Add zex instruction support for moxie port
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72
73 #include <fcntl.h>
74 #include <sys/types.h>
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 /* When == 1, print basic high level tracing messages.
80 When > 1, be more verbose.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static unsigned int dwarf2_read_debug = 0;
83
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug = 0;
86
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
89
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
92
93 static const struct objfile_data *dwarf2_objfile_data_key;
94
95 /* The "aclass" indices for various kinds of computed DWARF symbols. */
96
97 static int dwarf2_locexpr_index;
98 static int dwarf2_loclist_index;
99 static int dwarf2_locexpr_block_index;
100 static int dwarf2_loclist_block_index;
101
102 /* A descriptor for dwarf sections.
103
104 S.ASECTION, SIZE are typically initialized when the objfile is first
105 scanned. BUFFER, READIN are filled in later when the section is read.
106 If the section contained compressed data then SIZE is updated to record
107 the uncompressed size of the section.
108
109 DWP file format V2 introduces a wrinkle that is easiest to handle by
110 creating the concept of virtual sections contained within a real section.
111 In DWP V2 the sections of the input DWO files are concatenated together
112 into one section, but section offsets are kept relative to the original
113 input section.
114 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
115 the real section this "virtual" section is contained in, and BUFFER,SIZE
116 describe the virtual section. */
117
118 struct dwarf2_section_info
119 {
120 union
121 {
122 /* If this is a real section, the bfd section. */
123 asection *asection;
124 /* If this is a virtual section, pointer to the containing ("real")
125 section. */
126 struct dwarf2_section_info *containing_section;
127 } s;
128 /* Pointer to section data, only valid if readin. */
129 const gdb_byte *buffer;
130 /* The size of the section, real or virtual. */
131 bfd_size_type size;
132 /* If this is a virtual section, the offset in the real section.
133 Only valid if is_virtual. */
134 bfd_size_type virtual_offset;
135 /* True if we have tried to read this section. */
136 char readin;
137 /* True if this is a virtual section, False otherwise.
138 This specifies which of s.asection and s.containing_section to use. */
139 char is_virtual;
140 };
141
142 typedef struct dwarf2_section_info dwarf2_section_info_def;
143 DEF_VEC_O (dwarf2_section_info_def);
144
145 /* All offsets in the index are of this type. It must be
146 architecture-independent. */
147 typedef uint32_t offset_type;
148
149 DEF_VEC_I (offset_type);
150
151 /* Ensure only legit values are used. */
152 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
153 do { \
154 gdb_assert ((unsigned int) (value) <= 1); \
155 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
156 } while (0)
157
158 /* Ensure only legit values are used. */
159 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
160 do { \
161 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
162 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
163 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
164 } while (0)
165
166 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
167 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
168 do { \
169 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
170 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
171 } while (0)
172
173 /* A description of the mapped index. The file format is described in
174 a comment by the code that writes the index. */
175 struct mapped_index
176 {
177 /* Index data format version. */
178 int version;
179
180 /* The total length of the buffer. */
181 off_t total_size;
182
183 /* A pointer to the address table data. */
184 const gdb_byte *address_table;
185
186 /* Size of the address table data in bytes. */
187 offset_type address_table_size;
188
189 /* The symbol table, implemented as a hash table. */
190 const offset_type *symbol_table;
191
192 /* Size in slots, each slot is 2 offset_types. */
193 offset_type symbol_table_slots;
194
195 /* A pointer to the constant pool. */
196 const char *constant_pool;
197 };
198
199 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
200 DEF_VEC_P (dwarf2_per_cu_ptr);
201
202 /* Collection of data recorded per objfile.
203 This hangs off of dwarf2_objfile_data_key. */
204
205 struct dwarf2_per_objfile
206 {
207 struct dwarf2_section_info info;
208 struct dwarf2_section_info abbrev;
209 struct dwarf2_section_info line;
210 struct dwarf2_section_info loc;
211 struct dwarf2_section_info macinfo;
212 struct dwarf2_section_info macro;
213 struct dwarf2_section_info str;
214 struct dwarf2_section_info ranges;
215 struct dwarf2_section_info addr;
216 struct dwarf2_section_info frame;
217 struct dwarf2_section_info eh_frame;
218 struct dwarf2_section_info gdb_index;
219
220 VEC (dwarf2_section_info_def) *types;
221
222 /* Back link. */
223 struct objfile *objfile;
224
225 /* Table of all the compilation units. This is used to locate
226 the target compilation unit of a particular reference. */
227 struct dwarf2_per_cu_data **all_comp_units;
228
229 /* The number of compilation units in ALL_COMP_UNITS. */
230 int n_comp_units;
231
232 /* The number of .debug_types-related CUs. */
233 int n_type_units;
234
235 /* The number of elements allocated in all_type_units.
236 If there are skeleton-less TUs, we add them to all_type_units lazily. */
237 int n_allocated_type_units;
238
239 /* The .debug_types-related CUs (TUs).
240 This is stored in malloc space because we may realloc it. */
241 struct signatured_type **all_type_units;
242
243 /* Table of struct type_unit_group objects.
244 The hash key is the DW_AT_stmt_list value. */
245 htab_t type_unit_groups;
246
247 /* A table mapping .debug_types signatures to its signatured_type entry.
248 This is NULL if the .debug_types section hasn't been read in yet. */
249 htab_t signatured_types;
250
251 /* Type unit statistics, to see how well the scaling improvements
252 are doing. */
253 struct tu_stats
254 {
255 int nr_uniq_abbrev_tables;
256 int nr_symtabs;
257 int nr_symtab_sharers;
258 int nr_stmt_less_type_units;
259 int nr_all_type_units_reallocs;
260 } tu_stats;
261
262 /* A chain of compilation units that are currently read in, so that
263 they can be freed later. */
264 struct dwarf2_per_cu_data *read_in_chain;
265
266 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
267 This is NULL if the table hasn't been allocated yet. */
268 htab_t dwo_files;
269
270 /* Non-zero if we've check for whether there is a DWP file. */
271 int dwp_checked;
272
273 /* The DWP file if there is one, or NULL. */
274 struct dwp_file *dwp_file;
275
276 /* The shared '.dwz' file, if one exists. This is used when the
277 original data was compressed using 'dwz -m'. */
278 struct dwz_file *dwz_file;
279
280 /* A flag indicating wether this objfile has a section loaded at a
281 VMA of 0. */
282 int has_section_at_zero;
283
284 /* True if we are using the mapped index,
285 or we are faking it for OBJF_READNOW's sake. */
286 unsigned char using_index;
287
288 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
289 struct mapped_index *index_table;
290
291 /* When using index_table, this keeps track of all quick_file_names entries.
292 TUs typically share line table entries with a CU, so we maintain a
293 separate table of all line table entries to support the sharing.
294 Note that while there can be way more TUs than CUs, we've already
295 sorted all the TUs into "type unit groups", grouped by their
296 DW_AT_stmt_list value. Therefore the only sharing done here is with a
297 CU and its associated TU group if there is one. */
298 htab_t quick_file_names_table;
299
300 /* Set during partial symbol reading, to prevent queueing of full
301 symbols. */
302 int reading_partial_symbols;
303
304 /* Table mapping type DIEs to their struct type *.
305 This is NULL if not allocated yet.
306 The mapping is done via (CU/TU + DIE offset) -> type. */
307 htab_t die_type_hash;
308
309 /* The CUs we recently read. */
310 VEC (dwarf2_per_cu_ptr) *just_read_cus;
311 };
312
313 static struct dwarf2_per_objfile *dwarf2_per_objfile;
314
315 /* Default names of the debugging sections. */
316
317 /* Note that if the debugging section has been compressed, it might
318 have a name like .zdebug_info. */
319
320 static const struct dwarf2_debug_sections dwarf2_elf_names =
321 {
322 { ".debug_info", ".zdebug_info" },
323 { ".debug_abbrev", ".zdebug_abbrev" },
324 { ".debug_line", ".zdebug_line" },
325 { ".debug_loc", ".zdebug_loc" },
326 { ".debug_macinfo", ".zdebug_macinfo" },
327 { ".debug_macro", ".zdebug_macro" },
328 { ".debug_str", ".zdebug_str" },
329 { ".debug_ranges", ".zdebug_ranges" },
330 { ".debug_types", ".zdebug_types" },
331 { ".debug_addr", ".zdebug_addr" },
332 { ".debug_frame", ".zdebug_frame" },
333 { ".eh_frame", NULL },
334 { ".gdb_index", ".zgdb_index" },
335 23
336 };
337
338 /* List of DWO/DWP sections. */
339
340 static const struct dwop_section_names
341 {
342 struct dwarf2_section_names abbrev_dwo;
343 struct dwarf2_section_names info_dwo;
344 struct dwarf2_section_names line_dwo;
345 struct dwarf2_section_names loc_dwo;
346 struct dwarf2_section_names macinfo_dwo;
347 struct dwarf2_section_names macro_dwo;
348 struct dwarf2_section_names str_dwo;
349 struct dwarf2_section_names str_offsets_dwo;
350 struct dwarf2_section_names types_dwo;
351 struct dwarf2_section_names cu_index;
352 struct dwarf2_section_names tu_index;
353 }
354 dwop_section_names =
355 {
356 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
357 { ".debug_info.dwo", ".zdebug_info.dwo" },
358 { ".debug_line.dwo", ".zdebug_line.dwo" },
359 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
360 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
361 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
362 { ".debug_str.dwo", ".zdebug_str.dwo" },
363 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
364 { ".debug_types.dwo", ".zdebug_types.dwo" },
365 { ".debug_cu_index", ".zdebug_cu_index" },
366 { ".debug_tu_index", ".zdebug_tu_index" },
367 };
368
369 /* local data types */
370
371 /* The data in a compilation unit header, after target2host
372 translation, looks like this. */
373 struct comp_unit_head
374 {
375 unsigned int length;
376 short version;
377 unsigned char addr_size;
378 unsigned char signed_addr_p;
379 sect_offset abbrev_offset;
380
381 /* Size of file offsets; either 4 or 8. */
382 unsigned int offset_size;
383
384 /* Size of the length field; either 4 or 12. */
385 unsigned int initial_length_size;
386
387 /* Offset to the first byte of this compilation unit header in the
388 .debug_info section, for resolving relative reference dies. */
389 sect_offset offset;
390
391 /* Offset to first die in this cu from the start of the cu.
392 This will be the first byte following the compilation unit header. */
393 cu_offset first_die_offset;
394 };
395
396 /* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398 struct delayed_method_info
399 {
400 /* The type to which the method is attached, i.e., its parent class. */
401 struct type *type;
402
403 /* The index of the method in the type's function fieldlists. */
404 int fnfield_index;
405
406 /* The index of the method in the fieldlist. */
407 int index;
408
409 /* The name of the DIE. */
410 const char *name;
411
412 /* The DIE associated with this method. */
413 struct die_info *die;
414 };
415
416 typedef struct delayed_method_info delayed_method_info;
417 DEF_VEC_O (delayed_method_info);
418
419 /* Internal state when decoding a particular compilation unit. */
420 struct dwarf2_cu
421 {
422 /* The objfile containing this compilation unit. */
423 struct objfile *objfile;
424
425 /* The header of the compilation unit. */
426 struct comp_unit_head header;
427
428 /* Base address of this compilation unit. */
429 CORE_ADDR base_address;
430
431 /* Non-zero if base_address has been set. */
432 int base_known;
433
434 /* The language we are debugging. */
435 enum language language;
436 const struct language_defn *language_defn;
437
438 const char *producer;
439
440 /* The generic symbol table building routines have separate lists for
441 file scope symbols and all all other scopes (local scopes). So
442 we need to select the right one to pass to add_symbol_to_list().
443 We do it by keeping a pointer to the correct list in list_in_scope.
444
445 FIXME: The original dwarf code just treated the file scope as the
446 first local scope, and all other local scopes as nested local
447 scopes, and worked fine. Check to see if we really need to
448 distinguish these in buildsym.c. */
449 struct pending **list_in_scope;
450
451 /* The abbrev table for this CU.
452 Normally this points to the abbrev table in the objfile.
453 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
454 struct abbrev_table *abbrev_table;
455
456 /* Hash table holding all the loaded partial DIEs
457 with partial_die->offset.SECT_OFF as hash. */
458 htab_t partial_dies;
459
460 /* Storage for things with the same lifetime as this read-in compilation
461 unit, including partial DIEs. */
462 struct obstack comp_unit_obstack;
463
464 /* When multiple dwarf2_cu structures are living in memory, this field
465 chains them all together, so that they can be released efficiently.
466 We will probably also want a generation counter so that most-recently-used
467 compilation units are cached... */
468 struct dwarf2_per_cu_data *read_in_chain;
469
470 /* Backlink to our per_cu entry. */
471 struct dwarf2_per_cu_data *per_cu;
472
473 /* How many compilation units ago was this CU last referenced? */
474 int last_used;
475
476 /* A hash table of DIE cu_offset for following references with
477 die_info->offset.sect_off as hash. */
478 htab_t die_hash;
479
480 /* Full DIEs if read in. */
481 struct die_info *dies;
482
483 /* A set of pointers to dwarf2_per_cu_data objects for compilation
484 units referenced by this one. Only set during full symbol processing;
485 partial symbol tables do not have dependencies. */
486 htab_t dependencies;
487
488 /* Header data from the line table, during full symbol processing. */
489 struct line_header *line_header;
490
491 /* A list of methods which need to have physnames computed
492 after all type information has been read. */
493 VEC (delayed_method_info) *method_list;
494
495 /* To be copied to symtab->call_site_htab. */
496 htab_t call_site_htab;
497
498 /* Non-NULL if this CU came from a DWO file.
499 There is an invariant here that is important to remember:
500 Except for attributes copied from the top level DIE in the "main"
501 (or "stub") file in preparation for reading the DWO file
502 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
503 Either there isn't a DWO file (in which case this is NULL and the point
504 is moot), or there is and either we're not going to read it (in which
505 case this is NULL) or there is and we are reading it (in which case this
506 is non-NULL). */
507 struct dwo_unit *dwo_unit;
508
509 /* The DW_AT_addr_base attribute if present, zero otherwise
510 (zero is a valid value though).
511 Note this value comes from the Fission stub CU/TU's DIE. */
512 ULONGEST addr_base;
513
514 /* The DW_AT_ranges_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the Fission stub CU/TU's DIE.
517 Also note that the value is zero in the non-DWO case so this value can
518 be used without needing to know whether DWO files are in use or not.
519 N.B. This does not apply to DW_AT_ranges appearing in
520 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
521 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
522 DW_AT_ranges_base *would* have to be applied, and we'd have to care
523 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
524 ULONGEST ranges_base;
525
526 /* Mark used when releasing cached dies. */
527 unsigned int mark : 1;
528
529 /* This CU references .debug_loc. See the symtab->locations_valid field.
530 This test is imperfect as there may exist optimized debug code not using
531 any location list and still facing inlining issues if handled as
532 unoptimized code. For a future better test see GCC PR other/32998. */
533 unsigned int has_loclist : 1;
534
535 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
536 if all the producer_is_* fields are valid. This information is cached
537 because profiling CU expansion showed excessive time spent in
538 producer_is_gxx_lt_4_6. */
539 unsigned int checked_producer : 1;
540 unsigned int producer_is_gxx_lt_4_6 : 1;
541 unsigned int producer_is_gcc_lt_4_3 : 1;
542 unsigned int producer_is_icc : 1;
543
544 /* When set, the file that we're processing is known to have
545 debugging info for C++ namespaces. GCC 3.3.x did not produce
546 this information, but later versions do. */
547
548 unsigned int processing_has_namespace_info : 1;
549 };
550
551 /* Persistent data held for a compilation unit, even when not
552 processing it. We put a pointer to this structure in the
553 read_symtab_private field of the psymtab. */
554
555 struct dwarf2_per_cu_data
556 {
557 /* The start offset and length of this compilation unit.
558 NOTE: Unlike comp_unit_head.length, this length includes
559 initial_length_size.
560 If the DIE refers to a DWO file, this is always of the original die,
561 not the DWO file. */
562 sect_offset offset;
563 unsigned int length;
564
565 /* Flag indicating this compilation unit will be read in before
566 any of the current compilation units are processed. */
567 unsigned int queued : 1;
568
569 /* This flag will be set when reading partial DIEs if we need to load
570 absolutely all DIEs for this compilation unit, instead of just the ones
571 we think are interesting. It gets set if we look for a DIE in the
572 hash table and don't find it. */
573 unsigned int load_all_dies : 1;
574
575 /* Non-zero if this CU is from .debug_types.
576 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
577 this is non-zero. */
578 unsigned int is_debug_types : 1;
579
580 /* Non-zero if this CU is from the .dwz file. */
581 unsigned int is_dwz : 1;
582
583 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
584 This flag is only valid if is_debug_types is true.
585 We can't read a CU directly from a DWO file: There are required
586 attributes in the stub. */
587 unsigned int reading_dwo_directly : 1;
588
589 /* Non-zero if the TU has been read.
590 This is used to assist the "Stay in DWO Optimization" for Fission:
591 When reading a DWO, it's faster to read TUs from the DWO instead of
592 fetching them from random other DWOs (due to comdat folding).
593 If the TU has already been read, the optimization is unnecessary
594 (and unwise - we don't want to change where gdb thinks the TU lives
595 "midflight").
596 This flag is only valid if is_debug_types is true. */
597 unsigned int tu_read : 1;
598
599 /* The section this CU/TU lives in.
600 If the DIE refers to a DWO file, this is always the original die,
601 not the DWO file. */
602 struct dwarf2_section_info *section;
603
604 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
605 of the CU cache it gets reset to NULL again. */
606 struct dwarf2_cu *cu;
607
608 /* The corresponding objfile.
609 Normally we can get the objfile from dwarf2_per_objfile.
610 However we can enter this file with just a "per_cu" handle. */
611 struct objfile *objfile;
612
613 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
614 is active. Otherwise, the 'psymtab' field is active. */
615 union
616 {
617 /* The partial symbol table associated with this compilation unit,
618 or NULL for unread partial units. */
619 struct partial_symtab *psymtab;
620
621 /* Data needed by the "quick" functions. */
622 struct dwarf2_per_cu_quick_data *quick;
623 } v;
624
625 /* The CUs we import using DW_TAG_imported_unit. This is filled in
626 while reading psymtabs, used to compute the psymtab dependencies,
627 and then cleared. Then it is filled in again while reading full
628 symbols, and only deleted when the objfile is destroyed.
629
630 This is also used to work around a difference between the way gold
631 generates .gdb_index version <=7 and the way gdb does. Arguably this
632 is a gold bug. For symbols coming from TUs, gold records in the index
633 the CU that includes the TU instead of the TU itself. This breaks
634 dw2_lookup_symbol: It assumes that if the index says symbol X lives
635 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
636 will find X. Alas TUs live in their own symtab, so after expanding CU Y
637 we need to look in TU Z to find X. Fortunately, this is akin to
638 DW_TAG_imported_unit, so we just use the same mechanism: For
639 .gdb_index version <=7 this also records the TUs that the CU referred
640 to. Concurrently with this change gdb was modified to emit version 8
641 indices so we only pay a price for gold generated indices.
642 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
643 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
644 };
645
646 /* Entry in the signatured_types hash table. */
647
648 struct signatured_type
649 {
650 /* The "per_cu" object of this type.
651 This struct is used iff per_cu.is_debug_types.
652 N.B.: This is the first member so that it's easy to convert pointers
653 between them. */
654 struct dwarf2_per_cu_data per_cu;
655
656 /* The type's signature. */
657 ULONGEST signature;
658
659 /* Offset in the TU of the type's DIE, as read from the TU header.
660 If this TU is a DWO stub and the definition lives in a DWO file
661 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
662 cu_offset type_offset_in_tu;
663
664 /* Offset in the section of the type's DIE.
665 If the definition lives in a DWO file, this is the offset in the
666 .debug_types.dwo section.
667 The value is zero until the actual value is known.
668 Zero is otherwise not a valid section offset. */
669 sect_offset type_offset_in_section;
670
671 /* Type units are grouped by their DW_AT_stmt_list entry so that they
672 can share them. This points to the containing symtab. */
673 struct type_unit_group *type_unit_group;
674
675 /* The type.
676 The first time we encounter this type we fully read it in and install it
677 in the symbol tables. Subsequent times we only need the type. */
678 struct type *type;
679
680 /* Containing DWO unit.
681 This field is valid iff per_cu.reading_dwo_directly. */
682 struct dwo_unit *dwo_unit;
683 };
684
685 typedef struct signatured_type *sig_type_ptr;
686 DEF_VEC_P (sig_type_ptr);
687
688 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
689 This includes type_unit_group and quick_file_names. */
690
691 struct stmt_list_hash
692 {
693 /* The DWO unit this table is from or NULL if there is none. */
694 struct dwo_unit *dwo_unit;
695
696 /* Offset in .debug_line or .debug_line.dwo. */
697 sect_offset line_offset;
698 };
699
700 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
701 an object of this type. */
702
703 struct type_unit_group
704 {
705 /* dwarf2read.c's main "handle" on a TU symtab.
706 To simplify things we create an artificial CU that "includes" all the
707 type units using this stmt_list so that the rest of the code still has
708 a "per_cu" handle on the symtab.
709 This PER_CU is recognized by having no section. */
710 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
711 struct dwarf2_per_cu_data per_cu;
712
713 /* The TUs that share this DW_AT_stmt_list entry.
714 This is added to while parsing type units to build partial symtabs,
715 and is deleted afterwards and not used again. */
716 VEC (sig_type_ptr) *tus;
717
718 /* The compunit symtab.
719 Type units in a group needn't all be defined in the same source file,
720 so we create an essentially anonymous symtab as the compunit symtab. */
721 struct compunit_symtab *compunit_symtab;
722
723 /* The data used to construct the hash key. */
724 struct stmt_list_hash hash;
725
726 /* The number of symtabs from the line header.
727 The value here must match line_header.num_file_names. */
728 unsigned int num_symtabs;
729
730 /* The symbol tables for this TU (obtained from the files listed in
731 DW_AT_stmt_list).
732 WARNING: The order of entries here must match the order of entries
733 in the line header. After the first TU using this type_unit_group, the
734 line header for the subsequent TUs is recreated from this. This is done
735 because we need to use the same symtabs for each TU using the same
736 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
737 there's no guarantee the line header doesn't have duplicate entries. */
738 struct symtab **symtabs;
739 };
740
741 /* These sections are what may appear in a (real or virtual) DWO file. */
742
743 struct dwo_sections
744 {
745 struct dwarf2_section_info abbrev;
746 struct dwarf2_section_info line;
747 struct dwarf2_section_info loc;
748 struct dwarf2_section_info macinfo;
749 struct dwarf2_section_info macro;
750 struct dwarf2_section_info str;
751 struct dwarf2_section_info str_offsets;
752 /* In the case of a virtual DWO file, these two are unused. */
753 struct dwarf2_section_info info;
754 VEC (dwarf2_section_info_def) *types;
755 };
756
757 /* CUs/TUs in DWP/DWO files. */
758
759 struct dwo_unit
760 {
761 /* Backlink to the containing struct dwo_file. */
762 struct dwo_file *dwo_file;
763
764 /* The "id" that distinguishes this CU/TU.
765 .debug_info calls this "dwo_id", .debug_types calls this "signature".
766 Since signatures came first, we stick with it for consistency. */
767 ULONGEST signature;
768
769 /* The section this CU/TU lives in, in the DWO file. */
770 struct dwarf2_section_info *section;
771
772 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
773 sect_offset offset;
774 unsigned int length;
775
776 /* For types, offset in the type's DIE of the type defined by this TU. */
777 cu_offset type_offset_in_tu;
778 };
779
780 /* include/dwarf2.h defines the DWP section codes.
781 It defines a max value but it doesn't define a min value, which we
782 use for error checking, so provide one. */
783
784 enum dwp_v2_section_ids
785 {
786 DW_SECT_MIN = 1
787 };
788
789 /* Data for one DWO file.
790
791 This includes virtual DWO files (a virtual DWO file is a DWO file as it
792 appears in a DWP file). DWP files don't really have DWO files per se -
793 comdat folding of types "loses" the DWO file they came from, and from
794 a high level view DWP files appear to contain a mass of random types.
795 However, to maintain consistency with the non-DWP case we pretend DWP
796 files contain virtual DWO files, and we assign each TU with one virtual
797 DWO file (generally based on the line and abbrev section offsets -
798 a heuristic that seems to work in practice). */
799
800 struct dwo_file
801 {
802 /* The DW_AT_GNU_dwo_name attribute.
803 For virtual DWO files the name is constructed from the section offsets
804 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
805 from related CU+TUs. */
806 const char *dwo_name;
807
808 /* The DW_AT_comp_dir attribute. */
809 const char *comp_dir;
810
811 /* The bfd, when the file is open. Otherwise this is NULL.
812 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
813 bfd *dbfd;
814
815 /* The sections that make up this DWO file.
816 Remember that for virtual DWO files in DWP V2, these are virtual
817 sections (for lack of a better name). */
818 struct dwo_sections sections;
819
820 /* The CU in the file.
821 We only support one because having more than one requires hacking the
822 dwo_name of each to match, which is highly unlikely to happen.
823 Doing this means all TUs can share comp_dir: We also assume that
824 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
825 struct dwo_unit *cu;
826
827 /* Table of TUs in the file.
828 Each element is a struct dwo_unit. */
829 htab_t tus;
830 };
831
832 /* These sections are what may appear in a DWP file. */
833
834 struct dwp_sections
835 {
836 /* These are used by both DWP version 1 and 2. */
837 struct dwarf2_section_info str;
838 struct dwarf2_section_info cu_index;
839 struct dwarf2_section_info tu_index;
840
841 /* These are only used by DWP version 2 files.
842 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
843 sections are referenced by section number, and are not recorded here.
844 In DWP version 2 there is at most one copy of all these sections, each
845 section being (effectively) comprised of the concatenation of all of the
846 individual sections that exist in the version 1 format.
847 To keep the code simple we treat each of these concatenated pieces as a
848 section itself (a virtual section?). */
849 struct dwarf2_section_info abbrev;
850 struct dwarf2_section_info info;
851 struct dwarf2_section_info line;
852 struct dwarf2_section_info loc;
853 struct dwarf2_section_info macinfo;
854 struct dwarf2_section_info macro;
855 struct dwarf2_section_info str_offsets;
856 struct dwarf2_section_info types;
857 };
858
859 /* These sections are what may appear in a virtual DWO file in DWP version 1.
860 A virtual DWO file is a DWO file as it appears in a DWP file. */
861
862 struct virtual_v1_dwo_sections
863 {
864 struct dwarf2_section_info abbrev;
865 struct dwarf2_section_info line;
866 struct dwarf2_section_info loc;
867 struct dwarf2_section_info macinfo;
868 struct dwarf2_section_info macro;
869 struct dwarf2_section_info str_offsets;
870 /* Each DWP hash table entry records one CU or one TU.
871 That is recorded here, and copied to dwo_unit.section. */
872 struct dwarf2_section_info info_or_types;
873 };
874
875 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
876 In version 2, the sections of the DWO files are concatenated together
877 and stored in one section of that name. Thus each ELF section contains
878 several "virtual" sections. */
879
880 struct virtual_v2_dwo_sections
881 {
882 bfd_size_type abbrev_offset;
883 bfd_size_type abbrev_size;
884
885 bfd_size_type line_offset;
886 bfd_size_type line_size;
887
888 bfd_size_type loc_offset;
889 bfd_size_type loc_size;
890
891 bfd_size_type macinfo_offset;
892 bfd_size_type macinfo_size;
893
894 bfd_size_type macro_offset;
895 bfd_size_type macro_size;
896
897 bfd_size_type str_offsets_offset;
898 bfd_size_type str_offsets_size;
899
900 /* Each DWP hash table entry records one CU or one TU.
901 That is recorded here, and copied to dwo_unit.section. */
902 bfd_size_type info_or_types_offset;
903 bfd_size_type info_or_types_size;
904 };
905
906 /* Contents of DWP hash tables. */
907
908 struct dwp_hash_table
909 {
910 uint32_t version, nr_columns;
911 uint32_t nr_units, nr_slots;
912 const gdb_byte *hash_table, *unit_table;
913 union
914 {
915 struct
916 {
917 const gdb_byte *indices;
918 } v1;
919 struct
920 {
921 /* This is indexed by column number and gives the id of the section
922 in that column. */
923 #define MAX_NR_V2_DWO_SECTIONS \
924 (1 /* .debug_info or .debug_types */ \
925 + 1 /* .debug_abbrev */ \
926 + 1 /* .debug_line */ \
927 + 1 /* .debug_loc */ \
928 + 1 /* .debug_str_offsets */ \
929 + 1 /* .debug_macro or .debug_macinfo */)
930 int section_ids[MAX_NR_V2_DWO_SECTIONS];
931 const gdb_byte *offsets;
932 const gdb_byte *sizes;
933 } v2;
934 } section_pool;
935 };
936
937 /* Data for one DWP file. */
938
939 struct dwp_file
940 {
941 /* Name of the file. */
942 const char *name;
943
944 /* File format version. */
945 int version;
946
947 /* The bfd. */
948 bfd *dbfd;
949
950 /* Section info for this file. */
951 struct dwp_sections sections;
952
953 /* Table of CUs in the file. */
954 const struct dwp_hash_table *cus;
955
956 /* Table of TUs in the file. */
957 const struct dwp_hash_table *tus;
958
959 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
960 htab_t loaded_cus;
961 htab_t loaded_tus;
962
963 /* Table to map ELF section numbers to their sections.
964 This is only needed for the DWP V1 file format. */
965 unsigned int num_sections;
966 asection **elf_sections;
967 };
968
969 /* This represents a '.dwz' file. */
970
971 struct dwz_file
972 {
973 /* A dwz file can only contain a few sections. */
974 struct dwarf2_section_info abbrev;
975 struct dwarf2_section_info info;
976 struct dwarf2_section_info str;
977 struct dwarf2_section_info line;
978 struct dwarf2_section_info macro;
979 struct dwarf2_section_info gdb_index;
980
981 /* The dwz's BFD. */
982 bfd *dwz_bfd;
983 };
984
985 /* Struct used to pass misc. parameters to read_die_and_children, et
986 al. which are used for both .debug_info and .debug_types dies.
987 All parameters here are unchanging for the life of the call. This
988 struct exists to abstract away the constant parameters of die reading. */
989
990 struct die_reader_specs
991 {
992 /* The bfd of die_section. */
993 bfd* abfd;
994
995 /* The CU of the DIE we are parsing. */
996 struct dwarf2_cu *cu;
997
998 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
999 struct dwo_file *dwo_file;
1000
1001 /* The section the die comes from.
1002 This is either .debug_info or .debug_types, or the .dwo variants. */
1003 struct dwarf2_section_info *die_section;
1004
1005 /* die_section->buffer. */
1006 const gdb_byte *buffer;
1007
1008 /* The end of the buffer. */
1009 const gdb_byte *buffer_end;
1010
1011 /* The value of the DW_AT_comp_dir attribute. */
1012 const char *comp_dir;
1013 };
1014
1015 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1016 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1017 const gdb_byte *info_ptr,
1018 struct die_info *comp_unit_die,
1019 int has_children,
1020 void *data);
1021
1022 /* The line number information for a compilation unit (found in the
1023 .debug_line section) begins with a "statement program header",
1024 which contains the following information. */
1025 struct line_header
1026 {
1027 unsigned int total_length;
1028 unsigned short version;
1029 unsigned int header_length;
1030 unsigned char minimum_instruction_length;
1031 unsigned char maximum_ops_per_instruction;
1032 unsigned char default_is_stmt;
1033 int line_base;
1034 unsigned char line_range;
1035 unsigned char opcode_base;
1036
1037 /* standard_opcode_lengths[i] is the number of operands for the
1038 standard opcode whose value is i. This means that
1039 standard_opcode_lengths[0] is unused, and the last meaningful
1040 element is standard_opcode_lengths[opcode_base - 1]. */
1041 unsigned char *standard_opcode_lengths;
1042
1043 /* The include_directories table. NOTE! These strings are not
1044 allocated with xmalloc; instead, they are pointers into
1045 debug_line_buffer. If you try to free them, `free' will get
1046 indigestion. */
1047 unsigned int num_include_dirs, include_dirs_size;
1048 const char **include_dirs;
1049
1050 /* The file_names table. NOTE! These strings are not allocated
1051 with xmalloc; instead, they are pointers into debug_line_buffer.
1052 Don't try to free them directly. */
1053 unsigned int num_file_names, file_names_size;
1054 struct file_entry
1055 {
1056 const char *name;
1057 unsigned int dir_index;
1058 unsigned int mod_time;
1059 unsigned int length;
1060 int included_p; /* Non-zero if referenced by the Line Number Program. */
1061 struct symtab *symtab; /* The associated symbol table, if any. */
1062 } *file_names;
1063
1064 /* The start and end of the statement program following this
1065 header. These point into dwarf2_per_objfile->line_buffer. */
1066 const gdb_byte *statement_program_start, *statement_program_end;
1067 };
1068
1069 /* When we construct a partial symbol table entry we only
1070 need this much information. */
1071 struct partial_die_info
1072 {
1073 /* Offset of this DIE. */
1074 sect_offset offset;
1075
1076 /* DWARF-2 tag for this DIE. */
1077 ENUM_BITFIELD(dwarf_tag) tag : 16;
1078
1079 /* Assorted flags describing the data found in this DIE. */
1080 unsigned int has_children : 1;
1081 unsigned int is_external : 1;
1082 unsigned int is_declaration : 1;
1083 unsigned int has_type : 1;
1084 unsigned int has_specification : 1;
1085 unsigned int has_pc_info : 1;
1086 unsigned int may_be_inlined : 1;
1087
1088 /* Flag set if the SCOPE field of this structure has been
1089 computed. */
1090 unsigned int scope_set : 1;
1091
1092 /* Flag set if the DIE has a byte_size attribute. */
1093 unsigned int has_byte_size : 1;
1094
1095 /* Flag set if any of the DIE's children are template arguments. */
1096 unsigned int has_template_arguments : 1;
1097
1098 /* Flag set if fixup_partial_die has been called on this die. */
1099 unsigned int fixup_called : 1;
1100
1101 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1102 unsigned int is_dwz : 1;
1103
1104 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1105 unsigned int spec_is_dwz : 1;
1106
1107 /* The name of this DIE. Normally the value of DW_AT_name, but
1108 sometimes a default name for unnamed DIEs. */
1109 const char *name;
1110
1111 /* The linkage name, if present. */
1112 const char *linkage_name;
1113
1114 /* The scope to prepend to our children. This is generally
1115 allocated on the comp_unit_obstack, so will disappear
1116 when this compilation unit leaves the cache. */
1117 const char *scope;
1118
1119 /* Some data associated with the partial DIE. The tag determines
1120 which field is live. */
1121 union
1122 {
1123 /* The location description associated with this DIE, if any. */
1124 struct dwarf_block *locdesc;
1125 /* The offset of an import, for DW_TAG_imported_unit. */
1126 sect_offset offset;
1127 } d;
1128
1129 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1130 CORE_ADDR lowpc;
1131 CORE_ADDR highpc;
1132
1133 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1134 DW_AT_sibling, if any. */
1135 /* NOTE: This member isn't strictly necessary, read_partial_die could
1136 return DW_AT_sibling values to its caller load_partial_dies. */
1137 const gdb_byte *sibling;
1138
1139 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1140 DW_AT_specification (or DW_AT_abstract_origin or
1141 DW_AT_extension). */
1142 sect_offset spec_offset;
1143
1144 /* Pointers to this DIE's parent, first child, and next sibling,
1145 if any. */
1146 struct partial_die_info *die_parent, *die_child, *die_sibling;
1147 };
1148
1149 /* This data structure holds the information of an abbrev. */
1150 struct abbrev_info
1151 {
1152 unsigned int number; /* number identifying abbrev */
1153 enum dwarf_tag tag; /* dwarf tag */
1154 unsigned short has_children; /* boolean */
1155 unsigned short num_attrs; /* number of attributes */
1156 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1157 struct abbrev_info *next; /* next in chain */
1158 };
1159
1160 struct attr_abbrev
1161 {
1162 ENUM_BITFIELD(dwarf_attribute) name : 16;
1163 ENUM_BITFIELD(dwarf_form) form : 16;
1164 };
1165
1166 /* Size of abbrev_table.abbrev_hash_table. */
1167 #define ABBREV_HASH_SIZE 121
1168
1169 /* Top level data structure to contain an abbreviation table. */
1170
1171 struct abbrev_table
1172 {
1173 /* Where the abbrev table came from.
1174 This is used as a sanity check when the table is used. */
1175 sect_offset offset;
1176
1177 /* Storage for the abbrev table. */
1178 struct obstack abbrev_obstack;
1179
1180 /* Hash table of abbrevs.
1181 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1182 It could be statically allocated, but the previous code didn't so we
1183 don't either. */
1184 struct abbrev_info **abbrevs;
1185 };
1186
1187 /* Attributes have a name and a value. */
1188 struct attribute
1189 {
1190 ENUM_BITFIELD(dwarf_attribute) name : 16;
1191 ENUM_BITFIELD(dwarf_form) form : 15;
1192
1193 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1194 field should be in u.str (existing only for DW_STRING) but it is kept
1195 here for better struct attribute alignment. */
1196 unsigned int string_is_canonical : 1;
1197
1198 union
1199 {
1200 const char *str;
1201 struct dwarf_block *blk;
1202 ULONGEST unsnd;
1203 LONGEST snd;
1204 CORE_ADDR addr;
1205 ULONGEST signature;
1206 }
1207 u;
1208 };
1209
1210 /* This data structure holds a complete die structure. */
1211 struct die_info
1212 {
1213 /* DWARF-2 tag for this DIE. */
1214 ENUM_BITFIELD(dwarf_tag) tag : 16;
1215
1216 /* Number of attributes */
1217 unsigned char num_attrs;
1218
1219 /* True if we're presently building the full type name for the
1220 type derived from this DIE. */
1221 unsigned char building_fullname : 1;
1222
1223 /* True if this die is in process. PR 16581. */
1224 unsigned char in_process : 1;
1225
1226 /* Abbrev number */
1227 unsigned int abbrev;
1228
1229 /* Offset in .debug_info or .debug_types section. */
1230 sect_offset offset;
1231
1232 /* The dies in a compilation unit form an n-ary tree. PARENT
1233 points to this die's parent; CHILD points to the first child of
1234 this node; and all the children of a given node are chained
1235 together via their SIBLING fields. */
1236 struct die_info *child; /* Its first child, if any. */
1237 struct die_info *sibling; /* Its next sibling, if any. */
1238 struct die_info *parent; /* Its parent, if any. */
1239
1240 /* An array of attributes, with NUM_ATTRS elements. There may be
1241 zero, but it's not common and zero-sized arrays are not
1242 sufficiently portable C. */
1243 struct attribute attrs[1];
1244 };
1245
1246 /* Get at parts of an attribute structure. */
1247
1248 #define DW_STRING(attr) ((attr)->u.str)
1249 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1250 #define DW_UNSND(attr) ((attr)->u.unsnd)
1251 #define DW_BLOCK(attr) ((attr)->u.blk)
1252 #define DW_SND(attr) ((attr)->u.snd)
1253 #define DW_ADDR(attr) ((attr)->u.addr)
1254 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1255
1256 /* Blocks are a bunch of untyped bytes. */
1257 struct dwarf_block
1258 {
1259 size_t size;
1260
1261 /* Valid only if SIZE is not zero. */
1262 const gdb_byte *data;
1263 };
1264
1265 #ifndef ATTR_ALLOC_CHUNK
1266 #define ATTR_ALLOC_CHUNK 4
1267 #endif
1268
1269 /* Allocate fields for structs, unions and enums in this size. */
1270 #ifndef DW_FIELD_ALLOC_CHUNK
1271 #define DW_FIELD_ALLOC_CHUNK 4
1272 #endif
1273
1274 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1275 but this would require a corresponding change in unpack_field_as_long
1276 and friends. */
1277 static int bits_per_byte = 8;
1278
1279 /* The routines that read and process dies for a C struct or C++ class
1280 pass lists of data member fields and lists of member function fields
1281 in an instance of a field_info structure, as defined below. */
1282 struct field_info
1283 {
1284 /* List of data member and baseclasses fields. */
1285 struct nextfield
1286 {
1287 struct nextfield *next;
1288 int accessibility;
1289 int virtuality;
1290 struct field field;
1291 }
1292 *fields, *baseclasses;
1293
1294 /* Number of fields (including baseclasses). */
1295 int nfields;
1296
1297 /* Number of baseclasses. */
1298 int nbaseclasses;
1299
1300 /* Set if the accesibility of one of the fields is not public. */
1301 int non_public_fields;
1302
1303 /* Member function fields array, entries are allocated in the order they
1304 are encountered in the object file. */
1305 struct nextfnfield
1306 {
1307 struct nextfnfield *next;
1308 struct fn_field fnfield;
1309 }
1310 *fnfields;
1311
1312 /* Member function fieldlist array, contains name of possibly overloaded
1313 member function, number of overloaded member functions and a pointer
1314 to the head of the member function field chain. */
1315 struct fnfieldlist
1316 {
1317 const char *name;
1318 int length;
1319 struct nextfnfield *head;
1320 }
1321 *fnfieldlists;
1322
1323 /* Number of entries in the fnfieldlists array. */
1324 int nfnfields;
1325
1326 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1327 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1328 struct typedef_field_list
1329 {
1330 struct typedef_field field;
1331 struct typedef_field_list *next;
1332 }
1333 *typedef_field_list;
1334 unsigned typedef_field_list_count;
1335 };
1336
1337 /* One item on the queue of compilation units to read in full symbols
1338 for. */
1339 struct dwarf2_queue_item
1340 {
1341 struct dwarf2_per_cu_data *per_cu;
1342 enum language pretend_language;
1343 struct dwarf2_queue_item *next;
1344 };
1345
1346 /* The current queue. */
1347 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1348
1349 /* Loaded secondary compilation units are kept in memory until they
1350 have not been referenced for the processing of this many
1351 compilation units. Set this to zero to disable caching. Cache
1352 sizes of up to at least twenty will improve startup time for
1353 typical inter-CU-reference binaries, at an obvious memory cost. */
1354 static int dwarf2_max_cache_age = 5;
1355 static void
1356 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1357 struct cmd_list_element *c, const char *value)
1358 {
1359 fprintf_filtered (file, _("The upper bound on the age of cached "
1360 "dwarf2 compilation units is %s.\n"),
1361 value);
1362 }
1363 \f
1364 /* local function prototypes */
1365
1366 static const char *get_section_name (const struct dwarf2_section_info *);
1367
1368 static const char *get_section_file_name (const struct dwarf2_section_info *);
1369
1370 static void dwarf2_locate_sections (bfd *, asection *, void *);
1371
1372 static void dwarf2_find_base_address (struct die_info *die,
1373 struct dwarf2_cu *cu);
1374
1375 static struct partial_symtab *create_partial_symtab
1376 (struct dwarf2_per_cu_data *per_cu, const char *name);
1377
1378 static void dwarf2_build_psymtabs_hard (struct objfile *);
1379
1380 static void scan_partial_symbols (struct partial_die_info *,
1381 CORE_ADDR *, CORE_ADDR *,
1382 int, struct dwarf2_cu *);
1383
1384 static void add_partial_symbol (struct partial_die_info *,
1385 struct dwarf2_cu *);
1386
1387 static void add_partial_namespace (struct partial_die_info *pdi,
1388 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1389 int set_addrmap, struct dwarf2_cu *cu);
1390
1391 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1392 CORE_ADDR *highpc, int set_addrmap,
1393 struct dwarf2_cu *cu);
1394
1395 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1396 struct dwarf2_cu *cu);
1397
1398 static void add_partial_subprogram (struct partial_die_info *pdi,
1399 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1400 int need_pc, struct dwarf2_cu *cu);
1401
1402 static void dwarf2_read_symtab (struct partial_symtab *,
1403 struct objfile *);
1404
1405 static void psymtab_to_symtab_1 (struct partial_symtab *);
1406
1407 static struct abbrev_info *abbrev_table_lookup_abbrev
1408 (const struct abbrev_table *, unsigned int);
1409
1410 static struct abbrev_table *abbrev_table_read_table
1411 (struct dwarf2_section_info *, sect_offset);
1412
1413 static void abbrev_table_free (struct abbrev_table *);
1414
1415 static void abbrev_table_free_cleanup (void *);
1416
1417 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1418 struct dwarf2_section_info *);
1419
1420 static void dwarf2_free_abbrev_table (void *);
1421
1422 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1423
1424 static struct partial_die_info *load_partial_dies
1425 (const struct die_reader_specs *, const gdb_byte *, int);
1426
1427 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1428 struct partial_die_info *,
1429 struct abbrev_info *,
1430 unsigned int,
1431 const gdb_byte *);
1432
1433 static struct partial_die_info *find_partial_die (sect_offset, int,
1434 struct dwarf2_cu *);
1435
1436 static void fixup_partial_die (struct partial_die_info *,
1437 struct dwarf2_cu *);
1438
1439 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1440 struct attribute *, struct attr_abbrev *,
1441 const gdb_byte *);
1442
1443 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1444
1445 static int read_1_signed_byte (bfd *, const gdb_byte *);
1446
1447 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1448
1449 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1450
1451 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1452
1453 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1454 unsigned int *);
1455
1456 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1457
1458 static LONGEST read_checked_initial_length_and_offset
1459 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1460 unsigned int *, unsigned int *);
1461
1462 static LONGEST read_offset (bfd *, const gdb_byte *,
1463 const struct comp_unit_head *,
1464 unsigned int *);
1465
1466 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1467
1468 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1469 sect_offset);
1470
1471 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1472
1473 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1474
1475 static const char *read_indirect_string (bfd *, const gdb_byte *,
1476 const struct comp_unit_head *,
1477 unsigned int *);
1478
1479 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1480
1481 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1482
1483 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1486 const gdb_byte *,
1487 unsigned int *);
1488
1489 static const char *read_str_index (const struct die_reader_specs *reader,
1490 ULONGEST str_index);
1491
1492 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1493
1494 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1495 struct dwarf2_cu *);
1496
1497 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1498 unsigned int);
1499
1500 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1501 struct dwarf2_cu *cu);
1502
1503 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1504
1505 static struct die_info *die_specification (struct die_info *die,
1506 struct dwarf2_cu **);
1507
1508 static void free_line_header (struct line_header *lh);
1509
1510 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1511 struct dwarf2_cu *cu);
1512
1513 static void dwarf_decode_lines (struct line_header *, const char *,
1514 struct dwarf2_cu *, struct partial_symtab *,
1515 CORE_ADDR);
1516
1517 static void dwarf2_start_subfile (const char *, const char *);
1518
1519 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1520 const char *, const char *,
1521 CORE_ADDR);
1522
1523 static struct symbol *new_symbol (struct die_info *, struct type *,
1524 struct dwarf2_cu *);
1525
1526 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1527 struct dwarf2_cu *, struct symbol *);
1528
1529 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1530 struct dwarf2_cu *);
1531
1532 static void dwarf2_const_value_attr (const struct attribute *attr,
1533 struct type *type,
1534 const char *name,
1535 struct obstack *obstack,
1536 struct dwarf2_cu *cu, LONGEST *value,
1537 const gdb_byte **bytes,
1538 struct dwarf2_locexpr_baton **baton);
1539
1540 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1541
1542 static int need_gnat_info (struct dwarf2_cu *);
1543
1544 static struct type *die_descriptive_type (struct die_info *,
1545 struct dwarf2_cu *);
1546
1547 static void set_descriptive_type (struct type *, struct die_info *,
1548 struct dwarf2_cu *);
1549
1550 static struct type *die_containing_type (struct die_info *,
1551 struct dwarf2_cu *);
1552
1553 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1554 struct dwarf2_cu *);
1555
1556 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1557
1558 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1559
1560 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1561
1562 static char *typename_concat (struct obstack *obs, const char *prefix,
1563 const char *suffix, int physname,
1564 struct dwarf2_cu *cu);
1565
1566 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1567
1568 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1569
1570 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1571
1572 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1573
1574 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1575
1576 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1577 struct dwarf2_cu *, struct partial_symtab *);
1578
1579 static int dwarf2_get_pc_bounds (struct die_info *,
1580 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1581 struct partial_symtab *);
1582
1583 static void get_scope_pc_bounds (struct die_info *,
1584 CORE_ADDR *, CORE_ADDR *,
1585 struct dwarf2_cu *);
1586
1587 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1588 CORE_ADDR, struct dwarf2_cu *);
1589
1590 static void dwarf2_add_field (struct field_info *, struct die_info *,
1591 struct dwarf2_cu *);
1592
1593 static void dwarf2_attach_fields_to_type (struct field_info *,
1594 struct type *, struct dwarf2_cu *);
1595
1596 static void dwarf2_add_member_fn (struct field_info *,
1597 struct die_info *, struct type *,
1598 struct dwarf2_cu *);
1599
1600 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1601 struct type *,
1602 struct dwarf2_cu *);
1603
1604 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1605
1606 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1607
1608 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1609
1610 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1611
1612 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1613
1614 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1615
1616 static struct type *read_module_type (struct die_info *die,
1617 struct dwarf2_cu *cu);
1618
1619 static const char *namespace_name (struct die_info *die,
1620 int *is_anonymous, struct dwarf2_cu *);
1621
1622 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1623
1624 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1625
1626 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1627 struct dwarf2_cu *);
1628
1629 static struct die_info *read_die_and_siblings_1
1630 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1631 struct die_info *);
1632
1633 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1634 const gdb_byte *info_ptr,
1635 const gdb_byte **new_info_ptr,
1636 struct die_info *parent);
1637
1638 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1639 struct die_info **, const gdb_byte *,
1640 int *, int);
1641
1642 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1643 struct die_info **, const gdb_byte *,
1644 int *);
1645
1646 static void process_die (struct die_info *, struct dwarf2_cu *);
1647
1648 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1649 struct obstack *);
1650
1651 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1652
1653 static const char *dwarf2_full_name (const char *name,
1654 struct die_info *die,
1655 struct dwarf2_cu *cu);
1656
1657 static const char *dwarf2_physname (const char *name, struct die_info *die,
1658 struct dwarf2_cu *cu);
1659
1660 static struct die_info *dwarf2_extension (struct die_info *die,
1661 struct dwarf2_cu **);
1662
1663 static const char *dwarf_tag_name (unsigned int);
1664
1665 static const char *dwarf_attr_name (unsigned int);
1666
1667 static const char *dwarf_form_name (unsigned int);
1668
1669 static char *dwarf_bool_name (unsigned int);
1670
1671 static const char *dwarf_type_encoding_name (unsigned int);
1672
1673 static struct die_info *sibling_die (struct die_info *);
1674
1675 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1676
1677 static void dump_die_for_error (struct die_info *);
1678
1679 static void dump_die_1 (struct ui_file *, int level, int max_level,
1680 struct die_info *);
1681
1682 /*static*/ void dump_die (struct die_info *, int max_level);
1683
1684 static void store_in_ref_table (struct die_info *,
1685 struct dwarf2_cu *);
1686
1687 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1688
1689 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1690
1691 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1692 const struct attribute *,
1693 struct dwarf2_cu **);
1694
1695 static struct die_info *follow_die_ref (struct die_info *,
1696 const struct attribute *,
1697 struct dwarf2_cu **);
1698
1699 static struct die_info *follow_die_sig (struct die_info *,
1700 const struct attribute *,
1701 struct dwarf2_cu **);
1702
1703 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1704 struct dwarf2_cu *);
1705
1706 static struct type *get_DW_AT_signature_type (struct die_info *,
1707 const struct attribute *,
1708 struct dwarf2_cu *);
1709
1710 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1711
1712 static void read_signatured_type (struct signatured_type *);
1713
1714 /* memory allocation interface */
1715
1716 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1717
1718 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1719
1720 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1721
1722 static int attr_form_is_block (const struct attribute *);
1723
1724 static int attr_form_is_section_offset (const struct attribute *);
1725
1726 static int attr_form_is_constant (const struct attribute *);
1727
1728 static int attr_form_is_ref (const struct attribute *);
1729
1730 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1731 struct dwarf2_loclist_baton *baton,
1732 const struct attribute *attr);
1733
1734 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1735 struct symbol *sym,
1736 struct dwarf2_cu *cu,
1737 int is_block);
1738
1739 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1740 const gdb_byte *info_ptr,
1741 struct abbrev_info *abbrev);
1742
1743 static void free_stack_comp_unit (void *);
1744
1745 static hashval_t partial_die_hash (const void *item);
1746
1747 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1748
1749 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1750 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1751
1752 static void init_one_comp_unit (struct dwarf2_cu *cu,
1753 struct dwarf2_per_cu_data *per_cu);
1754
1755 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1756 struct die_info *comp_unit_die,
1757 enum language pretend_language);
1758
1759 static void free_heap_comp_unit (void *);
1760
1761 static void free_cached_comp_units (void *);
1762
1763 static void age_cached_comp_units (void);
1764
1765 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1766
1767 static struct type *set_die_type (struct die_info *, struct type *,
1768 struct dwarf2_cu *);
1769
1770 static void create_all_comp_units (struct objfile *);
1771
1772 static int create_all_type_units (struct objfile *);
1773
1774 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1775 enum language);
1776
1777 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1778 enum language);
1779
1780 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1781 enum language);
1782
1783 static void dwarf2_add_dependence (struct dwarf2_cu *,
1784 struct dwarf2_per_cu_data *);
1785
1786 static void dwarf2_mark (struct dwarf2_cu *);
1787
1788 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1789
1790 static struct type *get_die_type_at_offset (sect_offset,
1791 struct dwarf2_per_cu_data *);
1792
1793 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1794
1795 static void dwarf2_release_queue (void *dummy);
1796
1797 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1798 enum language pretend_language);
1799
1800 static void process_queue (void);
1801
1802 static void find_file_and_directory (struct die_info *die,
1803 struct dwarf2_cu *cu,
1804 const char **name, const char **comp_dir);
1805
1806 static char *file_full_name (int file, struct line_header *lh,
1807 const char *comp_dir);
1808
1809 static const gdb_byte *read_and_check_comp_unit_head
1810 (struct comp_unit_head *header,
1811 struct dwarf2_section_info *section,
1812 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1813 int is_debug_types_section);
1814
1815 static void init_cutu_and_read_dies
1816 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1817 int use_existing_cu, int keep,
1818 die_reader_func_ftype *die_reader_func, void *data);
1819
1820 static void init_cutu_and_read_dies_simple
1821 (struct dwarf2_per_cu_data *this_cu,
1822 die_reader_func_ftype *die_reader_func, void *data);
1823
1824 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1825
1826 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1827
1828 static struct dwo_unit *lookup_dwo_unit_in_dwp
1829 (struct dwp_file *dwp_file, const char *comp_dir,
1830 ULONGEST signature, int is_debug_types);
1831
1832 static struct dwp_file *get_dwp_file (void);
1833
1834 static struct dwo_unit *lookup_dwo_comp_unit
1835 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1836
1837 static struct dwo_unit *lookup_dwo_type_unit
1838 (struct signatured_type *, const char *, const char *);
1839
1840 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1841
1842 static void free_dwo_file_cleanup (void *);
1843
1844 static void process_cu_includes (void);
1845
1846 static void check_producer (struct dwarf2_cu *cu);
1847 \f
1848 /* Various complaints about symbol reading that don't abort the process. */
1849
1850 static void
1851 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1852 {
1853 complaint (&symfile_complaints,
1854 _("statement list doesn't fit in .debug_line section"));
1855 }
1856
1857 static void
1858 dwarf2_debug_line_missing_file_complaint (void)
1859 {
1860 complaint (&symfile_complaints,
1861 _(".debug_line section has line data without a file"));
1862 }
1863
1864 static void
1865 dwarf2_debug_line_missing_end_sequence_complaint (void)
1866 {
1867 complaint (&symfile_complaints,
1868 _(".debug_line section has line "
1869 "program sequence without an end"));
1870 }
1871
1872 static void
1873 dwarf2_complex_location_expr_complaint (void)
1874 {
1875 complaint (&symfile_complaints, _("location expression too complex"));
1876 }
1877
1878 static void
1879 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1880 int arg3)
1881 {
1882 complaint (&symfile_complaints,
1883 _("const value length mismatch for '%s', got %d, expected %d"),
1884 arg1, arg2, arg3);
1885 }
1886
1887 static void
1888 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1889 {
1890 complaint (&symfile_complaints,
1891 _("debug info runs off end of %s section"
1892 " [in module %s]"),
1893 get_section_name (section),
1894 get_section_file_name (section));
1895 }
1896
1897 static void
1898 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1899 {
1900 complaint (&symfile_complaints,
1901 _("macro debug info contains a "
1902 "malformed macro definition:\n`%s'"),
1903 arg1);
1904 }
1905
1906 static void
1907 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1908 {
1909 complaint (&symfile_complaints,
1910 _("invalid attribute class or form for '%s' in '%s'"),
1911 arg1, arg2);
1912 }
1913 \f
1914 #if WORDS_BIGENDIAN
1915
1916 /* Convert VALUE between big- and little-endian. */
1917 static offset_type
1918 byte_swap (offset_type value)
1919 {
1920 offset_type result;
1921
1922 result = (value & 0xff) << 24;
1923 result |= (value & 0xff00) << 8;
1924 result |= (value & 0xff0000) >> 8;
1925 result |= (value & 0xff000000) >> 24;
1926 return result;
1927 }
1928
1929 #define MAYBE_SWAP(V) byte_swap (V)
1930
1931 #else
1932 #define MAYBE_SWAP(V) (V)
1933 #endif /* WORDS_BIGENDIAN */
1934
1935 /* Read the given attribute value as an address, taking the attribute's
1936 form into account. */
1937
1938 static CORE_ADDR
1939 attr_value_as_address (struct attribute *attr)
1940 {
1941 CORE_ADDR addr;
1942
1943 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1944 {
1945 /* Aside from a few clearly defined exceptions, attributes that
1946 contain an address must always be in DW_FORM_addr form.
1947 Unfortunately, some compilers happen to be violating this
1948 requirement by encoding addresses using other forms, such
1949 as DW_FORM_data4 for example. For those broken compilers,
1950 we try to do our best, without any guarantee of success,
1951 to interpret the address correctly. It would also be nice
1952 to generate a complaint, but that would require us to maintain
1953 a list of legitimate cases where a non-address form is allowed,
1954 as well as update callers to pass in at least the CU's DWARF
1955 version. This is more overhead than what we're willing to
1956 expand for a pretty rare case. */
1957 addr = DW_UNSND (attr);
1958 }
1959 else
1960 addr = DW_ADDR (attr);
1961
1962 return addr;
1963 }
1964
1965 /* The suffix for an index file. */
1966 #define INDEX_SUFFIX ".gdb-index"
1967
1968 /* Try to locate the sections we need for DWARF 2 debugging
1969 information and return true if we have enough to do something.
1970 NAMES points to the dwarf2 section names, or is NULL if the standard
1971 ELF names are used. */
1972
1973 int
1974 dwarf2_has_info (struct objfile *objfile,
1975 const struct dwarf2_debug_sections *names)
1976 {
1977 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1978 if (!dwarf2_per_objfile)
1979 {
1980 /* Initialize per-objfile state. */
1981 struct dwarf2_per_objfile *data
1982 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1983
1984 memset (data, 0, sizeof (*data));
1985 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1986 dwarf2_per_objfile = data;
1987
1988 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1989 (void *) names);
1990 dwarf2_per_objfile->objfile = objfile;
1991 }
1992 return (!dwarf2_per_objfile->info.is_virtual
1993 && dwarf2_per_objfile->info.s.asection != NULL
1994 && !dwarf2_per_objfile->abbrev.is_virtual
1995 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1996 }
1997
1998 /* Return the containing section of virtual section SECTION. */
1999
2000 static struct dwarf2_section_info *
2001 get_containing_section (const struct dwarf2_section_info *section)
2002 {
2003 gdb_assert (section->is_virtual);
2004 return section->s.containing_section;
2005 }
2006
2007 /* Return the bfd owner of SECTION. */
2008
2009 static struct bfd *
2010 get_section_bfd_owner (const struct dwarf2_section_info *section)
2011 {
2012 if (section->is_virtual)
2013 {
2014 section = get_containing_section (section);
2015 gdb_assert (!section->is_virtual);
2016 }
2017 return section->s.asection->owner;
2018 }
2019
2020 /* Return the bfd section of SECTION.
2021 Returns NULL if the section is not present. */
2022
2023 static asection *
2024 get_section_bfd_section (const struct dwarf2_section_info *section)
2025 {
2026 if (section->is_virtual)
2027 {
2028 section = get_containing_section (section);
2029 gdb_assert (!section->is_virtual);
2030 }
2031 return section->s.asection;
2032 }
2033
2034 /* Return the name of SECTION. */
2035
2036 static const char *
2037 get_section_name (const struct dwarf2_section_info *section)
2038 {
2039 asection *sectp = get_section_bfd_section (section);
2040
2041 gdb_assert (sectp != NULL);
2042 return bfd_section_name (get_section_bfd_owner (section), sectp);
2043 }
2044
2045 /* Return the name of the file SECTION is in. */
2046
2047 static const char *
2048 get_section_file_name (const struct dwarf2_section_info *section)
2049 {
2050 bfd *abfd = get_section_bfd_owner (section);
2051
2052 return bfd_get_filename (abfd);
2053 }
2054
2055 /* Return the id of SECTION.
2056 Returns 0 if SECTION doesn't exist. */
2057
2058 static int
2059 get_section_id (const struct dwarf2_section_info *section)
2060 {
2061 asection *sectp = get_section_bfd_section (section);
2062
2063 if (sectp == NULL)
2064 return 0;
2065 return sectp->id;
2066 }
2067
2068 /* Return the flags of SECTION.
2069 SECTION (or containing section if this is a virtual section) must exist. */
2070
2071 static int
2072 get_section_flags (const struct dwarf2_section_info *section)
2073 {
2074 asection *sectp = get_section_bfd_section (section);
2075
2076 gdb_assert (sectp != NULL);
2077 return bfd_get_section_flags (sectp->owner, sectp);
2078 }
2079
2080 /* When loading sections, we look either for uncompressed section or for
2081 compressed section names. */
2082
2083 static int
2084 section_is_p (const char *section_name,
2085 const struct dwarf2_section_names *names)
2086 {
2087 if (names->normal != NULL
2088 && strcmp (section_name, names->normal) == 0)
2089 return 1;
2090 if (names->compressed != NULL
2091 && strcmp (section_name, names->compressed) == 0)
2092 return 1;
2093 return 0;
2094 }
2095
2096 /* This function is mapped across the sections and remembers the
2097 offset and size of each of the debugging sections we are interested
2098 in. */
2099
2100 static void
2101 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2102 {
2103 const struct dwarf2_debug_sections *names;
2104 flagword aflag = bfd_get_section_flags (abfd, sectp);
2105
2106 if (vnames == NULL)
2107 names = &dwarf2_elf_names;
2108 else
2109 names = (const struct dwarf2_debug_sections *) vnames;
2110
2111 if ((aflag & SEC_HAS_CONTENTS) == 0)
2112 {
2113 }
2114 else if (section_is_p (sectp->name, &names->info))
2115 {
2116 dwarf2_per_objfile->info.s.asection = sectp;
2117 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2118 }
2119 else if (section_is_p (sectp->name, &names->abbrev))
2120 {
2121 dwarf2_per_objfile->abbrev.s.asection = sectp;
2122 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2123 }
2124 else if (section_is_p (sectp->name, &names->line))
2125 {
2126 dwarf2_per_objfile->line.s.asection = sectp;
2127 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2128 }
2129 else if (section_is_p (sectp->name, &names->loc))
2130 {
2131 dwarf2_per_objfile->loc.s.asection = sectp;
2132 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2133 }
2134 else if (section_is_p (sectp->name, &names->macinfo))
2135 {
2136 dwarf2_per_objfile->macinfo.s.asection = sectp;
2137 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2138 }
2139 else if (section_is_p (sectp->name, &names->macro))
2140 {
2141 dwarf2_per_objfile->macro.s.asection = sectp;
2142 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2143 }
2144 else if (section_is_p (sectp->name, &names->str))
2145 {
2146 dwarf2_per_objfile->str.s.asection = sectp;
2147 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2148 }
2149 else if (section_is_p (sectp->name, &names->addr))
2150 {
2151 dwarf2_per_objfile->addr.s.asection = sectp;
2152 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2153 }
2154 else if (section_is_p (sectp->name, &names->frame))
2155 {
2156 dwarf2_per_objfile->frame.s.asection = sectp;
2157 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2158 }
2159 else if (section_is_p (sectp->name, &names->eh_frame))
2160 {
2161 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2162 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2163 }
2164 else if (section_is_p (sectp->name, &names->ranges))
2165 {
2166 dwarf2_per_objfile->ranges.s.asection = sectp;
2167 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2168 }
2169 else if (section_is_p (sectp->name, &names->types))
2170 {
2171 struct dwarf2_section_info type_section;
2172
2173 memset (&type_section, 0, sizeof (type_section));
2174 type_section.s.asection = sectp;
2175 type_section.size = bfd_get_section_size (sectp);
2176
2177 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2178 &type_section);
2179 }
2180 else if (section_is_p (sectp->name, &names->gdb_index))
2181 {
2182 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2183 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2184 }
2185
2186 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2187 && bfd_section_vma (abfd, sectp) == 0)
2188 dwarf2_per_objfile->has_section_at_zero = 1;
2189 }
2190
2191 /* A helper function that decides whether a section is empty,
2192 or not present. */
2193
2194 static int
2195 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2196 {
2197 if (section->is_virtual)
2198 return section->size == 0;
2199 return section->s.asection == NULL || section->size == 0;
2200 }
2201
2202 /* Read the contents of the section INFO.
2203 OBJFILE is the main object file, but not necessarily the file where
2204 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2205 of the DWO file.
2206 If the section is compressed, uncompress it before returning. */
2207
2208 static void
2209 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2210 {
2211 asection *sectp;
2212 bfd *abfd;
2213 gdb_byte *buf, *retbuf;
2214
2215 if (info->readin)
2216 return;
2217 info->buffer = NULL;
2218 info->readin = 1;
2219
2220 if (dwarf2_section_empty_p (info))
2221 return;
2222
2223 sectp = get_section_bfd_section (info);
2224
2225 /* If this is a virtual section we need to read in the real one first. */
2226 if (info->is_virtual)
2227 {
2228 struct dwarf2_section_info *containing_section =
2229 get_containing_section (info);
2230
2231 gdb_assert (sectp != NULL);
2232 if ((sectp->flags & SEC_RELOC) != 0)
2233 {
2234 error (_("Dwarf Error: DWP format V2 with relocations is not"
2235 " supported in section %s [in module %s]"),
2236 get_section_name (info), get_section_file_name (info));
2237 }
2238 dwarf2_read_section (objfile, containing_section);
2239 /* Other code should have already caught virtual sections that don't
2240 fit. */
2241 gdb_assert (info->virtual_offset + info->size
2242 <= containing_section->size);
2243 /* If the real section is empty or there was a problem reading the
2244 section we shouldn't get here. */
2245 gdb_assert (containing_section->buffer != NULL);
2246 info->buffer = containing_section->buffer + info->virtual_offset;
2247 return;
2248 }
2249
2250 /* If the section has relocations, we must read it ourselves.
2251 Otherwise we attach it to the BFD. */
2252 if ((sectp->flags & SEC_RELOC) == 0)
2253 {
2254 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2255 return;
2256 }
2257
2258 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2259 info->buffer = buf;
2260
2261 /* When debugging .o files, we may need to apply relocations; see
2262 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2263 We never compress sections in .o files, so we only need to
2264 try this when the section is not compressed. */
2265 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2266 if (retbuf != NULL)
2267 {
2268 info->buffer = retbuf;
2269 return;
2270 }
2271
2272 abfd = get_section_bfd_owner (info);
2273 gdb_assert (abfd != NULL);
2274
2275 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2276 || bfd_bread (buf, info->size, abfd) != info->size)
2277 {
2278 error (_("Dwarf Error: Can't read DWARF data"
2279 " in section %s [in module %s]"),
2280 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2281 }
2282 }
2283
2284 /* A helper function that returns the size of a section in a safe way.
2285 If you are positive that the section has been read before using the
2286 size, then it is safe to refer to the dwarf2_section_info object's
2287 "size" field directly. In other cases, you must call this
2288 function, because for compressed sections the size field is not set
2289 correctly until the section has been read. */
2290
2291 static bfd_size_type
2292 dwarf2_section_size (struct objfile *objfile,
2293 struct dwarf2_section_info *info)
2294 {
2295 if (!info->readin)
2296 dwarf2_read_section (objfile, info);
2297 return info->size;
2298 }
2299
2300 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2301 SECTION_NAME. */
2302
2303 void
2304 dwarf2_get_section_info (struct objfile *objfile,
2305 enum dwarf2_section_enum sect,
2306 asection **sectp, const gdb_byte **bufp,
2307 bfd_size_type *sizep)
2308 {
2309 struct dwarf2_per_objfile *data
2310 = objfile_data (objfile, dwarf2_objfile_data_key);
2311 struct dwarf2_section_info *info;
2312
2313 /* We may see an objfile without any DWARF, in which case we just
2314 return nothing. */
2315 if (data == NULL)
2316 {
2317 *sectp = NULL;
2318 *bufp = NULL;
2319 *sizep = 0;
2320 return;
2321 }
2322 switch (sect)
2323 {
2324 case DWARF2_DEBUG_FRAME:
2325 info = &data->frame;
2326 break;
2327 case DWARF2_EH_FRAME:
2328 info = &data->eh_frame;
2329 break;
2330 default:
2331 gdb_assert_not_reached ("unexpected section");
2332 }
2333
2334 dwarf2_read_section (objfile, info);
2335
2336 *sectp = get_section_bfd_section (info);
2337 *bufp = info->buffer;
2338 *sizep = info->size;
2339 }
2340
2341 /* A helper function to find the sections for a .dwz file. */
2342
2343 static void
2344 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2345 {
2346 struct dwz_file *dwz_file = arg;
2347
2348 /* Note that we only support the standard ELF names, because .dwz
2349 is ELF-only (at the time of writing). */
2350 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2351 {
2352 dwz_file->abbrev.s.asection = sectp;
2353 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2354 }
2355 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2356 {
2357 dwz_file->info.s.asection = sectp;
2358 dwz_file->info.size = bfd_get_section_size (sectp);
2359 }
2360 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2361 {
2362 dwz_file->str.s.asection = sectp;
2363 dwz_file->str.size = bfd_get_section_size (sectp);
2364 }
2365 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2366 {
2367 dwz_file->line.s.asection = sectp;
2368 dwz_file->line.size = bfd_get_section_size (sectp);
2369 }
2370 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2371 {
2372 dwz_file->macro.s.asection = sectp;
2373 dwz_file->macro.size = bfd_get_section_size (sectp);
2374 }
2375 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2376 {
2377 dwz_file->gdb_index.s.asection = sectp;
2378 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2379 }
2380 }
2381
2382 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2383 there is no .gnu_debugaltlink section in the file. Error if there
2384 is such a section but the file cannot be found. */
2385
2386 static struct dwz_file *
2387 dwarf2_get_dwz_file (void)
2388 {
2389 bfd *dwz_bfd;
2390 char *data;
2391 struct cleanup *cleanup;
2392 const char *filename;
2393 struct dwz_file *result;
2394 bfd_size_type buildid_len_arg;
2395 size_t buildid_len;
2396 bfd_byte *buildid;
2397
2398 if (dwarf2_per_objfile->dwz_file != NULL)
2399 return dwarf2_per_objfile->dwz_file;
2400
2401 bfd_set_error (bfd_error_no_error);
2402 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2403 &buildid_len_arg, &buildid);
2404 if (data == NULL)
2405 {
2406 if (bfd_get_error () == bfd_error_no_error)
2407 return NULL;
2408 error (_("could not read '.gnu_debugaltlink' section: %s"),
2409 bfd_errmsg (bfd_get_error ()));
2410 }
2411 cleanup = make_cleanup (xfree, data);
2412 make_cleanup (xfree, buildid);
2413
2414 buildid_len = (size_t) buildid_len_arg;
2415
2416 filename = (const char *) data;
2417 if (!IS_ABSOLUTE_PATH (filename))
2418 {
2419 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2420 char *rel;
2421
2422 make_cleanup (xfree, abs);
2423 abs = ldirname (abs);
2424 make_cleanup (xfree, abs);
2425
2426 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2427 make_cleanup (xfree, rel);
2428 filename = rel;
2429 }
2430
2431 /* First try the file name given in the section. If that doesn't
2432 work, try to use the build-id instead. */
2433 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2434 if (dwz_bfd != NULL)
2435 {
2436 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2437 {
2438 gdb_bfd_unref (dwz_bfd);
2439 dwz_bfd = NULL;
2440 }
2441 }
2442
2443 if (dwz_bfd == NULL)
2444 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2445
2446 if (dwz_bfd == NULL)
2447 error (_("could not find '.gnu_debugaltlink' file for %s"),
2448 objfile_name (dwarf2_per_objfile->objfile));
2449
2450 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2451 struct dwz_file);
2452 result->dwz_bfd = dwz_bfd;
2453
2454 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2455
2456 do_cleanups (cleanup);
2457
2458 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2459 dwarf2_per_objfile->dwz_file = result;
2460 return result;
2461 }
2462 \f
2463 /* DWARF quick_symbols_functions support. */
2464
2465 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2466 unique line tables, so we maintain a separate table of all .debug_line
2467 derived entries to support the sharing.
2468 All the quick functions need is the list of file names. We discard the
2469 line_header when we're done and don't need to record it here. */
2470 struct quick_file_names
2471 {
2472 /* The data used to construct the hash key. */
2473 struct stmt_list_hash hash;
2474
2475 /* The number of entries in file_names, real_names. */
2476 unsigned int num_file_names;
2477
2478 /* The file names from the line table, after being run through
2479 file_full_name. */
2480 const char **file_names;
2481
2482 /* The file names from the line table after being run through
2483 gdb_realpath. These are computed lazily. */
2484 const char **real_names;
2485 };
2486
2487 /* When using the index (and thus not using psymtabs), each CU has an
2488 object of this type. This is used to hold information needed by
2489 the various "quick" methods. */
2490 struct dwarf2_per_cu_quick_data
2491 {
2492 /* The file table. This can be NULL if there was no file table
2493 or it's currently not read in.
2494 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2495 struct quick_file_names *file_names;
2496
2497 /* The corresponding symbol table. This is NULL if symbols for this
2498 CU have not yet been read. */
2499 struct compunit_symtab *compunit_symtab;
2500
2501 /* A temporary mark bit used when iterating over all CUs in
2502 expand_symtabs_matching. */
2503 unsigned int mark : 1;
2504
2505 /* True if we've tried to read the file table and found there isn't one.
2506 There will be no point in trying to read it again next time. */
2507 unsigned int no_file_data : 1;
2508 };
2509
2510 /* Utility hash function for a stmt_list_hash. */
2511
2512 static hashval_t
2513 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2514 {
2515 hashval_t v = 0;
2516
2517 if (stmt_list_hash->dwo_unit != NULL)
2518 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2519 v += stmt_list_hash->line_offset.sect_off;
2520 return v;
2521 }
2522
2523 /* Utility equality function for a stmt_list_hash. */
2524
2525 static int
2526 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2527 const struct stmt_list_hash *rhs)
2528 {
2529 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2530 return 0;
2531 if (lhs->dwo_unit != NULL
2532 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2533 return 0;
2534
2535 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2536 }
2537
2538 /* Hash function for a quick_file_names. */
2539
2540 static hashval_t
2541 hash_file_name_entry (const void *e)
2542 {
2543 const struct quick_file_names *file_data = e;
2544
2545 return hash_stmt_list_entry (&file_data->hash);
2546 }
2547
2548 /* Equality function for a quick_file_names. */
2549
2550 static int
2551 eq_file_name_entry (const void *a, const void *b)
2552 {
2553 const struct quick_file_names *ea = a;
2554 const struct quick_file_names *eb = b;
2555
2556 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2557 }
2558
2559 /* Delete function for a quick_file_names. */
2560
2561 static void
2562 delete_file_name_entry (void *e)
2563 {
2564 struct quick_file_names *file_data = e;
2565 int i;
2566
2567 for (i = 0; i < file_data->num_file_names; ++i)
2568 {
2569 xfree ((void*) file_data->file_names[i]);
2570 if (file_data->real_names)
2571 xfree ((void*) file_data->real_names[i]);
2572 }
2573
2574 /* The space for the struct itself lives on objfile_obstack,
2575 so we don't free it here. */
2576 }
2577
2578 /* Create a quick_file_names hash table. */
2579
2580 static htab_t
2581 create_quick_file_names_table (unsigned int nr_initial_entries)
2582 {
2583 return htab_create_alloc (nr_initial_entries,
2584 hash_file_name_entry, eq_file_name_entry,
2585 delete_file_name_entry, xcalloc, xfree);
2586 }
2587
2588 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2589 have to be created afterwards. You should call age_cached_comp_units after
2590 processing PER_CU->CU. dw2_setup must have been already called. */
2591
2592 static void
2593 load_cu (struct dwarf2_per_cu_data *per_cu)
2594 {
2595 if (per_cu->is_debug_types)
2596 load_full_type_unit (per_cu);
2597 else
2598 load_full_comp_unit (per_cu, language_minimal);
2599
2600 gdb_assert (per_cu->cu != NULL);
2601
2602 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2603 }
2604
2605 /* Read in the symbols for PER_CU. */
2606
2607 static void
2608 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2609 {
2610 struct cleanup *back_to;
2611
2612 /* Skip type_unit_groups, reading the type units they contain
2613 is handled elsewhere. */
2614 if (IS_TYPE_UNIT_GROUP (per_cu))
2615 return;
2616
2617 back_to = make_cleanup (dwarf2_release_queue, NULL);
2618
2619 if (dwarf2_per_objfile->using_index
2620 ? per_cu->v.quick->compunit_symtab == NULL
2621 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2622 {
2623 queue_comp_unit (per_cu, language_minimal);
2624 load_cu (per_cu);
2625
2626 /* If we just loaded a CU from a DWO, and we're working with an index
2627 that may badly handle TUs, load all the TUs in that DWO as well.
2628 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2629 if (!per_cu->is_debug_types
2630 && per_cu->cu->dwo_unit != NULL
2631 && dwarf2_per_objfile->index_table != NULL
2632 && dwarf2_per_objfile->index_table->version <= 7
2633 /* DWP files aren't supported yet. */
2634 && get_dwp_file () == NULL)
2635 queue_and_load_all_dwo_tus (per_cu);
2636 }
2637
2638 process_queue ();
2639
2640 /* Age the cache, releasing compilation units that have not
2641 been used recently. */
2642 age_cached_comp_units ();
2643
2644 do_cleanups (back_to);
2645 }
2646
2647 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2648 the objfile from which this CU came. Returns the resulting symbol
2649 table. */
2650
2651 static struct compunit_symtab *
2652 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2653 {
2654 gdb_assert (dwarf2_per_objfile->using_index);
2655 if (!per_cu->v.quick->compunit_symtab)
2656 {
2657 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2658 increment_reading_symtab ();
2659 dw2_do_instantiate_symtab (per_cu);
2660 process_cu_includes ();
2661 do_cleanups (back_to);
2662 }
2663
2664 return per_cu->v.quick->compunit_symtab;
2665 }
2666
2667 /* Return the CU/TU given its index.
2668
2669 This is intended for loops like:
2670
2671 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2672 + dwarf2_per_objfile->n_type_units); ++i)
2673 {
2674 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2675
2676 ...;
2677 }
2678 */
2679
2680 static struct dwarf2_per_cu_data *
2681 dw2_get_cutu (int index)
2682 {
2683 if (index >= dwarf2_per_objfile->n_comp_units)
2684 {
2685 index -= dwarf2_per_objfile->n_comp_units;
2686 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2687 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2688 }
2689
2690 return dwarf2_per_objfile->all_comp_units[index];
2691 }
2692
2693 /* Return the CU given its index.
2694 This differs from dw2_get_cutu in that it's for when you know INDEX
2695 refers to a CU. */
2696
2697 static struct dwarf2_per_cu_data *
2698 dw2_get_cu (int index)
2699 {
2700 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2701
2702 return dwarf2_per_objfile->all_comp_units[index];
2703 }
2704
2705 /* A helper for create_cus_from_index that handles a given list of
2706 CUs. */
2707
2708 static void
2709 create_cus_from_index_list (struct objfile *objfile,
2710 const gdb_byte *cu_list, offset_type n_elements,
2711 struct dwarf2_section_info *section,
2712 int is_dwz,
2713 int base_offset)
2714 {
2715 offset_type i;
2716
2717 for (i = 0; i < n_elements; i += 2)
2718 {
2719 struct dwarf2_per_cu_data *the_cu;
2720 ULONGEST offset, length;
2721
2722 gdb_static_assert (sizeof (ULONGEST) >= 8);
2723 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2724 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2725 cu_list += 2 * 8;
2726
2727 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2728 struct dwarf2_per_cu_data);
2729 the_cu->offset.sect_off = offset;
2730 the_cu->length = length;
2731 the_cu->objfile = objfile;
2732 the_cu->section = section;
2733 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2734 struct dwarf2_per_cu_quick_data);
2735 the_cu->is_dwz = is_dwz;
2736 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2737 }
2738 }
2739
2740 /* Read the CU list from the mapped index, and use it to create all
2741 the CU objects for this objfile. */
2742
2743 static void
2744 create_cus_from_index (struct objfile *objfile,
2745 const gdb_byte *cu_list, offset_type cu_list_elements,
2746 const gdb_byte *dwz_list, offset_type dwz_elements)
2747 {
2748 struct dwz_file *dwz;
2749
2750 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2751 dwarf2_per_objfile->all_comp_units
2752 = obstack_alloc (&objfile->objfile_obstack,
2753 dwarf2_per_objfile->n_comp_units
2754 * sizeof (struct dwarf2_per_cu_data *));
2755
2756 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2757 &dwarf2_per_objfile->info, 0, 0);
2758
2759 if (dwz_elements == 0)
2760 return;
2761
2762 dwz = dwarf2_get_dwz_file ();
2763 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2764 cu_list_elements / 2);
2765 }
2766
2767 /* Create the signatured type hash table from the index. */
2768
2769 static void
2770 create_signatured_type_table_from_index (struct objfile *objfile,
2771 struct dwarf2_section_info *section,
2772 const gdb_byte *bytes,
2773 offset_type elements)
2774 {
2775 offset_type i;
2776 htab_t sig_types_hash;
2777
2778 dwarf2_per_objfile->n_type_units
2779 = dwarf2_per_objfile->n_allocated_type_units
2780 = elements / 3;
2781 dwarf2_per_objfile->all_type_units
2782 = xmalloc (dwarf2_per_objfile->n_type_units
2783 * sizeof (struct signatured_type *));
2784
2785 sig_types_hash = allocate_signatured_type_table (objfile);
2786
2787 for (i = 0; i < elements; i += 3)
2788 {
2789 struct signatured_type *sig_type;
2790 ULONGEST offset, type_offset_in_tu, signature;
2791 void **slot;
2792
2793 gdb_static_assert (sizeof (ULONGEST) >= 8);
2794 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2795 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2796 BFD_ENDIAN_LITTLE);
2797 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2798 bytes += 3 * 8;
2799
2800 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2801 struct signatured_type);
2802 sig_type->signature = signature;
2803 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2804 sig_type->per_cu.is_debug_types = 1;
2805 sig_type->per_cu.section = section;
2806 sig_type->per_cu.offset.sect_off = offset;
2807 sig_type->per_cu.objfile = objfile;
2808 sig_type->per_cu.v.quick
2809 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2810 struct dwarf2_per_cu_quick_data);
2811
2812 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2813 *slot = sig_type;
2814
2815 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2816 }
2817
2818 dwarf2_per_objfile->signatured_types = sig_types_hash;
2819 }
2820
2821 /* Read the address map data from the mapped index, and use it to
2822 populate the objfile's psymtabs_addrmap. */
2823
2824 static void
2825 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2826 {
2827 const gdb_byte *iter, *end;
2828 struct obstack temp_obstack;
2829 struct addrmap *mutable_map;
2830 struct cleanup *cleanup;
2831 CORE_ADDR baseaddr;
2832
2833 obstack_init (&temp_obstack);
2834 cleanup = make_cleanup_obstack_free (&temp_obstack);
2835 mutable_map = addrmap_create_mutable (&temp_obstack);
2836
2837 iter = index->address_table;
2838 end = iter + index->address_table_size;
2839
2840 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2841
2842 while (iter < end)
2843 {
2844 ULONGEST hi, lo, cu_index;
2845 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2846 iter += 8;
2847 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2848 iter += 8;
2849 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2850 iter += 4;
2851
2852 if (lo > hi)
2853 {
2854 complaint (&symfile_complaints,
2855 _(".gdb_index address table has invalid range (%s - %s)"),
2856 hex_string (lo), hex_string (hi));
2857 continue;
2858 }
2859
2860 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2861 {
2862 complaint (&symfile_complaints,
2863 _(".gdb_index address table has invalid CU number %u"),
2864 (unsigned) cu_index);
2865 continue;
2866 }
2867
2868 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2869 dw2_get_cutu (cu_index));
2870 }
2871
2872 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2873 &objfile->objfile_obstack);
2874 do_cleanups (cleanup);
2875 }
2876
2877 /* The hash function for strings in the mapped index. This is the same as
2878 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2879 implementation. This is necessary because the hash function is tied to the
2880 format of the mapped index file. The hash values do not have to match with
2881 SYMBOL_HASH_NEXT.
2882
2883 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2884
2885 static hashval_t
2886 mapped_index_string_hash (int index_version, const void *p)
2887 {
2888 const unsigned char *str = (const unsigned char *) p;
2889 hashval_t r = 0;
2890 unsigned char c;
2891
2892 while ((c = *str++) != 0)
2893 {
2894 if (index_version >= 5)
2895 c = tolower (c);
2896 r = r * 67 + c - 113;
2897 }
2898
2899 return r;
2900 }
2901
2902 /* Find a slot in the mapped index INDEX for the object named NAME.
