945 &objfile->global_psymbols,
1946 0, addr + baseaddr,
1947 cu->language, objfile);
1948 }
1949 else
1950 {
1951 /* Static Variable. Skip symbols without location descriptors. */
1952 if (pdi->locdesc == NULL)
1953 return;
1954 addr = decode_locdesc (pdi->locdesc, cu);
1955 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
1956 mst_file_data, objfile); */
1957 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1958 VAR_DOMAIN, LOC_STATIC,
1959 &objfile->static_psymbols,
1960 0, addr + baseaddr,
1961 cu->language, objfile);
1962 }
1963 break;
1964 case DW_TAG_typedef:
1965 case DW_TAG_base_type:
1966 case DW_TAG_subrange_type:
1967 add_psymbol_to_list (actual_name, strlen (actual_name),
1968 VAR_DOMAIN, LOC_TYPEDEF,
1969 &objfile->static_psymbols,
1970 0, (CORE_ADDR) 0, cu->language, objfile);
1971 break;
1972 case DW_TAG_namespace:
1973 add_psymbol_to_list (actual_name, strlen (actual_name),
1974 VAR_DOMAIN, LOC_TYPEDEF,
1975 &objfile->global_psymbols,
1976 0, (CORE_ADDR) 0, cu->language, objfile);
1977 break;
1978 case DW_TAG_class_type:
1979 case DW_TAG_structure_type:
1980 case DW_TAG_union_type:
1981 case DW_TAG_enumeration_type:
1982 /* Skip aggregate types without children, these are external
1983 references. */
1984 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
1985 static vs. global. */
1986 if (pdi->has_children == 0)
1987 return;
1988 add_psymbol_to_list (actual_name, strlen (actual_name),
1989 STRUCT_DOMAIN, LOC_TYPEDEF,
1990 (cu->language == language_cplus
1991 || cu->language == language_java)
1992 ? &objfile->global_psymbols
1993 : &objfile->static_psymbols,
1994 0, (CORE_ADDR) 0, cu->language, objfile);
1995
1996 if (cu->language == language_cplus
1997 || cu->language == language_java)
1998 {
1999 /* For C++ and Java, these implicitly act as typedefs as well. */
2000 add_psymbol_to_list (actual_name, strlen (actual_name),
2001 VAR_DOMAIN, LOC_TYPEDEF,
2002 &objfile->global_psymbols,
2003 0, (CORE_ADDR) 0, cu->language, objfile);
2004 }
2005 break;
2006 case DW_TAG_enumerator:
2007 add_psymbol_to_list (actual_name, strlen (actual_name),
2008 VAR_DOMAIN, LOC_CONST,
2009 (cu->language == language_cplus
2010 || cu->language == language_java)
2011 ? &objfile->global_psymbols
2012 : &objfile->static_psymbols,
2013 0, (CORE_ADDR) 0, cu->language, objfile);
2014 break;
2015 default:
2016 break;
2017 }
2018
2019 /* Check to see if we should scan the name for possible namespace
2020 info. Only do this if this is C++, if we don't have namespace
2021 debugging info in the file, if the psym is of an appropriate type
2022 (otherwise we'll have psym == NULL), and if we actually had a
2023 mangled name to begin with. */
2024
2025 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2026 cases which do not set PSYM above? */
2027
2028 if (cu->language == language_cplus
2029 && cu->has_namespace_info == 0
2030 && psym != NULL
2031 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2032 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2033 objfile);
2034
2035 if (built_actual_name)
2036 xfree (actual_name);
2037 }
2038
2039 /* Determine whether a die of type TAG living in a C++ class or
2040 namespace needs to have the name of the scope prepended to the
2041 name listed in the die. */
2042
2043 static int
2044 pdi_needs_namespace (enum dwarf_tag tag)
2045 {
2046 switch (tag)
2047 {
2048 case DW_TAG_namespace:
2049 case DW_TAG_typedef:
2050 case DW_TAG_class_type:
2051 case DW_TAG_structure_type:
2052 case DW_TAG_union_type:
2053 case DW_TAG_enumeration_type:
2054 case DW_TAG_enumerator:
2055 return 1;
2056 default:
2057 return 0;
2058 }
2059 }
2060
2061 /* Read a partial die corresponding to a namespace; also, add a symbol
2062 corresponding to that namespace to the symbol table. NAMESPACE is
2063 the name of the enclosing namespace. */
2064
2065 static void
2066 add_partial_namespace (struct partial_die_info *pdi,
2067 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2068 struct dwarf2_cu *cu)
2069 {
2070 struct objfile *objfile = cu->objfile;
2071
2072 /* Add a symbol for the namespace. */
2073
2074 add_partial_symbol (pdi, cu);
2075
2076 /* Now scan partial symbols in that namespace. */
2077
2078 if (pdi->has_children)
2079 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
2080 }
2081
2082 /* See if we can figure out if the class lives in a namespace. We do
2083 this by looking for a member function; its demangled name will
2084 contain namespace info, if there is any. */
2085
2086 static void
2087 guess_structure_name (struct partial_die_info *struct_pdi,
2088 struct dwarf2_cu *cu)
2089 {
2090 if ((cu->language == language_cplus
2091 || cu->language == language_java)
2092 && cu->has_namespace_info == 0
2093 && struct_pdi->has_children)
2094 {
2095 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2096 what template types look like, because the demangler
2097 frequently doesn't give the same name as the debug info. We
2098 could fix this by only using the demangled name to get the
2099 prefix (but see comment in read_structure_type). */
2100
2101 struct partial_die_info *child_pdi = struct_pdi->die_child;
2102 struct partial_die_info *real_pdi;
2103
2104 /* If this DIE (this DIE's specification, if any) has a parent, then
2105 we should not do this. We'll prepend the parent's fully qualified
2106 name when we create the partial symbol. */
2107
2108 real_pdi = struct_pdi;
2109 while (real_pdi->has_specification)
2110 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2111
2112 if (real_pdi->die_parent != NULL)
2113 return;
2114
2115 while (child_pdi != NULL)
2116 {
2117 if (child_pdi->tag == DW_TAG_subprogram)
2118 {
2119 char *actual_class_name
2120 = language_class_name_from_physname (cu->language_defn,
2121 child_pdi->name);
2122 if (actual_class_name != NULL)
2123 {
2124 struct_pdi->name
2125 = obsavestring (actual_class_name,
2126 strlen (actual_class_name),
2127 &cu->comp_unit_obstack);
2128 xfree (actual_class_name);
2129 }
2130 break;
2131 }
2132
2133 child_pdi = child_pdi->die_sibling;
2134 }
2135 }
2136 }
2137
2138 /* Read a partial die corresponding to an enumeration type. */
2139
2140 static void
2141 add_partial_enumeration (struct partial_die_info *enum_pdi,
2142 struct dwarf2_cu *cu)
2143 {
2144 struct objfile *objfile = cu->objfile;
2145 bfd *abfd = objfile->obfd;
2146 struct partial_die_info *pdi;
2147
2148 if (enum_pdi->name != NULL)
2149 add_partial_symbol (enum_pdi, cu);
2150
2151 pdi = enum_pdi->die_child;
2152 while (pdi)
2153 {
2154 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2155 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
2156 else
2157 add_partial_symbol (pdi, cu);
2158 pdi = pdi->die_sibling;
2159 }
2160 }
2161
2162 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2163 Return the corresponding abbrev, or NULL if the number is zero (indicating
2164 an empty DIE). In either case *BYTES_READ will be set to the length of
2165 the initial number. */
2166
2167 static struct abbrev_info *
2168 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
2169 struct dwarf2_cu *cu)
2170 {
2171 bfd *abfd = cu->objfile->obfd;
2172 unsigned int abbrev_number;
2173 struct abbrev_info *abbrev;
2174
2175 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2176
2177 if (abbrev_number == 0)
2178 return NULL;
2179
2180 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2181 if (!abbrev)
2182 {
2183 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
2184 bfd_get_filename (abfd));
2185 }
2186
2187 return abbrev;
2188 }
2189
2190 /* Scan the debug information for CU starting at INFO_PTR. Returns a
2191 pointer to the end of a series of DIEs, terminated by an empty
2192 DIE. Any children of the skipped DIEs will also be skipped. */
2193
2194 static gdb_byte *
2195 skip_children (gdb_byte *info_ptr, struct dwarf2_cu *cu)
2196 {
2197 struct abbrev_info *abbrev;
2198 unsigned int bytes_read;
2199
2200 while (1)
2201 {
2202 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2203 if (abbrev == NULL)
2204 return info_ptr + bytes_read;
2205 else
2206 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2207 }
2208 }
2209
2210 /* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2211 should point just after the initial uleb128 of a DIE, and the
2212 abbrev corresponding to that skipped uleb128 should be passed in
2213 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2214 children. */
2215
2216 static gdb_byte *
2217 skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
2218 struct dwarf2_cu *cu)
2219 {
2220 unsigned int bytes_read;
2221 struct attribute attr;
2222 bfd *abfd = cu->objfile->obfd;
2223 unsigned int form, i;
2224
2225 for (i = 0; i < abbrev->num_attrs; i++)
2226 {
2227 /* The only abbrev we care about is DW_AT_sibling. */
2228 if (abbrev->attrs[i].name == DW_AT_sibling)
2229 {
2230 read_attribute (&attr, &abbrev->attrs[i],
2231 abfd, info_ptr, cu);
2232 if (attr.form == DW_FORM_ref_addr)
2233 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
2234 else
2235 return dwarf2_per_objfile->info_buffer
2236 + dwarf2_get_ref_die_offset (&attr, cu);
2237 }
2238
2239 /* If it isn't DW_AT_sibling, skip this attribute. */
2240 form = abbrev->attrs[i].form;
2241 skip_attribute:
2242 switch (form)
2243 {
2244 case DW_FORM_addr:
2245 case DW_FORM_ref_addr:
2246 info_ptr += cu->header.addr_size;
2247 break;
2248 case DW_FORM_data1:
2249 case DW_FORM_ref1:
2250 case DW_FORM_flag:
2251 info_ptr += 1;
2252 break;
2253 case DW_FORM_data2:
2254 case DW_FORM_ref2:
2255 info_ptr += 2;
2256 break;
2257 case DW_FORM_data4:
2258 case DW_FORM_ref4:
2259 info_ptr += 4;
2260 break;
2261 case DW_FORM_data8:
2262 case DW_FORM_ref8:
2263 info_ptr += 8;
2264 break;
2265 case DW_FORM_string:
2266 read_string (abfd, info_ptr, &bytes_read);
2267 info_ptr += bytes_read;
2268 break;
2269 case DW_FORM_strp:
2270 info_ptr += cu->header.offset_size;
2271 break;
2272 case DW_FORM_block:
2273 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2274 info_ptr += bytes_read;
2275 break;
2276 case DW_FORM_block1:
2277 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2278 break;
2279 case DW_FORM_block2:
2280 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2281 break;
2282 case DW_FORM_block4:
2283 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2284 break;
2285 case DW_FORM_sdata:
2286 case DW_FORM_udata:
2287 case DW_FORM_ref_udata:
2288 info_ptr = skip_leb128 (abfd, info_ptr);
2289 break;
2290 case DW_FORM_indirect:
2291 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2292 info_ptr += bytes_read;
2293 /* We need to continue parsing from here, so just go back to
2294 the top. */
2295 goto skip_attribute;
2296
2297 default:
2298 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
2299 dwarf_form_name (form),
2300 bfd_get_filename (abfd));
2301 }
2302 }
2303
2304 if (abbrev->has_children)
2305 return skip_children (info_ptr, cu);
2306 else
2307 return info_ptr;
2308 }
2309
2310 /* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2311 the next DIE after ORIG_PDI. */
2312
2313 static gdb_byte *
2314 locate_pdi_sibling (struct partial_die_info *orig_pdi, gdb_byte *info_ptr,
2315 bfd *abfd, struct dwarf2_cu *cu)
2316 {
2317 /* Do we know the sibling already? */
2318
2319 if (orig_pdi->sibling)
2320 return orig_pdi->sibling;
2321
2322 /* Are there any children to deal with? */
2323
2324 if (!orig_pdi->has_children)
2325 return info_ptr;
2326
2327 /* Skip the children the long way. */
2328
2329 return skip_children (info_ptr, cu);
2330 }
2331
2332 /* Expand this partial symbol table into a full symbol table. */
2333
2334 static void
2335 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2336 {
2337 /* FIXME: This is barely more than a stub. */
2338 if (pst != NULL)
2339 {
2340 if (pst->readin)
2341 {
2342 warning (_("bug: psymtab for %s is already read in."), pst->filename);
2343 }
2344 else
2345 {
2346 if (info_verbose)
2347 {
2348 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
2349 gdb_flush (gdb_stdout);
2350 }
2351
2352 /* Restore our global data. */
2353 dwarf2_per_objfile = objfile_data (pst->objfile,
2354 dwarf2_objfile_data_key);
2355
2356 psymtab_to_symtab_1 (pst);
2357
2358 /* Finish up the debug error message. */
2359 if (info_verbose)
2360 printf_filtered (_("done.\n"));
2361 }
2362 }
2363 }
2364
2365 /* Add PER_CU to the queue. */
2366
2367 static void
2368 queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2369 {
2370 struct dwarf2_queue_item *item;
2371
2372 per_cu->queued = 1;
2373 item = xmalloc (sizeof (*item));
2374 item->per_cu = per_cu;
2375 item->next = NULL;
2376
2377 if (dwarf2_queue == NULL)
2378 dwarf2_queue = item;
2379 else
2380 dwarf2_queue_tail->next = item;
2381
2382 dwarf2_queue_tail = item;
2383 }
2384
2385 /* Process the queue. */
2386
2387 static void
2388 process_queue (struct objfile *objfile)
2389 {
2390 struct dwarf2_queue_item *item, *next_item;
2391
2392 /* Initially, there is just one item on the queue. Load its DIEs,
2393 and the DIEs of any other compilation units it requires,
2394 transitively. */
2395
2396 for (item = dwarf2_queue; item != NULL; item = item->next)
2397 {
2398 /* Read in this compilation unit. This may add new items to
2399 the end of the queue. */
2400 load_full_comp_unit (item->per_cu, objfile);
2401
2402 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2403 dwarf2_per_objfile->read_in_chain = item->per_cu;
2404
2405 /* If this compilation unit has already had full symbols created,
2406 reset the TYPE fields in each DIE. */
2407 if (item->per_cu->type_hash)
2408 reset_die_and_siblings_types (item->per_cu->cu->dies,
2409 item->per_cu->cu);
2410 }
2411
2412 /* Now everything left on the queue needs to be read in. Process
2413 them, one at a time, removing from the queue as we finish. */
2414 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2415 {
2416 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
2417 process_full_comp_unit (item->per_cu);
2418
2419 item->per_cu->queued = 0;
2420 next_item = item->next;
2421 xfree (item);
2422 }
2423
2424 dwarf2_queue_tail = NULL;
2425 }
2426
2427 /* Free all allocated queue entries. This function only releases anything if
2428 an error was thrown; if the queue was processed then it would have been
2429 freed as we went along. */
2430
2431 static void
2432 dwarf2_release_queue (void *dummy)
2433 {
2434 struct dwarf2_queue_item *item, *last;
2435
2436 item = dwarf2_queue;
2437 while (item)
2438 {
2439 /* Anything still marked queued is likely to be in an
2440 inconsistent state, so discard it. */
2441 if (item->per_cu->queued)
2442 {
2443 if (item->per_cu->cu != NULL)
2444 free_one_cached_comp_unit (item->per_cu->cu);
2445 item->per_cu->queued = 0;
2446 }
2447
2448 last = item;
2449 item = item->next;
2450 xfree (last);
2451 }
2452
2453 dwarf2_queue = dwarf2_queue_tail = NULL;
2454 }
2455
2456 /* Read in full symbols for PST, and anything it depends on. */
2457
2458 static void
2459 psymtab_to_symtab_1 (struct partial_symtab *pst)
2460 {
2461 struct dwarf2_per_cu_data *per_cu;
2462 struct cleanup *back_to;
2463 int i;
2464
2465 for (i = 0; i < pst->number_of_dependencies; i++)
2466 if (!pst->dependencies[i]->readin)
2467 {
2468 /* Inform about additional files that need to be read in. */
2469 if (info_verbose)
2470 {
2471 /* FIXME: i18n: Need to make this a single string. */
2472 fputs_filtered (" ", gdb_stdout);
2473 wrap_here ("");
2474 fputs_filtered ("and ", gdb_stdout);
2475 wrap_here ("");
2476 printf_filtered ("%s...", pst->dependencies[i]->filename);
2477 wrap_here (""); /* Flush output */
2478 gdb_flush (gdb_stdout);
2479 }
2480 psymtab_to_symtab_1 (pst->dependencies[i]);
2481 }
2482
2483 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2484
2485 if (per_cu == NULL)
2486 {
2487 /* It's an include file, no symbols to read for it.
2488 Everything is in the parent symtab. */
2489 pst->readin = 1;
2490 return;
2491 }
2492
2493 back_to = make_cleanup (dwarf2_release_queue, NULL);
2494
2495 queue_comp_unit (per_cu);
2496
2497 process_queue (pst->objfile);
2498
2499 /* Age the cache, releasing compilation units that have not
2500 been used recently. */
2501 age_cached_comp_units ();
2502
2503 do_cleanups (back_to);
2504 }
2505
2506 /* Load the DIEs associated with PST and PER_CU into memory. */
2507
2508 static struct dwarf2_cu *
2509 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
2510 {
2511 bfd *abfd = objfile->obfd;
2512 struct dwarf2_cu *cu;
2513 unsigned long offset;
2514 gdb_byte *info_ptr;
2515 struct cleanup *back_to, *free_cu_cleanup;
2516 struct attribute *attr;
2517 CORE_ADDR baseaddr;
2518
2519 /* Set local variables from the partial symbol table info. */
2520 offset = per_cu->offset;
2521
2522 info_ptr = dwarf2_per_objfile->info_buffer + offset;
2523
2524 cu = xmalloc (sizeof (struct dwarf2_cu));
2525 memset (cu, 0, sizeof (struct dwarf2_cu));
2526
2527 /* If an error occurs while loading, release our storage. */
2528 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
2529
2530 cu->objfile = objfile;
2531
2532 /* read in the comp_unit header */
2533 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
2534
2535 /* Read the abbrevs for this compilation unit */
2536 dwarf2_read_abbrevs (abfd, cu);
2537 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2538
2539 cu->header.offset = offset;
2540
2541 cu->per_cu = per_cu;
2542 per_cu->cu = cu;
2543
2544 /* We use this obstack for block values in dwarf_alloc_block. */
2545 obstack_init (&cu->comp_unit_obstack);
2546
2547 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2548
2549 /* We try not to read any attributes in this function, because not
2550 all objfiles needed for references have been loaded yet, and symbol
2551 table processing isn't initialized. But we have to set the CU language,
2552 or we won't be able to build types correctly. */
2553 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2554 if (attr)
2555 set_cu_language (DW_UNSND (attr), cu);
2556 else
2557 set_cu_language (language_minimal, cu);
2558
2559 do_cleanups (back_to);
2560
2561 /* We've successfully allocated this compilation unit. Let our caller
2562 clean it up when finished with it. */
2563 discard_cleanups (free_cu_cleanup);
2564
2565 return cu;
2566 }
2567
2568 /* Generate full symbol information for PST and CU, whose DIEs have
2569 already been loaded into memory. */
2570
2571 static void
2572 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2573 {
2574 struct partial_symtab *pst = per_cu->psymtab;
2575 struct dwarf2_cu *cu = per_cu->cu;
2576 struct objfile *objfile = pst->objfile;
2577 bfd *abfd = objfile->obfd;
2578 CORE_ADDR lowpc, highpc;
2579 struct symtab *symtab;
2580 struct cleanup *back_to;
2581 struct attribute *attr;
2582 CORE_ADDR baseaddr;
2583
2584 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2585
2586 /* We're in the global namespace. */
2587 processing_current_prefix = "";
2588
2589 buildsym_init ();
2590 back_to = make_cleanup (really_free_pendings, NULL);
2591
2592 cu->list_in_scope = &file_symbols;
2593
2594 /* Find the base address of the compilation unit for range lists and
2595 location lists. It will normally be specified by DW_AT_low_pc.
2596 In DWARF-3 draft 4, the base address could be overridden by
2597 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2598 compilation units with discontinuous ranges. */
2599
2600 cu->header.base_known = 0;
2601 cu->header.base_address = 0;
2602
2603 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
2604 if (attr)
2605 {
2606 cu->header.base_address = DW_ADDR (attr);
2607 cu->header.base_known = 1;
2608 }
2609 else
2610 {
2611 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
2612 if (attr)
2613 {
2614 cu->header.base_address = DW_ADDR (attr);
2615 cu->header.base_known = 1;
2616 }
2617 }
2618
2619 /* Do line number decoding in read_file_scope () */
2620 process_die (cu->dies, cu);
2621
2622 /* Some compilers don't define a DW_AT_high_pc attribute for the
2623 compilation unit. If the DW_AT_high_pc is missing, synthesize
2624 it, by scanning the DIE's below the compilation unit. */
2625 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
2626
2627 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
2628
2629 /* Set symtab language to language from DW_AT_language.
2630 If the compilation is from a C file generated by language preprocessors,
2631 do not set the language if it was already deduced by start_subfile. */
2632 if (symtab != NULL
2633 && !(cu->language == language_c && symtab->language != language_c))
2634 {
2635 symtab->language = cu->language;
2636 }
2637 pst->symtab = symtab;
2638 pst->readin = 1;
2639
2640 do_cleanups (back_to);
2641 }
2642
2643 /* Process a die and its children. */
2644
2645 static void
2646 process_die (struct die_info *die, struct dwarf2_cu *cu)
2647 {
2648 switch (die->tag)
2649 {
2650 case DW_TAG_padding:
2651 break;
2652 case DW_TAG_compile_unit:
2653 read_file_scope (die, cu);
2654 break;
2655 case DW_TAG_subprogram:
2656 read_subroutine_type (die, cu);
2657 read_func_scope (die, cu);
2658 break;
2659 case DW_TAG_inlined_subroutine:
2660 /* FIXME: These are ignored for now.
2661 They could be used to set breakpoints on all inlined instances
2662 of a function and make GDB `next' properly over inlined functions. */
2663 break;
2664 case DW_TAG_lexical_block:
2665 case DW_TAG_try_block:
2666 case DW_TAG_catch_block:
2667 read_lexical_block_scope (die, cu);
2668 break;
2669 case DW_TAG_class_type:
2670 case DW_TAG_structure_type:
2671 case DW_TAG_union_type:
2672 read_structure_type (die, cu);
2673 process_structure_scope (die, cu);
2674 break;
2675 case DW_TAG_enumeration_type:
2676 read_enumeration_type (die, cu);
2677 process_enumeration_scope (die, cu);
2678 break;
2679
2680 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2681 a symbol or process any children. Therefore it doesn't do anything
2682 that won't be done on-demand by read_type_die. */
2683 case DW_TAG_subroutine_type:
2684 read_subroutine_type (die, cu);
2685 break;
2686 case DW_TAG_set_type:
2687 read_set_type (die, cu);
2688 break;
2689 case DW_TAG_array_type:
2690 read_array_type (die, cu);
2691 break;
2692 case DW_TAG_pointer_type:
2693 read_tag_pointer_type (die, cu);
2694 break;
2695 case DW_TAG_ptr_to_member_type:
2696 read_tag_ptr_to_member_type (die, cu);
2697 break;
2698 case DW_TAG_reference_type:
2699 read_tag_reference_type (die, cu);
2700 break;
2701 case DW_TAG_string_type:
2702 read_tag_string_type (die, cu);
2703 break;
2704 /* END FIXME */
2705
2706 case DW_TAG_base_type:
2707 read_base_type (die, cu);
2708 /* Add a typedef symbol for the type definition, if it has a
2709 DW_AT_name. */
2710 new_symbol (die, die->type, cu);
2711 break;
2712 case DW_TAG_subrange_type:
2713 read_subrange_type (die, cu);
2714 /* Add a typedef symbol for the type definition, if it has a
2715 DW_AT_name. */
2716 new_symbol (die, die->type, cu);
2717 break;
2718 case DW_TAG_common_block:
2719 read_common_block (die, cu);
2720 break;
2721 case DW_TAG_common_inclusion:
2722 break;
2723 case DW_TAG_namespace:
2724 processing_has_namespace_info = 1;
2725 read_namespace (die, cu);
2726 break;
2727 case DW_TAG_imported_declaration:
2728 case DW_TAG_imported_module:
2729 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2730 information contained in these. DW_TAG_imported_declaration
2731 dies shouldn't have children; DW_TAG_imported_module dies
2732 shouldn't in the C++ case, but conceivably could in the
2733 Fortran case, so we'll have to replace this gdb_assert if
2734 Fortran compilers start generating that info. */
2735 processing_has_namespace_info = 1;
2736 gdb_assert (die->child == NULL);
2737 break;
2738 default:
2739 new_symbol (die, NULL, cu);
2740 break;
2741 }
2742 }
2743
2744 static void
2745 initialize_cu_func_list (struct dwarf2_cu *cu)
2746 {
2747 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
2748 }
2749
2750 static void
2751 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
2752 {
2753 struct objfile *objfile = cu->objfile;
2754 struct comp_unit_head *cu_header = &cu->header;
2755 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2756 CORE_ADDR lowpc = ((CORE_ADDR) -1);
2757 CORE_ADDR highpc = ((CORE_ADDR) 0);
2758 struct attribute *attr;
2759 char *name = "<unknown>";
2760 char *comp_dir = NULL;
2761 struct die_info *child_die;
2762 bfd *abfd = objfile->obfd;
2763 struct line_header *line_header = 0;
2764 CORE_ADDR baseaddr;
2765
2766 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2767
2768 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
2769
2770 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2771 from finish_block. */
2772 if (lowpc == ((CORE_ADDR) -1))
2773 lowpc = highpc;
2774 lowpc += baseaddr;
2775 highpc += baseaddr;
2776
2777 attr = dwarf2_attr (die, DW_AT_name, cu);
2778 if (attr)
2779 {
2780 name = DW_STRING (attr);
2781 }
2782 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
2783 if (attr)
2784 {
2785 comp_dir = DW_STRING (attr);
2786 if (comp_dir)
2787 {
2788 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2789 directory, get rid of it. */
2790 char *cp = strchr (comp_dir, ':');
2791
2792 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2793 comp_dir = cp + 1;
2794 }
2795 }
2796
2797 attr = dwarf2_attr (die, DW_AT_language, cu);
2798 if (attr)
2799 {
2800 set_cu_language (DW_UNSND (attr), cu);
2801 }
2802
2803 attr = dwarf2_attr (die, DW_AT_producer, cu);
2804 if (attr)
2805 cu->producer = DW_STRING (attr);
2806
2807 /* We assume that we're processing GCC output. */
2808 processing_gcc_compilation = 2;
2809 #if 0
2810 /* FIXME:Do something here. */
2811 if (dip->at_producer != NULL)
2812 {
2813 handle_producer (dip->at_producer);
2814 }
2815 #endif
2816
2817 /* The compilation unit may be in a different language or objfile,
2818 zero out all remembered fundamental types. */
2819 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
2820
2821 start_symtab (name, comp_dir, lowpc);
2822 record_debugformat ("DWARF 2");
2823
2824 initialize_cu_func_list (cu);
2825
2826 /* Process all dies in compilation unit. */
2827 if (die->child != NULL)
2828 {
2829 child_die = die->child;
2830 while (child_die && child_die->tag)
2831 {
2832 process_die (child_die, cu);
2833 child_die = sibling_die (child_die);
2834 }
2835 }
2836
2837 /* Decode line number information if present. */
2838 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2839 if (attr)
2840 {
2841 unsigned int line_offset = DW_UNSND (attr);
2842 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
2843 if (line_header)
2844 {
2845 make_cleanup ((make_cleanup_ftype *) free_line_header,
2846 (void *) line_header);
2847 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
2848 }
2849 }
2850
2851 /* Decode macro information, if present. Dwarf 2 macro information
2852 refers to information in the line number info statement program
2853 header, so we can only read it if we've read the header
2854 successfully. */
2855 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
2856 if (attr && line_header)
2857 {
2858 unsigned int macro_offset = DW_UNSND (attr);
2859 dwarf_decode_macros (line_header, macro_offset,
2860 comp_dir, abfd, cu);
2861 }
2862 do_cleanups (back_to);
2863 }
2864
2865 static void
2866 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2867 struct dwarf2_cu *cu)
2868 {
2869 struct function_range *thisfn;
2870
2871 thisfn = (struct function_range *)
2872 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
2873 thisfn->name = name;
2874 thisfn->lowpc = lowpc;
2875 thisfn->highpc = highpc;
2876 thisfn->seen_line = 0;
2877 thisfn->next = NULL;
2878
2879 if (cu->last_fn == NULL)
2880 cu->first_fn = thisfn;
2881 else
2882 cu->last_fn->next = thisfn;
2883
2884 cu->last_fn = thisfn;
2885 }
2886
2887 static void
2888 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
2889 {
2890 struct objfile *objfile = cu->objfile;
2891 struct context_stack *new;
2892 CORE_ADDR lowpc;
2893 CORE_ADDR highpc;
2894 struct die_info *child_die;
2895 struct attribute *attr;
2896 char *name;
2897 const char *previous_prefix = processing_current_prefix;
2898 struct cleanup *back_to = NULL;
2899 CORE_ADDR baseaddr;
2900
2901 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2902
2903 name = dwarf2_linkage_name (die, cu);
2904
2905 /* Ignore functions with missing or empty names and functions with
2906 missing or invalid low and high pc attributes. */
2907 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2908 return;
2909
2910 if (cu->language == language_cplus
2911 || cu->language == language_java)
2912 {
2913 struct die_info *spec_die = die_specification (die, cu);
2914
2915 /* NOTE: carlton/2004-01-23: We have to be careful in the
2916 presence of DW_AT_specification. For example, with GCC 3.4,
2917 given the code
2918
2919 namespace N {
2920 void foo() {
2921 // Definition of N::foo.
