* dwarf2-frame.c (struct comp_unit) <dwarf_frame_buffer>: Now
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71
72 #include <fcntl.h>
73 #include "gdb_string.h"
74 #include "gdb_assert.h"
75 #include <sys/types.h>
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 /* When non-zero, print basic high level tracing messages.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static int dwarf2_read_debug = 0;
83
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug = 0;
86
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
89
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
92
93 static const struct objfile_data *dwarf2_objfile_data_key;
94
95 /* The "aclass" indices for various kinds of computed DWARF symbols. */
96
97 static int dwarf2_locexpr_index;
98 static int dwarf2_loclist_index;
99 static int dwarf2_locexpr_block_index;
100 static int dwarf2_loclist_block_index;
101
102 struct dwarf2_section_info
103 {
104 asection *asection;
105 const gdb_byte *buffer;
106 bfd_size_type size;
107 /* True if we have tried to read this section. */
108 int readin;
109 };
110
111 typedef struct dwarf2_section_info dwarf2_section_info_def;
112 DEF_VEC_O (dwarf2_section_info_def);
113
114 /* All offsets in the index are of this type. It must be
115 architecture-independent. */
116 typedef uint32_t offset_type;
117
118 DEF_VEC_I (offset_type);
119
120 /* Ensure only legit values are used. */
121 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
122 do { \
123 gdb_assert ((unsigned int) (value) <= 1); \
124 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
125 } while (0)
126
127 /* Ensure only legit values are used. */
128 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
129 do { \
130 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
131 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
132 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
133 } while (0)
134
135 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
136 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
137 do { \
138 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
139 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
140 } while (0)
141
142 /* A description of the mapped index. The file format is described in
143 a comment by the code that writes the index. */
144 struct mapped_index
145 {
146 /* Index data format version. */
147 int version;
148
149 /* The total length of the buffer. */
150 off_t total_size;
151
152 /* A pointer to the address table data. */
153 const gdb_byte *address_table;
154
155 /* Size of the address table data in bytes. */
156 offset_type address_table_size;
157
158 /* The symbol table, implemented as a hash table. */
159 const offset_type *symbol_table;
160
161 /* Size in slots, each slot is 2 offset_types. */
162 offset_type symbol_table_slots;
163
164 /* A pointer to the constant pool. */
165 const char *constant_pool;
166 };
167
168 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
169 DEF_VEC_P (dwarf2_per_cu_ptr);
170
171 /* Collection of data recorded per objfile.
172 This hangs off of dwarf2_objfile_data_key. */
173
174 struct dwarf2_per_objfile
175 {
176 struct dwarf2_section_info info;
177 struct dwarf2_section_info abbrev;
178 struct dwarf2_section_info line;
179 struct dwarf2_section_info loc;
180 struct dwarf2_section_info macinfo;
181 struct dwarf2_section_info macro;
182 struct dwarf2_section_info str;
183 struct dwarf2_section_info ranges;
184 struct dwarf2_section_info addr;
185 struct dwarf2_section_info frame;
186 struct dwarf2_section_info eh_frame;
187 struct dwarf2_section_info gdb_index;
188
189 VEC (dwarf2_section_info_def) *types;
190
191 /* Back link. */
192 struct objfile *objfile;
193
194 /* Table of all the compilation units. This is used to locate
195 the target compilation unit of a particular reference. */
196 struct dwarf2_per_cu_data **all_comp_units;
197
198 /* The number of compilation units in ALL_COMP_UNITS. */
199 int n_comp_units;
200
201 /* The number of .debug_types-related CUs. */
202 int n_type_units;
203
204 /* The .debug_types-related CUs (TUs). */
205 struct signatured_type **all_type_units;
206
207 /* The number of entries in all_type_unit_groups. */
208 int n_type_unit_groups;
209
210 /* Table of type unit groups.
211 This exists to make it easy to iterate over all CUs and TU groups. */
212 struct type_unit_group **all_type_unit_groups;
213
214 /* Table of struct type_unit_group objects.
215 The hash key is the DW_AT_stmt_list value. */
216 htab_t type_unit_groups;
217
218 /* A table mapping .debug_types signatures to its signatured_type entry.
219 This is NULL if the .debug_types section hasn't been read in yet. */
220 htab_t signatured_types;
221
222 /* Type unit statistics, to see how well the scaling improvements
223 are doing. */
224 struct tu_stats
225 {
226 int nr_uniq_abbrev_tables;
227 int nr_symtabs;
228 int nr_symtab_sharers;
229 int nr_stmt_less_type_units;
230 } tu_stats;
231
232 /* A chain of compilation units that are currently read in, so that
233 they can be freed later. */
234 struct dwarf2_per_cu_data *read_in_chain;
235
236 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
237 This is NULL if the table hasn't been allocated yet. */
238 htab_t dwo_files;
239
240 /* Non-zero if we've check for whether there is a DWP file. */
241 int dwp_checked;
242
243 /* The DWP file if there is one, or NULL. */
244 struct dwp_file *dwp_file;
245
246 /* The shared '.dwz' file, if one exists. This is used when the
247 original data was compressed using 'dwz -m'. */
248 struct dwz_file *dwz_file;
249
250 /* A flag indicating wether this objfile has a section loaded at a
251 VMA of 0. */
252 int has_section_at_zero;
253
254 /* True if we are using the mapped index,
255 or we are faking it for OBJF_READNOW's sake. */
256 unsigned char using_index;
257
258 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
259 struct mapped_index *index_table;
260
261 /* When using index_table, this keeps track of all quick_file_names entries.
262 TUs typically share line table entries with a CU, so we maintain a
263 separate table of all line table entries to support the sharing.
264 Note that while there can be way more TUs than CUs, we've already
265 sorted all the TUs into "type unit groups", grouped by their
266 DW_AT_stmt_list value. Therefore the only sharing done here is with a
267 CU and its associated TU group if there is one. */
268 htab_t quick_file_names_table;
269
270 /* Set during partial symbol reading, to prevent queueing of full
271 symbols. */
272 int reading_partial_symbols;
273
274 /* Table mapping type DIEs to their struct type *.
275 This is NULL if not allocated yet.
276 The mapping is done via (CU/TU + DIE offset) -> type. */
277 htab_t die_type_hash;
278
279 /* The CUs we recently read. */
280 VEC (dwarf2_per_cu_ptr) *just_read_cus;
281 };
282
283 static struct dwarf2_per_objfile *dwarf2_per_objfile;
284
285 /* Default names of the debugging sections. */
286
287 /* Note that if the debugging section has been compressed, it might
288 have a name like .zdebug_info. */
289
290 static const struct dwarf2_debug_sections dwarf2_elf_names =
291 {
292 { ".debug_info", ".zdebug_info" },
293 { ".debug_abbrev", ".zdebug_abbrev" },
294 { ".debug_line", ".zdebug_line" },
295 { ".debug_loc", ".zdebug_loc" },
296 { ".debug_macinfo", ".zdebug_macinfo" },
297 { ".debug_macro", ".zdebug_macro" },
298 { ".debug_str", ".zdebug_str" },
299 { ".debug_ranges", ".zdebug_ranges" },
300 { ".debug_types", ".zdebug_types" },
301 { ".debug_addr", ".zdebug_addr" },
302 { ".debug_frame", ".zdebug_frame" },
303 { ".eh_frame", NULL },
304 { ".gdb_index", ".zgdb_index" },
305 23
306 };
307
308 /* List of DWO/DWP sections. */
309
310 static const struct dwop_section_names
311 {
312 struct dwarf2_section_names abbrev_dwo;
313 struct dwarf2_section_names info_dwo;
314 struct dwarf2_section_names line_dwo;
315 struct dwarf2_section_names loc_dwo;
316 struct dwarf2_section_names macinfo_dwo;
317 struct dwarf2_section_names macro_dwo;
318 struct dwarf2_section_names str_dwo;
319 struct dwarf2_section_names str_offsets_dwo;
320 struct dwarf2_section_names types_dwo;
321 struct dwarf2_section_names cu_index;
322 struct dwarf2_section_names tu_index;
323 }
324 dwop_section_names =
325 {
326 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
327 { ".debug_info.dwo", ".zdebug_info.dwo" },
328 { ".debug_line.dwo", ".zdebug_line.dwo" },
329 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
330 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
331 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
332 { ".debug_str.dwo", ".zdebug_str.dwo" },
333 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
334 { ".debug_types.dwo", ".zdebug_types.dwo" },
335 { ".debug_cu_index", ".zdebug_cu_index" },
336 { ".debug_tu_index", ".zdebug_tu_index" },
337 };
338
339 /* local data types */
340
341 /* The data in a compilation unit header, after target2host
342 translation, looks like this. */
343 struct comp_unit_head
344 {
345 unsigned int length;
346 short version;
347 unsigned char addr_size;
348 unsigned char signed_addr_p;
349 sect_offset abbrev_offset;
350
351 /* Size of file offsets; either 4 or 8. */
352 unsigned int offset_size;
353
354 /* Size of the length field; either 4 or 12. */
355 unsigned int initial_length_size;
356
357 /* Offset to the first byte of this compilation unit header in the
358 .debug_info section, for resolving relative reference dies. */
359 sect_offset offset;
360
361 /* Offset to first die in this cu from the start of the cu.
362 This will be the first byte following the compilation unit header. */
363 cu_offset first_die_offset;
364 };
365
366 /* Type used for delaying computation of method physnames.
367 See comments for compute_delayed_physnames. */
368 struct delayed_method_info
369 {
370 /* The type to which the method is attached, i.e., its parent class. */
371 struct type *type;
372
373 /* The index of the method in the type's function fieldlists. */
374 int fnfield_index;
375
376 /* The index of the method in the fieldlist. */
377 int index;
378
379 /* The name of the DIE. */
380 const char *name;
381
382 /* The DIE associated with this method. */
383 struct die_info *die;
384 };
385
386 typedef struct delayed_method_info delayed_method_info;
387 DEF_VEC_O (delayed_method_info);
388
389 /* Internal state when decoding a particular compilation unit. */
390 struct dwarf2_cu
391 {
392 /* The objfile containing this compilation unit. */
393 struct objfile *objfile;
394
395 /* The header of the compilation unit. */
396 struct comp_unit_head header;
397
398 /* Base address of this compilation unit. */
399 CORE_ADDR base_address;
400
401 /* Non-zero if base_address has been set. */
402 int base_known;
403
404 /* The language we are debugging. */
405 enum language language;
406 const struct language_defn *language_defn;
407
408 const char *producer;
409
410 /* The generic symbol table building routines have separate lists for
411 file scope symbols and all all other scopes (local scopes). So
412 we need to select the right one to pass to add_symbol_to_list().
413 We do it by keeping a pointer to the correct list in list_in_scope.
414
415 FIXME: The original dwarf code just treated the file scope as the
416 first local scope, and all other local scopes as nested local
417 scopes, and worked fine. Check to see if we really need to
418 distinguish these in buildsym.c. */
419 struct pending **list_in_scope;
420
421 /* The abbrev table for this CU.
422 Normally this points to the abbrev table in the objfile.
423 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
424 struct abbrev_table *abbrev_table;
425
426 /* Hash table holding all the loaded partial DIEs
427 with partial_die->offset.SECT_OFF as hash. */
428 htab_t partial_dies;
429
430 /* Storage for things with the same lifetime as this read-in compilation
431 unit, including partial DIEs. */
432 struct obstack comp_unit_obstack;
433
434 /* When multiple dwarf2_cu structures are living in memory, this field
435 chains them all together, so that they can be released efficiently.
436 We will probably also want a generation counter so that most-recently-used
437 compilation units are cached... */
438 struct dwarf2_per_cu_data *read_in_chain;
439
440 /* Backchain to our per_cu entry if the tree has been built. */
441 struct dwarf2_per_cu_data *per_cu;
442
443 /* How many compilation units ago was this CU last referenced? */
444 int last_used;
445
446 /* A hash table of DIE cu_offset for following references with
447 die_info->offset.sect_off as hash. */
448 htab_t die_hash;
449
450 /* Full DIEs if read in. */
451 struct die_info *dies;
452
453 /* A set of pointers to dwarf2_per_cu_data objects for compilation
454 units referenced by this one. Only set during full symbol processing;
455 partial symbol tables do not have dependencies. */
456 htab_t dependencies;
457
458 /* Header data from the line table, during full symbol processing. */
459 struct line_header *line_header;
460
461 /* A list of methods which need to have physnames computed
462 after all type information has been read. */
463 VEC (delayed_method_info) *method_list;
464
465 /* To be copied to symtab->call_site_htab. */
466 htab_t call_site_htab;
467
468 /* Non-NULL if this CU came from a DWO file.
469 There is an invariant here that is important to remember:
470 Except for attributes copied from the top level DIE in the "main"
471 (or "stub") file in preparation for reading the DWO file
472 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
473 Either there isn't a DWO file (in which case this is NULL and the point
474 is moot), or there is and either we're not going to read it (in which
475 case this is NULL) or there is and we are reading it (in which case this
476 is non-NULL). */
477 struct dwo_unit *dwo_unit;
478
479 /* The DW_AT_addr_base attribute if present, zero otherwise
480 (zero is a valid value though).
481 Note this value comes from the stub CU/TU's DIE. */
482 ULONGEST addr_base;
483
484 /* The DW_AT_ranges_base attribute if present, zero otherwise
485 (zero is a valid value though).
486 Note this value comes from the stub CU/TU's DIE.
487 Also note that the value is zero in the non-DWO case so this value can
488 be used without needing to know whether DWO files are in use or not.
489 N.B. This does not apply to DW_AT_ranges appearing in
490 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
491 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
492 DW_AT_ranges_base *would* have to be applied, and we'd have to care
493 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
494 ULONGEST ranges_base;
495
496 /* Mark used when releasing cached dies. */
497 unsigned int mark : 1;
498
499 /* This CU references .debug_loc. See the symtab->locations_valid field.
500 This test is imperfect as there may exist optimized debug code not using
501 any location list and still facing inlining issues if handled as
502 unoptimized code. For a future better test see GCC PR other/32998. */
503 unsigned int has_loclist : 1;
504
505 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
506 if all the producer_is_* fields are valid. This information is cached
507 because profiling CU expansion showed excessive time spent in
508 producer_is_gxx_lt_4_6. */
509 unsigned int checked_producer : 1;
510 unsigned int producer_is_gxx_lt_4_6 : 1;
511 unsigned int producer_is_gcc_lt_4_3 : 1;
512 unsigned int producer_is_icc : 1;
513
514 /* When set, the file that we're processing is known to have
515 debugging info for C++ namespaces. GCC 3.3.x did not produce
516 this information, but later versions do. */
517
518 unsigned int processing_has_namespace_info : 1;
519 };
520
521 /* Persistent data held for a compilation unit, even when not
522 processing it. We put a pointer to this structure in the
523 read_symtab_private field of the psymtab. */
524
525 struct dwarf2_per_cu_data
526 {
527 /* The start offset and length of this compilation unit.
528 NOTE: Unlike comp_unit_head.length, this length includes
529 initial_length_size.
530 If the DIE refers to a DWO file, this is always of the original die,
531 not the DWO file. */
532 sect_offset offset;
533 unsigned int length;
534
535 /* Flag indicating this compilation unit will be read in before
536 any of the current compilation units are processed. */
537 unsigned int queued : 1;
538
539 /* This flag will be set when reading partial DIEs if we need to load
540 absolutely all DIEs for this compilation unit, instead of just the ones
541 we think are interesting. It gets set if we look for a DIE in the
542 hash table and don't find it. */
543 unsigned int load_all_dies : 1;
544
545 /* Non-zero if this CU is from .debug_types.
546 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
547 this is non-zero. */
548 unsigned int is_debug_types : 1;
549
550 /* Non-zero if this CU is from the .dwz file. */
551 unsigned int is_dwz : 1;
552
553 /* The section this CU/TU lives in.
554 If the DIE refers to a DWO file, this is always the original die,
555 not the DWO file. */
556 struct dwarf2_section_info *section;
557
558 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
559 of the CU cache it gets reset to NULL again. */
560 struct dwarf2_cu *cu;
561
562 /* The corresponding objfile.
563 Normally we can get the objfile from dwarf2_per_objfile.
564 However we can enter this file with just a "per_cu" handle. */
565 struct objfile *objfile;
566
567 /* When using partial symbol tables, the 'psymtab' field is active.
568 Otherwise the 'quick' field is active. */
569 union
570 {
571 /* The partial symbol table associated with this compilation unit,
572 or NULL for unread partial units. */
573 struct partial_symtab *psymtab;
574
575 /* Data needed by the "quick" functions. */
576 struct dwarf2_per_cu_quick_data *quick;
577 } v;
578
579 /* The CUs we import using DW_TAG_imported_unit. This is filled in
580 while reading psymtabs, used to compute the psymtab dependencies,
581 and then cleared. Then it is filled in again while reading full
582 symbols, and only deleted when the objfile is destroyed.
583
584 This is also used to work around a difference between the way gold
585 generates .gdb_index version <=7 and the way gdb does. Arguably this
586 is a gold bug. For symbols coming from TUs, gold records in the index
587 the CU that includes the TU instead of the TU itself. This breaks
588 dw2_lookup_symbol: It assumes that if the index says symbol X lives
589 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
590 will find X. Alas TUs live in their own symtab, so after expanding CU Y
591 we need to look in TU Z to find X. Fortunately, this is akin to
592 DW_TAG_imported_unit, so we just use the same mechanism: For
593 .gdb_index version <=7 this also records the TUs that the CU referred
594 to. Concurrently with this change gdb was modified to emit version 8
595 indices so we only pay a price for gold generated indices. */
596 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
597 };
598
599 /* Entry in the signatured_types hash table. */
600
601 struct signatured_type
602 {
603 /* The "per_cu" object of this type.
604 N.B.: This is the first member so that it's easy to convert pointers
605 between them. */
606 struct dwarf2_per_cu_data per_cu;
607
608 /* The type's signature. */
609 ULONGEST signature;
610
611 /* Offset in the TU of the type's DIE, as read from the TU header.
612 If this TU is a DWO stub and the definition lives in a DWO file
613 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
614 cu_offset type_offset_in_tu;
615
616 /* Offset in the section of the type's DIE.
617 If the definition lives in a DWO file, this is the offset in the
618 .debug_types.dwo section.
619 The value is zero until the actual value is known.
620 Zero is otherwise not a valid section offset. */
621 sect_offset type_offset_in_section;
622
623 /* Type units are grouped by their DW_AT_stmt_list entry so that they
624 can share them. This points to the containing symtab. */
625 struct type_unit_group *type_unit_group;
626 };
627
628 typedef struct signatured_type *sig_type_ptr;
629 DEF_VEC_P (sig_type_ptr);
630
631 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
632 This includes type_unit_group and quick_file_names. */
633
634 struct stmt_list_hash
635 {
636 /* The DWO unit this table is from or NULL if there is none. */
637 struct dwo_unit *dwo_unit;
638
639 /* Offset in .debug_line or .debug_line.dwo. */
640 sect_offset line_offset;
641 };
642
643 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
644 an object of this type. */
645
646 struct type_unit_group
647 {
648 /* dwarf2read.c's main "handle" on a TU symtab.
649 To simplify things we create an artificial CU that "includes" all the
650 type units using this stmt_list so that the rest of the code still has
651 a "per_cu" handle on the symtab.
652 This PER_CU is recognized by having no section. */
653 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
654 struct dwarf2_per_cu_data per_cu;
655
656 /* The TUs that share this DW_AT_stmt_list entry.
657 This is added to while parsing type units to build partial symtabs,
658 and is deleted afterwards and not used again. */
659 VEC (sig_type_ptr) *tus;
660
661 /* The primary symtab.
662 Type units in a group needn't all be defined in the same source file,
663 so we create an essentially anonymous symtab as the primary symtab. */
664 struct symtab *primary_symtab;
665
666 /* The data used to construct the hash key. */
667 struct stmt_list_hash hash;
668
669 /* The number of symtabs from the line header.
670 The value here must match line_header.num_file_names. */
671 unsigned int num_symtabs;
672
673 /* The symbol tables for this TU (obtained from the files listed in
674 DW_AT_stmt_list).
675 WARNING: The order of entries here must match the order of entries
676 in the line header. After the first TU using this type_unit_group, the
677 line header for the subsequent TUs is recreated from this. This is done
678 because we need to use the same symtabs for each TU using the same
679 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
680 there's no guarantee the line header doesn't have duplicate entries. */
681 struct symtab **symtabs;
682 };
683
684 /* These sections are what may appear in a DWO file. */
685
686 struct dwo_sections
687 {
688 struct dwarf2_section_info abbrev;
689 struct dwarf2_section_info line;
690 struct dwarf2_section_info loc;
691 struct dwarf2_section_info macinfo;
692 struct dwarf2_section_info macro;
693 struct dwarf2_section_info str;
694 struct dwarf2_section_info str_offsets;
695 /* In the case of a virtual DWO file, these two are unused. */
696 struct dwarf2_section_info info;
697 VEC (dwarf2_section_info_def) *types;
698 };
699
700 /* CUs/TUs in DWP/DWO files. */
701
702 struct dwo_unit
703 {
704 /* Backlink to the containing struct dwo_file. */
705 struct dwo_file *dwo_file;
706
707 /* The "id" that distinguishes this CU/TU.
708 .debug_info calls this "dwo_id", .debug_types calls this "signature".
709 Since signatures came first, we stick with it for consistency. */
710 ULONGEST signature;
711
712 /* The section this CU/TU lives in, in the DWO file. */
713 struct dwarf2_section_info *section;
714
715 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
716 sect_offset offset;
717 unsigned int length;
718
719 /* For types, offset in the type's DIE of the type defined by this TU. */
720 cu_offset type_offset_in_tu;
721 };
722
723 /* Data for one DWO file.
724 This includes virtual DWO files that have been packaged into a
725 DWP file. */
726
727 struct dwo_file
728 {
729 /* The DW_AT_GNU_dwo_name attribute.
730 For virtual DWO files the name is constructed from the section offsets
731 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
732 from related CU+TUs. */
733 const char *dwo_name;
734
735 /* The DW_AT_comp_dir attribute. */
736 const char *comp_dir;
737
738 /* The bfd, when the file is open. Otherwise this is NULL.
739 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
740 bfd *dbfd;
741
742 /* Section info for this file. */
743 struct dwo_sections sections;
744
745 /* Table of CUs in the file.
746 Each element is a struct dwo_unit. */
747 htab_t cus;
748
749 /* Table of TUs in the file.
750 Each element is a struct dwo_unit. */
751 htab_t tus;
752 };
753
754 /* These sections are what may appear in a DWP file. */
755
756 struct dwp_sections
757 {
758 struct dwarf2_section_info str;
759 struct dwarf2_section_info cu_index;
760 struct dwarf2_section_info tu_index;
761 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
762 by section number. We don't need to record them here. */
763 };
764
765 /* These sections are what may appear in a virtual DWO file. */
766
767 struct virtual_dwo_sections
768 {
769 struct dwarf2_section_info abbrev;
770 struct dwarf2_section_info line;
771 struct dwarf2_section_info loc;
772 struct dwarf2_section_info macinfo;
773 struct dwarf2_section_info macro;
774 struct dwarf2_section_info str_offsets;
775 /* Each DWP hash table entry records one CU or one TU.
776 That is recorded here, and copied to dwo_unit.section. */
777 struct dwarf2_section_info info_or_types;
778 };
779
780 /* Contents of DWP hash tables. */
781
782 struct dwp_hash_table
783 {
784 uint32_t nr_units, nr_slots;
785 const gdb_byte *hash_table, *unit_table, *section_pool;
786 };
787
788 /* Data for one DWP file. */
789
790 struct dwp_file
791 {
792 /* Name of the file. */
793 const char *name;
794
795 /* The bfd, when the file is open. Otherwise this is NULL. */
796 bfd *dbfd;
797
798 /* Section info for this file. */
799 struct dwp_sections sections;
800
801 /* Table of CUs in the file. */
802 const struct dwp_hash_table *cus;
803
804 /* Table of TUs in the file. */
805 const struct dwp_hash_table *tus;
806
807 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
808 htab_t loaded_cutus;
809
810 /* Table to map ELF section numbers to their sections. */
811 unsigned int num_sections;
812 asection **elf_sections;
813 };
814
815 /* This represents a '.dwz' file. */
816
817 struct dwz_file
818 {
819 /* A dwz file can only contain a few sections. */
820 struct dwarf2_section_info abbrev;
821 struct dwarf2_section_info info;
822 struct dwarf2_section_info str;
823 struct dwarf2_section_info line;
824 struct dwarf2_section_info macro;
825 struct dwarf2_section_info gdb_index;
826
827 /* The dwz's BFD. */
828 bfd *dwz_bfd;
829 };
830
831 /* Struct used to pass misc. parameters to read_die_and_children, et
832 al. which are used for both .debug_info and .debug_types dies.