2903 If NAME is found, set *VEC_OUT to point to the CU vector in the
2904 constant pool and return 1. If NAME cannot be found, return 0. */
2905
2906 static int
2907 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2908 offset_type **vec_out)
2909 {
2910 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2911 offset_type hash;
2912 offset_type slot, step;
2913 int (*cmp) (const char *, const char *);
2914
2915 if (current_language->la_language == language_cplus
2916 || current_language->la_language == language_java
2917 || current_language->la_language == language_fortran)
2918 {
2919 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2920 not contain any. */
2921
2922 if (strchr (name, '(') != NULL)
2923 {
2924 char *without_params = cp_remove_params (name);
2925
2926 if (without_params != NULL)
2927 {
2928 make_cleanup (xfree, without_params);
2929 name = without_params;
2930 }
2931 }
2932 }
2933
2934 /* Index version 4 did not support case insensitive searches. But the
2935 indices for case insensitive languages are built in lowercase, therefore
2936 simulate our NAME being searched is also lowercased. */
2937 hash = mapped_index_string_hash ((index->version == 4
2938 && case_sensitivity == case_sensitive_off
2939 ? 5 : index->version),
2940 name);
2941
2942 slot = hash & (index->symbol_table_slots - 1);
2943 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2944 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2945
2946 for (;;)
2947 {
2948 /* Convert a slot number to an offset into the table. */
2949 offset_type i = 2 * slot;
2950 const char *str;
2951 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2952 {
2953 do_cleanups (back_to);
2954 return 0;
2955 }
2956
2957 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2958 if (!cmp (name, str))
2959 {
2960 *vec_out = (offset_type *) (index->constant_pool
2961 + MAYBE_SWAP (index->symbol_table[i + 1]));
2962 do_cleanups (back_to);
2963 return 1;
2964 }
2965
2966 slot = (slot + step) & (index->symbol_table_slots - 1);
2967 }
2968 }
2969
2970 /* A helper function that reads the .gdb_index from SECTION and fills
2971 in MAP. FILENAME is the name of the file containing the section;
2972 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2973 ok to use deprecated sections.
2974
2975 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2976 out parameters that are filled in with information about the CU and
2977 TU lists in the section.
2978
2979 Returns 1 if all went well, 0 otherwise. */
2980
2981 static int
2982 read_index_from_section (struct objfile *objfile,
2983 const char *filename,
2984 int deprecated_ok,
2985 struct dwarf2_section_info *section,
2986 struct mapped_index *map,
2987 const gdb_byte **cu_list,
2988 offset_type *cu_list_elements,
2989 const gdb_byte **types_list,
2990 offset_type *types_list_elements)
2991 {
2992 const gdb_byte *addr;
2993 offset_type version;
2994 offset_type *metadata;
2995 int i;
2996
2997 if (dwarf2_section_empty_p (section))
2998 return 0;
2999
3000 /* Older elfutils strip versions could keep the section in the main
3001 executable while splitting it for the separate debug info file. */
3002 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3003 return 0;
3004
3005 dwarf2_read_section (objfile, section);
3006
3007 addr = section->buffer;
3008 /* Version check. */
3009 version = MAYBE_SWAP (*(offset_type *) addr);
3010 /* Versions earlier than 3 emitted every copy of a psymbol. This
3011 causes the index to behave very poorly for certain requests. Version 3
3012 contained incomplete addrmap. So, it seems better to just ignore such
3013 indices. */
3014 if (version < 4)
3015 {
3016 static int warning_printed = 0;
3017 if (!warning_printed)
3018 {
3019 warning (_("Skipping obsolete .gdb_index section in %s."),
3020 filename);
3021 warning_printed = 1;
3022 }
3023 return 0;
3024 }
3025 /* Index version 4 uses a different hash function than index version
3026 5 and later.
3027
3028 Versions earlier than 6 did not emit psymbols for inlined
3029 functions. Using these files will cause GDB not to be able to
3030 set breakpoints on inlined functions by name, so we ignore these
3031 indices unless the user has done
3032 "set use-deprecated-index-sections on". */
3033 if (version < 6 && !deprecated_ok)
3034 {
3035 static int warning_printed = 0;
3036 if (!warning_printed)
3037 {
3038 warning (_("\
3039 Skipping deprecated .gdb_index section in %s.\n\
3040 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3041 to use the section anyway."),
3042 filename);
3043 warning_printed = 1;
3044 }
3045 return 0;
3046 }
3047 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3048 of the TU (for symbols coming from TUs),
3049 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3050 Plus gold-generated indices can have duplicate entries for global symbols,
3051 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3052 These are just performance bugs, and we can't distinguish gdb-generated
3053 indices from gold-generated ones, so issue no warning here. */
3054
3055 /* Indexes with higher version than the one supported by GDB may be no
3056 longer backward compatible. */
3057 if (version > 8)
3058 return 0;
3059
3060 map->version = version;
3061 map->total_size = section->size;
3062
3063 metadata = (offset_type *) (addr + sizeof (offset_type));
3064
3065 i = 0;
3066 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3067 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3068 / 8);
3069 ++i;
3070
3071 *types_list = addr + MAYBE_SWAP (metadata[i]);
3072 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3073 - MAYBE_SWAP (metadata[i]))
3074 / 8);
3075 ++i;
3076
3077 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3078 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3079 - MAYBE_SWAP (metadata[i]));
3080 ++i;
3081
3082 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3083 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3084 - MAYBE_SWAP (metadata[i]))
3085 / (2 * sizeof (offset_type)));
3086 ++i;
3087
3088 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3089
3090 return 1;
3091 }
3092
3093
3094 /* Read the index file. If everything went ok, initialize the "quick"
3095 elements of all the CUs and return 1. Otherwise, return 0. */
3096
3097 static int
3098 dwarf2_read_index (struct objfile *objfile)
3099 {
3100 struct mapped_index local_map, *map;
3101 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3102 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3103 struct dwz_file *dwz;
3104
3105 if (!read_index_from_section (objfile, objfile_name (objfile),
3106 use_deprecated_index_sections,
3107 &dwarf2_per_objfile->gdb_index, &local_map,
3108 &cu_list, &cu_list_elements,
3109 &types_list, &types_list_elements))
3110 return 0;
3111
3112 /* Don't use the index if it's empty. */
3113 if (local_map.symbol_table_slots == 0)
3114 return 0;
3115
3116 /* If there is a .dwz file, read it so we can get its CU list as
3117 well. */
3118 dwz = dwarf2_get_dwz_file ();
3119 if (dwz != NULL)
3120 {
3121 struct mapped_index dwz_map;
3122 const gdb_byte *dwz_types_ignore;
3123 offset_type dwz_types_elements_ignore;
3124
3125 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3126 1,
3127 &dwz->gdb_index, &dwz_map,
3128 &dwz_list, &dwz_list_elements,
3129 &dwz_types_ignore,
3130 &dwz_types_elements_ignore))
3131 {
3132 warning (_("could not read '.gdb_index' section from %s; skipping"),
3133 bfd_get_filename (dwz->dwz_bfd));
3134 return 0;
3135 }
3136 }
3137
3138 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3139 dwz_list_elements);
3140
3141 if (types_list_elements)
3142 {
3143 struct dwarf2_section_info *section;
3144
3145 /* We can only handle a single .debug_types when we have an
3146 index. */
3147 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3148 return 0;
3149
3150 section = VEC_index (dwarf2_section_info_def,
3151 dwarf2_per_objfile->types, 0);
3152
3153 create_signatured_type_table_from_index (objfile, section, types_list,
3154 types_list_elements);
3155 }
3156
3157 create_addrmap_from_index (objfile, &local_map);
3158
3159 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3160 *map = local_map;
3161
3162 dwarf2_per_objfile->index_table = map;
3163 dwarf2_per_objfile->using_index = 1;
3164 dwarf2_per_objfile->quick_file_names_table =
3165 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3166
3167 return 1;
3168 }
3169
3170 /* A helper for the "quick" functions which sets the global
3171 dwarf2_per_objfile according to OBJFILE. */
3172
3173 static void
3174 dw2_setup (struct objfile *objfile)
3175 {
3176 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3177 gdb_assert (dwarf2_per_objfile);
3178 }
3179
3180 /* die_reader_func for dw2_get_file_names. */
3181
3182 static void
3183 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3184 const gdb_byte *info_ptr,
3185 struct die_info *comp_unit_die,
3186 int has_children,
3187 void *data)
3188 {
3189 struct dwarf2_cu *cu = reader->cu;
3190 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3191 struct objfile *objfile = dwarf2_per_objfile->objfile;
3192 struct dwarf2_per_cu_data *lh_cu;
3193 struct line_header *lh;
3194 struct attribute *attr;
3195 int i;
3196 const char *name, *comp_dir;
3197 void **slot;
3198 struct quick_file_names *qfn;
3199 unsigned int line_offset;
3200
3201 gdb_assert (! this_cu->is_debug_types);
3202
3203 /* Our callers never want to match partial units -- instead they
3204 will match the enclosing full CU. */
3205 if (comp_unit_die->tag == DW_TAG_partial_unit)
3206 {
3207 this_cu->v.quick->no_file_data = 1;
3208 return;
3209 }
3210
3211 lh_cu = this_cu;
3212 lh = NULL;
3213 slot = NULL;
3214 line_offset = 0;
3215
3216 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3217 if (attr)
3218 {
3219 struct quick_file_names find_entry;
3220
3221 line_offset = DW_UNSND (attr);
3222
3223 /* We may have already read in this line header (TU line header sharing).
3224 If we have we're done. */
3225 find_entry.hash.dwo_unit = cu->dwo_unit;
3226 find_entry.hash.line_offset.sect_off = line_offset;
3227 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3228 &find_entry, INSERT);
3229 if (*slot != NULL)
3230 {
3231 lh_cu->v.quick->file_names = *slot;
3232 return;
3233 }
3234
3235 lh = dwarf_decode_line_header (line_offset, cu);
3236 }
3237 if (lh == NULL)
3238 {
3239 lh_cu->v.quick->no_file_data = 1;
3240 return;
3241 }
3242
3243 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3244 qfn->hash.dwo_unit = cu->dwo_unit;
3245 qfn->hash.line_offset.sect_off = line_offset;
3246 gdb_assert (slot != NULL);
3247 *slot = qfn;
3248
3249 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3250
3251 qfn->num_file_names = lh->num_file_names;
3252 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3253 lh->num_file_names * sizeof (char *));
3254 for (i = 0; i < lh->num_file_names; ++i)
3255 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3256 qfn->real_names = NULL;
3257
3258 free_line_header (lh);
3259
3260 lh_cu->v.quick->file_names = qfn;
3261 }
3262
3263 /* A helper for the "quick" functions which attempts to read the line
3264 table for THIS_CU. */
3265
3266 static struct quick_file_names *
3267 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3268 {
3269 /* This should never be called for TUs. */
3270 gdb_assert (! this_cu->is_debug_types);
3271 /* Nor type unit groups. */
3272 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3273
3274 if (this_cu->v.quick->file_names != NULL)
3275 return this_cu->v.quick->file_names;
3276 /* If we know there is no line data, no point in looking again. */
3277 if (this_cu->v.quick->no_file_data)
3278 return NULL;
3279
3280 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3281
3282 if (this_cu->v.quick->no_file_data)
3283 return NULL;
3284 return this_cu->v.quick->file_names;
3285 }
3286
3287 /* A helper for the "quick" functions which computes and caches the
3288 real path for a given file name from the line table. */
3289
3290 static const char *
3291 dw2_get_real_path (struct objfile *objfile,
3292 struct quick_file_names *qfn, int index)
3293 {
3294 if (qfn->real_names == NULL)
3295 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3296 qfn->num_file_names, const char *);
3297
3298 if (qfn->real_names[index] == NULL)
3299 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3300
3301 return qfn->real_names[index];
3302 }
3303
3304 static struct symtab *
3305 dw2_find_last_source_symtab (struct objfile *objfile)
3306 {
3307 struct compunit_symtab *cust;
3308 int index;
3309
3310 dw2_setup (objfile);
3311 index = dwarf2_per_objfile->n_comp_units - 1;
3312 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3313 if (cust == NULL)
3314 return NULL;
3315 return compunit_primary_filetab (cust);
3316 }
3317
3318 /* Traversal function for dw2_forget_cached_source_info. */
3319
3320 static int
3321 dw2_free_cached_file_names (void **slot, void *info)
3322 {
3323 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3324
3325 if (file_data->real_names)
3326 {
3327 int i;
3328
3329 for (i = 0; i < file_data->num_file_names; ++i)
3330 {
3331 xfree ((void*) file_data->real_names[i]);
3332 file_data->real_names[i] = NULL;
3333 }
3334 }
3335
3336 return 1;
3337 }
3338
3339 static void
3340 dw2_forget_cached_source_info (struct objfile *objfile)
3341 {
3342 dw2_setup (objfile);
3343
3344 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3345 dw2_free_cached_file_names, NULL);
3346 }
3347
3348 /* Helper function for dw2_map_symtabs_matching_filename that expands
3349 the symtabs and calls the iterator. */
3350
3351 static int
3352 dw2_map_expand_apply (struct objfile *objfile,
3353 struct dwarf2_per_cu_data *per_cu,
3354 const char *name, const char *real_path,
3355 int (*callback) (struct symtab *, void *),
3356 void *data)
3357 {
3358 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3359
3360 /* Don't visit already-expanded CUs. */
3361 if (per_cu->v.quick->compunit_symtab)
3362 return 0;
3363
3364 /* This may expand more than one symtab, and we want to iterate over
3365 all of them. */
3366 dw2_instantiate_symtab (per_cu);
3367
3368 return iterate_over_some_symtabs (name, real_path, callback, data,
3369 objfile->compunit_symtabs, last_made);
3370 }
3371
3372 /* Implementation of the map_symtabs_matching_filename method. */
3373
3374 static int
3375 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3376 const char *real_path,
3377 int (*callback) (struct symtab *, void *),
3378 void *data)
3379 {
3380 int i;
3381 const char *name_basename = lbasename (name);
3382
3383 dw2_setup (objfile);
3384
3385 /* The rule is CUs specify all the files, including those used by
3386 any TU, so there's no need to scan TUs here. */
3387
3388 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3389 {
3390 int j;
3391 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3392 struct quick_file_names *file_data;
3393
3394 /* We only need to look at symtabs not already expanded. */
3395 if (per_cu->v.quick->compunit_symtab)
3396 continue;
3397
3398 file_data = dw2_get_file_names (per_cu);
3399 if (file_data == NULL)
3400 continue;
3401
3402 for (j = 0; j < file_data->num_file_names; ++j)
3403 {
3404 const char *this_name = file_data->file_names[j];
3405 const char *this_real_name;
3406
3407 if (compare_filenames_for_search (this_name, name))
3408 {
3409 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3410 callback, data))
3411 return 1;
3412 continue;
3413 }
3414
3415 /* Before we invoke realpath, which can get expensive when many
3416 files are involved, do a quick comparison of the basenames. */
3417 if (! basenames_may_differ
3418 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3419 continue;
3420
3421 this_real_name = dw2_get_real_path (objfile, file_data, j);
3422 if (compare_filenames_for_search (this_real_name, name))
3423 {
3424 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3425 callback, data))
3426 return 1;
3427 continue;
3428 }
3429
3430 if (real_path != NULL)
3431 {
3432 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3433 gdb_assert (IS_ABSOLUTE_PATH (name));
3434 if (this_real_name != NULL
3435 && FILENAME_CMP (real_path, this_real_name) == 0)
3436 {
3437 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3438 callback, data))
3439 return 1;
3440 continue;
3441 }
3442 }
3443 }
3444 }
3445
3446 return 0;
3447 }
3448
3449 /* Struct used to manage iterating over all CUs looking for a symbol. */
3450
3451 struct dw2_symtab_iterator
3452 {
3453 /* The internalized form of .gdb_index. */
3454 struct mapped_index *index;
3455 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3456 int want_specific_block;
3457 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3458 Unused if !WANT_SPECIFIC_BLOCK. */
3459 int block_index;
3460 /* The kind of symbol we're looking for. */
3461 domain_enum domain;
3462 /* The list of CUs from the index entry of the symbol,
3463 or NULL if not found. */
3464 offset_type *vec;
3465 /* The next element in VEC to look at. */
3466 int next;
3467 /* The number of elements in VEC, or zero if there is no match. */
3468 int length;
3469 /* Have we seen a global version of the symbol?
3470 If so we can ignore all further global instances.
3471 This is to work around gold/15646, inefficient gold-generated
3472 indices. */
3473 int global_seen;
3474 };
3475
3476 /* Initialize the index symtab iterator ITER.
3477 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3478 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3479
3480 static void
3481 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3482 struct mapped_index *index,
3483 int want_specific_block,
3484 int block_index,
3485 domain_enum domain,
3486 const char *name)
3487 {
3488 iter->index = index;
3489 iter->want_specific_block = want_specific_block;
3490 iter->block_index = block_index;
3491 iter->domain = domain;
3492 iter->next = 0;
3493 iter->global_seen = 0;
3494
3495 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3496 iter->length = MAYBE_SWAP (*iter->vec);
3497 else
3498 {
3499 iter->vec = NULL;
3500 iter->length = 0;
3501 }
3502 }
3503
3504 /* Return the next matching CU or NULL if there are no more. */
3505
3506 static struct dwarf2_per_cu_data *
3507 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3508 {
3509 for ( ; iter->next < iter->length; ++iter->next)
3510 {
3511 offset_type cu_index_and_attrs =
3512 MAYBE_SWAP (iter->vec[iter->next + 1]);
3513 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3514 struct dwarf2_per_cu_data *per_cu;
3515 int want_static = iter->block_index != GLOBAL_BLOCK;
3516 /* This value is only valid for index versions >= 7. */
3517 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3518 gdb_index_symbol_kind symbol_kind =
3519 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3520 /* Only check the symbol attributes if they're present.
3521 Indices prior to version 7 don't record them,
3522 and indices >= 7 may elide them for certain symbols
3523 (gold does this). */
3524 int attrs_valid =
3525 (iter->index->version >= 7
3526 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3527
3528 /* Don't crash on bad data. */
3529 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3530 + dwarf2_per_objfile->n_type_units))
3531 {
3532 complaint (&symfile_complaints,
3533 _(".gdb_index entry has bad CU index"
3534 " [in module %s]"),
3535 objfile_name (dwarf2_per_objfile->objfile));
3536 continue;
3537 }
3538
3539 per_cu = dw2_get_cutu (cu_index);
3540
3541 /* Skip if already read in. */
3542 if (per_cu->v.quick->compunit_symtab)
3543 continue;
3544
3545 /* Check static vs global. */
3546 if (attrs_valid)
3547 {
3548 if (iter->want_specific_block
3549 && want_static != is_static)
3550 continue;
3551 /* Work around gold/15646. */
3552 if (!is_static && iter->global_seen)
3553 continue;
3554 if (!is_static)
3555 iter->global_seen = 1;
3556 }
3557
3558 /* Only check the symbol's kind if it has one. */
3559 if (attrs_valid)
3560 {
3561 switch (iter->domain)
3562 {
3563 case VAR_DOMAIN:
3564 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3565 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3566 /* Some types are also in VAR_DOMAIN. */
3567 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3568 continue;
3569 break;
3570 case STRUCT_DOMAIN:
3571 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3572 continue;
3573 break;
3574 case LABEL_DOMAIN:
3575 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3576 continue;
3577 break;
3578 default:
3579 break;
3580 }
3581 }
3582
3583 ++iter->next;
3584 return per_cu;
3585 }
3586
3587 return NULL;
3588 }
3589
3590 static struct compunit_symtab *
3591 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3592 const char *name, domain_enum domain)
3593 {
3594 struct compunit_symtab *stab_best = NULL;
3595 struct mapped_index *index;
3596
3597 dw2_setup (objfile);
3598
3599 index = dwarf2_per_objfile->index_table;
3600
3601 /* index is NULL if OBJF_READNOW. */
3602 if (index)
3603 {
3604 struct dw2_symtab_iterator iter;
3605 struct dwarf2_per_cu_data *per_cu;
3606
3607 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3608
3609 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3610 {
3611 struct symbol *sym = NULL;
3612 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3613 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3614 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3615
3616 /* Some caution must be observed with overloaded functions
3617 and methods, since the index will not contain any overload
3618 information (but NAME might contain it). */
3619 sym = block_lookup_symbol (block, name, domain);
3620
3621 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3622 {
3623 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3624 return stab;
3625
3626 stab_best = stab;
3627 }
3628
3629 /* Keep looking through other CUs. */
3630 }
3631 }
3632
3633 return stab_best;
3634 }
3635
3636 static void
3637 dw2_print_stats (struct objfile *objfile)
3638 {
3639 int i, total, count;
3640
3641 dw2_setup (objfile);
3642 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3643 count = 0;
3644 for (i = 0; i < total; ++i)
3645 {
3646 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3647
3648 if (!per_cu->v.quick->compunit_symtab)
3649 ++count;
3650 }
3651 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3652 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3653 }
3654
3655 /* This dumps minimal information about the index.
3656 It is called via "mt print objfiles".
3657 One use is to verify .gdb_index has been loaded by the
3658 gdb.dwarf2/gdb-index.exp testcase. */
3659
3660 static void
3661 dw2_dump (struct objfile *objfile)
3662 {
3663 dw2_setup (objfile);
3664 gdb_assert (dwarf2_per_objfile->using_index);
3665 printf_filtered (".gdb_index:");
3666 if (dwarf2_per_objfile->index_table != NULL)
3667 {
3668 printf_filtered (" version %d\n",
3669 dwarf2_per_objfile->index_table->version);
3670 }
3671 else
3672 printf_filtered (" faked for \"readnow\"\n");
3673 printf_filtered ("\n");
3674 }
3675
3676 static void
3677 dw2_relocate (struct objfile *objfile,
3678 const struct section_offsets *new_offsets,
3679 const struct section_offsets *delta)
3680 {
3681 /* There's nothing to relocate here. */
3682 }
3683
3684 static void
3685 dw2_expand_symtabs_for_function (struct objfile *objfile,
3686 const char *func_name)
3687 {
3688 struct mapped_index *index;
3689
3690 dw2_setup (objfile);
3691
3692 index = dwarf2_per_objfile->index_table;
3693
3694 /* index is NULL if OBJF_READNOW. */
3695 if (index)
3696 {
3697 struct dw2_symtab_iterator iter;
3698 struct dwarf2_per_cu_data *per_cu;
3699
3700 /* Note: It doesn't matter what we pass for block_index here. */
3701 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3702 func_name);
3703
3704 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3705 dw2_instantiate_symtab (per_cu);
3706 }
3707 }
3708
3709 static void
3710 dw2_expand_all_symtabs (struct objfile *objfile)
3711 {
3712 int i;
3713
3714 dw2_setup (objfile);
3715
3716 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3717 + dwarf2_per_objfile->n_type_units); ++i)
3718 {
3719 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3720
3721 dw2_instantiate_symtab (per_cu);
3722 }
3723 }
3724
3725 static void
3726 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3727 const char *fullname)
3728 {
3729 int i;
3730
3731 dw2_setup (objfile);
3732
3733 /* We don't need to consider type units here.
3734 This is only called for examining code, e.g. expand_line_sal.
3735 There can be an order of magnitude (or more) more type units
3736 than comp units, and we avoid them if we can. */
3737
3738 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3739 {
3740 int j;
3741 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3742 struct quick_file_names *file_data;
3743
3744 /* We only need to look at symtabs not already expanded. */
3745 if (per_cu->v.quick->compunit_symtab)
3746 continue;
3747
3748 file_data = dw2_get_file_names (per_cu);
3749 if (file_data == NULL)
3750 continue;
3751
3752 for (j = 0; j < file_data->num_file_names; ++j)
3753 {
3754 const char *this_fullname = file_data->file_names[j];
3755
3756 if (filename_cmp (this_fullname, fullname) == 0)
3757 {
3758 dw2_instantiate_symtab (per_cu);
3759 break;
3760 }
3761 }
3762 }
3763 }
3764
3765 static void
3766 dw2_map_matching_symbols (struct objfile *objfile,
3767 const char * name, domain_enum namespace,
3768 int global,
3769 int (*callback) (struct block *,
3770 struct symbol *, void *),
3771 void *data, symbol_compare_ftype *match,
3772 symbol_compare_ftype *ordered_compare)
3773 {
3774 /* Currently unimplemented; used for Ada. The function can be called if the
3775 current language is Ada for a non-Ada objfile using GNU index. As Ada
3776 does not look for non-Ada symbols this function should just return. */
3777 }
3778
3779 static void
3780 dw2_expand_symtabs_matching
3781 (struct objfile *objfile,
3782 expand_symtabs_file_matcher_ftype *file_matcher,
3783 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3784 enum search_domain kind,
3785 void *data)
3786 {
3787 int i;
3788 offset_type iter;
3789 struct mapped_index *index;
3790
3791 dw2_setup (objfile);
3792
3793 /* index_table is NULL if OBJF_READNOW. */
3794 if (!dwarf2_per_objfile->index_table)
3795 return;
3796 index = dwarf2_per_objfile->index_table;
3797
3798 if (file_matcher != NULL)
3799 {
3800 struct cleanup *cleanup;
3801 htab_t visited_found, visited_not_found;
3802
3803 visited_found = htab_create_alloc (10,
3804 htab_hash_pointer, htab_eq_pointer,
3805 NULL, xcalloc, xfree);
3806 cleanup = make_cleanup_htab_delete (visited_found);
3807 visited_not_found = htab_create_alloc (10,
3808 htab_hash_pointer, htab_eq_pointer,
3809 NULL, xcalloc, xfree);
3810 make_cleanup_htab_delete (visited_not_found);
3811
3812 /* The rule is CUs specify all the files, including those used by
3813 any TU, so there's no need to scan TUs here. */
3814
3815 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3816 {
3817 int j;
3818 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3819 struct quick_file_names *file_data;
3820 void **slot;
3821
3822 per_cu->v.quick->mark = 0;
3823
3824 /* We only need to look at symtabs not already expanded. */
3825 if (per_cu->v.quick->compunit_symtab)
3826 continue;
3827
3828 file_data = dw2_get_file_names (per_cu);
3829 if (file_data == NULL)
3830 continue;
3831
3832 if (htab_find (visited_not_found, file_data) != NULL)
3833 continue;
3834 else if (htab_find (visited_found, file_data) != NULL)
3835 {
3836 per_cu->v.quick->mark = 1;
3837 continue;
3838 }
3839
3840 for (j = 0; j < file_data->num_file_names; ++j)
3841 {
3842 const char *this_real_name;
3843
3844 if (file_matcher (file_data->file_names[j], data, 0))
3845 {
3846 per_cu->v.quick->mark = 1;
3847 break;
3848 }
3849
3850 /* Before we invoke realpath, which can get expensive when many
3851 files are involved, do a quick comparison of the basenames. */
3852 if (!basenames_may_differ
3853 && !file_matcher (lbasename (file_data->file_names[j]),
3854 data, 1))
3855 continue;
3856
3857 this_real_name = dw2_get_real_path (objfile, file_data, j);
3858 if (file_matcher (this_real_name, data, 0))
3859 {
3860 per_cu->v.quick->mark = 1;
3861 break;
3862 }
3863 }
3864
3865 slot = htab_find_slot (per_cu->v.quick->mark
3866 ? visited_found
3867 : visited_not_found,
3868 file_data, INSERT);
3869 *slot = file_data;
3870 }
3871
3872 do_cleanups (cleanup);
3873 }
3874
3875 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3876 {
3877 offset_type idx = 2 * iter;
3878 const char *name;
3879 offset_type *vec, vec_len, vec_idx;
3880 int global_seen = 0;
3881
3882 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3883 continue;
3884
3885 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3886
3887 if (! (*symbol_matcher) (name, data))
3888 continue;
3889
3890 /* The name was matched, now expand corresponding CUs that were
3891 marked. */
3892 vec = (offset_type *) (index->constant_pool
3893 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3894 vec_len = MAYBE_SWAP (vec[0]);
3895 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3896 {
3897 struct dwarf2_per_cu_data *per_cu;
3898 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3899 /* This value is only valid for index versions >= 7. */
3900 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3901 gdb_index_symbol_kind symbol_kind =
3902 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3903 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3904 /* Only check the symbol attributes if they're present.
3905 Indices prior to version 7 don't record them,
3906 and indices >= 7 may elide them for certain symbols
3907 (gold does this). */
3908 int attrs_valid =
3909 (index->version >= 7
3910 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3911
3912 /* Work around gold/15646. */
3913 if (attrs_valid)
3914 {
3915 if (!is_static && global_seen)
3916 continue;
3917 if (!is_static)
3918 global_seen = 1;
3919 }
3920
3921 /* Only check the symbol's kind if it has one. */
3922 if (attrs_valid)
3923 {
3924 switch (kind)
3925 {
3926 case VARIABLES_DOMAIN:
3927 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3928 continue;
3929 break;
3930 case FUNCTIONS_DOMAIN:
3931 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3932 continue;
3933 break;
3934 case TYPES_DOMAIN:
3935 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3936 continue;
3937 break;
3938 default:
3939 break;
3940 }
3941 }
3942
3943 /* Don't crash on bad data. */
3944 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3945 + dwarf2_per_objfile->n_type_units))
3946 {
3947 complaint (&symfile_complaints,
3948 _(".gdb_index entry has bad CU index"
3949 " [in module %s]"), objfile_name (objfile));
3950 continue;
3951 }
3952
3953 per_cu = dw2_get_cutu (cu_index);
3954 if (file_matcher == NULL || per_cu->v.quick->mark)
3955 dw2_instantiate_symtab (per_cu);
3956 }
3957 }
3958 }
3959
3960 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
3961 symtab. */
3962
3963 static struct compunit_symtab *
3964 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
3965 CORE_ADDR pc)
3966 {
3967 int i;
3968
3969 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
3970 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
3971 return cust;
3972
3973 if (cust->includes == NULL)
3974 return NULL;
3975
3976 for (i = 0; cust->includes[i]; ++i)
3977 {
3978 struct compunit_symtab *s = cust->includes[i];
3979
3980 s = recursively_find_pc_sect_compunit_symtab (s, pc);
3981 if (s != NULL)
3982 return s;
3983 }
3984
3985 return NULL;
3986 }
3987
3988 static struct compunit_symtab *
3989 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
3990 struct bound_minimal_symbol msymbol,
3991 CORE_ADDR pc,
3992 struct obj_section *section,
3993 int warn_if_readin)
3994 {
3995 struct dwarf2_per_cu_data *data;
3996 struct compunit_symtab *result;
3997
3998 dw2_setup (objfile);
3999
4000 if (!objfile->psymtabs_addrmap)
4001 return NULL;
4002
4003 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4004 if (!data)
4005 return NULL;
4006
4007 if (warn_if_readin && data->v.quick->compunit_symtab)
4008 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4009 paddress (get_objfile_arch (objfile), pc));
4010
4011 result
4012 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4013 pc);
4014 gdb_assert (result != NULL);
4015 return result;
4016 }
4017
4018 static void
4019 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4020 void *data, int need_fullname)
4021 {
4022 int i;
4023 struct cleanup *cleanup;
4024 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4025 NULL, xcalloc, xfree);
4026
4027 cleanup = make_cleanup_htab_delete (visited);
4028 dw2_setup (objfile);
4029
4030 /* The rule is CUs specify all the files, including those used by
4031 any TU, so there's no need to scan TUs here.
4032 We can ignore file names coming from already-expanded CUs. */
4033
4034 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4035 {
4036 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4037
4038 if (per_cu->v.quick->compunit_symtab)
4039 {
4040 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4041 INSERT);
4042
4043 *slot = per_cu->v.quick->file_names;
4044 }
4045 }
4046
4047 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4048 {
4049 int j;
4050 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4051 struct quick_file_names *file_data;
4052 void **slot;
4053
4054 /* We only need to look at symtabs not already expanded. */
4055 if (per_cu->v.quick->compunit_symtab)
4056 continue;
4057
4058 file_data = dw2_get_file_names (per_cu);
4059 if (file_data == NULL)
4060 continue;
4061
4062 slot = htab_find_slot (visited, file_data, INSERT);
4063 if (*slot)
4064 {
4065 /* Already visited. */
4066 continue;
4067 }
4068 *slot = file_data;
4069
4070 for (j = 0; j < file_data->num_file_names; ++j)
4071 {
4072 const char *this_real_name;
4073
4074 if (need_fullname)
4075 this_real_name = dw2_get_real_path (objfile, file_data, j);
4076 else
4077 this_real_name = NULL;
4078 (*fun) (file_data->file_names[j], this_real_name, data);
4079 }
4080 }
4081
4082 do_cleanups (cleanup);
4083 }
4084
4085 static int
4086 dw2_has_symbols (struct objfile *objfile)
4087 {
4088 return 1;
4089 }
4090
4091 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4092 {
4093 dw2_has_symbols,
4094 dw2_find_last_source_symtab,
4095 dw2_forget_cached_source_info,
4096 dw2_map_symtabs_matching_filename,
4097 dw2_lookup_symbol,
4098 dw2_print_stats,
4099 dw2_dump,
4100 dw2_relocate,
4101 dw2_expand_symtabs_for_function,
4102 dw2_expand_all_symtabs,
4103 dw2_expand_symtabs_with_fullname,
4104 dw2_map_matching_symbols,
4105 dw2_expand_symtabs_matching,
4106 dw2_find_pc_sect_compunit_symtab,
4107 dw2_map_symbol_filenames
4108 };
4109
4110 /* Initialize for reading DWARF for this objfile. Return 0 if this
4111 file will use psymtabs, or 1 if using the GNU index. */
4112
4113 int
4114 dwarf2_initialize_objfile (struct objfile *objfile)
4115 {
4116 /* If we're about to read full symbols, don't bother with the
4117 indices. In this case we also don't care if some other debug
4118 format is making psymtabs, because they are all about to be
4119 expanded anyway. */
4120 if ((objfile->flags & OBJF_READNOW))
4121 {
4122 int i;
4123
4124 dwarf2_per_objfile->using_index = 1;
4125 create_all_comp_units (objfile);
4126 create_all_type_units (objfile);
4127 dwarf2_per_objfile->quick_file_names_table =
4128 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4129
4130 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4131 + dwarf2_per_objfile->n_type_units); ++i)
4132 {
4133 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4134
4135 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4136 struct dwarf2_per_cu_quick_data);
4137 }
4138
4139 /* Return 1 so that gdb sees the "quick" functions. However,
4140 these functions will be no-ops because we will have expanded
4141 all symtabs. */
4142 return 1;
4143 }
4144
4145 if (dwarf2_read_index (objfile))
4146 return 1;
4147
4148 return 0;
4149 }
4150
4151 \f
4152
4153 /* Build a partial symbol table. */
4154
4155 void
4156 dwarf2_build_psymtabs (struct objfile *objfile)
4157 {
4158 volatile struct gdb_exception except;
4159
4160 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4161 {
4162 init_psymbol_list (objfile, 1024);
4163 }
4164
4165 TRY_CATCH (except, RETURN_MASK_ERROR)
4166 {
4167 /* This isn't really ideal: all the data we allocate on the
4168 objfile's obstack is still uselessly kept around. However,
4169 freeing it seems unsafe. */
4170 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4171
4172 dwarf2_build_psymtabs_hard (objfile);
4173 discard_cleanups (cleanups);
4174 }
4175 if (except.reason < 0)
4176 exception_print (gdb_stderr, except);
4177 }
4178
4179 /* Return the total length of the CU described by HEADER. */
4180
4181 static unsigned int
4182 get_cu_length (const struct comp_unit_head *header)
4183 {
4184 return header->initial_length_size + header->length;
4185 }
4186
4187 /* Return TRUE if OFFSET is within CU_HEADER. */
4188
4189 static inline int
4190 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4191 {
4192 sect_offset bottom = { cu_header->offset.sect_off };
4193 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4194
4195 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4196 }
4197
4198 /* Find the base address of the compilation unit for range lists and
4199 location lists. It will normally be specified by DW_AT_low_pc.
4200 In DWARF-3 draft 4, the base address could be overridden by
4201 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4202 compilation units with discontinuous ranges. */
4203
4204 static void
4205 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4206 {
4207 struct attribute *attr;
4208
4209 cu->base_known = 0;
4210 cu->base_address = 0;
4211
4212 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4213 if (attr)
4214 {
4215 cu->base_address = attr_value_as_address (attr);
4216 cu->base_known = 1;
4217 }
4218 else
4219 {
4220 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4221 if (attr)
4222 {
4223 cu->base_address = attr_value_as_address (attr);
4224 cu->base_known = 1;
4225 }
4226 }
4227 }
4228
4229 /* Read in the comp unit header information from the debug_info at info_ptr.
4230 NOTE: This leaves members offset, first_die_offset to be filled in
4231 by the caller. */
4232
4233 static const gdb_byte *
4234 read_comp_unit_head (struct comp_unit_head *cu_header,
4235 const gdb_byte *info_ptr, bfd *abfd)
4236 {
4237 int signed_addr;
4238 unsigned int bytes_read;
4239
4240 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4241 cu_header->initial_length_size = bytes_read;
4242 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4243 info_ptr += bytes_read;
4244 cu_header->version = read_2_bytes (abfd, info_ptr);
4245 info_ptr += 2;
4246 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4247 &bytes_read);
4248 info_ptr += bytes_read;
4249 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4250 info_ptr += 1;
4251 signed_addr = bfd_get_sign_extend_vma (abfd);
4252 if (signed_addr < 0)
4253 internal_error (__FILE__, __LINE__,
4254 _("read_comp_unit_head: dwarf from non elf file"));
4255 cu_header->signed_addr_p = signed_addr;
4256
4257 return info_ptr;
4258 }
4259
4260 /* Helper function that returns the proper abbrev section for
4261 THIS_CU. */
4262
4263 static struct dwarf2_section_info *
4264 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4265 {
4266 struct dwarf2_section_info *abbrev;
4267
4268 if (this_cu->is_dwz)
4269 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4270 else
4271 abbrev = &dwarf2_per_objfile->abbrev;
4272
4273 return abbrev;
4274 }
4275
4276 /* Subroutine of read_and_check_comp_unit_head and
4277 read_and_check_type_unit_head to simplify them.
4278 Perform various error checking on the header. */
4279
4280 static void
4281 error_check_comp_unit_head (struct comp_unit_head *header,
4282 struct dwarf2_section_info *section,
4283 struct dwarf2_section_info *abbrev_section)
4284 {
4285 bfd *abfd = get_section_bfd_owner (section);
4286 const char *filename = get_section_file_name (section);
4287
4288 if (header->version != 2 && header->version != 3 && header->version != 4)
4289 error (_("Dwarf Error: wrong version in compilation unit header "
4290 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4291 filename);
4292
4293 if (header->abbrev_offset.sect_off
4294 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4295 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4296 "(offset 0x%lx + 6) [in module %s]"),
4297 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4298 filename);
4299
4300 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4301 avoid potential 32-bit overflow. */
4302 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4303 > section->size)
4304 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4305 "(offset 0x%lx + 0) [in module %s]"),
4306 (long) header->length, (long) header->offset.sect_off,
4307 filename);
4308 }
4309
4310 /* Read in a CU/TU header and perform some basic error checking.
4311 The contents of the header are stored in HEADER.
4312 The result is a pointer to the start of the first DIE. */
4313
4314 static const gdb_byte *
4315 read_and_check_comp_unit_head (struct comp_unit_head *header,
4316 struct dwarf2_section_info *section,
4317 struct dwarf2_section_info *abbrev_section,
4318 const gdb_byte *info_ptr,
4319 int is_debug_types_section)
4320 {
4321 const gdb_byte *beg_of_comp_unit = info_ptr;
4322 bfd *abfd = get_section_bfd_owner (section);
4323
4324 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4325
4326 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4327
4328 /* If we're reading a type unit, skip over the signature and
4329 type_offset fields. */
4330 if (is_debug_types_section)
4331 info_ptr += 8 /*signature*/ + header->offset_size;
4332
4333 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4334
4335 error_check_comp_unit_head (header, section, abbrev_section);
4336
4337 return info_ptr;
4338 }
4339
4340 /* Read in the types comp unit header information from .debug_types entry at
4341 types_ptr. The result is a pointer to one past the end of the header. */
4342
4343 static const gdb_byte *
4344 read_and_check_type_unit_head (struct comp_unit_head *header,
4345 struct dwarf2_section_info *section,
4346 struct dwarf2_section_info *abbrev_section,
4347 const gdb_byte *info_ptr,
4348 ULONGEST *signature,
4349 cu_offset *type_offset_in_tu)
4350 {
4351 const gdb_byte *beg_of_comp_unit = info_ptr;
4352 bfd *abfd = get_section_bfd_owner (section);
4353
4354 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4355
4356 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4357
4358 /* If we're reading a type unit, skip over the signature and
4359 type_offset fields. */
4360 if (signature != NULL)
4361 *signature = read_8_bytes (abfd, info_ptr);
4362 info_ptr += 8;
4363 if (type_offset_in_tu != NULL)
4364 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4365 header->offset_size);
4366 info_ptr += header->offset_size;
4367
4368 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4369
4370 error_check_comp_unit_head (header, section, abbrev_section);
4371
4372 return info_ptr;
4373 }
4374
4375 /* Fetch the abbreviation table offset from a comp or type unit header. */
4376
4377 static sect_offset
4378 read_abbrev_offset (struct dwarf2_section_info *section,
4379 sect_offset offset)
4380 {
4381 bfd *abfd = get_section_bfd_owner (section);
4382 const gdb_byte *info_ptr;
4383 unsigned int length, initial_length_size, offset_size;
4384 sect_offset abbrev_offset;
4385
4386 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4387 info_ptr = section->buffer + offset.sect_off;
4388 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4389 offset_size = initial_length_size == 4 ? 4 : 8;
4390 info_ptr += initial_length_size + 2 /*version*/;
4391 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4392 return abbrev_offset;
4393 }
4394
4395 /* Allocate a new partial symtab for file named NAME and mark this new
4396 partial symtab as being an include of PST. */
4397
4398 static void
4399 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4400 struct objfile *objfile)
4401 {
4402 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4403
4404 if (!IS_ABSOLUTE_PATH (subpst->filename))
4405 {
4406 /* It shares objfile->objfile_obstack. */
4407 subpst->dirname = pst->dirname;
4408 }
4409
4410 subpst->section_offsets = pst->section_offsets;
4411 subpst->textlow = 0;
4412 subpst->texthigh = 0;
4413
4414 subpst->dependencies = (struct partial_symtab **)
4415 obstack_alloc (&objfile->objfile_obstack,
4416 sizeof (struct partial_symtab *));
4417 subpst->dependencies[0] = pst;
4418 subpst->number_of_dependencies = 1;
4419
4420 subpst->globals_offset = 0;
4421 subpst->n_global_syms = 0;
4422 subpst->statics_offset = 0;
4423 subpst->n_static_syms = 0;
4424 subpst->compunit_symtab = NULL;
4425 subpst->read_symtab = pst->read_symtab;
4426 subpst->readin = 0;
4427
4428 /* No private part is necessary for include psymtabs. This property
4429 can be used to differentiate between such include psymtabs and
4430 the regular ones. */
4431 subpst->read_symtab_private = NULL;
4432 }
4433
4434 /* Read the Line Number Program data and extract the list of files
4435 included by the source file represented by PST. Build an include
4436 partial symtab for each of these included files. */
4437
4438 static void
4439 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4440 struct die_info *die,
4441 struct partial_symtab *pst)
4442 {
4443 struct line_header *lh = NULL;
4444 struct attribute *attr;
4445
4446 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4447 if (attr)
4448 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4449 if (lh == NULL)
4450 return; /* No linetable, so no includes. */
4451
4452 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4453 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow);
4454
4455 free_line_header (lh);
4456 }
4457
4458 static hashval_t
4459 hash_signatured_type (const void *item)
4460 {
4461 const struct signatured_type *sig_type = item;
4462
4463 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4464 return sig_type->signature;
4465 }
4466
4467 static int
4468 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4469 {
4470 const struct signatured_type *lhs = item_lhs;
4471 const struct signatured_type *rhs = item_rhs;
4472
4473 return lhs->signature == rhs->signature;
4474 }
4475
4476 /* Allocate a hash table for signatured types. */
4477
4478 static htab_t
4479 allocate_signatured_type_table (struct objfile *objfile)
4480 {
4481 return htab_create_alloc_ex (41,
4482 hash_signatured_type,
4483 eq_signatured_type,
4484 NULL,
4485 &objfile->objfile_obstack,
4486 hashtab_obstack_allocate,
4487 dummy_obstack_deallocate);
4488 }
4489
4490 /* A helper function to add a signatured type CU to a table. */
4491
4492 static int
4493 add_signatured_type_cu_to_table (void **slot, void *datum)
4494 {
4495 struct signatured_type *sigt = *slot;
4496 struct signatured_type ***datap = datum;
4497
4498 **datap = sigt;
4499 ++*datap;
4500
4501 return 1;
4502 }
4503
4504 /* Create the hash table of all entries in the .debug_types
4505 (or .debug_types.dwo) section(s).
4506 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4507 otherwise it is NULL.
4508
4509 The result is a pointer to the hash table or NULL if there are no types.
4510
4511 Note: This function processes DWO files only, not DWP files. */
4512
4513 static htab_t
4514 create_debug_types_hash_table (struct dwo_file *dwo_file,
4515 VEC (dwarf2_section_info_def) *types)
4516 {
4517 struct objfile *objfile = dwarf2_per_objfile->objfile;
4518 htab_t types_htab = NULL;
4519 int ix;
4520 struct dwarf2_section_info *section;
4521 struct dwarf2_section_info *abbrev_section;
4522
4523 if (VEC_empty (dwarf2_section_info_def, types))
4524 return NULL;
4525
4526 abbrev_section = (dwo_file != NULL
4527 ? &dwo_file->sections.abbrev
4528 : &dwarf2_per_objfile->abbrev);
4529
4530 if (dwarf2_read_debug)
4531 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4532 dwo_file ? ".dwo" : "",
4533 get_section_file_name (abbrev_section));
4534
4535 for (ix = 0;
4536 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4537 ++ix)
4538 {
4539 bfd *abfd;
4540 const gdb_byte *info_ptr, *end_ptr;
4541
4542 dwarf2_read_section (objfile, section);
4543 info_ptr = section->buffer;
4544
4545 if (info_ptr == NULL)
4546 continue;
4547
4548 /* We can't set abfd until now because the section may be empty or
4549 not present, in which case the bfd is unknown. */
4550 abfd = get_section_bfd_owner (section);
4551
4552 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4553 because we don't need to read any dies: the signature is in the
4554 header. */
4555
4556 end_ptr = info_ptr + section->size;
4557 while (info_ptr < end_ptr)
4558 {
4559 sect_offset offset;
4560 cu_offset type_offset_in_tu;
4561 ULONGEST signature;
4562 struct signatured_type *sig_type;
4563 struct dwo_unit *dwo_tu;
4564 void **slot;
4565 const gdb_byte *ptr = info_ptr;
4566 struct comp_unit_head header;
4567 unsigned int length;
4568
4569 offset.sect_off = ptr - section->buffer;
4570
4571 /* We need to read the type's signature in order to build the hash
4572 table, but we don't need anything else just yet. */
4573
4574 ptr = read_and_check_type_unit_head (&header, section,
4575 abbrev_section, ptr,
4576 &signature, &type_offset_in_tu);
4577
4578 length = get_cu_length (&header);
4579
4580 /* Skip dummy type units. */
4581 if (ptr >= info_ptr + length
4582 || peek_abbrev_code (abfd, ptr) == 0)
4583 {
4584 info_ptr += length;
4585 continue;
4586 }
4587
4588 if (types_htab == NULL)
4589 {
4590 if (dwo_file)
4591 types_htab = allocate_dwo_unit_table (objfile);
4592 else
4593 types_htab = allocate_signatured_type_table (objfile);
4594 }
4595
4596 if (dwo_file)
4597 {
4598 sig_type = NULL;
4599 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4600 struct dwo_unit);
4601 dwo_tu->dwo_file = dwo_file;
4602 dwo_tu->signature = signature;
4603 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4604 dwo_tu->section = section;
4605 dwo_tu->offset = offset;
4606 dwo_tu->length = length;
4607 }
4608 else
4609 {
4610 /* N.B.: type_offset is not usable if this type uses a DWO file.
4611 The real type_offset is in the DWO file. */
4612 dwo_tu = NULL;
4613 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4614 struct signatured_type);
4615 sig_type->signature = signature;
4616 sig_type->type_offset_in_tu = type_offset_in_tu;
4617 sig_type->per_cu.objfile = objfile;
4618 sig_type->per_cu.is_debug_types = 1;
4619 sig_type->per_cu.section = section;
4620 sig_type->per_cu.offset = offset;
4621 sig_type->per_cu.length = length;
4622 }
4623
4624 slot = htab_find_slot (types_htab,
4625 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4626 INSERT);
4627 gdb_assert (slot != NULL);
4628 if (*slot != NULL)
4629 {
4630 sect_offset dup_offset;
4631
4632 if (dwo_file)
4633 {
4634 const struct dwo_unit *dup_tu = *slot;
4635
4636 dup_offset = dup_tu->offset;
4637 }
4638 else
4639 {
4640 const struct signatured_type *dup_tu = *slot;
4641
4642 dup_offset = dup_tu->per_cu.offset;
4643 }
4644
4645 complaint (&symfile_complaints,
4646 _("debug type entry at offset 0x%x is duplicate to"
4647 " the entry at offset 0x%x, signature %s"),
4648 offset.sect_off, dup_offset.sect_off,
4649 hex_string (signature));
4650 }
4651 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4652
4653 if (dwarf2_read_debug > 1)
4654 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4655 offset.sect_off,
4656 hex_string (signature));
4657
4658 info_ptr += length;
4659 }
4660 }
4661
4662 return types_htab;
4663 }
4664
4665 /* Create the hash table of all entries in the .debug_types section,
4666 and initialize all_type_units.
4667 The result is zero if there is an error (e.g. missing .debug_types section),
4668 otherwise non-zero. */
4669
4670 static int
4671 create_all_type_units (struct objfile *objfile)
4672 {
4673 htab_t types_htab;
4674 struct signatured_type **iter;
4675
4676 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4677 if (types_htab == NULL)
4678 {
4679 dwarf2_per_objfile->signatured_types = NULL;
4680 return 0;
4681 }
4682
4683 dwarf2_per_objfile->signatured_types = types_htab;
4684
4685 dwarf2_per_objfile->n_type_units
4686 = dwarf2_per_objfile->n_allocated_type_units
4687 = htab_elements (types_htab);
4688 dwarf2_per_objfile->all_type_units
4689 = xmalloc (dwarf2_per_objfile->n_type_units
4690 * sizeof (struct signatured_type *));
4691 iter = &dwarf2_per_objfile->all_type_units[0];
4692 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4693 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4694 == dwarf2_per_objfile->n_type_units);
4695
4696 return 1;
4697 }
4698
4699 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4700 If SLOT is non-NULL, it is the entry to use in the hash table.
4701 Otherwise we find one. */
4702
4703 static struct signatured_type *
4704 add_type_unit (ULONGEST sig, void **slot)
4705 {
4706 struct objfile *objfile = dwarf2_per_objfile->objfile;
4707 int n_type_units = dwarf2_per_objfile->n_type_units;
4708 struct signatured_type *sig_type;
4709
4710 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4711 ++n_type_units;
4712 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4713 {
4714 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4715 dwarf2_per_objfile->n_allocated_type_units = 1;
4716 dwarf2_per_objfile->n_allocated_type_units *= 2;
4717 dwarf2_per_objfile->all_type_units
4718 = xrealloc (dwarf2_per_objfile->all_type_units,
4719 dwarf2_per_objfile->n_allocated_type_units
4720 * sizeof (struct signatured_type *));
4721 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4722 }
4723 dwarf2_per_objfile->n_type_units = n_type_units;
4724
4725 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4726 struct signatured_type);
4727 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4728 sig_type->signature = sig;
4729 sig_type->per_cu.is_debug_types = 1;
4730 if (dwarf2_per_objfile->using_index)
4731 {
4732 sig_type->per_cu.v.quick =
4733 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4734 struct dwarf2_per_cu_quick_data);
4735 }
4736
4737 if (slot == NULL)
4738 {
4739 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4740 sig_type, INSERT);
4741 }
4742 gdb_assert (*slot == NULL);
4743 *slot = sig_type;
4744 /* The rest of sig_type must be filled in by the caller. */
4745 return sig_type;
4746 }
4747
4748 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4749 Fill in SIG_ENTRY with DWO_ENTRY. */
4750
4751 static void
4752 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4753 struct signatured_type *sig_entry,
4754 struct dwo_unit *dwo_entry)
4755 {
4756 /* Make sure we're not clobbering something we don't expect to. */
4757 gdb_assert (! sig_entry->per_cu.queued);
4758 gdb_assert (sig_entry->per_cu.cu == NULL);
4759 if (dwarf2_per_objfile->using_index)
4760 {
4761 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4762 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4763 }
4764 else
4765 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4766 gdb_assert (sig_entry->signature == dwo_entry->signature);
4767 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4768 gdb_assert (sig_entry->type_unit_group == NULL);
4769 gdb_assert (sig_entry->dwo_unit == NULL);
4770
4771 sig_entry->per_cu.section = dwo_entry->section;
4772 sig_entry->per_cu.offset = dwo_entry->offset;
4773 sig_entry->per_cu.length = dwo_entry->length;
4774 sig_entry->per_cu.reading_dwo_directly = 1;
4775 sig_entry->per_cu.objfile = objfile;
4776 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4777 sig_entry->dwo_unit = dwo_entry;
4778 }
4779
4780 /* Subroutine of lookup_signatured_type.
4781 If we haven't read the TU yet, create the signatured_type data structure
4782 for a TU to be read in directly from a DWO file, bypassing the stub.
4783 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4784 using .gdb_index, then when reading a CU we want to stay in the DWO file
4785 containing that CU. Otherwise we could end up reading several other DWO
4786 files (due to comdat folding) to process the transitive closure of all the
4787 mentioned TUs, and that can be slow. The current DWO file will have every
4788 type signature that it needs.
4789 We only do this for .gdb_index because in the psymtab case we already have
4790 to read all the DWOs to build the type unit groups. */
4791
4792 static struct signatured_type *
4793 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4794 {
4795 struct objfile *objfile = dwarf2_per_objfile->objfile;
4796 struct dwo_file *dwo_file;
4797 struct dwo_unit find_dwo_entry, *dwo_entry;
4798 struct signatured_type find_sig_entry, *sig_entry;
4799 void **slot;
4800
4801 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4802
4803 /* If TU skeletons have been removed then we may not have read in any
4804 TUs yet. */
4805 if (dwarf2_per_objfile->signatured_types == NULL)
4806 {
4807 dwarf2_per_objfile->signatured_types
4808 = allocate_signatured_type_table (objfile);
4809 }
4810
4811 /* We only ever need to read in one copy of a signatured type.
4812 Use the global signatured_types array to do our own comdat-folding
4813 of types. If this is the first time we're reading this TU, and
4814 the TU has an entry in .gdb_index, replace the recorded data from
4815 .gdb_index with this TU. */
4816
4817 find_sig_entry.signature = sig;
4818 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4819 &find_sig_entry, INSERT);
4820 sig_entry = *slot;
4821
4822 /* We can get here with the TU already read, *or* in the process of being
4823 read. Don't reassign the global entry to point to this DWO if that's
4824 the case. Also note that if the TU is already being read, it may not
4825 have come from a DWO, the program may be a mix of Fission-compiled
4826 code and non-Fission-compiled code. */
4827
4828 /* Have we already tried to read this TU?
4829 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4830 needn't exist in the global table yet). */
4831 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4832 return sig_entry;
4833
4834 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4835 dwo_unit of the TU itself. */
4836 dwo_file = cu->dwo_unit->dwo_file;
4837
4838 /* Ok, this is the first time we're reading this TU. */
4839 if (dwo_file->tus == NULL)
4840 return NULL;
4841 find_dwo_entry.signature = sig;
4842 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4843 if (dwo_entry == NULL)
4844 return NULL;
4845
4846 /* If the global table doesn't have an entry for this TU, add one. */
4847 if (sig_entry == NULL)
4848 sig_entry = add_type_unit (sig, slot);
4849
4850 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4851 sig_entry->per_cu.tu_read = 1;
4852 return sig_entry;
4853 }
4854
4855 /* Subroutine of lookup_signatured_type.
4856 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4857 then try the DWP file. If the TU stub (skeleton) has been removed then
4858 it won't be in .gdb_index. */
4859
4860 static struct signatured_type *
4861 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4862 {
4863 struct objfile *objfile = dwarf2_per_objfile->objfile;
4864 struct dwp_file *dwp_file = get_dwp_file ();
4865 struct dwo_unit *dwo_entry;
4866 struct signatured_type find_sig_entry, *sig_entry;
4867 void **slot;
4868
4869 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4870 gdb_assert (dwp_file != NULL);
4871
4872 /* If TU skeletons have been removed then we may not have read in any
4873 TUs yet. */
4874 if (dwarf2_per_objfile->signatured_types == NULL)
4875 {
4876 dwarf2_per_objfile->signatured_types
4877 = allocate_signatured_type_table (objfile);
4878 }
4879
4880 find_sig_entry.signature = sig;
4881 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4882 &find_sig_entry, INSERT);
4883 sig_entry = *slot;
4884
4885 /* Have we already tried to read this TU?
4886 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4887 needn't exist in the global table yet). */
4888 if (sig_entry != NULL)
4889 return sig_entry;
4890
4891 if (dwp_file->tus == NULL)
4892 return NULL;
4893 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4894 sig, 1 /* is_debug_types */);
4895 if (dwo_entry == NULL)
4896 return NULL;
4897
4898 sig_entry = add_type_unit (sig, slot);
4899 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4900
4901 return sig_entry;
4902 }
4903
4904 /* Lookup a signature based type for DW_FORM_ref_sig8.
4905 Returns NULL if signature SIG is not present in the table.
4906 It is up to the caller to complain about this. */
4907
4908 static struct signatured_type *
4909 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4910 {
4911 if (cu->dwo_unit
4912 && dwarf2_per_objfile->using_index)
4913 {
4914 /* We're in a DWO/DWP file, and we're using .gdb_index.
4915 These cases require special processing. */
4916 if (get_dwp_file () == NULL)
4917 return lookup_dwo_signatured_type (cu, sig);
4918 else
4919 return lookup_dwp_signatured_type (cu, sig);
4920 }
4921 else
4922 {
4923 struct signatured_type find_entry, *entry;
4924
4925 if (dwarf2_per_objfile->signatured_types == NULL)
4926 return NULL;
4927 find_entry.signature = sig;
4928 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4929 return entry;
4930 }
4931 }
4932 \f
4933 /* Low level DIE reading support. */
4934
4935 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4936
4937 static void
4938 init_cu_die_reader (struct die_reader_specs *reader,
4939 struct dwarf2_cu *cu,
4940 struct dwarf2_section_info *section,
4941 struct dwo_file *dwo_file)
4942 {
4943 gdb_assert (section->readin && section->buffer != NULL);
4944 reader->abfd = get_section_bfd_owner (section);
4945 reader->cu = cu;
4946 reader->dwo_file = dwo_file;
4947 reader->die_section = section;
4948 reader->buffer = section->buffer;
4949 reader->buffer_end = section->buffer + section->size;
4950 reader->comp_dir = NULL;
4951 }
4952
4953 /* Subroutine of init_cutu_and_read_dies to simplify it.
4954 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4955 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4956 already.
4957
4958 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4959 from it to the DIE in the DWO. If NULL we are skipping the stub.
4960 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4961 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4962 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
4963 STUB_COMP_DIR may be non-NULL.
4964 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4965 are filled in with the info of the DIE from the DWO file.
4966 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4967 provided an abbrev table to use.
4968 The result is non-zero if a valid (non-dummy) DIE was found. */
4969
4970 static int
4971 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4972 struct dwo_unit *dwo_unit,
4973 int abbrev_table_provided,
4974 struct die_info *stub_comp_unit_die,
4975 const char *stub_comp_dir,
4976 struct die_reader_specs *result_reader,
4977 const gdb_byte **result_info_ptr,
4978 struct die_info **result_comp_unit_die,
4979 int *result_has_children)
4980 {
4981 struct objfile *objfile = dwarf2_per_objfile->objfile;
4982 struct dwarf2_cu *cu = this_cu->cu;
4983 struct dwarf2_section_info *section;
4984 bfd *abfd;
4985 const gdb_byte *begin_info_ptr, *info_ptr;
4986 ULONGEST signature; /* Or dwo_id. */
4987 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4988 int i,num_extra_attrs;
4989 struct dwarf2_section_info *dwo_abbrev_section;
4990 struct attribute *attr;
4991 struct die_info *comp_unit_die;
4992
4993 /* At most one of these may be provided. */
4994 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
4995
4996 /* These attributes aren't processed until later:
4997 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4998 DW_AT_comp_dir is used now, to find the DWO file, but it is also
4999 referenced later. However, these attributes are found in the stub
5000 which we won't have later. In order to not impose this complication
5001 on the rest of the code, we read them here and copy them to the
5002 DWO CU/TU die. */
5003
5004 stmt_list = NULL;
5005 low_pc = NULL;
5006 high_pc = NULL;
5007 ranges = NULL;
5008 comp_dir = NULL;
5009
5010 if (stub_comp_unit_die != NULL)
5011 {
5012 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5013 DWO file. */
5014 if (! this_cu->is_debug_types)
5015 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5016 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5017 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5018 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5019 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5020
5021 /* There should be a DW_AT_addr_base attribute here (if needed).
5022 We need the value before we can process DW_FORM_GNU_addr_index. */
5023 cu->addr_base = 0;
5024 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5025 if (attr)
5026 cu->addr_base = DW_UNSND (attr);
5027
5028 /* There should be a DW_AT_ranges_base attribute here (if needed).
5029 We need the value before we can process DW_AT_ranges. */
5030 cu->ranges_base = 0;
5031 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5032 if (attr)
5033 cu->ranges_base = DW_UNSND (attr);
5034 }
5035 else if (stub_comp_dir != NULL)
5036 {
5037 /* Reconstruct the comp_dir attribute to simplify the code below. */
5038 comp_dir = (struct attribute *)
5039 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5040 comp_dir->name = DW_AT_comp_dir;
5041 comp_dir->form = DW_FORM_string;
5042 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5043 DW_STRING (comp_dir) = stub_comp_dir;
5044 }
5045
5046 /* Set up for reading the DWO CU/TU. */
5047 cu->dwo_unit = dwo_unit;
5048 section = dwo_unit->section;
5049 dwarf2_read_section (objfile, section);
5050 abfd = get_section_bfd_owner (section);
5051 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5052 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5053 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5054
5055 if (this_cu->is_debug_types)
5056 {
5057 ULONGEST header_signature;
5058 cu_offset type_offset_in_tu;
5059 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5060
5061 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5062 dwo_abbrev_section,
5063 info_ptr,
5064 &header_signature,
5065 &type_offset_in_tu);
5066 /* This is not an assert because it can be caused by bad debug info. */
5067 if (sig_type->signature != header_signature)
5068 {
5069 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5070 " TU at offset 0x%x [in module %s]"),
5071 hex_string (sig_type->signature),
5072 hex_string (header_signature),
5073 dwo_unit->offset.sect_off,
5074 bfd_get_filename (abfd));
5075 }
5076 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5077 /* For DWOs coming from DWP files, we don't know the CU length
5078 nor the type's offset in the TU until now. */
5079 dwo_unit->length = get_cu_length (&cu->header);
5080 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5081
5082 /* Establish the type offset that can be used to lookup the type.
5083 For DWO files, we don't know it until now. */
5084 sig_type->type_offset_in_section.sect_off =
5085 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5086 }
5087 else
5088 {
5089 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5090 dwo_abbrev_section,
5091 info_ptr, 0);
5092 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5093 /* For DWOs coming from DWP files, we don't know the CU length
5094 until now. */
5095 dwo_unit->length = get_cu_length (&cu->header);
5096 }
5097
5098 /* Replace the CU's original abbrev table with the DWO's.
5099 Reminder: We can't read the abbrev table until we've read the header. */
5100 if (abbrev_table_provided)
5101 {
5102 /* Don't free the provided abbrev table, the caller of
5103 init_cutu_and_read_dies owns it. */
5104 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5105 /* Ensure the DWO abbrev table gets freed. */
5106 make_cleanup (dwarf2_free_abbrev_table, cu);
5107 }
5108 else
5109 {
5110 dwarf2_free_abbrev_table (cu);
5111 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5112 /* Leave any existing abbrev table cleanup as is. */
5113 }
5114
5115 /* Read in the die, but leave space to copy over the attributes
5116 from the stub. This has the benefit of simplifying the rest of
5117 the code - all the work to maintain the illusion of a single
5118 DW_TAG_{compile,type}_unit DIE is done here. */
5119 num_extra_attrs = ((stmt_list != NULL)
5120 + (low_pc != NULL)
5121 + (high_pc != NULL)
5122 + (ranges != NULL)
5123 + (comp_dir != NULL));
5124 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5125 result_has_children, num_extra_attrs);
5126
5127 /* Copy over the attributes from the stub to the DIE we just read in. */
5128 comp_unit_die = *result_comp_unit_die;
5129 i = comp_unit_die->num_attrs;
5130 if (stmt_list != NULL)
5131 comp_unit_die->attrs[i++] = *stmt_list;
5132 if (low_pc != NULL)
5133 comp_unit_die->attrs[i++] = *low_pc;
5134 if (high_pc != NULL)
5135 comp_unit_die->attrs[i++] = *high_pc;
5136 if (ranges != NULL)
5137 comp_unit_die->attrs[i++] = *ranges;
5138 if (comp_dir != NULL)
5139 comp_unit_die->attrs[i++] = *comp_dir;
5140 comp_unit_die->num_attrs += num_extra_attrs;
5141
5142 if (dwarf2_die_debug)
5143 {
5144 fprintf_unfiltered (gdb_stdlog,
5145 "Read die from %s@0x%x of %s:\n",
5146 get_section_name (section),
5147 (unsigned) (begin_info_ptr - section->buffer),
5148 bfd_get_filename (abfd));
5149 dump_die (comp_unit_die, dwarf2_die_debug);
5150 }
5151
5152 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5153 TUs by skipping the stub and going directly to the entry in the DWO file.
5154 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5155 to get it via circuitous means. Blech. */
5156 if (comp_dir != NULL)
5157 result_reader->comp_dir = DW_STRING (comp_dir);
5158
5159 /* Skip dummy compilation units. */
5160 if (info_ptr >= begin_info_ptr + dwo_unit->length
5161 || peek_abbrev_code (abfd, info_ptr) == 0)
5162 return 0;
5163
5164 *result_info_ptr = info_ptr;
5165 return 1;
5166 }
5167
5168 /* Subroutine of init_cutu_and_read_dies to simplify it.
5169 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5170 Returns NULL if the specified DWO unit cannot be found. */
5171
5172 static struct dwo_unit *
5173 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5174 struct die_info *comp_unit_die)
5175 {
5176 struct dwarf2_cu *cu = this_cu->cu;
5177 struct attribute *attr;
5178 ULONGEST signature;
5179 struct dwo_unit *dwo_unit;
5180 const char *comp_dir, *dwo_name;
5181
5182 gdb_assert (cu != NULL);
5183
5184 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5185 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5186 gdb_assert (attr != NULL);
5187 dwo_name = DW_STRING (attr);
5188 comp_dir = NULL;
5189 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5190 if (attr)
5191 comp_dir = DW_STRING (attr);
5192
5193 if (this_cu->is_debug_types)
5194 {
5195 struct signatured_type *sig_type;
5196
5197 /* Since this_cu is the first member of struct signatured_type,
5198 we can go from a pointer to one to a pointer to the other. */
5199 sig_type = (struct signatured_type *) this_cu;
5200 signature = sig_type->signature;
5201 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5202 }
5203 else
5204 {
5205 struct attribute *attr;
5206
5207 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5208 if (! attr)
5209 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5210 " [in module %s]"),
5211 dwo_name, objfile_name (this_cu->objfile));
5212 signature = DW_UNSND (attr);
5213 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5214 signature);
5215 }
5216
5217 return dwo_unit;
5218 }
5219
5220 /* Subroutine of init_cutu_and_read_dies to simplify it.
5221 See it for a description of the parameters.
5222 Read a TU directly from a DWO file, bypassing the stub.
5223
5224 Note: This function could be a little bit simpler if we shared cleanups
5225 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5226 to do, so we keep this function self-contained. Or we could move this
5227 into our caller, but it's complex enough already. */
5228
5229 static void
5230 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5231 int use_existing_cu, int keep,
5232 die_reader_func_ftype *die_reader_func,
5233 void *data)
5234 {
5235 struct dwarf2_cu *cu;
5236 struct signatured_type *sig_type;
5237 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5238 struct die_reader_specs reader;
5239 const gdb_byte *info_ptr;
5240 struct die_info *comp_unit_die;
5241 int has_children;
5242
5243 /* Verify we can do the following downcast, and that we have the
5244 data we need. */
5245 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5246 sig_type = (struct signatured_type *) this_cu;
5247 gdb_assert (sig_type->dwo_unit != NULL);
5248
5249 cleanups = make_cleanup (null_cleanup, NULL);
5250
5251 if (use_existing_cu && this_cu->cu != NULL)
5252 {
5253 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5254 cu = this_cu->cu;
5255 /* There's no need to do the rereading_dwo_cu handling that
5256 init_cutu_and_read_dies does since we don't read the stub. */
5257 }
5258 else
5259 {
5260 /* If !use_existing_cu, this_cu->cu must be NULL. */
5261 gdb_assert (this_cu->cu == NULL);
5262 cu = xmalloc (sizeof (*cu));
5263 init_one_comp_unit (cu, this_cu);
5264 /* If an error occurs while loading, release our storage. */
5265 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5266 }
5267
5268 /* A future optimization, if needed, would be to use an existing
5269 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5270 could share abbrev tables. */
5271
5272 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5273 0 /* abbrev_table_provided */,
5274 NULL /* stub_comp_unit_die */,
5275 sig_type->dwo_unit->dwo_file->comp_dir,
5276 &reader, &info_ptr,
5277 &comp_unit_die, &has_children) == 0)
5278 {
5279 /* Dummy die. */
5280 do_cleanups (cleanups);
5281 return;
5282 }
5283
5284 /* All the "real" work is done here. */
5285 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5286
5287 /* This duplicates the code in init_cutu_and_read_dies,
5288 but the alternative is making the latter more complex.
5289 This function is only for the special case of using DWO files directly:
5290 no point in overly complicating the general case just to handle this. */
5291 if (free_cu_cleanup != NULL)
5292 {
5293 if (keep)
5294 {
5295 /* We've successfully allocated this compilation unit. Let our
5296 caller clean it up when finished with it. */
5297 discard_cleanups (free_cu_cleanup);
5298
5299 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5300 So we have to manually free the abbrev table. */
5301 dwarf2_free_abbrev_table (cu);
5302
5303 /* Link this CU into read_in_chain. */
5304 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5305 dwarf2_per_objfile->read_in_chain = this_cu;
5306 }
5307 else
5308 do_cleanups (free_cu_cleanup);
5309 }
5310
5311 do_cleanups (cleanups);
5312 }
5313
5314 /* Initialize a CU (or TU) and read its DIEs.
5315 If the CU defers to a DWO file, read the DWO file as well.
5316
5317 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5318 Otherwise the table specified in the comp unit header is read in and used.
5319 This is an optimization for when we already have the abbrev table.
5320
5321 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5322 Otherwise, a new CU is allocated with xmalloc.
5323
5324 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5325 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5326
5327 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5328 linker) then DIE_READER_FUNC will not get called. */
5329
5330 static void
5331 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5332 struct abbrev_table *abbrev_table,
5333 int use_existing_cu, int keep,
5334 die_reader_func_ftype *die_reader_func,
5335 void *data)
5336 {
5337 struct objfile *objfile = dwarf2_per_objfile->objfile;
5338 struct dwarf2_section_info *section = this_cu->section;
5339 bfd *abfd = get_section_bfd_owner (section);
5340 struct dwarf2_cu *cu;
5341 const gdb_byte *begin_info_ptr, *info_ptr;
5342 struct die_reader_specs reader;
5343 struct die_info *comp_unit_die;
5344 int has_children;
5345 struct attribute *attr;
5346 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5347 struct signatured_type *sig_type = NULL;
5348 struct dwarf2_section_info *abbrev_section;
5349 /* Non-zero if CU currently points to a DWO file and we need to
5350 reread it. When this happens we need to reread the skeleton die
5351 before we can reread the DWO file (this only applies to CUs, not TUs). */
5352 int rereading_dwo_cu = 0;
5353
5354 if (dwarf2_die_debug)
5355 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5356 this_cu->is_debug_types ? "type" : "comp",
5357 this_cu->offset.sect_off);
5358
5359 if (use_existing_cu)
5360 gdb_assert (keep);
5361
5362 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5363 file (instead of going through the stub), short-circuit all of this. */
5364 if (this_cu->reading_dwo_directly)
5365 {
5366 /* Narrow down the scope of possibilities to have to understand. */
5367 gdb_assert (this_cu->is_debug_types);
5368 gdb_assert (abbrev_table == NULL);
5369 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5370 die_reader_func, data);
5371 return;
5372 }
5373
5374 cleanups = make_cleanup (null_cleanup, NULL);
5375
5376 /* This is cheap if the section is already read in. */
5377 dwarf2_read_section (objfile, section);
5378
5379 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5380
5381 abbrev_section = get_abbrev_section_for_cu (this_cu);
5382
5383 if (use_existing_cu && this_cu->cu != NULL)
5384 {
5385 cu = this_cu->cu;
5386 /* If this CU is from a DWO file we need to start over, we need to
5387 refetch the attributes from the skeleton CU.
5388 This could be optimized by retrieving those attributes from when we
5389 were here the first time: the previous comp_unit_die was stored in
5390 comp_unit_obstack. But there's no data yet that we need this
5391 optimization. */
5392 if (cu->dwo_unit != NULL)
5393 rereading_dwo_cu = 1;
5394 }
5395 else
5396 {
5397 /* If !use_existing_cu, this_cu->cu must be NULL. */
5398 gdb_assert (this_cu->cu == NULL);
5399 cu = xmalloc (sizeof (*cu));
5400 init_one_comp_unit (cu, this_cu);
5401 /* If an error occurs while loading, release our storage. */
5402 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5403 }
5404
5405 /* Get the header. */
5406 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5407 {
5408 /* We already have the header, there's no need to read it in again. */
5409 info_ptr += cu->header.first_die_offset.cu_off;
5410 }
5411 else
5412 {
5413 if (this_cu->is_debug_types)
5414 {
5415 ULONGEST signature;
5416 cu_offset type_offset_in_tu;
5417
5418 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5419 abbrev_section, info_ptr,
5420 &signature,
5421 &type_offset_in_tu);
5422
5423 /* Since per_cu is the first member of struct signatured_type,
5424 we can go from a pointer to one to a pointer to the other. */
5425 sig_type = (struct signatured_type *) this_cu;
5426 gdb_assert (sig_type->signature == signature);
5427 gdb_assert (sig_type->type_offset_in_tu.cu_off
5428 == type_offset_in_tu.cu_off);
5429 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5430
5431 /* LENGTH has not been set yet for type units if we're
5432 using .gdb_index. */
5433 this_cu->length = get_cu_length (&cu->header);
5434
5435 /* Establish the type offset that can be used to lookup the type. */
5436 sig_type->type_offset_in_section.sect_off =
5437 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5438 }
5439 else
5440 {
5441 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5442 abbrev_section,
5443 info_ptr, 0);
5444
5445 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5446 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5447 }
5448 }
5449
5450 /* Skip dummy compilation units. */
5451 if (info_ptr >= begin_info_ptr + this_cu->length
5452 || peek_abbrev_code (abfd, info_ptr) == 0)
5453 {
5454 do_cleanups (cleanups);
5455 return;
5456 }
5457
5458 /* If we don't have them yet, read the abbrevs for this compilation unit.
5459 And if we need to read them now, make sure they're freed when we're
5460 done. Note that it's important that if the CU had an abbrev table
5461 on entry we don't free it when we're done: Somewhere up the call stack
5462 it may be in use. */
5463 if (abbrev_table != NULL)
5464 {
5465 gdb_assert (cu->abbrev_table == NULL);
5466 gdb_assert (cu->header.abbrev_offset.sect_off
5467 == abbrev_table->offset.sect_off);
5468 cu->abbrev_table = abbrev_table;
5469 }
5470 else if (cu->abbrev_table == NULL)
5471 {
5472 dwarf2_read_abbrevs (cu, abbrev_section);
5473 make_cleanup (dwarf2_free_abbrev_table, cu);
5474 }
5475 else if (rereading_dwo_cu)
5476 {
5477 dwarf2_free_abbrev_table (cu);
5478 dwarf2_read_abbrevs (cu, abbrev_section);
5479 }
5480
5481 /* Read the top level CU/TU die. */
5482 init_cu_die_reader (&reader, cu, section, NULL);
5483 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5484
5485 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5486 from the DWO file.
5487 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5488 DWO CU, that this test will fail (the attribute will not be present). */
5489 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5490 if (attr)
5491 {
5492 struct dwo_unit *dwo_unit;
5493 struct die_info *dwo_comp_unit_die;
5494
5495 if (has_children)
5496 {
5497 complaint (&symfile_complaints,
5498 _("compilation unit with DW_AT_GNU_dwo_name"
5499 " has children (offset 0x%x) [in module %s]"),
5500 this_cu->offset.sect_off, bfd_get_filename (abfd));
5501 }
5502 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5503 if (dwo_unit != NULL)
5504 {
5505 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5506 abbrev_table != NULL,
5507 comp_unit_die, NULL,
5508 &reader, &info_ptr,
5509 &dwo_comp_unit_die, &has_children) == 0)
5510 {
5511 /* Dummy die. */
5512 do_cleanups (cleanups);
5513 return;
5514 }
5515 comp_unit_die = dwo_comp_unit_die;
5516 }
5517 else
5518 {
5519 /* Yikes, we couldn't find the rest of the DIE, we only have
5520 the stub. A complaint has already been logged. There's
5521 not much more we can do except pass on the stub DIE to
5522 die_reader_func. We don't want to throw an error on bad
5523 debug info. */
5524 }
5525 }
5526
5527 /* All of the above is setup for this call. Yikes. */
5528 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5529
5530 /* Done, clean up. */
5531 if (free_cu_cleanup != NULL)
5532 {
5533 if (keep)
5534 {
5535 /* We've successfully allocated this compilation unit. Let our
5536 caller clean it up when finished with it. */
5537 discard_cleanups (free_cu_cleanup);
5538
5539 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5540 So we have to manually free the abbrev table. */
5541 dwarf2_free_abbrev_table (cu);
5542
5543 /* Link this CU into read_in_chain. */
5544 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5545 dwarf2_per_objfile->read_in_chain = this_cu;
5546 }
5547 else
5548 do_cleanups (free_cu_cleanup);
5549 }
5550
5551 do_cleanups (cleanups);
5552 }
5553
5554 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5555 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5556 to have already done the lookup to find the DWO file).
5557
5558 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5559 THIS_CU->is_debug_types, but nothing else.
5560
5561 We fill in THIS_CU->length.
5562
5563 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5564 linker) then DIE_READER_FUNC will not get called.
5565
5566 THIS_CU->cu is always freed when done.
5567 This is done in order to not leave THIS_CU->cu in a state where we have
5568 to care whether it refers to the "main" CU or the DWO CU. */
5569
5570 static void
5571 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5572 struct dwo_file *dwo_file,
5573 die_reader_func_ftype *die_reader_func,
5574 void *data)
5575 {
5576 struct objfile *objfile = dwarf2_per_objfile->objfile;
5577 struct dwarf2_section_info *section = this_cu->section;
5578 bfd *abfd = get_section_bfd_owner (section);
5579 struct dwarf2_section_info *abbrev_section;
5580 struct dwarf2_cu cu;
5581 const gdb_byte *begin_info_ptr, *info_ptr;
5582 struct die_reader_specs reader;
5583 struct cleanup *cleanups;
5584 struct die_info *comp_unit_die;
5585 int has_children;
5586
5587 if (dwarf2_die_debug)
5588 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5589 this_cu->is_debug_types ? "type" : "comp",
5590 this_cu->offset.sect_off);
5591
5592 gdb_assert (this_cu->cu == NULL);
5593
5594 abbrev_section = (dwo_file != NULL
5595 ? &dwo_file->sections.abbrev
5596 : get_abbrev_section_for_cu (this_cu));
5597
5598 /* This is cheap if the section is already read in. */
5599 dwarf2_read_section (objfile, section);
5600
5601 init_one_comp_unit (&cu, this_cu);
5602
5603 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5604
5605 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5606 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5607 abbrev_section, info_ptr,
5608 this_cu->is_debug_types);
5609
5610 this_cu->length = get_cu_length (&cu.header);
5611
5612 /* Skip dummy compilation units. */
5613 if (info_ptr >= begin_info_ptr + this_cu->length
5614 || peek_abbrev_code (abfd, info_ptr) == 0)
5615 {
5616 do_cleanups (cleanups);
5617 return;
5618 }
5619
5620 dwarf2_read_abbrevs (&cu, abbrev_section);
5621 make_cleanup (dwarf2_free_abbrev_table, &cu);
5622
5623 init_cu_die_reader (&reader, &cu, section, dwo_file);
5624 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5625
5626 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5627
5628 do_cleanups (cleanups);
5629 }
5630
5631 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5632 does not lookup the specified DWO file.
5633 This cannot be used to read DWO files.
5634
5635 THIS_CU->cu is always freed when done.
5636 This is done in order to not leave THIS_CU->cu in a state where we have
5637 to care whether it refers to the "main" CU or the DWO CU.
5638 We can revisit this if the data shows there's a performance issue. */
5639
5640 static void
5641 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5642 die_reader_func_ftype *die_reader_func,
5643 void *data)
5644 {
5645 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5646 }
5647 \f
5648 /* Type Unit Groups.
5649
5650 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5651 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5652 so that all types coming from the same compilation (.o file) are grouped
5653 together. A future step could be to put the types in the same symtab as
5654 the CU the types ultimately came from. */
5655
5656 static hashval_t
5657 hash_type_unit_group (const void *item)
5658 {
5659 const struct type_unit_group *tu_group = item;
5660
5661 return hash_stmt_list_entry (&tu_group->hash);
5662 }
5663
5664 static int
5665 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5666 {
5667 const struct type_unit_group *lhs = item_lhs;
5668 const struct type_unit_group *rhs = item_rhs;
5669
5670 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5671 }
5672
5673 /* Allocate a hash table for type unit groups. */
5674
5675 static htab_t
5676 allocate_type_unit_groups_table (void)
5677 {
5678 return htab_create_alloc_ex (3,
5679 hash_type_unit_group,
5680 eq_type_unit_group,
5681 NULL,
5682 &dwarf2_per_objfile->objfile->objfile_obstack,
5683 hashtab_obstack_allocate,
5684 dummy_obstack_deallocate);
5685 }
5686
5687 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5688 partial symtabs. We combine several TUs per psymtab to not let the size
5689 of any one psymtab grow too big. */
5690 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5691 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5692
5693 /* Helper routine for get_type_unit_group.
5694 Create the type_unit_group object used to hold one or more TUs. */
5695
5696 static struct type_unit_group *
5697 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5698 {
5699 struct objfile *objfile = dwarf2_per_objfile->objfile;
5700 struct dwarf2_per_cu_data *per_cu;
5701 struct type_unit_group *tu_group;
5702
5703 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5704 struct type_unit_group);
5705 per_cu = &tu_group->per_cu;
5706 per_cu->objfile = objfile;
5707
5708 if (dwarf2_per_objfile->using_index)
5709 {
5710 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5711 struct dwarf2_per_cu_quick_data);
5712 }
5713 else
5714 {
5715 unsigned int line_offset = line_offset_struct.sect_off;
5716 struct partial_symtab *pst;
5717 char *name;
5718
5719 /* Give the symtab a useful name for debug purposes. */
5720 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5721 name = xstrprintf ("<type_units_%d>",
5722 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5723 else
5724 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5725
5726 pst = create_partial_symtab (per_cu, name);
5727 pst->anonymous = 1;
5728
5729 xfree (name);
5730 }
5731
5732 tu_group->hash.dwo_unit = cu->dwo_unit;
5733 tu_group->hash.line_offset = line_offset_struct;
5734
5735 return tu_group;
5736 }
5737
5738 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5739 STMT_LIST is a DW_AT_stmt_list attribute. */
5740
5741 static struct type_unit_group *
5742 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5743 {
5744 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5745 struct type_unit_group *tu_group;
5746 void **slot;
5747 unsigned int line_offset;
5748 struct type_unit_group type_unit_group_for_lookup;
5749
5750 if (dwarf2_per_objfile->type_unit_groups == NULL)
5751 {
5752 dwarf2_per_objfile->type_unit_groups =
5753 allocate_type_unit_groups_table ();
5754 }
5755
5756 /* Do we need to create a new group, or can we use an existing one? */
5757
5758 if (stmt_list)
5759 {
5760 line_offset = DW_UNSND (stmt_list);
5761 ++tu_stats->nr_symtab_sharers;
5762 }
5763 else
5764 {
5765 /* Ugh, no stmt_list. Rare, but we have to handle it.
5766 We can do various things here like create one group per TU or
5767 spread them over multiple groups to split up the expansion work.
5768 To avoid worst case scenarios (too many groups or too large groups)
5769 we, umm, group them in bunches. */
5770 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5771 | (tu_stats->nr_stmt_less_type_units
5772 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5773 ++tu_stats->nr_stmt_less_type_units;
5774 }
5775
5776 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5777 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5778 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5779 &type_unit_group_for_lookup, INSERT);
5780 if (*slot != NULL)
5781 {
5782 tu_group = *slot;
5783 gdb_assert (tu_group != NULL);
5784 }
5785 else
5786 {
5787 sect_offset line_offset_struct;
5788
5789 line_offset_struct.sect_off = line_offset;
5790 tu_group = create_type_unit_group (cu, line_offset_struct);
5791 *slot = tu_group;
5792 ++tu_stats->nr_symtabs;
5793 }
5794
5795 return tu_group;
5796 }
5797 \f
5798 /* Partial symbol tables. */
5799
5800 /* Create a psymtab named NAME and assign it to PER_CU.