2922 }
2923 }
2924
2925 then we'll have a tree of DIEs like this:
2926
2927 1: DW_TAG_compile_unit
2928 2: DW_TAG_namespace // N
2929 3: DW_TAG_subprogram // declaration of N::foo
2930 4: DW_TAG_subprogram // definition of N::foo
2931 DW_AT_specification // refers to die #3
2932
2933 Thus, when processing die #4, we have to pretend that we're
2934 in the context of its DW_AT_specification, namely the contex
2935 of die #3. */
2936
2937 if (spec_die != NULL)
2938 {
2939 char *specification_prefix = determine_prefix (spec_die, cu);
2940 processing_current_prefix = specification_prefix;
2941 back_to = make_cleanup (xfree, specification_prefix);
2942 }
2943 }
2944
2945 lowpc += baseaddr;
2946 highpc += baseaddr;
2947
2948 /* Record the function range for dwarf_decode_lines. */
2949 add_to_cu_func_list (name, lowpc, highpc, cu);
2950
2951 new = push_context (0, lowpc);
2952 new->name = new_symbol (die, die->type, cu);
2953
2954 /* If there is a location expression for DW_AT_frame_base, record
2955 it. */
2956 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
2957 if (attr)
2958 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2959 expression is being recorded directly in the function's symbol
2960 and not in a separate frame-base object. I guess this hack is
2961 to avoid adding some sort of frame-base adjunct/annex to the
2962 function's symbol :-(. The problem with doing this is that it
2963 results in a function symbol with a location expression that
2964 has nothing to do with the location of the function, ouch! The
2965 relationship should be: a function's symbol has-a frame base; a
2966 frame-base has-a location expression. */
2967 dwarf2_symbol_mark_computed (attr, new->name, cu);
2968
2969 cu->list_in_scope = &local_symbols;
2970
2971 if (die->child != NULL)
2972 {
2973 child_die = die->child;
2974 while (child_die && child_die->tag)
2975 {
2976 process_die (child_die, cu);
2977 child_die = sibling_die (child_die);
2978 }
2979 }
2980
2981 new = pop_context ();
2982 /* Make a block for the local symbols within. */
2983 finish_block (new->name, &local_symbols, new->old_blocks,
2984 lowpc, highpc, objfile);
2985
2986 /* In C++, we can have functions nested inside functions (e.g., when
2987 a function declares a class that has methods). This means that
2988 when we finish processing a function scope, we may need to go
2989 back to building a containing block's symbol lists. */
2990 local_symbols = new->locals;
2991 param_symbols = new->params;
2992
2993 /* If we've finished processing a top-level function, subsequent
2994 symbols go in the file symbol list. */
2995 if (outermost_context_p ())
2996 cu->list_in_scope = &file_symbols;
2997
2998 processing_current_prefix = previous_prefix;
2999 if (back_to != NULL)
3000 do_cleanups (back_to);
3001 }
3002
3003 /* Process all the DIES contained within a lexical block scope. Start
3004 a new scope, process the dies, and then close the scope. */
3005
3006 static void
3007 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
3008 {
3009 struct objfile *objfile = cu->objfile;
3010 struct context_stack *new;
3011 CORE_ADDR lowpc, highpc;
3012 struct die_info *child_die;
3013 CORE_ADDR baseaddr;
3014
3015 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3016
3017 /* Ignore blocks with missing or invalid low and high pc attributes. */
3018 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
3019 as multiple lexical blocks? Handling children in a sane way would
3020 be nasty. Might be easier to properly extend generic blocks to
3021 describe ranges. */
3022 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
3023 return;
3024 lowpc += baseaddr;
3025 highpc += baseaddr;
3026
3027 push_context (0, lowpc);
3028 if (die->child != NULL)
3029 {
3030 child_die = die->child;
3031 while (child_die && child_die->tag)
3032 {
3033 process_die (child_die, cu);
3034 child_die = sibling_die (child_die);
3035 }
3036 }
3037 new = pop_context ();
3038
3039 if (local_symbols != NULL)
3040 {
3041 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3042 highpc, objfile);
3043 }
3044 local_symbols = new->locals;
3045 }
3046
3047 /* Get low and high pc attributes from a die. Return 1 if the attributes
3048 are present and valid, otherwise, return 0. Return -1 if the range is
3049 discontinuous, i.e. derived from DW_AT_ranges information. */
3050 static int
3051 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
3052 CORE_ADDR *highpc, struct dwarf2_cu *cu)
3053 {
3054 struct objfile *objfile = cu->objfile;
3055 struct comp_unit_head *cu_header = &cu->header;
3056 struct attribute *attr;
3057 bfd *obfd = objfile->obfd;
3058 CORE_ADDR low = 0;
3059 CORE_ADDR high = 0;
3060 int ret = 0;
3061
3062 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3063 if (attr)
3064 {
3065 high = DW_ADDR (attr);
3066 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3067 if (attr)
3068 low = DW_ADDR (attr);
3069 else
3070 /* Found high w/o low attribute. */
3071 return 0;
3072
3073 /* Found consecutive range of addresses. */
3074 ret = 1;
3075 }
3076 else
3077 {
3078 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3079 if (attr != NULL)
3080 {
3081 unsigned int addr_size = cu_header->addr_size;
3082 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3083 /* Value of the DW_AT_ranges attribute is the offset in the
3084 .debug_ranges section. */
3085 unsigned int offset = DW_UNSND (attr);
3086 /* Base address selection entry. */
3087 CORE_ADDR base;
3088 int found_base;
3089 unsigned int dummy;
3090 gdb_byte *buffer;
3091 CORE_ADDR marker;
3092 int low_set;
3093
3094 found_base = cu_header->base_known;
3095 base = cu_header->base_address;
3096
3097 if (offset >= dwarf2_per_objfile->ranges_size)
3098 {
3099 complaint (&symfile_complaints,
3100 _("Offset %d out of bounds for DW_AT_ranges attribute"),
3101 offset);
3102 return 0;
3103 }
3104 buffer = dwarf2_per_objfile->ranges_buffer + offset;
3105
3106 /* Read in the largest possible address. */
3107 marker = read_address (obfd, buffer, cu, &dummy);
3108 if ((marker & mask) == mask)
3109 {
3110 /* If we found the largest possible address, then
3111 read the base address. */
3112 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3113 buffer += 2 * addr_size;
3114 offset += 2 * addr_size;
3115 found_base = 1;
3116 }
3117
3118 low_set = 0;
3119
3120 while (1)
3121 {
3122 CORE_ADDR range_beginning, range_end;
3123
3124 range_beginning = read_address (obfd, buffer, cu, &dummy);
3125 buffer += addr_size;
3126 range_end = read_address (obfd, buffer, cu, &dummy);
3127 buffer += addr_size;
3128 offset += 2 * addr_size;
3129
3130 /* An end of list marker is a pair of zero addresses. */
3131 if (range_beginning == 0 && range_end == 0)
3132 /* Found the end of list entry. */
3133 break;
3134
3135 /* Each base address selection entry is a pair of 2 values.
3136 The first is the largest possible address, the second is
3137 the base address. Check for a base address here. */
3138 if ((range_beginning & mask) == mask)
3139 {
3140 /* If we found the largest possible address, then
3141 read the base address. */
3142 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3143 found_base = 1;
3144 continue;
3145 }
3146
3147 if (!found_base)
3148 {
3149 /* We have no valid base address for the ranges
3150 data. */
3151 complaint (&symfile_complaints,
3152 _("Invalid .debug_ranges data (no base address)"));
3153 return 0;
3154 }
3155
3156 range_beginning += base;
3157 range_end += base;
3158
3159 /* FIXME: This is recording everything as a low-high
3160 segment of consecutive addresses. We should have a
3161 data structure for discontiguous block ranges
3162 instead. */
3163 if (! low_set)
3164 {
3165 low = range_beginning;
3166 high = range_end;
3167 low_set = 1;
3168 }
3169 else
3170 {
3171 if (range_beginning < low)
3172 low = range_beginning;
3173 if (range_end > high)
3174 high = range_end;
3175 }
3176 }
3177
3178 if (! low_set)
3179 /* If the first entry is an end-of-list marker, the range
3180 describes an empty scope, i.e. no instructions. */
3181 return 0;
3182
3183 ret = -1;
3184 }
3185 }
3186
3187 if (high < low)
3188 return 0;
3189
3190 /* When using the GNU linker, .gnu.linkonce. sections are used to
3191 eliminate duplicate copies of functions and vtables and such.
3192 The linker will arbitrarily choose one and discard the others.
3193 The AT_*_pc values for such functions refer to local labels in
3194 these sections. If the section from that file was discarded, the
3195 labels are not in the output, so the relocs get a value of 0.
3196 If this is a discarded function, mark the pc bounds as invalid,
3197 so that GDB will ignore it. */
3198 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
3199 return 0;
3200
3201 *lowpc = low;
3202 *highpc = high;
3203 return ret;
3204 }
3205
3206 /* Get the low and high pc's represented by the scope DIE, and store
3207 them in *LOWPC and *HIGHPC. If the correct values can't be
3208 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3209
3210 static void
3211 get_scope_pc_bounds (struct die_info *die,
3212 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3213 struct dwarf2_cu *cu)
3214 {
3215 CORE_ADDR best_low = (CORE_ADDR) -1;
3216 CORE_ADDR best_high = (CORE_ADDR) 0;
3217 CORE_ADDR current_low, current_high;
3218
3219 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3220 {
3221 best_low = current_low;
3222 best_high = current_high;
3223 }
3224 else
3225 {
3226 struct die_info *child = die->child;
3227
3228 while (child && child->tag)
3229 {
3230 switch (child->tag) {
3231 case DW_TAG_subprogram:
3232 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3233 {
3234 best_low = min (best_low, current_low);
3235 best_high = max (best_high, current_high);
3236 }
3237 break;
3238 case DW_TAG_namespace:
3239 /* FIXME: carlton/2004-01-16: Should we do this for
3240 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3241 that current GCC's always emit the DIEs corresponding
3242 to definitions of methods of classes as children of a
3243 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3244 the DIEs giving the declarations, which could be
3245 anywhere). But I don't see any reason why the
3246 standards says that they have to be there. */
3247 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3248
3249 if (current_low != ((CORE_ADDR) -1))
3250 {
3251 best_low = min (best_low, current_low);
3252 best_high = max (best_high, current_high);
3253 }
3254 break;
3255 default:
3256 /* Ignore. */
3257 break;
3258 }
3259
3260 child = sibling_die (child);
3261 }
3262 }
3263
3264 *lowpc = best_low;
3265 *highpc = best_high;
3266 }
3267
3268 /* Add an aggregate field to the field list. */
3269
3270 static void
3271 dwarf2_add_field (struct field_info *fip, struct die_info *die,
3272 struct dwarf2_cu *cu)
3273 {
3274 struct objfile *objfile = cu->objfile;
3275 struct nextfield *new_field;
3276 struct attribute *attr;
3277 struct field *fp;
3278 char *fieldname = "";
3279
3280 /* Allocate a new field list entry and link it in. */
3281 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3282 make_cleanup (xfree, new_field);
3283 memset (new_field, 0, sizeof (struct nextfield));
3284 new_field->next = fip->fields;
3285 fip->fields = new_field;
3286 fip->nfields++;
3287
3288 /* Handle accessibility and virtuality of field.
3289 The default accessibility for members is public, the default
3290 accessibility for inheritance is private. */
3291 if (die->tag != DW_TAG_inheritance)
3292 new_field->accessibility = DW_ACCESS_public;
3293 else
3294 new_field->accessibility = DW_ACCESS_private;
3295 new_field->virtuality = DW_VIRTUALITY_none;
3296
3297 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3298 if (attr)
3299 new_field->accessibility = DW_UNSND (attr);
3300 if (new_field->accessibility != DW_ACCESS_public)
3301 fip->non_public_fields = 1;
3302 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
3303 if (attr)
3304 new_field->virtuality = DW_UNSND (attr);
3305
3306 fp = &new_field->field;
3307
3308 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
3309 {
3310 /* Data member other than a C++ static data member. */
3311
3312 /* Get type of field. */
3313 fp->type = die_type (die, cu);
3314
3315 FIELD_STATIC_KIND (*fp) = 0;
3316
3317 /* Get bit size of field (zero if none). */
3318 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
3319 if (attr)
3320 {
3321 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3322 }
3323 else
3324 {
3325 FIELD_BITSIZE (*fp) = 0;
3326 }
3327
3328 /* Get bit offset of field. */
3329 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3330 if (attr)
3331 {
3332 FIELD_BITPOS (*fp) =
3333 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
3334 }
3335 else
3336 FIELD_BITPOS (*fp) = 0;
3337 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
3338 if (attr)
3339 {
3340 if (BITS_BIG_ENDIAN)
3341 {
3342 /* For big endian bits, the DW_AT_bit_offset gives the
3343 additional bit offset from the MSB of the containing
3344 anonymous object to the MSB of the field. We don't
3345 have to do anything special since we don't need to
3346 know the size of the anonymous object. */
3347 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3348 }
3349 else
3350 {
3351 /* For little endian bits, compute the bit offset to the
3352 MSB of the anonymous object, subtract off the number of
3353 bits from the MSB of the field to the MSB of the
3354 object, and then subtract off the number of bits of
3355 the field itself. The result is the bit offset of
3356 the LSB of the field. */
3357 int anonymous_size;
3358 int bit_offset = DW_UNSND (attr);
3359
3360 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3361 if (attr)
3362 {
3363 /* The size of the anonymous object containing
3364 the bit field is explicit, so use the
3365 indicated size (in bytes). */
3366 anonymous_size = DW_UNSND (attr);
3367 }
3368 else
3369 {
3370 /* The size of the anonymous object containing
3371 the bit field must be inferred from the type
3372 attribute of the data member containing the
3373 bit field. */
3374 anonymous_size = TYPE_LENGTH (fp->type);
3375 }
3376 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3377 - bit_offset - FIELD_BITSIZE (*fp);
3378 }
3379 }
3380
3381 /* Get name of field. */
3382 attr = dwarf2_attr (die, DW_AT_name, cu);
3383 if (attr && DW_STRING (attr))
3384 fieldname = DW_STRING (attr);
3385
3386 /* The name is already allocated along with this objfile, so we don't
3387 need to duplicate it for the type. */
3388 fp->name = fieldname;
3389
3390 /* Change accessibility for artificial fields (e.g. virtual table
3391 pointer or virtual base class pointer) to private. */
3392 if (dwarf2_attr (die, DW_AT_artificial, cu))
3393 {
3394 new_field->accessibility = DW_ACCESS_private;
3395 fip->non_public_fields = 1;
3396 }
3397 }
3398 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
3399 {
3400 /* C++ static member. */
3401
3402 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3403 is a declaration, but all versions of G++ as of this writing
3404 (so through at least 3.2.1) incorrectly generate
3405 DW_TAG_variable tags. */
3406
3407 char *physname;
3408
3409 /* Get name of field. */
3410 attr = dwarf2_attr (die, DW_AT_name, cu);
3411 if (attr && DW_STRING (attr))
3412 fieldname = DW_STRING (attr);
3413 else
3414 return;
3415
3416 /* Get physical name. */
3417 physname = dwarf2_linkage_name (die, cu);
3418
3419 /* The name is already allocated along with this objfile, so we don't
3420 need to duplicate it for the type. */
3421 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
3422 FIELD_TYPE (*fp) = die_type (die, cu);
3423 FIELD_NAME (*fp) = fieldname;
3424 }
3425 else if (die->tag == DW_TAG_inheritance)
3426 {
3427 /* C++ base class field. */
3428 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3429 if (attr)
3430 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
3431 * bits_per_byte);
3432 FIELD_BITSIZE (*fp) = 0;
3433 FIELD_STATIC_KIND (*fp) = 0;
3434 FIELD_TYPE (*fp) = die_type (die, cu);
3435 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3436 fip->nbaseclasses++;
3437 }
3438 }
3439
3440 /* Create the vector of fields, and attach it to the type. */
3441
3442 static void
3443 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
3444 struct dwarf2_cu *cu)
3445 {
3446 int nfields = fip->nfields;
3447
3448 /* Record the field count, allocate space for the array of fields,
3449 and create blank accessibility bitfields if necessary. */
3450 TYPE_NFIELDS (type) = nfields;
3451 TYPE_FIELDS (type) = (struct field *)
3452 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3453 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3454
3455 if (fip->non_public_fields)
3456 {
3457 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3458
3459 TYPE_FIELD_PRIVATE_BITS (type) =
3460 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3461 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3462
3463 TYPE_FIELD_PROTECTED_BITS (type) =
3464 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3465 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3466
3467 TYPE_FIELD_IGNORE_BITS (type) =
3468 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3469 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3470 }
3471
3472 /* If the type has baseclasses, allocate and clear a bit vector for
3473 TYPE_FIELD_VIRTUAL_BITS. */
3474 if (fip->nbaseclasses)
3475 {
3476 int num_bytes = B_BYTES (fip->nbaseclasses);
3477 unsigned char *pointer;
3478
3479 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3480 pointer = TYPE_ALLOC (type, num_bytes);
3481 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
3482 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3483 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3484 }
3485
3486 /* Copy the saved-up fields into the field vector. Start from the head
3487 of the list, adding to the tail of the field array, so that they end
3488 up in the same order in the array in which they were added to the list. */
3489 while (nfields-- > 0)
3490 {
3491 TYPE_FIELD (type, nfields) = fip->fields->field;
3492 switch (fip->fields->accessibility)
3493 {
3494 case DW_ACCESS_private:
3495 SET_TYPE_FIELD_PRIVATE (type, nfields);
3496 break;
3497
3498 case DW_ACCESS_protected:
3499 SET_TYPE_FIELD_PROTECTED (type, nfields);
3500 break;
3501
3502 case DW_ACCESS_public:
3503 break;
3504
3505 default:
3506 /* Unknown accessibility. Complain and treat it as public. */
3507 {
3508 complaint (&symfile_complaints, _("unsupported accessibility %d"),
3509 fip->fields->accessibility);
3510 }
3511 break;
3512 }
3513 if (nfields < fip->nbaseclasses)
3514 {
3515 switch (fip->fields->virtuality)
3516 {
3517 case DW_VIRTUALITY_virtual:
3518 case DW_VIRTUALITY_pure_virtual:
3519 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3520 break;
3521 }
3522 }
3523 fip->fields = fip->fields->next;
3524 }
3525 }
3526
3527 /* Add a member function to the proper fieldlist. */
3528
3529 static void
3530 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
3531 struct type *type, struct dwarf2_cu *cu)
3532 {
3533 struct objfile *objfile = cu->objfile;
3534 struct attribute *attr;
3535 struct fnfieldlist *flp;
3536 int i;
3537 struct fn_field *fnp;
3538 char *fieldname;
3539 char *physname;
3540 struct nextfnfield *new_fnfield;
3541
3542 /* Get name of member function. */
3543 attr = dwarf2_attr (die, DW_AT_name, cu);
3544 if (attr && DW_STRING (attr))
3545 fieldname = DW_STRING (attr);
3546 else
3547 return;
3548
3549 /* Get the mangled name. */
3550 physname = dwarf2_linkage_name (die, cu);
3551
3552 /* Look up member function name in fieldlist. */
3553 for (i = 0; i < fip->nfnfields; i++)
3554 {
3555 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
3556 break;
3557 }
3558
3559 /* Create new list element if necessary. */
3560 if (i < fip->nfnfields)
3561 flp = &fip->fnfieldlists[i];
3562 else
3563 {
3564 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3565 {
3566 fip->fnfieldlists = (struct fnfieldlist *)
3567 xrealloc (fip->fnfieldlists,
3568 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
3569 * sizeof (struct fnfieldlist));
3570 if (fip->nfnfields == 0)
3571 make_cleanup (free_current_contents, &fip->fnfieldlists);
3572 }
3573 flp = &fip->fnfieldlists[fip->nfnfields];
3574 flp->name = fieldname;
3575 flp->length = 0;
3576 flp->head = NULL;
3577 fip->nfnfields++;
3578 }
3579
3580 /* Create a new member function field and chain it to the field list
3581 entry. */
3582 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
3583 make_cleanup (xfree, new_fnfield);
3584 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3585 new_fnfield->next = flp->head;
3586 flp->head = new_fnfield;
3587 flp->length++;
3588
3589 /* Fill in the member function field info. */
3590 fnp = &new_fnfield->fnfield;
3591 /* The name is already allocated along with this objfile, so we don't
3592 need to duplicate it for the type. */
3593 fnp->physname = physname ? physname : "";
3594 fnp->type = alloc_type (objfile);
3595 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3596 {
3597 int nparams = TYPE_NFIELDS (die->type);
3598
3599 /* TYPE is the domain of this method, and DIE->TYPE is the type
3600 of the method itself (TYPE_CODE_METHOD). */
3601 smash_to_method_type (fnp->type, type,
3602 TYPE_TARGET_TYPE (die->type),
3603 TYPE_FIELDS (die->type),
3604 TYPE_NFIELDS (die->type),
3605 TYPE_VARARGS (die->type));
3606
3607 /* Handle static member functions.
3608 Dwarf2 has no clean way to discern C++ static and non-static
3609 member functions. G++ helps GDB by marking the first
3610 parameter for non-static member functions (which is the
3611 this pointer) as artificial. We obtain this information
3612 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
3613 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3614 fnp->voffset = VOFFSET_STATIC;
3615 }
3616 else
3617 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3618 physname);
3619
3620 /* Get fcontext from DW_AT_containing_type if present. */
3621 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3622 fnp->fcontext = die_containing_type (die, cu);
3623
3624 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3625 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3626
3627 /* Get accessibility. */
3628 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3629 if (attr)
3630 {
3631 switch (DW_UNSND (attr))
3632 {
3633 case DW_ACCESS_private:
3634 fnp->is_private = 1;
3635 break;
3636 case DW_ACCESS_protected:
3637 fnp->is_protected = 1;
3638 break;
3639 }
3640 }
3641
3642 /* Check for artificial methods. */
3643 attr = dwarf2_attr (die, DW_AT_artificial, cu);
3644 if (attr && DW_UNSND (attr) != 0)
3645 fnp->is_artificial = 1;
3646
3647 /* Get index in virtual function table if it is a virtual member function. */
3648 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
3649 if (attr)
3650 {
3651 /* Support the .debug_loc offsets */
3652 if (attr_form_is_block (attr))
3653 {
3654 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
3655 }
3656 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3657 {
3658 dwarf2_complex_location_expr_complaint ();
3659 }
3660 else
3661 {
3662 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3663 fieldname);
3664 }
3665 }
3666 }
3667
3668 /* Create the vector of member function fields, and attach it to the type. */
3669
3670 static void
3671 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
3672 struct dwarf2_cu *cu)
3673 {
3674 struct fnfieldlist *flp;
3675 int total_length = 0;
3676 int i;
3677
3678 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3679 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3680 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3681
3682 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3683 {
3684 struct nextfnfield *nfp = flp->head;
3685 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3686 int k;
3687
3688 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3689 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3690 fn_flp->fn_fields = (struct fn_field *)
3691 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3692 for (k = flp->length; (k--, nfp); nfp = nfp->next)
3693 fn_flp->fn_fields[k] = nfp->fnfield;
3694
3695 total_length += flp->length;
3696 }
3697
3698 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3699 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3700 }
3701
3702
3703 /* Returns non-zero if NAME is the name of a vtable member in CU's
3704 language, zero otherwise. */
3705 static int
3706 is_vtable_name (const char *name, struct dwarf2_cu *cu)
3707 {
3708 static const char vptr[] = "_vptr";
3709 static const char vtable[] = "vtable";
3710
3711 /* Look for the C++ and Java forms of the vtable. */
3712 if ((cu->language == language_java
3713 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3714 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3715 && is_cplus_marker (name[sizeof (vptr) - 1])))
3716 return 1;
3717
3718 return 0;
3719 }
3720
3721 /* GCC outputs unnamed structures that are really pointers to member
3722 functions, with the ABI-specified layout. If DIE (from CU) describes
3723 such a structure, set its type, and return nonzero. Otherwise return
3724 zero.
3725
3726 GCC shouldn't do this; it should just output pointer to member DIEs.
3727 This is GCC PR debug/28767. */
3728
3729 static int
3730 quirk_gcc_member_function_pointer (struct die_info *die, struct dwarf2_cu *cu)
3731 {
3732 struct objfile *objfile = cu->objfile;
3733 struct type *type;
3734 struct die_info *pfn_die, *delta_die;
3735 struct attribute *pfn_name, *delta_name;
3736 struct type *pfn_type, *domain_type;
3737
3738 /* Check for a structure with no name and two children. */
3739 if (die->tag != DW_TAG_structure_type
3740 || dwarf2_attr (die, DW_AT_name, cu) != NULL
3741 || die->child == NULL
3742 || die->child->sibling == NULL
3743 || (die->child->sibling->sibling != NULL
3744 && die->child->sibling->sibling->tag != DW_TAG_padding))
3745 return 0;
3746
3747 /* Check for __pfn and __delta members. */
3748 pfn_die = die->child;
3749 pfn_name = dwarf2_attr (pfn_die, DW_AT_name, cu);
3750 if (pfn_die->tag != DW_TAG_member
3751 || pfn_name == NULL
3752 || DW_STRING (pfn_name) == NULL
3753 || strcmp ("__pfn", DW_STRING (pfn_name)) != 0)
3754 return 0;
3755
3756 delta_die = pfn_die->sibling;
3757 delta_name = dwarf2_attr (delta_die, DW_AT_name, cu);
3758 if (delta_die->tag != DW_TAG_member
3759 || delta_name == NULL
3760 || DW_STRING (delta_name) == NULL
3761 || strcmp ("__delta", DW_STRING (delta_name)) != 0)
3762 return 0;
3763
3764 /* Find the type of the method. */
3765 pfn_type = die_type (pfn_die, cu);
3766 if (pfn_type == NULL
3767 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
3768 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
3769 return 0;
3770
3771 /* Look for the "this" argument. */
3772 pfn_type = TYPE_TARGET_TYPE (pfn_type);
3773 if (TYPE_NFIELDS (pfn_type) == 0
3774 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
3775 return 0;
3776
3777 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
3778 type = alloc_type (objfile);
3779 smash_to_method_type (type, domain_type, TYPE_TARGET_TYPE (pfn_type),
3780 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
3781 TYPE_VARARGS (pfn_type));
3782 type = lookup_pointer_type (type);
3783 set_die_type (die, type, cu);
3784
3785 return 1;
3786 }
3787
3788 /* Called when we find the DIE that starts a structure or union scope
3789 (definition) to process all dies that define the members of the
3790 structure or union.
3791
3792 NOTE: we need to call struct_type regardless of whether or not the
3793 DIE has an at_name attribute, since it might be an anonymous
3794 structure or union. This gets the type entered into our set of
3795 user defined types.
3796
3797 However, if the structure is incomplete (an opaque struct/union)
3798 then suppress creating a symbol table entry for it since gdb only
3799 wants to find the one with the complete definition. Note that if
3800 it is complete, we just call new_symbol, which does it's own
3801 checking about whether the struct/union is anonymous or not (and
3802 suppresses creating a symbol table entry itself). */
3803
3804 static void
3805 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
3806 {
3807 struct objfile *objfile = cu->objfile;
3808 struct type *type;
3809 struct attribute *attr;
3810 const char *previous_prefix = processing_current_prefix;
3811 struct cleanup *back_to = NULL;
3812
3813 if (die->type)
3814 return;
3815
3816 if (quirk_gcc_member_function_pointer (die, cu))
3817 return;
3818
3819 type = alloc_type (objfile);
3820 INIT_CPLUS_SPECIFIC (type);
3821 attr = dwarf2_attr (die, DW_AT_name, cu);
3822 if (attr && DW_STRING (attr))
3823 {
3824 if (cu->language == language_cplus
3825 || cu->language == language_java)
3826 {
3827 char *new_prefix = determine_class_name (die, cu);
3828 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3829 strlen (new_prefix),
3830 &objfile->objfile_obstack);
3831 back_to = make_cleanup (xfree, new_prefix);
3832 processing_current_prefix = new_prefix;
3833 }
3834 else
3835 {
3836 /* The name is already allocated along with this objfile, so
3837 we don't need to duplicate it for the type. */
3838 TYPE_TAG_NAME (type) = DW_STRING (attr);
3839 }
3840 }
3841
3842 if (die->tag == DW_TAG_structure_type)
3843 {
3844 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3845 }
3846 else if (die->tag == DW_TAG_union_type)
3847 {
3848 TYPE_CODE (type) = TYPE_CODE_UNION;
3849 }
3850 else
3851 {
3852 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
3853 in gdbtypes.h. */
3854 TYPE_CODE (type) = TYPE_CODE_CLASS;
3855 }
3856
3857 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3858 if (attr)
3859 {
3860 TYPE_LENGTH (type) = DW_UNSND (attr);
3861 }
3862 else
3863 {
3864 TYPE_LENGTH (type) = 0;
3865 }
3866
3867 if (die_is_declaration (die, cu))
3868 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3869
3870 /* We need to add the type field to the die immediately so we don't
3871 infinitely recurse when dealing with pointers to the structure
3872 type within the structure itself. */
3873 set_die_type (die, type, cu);
3874
3875 if (die->child != NULL && ! die_is_declaration (die, cu))
3876 {
3877 struct field_info fi;
3878 struct die_info *child_die;
3879 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3880
3881 memset (&fi, 0, sizeof (struct field_info));
3882
3883 child_die = die->child;
3884
3885 while (child_die && child_die->tag)
3886 {
3887 if (child_die->tag == DW_TAG_member
3888 || child_die->tag == DW_TAG_variable)
3889 {
3890 /* NOTE: carlton/2002-11-05: A C++ static data member
3891 should be a DW_TAG_member that is a declaration, but
3892 all versions of G++ as of this writing (so through at
3893 least 3.2.1) incorrectly generate DW_TAG_variable
3894 tags for them instead. */
3895 dwarf2_add_field (&fi, child_die, cu);
3896 }
3897 else if (child_die->tag == DW_TAG_subprogram)
3898 {
3899 /* C++ member function. */
3900 read_type_die (child_die, cu);
3901 dwarf2_add_member_fn (&fi, child_die, type, cu);
3902 }
3903 else if (child_die->tag == DW_TAG_inheritance)
3904 {
3905 /* C++ base class field. */
3906 dwarf2_add_field (&fi, child_die, cu);
3907 }
3908 child_die = sibling_die (child_die);
3909 }
3910
3911 /* Attach fields and member functions to the type. */
3912 if (fi.nfields)
3913 dwarf2_attach_fields_to_type (&fi, type, cu);
3914 if (fi.nfnfields)
3915 {
3916 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
3917
3918 /* Get the type which refers to the base class (possibly this
3919 class itself) which contains the vtable pointer for the current
3920 class from the DW_AT_containing_type attribute. */
3921
3922 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3923 {
3924 struct type *t = die_containing_type (die, cu);
3925
3926 TYPE_VPTR_BASETYPE (type) = t;
3927 if (type == t)
3928 {
3929 int i;
3930
3931 /* Our own class provides vtbl ptr. */
3932 for (i = TYPE_NFIELDS (t) - 1;
3933 i >= TYPE_N_BASECLASSES (t);
3934 --i)
3935 {
3936 char *fieldname = TYPE_FIELD_NAME (t, i);
3937
3938 if (is_vtable_name (fieldname, cu))
3939 {
3940 TYPE_VPTR_FIELDNO (type) = i;
3941 break;
3942 }
3943 }
3944
3945 /* Complain if virtual function table field not found. */
3946 if (i < TYPE_N_BASECLASSES (t))
3947 complaint (&symfile_complaints,
3948 _("virtual function table pointer not found when defining class '%s'"),
3949 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3950 "");
3951 }
3952 else
3953 {
3954 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3955 }
3956 }
3957 else if (cu->producer
3958 && strncmp (cu->producer,
3959 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
3960 {
3961 /* The IBM XLC compiler does not provide direct indication
3962 of the containing type, but the vtable pointer is
3963 always named __vfp. */
3964
3965 int i;
3966
3967 for (i = TYPE_NFIELDS (type) - 1;
3968 i >= TYPE_N_BASECLASSES (type);
3969 --i)
3970 {
3971 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
3972 {
3973 TYPE_VPTR_FIELDNO (type) = i;
3974 TYPE_VPTR_BASETYPE (type) = type;
3975 break;
3976 }
3977 }
3978 }
3979 }
3980
3981 do_cleanups (back_to);
3982 }
3983
3984 processing_current_prefix = previous_prefix;
3985 if (back_to != NULL)
3986 do_cleanups (back_to);
3987 }
3988
3989 static void
3990 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
3991 {
3992 struct objfile *objfile = cu->objfile;
3993 const char *previous_prefix = processing_current_prefix;
3994 struct die_info *child_die = die->child;
3995
3996 if (TYPE_TAG_NAME (die->type) != NULL)
3997 processing_current_prefix = TYPE_TAG_NAME (die->type);
3998
3999 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
4000 snapshots) has been known to create a die giving a declaration
4001 for a class that has, as a child, a die giving a definition for a
4002 nested class. So we have to process our children even if the
4003 current die is a declaration. Normally, of course, a declaration
4004 won't have any children at all. */
4005
4006 while (child_die != NULL && child_die->tag)
4007 {
4008 if (child_die->tag == DW_TAG_member
4009 || child_die->tag == DW_TAG_variable
4010 || child_die->tag == DW_TAG_inheritance)
4011 {
4012 /* Do nothing. */
4013 }
4014 else
4015 process_die (child_die, cu);
4016
4017 child_die = sibling_die (child_die);
4018 }
4019
4020 if (die->child != NULL && ! die_is_declaration (die, cu))
4021 new_symbol (die, die->type, cu);
4022
4023 processing_current_prefix = previous_prefix;
4024 }
4025
4026 /* Given a DW_AT_enumeration_type die, set its type. We do not
4027 complete the type's fields yet, or create any symbols. */
4028
4029 static void
4030 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
4031 {
4032 struct objfile *objfile = cu->objfile;
4033 struct type *type;
4034 struct attribute *attr;
4035
4036 if (die->type)
4037 return;
4038
4039 type = alloc_type (objfile);
4040
4041 TYPE_CODE (type) = TYPE_CODE_ENUM;
4042 attr = dwarf2_attr (die, DW_AT_name, cu);
4043 if (attr && DW_STRING (attr))
4044 {
4045 char *name = DW_STRING (attr);
4046
4047 if (processing_has_namespace_info)
4048 {
4049 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
4050 processing_current_prefix,
4051 name, cu);
4052 }
4053 else
4054 {
4055 /* The name is already allocated along with this objfile, so
4056 we don't need to duplicate it for the type. */
4057 TYPE_TAG_NAME (type) = name;
4058 }
4059 }
4060
4061 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4062 if (attr)
4063 {
4064 TYPE_LENGTH (type) = DW_UNSND (attr);
4065 }
4066 else
4067 {
4068 TYPE_LENGTH (type) = 0;
4069 }
4070
4071 set_die_type (die, type, cu);
4072 }
4073
4074 /* Determine the name of the type represented by DIE, which should be
4075 a named C++ or Java compound type. Return the name in question; the caller
4076 is responsible for xfree()'ing it. */
4077
4078 static char *
4079 determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
4080 {
4081 struct cleanup *back_to = NULL;
4082 struct die_info *spec_die = die_specification (die, cu);
4083 char *new_prefix = NULL;
4084
4085 /* If this is the definition of a class that is declared by another
4086 die, then processing_current_prefix may not be accurate; see
4087 read_func_scope for a similar example. */
4088 if (spec_die != NULL)
4089 {
4090 char *specification_prefix = determine_prefix (spec_die, cu);
4091 processing_current_prefix = specification_prefix;
4092 back_to = make_cleanup (xfree, specification_prefix);
4093 }
4094
4095 /* If we don't have namespace debug info, guess the name by trying
4096 to demangle the names of members, just like we did in
4097 guess_structure_name. */
4098 if (!processing_has_namespace_info)
4099 {
4100 struct die_info *child;
4101
4102 for (child = die->child;
4103 child != NULL && child->tag != 0;
4104 child = sibling_die (child))
4105 {
4106 if (child->tag == DW_TAG_subprogram)
4107 {
4108 new_prefix
4109 = language_class_name_from_physname (cu->language_defn,
4110 dwarf2_linkage_name
4111 (child, cu));
4112
4113 if (new_prefix != NULL)
4114 break;
4115 }
4116 }
4117 }
4118
4119 if (new_prefix == NULL)
4120 {
4121 const char *name = dwarf2_name (die, cu);
4122 new_prefix = typename_concat (NULL, processing_current_prefix,
4123 name ? name : "<<anonymous>>",
4124 cu);
4125 }
4126
4127 if (back_to != NULL)
4128 do_cleanups (back_to);
4129
4130 return new_prefix;
4131 }
4132
4133 /* Given a pointer to a die which begins an enumeration, process all
4134 the dies that define the members of the enumeration, and create the
4135 symbol for the enumeration type.