833 All parameters here are unchanging for the life of the call. This
834 struct exists to abstract away the constant parameters of die reading. */
835
836 struct die_reader_specs
837 {
838 /* die_section->asection->owner. */
839 bfd* abfd;
840
841 /* The CU of the DIE we are parsing. */
842 struct dwarf2_cu *cu;
843
844 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
845 struct dwo_file *dwo_file;
846
847 /* The section the die comes from.
848 This is either .debug_info or .debug_types, or the .dwo variants. */
849 struct dwarf2_section_info *die_section;
850
851 /* die_section->buffer. */
852 const gdb_byte *buffer;
853
854 /* The end of the buffer. */
855 const gdb_byte *buffer_end;
856 };
857
858 /* Type of function passed to init_cutu_and_read_dies, et.al. */
859 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
860 const gdb_byte *info_ptr,
861 struct die_info *comp_unit_die,
862 int has_children,
863 void *data);
864
865 /* The line number information for a compilation unit (found in the
866 .debug_line section) begins with a "statement program header",
867 which contains the following information. */
868 struct line_header
869 {
870 unsigned int total_length;
871 unsigned short version;
872 unsigned int header_length;
873 unsigned char minimum_instruction_length;
874 unsigned char maximum_ops_per_instruction;
875 unsigned char default_is_stmt;
876 int line_base;
877 unsigned char line_range;
878 unsigned char opcode_base;
879
880 /* standard_opcode_lengths[i] is the number of operands for the
881 standard opcode whose value is i. This means that
882 standard_opcode_lengths[0] is unused, and the last meaningful
883 element is standard_opcode_lengths[opcode_base - 1]. */
884 unsigned char *standard_opcode_lengths;
885
886 /* The include_directories table. NOTE! These strings are not
887 allocated with xmalloc; instead, they are pointers into
888 debug_line_buffer. If you try to free them, `free' will get
889 indigestion. */
890 unsigned int num_include_dirs, include_dirs_size;
891 const char **include_dirs;
892
893 /* The file_names table. NOTE! These strings are not allocated
894 with xmalloc; instead, they are pointers into debug_line_buffer.
895 Don't try to free them directly. */
896 unsigned int num_file_names, file_names_size;
897 struct file_entry
898 {
899 const char *name;
900 unsigned int dir_index;
901 unsigned int mod_time;
902 unsigned int length;
903 int included_p; /* Non-zero if referenced by the Line Number Program. */
904 struct symtab *symtab; /* The associated symbol table, if any. */
905 } *file_names;
906
907 /* The start and end of the statement program following this
908 header. These point into dwarf2_per_objfile->line_buffer. */
909 const gdb_byte *statement_program_start, *statement_program_end;
910 };
911
912 /* When we construct a partial symbol table entry we only
913 need this much information. */
914 struct partial_die_info
915 {
916 /* Offset of this DIE. */
917 sect_offset offset;
918
919 /* DWARF-2 tag for this DIE. */
920 ENUM_BITFIELD(dwarf_tag) tag : 16;
921
922 /* Assorted flags describing the data found in this DIE. */
923 unsigned int has_children : 1;
924 unsigned int is_external : 1;
925 unsigned int is_declaration : 1;
926 unsigned int has_type : 1;
927 unsigned int has_specification : 1;
928 unsigned int has_pc_info : 1;
929 unsigned int may_be_inlined : 1;
930
931 /* Flag set if the SCOPE field of this structure has been
932 computed. */
933 unsigned int scope_set : 1;
934
935 /* Flag set if the DIE has a byte_size attribute. */
936 unsigned int has_byte_size : 1;
937
938 /* Flag set if any of the DIE's children are template arguments. */
939 unsigned int has_template_arguments : 1;
940
941 /* Flag set if fixup_partial_die has been called on this die. */
942 unsigned int fixup_called : 1;
943
944 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
945 unsigned int is_dwz : 1;
946
947 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
948 unsigned int spec_is_dwz : 1;
949
950 /* The name of this DIE. Normally the value of DW_AT_name, but
951 sometimes a default name for unnamed DIEs. */
952 const char *name;
953
954 /* The linkage name, if present. */
955 const char *linkage_name;
956
957 /* The scope to prepend to our children. This is generally
958 allocated on the comp_unit_obstack, so will disappear
959 when this compilation unit leaves the cache. */
960 const char *scope;
961
962 /* Some data associated with the partial DIE. The tag determines
963 which field is live. */
964 union
965 {
966 /* The location description associated with this DIE, if any. */
967 struct dwarf_block *locdesc;
968 /* The offset of an import, for DW_TAG_imported_unit. */
969 sect_offset offset;
970 } d;
971
972 /* If HAS_PC_INFO, the PC range associated with this DIE. */
973 CORE_ADDR lowpc;
974 CORE_ADDR highpc;
975
976 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
977 DW_AT_sibling, if any. */
978 /* NOTE: This member isn't strictly necessary, read_partial_die could
979 return DW_AT_sibling values to its caller load_partial_dies. */
980 const gdb_byte *sibling;
981
982 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
983 DW_AT_specification (or DW_AT_abstract_origin or
984 DW_AT_extension). */
985 sect_offset spec_offset;
986
987 /* Pointers to this DIE's parent, first child, and next sibling,
988 if any. */
989 struct partial_die_info *die_parent, *die_child, *die_sibling;
990 };
991
992 /* This data structure holds the information of an abbrev. */
993 struct abbrev_info
994 {
995 unsigned int number; /* number identifying abbrev */
996 enum dwarf_tag tag; /* dwarf tag */
997 unsigned short has_children; /* boolean */
998 unsigned short num_attrs; /* number of attributes */
999 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1000 struct abbrev_info *next; /* next in chain */
1001 };
1002
1003 struct attr_abbrev
1004 {
1005 ENUM_BITFIELD(dwarf_attribute) name : 16;
1006 ENUM_BITFIELD(dwarf_form) form : 16;
1007 };
1008
1009 /* Size of abbrev_table.abbrev_hash_table. */
1010 #define ABBREV_HASH_SIZE 121
1011
1012 /* Top level data structure to contain an abbreviation table. */
1013
1014 struct abbrev_table
1015 {
1016 /* Where the abbrev table came from.
1017 This is used as a sanity check when the table is used. */
1018 sect_offset offset;
1019
1020 /* Storage for the abbrev table. */
1021 struct obstack abbrev_obstack;
1022
1023 /* Hash table of abbrevs.
1024 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1025 It could be statically allocated, but the previous code didn't so we
1026 don't either. */
1027 struct abbrev_info **abbrevs;
1028 };
1029
1030 /* Attributes have a name and a value. */
1031 struct attribute
1032 {
1033 ENUM_BITFIELD(dwarf_attribute) name : 16;
1034 ENUM_BITFIELD(dwarf_form) form : 15;
1035
1036 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1037 field should be in u.str (existing only for DW_STRING) but it is kept
1038 here for better struct attribute alignment. */
1039 unsigned int string_is_canonical : 1;
1040
1041 union
1042 {
1043 const char *str;
1044 struct dwarf_block *blk;
1045 ULONGEST unsnd;
1046 LONGEST snd;
1047 CORE_ADDR addr;
1048 struct signatured_type *signatured_type;
1049 }
1050 u;
1051 };
1052
1053 /* This data structure holds a complete die structure. */
1054 struct die_info
1055 {
1056 /* DWARF-2 tag for this DIE. */
1057 ENUM_BITFIELD(dwarf_tag) tag : 16;
1058
1059 /* Number of attributes */
1060 unsigned char num_attrs;
1061
1062 /* True if we're presently building the full type name for the
1063 type derived from this DIE. */
1064 unsigned char building_fullname : 1;
1065
1066 /* Abbrev number */
1067 unsigned int abbrev;
1068
1069 /* Offset in .debug_info or .debug_types section. */
1070 sect_offset offset;
1071
1072 /* The dies in a compilation unit form an n-ary tree. PARENT
1073 points to this die's parent; CHILD points to the first child of
1074 this node; and all the children of a given node are chained
1075 together via their SIBLING fields. */
1076 struct die_info *child; /* Its first child, if any. */
1077 struct die_info *sibling; /* Its next sibling, if any. */
1078 struct die_info *parent; /* Its parent, if any. */
1079
1080 /* An array of attributes, with NUM_ATTRS elements. There may be
1081 zero, but it's not common and zero-sized arrays are not
1082 sufficiently portable C. */
1083 struct attribute attrs[1];
1084 };
1085
1086 /* Get at parts of an attribute structure. */
1087
1088 #define DW_STRING(attr) ((attr)->u.str)
1089 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1090 #define DW_UNSND(attr) ((attr)->u.unsnd)
1091 #define DW_BLOCK(attr) ((attr)->u.blk)
1092 #define DW_SND(attr) ((attr)->u.snd)
1093 #define DW_ADDR(attr) ((attr)->u.addr)
1094 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
1095
1096 /* Blocks are a bunch of untyped bytes. */
1097 struct dwarf_block
1098 {
1099 size_t size;
1100
1101 /* Valid only if SIZE is not zero. */
1102 const gdb_byte *data;
1103 };
1104
1105 #ifndef ATTR_ALLOC_CHUNK
1106 #define ATTR_ALLOC_CHUNK 4
1107 #endif
1108
1109 /* Allocate fields for structs, unions and enums in this size. */
1110 #ifndef DW_FIELD_ALLOC_CHUNK
1111 #define DW_FIELD_ALLOC_CHUNK 4
1112 #endif
1113
1114 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1115 but this would require a corresponding change in unpack_field_as_long
1116 and friends. */
1117 static int bits_per_byte = 8;
1118
1119 /* The routines that read and process dies for a C struct or C++ class
1120 pass lists of data member fields and lists of member function fields
1121 in an instance of a field_info structure, as defined below. */
1122 struct field_info
1123 {
1124 /* List of data member and baseclasses fields. */
1125 struct nextfield
1126 {
1127 struct nextfield *next;
1128 int accessibility;
1129 int virtuality;
1130 struct field field;
1131 }
1132 *fields, *baseclasses;
1133
1134 /* Number of fields (including baseclasses). */
1135 int nfields;
1136
1137 /* Number of baseclasses. */
1138 int nbaseclasses;
1139
1140 /* Set if the accesibility of one of the fields is not public. */
1141 int non_public_fields;
1142
1143 /* Member function fields array, entries are allocated in the order they
1144 are encountered in the object file. */
1145 struct nextfnfield
1146 {
1147 struct nextfnfield *next;
1148 struct fn_field fnfield;
1149 }
1150 *fnfields;
1151
1152 /* Member function fieldlist array, contains name of possibly overloaded
1153 member function, number of overloaded member functions and a pointer
1154 to the head of the member function field chain. */
1155 struct fnfieldlist
1156 {
1157 const char *name;
1158 int length;
1159 struct nextfnfield *head;
1160 }
1161 *fnfieldlists;
1162
1163 /* Number of entries in the fnfieldlists array. */
1164 int nfnfields;
1165
1166 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1167 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1168 struct typedef_field_list
1169 {
1170 struct typedef_field field;
1171 struct typedef_field_list *next;
1172 }
1173 *typedef_field_list;
1174 unsigned typedef_field_list_count;
1175 };
1176
1177 /* One item on the queue of compilation units to read in full symbols
1178 for. */
1179 struct dwarf2_queue_item
1180 {
1181 struct dwarf2_per_cu_data *per_cu;
1182 enum language pretend_language;
1183 struct dwarf2_queue_item *next;
1184 };
1185
1186 /* The current queue. */
1187 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1188
1189 /* Loaded secondary compilation units are kept in memory until they
1190 have not been referenced for the processing of this many
1191 compilation units. Set this to zero to disable caching. Cache
1192 sizes of up to at least twenty will improve startup time for
1193 typical inter-CU-reference binaries, at an obvious memory cost. */
1194 static int dwarf2_max_cache_age = 5;
1195 static void
1196 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1197 struct cmd_list_element *c, const char *value)
1198 {
1199 fprintf_filtered (file, _("The upper bound on the age of cached "
1200 "dwarf2 compilation units is %s.\n"),
1201 value);
1202 }
1203
1204
1205 /* Various complaints about symbol reading that don't abort the process. */
1206
1207 static void
1208 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1209 {
1210 complaint (&symfile_complaints,
1211 _("statement list doesn't fit in .debug_line section"));
1212 }
1213
1214 static void
1215 dwarf2_debug_line_missing_file_complaint (void)
1216 {
1217 complaint (&symfile_complaints,
1218 _(".debug_line section has line data without a file"));
1219 }
1220
1221 static void
1222 dwarf2_debug_line_missing_end_sequence_complaint (void)
1223 {
1224 complaint (&symfile_complaints,
1225 _(".debug_line section has line "
1226 "program sequence without an end"));
1227 }
1228
1229 static void
1230 dwarf2_complex_location_expr_complaint (void)
1231 {
1232 complaint (&symfile_complaints, _("location expression too complex"));
1233 }
1234
1235 static void
1236 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1237 int arg3)
1238 {
1239 complaint (&symfile_complaints,
1240 _("const value length mismatch for '%s', got %d, expected %d"),
1241 arg1, arg2, arg3);
1242 }
1243
1244 static void
1245 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1246 {
1247 complaint (&symfile_complaints,
1248 _("debug info runs off end of %s section"
1249 " [in module %s]"),
1250 section->asection->name,
1251 bfd_get_filename (section->asection->owner));
1252 }
1253
1254 static void
1255 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1256 {
1257 complaint (&symfile_complaints,
1258 _("macro debug info contains a "
1259 "malformed macro definition:\n`%s'"),
1260 arg1);
1261 }
1262
1263 static void
1264 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1265 {
1266 complaint (&symfile_complaints,
1267 _("invalid attribute class or form for '%s' in '%s'"),
1268 arg1, arg2);
1269 }
1270
1271 /* local function prototypes */
1272
1273 static void dwarf2_locate_sections (bfd *, asection *, void *);
1274
1275 static void dwarf2_find_base_address (struct die_info *die,
1276 struct dwarf2_cu *cu);
1277
1278 static struct partial_symtab *create_partial_symtab
1279 (struct dwarf2_per_cu_data *per_cu, const char *name);
1280
1281 static void dwarf2_build_psymtabs_hard (struct objfile *);
1282
1283 static void scan_partial_symbols (struct partial_die_info *,
1284 CORE_ADDR *, CORE_ADDR *,
1285 int, struct dwarf2_cu *);
1286
1287 static void add_partial_symbol (struct partial_die_info *,
1288 struct dwarf2_cu *);
1289
1290 static void add_partial_namespace (struct partial_die_info *pdi,
1291 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1292 int need_pc, struct dwarf2_cu *cu);
1293
1294 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1295 CORE_ADDR *highpc, int need_pc,
1296 struct dwarf2_cu *cu);
1297
1298 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1299 struct dwarf2_cu *cu);
1300
1301 static void add_partial_subprogram (struct partial_die_info *pdi,
1302 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1303 int need_pc, struct dwarf2_cu *cu);
1304
1305 static void dwarf2_read_symtab (struct partial_symtab *,
1306 struct objfile *);
1307
1308 static void psymtab_to_symtab_1 (struct partial_symtab *);
1309
1310 static struct abbrev_info *abbrev_table_lookup_abbrev
1311 (const struct abbrev_table *, unsigned int);
1312
1313 static struct abbrev_table *abbrev_table_read_table
1314 (struct dwarf2_section_info *, sect_offset);
1315
1316 static void abbrev_table_free (struct abbrev_table *);
1317
1318 static void abbrev_table_free_cleanup (void *);
1319
1320 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1321 struct dwarf2_section_info *);
1322
1323 static void dwarf2_free_abbrev_table (void *);
1324
1325 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1326
1327 static struct partial_die_info *load_partial_dies
1328 (const struct die_reader_specs *, const gdb_byte *, int);
1329
1330 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1331 struct partial_die_info *,
1332 struct abbrev_info *,
1333 unsigned int,
1334 const gdb_byte *);
1335
1336 static struct partial_die_info *find_partial_die (sect_offset, int,
1337 struct dwarf2_cu *);
1338
1339 static void fixup_partial_die (struct partial_die_info *,
1340 struct dwarf2_cu *);
1341
1342 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1343 struct attribute *, struct attr_abbrev *,
1344 const gdb_byte *);
1345
1346 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1347
1348 static int read_1_signed_byte (bfd *, const gdb_byte *);
1349
1350 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1351
1352 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1353
1354 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1355
1356 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1357 unsigned int *);
1358
1359 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1360
1361 static LONGEST read_checked_initial_length_and_offset
1362 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1363 unsigned int *, unsigned int *);
1364
1365 static LONGEST read_offset (bfd *, const gdb_byte *,
1366 const struct comp_unit_head *,
1367 unsigned int *);
1368
1369 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1370
1371 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1372 sect_offset);
1373
1374 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1375
1376 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1377
1378 static const char *read_indirect_string (bfd *, const gdb_byte *,
1379 const struct comp_unit_head *,
1380 unsigned int *);
1381
1382 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1383
1384 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1385
1386 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1387
1388 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1389 const gdb_byte *,
1390 unsigned int *);
1391
1392 static const char *read_str_index (const struct die_reader_specs *reader,
1393 struct dwarf2_cu *cu, ULONGEST str_index);
1394
1395 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1396
1397 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1398 struct dwarf2_cu *);
1399
1400 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1401 unsigned int);
1402
1403 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1404 struct dwarf2_cu *cu);
1405
1406 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1407
1408 static struct die_info *die_specification (struct die_info *die,
1409 struct dwarf2_cu **);
1410
1411 static void free_line_header (struct line_header *lh);
1412
1413 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1414 struct dwarf2_cu *cu);
1415
1416 static void dwarf_decode_lines (struct line_header *, const char *,
1417 struct dwarf2_cu *, struct partial_symtab *,
1418 int);
1419
1420 static void dwarf2_start_subfile (const char *, const char *, const char *);
1421
1422 static void dwarf2_start_symtab (struct dwarf2_cu *,
1423 const char *, const char *, CORE_ADDR);
1424
1425 static struct symbol *new_symbol (struct die_info *, struct type *,
1426 struct dwarf2_cu *);
1427
1428 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1429 struct dwarf2_cu *, struct symbol *);
1430
1431 static void dwarf2_const_value (struct attribute *, struct symbol *,
1432 struct dwarf2_cu *);
1433
1434 static void dwarf2_const_value_attr (struct attribute *attr,
1435 struct type *type,
1436 const char *name,
1437 struct obstack *obstack,
1438 struct dwarf2_cu *cu, LONGEST *value,
1439 const gdb_byte **bytes,
1440 struct dwarf2_locexpr_baton **baton);
1441
1442 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1443
1444 static int need_gnat_info (struct dwarf2_cu *);
1445
1446 static struct type *die_descriptive_type (struct die_info *,
1447 struct dwarf2_cu *);
1448
1449 static void set_descriptive_type (struct type *, struct die_info *,
1450 struct dwarf2_cu *);
1451
1452 static struct type *die_containing_type (struct die_info *,
1453 struct dwarf2_cu *);
1454
1455 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1456 struct dwarf2_cu *);
1457
1458 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1459
1460 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1461
1462 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1463
1464 static char *typename_concat (struct obstack *obs, const char *prefix,
1465 const char *suffix, int physname,
1466 struct dwarf2_cu *cu);
1467
1468 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1469
1470 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1471
1472 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1473
1474 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1475
1476 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1477
1478 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1479 struct dwarf2_cu *, struct partial_symtab *);
1480
1481 static int dwarf2_get_pc_bounds (struct die_info *,
1482 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1483 struct partial_symtab *);
1484
1485 static void get_scope_pc_bounds (struct die_info *,
1486 CORE_ADDR *, CORE_ADDR *,
1487 struct dwarf2_cu *);
1488
1489 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1490 CORE_ADDR, struct dwarf2_cu *);
1491
1492 static void dwarf2_add_field (struct field_info *, struct die_info *,
1493 struct dwarf2_cu *);
1494
1495 static void dwarf2_attach_fields_to_type (struct field_info *,
1496 struct type *, struct dwarf2_cu *);
1497
1498 static void dwarf2_add_member_fn (struct field_info *,
1499 struct die_info *, struct type *,
1500 struct dwarf2_cu *);
1501
1502 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1503 struct type *,
1504 struct dwarf2_cu *);
1505
1506 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1507
1508 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1509
1510 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1511
1512 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1513
1514 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1515
1516 static struct type *read_module_type (struct die_info *die,
1517 struct dwarf2_cu *cu);
1518
1519 static const char *namespace_name (struct die_info *die,
1520 int *is_anonymous, struct dwarf2_cu *);
1521
1522 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1523
1524 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1525
1526 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1527 struct dwarf2_cu *);
1528
1529 static struct die_info *read_die_and_siblings_1
1530 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1531 struct die_info *);
1532
1533 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1534 const gdb_byte *info_ptr,
1535 const gdb_byte **new_info_ptr,
1536 struct die_info *parent);
1537
1538 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1539 struct die_info **, const gdb_byte *,
1540 int *, int);
1541
1542 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1543 struct die_info **, const gdb_byte *,
1544 int *);
1545
1546 static void process_die (struct die_info *, struct dwarf2_cu *);
1547
1548 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1549 struct obstack *);
1550
1551 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1552
1553 static const char *dwarf2_full_name (const char *name,
1554 struct die_info *die,
1555 struct dwarf2_cu *cu);
1556
1557 static const char *dwarf2_physname (const char *name, struct die_info *die,
1558 struct dwarf2_cu *cu);
1559
1560 static struct die_info *dwarf2_extension (struct die_info *die,
1561 struct dwarf2_cu **);
1562
1563 static const char *dwarf_tag_name (unsigned int);
1564
1565 static const char *dwarf_attr_name (unsigned int);
1566
1567 static const char *dwarf_form_name (unsigned int);
1568
1569 static char *dwarf_bool_name (unsigned int);
1570
1571 static const char *dwarf_type_encoding_name (unsigned int);
1572
1573 static struct die_info *sibling_die (struct die_info *);
1574
1575 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1576
1577 static void dump_die_for_error (struct die_info *);
1578
1579 static void dump_die_1 (struct ui_file *, int level, int max_level,
1580 struct die_info *);
1581
1582 /*static*/ void dump_die (struct die_info *, int max_level);
1583
1584 static void store_in_ref_table (struct die_info *,
1585 struct dwarf2_cu *);
1586
1587 static int is_ref_attr (struct attribute *);
1588
1589 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1590
1591 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1592
1593 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1594 struct attribute *,
1595 struct dwarf2_cu **);
1596
1597 static struct die_info *follow_die_ref (struct die_info *,
1598 struct attribute *,
1599 struct dwarf2_cu **);
1600
1601 static struct die_info *follow_die_sig (struct die_info *,
1602 struct attribute *,
1603 struct dwarf2_cu **);
1604
1605 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1606
1607 static void read_signatured_type (struct signatured_type *);
1608
1609 static struct type_unit_group *get_type_unit_group
1610 (struct dwarf2_cu *, struct attribute *);
1611
1612 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1613
1614 /* memory allocation interface */
1615
1616 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1617
1618 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1619
1620 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1621 const char *, int);
1622
1623 static int attr_form_is_block (struct attribute *);
1624
1625 static int attr_form_is_section_offset (struct attribute *);
1626
1627 static int attr_form_is_constant (struct attribute *);
1628
1629 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1630 struct dwarf2_loclist_baton *baton,
1631 struct attribute *attr);
1632
1633 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1634 struct symbol *sym,
1635 struct dwarf2_cu *cu,
1636 int is_block);
1637
1638 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1639 const gdb_byte *info_ptr,
1640 struct abbrev_info *abbrev);
1641
1642 static void free_stack_comp_unit (void *);
1643
1644 static hashval_t partial_die_hash (const void *item);
1645
1646 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1647
1648 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1649 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1650
1651 static void init_one_comp_unit (struct dwarf2_cu *cu,
1652 struct dwarf2_per_cu_data *per_cu);
1653
1654 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1655 struct die_info *comp_unit_die,
1656 enum language pretend_language);
1657
1658 static void free_heap_comp_unit (void *);
1659
1660 static void free_cached_comp_units (void *);
1661
1662 static void age_cached_comp_units (void);
1663
1664 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1665
1666 static struct type *set_die_type (struct die_info *, struct type *,
1667 struct dwarf2_cu *);
1668
1669 static void create_all_comp_units (struct objfile *);
1670
1671 static int create_all_type_units (struct objfile *);
1672
1673 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1674 enum language);
1675
1676 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1677 enum language);
1678
1679 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1680 enum language);
1681
1682 static void dwarf2_add_dependence (struct dwarf2_cu *,
1683 struct dwarf2_per_cu_data *);
1684
1685 static void dwarf2_mark (struct dwarf2_cu *);
1686
1687 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1688
1689 static struct type *get_die_type_at_offset (sect_offset,
1690 struct dwarf2_per_cu_data *per_cu);
1691
1692 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1693
1694 static void dwarf2_release_queue (void *dummy);
1695
1696 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1697 enum language pretend_language);
1698
1699 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1700 struct dwarf2_per_cu_data *per_cu,
1701 enum language pretend_language);
1702
1703 static void process_queue (void);
1704
1705 static void find_file_and_directory (struct die_info *die,
1706 struct dwarf2_cu *cu,
1707 const char **name, const char **comp_dir);
1708
1709 static char *file_full_name (int file, struct line_header *lh,
1710 const char *comp_dir);
1711
1712 static const gdb_byte *read_and_check_comp_unit_head
1713 (struct comp_unit_head *header,
1714 struct dwarf2_section_info *section,
1715 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1716 int is_debug_types_section);
1717
1718 static void init_cutu_and_read_dies
1719 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1720 int use_existing_cu, int keep,
1721 die_reader_func_ftype *die_reader_func, void *data);
1722
1723 static void init_cutu_and_read_dies_simple
1724 (struct dwarf2_per_cu_data *this_cu,
1725 die_reader_func_ftype *die_reader_func, void *data);
1726
1727 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1728
1729 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1730
1731 static struct dwo_unit *lookup_dwo_comp_unit
1732 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1733
1734 static struct dwo_unit *lookup_dwo_type_unit
1735 (struct signatured_type *, const char *, const char *);
1736
1737 static void free_dwo_file_cleanup (void *);
1738
1739 static void process_cu_includes (void);
1740
1741 static void check_producer (struct dwarf2_cu *cu);
1742
1743 #if WORDS_BIGENDIAN
1744
1745 /* Convert VALUE between big- and little-endian. */
1746 static offset_type
1747 byte_swap (offset_type value)
1748 {
1749 offset_type result;
1750
1751 result = (value & 0xff) << 24;
1752 result |= (value & 0xff00) << 8;
1753 result |= (value & 0xff0000) >> 8;
1754 result |= (value & 0xff000000) >> 24;
1755 return result;
1756 }
1757
1758 #define MAYBE_SWAP(V) byte_swap (V)
1759
1760 #else
1761 #define MAYBE_SWAP(V) (V)
1762 #endif /* WORDS_BIGENDIAN */
1763
1764 /* The suffix for an index file. */
1765 #define INDEX_SUFFIX ".gdb-index"
1766
1767 /* Try to locate the sections we need for DWARF 2 debugging
1768 information and return true if we have enough to do something.