5801
5802 The caller must fill in the following details:
5803 dirname, textlow, texthigh. */
5804
5805 static struct partial_symtab *
5806 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5807 {
5808 struct objfile *objfile = per_cu->objfile;
5809 struct partial_symtab *pst;
5810
5811 pst = start_psymtab_common (objfile, objfile->section_offsets,
5812 name, 0,
5813 objfile->global_psymbols.next,
5814 objfile->static_psymbols.next);
5815
5816 pst->psymtabs_addrmap_supported = 1;
5817
5818 /* This is the glue that links PST into GDB's symbol API. */
5819 pst->read_symtab_private = per_cu;
5820 pst->read_symtab = dwarf2_read_symtab;
5821 per_cu->v.psymtab = pst;
5822
5823 return pst;
5824 }
5825
5826 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5827 type. */
5828
5829 struct process_psymtab_comp_unit_data
5830 {
5831 /* True if we are reading a DW_TAG_partial_unit. */
5832
5833 int want_partial_unit;
5834
5835 /* The "pretend" language that is used if the CU doesn't declare a
5836 language. */
5837
5838 enum language pretend_language;
5839 };
5840
5841 /* die_reader_func for process_psymtab_comp_unit. */
5842
5843 static void
5844 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5845 const gdb_byte *info_ptr,
5846 struct die_info *comp_unit_die,
5847 int has_children,
5848 void *data)
5849 {
5850 struct dwarf2_cu *cu = reader->cu;
5851 struct objfile *objfile = cu->objfile;
5852 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5853 struct attribute *attr;
5854 CORE_ADDR baseaddr;
5855 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5856 struct partial_symtab *pst;
5857 int has_pc_info;
5858 const char *filename;
5859 struct process_psymtab_comp_unit_data *info = data;
5860
5861 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5862 return;
5863
5864 gdb_assert (! per_cu->is_debug_types);
5865
5866 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5867
5868 cu->list_in_scope = &file_symbols;
5869
5870 /* Allocate a new partial symbol table structure. */
5871 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5872 if (attr == NULL || !DW_STRING (attr))
5873 filename = "";
5874 else
5875 filename = DW_STRING (attr);
5876
5877 pst = create_partial_symtab (per_cu, filename);
5878
5879 /* This must be done before calling dwarf2_build_include_psymtabs. */
5880 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5881 if (attr != NULL)
5882 pst->dirname = DW_STRING (attr);
5883
5884 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5885
5886 dwarf2_find_base_address (comp_unit_die, cu);
5887
5888 /* Possibly set the default values of LOWPC and HIGHPC from
5889 `DW_AT_ranges'. */
5890 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5891 &best_highpc, cu, pst);
5892 if (has_pc_info == 1 && best_lowpc < best_highpc)
5893 /* Store the contiguous range if it is not empty; it can be empty for
5894 CUs with no code. */
5895 addrmap_set_empty (objfile->psymtabs_addrmap,
5896 best_lowpc + baseaddr,
5897 best_highpc + baseaddr - 1, pst);
5898
5899 /* Check if comp unit has_children.
5900 If so, read the rest of the partial symbols from this comp unit.
5901 If not, there's no more debug_info for this comp unit. */
5902 if (has_children)
5903 {
5904 struct partial_die_info *first_die;
5905 CORE_ADDR lowpc, highpc;
5906
5907 lowpc = ((CORE_ADDR) -1);
5908 highpc = ((CORE_ADDR) 0);
5909
5910 first_die = load_partial_dies (reader, info_ptr, 1);
5911
5912 scan_partial_symbols (first_die, &lowpc, &highpc,
5913 ! has_pc_info, cu);
5914
5915 /* If we didn't find a lowpc, set it to highpc to avoid
5916 complaints from `maint check'. */
5917 if (lowpc == ((CORE_ADDR) -1))
5918 lowpc = highpc;
5919
5920 /* If the compilation unit didn't have an explicit address range,
5921 then use the information extracted from its child dies. */
5922 if (! has_pc_info)
5923 {
5924 best_lowpc = lowpc;
5925 best_highpc = highpc;
5926 }
5927 }
5928 pst->textlow = best_lowpc + baseaddr;
5929 pst->texthigh = best_highpc + baseaddr;
5930
5931 pst->n_global_syms = objfile->global_psymbols.next -
5932 (objfile->global_psymbols.list + pst->globals_offset);
5933 pst->n_static_syms = objfile->static_psymbols.next -
5934 (objfile->static_psymbols.list + pst->statics_offset);
5935 sort_pst_symbols (objfile, pst);
5936
5937 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5938 {
5939 int i;
5940 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5941 struct dwarf2_per_cu_data *iter;
5942
5943 /* Fill in 'dependencies' here; we fill in 'users' in a
5944 post-pass. */
5945 pst->number_of_dependencies = len;
5946 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5947 len * sizeof (struct symtab *));
5948 for (i = 0;
5949 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5950 i, iter);
5951 ++i)
5952 pst->dependencies[i] = iter->v.psymtab;
5953
5954 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5955 }
5956
5957 /* Get the list of files included in the current compilation unit,
5958 and build a psymtab for each of them. */
5959 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5960
5961 if (dwarf2_read_debug)
5962 {
5963 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5964
5965 fprintf_unfiltered (gdb_stdlog,
5966 "Psymtab for %s unit @0x%x: %s - %s"
5967 ", %d global, %d static syms\n",
5968 per_cu->is_debug_types ? "type" : "comp",
5969 per_cu->offset.sect_off,
5970 paddress (gdbarch, pst->textlow),
5971 paddress (gdbarch, pst->texthigh),
5972 pst->n_global_syms, pst->n_static_syms);
5973 }
5974 }
5975
5976 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5977 Process compilation unit THIS_CU for a psymtab. */
5978
5979 static void
5980 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5981 int want_partial_unit,
5982 enum language pretend_language)
5983 {
5984 struct process_psymtab_comp_unit_data info;
5985
5986 /* If this compilation unit was already read in, free the
5987 cached copy in order to read it in again. This is
5988 necessary because we skipped some symbols when we first
5989 read in the compilation unit (see load_partial_dies).
5990 This problem could be avoided, but the benefit is unclear. */
5991 if (this_cu->cu != NULL)
5992 free_one_cached_comp_unit (this_cu);
5993
5994 gdb_assert (! this_cu->is_debug_types);
5995 info.want_partial_unit = want_partial_unit;
5996 info.pretend_language = pretend_language;
5997 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5998 process_psymtab_comp_unit_reader,
5999 &info);
6000
6001 /* Age out any secondary CUs. */
6002 age_cached_comp_units ();
6003 }
6004
6005 /* Reader function for build_type_psymtabs. */
6006
6007 static void
6008 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6009 const gdb_byte *info_ptr,
6010 struct die_info *type_unit_die,
6011 int has_children,
6012 void *data)
6013 {
6014 struct objfile *objfile = dwarf2_per_objfile->objfile;
6015 struct dwarf2_cu *cu = reader->cu;
6016 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6017 struct signatured_type *sig_type;
6018 struct type_unit_group *tu_group;
6019 struct attribute *attr;
6020 struct partial_die_info *first_die;
6021 CORE_ADDR lowpc, highpc;
6022 struct partial_symtab *pst;
6023
6024 gdb_assert (data == NULL);
6025 gdb_assert (per_cu->is_debug_types);
6026 sig_type = (struct signatured_type *) per_cu;
6027
6028 if (! has_children)
6029 return;
6030
6031 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6032 tu_group = get_type_unit_group (cu, attr);
6033
6034 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6035
6036 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6037 cu->list_in_scope = &file_symbols;
6038 pst = create_partial_symtab (per_cu, "");
6039 pst->anonymous = 1;
6040
6041 first_die = load_partial_dies (reader, info_ptr, 1);
6042
6043 lowpc = (CORE_ADDR) -1;
6044 highpc = (CORE_ADDR) 0;
6045 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6046
6047 pst->n_global_syms = objfile->global_psymbols.next -
6048 (objfile->global_psymbols.list + pst->globals_offset);
6049 pst->n_static_syms = objfile->static_psymbols.next -
6050 (objfile->static_psymbols.list + pst->statics_offset);
6051 sort_pst_symbols (objfile, pst);
6052 }
6053
6054 /* Struct used to sort TUs by their abbreviation table offset. */
6055
6056 struct tu_abbrev_offset
6057 {
6058 struct signatured_type *sig_type;
6059 sect_offset abbrev_offset;
6060 };
6061
6062 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6063
6064 static int
6065 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6066 {
6067 const struct tu_abbrev_offset * const *a = ap;
6068 const struct tu_abbrev_offset * const *b = bp;
6069 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6070 unsigned int boff = (*b)->abbrev_offset.sect_off;
6071
6072 return (aoff > boff) - (aoff < boff);
6073 }
6074
6075 /* Efficiently read all the type units.
6076 This does the bulk of the work for build_type_psymtabs.
6077
6078 The efficiency is because we sort TUs by the abbrev table they use and
6079 only read each abbrev table once. In one program there are 200K TUs
6080 sharing 8K abbrev tables.
6081
6082 The main purpose of this function is to support building the
6083 dwarf2_per_objfile->type_unit_groups table.
6084 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6085 can collapse the search space by grouping them by stmt_list.
6086 The savings can be significant, in the same program from above the 200K TUs
6087 share 8K stmt_list tables.
6088
6089 FUNC is expected to call get_type_unit_group, which will create the
6090 struct type_unit_group if necessary and add it to
6091 dwarf2_per_objfile->type_unit_groups. */
6092
6093 static void
6094 build_type_psymtabs_1 (void)
6095 {
6096 struct objfile *objfile = dwarf2_per_objfile->objfile;
6097 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6098 struct cleanup *cleanups;
6099 struct abbrev_table *abbrev_table;
6100 sect_offset abbrev_offset;
6101 struct tu_abbrev_offset *sorted_by_abbrev;
6102 struct type_unit_group **iter;
6103 int i;
6104
6105 /* It's up to the caller to not call us multiple times. */
6106 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6107
6108 if (dwarf2_per_objfile->n_type_units == 0)
6109 return;
6110
6111 /* TUs typically share abbrev tables, and there can be way more TUs than
6112 abbrev tables. Sort by abbrev table to reduce the number of times we
6113 read each abbrev table in.
6114 Alternatives are to punt or to maintain a cache of abbrev tables.
6115 This is simpler and efficient enough for now.
6116
6117 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6118 symtab to use). Typically TUs with the same abbrev offset have the same
6119 stmt_list value too so in practice this should work well.
6120
6121 The basic algorithm here is:
6122
6123 sort TUs by abbrev table
6124 for each TU with same abbrev table:
6125 read abbrev table if first user
6126 read TU top level DIE
6127 [IWBN if DWO skeletons had DW_AT_stmt_list]
6128 call FUNC */
6129
6130 if (dwarf2_read_debug)
6131 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6132
6133 /* Sort in a separate table to maintain the order of all_type_units
6134 for .gdb_index: TU indices directly index all_type_units. */
6135 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6136 dwarf2_per_objfile->n_type_units);
6137 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6138 {
6139 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6140
6141 sorted_by_abbrev[i].sig_type = sig_type;
6142 sorted_by_abbrev[i].abbrev_offset =
6143 read_abbrev_offset (sig_type->per_cu.section,
6144 sig_type->per_cu.offset);
6145 }
6146 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6147 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6148 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6149
6150 abbrev_offset.sect_off = ~(unsigned) 0;
6151 abbrev_table = NULL;
6152 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6153
6154 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6155 {
6156 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6157
6158 /* Switch to the next abbrev table if necessary. */
6159 if (abbrev_table == NULL
6160 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6161 {
6162 if (abbrev_table != NULL)
6163 {
6164 abbrev_table_free (abbrev_table);
6165 /* Reset to NULL in case abbrev_table_read_table throws
6166 an error: abbrev_table_free_cleanup will get called. */
6167 abbrev_table = NULL;
6168 }
6169 abbrev_offset = tu->abbrev_offset;
6170 abbrev_table =
6171 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6172 abbrev_offset);
6173 ++tu_stats->nr_uniq_abbrev_tables;
6174 }
6175
6176 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6177 build_type_psymtabs_reader, NULL);
6178 }
6179
6180 do_cleanups (cleanups);
6181 }
6182
6183 /* Print collected type unit statistics. */
6184
6185 static void
6186 print_tu_stats (void)
6187 {
6188 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6189
6190 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6191 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6192 dwarf2_per_objfile->n_type_units);
6193 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6194 tu_stats->nr_uniq_abbrev_tables);
6195 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6196 tu_stats->nr_symtabs);
6197 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6198 tu_stats->nr_symtab_sharers);
6199 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6200 tu_stats->nr_stmt_less_type_units);
6201 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6202 tu_stats->nr_all_type_units_reallocs);
6203 }
6204
6205 /* Traversal function for build_type_psymtabs. */
6206
6207 static int
6208 build_type_psymtab_dependencies (void **slot, void *info)
6209 {
6210 struct objfile *objfile = dwarf2_per_objfile->objfile;
6211 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6212 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6213 struct partial_symtab *pst = per_cu->v.psymtab;
6214 int len = VEC_length (sig_type_ptr, tu_group->tus);
6215 struct signatured_type *iter;
6216 int i;
6217
6218 gdb_assert (len > 0);
6219 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6220
6221 pst->number_of_dependencies = len;
6222 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6223 len * sizeof (struct psymtab *));
6224 for (i = 0;
6225 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6226 ++i)
6227 {
6228 gdb_assert (iter->per_cu.is_debug_types);
6229 pst->dependencies[i] = iter->per_cu.v.psymtab;
6230 iter->type_unit_group = tu_group;
6231 }
6232
6233 VEC_free (sig_type_ptr, tu_group->tus);
6234
6235 return 1;
6236 }
6237
6238 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6239 Build partial symbol tables for the .debug_types comp-units. */
6240
6241 static void
6242 build_type_psymtabs (struct objfile *objfile)
6243 {
6244 if (! create_all_type_units (objfile))
6245 return;
6246
6247 build_type_psymtabs_1 ();
6248 }
6249
6250 /* Traversal function for process_skeletonless_type_unit.
6251 Read a TU in a DWO file and build partial symbols for it. */
6252
6253 static int
6254 process_skeletonless_type_unit (void **slot, void *info)
6255 {
6256 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6257 struct objfile *objfile = info;
6258 struct signatured_type find_entry, *entry;
6259
6260 /* If this TU doesn't exist in the global table, add it and read it in. */
6261
6262 if (dwarf2_per_objfile->signatured_types == NULL)
6263 {
6264 dwarf2_per_objfile->signatured_types
6265 = allocate_signatured_type_table (objfile);
6266 }
6267
6268 find_entry.signature = dwo_unit->signature;
6269 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6270 INSERT);
6271 /* If we've already seen this type there's nothing to do. What's happening
6272 is we're doing our own version of comdat-folding here. */
6273 if (*slot != NULL)
6274 return 1;
6275
6276 /* This does the job that create_all_type_units would have done for
6277 this TU. */
6278 entry = add_type_unit (dwo_unit->signature, slot);
6279 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6280 *slot = entry;
6281
6282 /* This does the job that build_type_psymtabs_1 would have done. */
6283 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6284 build_type_psymtabs_reader, NULL);
6285
6286 return 1;
6287 }
6288
6289 /* Traversal function for process_skeletonless_type_units. */
6290
6291 static int
6292 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6293 {
6294 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6295
6296 if (dwo_file->tus != NULL)
6297 {
6298 htab_traverse_noresize (dwo_file->tus,
6299 process_skeletonless_type_unit, info);
6300 }
6301
6302 return 1;
6303 }
6304
6305 /* Scan all TUs of DWO files, verifying we've processed them.
6306 This is needed in case a TU was emitted without its skeleton.
6307 Note: This can't be done until we know what all the DWO files are. */
6308
6309 static void
6310 process_skeletonless_type_units (struct objfile *objfile)
6311 {
6312 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6313 if (get_dwp_file () == NULL
6314 && dwarf2_per_objfile->dwo_files != NULL)
6315 {
6316 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6317 process_dwo_file_for_skeletonless_type_units,
6318 objfile);
6319 }
6320 }
6321
6322 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6323
6324 static void
6325 psymtabs_addrmap_cleanup (void *o)
6326 {
6327 struct objfile *objfile = o;
6328
6329 objfile->psymtabs_addrmap = NULL;
6330 }
6331
6332 /* Compute the 'user' field for each psymtab in OBJFILE. */
6333
6334 static void
6335 set_partial_user (struct objfile *objfile)
6336 {
6337 int i;
6338
6339 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6340 {
6341 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6342 struct partial_symtab *pst = per_cu->v.psymtab;
6343 int j;
6344
6345 if (pst == NULL)
6346 continue;
6347
6348 for (j = 0; j < pst->number_of_dependencies; ++j)
6349 {
6350 /* Set the 'user' field only if it is not already set. */
6351 if (pst->dependencies[j]->user == NULL)
6352 pst->dependencies[j]->user = pst;
6353 }
6354 }
6355 }
6356
6357 /* Build the partial symbol table by doing a quick pass through the
6358 .debug_info and .debug_abbrev sections. */
6359
6360 static void
6361 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6362 {
6363 struct cleanup *back_to, *addrmap_cleanup;
6364 struct obstack temp_obstack;
6365 int i;
6366
6367 if (dwarf2_read_debug)
6368 {
6369 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6370 objfile_name (objfile));
6371 }
6372
6373 dwarf2_per_objfile->reading_partial_symbols = 1;
6374
6375 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6376
6377 /* Any cached compilation units will be linked by the per-objfile
6378 read_in_chain. Make sure to free them when we're done. */
6379 back_to = make_cleanup (free_cached_comp_units, NULL);
6380
6381 build_type_psymtabs (objfile);
6382
6383 create_all_comp_units (objfile);
6384
6385 /* Create a temporary address map on a temporary obstack. We later
6386 copy this to the final obstack. */
6387 obstack_init (&temp_obstack);
6388 make_cleanup_obstack_free (&temp_obstack);
6389 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6390 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6391
6392 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6393 {
6394 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6395
6396 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6397 }
6398
6399 /* This has to wait until we read the CUs, we need the list of DWOs. */
6400 process_skeletonless_type_units (objfile);
6401
6402 /* Now that all TUs have been processed we can fill in the dependencies. */
6403 if (dwarf2_per_objfile->type_unit_groups != NULL)
6404 {
6405 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6406 build_type_psymtab_dependencies, NULL);
6407 }
6408
6409 if (dwarf2_read_debug)
6410 print_tu_stats ();
6411
6412 set_partial_user (objfile);
6413
6414 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6415 &objfile->objfile_obstack);
6416 discard_cleanups (addrmap_cleanup);
6417
6418 do_cleanups (back_to);
6419
6420 if (dwarf2_read_debug)
6421 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6422 objfile_name (objfile));
6423 }
6424
6425 /* die_reader_func for load_partial_comp_unit. */
6426
6427 static void
6428 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6429 const gdb_byte *info_ptr,
6430 struct die_info *comp_unit_die,
6431 int has_children,
6432 void *data)
6433 {
6434 struct dwarf2_cu *cu = reader->cu;
6435
6436 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6437
6438 /* Check if comp unit has_children.
6439 If so, read the rest of the partial symbols from this comp unit.
6440 If not, there's no more debug_info for this comp unit. */
6441 if (has_children)
6442 load_partial_dies (reader, info_ptr, 0);
6443 }
6444
6445 /* Load the partial DIEs for a secondary CU into memory.
6446 This is also used when rereading a primary CU with load_all_dies. */
6447
6448 static void
6449 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6450 {
6451 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6452 load_partial_comp_unit_reader, NULL);
6453 }
6454
6455 static void
6456 read_comp_units_from_section (struct objfile *objfile,
6457 struct dwarf2_section_info *section,
6458 unsigned int is_dwz,
6459 int *n_allocated,
6460 int *n_comp_units,
6461 struct dwarf2_per_cu_data ***all_comp_units)
6462 {
6463 const gdb_byte *info_ptr;
6464 bfd *abfd = get_section_bfd_owner (section);
6465
6466 if (dwarf2_read_debug)
6467 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6468 get_section_name (section),
6469 get_section_file_name (section));
6470
6471 dwarf2_read_section (objfile, section);
6472
6473 info_ptr = section->buffer;
6474
6475 while (info_ptr < section->buffer + section->size)
6476 {
6477 unsigned int length, initial_length_size;
6478 struct dwarf2_per_cu_data *this_cu;
6479 sect_offset offset;
6480
6481 offset.sect_off = info_ptr - section->buffer;
6482
6483 /* Read just enough information to find out where the next
6484 compilation unit is. */
6485 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6486
6487 /* Save the compilation unit for later lookup. */
6488 this_cu = obstack_alloc (&objfile->objfile_obstack,
6489 sizeof (struct dwarf2_per_cu_data));
6490 memset (this_cu, 0, sizeof (*this_cu));
6491 this_cu->offset = offset;
6492 this_cu->length = length + initial_length_size;
6493 this_cu->is_dwz = is_dwz;
6494 this_cu->objfile = objfile;
6495 this_cu->section = section;
6496
6497 if (*n_comp_units == *n_allocated)
6498 {
6499 *n_allocated *= 2;
6500 *all_comp_units = xrealloc (*all_comp_units,
6501 *n_allocated
6502 * sizeof (struct dwarf2_per_cu_data *));
6503 }
6504 (*all_comp_units)[*n_comp_units] = this_cu;
6505 ++*n_comp_units;
6506
6507 info_ptr = info_ptr + this_cu->length;
6508 }
6509 }
6510
6511 /* Create a list of all compilation units in OBJFILE.
6512 This is only done for -readnow and building partial symtabs. */
6513
6514 static void
6515 create_all_comp_units (struct objfile *objfile)
6516 {
6517 int n_allocated;
6518 int n_comp_units;
6519 struct dwarf2_per_cu_data **all_comp_units;
6520 struct dwz_file *dwz;
6521
6522 n_comp_units = 0;
6523 n_allocated = 10;
6524 all_comp_units = xmalloc (n_allocated
6525 * sizeof (struct dwarf2_per_cu_data *));
6526
6527 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6528 &n_allocated, &n_comp_units, &all_comp_units);
6529
6530 dwz = dwarf2_get_dwz_file ();
6531 if (dwz != NULL)
6532 read_comp_units_from_section (objfile, &dwz->info, 1,
6533 &n_allocated, &n_comp_units,
6534 &all_comp_units);
6535
6536 dwarf2_per_objfile->all_comp_units
6537 = obstack_alloc (&objfile->objfile_obstack,
6538 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6539 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6540 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6541 xfree (all_comp_units);
6542 dwarf2_per_objfile->n_comp_units = n_comp_units;
6543 }
6544
6545 /* Process all loaded DIEs for compilation unit CU, starting at
6546 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6547 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6548 DW_AT_ranges). See the comments of add_partial_subprogram on how
6549 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6550
6551 static void
6552 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6553 CORE_ADDR *highpc, int set_addrmap,
6554 struct dwarf2_cu *cu)
6555 {
6556 struct partial_die_info *pdi;
6557
6558 /* Now, march along the PDI's, descending into ones which have
6559 interesting children but skipping the children of the other ones,
6560 until we reach the end of the compilation unit. */
6561
6562 pdi = first_die;
6563
6564 while (pdi != NULL)
6565 {
6566 fixup_partial_die (pdi, cu);
6567
6568 /* Anonymous namespaces or modules have no name but have interesting
6569 children, so we need to look at them. Ditto for anonymous
6570 enums. */
6571
6572 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6573 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6574 || pdi->tag == DW_TAG_imported_unit)
6575 {
6576 switch (pdi->tag)
6577 {
6578 case DW_TAG_subprogram:
6579 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6580 break;
6581 case DW_TAG_constant:
6582 case DW_TAG_variable:
6583 case DW_TAG_typedef:
6584 case DW_TAG_union_type:
6585 if (!pdi->is_declaration)
6586 {
6587 add_partial_symbol (pdi, cu);
6588 }
6589 break;
6590 case DW_TAG_class_type:
6591 case DW_TAG_interface_type:
6592 case DW_TAG_structure_type:
6593 if (!pdi->is_declaration)
6594 {
6595 add_partial_symbol (pdi, cu);
6596 }
6597 break;
6598 case DW_TAG_enumeration_type:
6599 if (!pdi->is_declaration)
6600 add_partial_enumeration (pdi, cu);
6601 break;
6602 case DW_TAG_base_type:
6603 case DW_TAG_subrange_type:
6604 /* File scope base type definitions are added to the partial
6605 symbol table. */
6606 add_partial_symbol (pdi, cu);
6607 break;
6608 case DW_TAG_namespace:
6609 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6610 break;
6611 case DW_TAG_module:
6612 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6613 break;
6614 case DW_TAG_imported_unit:
6615 {
6616 struct dwarf2_per_cu_data *per_cu;
6617
6618 /* For now we don't handle imported units in type units. */
6619 if (cu->per_cu->is_debug_types)
6620 {
6621 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6622 " supported in type units [in module %s]"),
6623 objfile_name (cu->objfile));
6624 }
6625
6626 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6627 pdi->is_dwz,
6628 cu->objfile);
6629
6630 /* Go read the partial unit, if needed. */
6631 if (per_cu->v.psymtab == NULL)
6632 process_psymtab_comp_unit (per_cu, 1, cu->language);
6633
6634 VEC_safe_push (dwarf2_per_cu_ptr,
6635 cu->per_cu->imported_symtabs, per_cu);
6636 }
6637 break;
6638 case DW_TAG_imported_declaration:
6639 add_partial_symbol (pdi, cu);
6640 break;
6641 default:
6642 break;
6643 }
6644 }
6645
6646 /* If the die has a sibling, skip to the sibling. */
6647
6648 pdi = pdi->die_sibling;
6649 }
6650 }
6651
6652 /* Functions used to compute the fully scoped name of a partial DIE.
6653
6654 Normally, this is simple. For C++, the parent DIE's fully scoped
6655 name is concatenated with "::" and the partial DIE's name. For
6656 Java, the same thing occurs except that "." is used instead of "::".
6657 Enumerators are an exception; they use the scope of their parent
6658 enumeration type, i.e. the name of the enumeration type is not
6659 prepended to the enumerator.
6660
6661 There are two complexities. One is DW_AT_specification; in this
6662 case "parent" means the parent of the target of the specification,
6663 instead of the direct parent of the DIE. The other is compilers
6664 which do not emit DW_TAG_namespace; in this case we try to guess
6665 the fully qualified name of structure types from their members'
6666 linkage names. This must be done using the DIE's children rather
6667 than the children of any DW_AT_specification target. We only need
6668 to do this for structures at the top level, i.e. if the target of
6669 any DW_AT_specification (if any; otherwise the DIE itself) does not
6670 have a parent. */
6671
6672 /* Compute the scope prefix associated with PDI's parent, in
6673 compilation unit CU. The result will be allocated on CU's
6674 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6675 field. NULL is returned if no prefix is necessary. */
6676 static const char *
6677 partial_die_parent_scope (struct partial_die_info *pdi,
6678 struct dwarf2_cu *cu)
6679 {
6680 const char *grandparent_scope;
6681 struct partial_die_info *parent, *real_pdi;
6682
6683 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6684 then this means the parent of the specification DIE. */
6685
6686 real_pdi = pdi;
6687 while (real_pdi->has_specification)
6688 real_pdi = find_partial_die (real_pdi->spec_offset,
6689 real_pdi->spec_is_dwz, cu);
6690
6691 parent = real_pdi->die_parent;
6692 if (parent == NULL)
6693 return NULL;
6694
6695 if (parent->scope_set)
6696 return parent->scope;
6697
6698 fixup_partial_die (parent, cu);
6699
6700 grandparent_scope = partial_die_parent_scope (parent, cu);
6701
6702 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6703 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6704 Work around this problem here. */
6705 if (cu->language == language_cplus
6706 && parent->tag == DW_TAG_namespace
6707 && strcmp (parent->name, "::") == 0
6708 && grandparent_scope == NULL)
6709 {
6710 parent->scope = NULL;
6711 parent->scope_set = 1;
6712 return NULL;
6713 }
6714
6715 if (pdi->tag == DW_TAG_enumerator)
6716 /* Enumerators should not get the name of the enumeration as a prefix. */
6717 parent->scope = grandparent_scope;
6718 else if (parent->tag == DW_TAG_namespace
6719 || parent->tag == DW_TAG_module
6720 || parent->tag == DW_TAG_structure_type
6721 || parent->tag == DW_TAG_class_type
6722 || parent->tag == DW_TAG_interface_type
6723 || parent->tag == DW_TAG_union_type
6724 || parent->tag == DW_TAG_enumeration_type)
6725 {
6726 if (grandparent_scope == NULL)
6727 parent->scope = parent->name;
6728 else
6729 parent->scope = typename_concat (&cu->comp_unit_obstack,
6730 grandparent_scope,
6731 parent->name, 0, cu);
6732 }
6733 else
6734 {
6735 /* FIXME drow/2004-04-01: What should we be doing with
6736 function-local names? For partial symbols, we should probably be
6737 ignoring them. */
6738 complaint (&symfile_complaints,
6739 _("unhandled containing DIE tag %d for DIE at %d"),
6740 parent->tag, pdi->offset.sect_off);
6741 parent->scope = grandparent_scope;
6742 }
6743
6744 parent->scope_set = 1;
6745 return parent->scope;
6746 }
6747
6748 /* Return the fully scoped name associated with PDI, from compilation unit
6749 CU. The result will be allocated with malloc. */
6750
6751 static char *
6752 partial_die_full_name (struct partial_die_info *pdi,
6753 struct dwarf2_cu *cu)
6754 {
6755 const char *parent_scope;
6756
6757 /* If this is a template instantiation, we can not work out the
6758 template arguments from partial DIEs. So, unfortunately, we have
6759 to go through the full DIEs. At least any work we do building
6760 types here will be reused if full symbols are loaded later. */
6761 if (pdi->has_template_arguments)
6762 {
6763 fixup_partial_die (pdi, cu);
6764
6765 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6766 {
6767 struct die_info *die;
6768 struct attribute attr;
6769 struct dwarf2_cu *ref_cu = cu;
6770
6771 /* DW_FORM_ref_addr is using section offset. */
6772 attr.name = 0;
6773 attr.form = DW_FORM_ref_addr;
6774 attr.u.unsnd = pdi->offset.sect_off;
6775 die = follow_die_ref (NULL, &attr, &ref_cu);
6776
6777 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6778 }
6779 }
6780
6781 parent_scope = partial_die_parent_scope (pdi, cu);
6782 if (parent_scope == NULL)
6783 return NULL;
6784 else
6785 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6786 }
6787
6788 static void
6789 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6790 {
6791 struct objfile *objfile = cu->objfile;
6792 CORE_ADDR addr = 0;
6793 const char *actual_name = NULL;
6794 CORE_ADDR baseaddr;
6795 char *built_actual_name;
6796
6797 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6798
6799 built_actual_name = partial_die_full_name (pdi, cu);
6800 if (built_actual_name != NULL)
6801 actual_name = built_actual_name;
6802
6803 if (actual_name == NULL)
6804 actual_name = pdi->name;
6805
6806 switch (pdi->tag)
6807 {
6808 case DW_TAG_subprogram:
6809 if (pdi->is_external || cu->language == language_ada)
6810 {
6811 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6812 of the global scope. But in Ada, we want to be able to access
6813 nested procedures globally. So all Ada subprograms are stored
6814 in the global scope. */
6815 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6816 mst_text, objfile); */
6817 add_psymbol_to_list (actual_name, strlen (actual_name),
6818 built_actual_name != NULL,
6819 VAR_DOMAIN, LOC_BLOCK,
6820 &objfile->global_psymbols,
6821 0, pdi->lowpc + baseaddr,
6822 cu->language, objfile);
6823 }
6824 else
6825 {
6826 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6827 mst_file_text, objfile); */
6828 add_psymbol_to_list (actual_name, strlen (actual_name),
6829 built_actual_name != NULL,
6830 VAR_DOMAIN, LOC_BLOCK,
6831 &objfile->static_psymbols,
6832 0, pdi->lowpc + baseaddr,
6833 cu->language, objfile);
6834 }
6835 break;
6836 case DW_TAG_constant:
6837 {
6838 struct psymbol_allocation_list *list;
6839
6840 if (pdi->is_external)
6841 list = &objfile->global_psymbols;
6842 else
6843 list = &objfile->static_psymbols;
6844 add_psymbol_to_list (actual_name, strlen (actual_name),
6845 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6846 list, 0, 0, cu->language, objfile);
6847 }
6848 break;
6849 case DW_TAG_variable:
6850 if (pdi->d.locdesc)
6851 addr = decode_locdesc (pdi->d.locdesc, cu);
6852
6853 if (pdi->d.locdesc
6854 && addr == 0
6855 && !dwarf2_per_objfile->has_section_at_zero)
6856 {
6857 /* A global or static variable may also have been stripped
6858 out by the linker if unused, in which case its address
6859 will be nullified; do not add such variables into partial
6860 symbol table then. */
6861 }
6862 else if (pdi->is_external)
6863 {
6864 /* Global Variable.
6865 Don't enter into the minimal symbol tables as there is
6866 a minimal symbol table entry from the ELF symbols already.
6867 Enter into partial symbol table if it has a location
6868 descriptor or a type.
6869 If the location descriptor is missing, new_symbol will create
6870 a LOC_UNRESOLVED symbol, the address of the variable will then
6871 be determined from the minimal symbol table whenever the variable
6872 is referenced.
6873 The address for the partial symbol table entry is not
6874 used by GDB, but it comes in handy for debugging partial symbol
6875 table building. */
6876
6877 if (pdi->d.locdesc || pdi->has_type)
6878 add_psymbol_to_list (actual_name, strlen (actual_name),
6879 built_actual_name != NULL,
6880 VAR_DOMAIN, LOC_STATIC,
6881 &objfile->global_psymbols,
6882 0, addr + baseaddr,
6883 cu->language, objfile);
6884 }
6885 else
6886 {
6887 /* Static Variable. Skip symbols without location descriptors. */
6888 if (pdi->d.locdesc == NULL)
6889 {
6890 xfree (built_actual_name);
6891 return;
6892 }
6893 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6894 mst_file_data, objfile); */
6895 add_psymbol_to_list (actual_name, strlen (actual_name),
6896 built_actual_name != NULL,
6897 VAR_DOMAIN, LOC_STATIC,
6898 &objfile->static_psymbols,
6899 0, addr + baseaddr,
6900 cu->language, objfile);
6901 }
6902 break;
6903 case DW_TAG_typedef:
6904 case DW_TAG_base_type:
6905 case DW_TAG_subrange_type:
6906 add_psymbol_to_list (actual_name, strlen (actual_name),
6907 built_actual_name != NULL,
6908 VAR_DOMAIN, LOC_TYPEDEF,
6909 &objfile->static_psymbols,
6910 0, (CORE_ADDR) 0, cu->language, objfile);
6911 break;
6912 case DW_TAG_imported_declaration:
6913 case DW_TAG_namespace:
6914 add_psymbol_to_list (actual_name, strlen (actual_name),
6915 built_actual_name != NULL,
6916 VAR_DOMAIN, LOC_TYPEDEF,
6917 &objfile->global_psymbols,
6918 0, (CORE_ADDR) 0, cu->language, objfile);
6919 break;
6920 case DW_TAG_module:
6921 add_psymbol_to_list (actual_name, strlen (actual_name),
6922 built_actual_name != NULL,
6923 MODULE_DOMAIN, LOC_TYPEDEF,
6924 &objfile->global_psymbols,
6925 0, (CORE_ADDR) 0, cu->language, objfile);
6926 break;
6927 case DW_TAG_class_type:
6928 case DW_TAG_interface_type:
6929 case DW_TAG_structure_type:
6930 case DW_TAG_union_type:
6931 case DW_TAG_enumeration_type:
6932 /* Skip external references. The DWARF standard says in the section
6933 about "Structure, Union, and Class Type Entries": "An incomplete
6934 structure, union or class type is represented by a structure,
6935 union or class entry that does not have a byte size attribute
6936 and that has a DW_AT_declaration attribute." */
6937 if (!pdi->has_byte_size && pdi->is_declaration)
6938 {
6939 xfree (built_actual_name);
6940 return;
6941 }
6942
6943 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6944 static vs. global. */
6945 add_psymbol_to_list (actual_name, strlen (actual_name),
6946 built_actual_name != NULL,
6947 STRUCT_DOMAIN, LOC_TYPEDEF,
6948 (cu->language == language_cplus
6949 || cu->language == language_java)
6950 ? &objfile->global_psymbols
6951 : &objfile->static_psymbols,
6952 0, (CORE_ADDR) 0, cu->language, objfile);
6953
6954 break;
6955 case DW_TAG_enumerator:
6956 add_psymbol_to_list (actual_name, strlen (actual_name),
6957 built_actual_name != NULL,
6958 VAR_DOMAIN, LOC_CONST,
6959 (cu->language == language_cplus
6960 || cu->language == language_java)
6961 ? &objfile->global_psymbols
6962 : &objfile->static_psymbols,
6963 0, (CORE_ADDR) 0, cu->language, objfile);
6964 break;
6965 default:
6966 break;
6967 }
6968
6969 xfree (built_actual_name);
6970 }
6971
6972 /* Read a partial die corresponding to a namespace; also, add a symbol
6973 corresponding to that namespace to the symbol table. NAMESPACE is
6974 the name of the enclosing namespace. */
6975
6976 static void
6977 add_partial_namespace (struct partial_die_info *pdi,
6978 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6979 int set_addrmap, struct dwarf2_cu *cu)
6980 {
6981 /* Add a symbol for the namespace. */
6982
6983 add_partial_symbol (pdi, cu);
6984
6985 /* Now scan partial symbols in that namespace. */
6986
6987 if (pdi->has_children)
6988 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
6989 }
6990
6991 /* Read a partial die corresponding to a Fortran module. */
6992
6993 static void
6994 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6995 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
6996 {
6997 /* Add a symbol for the namespace. */
6998
6999 add_partial_symbol (pdi, cu);
7000
7001 /* Now scan partial symbols in that module. */
7002
7003 if (pdi->has_children)
7004 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7005 }
7006
7007 /* Read a partial die corresponding to a subprogram and create a partial
7008 symbol for that subprogram. When the CU language allows it, this
7009 routine also defines a partial symbol for each nested subprogram
7010 that this subprogram contains. If SET_ADDRMAP is true, record the
7011 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7012 and highest PC values found in PDI.
7013
7014 PDI may also be a lexical block, in which case we simply search
7015 recursively for subprograms defined inside that lexical block.
7016 Again, this is only performed when the CU language allows this
7017 type of definitions. */
7018
7019 static void
7020 add_partial_subprogram (struct partial_die_info *pdi,
7021 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7022 int set_addrmap, struct dwarf2_cu *cu)
7023 {
7024 if (pdi->tag == DW_TAG_subprogram)
7025 {
7026 if (pdi->has_pc_info)
7027 {
7028 if (pdi->lowpc < *lowpc)
7029 *lowpc = pdi->lowpc;
7030 if (pdi->highpc > *highpc)
7031 *highpc = pdi->highpc;
7032 if (set_addrmap)
7033 {
7034 CORE_ADDR baseaddr;
7035 struct objfile *objfile = cu->objfile;
7036
7037 baseaddr = ANOFFSET (objfile->section_offsets,
7038 SECT_OFF_TEXT (objfile));
7039 addrmap_set_empty (objfile->psymtabs_addrmap,
7040 pdi->lowpc + baseaddr,
7041 pdi->highpc - 1 + baseaddr,
7042 cu->per_cu->v.psymtab);
7043 }
7044 }
7045
7046 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7047 {
7048 if (!pdi->is_declaration)
7049 /* Ignore subprogram DIEs that do not have a name, they are
7050 illegal. Do not emit a complaint at this point, we will
7051 do so when we convert this psymtab into a symtab. */
7052 if (pdi->name)
7053 add_partial_symbol (pdi, cu);
7054 }
7055 }
7056
7057 if (! pdi->has_children)
7058 return;
7059
7060 if (cu->language == language_ada)
7061 {
7062 pdi = pdi->die_child;
7063 while (pdi != NULL)
7064 {
7065 fixup_partial_die (pdi, cu);
7066 if (pdi->tag == DW_TAG_subprogram
7067 || pdi->tag == DW_TAG_lexical_block)
7068 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7069 pdi = pdi->die_sibling;
7070 }
7071 }
7072 }
7073
7074 /* Read a partial die corresponding to an enumeration type. */
7075
7076 static void
7077 add_partial_enumeration (struct partial_die_info *enum_pdi,
7078 struct dwarf2_cu *cu)
7079 {
7080 struct partial_die_info *pdi;
7081
7082 if (enum_pdi->name != NULL)
7083 add_partial_symbol (enum_pdi, cu);
7084
7085 pdi = enum_pdi->die_child;
7086 while (pdi)
7087 {
7088 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7089 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7090 else
7091 add_partial_symbol (pdi, cu);
7092 pdi = pdi->die_sibling;
7093 }
7094 }
7095
7096 /* Return the initial uleb128 in the die at INFO_PTR. */
7097
7098 static unsigned int
7099 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7100 {
7101 unsigned int bytes_read;
7102
7103 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7104 }
7105
7106 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7107 Return the corresponding abbrev, or NULL if the number is zero (indicating
7108 an empty DIE). In either case *BYTES_READ will be set to the length of
7109 the initial number. */
7110
7111 static struct abbrev_info *
7112 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7113 struct dwarf2_cu *cu)
7114 {
7115 bfd *abfd = cu->objfile->obfd;
7116 unsigned int abbrev_number;
7117 struct abbrev_info *abbrev;
7118
7119 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7120
7121 if (abbrev_number == 0)
7122 return NULL;
7123
7124 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7125 if (!abbrev)
7126 {
7127 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7128 " at offset 0x%x [in module %s]"),
7129 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7130 cu->header.offset.sect_off, bfd_get_filename (abfd));
7131 }
7132
7133 return abbrev;
7134 }
7135
7136 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7137 Returns a pointer to the end of a series of DIEs, terminated by an empty
7138 DIE. Any children of the skipped DIEs will also be skipped. */
7139
7140 static const gdb_byte *
7141 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7142 {
7143 struct dwarf2_cu *cu = reader->cu;
7144 struct abbrev_info *abbrev;
7145 unsigned int bytes_read;
7146
7147 while (1)
7148 {
7149 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7150 if (abbrev == NULL)
7151 return info_ptr + bytes_read;
7152 else
7153 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7154 }
7155 }
7156
7157 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7158 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7159 abbrev corresponding to that skipped uleb128 should be passed in
7160 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7161 children. */
7162
7163 static const gdb_byte *
7164 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7165 struct abbrev_info *abbrev)
7166 {
7167 unsigned int bytes_read;
7168 struct attribute attr;
7169 bfd *abfd = reader->abfd;
7170 struct dwarf2_cu *cu = reader->cu;
7171 const gdb_byte *buffer = reader->buffer;
7172 const gdb_byte *buffer_end = reader->buffer_end;
7173 const gdb_byte *start_info_ptr = info_ptr;
7174 unsigned int form, i;
7175
7176 for (i = 0; i < abbrev->num_attrs; i++)
7177 {
7178 /* The only abbrev we care about is DW_AT_sibling. */
7179 if (abbrev->attrs[i].name == DW_AT_sibling)
7180 {
7181 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7182 if (attr.form == DW_FORM_ref_addr)
7183 complaint (&symfile_complaints,
7184 _("ignoring absolute DW_AT_sibling"));
7185 else
7186 {
7187 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7188 const gdb_byte *sibling_ptr = buffer + off;
7189
7190 if (sibling_ptr < info_ptr)
7191 complaint (&symfile_complaints,
7192 _("DW_AT_sibling points backwards"));
7193 else if (sibling_ptr > reader->buffer_end)
7194 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7195 else
7196 return sibling_ptr;
7197 }
7198 }
7199
7200 /* If it isn't DW_AT_sibling, skip this attribute. */
7201 form = abbrev->attrs[i].form;
7202 skip_attribute:
7203 switch (form)
7204 {
7205 case DW_FORM_ref_addr:
7206 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7207 and later it is offset sized. */
7208 if (cu->header.version == 2)
7209 info_ptr += cu->header.addr_size;
7210 else
7211 info_ptr += cu->header.offset_size;
7212 break;
7213 case DW_FORM_GNU_ref_alt:
7214 info_ptr += cu->header.offset_size;
7215 break;
7216 case DW_FORM_addr:
7217 info_ptr += cu->header.addr_size;
7218 break;
7219 case DW_FORM_data1:
7220 case DW_FORM_ref1:
7221 case DW_FORM_flag:
7222 info_ptr += 1;
7223 break;
7224 case DW_FORM_flag_present:
7225 break;
7226 case DW_FORM_data2:
7227 case DW_FORM_ref2:
7228 info_ptr += 2;
7229 break;
7230 case DW_FORM_data4:
7231 case DW_FORM_ref4:
7232 info_ptr += 4;
7233 break;
7234 case DW_FORM_data8:
7235 case DW_FORM_ref8:
7236 case DW_FORM_ref_sig8:
7237 info_ptr += 8;
7238 break;
7239 case DW_FORM_string:
7240 read_direct_string (abfd, info_ptr, &bytes_read);
7241 info_ptr += bytes_read;
7242 break;
7243 case DW_FORM_sec_offset:
7244 case DW_FORM_strp:
7245 case DW_FORM_GNU_strp_alt:
7246 info_ptr += cu->header.offset_size;
7247 break;
7248 case DW_FORM_exprloc:
7249 case DW_FORM_block:
7250 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7251 info_ptr += bytes_read;
7252 break;
7253 case DW_FORM_block1:
7254 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7255 break;
7256 case DW_FORM_block2:
7257 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7258 break;
7259 case DW_FORM_block4:
7260 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7261 break;
7262 case DW_FORM_sdata:
7263 case DW_FORM_udata:
7264 case DW_FORM_ref_udata:
7265 case DW_FORM_GNU_addr_index:
7266 case DW_FORM_GNU_str_index:
7267 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7268 break;
7269 case DW_FORM_indirect:
7270 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7271 info_ptr += bytes_read;
7272 /* We need to continue parsing from here, so just go back to
7273 the top. */
7274 goto skip_attribute;
7275
7276 default:
7277 error (_("Dwarf Error: Cannot handle %s "
7278 "in DWARF reader [in module %s]"),
7279 dwarf_form_name (form),
7280 bfd_get_filename (abfd));
7281 }
7282 }
7283
7284 if (abbrev->has_children)
7285 return skip_children (reader, info_ptr);
7286 else
7287 return info_ptr;
7288 }
7289
7290 /* Locate ORIG_PDI's sibling.
7291 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7292
7293 static const gdb_byte *
7294 locate_pdi_sibling (const struct die_reader_specs *reader,
7295 struct partial_die_info *orig_pdi,
7296 const gdb_byte *info_ptr)
7297 {
7298 /* Do we know the sibling already? */
7299
7300 if (orig_pdi->sibling)
7301 return orig_pdi->sibling;
7302
7303 /* Are there any children to deal with? */
7304
7305 if (!orig_pdi->has_children)
7306 return info_ptr;
7307
7308 /* Skip the children the long way. */
7309
7310 return skip_children (reader, info_ptr);
7311 }
7312
7313 /* Expand this partial symbol table into a full symbol table. SELF is
7314 not NULL. */
7315
7316 static void
7317 dwarf2_read_symtab (struct partial_symtab *self,
7318 struct objfile *objfile)
7319 {
7320 if (self->readin)
7321 {
7322 warning (_("bug: psymtab for %s is already read in."),
7323 self->filename);
7324 }
7325 else
7326 {
7327 if (info_verbose)
7328 {
7329 printf_filtered (_("Reading in symbols for %s..."),
7330 self->filename);
7331 gdb_flush (gdb_stdout);
7332 }
7333
7334 /* Restore our global data. */
7335 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7336
7337 /* If this psymtab is constructed from a debug-only objfile, the
7338 has_section_at_zero flag will not necessarily be correct. We
7339 can get the correct value for this flag by looking at the data
7340 associated with the (presumably stripped) associated objfile. */
7341 if (objfile->separate_debug_objfile_backlink)
7342 {
7343 struct dwarf2_per_objfile *dpo_backlink
7344 = objfile_data (objfile->separate_debug_objfile_backlink,
7345 dwarf2_objfile_data_key);
7346
7347 dwarf2_per_objfile->has_section_at_zero
7348 = dpo_backlink->has_section_at_zero;
7349 }
7350
7351 dwarf2_per_objfile->reading_partial_symbols = 0;
7352
7353 psymtab_to_symtab_1 (self);
7354
7355 /* Finish up the debug error message. */
7356 if (info_verbose)
7357 printf_filtered (_("done.\n"));
7358 }
7359
7360 process_cu_includes ();
7361 }
7362 \f
7363 /* Reading in full CUs. */
7364
7365 /* Add PER_CU to the queue. */
7366
7367 static void
7368 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7369 enum language pretend_language)
7370 {
7371 struct dwarf2_queue_item *item;
7372
7373 per_cu->queued = 1;
7374 item = xmalloc (sizeof (*item));
7375 item->per_cu = per_cu;
7376 item->pretend_language = pretend_language;
7377 item->next = NULL;
7378
7379 if (dwarf2_queue == NULL)
7380 dwarf2_queue = item;
7381 else
7382 dwarf2_queue_tail->next = item;
7383
7384 dwarf2_queue_tail = item;
7385 }
7386
7387 /* If PER_CU is not yet queued, add it to the queue.
7388 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7389 dependency.
7390 The result is non-zero if PER_CU was queued, otherwise the result is zero
7391 meaning either PER_CU is already queued or it is already loaded.
7392
7393 N.B. There is an invariant here that if a CU is queued then it is loaded.
7394 The caller is required to load PER_CU if we return non-zero. */
7395
7396 static int
7397 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7398 struct dwarf2_per_cu_data *per_cu,
7399 enum language pretend_language)
7400 {
7401 /* We may arrive here during partial symbol reading, if we need full
7402 DIEs to process an unusual case (e.g. template arguments). Do
7403 not queue PER_CU, just tell our caller to load its DIEs. */
7404 if (dwarf2_per_objfile->reading_partial_symbols)
7405 {
7406 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7407 return 1;
7408 return 0;
7409 }
7410
7411 /* Mark the dependence relation so that we don't flush PER_CU
7412 too early. */
7413 if (dependent_cu != NULL)
7414 dwarf2_add_dependence (dependent_cu, per_cu);
7415
7416 /* If it's already on the queue, we have nothing to do. */
7417 if (per_cu->queued)
7418 return 0;
7419
7420 /* If the compilation unit is already loaded, just mark it as
7421 used. */
7422 if (per_cu->cu != NULL)
7423 {
7424 per_cu->cu->last_used = 0;
7425 return 0;
7426 }
7427
7428 /* Add it to the queue. */
7429 queue_comp_unit (per_cu, pretend_language);
7430
7431 return 1;
7432 }
7433
7434 /* Process the queue. */
7435
7436 static void
7437 process_queue (void)
7438 {
7439 struct dwarf2_queue_item *item, *next_item;
7440
7441 if (dwarf2_read_debug)
7442 {
7443 fprintf_unfiltered (gdb_stdlog,
7444 "Expanding one or more symtabs of objfile %s ...\n",
7445 objfile_name (dwarf2_per_objfile->objfile));
7446 }
7447
7448 /* The queue starts out with one item, but following a DIE reference
7449 may load a new CU, adding it to the end of the queue. */
7450 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7451 {
7452 if (dwarf2_per_objfile->using_index
7453 ? !item->per_cu->v.quick->compunit_symtab
7454 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7455 {
7456 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7457 unsigned int debug_print_threshold;
7458 char buf[100];
7459
7460 if (per_cu->is_debug_types)
7461 {
7462 struct signatured_type *sig_type =
7463 (struct signatured_type *) per_cu;
7464
7465 sprintf (buf, "TU %s at offset 0x%x",
7466 hex_string (sig_type->signature),
7467 per_cu->offset.sect_off);
7468 /* There can be 100s of TUs.
7469 Only print them in verbose mode. */
7470 debug_print_threshold = 2;
7471 }
7472 else
7473 {
7474 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7475 debug_print_threshold = 1;
7476 }
7477
7478 if (dwarf2_read_debug >= debug_print_threshold)
7479 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7480
7481 if (per_cu->is_debug_types)
7482 process_full_type_unit (per_cu, item->pretend_language);
7483 else
7484 process_full_comp_unit (per_cu, item->pretend_language);
7485
7486 if (dwarf2_read_debug >= debug_print_threshold)
7487 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7488 }
7489
7490 item->per_cu->queued = 0;
7491 next_item = item->next;
7492 xfree (item);
7493 }
7494
7495 dwarf2_queue_tail = NULL;
7496
7497 if (dwarf2_read_debug)
7498 {
7499 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7500 objfile_name (dwarf2_per_objfile->objfile));
7501 }
7502 }
7503
7504 /* Free all allocated queue entries. This function only releases anything if
7505 an error was thrown; if the queue was processed then it would have been
7506 freed as we went along. */
7507
7508 static void
7509 dwarf2_release_queue (void *dummy)
7510 {
7511 struct dwarf2_queue_item *item, *last;
7512
7513 item = dwarf2_queue;
7514 while (item)
7515 {
7516 /* Anything still marked queued is likely to be in an
7517 inconsistent state, so discard it. */
7518 if (item->per_cu->queued)
7519 {
7520 if (item->per_cu->cu != NULL)
7521 free_one_cached_comp_unit (item->per_cu);
7522 item->per_cu->queued = 0;
7523 }
7524
7525 last = item;
7526 item = item->next;
7527 xfree (last);
7528 }
7529
7530 dwarf2_queue = dwarf2_queue_tail = NULL;
7531 }
7532
7533 /* Read in full symbols for PST, and anything it depends on. */
7534
7535 static void
7536 psymtab_to_symtab_1 (struct partial_symtab *pst)
7537 {
7538 struct dwarf2_per_cu_data *per_cu;
7539 int i;
7540
7541 if (pst->readin)
7542 return;
7543
7544 for (i = 0; i < pst->number_of_dependencies; i++)
7545 if (!pst->dependencies[i]->readin
7546 && pst->dependencies[i]->user == NULL)
7547 {
7548 /* Inform about additional files that need to be read in. */
7549 if (info_verbose)
7550 {
7551 /* FIXME: i18n: Need to make this a single string. */
7552 fputs_filtered (" ", gdb_stdout);
7553 wrap_here ("");
7554 fputs_filtered ("and ", gdb_stdout);
7555 wrap_here ("");
7556 printf_filtered ("%s...", pst->dependencies[i]->filename);
7557 wrap_here (""); /* Flush output. */
7558 gdb_flush (gdb_stdout);
7559 }
7560 psymtab_to_symtab_1 (pst->dependencies[i]);
7561 }
7562
7563 per_cu = pst->read_symtab_private;
7564
7565 if (per_cu == NULL)
7566 {
7567 /* It's an include file, no symbols to read for it.
7568 Everything is in the parent symtab. */
7569 pst->readin = 1;
7570 return;
7571 }
7572
7573 dw2_do_instantiate_symtab (per_cu);
7574 }
7575
7576 /* Trivial hash function for die_info: the hash value of a DIE
7577 is its offset in .debug_info for this objfile. */
7578
7579 static hashval_t
7580 die_hash (const void *item)
7581 {
7582 const struct die_info *die = item;
7583
7584 return die->offset.sect_off;
7585 }
7586
7587 /* Trivial comparison function for die_info structures: two DIEs
7588 are equal if they have the same offset. */
7589
7590 static int
7591 die_eq (const void *item_lhs, const void *item_rhs)
7592 {
7593 const struct die_info *die_lhs = item_lhs;
7594 const struct die_info *die_rhs = item_rhs;
7595
7596 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7597 }
7598
7599 /* die_reader_func for load_full_comp_unit.
7600 This is identical to read_signatured_type_reader,
7601 but is kept separate for now. */
7602
7603 static void
7604 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7605 const gdb_byte *info_ptr,
7606 struct die_info *comp_unit_die,
7607 int has_children,
7608 void *data)
7609 {
7610 struct dwarf2_cu *cu = reader->cu;
7611 enum language *language_ptr = data;
7612
7613 gdb_assert (cu->die_hash == NULL);
7614 cu->die_hash =
7615 htab_create_alloc_ex (cu->header.length / 12,
7616 die_hash,
7617 die_eq,
7618 NULL,
7619 &cu->comp_unit_obstack,
7620 hashtab_obstack_allocate,
7621 dummy_obstack_deallocate);
7622
7623 if (has_children)
7624 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7625 &info_ptr, comp_unit_die);
7626 cu->dies = comp_unit_die;
7627 /* comp_unit_die is not stored in die_hash, no need. */
7628
7629 /* We try not to read any attributes in this function, because not
7630 all CUs needed for references have been loaded yet, and symbol
7631 table processing isn't initialized. But we have to set the CU language,
7632 or we won't be able to build types correctly.
7633 Similarly, if we do not read the producer, we can not apply
7634 producer-specific interpretation. */
7635 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7636 }
7637
7638 /* Load the DIEs associated with PER_CU into memory. */
7639
7640 static void
7641 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7642 enum language pretend_language)
7643 {
7644 gdb_assert (! this_cu->is_debug_types);
7645
7646 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7647 load_full_comp_unit_reader, &pretend_language);
7648 }
7649
7650 /* Add a DIE to the delayed physname list. */
7651
7652 static void
7653 add_to_method_list (struct type *type, int fnfield_index, int index,
7654 const char *name, struct die_info *die,
7655 struct dwarf2_cu *cu)
7656 {
7657 struct delayed_method_info mi;
7658 mi.type = type;
7659 mi.fnfield_index = fnfield_index;
7660 mi.index = index;
7661 mi.name = name;
7662 mi.die = die;
7663 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7664 }
7665
7666 /* A cleanup for freeing the delayed method list. */
7667
7668 static void
7669 free_delayed_list (void *ptr)
7670 {
7671 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7672 if (cu->method_list != NULL)
7673 {
7674 VEC_free (delayed_method_info, cu->method_list);
7675 cu->method_list = NULL;
7676 }
7677 }
7678
7679 /* Compute the physnames of any methods on the CU's method list.
7680
7681 The computation of method physnames is delayed in order to avoid the
7682 (bad) condition that one of the method's formal parameters is of an as yet
7683 incomplete type. */
7684
7685 static void
7686 compute_delayed_physnames (struct dwarf2_cu *cu)
7687 {
7688 int i;
7689 struct delayed_method_info *mi;
7690 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7691 {
7692 const char *physname;
7693 struct fn_fieldlist *fn_flp
7694 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7695 physname = dwarf2_physname (mi->name, mi->die, cu);
7696 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7697 }
7698 }
7699
7700 /* Go objects should be embedded in a DW_TAG_module DIE,
7701 and it's not clear if/how imported objects will appear.
7702 To keep Go support simple until that's worked out,
7703 go back through what we've read and create something usable.
7704 We could do this while processing each DIE, and feels kinda cleaner,
7705 but that way is more invasive.
7706 This is to, for example, allow the user to type "p var" or "b main"
7707 without having to specify the package name, and allow lookups
7708 of module.object to work in contexts that use the expression
7709 parser. */
7710
7711 static void
7712 fixup_go_packaging (struct dwarf2_cu *cu)
7713 {
7714 char *package_name = NULL;
7715 struct pending *list;
7716 int i;
7717
7718 for (list = global_symbols; list != NULL; list = list->next)
7719 {
7720 for (i = 0; i < list->nsyms; ++i)
7721 {
7722 struct symbol *sym = list->symbol[i];
7723
7724 if (SYMBOL_LANGUAGE (sym) == language_go
7725 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7726 {
7727 char *this_package_name = go_symbol_package_name (sym);
7728
7729 if (this_package_name == NULL)
7730 continue;
7731 if (package_name == NULL)
7732 package_name = this_package_name;
7733 else
7734 {
7735 if (strcmp (package_name, this_package_name) != 0)
7736 complaint (&symfile_complaints,
7737 _("Symtab %s has objects from two different Go packages: %s and %s"),
7738 (SYMBOL_SYMTAB (sym)
7739 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7740 : objfile_name (cu->objfile)),
7741 this_package_name, package_name);
7742 xfree (this_package_name);
7743 }
7744 }
7745 }
7746 }
7747
7748 if (package_name != NULL)
7749 {
7750 struct objfile *objfile = cu->objfile;
7751 const char *saved_package_name
7752 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7753 package_name,
7754 strlen (package_name));
7755 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7756 saved_package_name, objfile);
7757 struct symbol *sym;
7758
7759 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7760
7761 sym = allocate_symbol (objfile);
7762 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7763 SYMBOL_SET_NAMES (sym, saved_package_name,
7764 strlen (saved_package_name), 0, objfile);
7765 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7766 e.g., "main" finds the "main" module and not C's main(). */
7767 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7768 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7769 SYMBOL_TYPE (sym) = type;
7770
7771 add_symbol_to_list (sym, &global_symbols);
7772
7773 xfree (package_name);
7774 }
7775 }
7776
7777 /* Return the symtab for PER_CU. This works properly regardless of
7778 whether we're using the index or psymtabs. */
7779
7780 static struct compunit_symtab *
7781 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7782 {
7783 return (dwarf2_per_objfile->using_index
7784 ? per_cu->v.quick->compunit_symtab
7785 : per_cu->v.psymtab->compunit_symtab);
7786 }
7787
7788 /* A helper function for computing the list of all symbol tables
7789 included by PER_CU. */
7790
7791 static void
7792 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7793 htab_t all_children, htab_t all_type_symtabs,
7794 struct dwarf2_per_cu_data *per_cu,
7795 struct compunit_symtab *immediate_parent)
7796 {
7797 void **slot;
7798 int ix;
7799 struct compunit_symtab *cust;
7800 struct dwarf2_per_cu_data *iter;
7801
7802 slot = htab_find_slot (all_children, per_cu, INSERT);
7803 if (*slot != NULL)
7804 {
7805 /* This inclusion and its children have been processed. */
7806 return;
7807 }
7808
7809 *slot = per_cu;
7810 /* Only add a CU if it has a symbol table. */
7811 cust = get_compunit_symtab (per_cu);
7812 if (cust != NULL)
7813 {
7814 /* If this is a type unit only add its symbol table if we haven't
7815 seen it yet (type unit per_cu's can share symtabs). */
7816 if (per_cu->is_debug_types)
7817 {
7818 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7819 if (*slot == NULL)
7820 {
7821 *slot = cust;
7822 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7823 if (cust->user == NULL)
7824 cust->user = immediate_parent;
7825 }
7826 }
7827 else
7828 {
7829 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7830 if (cust->user == NULL)
7831 cust->user = immediate_parent;
7832 }
7833 }
7834
7835 for (ix = 0;
7836 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7837 ++ix)
7838 {
7839 recursively_compute_inclusions (result, all_children,
7840 all_type_symtabs, iter, cust);
7841 }
7842 }
7843
7844 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7845 PER_CU. */
7846
7847 static void
7848 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7849 {
7850 gdb_assert (! per_cu->is_debug_types);
7851
7852 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7853 {
7854 int ix, len;
7855 struct dwarf2_per_cu_data *per_cu_iter;
7856 struct compunit_symtab *compunit_symtab_iter;
7857 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7858 htab_t all_children, all_type_symtabs;
7859 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7860
7861 /* If we don't have a symtab, we can just skip this case. */
7862 if (cust == NULL)
7863 return;
7864
7865 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7866 NULL, xcalloc, xfree);
7867 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7868 NULL, xcalloc, xfree);
7869
7870 for (ix = 0;
7871 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7872 ix, per_cu_iter);
7873 ++ix)
7874 {
7875 recursively_compute_inclusions (&result_symtabs, all_children,
7876 all_type_symtabs, per_cu_iter,
7877 cust);
7878 }
7879
7880 /* Now we have a transitive closure of all the included symtabs. */
7881 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7882 cust->includes
7883 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7884 (len + 1) * sizeof (struct symtab *));
7885 for (ix = 0;
7886 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7887 compunit_symtab_iter);
7888 ++ix)
7889 cust->includes[ix] = compunit_symtab_iter;
7890 cust->includes[len] = NULL;
7891
7892 VEC_free (compunit_symtab_ptr, result_symtabs);
7893 htab_delete (all_children);
7894 htab_delete (all_type_symtabs);
7895 }
7896 }
7897
7898 /* Compute the 'includes' field for the symtabs of all the CUs we just
7899 read. */
7900
7901 static void
7902 process_cu_includes (void)
7903 {
7904 int ix;
7905 struct dwarf2_per_cu_data *iter;
7906
7907 for (ix = 0;
7908 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7909 ix, iter);
7910 ++ix)
7911 {
7912 if (! iter->is_debug_types)
7913 compute_compunit_symtab_includes (iter);
7914 }
7915
7916 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7917 }
7918
7919 /* Generate full symbol information for PER_CU, whose DIEs have
7920 already been loaded into memory. */
7921
7922 static void
7923 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7924 enum language pretend_language)
7925 {
7926 struct dwarf2_cu *cu = per_cu->cu;
7927 struct objfile *objfile = per_cu->objfile;
7928 CORE_ADDR lowpc, highpc;
7929 struct compunit_symtab *cust;
7930 struct cleanup *back_to, *delayed_list_cleanup;
7931 CORE_ADDR baseaddr;
7932 struct block *static_block;
7933
7934 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7935
7936 buildsym_init ();
7937 back_to = make_cleanup (really_free_pendings, NULL);
7938 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7939
7940 cu->list_in_scope = &file_symbols;
7941
7942 cu->language = pretend_language;
7943 cu->language_defn = language_def (cu->language);
7944
7945 /* Do line number decoding in read_file_scope () */
7946 process_die (cu->dies, cu);
7947
7948 /* For now fudge the Go package. */
7949 if (cu->language == language_go)
7950 fixup_go_packaging (cu);
7951
7952 /* Now that we have processed all the DIEs in the CU, all the types
7953 should be complete, and it should now be safe to compute all of the
7954 physnames. */
7955 compute_delayed_physnames (cu);
7956 do_cleanups (delayed_list_cleanup);
7957
7958 /* Some compilers don't define a DW_AT_high_pc attribute for the
7959 compilation unit. If the DW_AT_high_pc is missing, synthesize
7960 it, by scanning the DIE's below the compilation unit. */
7961 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7962
7963 static_block
7964 = end_symtab_get_static_block (highpc + baseaddr, 0, 1);
7965
7966 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7967 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7968 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7969 addrmap to help ensure it has an accurate map of pc values belonging to
7970 this comp unit. */
7971 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7972
7973 cust = end_symtab_from_static_block (static_block,
7974 SECT_OFF_TEXT (objfile), 0);
7975
7976 if (cust != NULL)
7977 {
7978 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7979
7980 /* Set symtab language to language from DW_AT_language. If the
7981 compilation is from a C file generated by language preprocessors, do
7982 not set the language if it was already deduced by start_subfile. */
7983 if (!(cu->language == language_c
7984 && COMPUNIT_FILETABS (cust)->language != language_c))
7985 COMPUNIT_FILETABS (cust)->language = cu->language;
7986
7987 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7988 produce DW_AT_location with location lists but it can be possibly
7989 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7990 there were bugs in prologue debug info, fixed later in GCC-4.5
7991 by "unwind info for epilogues" patch (which is not directly related).
7992
7993 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7994 needed, it would be wrong due to missing DW_AT_producer there.
7995
7996 Still one can confuse GDB by using non-standard GCC compilation
7997 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7998 */
7999 if (cu->has_loclist && gcc_4_minor >= 5)
8000 cust->locations_valid = 1;
8001
8002 if (gcc_4_minor >= 5)
8003 cust->epilogue_unwind_valid = 1;
8004
8005 cust->call_site_htab = cu->call_site_htab;
8006 }
8007
8008 if (dwarf2_per_objfile->using_index)
8009 per_cu->v.quick->compunit_symtab = cust;
8010 else
8011 {
8012 struct partial_symtab *pst = per_cu->v.psymtab;
8013 pst->compunit_symtab = cust;
8014 pst->readin = 1;
8015 }
8016
8017 /* Push it for inclusion processing later. */
8018 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8019
8020 do_cleanups (back_to);
8021 }
8022
8023 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8024 already been loaded into memory. */
8025
8026 static void
8027 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8028 enum language pretend_language)
8029 {
8030 struct dwarf2_cu *cu = per_cu->cu;
8031 struct objfile *objfile = per_cu->objfile;
8032 struct compunit_symtab *cust;
8033 struct cleanup *back_to, *delayed_list_cleanup;
8034 struct signatured_type *sig_type;
8035
8036 gdb_assert (per_cu->is_debug_types);
8037 sig_type = (struct signatured_type *) per_cu;
8038
8039 buildsym_init ();
8040 back_to = make_cleanup (really_free_pendings, NULL);
8041 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8042
8043 cu->list_in_scope = &file_symbols;
8044
8045 cu->language = pretend_language;
8046 cu->language_defn = language_def (cu->language);
8047
8048 /* The symbol tables are set up in read_type_unit_scope. */
8049 process_die (cu->dies, cu);
8050
8051 /* For now fudge the Go package. */
8052 if (cu->language == language_go)
8053 fixup_go_packaging (cu);
8054
8055 /* Now that we have processed all the DIEs in the CU, all the types
8056 should be complete, and it should now be safe to compute all of the
8057 physnames. */
8058 compute_delayed_physnames (cu);
8059 do_cleanups (delayed_list_cleanup);
8060
8061 /* TUs share symbol tables.
8062 If this is the first TU to use this symtab, complete the construction
8063 of it with end_expandable_symtab. Otherwise, complete the addition of
8064 this TU's symbols to the existing symtab. */
8065 if (sig_type->type_unit_group->compunit_symtab == NULL)
8066 {
8067 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8068 sig_type->type_unit_group->compunit_symtab = cust;
8069
8070 if (cust != NULL)
8071 {
8072 /* Set symtab language to language from DW_AT_language. If the
8073 compilation is from a C file generated by language preprocessors,
8074 do not set the language if it was already deduced by
8075 start_subfile. */
8076 if (!(cu->language == language_c
8077 && COMPUNIT_FILETABS (cust)->language != language_c))
8078 COMPUNIT_FILETABS (cust)->language = cu->language;
8079 }
8080 }
8081 else
8082 {
8083 augment_type_symtab (sig_type->type_unit_group->compunit_symtab);
8084 cust = sig_type->type_unit_group->compunit_symtab;
8085 }
8086
8087 if (dwarf2_per_objfile->using_index)
8088 per_cu->v.quick->compunit_symtab = cust;
8089 else
8090 {
8091 struct partial_symtab *pst = per_cu->v.psymtab;
8092 pst->compunit_symtab = cust;
8093 pst->readin = 1;
8094 }
8095
8096 do_cleanups (back_to);
8097 }
8098
8099 /* Process an imported unit DIE. */
8100
8101 static void
8102 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8103 {
8104 struct attribute *attr;
8105
8106 /* For now we don't handle imported units in type units. */
8107 if (cu->per_cu->is_debug_types)
8108 {
8109 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8110 " supported in type units [in module %s]"),
8111 objfile_name (cu->objfile));
8112 }
8113
8114 attr = dwarf2_attr (die, DW_AT_import, cu);
8115 if (attr != NULL)
8116 {
8117 struct dwarf2_per_cu_data *per_cu;
8118 struct symtab *imported_symtab;
8119 sect_offset offset;
8120 int is_dwz;
8121
8122 offset = dwarf2_get_ref_die_offset (attr);
8123 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8124 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8125
8126 /* If necessary, add it to the queue and load its DIEs. */
8127 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8128 load_full_comp_unit (per_cu, cu->language);
8129
8130 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8131 per_cu);
8132 }
8133 }
8134
8135 /* Reset the in_process bit of a die. */
8136
8137 static void
8138 reset_die_in_process (void *arg)
8139 {
8140 struct die_info *die = arg;
8141
8142 die->in_process = 0;
8143 }
8144
8145 /* Process a die and its children. */
8146
8147 static void
8148 process_die (struct die_info *die, struct dwarf2_cu *cu)
8149 {
8150 struct cleanup *in_process;
8151
8152 /* We should only be processing those not already in process. */
8153 gdb_assert (!die->in_process);
8154
8155 die->in_process = 1;
8156 in_process = make_cleanup (reset_die_in_process,die);
8157
8158 switch (die->tag)
8159 {
8160 case DW_TAG_padding:
8161 break;
8162 case DW_TAG_compile_unit:
8163 case DW_TAG_partial_unit:
8164 read_file_scope (die, cu);
8165 break;
8166 case DW_TAG_type_unit:
8167 read_type_unit_scope (die, cu);
8168 break;
8169 case DW_TAG_subprogram:
8170 case DW_TAG_inlined_subroutine:
8171 read_func_scope (die, cu);
8172 break;
8173 case DW_TAG_lexical_block:
8174 case DW_TAG_try_block:
8175 case DW_TAG_catch_block:
8176 read_lexical_block_scope (die, cu);
8177 break;
8178 case DW_TAG_GNU_call_site:
8179 read_call_site_scope (die, cu);
8180 break;
8181 case DW_TAG_class_type:
8182 case DW_TAG_interface_type:
8183 case DW_TAG_structure_type:
8184 case DW_TAG_union_type:
8185 process_structure_scope (die, cu);
8186 break;
8187 case DW_TAG_enumeration_type:
8188 process_enumeration_scope (die, cu);
8189 break;
8190
8191 /* These dies have a type, but processing them does not create
8192 a symbol or recurse to process the children. Therefore we can
8193 read them on-demand through read_type_die. */
8194 case DW_TAG_subroutine_type:
8195 case DW_TAG_set_type:
8196 case DW_TAG_array_type:
8197 case DW_TAG_pointer_type:
8198 case DW_TAG_ptr_to_member_type:
8199 case DW_TAG_reference_type:
8200 case DW_TAG_string_type:
8201 break;
8202
8203 case DW_TAG_base_type:
8204 case DW_TAG_subrange_type:
8205 case DW_TAG_typedef:
8206 /* Add a typedef symbol for the type definition, if it has a
8207 DW_AT_name. */
8208 new_symbol (die, read_type_die (die, cu), cu);
8209 break;
8210 case DW_TAG_common_block:
8211 read_common_block (die, cu);
8212 break;
8213 case DW_TAG_common_inclusion:
8214 break;
8215 case DW_TAG_namespace:
8216 cu->processing_has_namespace_info = 1;
8217 read_namespace (die, cu);
8218 break;
8219 case DW_TAG_module:
8220 cu->processing_has_namespace_info = 1;
8221 read_module (die, cu);
8222 break;
8223 case DW_TAG_imported_declaration:
8224 cu->processing_has_namespace_info = 1;
8225 if (read_namespace_alias (die, cu))
8226 break;
8227 /* The declaration is not a global namespace alias: fall through. */
8228 case DW_TAG_imported_module:
8229 cu->processing_has_namespace_info = 1;
8230 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8231 || cu->language != language_fortran))
8232 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8233 dwarf_tag_name (die->tag));
8234 read_import_statement (die, cu);
8235 break;
8236
8237 case DW_TAG_imported_unit:
8238 process_imported_unit_die (die, cu);
8239 break;
8240
8241 default:
8242 new_symbol (die, NULL, cu);
8243 break;
8244 }
8245
8246 do_cleanups (in_process);
8247 }
8248 \f
8249 /* DWARF name computation. */
8250
8251 /* A helper function for dwarf2_compute_name which determines whether DIE
8252 needs to have the name of the scope prepended to the name listed in the
8253 die. */
8254
8255 static int
8256 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8257 {
8258 struct attribute *attr;
8259
8260 switch (die->tag)
8261 {
8262 case DW_TAG_namespace:
8263 case DW_TAG_typedef:
8264 case DW_TAG_class_type:
8265 case DW_TAG_interface_type:
8266 case DW_TAG_structure_type:
8267 case DW_TAG_union_type:
8268 case DW_TAG_enumeration_type:
8269 case DW_TAG_enumerator:
8270 case DW_TAG_subprogram:
8271 case DW_TAG_member:
8272 case DW_TAG_imported_declaration:
8273 return 1;
8274
8275 case DW_TAG_variable:
8276 case DW_TAG_constant:
8277 /* We only need to prefix "globally" visible variables. These include
8278 any variable marked with DW_AT_external or any variable that
8279 lives in a namespace. [Variables in anonymous namespaces
8280 require prefixing, but they are not DW_AT_external.] */
8281
8282 if (dwarf2_attr (die, DW_AT_specification, cu))
8283 {
8284 struct dwarf2_cu *spec_cu = cu;
8285
8286 return die_needs_namespace (die_specification (die, &spec_cu),
8287 spec_cu);
8288 }
8289
8290 attr = dwarf2_attr (die, DW_AT_external, cu);
8291 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8292 && die->parent->tag != DW_TAG_module)
8293 return 0;
8294 /* A variable in a lexical block of some kind does not need a
8295 namespace, even though in C++ such variables may be external
8296 and have a mangled name. */
8297 if (die->parent->tag == DW_TAG_lexical_block
8298 || die->parent->tag == DW_TAG_try_block
8299 || die->parent->tag == DW_TAG_catch_block
8300 || die->parent->tag == DW_TAG_subprogram)
8301 return 0;
8302 return 1;
8303
8304 default:
8305 return 0;
8306 }
8307 }
8308
8309 /* Retrieve the last character from a mem_file. */
8310
8311 static void
8312 do_ui_file_peek_last (void *object, const char *buffer, long length)
8313 {
8314 char *last_char_p = (char *) object;
8315
8316 if (length > 0)
8317 *last_char_p = buffer[length - 1];
8318 }
8319
8320 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8321 compute the physname for the object, which include a method's:
8322 - formal parameters (C++/Java),
8323 - receiver type (Go),
8324 - return type (Java).
8325
8326 The term "physname" is a bit confusing.
8327 For C++, for example, it is the demangled name.
8328 For Go, for example, it's the mangled name.
8329
8330 For Ada, return the DIE's linkage name rather than the fully qualified
8331 name. PHYSNAME is ignored..
8332
8333 The result is allocated on the objfile_obstack and canonicalized. */
8334
8335 static const char *
8336 dwarf2_compute_name (const char *name,
8337 struct die_info *die, struct dwarf2_cu *cu,
8338 int physname)
8339 {
8340 struct objfile *objfile = cu->objfile;
8341
8342 if (name == NULL)
8343 name = dwarf2_name (die, cu);
8344
8345 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8346 compute it by typename_concat inside GDB. */
8347 if (cu->language == language_ada
8348 || (cu->language == language_fortran && physname))
8349 {
8350 /* For Ada unit, we prefer the linkage name over the name, as
8351 the former contains the exported name, which the user expects
8352 to be able to reference. Ideally, we want the user to be able
8353 to reference this entity using either natural or linkage name,
8354 but we haven't started looking at this enhancement yet. */
8355 struct attribute *attr;
8356
8357 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8358 if (attr == NULL)
8359 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8360 if (attr && DW_STRING (attr))
8361 return DW_STRING (attr);
8362 }
8363
8364 /* These are the only languages we know how to qualify names in. */
8365 if (name != NULL
8366 && (cu->language == language_cplus || cu->language == language_java
8367 || cu->language == language_fortran))
8368 {
8369 if (die_needs_namespace (die, cu))
8370 {
8371 long length;
8372 const char *prefix;
8373 struct ui_file *buf;
8374 char *intermediate_name;
8375 const char *canonical_name = NULL;
8376
8377 prefix = determine_prefix (die, cu);
8378 buf = mem_fileopen ();
8379 if (*prefix != '\0')
8380 {
8381 char *prefixed_name = typename_concat (NULL, prefix, name,
8382 physname, cu);
8383
8384 fputs_unfiltered (prefixed_name, buf);
8385 xfree (prefixed_name);
8386 }
8387 else
8388 fputs_unfiltered (name, buf);
8389
8390 /* Template parameters may be specified in the DIE's DW_AT_name, or
8391 as children with DW_TAG_template_type_param or
8392 DW_TAG_value_type_param. If the latter, add them to the name
8393 here. If the name already has template parameters, then
8394 skip this step; some versions of GCC emit both, and
8395 it is more efficient to use the pre-computed name.
8396
8397 Something to keep in mind about this process: it is very
8398 unlikely, or in some cases downright impossible, to produce
8399 something that will match the mangled name of a function.
8400 If the definition of the function has the same debug info,
8401 we should be able to match up with it anyway. But fallbacks
8402 using the minimal symbol, for instance to find a method
8403 implemented in a stripped copy of libstdc++, will not work.
8404 If we do not have debug info for the definition, we will have to
8405 match them up some other way.
8406
8407 When we do name matching there is a related problem with function
8408 templates; two instantiated function templates are allowed to
8409 differ only by their return types, which we do not add here. */
8410
8411 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8412 {
8413 struct attribute *attr;
8414 struct die_info *child;
8415 int first = 1;
8416
8417 die->building_fullname = 1;
8418
8419 for (child = die->child; child != NULL; child = child->sibling)
8420 {
8421 struct type *type;
8422 LONGEST value;
8423 const gdb_byte *bytes;
8424 struct dwarf2_locexpr_baton *baton;
8425 struct value *v;
8426
8427 if (child->tag != DW_TAG_template_type_param
8428 && child->tag != DW_TAG_template_value_param)
8429 continue;
8430
8431 if (first)
8432 {
8433 fputs_unfiltered ("<", buf);
8434 first = 0;
8435 }
8436 else
8437 fputs_unfiltered (", ", buf);
8438
8439 attr = dwarf2_attr (child, DW_AT_type, cu);
8440 if (attr == NULL)
8441 {
8442 complaint (&symfile_complaints,
8443 _("template parameter missing DW_AT_type"));
8444 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8445 continue;
8446 }
8447 type = die_type (child, cu);
8448
8449 if (child->tag == DW_TAG_template_type_param)
8450 {
8451 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8452 continue;
8453 }
8454
8455 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8456 if (attr == NULL)
8457 {
8458 complaint (&symfile_complaints,
8459 _("template parameter missing "
8460 "DW_AT_const_value"));
8461 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8462 continue;
8463 }
8464
8465 dwarf2_const_value_attr (attr, type, name,
8466 &cu->comp_unit_obstack, cu,
8467 &value, &bytes, &baton);
8468
8469 if (TYPE_NOSIGN (type))
8470 /* GDB prints characters as NUMBER 'CHAR'. If that's
8471 changed, this can use value_print instead. */
8472 c_printchar (value, type, buf);
8473 else
8474 {
8475 struct value_print_options opts;
8476
8477 if (baton != NULL)
8478 v = dwarf2_evaluate_loc_desc (type, NULL,
8479 baton->data,
8480 baton->size,
8481 baton->per_cu);
8482 else if (bytes != NULL)
8483 {
8484 v = allocate_value (type);
8485 memcpy (value_contents_writeable (v), bytes,
8486 TYPE_LENGTH (type));
8487 }
8488 else
8489 v = value_from_longest (type, value);
8490
8491 /* Specify decimal so that we do not depend on
8492 the radix. */
8493 get_formatted_print_options (&opts, 'd');
8494 opts.raw = 1;
8495 value_print (v, buf, &opts);
8496 release_value (v);
8497 value_free (v);
8498 }
8499 }
8500
8501 die->building_fullname = 0;
8502
8503 if (!first)
8504 {
8505 /* Close the argument list, with a space if necessary
8506 (nested templates). */
8507 char last_char = '\0';
8508 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8509 if (last_char == '>')
8510 fputs_unfiltered (" >", buf);
8511 else
8512 fputs_unfiltered (">", buf);
8513 }
8514 }
8515
8516 /* For Java and C++ methods, append formal parameter type
8517 information, if PHYSNAME. */
8518
8519 if (physname && die->tag == DW_TAG_subprogram
8520 && (cu->language == language_cplus
8521 || cu->language == language_java))
8522 {
8523 struct type *type = read_type_die (die, cu);
8524
8525 c_type_print_args (type, buf, 1, cu->language,
8526 &type_print_raw_options);
8527
8528 if (cu->language == language_java)
8529 {
8530 /* For java, we must append the return type to method
8531 names. */
8532 if (die->tag == DW_TAG_subprogram)
8533 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8534 0, 0, &type_print_raw_options);
8535 }
8536 else if (cu->language == language_cplus)
8537 {
8538 /* Assume that an artificial first parameter is
8539 "this", but do not crash if it is not. RealView
8540 marks unnamed (and thus unused) parameters as
8541 artificial; there is no way to differentiate
8542 the two cases. */
8543 if (TYPE_NFIELDS (type) > 0
8544 && TYPE_FIELD_ARTIFICIAL (type, 0)
8545 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8546 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8547 0))))
8548 fputs_unfiltered (" const", buf);
8549 }
8550 }
8551
8552 intermediate_name = ui_file_xstrdup (buf, &length);
8553 ui_file_delete (buf);
8554
8555 if (cu->language == language_cplus)
8556 canonical_name
8557 = dwarf2_canonicalize_name (intermediate_name, cu,
8558 &objfile->per_bfd->storage_obstack);
8559
8560 /* If we only computed INTERMEDIATE_NAME, or if
8561 INTERMEDIATE_NAME is already canonical, then we need to
8562 copy it to the appropriate obstack. */
8563 if (canonical_name == NULL || canonical_name == intermediate_name)
8564 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8565 intermediate_name,
8566 strlen (intermediate_name));
8567 else
8568 name = canonical_name;
8569
8570 xfree (intermediate_name);
8571 }
8572 }
8573
8574 return name;
8575 }
8576
8577 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8578 If scope qualifiers are appropriate they will be added. The result
8579 will be allocated on the storage_obstack, or NULL if the DIE does
8580 not have a name. NAME may either be from a previous call to
8581 dwarf2_name or NULL.
8582
8583 The output string will be canonicalized (if C++/Java). */
8584
8585 static const char *
8586 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8587 {
8588 return dwarf2_compute_name (name, die, cu, 0);
8589 }
8590
8591 /* Construct a physname for the given DIE in CU. NAME may either be
8592 from a previous call to dwarf2_name or NULL. The result will be
8593 allocated on the objfile_objstack or NULL if the DIE does not have a
8594 name.
8595
8596 The output string will be canonicalized (if C++/Java). */
8597
8598 static const char *
8599 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8600 {
8601 struct objfile *objfile = cu->objfile;
8602 struct attribute *attr;
8603 const char *retval, *mangled = NULL, *canon = NULL;
8604 struct cleanup *back_to;
8605 int need_copy = 1;
8606
8607 /* In this case dwarf2_compute_name is just a shortcut not building anything
8608 on its own. */
8609 if (!die_needs_namespace (die, cu))
8610 return dwarf2_compute_name (name, die, cu, 1);
8611
8612 back_to = make_cleanup (null_cleanup, NULL);
8613
8614 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8615 if (!attr)
8616 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8617
8618 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8619 has computed. */
8620 if (attr && DW_STRING (attr))
8621 {
8622 char *demangled;
8623
8624 mangled = DW_STRING (attr);
8625
8626 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8627 type. It is easier for GDB users to search for such functions as
8628 `name(params)' than `long name(params)'. In such case the minimal
8629 symbol names do not match the full symbol names but for template
8630 functions there is never a need to look up their definition from their
8631 declaration so the only disadvantage remains the minimal symbol
8632 variant `long name(params)' does not have the proper inferior type.
8633 */
8634
8635 if (cu->language == language_go)
8636 {
8637 /* This is a lie, but we already lie to the caller new_symbol_full.
8638 new_symbol_full assumes we return the mangled name.