4136
4137 NOTE: We reverse the order of the element list. */
4138
4139 static void
4140 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4141 {
4142 struct objfile *objfile = cu->objfile;
4143 struct die_info *child_die;
4144 struct field *fields;
4145 struct attribute *attr;
4146 struct symbol *sym;
4147 int num_fields;
4148 int unsigned_enum = 1;
4149
4150 num_fields = 0;
4151 fields = NULL;
4152 if (die->child != NULL)
4153 {
4154 child_die = die->child;
4155 while (child_die && child_die->tag)
4156 {
4157 if (child_die->tag != DW_TAG_enumerator)
4158 {
4159 process_die (child_die, cu);
4160 }
4161 else
4162 {
4163 attr = dwarf2_attr (child_die, DW_AT_name, cu);
4164 if (attr)
4165 {
4166 sym = new_symbol (child_die, die->type, cu);
4167 if (SYMBOL_VALUE (sym) < 0)
4168 unsigned_enum = 0;
4169
4170 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4171 {
4172 fields = (struct field *)
4173 xrealloc (fields,
4174 (num_fields + DW_FIELD_ALLOC_CHUNK)
4175 * sizeof (struct field));
4176 }
4177
4178 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
4179 FIELD_TYPE (fields[num_fields]) = NULL;
4180 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4181 FIELD_BITSIZE (fields[num_fields]) = 0;
4182 FIELD_STATIC_KIND (fields[num_fields]) = 0;
4183
4184 num_fields++;
4185 }
4186 }
4187
4188 child_die = sibling_die (child_die);
4189 }
4190
4191 if (num_fields)
4192 {
4193 TYPE_NFIELDS (die->type) = num_fields;
4194 TYPE_FIELDS (die->type) = (struct field *)
4195 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4196 memcpy (TYPE_FIELDS (die->type), fields,
4197 sizeof (struct field) * num_fields);
4198 xfree (fields);
4199 }
4200 if (unsigned_enum)
4201 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
4202 }
4203
4204 new_symbol (die, die->type, cu);
4205 }
4206
4207 /* Extract all information from a DW_TAG_array_type DIE and put it in
4208 the DIE's type field. For now, this only handles one dimensional
4209 arrays. */
4210
4211 static void
4212 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
4213 {
4214 struct objfile *objfile = cu->objfile;
4215 struct die_info *child_die;
4216 struct type *type = NULL;
4217 struct type *element_type, *range_type, *index_type;
4218 struct type **range_types = NULL;
4219 struct attribute *attr;
4220 int ndim = 0;
4221 struct cleanup *back_to;
4222
4223 /* Return if we've already decoded this type. */
4224 if (die->type)
4225 {
4226 return;
4227 }
4228
4229 element_type = die_type (die, cu);
4230
4231 /* Irix 6.2 native cc creates array types without children for
4232 arrays with unspecified length. */
4233 if (die->child == NULL)
4234 {
4235 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4236 range_type = create_range_type (NULL, index_type, 0, -1);
4237 set_die_type (die, create_array_type (NULL, element_type, range_type),
4238 cu);
4239 return;
4240 }
4241
4242 back_to = make_cleanup (null_cleanup, NULL);
4243 child_die = die->child;
4244 while (child_die && child_die->tag)
4245 {
4246 if (child_die->tag == DW_TAG_subrange_type)
4247 {
4248 read_subrange_type (child_die, cu);
4249
4250 if (child_die->type != NULL)
4251 {
4252 /* The range type was succesfully read. Save it for
4253 the array type creation. */
4254 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4255 {
4256 range_types = (struct type **)
4257 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4258 * sizeof (struct type *));
4259 if (ndim == 0)
4260 make_cleanup (free_current_contents, &range_types);
4261 }
4262 range_types[ndim++] = child_die->type;
4263 }
4264 }
4265 child_die = sibling_die (child_die);
4266 }
4267
4268 /* Dwarf2 dimensions are output from left to right, create the
4269 necessary array types in backwards order. */
4270
4271 type = element_type;
4272
4273 if (read_array_order (die, cu) == DW_ORD_col_major)
4274 {
4275 int i = 0;
4276 while (i < ndim)
4277 type = create_array_type (NULL, type, range_types[i++]);
4278 }
4279 else
4280 {
4281 while (ndim-- > 0)
4282 type = create_array_type (NULL, type, range_types[ndim]);
4283 }
4284
4285 /* Understand Dwarf2 support for vector types (like they occur on
4286 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4287 array type. This is not part of the Dwarf2/3 standard yet, but a
4288 custom vendor extension. The main difference between a regular
4289 array and the vector variant is that vectors are passed by value
4290 to functions. */
4291 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
4292 if (attr)
4293 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
4294
4295 attr = dwarf2_attr (die, DW_AT_name, cu);
4296 if (attr && DW_STRING (attr))
4297 TYPE_NAME (type) = DW_STRING (attr);
4298
4299 do_cleanups (back_to);
4300
4301 /* Install the type in the die. */
4302 set_die_type (die, type, cu);
4303 }
4304
4305 static enum dwarf_array_dim_ordering
4306 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4307 {
4308 struct attribute *attr;
4309
4310 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4311
4312 if (attr) return DW_SND (attr);
4313
4314 /*
4315 GNU F77 is a special case, as at 08/2004 array type info is the
4316 opposite order to the dwarf2 specification, but data is still
4317 laid out as per normal fortran.
4318
4319 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4320 version checking.
4321 */
4322
4323 if (cu->language == language_fortran &&
4324 cu->producer && strstr (cu->producer, "GNU F77"))
4325 {
4326 return DW_ORD_row_major;
4327 }
4328
4329 switch (cu->language_defn->la_array_ordering)
4330 {
4331 case array_column_major:
4332 return DW_ORD_col_major;
4333 case array_row_major:
4334 default:
4335 return DW_ORD_row_major;
4336 };
4337 }
4338
4339 /* Extract all information from a DW_TAG_set_type DIE and put it in
4340 the DIE's type field. */
4341
4342 static void
4343 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
4344 {
4345 if (die->type == NULL)
4346 die->type = create_set_type ((struct type *) NULL, die_type (die, cu));
4347 }
4348
4349 /* First cut: install each common block member as a global variable. */
4350
4351 static void
4352 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
4353 {
4354 struct die_info *child_die;
4355 struct attribute *attr;
4356 struct symbol *sym;
4357 CORE_ADDR base = (CORE_ADDR) 0;
4358
4359 attr = dwarf2_attr (die, DW_AT_location, cu);
4360 if (attr)
4361 {
4362 /* Support the .debug_loc offsets */
4363 if (attr_form_is_block (attr))
4364 {
4365 base = decode_locdesc (DW_BLOCK (attr), cu);
4366 }
4367 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4368 {
4369 dwarf2_complex_location_expr_complaint ();
4370 }
4371 else
4372 {
4373 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4374 "common block member");
4375 }
4376 }
4377 if (die->child != NULL)
4378 {
4379 child_die = die->child;
4380 while (child_die && child_die->tag)
4381 {
4382 sym = new_symbol (child_die, NULL, cu);
4383 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
4384 if (attr)
4385 {
4386 SYMBOL_VALUE_ADDRESS (sym) =
4387 base + decode_locdesc (DW_BLOCK (attr), cu);
4388 add_symbol_to_list (sym, &global_symbols);
4389 }
4390 child_die = sibling_die (child_die);
4391 }
4392 }
4393 }
4394
4395 /* Read a C++ namespace. */
4396
4397 static void
4398 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
4399 {
4400 struct objfile *objfile = cu->objfile;
4401 const char *previous_prefix = processing_current_prefix;
4402 const char *name;
4403 int is_anonymous;
4404 struct die_info *current_die;
4405 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4406
4407 name = namespace_name (die, &is_anonymous, cu);
4408
4409 /* Now build the name of the current namespace. */
4410
4411 if (previous_prefix[0] == '\0')
4412 {
4413 processing_current_prefix = name;
4414 }
4415 else
4416 {
4417 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4418 make_cleanup (xfree, temp_name);
4419 processing_current_prefix = temp_name;
4420 }
4421
4422 /* Add a symbol associated to this if we haven't seen the namespace
4423 before. Also, add a using directive if it's an anonymous
4424 namespace. */
4425
4426 if (dwarf2_extension (die, cu) == NULL)
4427 {
4428 struct type *type;
4429
4430 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4431 this cast will hopefully become unnecessary. */
4432 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
4433 (char *) processing_current_prefix,
4434 objfile);
4435 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4436
4437 new_symbol (die, type, cu);
4438 set_die_type (die, type, cu);
4439
4440 if (is_anonymous)
4441 cp_add_using_directive (processing_current_prefix,
4442 strlen (previous_prefix),
4443 strlen (processing_current_prefix));
4444 }
4445
4446 if (die->child != NULL)
4447 {
4448 struct die_info *child_die = die->child;
4449
4450 while (child_die && child_die->tag)
4451 {
4452 process_die (child_die, cu);
4453 child_die = sibling_die (child_die);
4454 }
4455 }
4456
4457 processing_current_prefix = previous_prefix;
4458 do_cleanups (back_to);
4459 }
4460
4461 /* Return the name of the namespace represented by DIE. Set
4462 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4463 namespace. */
4464
4465 static const char *
4466 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
4467 {
4468 struct die_info *current_die;
4469 const char *name = NULL;
4470
4471 /* Loop through the extensions until we find a name. */
4472
4473 for (current_die = die;
4474 current_die != NULL;
4475 current_die = dwarf2_extension (die, cu))
4476 {
4477 name = dwarf2_name (current_die, cu);
4478 if (name != NULL)
4479 break;
4480 }
4481
4482 /* Is it an anonymous namespace? */
4483
4484 *is_anonymous = (name == NULL);
4485 if (*is_anonymous)
4486 name = "(anonymous namespace)";
4487
4488 return name;
4489 }
4490
4491 /* Extract all information from a DW_TAG_pointer_type DIE and add to
4492 the user defined type vector. */
4493
4494 static void
4495 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
4496 {
4497 struct comp_unit_head *cu_header = &cu->header;
4498 struct type *type;
4499 struct attribute *attr_byte_size;
4500 struct attribute *attr_address_class;
4501 int byte_size, addr_class;
4502
4503 if (die->type)
4504 {
4505 return;
4506 }
4507
4508 type = lookup_pointer_type (die_type (die, cu));
4509
4510 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
4511 if (attr_byte_size)
4512 byte_size = DW_UNSND (attr_byte_size);
4513 else
4514 byte_size = cu_header->addr_size;
4515
4516 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
4517 if (attr_address_class)
4518 addr_class = DW_UNSND (attr_address_class);
4519 else
4520 addr_class = DW_ADDR_none;
4521
4522 /* If the pointer size or address class is different than the
4523 default, create a type variant marked as such and set the
4524 length accordingly. */
4525 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
4526 {
4527 if (ADDRESS_CLASS_TYPE_FLAGS_P ())
4528 {
4529 int type_flags;
4530
4531 type_flags = ADDRESS_CLASS_TYPE_FLAGS (byte_size, addr_class);
4532 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4533 type = make_type_with_address_space (type, type_flags);
4534 }
4535 else if (TYPE_LENGTH (type) != byte_size)
4536 {
4537 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
4538 }
4539 else {
4540 /* Should we also complain about unhandled address classes? */
4541 }
4542 }
4543
4544 TYPE_LENGTH (type) = byte_size;
4545 set_die_type (die, type, cu);
4546 }
4547
4548 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4549 the user defined type vector. */
4550
4551 static void
4552 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
4553 {
4554 struct objfile *objfile = cu->objfile;
4555 struct type *type;
4556 struct type *to_type;
4557 struct type *domain;
4558
4559 if (die->type)
4560 {
4561 return;
4562 }
4563
4564 type = alloc_type (objfile);
4565 to_type = die_type (die, cu);
4566 domain = die_containing_type (die, cu);
4567 smash_to_member_type (type, domain, to_type);
4568
4569 set_die_type (die, type, cu);
4570 }
4571
4572 /* Extract all information from a DW_TAG_reference_type DIE and add to
4573 the user defined type vector. */
4574
4575 static void
4576 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
4577 {
4578 struct comp_unit_head *cu_header = &cu->header;
4579 struct type *type;
4580 struct attribute *attr;
4581
4582 if (die->type)
4583 {
4584 return;
4585 }
4586
4587 type = lookup_reference_type (die_type (die, cu));
4588 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4589 if (attr)
4590 {
4591 TYPE_LENGTH (type) = DW_UNSND (attr);
4592 }
4593 else
4594 {
4595 TYPE_LENGTH (type) = cu_header->addr_size;
4596 }
4597 set_die_type (die, type, cu);
4598 }
4599
4600 static void
4601 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
4602 {
4603 struct type *base_type;
4604
4605 if (die->type)
4606 {
4607 return;
4608 }
4609
4610 base_type = die_type (die, cu);
4611 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4612 cu);
4613 }
4614
4615 static void
4616 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
4617 {
4618 struct type *base_type;
4619
4620 if (die->type)
4621 {
4622 return;
4623 }
4624
4625 base_type = die_type (die, cu);
4626 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4627 cu);
4628 }
4629
4630 /* Extract all information from a DW_TAG_string_type DIE and add to
4631 the user defined type vector. It isn't really a user defined type,
4632 but it behaves like one, with other DIE's using an AT_user_def_type
4633 attribute to reference it. */
4634
4635 static void
4636 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
4637 {
4638 struct objfile *objfile = cu->objfile;
4639 struct type *type, *range_type, *index_type, *char_type;
4640 struct attribute *attr;
4641 unsigned int length;
4642
4643 if (die->type)
4644 {
4645 return;
4646 }
4647
4648 attr = dwarf2_attr (die, DW_AT_string_length, cu);
4649 if (attr)
4650 {
4651 length = DW_UNSND (attr);
4652 }
4653 else
4654 {
4655 /* check for the DW_AT_byte_size attribute */
4656 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4657 if (attr)
4658 {
4659 length = DW_UNSND (attr);
4660 }
4661 else
4662 {
4663 length = 1;
4664 }
4665 }
4666 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4667 range_type = create_range_type (NULL, index_type, 1, length);
4668 if (cu->language == language_fortran)
4669 {
4670 /* Need to create a unique string type for bounds
4671 information */
4672 type = create_string_type (0, range_type);
4673 }
4674 else
4675 {
4676 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
4677 type = create_string_type (char_type, range_type);
4678 }
4679 set_die_type (die, type, cu);
4680 }
4681
4682 /* Handle DIES due to C code like:
4683
4684 struct foo
4685 {
4686 int (*funcp)(int a, long l);
4687 int b;
4688 };
4689
4690 ('funcp' generates a DW_TAG_subroutine_type DIE)
4691 */
4692
4693 static void
4694 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
4695 {
4696 struct type *type; /* Type that this function returns */
4697 struct type *ftype; /* Function that returns above type */
4698 struct attribute *attr;
4699
4700 /* Decode the type that this subroutine returns */
4701 if (die->type)
4702 {
4703 return;
4704 }
4705 type = die_type (die, cu);
4706 ftype = make_function_type (type, (struct type **) 0);
4707
4708 /* All functions in C++ and Java have prototypes. */
4709 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
4710 if ((attr && (DW_UNSND (attr) != 0))
4711 || cu->language == language_cplus
4712 || cu->language == language_java)
4713 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4714
4715 if (die->child != NULL)
4716 {
4717 struct die_info *child_die;
4718 int nparams = 0;
4719 int iparams = 0;
4720
4721 /* Count the number of parameters.
4722 FIXME: GDB currently ignores vararg functions, but knows about
4723 vararg member functions. */
4724 child_die = die->child;
4725 while (child_die && child_die->tag)
4726 {
4727 if (child_die->tag == DW_TAG_formal_parameter)
4728 nparams++;
4729 else if (child_die->tag == DW_TAG_unspecified_parameters)
4730 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4731 child_die = sibling_die (child_die);
4732 }
4733
4734 /* Allocate storage for parameters and fill them in. */
4735 TYPE_NFIELDS (ftype) = nparams;
4736 TYPE_FIELDS (ftype) = (struct field *)
4737 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
4738
4739 child_die = die->child;
4740 while (child_die && child_die->tag)
4741 {
4742 if (child_die->tag == DW_TAG_formal_parameter)
4743 {
4744 /* Dwarf2 has no clean way to discern C++ static and non-static
4745 member functions. G++ helps GDB by marking the first
4746 parameter for non-static member functions (which is the
4747 this pointer) as artificial. We pass this information
4748 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
4749 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
4750 if (attr)
4751 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4752 else
4753 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
4754 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
4755 iparams++;
4756 }
4757 child_die = sibling_die (child_die);
4758 }
4759 }
4760
4761 set_die_type (die, ftype, cu);
4762 }
4763
4764 static void
4765 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
4766 {
4767 struct objfile *objfile = cu->objfile;
4768 struct attribute *attr;
4769 char *name = NULL;
4770
4771 if (!die->type)
4772 {
4773 attr = dwarf2_attr (die, DW_AT_name, cu);
4774 if (attr && DW_STRING (attr))
4775 {
4776 name = DW_STRING (attr);
4777 }
4778 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4779 TYPE_FLAG_TARGET_STUB, name, objfile),
4780 cu);
4781 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
4782 }
4783 }
4784
4785 /* Find a representation of a given base type and install
4786 it in the TYPE field of the die. */
4787
4788 static void
4789 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
4790 {
4791 struct objfile *objfile = cu->objfile;
4792 struct type *type;
4793 struct attribute *attr;
4794 int encoding = 0, size = 0;
4795
4796 /* If we've already decoded this die, this is a no-op. */
4797 if (die->type)
4798 {
4799 return;
4800 }
4801
4802 attr = dwarf2_attr (die, DW_AT_encoding, cu);
4803 if (attr)
4804 {
4805 encoding = DW_UNSND (attr);
4806 }
4807 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4808 if (attr)
4809 {
4810 size = DW_UNSND (attr);
4811 }
4812 attr = dwarf2_attr (die, DW_AT_name, cu);
4813 if (attr && DW_STRING (attr))
4814 {
4815 enum type_code code = TYPE_CODE_INT;
4816 int type_flags = 0;
4817
4818 switch (encoding)
4819 {
4820 case DW_ATE_address:
4821 /* Turn DW_ATE_address into a void * pointer. */
4822 code = TYPE_CODE_PTR;
4823 type_flags |= TYPE_FLAG_UNSIGNED;
4824 break;
4825 case DW_ATE_boolean:
4826 code = TYPE_CODE_BOOL;
4827 type_flags |= TYPE_FLAG_UNSIGNED;
4828 break;
4829 case DW_ATE_complex_float:
4830 code = TYPE_CODE_COMPLEX;
4831 break;
4832 case DW_ATE_float:
4833 code = TYPE_CODE_FLT;
4834 break;
4835 case DW_ATE_signed:
4836 break;
4837 case DW_ATE_unsigned:
4838 type_flags |= TYPE_FLAG_UNSIGNED;
4839 break;
4840 case DW_ATE_signed_char:
4841 if (cu->language == language_m2)
4842 code = TYPE_CODE_CHAR;
4843 break;
4844 case DW_ATE_unsigned_char:
4845 if (cu->language == language_m2)
4846 code = TYPE_CODE_CHAR;
4847 type_flags |= TYPE_FLAG_UNSIGNED;
4848 break;
4849 default:
4850 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
4851 dwarf_type_encoding_name (encoding));
4852 break;
4853 }
4854 type = init_type (code, size, type_flags, DW_STRING (attr), objfile);
4855 if (encoding == DW_ATE_address)
4856 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4857 cu);
4858 else if (encoding == DW_ATE_complex_float)
4859 {
4860 if (size == 32)
4861 TYPE_TARGET_TYPE (type)
4862 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
4863 else if (size == 16)
4864 TYPE_TARGET_TYPE (type)
4865 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
4866 else if (size == 8)
4867 TYPE_TARGET_TYPE (type)
4868 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
4869 }
4870 }
4871 else
4872 {
4873 type = dwarf_base_type (encoding, size, cu);
4874 }
4875 set_die_type (die, type, cu);
4876 }
4877
4878 /* Read the given DW_AT_subrange DIE. */
4879
4880 static void
4881 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4882 {
4883 struct type *base_type;
4884 struct type *range_type;
4885 struct attribute *attr;
4886 int low = 0;
4887 int high = -1;
4888
4889 /* If we have already decoded this die, then nothing more to do. */
4890 if (die->type)
4891 return;
4892
4893 base_type = die_type (die, cu);
4894 if (base_type == NULL)
4895 {
4896 complaint (&symfile_complaints,
4897 _("DW_AT_type missing from DW_TAG_subrange_type"));
4898 return;
4899 }
4900
4901 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
4902 base_type = alloc_type (NULL);
4903
4904 if (cu->language == language_fortran)
4905 {
4906 /* FORTRAN implies a lower bound of 1, if not given. */
4907 low = 1;
4908 }
4909
4910 /* FIXME: For variable sized arrays either of these could be
4911 a variable rather than a constant value. We'll allow it,
4912 but we don't know how to handle it. */
4913 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
4914 if (attr)
4915 low = dwarf2_get_attr_constant_value (attr, 0);
4916
4917 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
4918 if (attr)
4919 {
4920 if (attr->form == DW_FORM_block1)
4921 {
4922 /* GCC encodes arrays with unspecified or dynamic length
4923 with a DW_FORM_block1 attribute.
4924 FIXME: GDB does not yet know how to handle dynamic
4925 arrays properly, treat them as arrays with unspecified
4926 length for now.
4927
4928 FIXME: jimb/2003-09-22: GDB does not really know
4929 how to handle arrays of unspecified length
4930 either; we just represent them as zero-length
4931 arrays. Choose an appropriate upper bound given
4932 the lower bound we've computed above. */
4933 high = low - 1;
4934 }
4935 else
4936 high = dwarf2_get_attr_constant_value (attr, 1);
4937 }
4938
4939 range_type = create_range_type (NULL, base_type, low, high);
4940
4941 attr = dwarf2_attr (die, DW_AT_name, cu);
4942 if (attr && DW_STRING (attr))
4943 TYPE_NAME (range_type) = DW_STRING (attr);
4944
4945 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4946 if (attr)
4947 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4948
4949 set_die_type (die, range_type, cu);
4950 }
4951
4952 static void
4953 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
4954 {
4955 struct type *type;
4956 struct attribute *attr;
4957
4958 if (die->type)
4959 return;
4960
4961 /* For now, we only support the C meaning of an unspecified type: void. */
4962
4963 attr = dwarf2_attr (die, DW_AT_name, cu);
4964 type = init_type (TYPE_CODE_VOID, 0, 0, attr ? DW_STRING (attr) : "",
4965 cu->objfile);
4966
4967 set_die_type (die, type, cu);
4968 }
4969
4970 /* Read a whole compilation unit into a linked list of dies. */
4971
4972 static struct die_info *
4973 read_comp_unit (gdb_byte *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
4974 {
4975 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
4976 }
4977
4978 /* Read a single die and all its descendents. Set the die's sibling
4979 field to NULL; set other fields in the die correctly, and set all
4980 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
4981 location of the info_ptr after reading all of those dies. PARENT
4982 is the parent of the die in question. */
4983
4984 static struct die_info *
4985 read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
4986 struct dwarf2_cu *cu,
4987 gdb_byte **new_info_ptr,
4988 struct die_info *parent)
4989 {
4990 struct die_info *die;
4991 gdb_byte *cur_ptr;
4992 int has_children;
4993
4994 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
4995 store_in_ref_table (die->offset, die, cu);
4996
4997 if (has_children)
4998 {
4999 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
5000 new_info_ptr, die);
5001 }
5002 else
5003 {
5004 die->child = NULL;
5005 *new_info_ptr = cur_ptr;
5006 }
5007
5008 die->sibling = NULL;
5009 die->parent = parent;
5010 return die;
5011 }
5012
5013 /* Read a die, all of its descendents, and all of its siblings; set
5014 all of the fields of all of the dies correctly. Arguments are as
5015 in read_die_and_children. */
5016
5017 static struct die_info *
5018 read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
5019 struct dwarf2_cu *cu,
5020 gdb_byte **new_info_ptr,
5021 struct die_info *parent)
5022 {
5023 struct die_info *first_die, *last_sibling;
5024 gdb_byte *cur_ptr;
5025
5026 cur_ptr = info_ptr;
5027 first_die = last_sibling = NULL;
5028
5029 while (1)
5030 {
5031 struct die_info *die
5032 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
5033
5034 if (!first_die)
5035 {
5036 first_die = die;
5037 }
5038 else
5039 {
5040 last_sibling->sibling = die;
5041 }
5042
5043 if (die->tag == 0)
5044 {
5045 *new_info_ptr = cur_ptr;
5046 return first_die;
5047 }
5048 else
5049 {
5050 last_sibling = die;
5051 }
5052 }
5053 }
5054
5055 /* Free a linked list of dies. */
5056
5057 static void
5058 free_die_list (struct die_info *dies)
5059 {
5060 struct die_info *die, *next;
5061
5062 die = dies;
5063 while (die)
5064 {
5065 if (die->child != NULL)
5066 free_die_list (die->child);
5067 next = die->sibling;
5068 xfree (die->attrs);
5069 xfree (die);
5070 die = next;
5071 }
5072 }
5073
5074 /* Read the contents of the section at OFFSET and of size SIZE from the
5075 object file specified by OBJFILE into the objfile_obstack and return it. */
5076
5077 gdb_byte *
5078 dwarf2_read_section (struct objfile *objfile, asection *sectp)
5079 {
5080 bfd *abfd = objfile->obfd;
5081 gdb_byte *buf, *retbuf;
5082 bfd_size_type size = bfd_get_section_size (sectp);
5083
5084 if (size == 0)
5085 return NULL;
5086
5087 buf = obstack_alloc (&objfile->objfile_obstack, size);
5088 retbuf = symfile_relocate_debug_section (abfd, sectp, buf);
5089 if (retbuf != NULL)
5090 return retbuf;
5091
5092 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
5093 || bfd_bread (buf, size, abfd) != size)
5094 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
5095 bfd_get_filename (abfd));
5096
5097 return buf;
5098 }
5099
5100 /* In DWARF version 2, the description of the debugging information is
5101 stored in a separate .debug_abbrev section. Before we read any
5102 dies from a section we read in all abbreviations and install them
5103 in a hash table. This function also sets flags in CU describing
5104 the data found in the abbrev table. */
5105
5106 static void
5107 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
5108 {
5109 struct comp_unit_head *cu_header = &cu->header;
5110 gdb_byte *abbrev_ptr;
5111 struct abbrev_info *cur_abbrev;
5112 unsigned int abbrev_number, bytes_read, abbrev_name;
5113 unsigned int abbrev_form, hash_number;
5114 struct attr_abbrev *cur_attrs;
5115 unsigned int allocated_attrs;
5116
5117 /* Initialize dwarf2 abbrevs */
5118 obstack_init (&cu->abbrev_obstack);
5119 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
5120 (ABBREV_HASH_SIZE
5121 * sizeof (struct abbrev_info *)));
5122 memset (cu->dwarf2_abbrevs, 0,
5123 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
5124
5125 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
5126 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5127 abbrev_ptr += bytes_read;
5128
5129 allocated_attrs = ATTR_ALLOC_CHUNK;
5130 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
5131
5132 /* loop until we reach an abbrev number of 0 */
5133 while (abbrev_number)
5134 {
5135 cur_abbrev = dwarf_alloc_abbrev (cu);
5136
5137 /* read in abbrev header */
5138 cur_abbrev->number = abbrev_number;
5139 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5140 abbrev_ptr += bytes_read;
5141 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
5142 abbrev_ptr += 1;
5143
5144 if (cur_abbrev->tag == DW_TAG_namespace)
5145 cu->has_namespace_info = 1;
5146
5147 /* now read in declarations */
5148 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5149 abbrev_ptr += bytes_read;
5150 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5151 abbrev_ptr += bytes_read;
5152 while (abbrev_name)
5153 {
5154 if (cur_abbrev->num_attrs == allocated_attrs)
5155 {
5156 allocated_attrs += ATTR_ALLOC_CHUNK;
5157 cur_attrs
5158 = xrealloc (cur_attrs, (allocated_attrs
5159 * sizeof (struct attr_abbrev)));
5160 }
5161
5162 /* Record whether this compilation unit might have
5163 inter-compilation-unit references. If we don't know what form
5164 this attribute will have, then it might potentially be a
5165 DW_FORM_ref_addr, so we conservatively expect inter-CU
5166 references. */
5167
5168 if (abbrev_form == DW_FORM_ref_addr
5169 || abbrev_form == DW_FORM_indirect)
5170 cu->has_form_ref_addr = 1;
5171
5172 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5173 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
5174 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5175 abbrev_ptr += bytes_read;
5176 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5177 abbrev_ptr += bytes_read;
5178 }
5179
5180 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5181 (cur_abbrev->num_attrs
5182 * sizeof (struct attr_abbrev)));
5183 memcpy (cur_abbrev->attrs, cur_attrs,
5184 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5185
5186 hash_number = abbrev_number % ABBREV_HASH_SIZE;
5187 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5188 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
5189
5190 /* Get next abbreviation.