1769 NAMES points to the dwarf2 section names, or is NULL if the standard
1770 ELF names are used. */
1771
1772 int
1773 dwarf2_has_info (struct objfile *objfile,
1774 const struct dwarf2_debug_sections *names)
1775 {
1776 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1777 if (!dwarf2_per_objfile)
1778 {
1779 /* Initialize per-objfile state. */
1780 struct dwarf2_per_objfile *data
1781 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1782
1783 memset (data, 0, sizeof (*data));
1784 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1785 dwarf2_per_objfile = data;
1786
1787 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1788 (void *) names);
1789 dwarf2_per_objfile->objfile = objfile;
1790 }
1791 return (dwarf2_per_objfile->info.asection != NULL
1792 && dwarf2_per_objfile->abbrev.asection != NULL);
1793 }
1794
1795 /* When loading sections, we look either for uncompressed section or for
1796 compressed section names. */
1797
1798 static int
1799 section_is_p (const char *section_name,
1800 const struct dwarf2_section_names *names)
1801 {
1802 if (names->normal != NULL
1803 && strcmp (section_name, names->normal) == 0)
1804 return 1;
1805 if (names->compressed != NULL
1806 && strcmp (section_name, names->compressed) == 0)
1807 return 1;
1808 return 0;
1809 }
1810
1811 /* This function is mapped across the sections and remembers the
1812 offset and size of each of the debugging sections we are interested
1813 in. */
1814
1815 static void
1816 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1817 {
1818 const struct dwarf2_debug_sections *names;
1819 flagword aflag = bfd_get_section_flags (abfd, sectp);
1820
1821 if (vnames == NULL)
1822 names = &dwarf2_elf_names;
1823 else
1824 names = (const struct dwarf2_debug_sections *) vnames;
1825
1826 if ((aflag & SEC_HAS_CONTENTS) == 0)
1827 {
1828 }
1829 else if (section_is_p (sectp->name, &names->info))
1830 {
1831 dwarf2_per_objfile->info.asection = sectp;
1832 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1833 }
1834 else if (section_is_p (sectp->name, &names->abbrev))
1835 {
1836 dwarf2_per_objfile->abbrev.asection = sectp;
1837 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1838 }
1839 else if (section_is_p (sectp->name, &names->line))
1840 {
1841 dwarf2_per_objfile->line.asection = sectp;
1842 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1843 }
1844 else if (section_is_p (sectp->name, &names->loc))
1845 {
1846 dwarf2_per_objfile->loc.asection = sectp;
1847 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1848 }
1849 else if (section_is_p (sectp->name, &names->macinfo))
1850 {
1851 dwarf2_per_objfile->macinfo.asection = sectp;
1852 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1853 }
1854 else if (section_is_p (sectp->name, &names->macro))
1855 {
1856 dwarf2_per_objfile->macro.asection = sectp;
1857 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1858 }
1859 else if (section_is_p (sectp->name, &names->str))
1860 {
1861 dwarf2_per_objfile->str.asection = sectp;
1862 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1863 }
1864 else if (section_is_p (sectp->name, &names->addr))
1865 {
1866 dwarf2_per_objfile->addr.asection = sectp;
1867 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1868 }
1869 else if (section_is_p (sectp->name, &names->frame))
1870 {
1871 dwarf2_per_objfile->frame.asection = sectp;
1872 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1873 }
1874 else if (section_is_p (sectp->name, &names->eh_frame))
1875 {
1876 dwarf2_per_objfile->eh_frame.asection = sectp;
1877 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1878 }
1879 else if (section_is_p (sectp->name, &names->ranges))
1880 {
1881 dwarf2_per_objfile->ranges.asection = sectp;
1882 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1883 }
1884 else if (section_is_p (sectp->name, &names->types))
1885 {
1886 struct dwarf2_section_info type_section;
1887
1888 memset (&type_section, 0, sizeof (type_section));
1889 type_section.asection = sectp;
1890 type_section.size = bfd_get_section_size (sectp);
1891
1892 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1893 &type_section);
1894 }
1895 else if (section_is_p (sectp->name, &names->gdb_index))
1896 {
1897 dwarf2_per_objfile->gdb_index.asection = sectp;
1898 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1899 }
1900
1901 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1902 && bfd_section_vma (abfd, sectp) == 0)
1903 dwarf2_per_objfile->has_section_at_zero = 1;
1904 }
1905
1906 /* A helper function that decides whether a section is empty,
1907 or not present. */
1908
1909 static int
1910 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1911 {
1912 return info->asection == NULL || info->size == 0;
1913 }
1914
1915 /* Read the contents of the section INFO.
1916 OBJFILE is the main object file, but not necessarily the file where
1917 the section comes from. E.g., for DWO files INFO->asection->owner
1918 is the bfd of the DWO file.
1919 If the section is compressed, uncompress it before returning. */
1920
1921 static void
1922 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1923 {
1924 asection *sectp = info->asection;
1925 bfd *abfd;
1926 gdb_byte *buf, *retbuf;
1927 unsigned char header[4];
1928
1929 if (info->readin)
1930 return;
1931 info->buffer = NULL;
1932 info->readin = 1;
1933
1934 if (dwarf2_section_empty_p (info))
1935 return;
1936
1937 abfd = sectp->owner;
1938
1939 /* If the section has relocations, we must read it ourselves.
1940 Otherwise we attach it to the BFD. */
1941 if ((sectp->flags & SEC_RELOC) == 0)
1942 {
1943 info->buffer = gdb_bfd_map_section (sectp, &info->size);
1944 return;
1945 }
1946
1947 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1948 info->buffer = buf;
1949
1950 /* When debugging .o files, we may need to apply relocations; see
1951 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1952 We never compress sections in .o files, so we only need to
1953 try this when the section is not compressed. */
1954 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1955 if (retbuf != NULL)
1956 {
1957 info->buffer = retbuf;
1958 return;
1959 }
1960
1961 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1962 || bfd_bread (buf, info->size, abfd) != info->size)
1963 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1964 bfd_get_filename (abfd));
1965 }
1966
1967 /* A helper function that returns the size of a section in a safe way.
1968 If you are positive that the section has been read before using the
1969 size, then it is safe to refer to the dwarf2_section_info object's
1970 "size" field directly. In other cases, you must call this
1971 function, because for compressed sections the size field is not set
1972 correctly until the section has been read. */
1973
1974 static bfd_size_type
1975 dwarf2_section_size (struct objfile *objfile,
1976 struct dwarf2_section_info *info)
1977 {
1978 if (!info->readin)
1979 dwarf2_read_section (objfile, info);
1980 return info->size;
1981 }
1982
1983 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1984 SECTION_NAME. */
1985
1986 void
1987 dwarf2_get_section_info (struct objfile *objfile,
1988 enum dwarf2_section_enum sect,
1989 asection **sectp, const gdb_byte **bufp,
1990 bfd_size_type *sizep)
1991 {
1992 struct dwarf2_per_objfile *data
1993 = objfile_data (objfile, dwarf2_objfile_data_key);
1994 struct dwarf2_section_info *info;
1995
1996 /* We may see an objfile without any DWARF, in which case we just
1997 return nothing. */
1998 if (data == NULL)
1999 {
2000 *sectp = NULL;
2001 *bufp = NULL;
2002 *sizep = 0;
2003 return;
2004 }
2005 switch (sect)
2006 {
2007 case DWARF2_DEBUG_FRAME:
2008 info = &data->frame;
2009 break;
2010 case DWARF2_EH_FRAME:
2011 info = &data->eh_frame;
2012 break;
2013 default:
2014 gdb_assert_not_reached ("unexpected section");
2015 }
2016
2017 dwarf2_read_section (objfile, info);
2018
2019 *sectp = info->asection;
2020 *bufp = info->buffer;
2021 *sizep = info->size;
2022 }
2023
2024 /* A helper function to find the sections for a .dwz file. */
2025
2026 static void
2027 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2028 {
2029 struct dwz_file *dwz_file = arg;
2030
2031 /* Note that we only support the standard ELF names, because .dwz
2032 is ELF-only (at the time of writing). */
2033 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2034 {
2035 dwz_file->abbrev.asection = sectp;
2036 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2037 }
2038 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2039 {
2040 dwz_file->info.asection = sectp;
2041 dwz_file->info.size = bfd_get_section_size (sectp);
2042 }
2043 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2044 {
2045 dwz_file->str.asection = sectp;
2046 dwz_file->str.size = bfd_get_section_size (sectp);
2047 }
2048 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2049 {
2050 dwz_file->line.asection = sectp;
2051 dwz_file->line.size = bfd_get_section_size (sectp);
2052 }
2053 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2054 {
2055 dwz_file->macro.asection = sectp;
2056 dwz_file->macro.size = bfd_get_section_size (sectp);
2057 }
2058 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2059 {
2060 dwz_file->gdb_index.asection = sectp;
2061 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2062 }
2063 }
2064
2065 /* Open the separate '.dwz' debug file, if needed. Error if the file
2066 cannot be found. */
2067
2068 static struct dwz_file *
2069 dwarf2_get_dwz_file (void)
2070 {
2071 bfd *abfd, *dwz_bfd;
2072 asection *section;
2073 gdb_byte *data;
2074 struct cleanup *cleanup;
2075 const char *filename;
2076 struct dwz_file *result;
2077
2078 if (dwarf2_per_objfile->dwz_file != NULL)
2079 return dwarf2_per_objfile->dwz_file;
2080
2081 abfd = dwarf2_per_objfile->objfile->obfd;
2082 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2083 if (section == NULL)
2084 error (_("could not find '.gnu_debugaltlink' section"));
2085 if (!bfd_malloc_and_get_section (abfd, section, &data))
2086 error (_("could not read '.gnu_debugaltlink' section: %s"),
2087 bfd_errmsg (bfd_get_error ()));
2088 cleanup = make_cleanup (xfree, data);
2089
2090 filename = data;
2091 if (!IS_ABSOLUTE_PATH (filename))
2092 {
2093 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2094 char *rel;
2095
2096 make_cleanup (xfree, abs);
2097 abs = ldirname (abs);
2098 make_cleanup (xfree, abs);
2099
2100 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2101 make_cleanup (xfree, rel);
2102 filename = rel;
2103 }
2104
2105 /* The format is just a NUL-terminated file name, followed by the
2106 build-id. For now, though, we ignore the build-id. */
2107 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2108 if (dwz_bfd == NULL)
2109 error (_("could not read '%s': %s"), filename,
2110 bfd_errmsg (bfd_get_error ()));
2111
2112 if (!bfd_check_format (dwz_bfd, bfd_object))
2113 {
2114 gdb_bfd_unref (dwz_bfd);
2115 error (_("file '%s' was not usable: %s"), filename,
2116 bfd_errmsg (bfd_get_error ()));
2117 }
2118
2119 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2120 struct dwz_file);
2121 result->dwz_bfd = dwz_bfd;
2122
2123 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2124
2125 do_cleanups (cleanup);
2126
2127 dwarf2_per_objfile->dwz_file = result;
2128 return result;
2129 }
2130 \f
2131 /* DWARF quick_symbols_functions support. */
2132
2133 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2134 unique line tables, so we maintain a separate table of all .debug_line
2135 derived entries to support the sharing.
2136 All the quick functions need is the list of file names. We discard the
2137 line_header when we're done and don't need to record it here. */
2138 struct quick_file_names
2139 {
2140 /* The data used to construct the hash key. */
2141 struct stmt_list_hash hash;
2142
2143 /* The number of entries in file_names, real_names. */
2144 unsigned int num_file_names;
2145
2146 /* The file names from the line table, after being run through
2147 file_full_name. */
2148 const char **file_names;
2149
2150 /* The file names from the line table after being run through
2151 gdb_realpath. These are computed lazily. */
2152 const char **real_names;
2153 };
2154
2155 /* When using the index (and thus not using psymtabs), each CU has an
2156 object of this type. This is used to hold information needed by
2157 the various "quick" methods. */
2158 struct dwarf2_per_cu_quick_data
2159 {
2160 /* The file table. This can be NULL if there was no file table
2161 or it's currently not read in.
2162 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2163 struct quick_file_names *file_names;
2164
2165 /* The corresponding symbol table. This is NULL if symbols for this
2166 CU have not yet been read. */
2167 struct symtab *symtab;
2168
2169 /* A temporary mark bit used when iterating over all CUs in
2170 expand_symtabs_matching. */
2171 unsigned int mark : 1;
2172
2173 /* True if we've tried to read the file table and found there isn't one.
2174 There will be no point in trying to read it again next time. */
2175 unsigned int no_file_data : 1;
2176 };
2177
2178 /* Utility hash function for a stmt_list_hash. */
2179
2180 static hashval_t
2181 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2182 {
2183 hashval_t v = 0;
2184
2185 if (stmt_list_hash->dwo_unit != NULL)
2186 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2187 v += stmt_list_hash->line_offset.sect_off;
2188 return v;
2189 }
2190
2191 /* Utility equality function for a stmt_list_hash. */
2192
2193 static int
2194 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2195 const struct stmt_list_hash *rhs)
2196 {
2197 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2198 return 0;
2199 if (lhs->dwo_unit != NULL
2200 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2201 return 0;
2202
2203 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2204 }
2205
2206 /* Hash function for a quick_file_names. */
2207
2208 static hashval_t
2209 hash_file_name_entry (const void *e)
2210 {
2211 const struct quick_file_names *file_data = e;
2212
2213 return hash_stmt_list_entry (&file_data->hash);
2214 }
2215
2216 /* Equality function for a quick_file_names. */
2217
2218 static int
2219 eq_file_name_entry (const void *a, const void *b)
2220 {
2221 const struct quick_file_names *ea = a;
2222 const struct quick_file_names *eb = b;
2223
2224 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2225 }
2226
2227 /* Delete function for a quick_file_names. */
2228
2229 static void
2230 delete_file_name_entry (void *e)
2231 {
2232 struct quick_file_names *file_data = e;
2233 int i;
2234
2235 for (i = 0; i < file_data->num_file_names; ++i)
2236 {
2237 xfree ((void*) file_data->file_names[i]);
2238 if (file_data->real_names)
2239 xfree ((void*) file_data->real_names[i]);
2240 }
2241
2242 /* The space for the struct itself lives on objfile_obstack,
2243 so we don't free it here. */
2244 }
2245
2246 /* Create a quick_file_names hash table. */
2247
2248 static htab_t
2249 create_quick_file_names_table (unsigned int nr_initial_entries)
2250 {
2251 return htab_create_alloc (nr_initial_entries,
2252 hash_file_name_entry, eq_file_name_entry,
2253 delete_file_name_entry, xcalloc, xfree);
2254 }
2255
2256 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2257 have to be created afterwards. You should call age_cached_comp_units after
2258 processing PER_CU->CU. dw2_setup must have been already called. */
2259
2260 static void
2261 load_cu (struct dwarf2_per_cu_data *per_cu)
2262 {
2263 if (per_cu->is_debug_types)
2264 load_full_type_unit (per_cu);
2265 else
2266 load_full_comp_unit (per_cu, language_minimal);
2267
2268 gdb_assert (per_cu->cu != NULL);
2269
2270 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2271 }
2272
2273 /* Read in the symbols for PER_CU. */
2274
2275 static void
2276 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2277 {
2278 struct cleanup *back_to;
2279
2280 /* Skip type_unit_groups, reading the type units they contain
2281 is handled elsewhere. */
2282 if (IS_TYPE_UNIT_GROUP (per_cu))
2283 return;
2284
2285 back_to = make_cleanup (dwarf2_release_queue, NULL);
2286
2287 if (dwarf2_per_objfile->using_index
2288 ? per_cu->v.quick->symtab == NULL
2289 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2290 {
2291 queue_comp_unit (per_cu, language_minimal);
2292 load_cu (per_cu);
2293 }
2294
2295 process_queue ();
2296
2297 /* Age the cache, releasing compilation units that have not
2298 been used recently. */
2299 age_cached_comp_units ();
2300
2301 do_cleanups (back_to);
2302 }
2303
2304 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2305 the objfile from which this CU came. Returns the resulting symbol
2306 table. */
2307
2308 static struct symtab *
2309 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2310 {
2311 gdb_assert (dwarf2_per_objfile->using_index);
2312 if (!per_cu->v.quick->symtab)
2313 {
2314 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2315 increment_reading_symtab ();
2316 dw2_do_instantiate_symtab (per_cu);
2317 process_cu_includes ();
2318 do_cleanups (back_to);
2319 }
2320 return per_cu->v.quick->symtab;
2321 }
2322
2323 /* Return the CU given its index.
2324
2325 This is intended for loops like:
2326
2327 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2328 + dwarf2_per_objfile->n_type_units); ++i)
2329 {
2330 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2331
2332 ...;
2333 }
2334 */
2335
2336 static struct dwarf2_per_cu_data *
2337 dw2_get_cu (int index)
2338 {
2339 if (index >= dwarf2_per_objfile->n_comp_units)
2340 {
2341 index -= dwarf2_per_objfile->n_comp_units;
2342 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2343 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2344 }
2345
2346 return dwarf2_per_objfile->all_comp_units[index];
2347 }
2348
2349 /* Return the primary CU given its index.
2350 The difference between this function and dw2_get_cu is in the handling
2351 of type units (TUs). Here we return the type_unit_group object.