8639 This just undoes that lie until things are cleaned up. */
8640 demangled = NULL;
8641 }
8642 else
8643 {
8644 demangled = gdb_demangle (mangled,
8645 (DMGL_PARAMS | DMGL_ANSI
8646 | (cu->language == language_java
8647 ? DMGL_JAVA | DMGL_RET_POSTFIX
8648 : DMGL_RET_DROP)));
8649 }
8650 if (demangled)
8651 {
8652 make_cleanup (xfree, demangled);
8653 canon = demangled;
8654 }
8655 else
8656 {
8657 canon = mangled;
8658 need_copy = 0;
8659 }
8660 }
8661
8662 if (canon == NULL || check_physname)
8663 {
8664 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8665
8666 if (canon != NULL && strcmp (physname, canon) != 0)
8667 {
8668 /* It may not mean a bug in GDB. The compiler could also
8669 compute DW_AT_linkage_name incorrectly. But in such case
8670 GDB would need to be bug-to-bug compatible. */
8671
8672 complaint (&symfile_complaints,
8673 _("Computed physname <%s> does not match demangled <%s> "
8674 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8675 physname, canon, mangled, die->offset.sect_off,
8676 objfile_name (objfile));
8677
8678 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8679 is available here - over computed PHYSNAME. It is safer
8680 against both buggy GDB and buggy compilers. */
8681
8682 retval = canon;
8683 }
8684 else
8685 {
8686 retval = physname;
8687 need_copy = 0;
8688 }
8689 }
8690 else
8691 retval = canon;
8692
8693 if (need_copy)
8694 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8695 retval, strlen (retval));
8696
8697 do_cleanups (back_to);
8698 return retval;
8699 }
8700
8701 /* Inspect DIE in CU for a namespace alias. If one exists, record
8702 a new symbol for it.
8703
8704 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8705
8706 static int
8707 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8708 {
8709 struct attribute *attr;
8710
8711 /* If the die does not have a name, this is not a namespace
8712 alias. */
8713 attr = dwarf2_attr (die, DW_AT_name, cu);
8714 if (attr != NULL)
8715 {
8716 int num;
8717 struct die_info *d = die;
8718 struct dwarf2_cu *imported_cu = cu;
8719
8720 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8721 keep inspecting DIEs until we hit the underlying import. */
8722 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8723 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8724 {
8725 attr = dwarf2_attr (d, DW_AT_import, cu);
8726 if (attr == NULL)
8727 break;
8728
8729 d = follow_die_ref (d, attr, &imported_cu);
8730 if (d->tag != DW_TAG_imported_declaration)
8731 break;
8732 }
8733
8734 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8735 {
8736 complaint (&symfile_complaints,
8737 _("DIE at 0x%x has too many recursively imported "
8738 "declarations"), d->offset.sect_off);
8739 return 0;
8740 }
8741
8742 if (attr != NULL)
8743 {
8744 struct type *type;
8745 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8746
8747 type = get_die_type_at_offset (offset, cu->per_cu);
8748 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8749 {
8750 /* This declaration is a global namespace alias. Add
8751 a symbol for it whose type is the aliased namespace. */
8752 new_symbol (die, type, cu);
8753 return 1;
8754 }
8755 }
8756 }
8757
8758 return 0;
8759 }
8760
8761 /* Read the import statement specified by the given die and record it. */
8762
8763 static void
8764 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8765 {
8766 struct objfile *objfile = cu->objfile;
8767 struct attribute *import_attr;
8768 struct die_info *imported_die, *child_die;
8769 struct dwarf2_cu *imported_cu;
8770 const char *imported_name;
8771 const char *imported_name_prefix;
8772 const char *canonical_name;
8773 const char *import_alias;
8774 const char *imported_declaration = NULL;
8775 const char *import_prefix;
8776 VEC (const_char_ptr) *excludes = NULL;
8777 struct cleanup *cleanups;
8778
8779 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8780 if (import_attr == NULL)
8781 {
8782 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8783 dwarf_tag_name (die->tag));
8784 return;
8785 }
8786
8787 imported_cu = cu;
8788 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8789 imported_name = dwarf2_name (imported_die, imported_cu);
8790 if (imported_name == NULL)
8791 {
8792 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8793
8794 The import in the following code:
8795 namespace A
8796 {
8797 typedef int B;
8798 }
8799
8800 int main ()
8801 {
8802 using A::B;
8803 B b;
8804 return b;
8805 }
8806
8807 ...
8808 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8809 <52> DW_AT_decl_file : 1
8810 <53> DW_AT_decl_line : 6
8811 <54> DW_AT_import : <0x75>
8812 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8813 <59> DW_AT_name : B
8814 <5b> DW_AT_decl_file : 1
8815 <5c> DW_AT_decl_line : 2
8816 <5d> DW_AT_type : <0x6e>
8817 ...
8818 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8819 <76> DW_AT_byte_size : 4
8820 <77> DW_AT_encoding : 5 (signed)
8821
8822 imports the wrong die ( 0x75 instead of 0x58 ).
8823 This case will be ignored until the gcc bug is fixed. */
8824 return;
8825 }
8826
8827 /* Figure out the local name after import. */
8828 import_alias = dwarf2_name (die, cu);
8829
8830 /* Figure out where the statement is being imported to. */
8831 import_prefix = determine_prefix (die, cu);
8832
8833 /* Figure out what the scope of the imported die is and prepend it
8834 to the name of the imported die. */
8835 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8836
8837 if (imported_die->tag != DW_TAG_namespace
8838 && imported_die->tag != DW_TAG_module)
8839 {
8840 imported_declaration = imported_name;
8841 canonical_name = imported_name_prefix;
8842 }
8843 else if (strlen (imported_name_prefix) > 0)
8844 canonical_name = obconcat (&objfile->objfile_obstack,
8845 imported_name_prefix, "::", imported_name,
8846 (char *) NULL);
8847 else
8848 canonical_name = imported_name;
8849
8850 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8851
8852 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8853 for (child_die = die->child; child_die && child_die->tag;
8854 child_die = sibling_die (child_die))
8855 {
8856 /* DWARF-4: A Fortran use statement with a “rename list” may be
8857 represented by an imported module entry with an import attribute
8858 referring to the module and owned entries corresponding to those
8859 entities that are renamed as part of being imported. */
8860
8861 if (child_die->tag != DW_TAG_imported_declaration)
8862 {
8863 complaint (&symfile_complaints,
8864 _("child DW_TAG_imported_declaration expected "
8865 "- DIE at 0x%x [in module %s]"),
8866 child_die->offset.sect_off, objfile_name (objfile));
8867 continue;
8868 }
8869
8870 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8871 if (import_attr == NULL)
8872 {
8873 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8874 dwarf_tag_name (child_die->tag));
8875 continue;
8876 }
8877
8878 imported_cu = cu;
8879 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8880 &imported_cu);
8881 imported_name = dwarf2_name (imported_die, imported_cu);
8882 if (imported_name == NULL)
8883 {
8884 complaint (&symfile_complaints,
8885 _("child DW_TAG_imported_declaration has unknown "
8886 "imported name - DIE at 0x%x [in module %s]"),
8887 child_die->offset.sect_off, objfile_name (objfile));
8888 continue;
8889 }
8890
8891 VEC_safe_push (const_char_ptr, excludes, imported_name);
8892
8893 process_die (child_die, cu);
8894 }
8895
8896 cp_add_using_directive (import_prefix,
8897 canonical_name,
8898 import_alias,
8899 imported_declaration,
8900 excludes,
8901 0,
8902 &objfile->objfile_obstack);
8903
8904 do_cleanups (cleanups);
8905 }
8906
8907 /* Cleanup function for handle_DW_AT_stmt_list. */
8908
8909 static void
8910 free_cu_line_header (void *arg)
8911 {
8912 struct dwarf2_cu *cu = arg;
8913
8914 free_line_header (cu->line_header);
8915 cu->line_header = NULL;
8916 }
8917
8918 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8919 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8920 this, it was first present in GCC release 4.3.0. */
8921
8922 static int
8923 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8924 {
8925 if (!cu->checked_producer)
8926 check_producer (cu);
8927
8928 return cu->producer_is_gcc_lt_4_3;
8929 }
8930
8931 static void
8932 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8933 const char **name, const char **comp_dir)
8934 {
8935 struct attribute *attr;
8936
8937 *name = NULL;
8938 *comp_dir = NULL;
8939
8940 /* Find the filename. Do not use dwarf2_name here, since the filename
8941 is not a source language identifier. */
8942 attr = dwarf2_attr (die, DW_AT_name, cu);
8943 if (attr)
8944 {
8945 *name = DW_STRING (attr);
8946 }
8947
8948 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8949 if (attr)
8950 *comp_dir = DW_STRING (attr);
8951 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8952 && IS_ABSOLUTE_PATH (*name))
8953 {
8954 char *d = ldirname (*name);
8955
8956 *comp_dir = d;
8957 if (d != NULL)
8958 make_cleanup (xfree, d);
8959 }
8960 if (*comp_dir != NULL)
8961 {
8962 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8963 directory, get rid of it. */
8964 char *cp = strchr (*comp_dir, ':');
8965
8966 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8967 *comp_dir = cp + 1;
8968 }
8969
8970 if (*name == NULL)
8971 *name = "<unknown>";
8972 }
8973
8974 /* Handle DW_AT_stmt_list for a compilation unit.
8975 DIE is the DW_TAG_compile_unit die for CU.
8976 COMP_DIR is the compilation directory. LOWPC is passed to
8977 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
8978
8979 static void
8980 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8981 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
8982 {
8983 struct attribute *attr;
8984
8985 gdb_assert (! cu->per_cu->is_debug_types);
8986
8987 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8988 if (attr)
8989 {
8990 unsigned int line_offset = DW_UNSND (attr);
8991 struct line_header *line_header
8992 = dwarf_decode_line_header (line_offset, cu);
8993
8994 if (line_header)
8995 {
8996 cu->line_header = line_header;
8997 make_cleanup (free_cu_line_header, cu);
8998 dwarf_decode_lines (line_header, comp_dir, cu, NULL, lowpc);
8999 }
9000 }
9001 }
9002
9003 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9004
9005 static void
9006 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9007 {
9008 struct objfile *objfile = dwarf2_per_objfile->objfile;
9009 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9010 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9011 CORE_ADDR highpc = ((CORE_ADDR) 0);
9012 struct attribute *attr;
9013 const char *name = NULL;
9014 const char *comp_dir = NULL;
9015 struct die_info *child_die;
9016 bfd *abfd = objfile->obfd;
9017 CORE_ADDR baseaddr;
9018
9019 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9020
9021 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9022
9023 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9024 from finish_block. */
9025 if (lowpc == ((CORE_ADDR) -1))
9026 lowpc = highpc;
9027 lowpc += baseaddr;
9028 highpc += baseaddr;
9029
9030 find_file_and_directory (die, cu, &name, &comp_dir);
9031
9032 prepare_one_comp_unit (cu, die, cu->language);
9033
9034 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9035 standardised yet. As a workaround for the language detection we fall
9036 back to the DW_AT_producer string. */
9037 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9038 cu->language = language_opencl;
9039
9040 /* Similar hack for Go. */
9041 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9042 set_cu_language (DW_LANG_Go, cu);
9043
9044 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9045
9046 /* Decode line number information if present. We do this before
9047 processing child DIEs, so that the line header table is available
9048 for DW_AT_decl_file. */
9049 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9050
9051 /* Process all dies in compilation unit. */
9052 if (die->child != NULL)
9053 {
9054 child_die = die->child;
9055 while (child_die && child_die->tag)
9056 {
9057 process_die (child_die, cu);
9058 child_die = sibling_die (child_die);
9059 }
9060 }
9061
9062 /* Decode macro information, if present. Dwarf 2 macro information
9063 refers to information in the line number info statement program
9064 header, so we can only read it if we've read the header
9065 successfully. */
9066 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9067 if (attr && cu->line_header)
9068 {
9069 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9070 complaint (&symfile_complaints,
9071 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9072
9073 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9074 }
9075 else
9076 {
9077 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9078 if (attr && cu->line_header)
9079 {
9080 unsigned int macro_offset = DW_UNSND (attr);
9081
9082 dwarf_decode_macros (cu, macro_offset, 0);
9083 }
9084 }
9085
9086 do_cleanups (back_to);
9087 }
9088
9089 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9090 Create the set of symtabs used by this TU, or if this TU is sharing
9091 symtabs with another TU and the symtabs have already been created
9092 then restore those symtabs in the line header.
9093 We don't need the pc/line-number mapping for type units. */
9094
9095 static void
9096 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9097 {
9098 struct objfile *objfile = dwarf2_per_objfile->objfile;
9099 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9100 struct type_unit_group *tu_group;
9101 int first_time;
9102 struct line_header *lh;
9103 struct attribute *attr;
9104 unsigned int i, line_offset;
9105 struct signatured_type *sig_type;
9106
9107 gdb_assert (per_cu->is_debug_types);
9108 sig_type = (struct signatured_type *) per_cu;
9109
9110 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9111
9112 /* If we're using .gdb_index (includes -readnow) then
9113 per_cu->type_unit_group may not have been set up yet. */
9114 if (sig_type->type_unit_group == NULL)
9115 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9116 tu_group = sig_type->type_unit_group;
9117
9118 /* If we've already processed this stmt_list there's no real need to
9119 do it again, we could fake it and just recreate the part we need
9120 (file name,index -> symtab mapping). If data shows this optimization
9121 is useful we can do it then. */
9122 first_time = tu_group->compunit_symtab == NULL;
9123
9124 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9125 debug info. */
9126 lh = NULL;
9127 if (attr != NULL)
9128 {
9129 line_offset = DW_UNSND (attr);
9130 lh = dwarf_decode_line_header (line_offset, cu);
9131 }
9132 if (lh == NULL)
9133 {
9134 if (first_time)
9135 dwarf2_start_symtab (cu, "", NULL, 0);
9136 else
9137 {
9138 gdb_assert (tu_group->symtabs == NULL);
9139 restart_symtab (0);
9140 }
9141 /* Note: The compunit symtab will get allocated at the end. */
9142 return;
9143 }
9144
9145 cu->line_header = lh;
9146 make_cleanup (free_cu_line_header, cu);
9147
9148 if (first_time)
9149 {
9150 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9151
9152 tu_group->num_symtabs = lh->num_file_names;
9153 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9154
9155 for (i = 0; i < lh->num_file_names; ++i)
9156 {
9157 const char *dir = NULL;
9158 struct file_entry *fe = &lh->file_names[i];
9159
9160 if (fe->dir_index)
9161 dir = lh->include_dirs[fe->dir_index - 1];
9162 dwarf2_start_subfile (fe->name, dir);
9163
9164 if (current_subfile->symtab == NULL)
9165 {
9166 /* NOTE: start_subfile will recognize when it's been passed
9167 a file it has already seen. So we can't assume there's a
9168 simple mapping from lh->file_names to subfiles, plus
9169 lh->file_names may contain dups. */
9170 current_subfile->symtab
9171 = allocate_symtab (cust, current_subfile->name);
9172 }
9173
9174 fe->symtab = current_subfile->symtab;
9175 tu_group->symtabs[i] = fe->symtab;
9176 }
9177 }
9178 else
9179 {
9180 restart_symtab (0);
9181
9182 for (i = 0; i < lh->num_file_names; ++i)
9183 {
9184 struct file_entry *fe = &lh->file_names[i];
9185
9186 fe->symtab = tu_group->symtabs[i];
9187 }
9188 }
9189
9190 /* The main symtab is allocated last. Type units don't have DW_AT_name
9191 so they don't have a "real" (so to speak) symtab anyway.
9192 There is later code that will assign the main symtab to all symbols
9193 that don't have one. We need to handle the case of a symbol with a
9194 missing symtab (DW_AT_decl_file) anyway. */
9195 }
9196
9197 /* Process DW_TAG_type_unit.
9198 For TUs we want to skip the first top level sibling if it's not the
9199 actual type being defined by this TU. In this case the first top
9200 level sibling is there to provide context only. */
9201
9202 static void
9203 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9204 {
9205 struct die_info *child_die;
9206
9207 prepare_one_comp_unit (cu, die, language_minimal);
9208
9209 /* Initialize (or reinitialize) the machinery for building symtabs.
9210 We do this before processing child DIEs, so that the line header table
9211 is available for DW_AT_decl_file. */
9212 setup_type_unit_groups (die, cu);
9213
9214 if (die->child != NULL)
9215 {
9216 child_die = die->child;
9217 while (child_die && child_die->tag)
9218 {
9219 process_die (child_die, cu);
9220 child_die = sibling_die (child_die);
9221 }
9222 }
9223 }
9224 \f
9225 /* DWO/DWP files.
9226
9227 http://gcc.gnu.org/wiki/DebugFission
9228 http://gcc.gnu.org/wiki/DebugFissionDWP
9229
9230 To simplify handling of both DWO files ("object" files with the DWARF info)
9231 and DWP files (a file with the DWOs packaged up into one file), we treat
9232 DWP files as having a collection of virtual DWO files. */
9233
9234 static hashval_t
9235 hash_dwo_file (const void *item)
9236 {
9237 const struct dwo_file *dwo_file = item;
9238 hashval_t hash;
9239
9240 hash = htab_hash_string (dwo_file->dwo_name);
9241 if (dwo_file->comp_dir != NULL)
9242 hash += htab_hash_string (dwo_file->comp_dir);
9243 return hash;
9244 }
9245
9246 static int
9247 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9248 {
9249 const struct dwo_file *lhs = item_lhs;
9250 const struct dwo_file *rhs = item_rhs;
9251
9252 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9253 return 0;
9254 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9255 return lhs->comp_dir == rhs->comp_dir;
9256 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9257 }
9258
9259 /* Allocate a hash table for DWO files. */
9260
9261 static htab_t
9262 allocate_dwo_file_hash_table (void)
9263 {
9264 struct objfile *objfile = dwarf2_per_objfile->objfile;
9265
9266 return htab_create_alloc_ex (41,
9267 hash_dwo_file,
9268 eq_dwo_file,
9269 NULL,
9270 &objfile->objfile_obstack,
9271 hashtab_obstack_allocate,
9272 dummy_obstack_deallocate);
9273 }
9274
9275 /* Lookup DWO file DWO_NAME. */
9276
9277 static void **
9278 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9279 {
9280 struct dwo_file find_entry;
9281 void **slot;
9282
9283 if (dwarf2_per_objfile->dwo_files == NULL)
9284 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9285
9286 memset (&find_entry, 0, sizeof (find_entry));
9287 find_entry.dwo_name = dwo_name;
9288 find_entry.comp_dir = comp_dir;
9289 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9290
9291 return slot;
9292 }
9293
9294 static hashval_t
9295 hash_dwo_unit (const void *item)
9296 {
9297 const struct dwo_unit *dwo_unit = item;
9298
9299 /* This drops the top 32 bits of the id, but is ok for a hash. */
9300 return dwo_unit->signature;
9301 }
9302
9303 static int
9304 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9305 {
9306 const struct dwo_unit *lhs = item_lhs;
9307 const struct dwo_unit *rhs = item_rhs;
9308
9309 /* The signature is assumed to be unique within the DWO file.
9310 So while object file CU dwo_id's always have the value zero,
9311 that's OK, assuming each object file DWO file has only one CU,
9312 and that's the rule for now. */
9313 return lhs->signature == rhs->signature;
9314 }
9315
9316 /* Allocate a hash table for DWO CUs,TUs.
9317 There is one of these tables for each of CUs,TUs for each DWO file. */
9318
9319 static htab_t
9320 allocate_dwo_unit_table (struct objfile *objfile)
9321 {
9322 /* Start out with a pretty small number.
9323 Generally DWO files contain only one CU and maybe some TUs. */
9324 return htab_create_alloc_ex (3,
9325 hash_dwo_unit,
9326 eq_dwo_unit,
9327 NULL,
9328 &objfile->objfile_obstack,
9329 hashtab_obstack_allocate,
9330 dummy_obstack_deallocate);
9331 }
9332
9333 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9334
9335 struct create_dwo_cu_data
9336 {
9337 struct dwo_file *dwo_file;
9338 struct dwo_unit dwo_unit;
9339 };
9340
9341 /* die_reader_func for create_dwo_cu. */
9342
9343 static void
9344 create_dwo_cu_reader (const struct die_reader_specs *reader,
9345 const gdb_byte *info_ptr,
9346 struct die_info *comp_unit_die,
9347 int has_children,
9348 void *datap)
9349 {
9350 struct dwarf2_cu *cu = reader->cu;
9351 struct objfile *objfile = dwarf2_per_objfile->objfile;
9352 sect_offset offset = cu->per_cu->offset;
9353 struct dwarf2_section_info *section = cu->per_cu->section;
9354 struct create_dwo_cu_data *data = datap;
9355 struct dwo_file *dwo_file = data->dwo_file;
9356 struct dwo_unit *dwo_unit = &data->dwo_unit;
9357 struct attribute *attr;
9358
9359 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9360 if (attr == NULL)
9361 {
9362 complaint (&symfile_complaints,
9363 _("Dwarf Error: debug entry at offset 0x%x is missing"
9364 " its dwo_id [in module %s]"),
9365 offset.sect_off, dwo_file->dwo_name);
9366 return;
9367 }
9368
9369 dwo_unit->dwo_file = dwo_file;
9370 dwo_unit->signature = DW_UNSND (attr);
9371 dwo_unit->section = section;
9372 dwo_unit->offset = offset;
9373 dwo_unit->length = cu->per_cu->length;
9374
9375 if (dwarf2_read_debug)
9376 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9377 offset.sect_off, hex_string (dwo_unit->signature));
9378 }
9379
9380 /* Create the dwo_unit for the lone CU in DWO_FILE.
9381 Note: This function processes DWO files only, not DWP files. */
9382
9383 static struct dwo_unit *
9384 create_dwo_cu (struct dwo_file *dwo_file)
9385 {
9386 struct objfile *objfile = dwarf2_per_objfile->objfile;
9387 struct dwarf2_section_info *section = &dwo_file->sections.info;
9388 bfd *abfd;
9389 htab_t cu_htab;
9390 const gdb_byte *info_ptr, *end_ptr;
9391 struct create_dwo_cu_data create_dwo_cu_data;
9392 struct dwo_unit *dwo_unit;
9393
9394 dwarf2_read_section (objfile, section);
9395 info_ptr = section->buffer;
9396
9397 if (info_ptr == NULL)
9398 return NULL;
9399
9400 /* We can't set abfd until now because the section may be empty or
9401 not present, in which case section->asection will be NULL. */
9402 abfd = get_section_bfd_owner (section);
9403
9404 if (dwarf2_read_debug)
9405 {
9406 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9407 get_section_name (section),
9408 get_section_file_name (section));
9409 }
9410
9411 create_dwo_cu_data.dwo_file = dwo_file;
9412 dwo_unit = NULL;
9413
9414 end_ptr = info_ptr + section->size;
9415 while (info_ptr < end_ptr)
9416 {
9417 struct dwarf2_per_cu_data per_cu;
9418
9419 memset (&create_dwo_cu_data.dwo_unit, 0,
9420 sizeof (create_dwo_cu_data.dwo_unit));
9421 memset (&per_cu, 0, sizeof (per_cu));
9422 per_cu.objfile = objfile;
9423 per_cu.is_debug_types = 0;
9424 per_cu.offset.sect_off = info_ptr - section->buffer;
9425 per_cu.section = section;
9426
9427 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9428 create_dwo_cu_reader,
9429 &create_dwo_cu_data);
9430
9431 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9432 {
9433 /* If we've already found one, complain. We only support one
9434 because having more than one requires hacking the dwo_name of
9435 each to match, which is highly unlikely to happen. */
9436 if (dwo_unit != NULL)
9437 {
9438 complaint (&symfile_complaints,
9439 _("Multiple CUs in DWO file %s [in module %s]"),
9440 dwo_file->dwo_name, objfile_name (objfile));
9441 break;
9442 }
9443
9444 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9445 *dwo_unit = create_dwo_cu_data.dwo_unit;
9446 }
9447
9448 info_ptr += per_cu.length;
9449 }
9450
9451 return dwo_unit;
9452 }
9453
9454 /* DWP file .debug_{cu,tu}_index section format:
9455 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9456
9457 DWP Version 1:
9458
9459 Both index sections have the same format, and serve to map a 64-bit
9460 signature to a set of section numbers. Each section begins with a header,
9461 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9462 indexes, and a pool of 32-bit section numbers. The index sections will be
9463 aligned at 8-byte boundaries in the file.
9464
9465 The index section header consists of:
9466
9467 V, 32 bit version number
9468 -, 32 bits unused
9469 N, 32 bit number of compilation units or type units in the index
9470 M, 32 bit number of slots in the hash table
9471
9472 Numbers are recorded using the byte order of the application binary.
9473
9474 The hash table begins at offset 16 in the section, and consists of an array
9475 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9476 order of the application binary). Unused slots in the hash table are 0.
9477 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9478
9479 The parallel table begins immediately after the hash table
9480 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9481 array of 32-bit indexes (using the byte order of the application binary),
9482 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9483 table contains a 32-bit index into the pool of section numbers. For unused
9484 hash table slots, the corresponding entry in the parallel table will be 0.
9485
9486 The pool of section numbers begins immediately following the hash table
9487 (at offset 16 + 12 * M from the beginning of the section). The pool of
9488 section numbers consists of an array of 32-bit words (using the byte order
9489 of the application binary). Each item in the array is indexed starting
9490 from 0. The hash table entry provides the index of the first section
9491 number in the set. Additional section numbers in the set follow, and the
9492 set is terminated by a 0 entry (section number 0 is not used in ELF).
9493
9494 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9495 section must be the first entry in the set, and the .debug_abbrev.dwo must
9496 be the second entry. Other members of the set may follow in any order.
9497
9498 ---
9499
9500 DWP Version 2:
9501
9502 DWP Version 2 combines all the .debug_info, etc. sections into one,
9503 and the entries in the index tables are now offsets into these sections.
9504 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9505 section.
9506
9507 Index Section Contents:
9508 Header
9509 Hash Table of Signatures dwp_hash_table.hash_table
9510 Parallel Table of Indices dwp_hash_table.unit_table
9511 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9512 Table of Section Sizes dwp_hash_table.v2.sizes
9513
9514 The index section header consists of:
9515
9516 V, 32 bit version number
9517 L, 32 bit number of columns in the table of section offsets
9518 N, 32 bit number of compilation units or type units in the index
9519 M, 32 bit number of slots in the hash table
9520
9521 Numbers are recorded using the byte order of the application binary.
9522
9523 The hash table has the same format as version 1.
9524 The parallel table of indices has the same format as version 1,
9525 except that the entries are origin-1 indices into the table of sections
9526 offsets and the table of section sizes.
9527
9528 The table of offsets begins immediately following the parallel table
9529 (at offset 16 + 12 * M from the beginning of the section). The table is
9530 a two-dimensional array of 32-bit words (using the byte order of the
9531 application binary), with L columns and N+1 rows, in row-major order.
9532 Each row in the array is indexed starting from 0. The first row provides
9533 a key to the remaining rows: each column in this row provides an identifier
9534 for a debug section, and the offsets in the same column of subsequent rows
9535 refer to that section. The section identifiers are:
9536
9537 DW_SECT_INFO 1 .debug_info.dwo
9538 DW_SECT_TYPES 2 .debug_types.dwo
9539 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9540 DW_SECT_LINE 4 .debug_line.dwo
9541 DW_SECT_LOC 5 .debug_loc.dwo
9542 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9543 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9544 DW_SECT_MACRO 8 .debug_macro.dwo
9545
9546 The offsets provided by the CU and TU index sections are the base offsets
9547 for the contributions made by each CU or TU to the corresponding section
9548 in the package file. Each CU and TU header contains an abbrev_offset
9549 field, used to find the abbreviations table for that CU or TU within the
9550 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9551 be interpreted as relative to the base offset given in the index section.
9552 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9553 should be interpreted as relative to the base offset for .debug_line.dwo,
9554 and offsets into other debug sections obtained from DWARF attributes should
9555 also be interpreted as relative to the corresponding base offset.
9556
9557 The table of sizes begins immediately following the table of offsets.
9558 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9559 with L columns and N rows, in row-major order. Each row in the array is
9560 indexed starting from 1 (row 0 is shared by the two tables).
9561
9562 ---
9563
9564 Hash table lookup is handled the same in version 1 and 2:
9565
9566 We assume that N and M will not exceed 2^32 - 1.
9567 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9568
9569 Given a 64-bit compilation unit signature or a type signature S, an entry
9570 in the hash table is located as follows:
9571
9572 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9573 the low-order k bits all set to 1.
9574
9575 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9576
9577 3) If the hash table entry at index H matches the signature, use that
9578 entry. If the hash table entry at index H is unused (all zeroes),
9579 terminate the search: the signature is not present in the table.
9580
9581 4) Let H = (H + H') modulo M. Repeat at Step 3.
9582
9583 Because M > N and H' and M are relatively prime, the search is guaranteed
9584 to stop at an unused slot or find the match. */
9585
9586 /* Create a hash table to map DWO IDs to their CU/TU entry in
9587 .debug_{info,types}.dwo in DWP_FILE.
9588 Returns NULL if there isn't one.
9589 Note: This function processes DWP files only, not DWO files. */
9590
9591 static struct dwp_hash_table *
9592 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9593 {
9594 struct objfile *objfile = dwarf2_per_objfile->objfile;
9595 bfd *dbfd = dwp_file->dbfd;
9596 const gdb_byte *index_ptr, *index_end;
9597 struct dwarf2_section_info *index;
9598 uint32_t version, nr_columns, nr_units, nr_slots;
9599 struct dwp_hash_table *htab;
9600
9601 if (is_debug_types)
9602 index = &dwp_file->sections.tu_index;
9603 else
9604 index = &dwp_file->sections.cu_index;
9605
9606 if (dwarf2_section_empty_p (index))
9607 return NULL;
9608 dwarf2_read_section (objfile, index);
9609
9610 index_ptr = index->buffer;
9611 index_end = index_ptr + index->size;
9612
9613 version = read_4_bytes (dbfd, index_ptr);
9614 index_ptr += 4;
9615 if (version == 2)
9616 nr_columns = read_4_bytes (dbfd, index_ptr);
9617 else
9618 nr_columns = 0;
9619 index_ptr += 4;
9620 nr_units = read_4_bytes (dbfd, index_ptr);
9621 index_ptr += 4;
9622 nr_slots = read_4_bytes (dbfd, index_ptr);
9623 index_ptr += 4;
9624
9625 if (version != 1 && version != 2)
9626 {
9627 error (_("Dwarf Error: unsupported DWP file version (%s)"
9628 " [in module %s]"),
9629 pulongest (version), dwp_file->name);
9630 }
9631 if (nr_slots != (nr_slots & -nr_slots))
9632 {
9633 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9634 " is not power of 2 [in module %s]"),
9635 pulongest (nr_slots), dwp_file->name);
9636 }
9637
9638 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9639 htab->version = version;
9640 htab->nr_columns = nr_columns;
9641 htab->nr_units = nr_units;
9642 htab->nr_slots = nr_slots;
9643 htab->hash_table = index_ptr;
9644 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9645
9646 /* Exit early if the table is empty. */
9647 if (nr_slots == 0 || nr_units == 0
9648 || (version == 2 && nr_columns == 0))
9649 {
9650 /* All must be zero. */
9651 if (nr_slots != 0 || nr_units != 0
9652 || (version == 2 && nr_columns != 0))
9653 {
9654 complaint (&symfile_complaints,
9655 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9656 " all zero [in modules %s]"),
9657 dwp_file->name);
9658 }
9659 return htab;
9660 }
9661
9662 if (version == 1)
9663 {
9664 htab->section_pool.v1.indices =
9665 htab->unit_table + sizeof (uint32_t) * nr_slots;
9666 /* It's harder to decide whether the section is too small in v1.
9667 V1 is deprecated anyway so we punt. */
9668 }
9669 else
9670 {
9671 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9672 int *ids = htab->section_pool.v2.section_ids;
9673 /* Reverse map for error checking. */
9674 int ids_seen[DW_SECT_MAX + 1];
9675 int i;
9676
9677 if (nr_columns < 2)
9678 {
9679 error (_("Dwarf Error: bad DWP hash table, too few columns"
9680 " in section table [in module %s]"),
9681 dwp_file->name);
9682 }
9683 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9684 {
9685 error (_("Dwarf Error: bad DWP hash table, too many columns"
9686 " in section table [in module %s]"),
9687 dwp_file->name);
9688 }
9689 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9690 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9691 for (i = 0; i < nr_columns; ++i)
9692 {
9693 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9694
9695 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9696 {
9697 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9698 " in section table [in module %s]"),
9699 id, dwp_file->name);
9700 }
9701 if (ids_seen[id] != -1)
9702 {
9703 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9704 " id %d in section table [in module %s]"),
9705 id, dwp_file->name);
9706 }
9707 ids_seen[id] = i;
9708 ids[i] = id;
9709 }
9710 /* Must have exactly one info or types section. */
9711 if (((ids_seen[DW_SECT_INFO] != -1)
9712 + (ids_seen[DW_SECT_TYPES] != -1))
9713 != 1)
9714 {
9715 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9716 " DWO info/types section [in module %s]"),
9717 dwp_file->name);
9718 }
9719 /* Must have an abbrev section. */
9720 if (ids_seen[DW_SECT_ABBREV] == -1)
9721 {
9722 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9723 " section [in module %s]"),
9724 dwp_file->name);
9725 }
9726 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9727 htab->section_pool.v2.sizes =
9728 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9729 * nr_units * nr_columns);
9730 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9731 * nr_units * nr_columns))
9732 > index_end)
9733 {
9734 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9735 " [in module %s]"),
9736 dwp_file->name);
9737 }
9738 }
9739
9740 return htab;
9741 }
9742
9743 /* Update SECTIONS with the data from SECTP.
9744
9745 This function is like the other "locate" section routines that are
9746 passed to bfd_map_over_sections, but in this context the sections to
9747 read comes from the DWP V1 hash table, not the full ELF section table.
9748
9749 The result is non-zero for success, or zero if an error was found. */
9750
9751 static int
9752 locate_v1_virtual_dwo_sections (asection *sectp,
9753 struct virtual_v1_dwo_sections *sections)
9754 {
9755 const struct dwop_section_names *names = &dwop_section_names;
9756
9757 if (section_is_p (sectp->name, &names->abbrev_dwo))
9758 {
9759 /* There can be only one. */
9760 if (sections->abbrev.s.asection != NULL)
9761 return 0;
9762 sections->abbrev.s.asection = sectp;
9763 sections->abbrev.size = bfd_get_section_size (sectp);
9764 }
9765 else if (section_is_p (sectp->name, &names->info_dwo)
9766 || section_is_p (sectp->name, &names->types_dwo))
9767 {
9768 /* There can be only one. */
9769 if (sections->info_or_types.s.asection != NULL)
9770 return 0;
9771 sections->info_or_types.s.asection = sectp;
9772 sections->info_or_types.size = bfd_get_section_size (sectp);
9773 }
9774 else if (section_is_p (sectp->name, &names->line_dwo))
9775 {
9776 /* There can be only one. */
9777 if (sections->line.s.asection != NULL)
9778 return 0;
9779 sections->line.s.asection = sectp;
9780 sections->line.size = bfd_get_section_size (sectp);
9781 }
9782 else if (section_is_p (sectp->name, &names->loc_dwo))
9783 {
9784 /* There can be only one. */
9785 if (sections->loc.s.asection != NULL)
9786 return 0;
9787 sections->loc.s.asection = sectp;
9788 sections->loc.size = bfd_get_section_size (sectp);
9789 }
9790 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9791 {
9792 /* There can be only one. */
9793 if (sections->macinfo.s.asection != NULL)
9794 return 0;
9795 sections->macinfo.s.asection = sectp;
9796 sections->macinfo.size = bfd_get_section_size (sectp);
9797 }
9798 else if (section_is_p (sectp->name, &names->macro_dwo))
9799 {
9800 /* There can be only one. */
9801 if (sections->macro.s.asection != NULL)
9802 return 0;
9803 sections->macro.s.asection = sectp;
9804 sections->macro.size = bfd_get_section_size (sectp);
9805 }
9806 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9807 {
9808 /* There can be only one. */
9809 if (sections->str_offsets.s.asection != NULL)
9810 return 0;
9811 sections->str_offsets.s.asection = sectp;
9812 sections->str_offsets.size = bfd_get_section_size (sectp);
9813 }
9814 else
9815 {
9816 /* No other kind of section is valid. */
9817 return 0;
9818 }
9819
9820 return 1;
9821 }
9822
9823 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9824 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9825 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9826 This is for DWP version 1 files. */
9827
9828 static struct dwo_unit *
9829 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9830 uint32_t unit_index,
9831 const char *comp_dir,
9832 ULONGEST signature, int is_debug_types)
9833 {
9834 struct objfile *objfile = dwarf2_per_objfile->objfile;
9835 const struct dwp_hash_table *dwp_htab =
9836 is_debug_types ? dwp_file->tus : dwp_file->cus;
9837 bfd *dbfd = dwp_file->dbfd;
9838 const char *kind = is_debug_types ? "TU" : "CU";
9839 struct dwo_file *dwo_file;
9840 struct dwo_unit *dwo_unit;
9841 struct virtual_v1_dwo_sections sections;
9842 void **dwo_file_slot;
9843 char *virtual_dwo_name;
9844 struct dwarf2_section_info *cutu;
9845 struct cleanup *cleanups;
9846 int i;
9847
9848 gdb_assert (dwp_file->version == 1);
9849
9850 if (dwarf2_read_debug)
9851 {
9852 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9853 kind,
9854 pulongest (unit_index), hex_string (signature),
9855 dwp_file->name);
9856 }
9857
9858 /* Fetch the sections of this DWO unit.
9859 Put a limit on the number of sections we look for so that bad data
9860 doesn't cause us to loop forever. */
9861
9862 #define MAX_NR_V1_DWO_SECTIONS \
9863 (1 /* .debug_info or .debug_types */ \
9864 + 1 /* .debug_abbrev */ \
9865 + 1 /* .debug_line */ \
9866 + 1 /* .debug_loc */ \
9867 + 1 /* .debug_str_offsets */ \
9868 + 1 /* .debug_macro or .debug_macinfo */ \
9869 + 1 /* trailing zero */)
9870
9871 memset (&sections, 0, sizeof (sections));
9872 cleanups = make_cleanup (null_cleanup, 0);
9873
9874 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9875 {
9876 asection *sectp;
9877 uint32_t section_nr =
9878 read_4_bytes (dbfd,
9879 dwp_htab->section_pool.v1.indices
9880 + (unit_index + i) * sizeof (uint32_t));
9881
9882 if (section_nr == 0)
9883 break;
9884 if (section_nr >= dwp_file->num_sections)
9885 {
9886 error (_("Dwarf Error: bad DWP hash table, section number too large"
9887 " [in module %s]"),
9888 dwp_file->name);
9889 }
9890
9891 sectp = dwp_file->elf_sections[section_nr];
9892 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
9893 {
9894 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9895 " [in module %s]"),
9896 dwp_file->name);
9897 }
9898 }
9899
9900 if (i < 2
9901 || dwarf2_section_empty_p (&sections.info_or_types)
9902 || dwarf2_section_empty_p (&sections.abbrev))
9903 {
9904 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9905 " [in module %s]"),
9906 dwp_file->name);
9907 }
9908 if (i == MAX_NR_V1_DWO_SECTIONS)
9909 {
9910 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9911 " [in module %s]"),
9912 dwp_file->name);
9913 }
9914
9915 /* It's easier for the rest of the code if we fake a struct dwo_file and
9916 have dwo_unit "live" in that. At least for now.
9917
9918 The DWP file can be made up of a random collection of CUs and TUs.
9919 However, for each CU + set of TUs that came from the same original DWO
9920 file, we can combine them back into a virtual DWO file to save space
9921 (fewer struct dwo_file objects to allocate). Remember that for really
9922 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9923
9924 virtual_dwo_name =
9925 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9926 get_section_id (&sections.abbrev),
9927 get_section_id (&sections.line),
9928 get_section_id (&sections.loc),
9929 get_section_id (&sections.str_offsets));
9930 make_cleanup (xfree, virtual_dwo_name);
9931 /* Can we use an existing virtual DWO file? */
9932 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9933 /* Create one if necessary. */
9934 if (*dwo_file_slot == NULL)
9935 {
9936 if (dwarf2_read_debug)
9937 {
9938 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9939 virtual_dwo_name);
9940 }
9941 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9942 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9943 virtual_dwo_name,
9944 strlen (virtual_dwo_name));
9945 dwo_file->comp_dir = comp_dir;
9946 dwo_file->sections.abbrev = sections.abbrev;
9947 dwo_file->sections.line = sections.line;
9948 dwo_file->sections.loc = sections.loc;
9949 dwo_file->sections.macinfo = sections.macinfo;
9950 dwo_file->sections.macro = sections.macro;
9951 dwo_file->sections.str_offsets = sections.str_offsets;
9952 /* The "str" section is global to the entire DWP file. */
9953 dwo_file->sections.str = dwp_file->sections.str;
9954 /* The info or types section is assigned below to dwo_unit,
9955 there's no need to record it in dwo_file.
9956 Also, we can't simply record type sections in dwo_file because
9957 we record a pointer into the vector in dwo_unit. As we collect more
9958 types we'll grow the vector and eventually have to reallocate space
9959 for it, invalidating all copies of pointers into the previous
9960 contents. */
9961 *dwo_file_slot = dwo_file;
9962 }
9963 else
9964 {
9965 if (dwarf2_read_debug)
9966 {
9967 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9968 virtual_dwo_name);
9969 }
9970 dwo_file = *dwo_file_slot;
9971 }
9972 do_cleanups (cleanups);
9973
9974 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9975 dwo_unit->dwo_file = dwo_file;
9976 dwo_unit->signature = signature;
9977 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9978 sizeof (struct dwarf2_section_info));
9979 *dwo_unit->section = sections.info_or_types;
9980 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9981
9982 return dwo_unit;
9983 }
9984
9985 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9986 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9987 piece within that section used by a TU/CU, return a virtual section
9988 of just that piece. */
9989
9990 static struct dwarf2_section_info
9991 create_dwp_v2_section (struct dwarf2_section_info *section,
9992 bfd_size_type offset, bfd_size_type size)
9993 {
9994 struct dwarf2_section_info result;
9995 asection *sectp;
9996
9997 gdb_assert (section != NULL);
9998 gdb_assert (!section->is_virtual);
9999
10000 memset (&result, 0, sizeof (result));
10001 result.s.containing_section = section;
10002 result.is_virtual = 1;
10003
10004 if (size == 0)
10005 return result;
10006
10007 sectp = get_section_bfd_section (section);
10008
10009 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10010 bounds of the real section. This is a pretty-rare event, so just
10011 flag an error (easier) instead of a warning and trying to cope. */
10012 if (sectp == NULL
10013 || offset + size > bfd_get_section_size (sectp))
10014 {
10015 bfd *abfd = sectp->owner;
10016
10017 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10018 " in section %s [in module %s]"),
10019 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10020 objfile_name (dwarf2_per_objfile->objfile));
10021 }
10022
10023 result.virtual_offset = offset;
10024 result.size = size;
10025 return result;
10026 }
10027
10028 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10029 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10030 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10031 This is for DWP version 2 files. */
10032
10033 static struct dwo_unit *
10034 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10035 uint32_t unit_index,
10036 const char *comp_dir,
10037 ULONGEST signature, int is_debug_types)
10038 {
10039 struct objfile *objfile = dwarf2_per_objfile->objfile;
10040 const struct dwp_hash_table *dwp_htab =
10041 is_debug_types ? dwp_file->tus : dwp_file->cus;
10042 bfd *dbfd = dwp_file->dbfd;
10043 const char *kind = is_debug_types ? "TU" : "CU";
10044 struct dwo_file *dwo_file;
10045 struct dwo_unit *dwo_unit;
10046 struct virtual_v2_dwo_sections sections;
10047 void **dwo_file_slot;
10048 char *virtual_dwo_name;
10049 struct dwarf2_section_info *cutu;
10050 struct cleanup *cleanups;
10051 int i;
10052
10053 gdb_assert (dwp_file->version == 2);
10054
10055 if (dwarf2_read_debug)
10056 {
10057 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10058 kind,
10059 pulongest (unit_index), hex_string (signature),
10060 dwp_file->name);
10061 }
10062
10063 /* Fetch the section offsets of this DWO unit. */
10064
10065 memset (&sections, 0, sizeof (sections));
10066 cleanups = make_cleanup (null_cleanup, 0);
10067
10068 for (i = 0; i < dwp_htab->nr_columns; ++i)
10069 {
10070 uint32_t offset = read_4_bytes (dbfd,
10071 dwp_htab->section_pool.v2.offsets
10072 + (((unit_index - 1) * dwp_htab->nr_columns
10073 + i)
10074 * sizeof (uint32_t)));
10075 uint32_t size = read_4_bytes (dbfd,
10076 dwp_htab->section_pool.v2.sizes
10077 + (((unit_index - 1) * dwp_htab->nr_columns
10078 + i)
10079 * sizeof (uint32_t)));
10080
10081 switch (dwp_htab->section_pool.v2.section_ids[i])
10082 {
10083 case DW_SECT_INFO:
10084 case DW_SECT_TYPES:
10085 sections.info_or_types_offset = offset;
10086 sections.info_or_types_size = size;
10087 break;
10088 case DW_SECT_ABBREV:
10089 sections.abbrev_offset = offset;
10090 sections.abbrev_size = size;
10091 break;
10092 case DW_SECT_LINE:
10093 sections.line_offset = offset;
10094 sections.line_size = size;
10095 break;
10096 case DW_SECT_LOC:
10097 sections.loc_offset = offset;
10098 sections.loc_size = size;
10099 break;
10100 case DW_SECT_STR_OFFSETS:
10101 sections.str_offsets_offset = offset;
10102 sections.str_offsets_size = size;
10103 break;
10104 case DW_SECT_MACINFO:
10105 sections.macinfo_offset = offset;
10106 sections.macinfo_size = size;
10107 break;
10108 case DW_SECT_MACRO:
10109 sections.macro_offset = offset;
10110 sections.macro_size = size;
10111 break;
10112 }
10113 }
10114
10115 /* It's easier for the rest of the code if we fake a struct dwo_file and
10116 have dwo_unit "live" in that. At least for now.
10117
10118 The DWP file can be made up of a random collection of CUs and TUs.
10119 However, for each CU + set of TUs that came from the same original DWO
10120 file, we can combine them back into a virtual DWO file to save space
10121 (fewer struct dwo_file objects to allocate). Remember that for really
10122 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10123
10124 virtual_dwo_name =
10125 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10126 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10127 (long) (sections.line_size ? sections.line_offset : 0),
10128 (long) (sections.loc_size ? sections.loc_offset : 0),
10129 (long) (sections.str_offsets_size
10130 ? sections.str_offsets_offset : 0));
10131 make_cleanup (xfree, virtual_dwo_name);
10132 /* Can we use an existing virtual DWO file? */
10133 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10134 /* Create one if necessary. */
10135 if (*dwo_file_slot == NULL)
10136 {
10137 if (dwarf2_read_debug)
10138 {
10139 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10140 virtual_dwo_name);
10141 }
10142 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10143 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10144 virtual_dwo_name,
10145 strlen (virtual_dwo_name));
10146 dwo_file->comp_dir = comp_dir;
10147 dwo_file->sections.abbrev =
10148 create_dwp_v2_section (&dwp_file->sections.abbrev,
10149 sections.abbrev_offset, sections.abbrev_size);
10150 dwo_file->sections.line =
10151 create_dwp_v2_section (&dwp_file->sections.line,
10152 sections.line_offset, sections.line_size);
10153 dwo_file->sections.loc =
10154 create_dwp_v2_section (&dwp_file->sections.loc,
10155 sections.loc_offset, sections.loc_size);
10156 dwo_file->sections.macinfo =
10157 create_dwp_v2_section (&dwp_file->sections.macinfo,
10158 sections.macinfo_offset, sections.macinfo_size);
10159 dwo_file->sections.macro =
10160 create_dwp_v2_section (&dwp_file->sections.macro,
10161 sections.macro_offset, sections.macro_size);
10162 dwo_file->sections.str_offsets =
10163 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10164 sections.str_offsets_offset,
10165 sections.str_offsets_size);
10166 /* The "str" section is global to the entire DWP file. */
10167 dwo_file->sections.str = dwp_file->sections.str;
10168 /* The info or types section is assigned below to dwo_unit,
10169 there's no need to record it in dwo_file.
10170 Also, we can't simply record type sections in dwo_file because
10171 we record a pointer into the vector in dwo_unit. As we collect more
10172 types we'll grow the vector and eventually have to reallocate space
10173 for it, invalidating all copies of pointers into the previous
10174 contents. */
10175 *dwo_file_slot = dwo_file;
10176 }
10177 else
10178 {
10179 if (dwarf2_read_debug)
10180 {
10181 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10182 virtual_dwo_name);
10183 }
10184 dwo_file = *dwo_file_slot;
10185 }
10186 do_cleanups (cleanups);
10187
10188 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10189 dwo_unit->dwo_file = dwo_file;
10190 dwo_unit->signature = signature;
10191 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10192 sizeof (struct dwarf2_section_info));
10193 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10194 ? &dwp_file->sections.types
10195 : &dwp_file->sections.info,
10196 sections.info_or_types_offset,
10197 sections.info_or_types_size);
10198 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10199
10200 return dwo_unit;
10201 }
10202
10203 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10204 Returns NULL if the signature isn't found. */
10205
10206 static struct dwo_unit *
10207 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10208 ULONGEST signature, int is_debug_types)
10209 {
10210 const struct dwp_hash_table *dwp_htab =
10211 is_debug_types ? dwp_file->tus : dwp_file->cus;
10212 bfd *dbfd = dwp_file->dbfd;
10213 uint32_t mask = dwp_htab->nr_slots - 1;
10214 uint32_t hash = signature & mask;
10215 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10216 unsigned int i;
10217 void **slot;
10218 struct dwo_unit find_dwo_cu, *dwo_cu;
10219
10220 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10221 find_dwo_cu.signature = signature;
10222 slot = htab_find_slot (is_debug_types
10223 ? dwp_file->loaded_tus
10224 : dwp_file->loaded_cus,
10225 &find_dwo_cu, INSERT);
10226
10227 if (*slot != NULL)
10228 return *slot;
10229
10230 /* Use a for loop so that we don't loop forever on bad debug info. */
10231 for (i = 0; i < dwp_htab->nr_slots; ++i)
10232 {
10233 ULONGEST signature_in_table;
10234
10235 signature_in_table =
10236 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10237 if (signature_in_table == signature)
10238 {
10239 uint32_t unit_index =
10240 read_4_bytes (dbfd,
10241 dwp_htab->unit_table + hash * sizeof (uint32_t));
10242
10243 if (dwp_file->version == 1)
10244 {
10245 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10246 comp_dir, signature,
10247 is_debug_types);
10248 }
10249 else
10250 {
10251 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10252 comp_dir, signature,
10253 is_debug_types);
10254 }
10255 return *slot;
10256 }
10257 if (signature_in_table == 0)
10258 return NULL;
10259 hash = (hash + hash2) & mask;
10260 }
10261
10262 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10263 " [in module %s]"),
10264 dwp_file->name);
10265 }
10266
10267 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10268 Open the file specified by FILE_NAME and hand it off to BFD for
10269 preliminary analysis. Return a newly initialized bfd *, which
10270 includes a canonicalized copy of FILE_NAME.
10271 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10272 SEARCH_CWD is true if the current directory is to be searched.
10273 It will be searched before debug-file-directory.
10274 If successful, the file is added to the bfd include table of the
10275 objfile's bfd (see gdb_bfd_record_inclusion).
10276 If unable to find/open the file, return NULL.
10277 NOTE: This function is derived from symfile_bfd_open. */
10278
10279 static bfd *
10280 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10281 {
10282 bfd *sym_bfd;
10283 int desc, flags;
10284 char *absolute_name;
10285 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10286 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10287 to debug_file_directory. */
10288 char *search_path;
10289 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10290
10291 if (search_cwd)
10292 {
10293 if (*debug_file_directory != '\0')
10294 search_path = concat (".", dirname_separator_string,
10295 debug_file_directory, NULL);
10296 else
10297 search_path = xstrdup (".");
10298 }
10299 else
10300 search_path = xstrdup (debug_file_directory);
10301
10302 flags = OPF_RETURN_REALPATH;
10303 if (is_dwp)
10304 flags |= OPF_SEARCH_IN_PATH;
10305 desc = openp (search_path, flags, file_name,
10306 O_RDONLY | O_BINARY, &absolute_name);
10307 xfree (search_path);
10308 if (desc < 0)
10309 return NULL;
10310
10311 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10312 xfree (absolute_name);
10313 if (sym_bfd == NULL)
10314 return NULL;
10315 bfd_set_cacheable (sym_bfd, 1);
10316
10317 if (!bfd_check_format (sym_bfd, bfd_object))
10318 {
10319 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10320 return NULL;
10321 }
10322
10323 /* Success. Record the bfd as having been included by the objfile's bfd.
10324 This is important because things like demangled_names_hash lives in the
10325 objfile's per_bfd space and may have references to things like symbol
10326 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10327 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10328
10329 return sym_bfd;
10330 }
10331
10332 /* Try to open DWO file FILE_NAME.
10333 COMP_DIR is the DW_AT_comp_dir attribute.
10334 The result is the bfd handle of the file.
10335 If there is a problem finding or opening the file, return NULL.
10336 Upon success, the canonicalized path of the file is stored in the bfd,
10337 same as symfile_bfd_open. */
10338
10339 static bfd *
10340 open_dwo_file (const char *file_name, const char *comp_dir)
10341 {
10342 bfd *abfd;
10343
10344 if (IS_ABSOLUTE_PATH (file_name))
10345 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10346
10347 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10348
10349 if (comp_dir != NULL)
10350 {
10351 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10352
10353 /* NOTE: If comp_dir is a relative path, this will also try the
10354 search path, which seems useful. */
10355 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10356 xfree (path_to_try);
10357 if (abfd != NULL)
10358 return abfd;
10359 }
10360
10361 /* That didn't work, try debug-file-directory, which, despite its name,
10362 is a list of paths. */
10363
10364 if (*debug_file_directory == '\0')
10365 return NULL;
10366
10367 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10368 }
10369
10370 /* This function is mapped across the sections and remembers the offset and
10371 size of each of the DWO debugging sections we are interested in. */
10372
10373 static void
10374 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10375 {
10376 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10377 const struct dwop_section_names *names = &dwop_section_names;
10378
10379 if (section_is_p (sectp->name, &names->abbrev_dwo))
10380 {
10381 dwo_sections->abbrev.s.asection = sectp;
10382 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10383 }
10384 else if (section_is_p (sectp->name, &names->info_dwo))
10385 {
10386 dwo_sections->info.s.asection = sectp;
10387 dwo_sections->info.size = bfd_get_section_size (sectp);
10388 }
10389 else if (section_is_p (sectp->name, &names->line_dwo))
10390 {
10391 dwo_sections->line.s.asection = sectp;
10392 dwo_sections->line.size = bfd_get_section_size (sectp);
10393 }
10394 else if (section_is_p (sectp->name, &names->loc_dwo))
10395 {
10396 dwo_sections->loc.s.asection = sectp;
10397 dwo_sections->loc.size = bfd_get_section_size (sectp);
10398 }
10399 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10400 {
10401 dwo_sections->macinfo.s.asection = sectp;
10402 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10403 }
10404 else if (section_is_p (sectp->name, &names->macro_dwo))
10405 {
10406 dwo_sections->macro.s.asection = sectp;
10407 dwo_sections->macro.size = bfd_get_section_size (sectp);
10408 }
10409 else if (section_is_p (sectp->name, &names->str_dwo))
10410 {
10411 dwo_sections->str.s.asection = sectp;
10412 dwo_sections->str.size = bfd_get_section_size (sectp);
10413 }
10414 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10415 {
10416 dwo_sections->str_offsets.s.asection = sectp;
10417 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10418 }
10419 else if (section_is_p (sectp->name, &names->types_dwo))
10420 {
10421 struct dwarf2_section_info type_section;
10422
10423 memset (&type_section, 0, sizeof (type_section));
10424 type_section.s.asection = sectp;
10425 type_section.size = bfd_get_section_size (sectp);
10426 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10427 &type_section);
10428 }
10429 }
10430
10431 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10432 by PER_CU. This is for the non-DWP case.
10433 The result is NULL if DWO_NAME can't be found. */
10434
10435 static struct dwo_file *
10436 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10437 const char *dwo_name, const char *comp_dir)
10438 {
10439 struct objfile *objfile = dwarf2_per_objfile->objfile;
10440 struct dwo_file *dwo_file;
10441 bfd *dbfd;
10442 struct cleanup *cleanups;
10443
10444 dbfd = open_dwo_file (dwo_name, comp_dir);
10445 if (dbfd == NULL)
10446 {
10447 if (dwarf2_read_debug)
10448 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10449 return NULL;
10450 }
10451 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10452 dwo_file->dwo_name = dwo_name;
10453 dwo_file->comp_dir = comp_dir;
10454 dwo_file->dbfd = dbfd;
10455
10456 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10457
10458 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10459
10460 dwo_file->cu = create_dwo_cu (dwo_file);
10461
10462 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10463 dwo_file->sections.types);
10464
10465 discard_cleanups (cleanups);
10466
10467 if (dwarf2_read_debug)
10468 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10469
10470 return dwo_file;
10471 }
10472
10473 /* This function is mapped across the sections and remembers the offset and
10474 size of each of the DWP debugging sections common to version 1 and 2 that
10475 we are interested in. */
10476
10477 static void
10478 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10479 void *dwp_file_ptr)
10480 {
10481 struct dwp_file *dwp_file = dwp_file_ptr;
10482 const struct dwop_section_names *names = &dwop_section_names;
10483 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10484
10485 /* Record the ELF section number for later lookup: this is what the
10486 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10487 gdb_assert (elf_section_nr < dwp_file->num_sections);
10488 dwp_file->elf_sections[elf_section_nr] = sectp;
10489
10490 /* Look for specific sections that we need. */
10491 if (section_is_p (sectp->name, &names->str_dwo))
10492 {
10493 dwp_file->sections.str.s.asection = sectp;
10494 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10495 }
10496 else if (section_is_p (sectp->name, &names->cu_index))
10497 {
10498 dwp_file->sections.cu_index.s.asection = sectp;
10499 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10500 }
10501 else if (section_is_p (sectp->name, &names->tu_index))
10502 {
10503 dwp_file->sections.tu_index.s.asection = sectp;
10504 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10505 }
10506 }
10507
10508 /* This function is mapped across the sections and remembers the offset and
10509 size of each of the DWP version 2 debugging sections that we are interested
10510 in. This is split into a separate function because we don't know if we
10511 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10512
10513 static void
10514 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10515 {
10516 struct dwp_file *dwp_file = dwp_file_ptr;
10517 const struct dwop_section_names *names = &dwop_section_names;
10518 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10519
10520 /* Record the ELF section number for later lookup: this is what the
10521 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10522 gdb_assert (elf_section_nr < dwp_file->num_sections);
10523 dwp_file->elf_sections[elf_section_nr] = sectp;
10524
10525 /* Look for specific sections that we need. */
10526 if (section_is_p (sectp->name, &names->abbrev_dwo))
10527 {
10528 dwp_file->sections.abbrev.s.asection = sectp;
10529 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10530 }
10531 else if (section_is_p (sectp->name, &names->info_dwo))
10532 {
10533 dwp_file->sections.info.s.asection = sectp;
10534 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10535 }
10536 else if (section_is_p (sectp->name, &names->line_dwo))
10537 {
10538 dwp_file->sections.line.s.asection = sectp;
10539 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10540 }
10541 else if (section_is_p (sectp->name, &names->loc_dwo))
10542 {
10543 dwp_file->sections.loc.s.asection = sectp;
10544 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10545 }
10546 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10547 {
10548 dwp_file->sections.macinfo.s.asection = sectp;
10549 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10550 }
10551 else if (section_is_p (sectp->name, &names->macro_dwo))
10552 {
10553 dwp_file->sections.macro.s.asection = sectp;
10554 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10555 }
10556 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10557 {
10558 dwp_file->sections.str_offsets.s.asection = sectp;
10559 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10560 }
10561 else if (section_is_p (sectp->name, &names->types_dwo))
10562 {
10563 dwp_file->sections.types.s.asection = sectp;
10564 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10565 }
10566 }
10567
10568 /* Hash function for dwp_file loaded CUs/TUs. */
10569
10570 static hashval_t
10571 hash_dwp_loaded_cutus (const void *item)
10572 {
10573 const struct dwo_unit *dwo_unit = item;
10574
10575 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10576 return dwo_unit->signature;
10577 }
10578
10579 /* Equality function for dwp_file loaded CUs/TUs. */
10580
10581 static int
10582 eq_dwp_loaded_cutus (const void *a, const void *b)
10583 {
10584 const struct dwo_unit *dua = a;
10585 const struct dwo_unit *dub = b;
10586
10587 return dua->signature == dub->signature;
10588 }
10589
10590 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10591
10592 static htab_t
10593 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10594 {
10595 return htab_create_alloc_ex (3,
10596 hash_dwp_loaded_cutus,
10597 eq_dwp_loaded_cutus,
10598 NULL,
10599 &objfile->objfile_obstack,
10600 hashtab_obstack_allocate,
10601 dummy_obstack_deallocate);
10602 }
10603
10604 /* Try to open DWP file FILE_NAME.
10605 The result is the bfd handle of the file.
10606 If there is a problem finding or opening the file, return NULL.
10607 Upon success, the canonicalized path of the file is stored in the bfd,
10608 same as symfile_bfd_open. */
10609
10610 static bfd *
10611 open_dwp_file (const char *file_name)
10612 {
10613 bfd *abfd;
10614
10615 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10616 if (abfd != NULL)
10617 return abfd;
10618
10619 /* Work around upstream bug 15652.
10620 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10621 [Whether that's a "bug" is debatable, but it is getting in our way.]
10622 We have no real idea where the dwp file is, because gdb's realpath-ing
10623 of the executable's path may have discarded the needed info.
10624 [IWBN if the dwp file name was recorded in the executable, akin to
10625 .gnu_debuglink, but that doesn't exist yet.]
10626 Strip the directory from FILE_NAME and search again. */
10627 if (*debug_file_directory != '\0')
10628 {
10629 /* Don't implicitly search the current directory here.
10630 If the user wants to search "." to handle this case,
10631 it must be added to debug-file-directory. */
10632 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10633 0 /*search_cwd*/);
10634 }
10635
10636 return NULL;
10637 }
10638
10639 /* Initialize the use of the DWP file for the current objfile.
10640 By convention the name of the DWP file is ${objfile}.dwp.
10641 The result is NULL if it can't be found. */
10642
10643 static struct dwp_file *
10644 open_and_init_dwp_file (void)
10645 {
10646 struct objfile *objfile = dwarf2_per_objfile->objfile;
10647 struct dwp_file *dwp_file;
10648 char *dwp_name;
10649 bfd *dbfd;
10650 struct cleanup *cleanups;
10651
10652 /* Try to find first .dwp for the binary file before any symbolic links
10653 resolving. */
10654 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10655 cleanups = make_cleanup (xfree, dwp_name);
10656
10657 dbfd = open_dwp_file (dwp_name);
10658 if (dbfd == NULL
10659 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10660 {
10661 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10662 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10663 make_cleanup (xfree, dwp_name);
10664 dbfd = open_dwp_file (dwp_name);
10665 }
10666
10667 if (dbfd == NULL)
10668 {
10669 if (dwarf2_read_debug)
10670 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10671 do_cleanups (cleanups);
10672 return NULL;
10673 }
10674 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10675 dwp_file->name = bfd_get_filename (dbfd);
10676 dwp_file->dbfd = dbfd;
10677 do_cleanups (cleanups);
10678
10679 /* +1: section 0 is unused */
10680 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10681 dwp_file->elf_sections =
10682 OBSTACK_CALLOC (&objfile->objfile_obstack,
10683 dwp_file->num_sections, asection *);
10684
10685 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10686
10687 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10688
10689 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10690
10691 /* The DWP file version is stored in the hash table. Oh well. */
10692 if (dwp_file->cus->version != dwp_file->tus->version)
10693 {
10694 /* Technically speaking, we should try to limp along, but this is
10695 pretty bizarre. We use pulongest here because that's the established
10696 portability solution (e.g, we cannot use %u for uint32_t). */
10697 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10698 " TU version %s [in DWP file %s]"),
10699 pulongest (dwp_file->cus->version),
10700 pulongest (dwp_file->tus->version), dwp_name);
10701 }
10702 dwp_file->version = dwp_file->cus->version;
10703
10704 if (dwp_file->version == 2)
10705 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10706
10707 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10708 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10709
10710 if (dwarf2_read_debug)
10711 {
10712 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10713 fprintf_unfiltered (gdb_stdlog,
10714 " %s CUs, %s TUs\n",
10715 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10716 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10717 }
10718
10719 return dwp_file;
10720 }
10721
10722 /* Wrapper around open_and_init_dwp_file, only open it once. */
10723
10724 static struct dwp_file *
10725 get_dwp_file (void)
10726 {
10727 if (! dwarf2_per_objfile->dwp_checked)
10728 {
10729 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10730 dwarf2_per_objfile->dwp_checked = 1;
10731 }
10732 return dwarf2_per_objfile->dwp_file;
10733 }
10734
10735 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10736 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10737 or in the DWP file for the objfile, referenced by THIS_UNIT.
10738 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10739 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10740
10741 This is called, for example, when wanting to read a variable with a
10742 complex location. Therefore we don't want to do file i/o for every call.
10743 Therefore we don't want to look for a DWO file on every call.
10744 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10745 then we check if we've already seen DWO_NAME, and only THEN do we check
10746 for a DWO file.
10747
10748 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10749 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10750
10751 static struct dwo_unit *
10752 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10753 const char *dwo_name, const char *comp_dir,
10754 ULONGEST signature, int is_debug_types)
10755 {
10756 struct objfile *objfile = dwarf2_per_objfile->objfile;
10757 const char *kind = is_debug_types ? "TU" : "CU";
10758 void **dwo_file_slot;
10759 struct dwo_file *dwo_file;
10760 struct dwp_file *dwp_file;
10761
10762 /* First see if there's a DWP file.
10763 If we have a DWP file but didn't find the DWO inside it, don't
10764 look for the original DWO file. It makes gdb behave differently
10765 depending on whether one is debugging in the build tree. */
10766
10767 dwp_file = get_dwp_file ();
10768 if (dwp_file != NULL)
10769 {
10770 const struct dwp_hash_table *dwp_htab =
10771 is_debug_types ? dwp_file->tus : dwp_file->cus;
10772
10773 if (dwp_htab != NULL)
10774 {
10775 struct dwo_unit *dwo_cutu =
10776 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10777 signature, is_debug_types);
10778
10779 if (dwo_cutu != NULL)
10780 {
10781 if (dwarf2_read_debug)
10782 {
10783 fprintf_unfiltered (gdb_stdlog,
10784 "Virtual DWO %s %s found: @%s\n",
10785 kind, hex_string (signature),
10786 host_address_to_string (dwo_cutu));
10787 }
10788 return dwo_cutu;
10789 }
10790 }
10791 }
10792 else
10793 {
10794 /* No DWP file, look for the DWO file. */
10795
10796 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10797 if (*dwo_file_slot == NULL)
10798 {
10799 /* Read in the file and build a table of the CUs/TUs it contains. */
10800 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10801 }
10802 /* NOTE: This will be NULL if unable to open the file. */
10803 dwo_file = *dwo_file_slot;
10804
10805 if (dwo_file != NULL)
10806 {
10807 struct dwo_unit *dwo_cutu = NULL;
10808
10809 if (is_debug_types && dwo_file->tus)
10810 {
10811 struct dwo_unit find_dwo_cutu;
10812
10813 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10814 find_dwo_cutu.signature = signature;
10815 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10816 }
10817 else if (!is_debug_types && dwo_file->cu)
10818 {
10819 if (signature == dwo_file->cu->signature)
10820 dwo_cutu = dwo_file->cu;
10821 }
10822
10823 if (dwo_cutu != NULL)
10824 {
10825 if (dwarf2_read_debug)
10826 {
10827 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10828 kind, dwo_name, hex_string (signature),
10829 host_address_to_string (dwo_cutu));
10830 }
10831 return dwo_cutu;
10832 }
10833 }
10834 }
10835
10836 /* We didn't find it. This could mean a dwo_id mismatch, or
10837 someone deleted the DWO/DWP file, or the search path isn't set up
10838 correctly to find the file. */
10839
10840 if (dwarf2_read_debug)
10841 {
10842 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10843 kind, dwo_name, hex_string (signature));
10844 }
10845
10846 /* This is a warning and not a complaint because it can be caused by
10847 pilot error (e.g., user accidentally deleting the DWO). */
10848 {
10849 /* Print the name of the DWP file if we looked there, helps the user
10850 better diagnose the problem. */
10851 char *dwp_text = NULL;
10852 struct cleanup *cleanups;
10853
10854 if (dwp_file != NULL)
10855 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10856 cleanups = make_cleanup (xfree, dwp_text);
10857
10858 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10859 " [in module %s]"),
10860 kind, dwo_name, hex_string (signature),
10861 dwp_text != NULL ? dwp_text : "",
10862 this_unit->is_debug_types ? "TU" : "CU",
10863 this_unit->offset.sect_off, objfile_name (objfile));
10864
10865 do_cleanups (cleanups);
10866 }
10867 return NULL;
10868 }
10869
10870 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10871 See lookup_dwo_cutu_unit for details. */
10872
10873 static struct dwo_unit *
10874 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10875 const char *dwo_name, const char *comp_dir,
10876 ULONGEST signature)
10877 {
10878 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10879 }
10880
10881 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10882 See lookup_dwo_cutu_unit for details. */
10883
10884 static struct dwo_unit *
10885 lookup_dwo_type_unit (struct signatured_type *this_tu,
10886 const char *dwo_name, const char *comp_dir)
10887 {
10888 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10889 }
10890
10891 /* Traversal function for queue_and_load_all_dwo_tus. */
10892
10893 static int
10894 queue_and_load_dwo_tu (void **slot, void *info)
10895 {
10896 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10897 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10898 ULONGEST signature = dwo_unit->signature;
10899 struct signatured_type *sig_type =
10900 lookup_dwo_signatured_type (per_cu->cu, signature);
10901
10902 if (sig_type != NULL)
10903 {
10904 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10905
10906 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10907 a real dependency of PER_CU on SIG_TYPE. That is detected later
10908 while processing PER_CU. */
10909 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10910 load_full_type_unit (sig_cu);
10911 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10912 }
10913
10914 return 1;
10915 }
10916
10917 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10918 The DWO may have the only definition of the type, though it may not be
10919 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10920 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10921
10922 static void
10923 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10924 {
10925 struct dwo_unit *dwo_unit;
10926 struct dwo_file *dwo_file;
10927
10928 gdb_assert (!per_cu->is_debug_types);
10929 gdb_assert (get_dwp_file () == NULL);
10930 gdb_assert (per_cu->cu != NULL);
10931
10932 dwo_unit = per_cu->cu->dwo_unit;
10933 gdb_assert (dwo_unit != NULL);
10934
10935 dwo_file = dwo_unit->dwo_file;
10936 if (dwo_file->tus != NULL)
10937 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10938 }
10939
10940 /* Free all resources associated with DWO_FILE.
10941 Close the DWO file and munmap the sections.
10942 All memory should be on the objfile obstack. */
10943
10944 static void
10945 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10946 {
10947 int ix;
10948 struct dwarf2_section_info *section;
10949
10950 /* Note: dbfd is NULL for virtual DWO files. */
10951 gdb_bfd_unref (dwo_file->dbfd);
10952
10953 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10954 }
10955
10956 /* Wrapper for free_dwo_file for use in cleanups. */
10957
10958 static void
10959 free_dwo_file_cleanup (void *arg)
10960 {
10961 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10962 struct objfile *objfile = dwarf2_per_objfile->objfile;
10963
10964 free_dwo_file (dwo_file, objfile);
10965 }
10966
10967 /* Traversal function for free_dwo_files. */
10968
10969 static int
10970 free_dwo_file_from_slot (void **slot, void *info)
10971 {
10972 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10973 struct objfile *objfile = (struct objfile *) info;
10974
10975 free_dwo_file (dwo_file, objfile);
10976
10977 return 1;
10978 }
10979
10980 /* Free all resources associated with DWO_FILES. */
10981
10982 static void
10983 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10984 {
10985 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10986 }
10987 \f
10988 /* Read in various DIEs. */
10989
10990 /* qsort helper for inherit_abstract_dies. */
10991
10992 static int
10993 unsigned_int_compar (const void *ap, const void *bp)
10994 {
10995 unsigned int a = *(unsigned int *) ap;
10996 unsigned int b = *(unsigned int *) bp;
10997
10998 return (a > b) - (b > a);
10999 }
11000
11001 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11002 Inherit only the children of the DW_AT_abstract_origin DIE not being
11003 already referenced by DW_AT_abstract_origin from the children of the
11004 current DIE. */
11005
11006 static void
11007 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11008 {
11009 struct die_info *child_die;
11010 unsigned die_children_count;
11011 /* CU offsets which were referenced by children of the current DIE. */
11012 sect_offset *offsets;
11013 sect_offset *offsets_end, *offsetp;
11014 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11015 struct die_info *origin_die;
11016 /* Iterator of the ORIGIN_DIE children. */
11017 struct die_info *origin_child_die;
11018 struct cleanup *cleanups;
11019 struct attribute *attr;
11020 struct dwarf2_cu *origin_cu;
11021 struct pending **origin_previous_list_in_scope;
11022
11023 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11024 if (!attr)
11025 return;
11026
11027 /* Note that following die references may follow to a die in a
11028 different cu. */
11029
11030 origin_cu = cu;
11031 origin_die = follow_die_ref (die, attr, &origin_cu);
11032
11033 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11034 symbols in. */
11035 origin_previous_list_in_scope = origin_cu->list_in_scope;
11036 origin_cu->list_in_scope = cu->list_in_scope;
11037
11038 if (die->tag != origin_die->tag
11039 && !(die->tag == DW_TAG_inlined_subroutine
11040 && origin_die->tag == DW_TAG_subprogram))
11041 complaint (&symfile_complaints,
11042 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11043 die->offset.sect_off, origin_die->offset.sect_off);
11044
11045 child_die = die->child;
11046 die_children_count = 0;
11047 while (child_die && child_die->tag)
11048 {
11049 child_die = sibling_die (child_die);
11050 die_children_count++;
11051 }
11052 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11053 cleanups = make_cleanup (xfree, offsets);
11054
11055 offsets_end = offsets;
11056 child_die = die->child;
11057 while (child_die && child_die->tag)
11058 {
11059 /* For each CHILD_DIE, find the corresponding child of
11060 ORIGIN_DIE. If there is more than one layer of
11061 DW_AT_abstract_origin, follow them all; there shouldn't be,
11062 but GCC versions at least through 4.4 generate this (GCC PR
11063 40573). */
11064 struct die_info *child_origin_die = child_die;
11065 struct dwarf2_cu *child_origin_cu = cu;
11066
11067 while (1)
11068 {
11069 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11070 child_origin_cu);
11071 if (attr == NULL)
11072 break;
11073 child_origin_die = follow_die_ref (child_origin_die, attr,
11074 &child_origin_cu);
11075 }
11076
11077 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11078 counterpart may exist. */
11079 if (child_origin_die != child_die)
11080 {
11081 if (child_die->tag != child_origin_die->tag
11082 && !(child_die->tag == DW_TAG_inlined_subroutine
11083 && child_origin_die->tag == DW_TAG_subprogram))
11084 complaint (&symfile_complaints,
11085 _("Child DIE 0x%x and its abstract origin 0x%x have "
11086 "different tags"), child_die->offset.sect_off,
11087 child_origin_die->offset.sect_off);
11088 if (child_origin_die->parent != origin_die)
11089 complaint (&symfile_complaints,
11090 _("Child DIE 0x%x and its abstract origin 0x%x have "
11091 "different parents"), child_die->offset.sect_off,
11092 child_origin_die->offset.sect_off);
11093 else
11094 *offsets_end++ = child_origin_die->offset;
11095 }
11096 child_die = sibling_die (child_die);
11097 }
11098 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11099 unsigned_int_compar);
11100 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11101 if (offsetp[-1].sect_off == offsetp->sect_off)
11102 complaint (&symfile_complaints,
11103 _("Multiple children of DIE 0x%x refer "
11104 "to DIE 0x%x as their abstract origin"),
11105 die->offset.sect_off, offsetp->sect_off);
11106
11107 offsetp = offsets;
11108 origin_child_die = origin_die->child;
11109 while (origin_child_die && origin_child_die->tag)
11110 {
11111 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11112 while (offsetp < offsets_end
11113 && offsetp->sect_off < origin_child_die->offset.sect_off)
11114 offsetp++;
11115 if (offsetp >= offsets_end
11116 || offsetp->sect_off > origin_child_die->offset.sect_off)
11117 {
11118 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11119 Check whether we're already processing ORIGIN_CHILD_DIE.
11120 This can happen with mutually referenced abstract_origins.
11121 PR 16581. */
11122 if (!origin_child_die->in_process)
11123 process_die (origin_child_die, origin_cu);
11124 }
11125 origin_child_die = sibling_die (origin_child_die);
11126 }
11127 origin_cu->list_in_scope = origin_previous_list_in_scope;
11128
11129 do_cleanups (cleanups);
11130 }
11131
11132 static void
11133 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11134 {
11135 struct objfile *objfile = cu->objfile;
11136 struct context_stack *new;
11137 CORE_ADDR lowpc;
11138 CORE_ADDR highpc;
11139 struct die_info *child_die;
11140 struct attribute *attr, *call_line, *call_file;
11141 const char *name;
11142 CORE_ADDR baseaddr;
11143 struct block *block;
11144 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11145 VEC (symbolp) *template_args = NULL;
11146 struct template_symbol *templ_func = NULL;
11147
11148 if (inlined_func)
11149 {
11150 /* If we do not have call site information, we can't show the
11151 caller of this inlined function. That's too confusing, so
11152 only use the scope for local variables. */
11153 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11154 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11155 if (call_line == NULL || call_file == NULL)
11156 {
11157 read_lexical_block_scope (die, cu);
11158 return;
11159 }
11160 }
11161
11162 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11163
11164 name = dwarf2_name (die, cu);
11165
11166 /* Ignore functions with missing or empty names. These are actually
11167 illegal according to the DWARF standard. */
11168 if (name == NULL)
11169 {
11170 complaint (&symfile_complaints,
11171 _("missing name for subprogram DIE at %d"),
11172 die->offset.sect_off);
11173 return;
11174 }
11175
11176 /* Ignore functions with missing or invalid low and high pc attributes. */
11177 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11178 {
11179 attr = dwarf2_attr (die, DW_AT_external, cu);
11180 if (!attr || !DW_UNSND (attr))
11181 complaint (&symfile_complaints,
11182 _("cannot get low and high bounds "
11183 "for subprogram DIE at %d"),
11184 die->offset.sect_off);
11185 return;
11186 }
11187
11188 lowpc += baseaddr;
11189 highpc += baseaddr;
11190
11191 /* If we have any template arguments, then we must allocate a
11192 different sort of symbol. */
11193 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11194 {
11195 if (child_die->tag == DW_TAG_template_type_param
11196 || child_die->tag == DW_TAG_template_value_param)
11197 {
11198 templ_func = allocate_template_symbol (objfile);
11199 templ_func->base.is_cplus_template_function = 1;
11200 break;
11201 }
11202 }
11203
11204 new = push_context (0, lowpc);
11205 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11206 (struct symbol *) templ_func);
11207
11208 /* If there is a location expression for DW_AT_frame_base, record
11209 it. */
11210 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11211 if (attr)
11212 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11213
11214 cu->list_in_scope = &local_symbols;
11215
11216 if (die->child != NULL)
11217 {
11218 child_die = die->child;
11219 while (child_die && child_die->tag)
11220 {
11221 if (child_die->tag == DW_TAG_template_type_param
11222 || child_die->tag == DW_TAG_template_value_param)
11223 {
11224 struct symbol *arg = new_symbol (child_die, NULL, cu);
11225
11226 if (arg != NULL)
11227 VEC_safe_push (symbolp, template_args, arg);
11228 }
11229 else
11230 process_die (child_die, cu);
11231 child_die = sibling_die (child_die);
11232 }
11233 }
11234
11235 inherit_abstract_dies (die, cu);
11236
11237 /* If we have a DW_AT_specification, we might need to import using
11238 directives from the context of the specification DIE. See the
11239 comment in determine_prefix. */
11240 if (cu->language == language_cplus
11241 && dwarf2_attr (die, DW_AT_specification, cu))
11242 {
11243 struct dwarf2_cu *spec_cu = cu;
11244 struct die_info *spec_die = die_specification (die, &spec_cu);
11245
11246 while (spec_die)
11247 {
11248 child_die = spec_die->child;
11249 while (child_die && child_die->tag)
11250 {
11251 if (child_die->tag == DW_TAG_imported_module)
11252 process_die (child_die, spec_cu);
11253 child_die = sibling_die (child_die);
11254 }
11255
11256 /* In some cases, GCC generates specification DIEs that
11257 themselves contain DW_AT_specification attributes. */
11258 spec_die = die_specification (spec_die, &spec_cu);
11259 }
11260 }
11261
11262 new = pop_context ();
11263 /* Make a block for the local symbols within. */
11264 block = finish_block (new->name, &local_symbols, new->old_blocks,
11265 lowpc, highpc);
11266
11267 /* For C++, set the block's scope. */
11268 if ((cu->language == language_cplus || cu->language == language_fortran)
11269 && cu->processing_has_namespace_info)
11270 block_set_scope (block, determine_prefix (die, cu),
11271 &objfile->objfile_obstack);
11272
11273 /* If we have address ranges, record them. */
11274 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11275
11276 /* Attach template arguments to function. */
11277 if (! VEC_empty (symbolp, template_args))
11278 {
11279 gdb_assert (templ_func != NULL);
11280
11281 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11282 templ_func->template_arguments
11283 = obstack_alloc (&objfile->objfile_obstack,
11284 (templ_func->n_template_arguments
11285 * sizeof (struct symbol *)));
11286 memcpy (templ_func->template_arguments,
11287 VEC_address (symbolp, template_args),
11288 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11289 VEC_free (symbolp, template_args);
11290 }
11291
11292 /* In C++, we can have functions nested inside functions (e.g., when
11293 a function declares a class that has methods). This means that
11294 when we finish processing a function scope, we may need to go
11295 back to building a containing block's symbol lists. */
11296 local_symbols = new->locals;
11297 using_directives = new->using_directives;
11298
11299 /* If we've finished processing a top-level function, subsequent
11300 symbols go in the file symbol list. */
11301 if (outermost_context_p ())
11302 cu->list_in_scope = &file_symbols;
11303 }
11304
11305 /* Process all the DIES contained within a lexical block scope. Start
11306 a new scope, process the dies, and then close the scope. */
11307
11308 static void
11309 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11310 {
11311 struct objfile *objfile = cu->objfile;
11312 struct context_stack *new;
11313 CORE_ADDR lowpc, highpc;
11314 struct die_info *child_die;
11315 CORE_ADDR baseaddr;
11316
11317 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11318
11319 /* Ignore blocks with missing or invalid low and high pc attributes. */
11320 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11321 as multiple lexical blocks? Handling children in a sane way would
11322 be nasty. Might be easier to properly extend generic blocks to
11323 describe ranges. */
11324 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11325 return;
11326 lowpc += baseaddr;
11327 highpc += baseaddr;
11328
11329 push_context (0, lowpc);
11330 if (die->child != NULL)
11331 {
11332 child_die = die->child;
11333 while (child_die && child_die->tag)
11334 {
11335 process_die (child_die, cu);
11336 child_die = sibling_die (child_die);
11337 }
11338 }
11339 new = pop_context ();
11340
11341 if (local_symbols != NULL || using_directives != NULL)
11342 {
11343 struct block *block
11344 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11345 highpc);
11346
11347 /* Note that recording ranges after traversing children, as we
11348 do here, means that recording a parent's ranges entails
11349 walking across all its children's ranges as they appear in
11350 the address map, which is quadratic behavior.