5191 Under Irix6 the abbreviations for a compilation unit are not
5192 always properly terminated with an abbrev number of 0.
5193 Exit loop if we encounter an abbreviation which we have
5194 already read (which means we are about to read the abbreviations
5195 for the next compile unit) or if the end of the abbreviation
5196 table is reached. */
5197 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5198 >= dwarf2_per_objfile->abbrev_size)
5199 break;
5200 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5201 abbrev_ptr += bytes_read;
5202 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
5203 break;
5204 }
5205
5206 xfree (cur_attrs);
5207 }
5208
5209 /* Release the memory used by the abbrev table for a compilation unit. */
5210
5211 static void
5212 dwarf2_free_abbrev_table (void *ptr_to_cu)
5213 {
5214 struct dwarf2_cu *cu = ptr_to_cu;
5215
5216 obstack_free (&cu->abbrev_obstack, NULL);
5217 cu->dwarf2_abbrevs = NULL;
5218 }
5219
5220 /* Lookup an abbrev_info structure in the abbrev hash table. */
5221
5222 static struct abbrev_info *
5223 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
5224 {
5225 unsigned int hash_number;
5226 struct abbrev_info *abbrev;
5227
5228 hash_number = number % ABBREV_HASH_SIZE;
5229 abbrev = cu->dwarf2_abbrevs[hash_number];
5230
5231 while (abbrev)
5232 {
5233 if (abbrev->number == number)
5234 return abbrev;
5235 else
5236 abbrev = abbrev->next;
5237 }
5238 return NULL;
5239 }
5240
5241 /* Returns nonzero if TAG represents a type that we might generate a partial
5242 symbol for. */
5243
5244 static int
5245 is_type_tag_for_partial (int tag)
5246 {
5247 switch (tag)
5248 {
5249 #if 0
5250 /* Some types that would be reasonable to generate partial symbols for,
5251 that we don't at present. */
5252 case DW_TAG_array_type:
5253 case DW_TAG_file_type:
5254 case DW_TAG_ptr_to_member_type:
5255 case DW_TAG_set_type:
5256 case DW_TAG_string_type:
5257 case DW_TAG_subroutine_type:
5258 #endif
5259 case DW_TAG_base_type:
5260 case DW_TAG_class_type:
5261 case DW_TAG_enumeration_type:
5262 case DW_TAG_structure_type:
5263 case DW_TAG_subrange_type:
5264 case DW_TAG_typedef:
5265 case DW_TAG_union_type:
5266 return 1;
5267 default:
5268 return 0;
5269 }
5270 }
5271
5272 /* Load all DIEs that are interesting for partial symbols into memory. */
5273
5274 static struct partial_die_info *
5275 load_partial_dies (bfd *abfd, gdb_byte *info_ptr, int building_psymtab,
5276 struct dwarf2_cu *cu)
5277 {
5278 struct partial_die_info *part_die;
5279 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5280 struct abbrev_info *abbrev;
5281 unsigned int bytes_read;
5282 unsigned int load_all = 0;
5283
5284 int nesting_level = 1;
5285
5286 parent_die = NULL;
5287 last_die = NULL;
5288
5289 if (cu->per_cu && cu->per_cu->load_all_dies)
5290 load_all = 1;
5291
5292 cu->partial_dies
5293 = htab_create_alloc_ex (cu->header.length / 12,
5294 partial_die_hash,
5295 partial_die_eq,
5296 NULL,
5297 &cu->comp_unit_obstack,
5298 hashtab_obstack_allocate,
5299 dummy_obstack_deallocate);
5300
5301 part_die = obstack_alloc (&cu->comp_unit_obstack,
5302 sizeof (struct partial_die_info));
5303
5304 while (1)
5305 {
5306 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5307
5308 /* A NULL abbrev means the end of a series of children. */
5309 if (abbrev == NULL)
5310 {
5311 if (--nesting_level == 0)
5312 {
5313 /* PART_DIE was probably the last thing allocated on the
5314 comp_unit_obstack, so we could call obstack_free
5315 here. We don't do that because the waste is small,
5316 and will be cleaned up when we're done with this
5317 compilation unit. This way, we're also more robust
5318 against other users of the comp_unit_obstack. */
5319 return first_die;
5320 }
5321 info_ptr += bytes_read;
5322 last_die = parent_die;
5323 parent_die = parent_die->die_parent;
5324 continue;
5325 }
5326
5327 /* Check whether this DIE is interesting enough to save. Normally
5328 we would not be interested in members here, but there may be
5329 later variables referencing them via DW_AT_specification (for
5330 static members). */
5331 if (!load_all
5332 && !is_type_tag_for_partial (abbrev->tag)
5333 && abbrev->tag != DW_TAG_enumerator
5334 && abbrev->tag != DW_TAG_subprogram
5335 && abbrev->tag != DW_TAG_variable
5336 && abbrev->tag != DW_TAG_namespace
5337 && abbrev->tag != DW_TAG_member)
5338 {
5339 /* Otherwise we skip to the next sibling, if any. */
5340 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5341 continue;
5342 }
5343
5344 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5345 abfd, info_ptr, cu);
5346
5347 /* This two-pass algorithm for processing partial symbols has a
5348 high cost in cache pressure. Thus, handle some simple cases
5349 here which cover the majority of C partial symbols. DIEs
5350 which neither have specification tags in them, nor could have
5351 specification tags elsewhere pointing at them, can simply be
5352 processed and discarded.
5353
5354 This segment is also optional; scan_partial_symbols and
5355 add_partial_symbol will handle these DIEs if we chain
5356 them in normally. When compilers which do not emit large
5357 quantities of duplicate debug information are more common,
5358 this code can probably be removed. */
5359
5360 /* Any complete simple types at the top level (pretty much all
5361 of them, for a language without namespaces), can be processed
5362 directly. */
5363 if (parent_die == NULL
5364 && part_die->has_specification == 0
5365 && part_die->is_declaration == 0
5366 && (part_die->tag == DW_TAG_typedef
5367 || part_die->tag == DW_TAG_base_type
5368 || part_die->tag == DW_TAG_subrange_type))
5369 {
5370 if (building_psymtab && part_die->name != NULL)
5371 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5372 VAR_DOMAIN, LOC_TYPEDEF,
5373 &cu->objfile->static_psymbols,
5374 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5375 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5376 continue;
5377 }
5378
5379 /* If we're at the second level, and we're an enumerator, and
5380 our parent has no specification (meaning possibly lives in a
5381 namespace elsewhere), then we can add the partial symbol now
5382 instead of queueing it. */
5383 if (part_die->tag == DW_TAG_enumerator
5384 && parent_die != NULL
5385 && parent_die->die_parent == NULL
5386 && parent_die->tag == DW_TAG_enumeration_type
5387 && parent_die->has_specification == 0)
5388 {
5389 if (part_die->name == NULL)
5390 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
5391 else if (building_psymtab)
5392 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5393 VAR_DOMAIN, LOC_CONST,
5394 (cu->language == language_cplus
5395 || cu->language == language_java)
5396 ? &cu->objfile->global_psymbols
5397 : &cu->objfile->static_psymbols,
5398 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5399
5400 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5401 continue;
5402 }
5403
5404 /* We'll save this DIE so link it in. */
5405 part_die->die_parent = parent_die;
5406 part_die->die_sibling = NULL;
5407 part_die->die_child = NULL;
5408
5409 if (last_die && last_die == parent_die)
5410 last_die->die_child = part_die;
5411 else if (last_die)
5412 last_die->die_sibling = part_die;
5413
5414 last_die = part_die;
5415
5416 if (first_die == NULL)
5417 first_die = part_die;
5418
5419 /* Maybe add the DIE to the hash table. Not all DIEs that we
5420 find interesting need to be in the hash table, because we
5421 also have the parent/sibling/child chains; only those that we
5422 might refer to by offset later during partial symbol reading.
5423
5424 For now this means things that might have be the target of a
5425 DW_AT_specification, DW_AT_abstract_origin, or
5426 DW_AT_extension. DW_AT_extension will refer only to
5427 namespaces; DW_AT_abstract_origin refers to functions (and
5428 many things under the function DIE, but we do not recurse
5429 into function DIEs during partial symbol reading) and
5430 possibly variables as well; DW_AT_specification refers to
5431 declarations. Declarations ought to have the DW_AT_declaration
5432 flag. It happens that GCC forgets to put it in sometimes, but
5433 only for functions, not for types.
5434
5435 Adding more things than necessary to the hash table is harmless
5436 except for the performance cost. Adding too few will result in
5437 wasted time in find_partial_die, when we reread the compilation
5438 unit with load_all_dies set. */
5439
5440 if (load_all
5441 || abbrev->tag == DW_TAG_subprogram
5442 || abbrev->tag == DW_TAG_variable
5443 || abbrev->tag == DW_TAG_namespace
5444 || part_die->is_declaration)
5445 {
5446 void **slot;
5447
5448 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5449 part_die->offset, INSERT);
5450 *slot = part_die;
5451 }
5452
5453 part_die = obstack_alloc (&cu->comp_unit_obstack,
5454 sizeof (struct partial_die_info));
5455
5456 /* For some DIEs we want to follow their children (if any). For C
5457 we have no reason to follow the children of structures; for other
5458 languages we have to, both so that we can get at method physnames
5459 to infer fully qualified class names, and for DW_AT_specification. */
5460 if (last_die->has_children
5461 && (load_all
5462 || last_die->tag == DW_TAG_namespace
5463 || last_die->tag == DW_TAG_enumeration_type
5464 || (cu->language != language_c
5465 && (last_die->tag == DW_TAG_class_type
5466 || last_die->tag == DW_TAG_structure_type
5467 || last_die->tag == DW_TAG_union_type))))
5468 {
5469 nesting_level++;
5470 parent_die = last_die;
5471 continue;
5472 }
5473
5474 /* Otherwise we skip to the next sibling, if any. */
5475 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5476
5477 /* Back to the top, do it again. */
5478 }
5479 }
5480
5481 /* Read a minimal amount of information into the minimal die structure. */
5482
5483 static gdb_byte *
5484 read_partial_die (struct partial_die_info *part_die,
5485 struct abbrev_info *abbrev,
5486 unsigned int abbrev_len, bfd *abfd,
5487 gdb_byte *info_ptr, struct dwarf2_cu *cu)
5488 {
5489 unsigned int bytes_read, i;
5490 struct attribute attr;
5491 int has_low_pc_attr = 0;
5492 int has_high_pc_attr = 0;
5493
5494 memset (part_die, 0, sizeof (struct partial_die_info));
5495
5496 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
5497
5498 info_ptr += abbrev_len;
5499
5500 if (abbrev == NULL)
5501 return info_ptr;
5502
5503 part_die->tag = abbrev->tag;
5504 part_die->has_children = abbrev->has_children;
5505
5506 for (i = 0; i < abbrev->num_attrs; ++i)
5507 {
5508 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
5509
5510 /* Store the data if it is of an attribute we want to keep in a
5511 partial symbol table. */
5512 switch (attr.name)
5513 {
5514 case DW_AT_name:
5515
5516 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5517 if (part_die->name == NULL)
5518 part_die->name = DW_STRING (&attr);
5519 break;
5520 case DW_AT_comp_dir:
5521 if (part_die->dirname == NULL)
5522 part_die->dirname = DW_STRING (&attr);
5523 break;
5524 case DW_AT_MIPS_linkage_name:
5525 part_die->name = DW_STRING (&attr);
5526 break;
5527 case DW_AT_low_pc:
5528 has_low_pc_attr = 1;
5529 part_die->lowpc = DW_ADDR (&attr);
5530 break;
5531 case DW_AT_high_pc:
5532 has_high_pc_attr = 1;
5533 part_die->highpc = DW_ADDR (&attr);
5534 break;
5535 case DW_AT_location:
5536 /* Support the .debug_loc offsets */
5537 if (attr_form_is_block (&attr))
5538 {
5539 part_die->locdesc = DW_BLOCK (&attr);
5540 }
5541 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
5542 {
5543 dwarf2_complex_location_expr_complaint ();
5544 }
5545 else
5546 {
5547 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5548 "partial symbol information");
5549 }
5550 break;
5551 case DW_AT_language:
5552 part_die->language = DW_UNSND (&attr);
5553 break;
5554 case DW_AT_external:
5555 part_die->is_external = DW_UNSND (&attr);
5556 break;
5557 case DW_AT_declaration:
5558 part_die->is_declaration = DW_UNSND (&attr);
5559 break;
5560 case DW_AT_type:
5561 part_die->has_type = 1;
5562 break;
5563 case DW_AT_abstract_origin:
5564 case DW_AT_specification:
5565 case DW_AT_extension:
5566 part_die->has_specification = 1;
5567 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
5568 break;
5569 case DW_AT_sibling:
5570 /* Ignore absolute siblings, they might point outside of
5571 the current compile unit. */
5572 if (attr.form == DW_FORM_ref_addr)
5573 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
5574 else
5575 part_die->sibling = dwarf2_per_objfile->info_buffer
5576 + dwarf2_get_ref_die_offset (&attr, cu);
5577 break;
5578 case DW_AT_stmt_list:
5579 part_die->has_stmt_list = 1;
5580 part_die->line_offset = DW_UNSND (&attr);
5581 break;
5582 default:
5583 break;
5584 }
5585 }
5586
5587 /* When using the GNU linker, .gnu.linkonce. sections are used to
5588 eliminate duplicate copies of functions and vtables and such.
5589 The linker will arbitrarily choose one and discard the others.
5590 The AT_*_pc values for such functions refer to local labels in
5591 these sections. If the section from that file was discarded, the
5592 labels are not in the output, so the relocs get a value of 0.
5593 If this is a discarded function, mark the pc bounds as invalid,
5594 so that GDB will ignore it. */
5595 if (has_low_pc_attr && has_high_pc_attr
5596 && part_die->lowpc < part_die->highpc
5597 && (part_die->lowpc != 0
5598 || dwarf2_per_objfile->has_section_at_zero))
5599 part_die->has_pc_info = 1;
5600 return info_ptr;
5601 }
5602
5603 /* Find a cached partial DIE at OFFSET in CU. */
5604
5605 static struct partial_die_info *
5606 find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5607 {
5608 struct partial_die_info *lookup_die = NULL;
5609 struct partial_die_info part_die;
5610
5611 part_die.offset = offset;
5612 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5613
5614 return lookup_die;
5615 }
5616
5617 /* Find a partial DIE at OFFSET, which may or may not be in CU. */
5618
5619 static struct partial_die_info *
5620 find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
5621 {
5622 struct dwarf2_per_cu_data *per_cu = NULL;
5623 struct partial_die_info *pd = NULL;
5624
5625 if (offset >= cu->header.offset
5626 && offset < cu->header.offset + cu->header.length)
5627 {
5628 pd = find_partial_die_in_comp_unit (offset, cu);
5629 if (pd != NULL)
5630 return pd;
5631 }
5632
5633 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5634
5635 if (per_cu->cu == NULL)
5636 {
5637 load_comp_unit (per_cu, cu->objfile);
5638 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5639 dwarf2_per_objfile->read_in_chain = per_cu;
5640 }
5641
5642 per_cu->cu->last_used = 0;
5643 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5644
5645 if (pd == NULL && per_cu->load_all_dies == 0)
5646 {
5647 struct cleanup *back_to;
5648 struct partial_die_info comp_unit_die;
5649 struct abbrev_info *abbrev;
5650 unsigned int bytes_read;
5651 char *info_ptr;
5652
5653 per_cu->load_all_dies = 1;
5654
5655 /* Re-read the DIEs. */
5656 back_to = make_cleanup (null_cleanup, 0);
5657 if (per_cu->cu->dwarf2_abbrevs == NULL)
5658 {
5659 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
5660 back_to = make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5661 }
5662 info_ptr = per_cu->cu->header.first_die_ptr;
5663 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
5664 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
5665 per_cu->cu->objfile->obfd, info_ptr,
5666 per_cu->cu);
5667 if (comp_unit_die.has_children)
5668 load_partial_dies (per_cu->cu->objfile->obfd, info_ptr, 0, per_cu->cu);
5669 do_cleanups (back_to);
5670
5671 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5672 }
5673
5674 if (pd == NULL)
5675 internal_error (__FILE__, __LINE__,
5676 _("could not find partial DIE 0x%lx in cache [from module %s]\n"),
5677 offset, bfd_get_filename (cu->objfile->obfd));
5678 return pd;
5679 }
5680
5681 /* Adjust PART_DIE before generating a symbol for it. This function
5682 may set the is_external flag or change the DIE's name. */
5683
5684 static void
5685 fixup_partial_die (struct partial_die_info *part_die,
5686 struct dwarf2_cu *cu)
5687 {
5688 /* If we found a reference attribute and the DIE has no name, try
5689 to find a name in the referred to DIE. */
5690
5691 if (part_die->name == NULL && part_die->has_specification)
5692 {
5693 struct partial_die_info *spec_die;
5694
5695 spec_die = find_partial_die (part_die->spec_offset, cu);
5696
5697 fixup_partial_die (spec_die, cu);
5698
5699 if (spec_die->name)
5700 {
5701 part_die->name = spec_die->name;
5702
5703 /* Copy DW_AT_external attribute if it is set. */
5704 if (spec_die->is_external)
5705 part_die->is_external = spec_die->is_external;
5706 }
5707 }
5708
5709 /* Set default names for some unnamed DIEs. */
5710 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5711 || part_die->tag == DW_TAG_class_type))
5712 part_die->name = "(anonymous class)";
5713
5714 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5715 part_die->name = "(anonymous namespace)";
5716
5717 if (part_die->tag == DW_TAG_structure_type
5718 || part_die->tag == DW_TAG_class_type
5719 || part_die->tag == DW_TAG_union_type)
5720 guess_structure_name (part_die, cu);
5721 }
5722
5723 /* Read the die from the .debug_info section buffer. Set DIEP to
5724 point to a newly allocated die with its information, except for its
5725 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5726 whether the die has children or not. */
5727
5728 static gdb_byte *
5729 read_full_die (struct die_info **diep, bfd *abfd, gdb_byte *info_ptr,
5730 struct dwarf2_cu *cu, int *has_children)
5731 {
5732 unsigned int abbrev_number, bytes_read, i, offset;
5733 struct abbrev_info *abbrev;
5734 struct die_info *die;
5735
5736 offset = info_ptr - dwarf2_per_objfile->info_buffer;
5737 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5738 info_ptr += bytes_read;
5739 if (!abbrev_number)
5740 {
5741 die = dwarf_alloc_die ();
5742 die->tag = 0;
5743 die->abbrev = abbrev_number;
5744 die->type = NULL;
5745 *diep = die;
5746 *has_children = 0;
5747 return info_ptr;
5748 }
5749
5750 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
5751 if (!abbrev)
5752 {
5753 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
5754 abbrev_number,
5755 bfd_get_filename (abfd));
5756 }
5757 die = dwarf_alloc_die ();
5758 die->offset = offset;
5759 die->tag = abbrev->tag;
5760 die->abbrev = abbrev_number;
5761 die->type = NULL;
5762
5763 die->num_attrs = abbrev->num_attrs;
5764 die->attrs = (struct attribute *)
5765 xmalloc (die->num_attrs * sizeof (struct attribute));
5766
5767 for (i = 0; i < abbrev->num_attrs; ++i)
5768 {
5769 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
5770 abfd, info_ptr, cu);
5771
5772 /* If this attribute is an absolute reference to a different
5773 compilation unit, make sure that compilation unit is loaded
5774 also. */
5775 if (die->attrs[i].form == DW_FORM_ref_addr
5776 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5777 || (DW_ADDR (&die->attrs[i])
5778 >= cu->header.offset + cu->header.length)))
5779 {
5780 struct dwarf2_per_cu_data *per_cu;
5781 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5782 cu->objfile);
5783
5784 /* Mark the dependence relation so that we don't flush PER_CU
5785 too early. */
5786 dwarf2_add_dependence (cu, per_cu);
5787
5788 /* If it's already on the queue, we have nothing to do. */
5789 if (per_cu->queued)
5790 continue;
5791
5792 /* If the compilation unit is already loaded, just mark it as
5793 used. */
5794 if (per_cu->cu != NULL)
5795 {
5796 per_cu->cu->last_used = 0;
5797 continue;
5798 }
5799
5800 /* Add it to the queue. */
5801 queue_comp_unit (per_cu);
5802 }
5803 }
5804
5805 *diep = die;
5806 *has_children = abbrev->has_children;
5807 return info_ptr;
5808 }
5809
5810 /* Read an attribute value described by an attribute form. */
5811
5812 static gdb_byte *
5813 read_attribute_value (struct attribute *attr, unsigned form,
5814 bfd *abfd, gdb_byte *info_ptr,
5815 struct dwarf2_cu *cu)
5816 {
5817 struct comp_unit_head *cu_header = &cu->header;
5818 unsigned int bytes_read;
5819 struct dwarf_block *blk;
5820
5821 attr->form = form;
5822 switch (form)
5823 {
5824 case DW_FORM_addr:
5825 case DW_FORM_ref_addr:
5826 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
5827 info_ptr += bytes_read;
5828 break;
5829 case DW_FORM_block2:
5830 blk = dwarf_alloc_block (cu);
5831 blk->size = read_2_bytes (abfd, info_ptr);
5832 info_ptr += 2;
5833 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5834 info_ptr += blk->size;
5835 DW_BLOCK (attr) = blk;
5836 break;
5837 case DW_FORM_block4:
5838 blk = dwarf_alloc_block (cu);
5839 blk->size = read_4_bytes (abfd, info_ptr);
5840 info_ptr += 4;
5841 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5842 info_ptr += blk->size;
5843 DW_BLOCK (attr) = blk;
5844 break;
5845 case DW_FORM_data2:
5846 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5847 info_ptr += 2;
5848 break;
5849 case DW_FORM_data4:
5850 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5851 info_ptr += 4;
5852 break;
5853 case DW_FORM_data8:
5854 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5855 info_ptr += 8;
5856 break;
5857 case DW_FORM_string:
5858 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5859 info_ptr += bytes_read;
5860 break;
5861 case DW_FORM_strp:
5862 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5863 &bytes_read);
5864 info_ptr += bytes_read;
5865 break;
5866 case DW_FORM_block:
5867 blk = dwarf_alloc_block (cu);
5868 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5869 info_ptr += bytes_read;
5870 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5871 info_ptr += blk->size;
5872 DW_BLOCK (attr) = blk;
5873 break;
5874 case DW_FORM_block1:
5875 blk = dwarf_alloc_block (cu);
5876 blk->size = read_1_byte (abfd, info_ptr);
5877 info_ptr += 1;
5878 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5879 info_ptr += blk->size;
5880 DW_BLOCK (attr) = blk;
5881 break;
5882 case DW_FORM_data1:
5883 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5884 info_ptr += 1;
5885 break;
5886 case DW_FORM_flag:
5887 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5888 info_ptr += 1;
5889 break;
5890 case DW_FORM_sdata:
5891 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5892 info_ptr += bytes_read;
5893 break;
5894 case DW_FORM_udata:
5895 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5896 info_ptr += bytes_read;
5897 break;
5898 case DW_FORM_ref1:
5899 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
5900 info_ptr += 1;
5901 break;
5902 case DW_FORM_ref2:
5903 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
5904 info_ptr += 2;
5905 break;
5906 case DW_FORM_ref4:
5907 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
5908 info_ptr += 4;
5909 break;
5910 case DW_FORM_ref8:
5911 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
5912 info_ptr += 8;
5913 break;
5914 case DW_FORM_ref_udata:
5915 DW_ADDR (attr) = (cu->header.offset
5916 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
5917 info_ptr += bytes_read;
5918 break;
5919 case DW_FORM_indirect:
5920 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5921 info_ptr += bytes_read;
5922 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
5923 break;
5924 default:
5925 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
5926 dwarf_form_name (form),
5927 bfd_get_filename (abfd));
5928 }
5929 return info_ptr;
5930 }
5931
5932 /* Read an attribute described by an abbreviated attribute. */
5933
5934 static gdb_byte *
5935 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
5936 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
5937 {
5938 attr->name = abbrev->name;
5939 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
5940 }
5941
5942 /* read dwarf information from a buffer */
5943
5944 static unsigned int
5945 read_1_byte (bfd *abfd, gdb_byte *buf)
5946 {
5947 return bfd_get_8 (abfd, buf);
5948 }
5949
5950 static int
5951 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
5952 {
5953 return bfd_get_signed_8 (abfd, buf);
5954 }
5955
5956 static unsigned int
5957 read_2_bytes (bfd *abfd, gdb_byte *buf)
5958 {
5959 return bfd_get_16 (abfd, buf);
5960 }
5961
5962 static int
5963 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
5964 {
5965 return bfd_get_signed_16 (abfd, buf);
5966 }
5967
5968 static unsigned int
5969 read_4_bytes (bfd *abfd, gdb_byte *buf)
5970 {
5971 return bfd_get_32 (abfd, buf);
5972 }
5973
5974 static int
5975 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
5976 {
5977 return bfd_get_signed_32 (abfd, buf);
5978 }
5979
5980 static unsigned long
5981 read_8_bytes (bfd *abfd, gdb_byte *buf)
5982 {
5983 return bfd_get_64 (abfd, buf);
5984 }
5985
5986 static CORE_ADDR
5987 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
5988 unsigned int *bytes_read)
5989 {
5990 struct comp_unit_head *cu_header = &cu->header;
5991 CORE_ADDR retval = 0;
5992
5993 if (cu_header->signed_addr_p)
5994 {
5995 switch (cu_header->addr_size)
5996 {
5997 case 2:
5998 retval = bfd_get_signed_16 (abfd, buf);
5999 break;
6000 case 4:
6001 retval = bfd_get_signed_32 (abfd, buf);
6002 break;
6003 case 8:
6004 retval = bfd_get_signed_64 (abfd, buf);
6005 break;
6006 default:
6007 internal_error (__FILE__, __LINE__,
6008 _("read_address: bad switch, signed [in module %s]"),
6009 bfd_get_filename (abfd));
6010 }
6011 }
6012 else
6013 {
6014 switch (cu_header->addr_size)
6015 {
6016 case 2:
6017 retval = bfd_get_16 (abfd, buf);
6018 break;
6019 case 4:
6020 retval = bfd_get_32 (abfd, buf);
6021 break;
6022 case 8:
6023 retval = bfd_get_64 (abfd, buf);
6024 break;
6025 default:
6026 internal_error (__FILE__, __LINE__,
6027 _("read_address: bad switch, unsigned [in module %s]"),
6028 bfd_get_filename (abfd));
6029 }
6030 }
6031
6032 *bytes_read = cu_header->addr_size;
6033 return retval;
6034 }
6035
6036 /* Read the initial length from a section. The (draft) DWARF 3
6037 specification allows the initial length to take up either 4 bytes
6038 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
6039 bytes describe the length and all offsets will be 8 bytes in length
6040 instead of 4.
6041
6042 An older, non-standard 64-bit format is also handled by this
6043 function. The older format in question stores the initial length
6044 as an 8-byte quantity without an escape value. Lengths greater
6045 than 2^32 aren't very common which means that the initial 4 bytes
6046 is almost always zero. Since a length value of zero doesn't make
6047 sense for the 32-bit format, this initial zero can be considered to
6048 be an escape value which indicates the presence of the older 64-bit
6049 format. As written, the code can't detect (old format) lengths
6050 greater than 4GB. If it becomes necessary to handle lengths
6051 somewhat larger than 4GB, we could allow other small values (such
6052 as the non-sensical values of 1, 2, and 3) to also be used as
6053 escape values indicating the presence of the old format.
6054
6055 The value returned via bytes_read should be used to increment the
6056 relevant pointer after calling read_initial_length().
6057
6058 As a side effect, this function sets the fields initial_length_size
6059 and offset_size in cu_header to the values appropriate for the
6060 length field. (The format of the initial length field determines
6061 the width of file offsets to be fetched later with read_offset().)
6062
6063 [ Note: read_initial_length() and read_offset() are based on the
6064 document entitled "DWARF Debugging Information Format", revision
6065 3, draft 8, dated November 19, 2001. This document was obtained
6066 from:
6067
6068 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6069
6070 This document is only a draft and is subject to change. (So beware.)
6071
6072 Details regarding the older, non-standard 64-bit format were
6073 determined empirically by examining 64-bit ELF files produced by
6074 the SGI toolchain on an IRIX 6.5 machine.