2352
2353 This is intended for loops like:
2354
2355 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2356 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2357 {
2358 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2359
2360 ...;
2361 }
2362 */
2363
2364 static struct dwarf2_per_cu_data *
2365 dw2_get_primary_cu (int index)
2366 {
2367 if (index >= dwarf2_per_objfile->n_comp_units)
2368 {
2369 index -= dwarf2_per_objfile->n_comp_units;
2370 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2371 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2372 }
2373
2374 return dwarf2_per_objfile->all_comp_units[index];
2375 }
2376
2377 /* A helper for create_cus_from_index that handles a given list of
2378 CUs. */
2379
2380 static void
2381 create_cus_from_index_list (struct objfile *objfile,
2382 const gdb_byte *cu_list, offset_type n_elements,
2383 struct dwarf2_section_info *section,
2384 int is_dwz,
2385 int base_offset)
2386 {
2387 offset_type i;
2388
2389 for (i = 0; i < n_elements; i += 2)
2390 {
2391 struct dwarf2_per_cu_data *the_cu;
2392 ULONGEST offset, length;
2393
2394 gdb_static_assert (sizeof (ULONGEST) >= 8);
2395 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2396 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2397 cu_list += 2 * 8;
2398
2399 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2400 struct dwarf2_per_cu_data);
2401 the_cu->offset.sect_off = offset;
2402 the_cu->length = length;
2403 the_cu->objfile = objfile;
2404 the_cu->section = section;
2405 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2406 struct dwarf2_per_cu_quick_data);
2407 the_cu->is_dwz = is_dwz;
2408 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2409 }
2410 }
2411
2412 /* Read the CU list from the mapped index, and use it to create all
2413 the CU objects for this objfile. */
2414
2415 static void
2416 create_cus_from_index (struct objfile *objfile,
2417 const gdb_byte *cu_list, offset_type cu_list_elements,
2418 const gdb_byte *dwz_list, offset_type dwz_elements)
2419 {
2420 struct dwz_file *dwz;
2421
2422 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2423 dwarf2_per_objfile->all_comp_units
2424 = obstack_alloc (&objfile->objfile_obstack,
2425 dwarf2_per_objfile->n_comp_units
2426 * sizeof (struct dwarf2_per_cu_data *));
2427
2428 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2429 &dwarf2_per_objfile->info, 0, 0);
2430
2431 if (dwz_elements == 0)
2432 return;
2433
2434 dwz = dwarf2_get_dwz_file ();
2435 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2436 cu_list_elements / 2);
2437 }
2438
2439 /* Create the signatured type hash table from the index. */
2440
2441 static void
2442 create_signatured_type_table_from_index (struct objfile *objfile,
2443 struct dwarf2_section_info *section,
2444 const gdb_byte *bytes,
2445 offset_type elements)
2446 {
2447 offset_type i;
2448 htab_t sig_types_hash;
2449
2450 dwarf2_per_objfile->n_type_units = elements / 3;
2451 dwarf2_per_objfile->all_type_units
2452 = obstack_alloc (&objfile->objfile_obstack,
2453 dwarf2_per_objfile->n_type_units
2454 * sizeof (struct signatured_type *));
2455
2456 sig_types_hash = allocate_signatured_type_table (objfile);
2457
2458 for (i = 0; i < elements; i += 3)
2459 {
2460 struct signatured_type *sig_type;
2461 ULONGEST offset, type_offset_in_tu, signature;
2462 void **slot;
2463
2464 gdb_static_assert (sizeof (ULONGEST) >= 8);
2465 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2466 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2467 BFD_ENDIAN_LITTLE);
2468 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2469 bytes += 3 * 8;
2470
2471 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2472 struct signatured_type);
2473 sig_type->signature = signature;
2474 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2475 sig_type->per_cu.is_debug_types = 1;
2476 sig_type->per_cu.section = section;
2477 sig_type->per_cu.offset.sect_off = offset;
2478 sig_type->per_cu.objfile = objfile;
2479 sig_type->per_cu.v.quick
2480 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2481 struct dwarf2_per_cu_quick_data);
2482
2483 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2484 *slot = sig_type;
2485
2486 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2487 }
2488
2489 dwarf2_per_objfile->signatured_types = sig_types_hash;
2490 }
2491
2492 /* Read the address map data from the mapped index, and use it to
2493 populate the objfile's psymtabs_addrmap. */
2494
2495 static void
2496 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2497 {
2498 const gdb_byte *iter, *end;
2499 struct obstack temp_obstack;
2500 struct addrmap *mutable_map;
2501 struct cleanup *cleanup;
2502 CORE_ADDR baseaddr;
2503
2504 obstack_init (&temp_obstack);
2505 cleanup = make_cleanup_obstack_free (&temp_obstack);
2506 mutable_map = addrmap_create_mutable (&temp_obstack);
2507
2508 iter = index->address_table;
2509 end = iter + index->address_table_size;
2510
2511 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2512
2513 while (iter < end)
2514 {
2515 ULONGEST hi, lo, cu_index;
2516 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2517 iter += 8;
2518 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2519 iter += 8;
2520 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2521 iter += 4;
2522
2523 if (cu_index < dwarf2_per_objfile->n_comp_units)
2524 {
2525 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2526 dw2_get_cu (cu_index));
2527 }
2528 else
2529 {
2530 complaint (&symfile_complaints,
2531 _(".gdb_index address table has invalid CU number %u"),
2532 (unsigned) cu_index);
2533 }
2534 }
2535
2536 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2537 &objfile->objfile_obstack);
2538 do_cleanups (cleanup);
2539 }
2540
2541 /* The hash function for strings in the mapped index. This is the same as
2542 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2543 implementation. This is necessary because the hash function is tied to the
2544 format of the mapped index file. The hash values do not have to match with
2545 SYMBOL_HASH_NEXT.
2546
2547 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2548
2549 static hashval_t
2550 mapped_index_string_hash (int index_version, const void *p)
2551 {
2552 const unsigned char *str = (const unsigned char *) p;
2553 hashval_t r = 0;
2554 unsigned char c;
2555
2556 while ((c = *str++) != 0)
2557 {
2558 if (index_version >= 5)
2559 c = tolower (c);
2560 r = r * 67 + c - 113;
2561 }
2562
2563 return r;
2564 }
2565
2566 /* Find a slot in the mapped index INDEX for the object named NAME.
2567 If NAME is found, set *VEC_OUT to point to the CU vector in the
2568 constant pool and return 1. If NAME cannot be found, return 0. */
2569
2570 static int
2571 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2572 offset_type **vec_out)
2573 {
2574 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2575 offset_type hash;
2576 offset_type slot, step;
2577 int (*cmp) (const char *, const char *);
2578
2579 if (current_language->la_language == language_cplus
2580 || current_language->la_language == language_java
2581 || current_language->la_language == language_fortran)
2582 {
2583 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2584 not contain any. */
2585 const char *paren = strchr (name, '(');
2586
2587 if (paren)
2588 {
2589 char *dup;
2590
2591 dup = xmalloc (paren - name + 1);
2592 memcpy (dup, name, paren - name);
2593 dup[paren - name] = 0;
2594
2595 make_cleanup (xfree, dup);
2596 name = dup;
2597 }
2598 }
2599
2600 /* Index version 4 did not support case insensitive searches. But the
2601 indices for case insensitive languages are built in lowercase, therefore
2602 simulate our NAME being searched is also lowercased. */
2603 hash = mapped_index_string_hash ((index->version == 4
2604 && case_sensitivity == case_sensitive_off
2605 ? 5 : index->version),
2606 name);
2607
2608 slot = hash & (index->symbol_table_slots - 1);
2609 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2610 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2611
2612 for (;;)
2613 {
2614 /* Convert a slot number to an offset into the table. */
2615 offset_type i = 2 * slot;
2616 const char *str;
2617 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2618 {
2619 do_cleanups (back_to);
2620 return 0;
2621 }
2622
2623 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2624 if (!cmp (name, str))
2625 {
2626 *vec_out = (offset_type *) (index->constant_pool
2627 + MAYBE_SWAP (index->symbol_table[i + 1]));
2628 do_cleanups (back_to);
2629 return 1;
2630 }
2631
2632 slot = (slot + step) & (index->symbol_table_slots - 1);
2633 }
2634 }
2635
2636 /* A helper function that reads the .gdb_index from SECTION and fills
2637 in MAP. FILENAME is the name of the file containing the section;
2638 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2639 ok to use deprecated sections.
2640
2641 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2642 out parameters that are filled in with information about the CU and
2643 TU lists in the section.
2644
2645 Returns 1 if all went well, 0 otherwise. */
2646
2647 static int
2648 read_index_from_section (struct objfile *objfile,
2649 const char *filename,
2650 int deprecated_ok,
2651 struct dwarf2_section_info *section,
2652 struct mapped_index *map,
2653 const gdb_byte **cu_list,
2654 offset_type *cu_list_elements,
2655 const gdb_byte **types_list,
2656 offset_type *types_list_elements)
2657 {
2658 const char *addr;
2659 offset_type version;
2660 offset_type *metadata;
2661 int i;
2662
2663 if (dwarf2_section_empty_p (section))
2664 return 0;
2665
2666 /* Older elfutils strip versions could keep the section in the main
2667 executable while splitting it for the separate debug info file. */
2668 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2669 return 0;
2670
2671 dwarf2_read_section (objfile, section);
2672
2673 addr = section->buffer;
2674 /* Version check. */
2675 version = MAYBE_SWAP (*(offset_type *) addr);
2676 /* Versions earlier than 3 emitted every copy of a psymbol. This
2677 causes the index to behave very poorly for certain requests. Version 3
2678 contained incomplete addrmap. So, it seems better to just ignore such
2679 indices. */
2680 if (version < 4)
2681 {
2682 static int warning_printed = 0;
2683 if (!warning_printed)
2684 {
2685 warning (_("Skipping obsolete .gdb_index section in %s."),
2686 filename);
2687 warning_printed = 1;
2688 }
2689 return 0;
2690 }
2691 /* Index version 4 uses a different hash function than index version
2692 5 and later.
2693
2694 Versions earlier than 6 did not emit psymbols for inlined
2695 functions. Using these files will cause GDB not to be able to
2696 set breakpoints on inlined functions by name, so we ignore these
2697 indices unless the user has done
2698 "set use-deprecated-index-sections on". */
2699 if (version < 6 && !deprecated_ok)
2700 {
2701 static int warning_printed = 0;
2702 if (!warning_printed)
2703 {
2704 warning (_("\
2705 Skipping deprecated .gdb_index section in %s.\n\
2706 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2707 to use the section anyway."),
2708 filename);
2709 warning_printed = 1;
2710 }
2711 return 0;
2712 }
2713 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2714 of the TU (for symbols coming from TUs). It's just a performance bug, and
2715 we can't distinguish gdb-generated indices from gold-generated ones, so
2716 nothing to do here. */
2717
2718 /* Indexes with higher version than the one supported by GDB may be no
2719 longer backward compatible. */
2720 if (version > 8)
2721 return 0;
2722
2723 map->version = version;
2724 map->total_size = section->size;
2725
2726 metadata = (offset_type *) (addr + sizeof (offset_type));
2727
2728 i = 0;
2729 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2730 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2731 / 8);
2732 ++i;
2733
2734 *types_list = addr + MAYBE_SWAP (metadata[i]);
2735 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2736 - MAYBE_SWAP (metadata[i]))
2737 / 8);
2738 ++i;
2739
2740 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2741 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2742 - MAYBE_SWAP (metadata[i]));
2743 ++i;
2744
2745 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2746 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2747 - MAYBE_SWAP (metadata[i]))
2748 / (2 * sizeof (offset_type)));
2749 ++i;
2750
2751 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2752
2753 return 1;
2754 }
2755
2756
2757 /* Read the index file. If everything went ok, initialize the "quick"
2758 elements of all the CUs and return 1. Otherwise, return 0. */
2759
2760 static int
2761 dwarf2_read_index (struct objfile *objfile)
2762 {
2763 struct mapped_index local_map, *map;
2764 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2765 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2766
2767 if (!read_index_from_section (objfile, objfile->name,
2768 use_deprecated_index_sections,
2769 &dwarf2_per_objfile->gdb_index, &local_map,
2770 &cu_list, &cu_list_elements,
2771 &types_list, &types_list_elements))
2772 return 0;
2773
2774 /* Don't use the index if it's empty. */
2775 if (local_map.symbol_table_slots == 0)
2776 return 0;
2777
2778 /* If there is a .dwz file, read it so we can get its CU list as
2779 well. */
2780 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2781 {
2782 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2783 struct mapped_index dwz_map;
2784 const gdb_byte *dwz_types_ignore;
2785 offset_type dwz_types_elements_ignore;
2786
2787 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2788 1,
2789 &dwz->gdb_index, &dwz_map,
2790 &dwz_list, &dwz_list_elements,
2791 &dwz_types_ignore,
2792 &dwz_types_elements_ignore))
2793 {
2794 warning (_("could not read '.gdb_index' section from %s; skipping"),
2795 bfd_get_filename (dwz->dwz_bfd));
2796 return 0;
2797 }
2798 }
2799
2800 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2801 dwz_list_elements);
2802
2803 if (types_list_elements)
2804 {
2805 struct dwarf2_section_info *section;
2806
2807 /* We can only handle a single .debug_types when we have an
2808 index. */
2809 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2810 return 0;
2811
2812 section = VEC_index (dwarf2_section_info_def,
2813 dwarf2_per_objfile->types, 0);
2814
2815 create_signatured_type_table_from_index (objfile, section, types_list,
2816 types_list_elements);
2817 }
2818
2819 create_addrmap_from_index (objfile, &local_map);
2820
2821 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2822 *map = local_map;
2823
2824 dwarf2_per_objfile->index_table = map;
2825 dwarf2_per_objfile->using_index = 1;
2826 dwarf2_per_objfile->quick_file_names_table =
2827 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2828
2829 return 1;
2830 }
2831
2832 /* A helper for the "quick" functions which sets the global
2833 dwarf2_per_objfile according to OBJFILE. */
2834
2835 static void
2836 dw2_setup (struct objfile *objfile)
2837 {
2838 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2839 gdb_assert (dwarf2_per_objfile);
2840 }
2841
2842 /* die_reader_func for dw2_get_file_names. */
2843
2844 static void
2845 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2846 const gdb_byte *info_ptr,
2847 struct die_info *comp_unit_die,
2848 int has_children,
2849 void *data)
2850 {
2851 struct dwarf2_cu *cu = reader->cu;
2852 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2853 struct objfile *objfile = dwarf2_per_objfile->objfile;
2854 struct dwarf2_per_cu_data *lh_cu;
2855 struct line_header *lh;
2856 struct attribute *attr;
2857 int i;
2858 const char *name, *comp_dir;
2859 void **slot;
2860 struct quick_file_names *qfn;
2861 unsigned int line_offset;
2862
2863 gdb_assert (! this_cu->is_debug_types);
2864
2865 /* Our callers never want to match partial units -- instead they
2866 will match the enclosing full CU. */
2867 if (comp_unit_die->tag == DW_TAG_partial_unit)
2868 {
2869 this_cu->v.quick->no_file_data = 1;
2870 return;
2871 }
2872
2873 lh_cu = this_cu;
2874 lh = NULL;
2875 slot = NULL;
2876 line_offset = 0;
2877
2878 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2879 if (attr)
2880 {
2881 struct quick_file_names find_entry;
2882
2883 line_offset = DW_UNSND (attr);
2884
2885 /* We may have already read in this line header (TU line header sharing).
2886 If we have we're done. */
2887 find_entry.hash.dwo_unit = cu->dwo_unit;
2888 find_entry.hash.line_offset.sect_off = line_offset;
2889 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2890 &find_entry, INSERT);
2891 if (*slot != NULL)
2892 {
2893 lh_cu->v.quick->file_names = *slot;
2894 return;
2895 }
2896
2897 lh = dwarf_decode_line_header (line_offset, cu);
2898 }
2899 if (lh == NULL)
2900 {
2901 lh_cu->v.quick->no_file_data = 1;
2902 return;
2903 }
2904
2905 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2906 qfn->hash.dwo_unit = cu->dwo_unit;
2907 qfn->hash.line_offset.sect_off = line_offset;
2908 gdb_assert (slot != NULL);
2909 *slot = qfn;
2910
2911 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2912
2913 qfn->num_file_names = lh->num_file_names;
2914 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2915 lh->num_file_names * sizeof (char *));
2916 for (i = 0; i < lh->num_file_names; ++i)
2917 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2918 qfn->real_names = NULL;
2919
2920 free_line_header (lh);
2921
2922 lh_cu->v.quick->file_names = qfn;
2923 }
2924
2925 /* A helper for the "quick" functions which attempts to read the line
2926 table for THIS_CU. */
2927
2928 static struct quick_file_names *
2929 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
2930 {
2931 /* This should never be called for TUs. */
2932 gdb_assert (! this_cu->is_debug_types);
2933 /* Nor type unit groups. */
2934 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
2935
2936 if (this_cu->v.quick->file_names != NULL)
2937 return this_cu->v.quick->file_names;
2938 /* If we know there is no line data, no point in looking again. */
2939 if (this_cu->v.quick->no_file_data)
2940 return NULL;
2941
2942 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2943
2944 if (this_cu->v.quick->no_file_data)
2945 return NULL;
2946 return this_cu->v.quick->file_names;
2947 }
2948
2949 /* A helper for the "quick" functions which computes and caches the
2950 real path for a given file name from the line table. */
2951
2952 static const char *
2953 dw2_get_real_path (struct objfile *objfile,
2954 struct quick_file_names *qfn, int index)
2955 {
2956 if (qfn->real_names == NULL)
2957 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2958 qfn->num_file_names, sizeof (char *));
2959
2960 if (qfn->real_names[index] == NULL)
2961 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2962
2963 return qfn->real_names[index];
2964 }
2965
2966 static struct symtab *
2967 dw2_find_last_source_symtab (struct objfile *objfile)
2968 {
2969 int index;
2970
2971 dw2_setup (objfile);
2972 index = dwarf2_per_objfile->n_comp_units - 1;
2973 return dw2_instantiate_symtab (dw2_get_cu (index));
2974 }
2975
2976 /* Traversal function for dw2_forget_cached_source_info. */
2977
2978 static int
2979 dw2_free_cached_file_names (void **slot, void *info)
2980 {
2981 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2982
2983 if (file_data->real_names)
2984 {
2985 int i;
2986
2987 for (i = 0; i < file_data->num_file_names; ++i)
2988 {
2989 xfree ((void*) file_data->real_names[i]);
2990 file_data->real_names[i] = NULL;
2991 }
2992 }
2993
2994 return 1;
2995 }
2996
2997 static void
2998 dw2_forget_cached_source_info (struct objfile *objfile)
2999 {
3000 dw2_setup (objfile);
3001
3002 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3003 dw2_free_cached_file_names, NULL);
3004 }
3005
3006 /* Helper function for dw2_map_symtabs_matching_filename that expands
3007 the symtabs and calls the iterator. */
3008
3009 static int
3010 dw2_map_expand_apply (struct objfile *objfile,
3011 struct dwarf2_per_cu_data *per_cu,
3012 const char *name, const char *real_path,
3013 int (*callback) (struct symtab *, void *),
3014 void *data)
3015 {
3016 struct symtab *last_made = objfile->symtabs;
3017
3018 /* Don't visit already-expanded CUs. */
3019 if (per_cu->v.quick->symtab)
3020 return 0;
3021
3022 /* This may expand more than one symtab, and we want to iterate over
3023 all of them. */
3024 dw2_instantiate_symtab (per_cu);
3025
3026 return iterate_over_some_symtabs (name, real_path, callback, data,
3027 objfile->symtabs, last_made);
3028 }
3029
3030 /* Implementation of the map_symtabs_matching_filename method. */
3031
3032 static int
3033 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3034 const char *real_path,
3035 int (*callback) (struct symtab *, void *),
3036 void *data)
3037 {
3038 int i;
3039 const char *name_basename = lbasename (name);
3040
3041 dw2_setup (objfile);
3042
3043 /* The rule is CUs specify all the files, including those used by
3044 any TU, so there's no need to scan TUs here. */
3045
3046 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3047 {
3048 int j;
3049 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3050 struct quick_file_names *file_data;
3051
3052 /* We only need to look at symtabs not already expanded. */
3053 if (per_cu->v.quick->symtab)
3054 continue;
3055
3056 file_data = dw2_get_file_names (per_cu);
3057 if (file_data == NULL)
3058 continue;
3059
3060 for (j = 0; j < file_data->num_file_names; ++j)
3061 {
3062 const char *this_name = file_data->file_names[j];
3063 const char *this_real_name;
3064
3065 if (compare_filenames_for_search (this_name, name))
3066 {
3067 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3068 callback, data))
3069 return 1;
3070 continue;
3071 }
3072
3073 /* Before we invoke realpath, which can get expensive when many
3074 files are involved, do a quick comparison of the basenames. */
3075 if (! basenames_may_differ
3076 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3077 continue;
3078
3079 this_real_name = dw2_get_real_path (objfile, file_data, j);
3080 if (compare_filenames_for_search (this_real_name, name))
3081 {
3082 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3083 callback, data))
3084 return 1;
3085 continue;
3086 }
3087
3088 if (real_path != NULL)
3089 {
3090 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3091 gdb_assert (IS_ABSOLUTE_PATH (name));
3092 if (this_real_name != NULL
3093 && FILENAME_CMP (real_path, this_real_name) == 0)
3094 {
3095 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3096 callback, data))
3097 return 1;
3098 continue;
3099 }
3100 }
3101 }
3102 }
3103
3104 return 0;
3105 }
3106
3107 /* Struct used to manage iterating over all CUs looking for a symbol. */
3108
3109 struct dw2_symtab_iterator
3110 {
3111 /* The internalized form of .gdb_index. */
3112 struct mapped_index *index;
3113 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3114 int want_specific_block;
3115 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3116 Unused if !WANT_SPECIFIC_BLOCK. */
3117 int block_index;
3118 /* The kind of symbol we're looking for. */
3119 domain_enum domain;
3120 /* The list of CUs from the index entry of the symbol,
3121 or NULL if not found. */
3122 offset_type *vec;
3123 /* The next element in VEC to look at. */
3124 int next;
3125 /* The number of elements in VEC, or zero if there is no match. */
3126 int length;
3127 };
3128
3129 /* Initialize the index symtab iterator ITER.
3130 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3131 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3132
3133 static void
3134 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3135 struct mapped_index *index,
3136 int want_specific_block,
3137 int block_index,
3138 domain_enum domain,
3139 const char *name)
3140 {
3141 iter->index = index;
3142 iter->want_specific_block = want_specific_block;
3143 iter->block_index = block_index;
3144 iter->domain = domain;
3145 iter->next = 0;
3146
3147 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3148 iter->length = MAYBE_SWAP (*iter->vec);
3149 else
3150 {
3151 iter->vec = NULL;
3152 iter->length = 0;
3153 }
3154 }
3155
3156 /* Return the next matching CU or NULL if there are no more. */
3157
3158 static struct dwarf2_per_cu_data *
3159 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3160 {
3161 for ( ; iter->next < iter->length; ++iter->next)
3162 {
3163 offset_type cu_index_and_attrs =
3164 MAYBE_SWAP (iter->vec[iter->next + 1]);
3165 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3166 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
3167 int want_static = iter->block_index != GLOBAL_BLOCK;
3168 /* This value is only valid for index versions >= 7. */
3169 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3170 gdb_index_symbol_kind symbol_kind =
3171 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3172 /* Only check the symbol attributes if they're present.
3173 Indices prior to version 7 don't record them,
3174 and indices >= 7 may elide them for certain symbols
3175 (gold does this). */
3176 int attrs_valid =
3177 (iter->index->version >= 7
3178 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3179
3180 /* Skip if already read in. */
3181 if (per_cu->v.quick->symtab)
3182 continue;
3183
3184 if (attrs_valid
3185 && iter->want_specific_block
3186 && want_static != is_static)
3187 continue;
3188
3189 /* Only check the symbol's kind if it has one. */
3190 if (attrs_valid)
3191 {
3192 switch (iter->domain)
3193 {
3194 case VAR_DOMAIN:
3195 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3196 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3197 /* Some types are also in VAR_DOMAIN. */
3198 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3199 continue;
3200 break;
3201 case STRUCT_DOMAIN:
3202 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3203 continue;
3204 break;
3205 case LABEL_DOMAIN:
3206 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3207 continue;
3208 break;
3209 default:
3210 break;
3211 }
3212 }
3213
3214 ++iter->next;
3215 return per_cu;
3216 }
3217
3218 return NULL;
3219 }
3220
3221 static struct symtab *
3222 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3223 const char *name, domain_enum domain)
3224 {
3225 struct symtab *stab_best = NULL;
3226 struct mapped_index *index;
3227
3228 dw2_setup (objfile);
3229
3230 index = dwarf2_per_objfile->index_table;
3231
3232 /* index is NULL if OBJF_READNOW. */
3233 if (index)
3234 {
3235 struct dw2_symtab_iterator iter;
3236 struct dwarf2_per_cu_data *per_cu;
3237
3238 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3239
3240 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3241 {
3242 struct symbol *sym = NULL;
3243 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3244
3245 /* Some caution must be observed with overloaded functions
3246 and methods, since the index will not contain any overload
3247 information (but NAME might contain it). */
3248 if (stab->primary)
3249 {
3250 struct blockvector *bv = BLOCKVECTOR (stab);
3251 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3252
3253 sym = lookup_block_symbol (block, name, domain);
3254 }
3255
3256 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3257 {
3258 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3259 return stab;
3260
3261 stab_best = stab;
3262 }
3263
3264 /* Keep looking through other CUs. */
3265 }
3266 }
3267
3268 return stab_best;
3269 }
3270
3271 static void
3272 dw2_print_stats (struct objfile *objfile)
3273 {
3274 int i, total, count;
3275
3276 dw2_setup (objfile);
3277 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3278 count = 0;
3279 for (i = 0; i < total; ++i)
3280 {
3281 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3282
3283 if (!per_cu->v.quick->symtab)
3284 ++count;
3285 }
3286 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3287 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3288 }
3289
3290 static void
3291 dw2_dump (struct objfile *objfile)
3292 {
3293 /* Nothing worth printing. */
3294 }
3295
3296 static void
3297 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
3298 struct section_offsets *delta)
3299 {
3300 /* There's nothing to relocate here. */
3301 }
3302
3303 static void
3304 dw2_expand_symtabs_for_function (struct objfile *objfile,
3305 const char *func_name)
3306 {
3307 struct mapped_index *index;
3308
3309 dw2_setup (objfile);
3310
3311 index = dwarf2_per_objfile->index_table;
3312
3313 /* index is NULL if OBJF_READNOW. */
3314 if (index)
3315 {
3316 struct dw2_symtab_iterator iter;
3317 struct dwarf2_per_cu_data *per_cu;
3318
3319 /* Note: It doesn't matter what we pass for block_index here. */
3320 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3321 func_name);
3322
3323 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3324 dw2_instantiate_symtab (per_cu);
3325 }
3326 }
3327
3328 static void
3329 dw2_expand_all_symtabs (struct objfile *objfile)
3330 {
3331 int i;
3332
3333 dw2_setup (objfile);
3334
3335 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3336 + dwarf2_per_objfile->n_type_units); ++i)
3337 {
3338 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3339
3340 dw2_instantiate_symtab (per_cu);
3341 }
3342 }
3343
3344 static void
3345 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3346 const char *fullname)
3347 {
3348 int i;
3349
3350 dw2_setup (objfile);
3351
3352 /* We don't need to consider type units here.