11351
11352 It would be nicer to record the parent's ranges before
11353 traversing its children, simply overriding whatever you find
11354 there. But since we don't even decide whether to create a
11355 block until after we've traversed its children, that's hard
11356 to do. */
11357 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11358 }
11359 local_symbols = new->locals;
11360 using_directives = new->using_directives;
11361 }
11362
11363 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11364
11365 static void
11366 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11367 {
11368 struct objfile *objfile = cu->objfile;
11369 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11370 CORE_ADDR pc, baseaddr;
11371 struct attribute *attr;
11372 struct call_site *call_site, call_site_local;
11373 void **slot;
11374 int nparams;
11375 struct die_info *child_die;
11376
11377 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11378
11379 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11380 if (!attr)
11381 {
11382 complaint (&symfile_complaints,
11383 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11384 "DIE 0x%x [in module %s]"),
11385 die->offset.sect_off, objfile_name (objfile));
11386 return;
11387 }
11388 pc = attr_value_as_address (attr) + baseaddr;
11389
11390 if (cu->call_site_htab == NULL)
11391 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11392 NULL, &objfile->objfile_obstack,
11393 hashtab_obstack_allocate, NULL);
11394 call_site_local.pc = pc;
11395 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11396 if (*slot != NULL)
11397 {
11398 complaint (&symfile_complaints,
11399 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11400 "DIE 0x%x [in module %s]"),
11401 paddress (gdbarch, pc), die->offset.sect_off,
11402 objfile_name (objfile));
11403 return;
11404 }
11405
11406 /* Count parameters at the caller. */
11407
11408 nparams = 0;
11409 for (child_die = die->child; child_die && child_die->tag;
11410 child_die = sibling_die (child_die))
11411 {
11412 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11413 {
11414 complaint (&symfile_complaints,
11415 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11416 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11417 child_die->tag, child_die->offset.sect_off,
11418 objfile_name (objfile));
11419 continue;
11420 }
11421
11422 nparams++;
11423 }
11424
11425 call_site = obstack_alloc (&objfile->objfile_obstack,
11426 (sizeof (*call_site)
11427 + (sizeof (*call_site->parameter)
11428 * (nparams - 1))));
11429 *slot = call_site;
11430 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11431 call_site->pc = pc;
11432
11433 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11434 {
11435 struct die_info *func_die;
11436
11437 /* Skip also over DW_TAG_inlined_subroutine. */
11438 for (func_die = die->parent;
11439 func_die && func_die->tag != DW_TAG_subprogram
11440 && func_die->tag != DW_TAG_subroutine_type;
11441 func_die = func_die->parent);
11442
11443 /* DW_AT_GNU_all_call_sites is a superset
11444 of DW_AT_GNU_all_tail_call_sites. */
11445 if (func_die
11446 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11447 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11448 {
11449 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11450 not complete. But keep CALL_SITE for look ups via call_site_htab,
11451 both the initial caller containing the real return address PC and
11452 the final callee containing the current PC of a chain of tail
11453 calls do not need to have the tail call list complete. But any
11454 function candidate for a virtual tail call frame searched via
11455 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11456 determined unambiguously. */
11457 }
11458 else
11459 {
11460 struct type *func_type = NULL;
11461
11462 if (func_die)
11463 func_type = get_die_type (func_die, cu);
11464 if (func_type != NULL)
11465 {
11466 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11467
11468 /* Enlist this call site to the function. */
11469 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11470 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11471 }
11472 else
11473 complaint (&symfile_complaints,
11474 _("Cannot find function owning DW_TAG_GNU_call_site "
11475 "DIE 0x%x [in module %s]"),
11476 die->offset.sect_off, objfile_name (objfile));
11477 }
11478 }
11479
11480 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11481 if (attr == NULL)
11482 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11483 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11484 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11485 /* Keep NULL DWARF_BLOCK. */;
11486 else if (attr_form_is_block (attr))
11487 {
11488 struct dwarf2_locexpr_baton *dlbaton;
11489
11490 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11491 dlbaton->data = DW_BLOCK (attr)->data;
11492 dlbaton->size = DW_BLOCK (attr)->size;
11493 dlbaton->per_cu = cu->per_cu;
11494
11495 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11496 }
11497 else if (attr_form_is_ref (attr))
11498 {
11499 struct dwarf2_cu *target_cu = cu;
11500 struct die_info *target_die;
11501
11502 target_die = follow_die_ref (die, attr, &target_cu);
11503 gdb_assert (target_cu->objfile == objfile);
11504 if (die_is_declaration (target_die, target_cu))
11505 {
11506 const char *target_physname = NULL;
11507 struct attribute *target_attr;
11508
11509 /* Prefer the mangled name; otherwise compute the demangled one. */
11510 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11511 if (target_attr == NULL)
11512 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11513 target_cu);
11514 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11515 target_physname = DW_STRING (target_attr);
11516 else
11517 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11518 if (target_physname == NULL)
11519 complaint (&symfile_complaints,
11520 _("DW_AT_GNU_call_site_target target DIE has invalid "
11521 "physname, for referencing DIE 0x%x [in module %s]"),
11522 die->offset.sect_off, objfile_name (objfile));
11523 else
11524 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11525 }
11526 else
11527 {
11528 CORE_ADDR lowpc;
11529
11530 /* DW_AT_entry_pc should be preferred. */
11531 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11532 complaint (&symfile_complaints,
11533 _("DW_AT_GNU_call_site_target target DIE has invalid "
11534 "low pc, for referencing DIE 0x%x [in module %s]"),
11535 die->offset.sect_off, objfile_name (objfile));
11536 else
11537 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11538 }
11539 }
11540 else
11541 complaint (&symfile_complaints,
11542 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11543 "block nor reference, for DIE 0x%x [in module %s]"),
11544 die->offset.sect_off, objfile_name (objfile));
11545
11546 call_site->per_cu = cu->per_cu;
11547
11548 for (child_die = die->child;
11549 child_die && child_die->tag;
11550 child_die = sibling_die (child_die))
11551 {
11552 struct call_site_parameter *parameter;
11553 struct attribute *loc, *origin;
11554
11555 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11556 {
11557 /* Already printed the complaint above. */
11558 continue;
11559 }
11560
11561 gdb_assert (call_site->parameter_count < nparams);
11562 parameter = &call_site->parameter[call_site->parameter_count];
11563
11564 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11565 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11566 register is contained in DW_AT_GNU_call_site_value. */
11567
11568 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11569 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11570 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11571 {
11572 sect_offset offset;
11573
11574 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11575 offset = dwarf2_get_ref_die_offset (origin);
11576 if (!offset_in_cu_p (&cu->header, offset))
11577 {
11578 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11579 binding can be done only inside one CU. Such referenced DIE
11580 therefore cannot be even moved to DW_TAG_partial_unit. */
11581 complaint (&symfile_complaints,
11582 _("DW_AT_abstract_origin offset is not in CU for "
11583 "DW_TAG_GNU_call_site child DIE 0x%x "
11584 "[in module %s]"),
11585 child_die->offset.sect_off, objfile_name (objfile));
11586 continue;
11587 }
11588 parameter->u.param_offset.cu_off = (offset.sect_off
11589 - cu->header.offset.sect_off);
11590 }
11591 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11592 {
11593 complaint (&symfile_complaints,
11594 _("No DW_FORM_block* DW_AT_location for "
11595 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11596 child_die->offset.sect_off, objfile_name (objfile));
11597 continue;
11598 }
11599 else
11600 {
11601 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11602 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11603 if (parameter->u.dwarf_reg != -1)
11604 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11605 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11606 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11607 &parameter->u.fb_offset))
11608 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11609 else
11610 {
11611 complaint (&symfile_complaints,
11612 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11613 "for DW_FORM_block* DW_AT_location is supported for "
11614 "DW_TAG_GNU_call_site child DIE 0x%x "
11615 "[in module %s]"),
11616 child_die->offset.sect_off, objfile_name (objfile));
11617 continue;
11618 }
11619 }
11620
11621 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11622 if (!attr_form_is_block (attr))
11623 {
11624 complaint (&symfile_complaints,
11625 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11626 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11627 child_die->offset.sect_off, objfile_name (objfile));
11628 continue;
11629 }
11630 parameter->value = DW_BLOCK (attr)->data;
11631 parameter->value_size = DW_BLOCK (attr)->size;
11632
11633 /* Parameters are not pre-cleared by memset above. */
11634 parameter->data_value = NULL;
11635 parameter->data_value_size = 0;
11636 call_site->parameter_count++;
11637
11638 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11639 if (attr)
11640 {
11641 if (!attr_form_is_block (attr))
11642 complaint (&symfile_complaints,
11643 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11644 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11645 child_die->offset.sect_off, objfile_name (objfile));
11646 else
11647 {
11648 parameter->data_value = DW_BLOCK (attr)->data;
11649 parameter->data_value_size = DW_BLOCK (attr)->size;
11650 }
11651 }
11652 }
11653 }
11654
11655 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11656 Return 1 if the attributes are present and valid, otherwise, return 0.
11657 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11658
11659 static int
11660 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11661 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11662 struct partial_symtab *ranges_pst)
11663 {
11664 struct objfile *objfile = cu->objfile;
11665 struct comp_unit_head *cu_header = &cu->header;
11666 bfd *obfd = objfile->obfd;
11667 unsigned int addr_size = cu_header->addr_size;
11668 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11669 /* Base address selection entry. */
11670 CORE_ADDR base;
11671 int found_base;
11672 unsigned int dummy;
11673 const gdb_byte *buffer;
11674 CORE_ADDR marker;
11675 int low_set;
11676 CORE_ADDR low = 0;
11677 CORE_ADDR high = 0;
11678 CORE_ADDR baseaddr;
11679
11680 found_base = cu->base_known;
11681 base = cu->base_address;
11682
11683 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11684 if (offset >= dwarf2_per_objfile->ranges.size)
11685 {
11686 complaint (&symfile_complaints,
11687 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11688 offset);
11689 return 0;
11690 }
11691 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11692
11693 /* Read in the largest possible address. */
11694 marker = read_address (obfd, buffer, cu, &dummy);
11695 if ((marker & mask) == mask)
11696 {
11697 /* If we found the largest possible address, then
11698 read the base address. */
11699 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11700 buffer += 2 * addr_size;
11701 offset += 2 * addr_size;
11702 found_base = 1;
11703 }
11704
11705 low_set = 0;
11706
11707 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11708
11709 while (1)
11710 {
11711 CORE_ADDR range_beginning, range_end;
11712
11713 range_beginning = read_address (obfd, buffer, cu, &dummy);
11714 buffer += addr_size;
11715 range_end = read_address (obfd, buffer, cu, &dummy);
11716 buffer += addr_size;
11717 offset += 2 * addr_size;
11718
11719 /* An end of list marker is a pair of zero addresses. */
11720 if (range_beginning == 0 && range_end == 0)
11721 /* Found the end of list entry. */
11722 break;
11723
11724 /* Each base address selection entry is a pair of 2 values.
11725 The first is the largest possible address, the second is
11726 the base address. Check for a base address here. */
11727 if ((range_beginning & mask) == mask)
11728 {
11729 /* If we found the largest possible address, then
11730 read the base address. */
11731 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11732 found_base = 1;
11733 continue;
11734 }
11735
11736 if (!found_base)
11737 {
11738 /* We have no valid base address for the ranges
11739 data. */
11740 complaint (&symfile_complaints,
11741 _("Invalid .debug_ranges data (no base address)"));
11742 return 0;
11743 }
11744
11745 if (range_beginning > range_end)
11746 {
11747 /* Inverted range entries are invalid. */
11748 complaint (&symfile_complaints,
11749 _("Invalid .debug_ranges data (inverted range)"));
11750 return 0;
11751 }
11752
11753 /* Empty range entries have no effect. */
11754 if (range_beginning == range_end)
11755 continue;
11756
11757 range_beginning += base;
11758 range_end += base;
11759
11760 /* A not-uncommon case of bad debug info.
11761 Don't pollute the addrmap with bad data. */
11762 if (range_beginning + baseaddr == 0
11763 && !dwarf2_per_objfile->has_section_at_zero)
11764 {
11765 complaint (&symfile_complaints,
11766 _(".debug_ranges entry has start address of zero"
11767 " [in module %s]"), objfile_name (objfile));
11768 continue;
11769 }
11770
11771 if (ranges_pst != NULL)
11772 addrmap_set_empty (objfile->psymtabs_addrmap,
11773 range_beginning + baseaddr,
11774 range_end - 1 + baseaddr,
11775 ranges_pst);
11776
11777 /* FIXME: This is recording everything as a low-high
11778 segment of consecutive addresses. We should have a
11779 data structure for discontiguous block ranges
11780 instead. */
11781 if (! low_set)
11782 {
11783 low = range_beginning;
11784 high = range_end;
11785 low_set = 1;
11786 }
11787 else
11788 {
11789 if (range_beginning < low)
11790 low = range_beginning;
11791 if (range_end > high)
11792 high = range_end;
11793 }
11794 }
11795
11796 if (! low_set)
11797 /* If the first entry is an end-of-list marker, the range
11798 describes an empty scope, i.e. no instructions. */
11799 return 0;
11800
11801 if (low_return)
11802 *low_return = low;
11803 if (high_return)
11804 *high_return = high;
11805 return 1;
11806 }
11807
11808 /* Get low and high pc attributes from a die. Return 1 if the attributes
11809 are present and valid, otherwise, return 0. Return -1 if the range is
11810 discontinuous, i.e. derived from DW_AT_ranges information. */
11811
11812 static int
11813 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11814 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11815 struct partial_symtab *pst)
11816 {
11817 struct attribute *attr;
11818 struct attribute *attr_high;
11819 CORE_ADDR low = 0;
11820 CORE_ADDR high = 0;
11821 int ret = 0;
11822
11823 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11824 if (attr_high)
11825 {
11826 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11827 if (attr)
11828 {
11829 low = attr_value_as_address (attr);
11830 high = attr_value_as_address (attr_high);
11831 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11832 high += low;
11833 }
11834 else
11835 /* Found high w/o low attribute. */
11836 return 0;
11837
11838 /* Found consecutive range of addresses. */
11839 ret = 1;
11840 }
11841 else
11842 {
11843 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11844 if (attr != NULL)
11845 {
11846 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11847 We take advantage of the fact that DW_AT_ranges does not appear
11848 in DW_TAG_compile_unit of DWO files. */
11849 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11850 unsigned int ranges_offset = (DW_UNSND (attr)
11851 + (need_ranges_base
11852 ? cu->ranges_base
11853 : 0));
11854
11855 /* Value of the DW_AT_ranges attribute is the offset in the
11856 .debug_ranges section. */
11857 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11858 return 0;
11859 /* Found discontinuous range of addresses. */
11860 ret = -1;
11861 }
11862 }
11863
11864 /* read_partial_die has also the strict LOW < HIGH requirement. */
11865 if (high <= low)
11866 return 0;
11867
11868 /* When using the GNU linker, .gnu.linkonce. sections are used to
11869 eliminate duplicate copies of functions and vtables and such.
11870 The linker will arbitrarily choose one and discard the others.
11871 The AT_*_pc values for such functions refer to local labels in
11872 these sections. If the section from that file was discarded, the
11873 labels are not in the output, so the relocs get a value of 0.
11874 If this is a discarded function, mark the pc bounds as invalid,
11875 so that GDB will ignore it. */
11876 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11877 return 0;
11878
11879 *lowpc = low;
11880 if (highpc)
11881 *highpc = high;
11882 return ret;
11883 }
11884
11885 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11886 its low and high PC addresses. Do nothing if these addresses could not
11887 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11888 and HIGHPC to the high address if greater than HIGHPC. */
11889
11890 static void
11891 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11892 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11893 struct dwarf2_cu *cu)
11894 {
11895 CORE_ADDR low, high;
11896 struct die_info *child = die->child;
11897
11898 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11899 {
11900 *lowpc = min (*lowpc, low);
11901 *highpc = max (*highpc, high);
11902 }
11903
11904 /* If the language does not allow nested subprograms (either inside
11905 subprograms or lexical blocks), we're done. */
11906 if (cu->language != language_ada)
11907 return;
11908
11909 /* Check all the children of the given DIE. If it contains nested
11910 subprograms, then check their pc bounds. Likewise, we need to
11911 check lexical blocks as well, as they may also contain subprogram
11912 definitions. */
11913 while (child && child->tag)
11914 {
11915 if (child->tag == DW_TAG_subprogram
11916 || child->tag == DW_TAG_lexical_block)
11917 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11918 child = sibling_die (child);
11919 }
11920 }
11921
11922 /* Get the low and high pc's represented by the scope DIE, and store
11923 them in *LOWPC and *HIGHPC. If the correct values can't be
11924 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11925
11926 static void
11927 get_scope_pc_bounds (struct die_info *die,
11928 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11929 struct dwarf2_cu *cu)
11930 {
11931 CORE_ADDR best_low = (CORE_ADDR) -1;
11932 CORE_ADDR best_high = (CORE_ADDR) 0;
11933 CORE_ADDR current_low, current_high;
11934
11935 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
11936 {
11937 best_low = current_low;
11938 best_high = current_high;
11939 }
11940 else
11941 {
11942 struct die_info *child = die->child;
11943
11944 while (child && child->tag)
11945 {
11946 switch (child->tag) {
11947 case DW_TAG_subprogram:
11948 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11949 break;
11950 case DW_TAG_namespace:
11951 case DW_TAG_module:
11952 /* FIXME: carlton/2004-01-16: Should we do this for
11953 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11954 that current GCC's always emit the DIEs corresponding
11955 to definitions of methods of classes as children of a
11956 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11957 the DIEs giving the declarations, which could be
11958 anywhere). But I don't see any reason why the
11959 standards says that they have to be there. */
11960 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11961
11962 if (current_low != ((CORE_ADDR) -1))
11963 {
11964 best_low = min (best_low, current_low);
11965 best_high = max (best_high, current_high);
11966 }
11967 break;
11968 default:
11969 /* Ignore. */
11970 break;
11971 }
11972
11973 child = sibling_die (child);
11974 }
11975 }
11976
11977 *lowpc = best_low;
11978 *highpc = best_high;
11979 }
11980
11981 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
11982 in DIE. */
11983
11984 static void
11985 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11986 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11987 {
11988 struct objfile *objfile = cu->objfile;
11989 struct attribute *attr;
11990 struct attribute *attr_high;
11991
11992 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11993 if (attr_high)
11994 {
11995 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11996 if (attr)
11997 {
11998 CORE_ADDR low = attr_value_as_address (attr);
11999 CORE_ADDR high = attr_value_as_address (attr_high);
12000
12001 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12002 high += low;
12003
12004 record_block_range (block, baseaddr + low, baseaddr + high - 1);
12005 }
12006 }
12007
12008 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12009 if (attr)
12010 {
12011 bfd *obfd = objfile->obfd;
12012 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12013 We take advantage of the fact that DW_AT_ranges does not appear
12014 in DW_TAG_compile_unit of DWO files. */
12015 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12016
12017 /* The value of the DW_AT_ranges attribute is the offset of the
12018 address range list in the .debug_ranges section. */
12019 unsigned long offset = (DW_UNSND (attr)
12020 + (need_ranges_base ? cu->ranges_base : 0));
12021 const gdb_byte *buffer;
12022
12023 /* For some target architectures, but not others, the
12024 read_address function sign-extends the addresses it returns.
12025 To recognize base address selection entries, we need a
12026 mask. */
12027 unsigned int addr_size = cu->header.addr_size;
12028 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12029
12030 /* The base address, to which the next pair is relative. Note
12031 that this 'base' is a DWARF concept: most entries in a range
12032 list are relative, to reduce the number of relocs against the
12033 debugging information. This is separate from this function's
12034 'baseaddr' argument, which GDB uses to relocate debugging
12035 information from a shared library based on the address at
12036 which the library was loaded. */
12037 CORE_ADDR base = cu->base_address;
12038 int base_known = cu->base_known;
12039
12040 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12041 if (offset >= dwarf2_per_objfile->ranges.size)
12042 {
12043 complaint (&symfile_complaints,
12044 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12045 offset);
12046 return;
12047 }
12048 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12049
12050 for (;;)
12051 {
12052 unsigned int bytes_read;
12053 CORE_ADDR start, end;
12054
12055 start = read_address (obfd, buffer, cu, &bytes_read);
12056 buffer += bytes_read;
12057 end = read_address (obfd, buffer, cu, &bytes_read);
12058 buffer += bytes_read;
12059
12060 /* Did we find the end of the range list? */
12061 if (start == 0 && end == 0)
12062 break;
12063
12064 /* Did we find a base address selection entry? */
12065 else if ((start & base_select_mask) == base_select_mask)
12066 {
12067 base = end;
12068 base_known = 1;
12069 }
12070
12071 /* We found an ordinary address range. */
12072 else
12073 {
12074 if (!base_known)
12075 {
12076 complaint (&symfile_complaints,
12077 _("Invalid .debug_ranges data "
12078 "(no base address)"));
12079 return;
12080 }
12081
12082 if (start > end)
12083 {
12084 /* Inverted range entries are invalid. */
12085 complaint (&symfile_complaints,
12086 _("Invalid .debug_ranges data "
12087 "(inverted range)"));
12088 return;
12089 }
12090
12091 /* Empty range entries have no effect. */
12092 if (start == end)
12093 continue;
12094
12095 start += base + baseaddr;
12096 end += base + baseaddr;
12097
12098 /* A not-uncommon case of bad debug info.
12099 Don't pollute the addrmap with bad data. */
12100 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12101 {
12102 complaint (&symfile_complaints,
12103 _(".debug_ranges entry has start address of zero"
12104 " [in module %s]"), objfile_name (objfile));
12105 continue;
12106 }
12107
12108 record_block_range (block, start, end - 1);
12109 }
12110 }
12111 }
12112 }
12113
12114 /* Check whether the producer field indicates either of GCC < 4.6, or the
12115 Intel C/C++ compiler, and cache the result in CU. */
12116
12117 static void
12118 check_producer (struct dwarf2_cu *cu)
12119 {
12120 const char *cs;
12121 int major, minor, release;
12122
12123 if (cu->producer == NULL)
12124 {
12125 /* For unknown compilers expect their behavior is DWARF version
12126 compliant.
12127
12128 GCC started to support .debug_types sections by -gdwarf-4 since
12129 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12130 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12131 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12132 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12133 }
12134 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
12135 {
12136 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12137
12138 cs = &cu->producer[strlen ("GNU ")];
12139 while (*cs && !isdigit (*cs))
12140 cs++;
12141 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12142 {
12143 /* Not recognized as GCC. */
12144 }
12145 else
12146 {
12147 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12148 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12149 }
12150 }
12151 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12152 cu->producer_is_icc = 1;
12153 else
12154 {
12155 /* For other non-GCC compilers, expect their behavior is DWARF version
12156 compliant. */
12157 }
12158
12159 cu->checked_producer = 1;
12160 }
12161
12162 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12163 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12164 during 4.6.0 experimental. */
12165
12166 static int
12167 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12168 {
12169 if (!cu->checked_producer)
12170 check_producer (cu);
12171
12172 return cu->producer_is_gxx_lt_4_6;
12173 }
12174
12175 /* Return the default accessibility type if it is not overriden by
12176 DW_AT_accessibility. */
12177
12178 static enum dwarf_access_attribute
12179 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12180 {
12181 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12182 {
12183 /* The default DWARF 2 accessibility for members is public, the default
12184 accessibility for inheritance is private. */
12185
12186 if (die->tag != DW_TAG_inheritance)
12187 return DW_ACCESS_public;
12188 else
12189 return DW_ACCESS_private;
12190 }
12191 else
12192 {
12193 /* DWARF 3+ defines the default accessibility a different way. The same
12194 rules apply now for DW_TAG_inheritance as for the members and it only
12195 depends on the container kind. */
12196
12197 if (die->parent->tag == DW_TAG_class_type)
12198 return DW_ACCESS_private;
12199 else
12200 return DW_ACCESS_public;
12201 }
12202 }
12203
12204 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12205 offset. If the attribute was not found return 0, otherwise return
12206 1. If it was found but could not properly be handled, set *OFFSET
12207 to 0. */
12208
12209 static int
12210 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12211 LONGEST *offset)
12212 {
12213 struct attribute *attr;
12214
12215 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12216 if (attr != NULL)
12217 {
12218 *offset = 0;
12219
12220 /* Note that we do not check for a section offset first here.
12221 This is because DW_AT_data_member_location is new in DWARF 4,
12222 so if we see it, we can assume that a constant form is really
12223 a constant and not a section offset. */
12224 if (attr_form_is_constant (attr))
12225 *offset = dwarf2_get_attr_constant_value (attr, 0);
12226 else if (attr_form_is_section_offset (attr))
12227 dwarf2_complex_location_expr_complaint ();
12228 else if (attr_form_is_block (attr))
12229 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12230 else
12231 dwarf2_complex_location_expr_complaint ();
12232
12233 return 1;
12234 }
12235
12236 return 0;
12237 }
12238
12239 /* Add an aggregate field to the field list. */
12240
12241 static void
12242 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12243 struct dwarf2_cu *cu)
12244 {
12245 struct objfile *objfile = cu->objfile;
12246 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12247 struct nextfield *new_field;
12248 struct attribute *attr;
12249 struct field *fp;
12250 const char *fieldname = "";
12251
12252 /* Allocate a new field list entry and link it in. */
12253 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12254 make_cleanup (xfree, new_field);
12255 memset (new_field, 0, sizeof (struct nextfield));
12256
12257 if (die->tag == DW_TAG_inheritance)
12258 {
12259 new_field->next = fip->baseclasses;
12260 fip->baseclasses = new_field;
12261 }
12262 else
12263 {
12264 new_field->next = fip->fields;
12265 fip->fields = new_field;
12266 }
12267 fip->nfields++;
12268
12269 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12270 if (attr)
12271 new_field->accessibility = DW_UNSND (attr);
12272 else
12273 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12274 if (new_field->accessibility != DW_ACCESS_public)
12275 fip->non_public_fields = 1;
12276
12277 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12278 if (attr)
12279 new_field->virtuality = DW_UNSND (attr);
12280 else
12281 new_field->virtuality = DW_VIRTUALITY_none;
12282
12283 fp = &new_field->field;
12284
12285 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12286 {
12287 LONGEST offset;
12288
12289 /* Data member other than a C++ static data member. */
12290
12291 /* Get type of field. */
12292 fp->type = die_type (die, cu);
12293
12294 SET_FIELD_BITPOS (*fp, 0);
12295
12296 /* Get bit size of field (zero if none). */
12297 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12298 if (attr)
12299 {
12300 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12301 }
12302 else
12303 {
12304 FIELD_BITSIZE (*fp) = 0;
12305 }
12306
12307 /* Get bit offset of field. */
12308 if (handle_data_member_location (die, cu, &offset))
12309 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12310 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12311 if (attr)
12312 {
12313 if (gdbarch_bits_big_endian (gdbarch))
12314 {
12315 /* For big endian bits, the DW_AT_bit_offset gives the
12316 additional bit offset from the MSB of the containing
12317 anonymous object to the MSB of the field. We don't
12318 have to do anything special since we don't need to
12319 know the size of the anonymous object. */
12320 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12321 }
12322 else
12323 {
12324 /* For little endian bits, compute the bit offset to the
12325 MSB of the anonymous object, subtract off the number of
12326 bits from the MSB of the field to the MSB of the
12327 object, and then subtract off the number of bits of
12328 the field itself. The result is the bit offset of
12329 the LSB of the field. */
12330 int anonymous_size;
12331 int bit_offset = DW_UNSND (attr);
12332
12333 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12334 if (attr)
12335 {
12336 /* The size of the anonymous object containing
12337 the bit field is explicit, so use the
12338 indicated size (in bytes). */
12339 anonymous_size = DW_UNSND (attr);
12340 }
12341 else
12342 {
12343 /* The size of the anonymous object containing
12344 the bit field must be inferred from the type
12345 attribute of the data member containing the
12346 bit field. */
12347 anonymous_size = TYPE_LENGTH (fp->type);
12348 }
12349 SET_FIELD_BITPOS (*fp,
12350 (FIELD_BITPOS (*fp)
12351 + anonymous_size * bits_per_byte
12352 - bit_offset - FIELD_BITSIZE (*fp)));
12353 }
12354 }
12355
12356 /* Get name of field. */
12357 fieldname = dwarf2_name (die, cu);
12358 if (fieldname == NULL)
12359 fieldname = "";
12360
12361 /* The name is already allocated along with this objfile, so we don't
12362 need to duplicate it for the type. */
12363 fp->name = fieldname;
12364
12365 /* Change accessibility for artificial fields (e.g. virtual table
12366 pointer or virtual base class pointer) to private. */
12367 if (dwarf2_attr (die, DW_AT_artificial, cu))
12368 {
12369 FIELD_ARTIFICIAL (*fp) = 1;
12370 new_field->accessibility = DW_ACCESS_private;
12371 fip->non_public_fields = 1;
12372 }
12373 }
12374 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12375 {
12376 /* C++ static member. */
12377
12378 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12379 is a declaration, but all versions of G++ as of this writing
12380 (so through at least 3.2.1) incorrectly generate
12381 DW_TAG_variable tags. */
12382
12383 const char *physname;
12384
12385 /* Get name of field. */
12386 fieldname = dwarf2_name (die, cu);
12387 if (fieldname == NULL)
12388 return;
12389
12390 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12391 if (attr
12392 /* Only create a symbol if this is an external value.
12393 new_symbol checks this and puts the value in the global symbol
12394 table, which we want. If it is not external, new_symbol
12395 will try to put the value in cu->list_in_scope which is wrong. */
12396 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12397 {
12398 /* A static const member, not much different than an enum as far as
12399 we're concerned, except that we can support more types. */
12400 new_symbol (die, NULL, cu);
12401 }
12402
12403 /* Get physical name. */
12404 physname = dwarf2_physname (fieldname, die, cu);
12405
12406 /* The name is already allocated along with this objfile, so we don't
12407 need to duplicate it for the type. */
12408 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12409 FIELD_TYPE (*fp) = die_type (die, cu);
12410 FIELD_NAME (*fp) = fieldname;
12411 }
12412 else if (die->tag == DW_TAG_inheritance)
12413 {
12414 LONGEST offset;
12415
12416 /* C++ base class field. */
12417 if (handle_data_member_location (die, cu, &offset))
12418 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12419 FIELD_BITSIZE (*fp) = 0;
12420 FIELD_TYPE (*fp) = die_type (die, cu);
12421 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12422 fip->nbaseclasses++;
12423 }
12424 }
12425
12426 /* Add a typedef defined in the scope of the FIP's class. */
12427
12428 static void
12429 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12430 struct dwarf2_cu *cu)
12431 {
12432 struct objfile *objfile = cu->objfile;
12433 struct typedef_field_list *new_field;
12434 struct attribute *attr;
12435 struct typedef_field *fp;
12436 char *fieldname = "";
12437
12438 /* Allocate a new field list entry and link it in. */
12439 new_field = xzalloc (sizeof (*new_field));
12440 make_cleanup (xfree, new_field);
12441
12442 gdb_assert (die->tag == DW_TAG_typedef);
12443
12444 fp = &new_field->field;
12445
12446 /* Get name of field. */
12447 fp->name = dwarf2_name (die, cu);
12448 if (fp->name == NULL)
12449 return;
12450
12451 fp->type = read_type_die (die, cu);
12452
12453 new_field->next = fip->typedef_field_list;
12454 fip->typedef_field_list = new_field;
12455 fip->typedef_field_list_count++;
12456 }
12457
12458 /* Create the vector of fields, and attach it to the type. */
12459
12460 static void
12461 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12462 struct dwarf2_cu *cu)
12463 {
12464 int nfields = fip->nfields;
12465
12466 /* Record the field count, allocate space for the array of fields,
12467 and create blank accessibility bitfields if necessary. */
12468 TYPE_NFIELDS (type) = nfields;
12469 TYPE_FIELDS (type) = (struct field *)
12470 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12471 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12472
12473 if (fip->non_public_fields && cu->language != language_ada)
12474 {
12475 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12476
12477 TYPE_FIELD_PRIVATE_BITS (type) =
12478 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12479 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12480
12481 TYPE_FIELD_PROTECTED_BITS (type) =
12482 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12483 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12484
12485 TYPE_FIELD_IGNORE_BITS (type) =
12486 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12487 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12488 }
12489
12490 /* If the type has baseclasses, allocate and clear a bit vector for
12491 TYPE_FIELD_VIRTUAL_BITS. */
12492 if (fip->nbaseclasses && cu->language != language_ada)
12493 {
12494 int num_bytes = B_BYTES (fip->nbaseclasses);
12495 unsigned char *pointer;
12496
12497 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12498 pointer = TYPE_ALLOC (type, num_bytes);
12499 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12500 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12501 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12502 }
12503
12504 /* Copy the saved-up fields into the field vector. Start from the head of
12505 the list, adding to the tail of the field array, so that they end up in
12506 the same order in the array in which they were added to the list. */
12507 while (nfields-- > 0)
12508 {
12509 struct nextfield *fieldp;
12510
12511 if (fip->fields)
12512 {
12513 fieldp = fip->fields;
12514 fip->fields = fieldp->next;
12515 }
12516 else
12517 {
12518 fieldp = fip->baseclasses;
12519 fip->baseclasses = fieldp->next;
12520 }
12521
12522 TYPE_FIELD (type, nfields) = fieldp->field;
12523 switch (fieldp->accessibility)
12524 {
12525 case DW_ACCESS_private:
12526 if (cu->language != language_ada)
12527 SET_TYPE_FIELD_PRIVATE (type, nfields);
12528 break;
12529
12530 case DW_ACCESS_protected:
12531 if (cu->language != language_ada)
12532 SET_TYPE_FIELD_PROTECTED (type, nfields);
12533 break;
12534
12535 case DW_ACCESS_public:
12536 break;
12537
12538 default:
12539 /* Unknown accessibility. Complain and treat it as public. */
12540 {
12541 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12542 fieldp->accessibility);
12543 }
12544 break;
12545 }
12546 if (nfields < fip->nbaseclasses)
12547 {
12548 switch (fieldp->virtuality)
12549 {
12550 case DW_VIRTUALITY_virtual:
12551 case DW_VIRTUALITY_pure_virtual:
12552 if (cu->language == language_ada)
12553 error (_("unexpected virtuality in component of Ada type"));
12554 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12555 break;
12556 }
12557 }
12558 }
12559 }
12560
12561 /* Return true if this member function is a constructor, false
12562 otherwise. */
12563
12564 static int
12565 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12566 {
12567 const char *fieldname;
12568 const char *typename;
12569 int len;
12570
12571 if (die->parent == NULL)
12572 return 0;
12573
12574 if (die->parent->tag != DW_TAG_structure_type
12575 && die->parent->tag != DW_TAG_union_type
12576 && die->parent->tag != DW_TAG_class_type)
12577 return 0;
12578
12579 fieldname = dwarf2_name (die, cu);
12580 typename = dwarf2_name (die->parent, cu);
12581 if (fieldname == NULL || typename == NULL)
12582 return 0;
12583
12584 len = strlen (fieldname);
12585 return (strncmp (fieldname, typename, len) == 0
12586 && (typename[len] == '\0' || typename[len] == '<'));
12587 }
12588
12589 /* Add a member function to the proper fieldlist. */
12590
12591 static void
12592 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12593 struct type *type, struct dwarf2_cu *cu)
12594 {
12595 struct objfile *objfile = cu->objfile;
12596 struct attribute *attr;
12597 struct fnfieldlist *flp;
12598 int i;
12599 struct fn_field *fnp;
12600 const char *fieldname;
12601 struct nextfnfield *new_fnfield;
12602 struct type *this_type;
12603 enum dwarf_access_attribute accessibility;
12604
12605 if (cu->language == language_ada)
12606 error (_("unexpected member function in Ada type"));
12607
12608 /* Get name of member function. */
12609 fieldname = dwarf2_name (die, cu);
12610 if (fieldname == NULL)
12611 return;
12612
12613 /* Look up member function name in fieldlist. */
12614 for (i = 0; i < fip->nfnfields; i++)
12615 {
12616 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12617 break;
12618 }
12619
12620 /* Create new list element if necessary. */
12621 if (i < fip->nfnfields)
12622 flp = &fip->fnfieldlists[i];
12623 else
12624 {
12625 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12626 {
12627 fip->fnfieldlists = (struct fnfieldlist *)
12628 xrealloc (fip->fnfieldlists,
12629 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12630 * sizeof (struct fnfieldlist));
12631 if (fip->nfnfields == 0)
12632 make_cleanup (free_current_contents, &fip->fnfieldlists);
12633 }
12634 flp = &fip->fnfieldlists[fip->nfnfields];
12635 flp->name = fieldname;
12636 flp->length = 0;
12637 flp->head = NULL;
12638 i = fip->nfnfields++;
12639 }
12640
12641 /* Create a new member function field and chain it to the field list
12642 entry. */
12643 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12644 make_cleanup (xfree, new_fnfield);
12645 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12646 new_fnfield->next = flp->head;
12647 flp->head = new_fnfield;
12648 flp->length++;
12649
12650 /* Fill in the member function field info. */
12651 fnp = &new_fnfield->fnfield;
12652
12653 /* Delay processing of the physname until later. */
12654 if (cu->language == language_cplus || cu->language == language_java)
12655 {
12656 add_to_method_list (type, i, flp->length - 1, fieldname,
12657 die, cu);
12658 }
12659 else
12660 {
12661 const char *physname = dwarf2_physname (fieldname, die, cu);
12662 fnp->physname = physname ? physname : "";
12663 }
12664
12665 fnp->type = alloc_type (objfile);
12666 this_type = read_type_die (die, cu);
12667 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12668 {
12669 int nparams = TYPE_NFIELDS (this_type);
12670
12671 /* TYPE is the domain of this method, and THIS_TYPE is the type
12672 of the method itself (TYPE_CODE_METHOD). */
12673 smash_to_method_type (fnp->type, type,
12674 TYPE_TARGET_TYPE (this_type),
12675 TYPE_FIELDS (this_type),
12676 TYPE_NFIELDS (this_type),
12677 TYPE_VARARGS (this_type));
12678
12679 /* Handle static member functions.
12680 Dwarf2 has no clean way to discern C++ static and non-static
12681 member functions. G++ helps GDB by marking the first
12682 parameter for non-static member functions (which is the this
12683 pointer) as artificial. We obtain this information from
12684 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12685 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12686 fnp->voffset = VOFFSET_STATIC;
12687 }
12688 else
12689 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12690 dwarf2_full_name (fieldname, die, cu));
12691
12692 /* Get fcontext from DW_AT_containing_type if present. */
12693 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12694 fnp->fcontext = die_containing_type (die, cu);
12695
12696 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12697 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12698
12699 /* Get accessibility. */
12700 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12701 if (attr)
12702 accessibility = DW_UNSND (attr);
12703 else
12704 accessibility = dwarf2_default_access_attribute (die, cu);
12705 switch (accessibility)
12706 {
12707 case DW_ACCESS_private:
12708 fnp->is_private = 1;
12709 break;
12710 case DW_ACCESS_protected:
12711 fnp->is_protected = 1;
12712 break;
12713 }
12714
12715 /* Check for artificial methods. */
12716 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12717 if (attr && DW_UNSND (attr) != 0)
12718 fnp->is_artificial = 1;
12719
12720 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12721
12722 /* Get index in virtual function table if it is a virtual member
12723 function. For older versions of GCC, this is an offset in the
12724 appropriate virtual table, as specified by DW_AT_containing_type.
12725 For everyone else, it is an expression to be evaluated relative
12726 to the object address. */
12727
12728 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12729 if (attr)
12730 {
12731 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12732 {
12733 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12734 {
12735 /* Old-style GCC. */
12736 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12737 }
12738 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12739 || (DW_BLOCK (attr)->size > 1
12740 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12741 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12742 {
12743 struct dwarf_block blk;
12744 int offset;
12745
12746 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12747 ? 1 : 2);
12748 blk.size = DW_BLOCK (attr)->size - offset;
12749 blk.data = DW_BLOCK (attr)->data + offset;
12750 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12751 if ((fnp->voffset % cu->header.addr_size) != 0)
12752 dwarf2_complex_location_expr_complaint ();
12753 else
12754 fnp->voffset /= cu->header.addr_size;
12755 fnp->voffset += 2;
12756 }
12757 else
12758 dwarf2_complex_location_expr_complaint ();
12759
12760 if (!fnp->fcontext)
12761 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12762 }
12763 else if (attr_form_is_section_offset (attr))
12764 {
12765 dwarf2_complex_location_expr_complaint ();
12766 }
12767 else
12768 {
12769 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12770 fieldname);
12771 }
12772 }
12773 else
12774 {
12775 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12776 if (attr && DW_UNSND (attr))
12777 {
12778 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12779 complaint (&symfile_complaints,
12780 _("Member function \"%s\" (offset %d) is virtual "
12781 "but the vtable offset is not specified"),
12782 fieldname, die->offset.sect_off);
12783 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12784 TYPE_CPLUS_DYNAMIC (type) = 1;
12785 }
12786 }
12787 }
12788
12789 /* Create the vector of member function fields, and attach it to the type. */
12790
12791 static void
12792 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12793 struct dwarf2_cu *cu)
12794 {
12795 struct fnfieldlist *flp;
12796 int i;
12797
12798 if (cu->language == language_ada)
12799 error (_("unexpected member functions in Ada type"));
12800
12801 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12802 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12803 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12804
12805 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12806 {
12807 struct nextfnfield *nfp = flp->head;
12808 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12809 int k;
12810
12811 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12812 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12813 fn_flp->fn_fields = (struct fn_field *)
12814 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12815 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12816 fn_flp->fn_fields[k] = nfp->fnfield;
12817 }
12818
12819 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12820 }
12821
12822 /* Returns non-zero if NAME is the name of a vtable member in CU's
12823 language, zero otherwise. */
12824 static int
12825 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12826 {
12827 static const char vptr[] = "_vptr";
12828 static const char vtable[] = "vtable";
12829
12830 /* Look for the C++ and Java forms of the vtable. */
12831 if ((cu->language == language_java
12832 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12833 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12834 && is_cplus_marker (name[sizeof (vptr) - 1])))
12835 return 1;
12836
12837 return 0;
12838 }
12839
12840 /* GCC outputs unnamed structures that are really pointers to member
12841 functions, with the ABI-specified layout. If TYPE describes
12842 such a structure, smash it into a member function type.
12843
12844 GCC shouldn't do this; it should just output pointer to member DIEs.
12845 This is GCC PR debug/28767. */
12846
12847 static void
12848 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12849 {
12850 struct type *pfn_type, *domain_type, *new_type;
12851
12852 /* Check for a structure with no name and two children. */
12853 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12854 return;
12855
12856 /* Check for __pfn and __delta members. */
12857 if (TYPE_FIELD_NAME (type, 0) == NULL
12858 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12859 || TYPE_FIELD_NAME (type, 1) == NULL
12860 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12861 return;
12862
12863 /* Find the type of the method. */
12864 pfn_type = TYPE_FIELD_TYPE (type, 0);
12865 if (pfn_type == NULL
12866 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12867 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12868 return;
12869
12870 /* Look for the "this" argument. */
12871 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12872 if (TYPE_NFIELDS (pfn_type) == 0
12873 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12874 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12875 return;
12876
12877 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12878 new_type = alloc_type (objfile);
12879 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12880 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12881 TYPE_VARARGS (pfn_type));
12882 smash_to_methodptr_type (type, new_type);
12883 }
12884
12885 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12886 (icc). */
12887
12888 static int
12889 producer_is_icc (struct dwarf2_cu *cu)
12890 {
12891 if (!cu->checked_producer)
12892 check_producer (cu);
12893
12894 return cu->producer_is_icc;
12895 }
12896
12897 /* Called when we find the DIE that starts a structure or union scope
12898 (definition) to create a type for the structure or union. Fill in
12899 the type's name and general properties; the members will not be
12900 processed until process_structure_scope. A symbol table entry for
12901 the type will also not be done until process_structure_scope (assuming
12902 the type has a name).
12903
12904 NOTE: we need to call these functions regardless of whether or not the
12905 DIE has a DW_AT_name attribute, since it might be an anonymous
12906 structure or union. This gets the type entered into our set of
12907 user defined types. */
12908
12909 static struct type *
12910 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12911 {
12912 struct objfile *objfile = cu->objfile;
12913 struct type *type;
12914 struct attribute *attr;
12915 const char *name;
12916
12917 /* If the definition of this type lives in .debug_types, read that type.
12918 Don't follow DW_AT_specification though, that will take us back up
12919 the chain and we want to go down. */
12920 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12921 if (attr)
12922 {
12923 type = get_DW_AT_signature_type (die, attr, cu);
12924
12925 /* The type's CU may not be the same as CU.
12926 Ensure TYPE is recorded with CU in die_type_hash. */
12927 return set_die_type (die, type, cu);
12928 }
12929
12930 type = alloc_type (objfile);
12931 INIT_CPLUS_SPECIFIC (type);
12932
12933 name = dwarf2_name (die, cu);
12934 if (name != NULL)
12935 {
12936 if (cu->language == language_cplus
12937 || cu->language == language_java)
12938 {
12939 const char *full_name = dwarf2_full_name (name, die, cu);
12940
12941 /* dwarf2_full_name might have already finished building the DIE's
12942 type. If so, there is no need to continue. */
12943 if (get_die_type (die, cu) != NULL)
12944 return get_die_type (die, cu);
12945
12946 TYPE_TAG_NAME (type) = full_name;
12947 if (die->tag == DW_TAG_structure_type
12948 || die->tag == DW_TAG_class_type)
12949 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12950 }
12951 else
12952 {
12953 /* The name is already allocated along with this objfile, so
12954 we don't need to duplicate it for the type. */
12955 TYPE_TAG_NAME (type) = name;
12956 if (die->tag == DW_TAG_class_type)
12957 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12958 }
12959 }
12960
12961 if (die->tag == DW_TAG_structure_type)
12962 {
12963 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12964 }
12965 else if (die->tag == DW_TAG_union_type)
12966 {
12967 TYPE_CODE (type) = TYPE_CODE_UNION;
12968 }
12969 else
12970 {
12971 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12972 }
12973
12974 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12975 TYPE_DECLARED_CLASS (type) = 1;
12976
12977 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12978 if (attr)
12979 {
12980 TYPE_LENGTH (type) = DW_UNSND (attr);
12981 }
12982 else
12983 {
12984 TYPE_LENGTH (type) = 0;
12985 }
12986
12987 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
12988 {
12989 /* ICC does not output the required DW_AT_declaration
12990 on incomplete types, but gives them a size of zero. */
12991 TYPE_STUB (type) = 1;
12992 }
12993 else
12994 TYPE_STUB_SUPPORTED (type) = 1;
12995
12996 if (die_is_declaration (die, cu))
12997 TYPE_STUB (type) = 1;
12998 else if (attr == NULL && die->child == NULL
12999 && producer_is_realview (cu->producer))
13000 /* RealView does not output the required DW_AT_declaration
13001 on incomplete types. */
13002 TYPE_STUB (type) = 1;
13003
13004 /* We need to add the type field to the die immediately so we don't
13005 infinitely recurse when dealing with pointers to the structure
13006 type within the structure itself. */
13007 set_die_type (die, type, cu);
13008
13009 /* set_die_type should be already done. */
13010 set_descriptive_type (type, die, cu);
13011
13012 return type;
13013 }
13014
13015 /* Finish creating a structure or union type, including filling in
13016 its members and creating a symbol for it. */
13017
13018 static void
13019 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13020 {
13021 struct objfile *objfile = cu->objfile;
13022 struct die_info *child_die;
13023 struct type *type;
13024
13025 type = get_die_type (die, cu);
13026 if (type == NULL)
13027 type = read_structure_type (die, cu);
13028
13029 if (die->child != NULL && ! die_is_declaration (die, cu))
13030 {
13031 struct field_info fi;
13032 VEC (symbolp) *template_args = NULL;
13033 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13034
13035 memset (&fi, 0, sizeof (struct field_info));
13036
13037 child_die = die->child;
13038
13039 while (child_die && child_die->tag)
13040 {
13041 if (child_die->tag == DW_TAG_member
13042 || child_die->tag == DW_TAG_variable)
13043 {
13044 /* NOTE: carlton/2002-11-05: A C++ static data member
13045 should be a DW_TAG_member that is a declaration, but
13046 all versions of G++ as of this writing (so through at
13047 least 3.2.1) incorrectly generate DW_TAG_variable
13048 tags for them instead. */
13049 dwarf2_add_field (&fi, child_die, cu);
13050 }
13051 else if (child_die->tag == DW_TAG_subprogram)
13052 {
13053 /* C++ member function. */
13054 dwarf2_add_member_fn (&fi, child_die, type, cu);
13055 }
13056 else if (child_die->tag == DW_TAG_inheritance)
13057 {
13058 /* C++ base class field. */
13059 dwarf2_add_field (&fi, child_die, cu);
13060 }
13061 else if (child_die->tag == DW_TAG_typedef)
13062 dwarf2_add_typedef (&fi, child_die, cu);
13063 else if (child_die->tag == DW_TAG_template_type_param
13064 || child_die->tag == DW_TAG_template_value_param)
13065 {
13066 struct symbol *arg = new_symbol (child_die, NULL, cu);
13067
13068 if (arg != NULL)
13069 VEC_safe_push (symbolp, template_args, arg);
13070 }
13071
13072 child_die = sibling_die (child_die);
13073 }
13074
13075 /* Attach template arguments to type. */
13076 if (! VEC_empty (symbolp, template_args))
13077 {
13078 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13079 TYPE_N_TEMPLATE_ARGUMENTS (type)
13080 = VEC_length (symbolp, template_args);
13081 TYPE_TEMPLATE_ARGUMENTS (type)
13082 = obstack_alloc (&objfile->objfile_obstack,
13083 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13084 * sizeof (struct symbol *)));
13085 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13086 VEC_address (symbolp, template_args),
13087 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13088 * sizeof (struct symbol *)));
13089 VEC_free (symbolp, template_args);
13090 }
13091
13092 /* Attach fields and member functions to the type. */
13093 if (fi.nfields)
13094 dwarf2_attach_fields_to_type (&fi, type, cu);
13095 if (fi.nfnfields)
13096 {
13097 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13098
13099 /* Get the type which refers to the base class (possibly this
13100 class itself) which contains the vtable pointer for the current
13101 class from the DW_AT_containing_type attribute. This use of
13102 DW_AT_containing_type is a GNU extension. */
13103
13104 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13105 {
13106 struct type *t = die_containing_type (die, cu);
13107
13108 TYPE_VPTR_BASETYPE (type) = t;
13109 if (type == t)
13110 {
13111 int i;
13112
13113 /* Our own class provides vtbl ptr. */
13114 for (i = TYPE_NFIELDS (t) - 1;
13115 i >= TYPE_N_BASECLASSES (t);
13116 --i)
13117 {
13118 const char *fieldname = TYPE_FIELD_NAME (t, i);
13119
13120 if (is_vtable_name (fieldname, cu))
13121 {
13122 TYPE_VPTR_FIELDNO (type) = i;
13123 break;
13124 }
13125 }
13126
13127 /* Complain if virtual function table field not found. */
13128 if (i < TYPE_N_BASECLASSES (t))
13129 complaint (&symfile_complaints,
13130 _("virtual function table pointer "
13131 "not found when defining class '%s'"),
13132 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13133 "");
13134 }
13135 else
13136 {
13137 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13138 }
13139 }
13140 else if (cu->producer
13141 && strncmp (cu->producer,
13142 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13143 {
13144 /* The IBM XLC compiler does not provide direct indication
13145 of the containing type, but the vtable pointer is
13146 always named __vfp. */
13147
13148 int i;
13149
13150 for (i = TYPE_NFIELDS (type) - 1;
13151 i >= TYPE_N_BASECLASSES (type);
13152 --i)
13153 {
13154 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13155 {
13156 TYPE_VPTR_FIELDNO (type) = i;
13157 TYPE_VPTR_BASETYPE (type) = type;
13158 break;
13159 }
13160 }
13161 }
13162 }
13163
13164 /* Copy fi.typedef_field_list linked list elements content into the
13165 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13166 if (fi.typedef_field_list)
13167 {
13168 int i = fi.typedef_field_list_count;
13169
13170 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13171 TYPE_TYPEDEF_FIELD_ARRAY (type)
13172 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13173 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13174
13175 /* Reverse the list order to keep the debug info elements order. */
13176 while (--i >= 0)
13177 {
13178 struct typedef_field *dest, *src;
13179
13180 dest = &TYPE_TYPEDEF_FIELD (type, i);
13181 src = &fi.typedef_field_list->field;
13182 fi.typedef_field_list = fi.typedef_field_list->next;
13183 *dest = *src;
13184 }
13185 }
13186
13187 do_cleanups (back_to);
13188
13189 if (HAVE_CPLUS_STRUCT (type))
13190 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13191 }
13192
13193 quirk_gcc_member_function_pointer (type, objfile);
13194
13195 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13196 snapshots) has been known to create a die giving a declaration
13197 for a class that has, as a child, a die giving a definition for a
13198 nested class. So we have to process our children even if the
13199 current die is a declaration. Normally, of course, a declaration
13200 won't have any children at all. */
13201
13202 child_die = die->child;
13203
13204 while (child_die != NULL && child_die->tag)
13205 {
13206 if (child_die->tag == DW_TAG_member
13207 || child_die->tag == DW_TAG_variable
13208 || child_die->tag == DW_TAG_inheritance
13209 || child_die->tag == DW_TAG_template_value_param
13210 || child_die->tag == DW_TAG_template_type_param)
13211 {
13212 /* Do nothing. */
13213 }
13214 else
13215 process_die (child_die, cu);
13216
13217 child_die = sibling_die (child_die);
13218 }
13219
13220 /* Do not consider external references. According to the DWARF standard,
13221 these DIEs are identified by the fact that they have no byte_size
13222 attribute, and a declaration attribute. */
13223 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13224 || !die_is_declaration (die, cu))
13225 new_symbol (die, type, cu);
13226 }
13227
13228 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13229 update TYPE using some information only available in DIE's children. */
13230
13231 static void
13232 update_enumeration_type_from_children (struct die_info *die,
13233 struct type *type,
13234 struct dwarf2_cu *cu)
13235 {
13236 struct obstack obstack;
13237 struct die_info *child_die;
13238 int unsigned_enum = 1;
13239 int flag_enum = 1;
13240 ULONGEST mask = 0;
13241 struct cleanup *old_chain;
13242
13243 obstack_init (&obstack);
13244 old_chain = make_cleanup_obstack_free (&obstack);
13245
13246 for (child_die = die->child;
13247 child_die != NULL && child_die->tag;
13248 child_die = sibling_die (child_die))
13249 {
13250 struct attribute *attr;
13251 LONGEST value;
13252 const gdb_byte *bytes;
13253 struct dwarf2_locexpr_baton *baton;
13254 const char *name;
13255
13256 if (child_die->tag != DW_TAG_enumerator)
13257 continue;
13258
13259 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13260 if (attr == NULL)
13261 continue;
13262
13263 name = dwarf2_name (child_die, cu);
13264 if (name == NULL)
13265 name = "<anonymous enumerator>";
13266
13267 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13268 &value, &bytes, &baton);
13269 if (value < 0)
13270 {
13271 unsigned_enum = 0;
13272 flag_enum = 0;
13273 }
13274 else if ((mask & value) != 0)
13275 flag_enum = 0;
13276 else
13277 mask |= value;
13278
13279 /* If we already know that the enum type is neither unsigned, nor
13280 a flag type, no need to look at the rest of the enumerates. */
13281 if (!unsigned_enum && !flag_enum)
13282 break;
13283 }
13284
13285 if (unsigned_enum)
13286 TYPE_UNSIGNED (type) = 1;
13287 if (flag_enum)
13288 TYPE_FLAG_ENUM (type) = 1;
13289
13290 do_cleanups (old_chain);
13291 }
13292
13293 /* Given a DW_AT_enumeration_type die, set its type. We do not
13294 complete the type's fields yet, or create any symbols. */
13295
13296 static struct type *
13297 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13298 {
13299 struct objfile *objfile = cu->objfile;
13300 struct type *type;
13301 struct attribute *attr;
13302 const char *name;
13303
13304 /* If the definition of this type lives in .debug_types, read that type.
13305 Don't follow DW_AT_specification though, that will take us back up
13306 the chain and we want to go down. */
13307 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13308 if (attr)
13309 {
13310 type = get_DW_AT_signature_type (die, attr, cu);
13311
13312 /* The type's CU may not be the same as CU.
13313 Ensure TYPE is recorded with CU in die_type_hash. */
13314 return set_die_type (die, type, cu);
13315 }
13316
13317 type = alloc_type (objfile);
13318
13319 TYPE_CODE (type) = TYPE_CODE_ENUM;
13320 name = dwarf2_full_name (NULL, die, cu);
13321 if (name != NULL)
13322 TYPE_TAG_NAME (type) = name;
13323
13324 attr = dwarf2_attr (die, DW_AT_type, cu);
13325 if (attr != NULL)
13326 {
13327 struct type *underlying_type = die_type (die, cu);
13328
13329 TYPE_TARGET_TYPE (type) = underlying_type;
13330 }
13331
13332 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13333 if (attr)
13334 {
13335 TYPE_LENGTH (type) = DW_UNSND (attr);
13336 }
13337 else
13338 {
13339 TYPE_LENGTH (type) = 0;
13340 }
13341
13342 /* The enumeration DIE can be incomplete. In Ada, any type can be
13343 declared as private in the package spec, and then defined only
13344 inside the package body. Such types are known as Taft Amendment
13345 Types. When another package uses such a type, an incomplete DIE
13346 may be generated by the compiler. */
13347 if (die_is_declaration (die, cu))
13348 TYPE_STUB (type) = 1;
13349
13350 /* Finish the creation of this type by using the enum's children.
13351 We must call this even when the underlying type has been provided
13352 so that we can determine if we're looking at a "flag" enum. */
13353 update_enumeration_type_from_children (die, type, cu);
13354
13355 /* If this type has an underlying type that is not a stub, then we
13356 may use its attributes. We always use the "unsigned" attribute
13357 in this situation, because ordinarily we guess whether the type
13358 is unsigned -- but the guess can be wrong and the underlying type
13359 can tell us the reality. However, we defer to a local size
13360 attribute if one exists, because this lets the compiler override
13361 the underlying type if needed. */
13362 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13363 {
13364 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13365 if (TYPE_LENGTH (type) == 0)
13366 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13367 }
13368
13369 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13370
13371 return set_die_type (die, type, cu);
13372 }
13373
13374 /* Given a pointer to a die which begins an enumeration, process all
13375 the dies that define the members of the enumeration, and create the
13376 symbol for the enumeration type.
13377
13378 NOTE: We reverse the order of the element list. */
13379
13380 static void
13381 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13382 {
13383 struct type *this_type;
13384
13385 this_type = get_die_type (die, cu);
13386 if (this_type == NULL)
13387 this_type = read_enumeration_type (die, cu);
13388
13389 if (die->child != NULL)
13390 {
13391 struct die_info *child_die;
13392 struct symbol *sym;
13393 struct field *fields = NULL;
13394 int num_fields = 0;
13395 const char *name;
13396
13397 child_die = die->child;
13398 while (child_die && child_die->tag)
13399 {
13400 if (child_die->tag != DW_TAG_enumerator)
13401 {
13402 process_die (child_die, cu);
13403 }
13404 else
13405 {
13406 name = dwarf2_name (child_die, cu);
13407 if (name)
13408 {
13409 sym = new_symbol (child_die, this_type, cu);
13410
13411 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13412 {
13413 fields = (struct field *)
13414 xrealloc (fields,
13415 (num_fields + DW_FIELD_ALLOC_CHUNK)
13416 * sizeof (struct field));
13417 }
13418
13419 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13420 FIELD_TYPE (fields[num_fields]) = NULL;
13421 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13422 FIELD_BITSIZE (fields[num_fields]) = 0;
13423
13424 num_fields++;
13425 }
13426 }
13427
13428 child_die = sibling_die (child_die);
13429 }
13430
13431 if (num_fields)
13432 {
13433 TYPE_NFIELDS (this_type) = num_fields;
13434 TYPE_FIELDS (this_type) = (struct field *)
13435 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13436 memcpy (TYPE_FIELDS (this_type), fields,
13437 sizeof (struct field) * num_fields);
13438 xfree (fields);
13439 }
13440 }
13441
13442 /* If we are reading an enum from a .debug_types unit, and the enum
13443 is a declaration, and the enum is not the signatured type in the
13444 unit, then we do not want to add a symbol for it. Adding a
13445 symbol would in some cases obscure the true definition of the
13446 enum, giving users an incomplete type when the definition is
13447 actually available. Note that we do not want to do this for all
13448 enums which are just declarations, because C++0x allows forward
13449 enum declarations. */
13450 if (cu->per_cu->is_debug_types
13451 && die_is_declaration (die, cu))
13452 {
13453 struct signatured_type *sig_type;
13454
13455 sig_type = (struct signatured_type *) cu->per_cu;
13456 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13457 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13458 return;
13459 }
13460
13461 new_symbol (die, this_type, cu);
13462 }
13463
13464 /* Extract all information from a DW_TAG_array_type DIE and put it in
13465 the DIE's type field. For now, this only handles one dimensional
13466 arrays. */
13467
13468 static struct type *
13469 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13470 {
13471 struct objfile *objfile = cu->objfile;
13472 struct die_info *child_die;
13473 struct type *type;
13474 struct type *element_type, *range_type, *index_type;
13475 struct type **range_types = NULL;
13476 struct attribute *attr;
13477 int ndim = 0;
13478 struct cleanup *back_to;
13479 const char *name;
13480 unsigned int bit_stride = 0;
13481
13482 element_type = die_type (die, cu);
13483
13484 /* The die_type call above may have already set the type for this DIE. */
13485 type = get_die_type (die, cu);
13486 if (type)
13487 return type;
13488
13489 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13490 if (attr != NULL)
13491 bit_stride = DW_UNSND (attr) * 8;
13492
13493 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13494 if (attr != NULL)
13495 bit_stride = DW_UNSND (attr);
13496
13497 /* Irix 6.2 native cc creates array types without children for
13498 arrays with unspecified length. */
13499 if (die->child == NULL)
13500 {
13501 index_type = objfile_type (objfile)->builtin_int;
13502 range_type = create_static_range_type (NULL, index_type, 0, -1);
13503 type = create_array_type_with_stride (NULL, element_type, range_type,
13504 bit_stride);
13505 return set_die_type (die, type, cu);
13506 }
13507
13508 back_to = make_cleanup (null_cleanup, NULL);
13509 child_die = die->child;
13510 while (child_die && child_die->tag)
13511 {
13512 if (child_die->tag == DW_TAG_subrange_type)
13513 {
13514 struct type *child_type = read_type_die (child_die, cu);
13515
13516 if (child_type != NULL)
13517 {
13518 /* The range type was succesfully read. Save it for the
13519 array type creation. */
13520 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13521 {
13522 range_types = (struct type **)
13523 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13524 * sizeof (struct type *));
13525 if (ndim == 0)
13526 make_cleanup (free_current_contents, &range_types);
13527 }
13528 range_types[ndim++] = child_type;
13529 }
13530 }
13531 child_die = sibling_die (child_die);
13532 }
13533
13534 /* Dwarf2 dimensions are output from left to right, create the
13535 necessary array types in backwards order. */
13536
13537 type = element_type;
13538
13539 if (read_array_order (die, cu) == DW_ORD_col_major)
13540 {
13541 int i = 0;
13542
13543 while (i < ndim)
13544 type = create_array_type_with_stride (NULL, type, range_types[i++],
13545 bit_stride);
13546 }
13547 else
13548 {
13549 while (ndim-- > 0)
13550 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13551 bit_stride);
13552 }
13553
13554 /* Understand Dwarf2 support for vector types (like they occur on
13555 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13556 array type. This is not part of the Dwarf2/3 standard yet, but a
13557 custom vendor extension. The main difference between a regular
13558 array and the vector variant is that vectors are passed by value
13559 to functions. */
13560 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13561 if (attr)
13562 make_vector_type (type);
13563
13564 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13565 implementation may choose to implement triple vectors using this
13566 attribute. */
13567 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13568 if (attr)
13569 {
13570 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13571 TYPE_LENGTH (type) = DW_UNSND (attr);
13572 else
13573 complaint (&symfile_complaints,
13574 _("DW_AT_byte_size for array type smaller "
13575 "than the total size of elements"));
13576 }
13577
13578 name = dwarf2_name (die, cu);
13579 if (name)
13580 TYPE_NAME (type) = name;
13581
13582 /* Install the type in the die. */
13583 set_die_type (die, type, cu);
13584
13585 /* set_die_type should be already done. */
13586 set_descriptive_type (type, die, cu);
13587
13588 do_cleanups (back_to);
13589
13590 return type;
13591 }
13592
13593 static enum dwarf_array_dim_ordering
13594 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13595 {
13596 struct attribute *attr;
13597
13598 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13599
13600 if (attr) return DW_SND (attr);
13601
13602 /* GNU F77 is a special case, as at 08/2004 array type info is the
13603 opposite order to the dwarf2 specification, but data is still
13604 laid out as per normal fortran.
13605
13606 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13607 version checking. */
13608
13609 if (cu->language == language_fortran
13610 && cu->producer && strstr (cu->producer, "GNU F77"))
13611 {
13612 return DW_ORD_row_major;
13613 }
13614
13615 switch (cu->language_defn->la_array_ordering)
13616 {
13617 case array_column_major:
13618 return DW_ORD_col_major;
13619 case array_row_major:
13620 default:
13621 return DW_ORD_row_major;
13622 };
13623 }
13624
13625 /* Extract all information from a DW_TAG_set_type DIE and put it in
13626 the DIE's type field. */
13627
13628 static struct type *
13629 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13630 {
13631 struct type *domain_type, *set_type;
13632 struct attribute *attr;
13633
13634 domain_type = die_type (die, cu);
13635
13636 /* The die_type call above may have already set the type for this DIE. */
13637 set_type = get_die_type (die, cu);
13638 if (set_type)
13639 return set_type;
13640
13641 set_type = create_set_type (NULL, domain_type);
13642
13643 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13644 if (attr)
13645 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13646
13647 return set_die_type (die, set_type, cu);
13648 }
13649
13650 /* A helper for read_common_block that creates a locexpr baton.
13651 SYM is the symbol which we are marking as computed.
13652 COMMON_DIE is the DIE for the common block.
13653 COMMON_LOC is the location expression attribute for the common
13654 block itself.
13655 MEMBER_LOC is the location expression attribute for the particular
13656 member of the common block that we are processing.
13657 CU is the CU from which the above come. */
13658
13659 static void
13660 mark_common_block_symbol_computed (struct symbol *sym,
13661 struct die_info *common_die,
13662 struct attribute *common_loc,
13663 struct attribute *member_loc,
13664 struct dwarf2_cu *cu)
13665 {
13666 struct objfile *objfile = dwarf2_per_objfile->objfile;
13667 struct dwarf2_locexpr_baton *baton;
13668 gdb_byte *ptr;
13669 unsigned int cu_off;
13670 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13671 LONGEST offset = 0;
13672
13673 gdb_assert (common_loc && member_loc);
13674 gdb_assert (attr_form_is_block (common_loc));
13675 gdb_assert (attr_form_is_block (member_loc)
13676 || attr_form_is_constant (member_loc));
13677
13678 baton = obstack_alloc (&objfile->objfile_obstack,
13679 sizeof (struct dwarf2_locexpr_baton));
13680 baton->per_cu = cu->per_cu;
13681 gdb_assert (baton->per_cu);
13682
13683 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13684
13685 if (attr_form_is_constant (member_loc))
13686 {
13687 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13688 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13689 }
13690 else
13691 baton->size += DW_BLOCK (member_loc)->size;
13692
13693 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13694 baton->data = ptr;
13695
13696 *ptr++ = DW_OP_call4;
13697 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13698 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13699 ptr += 4;
13700
13701 if (attr_form_is_constant (member_loc))
13702 {
13703 *ptr++ = DW_OP_addr;
13704 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13705 ptr += cu->header.addr_size;
13706 }
13707 else
13708 {
13709 /* We have to copy the data here, because DW_OP_call4 will only
13710 use a DW_AT_location attribute. */
13711 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13712 ptr += DW_BLOCK (member_loc)->size;
13713 }
13714
13715 *ptr++ = DW_OP_plus;
13716 gdb_assert (ptr - baton->data == baton->size);
13717
13718 SYMBOL_LOCATION_BATON (sym) = baton;
13719 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13720 }
13721
13722 /* Create appropriate locally-scoped variables for all the
13723 DW_TAG_common_block entries. Also create a struct common_block
13724 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13725 is used to sepate the common blocks name namespace from regular
13726 variable names. */
13727
13728 static void
13729 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13730 {
13731 struct attribute *attr;
13732
13733 attr = dwarf2_attr (die, DW_AT_location, cu);
13734 if (attr)
13735 {
13736 /* Support the .debug_loc offsets. */
13737 if (attr_form_is_block (attr))
13738 {
13739 /* Ok. */
13740 }
13741 else if (attr_form_is_section_offset (attr))
13742 {
13743 dwarf2_complex_location_expr_complaint ();
13744 attr = NULL;
13745 }
13746 else
13747 {
13748 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13749 "common block member");
13750 attr = NULL;
13751 }
13752 }
13753
13754 if (die->child != NULL)
13755 {
13756 struct objfile *objfile = cu->objfile;
13757 struct die_info *child_die;
13758 size_t n_entries = 0, size;
13759 struct common_block *common_block;
13760 struct symbol *sym;
13761
13762 for (child_die = die->child;
13763 child_die && child_die->tag;
13764 child_die = sibling_die (child_die))
13765 ++n_entries;
13766
13767 size = (sizeof (struct common_block)
13768 + (n_entries - 1) * sizeof (struct symbol *));
13769 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13770 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13771 common_block->n_entries = 0;
13772
13773 for (child_die = die->child;
13774 child_die && child_die->tag;
13775 child_die = sibling_die (child_die))
13776 {
13777 /* Create the symbol in the DW_TAG_common_block block in the current
13778 symbol scope. */
13779 sym = new_symbol (child_die, NULL, cu);
13780 if (sym != NULL)
13781 {
13782 struct attribute *member_loc;
13783
13784 common_block->contents[common_block->n_entries++] = sym;
13785
13786 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13787 cu);
13788 if (member_loc)
13789 {
13790 /* GDB has handled this for a long time, but it is
13791 not specified by DWARF. It seems to have been
13792 emitted by gfortran at least as recently as:
13793 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13794 complaint (&symfile_complaints,
13795 _("Variable in common block has "
13796 "DW_AT_data_member_location "
13797 "- DIE at 0x%x [in module %s]"),
13798 child_die->offset.sect_off,
13799 objfile_name (cu->objfile));
13800
13801 if (attr_form_is_section_offset (member_loc))
13802 dwarf2_complex_location_expr_complaint ();
13803 else if (attr_form_is_constant (member_loc)
13804 || attr_form_is_block (member_loc))
13805 {
13806 if (attr)
13807 mark_common_block_symbol_computed (sym, die, attr,
13808 member_loc, cu);
13809 }
13810 else
13811 dwarf2_complex_location_expr_complaint ();
13812 }
13813 }
13814 }
13815
13816 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13817 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13818 }
13819 }
13820
13821 /* Create a type for a C++ namespace. */
13822
13823 static struct type *
13824 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13825 {
13826 struct objfile *objfile = cu->objfile;
13827 const char *previous_prefix, *name;
13828 int is_anonymous;
13829 struct type *type;
13830
13831 /* For extensions, reuse the type of the original namespace. */
13832 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13833 {
13834 struct die_info *ext_die;
13835 struct dwarf2_cu *ext_cu = cu;
13836
13837 ext_die = dwarf2_extension (die, &ext_cu);
13838 type = read_type_die (ext_die, ext_cu);
13839
13840 /* EXT_CU may not be the same as CU.
13841 Ensure TYPE is recorded with CU in die_type_hash. */
13842 return set_die_type (die, type, cu);
13843 }
13844
13845 name = namespace_name (die, &is_anonymous, cu);
13846
13847 /* Now build the name of the current namespace. */
13848
13849 previous_prefix = determine_prefix (die, cu);
13850 if (previous_prefix[0] != '\0')
13851 name = typename_concat (&objfile->objfile_obstack,
13852 previous_prefix, name, 0, cu);
13853
13854 /* Create the type. */
13855 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13856 objfile);
13857 TYPE_NAME (type) = name;
13858 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13859
13860 return set_die_type (die, type, cu);
13861 }
13862
13863 /* Read a C++ namespace. */
13864
13865 static void
13866 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13867 {
13868 struct objfile *objfile = cu->objfile;
13869 int is_anonymous;
13870
13871 /* Add a symbol associated to this if we haven't seen the namespace
13872 before. Also, add a using directive if it's an anonymous
13873 namespace. */
13874
13875 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13876 {
13877 struct type *type;
13878
13879 type = read_type_die (die, cu);
13880 new_symbol (die, type, cu);
13881
13882 namespace_name (die, &is_anonymous, cu);
13883 if (is_anonymous)
13884 {
13885 const char *previous_prefix = determine_prefix (die, cu);
13886
13887 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13888 NULL, NULL, 0, &objfile->objfile_obstack);
13889 }
13890 }
13891
13892 if (die->child != NULL)
13893 {
13894 struct die_info *child_die = die->child;
13895
13896 while (child_die && child_die->tag)
13897 {
13898 process_die (child_die, cu);
13899 child_die = sibling_die (child_die);
13900 }
13901 }
13902 }
13903
13904 /* Read a Fortran module as type. This DIE can be only a declaration used for
13905 imported module. Still we need that type as local Fortran "use ... only"
13906 declaration imports depend on the created type in determine_prefix. */
13907
13908 static struct type *
13909 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13910 {
13911 struct objfile *objfile = cu->objfile;
13912 const char *module_name;
13913 struct type *type;
13914
13915 module_name = dwarf2_name (die, cu);
13916 if (!module_name)
13917 complaint (&symfile_complaints,
13918 _("DW_TAG_module has no name, offset 0x%x"),
13919 die->offset.sect_off);
13920 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13921
13922 /* determine_prefix uses TYPE_TAG_NAME. */
13923 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13924
13925 return set_die_type (die, type, cu);
13926 }
13927
13928 /* Read a Fortran module. */
13929
13930 static void
13931 read_module (struct die_info *die, struct dwarf2_cu *cu)
13932 {
13933 struct die_info *child_die = die->child;
13934 struct type *type;
13935
13936 type = read_type_die (die, cu);
13937 new_symbol (die, type, cu);
13938
13939 while (child_die && child_die->tag)
13940 {
13941 process_die (child_die, cu);
13942 child_die = sibling_die (child_die);
13943 }
13944 }
13945
13946 /* Return the name of the namespace represented by DIE. Set
13947 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13948 namespace. */
13949
13950 static const char *
13951 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13952 {
13953 struct die_info *current_die;
13954 const char *name = NULL;
13955
13956 /* Loop through the extensions until we find a name. */
13957
13958 for (current_die = die;
13959 current_die != NULL;
13960 current_die = dwarf2_extension (die, &cu))
13961 {
13962 name = dwarf2_name (current_die, cu);
13963 if (name != NULL)
13964 break;
13965 }
13966
13967 /* Is it an anonymous namespace? */
13968
13969 *is_anonymous = (name == NULL);
13970 if (*is_anonymous)
13971 name = CP_ANONYMOUS_NAMESPACE_STR;
13972
13973 return name;
13974 }
13975
13976 /* Extract all information from a DW_TAG_pointer_type DIE and add to
13977 the user defined type vector. */
13978
13979 static struct type *
13980 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
13981 {
13982 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
13983 struct comp_unit_head *cu_header = &cu->header;
13984 struct type *type;
13985 struct attribute *attr_byte_size;
13986 struct attribute *attr_address_class;
13987 int byte_size, addr_class;
13988 struct type *target_type;
13989
13990 target_type = die_type (die, cu);
13991
13992 /* The die_type call above may have already set the type for this DIE. */
13993 type = get_die_type (die, cu);
13994 if (type)
13995 return type;
13996
13997 type = lookup_pointer_type (target_type);
13998
13999 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14000 if (attr_byte_size)
14001 byte_size = DW_UNSND (attr_byte_size);
14002 else
14003 byte_size = cu_header->addr_size;
14004
14005 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14006 if (attr_address_class)
14007 addr_class = DW_UNSND (attr_address_class);
14008 else
14009 addr_class = DW_ADDR_none;
14010
14011 /* If the pointer size or address class is different than the
14012 default, create a type variant marked as such and set the
14013 length accordingly. */
14014 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14015 {
14016 if (gdbarch_address_class_type_flags_p (gdbarch))
14017 {
14018 int type_flags;
14019
14020 type_flags = gdbarch_address_class_type_flags
14021 (gdbarch, byte_size, addr_class);
14022 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14023 == 0);
14024 type = make_type_with_address_space (type, type_flags);
14025 }
14026 else if (TYPE_LENGTH (type) != byte_size)
14027 {
14028 complaint (&symfile_complaints,
14029 _("invalid pointer size %d"), byte_size);
14030 }
14031 else
14032 {
14033 /* Should we also complain about unhandled address classes? */
14034 }
14035 }
14036
14037 TYPE_LENGTH (type) = byte_size;
14038 return set_die_type (die, type, cu);
14039 }
14040
14041 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14042 the user defined type vector. */
14043
14044 static struct type *
14045 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14046 {
14047 struct type *type;
14048 struct type *to_type;
14049 struct type *domain;
14050
14051 to_type = die_type (die, cu);
14052 domain = die_containing_type (die, cu);
14053
14054 /* The calls above may have already set the type for this DIE. */
14055 type = get_die_type (die, cu);
14056 if (type)
14057 return type;
14058
14059 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14060 type = lookup_methodptr_type (to_type);
14061 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14062 {
14063 struct type *new_type = alloc_type (cu->objfile);
14064
14065 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14066 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14067 TYPE_VARARGS (to_type));
14068 type = lookup_methodptr_type (new_type);
14069 }
14070 else
14071 type = lookup_memberptr_type (to_type, domain);
14072
14073 return set_die_type (die, type, cu);
14074 }
14075
14076 /* Extract all information from a DW_TAG_reference_type DIE and add to
14077 the user defined type vector. */
14078
14079 static struct type *
14080 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14081 {
14082 struct comp_unit_head *cu_header = &cu->header;
14083 struct type *type, *target_type;
14084 struct attribute *attr;
14085
14086 target_type = die_type (die, cu);
14087
14088 /* The die_type call above may have already set the type for this DIE. */
14089 type = get_die_type (die, cu);
14090 if (type)
14091 return type;
14092
14093 type = lookup_reference_type (target_type);
14094 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14095 if (attr)
14096 {
14097 TYPE_LENGTH (type) = DW_UNSND (attr);
14098 }
14099 else
14100 {
14101 TYPE_LENGTH (type) = cu_header->addr_size;
14102 }
14103 return set_die_type (die, type, cu);
14104 }
14105
14106 /* Add the given cv-qualifiers to the element type of the array. GCC
14107 outputs DWARF type qualifiers that apply to an array, not the
14108 element type. But GDB relies on the array element type to carry
14109 the cv-qualifiers. This mimics section 6.7.3 of the C99
14110 specification. */
14111
14112 static struct type *
14113 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14114 struct type *base_type, int cnst, int voltl)
14115 {
14116 struct type *el_type, *inner_array;
14117
14118 base_type = copy_type (base_type);
14119 inner_array = base_type;
14120
14121 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14122 {
14123 TYPE_TARGET_TYPE (inner_array) =
14124 copy_type (TYPE_TARGET_TYPE (inner_array));
14125 inner_array = TYPE_TARGET_TYPE (inner_array);
14126 }
14127
14128 el_type = TYPE_TARGET_TYPE (inner_array);
14129 cnst |= TYPE_CONST (el_type);
14130 voltl |= TYPE_VOLATILE (el_type);
14131 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14132
14133 return set_die_type (die, base_type, cu);
14134 }
14135
14136 static struct type *
14137 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14138 {
14139 struct type *base_type, *cv_type;
14140
14141 base_type = die_type (die, cu);
14142
14143 /* The die_type call above may have already set the type for this DIE. */
14144 cv_type = get_die_type (die, cu);
14145 if (cv_type)
14146 return cv_type;
14147
14148 /* In case the const qualifier is applied to an array type, the element type
14149 is so qualified, not the array type (section 6.7.3 of C99). */
14150 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14151 return add_array_cv_type (die, cu, base_type, 1, 0);
14152
14153 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14154 return set_die_type (die, cv_type, cu);
14155 }
14156
14157 static struct type *
14158 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14159 {
14160 struct type *base_type, *cv_type;
14161
14162 base_type = die_type (die, cu);
14163
14164 /* The die_type call above may have already set the type for this DIE. */
14165 cv_type = get_die_type (die, cu);
14166 if (cv_type)
14167 return cv_type;
14168
14169 /* In case the volatile qualifier is applied to an array type, the
14170 element type is so qualified, not the array type (section 6.7.3
14171 of C99). */
14172 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14173 return add_array_cv_type (die, cu, base_type, 0, 1);
14174
14175 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14176 return set_die_type (die, cv_type, cu);
14177 }
14178
14179 /* Handle DW_TAG_restrict_type. */
14180
14181 static struct type *
14182 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14183 {
14184 struct type *base_type, *cv_type;
14185
14186 base_type = die_type (die, cu);
14187
14188 /* The die_type call above may have already set the type for this DIE. */
14189 cv_type = get_die_type (die, cu);
14190 if (cv_type)
14191 return cv_type;
14192
14193 cv_type = make_restrict_type (base_type);
14194 return set_die_type (die, cv_type, cu);
14195 }
14196
14197 /* Extract all information from a DW_TAG_string_type DIE and add to
14198 the user defined type vector. It isn't really a user defined type,
14199 but it behaves like one, with other DIE's using an AT_user_def_type
14200 attribute to reference it. */
14201
14202 static struct type *
14203 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14204 {
14205 struct objfile *objfile = cu->objfile;
14206 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14207 struct type *type, *range_type, *index_type, *char_type;
14208 struct attribute *attr;
14209 unsigned int length;
14210
14211 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14212 if (attr)
14213 {
14214 length = DW_UNSND (attr);
14215 }
14216 else
14217 {
14218 /* Check for the DW_AT_byte_size attribute. */
14219 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14220 if (attr)
14221 {
14222 length = DW_UNSND (attr);
14223 }
14224 else
14225 {
14226 length = 1;
14227 }
14228 }
14229
14230 index_type = objfile_type (objfile)->builtin_int;
14231 range_type = create_static_range_type (NULL, index_type, 1, length);
14232 char_type = language_string_char_type (cu->language_defn, gdbarch);
14233 type = create_string_type (NULL, char_type, range_type);
14234
14235 return set_die_type (die, type, cu);
14236 }
14237
14238 /* Assuming that DIE corresponds to a function, returns nonzero
14239 if the function is prototyped. */
14240
14241 static int
14242 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14243 {
14244 struct attribute *attr;
14245
14246 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14247 if (attr && (DW_UNSND (attr) != 0))
14248 return 1;
14249
14250 /* The DWARF standard implies that the DW_AT_prototyped attribute
14251 is only meaninful for C, but the concept also extends to other
14252 languages that allow unprototyped functions (Eg: Objective C).
14253 For all other languages, assume that functions are always
14254 prototyped. */
14255 if (cu->language != language_c
14256 && cu->language != language_objc
14257 && cu->language != language_opencl)
14258 return 1;
14259
14260 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14261 prototyped and unprototyped functions; default to prototyped,
14262 since that is more common in modern code (and RealView warns
14263 about unprototyped functions). */
14264 if (producer_is_realview (cu->producer))
14265 return 1;
14266
14267 return 0;
14268 }
14269
14270 /* Handle DIES due to C code like:
14271
14272 struct foo
14273 {
14274 int (*funcp)(int a, long l);
14275 int b;
14276 };
14277
14278 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14279
14280 static struct type *
14281 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14282 {
14283 struct objfile *objfile = cu->objfile;
14284 struct type *type; /* Type that this function returns. */
14285 struct type *ftype; /* Function that returns above type. */
14286 struct attribute *attr;
14287
14288 type = die_type (die, cu);
14289
14290 /* The die_type call above may have already set the type for this DIE. */
14291 ftype = get_die_type (die, cu);
14292 if (ftype)
14293 return ftype;
14294
14295 ftype = lookup_function_type (type);
14296
14297 if (prototyped_function_p (die, cu))
14298 TYPE_PROTOTYPED (ftype) = 1;
14299
14300 /* Store the calling convention in the type if it's available in
14301 the subroutine die. Otherwise set the calling convention to
14302 the default value DW_CC_normal. */
14303 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14304 if (attr)
14305 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14306 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14307 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14308 else
14309 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14310
14311 /* We need to add the subroutine type to the die immediately so
14312 we don't infinitely recurse when dealing with parameters
14313 declared as the same subroutine type. */
14314 set_die_type (die, ftype, cu);
14315
14316 if (die->child != NULL)
14317 {
14318 struct type *void_type = objfile_type (objfile)->builtin_void;
14319 struct die_info *child_die;
14320 int nparams, iparams;
14321
14322 /* Count the number of parameters.
14323 FIXME: GDB currently ignores vararg functions, but knows about
14324 vararg member functions. */
14325 nparams = 0;
14326 child_die = die->child;
14327 while (child_die && child_die->tag)
14328 {
14329 if (child_die->tag == DW_TAG_formal_parameter)
14330 nparams++;
14331 else if (child_die->tag == DW_TAG_unspecified_parameters)
14332 TYPE_VARARGS (ftype) = 1;
14333 child_die = sibling_die (child_die);
14334 }
14335
14336 /* Allocate storage for parameters and fill them in. */
14337 TYPE_NFIELDS (ftype) = nparams;
14338 TYPE_FIELDS (ftype) = (struct field *)
14339 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14340
14341 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14342 even if we error out during the parameters reading below. */
14343 for (iparams = 0; iparams < nparams; iparams++)
14344 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14345
14346 iparams = 0;
14347 child_die = die->child;
14348 while (child_die && child_die->tag)
14349 {
14350 if (child_die->tag == DW_TAG_formal_parameter)
14351 {
14352 struct type *arg_type;
14353
14354 /* DWARF version 2 has no clean way to discern C++
14355 static and non-static member functions. G++ helps
14356 GDB by marking the first parameter for non-static
14357 member functions (which is the this pointer) as
14358 artificial. We pass this information to
14359 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14360
14361 DWARF version 3 added DW_AT_object_pointer, which GCC
14362 4.5 does not yet generate. */
14363 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14364 if (attr)
14365 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14366 else
14367 {
14368 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14369
14370 /* GCC/43521: In java, the formal parameter
14371 "this" is sometimes not marked with DW_AT_artificial. */
14372 if (cu->language == language_java)
14373 {
14374 const char *name = dwarf2_name (child_die, cu);
14375
14376 if (name && !strcmp (name, "this"))
14377 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14378 }
14379 }
14380 arg_type = die_type (child_die, cu);
14381
14382 /* RealView does not mark THIS as const, which the testsuite
14383 expects. GCC marks THIS as const in method definitions,
14384 but not in the class specifications (GCC PR 43053). */
14385 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14386 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14387 {
14388 int is_this = 0;
14389 struct dwarf2_cu *arg_cu = cu;
14390 const char *name = dwarf2_name (child_die, cu);
14391
14392 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14393 if (attr)
14394 {
14395 /* If the compiler emits this, use it. */
14396 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14397 is_this = 1;
14398 }
14399 else if (name && strcmp (name, "this") == 0)
14400 /* Function definitions will have the argument names. */
14401 is_this = 1;
14402 else if (name == NULL && iparams == 0)
14403 /* Declarations may not have the names, so like
14404 elsewhere in GDB, assume an artificial first
14405 argument is "this". */
14406 is_this = 1;
14407
14408 if (is_this)
14409 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14410 arg_type, 0);
14411 }
14412
14413 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14414 iparams++;
14415 }
14416 child_die = sibling_die (child_die);
14417 }
14418 }
14419
14420 return ftype;
14421 }
14422
14423 static struct type *
14424 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14425 {
14426 struct objfile *objfile = cu->objfile;
14427 const char *name = NULL;
14428 struct type *this_type, *target_type;
14429
14430 name = dwarf2_full_name (NULL, die, cu);
14431 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14432 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14433 TYPE_NAME (this_type) = name;
14434 set_die_type (die, this_type, cu);
14435 target_type = die_type (die, cu);
14436 if (target_type != this_type)
14437 TYPE_TARGET_TYPE (this_type) = target_type;
14438 else
14439 {
14440 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14441 spec and cause infinite loops in GDB. */
14442 complaint (&symfile_complaints,
14443 _("Self-referential DW_TAG_typedef "
14444 "- DIE at 0x%x [in module %s]"),
14445 die->offset.sect_off, objfile_name (objfile));
14446 TYPE_TARGET_TYPE (this_type) = NULL;
14447 }
14448 return this_type;
14449 }
14450
14451 /* Find a representation of a given base type and install
14452 it in the TYPE field of the die. */
14453
14454 static struct type *
14455 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14456 {
14457 struct objfile *objfile = cu->objfile;
14458 struct type *type;
14459 struct attribute *attr;
14460 int encoding = 0, size = 0;
14461 const char *name;
14462 enum type_code code = TYPE_CODE_INT;
14463 int type_flags = 0;
14464 struct type *target_type = NULL;
14465
14466 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14467 if (attr)
14468 {
14469 encoding = DW_UNSND (attr);
14470 }
14471 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14472 if (attr)
14473 {
14474 size = DW_UNSND (attr);
14475 }
14476 name = dwarf2_name (die, cu);
14477 if (!name)
14478 {
14479 complaint (&symfile_complaints,
14480 _("DW_AT_name missing from DW_TAG_base_type"));
14481 }
14482
14483 switch (encoding)
14484 {
14485 case DW_ATE_address:
14486 /* Turn DW_ATE_address into a void * pointer. */
14487 code = TYPE_CODE_PTR;
14488 type_flags |= TYPE_FLAG_UNSIGNED;
14489 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14490 break;
14491 case DW_ATE_boolean:
14492 code = TYPE_CODE_BOOL;
14493 type_flags |= TYPE_FLAG_UNSIGNED;
14494 break;
14495 case DW_ATE_complex_float:
14496 code = TYPE_CODE_COMPLEX;
14497 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14498 break;
14499 case DW_ATE_decimal_float:
14500 code = TYPE_CODE_DECFLOAT;
14501 break;
14502 case DW_ATE_float:
14503 code = TYPE_CODE_FLT;
14504 break;
14505 case DW_ATE_signed:
14506 break;
14507 case DW_ATE_unsigned:
14508 type_flags |= TYPE_FLAG_UNSIGNED;
14509 if (cu->language == language_fortran
14510 && name
14511 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14512 code = TYPE_CODE_CHAR;
14513 break;
14514 case DW_ATE_signed_char:
14515 if (cu->language == language_ada || cu->language == language_m2
14516 || cu->language == language_pascal
14517 || cu->language == language_fortran)
14518 code = TYPE_CODE_CHAR;
14519 break;
14520 case DW_ATE_unsigned_char:
14521 if (cu->language == language_ada || cu->language == language_m2
14522 || cu->language == language_pascal
14523 || cu->language == language_fortran)
14524 code = TYPE_CODE_CHAR;
14525 type_flags |= TYPE_FLAG_UNSIGNED;
14526 break;
14527 case DW_ATE_UTF:
14528 /* We just treat this as an integer and then recognize the
14529 type by name elsewhere. */
14530 break;
14531
14532 default:
14533 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14534 dwarf_type_encoding_name (encoding));
14535 break;
14536 }
14537
14538 type = init_type (code, size, type_flags, NULL, objfile);
14539 TYPE_NAME (type) = name;
14540 TYPE_TARGET_TYPE (type) = target_type;
14541
14542 if (name && strcmp (name, "char") == 0)
14543 TYPE_NOSIGN (type) = 1;
14544
14545 return set_die_type (die, type, cu);
14546 }
14547
14548 /* Parse dwarf attribute if it's a block, reference or constant and put the
14549 resulting value of the attribute into struct bound_prop.