6075
6076 - Kevin, July 16, 2002
6077 ] */
6078
6079 static LONGEST
6080 read_initial_length (bfd *abfd, gdb_byte *buf, struct comp_unit_head *cu_header,
6081 unsigned int *bytes_read)
6082 {
6083 LONGEST length = bfd_get_32 (abfd, buf);
6084
6085 if (length == 0xffffffff)
6086 {
6087 length = bfd_get_64 (abfd, buf + 4);
6088 *bytes_read = 12;
6089 }
6090 else if (length == 0)
6091 {
6092 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
6093 length = bfd_get_64 (abfd, buf);
6094 *bytes_read = 8;
6095 }
6096 else
6097 {
6098 *bytes_read = 4;
6099 }
6100
6101 if (cu_header)
6102 {
6103 gdb_assert (cu_header->initial_length_size == 0
6104 || cu_header->initial_length_size == 4
6105 || cu_header->initial_length_size == 8
6106 || cu_header->initial_length_size == 12);
6107
6108 if (cu_header->initial_length_size != 0
6109 && cu_header->initial_length_size != *bytes_read)
6110 complaint (&symfile_complaints,
6111 _("intermixed 32-bit and 64-bit DWARF sections"));
6112
6113 cu_header->initial_length_size = *bytes_read;
6114 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
6115 }
6116
6117 return length;
6118 }
6119
6120 /* Read an offset from the data stream. The size of the offset is
6121 given by cu_header->offset_size. */
6122
6123 static LONGEST
6124 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
6125 unsigned int *bytes_read)
6126 {
6127 LONGEST retval = 0;
6128
6129 switch (cu_header->offset_size)
6130 {
6131 case 4:
6132 retval = bfd_get_32 (abfd, buf);
6133 *bytes_read = 4;
6134 break;
6135 case 8:
6136 retval = bfd_get_64 (abfd, buf);
6137 *bytes_read = 8;
6138 break;
6139 default:
6140 internal_error (__FILE__, __LINE__,
6141 _("read_offset: bad switch [in module %s]"),
6142 bfd_get_filename (abfd));
6143 }
6144
6145 return retval;
6146 }
6147
6148 static gdb_byte *
6149 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
6150 {
6151 /* If the size of a host char is 8 bits, we can return a pointer
6152 to the buffer, otherwise we have to copy the data to a buffer
6153 allocated on the temporary obstack. */
6154 gdb_assert (HOST_CHAR_BIT == 8);
6155 return buf;
6156 }
6157
6158 static char *
6159 read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6160 {
6161 /* If the size of a host char is 8 bits, we can return a pointer
6162 to the string, otherwise we have to copy the string to a buffer
6163 allocated on the temporary obstack. */
6164 gdb_assert (HOST_CHAR_BIT == 8);
6165 if (*buf == '\0')
6166 {
6167 *bytes_read_ptr = 1;
6168 return NULL;
6169 }
6170 *bytes_read_ptr = strlen ((char *) buf) + 1;
6171 return (char *) buf;
6172 }
6173
6174 static char *
6175 read_indirect_string (bfd *abfd, gdb_byte *buf,
6176 const struct comp_unit_head *cu_header,
6177 unsigned int *bytes_read_ptr)
6178 {
6179 LONGEST str_offset = read_offset (abfd, buf, cu_header,
6180 bytes_read_ptr);
6181
6182 if (dwarf2_per_objfile->str_buffer == NULL)
6183 {
6184 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
6185 bfd_get_filename (abfd));
6186 return NULL;
6187 }
6188 if (str_offset >= dwarf2_per_objfile->str_size)
6189 {
6190 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
6191 bfd_get_filename (abfd));
6192 return NULL;
6193 }
6194 gdb_assert (HOST_CHAR_BIT == 8);
6195 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
6196 return NULL;
6197 return (char *) (dwarf2_per_objfile->str_buffer + str_offset);
6198 }
6199
6200 static unsigned long
6201 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6202 {
6203 unsigned long result;
6204 unsigned int num_read;
6205 int i, shift;
6206 unsigned char byte;
6207
6208 result = 0;
6209 shift = 0;
6210 num_read = 0;
6211 i = 0;
6212 while (1)
6213 {
6214 byte = bfd_get_8 (abfd, buf);
6215 buf++;
6216 num_read++;
6217 result |= ((unsigned long)(byte & 127) << shift);
6218 if ((byte & 128) == 0)
6219 {
6220 break;
6221 }
6222 shift += 7;
6223 }
6224 *bytes_read_ptr = num_read;
6225 return result;
6226 }
6227
6228 static long
6229 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6230 {
6231 long result;
6232 int i, shift, num_read;
6233 unsigned char byte;
6234
6235 result = 0;
6236 shift = 0;
6237 num_read = 0;
6238 i = 0;
6239 while (1)
6240 {
6241 byte = bfd_get_8 (abfd, buf);
6242 buf++;
6243 num_read++;
6244 result |= ((long)(byte & 127) << shift);
6245 shift += 7;
6246 if ((byte & 128) == 0)
6247 {
6248 break;
6249 }
6250 }
6251 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
6252 result |= -(((long)1) << shift);
6253 *bytes_read_ptr = num_read;
6254 return result;
6255 }
6256
6257 /* Return a pointer to just past the end of an LEB128 number in BUF. */
6258
6259 static gdb_byte *
6260 skip_leb128 (bfd *abfd, gdb_byte *buf)
6261 {
6262 int byte;
6263
6264 while (1)
6265 {
6266 byte = bfd_get_8 (abfd, buf);
6267 buf++;
6268 if ((byte & 128) == 0)
6269 return buf;
6270 }
6271 }
6272
6273 static void
6274 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
6275 {
6276 switch (lang)
6277 {
6278 case DW_LANG_C89:
6279 case DW_LANG_C:
6280 cu->language = language_c;
6281 break;
6282 case DW_LANG_C_plus_plus:
6283 cu->language = language_cplus;
6284 break;
6285 case DW_LANG_Fortran77:
6286 case DW_LANG_Fortran90:
6287 case DW_LANG_Fortran95:
6288 cu->language = language_fortran;
6289 break;
6290 case DW_LANG_Mips_Assembler:
6291 cu->language = language_asm;
6292 break;
6293 case DW_LANG_Java:
6294 cu->language = language_java;
6295 break;
6296 case DW_LANG_Ada83:
6297 case DW_LANG_Ada95:
6298 cu->language = language_ada;
6299 break;
6300 case DW_LANG_Modula2:
6301 cu->language = language_m2;
6302 break;
6303 case DW_LANG_Cobol74:
6304 case DW_LANG_Cobol85:
6305 case DW_LANG_Pascal83:
6306 default:
6307 cu->language = language_minimal;
6308 break;
6309 }
6310 cu->language_defn = language_def (cu->language);
6311 }
6312
6313 /* Return the named attribute or NULL if not there. */
6314
6315 static struct attribute *
6316 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
6317 {
6318 unsigned int i;
6319 struct attribute *spec = NULL;
6320
6321 for (i = 0; i < die->num_attrs; ++i)
6322 {
6323 if (die->attrs[i].name == name)
6324 return &die->attrs[i];
6325 if (die->attrs[i].name == DW_AT_specification
6326 || die->attrs[i].name == DW_AT_abstract_origin)
6327 spec = &die->attrs[i];
6328 }
6329
6330 if (spec)
6331 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
6332
6333 return NULL;
6334 }
6335
6336 /* Return non-zero iff the attribute NAME is defined for the given DIE,
6337 and holds a non-zero value. This function should only be used for
6338 DW_FORM_flag attributes. */
6339
6340 static int
6341 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6342 {
6343 struct attribute *attr = dwarf2_attr (die, name, cu);
6344
6345 return (attr && DW_UNSND (attr));
6346 }
6347
6348 static int
6349 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
6350 {
6351 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6352 which value is non-zero. However, we have to be careful with
6353 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6354 (via dwarf2_flag_true_p) follows this attribute. So we may
6355 end up accidently finding a declaration attribute that belongs
6356 to a different DIE referenced by the specification attribute,
6357 even though the given DIE does not have a declaration attribute. */
6358 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6359 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
6360 }
6361
6362 /* Return the die giving the specification for DIE, if there is
6363 one. */
6364
6365 static struct die_info *
6366 die_specification (struct die_info *die, struct dwarf2_cu *cu)
6367 {
6368 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
6369
6370 if (spec_attr == NULL)
6371 return NULL;
6372 else
6373 return follow_die_ref (die, spec_attr, cu);
6374 }
6375
6376 /* Free the line_header structure *LH, and any arrays and strings it
6377 refers to. */
6378 static void
6379 free_line_header (struct line_header *lh)
6380 {
6381 if (lh->standard_opcode_lengths)
6382 xfree (lh->standard_opcode_lengths);
6383
6384 /* Remember that all the lh->file_names[i].name pointers are
6385 pointers into debug_line_buffer, and don't need to be freed. */
6386 if (lh->file_names)
6387 xfree (lh->file_names);
6388
6389 /* Similarly for the include directory names. */
6390 if (lh->include_dirs)
6391 xfree (lh->include_dirs);
6392
6393 xfree (lh);
6394 }
6395
6396
6397 /* Add an entry to LH's include directory table. */
6398 static void
6399 add_include_dir (struct line_header *lh, char *include_dir)
6400 {
6401 /* Grow the array if necessary. */
6402 if (lh->include_dirs_size == 0)
6403 {
6404 lh->include_dirs_size = 1; /* for testing */
6405 lh->include_dirs = xmalloc (lh->include_dirs_size
6406 * sizeof (*lh->include_dirs));
6407 }
6408 else if (lh->num_include_dirs >= lh->include_dirs_size)
6409 {
6410 lh->include_dirs_size *= 2;
6411 lh->include_dirs = xrealloc (lh->include_dirs,
6412 (lh->include_dirs_size
6413 * sizeof (*lh->include_dirs)));
6414 }
6415
6416 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6417 }
6418
6419
6420 /* Add an entry to LH's file name table. */
6421 static void
6422 add_file_name (struct line_header *lh,
6423 char *name,
6424 unsigned int dir_index,
6425 unsigned int mod_time,
6426 unsigned int length)
6427 {
6428 struct file_entry *fe;
6429
6430 /* Grow the array if necessary. */
6431 if (lh->file_names_size == 0)
6432 {
6433 lh->file_names_size = 1; /* for testing */
6434 lh->file_names = xmalloc (lh->file_names_size
6435 * sizeof (*lh->file_names));
6436 }
6437 else if (lh->num_file_names >= lh->file_names_size)
6438 {
6439 lh->file_names_size *= 2;
6440 lh->file_names = xrealloc (lh->file_names,
6441 (lh->file_names_size
6442 * sizeof (*lh->file_names)));
6443 }
6444
6445 fe = &lh->file_names[lh->num_file_names++];
6446 fe->name = name;
6447 fe->dir_index = dir_index;
6448 fe->mod_time = mod_time;
6449 fe->length = length;
6450 fe->included_p = 0;
6451 }
6452
6453
6454 /* Read the statement program header starting at OFFSET in
6455 .debug_line, according to the endianness of ABFD. Return a pointer
6456 to a struct line_header, allocated using xmalloc.
6457
6458 NOTE: the strings in the include directory and file name tables of
6459 the returned object point into debug_line_buffer, and must not be
6460 freed. */
6461 static struct line_header *
6462 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
6463 struct dwarf2_cu *cu)
6464 {
6465 struct cleanup *back_to;
6466 struct line_header *lh;
6467 gdb_byte *line_ptr;
6468 unsigned int bytes_read;
6469 int i;
6470 char *cur_dir, *cur_file;
6471
6472 if (dwarf2_per_objfile->line_buffer == NULL)
6473 {
6474 complaint (&symfile_complaints, _("missing .debug_line section"));
6475 return 0;
6476 }
6477
6478 /* Make sure that at least there's room for the total_length field.
6479 That could be 12 bytes long, but we're just going to fudge that. */
6480 if (offset + 4 >= dwarf2_per_objfile->line_size)
6481 {
6482 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6483 return 0;
6484 }
6485
6486 lh = xmalloc (sizeof (*lh));
6487 memset (lh, 0, sizeof (*lh));
6488 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6489 (void *) lh);
6490
6491 line_ptr = dwarf2_per_objfile->line_buffer + offset;
6492
6493 /* Read in the header. */
6494 lh->total_length =
6495 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
6496 line_ptr += bytes_read;
6497 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6498 + dwarf2_per_objfile->line_size))
6499 {
6500 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6501 return 0;
6502 }
6503 lh->statement_program_end = line_ptr + lh->total_length;
6504 lh->version = read_2_bytes (abfd, line_ptr);
6505 line_ptr += 2;
6506 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
6507 line_ptr += bytes_read;
6508 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6509 line_ptr += 1;
6510 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6511 line_ptr += 1;
6512 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6513 line_ptr += 1;
6514 lh->line_range = read_1_byte (abfd, line_ptr);
6515 line_ptr += 1;
6516 lh->opcode_base = read_1_byte (abfd, line_ptr);
6517 line_ptr += 1;
6518 lh->standard_opcode_lengths
6519 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
6520
6521 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6522 for (i = 1; i < lh->opcode_base; ++i)
6523 {
6524 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6525 line_ptr += 1;
6526 }
6527
6528 /* Read directory table. */
6529 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6530 {
6531 line_ptr += bytes_read;
6532 add_include_dir (lh, cur_dir);
6533 }
6534 line_ptr += bytes_read;
6535
6536 /* Read file name table. */
6537 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6538 {
6539 unsigned int dir_index, mod_time, length;
6540
6541 line_ptr += bytes_read;
6542 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6543 line_ptr += bytes_read;
6544 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6545 line_ptr += bytes_read;
6546 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6547 line_ptr += bytes_read;
6548
6549 add_file_name (lh, cur_file, dir_index, mod_time, length);
6550 }
6551 line_ptr += bytes_read;
6552 lh->statement_program_start = line_ptr;
6553
6554 if (line_ptr > (dwarf2_per_objfile->line_buffer
6555 + dwarf2_per_objfile->line_size))
6556 complaint (&symfile_complaints,
6557 _("line number info header doesn't fit in `.debug_line' section"));
6558
6559 discard_cleanups (back_to);
6560 return lh;
6561 }
6562
6563 /* This function exists to work around a bug in certain compilers
6564 (particularly GCC 2.95), in which the first line number marker of a
6565 function does not show up until after the prologue, right before
6566 the second line number marker. This function shifts ADDRESS down
6567 to the beginning of the function if necessary, and is called on
6568 addresses passed to record_line. */
6569
6570 static CORE_ADDR
6571 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
6572 {
6573 struct function_range *fn;
6574
6575 /* Find the function_range containing address. */
6576 if (!cu->first_fn)
6577 return address;
6578
6579 if (!cu->cached_fn)
6580 cu->cached_fn = cu->first_fn;
6581
6582 fn = cu->cached_fn;
6583 while (fn)
6584 if (fn->lowpc <= address && fn->highpc > address)
6585 goto found;
6586 else
6587 fn = fn->next;
6588
6589 fn = cu->first_fn;
6590 while (fn && fn != cu->cached_fn)
6591 if (fn->lowpc <= address && fn->highpc > address)
6592 goto found;
6593 else
6594 fn = fn->next;
6595
6596 return address;
6597
6598 found:
6599 if (fn->seen_line)
6600 return address;
6601 if (address != fn->lowpc)
6602 complaint (&symfile_complaints,
6603 _("misplaced first line number at 0x%lx for '%s'"),
6604 (unsigned long) address, fn->name);
6605 fn->seen_line = 1;
6606 return fn->lowpc;
6607 }
6608
6609 /* Decode the Line Number Program (LNP) for the given line_header
6610 structure and CU. The actual information extracted and the type
6611 of structures created from the LNP depends on the value of PST.
6612
6613 1. If PST is NULL, then this procedure uses the data from the program
6614 to create all necessary symbol tables, and their linetables.
6615 The compilation directory of the file is passed in COMP_DIR,
6616 and must not be NULL.
6617
6618 2. If PST is not NULL, this procedure reads the program to determine
6619 the list of files included by the unit represented by PST, and
6620 builds all the associated partial symbol tables. In this case,
6621 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6622 is not used to compute the full name of the symtab, and therefore
6623 omitting it when building the partial symtab does not introduce
6624 the potential for inconsistency - a partial symtab and its associated
6625 symbtab having a different fullname -). */
6626
6627 static void
6628 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
6629 struct dwarf2_cu *cu, struct partial_symtab *pst)
6630 {
6631 gdb_byte *line_ptr;
6632 gdb_byte *line_end;
6633 unsigned int bytes_read;
6634 unsigned char op_code, extended_op, adj_opcode;
6635 CORE_ADDR baseaddr;
6636 struct objfile *objfile = cu->objfile;
6637 const int decode_for_pst_p = (pst != NULL);
6638 struct subfile *last_subfile = NULL;
6639
6640 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6641
6642 line_ptr = lh->statement_program_start;
6643 line_end = lh->statement_program_end;
6644
6645 /* Read the statement sequences until there's nothing left. */
6646 while (line_ptr < line_end)
6647 {
6648 /* state machine registers */
6649 CORE_ADDR address = 0;
6650 unsigned int file = 1;
6651 unsigned int line = 1;
6652 unsigned int column = 0;
6653 int is_stmt = lh->default_is_stmt;
6654 int basic_block = 0;
6655 int end_sequence = 0;
6656
6657 if (!decode_for_pst_p && lh->num_file_names >= file)
6658 {
6659 /* Start a subfile for the current file of the state machine. */
6660 /* lh->include_dirs and lh->file_names are 0-based, but the
6661 directory and file name numbers in the statement program
6662 are 1-based. */
6663 struct file_entry *fe = &lh->file_names[file - 1];
6664 char *dir = NULL;
6665
6666 if (fe->dir_index)
6667 dir = lh->include_dirs[fe->dir_index - 1];
6668
6669 dwarf2_start_subfile (fe->name, dir, comp_dir);
6670 }
6671
6672 /* Decode the table. */
6673 while (!end_sequence)
6674 {
6675 op_code = read_1_byte (abfd, line_ptr);
6676 line_ptr += 1;
6677
6678 if (op_code >= lh->opcode_base)
6679 {
6680 /* Special operand. */
6681 adj_opcode = op_code - lh->opcode_base;
6682 address += (adj_opcode / lh->line_range)
6683 * lh->minimum_instruction_length;
6684 line += lh->line_base + (adj_opcode % lh->line_range);
6685 lh->file_names[file - 1].included_p = 1;
6686 if (!decode_for_pst_p)
6687 {
6688 if (last_subfile != current_subfile)
6689 {
6690 if (last_subfile)
6691 record_line (last_subfile, 0, address);
6692 last_subfile = current_subfile;
6693 }
6694 /* Append row to matrix using current values. */
6695 record_line (current_subfile, line,
6696 check_cu_functions (address, cu));
6697 }
6698 basic_block = 1;
6699 }
6700 else switch (op_code)
6701 {
6702 case DW_LNS_extended_op:
6703 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6704 line_ptr += bytes_read;
6705 extended_op = read_1_byte (abfd, line_ptr);
6706 line_ptr += 1;
6707 switch (extended_op)
6708 {
6709 case DW_LNE_end_sequence:
6710 end_sequence = 1;
6711 lh->file_names[file - 1].included_p = 1;
6712 if (!decode_for_pst_p)
6713 record_line (current_subfile, 0, address);
6714 break;
6715 case DW_LNE_set_address:
6716 address = read_address (abfd, line_ptr, cu, &bytes_read);
6717 line_ptr += bytes_read;
6718 address += baseaddr;
6719 break;
6720 case DW_LNE_define_file:
6721 {
6722 char *cur_file;
6723 unsigned int dir_index, mod_time, length;
6724
6725 cur_file = read_string (abfd, line_ptr, &bytes_read);
6726 line_ptr += bytes_read;
6727 dir_index =
6728 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6729 line_ptr += bytes_read;
6730 mod_time =
6731 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6732 line_ptr += bytes_read;
6733 length =
6734 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6735 line_ptr += bytes_read;
6736 add_file_name (lh, cur_file, dir_index, mod_time, length);
6737 }
6738 break;
6739 default:
6740 complaint (&symfile_complaints,
6741 _("mangled .debug_line section"));
6742 return;
6743 }
6744 break;
6745 case DW_LNS_copy:
6746 lh->file_names[file - 1].included_p = 1;
6747 if (!decode_for_pst_p)
6748 {
6749 if (last_subfile != current_subfile)
6750 {
6751 if (last_subfile)
6752 record_line (last_subfile, 0, address);
6753 last_subfile = current_subfile;
6754 }
6755 record_line (current_subfile, line,
6756 check_cu_functions (address, cu));
6757 }
6758 basic_block = 0;
6759 break;
6760 case DW_LNS_advance_pc:
6761 address += lh->minimum_instruction_length
6762 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6763 line_ptr += bytes_read;
6764 break;
6765 case DW_LNS_advance_line:
6766 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6767 line_ptr += bytes_read;
6768 break;
6769 case DW_LNS_set_file:
6770 {
6771 /* The arrays lh->include_dirs and lh->file_names are
6772 0-based, but the directory and file name numbers in
6773 the statement program are 1-based. */
6774 struct file_entry *fe;
6775 char *dir = NULL;
6776
6777 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6778 line_ptr += bytes_read;
6779 fe = &lh->file_names[file - 1];
6780 if (fe->dir_index)
6781 dir = lh->include_dirs[fe->dir_index - 1];
6782
6783 if (!decode_for_pst_p)
6784 {
6785 last_subfile = current_subfile;
6786 dwarf2_start_subfile (fe->name, dir, comp_dir);
6787 }
6788 }
6789 break;
6790 case DW_LNS_set_column:
6791 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6792 line_ptr += bytes_read;
6793 break;
6794 case DW_LNS_negate_stmt:
6795 is_stmt = (!is_stmt);
6796 break;
6797 case DW_LNS_set_basic_block:
6798 basic_block = 1;
6799 break;
6800 /* Add to the address register of the state machine the
6801 address increment value corresponding to special opcode
6802 255. I.e., this value is scaled by the minimum
6803 instruction length since special opcode 255 would have
6804 scaled the the increment. */
6805 case DW_LNS_const_add_pc:
6806 address += (lh->minimum_instruction_length
6807 * ((255 - lh->opcode_base) / lh->line_range));
6808 break;
6809 case DW_LNS_fixed_advance_pc:
6810 address += read_2_bytes (abfd, line_ptr);
6811 line_ptr += 2;
6812 break;
6813 default:
6814 {
6815 /* Unknown standard opcode, ignore it. */
6816 int i;
6817
6818 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
6819 {
6820 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6821 line_ptr += bytes_read;
6822 }
6823 }
6824 }
6825 }
6826 }
6827
6828 if (decode_for_pst_p)
6829 {
6830 int file_index;
6831
6832 /* Now that we're done scanning the Line Header Program, we can
6833 create the psymtab of each included file. */
6834 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6835 if (lh->file_names[file_index].included_p == 1)
6836 {
6837 const struct file_entry fe = lh->file_names [file_index];
6838 char *include_name = fe.name;
6839 char *dir_name = NULL;
6840 char *pst_filename = pst->filename;
6841
6842 if (fe.dir_index)
6843 dir_name = lh->include_dirs[fe.dir_index - 1];
6844
6845 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
6846 {
6847 include_name = concat (dir_name, SLASH_STRING,
6848 include_name, (char *)NULL);
6849 make_cleanup (xfree, include_name);
6850 }
6851
6852 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
6853 {
6854 pst_filename = concat (pst->dirname, SLASH_STRING,
6855 pst_filename, (char *)NULL);
6856 make_cleanup (xfree, pst_filename);
6857 }
6858
6859 if (strcmp (include_name, pst_filename) != 0)
6860 dwarf2_create_include_psymtab (include_name, pst, objfile);
6861 }
6862 }
6863 }
6864
6865 /* Start a subfile for DWARF. FILENAME is the name of the file and
6866 DIRNAME the name of the source directory which contains FILENAME
6867 or NULL if not known. COMP_DIR is the compilation directory for the
6868 linetable's compilation unit or NULL if not known.
6869 This routine tries to keep line numbers from identical absolute and
6870 relative file names in a common subfile.
6871
6872 Using the `list' example from the GDB testsuite, which resides in
6873 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6874 of /srcdir/list0.c yields the following debugging information for list0.c:
6875
6876 DW_AT_name: /srcdir/list0.c
6877 DW_AT_comp_dir: /compdir
6878 files.files[0].name: list0.h
6879 files.files[0].dir: /srcdir
6880 files.files[1].name: list0.c
6881 files.files[1].dir: /srcdir
6882
6883 The line number information for list0.c has to end up in a single
6884 subfile, so that `break /srcdir/list0.c:1' works as expected.
6885 start_subfile will ensure that this happens provided that we pass the
6886 concatenation of files.files[1].dir and files.files[1].name as the
6887 subfile's name. */
6888
6889 static void
6890 dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
6891 {
6892 char *fullname;
6893
6894 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
6895 `start_symtab' will always pass the contents of DW_AT_comp_dir as
6896 second argument to start_subfile. To be consistent, we do the
6897 same here. In order not to lose the line information directory,
6898 we concatenate it to the filename when it makes sense.
6899 Note that the Dwarf3 standard says (speaking of filenames in line
6900 information): ``The directory index is ignored for file names
6901 that represent full path names''. Thus ignoring dirname in the
6902 `else' branch below isn't an issue. */
6903
6904 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
6905 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
6906 else
6907 fullname = filename;
6908
6909 start_subfile (fullname, comp_dir);
6910
6911 if (fullname != filename)
6912 xfree (fullname);
6913 }
6914
6915 static void
6916 var_decode_location (struct attribute *attr, struct symbol *sym,
6917 struct dwarf2_cu *cu)
6918 {
6919 struct objfile *objfile = cu->objfile;
6920 struct comp_unit_head *cu_header = &cu->header;
6921
6922 /* NOTE drow/2003-01-30: There used to be a comment and some special
6923 code here to turn a symbol with DW_AT_external and a
6924 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
6925 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
6926 with some versions of binutils) where shared libraries could have
6927 relocations against symbols in their debug information - the
6928 minimal symbol would have the right address, but the debug info
6929 would not. It's no longer necessary, because we will explicitly
6930 apply relocations when we read in the debug information now. */
6931
6932 /* A DW_AT_location attribute with no contents indicates that a
6933 variable has been optimized away. */
6934 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
6935 {
6936 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
6937 return;
6938 }
6939
6940 /* Handle one degenerate form of location expression specially, to
6941 preserve GDB's previous behavior when section offsets are
6942 specified. If this is just a DW_OP_addr then mark this symbol
6943 as LOC_STATIC. */
6944
6945 if (attr_form_is_block (attr)
6946 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
6947 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
6948 {
6949 unsigned int dummy;
6950
6951 SYMBOL_VALUE_ADDRESS (sym) =
6952 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
6953 fixup_symbol_section (sym, objfile);
6954 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
6955 SYMBOL_SECTION (sym));
6956 SYMBOL_CLASS (sym) = LOC_STATIC;
6957 return;
6958 }
6959
6960 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
6961 expression evaluator, and use LOC_COMPUTED only when necessary
6962 (i.e. when the value of a register or memory location is
6963 referenced, or a thread-local block, etc.). Then again, it might
6964 not be worthwhile. I'm assuming that it isn't unless performance
6965 or memory numbers show me otherwise. */
6966
6967 dwarf2_symbol_mark_computed (attr, sym, cu);
6968 SYMBOL_CLASS (sym) = LOC_COMPUTED;
6969 }
6970
6971 /* Given a pointer to a DWARF information entry, figure out if we need
6972 to make a symbol table entry for it, and if so, create a new entry
6973 and return a pointer to it.
6974 If TYPE is NULL, determine symbol type from the die, otherwise
6975 used the passed type. */
6976
6977 static struct symbol *
6978 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
6979 {
6980 struct objfile *objfile = cu->objfile;
6981 struct symbol *sym = NULL;
6982 char *name;
6983 struct attribute *attr = NULL;
6984 struct attribute *attr2 = NULL;
6985 CORE_ADDR baseaddr;
6986
6987 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6988
6989 if (die->tag != DW_TAG_namespace)
6990 name = dwarf2_linkage_name (die, cu);
6991 else
6992 name = TYPE_NAME (type);
6993
6994 if (name)
6995 {
6996 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
6997 sizeof (struct symbol));
6998 OBJSTAT (objfile, n_syms++);
6999 memset (sym, 0, sizeof (struct symbol));
7000
7001 /* Cache this symbol's name and the name's demangled form (if any). */
7002 SYMBOL_LANGUAGE (sym) = cu->language;
7003 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
7004
7005 /* Default assumptions.
7006 Use the passed type or decode it from the die. */
7007 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7008 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7009 if (type != NULL)
7010 SYMBOL_TYPE (sym) = type;
7011 else
7012 SYMBOL_TYPE (sym) = die_type (die, cu);
7013 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
7014 if (attr)
7015 {
7016 SYMBOL_LINE (sym) = DW_UNSND (attr);
7017 }
7018 switch (die->tag)
7019 {
7020 case DW_TAG_label:
7021 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
7022 if (attr)
7023 {
7024 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
7025 }
7026 SYMBOL_CLASS (sym) = LOC_LABEL;
7027 break;
7028 case DW_TAG_subprogram:
7029 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
7030 finish_block. */
7031 SYMBOL_CLASS (sym) = LOC_BLOCK;
7032 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7033 if (attr2 && (DW_UNSND (attr2) != 0))
7034 {
7035 add_symbol_to_list (sym, &global_symbols);
7036 }
7037 else
7038 {
7039 add_symbol_to_list (sym, cu->list_in_scope);
7040 }
7041 break;
7042 case DW_TAG_variable:
7043 /* Compilation with minimal debug info may result in variables
7044 with missing type entries. Change the misleading `void' type
7045 to something sensible. */
7046 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
7047 SYMBOL_TYPE (sym) = init_type (TYPE_CODE_INT,
7048 TARGET_INT_BIT / HOST_CHAR_BIT, 0,
7049 "<variable, no debug info>",
7050 objfile);
7051 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7052 if (attr)
7053 {
7054 dwarf2_const_value (attr, sym, cu);
7055 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7056 if (attr2 && (DW_UNSND (attr2) != 0))
7057 add_symbol_to_list (sym, &global_symbols);
7058 else
7059 add_symbol_to_list (sym, cu->list_in_scope);
7060 break;
7061 }
7062 attr = dwarf2_attr (die, DW_AT_location, cu);
7063 if (attr)
7064 {
7065 var_decode_location (attr, sym, cu);
7066 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7067 if (attr2 && (DW_UNSND (attr2) != 0))
7068 add_symbol_to_list (sym, &global_symbols);
7069 else
7070 add_symbol_to_list (sym, cu->list_in_scope);
7071 }
7072 else
7073 {
7074 /* We do not know the address of this symbol.
7075 If it is an external symbol and we have type information
7076 for it, enter the symbol as a LOC_UNRESOLVED symbol.
7077 The address of the variable will then be determined from
7078 the minimal symbol table whenever the variable is
7079 referenced. */
7080 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7081 if (attr2 && (DW_UNSND (attr2) != 0)
7082 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
7083 {
7084 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
7085 add_symbol_to_list (sym, &global_symbols);
7086 }
7087 }
7088 break;
7089 case DW_TAG_formal_parameter:
7090 attr = dwarf2_attr (die, DW_AT_location, cu);
7091 if (attr)
7092 {
7093 var_decode_location (attr, sym, cu);
7094 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
7095 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
7096 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
7097 }
7098 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7099 if (attr)
7100 {
7101 dwarf2_const_value (attr, sym, cu);
7102 }
7103 add_symbol_to_list (sym, cu->list_in_scope);
7104 break;
7105 case DW_TAG_unspecified_parameters:
7106 /* From varargs functions; gdb doesn't seem to have any
7107 interest in this information, so just ignore it for now.