3353 This is only called for examining code, e.g. expand_line_sal.
3354 There can be an order of magnitude (or more) more type units
3355 than comp units, and we avoid them if we can. */
3356
3357 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3358 {
3359 int j;
3360 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3361 struct quick_file_names *file_data;
3362
3363 /* We only need to look at symtabs not already expanded. */
3364 if (per_cu->v.quick->symtab)
3365 continue;
3366
3367 file_data = dw2_get_file_names (per_cu);
3368 if (file_data == NULL)
3369 continue;
3370
3371 for (j = 0; j < file_data->num_file_names; ++j)
3372 {
3373 const char *this_fullname = file_data->file_names[j];
3374
3375 if (filename_cmp (this_fullname, fullname) == 0)
3376 {
3377 dw2_instantiate_symtab (per_cu);
3378 break;
3379 }
3380 }
3381 }
3382 }
3383
3384 /* A helper function for dw2_find_symbol_file that finds the primary
3385 file name for a given CU. This is a die_reader_func. */
3386
3387 static void
3388 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3389 const gdb_byte *info_ptr,
3390 struct die_info *comp_unit_die,
3391 int has_children,
3392 void *data)
3393 {
3394 const char **result_ptr = data;
3395 struct dwarf2_cu *cu = reader->cu;
3396 struct attribute *attr;
3397
3398 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3399 if (attr == NULL)
3400 *result_ptr = NULL;
3401 else
3402 *result_ptr = DW_STRING (attr);
3403 }
3404
3405 static const char *
3406 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3407 {
3408 struct dwarf2_per_cu_data *per_cu;
3409 offset_type *vec;
3410 const char *filename;
3411
3412 dw2_setup (objfile);
3413
3414 /* index_table is NULL if OBJF_READNOW. */
3415 if (!dwarf2_per_objfile->index_table)
3416 {
3417 struct symtab *s;
3418
3419 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3420 {
3421 struct blockvector *bv = BLOCKVECTOR (s);
3422 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3423 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3424
3425 if (sym)
3426 {
3427 /* Only file extension of returned filename is recognized. */
3428 return SYMBOL_SYMTAB (sym)->filename;
3429 }
3430 }
3431 return NULL;
3432 }
3433
3434 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3435 name, &vec))
3436 return NULL;
3437
3438 /* Note that this just looks at the very first one named NAME -- but
3439 actually we are looking for a function. find_main_filename
3440 should be rewritten so that it doesn't require a custom hook. It
3441 could just use the ordinary symbol tables. */
3442 /* vec[0] is the length, which must always be >0. */
3443 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3444
3445 if (per_cu->v.quick->symtab != NULL)
3446 {
3447 /* Only file extension of returned filename is recognized. */
3448 return per_cu->v.quick->symtab->filename;
3449 }
3450
3451 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3452 dw2_get_primary_filename_reader, &filename);
3453
3454 /* Only file extension of returned filename is recognized. */
3455 return filename;
3456 }
3457
3458 static void
3459 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3460 struct objfile *objfile, int global,
3461 int (*callback) (struct block *,
3462 struct symbol *, void *),
3463 void *data, symbol_compare_ftype *match,
3464 symbol_compare_ftype *ordered_compare)
3465 {
3466 /* Currently unimplemented; used for Ada. The function can be called if the
3467 current language is Ada for a non-Ada objfile using GNU index. As Ada
3468 does not look for non-Ada symbols this function should just return. */
3469 }
3470
3471 static void
3472 dw2_expand_symtabs_matching
3473 (struct objfile *objfile,
3474 int (*file_matcher) (const char *, void *, int basenames),
3475 int (*name_matcher) (const char *, void *),
3476 enum search_domain kind,
3477 void *data)
3478 {
3479 int i;
3480 offset_type iter;
3481 struct mapped_index *index;
3482
3483 dw2_setup (objfile);
3484
3485 /* index_table is NULL if OBJF_READNOW. */
3486 if (!dwarf2_per_objfile->index_table)
3487 return;
3488 index = dwarf2_per_objfile->index_table;
3489
3490 if (file_matcher != NULL)
3491 {
3492 struct cleanup *cleanup;
3493 htab_t visited_found, visited_not_found;
3494
3495 visited_found = htab_create_alloc (10,
3496 htab_hash_pointer, htab_eq_pointer,
3497 NULL, xcalloc, xfree);
3498 cleanup = make_cleanup_htab_delete (visited_found);
3499 visited_not_found = htab_create_alloc (10,
3500 htab_hash_pointer, htab_eq_pointer,
3501 NULL, xcalloc, xfree);
3502 make_cleanup_htab_delete (visited_not_found);
3503
3504 /* The rule is CUs specify all the files, including those used by
3505 any TU, so there's no need to scan TUs here. */
3506
3507 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3508 {
3509 int j;
3510 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3511 struct quick_file_names *file_data;
3512 void **slot;
3513
3514 per_cu->v.quick->mark = 0;
3515
3516 /* We only need to look at symtabs not already expanded. */
3517 if (per_cu->v.quick->symtab)
3518 continue;
3519
3520 file_data = dw2_get_file_names (per_cu);
3521 if (file_data == NULL)
3522 continue;
3523
3524 if (htab_find (visited_not_found, file_data) != NULL)
3525 continue;
3526 else if (htab_find (visited_found, file_data) != NULL)
3527 {
3528 per_cu->v.quick->mark = 1;
3529 continue;
3530 }
3531
3532 for (j = 0; j < file_data->num_file_names; ++j)
3533 {
3534 const char *this_real_name;
3535
3536 if (file_matcher (file_data->file_names[j], data, 0))
3537 {
3538 per_cu->v.quick->mark = 1;
3539 break;
3540 }
3541
3542 /* Before we invoke realpath, which can get expensive when many
3543 files are involved, do a quick comparison of the basenames. */
3544 if (!basenames_may_differ
3545 && !file_matcher (lbasename (file_data->file_names[j]),
3546 data, 1))
3547 continue;
3548
3549 this_real_name = dw2_get_real_path (objfile, file_data, j);
3550 if (file_matcher (this_real_name, data, 0))
3551 {
3552 per_cu->v.quick->mark = 1;
3553 break;
3554 }
3555 }
3556
3557 slot = htab_find_slot (per_cu->v.quick->mark
3558 ? visited_found
3559 : visited_not_found,
3560 file_data, INSERT);
3561 *slot = file_data;
3562 }
3563
3564 do_cleanups (cleanup);
3565 }
3566
3567 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3568 {
3569 offset_type idx = 2 * iter;
3570 const char *name;
3571 offset_type *vec, vec_len, vec_idx;
3572
3573 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3574 continue;
3575
3576 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3577
3578 if (! (*name_matcher) (name, data))
3579 continue;
3580
3581 /* The name was matched, now expand corresponding CUs that were
3582 marked. */
3583 vec = (offset_type *) (index->constant_pool
3584 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3585 vec_len = MAYBE_SWAP (vec[0]);
3586 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3587 {
3588 struct dwarf2_per_cu_data *per_cu;
3589 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3590 gdb_index_symbol_kind symbol_kind =
3591 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3592 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3593
3594 /* Don't crash on bad data. */
3595 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3596 + dwarf2_per_objfile->n_type_units))
3597 continue;
3598
3599 /* Only check the symbol's kind if it has one.
3600 Indices prior to version 7 don't record it. */
3601 if (index->version >= 7)
3602 {
3603 switch (kind)
3604 {
3605 case VARIABLES_DOMAIN:
3606 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3607 continue;
3608 break;
3609 case FUNCTIONS_DOMAIN:
3610 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3611 continue;
3612 break;
3613 case TYPES_DOMAIN:
3614 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3615 continue;
3616 break;
3617 default:
3618 break;
3619 }
3620 }
3621
3622 per_cu = dw2_get_cu (cu_index);
3623 if (file_matcher == NULL || per_cu->v.quick->mark)
3624 dw2_instantiate_symtab (per_cu);
3625 }
3626 }
3627 }
3628
3629 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3630 symtab. */
3631
3632 static struct symtab *
3633 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3634 {
3635 int i;
3636
3637 if (BLOCKVECTOR (symtab) != NULL
3638 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3639 return symtab;
3640
3641 if (symtab->includes == NULL)
3642 return NULL;
3643
3644 for (i = 0; symtab->includes[i]; ++i)
3645 {
3646 struct symtab *s = symtab->includes[i];
3647
3648 s = recursively_find_pc_sect_symtab (s, pc);
3649 if (s != NULL)
3650 return s;
3651 }
3652
3653 return NULL;
3654 }
3655
3656 static struct symtab *
3657 dw2_find_pc_sect_symtab (struct objfile *objfile,
3658 struct minimal_symbol *msymbol,
3659 CORE_ADDR pc,
3660 struct obj_section *section,
3661 int warn_if_readin)
3662 {
3663 struct dwarf2_per_cu_data *data;
3664 struct symtab *result;
3665
3666 dw2_setup (objfile);
3667
3668 if (!objfile->psymtabs_addrmap)
3669 return NULL;
3670
3671 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3672 if (!data)
3673 return NULL;
3674
3675 if (warn_if_readin && data->v.quick->symtab)
3676 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3677 paddress (get_objfile_arch (objfile), pc));
3678
3679 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3680 gdb_assert (result != NULL);
3681 return result;
3682 }
3683
3684 static void
3685 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3686 void *data, int need_fullname)
3687 {
3688 int i;
3689 struct cleanup *cleanup;
3690 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3691 NULL, xcalloc, xfree);
3692
3693 cleanup = make_cleanup_htab_delete (visited);
3694 dw2_setup (objfile);
3695
3696 /* The rule is CUs specify all the files, including those used by
3697 any TU, so there's no need to scan TUs here.
3698 We can ignore file names coming from already-expanded CUs. */
3699
3700 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3701 {
3702 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3703
3704 if (per_cu->v.quick->symtab)
3705 {
3706 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3707 INSERT);
3708
3709 *slot = per_cu->v.quick->file_names;
3710 }
3711 }
3712
3713 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3714 {
3715 int j;
3716 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3717 struct quick_file_names *file_data;
3718 void **slot;
3719
3720 /* We only need to look at symtabs not already expanded. */
3721 if (per_cu->v.quick->symtab)
3722 continue;
3723
3724 file_data = dw2_get_file_names (per_cu);
3725 if (file_data == NULL)
3726 continue;
3727
3728 slot = htab_find_slot (visited, file_data, INSERT);
3729 if (*slot)
3730 {
3731 /* Already visited. */
3732 continue;
3733 }
3734 *slot = file_data;
3735
3736 for (j = 0; j < file_data->num_file_names; ++j)
3737 {
3738 const char *this_real_name;
3739
3740 if (need_fullname)
3741 this_real_name = dw2_get_real_path (objfile, file_data, j);
3742 else
3743 this_real_name = NULL;
3744 (*fun) (file_data->file_names[j], this_real_name, data);
3745 }
3746 }
3747
3748 do_cleanups (cleanup);
3749 }
3750
3751 static int
3752 dw2_has_symbols (struct objfile *objfile)
3753 {
3754 return 1;
3755 }
3756
3757 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3758 {
3759 dw2_has_symbols,
3760 dw2_find_last_source_symtab,
3761 dw2_forget_cached_source_info,
3762 dw2_map_symtabs_matching_filename,
3763 dw2_lookup_symbol,
3764 dw2_print_stats,
3765 dw2_dump,
3766 dw2_relocate,
3767 dw2_expand_symtabs_for_function,
3768 dw2_expand_all_symtabs,
3769 dw2_expand_symtabs_with_fullname,
3770 dw2_find_symbol_file,
3771 dw2_map_matching_symbols,
3772 dw2_expand_symtabs_matching,
3773 dw2_find_pc_sect_symtab,
3774 dw2_map_symbol_filenames
3775 };
3776
3777 /* Initialize for reading DWARF for this objfile. Return 0 if this
3778 file will use psymtabs, or 1 if using the GNU index. */
3779
3780 int
3781 dwarf2_initialize_objfile (struct objfile *objfile)
3782 {
3783 /* If we're about to read full symbols, don't bother with the
3784 indices. In this case we also don't care if some other debug
3785 format is making psymtabs, because they are all about to be
3786 expanded anyway. */
3787 if ((objfile->flags & OBJF_READNOW))
3788 {
3789 int i;
3790
3791 dwarf2_per_objfile->using_index = 1;
3792 create_all_comp_units (objfile);
3793 create_all_type_units (objfile);
3794 dwarf2_per_objfile->quick_file_names_table =
3795 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3796
3797 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3798 + dwarf2_per_objfile->n_type_units); ++i)
3799 {
3800 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3801
3802 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3803 struct dwarf2_per_cu_quick_data);
3804 }
3805
3806 /* Return 1 so that gdb sees the "quick" functions. However,
3807 these functions will be no-ops because we will have expanded
3808 all symtabs. */
3809 return 1;
3810 }
3811
3812 if (dwarf2_read_index (objfile))
3813 return 1;
3814
3815 return 0;
3816 }
3817
3818 \f
3819
3820 /* Build a partial symbol table. */
3821
3822 void
3823 dwarf2_build_psymtabs (struct objfile *objfile)
3824 {
3825 volatile struct gdb_exception except;
3826
3827 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3828 {
3829 init_psymbol_list (objfile, 1024);
3830 }
3831
3832 TRY_CATCH (except, RETURN_MASK_ERROR)
3833 {
3834 /* This isn't really ideal: all the data we allocate on the
3835 objfile's obstack is still uselessly kept around. However,
3836 freeing it seems unsafe. */
3837 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3838
3839 dwarf2_build_psymtabs_hard (objfile);
3840 discard_cleanups (cleanups);
3841 }
3842 if (except.reason < 0)
3843 exception_print (gdb_stderr, except);
3844 }
3845
3846 /* Return the total length of the CU described by HEADER. */
3847
3848 static unsigned int
3849 get_cu_length (const struct comp_unit_head *header)
3850 {
3851 return header->initial_length_size + header->length;
3852 }
3853
3854 /* Return TRUE if OFFSET is within CU_HEADER. */
3855
3856 static inline int
3857 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3858 {
3859 sect_offset bottom = { cu_header->offset.sect_off };
3860 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3861
3862 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3863 }
3864
3865 /* Find the base address of the compilation unit for range lists and
3866 location lists. It will normally be specified by DW_AT_low_pc.
3867 In DWARF-3 draft 4, the base address could be overridden by
3868 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3869 compilation units with discontinuous ranges. */
3870
3871 static void
3872 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3873 {
3874 struct attribute *attr;
3875
3876 cu->base_known = 0;
3877 cu->base_address = 0;
3878
3879 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3880 if (attr)
3881 {
3882 cu->base_address = DW_ADDR (attr);
3883 cu->base_known = 1;
3884 }
3885 else
3886 {
3887 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3888 if (attr)
3889 {
3890 cu->base_address = DW_ADDR (attr);
3891 cu->base_known = 1;
3892 }
3893 }
3894 }
3895
3896 /* Read in the comp unit header information from the debug_info at info_ptr.
3897 NOTE: This leaves members offset, first_die_offset to be filled in
3898 by the caller. */
3899
3900 static const gdb_byte *
3901 read_comp_unit_head (struct comp_unit_head *cu_header,
3902 const gdb_byte *info_ptr, bfd *abfd)
3903 {
3904 int signed_addr;
3905 unsigned int bytes_read;
3906
3907 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3908 cu_header->initial_length_size = bytes_read;
3909 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3910 info_ptr += bytes_read;
3911 cu_header->version = read_2_bytes (abfd, info_ptr);
3912 info_ptr += 2;
3913 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3914 &bytes_read);
3915 info_ptr += bytes_read;
3916 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3917 info_ptr += 1;
3918 signed_addr = bfd_get_sign_extend_vma (abfd);
3919 if (signed_addr < 0)
3920 internal_error (__FILE__, __LINE__,
3921 _("read_comp_unit_head: dwarf from non elf file"));
3922 cu_header->signed_addr_p = signed_addr;
3923
3924 return info_ptr;
3925 }
3926
3927 /* Helper function that returns the proper abbrev section for
3928 THIS_CU. */
3929
3930 static struct dwarf2_section_info *
3931 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3932 {
3933 struct dwarf2_section_info *abbrev;
3934
3935 if (this_cu->is_dwz)
3936 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3937 else
3938 abbrev = &dwarf2_per_objfile->abbrev;
3939
3940 return abbrev;
3941 }
3942
3943 /* Subroutine of read_and_check_comp_unit_head and
3944 read_and_check_type_unit_head to simplify them.
3945 Perform various error checking on the header. */
3946
3947 static void
3948 error_check_comp_unit_head (struct comp_unit_head *header,
3949 struct dwarf2_section_info *section,
3950 struct dwarf2_section_info *abbrev_section)
3951 {
3952 bfd *abfd = section->asection->owner;
3953 const char *filename = bfd_get_filename (abfd);
3954
3955 if (header->version != 2 && header->version != 3 && header->version != 4)
3956 error (_("Dwarf Error: wrong version in compilation unit header "
3957 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3958 filename);
3959
3960 if (header->abbrev_offset.sect_off
3961 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3962 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3963 "(offset 0x%lx + 6) [in module %s]"),
3964 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3965 filename);
3966
3967 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3968 avoid potential 32-bit overflow. */
3969 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
3970 > section->size)
3971 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3972 "(offset 0x%lx + 0) [in module %s]"),
3973 (long) header->length, (long) header->offset.sect_off,
3974 filename);
3975 }
3976
3977 /* Read in a CU/TU header and perform some basic error checking.
3978 The contents of the header are stored in HEADER.
3979 The result is a pointer to the start of the first DIE. */
3980
3981 static const gdb_byte *
3982 read_and_check_comp_unit_head (struct comp_unit_head *header,
3983 struct dwarf2_section_info *section,
3984 struct dwarf2_section_info *abbrev_section,
3985 const gdb_byte *info_ptr,
3986 int is_debug_types_section)
3987 {
3988 const gdb_byte *beg_of_comp_unit = info_ptr;
3989 bfd *abfd = section->asection->owner;
3990
3991 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3992
3993 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3994
3995 /* If we're reading a type unit, skip over the signature and
3996 type_offset fields. */
3997 if (is_debug_types_section)
3998 info_ptr += 8 /*signature*/ + header->offset_size;
3999
4000 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4001
4002 error_check_comp_unit_head (header, section, abbrev_section);
4003
4004 return info_ptr;
4005 }
4006
4007 /* Read in the types comp unit header information from .debug_types entry at
4008 types_ptr. The result is a pointer to one past the end of the header. */
4009
4010 static const gdb_byte *
4011 read_and_check_type_unit_head (struct comp_unit_head *header,
4012 struct dwarf2_section_info *section,
4013 struct dwarf2_section_info *abbrev_section,
4014 const gdb_byte *info_ptr,
4015 ULONGEST *signature,
4016 cu_offset *type_offset_in_tu)
4017 {
4018 const gdb_byte *beg_of_comp_unit = info_ptr;
4019 bfd *abfd = section->asection->owner;
4020
4021 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4022
4023 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4024
4025 /* If we're reading a type unit, skip over the signature and
4026 type_offset fields. */
4027 if (signature != NULL)
4028 *signature = read_8_bytes (abfd, info_ptr);
4029 info_ptr += 8;
4030 if (type_offset_in_tu != NULL)
4031 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4032 header->offset_size);
4033 info_ptr += header->offset_size;
4034
4035 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4036
4037 error_check_comp_unit_head (header, section, abbrev_section);
4038
4039 return info_ptr;
4040 }
4041
4042 /* Fetch the abbreviation table offset from a comp or type unit header. */
4043
4044 static sect_offset
4045 read_abbrev_offset (struct dwarf2_section_info *section,
4046 sect_offset offset)
4047 {
4048 bfd *abfd = section->asection->owner;
4049 const gdb_byte *info_ptr;
4050 unsigned int length, initial_length_size, offset_size;
4051 sect_offset abbrev_offset;
4052
4053 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4054 info_ptr = section->buffer + offset.sect_off;
4055 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4056 offset_size = initial_length_size == 4 ? 4 : 8;
4057 info_ptr += initial_length_size + 2 /*version*/;
4058 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4059 return abbrev_offset;
4060 }
4061
4062 /* Allocate a new partial symtab for file named NAME and mark this new
4063 partial symtab as being an include of PST. */
4064
4065 static void
4066 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4067 struct objfile *objfile)
4068 {
4069 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4070
4071 if (!IS_ABSOLUTE_PATH (subpst->filename))
4072 {
4073 /* It shares objfile->objfile_obstack. */
4074 subpst->dirname = pst->dirname;
4075 }
4076
4077 subpst->section_offsets = pst->section_offsets;
4078 subpst->textlow = 0;
4079 subpst->texthigh = 0;
4080
4081 subpst->dependencies = (struct partial_symtab **)
4082 obstack_alloc (&objfile->objfile_obstack,
4083 sizeof (struct partial_symtab *));
4084 subpst->dependencies[0] = pst;
4085 subpst->number_of_dependencies = 1;
4086
4087 subpst->globals_offset = 0;
4088 subpst->n_global_syms = 0;
4089 subpst->statics_offset = 0;
4090 subpst->n_static_syms = 0;
4091 subpst->symtab = NULL;
4092 subpst->read_symtab = pst->read_symtab;
4093 subpst->readin = 0;
4094
4095 /* No private part is necessary for include psymtabs. This property
4096 can be used to differentiate between such include psymtabs and
4097 the regular ones. */
4098 subpst->read_symtab_private = NULL;
4099 }
4100
4101 /* Read the Line Number Program data and extract the list of files
4102 included by the source file represented by PST. Build an include
4103 partial symtab for each of these included files. */
4104
4105 static void
4106 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4107 struct die_info *die,
4108 struct partial_symtab *pst)
4109 {
4110 struct line_header *lh = NULL;
4111 struct attribute *attr;
4112
4113 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4114 if (attr)
4115 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4116 if (lh == NULL)
4117 return; /* No linetable, so no includes. */
4118
4119 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4120 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4121
4122 free_line_header (lh);
4123 }
4124
4125 static hashval_t
4126 hash_signatured_type (const void *item)
4127 {
4128 const struct signatured_type *sig_type = item;
4129
4130 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4131 return sig_type->signature;
4132 }
4133
4134 static int
4135 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4136 {
4137 const struct signatured_type *lhs = item_lhs;
4138 const struct signatured_type *rhs = item_rhs;
4139
4140 return lhs->signature == rhs->signature;
4141 }
4142
4143 /* Allocate a hash table for signatured types. */
4144
4145 static htab_t
4146 allocate_signatured_type_table (struct objfile *objfile)
4147 {
4148 return htab_create_alloc_ex (41,
4149 hash_signatured_type,
4150 eq_signatured_type,
4151 NULL,
4152 &objfile->objfile_obstack,
4153 hashtab_obstack_allocate,
4154 dummy_obstack_deallocate);
4155 }
4156
4157 /* A helper function to add a signatured type CU to a table. */
4158
4159 static int
4160 add_signatured_type_cu_to_table (void **slot, void *datum)
4161 {
4162 struct signatured_type *sigt = *slot;
4163 struct signatured_type ***datap = datum;
4164
4165 **datap = sigt;
4166 ++*datap;
4167
4168 return 1;
4169 }
4170
4171 /* Create the hash table of all entries in the .debug_types
4172 (or .debug_types.dwo) section(s).
4173 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4174 otherwise it is NULL.