14550 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14551
14552 static int
14553 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14554 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14555 {
14556 struct dwarf2_property_baton *baton;
14557 struct obstack *obstack = &cu->objfile->objfile_obstack;
14558
14559 if (attr == NULL || prop == NULL)
14560 return 0;
14561
14562 if (attr_form_is_block (attr))
14563 {
14564 baton = obstack_alloc (obstack, sizeof (*baton));
14565 baton->referenced_type = NULL;
14566 baton->locexpr.per_cu = cu->per_cu;
14567 baton->locexpr.size = DW_BLOCK (attr)->size;
14568 baton->locexpr.data = DW_BLOCK (attr)->data;
14569 prop->data.baton = baton;
14570 prop->kind = PROP_LOCEXPR;
14571 gdb_assert (prop->data.baton != NULL);
14572 }
14573 else if (attr_form_is_ref (attr))
14574 {
14575 struct dwarf2_cu *target_cu = cu;
14576 struct die_info *target_die;
14577 struct attribute *target_attr;
14578
14579 target_die = follow_die_ref (die, attr, &target_cu);
14580 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14581 if (target_attr == NULL)
14582 return 0;
14583
14584 if (attr_form_is_section_offset (target_attr))
14585 {
14586 baton = obstack_alloc (obstack, sizeof (*baton));
14587 baton->referenced_type = die_type (target_die, target_cu);
14588 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14589 prop->data.baton = baton;
14590 prop->kind = PROP_LOCLIST;
14591 gdb_assert (prop->data.baton != NULL);
14592 }
14593 else if (attr_form_is_block (target_attr))
14594 {
14595 baton = obstack_alloc (obstack, sizeof (*baton));
14596 baton->referenced_type = die_type (target_die, target_cu);
14597 baton->locexpr.per_cu = cu->per_cu;
14598 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14599 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14600 prop->data.baton = baton;
14601 prop->kind = PROP_LOCEXPR;
14602 gdb_assert (prop->data.baton != NULL);
14603 }
14604 else
14605 {
14606 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14607 "dynamic property");
14608 return 0;
14609 }
14610 }
14611 else if (attr_form_is_constant (attr))
14612 {
14613 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14614 prop->kind = PROP_CONST;
14615 }
14616 else
14617 {
14618 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14619 dwarf2_name (die, cu));
14620 return 0;
14621 }
14622
14623 return 1;
14624 }
14625
14626 /* Read the given DW_AT_subrange DIE. */
14627
14628 static struct type *
14629 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14630 {
14631 struct type *base_type, *orig_base_type;
14632 struct type *range_type;
14633 struct attribute *attr;
14634 struct dynamic_prop low, high;
14635 int low_default_is_valid;
14636 int high_bound_is_count = 0;
14637 const char *name;
14638 LONGEST negative_mask;
14639
14640 orig_base_type = die_type (die, cu);
14641 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14642 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14643 creating the range type, but we use the result of check_typedef
14644 when examining properties of the type. */
14645 base_type = check_typedef (orig_base_type);
14646
14647 /* The die_type call above may have already set the type for this DIE. */
14648 range_type = get_die_type (die, cu);
14649 if (range_type)
14650 return range_type;
14651
14652 low.kind = PROP_CONST;
14653 high.kind = PROP_CONST;
14654 high.data.const_val = 0;
14655
14656 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14657 omitting DW_AT_lower_bound. */
14658 switch (cu->language)
14659 {
14660 case language_c:
14661 case language_cplus:
14662 low.data.const_val = 0;
14663 low_default_is_valid = 1;
14664 break;
14665 case language_fortran:
14666 low.data.const_val = 1;
14667 low_default_is_valid = 1;
14668 break;
14669 case language_d:
14670 case language_java:
14671 case language_objc:
14672 low.data.const_val = 0;
14673 low_default_is_valid = (cu->header.version >= 4);
14674 break;
14675 case language_ada:
14676 case language_m2:
14677 case language_pascal:
14678 low.data.const_val = 1;
14679 low_default_is_valid = (cu->header.version >= 4);
14680 break;
14681 default:
14682 low.data.const_val = 0;
14683 low_default_is_valid = 0;
14684 break;
14685 }
14686
14687 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14688 if (attr)
14689 attr_to_dynamic_prop (attr, die, cu, &low);
14690 else if (!low_default_is_valid)
14691 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14692 "- DIE at 0x%x [in module %s]"),
14693 die->offset.sect_off, objfile_name (cu->objfile));
14694
14695 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14696 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14697 {
14698 attr = dwarf2_attr (die, DW_AT_count, cu);
14699 if (attr_to_dynamic_prop (attr, die, cu, &high))
14700 {
14701 /* If bounds are constant do the final calculation here. */
14702 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14703 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14704 else
14705 high_bound_is_count = 1;
14706 }
14707 }
14708
14709 /* Dwarf-2 specifications explicitly allows to create subrange types
14710 without specifying a base type.
14711 In that case, the base type must be set to the type of
14712 the lower bound, upper bound or count, in that order, if any of these
14713 three attributes references an object that has a type.
14714 If no base type is found, the Dwarf-2 specifications say that
14715 a signed integer type of size equal to the size of an address should
14716 be used.
14717 For the following C code: `extern char gdb_int [];'
14718 GCC produces an empty range DIE.
14719 FIXME: muller/2010-05-28: Possible references to object for low bound,
14720 high bound or count are not yet handled by this code. */
14721 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14722 {
14723 struct objfile *objfile = cu->objfile;
14724 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14725 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14726 struct type *int_type = objfile_type (objfile)->builtin_int;
14727
14728 /* Test "int", "long int", and "long long int" objfile types,
14729 and select the first one having a size above or equal to the
14730 architecture address size. */
14731 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14732 base_type = int_type;
14733 else
14734 {
14735 int_type = objfile_type (objfile)->builtin_long;
14736 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14737 base_type = int_type;
14738 else
14739 {
14740 int_type = objfile_type (objfile)->builtin_long_long;
14741 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14742 base_type = int_type;
14743 }
14744 }
14745 }
14746
14747 /* Normally, the DWARF producers are expected to use a signed
14748 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14749 But this is unfortunately not always the case, as witnessed
14750 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14751 is used instead. To work around that ambiguity, we treat
14752 the bounds as signed, and thus sign-extend their values, when
14753 the base type is signed. */
14754 negative_mask =
14755 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14756 if (low.kind == PROP_CONST
14757 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14758 low.data.const_val |= negative_mask;
14759 if (high.kind == PROP_CONST
14760 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14761 high.data.const_val |= negative_mask;
14762
14763 range_type = create_range_type (NULL, orig_base_type, &low, &high);
14764
14765 if (high_bound_is_count)
14766 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14767
14768 /* Ada expects an empty array on no boundary attributes. */
14769 if (attr == NULL && cu->language != language_ada)
14770 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
14771
14772 name = dwarf2_name (die, cu);
14773 if (name)
14774 TYPE_NAME (range_type) = name;
14775
14776 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14777 if (attr)
14778 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14779
14780 set_die_type (die, range_type, cu);
14781
14782 /* set_die_type should be already done. */
14783 set_descriptive_type (range_type, die, cu);
14784
14785 return range_type;
14786 }
14787
14788 static struct type *
14789 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14790 {
14791 struct type *type;
14792
14793 /* For now, we only support the C meaning of an unspecified type: void. */
14794
14795 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14796 TYPE_NAME (type) = dwarf2_name (die, cu);
14797
14798 return set_die_type (die, type, cu);
14799 }
14800
14801 /* Read a single die and all its descendents. Set the die's sibling
14802 field to NULL; set other fields in the die correctly, and set all
14803 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14804 location of the info_ptr after reading all of those dies. PARENT
14805 is the parent of the die in question. */
14806
14807 static struct die_info *
14808 read_die_and_children (const struct die_reader_specs *reader,
14809 const gdb_byte *info_ptr,
14810 const gdb_byte **new_info_ptr,
14811 struct die_info *parent)
14812 {
14813 struct die_info *die;
14814 const gdb_byte *cur_ptr;
14815 int has_children;
14816
14817 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14818 if (die == NULL)
14819 {
14820 *new_info_ptr = cur_ptr;
14821 return NULL;
14822 }
14823 store_in_ref_table (die, reader->cu);
14824
14825 if (has_children)
14826 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14827 else
14828 {
14829 die->child = NULL;
14830 *new_info_ptr = cur_ptr;
14831 }
14832
14833 die->sibling = NULL;
14834 die->parent = parent;
14835 return die;
14836 }
14837
14838 /* Read a die, all of its descendents, and all of its siblings; set
14839 all of the fields of all of the dies correctly. Arguments are as
14840 in read_die_and_children. */
14841
14842 static struct die_info *
14843 read_die_and_siblings_1 (const struct die_reader_specs *reader,
14844 const gdb_byte *info_ptr,
14845 const gdb_byte **new_info_ptr,
14846 struct die_info *parent)
14847 {
14848 struct die_info *first_die, *last_sibling;
14849 const gdb_byte *cur_ptr;
14850
14851 cur_ptr = info_ptr;
14852 first_die = last_sibling = NULL;
14853
14854 while (1)
14855 {
14856 struct die_info *die
14857 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14858
14859 if (die == NULL)
14860 {
14861 *new_info_ptr = cur_ptr;
14862 return first_die;
14863 }
14864
14865 if (!first_die)
14866 first_die = die;
14867 else
14868 last_sibling->sibling = die;
14869
14870 last_sibling = die;
14871 }
14872 }
14873
14874 /* Read a die, all of its descendents, and all of its siblings; set
14875 all of the fields of all of the dies correctly. Arguments are as
14876 in read_die_and_children.
14877 This the main entry point for reading a DIE and all its children. */
14878
14879 static struct die_info *
14880 read_die_and_siblings (const struct die_reader_specs *reader,
14881 const gdb_byte *info_ptr,
14882 const gdb_byte **new_info_ptr,
14883 struct die_info *parent)
14884 {
14885 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14886 new_info_ptr, parent);
14887
14888 if (dwarf2_die_debug)
14889 {
14890 fprintf_unfiltered (gdb_stdlog,
14891 "Read die from %s@0x%x of %s:\n",
14892 get_section_name (reader->die_section),
14893 (unsigned) (info_ptr - reader->die_section->buffer),
14894 bfd_get_filename (reader->abfd));
14895 dump_die (die, dwarf2_die_debug);
14896 }
14897
14898 return die;
14899 }
14900
14901 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14902 attributes.
14903 The caller is responsible for filling in the extra attributes
14904 and updating (*DIEP)->num_attrs.
14905 Set DIEP to point to a newly allocated die with its information,
14906 except for its child, sibling, and parent fields.
14907 Set HAS_CHILDREN to tell whether the die has children or not. */
14908
14909 static const gdb_byte *
14910 read_full_die_1 (const struct die_reader_specs *reader,
14911 struct die_info **diep, const gdb_byte *info_ptr,
14912 int *has_children, int num_extra_attrs)
14913 {
14914 unsigned int abbrev_number, bytes_read, i;
14915 sect_offset offset;
14916 struct abbrev_info *abbrev;
14917 struct die_info *die;
14918 struct dwarf2_cu *cu = reader->cu;
14919 bfd *abfd = reader->abfd;
14920
14921 offset.sect_off = info_ptr - reader->buffer;
14922 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14923 info_ptr += bytes_read;
14924 if (!abbrev_number)
14925 {
14926 *diep = NULL;
14927 *has_children = 0;
14928 return info_ptr;
14929 }
14930
14931 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14932 if (!abbrev)
14933 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14934 abbrev_number,
14935 bfd_get_filename (abfd));
14936
14937 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14938 die->offset = offset;
14939 die->tag = abbrev->tag;
14940 die->abbrev = abbrev_number;
14941
14942 /* Make the result usable.
14943 The caller needs to update num_attrs after adding the extra
14944 attributes. */
14945 die->num_attrs = abbrev->num_attrs;
14946
14947 for (i = 0; i < abbrev->num_attrs; ++i)
14948 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14949 info_ptr);
14950
14951 *diep = die;
14952 *has_children = abbrev->has_children;
14953 return info_ptr;
14954 }
14955
14956 /* Read a die and all its attributes.
14957 Set DIEP to point to a newly allocated die with its information,
14958 except for its child, sibling, and parent fields.
14959 Set HAS_CHILDREN to tell whether the die has children or not. */
14960
14961 static const gdb_byte *
14962 read_full_die (const struct die_reader_specs *reader,
14963 struct die_info **diep, const gdb_byte *info_ptr,
14964 int *has_children)
14965 {
14966 const gdb_byte *result;
14967
14968 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14969
14970 if (dwarf2_die_debug)
14971 {
14972 fprintf_unfiltered (gdb_stdlog,
14973 "Read die from %s@0x%x of %s:\n",
14974 get_section_name (reader->die_section),
14975 (unsigned) (info_ptr - reader->die_section->buffer),
14976 bfd_get_filename (reader->abfd));
14977 dump_die (*diep, dwarf2_die_debug);
14978 }
14979
14980 return result;
14981 }
14982 \f
14983 /* Abbreviation tables.
14984
14985 In DWARF version 2, the description of the debugging information is
14986 stored in a separate .debug_abbrev section. Before we read any
14987 dies from a section we read in all abbreviations and install them
14988 in a hash table. */
14989
14990 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14991
14992 static struct abbrev_info *
14993 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14994 {
14995 struct abbrev_info *abbrev;
14996
14997 abbrev = (struct abbrev_info *)
14998 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14999 memset (abbrev, 0, sizeof (struct abbrev_info));
15000 return abbrev;
15001 }
15002
15003 /* Add an abbreviation to the table. */
15004
15005 static void
15006 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15007 unsigned int abbrev_number,
15008 struct abbrev_info *abbrev)
15009 {
15010 unsigned int hash_number;
15011
15012 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15013 abbrev->next = abbrev_table->abbrevs[hash_number];
15014 abbrev_table->abbrevs[hash_number] = abbrev;
15015 }
15016
15017 /* Look up an abbrev in the table.
15018 Returns NULL if the abbrev is not found. */
15019
15020 static struct abbrev_info *
15021 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15022 unsigned int abbrev_number)
15023 {
15024 unsigned int hash_number;
15025 struct abbrev_info *abbrev;
15026
15027 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15028 abbrev = abbrev_table->abbrevs[hash_number];
15029
15030 while (abbrev)
15031 {
15032 if (abbrev->number == abbrev_number)
15033 return abbrev;
15034 abbrev = abbrev->next;
15035 }
15036 return NULL;
15037 }
15038
15039 /* Read in an abbrev table. */
15040
15041 static struct abbrev_table *
15042 abbrev_table_read_table (struct dwarf2_section_info *section,
15043 sect_offset offset)
15044 {
15045 struct objfile *objfile = dwarf2_per_objfile->objfile;
15046 bfd *abfd = get_section_bfd_owner (section);
15047 struct abbrev_table *abbrev_table;
15048 const gdb_byte *abbrev_ptr;
15049 struct abbrev_info *cur_abbrev;
15050 unsigned int abbrev_number, bytes_read, abbrev_name;
15051 unsigned int abbrev_form;
15052 struct attr_abbrev *cur_attrs;
15053 unsigned int allocated_attrs;
15054
15055 abbrev_table = XNEW (struct abbrev_table);
15056 abbrev_table->offset = offset;
15057 obstack_init (&abbrev_table->abbrev_obstack);
15058 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15059 (ABBREV_HASH_SIZE
15060 * sizeof (struct abbrev_info *)));
15061 memset (abbrev_table->abbrevs, 0,
15062 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15063
15064 dwarf2_read_section (objfile, section);
15065 abbrev_ptr = section->buffer + offset.sect_off;
15066 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15067 abbrev_ptr += bytes_read;
15068
15069 allocated_attrs = ATTR_ALLOC_CHUNK;
15070 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15071
15072 /* Loop until we reach an abbrev number of 0. */
15073 while (abbrev_number)
15074 {
15075 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15076
15077 /* read in abbrev header */
15078 cur_abbrev->number = abbrev_number;
15079 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15080 abbrev_ptr += bytes_read;
15081 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15082 abbrev_ptr += 1;
15083
15084 /* now read in declarations */
15085 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15086 abbrev_ptr += bytes_read;
15087 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15088 abbrev_ptr += bytes_read;
15089 while (abbrev_name)
15090 {
15091 if (cur_abbrev->num_attrs == allocated_attrs)
15092 {
15093 allocated_attrs += ATTR_ALLOC_CHUNK;
15094 cur_attrs
15095 = xrealloc (cur_attrs, (allocated_attrs
15096 * sizeof (struct attr_abbrev)));
15097 }
15098
15099 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15100 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15101 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15102 abbrev_ptr += bytes_read;
15103 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15104 abbrev_ptr += bytes_read;
15105 }
15106
15107 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15108 (cur_abbrev->num_attrs
15109 * sizeof (struct attr_abbrev)));
15110 memcpy (cur_abbrev->attrs, cur_attrs,
15111 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15112
15113 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15114
15115 /* Get next abbreviation.
15116 Under Irix6 the abbreviations for a compilation unit are not
15117 always properly terminated with an abbrev number of 0.
15118 Exit loop if we encounter an abbreviation which we have
15119 already read (which means we are about to read the abbreviations
15120 for the next compile unit) or if the end of the abbreviation
15121 table is reached. */
15122 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15123 break;
15124 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15125 abbrev_ptr += bytes_read;
15126 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15127 break;
15128 }
15129
15130 xfree (cur_attrs);
15131 return abbrev_table;
15132 }
15133
15134 /* Free the resources held by ABBREV_TABLE. */
15135
15136 static void
15137 abbrev_table_free (struct abbrev_table *abbrev_table)
15138 {
15139 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15140 xfree (abbrev_table);
15141 }
15142
15143 /* Same as abbrev_table_free but as a cleanup.
15144 We pass in a pointer to the pointer to the table so that we can
15145 set the pointer to NULL when we're done. It also simplifies
15146 build_type_psymtabs_1. */
15147
15148 static void
15149 abbrev_table_free_cleanup (void *table_ptr)
15150 {
15151 struct abbrev_table **abbrev_table_ptr = table_ptr;
15152
15153 if (*abbrev_table_ptr != NULL)
15154 abbrev_table_free (*abbrev_table_ptr);
15155 *abbrev_table_ptr = NULL;
15156 }
15157
15158 /* Read the abbrev table for CU from ABBREV_SECTION. */
15159
15160 static void
15161 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15162 struct dwarf2_section_info *abbrev_section)
15163 {
15164 cu->abbrev_table =
15165 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15166 }
15167
15168 /* Release the memory used by the abbrev table for a compilation unit. */
15169
15170 static void
15171 dwarf2_free_abbrev_table (void *ptr_to_cu)
15172 {
15173 struct dwarf2_cu *cu = ptr_to_cu;
15174
15175 if (cu->abbrev_table != NULL)
15176 abbrev_table_free (cu->abbrev_table);
15177 /* Set this to NULL so that we SEGV if we try to read it later,
15178 and also because free_comp_unit verifies this is NULL. */
15179 cu->abbrev_table = NULL;
15180 }
15181 \f
15182 /* Returns nonzero if TAG represents a type that we might generate a partial
15183 symbol for. */
15184
15185 static int
15186 is_type_tag_for_partial (int tag)
15187 {
15188 switch (tag)
15189 {
15190 #if 0
15191 /* Some types that would be reasonable to generate partial symbols for,
15192 that we don't at present. */
15193 case DW_TAG_array_type:
15194 case DW_TAG_file_type:
15195 case DW_TAG_ptr_to_member_type:
15196 case DW_TAG_set_type:
15197 case DW_TAG_string_type:
15198 case DW_TAG_subroutine_type:
15199 #endif
15200 case DW_TAG_base_type:
15201 case DW_TAG_class_type:
15202 case DW_TAG_interface_type:
15203 case DW_TAG_enumeration_type:
15204 case DW_TAG_structure_type:
15205 case DW_TAG_subrange_type:
15206 case DW_TAG_typedef:
15207 case DW_TAG_union_type:
15208 return 1;
15209 default:
15210 return 0;
15211 }
15212 }
15213
15214 /* Load all DIEs that are interesting for partial symbols into memory. */
15215
15216 static struct partial_die_info *
15217 load_partial_dies (const struct die_reader_specs *reader,
15218 const gdb_byte *info_ptr, int building_psymtab)
15219 {
15220 struct dwarf2_cu *cu = reader->cu;
15221 struct objfile *objfile = cu->objfile;
15222 struct partial_die_info *part_die;
15223 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15224 struct abbrev_info *abbrev;
15225 unsigned int bytes_read;
15226 unsigned int load_all = 0;
15227 int nesting_level = 1;
15228
15229 parent_die = NULL;
15230 last_die = NULL;
15231
15232 gdb_assert (cu->per_cu != NULL);
15233 if (cu->per_cu->load_all_dies)
15234 load_all = 1;
15235
15236 cu->partial_dies
15237 = htab_create_alloc_ex (cu->header.length / 12,
15238 partial_die_hash,
15239 partial_die_eq,
15240 NULL,
15241 &cu->comp_unit_obstack,
15242 hashtab_obstack_allocate,
15243 dummy_obstack_deallocate);
15244
15245 part_die = obstack_alloc (&cu->comp_unit_obstack,
15246 sizeof (struct partial_die_info));
15247
15248 while (1)
15249 {
15250 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15251
15252 /* A NULL abbrev means the end of a series of children. */
15253 if (abbrev == NULL)
15254 {
15255 if (--nesting_level == 0)
15256 {
15257 /* PART_DIE was probably the last thing allocated on the
15258 comp_unit_obstack, so we could call obstack_free
15259 here. We don't do that because the waste is small,
15260 and will be cleaned up when we're done with this
15261 compilation unit. This way, we're also more robust
15262 against other users of the comp_unit_obstack. */
15263 return first_die;
15264 }
15265 info_ptr += bytes_read;
15266 last_die = parent_die;
15267 parent_die = parent_die->die_parent;
15268 continue;
15269 }
15270
15271 /* Check for template arguments. We never save these; if
15272 they're seen, we just mark the parent, and go on our way. */
15273 if (parent_die != NULL
15274 && cu->language == language_cplus
15275 && (abbrev->tag == DW_TAG_template_type_param
15276 || abbrev->tag == DW_TAG_template_value_param))
15277 {
15278 parent_die->has_template_arguments = 1;
15279
15280 if (!load_all)
15281 {
15282 /* We don't need a partial DIE for the template argument. */
15283 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15284 continue;
15285 }
15286 }
15287
15288 /* We only recurse into c++ subprograms looking for template arguments.
15289 Skip their other children. */
15290 if (!load_all
15291 && cu->language == language_cplus
15292 && parent_die != NULL
15293 && parent_die->tag == DW_TAG_subprogram)
15294 {
15295 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15296 continue;
15297 }
15298
15299 /* Check whether this DIE is interesting enough to save. Normally
15300 we would not be interested in members here, but there may be
15301 later variables referencing them via DW_AT_specification (for
15302 static members). */
15303 if (!load_all
15304 && !is_type_tag_for_partial (abbrev->tag)
15305 && abbrev->tag != DW_TAG_constant
15306 && abbrev->tag != DW_TAG_enumerator
15307 && abbrev->tag != DW_TAG_subprogram
15308 && abbrev->tag != DW_TAG_lexical_block
15309 && abbrev->tag != DW_TAG_variable
15310 && abbrev->tag != DW_TAG_namespace
15311 && abbrev->tag != DW_TAG_module
15312 && abbrev->tag != DW_TAG_member
15313 && abbrev->tag != DW_TAG_imported_unit
15314 && abbrev->tag != DW_TAG_imported_declaration)
15315 {
15316 /* Otherwise we skip to the next sibling, if any. */
15317 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15318 continue;
15319 }
15320
15321 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15322 info_ptr);
15323
15324 /* This two-pass algorithm for processing partial symbols has a
15325 high cost in cache pressure. Thus, handle some simple cases
15326 here which cover the majority of C partial symbols. DIEs
15327 which neither have specification tags in them, nor could have
15328 specification tags elsewhere pointing at them, can simply be
15329 processed and discarded.
15330
15331 This segment is also optional; scan_partial_symbols and
15332 add_partial_symbol will handle these DIEs if we chain
15333 them in normally. When compilers which do not emit large
15334 quantities of duplicate debug information are more common,
15335 this code can probably be removed. */
15336
15337 /* Any complete simple types at the top level (pretty much all
15338 of them, for a language without namespaces), can be processed
15339 directly. */
15340 if (parent_die == NULL
15341 && part_die->has_specification == 0
15342 && part_die->is_declaration == 0
15343 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15344 || part_die->tag == DW_TAG_base_type
15345 || part_die->tag == DW_TAG_subrange_type))
15346 {
15347 if (building_psymtab && part_die->name != NULL)
15348 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15349 VAR_DOMAIN, LOC_TYPEDEF,
15350 &objfile->static_psymbols,
15351 0, (CORE_ADDR) 0, cu->language, objfile);
15352 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15353 continue;
15354 }
15355
15356 /* The exception for DW_TAG_typedef with has_children above is
15357 a workaround of GCC PR debug/47510. In the case of this complaint
15358 type_name_no_tag_or_error will error on such types later.
15359
15360 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15361 it could not find the child DIEs referenced later, this is checked
15362 above. In correct DWARF DW_TAG_typedef should have no children. */
15363
15364 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15365 complaint (&symfile_complaints,
15366 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15367 "- DIE at 0x%x [in module %s]"),
15368 part_die->offset.sect_off, objfile_name (objfile));
15369
15370 /* If we're at the second level, and we're an enumerator, and
15371 our parent has no specification (meaning possibly lives in a
15372 namespace elsewhere), then we can add the partial symbol now
15373 instead of queueing it. */
15374 if (part_die->tag == DW_TAG_enumerator
15375 && parent_die != NULL
15376 && parent_die->die_parent == NULL
15377 && parent_die->tag == DW_TAG_enumeration_type
15378 && parent_die->has_specification == 0)
15379 {
15380 if (part_die->name == NULL)
15381 complaint (&symfile_complaints,
15382 _("malformed enumerator DIE ignored"));
15383 else if (building_psymtab)
15384 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15385 VAR_DOMAIN, LOC_CONST,
15386 (cu->language == language_cplus
15387 || cu->language == language_java)
15388 ? &objfile->global_psymbols
15389 : &objfile->static_psymbols,
15390 0, (CORE_ADDR) 0, cu->language, objfile);
15391
15392 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15393 continue;
15394 }
15395
15396 /* We'll save this DIE so link it in. */
15397 part_die->die_parent = parent_die;
15398 part_die->die_sibling = NULL;
15399 part_die->die_child = NULL;
15400
15401 if (last_die && last_die == parent_die)
15402 last_die->die_child = part_die;
15403 else if (last_die)
15404 last_die->die_sibling = part_die;
15405
15406 last_die = part_die;
15407
15408 if (first_die == NULL)
15409 first_die = part_die;
15410
15411 /* Maybe add the DIE to the hash table. Not all DIEs that we
15412 find interesting need to be in the hash table, because we
15413 also have the parent/sibling/child chains; only those that we
15414 might refer to by offset later during partial symbol reading.
15415
15416 For now this means things that might have be the target of a
15417 DW_AT_specification, DW_AT_abstract_origin, or
15418 DW_AT_extension. DW_AT_extension will refer only to
15419 namespaces; DW_AT_abstract_origin refers to functions (and
15420 many things under the function DIE, but we do not recurse
15421 into function DIEs during partial symbol reading) and
15422 possibly variables as well; DW_AT_specification refers to
15423 declarations. Declarations ought to have the DW_AT_declaration
15424 flag. It happens that GCC forgets to put it in sometimes, but
15425 only for functions, not for types.
15426
15427 Adding more things than necessary to the hash table is harmless
15428 except for the performance cost. Adding too few will result in
15429 wasted time in find_partial_die, when we reread the compilation
15430 unit with load_all_dies set. */
15431
15432 if (load_all
15433 || abbrev->tag == DW_TAG_constant
15434 || abbrev->tag == DW_TAG_subprogram
15435 || abbrev->tag == DW_TAG_variable
15436 || abbrev->tag == DW_TAG_namespace
15437 || part_die->is_declaration)
15438 {
15439 void **slot;
15440
15441 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15442 part_die->offset.sect_off, INSERT);
15443 *slot = part_die;
15444 }
15445
15446 part_die = obstack_alloc (&cu->comp_unit_obstack,
15447 sizeof (struct partial_die_info));
15448
15449 /* For some DIEs we want to follow their children (if any). For C
15450 we have no reason to follow the children of structures; for other
15451 languages we have to, so that we can get at method physnames
15452 to infer fully qualified class names, for DW_AT_specification,
15453 and for C++ template arguments. For C++, we also look one level
15454 inside functions to find template arguments (if the name of the
15455 function does not already contain the template arguments).
15456
15457 For Ada, we need to scan the children of subprograms and lexical
15458 blocks as well because Ada allows the definition of nested
15459 entities that could be interesting for the debugger, such as
15460 nested subprograms for instance. */
15461 if (last_die->has_children
15462 && (load_all
15463 || last_die->tag == DW_TAG_namespace
15464 || last_die->tag == DW_TAG_module
15465 || last_die->tag == DW_TAG_enumeration_type
15466 || (cu->language == language_cplus
15467 && last_die->tag == DW_TAG_subprogram
15468 && (last_die->name == NULL
15469 || strchr (last_die->name, '<') == NULL))
15470 || (cu->language != language_c
15471 && (last_die->tag == DW_TAG_class_type
15472 || last_die->tag == DW_TAG_interface_type
15473 || last_die->tag == DW_TAG_structure_type
15474 || last_die->tag == DW_TAG_union_type))
15475 || (cu->language == language_ada
15476 && (last_die->tag == DW_TAG_subprogram
15477 || last_die->tag == DW_TAG_lexical_block))))
15478 {
15479 nesting_level++;
15480 parent_die = last_die;
15481 continue;
15482 }
15483
15484 /* Otherwise we skip to the next sibling, if any. */
15485 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15486
15487 /* Back to the top, do it again. */
15488 }
15489 }
15490
15491 /* Read a minimal amount of information into the minimal die structure. */
15492
15493 static const gdb_byte *
15494 read_partial_die (const struct die_reader_specs *reader,
15495 struct partial_die_info *part_die,
15496 struct abbrev_info *abbrev, unsigned int abbrev_len,
15497 const gdb_byte *info_ptr)
15498 {
15499 struct dwarf2_cu *cu = reader->cu;
15500 struct objfile *objfile = cu->objfile;
15501 const gdb_byte *buffer = reader->buffer;
15502 unsigned int i;
15503 struct attribute attr;
15504 int has_low_pc_attr = 0;
15505 int has_high_pc_attr = 0;
15506 int high_pc_relative = 0;
15507
15508 memset (part_die, 0, sizeof (struct partial_die_info));
15509
15510 part_die->offset.sect_off = info_ptr - buffer;
15511
15512 info_ptr += abbrev_len;
15513
15514 if (abbrev == NULL)
15515 return info_ptr;
15516
15517 part_die->tag = abbrev->tag;
15518 part_die->has_children = abbrev->has_children;
15519
15520 for (i = 0; i < abbrev->num_attrs; ++i)
15521 {
15522 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15523
15524 /* Store the data if it is of an attribute we want to keep in a
15525 partial symbol table. */
15526 switch (attr.name)
15527 {
15528 case DW_AT_name:
15529 switch (part_die->tag)
15530 {
15531 case DW_TAG_compile_unit:
15532 case DW_TAG_partial_unit:
15533 case DW_TAG_type_unit:
15534 /* Compilation units have a DW_AT_name that is a filename, not
15535 a source language identifier. */
15536 case DW_TAG_enumeration_type:
15537 case DW_TAG_enumerator:
15538 /* These tags always have simple identifiers already; no need
15539 to canonicalize them. */
15540 part_die->name = DW_STRING (&attr);
15541 break;
15542 default:
15543 part_die->name
15544 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15545 &objfile->per_bfd->storage_obstack);
15546 break;
15547 }
15548 break;
15549 case DW_AT_linkage_name:
15550 case DW_AT_MIPS_linkage_name:
15551 /* Note that both forms of linkage name might appear. We
15552 assume they will be the same, and we only store the last
15553 one we see. */
15554 if (cu->language == language_ada)
15555 part_die->name = DW_STRING (&attr);
15556 part_die->linkage_name = DW_STRING (&attr);
15557 break;
15558 case DW_AT_low_pc:
15559 has_low_pc_attr = 1;
15560 part_die->lowpc = attr_value_as_address (&attr);
15561 break;
15562 case DW_AT_high_pc:
15563 has_high_pc_attr = 1;
15564 part_die->highpc = attr_value_as_address (&attr);
15565 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15566 high_pc_relative = 1;
15567 break;
15568 case DW_AT_location:
15569 /* Support the .debug_loc offsets. */
15570 if (attr_form_is_block (&attr))
15571 {
15572 part_die->d.locdesc = DW_BLOCK (&attr);
15573 }
15574 else if (attr_form_is_section_offset (&attr))
15575 {
15576 dwarf2_complex_location_expr_complaint ();
15577 }
15578 else
15579 {
15580 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15581 "partial symbol information");
15582 }
15583 break;
15584 case DW_AT_external:
15585 part_die->is_external = DW_UNSND (&attr);
15586 break;
15587 case DW_AT_declaration:
15588 part_die->is_declaration = DW_UNSND (&attr);
15589 break;
15590 case DW_AT_type:
15591 part_die->has_type = 1;
15592 break;
15593 case DW_AT_abstract_origin:
15594 case DW_AT_specification:
15595 case DW_AT_extension:
15596 part_die->has_specification = 1;
15597 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15598 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15599 || cu->per_cu->is_dwz);
15600 break;
15601 case DW_AT_sibling:
15602 /* Ignore absolute siblings, they might point outside of
15603 the current compile unit. */
15604 if (attr.form == DW_FORM_ref_addr)
15605 complaint (&symfile_complaints,
15606 _("ignoring absolute DW_AT_sibling"));
15607 else
15608 {
15609 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15610 const gdb_byte *sibling_ptr = buffer + off;
15611
15612 if (sibling_ptr < info_ptr)
15613 complaint (&symfile_complaints,
15614 _("DW_AT_sibling points backwards"));
15615 else if (sibling_ptr > reader->buffer_end)
15616 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15617 else
15618 part_die->sibling = sibling_ptr;
15619 }
15620 break;
15621 case DW_AT_byte_size:
15622 part_die->has_byte_size = 1;
15623 break;
15624 case DW_AT_calling_convention:
15625 /* DWARF doesn't provide a way to identify a program's source-level
15626 entry point. DW_AT_calling_convention attributes are only meant
15627 to describe functions' calling conventions.
15628
15629 However, because it's a necessary piece of information in
15630 Fortran, and because DW_CC_program is the only piece of debugging
15631 information whose definition refers to a 'main program' at all,
15632 several compilers have begun marking Fortran main programs with
15633 DW_CC_program --- even when those functions use the standard
15634 calling conventions.
15635
15636 So until DWARF specifies a way to provide this information and
15637 compilers pick up the new representation, we'll support this
15638 practice. */
15639 if (DW_UNSND (&attr) == DW_CC_program
15640 && cu->language == language_fortran)
15641 set_objfile_main_name (objfile, part_die->name, language_fortran);
15642 break;
15643 case DW_AT_inline:
15644 if (DW_UNSND (&attr) == DW_INL_inlined
15645 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15646 part_die->may_be_inlined = 1;
15647 break;
15648
15649 case DW_AT_import:
15650 if (part_die->tag == DW_TAG_imported_unit)
15651 {
15652 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15653 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15654 || cu->per_cu->is_dwz);
15655 }
15656 break;
15657
15658 default:
15659 break;
15660 }
15661 }
15662
15663 if (high_pc_relative)
15664 part_die->highpc += part_die->lowpc;
15665
15666 if (has_low_pc_attr && has_high_pc_attr)
15667 {
15668 /* When using the GNU linker, .gnu.linkonce. sections are used to
15669 eliminate duplicate copies of functions and vtables and such.
15670 The linker will arbitrarily choose one and discard the others.
15671 The AT_*_pc values for such functions refer to local labels in
15672 these sections. If the section from that file was discarded, the
15673 labels are not in the output, so the relocs get a value of 0.
15674 If this is a discarded function, mark the pc bounds as invalid,
15675 so that GDB will ignore it. */
15676 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15677 {
15678 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15679
15680 complaint (&symfile_complaints,
15681 _("DW_AT_low_pc %s is zero "
15682 "for DIE at 0x%x [in module %s]"),
15683 paddress (gdbarch, part_die->lowpc),
15684 part_die->offset.sect_off, objfile_name (objfile));
15685 }
15686 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15687 else if (part_die->lowpc >= part_die->highpc)
15688 {
15689 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15690
15691 complaint (&symfile_complaints,
15692 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15693 "for DIE at 0x%x [in module %s]"),
15694 paddress (gdbarch, part_die->lowpc),
15695 paddress (gdbarch, part_die->highpc),
15696 part_die->offset.sect_off, objfile_name (objfile));
15697 }
15698 else
15699 part_die->has_pc_info = 1;
15700 }
15701
15702 return info_ptr;
15703 }
15704
15705 /* Find a cached partial DIE at OFFSET in CU. */
15706
15707 static struct partial_die_info *
15708 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15709 {
15710 struct partial_die_info *lookup_die = NULL;
15711 struct partial_die_info part_die;
15712
15713 part_die.offset = offset;
15714 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15715 offset.sect_off);
15716
15717 return lookup_die;
15718 }
15719
15720 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15721 except in the case of .debug_types DIEs which do not reference
15722 outside their CU (they do however referencing other types via
15723 DW_FORM_ref_sig8). */
15724
15725 static struct partial_die_info *
15726 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15727 {
15728 struct objfile *objfile = cu->objfile;
15729 struct dwarf2_per_cu_data *per_cu = NULL;
15730 struct partial_die_info *pd = NULL;
15731
15732 if (offset_in_dwz == cu->per_cu->is_dwz
15733 && offset_in_cu_p (&cu->header, offset))
15734 {
15735 pd = find_partial_die_in_comp_unit (offset, cu);
15736 if (pd != NULL)
15737 return pd;
15738 /* We missed recording what we needed.
15739 Load all dies and try again. */
15740 per_cu = cu->per_cu;
15741 }
15742 else
15743 {
15744 /* TUs don't reference other CUs/TUs (except via type signatures). */
15745 if (cu->per_cu->is_debug_types)
15746 {
15747 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15748 " external reference to offset 0x%lx [in module %s].\n"),
15749 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15750 bfd_get_filename (objfile->obfd));
15751 }
15752 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15753 objfile);
15754
15755 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15756 load_partial_comp_unit (per_cu);
15757
15758 per_cu->cu->last_used = 0;
15759 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15760 }
15761
15762 /* If we didn't find it, and not all dies have been loaded,
15763 load them all and try again. */
15764
15765 if (pd == NULL && per_cu->load_all_dies == 0)
15766 {
15767 per_cu->load_all_dies = 1;
15768
15769 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15770 THIS_CU->cu may already be in use. So we can't just free it and
15771 replace its DIEs with the ones we read in. Instead, we leave those
15772 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15773 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15774 set. */
15775 load_partial_comp_unit (per_cu);
15776
15777 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15778 }
15779
15780 if (pd == NULL)
15781 internal_error (__FILE__, __LINE__,
15782 _("could not find partial DIE 0x%x "
15783 "in cache [from module %s]\n"),
15784 offset.sect_off, bfd_get_filename (objfile->obfd));
15785 return pd;
15786 }
15787
15788 /* See if we can figure out if the class lives in a namespace. We do
15789 this by looking for a member function; its demangled name will
15790 contain namespace info, if there is any. */
15791
15792 static void
15793 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15794 struct dwarf2_cu *cu)
15795 {
15796 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15797 what template types look like, because the demangler
15798 frequently doesn't give the same name as the debug info. We
15799 could fix this by only using the demangled name to get the
15800 prefix (but see comment in read_structure_type). */
15801
15802 struct partial_die_info *real_pdi;
15803 struct partial_die_info *child_pdi;
15804
15805 /* If this DIE (this DIE's specification, if any) has a parent, then
15806 we should not do this. We'll prepend the parent's fully qualified
15807 name when we create the partial symbol. */
15808
15809 real_pdi = struct_pdi;
15810 while (real_pdi->has_specification)
15811 real_pdi = find_partial_die (real_pdi->spec_offset,
15812 real_pdi->spec_is_dwz, cu);
15813
15814 if (real_pdi->die_parent != NULL)
15815 return;
15816
15817 for (child_pdi = struct_pdi->die_child;
15818 child_pdi != NULL;
15819 child_pdi = child_pdi->die_sibling)
15820 {
15821 if (child_pdi->tag == DW_TAG_subprogram
15822 && child_pdi->linkage_name != NULL)
15823 {
15824 char *actual_class_name
15825 = language_class_name_from_physname (cu->language_defn,
15826 child_pdi->linkage_name);
15827 if (actual_class_name != NULL)
15828 {
15829 struct_pdi->name
15830 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15831 actual_class_name,
15832 strlen (actual_class_name));
15833 xfree (actual_class_name);
15834 }
15835 break;
15836 }
15837 }
15838 }
15839
15840 /* Adjust PART_DIE before generating a symbol for it. This function
15841 may set the is_external flag or change the DIE's name. */
15842
15843 static void
15844 fixup_partial_die (struct partial_die_info *part_die,
15845 struct dwarf2_cu *cu)
15846 {
15847 /* Once we've fixed up a die, there's no point in doing so again.
15848 This also avoids a memory leak if we were to call
15849 guess_partial_die_structure_name multiple times. */
15850 if (part_die->fixup_called)
15851 return;
15852
15853 /* If we found a reference attribute and the DIE has no name, try
15854 to find a name in the referred to DIE. */
15855
15856 if (part_die->name == NULL && part_die->has_specification)
15857 {
15858 struct partial_die_info *spec_die;
15859
15860 spec_die = find_partial_die (part_die->spec_offset,
15861 part_die->spec_is_dwz, cu);
15862
15863 fixup_partial_die (spec_die, cu);
15864
15865 if (spec_die->name)
15866 {
15867 part_die->name = spec_die->name;
15868
15869 /* Copy DW_AT_external attribute if it is set. */
15870 if (spec_die->is_external)
15871 part_die->is_external = spec_die->is_external;
15872 }
15873 }
15874
15875 /* Set default names for some unnamed DIEs. */
15876
15877 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15878 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15879
15880 /* If there is no parent die to provide a namespace, and there are
15881 children, see if we can determine the namespace from their linkage
15882 name. */
15883 if (cu->language == language_cplus
15884 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15885 && part_die->die_parent == NULL
15886 && part_die->has_children
15887 && (part_die->tag == DW_TAG_class_type
15888 || part_die->tag == DW_TAG_structure_type
15889 || part_die->tag == DW_TAG_union_type))
15890 guess_partial_die_structure_name (part_die, cu);
15891
15892 /* GCC might emit a nameless struct or union that has a linkage
15893 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15894 if (part_die->name == NULL
15895 && (part_die->tag == DW_TAG_class_type
15896 || part_die->tag == DW_TAG_interface_type
15897 || part_die->tag == DW_TAG_structure_type
15898 || part_die->tag == DW_TAG_union_type)
15899 && part_die->linkage_name != NULL)
15900 {
15901 char *demangled;
15902
15903 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15904 if (demangled)
15905 {
15906 const char *base;
15907
15908 /* Strip any leading namespaces/classes, keep only the base name.
15909 DW_AT_name for named DIEs does not contain the prefixes. */
15910 base = strrchr (demangled, ':');
15911 if (base && base > demangled && base[-1] == ':')
15912 base++;
15913 else
15914 base = demangled;
15915
15916 part_die->name
15917 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15918 base, strlen (base));
15919 xfree (demangled);
15920 }
15921 }
15922
15923 part_die->fixup_called = 1;
15924 }
15925
15926 /* Read an attribute value described by an attribute form. */
15927
15928 static const gdb_byte *
15929 read_attribute_value (const struct die_reader_specs *reader,
15930 struct attribute *attr, unsigned form,
15931 const gdb_byte *info_ptr)
15932 {
15933 struct dwarf2_cu *cu = reader->cu;
15934 bfd *abfd = reader->abfd;
15935 struct comp_unit_head *cu_header = &cu->header;
15936 unsigned int bytes_read;
15937 struct dwarf_block *blk;
15938
15939 attr->form = form;
15940 switch (form)
15941 {
15942 case DW_FORM_ref_addr:
15943 if (cu->header.version == 2)
15944 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15945 else
15946 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15947 &cu->header, &bytes_read);
15948 info_ptr += bytes_read;
15949 break;
15950 case DW_FORM_GNU_ref_alt:
15951 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15952 info_ptr += bytes_read;
15953 break;
15954 case DW_FORM_addr:
15955 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15956 info_ptr += bytes_read;
15957 break;
15958 case DW_FORM_block2:
15959 blk = dwarf_alloc_block (cu);
15960 blk->size = read_2_bytes (abfd, info_ptr);
15961 info_ptr += 2;
15962 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15963 info_ptr += blk->size;
15964 DW_BLOCK (attr) = blk;
15965 break;
15966 case DW_FORM_block4:
15967 blk = dwarf_alloc_block (cu);
15968 blk->size = read_4_bytes (abfd, info_ptr);
15969 info_ptr += 4;
15970 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15971 info_ptr += blk->size;
15972 DW_BLOCK (attr) = blk;
15973 break;
15974 case DW_FORM_data2:
15975 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15976 info_ptr += 2;
15977 break;
15978 case DW_FORM_data4:
15979 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15980 info_ptr += 4;
15981 break;
15982 case DW_FORM_data8:
15983 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15984 info_ptr += 8;
15985 break;
15986 case DW_FORM_sec_offset:
15987 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15988 info_ptr += bytes_read;
15989 break;
15990 case DW_FORM_string:
15991 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
15992 DW_STRING_IS_CANONICAL (attr) = 0;
15993 info_ptr += bytes_read;
15994 break;
15995 case DW_FORM_strp:
15996 if (!cu->per_cu->is_dwz)
15997 {
15998 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15999 &bytes_read);
16000 DW_STRING_IS_CANONICAL (attr) = 0;
16001 info_ptr += bytes_read;
16002 break;
16003 }
16004 /* FALLTHROUGH */
16005 case DW_FORM_GNU_strp_alt:
16006 {
16007 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16008 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16009 &bytes_read);
16010
16011 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16012 DW_STRING_IS_CANONICAL (attr) = 0;
16013 info_ptr += bytes_read;
16014 }
16015 break;
16016 case DW_FORM_exprloc:
16017 case DW_FORM_block:
16018 blk = dwarf_alloc_block (cu);
16019 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16020 info_ptr += bytes_read;
16021 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16022 info_ptr += blk->size;
16023 DW_BLOCK (attr) = blk;
16024 break;
16025 case DW_FORM_block1:
16026 blk = dwarf_alloc_block (cu);
16027 blk->size = read_1_byte (abfd, info_ptr);
16028 info_ptr += 1;
16029 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16030 info_ptr += blk->size;
16031 DW_BLOCK (attr) = blk;
16032 break;
16033 case DW_FORM_data1:
16034 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16035 info_ptr += 1;
16036 break;
16037 case DW_FORM_flag:
16038 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16039 info_ptr += 1;
16040 break;
16041 case DW_FORM_flag_present:
16042 DW_UNSND (attr) = 1;
16043 break;
16044 case DW_FORM_sdata:
16045 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16046 info_ptr += bytes_read;
16047 break;
16048 case DW_FORM_udata:
16049 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16050 info_ptr += bytes_read;
16051 break;
16052 case DW_FORM_ref1:
16053 DW_UNSND (attr) = (cu->header.offset.sect_off
16054 + read_1_byte (abfd, info_ptr));
16055 info_ptr += 1;
16056 break;
16057 case DW_FORM_ref2:
16058 DW_UNSND (attr) = (cu->header.offset.sect_off
16059 + read_2_bytes (abfd, info_ptr));
16060 info_ptr += 2;
16061 break;
16062 case DW_FORM_ref4:
16063 DW_UNSND (attr) = (cu->header.offset.sect_off
16064 + read_4_bytes (abfd, info_ptr));
16065 info_ptr += 4;
16066 break;
16067 case DW_FORM_ref8:
16068 DW_UNSND (attr) = (cu->header.offset.sect_off
16069 + read_8_bytes (abfd, info_ptr));
16070 info_ptr += 8;
16071 break;
16072 case DW_FORM_ref_sig8:
16073 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16074 info_ptr += 8;
16075 break;
16076 case DW_FORM_ref_udata:
16077 DW_UNSND (attr) = (cu->header.offset.sect_off
16078 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16079 info_ptr += bytes_read;
16080 break;
16081 case DW_FORM_indirect:
16082 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16083 info_ptr += bytes_read;
16084 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16085 break;
16086 case DW_FORM_GNU_addr_index:
16087 if (reader->dwo_file == NULL)
16088 {
16089 /* For now flag a hard error.
16090 Later we can turn this into a complaint. */
16091 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16092 dwarf_form_name (form),
16093 bfd_get_filename (abfd));
16094 }
16095 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16096 info_ptr += bytes_read;
16097 break;
16098 case DW_FORM_GNU_str_index:
16099 if (reader->dwo_file == NULL)
16100 {
16101 /* For now flag a hard error.
16102 Later we can turn this into a complaint if warranted. */
16103 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16104 dwarf_form_name (form),
16105 bfd_get_filename (abfd));
16106 }
16107 {
16108 ULONGEST str_index =
16109 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16110
16111 DW_STRING (attr) = read_str_index (reader, str_index);
16112 DW_STRING_IS_CANONICAL (attr) = 0;
16113 info_ptr += bytes_read;
16114 }
16115 break;
16116 default:
16117 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16118 dwarf_form_name (form),
16119 bfd_get_filename (abfd));
16120 }
16121
16122 /* Super hack. */
16123 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16124 attr->form = DW_FORM_GNU_ref_alt;
16125
16126 /* We have seen instances where the compiler tried to emit a byte
16127 size attribute of -1 which ended up being encoded as an unsigned
16128 0xffffffff. Although 0xffffffff is technically a valid size value,
16129 an object of this size seems pretty unlikely so we can relatively
16130 safely treat these cases as if the size attribute was invalid and
16131 treat them as zero by default. */
16132 if (attr->name == DW_AT_byte_size
16133 && form == DW_FORM_data4
16134 && DW_UNSND (attr) >= 0xffffffff)
16135 {
16136 complaint
16137 (&symfile_complaints,
16138 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16139 hex_string (DW_UNSND (attr)));
16140 DW_UNSND (attr) = 0;
16141 }
16142
16143 return info_ptr;
16144 }
16145
16146 /* Read an attribute described by an abbreviated attribute. */
16147
16148 static const gdb_byte *
16149 read_attribute (const struct die_reader_specs *reader,
16150 struct attribute *attr, struct attr_abbrev *abbrev,
16151 const gdb_byte *info_ptr)
16152 {
16153 attr->name = abbrev->name;
16154 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16155 }
16156
16157 /* Read dwarf information from a buffer. */
16158
16159 static unsigned int
16160 read_1_byte (bfd *abfd, const gdb_byte *buf)
16161 {
16162 return bfd_get_8 (abfd, buf);
16163 }
16164
16165 static int
16166 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16167 {
16168 return bfd_get_signed_8 (abfd, buf);
16169 }
16170
16171 static unsigned int
16172 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16173 {
16174 return bfd_get_16 (abfd, buf);
16175 }
16176
16177 static int
16178 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16179 {
16180 return bfd_get_signed_16 (abfd, buf);
16181 }
16182
16183 static unsigned int
16184 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16185 {
16186 return bfd_get_32 (abfd, buf);
16187 }
16188
16189 static int
16190 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16191 {
16192 return bfd_get_signed_32 (abfd, buf);
16193 }
16194
16195 static ULONGEST
16196 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16197 {
16198 return bfd_get_64 (abfd, buf);
16199 }
16200
16201 static CORE_ADDR
16202 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16203 unsigned int *bytes_read)
16204 {
16205 struct comp_unit_head *cu_header = &cu->header;
16206 CORE_ADDR retval = 0;
16207
16208 if (cu_header->signed_addr_p)
16209 {
16210 switch (cu_header->addr_size)
16211 {
16212 case 2:
16213 retval = bfd_get_signed_16 (abfd, buf);
16214 break;
16215 case 4:
16216 retval = bfd_get_signed_32 (abfd, buf);
16217 break;
16218 case 8:
16219 retval = bfd_get_signed_64 (abfd, buf);
16220 break;
16221 default:
16222 internal_error (__FILE__, __LINE__,
16223 _("read_address: bad switch, signed [in module %s]"),
16224 bfd_get_filename (abfd));
16225 }
16226 }
16227 else
16228 {
16229 switch (cu_header->addr_size)
16230 {
16231 case 2:
16232 retval = bfd_get_16 (abfd, buf);
16233 break;
16234 case 4:
16235 retval = bfd_get_32 (abfd, buf);
16236 break;
16237 case 8:
16238 retval = bfd_get_64 (abfd, buf);
16239 break;
16240 default:
16241 internal_error (__FILE__, __LINE__,
16242 _("read_address: bad switch, "
16243 "unsigned [in module %s]"),
16244 bfd_get_filename (abfd));
16245 }
16246 }
16247
16248 *bytes_read = cu_header->addr_size;
16249 return retval;
16250 }
16251
16252 /* Read the initial length from a section. The (draft) DWARF 3
16253 specification allows the initial length to take up either 4 bytes
16254 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16255 bytes describe the length and all offsets will be 8 bytes in length
16256 instead of 4.
16257
16258 An older, non-standard 64-bit format is also handled by this
16259 function. The older format in question stores the initial length
16260 as an 8-byte quantity without an escape value. Lengths greater
16261 than 2^32 aren't very common which means that the initial 4 bytes
16262 is almost always zero. Since a length value of zero doesn't make
16263 sense for the 32-bit format, this initial zero can be considered to
16264 be an escape value which indicates the presence of the older 64-bit
16265 format. As written, the code can't detect (old format) lengths
16266 greater than 4GB. If it becomes necessary to handle lengths
16267 somewhat larger than 4GB, we could allow other small values (such
16268 as the non-sensical values of 1, 2, and 3) to also be used as
16269 escape values indicating the presence of the old format.
16270
16271 The value returned via bytes_read should be used to increment the
16272 relevant pointer after calling read_initial_length().
16273
16274 [ Note: read_initial_length() and read_offset() are based on the
16275 document entitled "DWARF Debugging Information Format", revision
16276 3, draft 8, dated November 19, 2001. This document was obtained
16277 from:
16278
16279 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16280
16281 This document is only a draft and is subject to change. (So beware.)
16282
16283 Details regarding the older, non-standard 64-bit format were
16284 determined empirically by examining 64-bit ELF files produced by
16285 the SGI toolchain on an IRIX 6.5 machine.
16286
16287 - Kevin, July 16, 2002
16288 ] */
16289
16290 static LONGEST
16291 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16292 {
16293 LONGEST length = bfd_get_32 (abfd, buf);
16294
16295 if (length == 0xffffffff)
16296 {
16297 length = bfd_get_64 (abfd, buf + 4);
16298 *bytes_read = 12;
16299 }
16300 else if (length == 0)
16301 {
16302 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16303 length = bfd_get_64 (abfd, buf);
16304 *bytes_read = 8;
16305 }
16306 else
16307 {
16308 *bytes_read = 4;
16309 }
16310
16311 return length;
16312 }
16313
16314 /* Cover function for read_initial_length.
16315 Returns the length of the object at BUF, and stores the size of the
16316 initial length in *BYTES_READ and stores the size that offsets will be in
16317 *OFFSET_SIZE.
16318 If the initial length size is not equivalent to that specified in
16319 CU_HEADER then issue a complaint.
16320 This is useful when reading non-comp-unit headers. */
16321
16322 static LONGEST
16323 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16324 const struct comp_unit_head *cu_header,
16325 unsigned int *bytes_read,
16326 unsigned int *offset_size)
16327 {
16328 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16329
16330 gdb_assert (cu_header->initial_length_size == 4
16331 || cu_header->initial_length_size == 8
16332 || cu_header->initial_length_size == 12);
16333
16334 if (cu_header->initial_length_size != *bytes_read)
16335 complaint (&symfile_complaints,
16336 _("intermixed 32-bit and 64-bit DWARF sections"));
16337
16338 *offset_size = (*bytes_read == 4) ? 4 : 8;
16339 return length;
16340 }
16341
16342 /* Read an offset from the data stream. The size of the offset is
16343 given by cu_header->offset_size. */
16344
16345 static LONGEST
16346 read_offset (bfd *abfd, const gdb_byte *buf,
16347 const struct comp_unit_head *cu_header,
16348 unsigned int *bytes_read)
16349 {
16350 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16351
16352 *bytes_read = cu_header->offset_size;
16353 return offset;
16354 }
16355
16356 /* Read an offset from the data stream. */
16357
16358 static LONGEST
16359 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16360 {
16361 LONGEST retval = 0;
16362
16363 switch (offset_size)
16364 {
16365 case 4:
16366 retval = bfd_get_32 (abfd, buf);
16367 break;
16368 case 8:
16369 retval = bfd_get_64 (abfd, buf);
16370 break;
16371 default:
16372 internal_error (__FILE__, __LINE__,
16373 _("read_offset_1: bad switch [in module %s]"),
16374 bfd_get_filename (abfd));
16375 }
16376
16377 return retval;
16378 }
16379
16380 static const gdb_byte *
16381 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16382 {
16383 /* If the size of a host char is 8 bits, we can return a pointer
16384 to the buffer, otherwise we have to copy the data to a buffer
16385 allocated on the temporary obstack. */
16386 gdb_assert (HOST_CHAR_BIT == 8);
16387 return buf;
16388 }
16389
16390 static const char *
16391 read_direct_string (bfd *abfd, const gdb_byte *buf,
16392 unsigned int *bytes_read_ptr)
16393 {
16394 /* If the size of a host char is 8 bits, we can return a pointer
16395 to the string, otherwise we have to copy the string to a buffer
16396 allocated on the temporary obstack. */
16397 gdb_assert (HOST_CHAR_BIT == 8);
16398 if (*buf == '\0')
16399 {
16400 *bytes_read_ptr = 1;
16401 return NULL;
16402 }
16403 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16404 return (const char *) buf;
16405 }
16406
16407 static const char *
16408 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16409 {
16410 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16411 if (dwarf2_per_objfile->str.buffer == NULL)
16412 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16413 bfd_get_filename (abfd));
16414 if (str_offset >= dwarf2_per_objfile->str.size)
16415 error (_("DW_FORM_strp pointing outside of "
16416 ".debug_str section [in module %s]"),
16417 bfd_get_filename (abfd));
16418 gdb_assert (HOST_CHAR_BIT == 8);
16419 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16420 return NULL;
16421 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16422 }
16423
16424 /* Read a string at offset STR_OFFSET in the .debug_str section from
16425 the .dwz file DWZ. Throw an error if the offset is too large. If
16426 the string consists of a single NUL byte, return NULL; otherwise
16427 return a pointer to the string. */
16428
16429 static const char *
16430 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16431 {
16432 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16433
16434 if (dwz->str.buffer == NULL)
16435 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16436 "section [in module %s]"),
16437 bfd_get_filename (dwz->dwz_bfd));
16438 if (str_offset >= dwz->str.size)
16439 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16440 ".debug_str section [in module %s]"),
16441 bfd_get_filename (dwz->dwz_bfd));
16442 gdb_assert (HOST_CHAR_BIT == 8);
16443 if (dwz->str.buffer[str_offset] == '\0')
16444 return NULL;
16445 return (const char *) (dwz->str.buffer + str_offset);
16446 }
16447
16448 static const char *
16449 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16450 const struct comp_unit_head *cu_header,
16451 unsigned int *bytes_read_ptr)
16452 {
16453 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16454
16455 return read_indirect_string_at_offset (abfd, str_offset);
16456 }
16457
16458 static ULONGEST
16459 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16460 unsigned int *bytes_read_ptr)
16461 {
16462 ULONGEST result;
16463 unsigned int num_read;
16464 int i, shift;
16465 unsigned char byte;
16466
16467 result = 0;
16468 shift = 0;
16469 num_read = 0;
16470 i = 0;
16471 while (1)
16472 {
16473 byte = bfd_get_8 (abfd, buf);
16474 buf++;
16475 num_read++;
16476 result |= ((ULONGEST) (byte & 127) << shift);
16477 if ((byte & 128) == 0)
16478 {
16479 break;
16480 }
16481 shift += 7;
16482 }
16483 *bytes_read_ptr = num_read;
16484 return result;
16485 }
16486
16487 static LONGEST
16488 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16489 unsigned int *bytes_read_ptr)
16490 {
16491 LONGEST result;
16492 int i, shift, num_read;
16493 unsigned char byte;
16494
16495 result = 0;
16496 shift = 0;
16497 num_read = 0;
16498 i = 0;
16499 while (1)
16500 {
16501 byte = bfd_get_8 (abfd, buf);
16502 buf++;
16503 num_read++;
16504 result |= ((LONGEST) (byte & 127) << shift);
16505 shift += 7;
16506 if ((byte & 128) == 0)
16507 {
16508 break;
16509 }
16510 }
16511 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16512 result |= -(((LONGEST) 1) << shift);
16513 *bytes_read_ptr = num_read;
16514 return result;
16515 }
16516
16517 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16518 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16519 ADDR_SIZE is the size of addresses from the CU header. */
16520
16521 static CORE_ADDR
16522 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16523 {
16524 struct objfile *objfile = dwarf2_per_objfile->objfile;
16525 bfd *abfd = objfile->obfd;
16526 const gdb_byte *info_ptr;
16527
16528 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16529 if (dwarf2_per_objfile->addr.buffer == NULL)
16530 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16531 objfile_name (objfile));
16532 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16533 error (_("DW_FORM_addr_index pointing outside of "
16534 ".debug_addr section [in module %s]"),
16535 objfile_name (objfile));
16536 info_ptr = (dwarf2_per_objfile->addr.buffer
16537 + addr_base + addr_index * addr_size);
16538 if (addr_size == 4)
16539 return bfd_get_32 (abfd, info_ptr);
16540 else
16541 return bfd_get_64 (abfd, info_ptr);
16542 }
16543
16544 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16545
16546 static CORE_ADDR
16547 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16548 {
16549 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16550 }
16551
16552 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16553
16554 static CORE_ADDR
16555 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16556 unsigned int *bytes_read)
16557 {
16558 bfd *abfd = cu->objfile->obfd;
16559 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16560
16561 return read_addr_index (cu, addr_index);
16562 }
16563
16564 /* Data structure to pass results from dwarf2_read_addr_index_reader
16565 back to dwarf2_read_addr_index. */
16566
16567 struct dwarf2_read_addr_index_data
16568 {
16569 ULONGEST addr_base;
16570 int addr_size;
16571 };
16572
16573 /* die_reader_func for dwarf2_read_addr_index. */
16574
16575 static void
16576 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16577 const gdb_byte *info_ptr,
16578 struct die_info *comp_unit_die,
16579 int has_children,
16580 void *data)
16581 {
16582 struct dwarf2_cu *cu = reader->cu;
16583 struct dwarf2_read_addr_index_data *aidata =
16584 (struct dwarf2_read_addr_index_data *) data;
16585
16586 aidata->addr_base = cu->addr_base;
16587 aidata->addr_size = cu->header.addr_size;
16588 }
16589
16590 /* Given an index in .debug_addr, fetch the value.
16591 NOTE: This can be called during dwarf expression evaluation,
16592 long after the debug information has been read, and thus per_cu->cu
16593 may no longer exist. */
16594
16595 CORE_ADDR
16596 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16597 unsigned int addr_index)
16598 {
16599 struct objfile *objfile = per_cu->objfile;
16600 struct dwarf2_cu *cu = per_cu->cu;
16601 ULONGEST addr_base;
16602 int addr_size;
16603
16604 /* This is intended to be called from outside this file. */
16605 dw2_setup (objfile);
16606
16607 /* We need addr_base and addr_size.
16608 If we don't have PER_CU->cu, we have to get it.
16609 Nasty, but the alternative is storing the needed info in PER_CU,
16610 which at this point doesn't seem justified: it's not clear how frequently
16611 it would get used and it would increase the size of every PER_CU.
16612 Entry points like dwarf2_per_cu_addr_size do a similar thing
16613 so we're not in uncharted territory here.
16614 Alas we need to be a bit more complicated as addr_base is contained
16615 in the DIE.
16616
16617 We don't need to read the entire CU(/TU).
16618 We just need the header and top level die.
16619
16620 IWBN to use the aging mechanism to let us lazily later discard the CU.
16621 For now we skip this optimization. */
16622
16623 if (cu != NULL)
16624 {
16625 addr_base = cu->addr_base;
16626 addr_size = cu->header.addr_size;
16627 }
16628 else
16629 {
16630 struct dwarf2_read_addr_index_data aidata;
16631
16632 /* Note: We can't use init_cutu_and_read_dies_simple here,
16633 we need addr_base. */
16634 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16635 dwarf2_read_addr_index_reader, &aidata);
16636 addr_base = aidata.addr_base;
16637 addr_size = aidata.addr_size;
16638 }
16639
16640 return read_addr_index_1 (addr_index, addr_base, addr_size);
16641 }
16642
16643 /* Given a DW_FORM_GNU_str_index, fetch the string.
16644 This is only used by the Fission support. */
16645
16646 static const char *
16647 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16648 {
16649 struct objfile *objfile = dwarf2_per_objfile->objfile;
16650 const char *objf_name = objfile_name (objfile);
16651 bfd *abfd = objfile->obfd;
16652 struct dwarf2_cu *cu = reader->cu;
16653 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16654 struct dwarf2_section_info *str_offsets_section =
16655 &reader->dwo_file->sections.str_offsets;
16656 const gdb_byte *info_ptr;
16657 ULONGEST str_offset;
16658 static const char form_name[] = "DW_FORM_GNU_str_index";
16659
16660 dwarf2_read_section (objfile, str_section);
16661 dwarf2_read_section (objfile, str_offsets_section);
16662 if (str_section->buffer == NULL)
16663 error (_("%s used without .debug_str.dwo section"
16664 " in CU at offset 0x%lx [in module %s]"),
16665 form_name, (long) cu->header.offset.sect_off, objf_name);
16666 if (str_offsets_section->buffer == NULL)
16667 error (_("%s used without .debug_str_offsets.dwo section"
16668 " in CU at offset 0x%lx [in module %s]"),
16669 form_name, (long) cu->header.offset.sect_off, objf_name);
16670 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16671 error (_("%s pointing outside of .debug_str_offsets.dwo"
16672 " section in CU at offset 0x%lx [in module %s]"),
16673 form_name, (long) cu->header.offset.sect_off, objf_name);
16674 info_ptr = (str_offsets_section->buffer
16675 + str_index * cu->header.offset_size);
16676 if (cu->header.offset_size == 4)
16677 str_offset = bfd_get_32 (abfd, info_ptr);
16678 else
16679 str_offset = bfd_get_64 (abfd, info_ptr);
16680 if (str_offset >= str_section->size)
16681 error (_("Offset from %s pointing outside of"
16682 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16683 form_name, (long) cu->header.offset.sect_off, objf_name);
16684 return (const char *) (str_section->buffer + str_offset);
16685 }
16686
16687 /* Return the length of an LEB128 number in BUF. */
16688
16689 static int
16690 leb128_size (const gdb_byte *buf)
16691 {
16692 const gdb_byte *begin = buf;
16693 gdb_byte byte;
16694
16695 while (1)
16696 {
16697 byte = *buf++;
16698 if ((byte & 128) == 0)
16699 return buf - begin;
16700 }
16701 }
16702
16703 static void
16704 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16705 {
16706 switch (lang)
16707 {
16708 case DW_LANG_C89:
16709 case DW_LANG_C99:
16710 case DW_LANG_C11:
16711 case DW_LANG_C:
16712 case DW_LANG_UPC:
16713 cu->language = language_c;
16714 break;
16715 case DW_LANG_C_plus_plus:
16716 case DW_LANG_C_plus_plus_11:
16717 case DW_LANG_C_plus_plus_14:
16718 cu->language = language_cplus;
16719 break;
16720 case DW_LANG_D:
16721 cu->language = language_d;
16722 break;
16723 case DW_LANG_Fortran77:
16724 case DW_LANG_Fortran90:
16725 case DW_LANG_Fortran95:
16726 cu->language = language_fortran;
16727 break;
16728 case DW_LANG_Go:
16729 cu->language = language_go;
16730 break;
16731 case DW_LANG_Mips_Assembler:
16732 cu->language = language_asm;
16733 break;
16734 case DW_LANG_Java:
16735 cu->language = language_java;
16736 break;
16737 case DW_LANG_Ada83:
16738 case DW_LANG_Ada95:
16739 cu->language = language_ada;
16740 break;
16741 case DW_LANG_Modula2:
16742 cu->language = language_m2;
16743 break;
16744 case DW_LANG_Pascal83:
16745 cu->language = language_pascal;
16746 break;
16747 case DW_LANG_ObjC:
16748 cu->language = language_objc;
16749 break;
16750 case DW_LANG_Cobol74:
16751 case DW_LANG_Cobol85:
16752 default:
16753 cu->language = language_minimal;
16754 break;
16755 }
16756 cu->language_defn = language_def (cu->language);
16757 }
16758
16759 /* Return the named attribute or NULL if not there. */
16760
16761 static struct attribute *
16762 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16763 {
16764 for (;;)
16765 {
16766 unsigned int i;
16767 struct attribute *spec = NULL;
16768
16769 for (i = 0; i < die->num_attrs; ++i)
16770 {
16771 if (die->attrs[i].name == name)
16772 return &die->attrs[i];
16773 if (die->attrs[i].name == DW_AT_specification
16774 || die->attrs[i].name == DW_AT_abstract_origin)
16775 spec = &die->attrs[i];
16776 }
16777
16778 if (!spec)
16779 break;
16780
16781 die = follow_die_ref (die, spec, &cu);
16782 }
16783
16784 return NULL;
16785 }
16786
16787 /* Return the named attribute or NULL if not there,
16788 but do not follow DW_AT_specification, etc.
16789 This is for use in contexts where we're reading .debug_types dies.
16790 Following DW_AT_specification, DW_AT_abstract_origin will take us
16791 back up the chain, and we want to go down. */
16792
16793 static struct attribute *
16794 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16795 {
16796 unsigned int i;
16797
16798 for (i = 0; i < die->num_attrs; ++i)
16799 if (die->attrs[i].name == name)
16800 return &die->attrs[i];
16801
16802 return NULL;
16803 }
16804
16805 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16806 and holds a non-zero value. This function should only be used for
16807 DW_FORM_flag or DW_FORM_flag_present attributes. */
16808
16809 static int
16810 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16811 {
16812 struct attribute *attr = dwarf2_attr (die, name, cu);
16813
16814 return (attr && DW_UNSND (attr));
16815 }
16816
16817 static int
16818 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16819 {
16820 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16821 which value is non-zero. However, we have to be careful with
16822 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16823 (via dwarf2_flag_true_p) follows this attribute. So we may
16824 end up accidently finding a declaration attribute that belongs
16825 to a different DIE referenced by the specification attribute,
16826 even though the given DIE does not have a declaration attribute. */
16827 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16828 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16829 }
16830
16831 /* Return the die giving the specification for DIE, if there is
16832 one. *SPEC_CU is the CU containing DIE on input, and the CU
16833 containing the return value on output. If there is no
16834 specification, but there is an abstract origin, that is
16835 returned. */
16836
16837 static struct die_info *
16838 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16839 {
16840 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16841 *spec_cu);
16842
16843 if (spec_attr == NULL)
16844 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16845
16846 if (spec_attr == NULL)
16847 return NULL;
16848 else
16849 return follow_die_ref (die, spec_attr, spec_cu);
16850 }
16851
16852 /* Free the line_header structure *LH, and any arrays and strings it
16853 refers to.
16854 NOTE: This is also used as a "cleanup" function. */
16855
16856 static void
16857 free_line_header (struct line_header *lh)
16858 {
16859 if (lh->standard_opcode_lengths)
16860 xfree (lh->standard_opcode_lengths);
16861
16862 /* Remember that all the lh->file_names[i].name pointers are
16863 pointers into debug_line_buffer, and don't need to be freed. */
16864 if (lh->file_names)
16865 xfree (lh->file_names);
16866
16867 /* Similarly for the include directory names. */
16868 if (lh->include_dirs)
16869 xfree (lh->include_dirs);
16870
16871 xfree (lh);
16872 }
16873
16874 /* Add an entry to LH's include directory table. */
16875
16876 static void
16877 add_include_dir (struct line_header *lh, const char *include_dir)
16878 {
16879 /* Grow the array if necessary. */
16880 if (lh->include_dirs_size == 0)
16881 {
16882 lh->include_dirs_size = 1; /* for testing */
16883 lh->include_dirs = xmalloc (lh->include_dirs_size
16884 * sizeof (*lh->include_dirs));
16885 }
16886 else if (lh->num_include_dirs >= lh->include_dirs_size)
16887 {
16888 lh->include_dirs_size *= 2;
16889 lh->include_dirs = xrealloc (lh->include_dirs,
16890 (lh->include_dirs_size
16891 * sizeof (*lh->include_dirs)));
16892 }
16893
16894 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16895 }
16896
16897 /* Add an entry to LH's file name table. */
16898
16899 static void
16900 add_file_name (struct line_header *lh,
16901 const char *name,
16902 unsigned int dir_index,
16903 unsigned int mod_time,
16904 unsigned int length)
16905 {
16906 struct file_entry *fe;
16907
16908 /* Grow the array if necessary. */
16909 if (lh->file_names_size == 0)
16910 {
16911 lh->file_names_size = 1; /* for testing */
16912 lh->file_names = xmalloc (lh->file_names_size
16913 * sizeof (*lh->file_names));
16914 }
16915 else if (lh->num_file_names >= lh->file_names_size)
16916 {
16917 lh->file_names_size *= 2;
16918 lh->file_names = xrealloc (lh->file_names,
16919 (lh->file_names_size
16920 * sizeof (*lh->file_names)));
16921 }
16922
16923 fe = &lh->file_names[lh->num_file_names++];
16924 fe->name = name;
16925 fe->dir_index = dir_index;
16926 fe->mod_time = mod_time;
16927 fe->length = length;
16928 fe->included_p = 0;
16929 fe->symtab = NULL;
16930 }
16931
16932 /* A convenience function to find the proper .debug_line section for a
16933 CU. */
16934
16935 static struct dwarf2_section_info *
16936 get_debug_line_section (struct dwarf2_cu *cu)
16937 {
16938 struct dwarf2_section_info *section;
16939
16940 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16941 DWO file. */
16942 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16943 section = &cu->dwo_unit->dwo_file->sections.line;
16944 else if (cu->per_cu->is_dwz)
16945 {
16946 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16947
16948 section = &dwz->line;
16949 }
16950 else
16951 section = &dwarf2_per_objfile->line;
16952
16953 return section;
16954 }
16955
16956 /* Read the statement program header starting at OFFSET in
16957 .debug_line, or .debug_line.dwo. Return a pointer
16958 to a struct line_header, allocated using xmalloc.
16959
16960 NOTE: the strings in the include directory and file name tables of
16961 the returned object point into the dwarf line section buffer,
16962 and must not be freed. */
16963
16964 static struct line_header *
16965 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
16966 {
16967 struct cleanup *back_to;
16968 struct line_header *lh;
16969 const gdb_byte *line_ptr;
16970 unsigned int bytes_read, offset_size;
16971 int i;
16972 const char *cur_dir, *cur_file;
16973 struct dwarf2_section_info *section;
16974 bfd *abfd;
16975
16976 section = get_debug_line_section (cu);
16977 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16978 if (section->buffer == NULL)
16979 {
16980 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16981 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16982 else
16983 complaint (&symfile_complaints, _("missing .debug_line section"));
16984 return 0;
16985 }
16986
16987 /* We can't do this until we know the section is non-empty.
16988 Only then do we know we have such a section. */
16989 abfd = get_section_bfd_owner (section);
16990
16991 /* Make sure that at least there's room for the total_length field.
16992 That could be 12 bytes long, but we're just going to fudge that. */
16993 if (offset + 4 >= section->size)
16994 {
16995 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16996 return 0;
16997 }
16998
16999 lh = xmalloc (sizeof (*lh));
17000 memset (lh, 0, sizeof (*lh));
17001 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17002 (void *) lh);
17003
17004 line_ptr = section->buffer + offset;
17005
17006 /* Read in the header. */
17007 lh->total_length =
17008 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17009 &bytes_read, &offset_size);
17010 line_ptr += bytes_read;
17011 if (line_ptr + lh->total_length > (section->buffer + section->size))
17012 {
17013 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17014 do_cleanups (back_to);
17015 return 0;
17016 }
17017 lh->statement_program_end = line_ptr + lh->total_length;
17018 lh->version = read_2_bytes (abfd, line_ptr);
17019 line_ptr += 2;
17020 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17021 line_ptr += offset_size;
17022 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17023 line_ptr += 1;
17024 if (lh->version >= 4)
17025 {
17026 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17027 line_ptr += 1;
17028 }
17029 else
17030 lh->maximum_ops_per_instruction = 1;
17031
17032 if (lh->maximum_ops_per_instruction == 0)
17033 {
17034 lh->maximum_ops_per_instruction = 1;
17035 complaint (&symfile_complaints,
17036 _("invalid maximum_ops_per_instruction "
17037 "in `.debug_line' section"));
17038 }
17039
17040 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17041 line_ptr += 1;
17042 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17043 line_ptr += 1;
17044 lh->line_range = read_1_byte (abfd, line_ptr);
17045 line_ptr += 1;
17046 lh->opcode_base = read_1_byte (abfd, line_ptr);
17047 line_ptr += 1;
17048 lh->standard_opcode_lengths
17049 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17050
17051 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17052 for (i = 1; i < lh->opcode_base; ++i)
17053 {
17054 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17055 line_ptr += 1;
17056 }
17057
17058 /* Read directory table. */
17059 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17060 {
17061 line_ptr += bytes_read;
17062 add_include_dir (lh, cur_dir);
17063 }
17064 line_ptr += bytes_read;
17065
17066 /* Read file name table. */
17067 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17068 {
17069 unsigned int dir_index, mod_time, length;
17070
17071 line_ptr += bytes_read;
17072 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17073 line_ptr += bytes_read;
17074 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17075 line_ptr += bytes_read;
17076 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17077 line_ptr += bytes_read;
17078
17079 add_file_name (lh, cur_file, dir_index, mod_time, length);
17080 }
17081 line_ptr += bytes_read;
17082 lh->statement_program_start = line_ptr;
17083
17084 if (line_ptr > (section->buffer + section->size))
17085 complaint (&symfile_complaints,
17086 _("line number info header doesn't "
17087 "fit in `.debug_line' section"));
17088
17089 discard_cleanups (back_to);
17090 return lh;
17091 }
17092
17093 /* Subroutine of dwarf_decode_lines to simplify it.
17094 Return the file name of the psymtab for included file FILE_INDEX
17095 in line header LH of PST.
17096 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17097 If space for the result is malloc'd, it will be freed by a cleanup.
17098 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17099
17100 The function creates dangling cleanup registration. */
17101
17102 static const char *
17103 psymtab_include_file_name (const struct line_header *lh, int file_index,
17104 const struct partial_symtab *pst,
17105 const char *comp_dir)
17106 {
17107 const struct file_entry fe = lh->file_names [file_index];
17108 const char *include_name = fe.name;
17109 const char *include_name_to_compare = include_name;
17110 const char *dir_name = NULL;
17111 const char *pst_filename;
17112 char *copied_name = NULL;
17113 int file_is_pst;
17114
17115 if (fe.dir_index)
17116 dir_name = lh->include_dirs[fe.dir_index - 1];
17117
17118 if (!IS_ABSOLUTE_PATH (include_name)
17119 && (dir_name != NULL || comp_dir != NULL))
17120 {
17121 /* Avoid creating a duplicate psymtab for PST.
17122 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17123 Before we do the comparison, however, we need to account
17124 for DIR_NAME and COMP_DIR.
17125 First prepend dir_name (if non-NULL). If we still don't
17126 have an absolute path prepend comp_dir (if non-NULL).
17127 However, the directory we record in the include-file's
17128 psymtab does not contain COMP_DIR (to match the
17129 corresponding symtab(s)).
17130
17131 Example:
17132
17133 bash$ cd /tmp
17134 bash$ gcc -g ./hello.c
17135 include_name = "hello.c"
17136 dir_name = "."
17137 DW_AT_comp_dir = comp_dir = "/tmp"
17138 DW_AT_name = "./hello.c"
17139
17140 */
17141
17142 if (dir_name != NULL)
17143 {
17144 char *tem = concat (dir_name, SLASH_STRING,
17145 include_name, (char *)NULL);
17146
17147 make_cleanup (xfree, tem);
17148 include_name = tem;
17149 include_name_to_compare = include_name;
17150 }
17151 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17152 {
17153 char *tem = concat (comp_dir, SLASH_STRING,
17154 include_name, (char *)NULL);
17155
17156 make_cleanup (xfree, tem);
17157 include_name_to_compare = tem;
17158 }
17159 }
17160
17161 pst_filename = pst->filename;
17162 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17163 {
17164 copied_name = concat (pst->dirname, SLASH_STRING,
17165 pst_filename, (char *)NULL);
17166 pst_filename = copied_name;
17167 }
17168
17169 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17170
17171 if (copied_name != NULL)
17172 xfree (copied_name);
17173
17174 if (file_is_pst)
17175 return NULL;
17176 return include_name;
17177 }
17178
17179 /* Ignore this record_line request. */
17180
17181 static void
17182 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17183 {
17184 return;
17185 }
17186
17187 /* Return non-zero if we should add LINE to the line number table.
17188 LINE is the line to add, LAST_LINE is the last line that was added,
17189 LAST_SUBFILE is the subfile for LAST_LINE.
17190 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17191 had a non-zero discriminator.
17192
17193 We have to be careful in the presence of discriminators.
17194 E.g., for this line:
17195
17196 for (i = 0; i < 100000; i++);
17197
17198 clang can emit four line number entries for that one line,
17199 each with a different discriminator.
17200 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17201
17202 However, we want gdb to coalesce all four entries into one.
17203 Otherwise the user could stepi into the middle of the line and
17204 gdb would get confused about whether the pc really was in the
17205 middle of the line.
17206
17207 Things are further complicated by the fact that two consecutive
17208 line number entries for the same line is a heuristic used by gcc
17209 to denote the end of the prologue. So we can't just discard duplicate
17210 entries, we have to be selective about it. The heuristic we use is
17211 that we only collapse consecutive entries for the same line if at least
17212 one of those entries has a non-zero discriminator. PR 17276.
17213
17214 Note: Addresses in the line number state machine can never go backwards
17215 within one sequence, thus this coalescing is ok. */
17216
17217 static int
17218 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17219 int line_has_non_zero_discriminator,
17220 struct subfile *last_subfile)
17221 {
17222 if (current_subfile != last_subfile)
17223 return 1;
17224 if (line != last_line)
17225 return 1;
17226 /* Same line for the same file that we've seen already.
17227 As a last check, for pr 17276, only record the line if the line
17228 has never had a non-zero discriminator. */
17229 if (!line_has_non_zero_discriminator)
17230 return 1;
17231 return 0;
17232 }
17233
17234 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17235 in the line table of subfile SUBFILE. */
17236
17237 static void
17238 dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17239 unsigned int line, CORE_ADDR address,
17240 record_line_ftype p_record_line)
17241 {
17242 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17243
17244 (*p_record_line) (subfile, line, addr);
17245 }
17246
17247 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17248 Mark the end of a set of line number records.
17249 The arguments are the same as for dwarf_record_line.
17250 If SUBFILE is NULL the request is ignored. */
17251
17252 static void
17253 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17254 CORE_ADDR address, record_line_ftype p_record_line)
17255 {
17256 if (subfile != NULL)
17257 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17258 }
17259
17260 /* Subroutine of dwarf_decode_lines to simplify it.