7108 (FIXME?) */
7109 break;
7110 case DW_TAG_class_type:
7111 case DW_TAG_structure_type:
7112 case DW_TAG_union_type:
7113 case DW_TAG_set_type:
7114 case DW_TAG_enumeration_type:
7115 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7116 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7117
7118 /* Make sure that the symbol includes appropriate enclosing
7119 classes/namespaces in its name. These are calculated in
7120 read_structure_type, and the correct name is saved in
7121 the type. */
7122
7123 if (cu->language == language_cplus
7124 || cu->language == language_java)
7125 {
7126 struct type *type = SYMBOL_TYPE (sym);
7127
7128 if (TYPE_TAG_NAME (type) != NULL)
7129 {
7130 /* FIXME: carlton/2003-11-10: Should this use
7131 SYMBOL_SET_NAMES instead? (The same problem also
7132 arises further down in this function.) */
7133 /* The type's name is already allocated along with
7134 this objfile, so we don't need to duplicate it
7135 for the symbol. */
7136 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
7137 }
7138 }
7139
7140 {
7141 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
7142 really ever be static objects: otherwise, if you try
7143 to, say, break of a class's method and you're in a file
7144 which doesn't mention that class, it won't work unless
7145 the check for all static symbols in lookup_symbol_aux
7146 saves you. See the OtherFileClass tests in
7147 gdb.c++/namespace.exp. */
7148
7149 struct pending **list_to_add;
7150
7151 list_to_add = (cu->list_in_scope == &file_symbols
7152 && (cu->language == language_cplus
7153 || cu->language == language_java)
7154 ? &global_symbols : cu->list_in_scope);
7155
7156 add_symbol_to_list (sym, list_to_add);
7157
7158 /* The semantics of C++ state that "struct foo { ... }" also
7159 defines a typedef for "foo". A Java class declaration also
7160 defines a typedef for the class. Synthesize a typedef symbol
7161 so that "ptype foo" works as expected. */
7162 if (cu->language == language_cplus
7163 || cu->language == language_java)
7164 {
7165 struct symbol *typedef_sym = (struct symbol *)
7166 obstack_alloc (&objfile->objfile_obstack,
7167 sizeof (struct symbol));
7168 *typedef_sym = *sym;
7169 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
7170 /* The symbol's name is already allocated along with
7171 this objfile, so we don't need to duplicate it for
7172 the type. */
7173 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
7174 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
7175 add_symbol_to_list (typedef_sym, list_to_add);
7176 }
7177 }
7178 break;
7179 case DW_TAG_typedef:
7180 if (processing_has_namespace_info
7181 && processing_current_prefix[0] != '\0')
7182 {
7183 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7184 processing_current_prefix,
7185 name, cu);
7186 }
7187 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7188 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7189 add_symbol_to_list (sym, cu->list_in_scope);
7190 break;
7191 case DW_TAG_base_type:
7192 case DW_TAG_subrange_type:
7193 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7194 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7195 add_symbol_to_list (sym, cu->list_in_scope);
7196 break;
7197 case DW_TAG_enumerator:
7198 if (processing_has_namespace_info
7199 && processing_current_prefix[0] != '\0')
7200 {
7201 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7202 processing_current_prefix,
7203 name, cu);
7204 }
7205 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7206 if (attr)
7207 {
7208 dwarf2_const_value (attr, sym, cu);
7209 }
7210 {
7211 /* NOTE: carlton/2003-11-10: See comment above in the
7212 DW_TAG_class_type, etc. block. */
7213
7214 struct pending **list_to_add;
7215
7216 list_to_add = (cu->list_in_scope == &file_symbols
7217 && (cu->language == language_cplus
7218 || cu->language == language_java)
7219 ? &global_symbols : cu->list_in_scope);
7220
7221 add_symbol_to_list (sym, list_to_add);
7222 }
7223 break;
7224 case DW_TAG_namespace:
7225 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7226 add_symbol_to_list (sym, &global_symbols);
7227 break;
7228 default:
7229 /* Not a tag we recognize. Hopefully we aren't processing
7230 trash data, but since we must specifically ignore things
7231 we don't recognize, there is nothing else we should do at
7232 this point. */
7233 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
7234 dwarf_tag_name (die->tag));
7235 break;
7236 }
7237 }
7238 return (sym);
7239 }
7240
7241 /* Copy constant value from an attribute to a symbol. */
7242
7243 static void
7244 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
7245 struct dwarf2_cu *cu)
7246 {
7247 struct objfile *objfile = cu->objfile;
7248 struct comp_unit_head *cu_header = &cu->header;
7249 struct dwarf_block *blk;
7250
7251 switch (attr->form)
7252 {
7253 case DW_FORM_addr:
7254 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
7255 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7256 cu_header->addr_size,
7257 TYPE_LENGTH (SYMBOL_TYPE
7258 (sym)));
7259 SYMBOL_VALUE_BYTES (sym) =
7260 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
7261 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7262 it's body - store_unsigned_integer. */
7263 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7264 DW_ADDR (attr));
7265 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7266 break;
7267 case DW_FORM_block1:
7268 case DW_FORM_block2:
7269 case DW_FORM_block4:
7270 case DW_FORM_block:
7271 blk = DW_BLOCK (attr);
7272 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
7273 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7274 blk->size,
7275 TYPE_LENGTH (SYMBOL_TYPE
7276 (sym)));
7277 SYMBOL_VALUE_BYTES (sym) =
7278 obstack_alloc (&objfile->objfile_obstack, blk->size);
7279 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7280 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7281 break;
7282
7283 /* The DW_AT_const_value attributes are supposed to carry the
7284 symbol's value "represented as it would be on the target
7285 architecture." By the time we get here, it's already been
7286 converted to host endianness, so we just need to sign- or
7287 zero-extend it as appropriate. */
7288 case DW_FORM_data1:
7289 dwarf2_const_value_data (attr, sym, 8);
7290 break;
7291 case DW_FORM_data2:
7292 dwarf2_const_value_data (attr, sym, 16);
7293 break;
7294 case DW_FORM_data4:
7295 dwarf2_const_value_data (attr, sym, 32);
7296 break;
7297 case DW_FORM_data8:
7298 dwarf2_const_value_data (attr, sym, 64);
7299 break;
7300
7301 case DW_FORM_sdata:
7302 SYMBOL_VALUE (sym) = DW_SND (attr);
7303 SYMBOL_CLASS (sym) = LOC_CONST;
7304 break;
7305
7306 case DW_FORM_udata:
7307 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7308 SYMBOL_CLASS (sym) = LOC_CONST;
7309 break;
7310
7311 default:
7312 complaint (&symfile_complaints,
7313 _("unsupported const value attribute form: '%s'"),
7314 dwarf_form_name (attr->form));
7315 SYMBOL_VALUE (sym) = 0;
7316 SYMBOL_CLASS (sym) = LOC_CONST;
7317 break;
7318 }
7319 }
7320
7321
7322 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7323 or zero-extend it as appropriate for the symbol's type. */
7324 static void
7325 dwarf2_const_value_data (struct attribute *attr,
7326 struct symbol *sym,
7327 int bits)
7328 {
7329 LONGEST l = DW_UNSND (attr);
7330
7331 if (bits < sizeof (l) * 8)
7332 {
7333 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7334 l &= ((LONGEST) 1 << bits) - 1;
7335 else
7336 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
7337 }
7338
7339 SYMBOL_VALUE (sym) = l;
7340 SYMBOL_CLASS (sym) = LOC_CONST;
7341 }
7342
7343
7344 /* Return the type of the die in question using its DW_AT_type attribute. */
7345
7346 static struct type *
7347 die_type (struct die_info *die, struct dwarf2_cu *cu)
7348 {
7349 struct type *type;
7350 struct attribute *type_attr;
7351 struct die_info *type_die;
7352
7353 type_attr = dwarf2_attr (die, DW_AT_type, cu);
7354 if (!type_attr)
7355 {
7356 /* A missing DW_AT_type represents a void type. */
7357 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
7358 }
7359 else
7360 type_die = follow_die_ref (die, type_attr, cu);
7361
7362 type = tag_type_to_type (type_die, cu);
7363 if (!type)
7364 {
7365 dump_die (type_die);
7366 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
7367 cu->objfile->name);
7368 }
7369 return type;
7370 }
7371
7372 /* Return the containing type of the die in question using its
7373 DW_AT_containing_type attribute. */
7374
7375 static struct type *
7376 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
7377 {
7378 struct type *type = NULL;
7379 struct attribute *type_attr;
7380 struct die_info *type_die = NULL;
7381
7382 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
7383 if (type_attr)
7384 {
7385 type_die = follow_die_ref (die, type_attr, cu);
7386 type = tag_type_to_type (type_die, cu);
7387 }
7388 if (!type)
7389 {
7390 if (type_die)
7391 dump_die (type_die);
7392 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
7393 cu->objfile->name);
7394 }
7395 return type;
7396 }
7397
7398 static struct type *
7399 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
7400 {
7401 if (die->type)
7402 {
7403 return die->type;
7404 }
7405 else
7406 {
7407 read_type_die (die, cu);
7408 if (!die->type)
7409 {
7410 dump_die (die);
7411 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
7412 cu->objfile->name);
7413 }
7414 return die->type;
7415 }
7416 }
7417
7418 static void
7419 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
7420 {
7421 char *prefix = determine_prefix (die, cu);
7422 const char *old_prefix = processing_current_prefix;
7423 struct cleanup *back_to = make_cleanup (xfree, prefix);
7424 processing_current_prefix = prefix;
7425
7426 switch (die->tag)
7427 {
7428 case DW_TAG_class_type:
7429 case DW_TAG_structure_type:
7430 case DW_TAG_union_type:
7431 read_structure_type (die, cu);
7432 break;
7433 case DW_TAG_enumeration_type:
7434 read_enumeration_type (die, cu);
7435 break;
7436 case DW_TAG_subprogram:
7437 case DW_TAG_subroutine_type:
7438 read_subroutine_type (die, cu);
7439 break;
7440 case DW_TAG_array_type:
7441 read_array_type (die, cu);
7442 break;
7443 case DW_TAG_set_type:
7444 read_set_type (die, cu);
7445 break;
7446 case DW_TAG_pointer_type:
7447 read_tag_pointer_type (die, cu);
7448 break;
7449 case DW_TAG_ptr_to_member_type:
7450 read_tag_ptr_to_member_type (die, cu);
7451 break;
7452 case DW_TAG_reference_type:
7453 read_tag_reference_type (die, cu);
7454 break;
7455 case DW_TAG_const_type:
7456 read_tag_const_type (die, cu);
7457 break;
7458 case DW_TAG_volatile_type:
7459 read_tag_volatile_type (die, cu);
7460 break;
7461 case DW_TAG_string_type:
7462 read_tag_string_type (die, cu);
7463 break;
7464 case DW_TAG_typedef:
7465 read_typedef (die, cu);
7466 break;
7467 case DW_TAG_subrange_type:
7468 read_subrange_type (die, cu);
7469 break;
7470 case DW_TAG_base_type:
7471 read_base_type (die, cu);
7472 break;
7473 case DW_TAG_unspecified_type:
7474 read_unspecified_type (die, cu);
7475 break;
7476 default:
7477 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
7478 dwarf_tag_name (die->tag));
7479 break;
7480 }
7481
7482 processing_current_prefix = old_prefix;
7483 do_cleanups (back_to);
7484 }
7485
7486 /* Return the name of the namespace/class that DIE is defined within,
7487 or "" if we can't tell. The caller should xfree the result. */
7488
7489 /* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7490 therein) for an example of how to use this function to deal with
7491 DW_AT_specification. */
7492
7493 static char *
7494 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
7495 {
7496 struct die_info *parent;
7497
7498 if (cu->language != language_cplus
7499 && cu->language != language_java)
7500 return NULL;
7501
7502 parent = die->parent;
7503
7504 if (parent == NULL)
7505 {
7506 return xstrdup ("");
7507 }
7508 else
7509 {
7510 switch (parent->tag) {
7511 case DW_TAG_namespace:
7512 {
7513 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7514 before doing this check? */
7515 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7516 {
7517 return xstrdup (TYPE_TAG_NAME (parent->type));
7518 }
7519 else
7520 {
7521 int dummy;
7522 char *parent_prefix = determine_prefix (parent, cu);
7523 char *retval = typename_concat (NULL, parent_prefix,
7524 namespace_name (parent, &dummy,
7525 cu),
7526 cu);
7527 xfree (parent_prefix);
7528 return retval;
7529 }
7530 }
7531 break;
7532 case DW_TAG_class_type:
7533 case DW_TAG_structure_type:
7534 {
7535 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7536 {
7537 return xstrdup (TYPE_TAG_NAME (parent->type));
7538 }
7539 else
7540 {
7541 const char *old_prefix = processing_current_prefix;
7542 char *new_prefix = determine_prefix (parent, cu);
7543 char *retval;
7544
7545 processing_current_prefix = new_prefix;
7546 retval = determine_class_name (parent, cu);
7547 processing_current_prefix = old_prefix;
7548
7549 xfree (new_prefix);
7550 return retval;
7551 }
7552 }
7553 default:
7554 return determine_prefix (parent, cu);
7555 }
7556 }
7557 }
7558
7559 /* Return a newly-allocated string formed by concatenating PREFIX and
7560 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7561 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7562 perform an obconcat, otherwise allocate storage for the result. The CU argument
7563 is used to determine the language and hence, the appropriate separator. */
7564
7565 #define MAX_SEP_LEN 2 /* sizeof ("::") */
7566
7567 static char *
7568 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7569 struct dwarf2_cu *cu)
7570 {
7571 char *sep;
7572
7573 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7574 sep = "";
7575 else if (cu->language == language_java)
7576 sep = ".";
7577 else
7578 sep = "::";
7579
7580 if (obs == NULL)
7581 {
7582 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7583 retval[0] = '\0';
7584
7585 if (prefix)
7586 {
7587 strcpy (retval, prefix);
7588 strcat (retval, sep);
7589 }
7590 if (suffix)
7591 strcat (retval, suffix);
7592
7593 return retval;
7594 }
7595 else
7596 {
7597 /* We have an obstack. */
7598 return obconcat (obs, prefix, sep, suffix);
7599 }
7600 }
7601
7602 static struct type *
7603 dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
7604 {
7605 struct objfile *objfile = cu->objfile;
7606
7607 /* FIXME - this should not produce a new (struct type *)
7608 every time. It should cache base types. */
7609 struct type *type;
7610 switch (encoding)
7611 {
7612 case DW_ATE_address:
7613 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
7614 return type;
7615 case DW_ATE_boolean:
7616 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
7617 return type;
7618 case DW_ATE_complex_float:
7619 if (size == 16)
7620 {
7621 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
7622 }
7623 else
7624 {
7625 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
7626 }
7627 return type;
7628 case DW_ATE_float:
7629 if (size == 8)
7630 {
7631 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
7632 }
7633 else
7634 {
7635 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
7636 }
7637 return type;
7638 case DW_ATE_signed:
7639 switch (size)
7640 {
7641 case 1:
7642 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7643 break;
7644 case 2:
7645 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
7646 break;
7647 default:
7648 case 4:
7649 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7650 break;
7651 }
7652 return type;
7653 case DW_ATE_signed_char:
7654 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7655 return type;
7656 case DW_ATE_unsigned:
7657 switch (size)
7658 {
7659 case 1:
7660 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7661 break;
7662 case 2:
7663 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
7664 break;
7665 default:
7666 case 4:
7667 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
7668 break;
7669 }
7670 return type;
7671 case DW_ATE_unsigned_char:
7672 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7673 return type;
7674 default:
7675 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7676 return type;
7677 }
7678 }
7679
7680 #if 0
7681 struct die_info *
7682 copy_die (struct die_info *old_die)
7683 {
7684 struct die_info *new_die;
7685 int i, num_attrs;
7686
7687 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7688 memset (new_die, 0, sizeof (struct die_info));
7689
7690 new_die->tag = old_die->tag;
7691 new_die->has_children = old_die->has_children;
7692 new_die->abbrev = old_die->abbrev;
7693 new_die->offset = old_die->offset;
7694 new_die->type = NULL;
7695
7696 num_attrs = old_die->num_attrs;
7697 new_die->num_attrs = num_attrs;
7698 new_die->attrs = (struct attribute *)
7699 xmalloc (num_attrs * sizeof (struct attribute));
7700
7701 for (i = 0; i < old_die->num_attrs; ++i)
7702 {
7703 new_die->attrs[i].name = old_die->attrs[i].name;
7704 new_die->attrs[i].form = old_die->attrs[i].form;
7705 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7706 }
7707
7708 new_die->next = NULL;
7709 return new_die;
7710 }
7711 #endif
7712
7713 /* Return sibling of die, NULL if no sibling. */
7714
7715 static struct die_info *
7716 sibling_die (struct die_info *die)
7717 {
7718 return die->sibling;
7719 }
7720
7721 /* Get linkage name of a die, return NULL if not found. */
7722
7723 static char *
7724 dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
7725 {
7726 struct attribute *attr;
7727
7728 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7729 if (attr && DW_STRING (attr))
7730 return DW_STRING (attr);
7731 attr = dwarf2_attr (die, DW_AT_name, cu);
7732 if (attr && DW_STRING (attr))
7733 return DW_STRING (attr);
7734 return NULL;
7735 }
7736
7737 /* Get name of a die, return NULL if not found. */
7738
7739 static char *
7740 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
7741 {
7742 struct attribute *attr;
7743
7744 attr = dwarf2_attr (die, DW_AT_name, cu);
7745 if (attr && DW_STRING (attr))
7746 return DW_STRING (attr);
7747 return NULL;
7748 }
7749
7750 /* Return the die that this die in an extension of, or NULL if there
7751 is none. */
7752
7753 static struct die_info *
7754 dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
7755 {
7756 struct attribute *attr;
7757
7758 attr = dwarf2_attr (die, DW_AT_extension, cu);
7759 if (attr == NULL)
7760 return NULL;
7761
7762 return follow_die_ref (die, attr, cu);
7763 }
7764
7765 /* Convert a DIE tag into its string name. */
7766
7767 static char *
7768 dwarf_tag_name (unsigned tag)
7769 {
7770 switch (tag)
7771 {
7772 case DW_TAG_padding:
7773 return "DW_TAG_padding";
7774 case DW_TAG_array_type:
7775 return "DW_TAG_array_type";
7776 case DW_TAG_class_type:
7777 return "DW_TAG_class_type";
7778 case DW_TAG_entry_point:
7779 return "DW_TAG_entry_point";
7780 case DW_TAG_enumeration_type:
7781 return "DW_TAG_enumeration_type";
7782 case DW_TAG_formal_parameter:
7783 return "DW_TAG_formal_parameter";
7784 case DW_TAG_imported_declaration:
7785 return "DW_TAG_imported_declaration";
7786 case DW_TAG_label:
7787 return "DW_TAG_label";
7788 case DW_TAG_lexical_block:
7789 return "DW_TAG_lexical_block";
7790 case DW_TAG_member:
7791 return "DW_TAG_member";
7792 case DW_TAG_pointer_type:
7793 return "DW_TAG_pointer_type";
7794 case DW_TAG_reference_type:
7795 return "DW_TAG_reference_type";
7796 case DW_TAG_compile_unit:
7797 return "DW_TAG_compile_unit";
7798 case DW_TAG_string_type:
7799 return "DW_TAG_string_type";
7800 case DW_TAG_structure_type:
7801 return "DW_TAG_structure_type";
7802 case DW_TAG_subroutine_type:
7803 return "DW_TAG_subroutine_type";
7804 case DW_TAG_typedef:
7805 return "DW_TAG_typedef";
7806 case DW_TAG_union_type:
7807 return "DW_TAG_union_type";
7808 case DW_TAG_unspecified_parameters:
7809 return "DW_TAG_unspecified_parameters";
7810 case DW_TAG_variant:
7811 return "DW_TAG_variant";
7812 case DW_TAG_common_block:
7813 return "DW_TAG_common_block";
7814 case DW_TAG_common_inclusion:
7815 return "DW_TAG_common_inclusion";
7816 case DW_TAG_inheritance:
7817 return "DW_TAG_inheritance";
7818 case DW_TAG_inlined_subroutine:
7819 return "DW_TAG_inlined_subroutine";
7820 case DW_TAG_module:
7821 return "DW_TAG_module";
7822 case DW_TAG_ptr_to_member_type:
7823 return "DW_TAG_ptr_to_member_type";
7824 case DW_TAG_set_type:
7825 return "DW_TAG_set_type";
7826 case DW_TAG_subrange_type:
7827 return "DW_TAG_subrange_type";
7828 case DW_TAG_with_stmt:
7829 return "DW_TAG_with_stmt";
7830 case DW_TAG_access_declaration:
7831 return "DW_TAG_access_declaration";
7832 case DW_TAG_base_type:
7833 return "DW_TAG_base_type";
7834 case DW_TAG_catch_block:
7835 return "DW_TAG_catch_block";
7836 case DW_TAG_const_type:
7837 return "DW_TAG_const_type";
7838 case DW_TAG_constant:
7839 return "DW_TAG_constant";
7840 case DW_TAG_enumerator:
7841 return "DW_TAG_enumerator";
7842 case DW_TAG_file_type:
7843 return "DW_TAG_file_type";
7844 case DW_TAG_friend:
7845 return "DW_TAG_friend";
7846 case DW_TAG_namelist:
7847 return "DW_TAG_namelist";
7848 case DW_TAG_namelist_item:
7849 return "DW_TAG_namelist_item";
7850 case DW_TAG_packed_type:
7851 return "DW_TAG_packed_type";
7852 case DW_TAG_subprogram:
7853 return "DW_TAG_subprogram";
7854 case DW_TAG_template_type_param:
7855 return "DW_TAG_template_type_param";
7856 case DW_TAG_template_value_param:
7857 return "DW_TAG_template_value_param";
7858 case DW_TAG_thrown_type:
7859 return "DW_TAG_thrown_type";
7860 case DW_TAG_try_block:
7861 return "DW_TAG_try_block";
7862 case DW_TAG_variant_part:
7863 return "DW_TAG_variant_part";
7864 case DW_TAG_variable:
7865 return "DW_TAG_variable";
7866 case DW_TAG_volatile_type:
7867 return "DW_TAG_volatile_type";
7868 case DW_TAG_dwarf_procedure:
7869 return "DW_TAG_dwarf_procedure";
7870 case DW_TAG_restrict_type:
7871 return "DW_TAG_restrict_type";
7872 case DW_TAG_interface_type:
7873 return "DW_TAG_interface_type";
7874 case DW_TAG_namespace:
7875 return "DW_TAG_namespace";
7876 case DW_TAG_imported_module:
7877 return "DW_TAG_imported_module";
7878 case DW_TAG_unspecified_type:
7879 return "DW_TAG_unspecified_type";
7880 case DW_TAG_partial_unit:
7881 return "DW_TAG_partial_unit";
7882 case DW_TAG_imported_unit:
7883 return "DW_TAG_imported_unit";
7884 case DW_TAG_condition:
7885 return "DW_TAG_condition";
7886 case DW_TAG_shared_type:
7887 return "DW_TAG_shared_type";
7888 case DW_TAG_MIPS_loop:
7889 return "DW_TAG_MIPS_loop";
7890 case DW_TAG_HP_array_descriptor:
7891 return "DW_TAG_HP_array_descriptor";
7892 case DW_TAG_format_label:
7893 return "DW_TAG_format_label";
7894 case DW_TAG_function_template:
7895 return "DW_TAG_function_template";
7896 case DW_TAG_class_template:
7897 return "DW_TAG_class_template";
7898 case DW_TAG_GNU_BINCL:
7899 return "DW_TAG_GNU_BINCL";
7900 case DW_TAG_GNU_EINCL:
7901 return "DW_TAG_GNU_EINCL";
7902 case DW_TAG_upc_shared_type:
7903 return "DW_TAG_upc_shared_type";
7904 case DW_TAG_upc_strict_type:
7905 return "DW_TAG_upc_strict_type";
7906 case DW_TAG_upc_relaxed_type:
7907 return "DW_TAG_upc_relaxed_type";
7908 case DW_TAG_PGI_kanji_type:
7909 return "DW_TAG_PGI_kanji_type";
7910 case DW_TAG_PGI_interface_block:
7911 return "DW_TAG_PGI_interface_block";
7912 default:
7913 return "DW_TAG_<unknown>";
7914 }
7915 }
7916
7917 /* Convert a DWARF attribute code into its string name. */
7918
7919 static char *
7920 dwarf_attr_name (unsigned attr)
7921 {
7922 switch (attr)
7923 {
7924 case DW_AT_sibling:
7925 return "DW_AT_sibling";
7926 case DW_AT_location:
7927 return "DW_AT_location";
7928 case DW_AT_name:
7929 return "DW_AT_name";
7930 case DW_AT_ordering:
7931 return "DW_AT_ordering";
7932 case DW_AT_subscr_data:
7933 return "DW_AT_subscr_data";
7934 case DW_AT_byte_size:
7935 return "DW_AT_byte_size";
7936 case DW_AT_bit_offset:
7937 return "DW_AT_bit_offset";
7938 case DW_AT_bit_size:
7939 return "DW_AT_bit_size";
7940 case DW_AT_element_list:
7941 return "DW_AT_element_list";
7942 case DW_AT_stmt_list:
7943 return "DW_AT_stmt_list";
7944 case DW_AT_low_pc:
7945 return "DW_AT_low_pc";
7946 case DW_AT_high_pc:
7947 return "DW_AT_high_pc";
7948 case DW_AT_language:
7949 return "DW_AT_language";
7950 case DW_AT_member:
7951 return "DW_AT_member";
7952 case DW_AT_discr:
7953 return "DW_AT_discr";
7954 case DW_AT_discr_value:
7955 return "DW_AT_discr_value";
7956 case DW_AT_visibility:
7957 return "DW_AT_visibility";
7958 case DW_AT_import:
7959 return "DW_AT_import";
7960 case DW_AT_string_length:
7961 return "DW_AT_string_length";
7962 case DW_AT_common_reference:
7963 return "DW_AT_common_reference";
7964 case DW_AT_comp_dir:
7965 return "DW_AT_comp_dir";
7966 case DW_AT_const_value:
7967 return "DW_AT_const_value";
7968 case DW_AT_containing_type:
7969 return "DW_AT_containing_type";
7970 case DW_AT_default_value:
7971 return "DW_AT_default_value";
7972 case DW_AT_inline:
7973 return "DW_AT_inline";
7974 case DW_AT_is_optional:
7975 return "DW_AT_is_optional";
7976 case DW_AT_lower_bound:
7977 return "DW_AT_lower_bound";
7978 case DW_AT_producer:
7979 return "DW_AT_producer";
7980 case DW_AT_prototyped:
7981 return "DW_AT_prototyped";
7982 case DW_AT_return_addr:
7983 return "DW_AT_return_addr";
7984 case DW_AT_start_scope:
7985 return "DW_AT_start_scope";
7986 case DW_AT_stride_size:
7987 return "DW_AT_stride_size";
7988 case DW_AT_upper_bound:
7989 return "DW_AT_upper_bound";
7990 case DW_AT_abstract_origin:
7991 return "DW_AT_abstract_origin";
7992 case DW_AT_accessibility:
7993 return "DW_AT_accessibility";
7994 case DW_AT_address_class:
7995 return "DW_AT_address_class";
7996 case DW_AT_artificial:
7997 return "DW_AT_artificial";
7998 case DW_AT_base_types:
7999 return "DW_AT_base_types";
8000 case DW_AT_calling_convention:
8001 return "DW_AT_calling_convention";
8002 case DW_AT_count:
8003 return "DW_AT_count";
8004 case DW_AT_data_member_location:
8005 return "DW_AT_data_member_location";
8006 case DW_AT_decl_column:
8007 return "DW_AT_decl_column";
8008 case DW_AT_decl_file:
8009 return "DW_AT_decl_file";
8010 case DW_AT_decl_line:
8011 return "DW_AT_decl_line";
8012 case DW_AT_declaration:
8013 return "DW_AT_declaration";