4175
4176 The result is a pointer to the hash table or NULL if there are no types.
4177
4178 Note: This function processes DWO files only, not DWP files. */
4179
4180 static htab_t
4181 create_debug_types_hash_table (struct dwo_file *dwo_file,
4182 VEC (dwarf2_section_info_def) *types)
4183 {
4184 struct objfile *objfile = dwarf2_per_objfile->objfile;
4185 htab_t types_htab = NULL;
4186 int ix;
4187 struct dwarf2_section_info *section;
4188 struct dwarf2_section_info *abbrev_section;
4189
4190 if (VEC_empty (dwarf2_section_info_def, types))
4191 return NULL;
4192
4193 abbrev_section = (dwo_file != NULL
4194 ? &dwo_file->sections.abbrev
4195 : &dwarf2_per_objfile->abbrev);
4196
4197 if (dwarf2_read_debug)
4198 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4199 dwo_file ? ".dwo" : "",
4200 bfd_get_filename (abbrev_section->asection->owner));
4201
4202 for (ix = 0;
4203 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4204 ++ix)
4205 {
4206 bfd *abfd;
4207 const gdb_byte *info_ptr, *end_ptr;
4208 struct dwarf2_section_info *abbrev_section;
4209
4210 dwarf2_read_section (objfile, section);
4211 info_ptr = section->buffer;
4212
4213 if (info_ptr == NULL)
4214 continue;
4215
4216 /* We can't set abfd until now because the section may be empty or
4217 not present, in which case section->asection will be NULL. */
4218 abfd = section->asection->owner;
4219
4220 if (dwo_file)
4221 abbrev_section = &dwo_file->sections.abbrev;
4222 else
4223 abbrev_section = &dwarf2_per_objfile->abbrev;
4224
4225 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4226 because we don't need to read any dies: the signature is in the
4227 header. */
4228
4229 end_ptr = info_ptr + section->size;
4230 while (info_ptr < end_ptr)
4231 {
4232 sect_offset offset;
4233 cu_offset type_offset_in_tu;
4234 ULONGEST signature;
4235 struct signatured_type *sig_type;
4236 struct dwo_unit *dwo_tu;
4237 void **slot;
4238 const gdb_byte *ptr = info_ptr;
4239 struct comp_unit_head header;
4240 unsigned int length;
4241
4242 offset.sect_off = ptr - section->buffer;
4243
4244 /* We need to read the type's signature in order to build the hash
4245 table, but we don't need anything else just yet. */
4246
4247 ptr = read_and_check_type_unit_head (&header, section,
4248 abbrev_section, ptr,
4249 &signature, &type_offset_in_tu);
4250
4251 length = get_cu_length (&header);
4252
4253 /* Skip dummy type units. */
4254 if (ptr >= info_ptr + length
4255 || peek_abbrev_code (abfd, ptr) == 0)
4256 {
4257 info_ptr += length;
4258 continue;
4259 }
4260
4261 if (types_htab == NULL)
4262 {
4263 if (dwo_file)
4264 types_htab = allocate_dwo_unit_table (objfile);
4265 else
4266 types_htab = allocate_signatured_type_table (objfile);
4267 }
4268
4269 if (dwo_file)
4270 {
4271 sig_type = NULL;
4272 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4273 struct dwo_unit);
4274 dwo_tu->dwo_file = dwo_file;
4275 dwo_tu->signature = signature;
4276 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4277 dwo_tu->section = section;
4278 dwo_tu->offset = offset;
4279 dwo_tu->length = length;
4280 }
4281 else
4282 {
4283 /* N.B.: type_offset is not usable if this type uses a DWO file.
4284 The real type_offset is in the DWO file. */
4285 dwo_tu = NULL;
4286 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4287 struct signatured_type);
4288 sig_type->signature = signature;
4289 sig_type->type_offset_in_tu = type_offset_in_tu;
4290 sig_type->per_cu.objfile = objfile;
4291 sig_type->per_cu.is_debug_types = 1;
4292 sig_type->per_cu.section = section;
4293 sig_type->per_cu.offset = offset;
4294 sig_type->per_cu.length = length;
4295 }
4296
4297 slot = htab_find_slot (types_htab,
4298 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4299 INSERT);
4300 gdb_assert (slot != NULL);
4301 if (*slot != NULL)
4302 {
4303 sect_offset dup_offset;
4304
4305 if (dwo_file)
4306 {
4307 const struct dwo_unit *dup_tu = *slot;
4308
4309 dup_offset = dup_tu->offset;
4310 }
4311 else
4312 {
4313 const struct signatured_type *dup_tu = *slot;
4314
4315 dup_offset = dup_tu->per_cu.offset;
4316 }
4317
4318 complaint (&symfile_complaints,
4319 _("debug type entry at offset 0x%x is duplicate to"
4320 " the entry at offset 0x%x, signature 0x%s"),
4321 offset.sect_off, dup_offset.sect_off,
4322 phex (signature, sizeof (signature)));
4323 }
4324 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4325
4326 if (dwarf2_read_debug)
4327 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
4328 offset.sect_off,
4329 phex (signature, sizeof (signature)));
4330
4331 info_ptr += length;
4332 }
4333 }
4334
4335 return types_htab;
4336 }
4337
4338 /* Create the hash table of all entries in the .debug_types section,
4339 and initialize all_type_units.
4340 The result is zero if there is an error (e.g. missing .debug_types section),
4341 otherwise non-zero. */
4342
4343 static int
4344 create_all_type_units (struct objfile *objfile)
4345 {
4346 htab_t types_htab;
4347 struct signatured_type **iter;
4348
4349 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4350 if (types_htab == NULL)
4351 {
4352 dwarf2_per_objfile->signatured_types = NULL;
4353 return 0;
4354 }
4355
4356 dwarf2_per_objfile->signatured_types = types_htab;
4357
4358 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4359 dwarf2_per_objfile->all_type_units
4360 = obstack_alloc (&objfile->objfile_obstack,
4361 dwarf2_per_objfile->n_type_units
4362 * sizeof (struct signatured_type *));
4363 iter = &dwarf2_per_objfile->all_type_units[0];
4364 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4365 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4366 == dwarf2_per_objfile->n_type_units);
4367
4368 return 1;
4369 }
4370
4371 /* Lookup a signature based type for DW_FORM_ref_sig8.
4372 Returns NULL if signature SIG is not present in the table.
4373 It is up to the caller to complain about this. */
4374
4375 static struct signatured_type *
4376 lookup_signatured_type (ULONGEST sig)
4377 {
4378 struct signatured_type find_entry, *entry;
4379
4380 if (dwarf2_per_objfile->signatured_types == NULL)
4381 return NULL;
4382 find_entry.signature = sig;
4383 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4384 return entry;
4385 }
4386 \f
4387 /* Low level DIE reading support. */
4388
4389 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4390
4391 static void
4392 init_cu_die_reader (struct die_reader_specs *reader,
4393 struct dwarf2_cu *cu,
4394 struct dwarf2_section_info *section,
4395 struct dwo_file *dwo_file)
4396 {
4397 gdb_assert (section->readin && section->buffer != NULL);
4398 reader->abfd = section->asection->owner;
4399 reader->cu = cu;
4400 reader->dwo_file = dwo_file;
4401 reader->die_section = section;
4402 reader->buffer = section->buffer;
4403 reader->buffer_end = section->buffer + section->size;
4404 }
4405
4406 /* Subroutine of init_cutu_and_read_dies to simplify it.
4407 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4408 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4409 already.
4410
4411 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4412 from it to the DIE in the DWO. If NULL we are skipping the stub.
4413 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4414 are filled in with the info of the DIE from the DWO file.
4415 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4416 provided an abbrev table to use.
4417 The result is non-zero if a valid (non-dummy) DIE was found. */
4418
4419 static int
4420 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4421 struct dwo_unit *dwo_unit,
4422 int abbrev_table_provided,
4423 struct die_info *stub_comp_unit_die,
4424 struct die_reader_specs *result_reader,
4425 const gdb_byte **result_info_ptr,
4426 struct die_info **result_comp_unit_die,
4427 int *result_has_children)
4428 {
4429 struct objfile *objfile = dwarf2_per_objfile->objfile;
4430 struct dwarf2_cu *cu = this_cu->cu;
4431 struct dwarf2_section_info *section;
4432 bfd *abfd;
4433 const gdb_byte *begin_info_ptr, *info_ptr;
4434 const char *comp_dir_string;
4435 ULONGEST signature; /* Or dwo_id. */
4436 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4437 int i,num_extra_attrs;
4438 struct dwarf2_section_info *dwo_abbrev_section;
4439 struct attribute *attr;
4440 struct die_info *comp_unit_die;
4441
4442 /* These attributes aren't processed until later:
4443 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4444 However, the attribute is found in the stub which we won't have later.
4445 In order to not impose this complication on the rest of the code,
4446 we read them here and copy them to the DWO CU/TU die. */
4447
4448 stmt_list = NULL;
4449 low_pc = NULL;
4450 high_pc = NULL;
4451 ranges = NULL;
4452 comp_dir = NULL;
4453
4454 if (stub_comp_unit_die != NULL)
4455 {
4456 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4457 DWO file. */
4458 if (! this_cu->is_debug_types)
4459 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4460 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4461 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4462 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4463 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4464
4465 /* There should be a DW_AT_addr_base attribute here (if needed).
4466 We need the value before we can process DW_FORM_GNU_addr_index. */
4467 cu->addr_base = 0;
4468 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4469 if (attr)
4470 cu->addr_base = DW_UNSND (attr);
4471
4472 /* There should be a DW_AT_ranges_base attribute here (if needed).
4473 We need the value before we can process DW_AT_ranges. */
4474 cu->ranges_base = 0;
4475 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4476 if (attr)
4477 cu->ranges_base = DW_UNSND (attr);
4478 }
4479
4480 /* Set up for reading the DWO CU/TU. */
4481 cu->dwo_unit = dwo_unit;
4482 section = dwo_unit->section;
4483 dwarf2_read_section (objfile, section);
4484 abfd = section->asection->owner;
4485 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4486 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4487 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
4488
4489 if (this_cu->is_debug_types)
4490 {
4491 ULONGEST header_signature;
4492 cu_offset type_offset_in_tu;
4493 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
4494
4495 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4496 dwo_abbrev_section,
4497 info_ptr,
4498 &header_signature,
4499 &type_offset_in_tu);
4500 gdb_assert (sig_type->signature == header_signature);
4501 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4502 /* For DWOs coming from DWP files, we don't know the CU length
4503 nor the type's offset in the TU until now. */
4504 dwo_unit->length = get_cu_length (&cu->header);
4505 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4506
4507 /* Establish the type offset that can be used to lookup the type.
4508 For DWO files, we don't know it until now. */
4509 sig_type->type_offset_in_section.sect_off =
4510 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4511 }
4512 else
4513 {
4514 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4515 dwo_abbrev_section,
4516 info_ptr, 0);
4517 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4518 /* For DWOs coming from DWP files, we don't know the CU length
4519 until now. */
4520 dwo_unit->length = get_cu_length (&cu->header);
4521 }
4522
4523 /* Replace the CU's original abbrev table with the DWO's.
4524 Reminder: We can't read the abbrev table until we've read the header. */
4525 if (abbrev_table_provided)
4526 {
4527 /* Don't free the provided abbrev table, the caller of
4528 init_cutu_and_read_dies owns it. */
4529 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4530 /* Ensure the DWO abbrev table gets freed. */
4531 make_cleanup (dwarf2_free_abbrev_table, cu);
4532 }
4533 else
4534 {
4535 dwarf2_free_abbrev_table (cu);
4536 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4537 /* Leave any existing abbrev table cleanup as is. */
4538 }
4539
4540 /* Read in the die, but leave space to copy over the attributes
4541 from the stub. This has the benefit of simplifying the rest of
4542 the code - all the work to maintain the illusion of a single
4543 DW_TAG_{compile,type}_unit DIE is done here. */
4544 num_extra_attrs = ((stmt_list != NULL)
4545 + (low_pc != NULL)
4546 + (high_pc != NULL)
4547 + (ranges != NULL)
4548 + (comp_dir != NULL));
4549 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
4550 result_has_children, num_extra_attrs);
4551
4552 /* Copy over the attributes from the stub to the DIE we just read in. */
4553 comp_unit_die = *result_comp_unit_die;
4554 i = comp_unit_die->num_attrs;
4555 if (stmt_list != NULL)
4556 comp_unit_die->attrs[i++] = *stmt_list;
4557 if (low_pc != NULL)
4558 comp_unit_die->attrs[i++] = *low_pc;
4559 if (high_pc != NULL)
4560 comp_unit_die->attrs[i++] = *high_pc;
4561 if (ranges != NULL)
4562 comp_unit_die->attrs[i++] = *ranges;
4563 if (comp_dir != NULL)
4564 comp_unit_die->attrs[i++] = *comp_dir;
4565 comp_unit_die->num_attrs += num_extra_attrs;
4566
4567 if (dwarf2_die_debug)
4568 {
4569 fprintf_unfiltered (gdb_stdlog,
4570 "Read die from %s@0x%x of %s:\n",
4571 bfd_section_name (abfd, section->asection),
4572 (unsigned) (begin_info_ptr - section->buffer),
4573 bfd_get_filename (abfd));
4574 dump_die (comp_unit_die, dwarf2_die_debug);
4575 }
4576
4577 /* Skip dummy compilation units. */
4578 if (info_ptr >= begin_info_ptr + dwo_unit->length
4579 || peek_abbrev_code (abfd, info_ptr) == 0)
4580 return 0;
4581
4582 *result_info_ptr = info_ptr;
4583 return 1;
4584 }
4585
4586 /* Subroutine of init_cutu_and_read_dies to simplify it.
4587 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
4588 If the specified DWO unit cannot be found an error is thrown. */
4589
4590 static struct dwo_unit *
4591 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
4592 struct die_info *comp_unit_die)
4593 {
4594 struct dwarf2_cu *cu = this_cu->cu;
4595 struct attribute *attr;
4596 ULONGEST signature;
4597 struct dwo_unit *dwo_unit;
4598 const char *comp_dir, *dwo_name;
4599
4600 /* Yeah, we look dwo_name up again, but it simplifies the code. */
4601 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4602 gdb_assert (attr != NULL);
4603 dwo_name = DW_STRING (attr);
4604 comp_dir = NULL;
4605 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4606 if (attr)
4607 comp_dir = DW_STRING (attr);
4608
4609 if (this_cu->is_debug_types)
4610 {
4611 struct signatured_type *sig_type;
4612
4613 /* Since this_cu is the first member of struct signatured_type,
4614 we can go from a pointer to one to a pointer to the other. */
4615 sig_type = (struct signatured_type *) this_cu;
4616 signature = sig_type->signature;
4617 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
4618 }
4619 else
4620 {
4621 struct attribute *attr;
4622
4623 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4624 if (! attr)
4625 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
4626 " [in module %s]"),
4627 dwo_name, this_cu->objfile->name);
4628 signature = DW_UNSND (attr);
4629 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
4630 signature);
4631 }
4632
4633 if (dwo_unit == NULL)
4634 {
4635 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
4636 " with ID %s [in module %s]"),
4637 this_cu->offset.sect_off,
4638 phex (signature, sizeof (signature)),
4639 this_cu->objfile->name);
4640 }
4641
4642 return dwo_unit;
4643 }
4644
4645 /* Initialize a CU (or TU) and read its DIEs.
4646 If the CU defers to a DWO file, read the DWO file as well.
4647
4648 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4649 Otherwise the table specified in the comp unit header is read in and used.
4650 This is an optimization for when we already have the abbrev table.
4651
4652 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4653 Otherwise, a new CU is allocated with xmalloc.
4654
4655 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4656 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4657
4658 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4659 linker) then DIE_READER_FUNC will not get called. */
4660
4661 static void
4662 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4663 struct abbrev_table *abbrev_table,
4664 int use_existing_cu, int keep,
4665 die_reader_func_ftype *die_reader_func,
4666 void *data)
4667 {
4668 struct objfile *objfile = dwarf2_per_objfile->objfile;
4669 struct dwarf2_section_info *section = this_cu->section;
4670 bfd *abfd = section->asection->owner;
4671 struct dwarf2_cu *cu;
4672 const gdb_byte *begin_info_ptr, *info_ptr;
4673 struct die_reader_specs reader;
4674 struct die_info *comp_unit_die;
4675 int has_children;
4676 struct attribute *attr;
4677 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4678 struct signatured_type *sig_type = NULL;
4679 struct dwarf2_section_info *abbrev_section;
4680 /* Non-zero if CU currently points to a DWO file and we need to
4681 reread it. When this happens we need to reread the skeleton die
4682 before we can reread the DWO file. */
4683 int rereading_dwo_cu = 0;
4684
4685 if (dwarf2_die_debug)
4686 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4687 this_cu->is_debug_types ? "type" : "comp",
4688 this_cu->offset.sect_off);
4689
4690 if (use_existing_cu)
4691 gdb_assert (keep);
4692
4693 cleanups = make_cleanup (null_cleanup, NULL);
4694
4695 /* This is cheap if the section is already read in. */
4696 dwarf2_read_section (objfile, section);
4697
4698 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4699
4700 abbrev_section = get_abbrev_section_for_cu (this_cu);
4701
4702 if (use_existing_cu && this_cu->cu != NULL)
4703 {
4704 cu = this_cu->cu;
4705
4706 /* If this CU is from a DWO file we need to start over, we need to
4707 refetch the attributes from the skeleton CU.
4708 This could be optimized by retrieving those attributes from when we
4709 were here the first time: the previous comp_unit_die was stored in
4710 comp_unit_obstack. But there's no data yet that we need this
4711 optimization. */
4712 if (cu->dwo_unit != NULL)
4713 rereading_dwo_cu = 1;
4714 }
4715 else
4716 {
4717 /* If !use_existing_cu, this_cu->cu must be NULL. */
4718 gdb_assert (this_cu->cu == NULL);
4719
4720 cu = xmalloc (sizeof (*cu));
4721 init_one_comp_unit (cu, this_cu);
4722
4723 /* If an error occurs while loading, release our storage. */
4724 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4725 }
4726
4727 /* Get the header. */
4728 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
4729 {
4730 /* We already have the header, there's no need to read it in again. */
4731 info_ptr += cu->header.first_die_offset.cu_off;
4732 }
4733 else
4734 {
4735 if (this_cu->is_debug_types)
4736 {
4737 ULONGEST signature;
4738 cu_offset type_offset_in_tu;
4739
4740 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4741 abbrev_section, info_ptr,
4742 &signature,
4743 &type_offset_in_tu);
4744
4745 /* Since per_cu is the first member of struct signatured_type,
4746 we can go from a pointer to one to a pointer to the other. */
4747 sig_type = (struct signatured_type *) this_cu;
4748 gdb_assert (sig_type->signature == signature);
4749 gdb_assert (sig_type->type_offset_in_tu.cu_off
4750 == type_offset_in_tu.cu_off);
4751 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4752
4753 /* LENGTH has not been set yet for type units if we're
4754 using .gdb_index. */
4755 this_cu->length = get_cu_length (&cu->header);
4756
4757 /* Establish the type offset that can be used to lookup the type. */
4758 sig_type->type_offset_in_section.sect_off =
4759 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
4760 }
4761 else
4762 {
4763 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4764 abbrev_section,
4765 info_ptr, 0);
4766
4767 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4768 gdb_assert (this_cu->length == get_cu_length (&cu->header));
4769 }
4770 }
4771
4772 /* Skip dummy compilation units. */
4773 if (info_ptr >= begin_info_ptr + this_cu->length
4774 || peek_abbrev_code (abfd, info_ptr) == 0)
4775 {
4776 do_cleanups (cleanups);
4777 return;
4778 }
4779
4780 /* If we don't have them yet, read the abbrevs for this compilation unit.
4781 And if we need to read them now, make sure they're freed when we're
4782 done. Note that it's important that if the CU had an abbrev table
4783 on entry we don't free it when we're done: Somewhere up the call stack
4784 it may be in use. */
4785 if (abbrev_table != NULL)
4786 {
4787 gdb_assert (cu->abbrev_table == NULL);
4788 gdb_assert (cu->header.abbrev_offset.sect_off
4789 == abbrev_table->offset.sect_off);
4790 cu->abbrev_table = abbrev_table;
4791 }
4792 else if (cu->abbrev_table == NULL)
4793 {
4794 dwarf2_read_abbrevs (cu, abbrev_section);
4795 make_cleanup (dwarf2_free_abbrev_table, cu);
4796 }
4797 else if (rereading_dwo_cu)
4798 {
4799 dwarf2_free_abbrev_table (cu);
4800 dwarf2_read_abbrevs (cu, abbrev_section);
4801 }
4802
4803 /* Read the top level CU/TU die. */
4804 init_cu_die_reader (&reader, cu, section, NULL);
4805 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4806
4807 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
4808 from the DWO file.
4809 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
4810 DWO CU, that this test will fail (the attribute will not be present). */
4811 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4812 if (attr)
4813 {
4814 struct dwo_unit *dwo_unit;
4815 struct die_info *dwo_comp_unit_die;
4816
4817 if (has_children)
4818 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
4819 " has children (offset 0x%x) [in module %s]"),
4820 this_cu->offset.sect_off, bfd_get_filename (abfd));
4821 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
4822 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
4823 abbrev_table != NULL,
4824 comp_unit_die,
4825 &reader, &info_ptr,
4826 &dwo_comp_unit_die, &has_children) == 0)
4827 {
4828 /* Dummy die. */
4829 do_cleanups (cleanups);
4830 return;
4831 }
4832 comp_unit_die = dwo_comp_unit_die;
4833 }
4834
4835 /* All of the above is setup for this call. Yikes. */
4836 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4837
4838 /* Done, clean up. */
4839 if (free_cu_cleanup != NULL)
4840 {
4841 if (keep)
4842 {
4843 /* We've successfully allocated this compilation unit. Let our
4844 caller clean it up when finished with it. */
4845 discard_cleanups (free_cu_cleanup);
4846
4847 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4848 So we have to manually free the abbrev table. */
4849 dwarf2_free_abbrev_table (cu);
4850
4851 /* Link this CU into read_in_chain. */
4852 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4853 dwarf2_per_objfile->read_in_chain = this_cu;
4854 }
4855 else
4856 do_cleanups (free_cu_cleanup);
4857 }
4858
4859 do_cleanups (cleanups);
4860 }
4861
4862 /* Read CU/TU THIS_CU in section SECTION,
4863 but do not follow DW_AT_GNU_dwo_name if present.
4864 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
4865 to have already done the lookup to find the DWO/DWP file).
4866
4867 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
4868 THIS_CU->is_debug_types, but nothing else.
4869
4870 We fill in THIS_CU->length.
4871
4872 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4873 linker) then DIE_READER_FUNC will not get called.
4874
4875 THIS_CU->cu is always freed when done.
4876 This is done in order to not leave THIS_CU->cu in a state where we have
4877 to care whether it refers to the "main" CU or the DWO CU. */
4878
4879 static void
4880 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4881 struct dwarf2_section_info *abbrev_section,
4882 struct dwo_file *dwo_file,
4883 die_reader_func_ftype *die_reader_func,
4884 void *data)
4885 {
4886 struct objfile *objfile = dwarf2_per_objfile->objfile;
4887 struct dwarf2_section_info *section = this_cu->section;
4888 bfd *abfd = section->asection->owner;
4889 struct dwarf2_cu cu;
4890 const gdb_byte *begin_info_ptr, *info_ptr;
4891 struct die_reader_specs reader;
4892 struct cleanup *cleanups;
4893 struct die_info *comp_unit_die;
4894 int has_children;
4895
4896 if (dwarf2_die_debug)
4897 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4898 this_cu->is_debug_types ? "type" : "comp",
4899 this_cu->offset.sect_off);
4900
4901 gdb_assert (this_cu->cu == NULL);
4902
4903 /* This is cheap if the section is already read in. */
4904 dwarf2_read_section (objfile, section);
4905
4906 init_one_comp_unit (&cu, this_cu);
4907
4908 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4909
4910 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4911 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
4912 abbrev_section, info_ptr,
4913 this_cu->is_debug_types);
4914
4915 this_cu->length = get_cu_length (&cu.header);
4916
4917 /* Skip dummy compilation units. */
4918 if (info_ptr >= begin_info_ptr + this_cu->length
4919 || peek_abbrev_code (abfd, info_ptr) == 0)
4920 {
4921 do_cleanups (cleanups);
4922 return;
4923 }
4924
4925 dwarf2_read_abbrevs (&cu, abbrev_section);
4926 make_cleanup (dwarf2_free_abbrev_table, &cu);
4927
4928 init_cu_die_reader (&reader, &cu, section, dwo_file);
4929 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4930
4931 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4932
4933 do_cleanups (cleanups);
4934 }
4935
4936 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4937 does not lookup the specified DWO file.