17261 Process the line number information in LH. */
17262
17263 static void
17264 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17265 const int decode_for_pst_p, CORE_ADDR lowpc)
17266 {
17267 const gdb_byte *line_ptr, *extended_end;
17268 const gdb_byte *line_end;
17269 unsigned int bytes_read, extended_len;
17270 unsigned char op_code, extended_op;
17271 CORE_ADDR baseaddr;
17272 struct objfile *objfile = cu->objfile;
17273 bfd *abfd = objfile->obfd;
17274 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17275 struct subfile *last_subfile = NULL;
17276 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17277 = record_line;
17278
17279 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17280
17281 line_ptr = lh->statement_program_start;
17282 line_end = lh->statement_program_end;
17283
17284 /* Read the statement sequences until there's nothing left. */
17285 while (line_ptr < line_end)
17286 {
17287 /* state machine registers */
17288 CORE_ADDR address = 0;
17289 unsigned int file = 1;
17290 unsigned int line = 1;
17291 int is_stmt = lh->default_is_stmt;
17292 int end_sequence = 0;
17293 unsigned char op_index = 0;
17294 unsigned int discriminator = 0;
17295 /* The last line number that was recorded, used to coalesce
17296 consecutive entries for the same line. This can happen, for
17297 example, when discriminators are present. PR 17276. */
17298 unsigned int last_line = 0;
17299 int line_has_non_zero_discriminator = 0;
17300
17301 if (!decode_for_pst_p && lh->num_file_names >= file)
17302 {
17303 /* Start a subfile for the current file of the state machine. */
17304 /* lh->include_dirs and lh->file_names are 0-based, but the
17305 directory and file name numbers in the statement program
17306 are 1-based. */
17307 struct file_entry *fe = &lh->file_names[file - 1];
17308 const char *dir = NULL;
17309
17310 if (fe->dir_index)
17311 dir = lh->include_dirs[fe->dir_index - 1];
17312
17313 dwarf2_start_subfile (fe->name, dir);
17314 }
17315
17316 /* Decode the table. */
17317 while (!end_sequence)
17318 {
17319 op_code = read_1_byte (abfd, line_ptr);
17320 line_ptr += 1;
17321 if (line_ptr > line_end)
17322 {
17323 dwarf2_debug_line_missing_end_sequence_complaint ();
17324 break;
17325 }
17326
17327 if (op_code >= lh->opcode_base)
17328 {
17329 /* Special opcode. */
17330 unsigned char adj_opcode;
17331 int line_delta;
17332
17333 adj_opcode = op_code - lh->opcode_base;
17334 address += (((op_index + (adj_opcode / lh->line_range))
17335 / lh->maximum_ops_per_instruction)
17336 * lh->minimum_instruction_length);
17337 op_index = ((op_index + (adj_opcode / lh->line_range))
17338 % lh->maximum_ops_per_instruction);
17339 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17340 line += line_delta;
17341 if (line_delta != 0)
17342 line_has_non_zero_discriminator = discriminator != 0;
17343 if (lh->num_file_names < file || file == 0)
17344 dwarf2_debug_line_missing_file_complaint ();
17345 /* For now we ignore lines not starting on an
17346 instruction boundary. */
17347 else if (op_index == 0)
17348 {
17349 lh->file_names[file - 1].included_p = 1;
17350 if (!decode_for_pst_p && is_stmt)
17351 {
17352 if (last_subfile != current_subfile)
17353 {
17354 dwarf_finish_line (gdbarch, last_subfile,
17355 address, p_record_line);
17356 }
17357 if (dwarf_record_line_p (line, last_line,
17358 line_has_non_zero_discriminator,
17359 last_subfile))
17360 {
17361 dwarf_record_line (gdbarch, current_subfile,
17362 line, address, p_record_line);
17363 }
17364 last_subfile = current_subfile;
17365 last_line = line;
17366 }
17367 }
17368 discriminator = 0;
17369 }
17370 else switch (op_code)
17371 {
17372 case DW_LNS_extended_op:
17373 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17374 &bytes_read);
17375 line_ptr += bytes_read;
17376 extended_end = line_ptr + extended_len;
17377 extended_op = read_1_byte (abfd, line_ptr);
17378 line_ptr += 1;
17379 switch (extended_op)
17380 {
17381 case DW_LNE_end_sequence:
17382 p_record_line = record_line;
17383 end_sequence = 1;
17384 break;
17385 case DW_LNE_set_address:
17386 address = read_address (abfd, line_ptr, cu, &bytes_read);
17387
17388 /* If address < lowpc then it's not a usable value, it's
17389 outside the pc range of the CU. However, we restrict
17390 the test to only address values of zero to preserve
17391 GDB's previous behaviour which is to handle the specific
17392 case of a function being GC'd by the linker. */
17393 if (address == 0 && address < lowpc)
17394 {
17395 /* This line table is for a function which has been
17396 GCd by the linker. Ignore it. PR gdb/12528 */
17397
17398 long line_offset
17399 = line_ptr - get_debug_line_section (cu)->buffer;
17400
17401 complaint (&symfile_complaints,
17402 _(".debug_line address at offset 0x%lx is 0 "
17403 "[in module %s]"),
17404 line_offset, objfile_name (objfile));
17405 p_record_line = noop_record_line;
17406 /* Note: p_record_line is left as noop_record_line
17407 until we see DW_LNE_end_sequence. */
17408 }
17409
17410 op_index = 0;
17411 line_ptr += bytes_read;
17412 address += baseaddr;
17413 break;
17414 case DW_LNE_define_file:
17415 {
17416 const char *cur_file;
17417 unsigned int dir_index, mod_time, length;
17418
17419 cur_file = read_direct_string (abfd, line_ptr,
17420 &bytes_read);
17421 line_ptr += bytes_read;
17422 dir_index =
17423 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17424 line_ptr += bytes_read;
17425 mod_time =
17426 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17427 line_ptr += bytes_read;
17428 length =
17429 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17430 line_ptr += bytes_read;
17431 add_file_name (lh, cur_file, dir_index, mod_time, length);
17432 }
17433 break;
17434 case DW_LNE_set_discriminator:
17435 /* The discriminator is not interesting to the debugger;
17436 just ignore it. We still need to check its value though:
17437 if there are consecutive entries for the same
17438 (non-prologue) line we want to coalesce them.
17439 PR 17276. */
17440 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17441 &bytes_read);
17442 line_has_non_zero_discriminator |= discriminator != 0;
17443 line_ptr += bytes_read;
17444 break;
17445 default:
17446 complaint (&symfile_complaints,
17447 _("mangled .debug_line section"));
17448 return;
17449 }
17450 /* Make sure that we parsed the extended op correctly. If e.g.
17451 we expected a different address size than the producer used,
17452 we may have read the wrong number of bytes. */
17453 if (line_ptr != extended_end)
17454 {
17455 complaint (&symfile_complaints,
17456 _("mangled .debug_line section"));
17457 return;
17458 }
17459 break;
17460 case DW_LNS_copy:
17461 if (lh->num_file_names < file || file == 0)
17462 dwarf2_debug_line_missing_file_complaint ();
17463 else
17464 {
17465 lh->file_names[file - 1].included_p = 1;
17466 if (!decode_for_pst_p && is_stmt)
17467 {
17468 if (last_subfile != current_subfile)
17469 {
17470 dwarf_finish_line (gdbarch, last_subfile,
17471 address, p_record_line);
17472 }
17473 if (dwarf_record_line_p (line, last_line,
17474 line_has_non_zero_discriminator,
17475 last_subfile))
17476 {
17477 dwarf_record_line (gdbarch, current_subfile,
17478 line, address, p_record_line);
17479 }
17480 last_subfile = current_subfile;
17481 last_line = line;
17482 }
17483 }
17484 discriminator = 0;
17485 break;
17486 case DW_LNS_advance_pc:
17487 {
17488 CORE_ADDR adjust
17489 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17490
17491 address += (((op_index + adjust)
17492 / lh->maximum_ops_per_instruction)
17493 * lh->minimum_instruction_length);
17494 op_index = ((op_index + adjust)
17495 % lh->maximum_ops_per_instruction);
17496 line_ptr += bytes_read;
17497 }
17498 break;
17499 case DW_LNS_advance_line:
17500 {
17501 int line_delta
17502 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17503
17504 line += line_delta;
17505 if (line_delta != 0)
17506 line_has_non_zero_discriminator = discriminator != 0;
17507 line_ptr += bytes_read;
17508 }
17509 break;
17510 case DW_LNS_set_file:
17511 {
17512 /* The arrays lh->include_dirs and lh->file_names are
17513 0-based, but the directory and file name numbers in
17514 the statement program are 1-based. */
17515 struct file_entry *fe;
17516 const char *dir = NULL;
17517
17518 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17519 line_ptr += bytes_read;
17520 if (lh->num_file_names < file || file == 0)
17521 dwarf2_debug_line_missing_file_complaint ();
17522 else
17523 {
17524 fe = &lh->file_names[file - 1];
17525 if (fe->dir_index)
17526 dir = lh->include_dirs[fe->dir_index - 1];
17527 if (!decode_for_pst_p)
17528 {
17529 last_subfile = current_subfile;
17530 line_has_non_zero_discriminator = discriminator != 0;
17531 dwarf2_start_subfile (fe->name, dir);
17532 }
17533 }
17534 }
17535 break;
17536 case DW_LNS_set_column:
17537 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17538 line_ptr += bytes_read;
17539 break;
17540 case DW_LNS_negate_stmt:
17541 is_stmt = (!is_stmt);
17542 break;
17543 case DW_LNS_set_basic_block:
17544 break;
17545 /* Add to the address register of the state machine the
17546 address increment value corresponding to special opcode
17547 255. I.e., this value is scaled by the minimum
17548 instruction length since special opcode 255 would have
17549 scaled the increment. */
17550 case DW_LNS_const_add_pc:
17551 {
17552 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17553
17554 address += (((op_index + adjust)
17555 / lh->maximum_ops_per_instruction)
17556 * lh->minimum_instruction_length);
17557 op_index = ((op_index + adjust)
17558 % lh->maximum_ops_per_instruction);
17559 }
17560 break;
17561 case DW_LNS_fixed_advance_pc:
17562 address += read_2_bytes (abfd, line_ptr);
17563 op_index = 0;
17564 line_ptr += 2;
17565 break;
17566 default:
17567 {
17568 /* Unknown standard opcode, ignore it. */
17569 int i;
17570
17571 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17572 {
17573 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17574 line_ptr += bytes_read;
17575 }
17576 }
17577 }
17578 }
17579 if (lh->num_file_names < file || file == 0)
17580 dwarf2_debug_line_missing_file_complaint ();
17581 else
17582 {
17583 lh->file_names[file - 1].included_p = 1;
17584 if (!decode_for_pst_p)
17585 {
17586 dwarf_finish_line (gdbarch, current_subfile, address,
17587 p_record_line);
17588 }
17589 }
17590 }
17591 }
17592
17593 /* Decode the Line Number Program (LNP) for the given line_header
17594 structure and CU. The actual information extracted and the type
17595 of structures created from the LNP depends on the value of PST.
17596
17597 1. If PST is NULL, then this procedure uses the data from the program
17598 to create all necessary symbol tables, and their linetables.
17599
17600 2. If PST is not NULL, this procedure reads the program to determine
17601 the list of files included by the unit represented by PST, and
17602 builds all the associated partial symbol tables.
17603
17604 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17605 It is used for relative paths in the line table.
17606 NOTE: When processing partial symtabs (pst != NULL),
17607 comp_dir == pst->dirname.
17608
17609 NOTE: It is important that psymtabs have the same file name (via strcmp)
17610 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17611 symtab we don't use it in the name of the psymtabs we create.
17612 E.g. expand_line_sal requires this when finding psymtabs to expand.
17613 A good testcase for this is mb-inline.exp.
17614
17615 LOWPC is the lowest address in CU (or 0 if not known). */
17616
17617 static void
17618 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17619 struct dwarf2_cu *cu, struct partial_symtab *pst,
17620 CORE_ADDR lowpc)
17621 {
17622 struct objfile *objfile = cu->objfile;
17623 const int decode_for_pst_p = (pst != NULL);
17624
17625 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
17626
17627 if (decode_for_pst_p)
17628 {
17629 int file_index;
17630
17631 /* Now that we're done scanning the Line Header Program, we can
17632 create the psymtab of each included file. */
17633 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17634 if (lh->file_names[file_index].included_p == 1)
17635 {
17636 const char *include_name =
17637 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17638 if (include_name != NULL)
17639 dwarf2_create_include_psymtab (include_name, pst, objfile);
17640 }
17641 }
17642 else
17643 {
17644 /* Make sure a symtab is created for every file, even files
17645 which contain only variables (i.e. no code with associated
17646 line numbers). */
17647 struct compunit_symtab *cust = buildsym_compunit_symtab ();
17648 int i;
17649
17650 for (i = 0; i < lh->num_file_names; i++)
17651 {
17652 const char *dir = NULL;
17653 struct file_entry *fe;
17654
17655 fe = &lh->file_names[i];
17656 if (fe->dir_index)
17657 dir = lh->include_dirs[fe->dir_index - 1];
17658 dwarf2_start_subfile (fe->name, dir);
17659
17660 if (current_subfile->symtab == NULL)
17661 {
17662 current_subfile->symtab
17663 = allocate_symtab (cust, current_subfile->name);
17664 }
17665 fe->symtab = current_subfile->symtab;
17666 }
17667 }
17668 }
17669
17670 /* Start a subfile for DWARF. FILENAME is the name of the file and
17671 DIRNAME the name of the source directory which contains FILENAME
17672 or NULL if not known.
17673 This routine tries to keep line numbers from identical absolute and
17674 relative file names in a common subfile.
17675
17676 Using the `list' example from the GDB testsuite, which resides in
17677 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17678 of /srcdir/list0.c yields the following debugging information for list0.c:
17679
17680 DW_AT_name: /srcdir/list0.c
17681 DW_AT_comp_dir: /compdir
17682 files.files[0].name: list0.h
17683 files.files[0].dir: /srcdir
17684 files.files[1].name: list0.c
17685 files.files[1].dir: /srcdir
17686
17687 The line number information for list0.c has to end up in a single
17688 subfile, so that `break /srcdir/list0.c:1' works as expected.
17689 start_subfile will ensure that this happens provided that we pass the
17690 concatenation of files.files[1].dir and files.files[1].name as the
17691 subfile's name. */
17692
17693 static void
17694 dwarf2_start_subfile (const char *filename, const char *dirname)
17695 {
17696 char *copy = NULL;
17697
17698 /* In order not to lose the line information directory,
17699 we concatenate it to the filename when it makes sense.
17700 Note that the Dwarf3 standard says (speaking of filenames in line
17701 information): ``The directory index is ignored for file names
17702 that represent full path names''. Thus ignoring dirname in the
17703 `else' branch below isn't an issue. */
17704
17705 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17706 {
17707 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17708 filename = copy;
17709 }
17710
17711 start_subfile (filename);
17712
17713 if (copy != NULL)
17714 xfree (copy);
17715 }
17716
17717 /* Start a symtab for DWARF.
17718 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17719
17720 static struct compunit_symtab *
17721 dwarf2_start_symtab (struct dwarf2_cu *cu,
17722 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17723 {
17724 struct compunit_symtab *cust
17725 = start_symtab (cu->objfile, name, comp_dir, low_pc);
17726
17727 record_debugformat ("DWARF 2");
17728 record_producer (cu->producer);
17729
17730 /* We assume that we're processing GCC output. */
17731 processing_gcc_compilation = 2;
17732
17733 cu->processing_has_namespace_info = 0;
17734
17735 return cust;
17736 }
17737
17738 static void
17739 var_decode_location (struct attribute *attr, struct symbol *sym,
17740 struct dwarf2_cu *cu)
17741 {
17742 struct objfile *objfile = cu->objfile;
17743 struct comp_unit_head *cu_header = &cu->header;
17744
17745 /* NOTE drow/2003-01-30: There used to be a comment and some special
17746 code here to turn a symbol with DW_AT_external and a
17747 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17748 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17749 with some versions of binutils) where shared libraries could have
17750 relocations against symbols in their debug information - the
17751 minimal symbol would have the right address, but the debug info
17752 would not. It's no longer necessary, because we will explicitly
17753 apply relocations when we read in the debug information now. */
17754
17755 /* A DW_AT_location attribute with no contents indicates that a
17756 variable has been optimized away. */
17757 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17758 {
17759 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17760 return;
17761 }
17762
17763 /* Handle one degenerate form of location expression specially, to
17764 preserve GDB's previous behavior when section offsets are
17765 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17766 then mark this symbol as LOC_STATIC. */
17767
17768 if (attr_form_is_block (attr)
17769 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17770 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17771 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17772 && (DW_BLOCK (attr)->size
17773 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17774 {
17775 unsigned int dummy;
17776
17777 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17778 SYMBOL_VALUE_ADDRESS (sym) =
17779 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17780 else
17781 SYMBOL_VALUE_ADDRESS (sym) =
17782 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17783 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17784 fixup_symbol_section (sym, objfile);
17785 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17786 SYMBOL_SECTION (sym));
17787 return;
17788 }
17789
17790 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17791 expression evaluator, and use LOC_COMPUTED only when necessary
17792 (i.e. when the value of a register or memory location is
17793 referenced, or a thread-local block, etc.). Then again, it might
17794 not be worthwhile. I'm assuming that it isn't unless performance
17795 or memory numbers show me otherwise. */
17796
17797 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17798
17799 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17800 cu->has_loclist = 1;
17801 }
17802
17803 /* Given a pointer to a DWARF information entry, figure out if we need
17804 to make a symbol table entry for it, and if so, create a new entry
17805 and return a pointer to it.
17806 If TYPE is NULL, determine symbol type from the die, otherwise
17807 used the passed type.
17808 If SPACE is not NULL, use it to hold the new symbol. If it is
17809 NULL, allocate a new symbol on the objfile's obstack. */
17810
17811 static struct symbol *
17812 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17813 struct symbol *space)
17814 {
17815 struct objfile *objfile = cu->objfile;
17816 struct symbol *sym = NULL;
17817 const char *name;
17818 struct attribute *attr = NULL;
17819 struct attribute *attr2 = NULL;
17820 CORE_ADDR baseaddr;
17821 struct pending **list_to_add = NULL;
17822
17823 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17824
17825 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17826
17827 name = dwarf2_name (die, cu);
17828 if (name)
17829 {
17830 const char *linkagename;
17831 int suppress_add = 0;
17832
17833 if (space)
17834 sym = space;
17835 else
17836 sym = allocate_symbol (objfile);
17837 OBJSTAT (objfile, n_syms++);
17838
17839 /* Cache this symbol's name and the name's demangled form (if any). */
17840 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17841 linkagename = dwarf2_physname (name, die, cu);
17842 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17843
17844 /* Fortran does not have mangling standard and the mangling does differ
17845 between gfortran, iFort etc. */
17846 if (cu->language == language_fortran
17847 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17848 symbol_set_demangled_name (&(sym->ginfo),
17849 dwarf2_full_name (name, die, cu),
17850 NULL);
17851
17852 /* Default assumptions.
17853 Use the passed type or decode it from the die. */
17854 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17855 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17856 if (type != NULL)
17857 SYMBOL_TYPE (sym) = type;
17858 else
17859 SYMBOL_TYPE (sym) = die_type (die, cu);
17860 attr = dwarf2_attr (die,
17861 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17862 cu);
17863 if (attr)
17864 {
17865 SYMBOL_LINE (sym) = DW_UNSND (attr);
17866 }
17867
17868 attr = dwarf2_attr (die,
17869 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17870 cu);
17871 if (attr)
17872 {
17873 int file_index = DW_UNSND (attr);
17874
17875 if (cu->line_header == NULL
17876 || file_index > cu->line_header->num_file_names)
17877 complaint (&symfile_complaints,
17878 _("file index out of range"));
17879 else if (file_index > 0)
17880 {
17881 struct file_entry *fe;
17882
17883 fe = &cu->line_header->file_names[file_index - 1];
17884 SYMBOL_SYMTAB (sym) = fe->symtab;
17885 }
17886 }
17887
17888 switch (die->tag)
17889 {
17890 case DW_TAG_label:
17891 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17892 if (attr)
17893 SYMBOL_VALUE_ADDRESS (sym)
17894 = attr_value_as_address (attr) + baseaddr;
17895 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17896 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17897 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17898 add_symbol_to_list (sym, cu->list_in_scope);
17899 break;
17900 case DW_TAG_subprogram:
17901 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17902 finish_block. */
17903 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17904 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17905 if ((attr2 && (DW_UNSND (attr2) != 0))
17906 || cu->language == language_ada)
17907 {
17908 /* Subprograms marked external are stored as a global symbol.
17909 Ada subprograms, whether marked external or not, are always
17910 stored as a global symbol, because we want to be able to
17911 access them globally. For instance, we want to be able
17912 to break on a nested subprogram without having to
17913 specify the context. */
17914 list_to_add = &global_symbols;
17915 }
17916 else
17917 {
17918 list_to_add = cu->list_in_scope;
17919 }
17920 break;
17921 case DW_TAG_inlined_subroutine:
17922 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17923 finish_block. */
17924 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17925 SYMBOL_INLINED (sym) = 1;
17926 list_to_add = cu->list_in_scope;
17927 break;
17928 case DW_TAG_template_value_param:
17929 suppress_add = 1;
17930 /* Fall through. */
17931 case DW_TAG_constant:
17932 case DW_TAG_variable:
17933 case DW_TAG_member:
17934 /* Compilation with minimal debug info may result in
17935 variables with missing type entries. Change the
17936 misleading `void' type to something sensible. */
17937 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17938 SYMBOL_TYPE (sym)
17939 = objfile_type (objfile)->nodebug_data_symbol;
17940
17941 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17942 /* In the case of DW_TAG_member, we should only be called for
17943 static const members. */
17944 if (die->tag == DW_TAG_member)
17945 {
17946 /* dwarf2_add_field uses die_is_declaration,
17947 so we do the same. */
17948 gdb_assert (die_is_declaration (die, cu));
17949 gdb_assert (attr);
17950 }
17951 if (attr)
17952 {
17953 dwarf2_const_value (attr, sym, cu);
17954 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17955 if (!suppress_add)
17956 {
17957 if (attr2 && (DW_UNSND (attr2) != 0))
17958 list_to_add = &global_symbols;
17959 else
17960 list_to_add = cu->list_in_scope;
17961 }
17962 break;
17963 }
17964 attr = dwarf2_attr (die, DW_AT_location, cu);
17965 if (attr)
17966 {
17967 var_decode_location (attr, sym, cu);
17968 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17969
17970 /* Fortran explicitly imports any global symbols to the local
17971 scope by DW_TAG_common_block. */
17972 if (cu->language == language_fortran && die->parent
17973 && die->parent->tag == DW_TAG_common_block)
17974 attr2 = NULL;
17975
17976 if (SYMBOL_CLASS (sym) == LOC_STATIC
17977 && SYMBOL_VALUE_ADDRESS (sym) == 0
17978 && !dwarf2_per_objfile->has_section_at_zero)
17979 {
17980 /* When a static variable is eliminated by the linker,
17981 the corresponding debug information is not stripped
17982 out, but the variable address is set to null;
17983 do not add such variables into symbol table. */
17984 }
17985 else if (attr2 && (DW_UNSND (attr2) != 0))
17986 {
17987 /* Workaround gfortran PR debug/40040 - it uses
17988 DW_AT_location for variables in -fPIC libraries which may
17989 get overriden by other libraries/executable and get
17990 a different address. Resolve it by the minimal symbol
17991 which may come from inferior's executable using copy
17992 relocation. Make this workaround only for gfortran as for
17993 other compilers GDB cannot guess the minimal symbol
17994 Fortran mangling kind. */
17995 if (cu->language == language_fortran && die->parent
17996 && die->parent->tag == DW_TAG_module
17997 && cu->producer
17998 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
17999 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18000
18001 /* A variable with DW_AT_external is never static,
18002 but it may be block-scoped. */
18003 list_to_add = (cu->list_in_scope == &file_symbols
18004 ? &global_symbols : cu->list_in_scope);
18005 }
18006 else
18007 list_to_add = cu->list_in_scope;
18008 }
18009 else
18010 {
18011 /* We do not know the address of this symbol.
18012 If it is an external symbol and we have type information
18013 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18014 The address of the variable will then be determined from
18015 the minimal symbol table whenever the variable is
18016 referenced. */
18017 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18018
18019 /* Fortran explicitly imports any global symbols to the local
18020 scope by DW_TAG_common_block. */
18021 if (cu->language == language_fortran && die->parent
18022 && die->parent->tag == DW_TAG_common_block)
18023 {
18024 /* SYMBOL_CLASS doesn't matter here because
18025 read_common_block is going to reset it. */
18026 if (!suppress_add)
18027 list_to_add = cu->list_in_scope;
18028 }
18029 else if (attr2 && (DW_UNSND (attr2) != 0)
18030 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18031 {
18032 /* A variable with DW_AT_external is never static, but it
18033 may be block-scoped. */
18034 list_to_add = (cu->list_in_scope == &file_symbols
18035 ? &global_symbols : cu->list_in_scope);
18036
18037 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18038 }
18039 else if (!die_is_declaration (die, cu))
18040 {
18041 /* Use the default LOC_OPTIMIZED_OUT class. */
18042 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18043 if (!suppress_add)
18044 list_to_add = cu->list_in_scope;
18045 }
18046 }
18047 break;
18048 case DW_TAG_formal_parameter:
18049 /* If we are inside a function, mark this as an argument. If
18050 not, we might be looking at an argument to an inlined function
18051 when we do not have enough information to show inlined frames;
18052 pretend it's a local variable in that case so that the user can
18053 still see it. */
18054 if (context_stack_depth > 0
18055 && context_stack[context_stack_depth - 1].name != NULL)
18056 SYMBOL_IS_ARGUMENT (sym) = 1;
18057 attr = dwarf2_attr (die, DW_AT_location, cu);
18058 if (attr)
18059 {
18060 var_decode_location (attr, sym, cu);
18061 }
18062 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18063 if (attr)
18064 {
18065 dwarf2_const_value (attr, sym, cu);
18066 }
18067
18068 list_to_add = cu->list_in_scope;
18069 break;
18070 case DW_TAG_unspecified_parameters:
18071 /* From varargs functions; gdb doesn't seem to have any
18072 interest in this information, so just ignore it for now.
18073 (FIXME?) */
18074 break;
18075 case DW_TAG_template_type_param:
18076 suppress_add = 1;
18077 /* Fall through. */
18078 case DW_TAG_class_type:
18079 case DW_TAG_interface_type:
18080 case DW_TAG_structure_type:
18081 case DW_TAG_union_type:
18082 case DW_TAG_set_type:
18083 case DW_TAG_enumeration_type:
18084 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18085 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18086
18087 {
18088 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18089 really ever be static objects: otherwise, if you try
18090 to, say, break of a class's method and you're in a file
18091 which doesn't mention that class, it won't work unless
18092 the check for all static symbols in lookup_symbol_aux
18093 saves you. See the OtherFileClass tests in
18094 gdb.c++/namespace.exp. */
18095
18096 if (!suppress_add)
18097 {
18098 list_to_add = (cu->list_in_scope == &file_symbols
18099 && (cu->language == language_cplus
18100 || cu->language == language_java)
18101 ? &global_symbols : cu->list_in_scope);
18102
18103 /* The semantics of C++ state that "struct foo {
18104 ... }" also defines a typedef for "foo". A Java
18105 class declaration also defines a typedef for the
18106 class. */
18107 if (cu->language == language_cplus
18108 || cu->language == language_java
18109 || cu->language == language_ada)
18110 {
18111 /* The symbol's name is already allocated along
18112 with this objfile, so we don't need to
18113 duplicate it for the type. */
18114 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18115 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18116 }
18117 }
18118 }
18119 break;
18120 case DW_TAG_typedef:
18121 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18122 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18123 list_to_add = cu->list_in_scope;
18124 break;
18125 case DW_TAG_base_type:
18126 case DW_TAG_subrange_type:
18127 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18128 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18129 list_to_add = cu->list_in_scope;
18130 break;
18131 case DW_TAG_enumerator:
18132 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18133 if (attr)
18134 {
18135 dwarf2_const_value (attr, sym, cu);
18136 }
18137 {
18138 /* NOTE: carlton/2003-11-10: See comment above in the
18139 DW_TAG_class_type, etc. block. */
18140
18141 list_to_add = (cu->list_in_scope == &file_symbols
18142 && (cu->language == language_cplus
18143 || cu->language == language_java)
18144 ? &global_symbols : cu->list_in_scope);
18145 }
18146 break;
18147 case DW_TAG_imported_declaration:
18148 case DW_TAG_namespace:
18149 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18150 list_to_add = &global_symbols;
18151 break;
18152 case DW_TAG_module:
18153 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18154 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18155 list_to_add = &global_symbols;
18156 break;
18157 case DW_TAG_common_block:
18158 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18159 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18160 add_symbol_to_list (sym, cu->list_in_scope);
18161 break;
18162 default:
18163 /* Not a tag we recognize. Hopefully we aren't processing
18164 trash data, but since we must specifically ignore things
18165 we don't recognize, there is nothing else we should do at
18166 this point. */
18167 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18168 dwarf_tag_name (die->tag));
18169 break;
18170 }
18171
18172 if (suppress_add)
18173 {
18174 sym->hash_next = objfile->template_symbols;
18175 objfile->template_symbols = sym;
18176 list_to_add = NULL;
18177 }
18178
18179 if (list_to_add != NULL)
18180 add_symbol_to_list (sym, list_to_add);
18181
18182 /* For the benefit of old versions of GCC, check for anonymous
18183 namespaces based on the demangled name. */
18184 if (!cu->processing_has_namespace_info
18185 && cu->language == language_cplus)
18186 cp_scan_for_anonymous_namespaces (sym, objfile);
18187 }
18188 return (sym);
18189 }
18190
18191 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18192
18193 static struct symbol *
18194 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18195 {
18196 return new_symbol_full (die, type, cu, NULL);
18197 }
18198
18199 /* Given an attr with a DW_FORM_dataN value in host byte order,
18200 zero-extend it as appropriate for the symbol's type. The DWARF
18201 standard (v4) is not entirely clear about the meaning of using
18202 DW_FORM_dataN for a constant with a signed type, where the type is
18203 wider than the data. The conclusion of a discussion on the DWARF
18204 list was that this is unspecified. We choose to always zero-extend
18205 because that is the interpretation long in use by GCC. */
18206
18207 static gdb_byte *
18208 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18209 struct dwarf2_cu *cu, LONGEST *value, int bits)
18210 {
18211 struct objfile *objfile = cu->objfile;
18212 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18213 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18214 LONGEST l = DW_UNSND (attr);
18215
18216 if (bits < sizeof (*value) * 8)
18217 {
18218 l &= ((LONGEST) 1 << bits) - 1;
18219 *value = l;
18220 }
18221 else if (bits == sizeof (*value) * 8)
18222 *value = l;
18223 else
18224 {
18225 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18226 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18227 return bytes;
18228 }
18229
18230 return NULL;
18231 }
18232
18233 /* Read a constant value from an attribute. Either set *VALUE, or if
18234 the value does not fit in *VALUE, set *BYTES - either already
18235 allocated on the objfile obstack, or newly allocated on OBSTACK,
18236 or, set *BATON, if we translated the constant to a location
18237 expression. */
18238
18239 static void
18240 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18241 const char *name, struct obstack *obstack,
18242 struct dwarf2_cu *cu,
18243 LONGEST *value, const gdb_byte **bytes,
18244 struct dwarf2_locexpr_baton **baton)
18245 {
18246 struct objfile *objfile = cu->objfile;
18247 struct comp_unit_head *cu_header = &cu->header;
18248 struct dwarf_block *blk;
18249 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18250 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18251
18252 *value = 0;
18253 *bytes = NULL;
18254 *baton = NULL;
18255
18256 switch (attr->form)
18257 {
18258 case DW_FORM_addr:
18259 case DW_FORM_GNU_addr_index:
18260 {
18261 gdb_byte *data;
18262
18263 if (TYPE_LENGTH (type) != cu_header->addr_size)
18264 dwarf2_const_value_length_mismatch_complaint (name,
18265 cu_header->addr_size,
18266 TYPE_LENGTH (type));
18267 /* Symbols of this form are reasonably rare, so we just
18268 piggyback on the existing location code rather than writing
18269 a new implementation of symbol_computed_ops. */
18270 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18271 (*baton)->per_cu = cu->per_cu;
18272 gdb_assert ((*baton)->per_cu);
18273
18274 (*baton)->size = 2 + cu_header->addr_size;
18275 data = obstack_alloc (obstack, (*baton)->size);
18276 (*baton)->data = data;
18277
18278 data[0] = DW_OP_addr;
18279 store_unsigned_integer (&data[1], cu_header->addr_size,
18280 byte_order, DW_ADDR (attr));
18281 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18282 }
18283 break;
18284 case DW_FORM_string:
18285 case DW_FORM_strp:
18286 case DW_FORM_GNU_str_index:
18287 case DW_FORM_GNU_strp_alt:
18288 /* DW_STRING is already allocated on the objfile obstack, point
18289 directly to it. */
18290 *bytes = (const gdb_byte *) DW_STRING (attr);
18291 break;
18292 case DW_FORM_block1:
18293 case DW_FORM_block2:
18294 case DW_FORM_block4:
18295 case DW_FORM_block:
18296 case DW_FORM_exprloc:
18297 blk = DW_BLOCK (attr);
18298 if (TYPE_LENGTH (type) != blk->size)
18299 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18300 TYPE_LENGTH (type));
18301 *bytes = blk->data;
18302 break;
18303
18304 /* The DW_AT_const_value attributes are supposed to carry the
18305 symbol's value "represented as it would be on the target
18306 architecture." By the time we get here, it's already been
18307 converted to host endianness, so we just need to sign- or
18308 zero-extend it as appropriate. */
18309 case DW_FORM_data1:
18310 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18311 break;
18312 case DW_FORM_data2:
18313 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18314 break;
18315 case DW_FORM_data4:
18316 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18317 break;
18318 case DW_FORM_data8:
18319 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18320 break;
18321
18322 case DW_FORM_sdata:
18323 *value = DW_SND (attr);
18324 break;
18325
18326 case DW_FORM_udata:
18327 *value = DW_UNSND (attr);
18328 break;
18329
18330 default:
18331 complaint (&symfile_complaints,
18332 _("unsupported const value attribute form: '%s'"),
18333 dwarf_form_name (attr->form));
18334 *value = 0;
18335 break;
18336 }
18337 }
18338
18339
18340 /* Copy constant value from an attribute to a symbol. */
18341
18342 static void
18343 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18344 struct dwarf2_cu *cu)
18345 {
18346 struct objfile *objfile = cu->objfile;
18347 struct comp_unit_head *cu_header = &cu->header;
18348 LONGEST value;
18349 const gdb_byte *bytes;
18350 struct dwarf2_locexpr_baton *baton;
18351
18352 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18353 SYMBOL_PRINT_NAME (sym),
18354 &objfile->objfile_obstack, cu,
18355 &value, &bytes, &baton);
18356
18357 if (baton != NULL)
18358 {
18359 SYMBOL_LOCATION_BATON (sym) = baton;
18360 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18361 }
18362 else if (bytes != NULL)
18363 {
18364 SYMBOL_VALUE_BYTES (sym) = bytes;
18365 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18366 }
18367 else
18368 {
18369 SYMBOL_VALUE (sym) = value;
18370 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18371 }
18372 }
18373
18374 /* Return the type of the die in question using its DW_AT_type attribute. */
18375
18376 static struct type *
18377 die_type (struct die_info *die, struct dwarf2_cu *cu)
18378 {
18379 struct attribute *type_attr;
18380
18381 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18382 if (!type_attr)
18383 {
18384 /* A missing DW_AT_type represents a void type. */
18385 return objfile_type (cu->objfile)->builtin_void;
18386 }
18387
18388 return lookup_die_type (die, type_attr, cu);
18389 }
18390
18391 /* True iff CU's producer generates GNAT Ada auxiliary information
18392 that allows to find parallel types through that information instead
18393 of having to do expensive parallel lookups by type name. */
18394
18395 static int
18396 need_gnat_info (struct dwarf2_cu *cu)
18397 {
18398 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18399 of GNAT produces this auxiliary information, without any indication
18400 that it is produced. Part of enhancing the FSF version of GNAT
18401 to produce that information will be to put in place an indicator
18402 that we can use in order to determine whether the descriptive type
18403 info is available or not. One suggestion that has been made is
18404 to use a new attribute, attached to the CU die. For now, assume
18405 that the descriptive type info is not available. */
18406 return 0;
18407 }
18408
18409 /* Return the auxiliary type of the die in question using its
18410 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18411 attribute is not present. */
18412
18413 static struct type *
18414 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18415 {
18416 struct attribute *type_attr;
18417
18418 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18419 if (!type_attr)
18420 return NULL;
18421
18422 return lookup_die_type (die, type_attr, cu);
18423 }
18424
18425 /* If DIE has a descriptive_type attribute, then set the TYPE's
18426 descriptive type accordingly. */
18427
18428 static void
18429 set_descriptive_type (struct type *type, struct die_info *die,
18430 struct dwarf2_cu *cu)
18431 {
18432 struct type *descriptive_type = die_descriptive_type (die, cu);
18433
18434 if (descriptive_type)
18435 {
18436 ALLOCATE_GNAT_AUX_TYPE (type);
18437 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18438 }
18439 }
18440
18441 /* Return the containing type of the die in question using its
18442 DW_AT_containing_type attribute. */
18443
18444 static struct type *
18445 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18446 {
18447 struct attribute *type_attr;
18448
18449 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18450 if (!type_attr)
18451 error (_("Dwarf Error: Problem turning containing type into gdb type "
18452 "[in module %s]"), objfile_name (cu->objfile));
18453
18454 return lookup_die_type (die, type_attr, cu);
18455 }
18456
18457 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18458
18459 static struct type *
18460 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18461 {
18462 struct objfile *objfile = dwarf2_per_objfile->objfile;
18463 char *message, *saved;
18464
18465 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18466 objfile_name (objfile),
18467 cu->header.offset.sect_off,
18468 die->offset.sect_off);
18469 saved = obstack_copy0 (&objfile->objfile_obstack,
18470 message, strlen (message));
18471 xfree (message);
18472
18473 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18474 }
18475
18476 /* Look up the type of DIE in CU using its type attribute ATTR.
18477 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18478 DW_AT_containing_type.
18479 If there is no type substitute an error marker. */
18480
18481 static struct type *
18482 lookup_die_type (struct die_info *die, const struct attribute *attr,
18483 struct dwarf2_cu *cu)
18484 {
18485 struct objfile *objfile = cu->objfile;
18486 struct type *this_type;
18487
18488 gdb_assert (attr->name == DW_AT_type
18489 || attr->name == DW_AT_GNAT_descriptive_type
18490 || attr->name == DW_AT_containing_type);
18491
18492 /* First see if we have it cached. */
18493
18494 if (attr->form == DW_FORM_GNU_ref_alt)
18495 {
18496 struct dwarf2_per_cu_data *per_cu;
18497 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18498
18499 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18500 this_type = get_die_type_at_offset (offset, per_cu);
18501 }
18502 else if (attr_form_is_ref (attr))
18503 {
18504 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18505
18506 this_type = get_die_type_at_offset (offset, cu->per_cu);
18507 }
18508 else if (attr->form == DW_FORM_ref_sig8)
18509 {
18510 ULONGEST signature = DW_SIGNATURE (attr);
18511
18512 return get_signatured_type (die, signature, cu);
18513 }
18514 else
18515 {
18516 complaint (&symfile_complaints,
18517 _("Dwarf Error: Bad type attribute %s in DIE"
18518 " at 0x%x [in module %s]"),
18519 dwarf_attr_name (attr->name), die->offset.sect_off,
18520 objfile_name (objfile));
18521 return build_error_marker_type (cu, die);
18522 }
18523
18524 /* If not cached we need to read it in. */
18525
18526 if (this_type == NULL)
18527 {
18528 struct die_info *type_die = NULL;
18529 struct dwarf2_cu *type_cu = cu;
18530
18531 if (attr_form_is_ref (attr))
18532 type_die = follow_die_ref (die, attr, &type_cu);
18533 if (type_die == NULL)
18534 return build_error_marker_type (cu, die);
18535 /* If we find the type now, it's probably because the type came
18536 from an inter-CU reference and the type's CU got expanded before
18537 ours. */
18538 this_type = read_type_die (type_die, type_cu);
18539 }
18540
18541 /* If we still don't have a type use an error marker. */
18542
18543 if (this_type == NULL)
18544 return build_error_marker_type (cu, die);
18545
18546 return this_type;
18547 }
18548
18549 /* Return the type in DIE, CU.
18550 Returns NULL for invalid types.
18551
18552 This first does a lookup in die_type_hash,
18553 and only reads the die in if necessary.
18554
18555 NOTE: This can be called when reading in partial or full symbols. */
18556
18557 static struct type *
18558 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18559 {
18560 struct type *this_type;
18561
18562 this_type = get_die_type (die, cu);
18563 if (this_type)
18564 return this_type;
18565
18566 return read_type_die_1 (die, cu);
18567 }
18568
18569 /* Read the type in DIE, CU.
18570 Returns NULL for invalid types. */
18571
18572 static struct type *
18573 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18574 {
18575 struct type *this_type = NULL;
18576
18577 switch (die->tag)
18578 {
18579 case DW_TAG_class_type:
18580 case DW_TAG_interface_type:
18581 case DW_TAG_structure_type:
18582 case DW_TAG_union_type:
18583 this_type = read_structure_type (die, cu);
18584 break;
18585 case DW_TAG_enumeration_type:
18586 this_type = read_enumeration_type (die, cu);
18587 break;
18588 case DW_TAG_subprogram:
18589 case DW_TAG_subroutine_type:
18590 case DW_TAG_inlined_subroutine:
18591 this_type = read_subroutine_type (die, cu);
18592 break;
18593 case DW_TAG_array_type:
18594 this_type = read_array_type (die, cu);
18595 break;
18596 case DW_TAG_set_type:
18597 this_type = read_set_type (die, cu);
18598 break;
18599 case DW_TAG_pointer_type:
18600 this_type = read_tag_pointer_type (die, cu);
18601 break;
18602 case DW_TAG_ptr_to_member_type:
18603 this_type = read_tag_ptr_to_member_type (die, cu);
18604 break;
18605 case DW_TAG_reference_type:
18606 this_type = read_tag_reference_type (die, cu);
18607 break;
18608 case DW_TAG_const_type:
18609 this_type = read_tag_const_type (die, cu);
18610 break;
18611 case DW_TAG_volatile_type:
18612 this_type = read_tag_volatile_type (die, cu);
18613 break;
18614 case DW_TAG_restrict_type:
18615 this_type = read_tag_restrict_type (die, cu);
18616 break;
18617 case DW_TAG_string_type:
18618 this_type = read_tag_string_type (die, cu);
18619 break;
18620 case DW_TAG_typedef:
18621 this_type = read_typedef (die, cu);
18622 break;
18623 case DW_TAG_subrange_type:
18624 this_type = read_subrange_type (die, cu);
18625 break;
18626 case DW_TAG_base_type:
18627 this_type = read_base_type (die, cu);
18628 break;
18629 case DW_TAG_unspecified_type:
18630 this_type = read_unspecified_type (die, cu);
18631 break;
18632 case DW_TAG_namespace:
18633 this_type = read_namespace_type (die, cu);
18634 break;
18635 case DW_TAG_module:
18636 this_type = read_module_type (die, cu);
18637 break;
18638 default:
18639 complaint (&symfile_complaints,
18640 _("unexpected tag in read_type_die: '%s'"),
18641 dwarf_tag_name (die->tag));
18642 break;
18643 }
18644
18645 return this_type;
18646 }
18647
18648 /* See if we can figure out if the class lives in a namespace. We do
18649 this by looking for a member function; its demangled name will
18650 contain namespace info, if there is any.
18651 Return the computed name or NULL.
18652 Space for the result is allocated on the objfile's obstack.
18653 This is the full-die version of guess_partial_die_structure_name.
18654 In this case we know DIE has no useful parent. */
18655
18656 static char *
18657 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18658 {
18659 struct die_info *spec_die;
18660 struct dwarf2_cu *spec_cu;
18661 struct die_info *child;
18662
18663 spec_cu = cu;
18664 spec_die = die_specification (die, &spec_cu);
18665 if (spec_die != NULL)
18666 {
18667 die = spec_die;
18668 cu = spec_cu;
18669 }
18670
18671 for (child = die->child;
18672 child != NULL;
18673 child = child->sibling)
18674 {
18675 if (child->tag == DW_TAG_subprogram)
18676 {
18677 struct attribute *attr;
18678
18679 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18680 if (attr == NULL)
18681 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18682 if (attr != NULL)
18683 {
18684 char *actual_name
18685 = language_class_name_from_physname (cu->language_defn,
18686 DW_STRING (attr));
18687 char *name = NULL;
18688
18689 if (actual_name != NULL)
18690 {
18691 const char *die_name = dwarf2_name (die, cu);
18692
18693 if (die_name != NULL
18694 && strcmp (die_name, actual_name) != 0)
18695 {
18696 /* Strip off the class name from the full name.
18697 We want the prefix. */
18698 int die_name_len = strlen (die_name);
18699 int actual_name_len = strlen (actual_name);
18700
18701 /* Test for '::' as a sanity check. */
18702 if (actual_name_len > die_name_len + 2
18703 && actual_name[actual_name_len
18704 - die_name_len - 1] == ':')
18705 name =
18706 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18707 actual_name,
18708 actual_name_len - die_name_len - 2);
18709 }
18710 }
18711 xfree (actual_name);
18712 return name;
18713 }
18714 }
18715 }
18716
18717 return NULL;
18718 }
18719
18720 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18721 prefix part in such case. See
18722 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18723
18724 static char *
18725 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18726 {
18727 struct attribute *attr;
18728 char *base;
18729
18730 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18731 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18732 return NULL;
18733
18734 attr = dwarf2_attr (die, DW_AT_name, cu);
18735 if (attr != NULL && DW_STRING (attr) != NULL)
18736 return NULL;
18737
18738 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18739 if (attr == NULL)
18740 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18741 if (attr == NULL || DW_STRING (attr) == NULL)
18742 return NULL;
18743
18744 /* dwarf2_name had to be already called. */
18745 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18746
18747 /* Strip the base name, keep any leading namespaces/classes. */
18748 base = strrchr (DW_STRING (attr), ':');
18749 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18750 return "";
18751
18752 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18753 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18754 }
18755
18756 /* Return the name of the namespace/class that DIE is defined within,
18757 or "" if we can't tell. The caller should not xfree the result.
18758
18759 For example, if we're within the method foo() in the following
18760 code:
18761
18762 namespace N {
18763 class C {
18764 void foo () {
18765 }
18766 };
18767 }
18768
18769 then determine_prefix on foo's die will return "N::C". */
18770
18771 static const char *
18772 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18773 {
18774 struct die_info *parent, *spec_die;
18775 struct dwarf2_cu *spec_cu;
18776 struct type *parent_type;
18777 char *retval;
18778
18779 if (cu->language != language_cplus && cu->language != language_java
18780 && cu->language != language_fortran)
18781 return "";
18782
18783 retval = anonymous_struct_prefix (die, cu);
18784 if (retval)
18785 return retval;
18786
18787 /* We have to be careful in the presence of DW_AT_specification.
18788 For example, with GCC 3.4, given the code
18789
18790 namespace N {
18791 void foo() {
18792 // Definition of N::foo.
18793 }
18794 }
18795
18796 then we'll have a tree of DIEs like this:
18797
18798 1: DW_TAG_compile_unit
18799 2: DW_TAG_namespace // N
18800 3: DW_TAG_subprogram // declaration of N::foo
18801 4: DW_TAG_subprogram // definition of N::foo
18802 DW_AT_specification // refers to die #3
18803
18804 Thus, when processing die #4, we have to pretend that we're in
18805 the context of its DW_AT_specification, namely the contex of die
18806 #3. */
18807 spec_cu = cu;
18808 spec_die = die_specification (die, &spec_cu);
18809 if (spec_die == NULL)
18810 parent = die->parent;
18811 else
18812 {
18813 parent = spec_die->parent;
18814 cu = spec_cu;
18815 }
18816
18817 if (parent == NULL)
18818 return "";
18819 else if (parent->building_fullname)
18820 {
18821 const char *name;
18822 const char *parent_name;
18823
18824 /* It has been seen on RealView 2.2 built binaries,
18825 DW_TAG_template_type_param types actually _defined_ as
18826 children of the parent class:
18827
18828 enum E {};
18829 template class <class Enum> Class{};
18830 Class<enum E> class_e;
18831
18832 1: DW_TAG_class_type (Class)
18833 2: DW_TAG_enumeration_type (E)
18834 3: DW_TAG_enumerator (enum1:0)
18835 3: DW_TAG_enumerator (enum2:1)
18836 ...
18837 2: DW_TAG_template_type_param
18838 DW_AT_type DW_FORM_ref_udata (E)
18839
18840 Besides being broken debug info, it can put GDB into an
18841 infinite loop. Consider:
18842
18843 When we're building the full name for Class<E>, we'll start
18844 at Class, and go look over its template type parameters,
18845 finding E. We'll then try to build the full name of E, and
18846 reach here. We're now trying to build the full name of E,
18847 and look over the parent DIE for containing scope. In the
18848 broken case, if we followed the parent DIE of E, we'd again
18849 find Class, and once again go look at its template type
18850 arguments, etc., etc. Simply don't consider such parent die
18851 as source-level parent of this die (it can't be, the language
18852 doesn't allow it), and break the loop here. */
18853 name = dwarf2_name (die, cu);
18854 parent_name = dwarf2_name (parent, cu);
18855 complaint (&symfile_complaints,
18856 _("template param type '%s' defined within parent '%s'"),
18857 name ? name : "<unknown>",
18858 parent_name ? parent_name : "<unknown>");
18859 return "";
18860 }
18861 else
18862 switch (parent->tag)
18863 {
18864 case DW_TAG_namespace:
18865 parent_type = read_type_die (parent, cu);
18866 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18867 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18868 Work around this problem here. */
18869 if (cu->language == language_cplus
18870 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18871 return "";
18872 /* We give a name to even anonymous namespaces. */
18873 return TYPE_TAG_NAME (parent_type);
18874 case DW_TAG_class_type:
18875 case DW_TAG_interface_type:
18876 case DW_TAG_structure_type:
18877 case DW_TAG_union_type:
18878 case DW_TAG_module:
18879 parent_type = read_type_die (parent, cu);
18880 if (TYPE_TAG_NAME (parent_type) != NULL)
18881 return TYPE_TAG_NAME (parent_type);
18882 else
18883 /* An anonymous structure is only allowed non-static data
18884 members; no typedefs, no member functions, et cetera.
18885 So it does not need a prefix. */
18886 return "";
18887 case DW_TAG_compile_unit:
18888 case DW_TAG_partial_unit:
18889 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18890 if (cu->language == language_cplus
18891 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18892 && die->child != NULL
18893 && (die->tag == DW_TAG_class_type
18894 || die->tag == DW_TAG_structure_type
18895 || die->tag == DW_TAG_union_type))
18896 {
18897 char *name = guess_full_die_structure_name (die, cu);
18898 if (name != NULL)
18899 return name;
18900 }
18901 return "";
18902 case DW_TAG_enumeration_type:
18903 parent_type = read_type_die (parent, cu);
18904 if (TYPE_DECLARED_CLASS (parent_type))
18905 {
18906 if (TYPE_TAG_NAME (parent_type) != NULL)
18907 return TYPE_TAG_NAME (parent_type);
18908 return "";
18909 }
18910 /* Fall through. */
18911 default:
18912 return determine_prefix (parent, cu);
18913 }
18914 }
18915
18916 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18917 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18918 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18919 an obconcat, otherwise allocate storage for the result. The CU argument is
18920 used to determine the language and hence, the appropriate separator. */
18921
18922 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18923
18924 static char *
18925 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18926 int physname, struct dwarf2_cu *cu)
18927 {
18928 const char *lead = "";
18929 const char *sep;
18930
18931 if (suffix == NULL || suffix[0] == '\0'
18932 || prefix == NULL || prefix[0] == '\0')
18933 sep = "";
18934 else if (cu->language == language_java)
18935 sep = ".";
18936 else if (cu->language == language_fortran && physname)
18937 {
18938 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18939 DW_AT_MIPS_linkage_name is preferred and used instead. */
18940
18941 lead = "__";
18942 sep = "_MOD_";
18943 }
18944 else
18945 sep = "::";
18946
18947 if (prefix == NULL)
18948 prefix = "";
18949 if (suffix == NULL)
18950 suffix = "";
18951
18952 if (obs == NULL)
18953 {
18954 char *retval
18955 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
18956
18957 strcpy (retval, lead);
18958 strcat (retval, prefix);
18959 strcat (retval, sep);
18960 strcat (retval, suffix);
18961 return retval;
18962 }
18963 else
18964 {
18965 /* We have an obstack. */
18966 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
18967 }
18968 }
18969
18970 /* Return sibling of die, NULL if no sibling. */
18971
18972 static struct die_info *
18973 sibling_die (struct die_info *die)
18974 {
18975 return die->sibling;
18976 }
18977
18978 /* Get name of a die, return NULL if not found. */
18979
18980 static const char *
18981 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
18982 struct obstack *obstack)
18983 {
18984 if (name && cu->language == language_cplus)
18985 {
18986 char *canon_name = cp_canonicalize_string (name);
18987
18988 if (canon_name != NULL)
18989 {
18990 if (strcmp (canon_name, name) != 0)
18991 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
18992 xfree (canon_name);
18993 }
18994 }
18995
18996 return name;
18997 }
18998
18999 /* Get name of a die, return NULL if not found. */
19000
19001 static const char *
19002 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19003 {
19004 struct attribute *attr;
19005
19006 attr = dwarf2_attr (die, DW_AT_name, cu);
19007 if ((!attr || !DW_STRING (attr))
19008 && die->tag != DW_TAG_class_type
19009 && die->tag != DW_TAG_interface_type
19010 && die->tag != DW_TAG_structure_type
19011 && die->tag != DW_TAG_union_type)
19012 return NULL;
19013
19014 switch (die->tag)
19015 {
19016 case DW_TAG_compile_unit:
19017 case DW_TAG_partial_unit:
19018 /* Compilation units have a DW_AT_name that is a filename, not
19019 a source language identifier. */
19020 case DW_TAG_enumeration_type:
19021 case DW_TAG_enumerator:
19022 /* These tags always have simple identifiers already; no need
19023 to canonicalize them. */
19024 return DW_STRING (attr);
19025
19026 case DW_TAG_subprogram:
19027 /* Java constructors will all be named "<init>", so return
19028 the class name when we see this special case. */
19029 if (cu->language == language_java
19030 && DW_STRING (attr) != NULL
19031 && strcmp (DW_STRING (attr), "<init>") == 0)
19032 {
19033 struct dwarf2_cu *spec_cu = cu;
19034 struct die_info *spec_die;
19035
19036 /* GCJ will output '<init>' for Java constructor names.
19037 For this special case, return the name of the parent class. */
19038
19039 /* GCJ may output subprogram DIEs with AT_specification set.
19040 If so, use the name of the specified DIE. */
19041 spec_die = die_specification (die, &spec_cu);
19042 if (spec_die != NULL)
19043 return dwarf2_name (spec_die, spec_cu);
19044
19045 do
19046 {
19047 die = die->parent;
19048 if (die->tag == DW_TAG_class_type)
19049 return dwarf2_name (die, cu);
19050 }
19051 while (die->tag != DW_TAG_compile_unit
19052 && die->tag != DW_TAG_partial_unit);
19053 }
19054 break;
19055
19056 case DW_TAG_class_type:
19057 case DW_TAG_interface_type:
19058 case DW_TAG_structure_type:
19059 case DW_TAG_union_type:
19060 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19061 structures or unions. These were of the form "._%d" in GCC 4.1,
19062 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19063 and GCC 4.4. We work around this problem by ignoring these. */
19064 if (attr && DW_STRING (attr)
19065 && (strncmp (DW_STRING (attr), "._", 2) == 0
19066 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
19067 return NULL;
19068
19069 /* GCC might emit a nameless typedef that has a linkage name. See
19070 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19071 if (!attr || DW_STRING (attr) == NULL)
19072 {
19073 char *demangled = NULL;
19074
19075 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19076 if (attr == NULL)
19077 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19078
19079 if (attr == NULL || DW_STRING (attr) == NULL)
19080 return NULL;
19081
19082 /* Avoid demangling DW_STRING (attr) the second time on a second
19083 call for the same DIE. */
19084 if (!DW_STRING_IS_CANONICAL (attr))
19085 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19086
19087 if (demangled)
19088 {
19089 char *base;
19090
19091 /* FIXME: we already did this for the partial symbol... */
19092 DW_STRING (attr)
19093 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19094 demangled, strlen (demangled));
19095 DW_STRING_IS_CANONICAL (attr) = 1;
19096 xfree (demangled);
19097
19098 /* Strip any leading namespaces/classes, keep only the base name.
19099 DW_AT_name for named DIEs does not contain the prefixes. */
19100 base = strrchr (DW_STRING (attr), ':');
19101 if (base && base > DW_STRING (attr) && base[-1] == ':')
19102 return &base[1];
19103 else
19104 return DW_STRING (attr);
19105 }
19106 }
19107 break;
19108
19109 default:
19110 break;
19111 }
19112
19113 if (!DW_STRING_IS_CANONICAL (attr))
19114 {
19115 DW_STRING (attr)
19116 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19117 &cu->objfile->per_bfd->storage_obstack);
19118 DW_STRING_IS_CANONICAL (attr) = 1;
19119 }
19120 return DW_STRING (attr);
19121 }
19122
19123 /* Return the die that this die in an extension of, or NULL if there
19124 is none. *EXT_CU is the CU containing DIE on input, and the CU
19125 containing the return value on output. */
19126
19127 static struct die_info *
19128 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19129 {
19130 struct attribute *attr;
19131
19132 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19133 if (attr == NULL)
19134 return NULL;
19135
19136 return follow_die_ref (die, attr, ext_cu);
19137 }
19138
19139 /* Convert a DIE tag into its string name. */
19140
19141 static const char *
19142 dwarf_tag_name (unsigned tag)
19143 {
19144 const char *name = get_DW_TAG_name (tag);
19145
19146 if (name == NULL)
19147 return "DW_TAG_<unknown>";
19148
19149 return name;
19150 }
19151
19152 /* Convert a DWARF attribute code into its string name. */
19153
19154 static const char *
19155 dwarf_attr_name (unsigned attr)
19156 {
19157 const char *name;
19158
19159 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19160 if (attr == DW_AT_MIPS_fde)
19161 return "DW_AT_MIPS_fde";
19162 #else
19163 if (attr == DW_AT_HP_block_index)
19164 return "DW_AT_HP_block_index";
19165 #endif
19166
19167 name = get_DW_AT_name (attr);
19168
19169 if (name == NULL)
19170 return "DW_AT_<unknown>";
19171
19172 return name;
19173 }
19174
19175 /* Convert a DWARF value form code into its string name. */
19176
19177 static const char *
19178 dwarf_form_name (unsigned form)
19179 {
19180 const char *name = get_DW_FORM_name (form);
19181
19182 if (name == NULL)
19183 return "DW_FORM_<unknown>";
19184
19185 return name;
19186 }
19187
19188 static char *
19189 dwarf_bool_name (unsigned mybool)
19190 {
19191 if (mybool)
19192 return "TRUE";
19193 else
19194 return "FALSE";
19195 }
19196
19197 /* Convert a DWARF type code into its string name. */
19198
19199 static const char *
19200 dwarf_type_encoding_name (unsigned enc)
19201 {
19202 const char *name = get_DW_ATE_name (enc);
19203
19204 if (name == NULL)
19205 return "DW_ATE_<unknown>";
19206
19207 return name;
19208 }
19209
19210 static void
19211 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19212 {
19213 unsigned int i;
19214
19215 print_spaces (indent, f);
19216 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19217 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19218
19219 if (die->parent != NULL)
19220 {
19221 print_spaces (indent, f);
19222 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19223 die->parent->offset.sect_off);
19224 }
19225
19226 print_spaces (indent, f);
19227 fprintf_unfiltered (f, " has children: %s\n",
19228 dwarf_bool_name (die->child != NULL));
19229
19230 print_spaces (indent, f);
19231 fprintf_unfiltered (f, " attributes:\n");
19232
19233 for (i = 0; i < die->num_attrs; ++i)
19234 {
19235 print_spaces (indent, f);
19236 fprintf_unfiltered (f, " %s (%s) ",
19237 dwarf_attr_name (die->attrs[i].name),
19238 dwarf_form_name (die->attrs[i].form));
19239
19240 switch (die->attrs[i].form)
19241 {
19242 case DW_FORM_addr:
19243 case DW_FORM_GNU_addr_index:
19244 fprintf_unfiltered (f, "address: ");
19245 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19246 break;
19247 case DW_FORM_block2:
19248 case DW_FORM_block4:
19249 case DW_FORM_block:
19250 case DW_FORM_block1:
19251 fprintf_unfiltered (f, "block: size %s",
19252 pulongest (DW_BLOCK (&die->attrs[i])->size));
19253 break;
19254 case DW_FORM_exprloc:
19255 fprintf_unfiltered (f, "expression: size %s",
19256 pulongest (DW_BLOCK (&die->attrs[i])->size));
19257 break;
19258 case DW_FORM_ref_addr:
19259 fprintf_unfiltered (f, "ref address: ");
19260 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19261 break;
19262 case DW_FORM_GNU_ref_alt:
19263 fprintf_unfiltered (f, "alt ref address: ");
19264 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19265 break;
19266 case DW_FORM_ref1:
19267 case DW_FORM_ref2:
19268 case DW_FORM_ref4:
19269 case DW_FORM_ref8:
19270 case DW_FORM_ref_udata:
19271 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19272 (long) (DW_UNSND (&die->attrs[i])));
19273 break;
19274 case DW_FORM_data1:
19275 case DW_FORM_data2:
19276 case DW_FORM_data4:
19277 case DW_FORM_data8:
19278 case DW_FORM_udata:
19279 case DW_FORM_sdata:
19280 fprintf_unfiltered (f, "constant: %s",
19281 pulongest (DW_UNSND (&die->attrs[i])));
19282 break;
19283 case DW_FORM_sec_offset:
19284 fprintf_unfiltered (f, "section offset: %s",
19285 pulongest (DW_UNSND (&die->attrs[i])));
19286 break;
19287 case DW_FORM_ref_sig8:
19288 fprintf_unfiltered (f, "signature: %s",
19289 hex_string (DW_SIGNATURE (&die->attrs[i])));
19290 break;
19291 case DW_FORM_string:
19292 case DW_FORM_strp:
19293 case DW_FORM_GNU_str_index:
19294 case DW_FORM_GNU_strp_alt:
19295 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19296 DW_STRING (&die->attrs[i])
19297 ? DW_STRING (&die->attrs[i]) : "",
19298 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19299 break;
19300 case DW_FORM_flag:
19301 if (DW_UNSND (&die->attrs[i]))
19302 fprintf_unfiltered (f, "flag: TRUE");
19303 else
19304 fprintf_unfiltered (f, "flag: FALSE");
19305 break;
19306 case DW_FORM_flag_present:
19307 fprintf_unfiltered (f, "flag: TRUE");
19308 break;
19309 case DW_FORM_indirect:
19310 /* The reader will have reduced the indirect form to
19311 the "base form" so this form should not occur. */
19312 fprintf_unfiltered (f,
19313 "unexpected attribute form: DW_FORM_indirect");
19314 break;
19315 default:
19316 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19317 die->attrs[i].form);
19318 break;
19319 }
19320 fprintf_unfiltered (f, "\n");
19321 }
19322 }
19323
19324 static void
19325 dump_die_for_error (struct die_info *die)
19326 {
19327 dump_die_shallow (gdb_stderr, 0, die);
19328 }
19329
19330 static void
19331 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19332 {
19333 int indent = level * 4;
19334
19335 gdb_assert (die != NULL);
19336
19337 if (level >= max_level)
19338 return;
19339
19340 dump_die_shallow (f, indent, die);
19341
19342 if (die->child != NULL)
19343 {
19344 print_spaces (indent, f);
19345 fprintf_unfiltered (f, " Children:");
19346 if (level + 1 < max_level)
19347 {
19348 fprintf_unfiltered (f, "\n");
19349 dump_die_1 (f, level + 1, max_level, die->child);
19350 }
19351 else
19352 {
19353 fprintf_unfiltered (f,
19354 " [not printed, max nesting level reached]\n");
19355 }
19356 }
19357
19358 if (die->sibling != NULL && level > 0)
19359 {
19360 dump_die_1 (f, level, max_level, die->sibling);
19361 }
19362 }
19363
19364 /* This is called from the pdie macro in gdbinit.in.
19365 It's not static so gcc will keep a copy callable from gdb. */
19366
19367 void
19368 dump_die (struct die_info *die, int max_level)
19369 {
19370 dump_die_1 (gdb_stdlog, 0, max_level, die);
19371 }
19372
19373 static void
19374 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19375 {
19376 void **slot;
19377
19378 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19379 INSERT);
19380
19381 *slot = die;
19382 }
19383
19384 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19385 required kind. */
19386
19387 static sect_offset
19388 dwarf2_get_ref_die_offset (const struct attribute *attr)
19389 {
19390 sect_offset retval = { DW_UNSND (attr) };
19391
19392 if (attr_form_is_ref (attr))
19393 return retval;
19394
19395 retval.sect_off = 0;
19396 complaint (&symfile_complaints,
19397 _("unsupported die ref attribute form: '%s'"),
19398 dwarf_form_name (attr->form));
19399 return retval;
19400 }
19401
19402 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19403 * the value held by the attribute is not constant. */
19404
19405 static LONGEST
19406 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19407 {
19408 if (attr->form == DW_FORM_sdata)
19409 return DW_SND (attr);
19410 else if (attr->form == DW_FORM_udata
19411 || attr->form == DW_FORM_data1
19412 || attr->form == DW_FORM_data2
19413 || attr->form == DW_FORM_data4
19414 || attr->form == DW_FORM_data8)
19415 return DW_UNSND (attr);
19416 else
19417 {
19418 complaint (&symfile_complaints,
19419 _("Attribute value is not a constant (%s)"),
19420 dwarf_form_name (attr->form));
19421 return default_value;
19422 }
19423 }
19424
19425 /* Follow reference or signature attribute ATTR of SRC_DIE.
19426 On entry *REF_CU is the CU of SRC_DIE.
19427 On exit *REF_CU is the CU of the result. */
19428
19429 static struct die_info *
19430 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19431 struct dwarf2_cu **ref_cu)
19432 {
19433 struct die_info *die;
19434
19435 if (attr_form_is_ref (attr))
19436 die = follow_die_ref (src_die, attr, ref_cu);
19437 else if (attr->form == DW_FORM_ref_sig8)
19438 die = follow_die_sig (src_die, attr, ref_cu);
19439 else
19440 {
19441 dump_die_for_error (src_die);
19442 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19443 objfile_name ((*ref_cu)->objfile));
19444 }
19445
19446 return die;
19447 }
19448
19449 /* Follow reference OFFSET.
19450 On entry *REF_CU is the CU of the source die referencing OFFSET.
19451 On exit *REF_CU is the CU of the result.
19452 Returns NULL if OFFSET is invalid. */
19453
19454 static struct die_info *
19455 follow_die_offset (sect_offset offset, int offset_in_dwz,
19456 struct dwarf2_cu **ref_cu)
19457 {
19458 struct die_info temp_die;
19459 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19460
19461 gdb_assert (cu->per_cu != NULL);
19462
19463 target_cu = cu;
19464
19465 if (cu->per_cu->is_debug_types)
19466 {
19467 /* .debug_types CUs cannot reference anything outside their CU.
19468 If they need to, they have to reference a signatured type via
19469 DW_FORM_ref_sig8. */
19470 if (! offset_in_cu_p (&cu->header, offset))
19471 return NULL;
19472 }
19473 else if (offset_in_dwz != cu->per_cu->is_dwz
19474 || ! offset_in_cu_p (&cu->header, offset))
19475 {
19476 struct dwarf2_per_cu_data *per_cu;
19477
19478 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19479 cu->objfile);
19480
19481 /* If necessary, add it to the queue and load its DIEs. */
19482 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19483 load_full_comp_unit (per_cu, cu->language);
19484
19485 target_cu = per_cu->cu;
19486 }
19487 else if (cu->dies == NULL)
19488 {
19489 /* We're loading full DIEs during partial symbol reading. */
19490 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19491 load_full_comp_unit (cu->per_cu, language_minimal);
19492 }
19493
19494 *ref_cu = target_cu;
19495 temp_die.offset = offset;
19496 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19497 }
19498
19499 /* Follow reference attribute ATTR of SRC_DIE.
19500 On entry *REF_CU is the CU of SRC_DIE.
19501 On exit *REF_CU is the CU of the result. */
19502
19503 static struct die_info *
19504 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19505 struct dwarf2_cu **ref_cu)
19506 {
19507 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19508 struct dwarf2_cu *cu = *ref_cu;
19509 struct die_info *die;
19510
19511 die = follow_die_offset (offset,
19512 (attr->form == DW_FORM_GNU_ref_alt
19513 || cu->per_cu->is_dwz),
19514 ref_cu);
19515 if (!die)
19516 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19517 "at 0x%x [in module %s]"),
19518 offset.sect_off, src_die->offset.sect_off,
19519 objfile_name (cu->objfile));
19520
19521 return die;
19522 }
19523
19524 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19525 Returned value is intended for DW_OP_call*. Returned
19526 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19527
19528 struct dwarf2_locexpr_baton
19529 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19530 struct dwarf2_per_cu_data *per_cu,
19531 CORE_ADDR (*get_frame_pc) (void *baton),
19532 void *baton)
19533 {
19534 struct dwarf2_cu *cu;
19535 struct die_info *die;
19536 struct attribute *attr;
19537 struct dwarf2_locexpr_baton retval;
19538
19539 dw2_setup (per_cu->objfile);
19540
19541 if (per_cu->cu == NULL)
19542 load_cu (per_cu);
19543 cu = per_cu->cu;
19544
19545 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19546 if (!die)
19547 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19548 offset.sect_off, objfile_name (per_cu->objfile));
19549
19550 attr = dwarf2_attr (die, DW_AT_location, cu);
19551 if (!attr)
19552 {
19553 /* DWARF: "If there is no such attribute, then there is no effect.".
19554 DATA is ignored if SIZE is 0. */
19555
19556 retval.data = NULL;
19557 retval.size = 0;
19558 }
19559 else if (attr_form_is_section_offset (attr))
19560 {
19561 struct dwarf2_loclist_baton loclist_baton;
19562 CORE_ADDR pc = (*get_frame_pc) (baton);
19563 size_t size;
19564
19565 fill_in_loclist_baton (cu, &loclist_baton, attr);
19566
19567 retval.data = dwarf2_find_location_expression (&loclist_baton,
19568 &size, pc);
19569 retval.size = size;
19570 }
19571 else
19572 {
19573 if (!attr_form_is_block (attr))
19574 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19575 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19576 offset.sect_off, objfile_name (per_cu->objfile));
19577
19578 retval.data = DW_BLOCK (attr)->data;
19579 retval.size = DW_BLOCK (attr)->size;
19580 }
19581 retval.per_cu = cu->per_cu;
19582
19583 age_cached_comp_units ();
19584
19585 return retval;
19586 }
19587
19588 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19589 offset. */
19590
19591 struct dwarf2_locexpr_baton
19592 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19593 struct dwarf2_per_cu_data *per_cu,
19594 CORE_ADDR (*get_frame_pc) (void *baton),
19595 void *baton)
19596 {
19597 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19598
19599 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19600 }
19601
19602 /* Write a constant of a given type as target-ordered bytes into
19603 OBSTACK. */
19604
19605 static const gdb_byte *
19606 write_constant_as_bytes (struct obstack *obstack,
19607 enum bfd_endian byte_order,
19608 struct type *type,
19609 ULONGEST value,
19610 LONGEST *len)
19611 {
19612 gdb_byte *result;
19613
19614 *len = TYPE_LENGTH (type);
19615 result = obstack_alloc (obstack, *len);
19616 store_unsigned_integer (result, *len, byte_order, value);
19617
19618 return result;
19619 }
19620
19621 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19622 pointer to the constant bytes and set LEN to the length of the
19623 data. If memory is needed, allocate it on OBSTACK. If the DIE
19624 does not have a DW_AT_const_value, return NULL. */
19625
19626 const gdb_byte *
19627 dwarf2_fetch_constant_bytes (sect_offset offset,
19628 struct dwarf2_per_cu_data *per_cu,
19629 struct obstack *obstack,
19630 LONGEST *len)
19631 {
19632 struct dwarf2_cu *cu;
19633 struct die_info *die;
19634 struct attribute *attr;
19635 const gdb_byte *result = NULL;
19636 struct type *type;
19637 LONGEST value;
19638 enum bfd_endian byte_order;
19639
19640 dw2_setup (per_cu->objfile);
19641
19642 if (per_cu->cu == NULL)
19643 load_cu (per_cu);
19644 cu = per_cu->cu;
19645
19646 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19647 if (!die)
19648 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19649 offset.sect_off, objfile_name (per_cu->objfile));
19650
19651
19652 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19653 if (attr == NULL)
19654 return NULL;
19655
19656 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19657 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19658
19659 switch (attr->form)
19660 {
19661 case DW_FORM_addr:
19662 case DW_FORM_GNU_addr_index:
19663 {
19664 gdb_byte *tem;
19665
19666 *len = cu->header.addr_size;
19667 tem = obstack_alloc (obstack, *len);
19668 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19669 result = tem;
19670 }
19671 break;
19672 case DW_FORM_string:
19673 case DW_FORM_strp:
19674 case DW_FORM_GNU_str_index:
19675 case DW_FORM_GNU_strp_alt:
19676 /* DW_STRING is already allocated on the objfile obstack, point
19677 directly to it. */
19678 result = (const gdb_byte *) DW_STRING (attr);
19679 *len = strlen (DW_STRING (attr));
19680 break;
19681 case DW_FORM_block1:
19682 case DW_FORM_block2:
19683 case DW_FORM_block4:
19684 case DW_FORM_block:
19685 case DW_FORM_exprloc:
19686 result = DW_BLOCK (attr)->data;
19687 *len = DW_BLOCK (attr)->size;
19688 break;
19689
19690 /* The DW_AT_const_value attributes are supposed to carry the
19691 symbol's value "represented as it would be on the target
19692 architecture." By the time we get here, it's already been
19693 converted to host endianness, so we just need to sign- or
19694 zero-extend it as appropriate. */
19695 case DW_FORM_data1:
19696 type = die_type (die, cu);
19697 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19698 if (result == NULL)
19699 result = write_constant_as_bytes (obstack, byte_order,
19700 type, value, len);
19701 break;
19702 case DW_FORM_data2:
19703 type = die_type (die, cu);
19704 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19705 if (result == NULL)
19706 result = write_constant_as_bytes (obstack, byte_order,
19707 type, value, len);
19708 break;
19709 case DW_FORM_data4:
19710 type = die_type (die, cu);
19711 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19712 if (result == NULL)
19713 result = write_constant_as_bytes (obstack, byte_order,
19714 type, value, len);
19715 break;
19716 case DW_FORM_data8:
19717 type = die_type (die, cu);
19718 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19719 if (result == NULL)
19720 result = write_constant_as_bytes (obstack, byte_order,
19721 type, value, len);
19722 break;
19723
19724 case DW_FORM_sdata:
19725 type = die_type (die, cu);
19726 result = write_constant_as_bytes (obstack, byte_order,
19727 type, DW_SND (attr), len);
19728 break;
19729
19730 case DW_FORM_udata:
19731 type = die_type (die, cu);
19732 result = write_constant_as_bytes (obstack, byte_order,
19733 type, DW_UNSND (attr), len);
19734 break;
19735
19736 default:
19737 complaint (&symfile_complaints,
19738 _("unsupported const value attribute form: '%s'"),
19739 dwarf_form_name (attr->form));
19740 break;
19741 }
19742
19743 return result;
19744 }
19745
19746 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19747 PER_CU. */
19748
19749 struct type *
19750 dwarf2_get_die_type (cu_offset die_offset,
19751 struct dwarf2_per_cu_data *per_cu)
19752 {
19753 sect_offset die_offset_sect;
19754
19755 dw2_setup (per_cu->objfile);
19756
19757 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19758 return get_die_type_at_offset (die_offset_sect, per_cu);
19759 }
19760
19761 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19762 On entry *REF_CU is the CU of SRC_DIE.
19763 On exit *REF_CU is the CU of the result.
19764 Returns NULL if the referenced DIE isn't found. */
19765
19766 static struct die_info *
19767 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19768 struct dwarf2_cu **ref_cu)
19769 {
19770 struct objfile *objfile = (*ref_cu)->objfile;
19771 struct die_info temp_die;
19772 struct dwarf2_cu *sig_cu;
19773 struct die_info *die;
19774
19775 /* While it might be nice to assert sig_type->type == NULL here,
19776 we can get here for DW_AT_imported_declaration where we need
19777 the DIE not the type. */
19778
19779 /* If necessary, add it to the queue and load its DIEs. */
19780
19781 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19782 read_signatured_type (sig_type);
19783
19784 sig_cu = sig_type->per_cu.cu;
19785 gdb_assert (sig_cu != NULL);
19786 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19787 temp_die.offset = sig_type->type_offset_in_section;
19788 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19789 temp_die.offset.sect_off);
19790 if (die)
19791 {
19792 /* For .gdb_index version 7 keep track of included TUs.
19793 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19794 if (dwarf2_per_objfile->index_table != NULL
19795 && dwarf2_per_objfile->index_table->version <= 7)
19796 {
19797 VEC_safe_push (dwarf2_per_cu_ptr,
19798 (*ref_cu)->per_cu->imported_symtabs,
19799 sig_cu->per_cu);
19800 }
19801
19802 *ref_cu = sig_cu;
19803 return die;
19804 }
19805
19806 return NULL;
19807 }
19808
19809 /* Follow signatured type referenced by ATTR in SRC_DIE.
19810 On entry *REF_CU is the CU of SRC_DIE.
19811 On exit *REF_CU is the CU of the result.
19812 The result is the DIE of the type.
19813 If the referenced type cannot be found an error is thrown. */
19814
19815 static struct die_info *
19816 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19817 struct dwarf2_cu **ref_cu)
19818 {
19819 ULONGEST signature = DW_SIGNATURE (attr);
19820 struct signatured_type *sig_type;
19821 struct die_info *die;
19822
19823 gdb_assert (attr->form == DW_FORM_ref_sig8);
19824
19825 sig_type = lookup_signatured_type (*ref_cu, signature);
19826 /* sig_type will be NULL if the signatured type is missing from
19827 the debug info. */
19828 if (sig_type == NULL)
19829 {
19830 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19831 " from DIE at 0x%x [in module %s]"),
19832 hex_string (signature), src_die->offset.sect_off,
19833 objfile_name ((*ref_cu)->objfile));
19834 }
19835
19836 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19837 if (die == NULL)
19838 {
19839 dump_die_for_error (src_die);
19840 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19841 " from DIE at 0x%x [in module %s]"),
19842 hex_string (signature), src_die->offset.sect_off,
19843 objfile_name ((*ref_cu)->objfile));
19844 }
19845
19846 return die;
19847 }
19848
19849 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19850 reading in and processing the type unit if necessary. */
19851
19852 static struct type *
19853 get_signatured_type (struct die_info *die, ULONGEST signature,
19854 struct dwarf2_cu *cu)
19855 {
19856 struct signatured_type *sig_type;
19857 struct dwarf2_cu *type_cu;
19858 struct die_info *type_die;
19859 struct type *type;
19860
19861 sig_type = lookup_signatured_type (cu, signature);
19862 /* sig_type will be NULL if the signatured type is missing from
19863 the debug info. */
19864 if (sig_type == NULL)
19865 {
19866 complaint (&symfile_complaints,
19867 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19868 " from DIE at 0x%x [in module %s]"),
19869 hex_string (signature), die->offset.sect_off,
19870 objfile_name (dwarf2_per_objfile->objfile));
19871 return build_error_marker_type (cu, die);
19872 }
19873
19874 /* If we already know the type we're done. */
19875 if (sig_type->type != NULL)
19876 return sig_type->type;
19877
19878 type_cu = cu;
19879 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19880 if (type_die != NULL)
19881 {
19882 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19883 is created. This is important, for example, because for c++ classes
19884 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19885 type = read_type_die (type_die, type_cu);
19886 if (type == NULL)
19887 {
19888 complaint (&symfile_complaints,
19889 _("Dwarf Error: Cannot build signatured type %s"
19890 " referenced from DIE at 0x%x [in module %s]"),
19891 hex_string (signature), die->offset.sect_off,
19892 objfile_name (dwarf2_per_objfile->objfile));
19893 type = build_error_marker_type (cu, die);
19894 }
19895 }
19896 else
19897 {
19898 complaint (&symfile_complaints,
19899 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19900 " from DIE at 0x%x [in module %s]"),
19901 hex_string (signature), die->offset.sect_off,
19902 objfile_name (dwarf2_per_objfile->objfile));
19903 type = build_error_marker_type (cu, die);
19904 }
19905 sig_type->type = type;
19906
19907 return type;
19908 }
19909
19910 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19911 reading in and processing the type unit if necessary. */
19912
19913 static struct type *
19914 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19915 struct dwarf2_cu *cu) /* ARI: editCase function */
19916 {
19917 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19918 if (attr_form_is_ref (attr))
19919 {
19920 struct dwarf2_cu *type_cu = cu;
19921 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19922
19923 return read_type_die (type_die, type_cu);
19924 }
19925 else if (attr->form == DW_FORM_ref_sig8)
19926 {
19927 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19928 }
19929 else
19930 {
19931 complaint (&symfile_complaints,
19932 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19933 " at 0x%x [in module %s]"),
19934 dwarf_form_name (attr->form), die->offset.sect_off,
19935 objfile_name (dwarf2_per_objfile->objfile));
19936 return build_error_marker_type (cu, die);
19937 }
19938 }
19939
19940 /* Load the DIEs associated with type unit PER_CU into memory. */
19941
19942 static void
19943 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
19944 {
19945 struct signatured_type *sig_type;
19946
19947 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19948 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19949
19950 /* We have the per_cu, but we need the signatured_type.
19951 Fortunately this is an easy translation. */
19952 gdb_assert (per_cu->is_debug_types);
19953 sig_type = (struct signatured_type *) per_cu;
19954
19955 gdb_assert (per_cu->cu == NULL);
19956
19957 read_signatured_type (sig_type);
19958
19959 gdb_assert (per_cu->cu != NULL);
19960 }
19961
19962 /* die_reader_func for read_signatured_type.
19963 This is identical to load_full_comp_unit_reader,
19964 but is kept separate for now. */
19965
19966 static void
19967 read_signatured_type_reader (const struct die_reader_specs *reader,
19968 const gdb_byte *info_ptr,
19969 struct die_info *comp_unit_die,
19970 int has_children,
19971 void *data)
19972 {
19973 struct dwarf2_cu *cu = reader->cu;
19974
19975 gdb_assert (cu->die_hash == NULL);
19976 cu->die_hash =
19977 htab_create_alloc_ex (cu->header.length / 12,
19978 die_hash,
19979 die_eq,
19980 NULL,
19981 &cu->comp_unit_obstack,
19982 hashtab_obstack_allocate,
19983 dummy_obstack_deallocate);
19984
19985 if (has_children)
19986 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19987 &info_ptr, comp_unit_die);
19988 cu->dies = comp_unit_die;
19989 /* comp_unit_die is not stored in die_hash, no need. */
19990
19991 /* We try not to read any attributes in this function, because not
19992 all CUs needed for references have been loaded yet, and symbol
19993 table processing isn't initialized. But we have to set the CU language,
19994 or we won't be able to build types correctly.
19995 Similarly, if we do not read the producer, we can not apply
19996 producer-specific interpretation. */
19997 prepare_one_comp_unit (cu, cu->dies, language_minimal);
19998 }
19999
20000 /* Read in a signatured type and build its CU and DIEs.
20001 If the type is a stub for the real type in a DWO file,
20002 read in the real type from the DWO file as well. */
20003
20004 static void
20005 read_signatured_type (struct signatured_type *sig_type)
20006 {
20007 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20008
20009 gdb_assert (per_cu->is_debug_types);
20010 gdb_assert (per_cu->cu == NULL);
20011
20012 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20013 read_signatured_type_reader, NULL);
20014 sig_type->per_cu.tu_read = 1;
20015 }
20016
20017 /* Decode simple location descriptions.
20018 Given a pointer to a dwarf block that defines a location, compute
20019 the location and return the value.
20020
20021 NOTE drow/2003-11-18: This function is called in two situations
20022 now: for the address of static or global variables (partial symbols
20023 only) and for offsets into structures which are expected to be
20024 (more or less) constant. The partial symbol case should go away,
20025 and only the constant case should remain. That will let this
20026 function complain more accurately. A few special modes are allowed
20027 without complaint for global variables (for instance, global
20028 register values and thread-local values).
20029
20030 A location description containing no operations indicates that the
20031 object is optimized out. The return value is 0 for that case.
20032 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20033 callers will only want a very basic result and this can become a
20034 complaint.