8014 case DW_AT_discr_list:
8015 return "DW_AT_discr_list";
8016 case DW_AT_encoding:
8017 return "DW_AT_encoding";
8018 case DW_AT_external:
8019 return "DW_AT_external";
8020 case DW_AT_frame_base:
8021 return "DW_AT_frame_base";
8022 case DW_AT_friend:
8023 return "DW_AT_friend";
8024 case DW_AT_identifier_case:
8025 return "DW_AT_identifier_case";
8026 case DW_AT_macro_info:
8027 return "DW_AT_macro_info";
8028 case DW_AT_namelist_items:
8029 return "DW_AT_namelist_items";
8030 case DW_AT_priority:
8031 return "DW_AT_priority";
8032 case DW_AT_segment:
8033 return "DW_AT_segment";
8034 case DW_AT_specification:
8035 return "DW_AT_specification";
8036 case DW_AT_static_link:
8037 return "DW_AT_static_link";
8038 case DW_AT_type:
8039 return "DW_AT_type";
8040 case DW_AT_use_location:
8041 return "DW_AT_use_location";
8042 case DW_AT_variable_parameter:
8043 return "DW_AT_variable_parameter";
8044 case DW_AT_virtuality:
8045 return "DW_AT_virtuality";
8046 case DW_AT_vtable_elem_location:
8047 return "DW_AT_vtable_elem_location";
8048 /* DWARF 3 values. */
8049 case DW_AT_allocated:
8050 return "DW_AT_allocated";
8051 case DW_AT_associated:
8052 return "DW_AT_associated";
8053 case DW_AT_data_location:
8054 return "DW_AT_data_location";
8055 case DW_AT_stride:
8056 return "DW_AT_stride";
8057 case DW_AT_entry_pc:
8058 return "DW_AT_entry_pc";
8059 case DW_AT_use_UTF8:
8060 return "DW_AT_use_UTF8";
8061 case DW_AT_extension:
8062 return "DW_AT_extension";
8063 case DW_AT_ranges:
8064 return "DW_AT_ranges";
8065 case DW_AT_trampoline:
8066 return "DW_AT_trampoline";
8067 case DW_AT_call_column:
8068 return "DW_AT_call_column";
8069 case DW_AT_call_file:
8070 return "DW_AT_call_file";
8071 case DW_AT_call_line:
8072 return "DW_AT_call_line";
8073 case DW_AT_description:
8074 return "DW_AT_description";
8075 case DW_AT_binary_scale:
8076 return "DW_AT_binary_scale";
8077 case DW_AT_decimal_scale:
8078 return "DW_AT_decimal_scale";
8079 case DW_AT_small:
8080 return "DW_AT_small";
8081 case DW_AT_decimal_sign:
8082 return "DW_AT_decimal_sign";
8083 case DW_AT_digit_count:
8084 return "DW_AT_digit_count";
8085 case DW_AT_picture_string:
8086 return "DW_AT_picture_string";
8087 case DW_AT_mutable:
8088 return "DW_AT_mutable";
8089 case DW_AT_threads_scaled:
8090 return "DW_AT_threads_scaled";
8091 case DW_AT_explicit:
8092 return "DW_AT_explicit";
8093 case DW_AT_object_pointer:
8094 return "DW_AT_object_pointer";
8095 case DW_AT_endianity:
8096 return "DW_AT_endianity";
8097 case DW_AT_elemental:
8098 return "DW_AT_elemental";
8099 case DW_AT_pure:
8100 return "DW_AT_pure";
8101 case DW_AT_recursive:
8102 return "DW_AT_recursive";
8103 #ifdef MIPS
8104 /* SGI/MIPS extensions. */
8105 case DW_AT_MIPS_fde:
8106 return "DW_AT_MIPS_fde";
8107 case DW_AT_MIPS_loop_begin:
8108 return "DW_AT_MIPS_loop_begin";
8109 case DW_AT_MIPS_tail_loop_begin:
8110 return "DW_AT_MIPS_tail_loop_begin";
8111 case DW_AT_MIPS_epilog_begin:
8112 return "DW_AT_MIPS_epilog_begin";
8113 case DW_AT_MIPS_loop_unroll_factor:
8114 return "DW_AT_MIPS_loop_unroll_factor";
8115 case DW_AT_MIPS_software_pipeline_depth:
8116 return "DW_AT_MIPS_software_pipeline_depth";
8117 case DW_AT_MIPS_linkage_name:
8118 return "DW_AT_MIPS_linkage_name";
8119 case DW_AT_MIPS_stride:
8120 return "DW_AT_MIPS_stride";
8121 case DW_AT_MIPS_abstract_name:
8122 return "DW_AT_MIPS_abstract_name";
8123 case DW_AT_MIPS_clone_origin:
8124 return "DW_AT_MIPS_clone_origin";
8125 case DW_AT_MIPS_has_inlines:
8126 return "DW_AT_MIPS_has_inlines";
8127 #endif
8128 /* HP extensions. */
8129 case DW_AT_HP_block_index:
8130 return "DW_AT_HP_block_index";
8131 case DW_AT_HP_unmodifiable:
8132 return "DW_AT_HP_unmodifiable";
8133 case DW_AT_HP_actuals_stmt_list:
8134 return "DW_AT_HP_actuals_stmt_list";
8135 case DW_AT_HP_proc_per_section:
8136 return "DW_AT_HP_proc_per_section";
8137 case DW_AT_HP_raw_data_ptr:
8138 return "DW_AT_HP_raw_data_ptr";
8139 case DW_AT_HP_pass_by_reference:
8140 return "DW_AT_HP_pass_by_reference";
8141 case DW_AT_HP_opt_level:
8142 return "DW_AT_HP_opt_level";
8143 case DW_AT_HP_prof_version_id:
8144 return "DW_AT_HP_prof_version_id";
8145 case DW_AT_HP_opt_flags:
8146 return "DW_AT_HP_opt_flags";
8147 case DW_AT_HP_cold_region_low_pc:
8148 return "DW_AT_HP_cold_region_low_pc";
8149 case DW_AT_HP_cold_region_high_pc:
8150 return "DW_AT_HP_cold_region_high_pc";
8151 case DW_AT_HP_all_variables_modifiable:
8152 return "DW_AT_HP_all_variables_modifiable";
8153 case DW_AT_HP_linkage_name:
8154 return "DW_AT_HP_linkage_name";
8155 case DW_AT_HP_prof_flags:
8156 return "DW_AT_HP_prof_flags";
8157 /* GNU extensions. */
8158 case DW_AT_sf_names:
8159 return "DW_AT_sf_names";
8160 case DW_AT_src_info:
8161 return "DW_AT_src_info";
8162 case DW_AT_mac_info:
8163 return "DW_AT_mac_info";
8164 case DW_AT_src_coords:
8165 return "DW_AT_src_coords";
8166 case DW_AT_body_begin:
8167 return "DW_AT_body_begin";
8168 case DW_AT_body_end:
8169 return "DW_AT_body_end";
8170 case DW_AT_GNU_vector:
8171 return "DW_AT_GNU_vector";
8172 /* VMS extensions. */
8173 case DW_AT_VMS_rtnbeg_pd_address:
8174 return "DW_AT_VMS_rtnbeg_pd_address";
8175 /* UPC extension. */
8176 case DW_AT_upc_threads_scaled:
8177 return "DW_AT_upc_threads_scaled";
8178 /* PGI (STMicroelectronics) extensions. */
8179 case DW_AT_PGI_lbase:
8180 return "DW_AT_PGI_lbase";
8181 case DW_AT_PGI_soffset:
8182 return "DW_AT_PGI_soffset";
8183 case DW_AT_PGI_lstride:
8184 return "DW_AT_PGI_lstride";
8185 default:
8186 return "DW_AT_<unknown>";
8187 }
8188 }
8189
8190 /* Convert a DWARF value form code into its string name. */
8191
8192 static char *
8193 dwarf_form_name (unsigned form)
8194 {
8195 switch (form)
8196 {
8197 case DW_FORM_addr:
8198 return "DW_FORM_addr";
8199 case DW_FORM_block2:
8200 return "DW_FORM_block2";
8201 case DW_FORM_block4:
8202 return "DW_FORM_block4";
8203 case DW_FORM_data2:
8204 return "DW_FORM_data2";
8205 case DW_FORM_data4:
8206 return "DW_FORM_data4";
8207 case DW_FORM_data8:
8208 return "DW_FORM_data8";
8209 case DW_FORM_string:
8210 return "DW_FORM_string";
8211 case DW_FORM_block:
8212 return "DW_FORM_block";
8213 case DW_FORM_block1:
8214 return "DW_FORM_block1";
8215 case DW_FORM_data1:
8216 return "DW_FORM_data1";
8217 case DW_FORM_flag:
8218 return "DW_FORM_flag";
8219 case DW_FORM_sdata:
8220 return "DW_FORM_sdata";
8221 case DW_FORM_strp:
8222 return "DW_FORM_strp";
8223 case DW_FORM_udata:
8224 return "DW_FORM_udata";
8225 case DW_FORM_ref_addr:
8226 return "DW_FORM_ref_addr";
8227 case DW_FORM_ref1:
8228 return "DW_FORM_ref1";
8229 case DW_FORM_ref2:
8230 return "DW_FORM_ref2";
8231 case DW_FORM_ref4:
8232 return "DW_FORM_ref4";
8233 case DW_FORM_ref8:
8234 return "DW_FORM_ref8";
8235 case DW_FORM_ref_udata:
8236 return "DW_FORM_ref_udata";
8237 case DW_FORM_indirect:
8238 return "DW_FORM_indirect";
8239 default:
8240 return "DW_FORM_<unknown>";
8241 }
8242 }
8243
8244 /* Convert a DWARF stack opcode into its string name. */
8245
8246 static char *
8247 dwarf_stack_op_name (unsigned op)
8248 {
8249 switch (op)
8250 {
8251 case DW_OP_addr:
8252 return "DW_OP_addr";
8253 case DW_OP_deref:
8254 return "DW_OP_deref";
8255 case DW_OP_const1u:
8256 return "DW_OP_const1u";
8257 case DW_OP_const1s:
8258 return "DW_OP_const1s";
8259 case DW_OP_const2u:
8260 return "DW_OP_const2u";
8261 case DW_OP_const2s:
8262 return "DW_OP_const2s";
8263 case DW_OP_const4u:
8264 return "DW_OP_const4u";
8265 case DW_OP_const4s:
8266 return "DW_OP_const4s";
8267 case DW_OP_const8u:
8268 return "DW_OP_const8u";
8269 case DW_OP_const8s:
8270 return "DW_OP_const8s";
8271 case DW_OP_constu:
8272 return "DW_OP_constu";
8273 case DW_OP_consts:
8274 return "DW_OP_consts";
8275 case DW_OP_dup:
8276 return "DW_OP_dup";
8277 case DW_OP_drop:
8278 return "DW_OP_drop";
8279 case DW_OP_over:
8280 return "DW_OP_over";
8281 case DW_OP_pick:
8282 return "DW_OP_pick";
8283 case DW_OP_swap:
8284 return "DW_OP_swap";
8285 case DW_OP_rot:
8286 return "DW_OP_rot";
8287 case DW_OP_xderef:
8288 return "DW_OP_xderef";
8289 case DW_OP_abs:
8290 return "DW_OP_abs";
8291 case DW_OP_and:
8292 return "DW_OP_and";
8293 case DW_OP_div:
8294 return "DW_OP_div";
8295 case DW_OP_minus:
8296 return "DW_OP_minus";
8297 case DW_OP_mod:
8298 return "DW_OP_mod";
8299 case DW_OP_mul:
8300 return "DW_OP_mul";
8301 case DW_OP_neg:
8302 return "DW_OP_neg";
8303 case DW_OP_not:
8304 return "DW_OP_not";
8305 case DW_OP_or:
8306 return "DW_OP_or";
8307 case DW_OP_plus:
8308 return "DW_OP_plus";
8309 case DW_OP_plus_uconst:
8310 return "DW_OP_plus_uconst";
8311 case DW_OP_shl:
8312 return "DW_OP_shl";
8313 case DW_OP_shr:
8314 return "DW_OP_shr";
8315 case DW_OP_shra:
8316 return "DW_OP_shra";
8317 case DW_OP_xor:
8318 return "DW_OP_xor";
8319 case DW_OP_bra:
8320 return "DW_OP_bra";
8321 case DW_OP_eq:
8322 return "DW_OP_eq";
8323 case DW_OP_ge:
8324 return "DW_OP_ge";
8325 case DW_OP_gt:
8326 return "DW_OP_gt";
8327 case DW_OP_le:
8328 return "DW_OP_le";
8329 case DW_OP_lt:
8330 return "DW_OP_lt";
8331 case DW_OP_ne:
8332 return "DW_OP_ne";
8333 case DW_OP_skip:
8334 return "DW_OP_skip";
8335 case DW_OP_lit0:
8336 return "DW_OP_lit0";
8337 case DW_OP_lit1:
8338 return "DW_OP_lit1";
8339 case DW_OP_lit2:
8340 return "DW_OP_lit2";
8341 case DW_OP_lit3:
8342 return "DW_OP_lit3";
8343 case DW_OP_lit4:
8344 return "DW_OP_lit4";
8345 case DW_OP_lit5:
8346 return "DW_OP_lit5";
8347 case DW_OP_lit6:
8348 return "DW_OP_lit6";
8349 case DW_OP_lit7:
8350 return "DW_OP_lit7";
8351 case DW_OP_lit8:
8352 return "DW_OP_lit8";
8353 case DW_OP_lit9:
8354 return "DW_OP_lit9";
8355 case DW_OP_lit10:
8356 return "DW_OP_lit10";
8357 case DW_OP_lit11:
8358 return "DW_OP_lit11";
8359 case DW_OP_lit12:
8360 return "DW_OP_lit12";
8361 case DW_OP_lit13:
8362 return "DW_OP_lit13";
8363 case DW_OP_lit14:
8364 return "DW_OP_lit14";
8365 case DW_OP_lit15:
8366 return "DW_OP_lit15";
8367 case DW_OP_lit16:
8368 return "DW_OP_lit16";
8369 case DW_OP_lit17:
8370 return "DW_OP_lit17";
8371 case DW_OP_lit18:
8372 return "DW_OP_lit18";
8373 case DW_OP_lit19:
8374 return "DW_OP_lit19";
8375 case DW_OP_lit20:
8376 return "DW_OP_lit20";
8377 case DW_OP_lit21:
8378 return "DW_OP_lit21";
8379 case DW_OP_lit22:
8380 return "DW_OP_lit22";
8381 case DW_OP_lit23:
8382 return "DW_OP_lit23";
8383 case DW_OP_lit24:
8384 return "DW_OP_lit24";
8385 case DW_OP_lit25:
8386 return "DW_OP_lit25";
8387 case DW_OP_lit26:
8388 return "DW_OP_lit26";
8389 case DW_OP_lit27:
8390 return "DW_OP_lit27";
8391 case DW_OP_lit28:
8392 return "DW_OP_lit28";
8393 case DW_OP_lit29:
8394 return "DW_OP_lit29";
8395 case DW_OP_lit30:
8396 return "DW_OP_lit30";
8397 case DW_OP_lit31:
8398 return "DW_OP_lit31";
8399 case DW_OP_reg0:
8400 return "DW_OP_reg0";
8401 case DW_OP_reg1:
8402 return "DW_OP_reg1";
8403 case DW_OP_reg2:
8404 return "DW_OP_reg2";
8405 case DW_OP_reg3:
8406 return "DW_OP_reg3";
8407 case DW_OP_reg4:
8408 return "DW_OP_reg4";
8409 case DW_OP_reg5:
8410 return "DW_OP_reg5";
8411 case DW_OP_reg6:
8412 return "DW_OP_reg6";
8413 case DW_OP_reg7:
8414 return "DW_OP_reg7";
8415 case DW_OP_reg8:
8416 return "DW_OP_reg8";
8417 case DW_OP_reg9:
8418 return "DW_OP_reg9";
8419 case DW_OP_reg10:
8420 return "DW_OP_reg10";
8421 case DW_OP_reg11:
8422 return "DW_OP_reg11";
8423 case DW_OP_reg12:
8424 return "DW_OP_reg12";
8425 case DW_OP_reg13:
8426 return "DW_OP_reg13";
8427 case DW_OP_reg14:
8428 return "DW_OP_reg14";
8429 case DW_OP_reg15:
8430 return "DW_OP_reg15";
8431 case DW_OP_reg16:
8432 return "DW_OP_reg16";
8433 case DW_OP_reg17:
8434 return "DW_OP_reg17";
8435 case DW_OP_reg18:
8436 return "DW_OP_reg18";
8437 case DW_OP_reg19:
8438 return "DW_OP_reg19";
8439 case DW_OP_reg20:
8440 return "DW_OP_reg20";
8441 case DW_OP_reg21:
8442 return "DW_OP_reg21";
8443 case DW_OP_reg22:
8444 return "DW_OP_reg22";
8445 case DW_OP_reg23:
8446 return "DW_OP_reg23";
8447 case DW_OP_reg24:
8448 return "DW_OP_reg24";
8449 case DW_OP_reg25:
8450 return "DW_OP_reg25";
8451 case DW_OP_reg26:
8452 return "DW_OP_reg26";
8453 case DW_OP_reg27:
8454 return "DW_OP_reg27";
8455 case DW_OP_reg28:
8456 return "DW_OP_reg28";
8457 case DW_OP_reg29:
8458 return "DW_OP_reg29";
8459 case DW_OP_reg30:
8460 return "DW_OP_reg30";
8461 case DW_OP_reg31:
8462 return "DW_OP_reg31";
8463 case DW_OP_breg0:
8464 return "DW_OP_breg0";
8465 case DW_OP_breg1:
8466 return "DW_OP_breg1";
8467 case DW_OP_breg2:
8468 return "DW_OP_breg2";
8469 case DW_OP_breg3:
8470 return "DW_OP_breg3";
8471 case DW_OP_breg4:
8472 return "DW_OP_breg4";
8473 case DW_OP_breg5:
8474 return "DW_OP_breg5";
8475 case DW_OP_breg6:
8476 return "DW_OP_breg6";
8477 case DW_OP_breg7:
8478 return "DW_OP_breg7";
8479 case DW_OP_breg8:
8480 return "DW_OP_breg8";
8481 case DW_OP_breg9:
8482 return "DW_OP_breg9";
8483 case DW_OP_breg10:
8484 return "DW_OP_breg10";
8485 case DW_OP_breg11:
8486 return "DW_OP_breg11";
8487 case DW_OP_breg12:
8488 return "DW_OP_breg12";
8489 case DW_OP_breg13:
8490 return "DW_OP_breg13";
8491 case DW_OP_breg14:
8492 return "DW_OP_breg14";
8493 case DW_OP_breg15:
8494 return "DW_OP_breg15";
8495 case DW_OP_breg16:
8496 return "DW_OP_breg16";
8497 case DW_OP_breg17:
8498 return "DW_OP_breg17";
8499 case DW_OP_breg18:
8500 return "DW_OP_breg18";
8501 case DW_OP_breg19:
8502 return "DW_OP_breg19";
8503 case DW_OP_breg20:
8504 return "DW_OP_breg20";
8505 case DW_OP_breg21:
8506 return "DW_OP_breg21";
8507 case DW_OP_breg22:
8508 return "DW_OP_breg22";
8509 case DW_OP_breg23:
8510 return "DW_OP_breg23";
8511 case DW_OP_breg24:
8512 return "DW_OP_breg24";
8513 case DW_OP_breg25:
8514 return "DW_OP_breg25";
8515 case DW_OP_breg26:
8516 return "DW_OP_breg26";
8517 case DW_OP_breg27:
8518 return "DW_OP_breg27";
8519 case DW_OP_breg28:
8520 return "DW_OP_breg28";
8521 case DW_OP_breg29:
8522 return "DW_OP_breg29";
8523 case DW_OP_breg30:
8524 return "DW_OP_breg30";
8525 case DW_OP_breg31:
8526 return "DW_OP_breg31";
8527 case DW_OP_regx:
8528 return "DW_OP_regx";
8529 case DW_OP_fbreg:
8530 return "DW_OP_fbreg";
8531 case DW_OP_bregx:
8532 return "DW_OP_bregx";
8533 case DW_OP_piece:
8534 return "DW_OP_piece";
8535 case DW_OP_deref_size:
8536 return "DW_OP_deref_size";
8537 case DW_OP_xderef_size:
8538 return "DW_OP_xderef_size";
8539 case DW_OP_nop:
8540 return "DW_OP_nop";
8541 /* DWARF 3 extensions. */
8542 case DW_OP_push_object_address:
8543 return "DW_OP_push_object_address";
8544 case DW_OP_call2:
8545 return "DW_OP_call2";
8546 case DW_OP_call4:
8547 return "DW_OP_call4";
8548 case DW_OP_call_ref:
8549 return "DW_OP_call_ref";
8550 /* GNU extensions. */
8551 case DW_OP_form_tls_address:
8552 return "DW_OP_form_tls_address";
8553 case DW_OP_call_frame_cfa:
8554 return "DW_OP_call_frame_cfa";
8555 case DW_OP_bit_piece:
8556 return "DW_OP_bit_piece";
8557 case DW_OP_GNU_push_tls_address:
8558 return "DW_OP_GNU_push_tls_address";
8559 /* HP extensions. */
8560 case DW_OP_HP_is_value:
8561 return "DW_OP_HP_is_value";
8562 case DW_OP_HP_fltconst4:
8563 return "DW_OP_HP_fltconst4";
8564 case DW_OP_HP_fltconst8:
8565 return "DW_OP_HP_fltconst8";
8566 case DW_OP_HP_mod_range:
8567 return "DW_OP_HP_mod_range";
8568 case DW_OP_HP_unmod_range:
8569 return "DW_OP_HP_unmod_range";
8570 case DW_OP_HP_tls:
8571 return "DW_OP_HP_tls";
8572 default:
8573 return "OP_<unknown>";
8574 }
8575 }
8576
8577 static char *
8578 dwarf_bool_name (unsigned mybool)
8579 {
8580 if (mybool)
8581 return "TRUE";
8582 else
8583 return "FALSE";
8584 }
8585
8586 /* Convert a DWARF type code into its string name. */
8587
8588 static char *
8589 dwarf_type_encoding_name (unsigned enc)
8590 {
8591 switch (enc)
8592 {
8593 case DW_ATE_void:
8594 return "DW_ATE_void";
8595 case DW_ATE_address:
8596 return "DW_ATE_address";
8597 case DW_ATE_boolean:
8598 return "DW_ATE_boolean";
8599 case DW_ATE_complex_float:
8600 return "DW_ATE_complex_float";
8601 case DW_ATE_float:
8602 return "DW_ATE_float";
8603 case DW_ATE_signed:
8604 return "DW_ATE_signed";
8605 case DW_ATE_signed_char:
8606 return "DW_ATE_signed_char";
8607 case DW_ATE_unsigned:
8608 return "DW_ATE_unsigned";
8609 case DW_ATE_unsigned_char:
8610 return "DW_ATE_unsigned_char";
8611 /* DWARF 3. */
8612 case DW_ATE_imaginary_float:
8613 return "DW_ATE_imaginary_float";
8614 case DW_ATE_packed_decimal:
8615 return "DW_ATE_packed_decimal";
8616 case DW_ATE_numeric_string:
8617 return "DW_ATE_numeric_string";
8618 case DW_ATE_edited:
8619 return "DW_ATE_edited";
8620 case DW_ATE_signed_fixed:
8621 return "DW_ATE_signed_fixed";
8622 case DW_ATE_unsigned_fixed:
8623 return "DW_ATE_unsigned_fixed";
8624 case DW_ATE_decimal_float:
8625 return "DW_ATE_decimal_float";
8626 /* HP extensions. */
8627 case DW_ATE_HP_float80:
8628 return "DW_ATE_HP_float80";
8629 case DW_ATE_HP_complex_float80:
8630 return "DW_ATE_HP_complex_float80";
8631 case DW_ATE_HP_float128:
8632 return "DW_ATE_HP_float128";
8633 case DW_ATE_HP_complex_float128:
8634 return "DW_ATE_HP_complex_float128";
8635 case DW_ATE_HP_floathpintel:
8636 return "DW_ATE_HP_floathpintel";
8637 case DW_ATE_HP_imaginary_float80:
8638 return "DW_ATE_HP_imaginary_float80";
8639 case DW_ATE_HP_imaginary_float128:
8640 return "DW_ATE_HP_imaginary_float128";
8641 default:
8642 return "DW_ATE_<unknown>";
8643 }
8644 }
8645
8646 /* Convert a DWARF call frame info operation to its string name. */
8647
8648 #if 0
8649 static char *
8650 dwarf_cfi_name (unsigned cfi_opc)
8651 {
8652 switch (cfi_opc)
8653 {
8654 case DW_CFA_advance_loc:
8655 return "DW_CFA_advance_loc";
8656 case DW_CFA_offset:
8657 return "DW_CFA_offset";
8658 case DW_CFA_restore:
8659 return "DW_CFA_restore";
8660 case DW_CFA_nop:
8661 return "DW_CFA_nop";
8662 case DW_CFA_set_loc:
8663 return "DW_CFA_set_loc";
8664 case DW_CFA_advance_loc1:
8665 return "DW_CFA_advance_loc1";
8666 case DW_CFA_advance_loc2:
8667 return "DW_CFA_advance_loc2";
8668 case DW_CFA_advance_loc4:
8669 return "DW_CFA_advance_loc4";
8670 case DW_CFA_offset_extended:
8671 return "DW_CFA_offset_extended";
8672 case DW_CFA_restore_extended:
8673 return "DW_CFA_restore_extended";
8674 case DW_CFA_undefined:
8675 return "DW_CFA_undefined";
8676 case DW_CFA_same_value:
8677 return "DW_CFA_same_value";
8678 case DW_CFA_register:
8679 return "DW_CFA_register";
8680 case DW_CFA_remember_state:
8681 return "DW_CFA_remember_state";
8682 case DW_CFA_restore_state:
8683 return "DW_CFA_restore_state";
8684 case DW_CFA_def_cfa:
8685 return "DW_CFA_def_cfa";
8686 case DW_CFA_def_cfa_register:
8687 return "DW_CFA_def_cfa_register";
8688 case DW_CFA_def_cfa_offset:
8689 return "DW_CFA_def_cfa_offset";
8690 /* DWARF 3. */
8691 case DW_CFA_def_cfa_expression:
8692 return "DW_CFA_def_cfa_expression";
8693 case DW_CFA_expression:
8694 return "DW_CFA_expression";
8695 case DW_CFA_offset_extended_sf:
8696 return "DW_CFA_offset_extended_sf";
8697 case DW_CFA_def_cfa_sf:
8698 return "DW_CFA_def_cfa_sf";
8699 case DW_CFA_def_cfa_offset_sf:
8700 return "DW_CFA_def_cfa_offset_sf";
8701 case DW_CFA_val_offset:
8702 return "DW_CFA_val_offset";
8703 case DW_CFA_val_offset_sf:
8704 return "DW_CFA_val_offset_sf";
8705 case DW_CFA_val_expression:
8706 return "DW_CFA_val_expression";
8707 /* SGI/MIPS specific. */
8708 case DW_CFA_MIPS_advance_loc8:
8709 return "DW_CFA_MIPS_advance_loc8";
8710 /* GNU extensions. */
8711 case DW_CFA_GNU_window_save:
8712 return "DW_CFA_GNU_window_save";
8713 case DW_CFA_GNU_args_size:
8714 return "DW_CFA_GNU_args_size";
8715 case DW_CFA_GNU_negative_offset_extended:
8716 return "DW_CFA_GNU_negative_offset_extended";
8717 default:
8718 return "DW_CFA_<unknown>";
8719 }
8720 }
8721 #endif
8722
8723 static void
8724 dump_die (struct die_info *die)
8725 {
8726 unsigned int i;
8727
8728 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
8729 dwarf_tag_name (die->tag), die->abbrev, die->offset);
8730 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
8731 dwarf_bool_name (die->child != NULL));
8732
8733 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
8734 for (i = 0; i < die->num_attrs; ++i)
8735 {
8736 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
8737 dwarf_attr_name (die->attrs[i].name),
8738 dwarf_form_name (die->attrs[i].form));
8739 switch (die->attrs[i].form)
8740 {
8741 case DW_FORM_ref_addr:
8742 case DW_FORM_addr:
8743 fprintf_unfiltered (gdb_stderr, "address: ");
8744 deprecated_print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
8745 break;
8746 case DW_FORM_block2:
8747 case DW_FORM_block4:
8748 case DW_FORM_block:
8749 case DW_FORM_block1:
8750 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
8751 break;
8752 case DW_FORM_ref1:
8753 case DW_FORM_ref2:
8754 case DW_FORM_ref4:
8755 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8756 (long) (DW_ADDR (&die->attrs[i])));
8757 break;
8758 case DW_FORM_data1:
8759 case DW_FORM_data2:
8760 case DW_FORM_data4:
8761 case DW_FORM_data8:
8762 case DW_FORM_udata:
8763 case DW_FORM_sdata:
8764 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
8765 break;
8766 case DW_FORM_string:
8767 case DW_FORM_strp:
8768 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
8769 DW_STRING (&die->attrs[i])
8770 ? DW_STRING (&die->attrs[i]) : "");
8771 break;
8772 case DW_FORM_flag:
8773 if (DW_UNSND (&die->attrs[i]))
8774 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
8775 else
8776 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
8777 break;
8778 case DW_FORM_indirect:
8779 /* the reader will have reduced the indirect form to
8780 the "base form" so this form should not occur */
8781 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
8782 break;
8783 default:
8784 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
8785 die->attrs[i].form);
8786 }
8787 fprintf_unfiltered (gdb_stderr, "\n");
8788 }
8789 }
8790
8791 static void
8792 dump_die_list (struct die_info *die)
8793 {
8794 while (die)
8795 {
8796 dump_die (die);
8797 if (die->child != NULL)
8798 dump_die_list (die->child);
8799 if (die->sibling != NULL)
8800 dump_die_list (die->sibling);
8801 }
8802 }
8803
8804 static void
8805 store_in_ref_table (unsigned int offset, struct die_info *die,
8806 struct dwarf2_cu *cu)
8807 {
8808 int h;
8809 struct die_info *old;
8810
8811 h = (offset % REF_HASH_SIZE);
8812 old = cu->die_ref_table[h];
8813 die->next_ref = old;
8814 cu->die_ref_table[h] = die;
8815 }
8816
8817 static unsigned int
8818 dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
8819 {
8820 unsigned int result = 0;
8821
8822 switch (attr->form)
8823 {
8824 case DW_FORM_ref_addr:
8825 case DW_FORM_ref1:
8826 case DW_FORM_ref2:
8827 case DW_FORM_ref4:
8828 case DW_FORM_ref8:
8829 case DW_FORM_ref_udata:
8830 result = DW_ADDR (attr);
8831 break;
8832 default:
8833 complaint (&symfile_complaints,
8834 _("unsupported die ref attribute form: '%s'"),
8835 dwarf_form_name (attr->form));
8836 }
8837 return result;
8838 }
8839
8840 /* Return the constant value held by the given attribute. Return -1
8841 if the value held by the attribute is not constant. */
8842
8843 static int
8844 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
8845 {
8846 if (attr->form == DW_FORM_sdata)
8847 return DW_SND (attr);
8848 else if (attr->form == DW_FORM_udata
8849 || attr->form == DW_FORM_data1
8850 || attr->form == DW_FORM_data2
8851 || attr->form == DW_FORM_data4
8852 || attr->form == DW_FORM_data8)
8853 return DW_UNSND (attr);
8854 else
8855 {
8856 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
8857 dwarf_form_name (attr->form));
8858 return default_value;
8859 }
8860 }
8861
8862 static struct die_info *
8863 follow_die_ref (struct die_info *src_die, struct attribute *attr,
8864 struct dwarf2_cu *cu)
8865 {
8866 struct die_info *die;
8867 unsigned int offset;
8868 int h;
8869 struct die_info temp_die;
8870 struct dwarf2_cu *target_cu;
8871
8872 offset = dwarf2_get_ref_die_offset (attr, cu);
8873
8874 if (DW_ADDR (attr) < cu->header.offset
8875 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
8876 {
8877 struct dwarf2_per_cu_data *per_cu;
8878 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
8879 cu->objfile);
8880 target_cu = per_cu->cu;
8881 }
8882 else
8883 target_cu = cu;
8884
8885 h = (offset % REF_HASH_SIZE);
8886 die = target_cu->die_ref_table[h];
8887 while (die)
8888 {
8889 if (die->offset == offset)
8890 return die;
8891 die = die->next_ref;
8892 }
8893
8894 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
8895 "at 0x%lx [in module %s]"),
8896 (long) src_die->offset, (long) offset, cu->objfile->name);
8897
8898 return NULL;
8899 }
8900
8901 static struct type *
8902 dwarf2_fundamental_type (struct objfile *objfile, int typeid,
8903 struct dwarf2_cu *cu)
8904 {
8905 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
8906 {
8907 error (_("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]"),
8908 typeid, objfile->name);
8909 }
8910
8911 /* Look for this particular type in the fundamental type vector. If
8912 one is not found, create and install one appropriate for the
8913 current language and the current target machine. */
8914
8915 if (cu->ftypes[typeid] == NULL)
8916 {
8917 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
8918 }
8919
8920 return (cu->ftypes[typeid]);
8921 }
8922
8923 /* Decode simple location descriptions.
8924 Given a pointer to a dwarf block that defines a location, compute
8925 the location and return the value.
8926
8927 NOTE drow/2003-11-18: This function is called in two situations
8928 now: for the address of static or global variables (partial symbols
8929 only) and for offsets into structures which are expected to be
8930 (more or less) constant. The partial symbol case should go away,
8931 and only the constant case should remain. That will let this
8932 function complain more accurately. A few special modes are allowed
8933 without complaint for global variables (for instance, global
8934 register values and thread-local values).
8935
8936 A location description containing no operations indicates that the
8937 object is optimized out. The return value is 0 for that case.
8938 FIXME drow/2003-11-16: No callers check for this case any more; soon all
8939 callers will only want a very basic result and this can become a
8940 complaint.