4938 This cannot be used to read DWO files.
4939
4940 THIS_CU->cu is always freed when done.
4941 This is done in order to not leave THIS_CU->cu in a state where we have
4942 to care whether it refers to the "main" CU or the DWO CU.
4943 We can revisit this if the data shows there's a performance issue. */
4944
4945 static void
4946 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4947 die_reader_func_ftype *die_reader_func,
4948 void *data)
4949 {
4950 init_cutu_and_read_dies_no_follow (this_cu,
4951 get_abbrev_section_for_cu (this_cu),
4952 NULL,
4953 die_reader_func, data);
4954 }
4955 \f
4956 /* Type Unit Groups.
4957
4958 Type Unit Groups are a way to collapse the set of all TUs (type units) into
4959 a more manageable set. The grouping is done by DW_AT_stmt_list entry
4960 so that all types coming from the same compilation (.o file) are grouped
4961 together. A future step could be to put the types in the same symtab as
4962 the CU the types ultimately came from. */
4963
4964 static hashval_t
4965 hash_type_unit_group (const void *item)
4966 {
4967 const struct type_unit_group *tu_group = item;
4968
4969 return hash_stmt_list_entry (&tu_group->hash);
4970 }
4971
4972 static int
4973 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
4974 {
4975 const struct type_unit_group *lhs = item_lhs;
4976 const struct type_unit_group *rhs = item_rhs;
4977
4978 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
4979 }
4980
4981 /* Allocate a hash table for type unit groups. */
4982
4983 static htab_t
4984 allocate_type_unit_groups_table (void)
4985 {
4986 return htab_create_alloc_ex (3,
4987 hash_type_unit_group,
4988 eq_type_unit_group,
4989 NULL,
4990 &dwarf2_per_objfile->objfile->objfile_obstack,
4991 hashtab_obstack_allocate,
4992 dummy_obstack_deallocate);
4993 }
4994
4995 /* Type units that don't have DW_AT_stmt_list are grouped into their own
4996 partial symtabs. We combine several TUs per psymtab to not let the size
4997 of any one psymtab grow too big. */
4998 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
4999 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5000
5001 /* Helper routine for get_type_unit_group.
5002 Create the type_unit_group object used to hold one or more TUs. */
5003
5004 static struct type_unit_group *
5005 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5006 {
5007 struct objfile *objfile = dwarf2_per_objfile->objfile;
5008 struct dwarf2_per_cu_data *per_cu;
5009 struct type_unit_group *tu_group;
5010
5011 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5012 struct type_unit_group);
5013 per_cu = &tu_group->per_cu;
5014 per_cu->objfile = objfile;
5015
5016 if (dwarf2_per_objfile->using_index)
5017 {
5018 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5019 struct dwarf2_per_cu_quick_data);
5020 }
5021 else
5022 {
5023 unsigned int line_offset = line_offset_struct.sect_off;
5024 struct partial_symtab *pst;
5025 char *name;
5026
5027 /* Give the symtab a useful name for debug purposes. */
5028 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5029 name = xstrprintf ("<type_units_%d>",
5030 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5031 else
5032 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5033
5034 pst = create_partial_symtab (per_cu, name);
5035 pst->anonymous = 1;
5036
5037 xfree (name);
5038 }
5039
5040 tu_group->hash.dwo_unit = cu->dwo_unit;
5041 tu_group->hash.line_offset = line_offset_struct;
5042
5043 return tu_group;
5044 }
5045
5046 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5047 STMT_LIST is a DW_AT_stmt_list attribute. */
5048
5049 static struct type_unit_group *
5050 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
5051 {
5052 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5053 struct type_unit_group *tu_group;
5054 void **slot;
5055 unsigned int line_offset;
5056 struct type_unit_group type_unit_group_for_lookup;
5057
5058 if (dwarf2_per_objfile->type_unit_groups == NULL)
5059 {
5060 dwarf2_per_objfile->type_unit_groups =
5061 allocate_type_unit_groups_table ();
5062 }
5063
5064 /* Do we need to create a new group, or can we use an existing one? */
5065
5066 if (stmt_list)
5067 {
5068 line_offset = DW_UNSND (stmt_list);
5069 ++tu_stats->nr_symtab_sharers;
5070 }
5071 else
5072 {
5073 /* Ugh, no stmt_list. Rare, but we have to handle it.
5074 We can do various things here like create one group per TU or
5075 spread them over multiple groups to split up the expansion work.
5076 To avoid worst case scenarios (too many groups or too large groups)
5077 we, umm, group them in bunches. */
5078 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5079 | (tu_stats->nr_stmt_less_type_units
5080 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5081 ++tu_stats->nr_stmt_less_type_units;
5082 }
5083
5084 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5085 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5086 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5087 &type_unit_group_for_lookup, INSERT);
5088 if (*slot != NULL)
5089 {
5090 tu_group = *slot;
5091 gdb_assert (tu_group != NULL);
5092 }
5093 else
5094 {
5095 sect_offset line_offset_struct;
5096
5097 line_offset_struct.sect_off = line_offset;
5098 tu_group = create_type_unit_group (cu, line_offset_struct);
5099 *slot = tu_group;
5100 ++tu_stats->nr_symtabs;
5101 }
5102
5103 return tu_group;
5104 }
5105
5106 /* Struct used to sort TUs by their abbreviation table offset. */
5107
5108 struct tu_abbrev_offset
5109 {
5110 struct signatured_type *sig_type;
5111 sect_offset abbrev_offset;
5112 };
5113
5114 /* Helper routine for build_type_unit_groups, passed to qsort. */
5115
5116 static int
5117 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5118 {
5119 const struct tu_abbrev_offset * const *a = ap;
5120 const struct tu_abbrev_offset * const *b = bp;
5121 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5122 unsigned int boff = (*b)->abbrev_offset.sect_off;
5123
5124 return (aoff > boff) - (aoff < boff);
5125 }
5126
5127 /* A helper function to add a type_unit_group to a table. */
5128
5129 static int
5130 add_type_unit_group_to_table (void **slot, void *datum)
5131 {
5132 struct type_unit_group *tu_group = *slot;
5133 struct type_unit_group ***datap = datum;
5134
5135 **datap = tu_group;
5136 ++*datap;
5137
5138 return 1;
5139 }
5140
5141 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5142 each one passing FUNC,DATA.
5143
5144 The efficiency is because we sort TUs by the abbrev table they use and
5145 only read each abbrev table once. In one program there are 200K TUs
5146 sharing 8K abbrev tables.
5147
5148 The main purpose of this function is to support building the
5149 dwarf2_per_objfile->type_unit_groups table.
5150 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5151 can collapse the search space by grouping them by stmt_list.
5152 The savings can be significant, in the same program from above the 200K TUs
5153 share 8K stmt_list tables.
5154
5155 FUNC is expected to call get_type_unit_group, which will create the
5156 struct type_unit_group if necessary and add it to
5157 dwarf2_per_objfile->type_unit_groups. */
5158
5159 static void
5160 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5161 {
5162 struct objfile *objfile = dwarf2_per_objfile->objfile;
5163 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5164 struct cleanup *cleanups;
5165 struct abbrev_table *abbrev_table;
5166 sect_offset abbrev_offset;
5167 struct tu_abbrev_offset *sorted_by_abbrev;
5168 struct type_unit_group **iter;
5169 int i;
5170
5171 /* It's up to the caller to not call us multiple times. */
5172 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5173
5174 if (dwarf2_per_objfile->n_type_units == 0)
5175 return;
5176
5177 /* TUs typically share abbrev tables, and there can be way more TUs than
5178 abbrev tables. Sort by abbrev table to reduce the number of times we
5179 read each abbrev table in.
5180 Alternatives are to punt or to maintain a cache of abbrev tables.
5181 This is simpler and efficient enough for now.
5182
5183 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5184 symtab to use). Typically TUs with the same abbrev offset have the same
5185 stmt_list value too so in practice this should work well.
5186
5187 The basic algorithm here is:
5188
5189 sort TUs by abbrev table
5190 for each TU with same abbrev table:
5191 read abbrev table if first user
5192 read TU top level DIE
5193 [IWBN if DWO skeletons had DW_AT_stmt_list]
5194 call FUNC */
5195
5196 if (dwarf2_read_debug)
5197 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5198
5199 /* Sort in a separate table to maintain the order of all_type_units
5200 for .gdb_index: TU indices directly index all_type_units. */
5201 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5202 dwarf2_per_objfile->n_type_units);
5203 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5204 {
5205 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5206
5207 sorted_by_abbrev[i].sig_type = sig_type;
5208 sorted_by_abbrev[i].abbrev_offset =
5209 read_abbrev_offset (sig_type->per_cu.section,
5210 sig_type->per_cu.offset);
5211 }
5212 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5213 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5214 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5215
5216 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5217 called any number of times, so we don't reset tu_stats here. */
5218
5219 abbrev_offset.sect_off = ~(unsigned) 0;
5220 abbrev_table = NULL;
5221 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5222
5223 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5224 {
5225 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5226
5227 /* Switch to the next abbrev table if necessary. */
5228 if (abbrev_table == NULL
5229 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5230 {
5231 if (abbrev_table != NULL)
5232 {
5233 abbrev_table_free (abbrev_table);
5234 /* Reset to NULL in case abbrev_table_read_table throws
5235 an error: abbrev_table_free_cleanup will get called. */
5236 abbrev_table = NULL;
5237 }
5238 abbrev_offset = tu->abbrev_offset;
5239 abbrev_table =
5240 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5241 abbrev_offset);
5242 ++tu_stats->nr_uniq_abbrev_tables;
5243 }
5244
5245 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5246 func, data);
5247 }
5248
5249 /* Create a vector of pointers to primary type units to make it easy to
5250 iterate over them and CUs. See dw2_get_primary_cu. */
5251 dwarf2_per_objfile->n_type_unit_groups =
5252 htab_elements (dwarf2_per_objfile->type_unit_groups);
5253 dwarf2_per_objfile->all_type_unit_groups =
5254 obstack_alloc (&objfile->objfile_obstack,
5255 dwarf2_per_objfile->n_type_unit_groups
5256 * sizeof (struct type_unit_group *));
5257 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5258 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5259 add_type_unit_group_to_table, &iter);
5260 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5261 == dwarf2_per_objfile->n_type_unit_groups);
5262
5263 do_cleanups (cleanups);
5264
5265 if (dwarf2_read_debug)
5266 {
5267 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5268 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5269 dwarf2_per_objfile->n_type_units);
5270 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5271 tu_stats->nr_uniq_abbrev_tables);
5272 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5273 tu_stats->nr_symtabs);
5274 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5275 tu_stats->nr_symtab_sharers);
5276 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5277 tu_stats->nr_stmt_less_type_units);
5278 }
5279 }
5280 \f
5281 /* Partial symbol tables. */
5282
5283 /* Create a psymtab named NAME and assign it to PER_CU.
5284
5285 The caller must fill in the following details:
5286 dirname, textlow, texthigh. */
5287
5288 static struct partial_symtab *
5289 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5290 {
5291 struct objfile *objfile = per_cu->objfile;
5292 struct partial_symtab *pst;
5293
5294 pst = start_psymtab_common (objfile, objfile->section_offsets,
5295 name, 0,
5296 objfile->global_psymbols.next,
5297 objfile->static_psymbols.next);
5298
5299 pst->psymtabs_addrmap_supported = 1;
5300
5301 /* This is the glue that links PST into GDB's symbol API. */
5302 pst->read_symtab_private = per_cu;
5303 pst->read_symtab = dwarf2_read_symtab;
5304 per_cu->v.psymtab = pst;
5305
5306 return pst;
5307 }
5308
5309 /* die_reader_func for process_psymtab_comp_unit. */
5310
5311 static void
5312 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5313 const gdb_byte *info_ptr,
5314 struct die_info *comp_unit_die,
5315 int has_children,
5316 void *data)
5317 {
5318 struct dwarf2_cu *cu = reader->cu;
5319 struct objfile *objfile = cu->objfile;
5320 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5321 struct attribute *attr;
5322 CORE_ADDR baseaddr;
5323 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5324 struct partial_symtab *pst;
5325 int has_pc_info;
5326 const char *filename;
5327 int *want_partial_unit_ptr = data;
5328
5329 if (comp_unit_die->tag == DW_TAG_partial_unit
5330 && (want_partial_unit_ptr == NULL
5331 || !*want_partial_unit_ptr))
5332 return;
5333
5334 gdb_assert (! per_cu->is_debug_types);
5335
5336 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5337
5338 cu->list_in_scope = &file_symbols;
5339
5340 /* Allocate a new partial symbol table structure. */
5341 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5342 if (attr == NULL || !DW_STRING (attr))
5343 filename = "";
5344 else
5345 filename = DW_STRING (attr);
5346
5347 pst = create_partial_symtab (per_cu, filename);
5348
5349 /* This must be done before calling dwarf2_build_include_psymtabs. */
5350 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5351 if (attr != NULL)
5352 pst->dirname = DW_STRING (attr);
5353
5354 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5355
5356 dwarf2_find_base_address (comp_unit_die, cu);
5357
5358 /* Possibly set the default values of LOWPC and HIGHPC from
5359 `DW_AT_ranges'. */
5360 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5361 &best_highpc, cu, pst);
5362 if (has_pc_info == 1 && best_lowpc < best_highpc)
5363 /* Store the contiguous range if it is not empty; it can be empty for
5364 CUs with no code. */
5365 addrmap_set_empty (objfile->psymtabs_addrmap,
5366 best_lowpc + baseaddr,
5367 best_highpc + baseaddr - 1, pst);
5368
5369 /* Check if comp unit has_children.
5370 If so, read the rest of the partial symbols from this comp unit.
5371 If not, there's no more debug_info for this comp unit. */
5372 if (has_children)
5373 {
5374 struct partial_die_info *first_die;
5375 CORE_ADDR lowpc, highpc;
5376
5377 lowpc = ((CORE_ADDR) -1);
5378 highpc = ((CORE_ADDR) 0);
5379
5380 first_die = load_partial_dies (reader, info_ptr, 1);
5381
5382 scan_partial_symbols (first_die, &lowpc, &highpc,
5383 ! has_pc_info, cu);
5384
5385 /* If we didn't find a lowpc, set it to highpc to avoid
5386 complaints from `maint check'. */
5387 if (lowpc == ((CORE_ADDR) -1))
5388 lowpc = highpc;
5389
5390 /* If the compilation unit didn't have an explicit address range,
5391 then use the information extracted from its child dies. */
5392 if (! has_pc_info)
5393 {
5394 best_lowpc = lowpc;
5395 best_highpc = highpc;
5396 }
5397 }
5398 pst->textlow = best_lowpc + baseaddr;
5399 pst->texthigh = best_highpc + baseaddr;
5400
5401 pst->n_global_syms = objfile->global_psymbols.next -
5402 (objfile->global_psymbols.list + pst->globals_offset);
5403 pst->n_static_syms = objfile->static_psymbols.next -
5404 (objfile->static_psymbols.list + pst->statics_offset);
5405 sort_pst_symbols (objfile, pst);
5406
5407 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5408 {
5409 int i;
5410 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5411 struct dwarf2_per_cu_data *iter;
5412
5413 /* Fill in 'dependencies' here; we fill in 'users' in a
5414 post-pass. */
5415 pst->number_of_dependencies = len;
5416 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5417 len * sizeof (struct symtab *));
5418 for (i = 0;
5419 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5420 i, iter);
5421 ++i)
5422 pst->dependencies[i] = iter->v.psymtab;
5423
5424 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5425 }
5426
5427 /* Get the list of files included in the current compilation unit,
5428 and build a psymtab for each of them. */
5429 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5430
5431 if (dwarf2_read_debug)
5432 {
5433 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5434
5435 fprintf_unfiltered (gdb_stdlog,
5436 "Psymtab for %s unit @0x%x: %s - %s"
5437 ", %d global, %d static syms\n",
5438 per_cu->is_debug_types ? "type" : "comp",
5439 per_cu->offset.sect_off,
5440 paddress (gdbarch, pst->textlow),
5441 paddress (gdbarch, pst->texthigh),
5442 pst->n_global_syms, pst->n_static_syms);
5443 }
5444 }
5445
5446 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5447 Process compilation unit THIS_CU for a psymtab. */
5448
5449 static void
5450 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5451 int want_partial_unit)
5452 {
5453 /* If this compilation unit was already read in, free the
5454 cached copy in order to read it in again. This is
5455 necessary because we skipped some symbols when we first
5456 read in the compilation unit (see load_partial_dies).
5457 This problem could be avoided, but the benefit is unclear. */
5458 if (this_cu->cu != NULL)
5459 free_one_cached_comp_unit (this_cu);
5460
5461 gdb_assert (! this_cu->is_debug_types);
5462 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5463 process_psymtab_comp_unit_reader,
5464 &want_partial_unit);
5465
5466 /* Age out any secondary CUs. */
5467 age_cached_comp_units ();
5468 }
5469
5470 /* Reader function for build_type_psymtabs. */
5471
5472 static void
5473 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5474 const gdb_byte *info_ptr,
5475 struct die_info *type_unit_die,
5476 int has_children,
5477 void *data)
5478 {
5479 struct objfile *objfile = dwarf2_per_objfile->objfile;
5480 struct dwarf2_cu *cu = reader->cu;
5481 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5482 struct signatured_type *sig_type;
5483 struct type_unit_group *tu_group;
5484 struct attribute *attr;
5485 struct partial_die_info *first_die;
5486 CORE_ADDR lowpc, highpc;
5487 struct partial_symtab *pst;
5488
5489 gdb_assert (data == NULL);
5490 gdb_assert (per_cu->is_debug_types);
5491 sig_type = (struct signatured_type *) per_cu;
5492
5493 if (! has_children)
5494 return;
5495
5496 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5497 tu_group = get_type_unit_group (cu, attr);
5498
5499 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
5500
5501 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5502 cu->list_in_scope = &file_symbols;
5503 pst = create_partial_symtab (per_cu, "");
5504 pst->anonymous = 1;
5505
5506 first_die = load_partial_dies (reader, info_ptr, 1);
5507
5508 lowpc = (CORE_ADDR) -1;
5509 highpc = (CORE_ADDR) 0;
5510 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5511
5512 pst->n_global_syms = objfile->global_psymbols.next -
5513 (objfile->global_psymbols.list + pst->globals_offset);
5514 pst->n_static_syms = objfile->static_psymbols.next -
5515 (objfile->static_psymbols.list + pst->statics_offset);
5516 sort_pst_symbols (objfile, pst);
5517 }
5518
5519 /* Traversal function for build_type_psymtabs. */
5520
5521 static int
5522 build_type_psymtab_dependencies (void **slot, void *info)
5523 {
5524 struct objfile *objfile = dwarf2_per_objfile->objfile;
5525 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5526 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5527 struct partial_symtab *pst = per_cu->v.psymtab;
5528 int len = VEC_length (sig_type_ptr, tu_group->tus);
5529 struct signatured_type *iter;
5530 int i;
5531
5532 gdb_assert (len > 0);
5533 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
5534
5535 pst->number_of_dependencies = len;
5536 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5537 len * sizeof (struct psymtab *));
5538 for (i = 0;
5539 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
5540 ++i)
5541 {
5542 gdb_assert (iter->per_cu.is_debug_types);
5543 pst->dependencies[i] = iter->per_cu.v.psymtab;
5544 iter->type_unit_group = tu_group;
5545 }
5546
5547 VEC_free (sig_type_ptr, tu_group->tus);
5548
5549 return 1;
5550 }
5551
5552 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5553 Build partial symbol tables for the .debug_types comp-units. */
5554
5555 static void
5556 build_type_psymtabs (struct objfile *objfile)
5557 {
5558 if (! create_all_type_units (objfile))
5559 return;
5560
5561 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5562
5563 /* Now that all TUs have been processed we can fill in the dependencies. */
5564 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5565 build_type_psymtab_dependencies, NULL);
5566 }
5567
5568 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5569
5570 static void
5571 psymtabs_addrmap_cleanup (void *o)
5572 {
5573 struct objfile *objfile = o;
5574
5575 objfile->psymtabs_addrmap = NULL;
5576 }
5577
5578 /* Compute the 'user' field for each psymtab in OBJFILE. */
5579
5580 static void
5581 set_partial_user (struct objfile *objfile)
5582 {
5583 int i;
5584
5585 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5586 {
5587 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5588 struct partial_symtab *pst = per_cu->v.psymtab;
5589 int j;
5590
5591 if (pst == NULL)
5592 continue;
5593
5594 for (j = 0; j < pst->number_of_dependencies; ++j)
5595 {
5596 /* Set the 'user' field only if it is not already set. */
5597 if (pst->dependencies[j]->user == NULL)
5598 pst->dependencies[j]->user = pst;
5599 }
5600 }
5601 }
5602
5603 /* Build the partial symbol table by doing a quick pass through the
5604 .debug_info and .debug_abbrev sections. */
5605
5606 static void
5607 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5608 {
5609 struct cleanup *back_to, *addrmap_cleanup;
5610 struct obstack temp_obstack;
5611 int i;
5612
5613 if (dwarf2_read_debug)
5614 {
5615 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5616 objfile->name);
5617 }
5618
5619 dwarf2_per_objfile->reading_partial_symbols = 1;
5620
5621 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5622
5623 /* Any cached compilation units will be linked by the per-objfile
5624 read_in_chain. Make sure to free them when we're done. */
5625 back_to = make_cleanup (free_cached_comp_units, NULL);
5626
5627 build_type_psymtabs (objfile);
5628
5629 create_all_comp_units (objfile);
5630
5631 /* Create a temporary address map on a temporary obstack. We later
5632 copy this to the final obstack. */
5633 obstack_init (&temp_obstack);
5634 make_cleanup_obstack_free (&temp_obstack);
5635 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5636 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5637
5638 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5639 {
5640 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5641
5642 process_psymtab_comp_unit (per_cu, 0);
5643 }
5644
5645 set_partial_user (objfile);
5646
5647 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5648 &objfile->objfile_obstack);
5649 discard_cleanups (addrmap_cleanup);
5650
5651 do_cleanups (back_to);
5652
5653 if (dwarf2_read_debug)
5654 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5655 objfile->name);
5656 }
5657
5658 /* die_reader_func for load_partial_comp_unit. */
5659
5660 static void
5661 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
5662 const gdb_byte *info_ptr,
5663 struct die_info *comp_unit_die,
5664 int has_children,
5665 void *data)
5666 {
5667 struct dwarf2_cu *cu = reader->cu;
5668
5669 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5670
5671 /* Check if comp unit has_children.
5672 If so, read the rest of the partial symbols from this comp unit.
5673 If not, there's no more debug_info for this comp unit. */
5674 if (has_children)
5675 load_partial_dies (reader, info_ptr, 0);
5676 }
5677
5678 /* Load the partial DIEs for a secondary CU into memory.