20035
20036 Note that stack[0] is unused except as a default error return. */
20037
20038 static CORE_ADDR
20039 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20040 {
20041 struct objfile *objfile = cu->objfile;
20042 size_t i;
20043 size_t size = blk->size;
20044 const gdb_byte *data = blk->data;
20045 CORE_ADDR stack[64];
20046 int stacki;
20047 unsigned int bytes_read, unsnd;
20048 gdb_byte op;
20049
20050 i = 0;
20051 stacki = 0;
20052 stack[stacki] = 0;
20053 stack[++stacki] = 0;
20054
20055 while (i < size)
20056 {
20057 op = data[i++];
20058 switch (op)
20059 {
20060 case DW_OP_lit0:
20061 case DW_OP_lit1:
20062 case DW_OP_lit2:
20063 case DW_OP_lit3:
20064 case DW_OP_lit4:
20065 case DW_OP_lit5:
20066 case DW_OP_lit6:
20067 case DW_OP_lit7:
20068 case DW_OP_lit8:
20069 case DW_OP_lit9:
20070 case DW_OP_lit10:
20071 case DW_OP_lit11:
20072 case DW_OP_lit12:
20073 case DW_OP_lit13:
20074 case DW_OP_lit14:
20075 case DW_OP_lit15:
20076 case DW_OP_lit16:
20077 case DW_OP_lit17:
20078 case DW_OP_lit18:
20079 case DW_OP_lit19:
20080 case DW_OP_lit20:
20081 case DW_OP_lit21:
20082 case DW_OP_lit22:
20083 case DW_OP_lit23:
20084 case DW_OP_lit24:
20085 case DW_OP_lit25:
20086 case DW_OP_lit26:
20087 case DW_OP_lit27:
20088 case DW_OP_lit28:
20089 case DW_OP_lit29:
20090 case DW_OP_lit30:
20091 case DW_OP_lit31:
20092 stack[++stacki] = op - DW_OP_lit0;
20093 break;
20094
20095 case DW_OP_reg0:
20096 case DW_OP_reg1:
20097 case DW_OP_reg2:
20098 case DW_OP_reg3:
20099 case DW_OP_reg4:
20100 case DW_OP_reg5:
20101 case DW_OP_reg6:
20102 case DW_OP_reg7:
20103 case DW_OP_reg8:
20104 case DW_OP_reg9:
20105 case DW_OP_reg10:
20106 case DW_OP_reg11:
20107 case DW_OP_reg12:
20108 case DW_OP_reg13:
20109 case DW_OP_reg14:
20110 case DW_OP_reg15:
20111 case DW_OP_reg16:
20112 case DW_OP_reg17:
20113 case DW_OP_reg18:
20114 case DW_OP_reg19:
20115 case DW_OP_reg20:
20116 case DW_OP_reg21:
20117 case DW_OP_reg22:
20118 case DW_OP_reg23:
20119 case DW_OP_reg24:
20120 case DW_OP_reg25:
20121 case DW_OP_reg26:
20122 case DW_OP_reg27:
20123 case DW_OP_reg28:
20124 case DW_OP_reg29:
20125 case DW_OP_reg30:
20126 case DW_OP_reg31:
20127 stack[++stacki] = op - DW_OP_reg0;
20128 if (i < size)
20129 dwarf2_complex_location_expr_complaint ();
20130 break;
20131
20132 case DW_OP_regx:
20133 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20134 i += bytes_read;
20135 stack[++stacki] = unsnd;
20136 if (i < size)
20137 dwarf2_complex_location_expr_complaint ();
20138 break;
20139
20140 case DW_OP_addr:
20141 stack[++stacki] = read_address (objfile->obfd, &data[i],
20142 cu, &bytes_read);
20143 i += bytes_read;
20144 break;
20145
20146 case DW_OP_const1u:
20147 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20148 i += 1;
20149 break;
20150
20151 case DW_OP_const1s:
20152 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20153 i += 1;
20154 break;
20155
20156 case DW_OP_const2u:
20157 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20158 i += 2;
20159 break;
20160
20161 case DW_OP_const2s:
20162 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20163 i += 2;
20164 break;
20165
20166 case DW_OP_const4u:
20167 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20168 i += 4;
20169 break;
20170
20171 case DW_OP_const4s:
20172 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20173 i += 4;
20174 break;
20175
20176 case DW_OP_const8u:
20177 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20178 i += 8;
20179 break;
20180
20181 case DW_OP_constu:
20182 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20183 &bytes_read);
20184 i += bytes_read;
20185 break;
20186
20187 case DW_OP_consts:
20188 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20189 i += bytes_read;
20190 break;
20191
20192 case DW_OP_dup:
20193 stack[stacki + 1] = stack[stacki];
20194 stacki++;
20195 break;
20196
20197 case DW_OP_plus:
20198 stack[stacki - 1] += stack[stacki];
20199 stacki--;
20200 break;
20201
20202 case DW_OP_plus_uconst:
20203 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20204 &bytes_read);
20205 i += bytes_read;
20206 break;
20207
20208 case DW_OP_minus:
20209 stack[stacki - 1] -= stack[stacki];
20210 stacki--;
20211 break;
20212
20213 case DW_OP_deref:
20214 /* If we're not the last op, then we definitely can't encode
20215 this using GDB's address_class enum. This is valid for partial
20216 global symbols, although the variable's address will be bogus
20217 in the psymtab. */
20218 if (i < size)
20219 dwarf2_complex_location_expr_complaint ();
20220 break;
20221
20222 case DW_OP_GNU_push_tls_address:
20223 /* The top of the stack has the offset from the beginning
20224 of the thread control block at which the variable is located. */
20225 /* Nothing should follow this operator, so the top of stack would
20226 be returned. */
20227 /* This is valid for partial global symbols, but the variable's
20228 address will be bogus in the psymtab. Make it always at least
20229 non-zero to not look as a variable garbage collected by linker
20230 which have DW_OP_addr 0. */
20231 if (i < size)
20232 dwarf2_complex_location_expr_complaint ();
20233 stack[stacki]++;
20234 break;
20235
20236 case DW_OP_GNU_uninit:
20237 break;
20238
20239 case DW_OP_GNU_addr_index:
20240 case DW_OP_GNU_const_index:
20241 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20242 &bytes_read);
20243 i += bytes_read;
20244 break;
20245
20246 default:
20247 {
20248 const char *name = get_DW_OP_name (op);
20249
20250 if (name)
20251 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20252 name);
20253 else
20254 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20255 op);
20256 }
20257
20258 return (stack[stacki]);
20259 }
20260
20261 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20262 outside of the allocated space. Also enforce minimum>0. */
20263 if (stacki >= ARRAY_SIZE (stack) - 1)
20264 {
20265 complaint (&symfile_complaints,
20266 _("location description stack overflow"));
20267 return 0;
20268 }
20269
20270 if (stacki <= 0)
20271 {
20272 complaint (&symfile_complaints,
20273 _("location description stack underflow"));
20274 return 0;
20275 }
20276 }
20277 return (stack[stacki]);
20278 }
20279
20280 /* memory allocation interface */
20281
20282 static struct dwarf_block *
20283 dwarf_alloc_block (struct dwarf2_cu *cu)
20284 {
20285 struct dwarf_block *blk;
20286
20287 blk = (struct dwarf_block *)
20288 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20289 return (blk);
20290 }
20291
20292 static struct die_info *
20293 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20294 {
20295 struct die_info *die;
20296 size_t size = sizeof (struct die_info);
20297
20298 if (num_attrs > 1)
20299 size += (num_attrs - 1) * sizeof (struct attribute);
20300
20301 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20302 memset (die, 0, sizeof (struct die_info));
20303 return (die);
20304 }
20305
20306 \f
20307 /* Macro support. */
20308
20309 /* Return file name relative to the compilation directory of file number I in
20310 *LH's file name table. The result is allocated using xmalloc; the caller is
20311 responsible for freeing it. */
20312
20313 static char *
20314 file_file_name (int file, struct line_header *lh)
20315 {
20316 /* Is the file number a valid index into the line header's file name
20317 table? Remember that file numbers start with one, not zero. */
20318 if (1 <= file && file <= lh->num_file_names)
20319 {
20320 struct file_entry *fe = &lh->file_names[file - 1];
20321
20322 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20323 return xstrdup (fe->name);
20324 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20325 fe->name, NULL);
20326 }
20327 else
20328 {
20329 /* The compiler produced a bogus file number. We can at least
20330 record the macro definitions made in the file, even if we
20331 won't be able to find the file by name. */
20332 char fake_name[80];
20333
20334 xsnprintf (fake_name, sizeof (fake_name),
20335 "<bad macro file number %d>", file);
20336
20337 complaint (&symfile_complaints,
20338 _("bad file number in macro information (%d)"),
20339 file);
20340
20341 return xstrdup (fake_name);
20342 }
20343 }
20344
20345 /* Return the full name of file number I in *LH's file name table.
20346 Use COMP_DIR as the name of the current directory of the
20347 compilation. The result is allocated using xmalloc; the caller is
20348 responsible for freeing it. */
20349 static char *
20350 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20351 {
20352 /* Is the file number a valid index into the line header's file name
20353 table? Remember that file numbers start with one, not zero. */
20354 if (1 <= file && file <= lh->num_file_names)
20355 {
20356 char *relative = file_file_name (file, lh);
20357
20358 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20359 return relative;
20360 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20361 }
20362 else
20363 return file_file_name (file, lh);
20364 }
20365
20366
20367 static struct macro_source_file *
20368 macro_start_file (int file, int line,
20369 struct macro_source_file *current_file,
20370 struct line_header *lh)
20371 {
20372 /* File name relative to the compilation directory of this source file. */
20373 char *file_name = file_file_name (file, lh);
20374
20375 if (! current_file)
20376 {
20377 /* Note: We don't create a macro table for this compilation unit
20378 at all until we actually get a filename. */
20379 struct macro_table *macro_table = get_macro_table ();
20380
20381 /* If we have no current file, then this must be the start_file
20382 directive for the compilation unit's main source file. */
20383 current_file = macro_set_main (macro_table, file_name);
20384 macro_define_special (macro_table);
20385 }
20386 else
20387 current_file = macro_include (current_file, line, file_name);
20388
20389 xfree (file_name);
20390
20391 return current_file;
20392 }
20393
20394
20395 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20396 followed by a null byte. */
20397 static char *
20398 copy_string (const char *buf, int len)
20399 {
20400 char *s = xmalloc (len + 1);
20401
20402 memcpy (s, buf, len);
20403 s[len] = '\0';
20404 return s;
20405 }
20406
20407
20408 static const char *
20409 consume_improper_spaces (const char *p, const char *body)
20410 {
20411 if (*p == ' ')
20412 {
20413 complaint (&symfile_complaints,
20414 _("macro definition contains spaces "
20415 "in formal argument list:\n`%s'"),
20416 body);
20417
20418 while (*p == ' ')
20419 p++;
20420 }
20421
20422 return p;
20423 }
20424
20425
20426 static void
20427 parse_macro_definition (struct macro_source_file *file, int line,
20428 const char *body)
20429 {
20430 const char *p;
20431
20432 /* The body string takes one of two forms. For object-like macro
20433 definitions, it should be:
20434
20435 <macro name> " " <definition>
20436
20437 For function-like macro definitions, it should be:
20438
20439 <macro name> "() " <definition>
20440 or
20441 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20442
20443 Spaces may appear only where explicitly indicated, and in the
20444 <definition>.
20445
20446 The Dwarf 2 spec says that an object-like macro's name is always
20447 followed by a space, but versions of GCC around March 2002 omit
20448 the space when the macro's definition is the empty string.
20449
20450 The Dwarf 2 spec says that there should be no spaces between the
20451 formal arguments in a function-like macro's formal argument list,
20452 but versions of GCC around March 2002 include spaces after the
20453 commas. */
20454
20455
20456 /* Find the extent of the macro name. The macro name is terminated
20457 by either a space or null character (for an object-like macro) or
20458 an opening paren (for a function-like macro). */
20459 for (p = body; *p; p++)
20460 if (*p == ' ' || *p == '(')
20461 break;
20462
20463 if (*p == ' ' || *p == '\0')
20464 {
20465 /* It's an object-like macro. */
20466 int name_len = p - body;
20467 char *name = copy_string (body, name_len);
20468 const char *replacement;
20469
20470 if (*p == ' ')
20471 replacement = body + name_len + 1;
20472 else
20473 {
20474 dwarf2_macro_malformed_definition_complaint (body);
20475 replacement = body + name_len;
20476 }
20477
20478 macro_define_object (file, line, name, replacement);
20479
20480 xfree (name);
20481 }
20482 else if (*p == '(')
20483 {
20484 /* It's a function-like macro. */
20485 char *name = copy_string (body, p - body);
20486 int argc = 0;
20487 int argv_size = 1;
20488 char **argv = xmalloc (argv_size * sizeof (*argv));
20489
20490 p++;
20491
20492 p = consume_improper_spaces (p, body);
20493
20494 /* Parse the formal argument list. */
20495 while (*p && *p != ')')
20496 {
20497 /* Find the extent of the current argument name. */
20498 const char *arg_start = p;
20499
20500 while (*p && *p != ',' && *p != ')' && *p != ' ')
20501 p++;
20502
20503 if (! *p || p == arg_start)
20504 dwarf2_macro_malformed_definition_complaint (body);
20505 else
20506 {
20507 /* Make sure argv has room for the new argument. */
20508 if (argc >= argv_size)
20509 {
20510 argv_size *= 2;
20511 argv = xrealloc (argv, argv_size * sizeof (*argv));
20512 }
20513
20514 argv[argc++] = copy_string (arg_start, p - arg_start);
20515 }
20516
20517 p = consume_improper_spaces (p, body);
20518
20519 /* Consume the comma, if present. */
20520 if (*p == ',')
20521 {
20522 p++;
20523
20524 p = consume_improper_spaces (p, body);
20525 }
20526 }
20527
20528 if (*p == ')')
20529 {
20530 p++;
20531
20532 if (*p == ' ')
20533 /* Perfectly formed definition, no complaints. */
20534 macro_define_function (file, line, name,
20535 argc, (const char **) argv,
20536 p + 1);
20537 else if (*p == '\0')
20538 {
20539 /* Complain, but do define it. */
20540 dwarf2_macro_malformed_definition_complaint (body);
20541 macro_define_function (file, line, name,
20542 argc, (const char **) argv,
20543 p);
20544 }
20545 else
20546 /* Just complain. */
20547 dwarf2_macro_malformed_definition_complaint (body);
20548 }
20549 else
20550 /* Just complain. */
20551 dwarf2_macro_malformed_definition_complaint (body);
20552
20553 xfree (name);
20554 {
20555 int i;
20556
20557 for (i = 0; i < argc; i++)
20558 xfree (argv[i]);
20559 }
20560 xfree (argv);
20561 }
20562 else
20563 dwarf2_macro_malformed_definition_complaint (body);
20564 }
20565
20566 /* Skip some bytes from BYTES according to the form given in FORM.
20567 Returns the new pointer. */
20568
20569 static const gdb_byte *
20570 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20571 enum dwarf_form form,
20572 unsigned int offset_size,
20573 struct dwarf2_section_info *section)
20574 {
20575 unsigned int bytes_read;
20576
20577 switch (form)
20578 {
20579 case DW_FORM_data1:
20580 case DW_FORM_flag:
20581 ++bytes;
20582 break;
20583
20584 case DW_FORM_data2:
20585 bytes += 2;
20586 break;
20587
20588 case DW_FORM_data4:
20589 bytes += 4;
20590 break;
20591
20592 case DW_FORM_data8:
20593 bytes += 8;
20594 break;
20595
20596 case DW_FORM_string:
20597 read_direct_string (abfd, bytes, &bytes_read);
20598 bytes += bytes_read;
20599 break;
20600
20601 case DW_FORM_sec_offset:
20602 case DW_FORM_strp:
20603 case DW_FORM_GNU_strp_alt:
20604 bytes += offset_size;
20605 break;
20606
20607 case DW_FORM_block:
20608 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20609 bytes += bytes_read;
20610 break;
20611
20612 case DW_FORM_block1:
20613 bytes += 1 + read_1_byte (abfd, bytes);
20614 break;
20615 case DW_FORM_block2:
20616 bytes += 2 + read_2_bytes (abfd, bytes);
20617 break;
20618 case DW_FORM_block4:
20619 bytes += 4 + read_4_bytes (abfd, bytes);
20620 break;
20621
20622 case DW_FORM_sdata:
20623 case DW_FORM_udata:
20624 case DW_FORM_GNU_addr_index:
20625 case DW_FORM_GNU_str_index:
20626 bytes = gdb_skip_leb128 (bytes, buffer_end);
20627 if (bytes == NULL)
20628 {
20629 dwarf2_section_buffer_overflow_complaint (section);
20630 return NULL;
20631 }
20632 break;
20633
20634 default:
20635 {
20636 complain:
20637 complaint (&symfile_complaints,
20638 _("invalid form 0x%x in `%s'"),
20639 form, get_section_name (section));
20640 return NULL;
20641 }
20642 }
20643
20644 return bytes;
20645 }
20646
20647 /* A helper for dwarf_decode_macros that handles skipping an unknown
20648 opcode. Returns an updated pointer to the macro data buffer; or,
20649 on error, issues a complaint and returns NULL. */
20650
20651 static const gdb_byte *
20652 skip_unknown_opcode (unsigned int opcode,
20653 const gdb_byte **opcode_definitions,
20654 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20655 bfd *abfd,
20656 unsigned int offset_size,
20657 struct dwarf2_section_info *section)
20658 {
20659 unsigned int bytes_read, i;
20660 unsigned long arg;
20661 const gdb_byte *defn;
20662
20663 if (opcode_definitions[opcode] == NULL)
20664 {
20665 complaint (&symfile_complaints,
20666 _("unrecognized DW_MACFINO opcode 0x%x"),
20667 opcode);
20668 return NULL;
20669 }
20670
20671 defn = opcode_definitions[opcode];
20672 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20673 defn += bytes_read;
20674
20675 for (i = 0; i < arg; ++i)
20676 {
20677 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20678 section);
20679 if (mac_ptr == NULL)
20680 {
20681 /* skip_form_bytes already issued the complaint. */
20682 return NULL;
20683 }
20684 }
20685
20686 return mac_ptr;
20687 }
20688
20689 /* A helper function which parses the header of a macro section.
20690 If the macro section is the extended (for now called "GNU") type,
20691 then this updates *OFFSET_SIZE. Returns a pointer to just after
20692 the header, or issues a complaint and returns NULL on error. */
20693
20694 static const gdb_byte *
20695 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20696 bfd *abfd,
20697 const gdb_byte *mac_ptr,
20698 unsigned int *offset_size,
20699 int section_is_gnu)
20700 {
20701 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20702
20703 if (section_is_gnu)
20704 {
20705 unsigned int version, flags;
20706
20707 version = read_2_bytes (abfd, mac_ptr);
20708 if (version != 4)
20709 {
20710 complaint (&symfile_complaints,
20711 _("unrecognized version `%d' in .debug_macro section"),
20712 version);
20713 return NULL;
20714 }
20715 mac_ptr += 2;
20716
20717 flags = read_1_byte (abfd, mac_ptr);
20718 ++mac_ptr;
20719 *offset_size = (flags & 1) ? 8 : 4;
20720
20721 if ((flags & 2) != 0)
20722 /* We don't need the line table offset. */
20723 mac_ptr += *offset_size;
20724
20725 /* Vendor opcode descriptions. */
20726 if ((flags & 4) != 0)
20727 {
20728 unsigned int i, count;
20729
20730 count = read_1_byte (abfd, mac_ptr);
20731 ++mac_ptr;
20732 for (i = 0; i < count; ++i)
20733 {
20734 unsigned int opcode, bytes_read;
20735 unsigned long arg;
20736
20737 opcode = read_1_byte (abfd, mac_ptr);
20738 ++mac_ptr;
20739 opcode_definitions[opcode] = mac_ptr;
20740 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20741 mac_ptr += bytes_read;
20742 mac_ptr += arg;
20743 }
20744 }
20745 }
20746
20747 return mac_ptr;
20748 }
20749
20750 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20751 including DW_MACRO_GNU_transparent_include. */
20752
20753 static void
20754 dwarf_decode_macro_bytes (bfd *abfd,
20755 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20756 struct macro_source_file *current_file,
20757 struct line_header *lh,
20758 struct dwarf2_section_info *section,
20759 int section_is_gnu, int section_is_dwz,
20760 unsigned int offset_size,
20761 htab_t include_hash)
20762 {
20763 struct objfile *objfile = dwarf2_per_objfile->objfile;
20764 enum dwarf_macro_record_type macinfo_type;
20765 int at_commandline;
20766 const gdb_byte *opcode_definitions[256];
20767
20768 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20769 &offset_size, section_is_gnu);
20770 if (mac_ptr == NULL)
20771 {
20772 /* We already issued a complaint. */
20773 return;
20774 }
20775
20776 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20777 GDB is still reading the definitions from command line. First
20778 DW_MACINFO_start_file will need to be ignored as it was already executed
20779 to create CURRENT_FILE for the main source holding also the command line
20780 definitions. On first met DW_MACINFO_start_file this flag is reset to
20781 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20782
20783 at_commandline = 1;
20784
20785 do
20786 {
20787 /* Do we at least have room for a macinfo type byte? */
20788 if (mac_ptr >= mac_end)
20789 {
20790 dwarf2_section_buffer_overflow_complaint (section);
20791 break;
20792 }
20793
20794 macinfo_type = read_1_byte (abfd, mac_ptr);
20795 mac_ptr++;
20796
20797 /* Note that we rely on the fact that the corresponding GNU and
20798 DWARF constants are the same. */
20799 switch (macinfo_type)
20800 {
20801 /* A zero macinfo type indicates the end of the macro
20802 information. */
20803 case 0:
20804 break;
20805
20806 case DW_MACRO_GNU_define:
20807 case DW_MACRO_GNU_undef:
20808 case DW_MACRO_GNU_define_indirect:
20809 case DW_MACRO_GNU_undef_indirect:
20810 case DW_MACRO_GNU_define_indirect_alt:
20811 case DW_MACRO_GNU_undef_indirect_alt:
20812 {
20813 unsigned int bytes_read;
20814 int line;
20815 const char *body;
20816 int is_define;
20817
20818 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20819 mac_ptr += bytes_read;
20820
20821 if (macinfo_type == DW_MACRO_GNU_define
20822 || macinfo_type == DW_MACRO_GNU_undef)
20823 {
20824 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20825 mac_ptr += bytes_read;
20826 }
20827 else
20828 {
20829 LONGEST str_offset;
20830
20831 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20832 mac_ptr += offset_size;
20833
20834 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20835 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20836 || section_is_dwz)
20837 {
20838 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20839
20840 body = read_indirect_string_from_dwz (dwz, str_offset);
20841 }
20842 else
20843 body = read_indirect_string_at_offset (abfd, str_offset);
20844 }
20845
20846 is_define = (macinfo_type == DW_MACRO_GNU_define
20847 || macinfo_type == DW_MACRO_GNU_define_indirect
20848 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20849 if (! current_file)
20850 {
20851 /* DWARF violation as no main source is present. */
20852 complaint (&symfile_complaints,
20853 _("debug info with no main source gives macro %s "
20854 "on line %d: %s"),
20855 is_define ? _("definition") : _("undefinition"),
20856 line, body);
20857 break;
20858 }
20859 if ((line == 0 && !at_commandline)
20860 || (line != 0 && at_commandline))
20861 complaint (&symfile_complaints,
20862 _("debug info gives %s macro %s with %s line %d: %s"),
20863 at_commandline ? _("command-line") : _("in-file"),
20864 is_define ? _("definition") : _("undefinition"),
20865 line == 0 ? _("zero") : _("non-zero"), line, body);
20866
20867 if (is_define)
20868 parse_macro_definition (current_file, line, body);
20869 else
20870 {
20871 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20872 || macinfo_type == DW_MACRO_GNU_undef_indirect
20873 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20874 macro_undef (current_file, line, body);
20875 }
20876 }
20877 break;
20878
20879 case DW_MACRO_GNU_start_file:
20880 {
20881 unsigned int bytes_read;
20882 int line, file;
20883
20884 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20885 mac_ptr += bytes_read;
20886 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20887 mac_ptr += bytes_read;
20888
20889 if ((line == 0 && !at_commandline)
20890 || (line != 0 && at_commandline))
20891 complaint (&symfile_complaints,
20892 _("debug info gives source %d included "
20893 "from %s at %s line %d"),
20894 file, at_commandline ? _("command-line") : _("file"),
20895 line == 0 ? _("zero") : _("non-zero"), line);
20896
20897 if (at_commandline)
20898 {
20899 /* This DW_MACRO_GNU_start_file was executed in the
20900 pass one. */
20901 at_commandline = 0;
20902 }
20903 else
20904 current_file = macro_start_file (file, line, current_file, lh);
20905 }
20906 break;
20907
20908 case DW_MACRO_GNU_end_file:
20909 if (! current_file)
20910 complaint (&symfile_complaints,
20911 _("macro debug info has an unmatched "
20912 "`close_file' directive"));
20913 else
20914 {
20915 current_file = current_file->included_by;
20916 if (! current_file)
20917 {
20918 enum dwarf_macro_record_type next_type;
20919
20920 /* GCC circa March 2002 doesn't produce the zero
20921 type byte marking the end of the compilation
20922 unit. Complain if it's not there, but exit no
20923 matter what. */
20924
20925 /* Do we at least have room for a macinfo type byte? */
20926 if (mac_ptr >= mac_end)
20927 {
20928 dwarf2_section_buffer_overflow_complaint (section);
20929 return;
20930 }
20931
20932 /* We don't increment mac_ptr here, so this is just
20933 a look-ahead. */
20934 next_type = read_1_byte (abfd, mac_ptr);
20935 if (next_type != 0)
20936 complaint (&symfile_complaints,
20937 _("no terminating 0-type entry for "
20938 "macros in `.debug_macinfo' section"));
20939
20940 return;
20941 }
20942 }
20943 break;
20944
20945 case DW_MACRO_GNU_transparent_include:
20946 case DW_MACRO_GNU_transparent_include_alt:
20947 {
20948 LONGEST offset;
20949 void **slot;
20950 bfd *include_bfd = abfd;
20951 struct dwarf2_section_info *include_section = section;
20952 struct dwarf2_section_info alt_section;
20953 const gdb_byte *include_mac_end = mac_end;
20954 int is_dwz = section_is_dwz;
20955 const gdb_byte *new_mac_ptr;
20956
20957 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20958 mac_ptr += offset_size;
20959
20960 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20961 {
20962 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20963
20964 dwarf2_read_section (objfile, &dwz->macro);
20965
20966 include_section = &dwz->macro;
20967 include_bfd = get_section_bfd_owner (include_section);
20968 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20969 is_dwz = 1;
20970 }
20971
20972 new_mac_ptr = include_section->buffer + offset;
20973 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20974
20975 if (*slot != NULL)
20976 {
20977 /* This has actually happened; see
20978 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20979 complaint (&symfile_complaints,
20980 _("recursive DW_MACRO_GNU_transparent_include in "
20981 ".debug_macro section"));
20982 }
20983 else
20984 {
20985 *slot = (void *) new_mac_ptr;
20986
20987 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
20988 include_mac_end, current_file, lh,
20989 section, section_is_gnu, is_dwz,
20990 offset_size, include_hash);
20991
20992 htab_remove_elt (include_hash, (void *) new_mac_ptr);
20993 }
20994 }
20995 break;
20996
20997 case DW_MACINFO_vendor_ext:
20998 if (!section_is_gnu)
20999 {
21000 unsigned int bytes_read;
21001 int constant;
21002
21003 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21004 mac_ptr += bytes_read;
21005 read_direct_string (abfd, mac_ptr, &bytes_read);
21006 mac_ptr += bytes_read;
21007
21008 /* We don't recognize any vendor extensions. */
21009 break;
21010 }
21011 /* FALLTHROUGH */
21012
21013 default:
21014 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21015 mac_ptr, mac_end, abfd, offset_size,
21016 section);
21017 if (mac_ptr == NULL)
21018 return;
21019 break;
21020 }
21021 } while (macinfo_type != 0);
21022 }
21023
21024 static void
21025 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21026 int section_is_gnu)
21027 {
21028 struct objfile *objfile = dwarf2_per_objfile->objfile;
21029 struct line_header *lh = cu->line_header;
21030 bfd *abfd;
21031 const gdb_byte *mac_ptr, *mac_end;
21032 struct macro_source_file *current_file = 0;
21033 enum dwarf_macro_record_type macinfo_type;
21034 unsigned int offset_size = cu->header.offset_size;
21035 const gdb_byte *opcode_definitions[256];
21036 struct cleanup *cleanup;
21037 htab_t include_hash;
21038 void **slot;
21039 struct dwarf2_section_info *section;
21040 const char *section_name;
21041
21042 if (cu->dwo_unit != NULL)
21043 {
21044 if (section_is_gnu)
21045 {
21046 section = &cu->dwo_unit->dwo_file->sections.macro;
21047 section_name = ".debug_macro.dwo";
21048 }
21049 else
21050 {
21051 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21052 section_name = ".debug_macinfo.dwo";
21053 }
21054 }
21055 else
21056 {
21057 if (section_is_gnu)
21058 {
21059 section = &dwarf2_per_objfile->macro;
21060 section_name = ".debug_macro";
21061 }
21062 else
21063 {
21064 section = &dwarf2_per_objfile->macinfo;
21065 section_name = ".debug_macinfo";
21066 }
21067 }
21068
21069 dwarf2_read_section (objfile, section);
21070 if (section->buffer == NULL)
21071 {
21072 complaint (&symfile_complaints, _("missing %s section"), section_name);
21073 return;
21074 }
21075 abfd = get_section_bfd_owner (section);
21076
21077 /* First pass: Find the name of the base filename.
21078 This filename is needed in order to process all macros whose definition
21079 (or undefinition) comes from the command line. These macros are defined
21080 before the first DW_MACINFO_start_file entry, and yet still need to be
21081 associated to the base file.
21082
21083 To determine the base file name, we scan the macro definitions until we
21084 reach the first DW_MACINFO_start_file entry. We then initialize
21085 CURRENT_FILE accordingly so that any macro definition found before the
21086 first DW_MACINFO_start_file can still be associated to the base file. */
21087
21088 mac_ptr = section->buffer + offset;
21089 mac_end = section->buffer + section->size;
21090
21091 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21092 &offset_size, section_is_gnu);
21093 if (mac_ptr == NULL)
21094 {
21095 /* We already issued a complaint. */
21096 return;
21097 }
21098
21099 do
21100 {
21101 /* Do we at least have room for a macinfo type byte? */
21102 if (mac_ptr >= mac_end)
21103 {
21104 /* Complaint is printed during the second pass as GDB will probably
21105 stop the first pass earlier upon finding
21106 DW_MACINFO_start_file. */
21107 break;
21108 }
21109
21110 macinfo_type = read_1_byte (abfd, mac_ptr);
21111 mac_ptr++;
21112
21113 /* Note that we rely on the fact that the corresponding GNU and
21114 DWARF constants are the same. */
21115 switch (macinfo_type)
21116 {
21117 /* A zero macinfo type indicates the end of the macro
21118 information. */
21119 case 0:
21120 break;
21121
21122 case DW_MACRO_GNU_define:
21123 case DW_MACRO_GNU_undef:
21124 /* Only skip the data by MAC_PTR. */
21125 {
21126 unsigned int bytes_read;
21127
21128 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21129 mac_ptr += bytes_read;
21130 read_direct_string (abfd, mac_ptr, &bytes_read);
21131 mac_ptr += bytes_read;
21132 }
21133 break;
21134
21135 case DW_MACRO_GNU_start_file:
21136 {
21137 unsigned int bytes_read;
21138 int line, file;
21139
21140 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21141 mac_ptr += bytes_read;
21142 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21143 mac_ptr += bytes_read;
21144
21145 current_file = macro_start_file (file, line, current_file, lh);
21146 }
21147 break;
21148
21149 case DW_MACRO_GNU_end_file:
21150 /* No data to skip by MAC_PTR. */
21151 break;
21152
21153 case DW_MACRO_GNU_define_indirect:
21154 case DW_MACRO_GNU_undef_indirect:
21155 case DW_MACRO_GNU_define_indirect_alt:
21156 case DW_MACRO_GNU_undef_indirect_alt:
21157 {
21158 unsigned int bytes_read;
21159
21160 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21161 mac_ptr += bytes_read;
21162 mac_ptr += offset_size;
21163 }
21164 break;
21165
21166 case DW_MACRO_GNU_transparent_include:
21167 case DW_MACRO_GNU_transparent_include_alt:
21168 /* Note that, according to the spec, a transparent include
21169 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21170 skip this opcode. */
21171 mac_ptr += offset_size;
21172 break;
21173
21174 case DW_MACINFO_vendor_ext:
21175 /* Only skip the data by MAC_PTR. */
21176 if (!section_is_gnu)
21177 {
21178 unsigned int bytes_read;
21179
21180 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21181 mac_ptr += bytes_read;
21182 read_direct_string (abfd, mac_ptr, &bytes_read);
21183 mac_ptr += bytes_read;
21184 }
21185 /* FALLTHROUGH */
21186
21187 default:
21188 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21189 mac_ptr, mac_end, abfd, offset_size,
21190 section);
21191 if (mac_ptr == NULL)
21192 return;
21193 break;
21194 }
21195 } while (macinfo_type != 0 && current_file == NULL);
21196
21197 /* Second pass: Process all entries.
21198
21199 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21200 command-line macro definitions/undefinitions. This flag is unset when we
21201 reach the first DW_MACINFO_start_file entry. */
21202
21203 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21204 NULL, xcalloc, xfree);
21205 cleanup = make_cleanup_htab_delete (include_hash);
21206 mac_ptr = section->buffer + offset;
21207 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21208 *slot = (void *) mac_ptr;
21209 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21210 current_file, lh, section,
21211 section_is_gnu, 0, offset_size, include_hash);
21212 do_cleanups (cleanup);
21213 }
21214
21215 /* Check if the attribute's form is a DW_FORM_block*
21216 if so return true else false. */
21217
21218 static int
21219 attr_form_is_block (const struct attribute *attr)
21220 {
21221 return (attr == NULL ? 0 :
21222 attr->form == DW_FORM_block1
21223 || attr->form == DW_FORM_block2
21224 || attr->form == DW_FORM_block4
21225 || attr->form == DW_FORM_block
21226 || attr->form == DW_FORM_exprloc);
21227 }
21228
21229 /* Return non-zero if ATTR's value is a section offset --- classes
21230 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21231 You may use DW_UNSND (attr) to retrieve such offsets.
21232
21233 Section 7.5.4, "Attribute Encodings", explains that no attribute
21234 may have a value that belongs to more than one of these classes; it
21235 would be ambiguous if we did, because we use the same forms for all
21236 of them. */
21237
21238 static int
21239 attr_form_is_section_offset (const struct attribute *attr)
21240 {
21241 return (attr->form == DW_FORM_data4
21242 || attr->form == DW_FORM_data8
21243 || attr->form == DW_FORM_sec_offset);
21244 }
21245
21246 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21247 zero otherwise. When this function returns true, you can apply
21248 dwarf2_get_attr_constant_value to it.
21249
21250 However, note that for some attributes you must check
21251 attr_form_is_section_offset before using this test. DW_FORM_data4
21252 and DW_FORM_data8 are members of both the constant class, and of
21253 the classes that contain offsets into other debug sections
21254 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21255 that, if an attribute's can be either a constant or one of the
21256 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21257 taken as section offsets, not constants. */
21258
21259 static int
21260 attr_form_is_constant (const struct attribute *attr)
21261 {
21262 switch (attr->form)
21263 {
21264 case DW_FORM_sdata:
21265 case DW_FORM_udata:
21266 case DW_FORM_data1:
21267 case DW_FORM_data2:
21268 case DW_FORM_data4:
21269 case DW_FORM_data8:
21270 return 1;
21271 default:
21272 return 0;
21273 }
21274 }
21275
21276
21277 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21278 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21279
21280 static int
21281 attr_form_is_ref (const struct attribute *attr)
21282 {
21283 switch (attr->form)
21284 {
21285 case DW_FORM_ref_addr:
21286 case DW_FORM_ref1:
21287 case DW_FORM_ref2:
21288 case DW_FORM_ref4:
21289 case DW_FORM_ref8:
21290 case DW_FORM_ref_udata:
21291 case DW_FORM_GNU_ref_alt:
21292 return 1;
21293 default:
21294 return 0;
21295 }
21296 }
21297
21298 /* Return the .debug_loc section to use for CU.
21299 For DWO files use .debug_loc.dwo. */
21300
21301 static struct dwarf2_section_info *
21302 cu_debug_loc_section (struct dwarf2_cu *cu)
21303 {
21304 if (cu->dwo_unit)
21305 return &cu->dwo_unit->dwo_file->sections.loc;
21306 return &dwarf2_per_objfile->loc;
21307 }
21308
21309 /* A helper function that fills in a dwarf2_loclist_baton. */
21310
21311 static void
21312 fill_in_loclist_baton (struct dwarf2_cu *cu,
21313 struct dwarf2_loclist_baton *baton,
21314 const struct attribute *attr)
21315 {
21316 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21317
21318 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21319
21320 baton->per_cu = cu->per_cu;
21321 gdb_assert (baton->per_cu);
21322 /* We don't know how long the location list is, but make sure we
21323 don't run off the edge of the section. */
21324 baton->size = section->size - DW_UNSND (attr);
21325 baton->data = section->buffer + DW_UNSND (attr);
21326 baton->base_address = cu->base_address;
21327 baton->from_dwo = cu->dwo_unit != NULL;
21328 }
21329
21330 static void
21331 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21332 struct dwarf2_cu *cu, int is_block)
21333 {
21334 struct objfile *objfile = dwarf2_per_objfile->objfile;
21335 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21336
21337 if (attr_form_is_section_offset (attr)
21338 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21339 the section. If so, fall through to the complaint in the
21340 other branch. */
21341 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21342 {
21343 struct dwarf2_loclist_baton *baton;
21344
21345 baton = obstack_alloc (&objfile->objfile_obstack,
21346 sizeof (struct dwarf2_loclist_baton));
21347
21348 fill_in_loclist_baton (cu, baton, attr);
21349
21350 if (cu->base_known == 0)
21351 complaint (&symfile_complaints,
21352 _("Location list used without "
21353 "specifying the CU base address."));
21354
21355 SYMBOL_ACLASS_INDEX (sym) = (is_block
21356 ? dwarf2_loclist_block_index
21357 : dwarf2_loclist_index);
21358 SYMBOL_LOCATION_BATON (sym) = baton;
21359 }
21360 else
21361 {
21362 struct dwarf2_locexpr_baton *baton;
21363
21364 baton = obstack_alloc (&objfile->objfile_obstack,
21365 sizeof (struct dwarf2_locexpr_baton));
21366 baton->per_cu = cu->per_cu;
21367 gdb_assert (baton->per_cu);
21368
21369 if (attr_form_is_block (attr))
21370 {
21371 /* Note that we're just copying the block's data pointer
21372 here, not the actual data. We're still pointing into the
21373 info_buffer for SYM's objfile; right now we never release
21374 that buffer, but when we do clean up properly this may
21375 need to change. */
21376 baton->size = DW_BLOCK (attr)->size;
21377 baton->data = DW_BLOCK (attr)->data;
21378 }
21379 else
21380 {
21381 dwarf2_invalid_attrib_class_complaint ("location description",
21382 SYMBOL_NATURAL_NAME (sym));
21383 baton->size = 0;
21384 }
21385
21386 SYMBOL_ACLASS_INDEX (sym) = (is_block
21387 ? dwarf2_locexpr_block_index
21388 : dwarf2_locexpr_index);
21389 SYMBOL_LOCATION_BATON (sym) = baton;
21390 }
21391 }
21392
21393 /* Return the OBJFILE associated with the compilation unit CU. If CU
21394 came from a separate debuginfo file, then the master objfile is
21395 returned. */
21396
21397 struct objfile *
21398 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21399 {
21400 struct objfile *objfile = per_cu->objfile;
21401
21402 /* Return the master objfile, so that we can report and look up the
21403 correct file containing this variable. */
21404 if (objfile->separate_debug_objfile_backlink)
21405 objfile = objfile->separate_debug_objfile_backlink;
21406
21407 return objfile;
21408 }
21409
21410 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21411 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21412 CU_HEADERP first. */
21413
21414 static const struct comp_unit_head *
21415 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21416 struct dwarf2_per_cu_data *per_cu)
21417 {
21418 const gdb_byte *info_ptr;
21419
21420 if (per_cu->cu)
21421 return &per_cu->cu->header;
21422
21423 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21424
21425 memset (cu_headerp, 0, sizeof (*cu_headerp));
21426 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21427
21428 return cu_headerp;
21429 }
21430
21431 /* Return the address size given in the compilation unit header for CU. */
21432
21433 int
21434 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21435 {
21436 struct comp_unit_head cu_header_local;
21437 const struct comp_unit_head *cu_headerp;
21438
21439 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21440
21441 return cu_headerp->addr_size;
21442 }
21443
21444 /* Return the offset size given in the compilation unit header for CU. */
21445
21446 int
21447 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21448 {
21449 struct comp_unit_head cu_header_local;
21450 const struct comp_unit_head *cu_headerp;
21451
21452 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21453
21454 return cu_headerp->offset_size;
21455 }
21456
21457 /* See its dwarf2loc.h declaration. */
21458
21459 int
21460 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21461 {
21462 struct comp_unit_head cu_header_local;
21463 const struct comp_unit_head *cu_headerp;
21464
21465 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21466
21467 if (cu_headerp->version == 2)
21468 return cu_headerp->addr_size;
21469 else
21470 return cu_headerp->offset_size;
21471 }
21472
21473 /* Return the text offset of the CU. The returned offset comes from
21474 this CU's objfile. If this objfile came from a separate debuginfo
21475 file, then the offset may be different from the corresponding
21476 offset in the parent objfile. */
21477
21478 CORE_ADDR
21479 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21480 {
21481 struct objfile *objfile = per_cu->objfile;
21482
21483 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21484 }
21485
21486 /* Locate the .debug_info compilation unit from CU's objfile which contains
21487 the DIE at OFFSET. Raises an error on failure. */
21488
21489 static struct dwarf2_per_cu_data *
21490 dwarf2_find_containing_comp_unit (sect_offset offset,
21491 unsigned int offset_in_dwz,
21492 struct objfile *objfile)
21493 {
21494 struct dwarf2_per_cu_data *this_cu;
21495 int low, high;
21496 const sect_offset *cu_off;
21497
21498 low = 0;
21499 high = dwarf2_per_objfile->n_comp_units - 1;
21500 while (high > low)
21501 {
21502 struct dwarf2_per_cu_data *mid_cu;
21503 int mid = low + (high - low) / 2;
21504
21505 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21506 cu_off = &mid_cu->offset;
21507 if (mid_cu->is_dwz > offset_in_dwz
21508 || (mid_cu->is_dwz == offset_in_dwz
21509 && cu_off->sect_off >= offset.sect_off))
21510 high = mid;
21511 else
21512 low = mid + 1;
21513 }
21514 gdb_assert (low == high);
21515 this_cu = dwarf2_per_objfile->all_comp_units[low];
21516 cu_off = &this_cu->offset;
21517 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21518 {
21519 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21520 error (_("Dwarf Error: could not find partial DIE containing "
21521 "offset 0x%lx [in module %s]"),
21522 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21523
21524 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21525 <= offset.sect_off);
21526 return dwarf2_per_objfile->all_comp_units[low-1];
21527 }
21528 else
21529 {
21530 this_cu = dwarf2_per_objfile->all_comp_units[low];
21531 if (low == dwarf2_per_objfile->n_comp_units - 1
21532 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21533 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21534 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21535 return this_cu;
21536 }
21537 }
21538
21539 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21540
21541 static void
21542 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21543 {
21544 memset (cu, 0, sizeof (*cu));
21545 per_cu->cu = cu;
21546 cu->per_cu = per_cu;
21547 cu->objfile = per_cu->objfile;
21548 obstack_init (&cu->comp_unit_obstack);
21549 }
21550
21551 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21552
21553 static void
21554 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21555 enum language pretend_language)
21556 {
21557 struct attribute *attr;
21558
21559 /* Set the language we're debugging. */
21560 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21561 if (attr)
21562 set_cu_language (DW_UNSND (attr), cu);
21563 else
21564 {
21565 cu->language = pretend_language;
21566 cu->language_defn = language_def (cu->language);
21567 }
21568
21569 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21570 if (attr)
21571 cu->producer = DW_STRING (attr);
21572 }
21573
21574 /* Release one cached compilation unit, CU. We unlink it from the tree
21575 of compilation units, but we don't remove it from the read_in_chain;
21576 the caller is responsible for that.
21577 NOTE: DATA is a void * because this function is also used as a
21578 cleanup routine. */
21579
21580 static void
21581 free_heap_comp_unit (void *data)
21582 {
21583 struct dwarf2_cu *cu = data;
21584
21585 gdb_assert (cu->per_cu != NULL);
21586 cu->per_cu->cu = NULL;
21587 cu->per_cu = NULL;
21588
21589 obstack_free (&cu->comp_unit_obstack, NULL);
21590
21591 xfree (cu);
21592 }
21593
21594 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21595 when we're finished with it. We can't free the pointer itself, but be
21596 sure to unlink it from the cache. Also release any associated storage. */
21597
21598 static void
21599 free_stack_comp_unit (void *data)
21600 {
21601 struct dwarf2_cu *cu = data;
21602
21603 gdb_assert (cu->per_cu != NULL);
21604 cu->per_cu->cu = NULL;
21605 cu->per_cu = NULL;
21606
21607 obstack_free (&cu->comp_unit_obstack, NULL);
21608 cu->partial_dies = NULL;
21609 }
21610
21611 /* Free all cached compilation units. */
21612
21613 static void
21614 free_cached_comp_units (void *data)
21615 {
21616 struct dwarf2_per_cu_data *per_cu, **last_chain;
21617
21618 per_cu = dwarf2_per_objfile->read_in_chain;
21619 last_chain = &dwarf2_per_objfile->read_in_chain;
21620 while (per_cu != NULL)
21621 {
21622 struct dwarf2_per_cu_data *next_cu;
21623
21624 next_cu = per_cu->cu->read_in_chain;
21625
21626 free_heap_comp_unit (per_cu->cu);
21627 *last_chain = next_cu;
21628
21629 per_cu = next_cu;
21630 }
21631 }
21632
21633 /* Increase the age counter on each cached compilation unit, and free
21634 any that are too old. */
21635
21636 static void
21637 age_cached_comp_units (void)
21638 {
21639 struct dwarf2_per_cu_data *per_cu, **last_chain;
21640
21641 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21642 per_cu = dwarf2_per_objfile->read_in_chain;
21643 while (per_cu != NULL)
21644 {
21645 per_cu->cu->last_used ++;
21646 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21647 dwarf2_mark (per_cu->cu);
21648 per_cu = per_cu->cu->read_in_chain;
21649 }
21650
21651 per_cu = dwarf2_per_objfile->read_in_chain;
21652 last_chain = &dwarf2_per_objfile->read_in_chain;
21653 while (per_cu != NULL)
21654 {
21655 struct dwarf2_per_cu_data *next_cu;
21656
21657 next_cu = per_cu->cu->read_in_chain;
21658
21659 if (!per_cu->cu->mark)
21660 {
21661 free_heap_comp_unit (per_cu->cu);
21662 *last_chain = next_cu;
21663 }
21664 else
21665 last_chain = &per_cu->cu->read_in_chain;
21666
21667 per_cu = next_cu;
21668 }
21669 }
21670
21671 /* Remove a single compilation unit from the cache. */
21672
21673 static void
21674 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21675 {
21676 struct dwarf2_per_cu_data *per_cu, **last_chain;
21677
21678 per_cu = dwarf2_per_objfile->read_in_chain;
21679 last_chain = &dwarf2_per_objfile->read_in_chain;
21680 while (per_cu != NULL)
21681 {
21682 struct dwarf2_per_cu_data *next_cu;
21683
21684 next_cu = per_cu->cu->read_in_chain;
21685
21686 if (per_cu == target_per_cu)
21687 {
21688 free_heap_comp_unit (per_cu->cu);
21689 per_cu->cu = NULL;
21690 *last_chain = next_cu;
21691 break;
21692 }
21693 else
21694 last_chain = &per_cu->cu->read_in_chain;
21695
21696 per_cu = next_cu;
21697 }
21698 }
21699
21700 /* Release all extra memory associated with OBJFILE. */
21701
21702 void
21703 dwarf2_free_objfile (struct objfile *objfile)
21704 {
21705 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21706
21707 if (dwarf2_per_objfile == NULL)
21708 return;
21709
21710 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21711 free_cached_comp_units (NULL);
21712
21713 if (dwarf2_per_objfile->quick_file_names_table)
21714 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21715
21716 /* Everything else should be on the objfile obstack. */
21717 }
21718
21719 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21720 We store these in a hash table separate from the DIEs, and preserve them
21721 when the DIEs are flushed out of cache.
21722
21723 The CU "per_cu" pointer is needed because offset alone is not enough to
21724 uniquely identify the type. A file may have multiple .debug_types sections,
21725 or the type may come from a DWO file. Furthermore, while it's more logical
21726 to use per_cu->section+offset, with Fission the section with the data is in
21727 the DWO file but we don't know that section at the point we need it.
21728 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21729 because we can enter the lookup routine, get_die_type_at_offset, from
21730 outside this file, and thus won't necessarily have PER_CU->cu.
21731 Fortunately, PER_CU is stable for the life of the objfile. */
21732
21733 struct dwarf2_per_cu_offset_and_type
21734 {
21735 const struct dwarf2_per_cu_data *per_cu;
21736 sect_offset offset;
21737 struct type *type;
21738 };
21739
21740 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21741
21742 static hashval_t
21743 per_cu_offset_and_type_hash (const void *item)
21744 {
21745 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21746
21747 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21748 }
21749
21750 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21751
21752 static int
21753 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21754 {
21755 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21756 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21757
21758 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21759 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21760 }
21761
21762 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21763 table if necessary. For convenience, return TYPE.
21764
21765 The DIEs reading must have careful ordering to:
21766 * Not cause infite loops trying to read in DIEs as a prerequisite for
21767 reading current DIE.
21768 * Not trying to dereference contents of still incompletely read in types
21769 while reading in other DIEs.
21770 * Enable referencing still incompletely read in types just by a pointer to
21771 the type without accessing its fields.
21772
21773 Therefore caller should follow these rules:
21774 * Try to fetch any prerequisite types we may need to build this DIE type
21775 before building the type and calling set_die_type.
21776 * After building type call set_die_type for current DIE as soon as
21777 possible before fetching more types to complete the current type.
21778 * Make the type as complete as possible before fetching more types. */
21779
21780 static struct type *
21781 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21782 {
21783 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21784 struct objfile *objfile = cu->objfile;
21785 struct attribute *attr;
21786 struct dynamic_prop prop;
21787
21788 /* For Ada types, make sure that the gnat-specific data is always
21789 initialized (if not already set). There are a few types where
21790 we should not be doing so, because the type-specific area is
21791 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21792 where the type-specific area is used to store the floatformat).
21793 But this is not a problem, because the gnat-specific information
21794 is actually not needed for these types. */
21795 if (need_gnat_info (cu)
21796 && TYPE_CODE (type) != TYPE_CODE_FUNC
21797 && TYPE_CODE (type) != TYPE_CODE_FLT
21798 && !HAVE_GNAT_AUX_INFO (type))
21799 INIT_GNAT_SPECIFIC (type);
21800
21801 /* Read DW_AT_data_location and set in type. */
21802 attr = dwarf2_attr (die, DW_AT_data_location, cu);
21803 if (attr_to_dynamic_prop (attr, die, cu, &prop))
21804 {
21805 TYPE_DATA_LOCATION (type)
21806 = obstack_alloc (&objfile->objfile_obstack, sizeof (prop));
21807 *TYPE_DATA_LOCATION (type) = prop;
21808 }
21809
21810 if (dwarf2_per_objfile->die_type_hash == NULL)
21811 {
21812 dwarf2_per_objfile->die_type_hash =
21813 htab_create_alloc_ex (127,
21814 per_cu_offset_and_type_hash,
21815 per_cu_offset_and_type_eq,
21816 NULL,
21817 &objfile->objfile_obstack,
21818 hashtab_obstack_allocate,
21819 dummy_obstack_deallocate);
21820 }
21821
21822 ofs.per_cu = cu->per_cu;
21823 ofs.offset = die->offset;
21824 ofs.type = type;
21825 slot = (struct dwarf2_per_cu_offset_and_type **)
21826 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21827 if (*slot)
21828 complaint (&symfile_complaints,
21829 _("A problem internal to GDB: DIE 0x%x has type already set"),
21830 die->offset.sect_off);
21831 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21832 **slot = ofs;
21833 return type;
21834 }
21835
21836 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21837 or return NULL if the die does not have a saved type. */
21838
21839 static struct type *
21840 get_die_type_at_offset (sect_offset offset,
21841 struct dwarf2_per_cu_data *per_cu)
21842 {
21843 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21844
21845 if (dwarf2_per_objfile->die_type_hash == NULL)
21846 return NULL;
21847
21848 ofs.per_cu = per_cu;
21849 ofs.offset = offset;
21850 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21851 if (slot)
21852 return slot->type;
21853 else
21854 return NULL;
21855 }
21856
21857 /* Look up the type for DIE in CU in die_type_hash,
21858 or return NULL if DIE does not have a saved type. */
21859
21860 static struct type *
21861 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21862 {
21863 return get_die_type_at_offset (die->offset, cu->per_cu);
21864 }
21865
21866 /* Add a dependence relationship from CU to REF_PER_CU. */
21867
21868 static void
21869 dwarf2_add_dependence (struct dwarf2_cu *cu,
21870 struct dwarf2_per_cu_data *ref_per_cu)
21871 {
21872 void **slot;
21873
21874 if (cu->dependencies == NULL)
21875 cu->dependencies
21876 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21877 NULL, &cu->comp_unit_obstack,
21878 hashtab_obstack_allocate,
21879 dummy_obstack_deallocate);
21880
21881 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21882 if (*slot == NULL)
21883 *slot = ref_per_cu;
21884 }
21885
21886 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21887 Set the mark field in every compilation unit in the
21888 cache that we must keep because we are keeping CU. */
21889
21890 static int
21891 dwarf2_mark_helper (void **slot, void *data)
21892 {
21893 struct dwarf2_per_cu_data *per_cu;
21894
21895 per_cu = (struct dwarf2_per_cu_data *) *slot;
21896
21897 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21898 reading of the chain. As such dependencies remain valid it is not much
21899 useful to track and undo them during QUIT cleanups. */
21900 if (per_cu->cu == NULL)
21901 return 1;
21902
21903 if (per_cu->cu->mark)
21904 return 1;
21905 per_cu->cu->mark = 1;
21906
21907 if (per_cu->cu->dependencies != NULL)
21908 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21909
21910 return 1;
21911 }
21912
21913 /* Set the mark field in CU and in every other compilation unit in the
21914 cache that we must keep because we are keeping CU. */
21915
21916 static void
21917 dwarf2_mark (struct dwarf2_cu *cu)
21918 {
21919 if (cu->mark)
21920 return;
21921 cu->mark = 1;
21922 if (cu->dependencies != NULL)
21923 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21924 }
21925
21926 static void
21927 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21928 {
21929 while (per_cu)
21930 {
21931 per_cu->cu->mark = 0;
21932 per_cu = per_cu->cu->read_in_chain;
21933 }
21934 }
21935
21936 /* Trivial hash function for partial_die_info: the hash value of a DIE
21937 is its offset in .debug_info for this objfile. */
21938
21939 static hashval_t
21940 partial_die_hash (const void *item)
21941 {
21942 const struct partial_die_info *part_die = item;
21943
21944 return part_die->offset.sect_off;
21945 }
21946
21947 /* Trivial comparison function for partial_die_info structures: two DIEs
21948 are equal if they have the same offset. */
21949
21950 static int
21951 partial_die_eq (const void *item_lhs, const void *item_rhs)
21952 {
21953 const struct partial_die_info *part_die_lhs = item_lhs;
21954 const struct partial_die_info *part_die_rhs = item_rhs;
21955
21956 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
21957 }
21958
21959 static struct cmd_list_element *set_dwarf2_cmdlist;
21960 static struct cmd_list_element *show_dwarf2_cmdlist;
21961
21962 static void
21963 set_dwarf2_cmd (char *args, int from_tty)
21964 {
21965 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
21966 gdb_stdout);
21967 }
21968
21969 static void
21970 show_dwarf2_cmd (char *args, int from_tty)
21971 {
21972 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21973 }
21974
21975 /* Free data associated with OBJFILE, if necessary. */
21976
21977 static void
21978 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
21979 {
21980 struct dwarf2_per_objfile *data = d;
21981 int ix;
21982
21983 /* Make sure we don't accidentally use dwarf2_per_objfile while
21984 cleaning up. */
21985 dwarf2_per_objfile = NULL;
21986
21987 for (ix = 0; ix < data->n_comp_units; ++ix)
21988 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
21989
21990 for (ix = 0; ix < data->n_type_units; ++ix)
21991 VEC_free (dwarf2_per_cu_ptr,
21992 data->all_type_units[ix]->per_cu.imported_symtabs);
21993 xfree (data->all_type_units);
21994
21995 VEC_free (dwarf2_section_info_def, data->types);
21996
21997 if (data->dwo_files)
21998 free_dwo_files (data->dwo_files, objfile);
21999 if (data->dwp_file)
22000 gdb_bfd_unref (data->dwp_file->dbfd);
22001
22002 if (data->dwz_file && data->dwz_file->dwz_bfd)
22003 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22004 }
22005
22006 \f
22007 /* The "save gdb-index" command. */
22008
22009 /* The contents of the hash table we create when building the string
22010 table. */
22011 struct strtab_entry
22012 {
22013 offset_type offset;
22014 const char *str;
22015 };
22016
22017 /* Hash function for a strtab_entry.
22018
22019 Function is used only during write_hash_table so no index format backward
22020 compatibility is needed. */
22021
22022 static hashval_t
22023 hash_strtab_entry (const void *e)
22024 {
22025 const struct strtab_entry *entry = e;
22026 return mapped_index_string_hash (INT_MAX, entry->str);
22027 }
22028
22029 /* Equality function for a strtab_entry. */
22030
22031 static int
22032 eq_strtab_entry (const void *a, const void *b)
22033 {
22034 const struct strtab_entry *ea = a;
22035 const struct strtab_entry *eb = b;
22036 return !strcmp (ea->str, eb->str);
22037 }
22038
22039 /* Create a strtab_entry hash table. */
22040
22041 static htab_t
22042 create_strtab (void)
22043 {
22044 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22045 xfree, xcalloc, xfree);
22046 }
22047
22048 /* Add a string to the constant pool. Return the string's offset in
22049 host order. */
22050
22051 static offset_type
22052 add_string (htab_t table, struct obstack *cpool, const char *str)
22053 {
22054 void **slot;
22055 struct strtab_entry entry;
22056 struct strtab_entry *result;
22057
22058 entry.str = str;
22059 slot = htab_find_slot (table, &entry, INSERT);
22060 if (*slot)
22061 result = *slot;
22062 else
22063 {
22064 result = XNEW (struct strtab_entry);
22065 result->offset = obstack_object_size (cpool);
22066 result->str = str;
22067 obstack_grow_str0 (cpool, str);
22068 *slot = result;
22069 }
22070 return result->offset;
22071 }
22072
22073 /* An entry in the symbol table. */
22074 struct symtab_index_entry
22075 {
22076 /* The name of the symbol. */
22077 const char *name;
22078 /* The offset of the name in the constant pool. */
22079 offset_type index_offset;
22080 /* A sorted vector of the indices of all the CUs that hold an object
22081 of this name. */
22082 VEC (offset_type) *cu_indices;
22083 };
22084
22085 /* The symbol table. This is a power-of-2-sized hash table. */
22086 struct mapped_symtab
22087 {
22088 offset_type n_elements;
22089 offset_type size;
22090 struct symtab_index_entry **data;
22091 };
22092
22093 /* Hash function for a symtab_index_entry. */
22094
22095 static hashval_t
22096 hash_symtab_entry (const void *e)
22097 {
22098 const struct symtab_index_entry *entry = e;
22099 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22100 sizeof (offset_type) * VEC_length (offset_type,
22101 entry->cu_indices),
22102 0);
22103 }
22104
22105 /* Equality function for a symtab_index_entry. */
22106
22107 static int
22108 eq_symtab_entry (const void *a, const void *b)
22109 {
22110 const struct symtab_index_entry *ea = a;
22111 const struct symtab_index_entry *eb = b;
22112 int len = VEC_length (offset_type, ea->cu_indices);
22113 if (len != VEC_length (offset_type, eb->cu_indices))
22114 return 0;
22115 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22116 VEC_address (offset_type, eb->cu_indices),
22117 sizeof (offset_type) * len);
22118 }
22119
22120 /* Destroy a symtab_index_entry. */
22121
22122 static void
22123 delete_symtab_entry (void *p)
22124 {
22125 struct symtab_index_entry *entry = p;
22126 VEC_free (offset_type, entry->cu_indices);
22127 xfree (entry);
22128 }
22129
22130 /* Create a hash table holding symtab_index_entry objects. */
22131
22132 static htab_t
22133 create_symbol_hash_table (void)
22134 {
22135 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22136 delete_symtab_entry, xcalloc, xfree);
22137 }
22138
22139 /* Create a new mapped symtab object. */
22140
22141 static struct mapped_symtab *
22142 create_mapped_symtab (void)
22143 {
22144 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22145 symtab->n_elements = 0;
22146 symtab->size = 1024;
22147 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22148 return symtab;
22149 }
22150
22151 /* Destroy a mapped_symtab. */
22152
22153 static void
22154 cleanup_mapped_symtab (void *p)
22155 {
22156 struct mapped_symtab *symtab = p;
22157 /* The contents of the array are freed when the other hash table is
22158 destroyed. */
22159 xfree (symtab->data);
22160 xfree (symtab);
22161 }
22162
22163 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22164 the slot.
22165
22166 Function is used only during write_hash_table so no index format backward
22167 compatibility is needed. */
22168
22169 static struct symtab_index_entry **
22170 find_slot (struct mapped_symtab *symtab, const char *name)
22171 {
22172 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22173
22174 index = hash & (symtab->size - 1);
22175 step = ((hash * 17) & (symtab->size - 1)) | 1;
22176
22177 for (;;)
22178 {
22179 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22180 return &symtab->data[index];
22181 index = (index + step) & (symtab->size - 1);
22182 }
22183 }
22184
22185 /* Expand SYMTAB's hash table. */
22186
22187 static void
22188 hash_expand (struct mapped_symtab *symtab)
22189 {
22190 offset_type old_size = symtab->size;
22191 offset_type i;
22192 struct symtab_index_entry **old_entries = symtab->data;
22193
22194 symtab->size *= 2;
22195 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22196
22197 for (i = 0; i < old_size; ++i)
22198 {
22199 if (old_entries[i])
22200 {
22201 struct symtab_index_entry **slot = find_slot (symtab,
22202 old_entries[i]->name);
22203 *slot = old_entries[i];
22204 }
22205 }
22206
22207 xfree (old_entries);
22208 }
22209
22210 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22211 CU_INDEX is the index of the CU in which the symbol appears.
22212 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22213
22214 static void
22215 add_index_entry (struct mapped_symtab *symtab, const char *name,
22216 int is_static, gdb_index_symbol_kind kind,
22217 offset_type cu_index)
22218 {
22219 struct symtab_index_entry **slot;
22220 offset_type cu_index_and_attrs;
22221
22222 ++symtab->n_elements;
22223 if (4 * symtab->n_elements / 3 >= symtab->size)
22224 hash_expand (symtab);
22225
22226 slot = find_slot (symtab, name);
22227 if (!*slot)
22228 {
22229 *slot = XNEW (struct symtab_index_entry);
22230 (*slot)->name = name;
22231 /* index_offset is set later. */
22232 (*slot)->cu_indices = NULL;
22233 }
22234
22235 cu_index_and_attrs = 0;
22236 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22237 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22238 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22239
22240 /* We don't want to record an index value twice as we want to avoid the
22241 duplication.
22242 We process all global symbols and then all static symbols
22243 (which would allow us to avoid the duplication by only having to check
22244 the last entry pushed), but a symbol could have multiple kinds in one CU.
22245 To keep things simple we don't worry about the duplication here and
22246 sort and uniqufy the list after we've processed all symbols. */
22247 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22248 }
22249
22250 /* qsort helper routine for uniquify_cu_indices. */
22251
22252 static int
22253 offset_type_compare (const void *ap, const void *bp)
22254 {
22255 offset_type a = *(offset_type *) ap;
22256 offset_type b = *(offset_type *) bp;
22257
22258 return (a > b) - (b > a);
22259 }
22260
22261 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22262
22263 static void
22264 uniquify_cu_indices (struct mapped_symtab *symtab)
22265 {
22266 int i;
22267
22268 for (i = 0; i < symtab->size; ++i)
22269 {
22270 struct symtab_index_entry *entry = symtab->data[i];
22271
22272 if (entry
22273 && entry->cu_indices != NULL)
22274 {
22275 unsigned int next_to_insert, next_to_check;
22276 offset_type last_value;
22277
22278 qsort (VEC_address (offset_type, entry->cu_indices),
22279 VEC_length (offset_type, entry->cu_indices),
22280 sizeof (offset_type), offset_type_compare);
22281
22282 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22283 next_to_insert = 1;
22284 for (next_to_check = 1;
22285 next_to_check < VEC_length (offset_type, entry->cu_indices);
22286 ++next_to_check)
22287 {
22288 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22289 != last_value)
22290 {
22291 last_value = VEC_index (offset_type, entry->cu_indices,
22292 next_to_check);
22293 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22294 last_value);
22295 ++next_to_insert;
22296 }
22297 }
22298 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22299 }
22300 }
22301 }
22302
22303 /* Add a vector of indices to the constant pool. */
22304
22305 static offset_type
22306 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22307 struct symtab_index_entry *entry)
22308 {
22309 void **slot;
22310
22311 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22312 if (!*slot)
22313 {
22314 offset_type len = VEC_length (offset_type, entry->cu_indices);
22315 offset_type val = MAYBE_SWAP (len);
22316 offset_type iter;
22317 int i;
22318
22319 *slot = entry;
22320 entry->index_offset = obstack_object_size (cpool);
22321
22322 obstack_grow (cpool, &val, sizeof (val));
22323 for (i = 0;
22324 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22325 ++i)
22326 {
22327 val = MAYBE_SWAP (iter);
22328 obstack_grow (cpool, &val, sizeof (val));
22329 }
22330 }
22331 else
22332 {
22333 struct symtab_index_entry *old_entry = *slot;
22334 entry->index_offset = old_entry->index_offset;
22335 entry = old_entry;
22336 }
22337 return entry->index_offset;
22338 }
22339
22340 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22341 constant pool entries going into the obstack CPOOL. */
22342
22343 static void
22344 write_hash_table (struct mapped_symtab *symtab,
22345 struct obstack *output, struct obstack *cpool)
22346 {
22347 offset_type i;
22348 htab_t symbol_hash_table;
22349 htab_t str_table;
22350
22351 symbol_hash_table = create_symbol_hash_table ();
22352 str_table = create_strtab ();
22353
22354 /* We add all the index vectors to the constant pool first, to
22355 ensure alignment is ok. */
22356 for (i = 0; i < symtab->size; ++i)
22357 {
22358 if (symtab->data[i])
22359 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22360 }
22361
22362 /* Now write out the hash table. */
22363 for (i = 0; i < symtab->size; ++i)
22364 {
22365 offset_type str_off, vec_off;
22366
22367 if (symtab->data[i])
22368 {
22369 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22370 vec_off = symtab->data[i]->index_offset;
22371 }
22372 else
22373 {
22374 /* While 0 is a valid constant pool index, it is not valid
22375 to have 0 for both offsets. */
22376 str_off = 0;
22377 vec_off = 0;
22378 }
22379
22380 str_off = MAYBE_SWAP (str_off);
22381 vec_off = MAYBE_SWAP (vec_off);
22382
22383 obstack_grow (output, &str_off, sizeof (str_off));
22384 obstack_grow (output, &vec_off, sizeof (vec_off));
22385 }
22386
22387 htab_delete (str_table);
22388 htab_delete (symbol_hash_table);
22389 }
22390
22391 /* Struct to map psymtab to CU index in the index file. */
22392 struct psymtab_cu_index_map
22393 {
22394 struct partial_symtab *psymtab;
22395 unsigned int cu_index;
22396 };
22397
22398 static hashval_t
22399 hash_psymtab_cu_index (const void *item)
22400 {
22401 const struct psymtab_cu_index_map *map = item;
22402
22403 return htab_hash_pointer (map->psymtab);
22404 }
22405
22406 static int
22407 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22408 {
22409 const struct psymtab_cu_index_map *lhs = item_lhs;
22410 const struct psymtab_cu_index_map *rhs = item_rhs;
22411
22412 return lhs->psymtab == rhs->psymtab;
22413 }
22414
22415 /* Helper struct for building the address table. */
22416 struct addrmap_index_data
22417 {
22418 struct objfile *objfile;
22419 struct obstack *addr_obstack;
22420 htab_t cu_index_htab;
22421
22422 /* Non-zero if the previous_* fields are valid.
22423 We can't write an entry until we see the next entry (since it is only then
22424 that we know the end of the entry). */
22425 int previous_valid;
22426 /* Index of the CU in the table of all CUs in the index file. */
22427 unsigned int previous_cu_index;
22428 /* Start address of the CU. */
22429 CORE_ADDR previous_cu_start;
22430 };
22431
22432 /* Write an address entry to OBSTACK. */
22433
22434 static void
22435 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22436 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22437 {
22438 offset_type cu_index_to_write;
22439 gdb_byte addr[8];
22440 CORE_ADDR baseaddr;
22441
22442 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22443
22444 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22445 obstack_grow (obstack, addr, 8);
22446 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22447 obstack_grow (obstack, addr, 8);
22448 cu_index_to_write = MAYBE_SWAP (cu_index);
22449 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22450 }
22451
22452 /* Worker function for traversing an addrmap to build the address table. */
22453
22454 static int
22455 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22456 {
22457 struct addrmap_index_data *data = datap;
22458 struct partial_symtab *pst = obj;
22459
22460 if (data->previous_valid)
22461 add_address_entry (data->objfile, data->addr_obstack,
22462 data->previous_cu_start, start_addr,
22463 data->previous_cu_index);
22464
22465 data->previous_cu_start = start_addr;
22466 if (pst != NULL)
22467 {
22468 struct psymtab_cu_index_map find_map, *map;
22469 find_map.psymtab = pst;
22470 map = htab_find (data->cu_index_htab, &find_map);
22471 gdb_assert (map != NULL);
22472 data->previous_cu_index = map->cu_index;
22473 data->previous_valid = 1;
22474 }
22475 else
22476 data->previous_valid = 0;
22477
22478 return 0;
22479 }
22480
22481 /* Write OBJFILE's address map to OBSTACK.
22482 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22483 in the index file. */
22484
22485 static void
22486 write_address_map (struct objfile *objfile, struct obstack *obstack,
22487 htab_t cu_index_htab)
22488 {
22489 struct addrmap_index_data addrmap_index_data;
22490
22491 /* When writing the address table, we have to cope with the fact that
22492 the addrmap iterator only provides the start of a region; we have to
22493 wait until the next invocation to get the start of the next region. */
22494
22495 addrmap_index_data.objfile = objfile;
22496 addrmap_index_data.addr_obstack = obstack;
22497 addrmap_index_data.cu_index_htab = cu_index_htab;
22498 addrmap_index_data.previous_valid = 0;
22499
22500 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22501 &addrmap_index_data);
22502
22503 /* It's highly unlikely the last entry (end address = 0xff...ff)
22504 is valid, but we should still handle it.
22505 The end address is recorded as the start of the next region, but that
22506 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22507 anyway. */
22508 if (addrmap_index_data.previous_valid)
22509 add_address_entry (objfile, obstack,
22510 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22511 addrmap_index_data.previous_cu_index);
22512 }
22513
22514 /* Return the symbol kind of PSYM. */
22515
22516 static gdb_index_symbol_kind
22517 symbol_kind (struct partial_symbol *psym)
22518 {
22519 domain_enum domain = PSYMBOL_DOMAIN (psym);
22520 enum address_class aclass = PSYMBOL_CLASS (psym);
22521
22522 switch (domain)
22523 {
22524 case VAR_DOMAIN:
22525 switch (aclass)
22526 {
22527 case LOC_BLOCK:
22528 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22529 case LOC_TYPEDEF:
22530 return GDB_INDEX_SYMBOL_KIND_TYPE;
22531 case LOC_COMPUTED:
22532 case LOC_CONST_BYTES:
22533 case LOC_OPTIMIZED_OUT:
22534 case LOC_STATIC:
22535 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22536 case LOC_CONST:
22537 /* Note: It's currently impossible to recognize psyms as enum values
22538 short of reading the type info. For now punt. */
22539 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22540 default:
22541 /* There are other LOC_FOO values that one might want to classify
22542 as variables, but dwarf2read.c doesn't currently use them. */
22543 return GDB_INDEX_SYMBOL_KIND_OTHER;
22544 }
22545 case STRUCT_DOMAIN:
22546 return GDB_INDEX_SYMBOL_KIND_TYPE;
22547 default:
22548 return GDB_INDEX_SYMBOL_KIND_OTHER;
22549 }
22550 }
22551
22552 /* Add a list of partial symbols to SYMTAB. */
22553
22554 static void
22555 write_psymbols (struct mapped_symtab *symtab,
22556 htab_t psyms_seen,
22557 struct partial_symbol **psymp,
22558 int count,
22559 offset_type cu_index,
22560 int is_static)
22561 {
22562 for (; count-- > 0; ++psymp)
22563 {
22564 struct partial_symbol *psym = *psymp;
22565 void **slot;
22566
22567 if (SYMBOL_LANGUAGE (psym) == language_ada)
22568 error (_("Ada is not currently supported by the index"));
22569
22570 /* Only add a given psymbol once. */
22571 slot = htab_find_slot (psyms_seen, psym, INSERT);
22572 if (!*slot)
22573 {
22574 gdb_index_symbol_kind kind = symbol_kind (psym);
22575
22576 *slot = psym;
22577 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22578 is_static, kind, cu_index);
22579 }
22580 }
22581 }
22582
22583 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22584 exception if there is an error. */
22585
22586 static void
22587 write_obstack (FILE *file, struct obstack *obstack)
22588 {
22589 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22590 file)
22591 != obstack_object_size (obstack))
22592 error (_("couldn't data write to file"));
22593 }
22594
22595 /* Unlink a file if the argument is not NULL. */
22596
22597 static void
22598 unlink_if_set (void *p)
22599 {
22600 char **filename = p;
22601 if (*filename)
22602 unlink (*filename);
22603 }
22604
22605 /* A helper struct used when iterating over debug_types. */
22606 struct signatured_type_index_data
22607 {
22608 struct objfile *objfile;
22609 struct mapped_symtab *symtab;
22610 struct obstack *types_list;
22611 htab_t psyms_seen;
22612 int cu_index;
22613 };
22614
22615 /* A helper function that writes a single signatured_type to an
22616 obstack. */
22617
22618 static int
22619 write_one_signatured_type (void **slot, void *d)
22620 {
22621 struct signatured_type_index_data *info = d;
22622 struct signatured_type *entry = (struct signatured_type *) *slot;
22623 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22624 gdb_byte val[8];
22625
22626 write_psymbols (info->symtab,
22627 info->psyms_seen,
22628 info->objfile->global_psymbols.list
22629 + psymtab->globals_offset,
22630 psymtab->n_global_syms, info->cu_index,
22631 0);
22632 write_psymbols (info->symtab,
22633 info->psyms_seen,
22634 info->objfile->static_psymbols.list
22635 + psymtab->statics_offset,
22636 psymtab->n_static_syms, info->cu_index,
22637 1);
22638
22639 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22640 entry->per_cu.offset.sect_off);
22641 obstack_grow (info->types_list, val, 8);
22642 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22643 entry->type_offset_in_tu.cu_off);
22644 obstack_grow (info->types_list, val, 8);
22645 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22646 obstack_grow (info->types_list, val, 8);
22647
22648 ++info->cu_index;
22649
22650 return 1;
22651 }
22652
22653 /* Recurse into all "included" dependencies and write their symbols as
22654 if they appeared in this psymtab. */
22655
22656 static void
22657 recursively_write_psymbols (struct objfile *objfile,
22658 struct partial_symtab *psymtab,
22659 struct mapped_symtab *symtab,
22660 htab_t psyms_seen,
22661 offset_type cu_index)
22662 {
22663 int i;
22664
22665 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22666 if (psymtab->dependencies[i]->user != NULL)
22667 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22668 symtab, psyms_seen, cu_index);
22669
22670 write_psymbols (symtab,
22671 psyms_seen,
22672 objfile->global_psymbols.list + psymtab->globals_offset,
22673 psymtab->n_global_syms, cu_index,
22674 0);
22675 write_psymbols (symtab,
22676 psyms_seen,
22677 objfile->static_psymbols.list + psymtab->statics_offset,
22678 psymtab->n_static_syms, cu_index,
22679 1);
22680 }
22681
22682 /* Create an index file for OBJFILE in the directory DIR. */
22683
22684 static void
22685 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22686 {
22687 struct cleanup *cleanup;
22688 char *filename, *cleanup_filename;
22689 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22690 struct obstack cu_list, types_cu_list;
22691 int i;
22692 FILE *out_file;
22693 struct mapped_symtab *symtab;
22694 offset_type val, size_of_contents, total_len;
22695 struct stat st;
22696 htab_t psyms_seen;
22697 htab_t cu_index_htab;
22698 struct psymtab_cu_index_map *psymtab_cu_index_map;
22699
22700 if (dwarf2_per_objfile->using_index)
22701 error (_("Cannot use an index to create the index"));
22702
22703 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22704 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22705
22706 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22707 return;
22708
22709 if (stat (objfile_name (objfile), &st) < 0)
22710 perror_with_name (objfile_name (objfile));
22711
22712 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22713 INDEX_SUFFIX, (char *) NULL);
22714 cleanup = make_cleanup (xfree, filename);
22715
22716 out_file = gdb_fopen_cloexec (filename, "wb");
22717 if (!out_file)
22718 error (_("Can't open `%s' for writing"), filename);
22719
22720 cleanup_filename = filename;
22721 make_cleanup (unlink_if_set, &cleanup_filename);
22722
22723 symtab = create_mapped_symtab ();
22724 make_cleanup (cleanup_mapped_symtab, symtab);
22725
22726 obstack_init (&addr_obstack);
22727 make_cleanup_obstack_free (&addr_obstack);
22728
22729 obstack_init (&cu_list);
22730 make_cleanup_obstack_free (&cu_list);
22731
22732 obstack_init (&types_cu_list);
22733 make_cleanup_obstack_free (&types_cu_list);
22734
22735 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22736 NULL, xcalloc, xfree);
22737 make_cleanup_htab_delete (psyms_seen);
22738
22739 /* While we're scanning CU's create a table that maps a psymtab pointer
22740 (which is what addrmap records) to its index (which is what is recorded
22741 in the index file). This will later be needed to write the address
22742 table. */
22743 cu_index_htab = htab_create_alloc (100,
22744 hash_psymtab_cu_index,
22745 eq_psymtab_cu_index,
22746 NULL, xcalloc, xfree);
22747 make_cleanup_htab_delete (cu_index_htab);
22748 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22749 xmalloc (sizeof (struct psymtab_cu_index_map)
22750 * dwarf2_per_objfile->n_comp_units);
22751 make_cleanup (xfree, psymtab_cu_index_map);
22752
22753 /* The CU list is already sorted, so we don't need to do additional
22754 work here. Also, the debug_types entries do not appear in
22755 all_comp_units, but only in their own hash table. */
22756 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22757 {
22758 struct dwarf2_per_cu_data *per_cu
22759 = dwarf2_per_objfile->all_comp_units[i];
22760 struct partial_symtab *psymtab = per_cu->v.psymtab;
22761 gdb_byte val[8];
22762 struct psymtab_cu_index_map *map;
22763 void **slot;
22764
22765 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22766 It may be referenced from a local scope but in such case it does not
22767 need to be present in .gdb_index. */
22768 if (psymtab == NULL)
22769 continue;
22770
22771 if (psymtab->user == NULL)
22772 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22773
22774 map = &psymtab_cu_index_map[i];
22775 map->psymtab = psymtab;
22776 map->cu_index = i;
22777 slot = htab_find_slot (cu_index_htab, map, INSERT);
22778 gdb_assert (slot != NULL);
22779 gdb_assert (*slot == NULL);
22780 *slot = map;
22781
22782 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22783 per_cu->offset.sect_off);
22784 obstack_grow (&cu_list, val, 8);
22785 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22786 obstack_grow (&cu_list, val, 8);
22787 }
22788
22789 /* Dump the address map. */
22790 write_address_map (objfile, &addr_obstack, cu_index_htab);
22791
22792 /* Write out the .debug_type entries, if any. */
22793 if (dwarf2_per_objfile->signatured_types)
22794 {
22795 struct signatured_type_index_data sig_data;
22796
22797 sig_data.objfile = objfile;
22798 sig_data.symtab = symtab;
22799 sig_data.types_list = &types_cu_list;
22800 sig_data.psyms_seen = psyms_seen;
22801 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22802 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22803 write_one_signatured_type, &sig_data);
22804 }
22805
22806 /* Now that we've processed all symbols we can shrink their cu_indices
22807 lists. */
22808 uniquify_cu_indices (symtab);
22809
22810 obstack_init (&constant_pool);
22811 make_cleanup_obstack_free (&constant_pool);
22812 obstack_init (&symtab_obstack);
22813 make_cleanup_obstack_free (&symtab_obstack);
22814 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22815
22816 obstack_init (&contents);
22817 make_cleanup_obstack_free (&contents);
22818 size_of_contents = 6 * sizeof (offset_type);
22819 total_len = size_of_contents;
22820
22821 /* The version number. */
22822 val = MAYBE_SWAP (8);
22823 obstack_grow (&contents, &val, sizeof (val));
22824
22825 /* The offset of the CU list from the start of the file. */
22826 val = MAYBE_SWAP (total_len);
22827 obstack_grow (&contents, &val, sizeof (val));
22828 total_len += obstack_object_size (&cu_list);
22829
22830 /* The offset of the types CU list from the start of the file. */
22831 val = MAYBE_SWAP (total_len);
22832 obstack_grow (&contents, &val, sizeof (val));
22833 total_len += obstack_object_size (&types_cu_list);
22834
22835 /* The offset of the address table from the start of the file. */
22836 val = MAYBE_SWAP (total_len);
22837 obstack_grow (&contents, &val, sizeof (val));
22838 total_len += obstack_object_size (&addr_obstack);
22839
22840 /* The offset of the symbol table from the start of the file. */
22841 val = MAYBE_SWAP (total_len);
22842 obstack_grow (&contents, &val, sizeof (val));
22843 total_len += obstack_object_size (&symtab_obstack);
22844
22845 /* The offset of the constant pool from the start of the file. */
22846 val = MAYBE_SWAP (total_len);
22847 obstack_grow (&contents, &val, sizeof (val));
22848 total_len += obstack_object_size (&constant_pool);
22849
22850 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22851
22852 write_obstack (out_file, &contents);
22853 write_obstack (out_file, &cu_list);
22854 write_obstack (out_file, &types_cu_list);
22855 write_obstack (out_file, &addr_obstack);
22856 write_obstack (out_file, &symtab_obstack);
22857 write_obstack (out_file, &constant_pool);
22858
22859 fclose (out_file);
22860
22861 /* We want to keep the file, so we set cleanup_filename to NULL
22862 here. See unlink_if_set. */
22863 cleanup_filename = NULL;
22864
22865 do_cleanups (cleanup);
22866 }
22867
22868 /* Implementation of the `save gdb-index' command.
22869
22870 Note that the file format used by this command is documented in the
22871 GDB manual. Any changes here must be documented there. */
22872
22873 static void
22874 save_gdb_index_command (char *arg, int from_tty)
22875 {
22876 struct objfile *objfile;
22877
22878 if (!arg || !*arg)
22879 error (_("usage: save gdb-index DIRECTORY"));
22880
22881 ALL_OBJFILES (objfile)
22882 {
22883 struct stat st;
22884
22885 /* If the objfile does not correspond to an actual file, skip it. */
22886 if (stat (objfile_name (objfile), &st) < 0)
22887 continue;
22888
22889 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22890 if (dwarf2_per_objfile)
22891 {
22892 volatile struct gdb_exception except;
22893
22894 TRY_CATCH (except, RETURN_MASK_ERROR)
22895 {
22896 write_psymtabs_to_index (objfile, arg);
22897 }
22898 if (except.reason < 0)
22899 exception_fprintf (gdb_stderr, except,
22900 _("Error while writing index for `%s': "),
22901 objfile_name (objfile));
22902 }
22903 }
22904 }
22905
22906 \f
22907
22908 int dwarf2_always_disassemble;
22909
22910 static void
22911 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22912 struct cmd_list_element *c, const char *value)
22913 {
22914 fprintf_filtered (file,
22915 _("Whether to always disassemble "
22916 "DWARF expressions is %s.\n"),
22917 value);
22918 }
22919
22920 static void
22921 show_check_physname (struct ui_file *file, int from_tty,
22922 struct cmd_list_element *c, const char *value)
22923 {
22924 fprintf_filtered (file,
22925 _("Whether to check \"physname\" is %s.\n"),
22926 value);
22927 }
22928
22929 void _initialize_dwarf2_read (void);
22930
22931 void
22932 _initialize_dwarf2_read (void)
22933 {
22934 struct cmd_list_element *c;
22935
22936 dwarf2_objfile_data_key
22937 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22938
22939 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22940 Set DWARF 2 specific variables.\n\
22941 Configure DWARF 2 variables such as the cache size"),
22942 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22943 0/*allow-unknown*/, &maintenance_set_cmdlist);
22944
22945 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22946 Show DWARF 2 specific variables\n\
22947 Show DWARF 2 variables such as the cache size"),
22948 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22949 0/*allow-unknown*/, &maintenance_show_cmdlist);
22950
22951 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
22952 &dwarf2_max_cache_age, _("\
22953 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22954 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22955 A higher limit means that cached compilation units will be stored\n\
22956 in memory longer, and more total memory will be used. Zero disables\n\
22957 caching, which can slow down startup."),
22958 NULL,
22959 show_dwarf2_max_cache_age,
22960 &set_dwarf2_cmdlist,
22961 &show_dwarf2_cmdlist);
22962
22963 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22964 &dwarf2_always_disassemble, _("\
22965 Set whether `info address' always disassembles DWARF expressions."), _("\
22966 Show whether `info address' always disassembles DWARF expressions."), _("\
22967 When enabled, DWARF expressions are always printed in an assembly-like\n\
22968 syntax. When disabled, expressions will be printed in a more\n\
22969 conversational style, when possible."),
22970 NULL,
22971 show_dwarf2_always_disassemble,
22972 &set_dwarf2_cmdlist,
22973 &show_dwarf2_cmdlist);
22974
22975 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
22976 Set debugging of the dwarf2 reader."), _("\
22977 Show debugging of the dwarf2 reader."), _("\
22978 When enabled (non-zero), debugging messages are printed during dwarf2\n\
22979 reading and symtab expansion. A value of 1 (one) provides basic\n\
22980 information. A value greater than 1 provides more verbose information."),
22981 NULL,
22982 NULL,
22983 &setdebuglist, &showdebuglist);
22984
22985 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
22986 Set debugging of the dwarf2 DIE reader."), _("\
22987 Show debugging of the dwarf2 DIE reader."), _("\
22988 When enabled (non-zero), DIEs are dumped after they are read in.\n\
22989 The value is the maximum depth to print."),
22990 NULL,
22991 NULL,
22992 &setdebuglist, &showdebuglist);
22993
22994 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22995 Set cross-checking of \"physname\" code against demangler."), _("\
22996 Show cross-checking of \"physname\" code against demangler."), _("\
22997 When enabled, GDB's internal \"physname\" code is checked against\n\
22998 the demangler."),
22999 NULL, show_check_physname,
23000 &setdebuglist, &showdebuglist);
23001
23002 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23003 no_class, &use_deprecated_index_sections, _("\
23004 Set whether to use deprecated gdb_index sections."), _("\
23005 Show whether to use deprecated gdb_index sections."), _("\
23006 When enabled, deprecated .gdb_index sections are used anyway.\n\
23007 Normally they are ignored either because of a missing feature or\n\
23008 performance issue.\n\
23009 Warning: This option must be enabled before gdb reads the file."),
23010 NULL,
23011 NULL,
23012 &setlist, &showlist);
23013
23014 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23015 _("\
23016 Save a gdb-index file.\n\
23017 Usage: save gdb-index DIRECTORY"),
23018 &save_cmdlist);
23019 set_cmd_completer (c, filename_completer);
23020
23021 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23022 &dwarf2_locexpr_funcs);
23023 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23024 &dwarf2_loclist_funcs);
23025
23026 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23027 &dwarf2_block_frame_base_locexpr_funcs);
23028 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23029 &dwarf2_block_frame_base_loclist_funcs);
23030 }
This page took 0.620925 seconds and 5 git commands to generate.