8941
8942 Note that stack[0] is unused except as a default error return.
8943 Note that stack overflow is not yet handled. */
8944
8945 static CORE_ADDR
8946 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
8947 {
8948 struct objfile *objfile = cu->objfile;
8949 struct comp_unit_head *cu_header = &cu->header;
8950 int i;
8951 int size = blk->size;
8952 gdb_byte *data = blk->data;
8953 CORE_ADDR stack[64];
8954 int stacki;
8955 unsigned int bytes_read, unsnd;
8956 gdb_byte op;
8957
8958 i = 0;
8959 stacki = 0;
8960 stack[stacki] = 0;
8961
8962 while (i < size)
8963 {
8964 op = data[i++];
8965 switch (op)
8966 {
8967 case DW_OP_lit0:
8968 case DW_OP_lit1:
8969 case DW_OP_lit2:
8970 case DW_OP_lit3:
8971 case DW_OP_lit4:
8972 case DW_OP_lit5:
8973 case DW_OP_lit6:
8974 case DW_OP_lit7:
8975 case DW_OP_lit8:
8976 case DW_OP_lit9:
8977 case DW_OP_lit10:
8978 case DW_OP_lit11:
8979 case DW_OP_lit12:
8980 case DW_OP_lit13:
8981 case DW_OP_lit14:
8982 case DW_OP_lit15:
8983 case DW_OP_lit16:
8984 case DW_OP_lit17:
8985 case DW_OP_lit18:
8986 case DW_OP_lit19:
8987 case DW_OP_lit20:
8988 case DW_OP_lit21:
8989 case DW_OP_lit22:
8990 case DW_OP_lit23:
8991 case DW_OP_lit24:
8992 case DW_OP_lit25:
8993 case DW_OP_lit26:
8994 case DW_OP_lit27:
8995 case DW_OP_lit28:
8996 case DW_OP_lit29:
8997 case DW_OP_lit30:
8998 case DW_OP_lit31:
8999 stack[++stacki] = op - DW_OP_lit0;
9000 break;
9001
9002 case DW_OP_reg0:
9003 case DW_OP_reg1:
9004 case DW_OP_reg2:
9005 case DW_OP_reg3:
9006 case DW_OP_reg4:
9007 case DW_OP_reg5:
9008 case DW_OP_reg6:
9009 case DW_OP_reg7:
9010 case DW_OP_reg8:
9011 case DW_OP_reg9:
9012 case DW_OP_reg10:
9013 case DW_OP_reg11:
9014 case DW_OP_reg12:
9015 case DW_OP_reg13:
9016 case DW_OP_reg14:
9017 case DW_OP_reg15:
9018 case DW_OP_reg16:
9019 case DW_OP_reg17:
9020 case DW_OP_reg18:
9021 case DW_OP_reg19:
9022 case DW_OP_reg20:
9023 case DW_OP_reg21:
9024 case DW_OP_reg22:
9025 case DW_OP_reg23:
9026 case DW_OP_reg24:
9027 case DW_OP_reg25:
9028 case DW_OP_reg26:
9029 case DW_OP_reg27:
9030 case DW_OP_reg28:
9031 case DW_OP_reg29:
9032 case DW_OP_reg30:
9033 case DW_OP_reg31:
9034 stack[++stacki] = op - DW_OP_reg0;
9035 if (i < size)
9036 dwarf2_complex_location_expr_complaint ();
9037 break;
9038
9039 case DW_OP_regx:
9040 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9041 i += bytes_read;
9042 stack[++stacki] = unsnd;
9043 if (i < size)
9044 dwarf2_complex_location_expr_complaint ();
9045 break;
9046
9047 case DW_OP_addr:
9048 stack[++stacki] = read_address (objfile->obfd, &data[i],
9049 cu, &bytes_read);
9050 i += bytes_read;
9051 break;
9052
9053 case DW_OP_const1u:
9054 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
9055 i += 1;
9056 break;
9057
9058 case DW_OP_const1s:
9059 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
9060 i += 1;
9061 break;
9062
9063 case DW_OP_const2u:
9064 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
9065 i += 2;
9066 break;
9067
9068 case DW_OP_const2s:
9069 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
9070 i += 2;
9071 break;
9072
9073 case DW_OP_const4u:
9074 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
9075 i += 4;
9076 break;
9077
9078 case DW_OP_const4s:
9079 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
9080 i += 4;
9081 break;
9082
9083 case DW_OP_constu:
9084 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
9085 &bytes_read);
9086 i += bytes_read;
9087 break;
9088
9089 case DW_OP_consts:
9090 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
9091 i += bytes_read;
9092 break;
9093
9094 case DW_OP_dup:
9095 stack[stacki + 1] = stack[stacki];
9096 stacki++;
9097 break;
9098
9099 case DW_OP_plus:
9100 stack[stacki - 1] += stack[stacki];
9101 stacki--;
9102 break;
9103
9104 case DW_OP_plus_uconst:
9105 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9106 i += bytes_read;
9107 break;
9108
9109 case DW_OP_minus:
9110 stack[stacki - 1] -= stack[stacki];
9111 stacki--;
9112 break;
9113
9114 case DW_OP_deref:
9115 /* If we're not the last op, then we definitely can't encode
9116 this using GDB's address_class enum. This is valid for partial
9117 global symbols, although the variable's address will be bogus
9118 in the psymtab. */
9119 if (i < size)
9120 dwarf2_complex_location_expr_complaint ();
9121 break;
9122
9123 case DW_OP_GNU_push_tls_address:
9124 /* The top of the stack has the offset from the beginning
9125 of the thread control block at which the variable is located. */
9126 /* Nothing should follow this operator, so the top of stack would
9127 be returned. */
9128 /* This is valid for partial global symbols, but the variable's
9129 address will be bogus in the psymtab. */
9130 if (i < size)
9131 dwarf2_complex_location_expr_complaint ();
9132 break;
9133
9134 default:
9135 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
9136 dwarf_stack_op_name (op));
9137 return (stack[stacki]);
9138 }
9139 }
9140 return (stack[stacki]);
9141 }
9142
9143 /* memory allocation interface */
9144
9145 static struct dwarf_block *
9146 dwarf_alloc_block (struct dwarf2_cu *cu)
9147 {
9148 struct dwarf_block *blk;
9149
9150 blk = (struct dwarf_block *)
9151 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
9152 return (blk);
9153 }
9154
9155 static struct abbrev_info *
9156 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
9157 {
9158 struct abbrev_info *abbrev;
9159
9160 abbrev = (struct abbrev_info *)
9161 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
9162 memset (abbrev, 0, sizeof (struct abbrev_info));
9163 return (abbrev);
9164 }
9165
9166 static struct die_info *
9167 dwarf_alloc_die (void)
9168 {
9169 struct die_info *die;
9170
9171 die = (struct die_info *) xmalloc (sizeof (struct die_info));
9172 memset (die, 0, sizeof (struct die_info));
9173 return (die);
9174 }
9175
9176 \f
9177 /* Macro support. */
9178
9179
9180 /* Return the full name of file number I in *LH's file name table.
9181 Use COMP_DIR as the name of the current directory of the
9182 compilation. The result is allocated using xmalloc; the caller is
9183 responsible for freeing it. */
9184 static char *
9185 file_full_name (int file, struct line_header *lh, const char *comp_dir)
9186 {
9187 /* Is the file number a valid index into the line header's file name
9188 table? Remember that file numbers start with one, not zero. */
9189 if (1 <= file && file <= lh->num_file_names)
9190 {
9191 struct file_entry *fe = &lh->file_names[file - 1];
9192
9193 if (IS_ABSOLUTE_PATH (fe->name))
9194 return xstrdup (fe->name);
9195 else
9196 {
9197 const char *dir;
9198 int dir_len;
9199 char *full_name;
9200
9201 if (fe->dir_index)
9202 dir = lh->include_dirs[fe->dir_index - 1];
9203 else
9204 dir = comp_dir;
9205
9206 if (dir)
9207 {
9208 dir_len = strlen (dir);
9209 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
9210 strcpy (full_name, dir);
9211 full_name[dir_len] = '/';
9212 strcpy (full_name + dir_len + 1, fe->name);
9213 return full_name;
9214 }
9215 else
9216 return xstrdup (fe->name);
9217 }
9218 }
9219 else
9220 {
9221 /* The compiler produced a bogus file number. We can at least
9222 record the macro definitions made in the file, even if we
9223 won't be able to find the file by name. */
9224 char fake_name[80];
9225 sprintf (fake_name, "<bad macro file number %d>", file);
9226
9227 complaint (&symfile_complaints,
9228 _("bad file number in macro information (%d)"),
9229 file);
9230
9231 return xstrdup (fake_name);
9232 }
9233 }
9234
9235
9236 static struct macro_source_file *
9237 macro_start_file (int file, int line,
9238 struct macro_source_file *current_file,
9239 const char *comp_dir,
9240 struct line_header *lh, struct objfile *objfile)
9241 {
9242 /* The full name of this source file. */
9243 char *full_name = file_full_name (file, lh, comp_dir);
9244
9245 /* We don't create a macro table for this compilation unit
9246 at all until we actually get a filename. */
9247 if (! pending_macros)
9248 pending_macros = new_macro_table (&objfile->objfile_obstack,
9249 objfile->macro_cache);
9250
9251 if (! current_file)
9252 /* If we have no current file, then this must be the start_file
9253 directive for the compilation unit's main source file. */
9254 current_file = macro_set_main (pending_macros, full_name);
9255 else
9256 current_file = macro_include (current_file, line, full_name);
9257
9258 xfree (full_name);
9259
9260 return current_file;
9261 }
9262
9263
9264 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
9265 followed by a null byte. */
9266 static char *
9267 copy_string (const char *buf, int len)
9268 {
9269 char *s = xmalloc (len + 1);
9270 memcpy (s, buf, len);
9271 s[len] = '\0';
9272
9273 return s;
9274 }
9275
9276
9277 static const char *
9278 consume_improper_spaces (const char *p, const char *body)
9279 {
9280 if (*p == ' ')
9281 {
9282 complaint (&symfile_complaints,
9283 _("macro definition contains spaces in formal argument list:\n`%s'"),
9284 body);
9285
9286 while (*p == ' ')
9287 p++;
9288 }
9289
9290 return p;
9291 }
9292
9293
9294 static void
9295 parse_macro_definition (struct macro_source_file *file, int line,
9296 const char *body)
9297 {
9298 const char *p;
9299
9300 /* The body string takes one of two forms. For object-like macro
9301 definitions, it should be:
9302
9303 <macro name> " " <definition>
9304
9305 For function-like macro definitions, it should be:
9306
9307 <macro name> "() " <definition>
9308 or
9309 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
9310
9311 Spaces may appear only where explicitly indicated, and in the
9312 <definition>.
9313
9314 The Dwarf 2 spec says that an object-like macro's name is always
9315 followed by a space, but versions of GCC around March 2002 omit
9316 the space when the macro's definition is the empty string.
9317
9318 The Dwarf 2 spec says that there should be no spaces between the
9319 formal arguments in a function-like macro's formal argument list,
9320 but versions of GCC around March 2002 include spaces after the
9321 commas. */
9322
9323
9324 /* Find the extent of the macro name. The macro name is terminated
9325 by either a space or null character (for an object-like macro) or
9326 an opening paren (for a function-like macro). */
9327 for (p = body; *p; p++)
9328 if (*p == ' ' || *p == '(')
9329 break;
9330
9331 if (*p == ' ' || *p == '\0')
9332 {
9333 /* It's an object-like macro. */
9334 int name_len = p - body;
9335 char *name = copy_string (body, name_len);
9336 const char *replacement;
9337
9338 if (*p == ' ')
9339 replacement = body + name_len + 1;
9340 else
9341 {
9342 dwarf2_macro_malformed_definition_complaint (body);
9343 replacement = body + name_len;
9344 }
9345
9346 macro_define_object (file, line, name, replacement);
9347
9348 xfree (name);
9349 }
9350 else if (*p == '(')
9351 {
9352 /* It's a function-like macro. */
9353 char *name = copy_string (body, p - body);
9354 int argc = 0;
9355 int argv_size = 1;
9356 char **argv = xmalloc (argv_size * sizeof (*argv));
9357
9358 p++;
9359
9360 p = consume_improper_spaces (p, body);
9361
9362 /* Parse the formal argument list. */
9363 while (*p && *p != ')')
9364 {
9365 /* Find the extent of the current argument name. */
9366 const char *arg_start = p;
9367
9368 while (*p && *p != ',' && *p != ')' && *p != ' ')
9369 p++;
9370
9371 if (! *p || p == arg_start)
9372 dwarf2_macro_malformed_definition_complaint (body);
9373 else
9374 {
9375 /* Make sure argv has room for the new argument. */
9376 if (argc >= argv_size)
9377 {
9378 argv_size *= 2;
9379 argv = xrealloc (argv, argv_size * sizeof (*argv));
9380 }
9381
9382 argv[argc++] = copy_string (arg_start, p - arg_start);
9383 }
9384
9385 p = consume_improper_spaces (p, body);
9386
9387 /* Consume the comma, if present. */
9388 if (*p == ',')
9389 {
9390 p++;
9391
9392 p = consume_improper_spaces (p, body);
9393 }
9394 }
9395
9396 if (*p == ')')
9397 {
9398 p++;
9399
9400 if (*p == ' ')
9401 /* Perfectly formed definition, no complaints. */
9402 macro_define_function (file, line, name,
9403 argc, (const char **) argv,
9404 p + 1);
9405 else if (*p == '\0')
9406 {
9407 /* Complain, but do define it. */
9408 dwarf2_macro_malformed_definition_complaint (body);
9409 macro_define_function (file, line, name,
9410 argc, (const char **) argv,
9411 p);
9412 }
9413 else
9414 /* Just complain. */
9415 dwarf2_macro_malformed_definition_complaint (body);
9416 }
9417 else
9418 /* Just complain. */
9419 dwarf2_macro_malformed_definition_complaint (body);
9420
9421 xfree (name);
9422 {
9423 int i;
9424
9425 for (i = 0; i < argc; i++)
9426 xfree (argv[i]);
9427 }
9428 xfree (argv);
9429 }
9430 else
9431 dwarf2_macro_malformed_definition_complaint (body);
9432 }
9433
9434
9435 static void
9436 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9437 char *comp_dir, bfd *abfd,
9438 struct dwarf2_cu *cu)
9439 {
9440 gdb_byte *mac_ptr, *mac_end;
9441 struct macro_source_file *current_file = 0;
9442
9443 if (dwarf2_per_objfile->macinfo_buffer == NULL)
9444 {
9445 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
9446 return;
9447 }
9448
9449 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9450 mac_end = dwarf2_per_objfile->macinfo_buffer
9451 + dwarf2_per_objfile->macinfo_size;
9452
9453 for (;;)
9454 {
9455 enum dwarf_macinfo_record_type macinfo_type;
9456
9457 /* Do we at least have room for a macinfo type byte? */
9458 if (mac_ptr >= mac_end)
9459 {
9460 dwarf2_macros_too_long_complaint ();
9461 return;
9462 }
9463
9464 macinfo_type = read_1_byte (abfd, mac_ptr);
9465 mac_ptr++;
9466
9467 switch (macinfo_type)
9468 {
9469 /* A zero macinfo type indicates the end of the macro
9470 information. */
9471 case 0:
9472 return;
9473
9474 case DW_MACINFO_define:
9475 case DW_MACINFO_undef:
9476 {
9477 unsigned int bytes_read;
9478 int line;
9479 char *body;
9480
9481 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9482 mac_ptr += bytes_read;
9483 body = read_string (abfd, mac_ptr, &bytes_read);
9484 mac_ptr += bytes_read;
9485
9486 if (! current_file)
9487 complaint (&symfile_complaints,
9488 _("debug info gives macro %s outside of any file: %s"),
9489 macinfo_type ==
9490 DW_MACINFO_define ? "definition" : macinfo_type ==
9491 DW_MACINFO_undef ? "undefinition" :
9492 "something-or-other", body);
9493 else
9494 {
9495 if (macinfo_type == DW_MACINFO_define)
9496 parse_macro_definition (current_file, line, body);
9497 else if (macinfo_type == DW_MACINFO_undef)
9498 macro_undef (current_file, line, body);
9499 }
9500 }
9501 break;
9502
9503 case DW_MACINFO_start_file:
9504 {
9505 unsigned int bytes_read;
9506 int line, file;
9507
9508 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9509 mac_ptr += bytes_read;
9510 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9511 mac_ptr += bytes_read;
9512
9513 current_file = macro_start_file (file, line,
9514 current_file, comp_dir,
9515 lh, cu->objfile);
9516 }
9517 break;
9518
9519 case DW_MACINFO_end_file:
9520 if (! current_file)
9521 complaint (&symfile_complaints,
9522 _("macro debug info has an unmatched `close_file' directive"));
9523 else
9524 {
9525 current_file = current_file->included_by;
9526 if (! current_file)
9527 {
9528 enum dwarf_macinfo_record_type next_type;
9529
9530 /* GCC circa March 2002 doesn't produce the zero
9531 type byte marking the end of the compilation
9532 unit. Complain if it's not there, but exit no
9533 matter what. */
9534
9535 /* Do we at least have room for a macinfo type byte? */
9536 if (mac_ptr >= mac_end)
9537 {
9538 dwarf2_macros_too_long_complaint ();
9539 return;
9540 }
9541
9542 /* We don't increment mac_ptr here, so this is just
9543 a look-ahead. */
9544 next_type = read_1_byte (abfd, mac_ptr);
9545 if (next_type != 0)
9546 complaint (&symfile_complaints,
9547 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
9548
9549 return;
9550 }
9551 }
9552 break;
9553
9554 case DW_MACINFO_vendor_ext:
9555 {
9556 unsigned int bytes_read;
9557 int constant;
9558 char *string;
9559
9560 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9561 mac_ptr += bytes_read;
9562 string = read_string (abfd, mac_ptr, &bytes_read);
9563 mac_ptr += bytes_read;
9564
9565 /* We don't recognize any vendor extensions. */
9566 }
9567 break;
9568 }
9569 }
9570 }
9571
9572 /* Check if the attribute's form is a DW_FORM_block*
9573 if so return true else false. */
9574 static int
9575 attr_form_is_block (struct attribute *attr)
9576 {
9577 return (attr == NULL ? 0 :
9578 attr->form == DW_FORM_block1
9579 || attr->form == DW_FORM_block2
9580 || attr->form == DW_FORM_block4
9581 || attr->form == DW_FORM_block);
9582 }
9583
9584 static void
9585 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
9586 struct dwarf2_cu *cu)
9587 {
9588 if ((attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
9589 /* ".debug_loc" may not exist at all, or the offset may be outside
9590 the section. If so, fall through to the complaint in the
9591 other branch. */
9592 && DW_UNSND (attr) < dwarf2_per_objfile->loc_size)
9593 {
9594 struct dwarf2_loclist_baton *baton;
9595
9596 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9597 sizeof (struct dwarf2_loclist_baton));
9598 baton->objfile = cu->objfile;
9599
9600 /* We don't know how long the location list is, but make sure we
9601 don't run off the edge of the section. */
9602 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9603 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
9604 baton->base_address = cu->header.base_address;
9605 if (cu->header.base_known == 0)
9606 complaint (&symfile_complaints,
9607 _("Location list used without specifying the CU base address."));
9608
9609 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
9610 SYMBOL_LOCATION_BATON (sym) = baton;
9611 }
9612 else
9613 {
9614 struct dwarf2_locexpr_baton *baton;
9615
9616 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9617 sizeof (struct dwarf2_locexpr_baton));
9618 baton->objfile = cu->objfile;
9619
9620 if (attr_form_is_block (attr))
9621 {
9622 /* Note that we're just copying the block's data pointer
9623 here, not the actual data. We're still pointing into the
9624 info_buffer for SYM's objfile; right now we never release
9625 that buffer, but when we do clean up properly this may
9626 need to change. */
9627 baton->size = DW_BLOCK (attr)->size;
9628 baton->data = DW_BLOCK (attr)->data;
9629 }
9630 else
9631 {
9632 dwarf2_invalid_attrib_class_complaint ("location description",
9633 SYMBOL_NATURAL_NAME (sym));
9634 baton->size = 0;
9635 baton->data = NULL;
9636 }
9637
9638 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
9639 SYMBOL_LOCATION_BATON (sym) = baton;
9640 }
9641 }
9642
9643 /* Locate the compilation unit from CU's objfile which contains the
9644 DIE at OFFSET. Raises an error on failure. */
9645
9646 static struct dwarf2_per_cu_data *
9647 dwarf2_find_containing_comp_unit (unsigned long offset,
9648 struct objfile *objfile)
9649 {
9650 struct dwarf2_per_cu_data *this_cu;
9651 int low, high;
9652
9653 low = 0;
9654 high = dwarf2_per_objfile->n_comp_units - 1;
9655 while (high > low)
9656 {
9657 int mid = low + (high - low) / 2;
9658 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9659 high = mid;
9660 else
9661 low = mid + 1;
9662 }
9663 gdb_assert (low == high);
9664 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9665 {
9666 if (low == 0)
9667 error (_("Dwarf Error: could not find partial DIE containing "
9668 "offset 0x%lx [in module %s]"),
9669 (long) offset, bfd_get_filename (objfile->obfd));
9670
9671 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9672 return dwarf2_per_objfile->all_comp_units[low-1];
9673 }
9674 else
9675 {
9676 this_cu = dwarf2_per_objfile->all_comp_units[low];
9677 if (low == dwarf2_per_objfile->n_comp_units - 1
9678 && offset >= this_cu->offset + this_cu->length)
9679 error (_("invalid dwarf2 offset %ld"), offset);
9680 gdb_assert (offset < this_cu->offset + this_cu->length);
9681 return this_cu;
9682 }
9683 }
9684
9685 /* Locate the compilation unit from OBJFILE which is located at exactly
9686 OFFSET. Raises an error on failure. */
9687
9688 static struct dwarf2_per_cu_data *
9689 dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9690 {
9691 struct dwarf2_per_cu_data *this_cu;
9692 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9693 if (this_cu->offset != offset)
9694 error (_("no compilation unit with offset %ld."), offset);
9695 return this_cu;
9696 }
9697
9698 /* Release one cached compilation unit, CU. We unlink it from the tree
9699 of compilation units, but we don't remove it from the read_in_chain;
9700 the caller is responsible for that. */
9701
9702 static void
9703 free_one_comp_unit (void *data)
9704 {
9705 struct dwarf2_cu *cu = data;
9706
9707 if (cu->per_cu != NULL)
9708 cu->per_cu->cu = NULL;
9709 cu->per_cu = NULL;
9710
9711 obstack_free (&cu->comp_unit_obstack, NULL);
9712 if (cu->dies)
9713 free_die_list (cu->dies);
9714
9715 xfree (cu);
9716 }
9717
9718 /* This cleanup function is passed the address of a dwarf2_cu on the stack
9719 when we're finished with it. We can't free the pointer itself, but be
9720 sure to unlink it from the cache. Also release any associated storage
9721 and perform cache maintenance.
9722
9723 Only used during partial symbol parsing. */
9724
9725 static void
9726 free_stack_comp_unit (void *data)
9727 {
9728 struct dwarf2_cu *cu = data;
9729
9730 obstack_free (&cu->comp_unit_obstack, NULL);
9731 cu->partial_dies = NULL;
9732
9733 if (cu->per_cu != NULL)
9734 {
9735 /* This compilation unit is on the stack in our caller, so we
9736 should not xfree it. Just unlink it. */
9737 cu->per_cu->cu = NULL;
9738 cu->per_cu = NULL;
9739
9740 /* If we had a per-cu pointer, then we may have other compilation
9741 units loaded, so age them now. */
9742 age_cached_comp_units ();
9743 }
9744 }
9745
9746 /* Free all cached compilation units. */
9747
9748 static void
9749 free_cached_comp_units (void *data)
9750 {
9751 struct dwarf2_per_cu_data *per_cu, **last_chain;
9752
9753 per_cu = dwarf2_per_objfile->read_in_chain;
9754 last_chain = &dwarf2_per_objfile->read_in_chain;
9755 while (per_cu != NULL)
9756 {
9757 struct dwarf2_per_cu_data *next_cu;
9758
9759 next_cu = per_cu->cu->read_in_chain;
9760
9761 free_one_comp_unit (per_cu->cu);
9762 *last_chain = next_cu;
9763
9764 per_cu = next_cu;
9765 }
9766 }
9767
9768 /* Increase the age counter on each cached compilation unit, and free
9769 any that are too old. */
9770
9771 static void
9772 age_cached_comp_units (void)
9773 {
9774 struct dwarf2_per_cu_data *per_cu, **last_chain;
9775
9776 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9777 per_cu = dwarf2_per_objfile->read_in_chain;
9778 while (per_cu != NULL)
9779 {
9780 per_cu->cu->last_used ++;
9781 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
9782 dwarf2_mark (per_cu->cu);
9783 per_cu = per_cu->cu->read_in_chain;
9784 }
9785
9786 per_cu = dwarf2_per_objfile->read_in_chain;
9787 last_chain = &dwarf2_per_objfile->read_in_chain;
9788 while (per_cu != NULL)
9789 {
9790 struct dwarf2_per_cu_data *next_cu;
9791
9792 next_cu = per_cu->cu->read_in_chain;
9793
9794 if (!per_cu->cu->mark)
9795 {
9796 free_one_comp_unit (per_cu->cu);
9797 *last_chain = next_cu;
9798 }
9799 else
9800 last_chain = &per_cu->cu->read_in_chain;
9801
9802 per_cu = next_cu;
9803 }
9804 }
9805
9806 /* Remove a single compilation unit from the cache. */
9807
9808 static void
9809 free_one_cached_comp_unit (void *target_cu)
9810 {
9811 struct dwarf2_per_cu_data *per_cu, **last_chain;
9812
9813 per_cu = dwarf2_per_objfile->read_in_chain;
9814 last_chain = &dwarf2_per_objfile->read_in_chain;
9815 while (per_cu != NULL)
9816 {
9817 struct dwarf2_per_cu_data *next_cu;
9818
9819 next_cu = per_cu->cu->read_in_chain;
9820
9821 if (per_cu->cu == target_cu)
9822 {
9823 free_one_comp_unit (per_cu->cu);
9824 *last_chain = next_cu;
9825 break;
9826 }
9827 else
9828 last_chain = &per_cu->cu->read_in_chain;
9829
9830 per_cu = next_cu;
9831 }
9832 }
9833
9834 /* A pair of DIE offset and GDB type pointer. We store these
9835 in a hash table separate from the DIEs, and preserve them
9836 when the DIEs are flushed out of cache. */
9837
9838 struct dwarf2_offset_and_type
9839 {
9840 unsigned int offset;
9841 struct type *type;
9842 };
9843
9844 /* Hash function for a dwarf2_offset_and_type. */
9845
9846 static hashval_t
9847 offset_and_type_hash (const void *item)
9848 {
9849 const struct dwarf2_offset_and_type *ofs = item;
9850 return ofs->offset;
9851 }
9852
9853 /* Equality function for a dwarf2_offset_and_type. */
9854
9855 static int
9856 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
9857 {
9858 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
9859 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9860 return ofs_lhs->offset == ofs_rhs->offset;
9861 }
9862
9863 /* Set the type associated with DIE to TYPE. Save it in CU's hash
9864 table if necessary. */
9865
9866 static void
9867 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
9868 {
9869 struct dwarf2_offset_and_type **slot, ofs;
9870
9871 die->type = type;
9872
9873 if (cu->per_cu == NULL)
9874 return;
9875
9876 if (cu->per_cu->type_hash == NULL)
9877 cu->per_cu->type_hash
9878 = htab_create_alloc_ex (cu->header.length / 24,
9879 offset_and_type_hash,
9880 offset_and_type_eq,
9881 NULL,
9882 &cu->objfile->objfile_obstack,
9883 hashtab_obstack_allocate,
9884 dummy_obstack_deallocate);
9885
9886 ofs.offset = die->offset;
9887 ofs.type = type;
9888 slot = (struct dwarf2_offset_and_type **)
9889 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
9890 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
9891 **slot = ofs;
9892 }
9893
9894 /* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
9895 have a saved type. */
9896
9897 static struct type *
9898 get_die_type (struct die_info *die, htab_t type_hash)
9899 {
9900 struct dwarf2_offset_and_type *slot, ofs;
9901
9902 ofs.offset = die->offset;
9903 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
9904 if (slot)
9905 return slot->type;
9906 else
9907 return NULL;
9908 }
9909
9910 /* Restore the types of the DIE tree starting at START_DIE from the hash
9911 table saved in CU. */
9912
9913 static void
9914 reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
9915 {
9916 struct die_info *die;
9917
9918 if (cu->per_cu->type_hash == NULL)
9919 return;
9920
9921 for (die = start_die; die != NULL; die = die->sibling)
9922 {
9923 die->type = get_die_type (die, cu->per_cu->type_hash);
9924 if (die->child != NULL)
9925 reset_die_and_siblings_types (die->child, cu);
9926 }
9927 }
9928
9929 /* Set the mark field in CU and in every other compilation unit in the
9930 cache that we must keep because we are keeping CU. */
9931
9932 /* Add a dependence relationship from CU to REF_PER_CU. */
9933
9934 static void
9935 dwarf2_add_dependence (struct dwarf2_cu *cu,
9936 struct dwarf2_per_cu_data *ref_per_cu)
9937 {
9938 void **slot;
9939
9940 if (cu->dependencies == NULL)
9941 cu->dependencies
9942 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
9943 NULL, &cu->comp_unit_obstack,
9944 hashtab_obstack_allocate,
9945 dummy_obstack_deallocate);
9946
9947 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
9948 if (*slot == NULL)
9949 *slot = ref_per_cu;
9950 }
9951
9952 /* Set the mark field in CU and in every other compilation unit in the
9953 cache that we must keep because we are keeping CU. */
9954
9955 static int
9956 dwarf2_mark_helper (void **slot, void *data)
9957 {
9958 struct dwarf2_per_cu_data *per_cu;
9959
9960 per_cu = (struct dwarf2_per_cu_data *) *slot;
9961 if (per_cu->cu->mark)
9962 return 1;
9963 per_cu->cu->mark = 1;
9964
9965 if (per_cu->cu->dependencies != NULL)
9966 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
9967
9968 return 1;
9969 }
9970
9971 static void
9972 dwarf2_mark (struct dwarf2_cu *cu)
9973 {
9974 if (cu->mark)
9975 return;
9976 cu->mark = 1;
9977 if (cu->dependencies != NULL)
9978 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
9979 }
9980
9981 static void
9982 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
9983 {
9984 while (per_cu)
9985 {
9986 per_cu->cu->mark = 0;
9987 per_cu = per_cu->cu->read_in_chain;
9988 }
9989 }
9990
9991 /* Trivial hash function for partial_die_info: the hash value of a DIE
9992 is its offset in .debug_info for this objfile. */
9993
9994 static hashval_t
9995 partial_die_hash (const void *item)
9996 {
9997 const struct partial_die_info *part_die = item;
9998 return part_die->offset;
9999 }
10000
10001 /* Trivial comparison function for partial_die_info structures: two DIEs
10002 are equal if they have the same offset. */
10003
10004 static int
10005 partial_die_eq (const void *item_lhs, const void *item_rhs)
10006 {
10007 const struct partial_die_info *part_die_lhs = item_lhs;
10008 const struct partial_die_info *part_die_rhs = item_rhs;
10009 return part_die_lhs->offset == part_die_rhs->offset;
10010 }
10011
10012 static struct cmd_list_element *set_dwarf2_cmdlist;
10013 static struct cmd_list_element *show_dwarf2_cmdlist;
10014
10015 static void
10016 set_dwarf2_cmd (char *args, int from_tty)
10017 {
10018 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
10019 }
10020
10021 static void
10022 show_dwarf2_cmd (char *args, int from_tty)
10023 {
10024 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
10025 }
10026
10027 void _initialize_dwarf2_read (void);
10028
10029 void
10030 _initialize_dwarf2_read (void)
10031 {
10032 dwarf2_objfile_data_key = register_objfile_data ();
10033
10034 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
10035 Set DWARF 2 specific variables.\n\
10036 Configure DWARF 2 variables such as the cache size"),
10037 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
10038 0/*allow-unknown*/, &maintenance_set_cmdlist);
10039
10040 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
10041 Show DWARF 2 specific variables\n\
10042 Show DWARF 2 variables such as the cache size"),
10043 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
10044 0/*allow-unknown*/, &maintenance_show_cmdlist);
10045
10046 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
10047 &dwarf2_max_cache_age, _("\
10048 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
10049 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
10050 A higher limit means that cached compilation units will be stored\n\
10051 in memory longer, and more total memory will be used. Zero disables\n\
10052 caching, which can slow down startup."),
10053 NULL,
10054 show_dwarf2_max_cache_age,
10055 &set_dwarf2_cmdlist,
10056 &show_dwarf2_cmdlist);
10057 }
This page took 0.337925 seconds and 5 git commands to generate.