5679 This is also used when rereading a primary CU with load_all_dies. */
5680
5681 static void
5682 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
5683 {
5684 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
5685 load_partial_comp_unit_reader, NULL);
5686 }
5687
5688 static void
5689 read_comp_units_from_section (struct objfile *objfile,
5690 struct dwarf2_section_info *section,
5691 unsigned int is_dwz,
5692 int *n_allocated,
5693 int *n_comp_units,
5694 struct dwarf2_per_cu_data ***all_comp_units)
5695 {
5696 const gdb_byte *info_ptr;
5697 bfd *abfd = section->asection->owner;
5698
5699 if (dwarf2_read_debug)
5700 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
5701 section->asection->name, bfd_get_filename (abfd));
5702
5703 dwarf2_read_section (objfile, section);
5704
5705 info_ptr = section->buffer;
5706
5707 while (info_ptr < section->buffer + section->size)
5708 {
5709 unsigned int length, initial_length_size;
5710 struct dwarf2_per_cu_data *this_cu;
5711 sect_offset offset;
5712
5713 offset.sect_off = info_ptr - section->buffer;
5714
5715 /* Read just enough information to find out where the next
5716 compilation unit is. */
5717 length = read_initial_length (abfd, info_ptr, &initial_length_size);
5718
5719 /* Save the compilation unit for later lookup. */
5720 this_cu = obstack_alloc (&objfile->objfile_obstack,
5721 sizeof (struct dwarf2_per_cu_data));
5722 memset (this_cu, 0, sizeof (*this_cu));
5723 this_cu->offset = offset;
5724 this_cu->length = length + initial_length_size;
5725 this_cu->is_dwz = is_dwz;
5726 this_cu->objfile = objfile;
5727 this_cu->section = section;
5728
5729 if (*n_comp_units == *n_allocated)
5730 {
5731 *n_allocated *= 2;
5732 *all_comp_units = xrealloc (*all_comp_units,
5733 *n_allocated
5734 * sizeof (struct dwarf2_per_cu_data *));
5735 }
5736 (*all_comp_units)[*n_comp_units] = this_cu;
5737 ++*n_comp_units;
5738
5739 info_ptr = info_ptr + this_cu->length;
5740 }
5741 }
5742
5743 /* Create a list of all compilation units in OBJFILE.
5744 This is only done for -readnow and building partial symtabs. */
5745
5746 static void
5747 create_all_comp_units (struct objfile *objfile)
5748 {
5749 int n_allocated;
5750 int n_comp_units;
5751 struct dwarf2_per_cu_data **all_comp_units;
5752
5753 n_comp_units = 0;
5754 n_allocated = 10;
5755 all_comp_units = xmalloc (n_allocated
5756 * sizeof (struct dwarf2_per_cu_data *));
5757
5758 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
5759 &n_allocated, &n_comp_units, &all_comp_units);
5760
5761 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
5762 {
5763 struct dwz_file *dwz = dwarf2_get_dwz_file ();
5764
5765 read_comp_units_from_section (objfile, &dwz->info, 1,
5766 &n_allocated, &n_comp_units,
5767 &all_comp_units);
5768 }
5769
5770 dwarf2_per_objfile->all_comp_units
5771 = obstack_alloc (&objfile->objfile_obstack,
5772 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5773 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
5774 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5775 xfree (all_comp_units);
5776 dwarf2_per_objfile->n_comp_units = n_comp_units;
5777 }
5778
5779 /* Process all loaded DIEs for compilation unit CU, starting at
5780 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
5781 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
5782 DW_AT_ranges). If NEED_PC is set, then this function will set
5783 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
5784 and record the covered ranges in the addrmap. */
5785
5786 static void
5787 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5788 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5789 {
5790 struct partial_die_info *pdi;
5791
5792 /* Now, march along the PDI's, descending into ones which have
5793 interesting children but skipping the children of the other ones,
5794 until we reach the end of the compilation unit. */
5795
5796 pdi = first_die;
5797
5798 while (pdi != NULL)
5799 {
5800 fixup_partial_die (pdi, cu);
5801
5802 /* Anonymous namespaces or modules have no name but have interesting
5803 children, so we need to look at them. Ditto for anonymous
5804 enums. */
5805
5806 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
5807 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
5808 || pdi->tag == DW_TAG_imported_unit)
5809 {
5810 switch (pdi->tag)
5811 {
5812 case DW_TAG_subprogram:
5813 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
5814 break;
5815 case DW_TAG_constant:
5816 case DW_TAG_variable:
5817 case DW_TAG_typedef:
5818 case DW_TAG_union_type:
5819 if (!pdi->is_declaration)
5820 {
5821 add_partial_symbol (pdi, cu);
5822 }
5823 break;
5824 case DW_TAG_class_type:
5825 case DW_TAG_interface_type:
5826 case DW_TAG_structure_type:
5827 if (!pdi->is_declaration)
5828 {
5829 add_partial_symbol (pdi, cu);
5830 }
5831 break;
5832 case DW_TAG_enumeration_type:
5833 if (!pdi->is_declaration)
5834 add_partial_enumeration (pdi, cu);
5835 break;
5836 case DW_TAG_base_type:
5837 case DW_TAG_subrange_type:
5838 /* File scope base type definitions are added to the partial
5839 symbol table. */
5840 add_partial_symbol (pdi, cu);
5841 break;
5842 case DW_TAG_namespace:
5843 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
5844 break;
5845 case DW_TAG_module:
5846 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
5847 break;
5848 case DW_TAG_imported_unit:
5849 {
5850 struct dwarf2_per_cu_data *per_cu;
5851
5852 /* For now we don't handle imported units in type units. */
5853 if (cu->per_cu->is_debug_types)
5854 {
5855 error (_("Dwarf Error: DW_TAG_imported_unit is not"
5856 " supported in type units [in module %s]"),
5857 cu->objfile->name);
5858 }
5859
5860 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
5861 pdi->is_dwz,
5862 cu->objfile);
5863
5864 /* Go read the partial unit, if needed. */
5865 if (per_cu->v.psymtab == NULL)
5866 process_psymtab_comp_unit (per_cu, 1);
5867
5868 VEC_safe_push (dwarf2_per_cu_ptr,
5869 cu->per_cu->imported_symtabs, per_cu);
5870 }
5871 break;
5872 default:
5873 break;
5874 }
5875 }
5876
5877 /* If the die has a sibling, skip to the sibling. */
5878
5879 pdi = pdi->die_sibling;
5880 }
5881 }
5882
5883 /* Functions used to compute the fully scoped name of a partial DIE.
5884
5885 Normally, this is simple. For C++, the parent DIE's fully scoped
5886 name is concatenated with "::" and the partial DIE's name. For
5887 Java, the same thing occurs except that "." is used instead of "::".
5888 Enumerators are an exception; they use the scope of their parent
5889 enumeration type, i.e. the name of the enumeration type is not
5890 prepended to the enumerator.
5891
5892 There are two complexities. One is DW_AT_specification; in this
5893 case "parent" means the parent of the target of the specification,
5894 instead of the direct parent of the DIE. The other is compilers
5895 which do not emit DW_TAG_namespace; in this case we try to guess
5896 the fully qualified name of structure types from their members'
5897 linkage names. This must be done using the DIE's children rather
5898 than the children of any DW_AT_specification target. We only need
5899 to do this for structures at the top level, i.e. if the target of
5900 any DW_AT_specification (if any; otherwise the DIE itself) does not
5901 have a parent. */
5902
5903 /* Compute the scope prefix associated with PDI's parent, in
5904 compilation unit CU. The result will be allocated on CU's
5905 comp_unit_obstack, or a copy of the already allocated PDI->NAME
5906 field. NULL is returned if no prefix is necessary. */
5907 static const char *
5908 partial_die_parent_scope (struct partial_die_info *pdi,
5909 struct dwarf2_cu *cu)
5910 {
5911 const char *grandparent_scope;
5912 struct partial_die_info *parent, *real_pdi;
5913
5914 /* We need to look at our parent DIE; if we have a DW_AT_specification,
5915 then this means the parent of the specification DIE. */
5916
5917 real_pdi = pdi;
5918 while (real_pdi->has_specification)
5919 real_pdi = find_partial_die (real_pdi->spec_offset,
5920 real_pdi->spec_is_dwz, cu);
5921
5922 parent = real_pdi->die_parent;
5923 if (parent == NULL)
5924 return NULL;
5925
5926 if (parent->scope_set)
5927 return parent->scope;
5928
5929 fixup_partial_die (parent, cu);
5930
5931 grandparent_scope = partial_die_parent_scope (parent, cu);
5932
5933 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
5934 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
5935 Work around this problem here. */
5936 if (cu->language == language_cplus
5937 && parent->tag == DW_TAG_namespace
5938 && strcmp (parent->name, "::") == 0
5939 && grandparent_scope == NULL)
5940 {
5941 parent->scope = NULL;
5942 parent->scope_set = 1;
5943 return NULL;
5944 }
5945
5946 if (pdi->tag == DW_TAG_enumerator)
5947 /* Enumerators should not get the name of the enumeration as a prefix. */
5948 parent->scope = grandparent_scope;
5949 else if (parent->tag == DW_TAG_namespace
5950 || parent->tag == DW_TAG_module
5951 || parent->tag == DW_TAG_structure_type
5952 || parent->tag == DW_TAG_class_type
5953 || parent->tag == DW_TAG_interface_type
5954 || parent->tag == DW_TAG_union_type
5955 || parent->tag == DW_TAG_enumeration_type)
5956 {
5957 if (grandparent_scope == NULL)
5958 parent->scope = parent->name;
5959 else
5960 parent->scope = typename_concat (&cu->comp_unit_obstack,
5961 grandparent_scope,
5962 parent->name, 0, cu);
5963 }
5964 else
5965 {
5966 /* FIXME drow/2004-04-01: What should we be doing with
5967 function-local names? For partial symbols, we should probably be
5968 ignoring them. */
5969 complaint (&symfile_complaints,
5970 _("unhandled containing DIE tag %d for DIE at %d"),
5971 parent->tag, pdi->offset.sect_off);
5972 parent->scope = grandparent_scope;
5973 }
5974
5975 parent->scope_set = 1;
5976 return parent->scope;
5977 }
5978
5979 /* Return the fully scoped name associated with PDI, from compilation unit
5980 CU. The result will be allocated with malloc. */
5981
5982 static char *
5983 partial_die_full_name (struct partial_die_info *pdi,
5984 struct dwarf2_cu *cu)
5985 {
5986 const char *parent_scope;
5987
5988 /* If this is a template instantiation, we can not work out the
5989 template arguments from partial DIEs. So, unfortunately, we have
5990 to go through the full DIEs. At least any work we do building
5991 types here will be reused if full symbols are loaded later. */
5992 if (pdi->has_template_arguments)
5993 {
5994 fixup_partial_die (pdi, cu);
5995
5996 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
5997 {
5998 struct die_info *die;
5999 struct attribute attr;
6000 struct dwarf2_cu *ref_cu = cu;
6001
6002 /* DW_FORM_ref_addr is using section offset. */
6003 attr.name = 0;
6004 attr.form = DW_FORM_ref_addr;
6005 attr.u.unsnd = pdi->offset.sect_off;
6006 die = follow_die_ref (NULL, &attr, &ref_cu);
6007
6008 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6009 }
6010 }
6011
6012 parent_scope = partial_die_parent_scope (pdi, cu);
6013 if (parent_scope == NULL)
6014 return NULL;
6015 else
6016 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6017 }
6018
6019 static void
6020 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6021 {
6022 struct objfile *objfile = cu->objfile;
6023 CORE_ADDR addr = 0;
6024 const char *actual_name = NULL;
6025 CORE_ADDR baseaddr;
6026 char *built_actual_name;
6027
6028 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6029
6030 built_actual_name = partial_die_full_name (pdi, cu);
6031 if (built_actual_name != NULL)
6032 actual_name = built_actual_name;
6033
6034 if (actual_name == NULL)
6035 actual_name = pdi->name;
6036
6037 switch (pdi->tag)
6038 {
6039 case DW_TAG_subprogram:
6040 if (pdi->is_external || cu->language == language_ada)
6041 {
6042 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6043 of the global scope. But in Ada, we want to be able to access
6044 nested procedures globally. So all Ada subprograms are stored
6045 in the global scope. */
6046 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6047 mst_text, objfile); */
6048 add_psymbol_to_list (actual_name, strlen (actual_name),
6049 built_actual_name != NULL,
6050 VAR_DOMAIN, LOC_BLOCK,
6051 &objfile->global_psymbols,
6052 0, pdi->lowpc + baseaddr,
6053 cu->language, objfile);
6054 }
6055 else
6056 {
6057 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6058 mst_file_text, objfile); */
6059 add_psymbol_to_list (actual_name, strlen (actual_name),
6060 built_actual_name != NULL,
6061 VAR_DOMAIN, LOC_BLOCK,
6062 &objfile->static_psymbols,
6063 0, pdi->lowpc + baseaddr,
6064 cu->language, objfile);
6065 }
6066 break;
6067 case DW_TAG_constant:
6068 {
6069 struct psymbol_allocation_list *list;
6070
6071 if (pdi->is_external)
6072 list = &objfile->global_psymbols;
6073 else
6074 list = &objfile->static_psymbols;
6075 add_psymbol_to_list (actual_name, strlen (actual_name),
6076 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6077 list, 0, 0, cu->language, objfile);
6078 }
6079 break;
6080 case DW_TAG_variable:
6081 if (pdi->d.locdesc)
6082 addr = decode_locdesc (pdi->d.locdesc, cu);
6083
6084 if (pdi->d.locdesc
6085 && addr == 0
6086 && !dwarf2_per_objfile->has_section_at_zero)
6087 {
6088 /* A global or static variable may also have been stripped
6089 out by the linker if unused, in which case its address
6090 will be nullified; do not add such variables into partial
6091 symbol table then. */
6092 }
6093 else if (pdi->is_external)
6094 {
6095 /* Global Variable.
6096 Don't enter into the minimal symbol tables as there is
6097 a minimal symbol table entry from the ELF symbols already.
6098 Enter into partial symbol table if it has a location
6099 descriptor or a type.
6100 If the location descriptor is missing, new_symbol will create
6101 a LOC_UNRESOLVED symbol, the address of the variable will then
6102 be determined from the minimal symbol table whenever the variable
6103 is referenced.
6104 The address for the partial symbol table entry is not
6105 used by GDB, but it comes in handy for debugging partial symbol
6106 table building. */
6107
6108 if (pdi->d.locdesc || pdi->has_type)
6109 add_psymbol_to_list (actual_name, strlen (actual_name),
6110 built_actual_name != NULL,
6111 VAR_DOMAIN, LOC_STATIC,
6112 &objfile->global_psymbols,
6113 0, addr + baseaddr,
6114 cu->language, objfile);
6115 }
6116 else
6117 {
6118 /* Static Variable. Skip symbols without location descriptors. */
6119 if (pdi->d.locdesc == NULL)
6120 {
6121 xfree (built_actual_name);
6122 return;
6123 }
6124 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6125 mst_file_data, objfile); */
6126 add_psymbol_to_list (actual_name, strlen (actual_name),
6127 built_actual_name != NULL,
6128 VAR_DOMAIN, LOC_STATIC,
6129 &objfile->static_psymbols,
6130 0, addr + baseaddr,
6131 cu->language, objfile);
6132 }
6133 break;
6134 case DW_TAG_typedef:
6135 case DW_TAG_base_type:
6136 case DW_TAG_subrange_type:
6137 add_psymbol_to_list (actual_name, strlen (actual_name),
6138 built_actual_name != NULL,
6139 VAR_DOMAIN, LOC_TYPEDEF,
6140 &objfile->static_psymbols,
6141 0, (CORE_ADDR) 0, cu->language, objfile);
6142 break;
6143 case DW_TAG_namespace:
6144 add_psymbol_to_list (actual_name, strlen (actual_name),
6145 built_actual_name != NULL,
6146 VAR_DOMAIN, LOC_TYPEDEF,
6147 &objfile->global_psymbols,
6148 0, (CORE_ADDR) 0, cu->language, objfile);
6149 break;
6150 case DW_TAG_class_type:
6151 case DW_TAG_interface_type:
6152 case DW_TAG_structure_type:
6153 case DW_TAG_union_type:
6154 case DW_TAG_enumeration_type:
6155 /* Skip external references. The DWARF standard says in the section
6156 about "Structure, Union, and Class Type Entries": "An incomplete
6157 structure, union or class type is represented by a structure,
6158 union or class entry that does not have a byte size attribute
6159 and that has a DW_AT_declaration attribute." */
6160 if (!pdi->has_byte_size && pdi->is_declaration)
6161 {
6162 xfree (built_actual_name);
6163 return;
6164 }
6165
6166 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6167 static vs. global. */
6168 add_psymbol_to_list (actual_name, strlen (actual_name),
6169 built_actual_name != NULL,
6170 STRUCT_DOMAIN, LOC_TYPEDEF,
6171 (cu->language == language_cplus
6172 || cu->language == language_java)
6173 ? &objfile->global_psymbols
6174 : &objfile->static_psymbols,
6175 0, (CORE_ADDR) 0, cu->language, objfile);
6176
6177 break;
6178 case DW_TAG_enumerator:
6179 add_psymbol_to_list (actual_name, strlen (actual_name),
6180 built_actual_name != NULL,
6181 VAR_DOMAIN, LOC_CONST,
6182 (cu->language == language_cplus
6183 || cu->language == language_java)
6184 ? &objfile->global_psymbols
6185 : &objfile->static_psymbols,
6186 0, (CORE_ADDR) 0, cu->language, objfile);
6187 break;
6188 default:
6189 break;
6190 }
6191
6192 xfree (built_actual_name);
6193 }
6194
6195 /* Read a partial die corresponding to a namespace; also, add a symbol
6196 corresponding to that namespace to the symbol table. NAMESPACE is
6197 the name of the enclosing namespace. */
6198
6199 static void
6200 add_partial_namespace (struct partial_die_info *pdi,
6201 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6202 int need_pc, struct dwarf2_cu *cu)
6203 {
6204 /* Add a symbol for the namespace. */
6205
6206 add_partial_symbol (pdi, cu);
6207
6208 /* Now scan partial symbols in that namespace. */
6209
6210 if (pdi->has_children)
6211 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6212 }
6213
6214 /* Read a partial die corresponding to a Fortran module. */
6215
6216 static void
6217 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6218 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6219 {
6220 /* Now scan partial symbols in that module. */
6221
6222 if (pdi->has_children)
6223 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6224 }
6225
6226 /* Read a partial die corresponding to a subprogram and create a partial
6227 symbol for that subprogram. When the CU language allows it, this
6228 routine also defines a partial symbol for each nested subprogram
6229 that this subprogram contains.
6230
6231 DIE my also be a lexical block, in which case we simply search
6232 recursively for suprograms defined inside that lexical block.
6233 Again, this is only performed when the CU language allows this
6234 type of definitions. */
6235
6236 static void
6237 add_partial_subprogram (struct partial_die_info *pdi,
6238 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6239 int need_pc, struct dwarf2_cu *cu)
6240 {
6241 if (pdi->tag == DW_TAG_subprogram)
6242 {
6243 if (pdi->has_pc_info)
6244 {
6245 if (pdi->lowpc < *lowpc)
6246 *lowpc = pdi->lowpc;
6247 if (pdi->highpc > *highpc)
6248 *highpc = pdi->highpc;
6249 if (need_pc)
6250 {
6251 CORE_ADDR baseaddr;
6252 struct objfile *objfile = cu->objfile;
6253
6254 baseaddr = ANOFFSET (objfile->section_offsets,
6255 SECT_OFF_TEXT (objfile));
6256 addrmap_set_empty (objfile->psymtabs_addrmap,
6257 pdi->lowpc + baseaddr,
6258 pdi->highpc - 1 + baseaddr,
6259 cu->per_cu->v.psymtab);
6260 }
6261 }
6262
6263 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6264 {
6265 if (!pdi->is_declaration)
6266 /* Ignore subprogram DIEs that do not have a name, they are
6267 illegal. Do not emit a complaint at this point, we will
6268 do so when we convert this psymtab into a symtab. */
6269 if (pdi->name)
6270 add_partial_symbol (pdi, cu);
6271 }
6272 }
6273
6274 if (! pdi->has_children)
6275 return;
6276
6277 if (cu->language == language_ada)
6278 {
6279 pdi = pdi->die_child;
6280 while (pdi != NULL)
6281 {
6282 fixup_partial_die (pdi, cu);
6283 if (pdi->tag == DW_TAG_subprogram
6284 || pdi->tag == DW_TAG_lexical_block)
6285 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6286 pdi = pdi->die_sibling;
6287 }
6288 }
6289 }
6290
6291 /* Read a partial die corresponding to an enumeration type. */
6292
6293 static void
6294 add_partial_enumeration (struct partial_die_info *enum_pdi,
6295 struct dwarf2_cu *cu)
6296 {
6297 struct partial_die_info *pdi;
6298
6299 if (enum_pdi->name != NULL)
6300 add_partial_symbol (enum_pdi, cu);
6301
6302 pdi = enum_pdi->die_child;
6303 while (pdi)
6304 {
6305 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6306 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6307 else
6308 add_partial_symbol (pdi, cu);
6309 pdi = pdi->die_sibling;
6310 }
6311 }
6312
6313 /* Return the initial uleb128 in the die at INFO_PTR. */
6314
6315 static unsigned int
6316 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6317 {
6318 unsigned int bytes_read;
6319
6320 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6321 }
6322
6323 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6324 Return the corresponding abbrev, or NULL if the number is zero (indicating
6325 an empty DIE). In either case *BYTES_READ will be set to the length of
6326 the initial number. */
6327
6328 static struct abbrev_info *
6329 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
6330 struct dwarf2_cu *cu)
6331 {
6332 bfd *abfd = cu->objfile->obfd;
6333 unsigned int abbrev_number;
6334 struct abbrev_info *abbrev;
6335
6336 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6337
6338 if (abbrev_number == 0)
6339 return NULL;
6340
6341 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6342 if (!abbrev)
6343 {
6344 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6345 abbrev_number, bfd_get_filename (abfd));
6346 }
6347
6348 return abbrev;
6349 }
6350
6351 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6352 Returns a pointer to the end of a series of DIEs, terminated by an empty
6353 DIE. Any children of the skipped DIEs will also be skipped. */
6354
6355 static const gdb_byte *
6356 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
6357 {
6358 struct dwarf2_cu *cu = reader->cu;
6359 struct abbrev_info *abbrev;
6360 unsigned int bytes_read;
6361
6362 while (1)
6363 {
6364 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6365 if (abbrev == NULL)
6366 return info_ptr + bytes_read;
6367 else
6368 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6369 }
6370 }
6371
6372 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6373 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6374 abbrev corresponding to that skipped uleb128 should be passed in
6375 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6376 children. */
6377
6378 static const gdb_byte *
6379 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
6380 struct abbrev_info *abbrev)
6381 {
6382 unsigned int bytes_read;
6383 struct attribute attr;
6384 bfd *abfd = reader->abfd;
6385 struct dwarf2_cu *cu = reader->cu;
6386 const gdb_byte *buffer = reader->buffer;
6387 const gdb_byte *buffer_end = reader->buffer_end;
6388 const gdb_byte *start_info_ptr = info_ptr;
6389 unsigned int form, i;
6390
6391 for (i = 0; i < abbrev->num_attrs; i++)
6392 {
6393 /* The only abbrev we care about is DW_AT_sibling. */
6394 if (abbrev->attrs[i].name == DW_AT_sibling)
6395 {
6396 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6397 if (attr.form == DW_FORM_ref_addr)
6398 complaint (&symfile_complaints,
6399 _("ignoring absolute DW_AT_sibling"));
6400 else
6401 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6402 }
6403
6404 /* If it isn't DW_AT_sibling, skip this attribute. */
6405 form = abbrev->attrs[i].form;
6406 skip_attribute:
6407 switch (form)
6408 {
6409 case DW_FORM_ref_addr:
6410 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6411 and later it is offset sized. */
6412 if (cu->header.version == 2)
6413 info_ptr += cu->header.addr_size;
6414 else
6415 info_ptr += cu->header.offset_size;
6416 break;
6417 case DW_FORM_GNU_ref_alt:
6418 info_ptr += cu->header.offset_size;
6419 break;
6420 case DW_FORM_addr:
6421 info_ptr += cu->header.addr_size;
6422 break;
6423 case DW_FORM_data1:
6424 case DW_FORM_ref1:
6425 case DW_FORM_flag:
6426 info_ptr += 1;
6427 break;
6428 case DW_FORM_flag_present:
6429 break;
6430 case DW_FORM_data2:
6431 case DW_FORM_ref2:
6432 info_ptr += 2;
6433 break;
6434 case DW_FORM_data4:
6435 case DW_FORM_ref4:
6436 info_ptr += 4;
6437 break;
6438 case DW_FORM_data8:
6439 case DW_FORM_ref8:
6440 case DW_FORM_ref_sig8:
6441 info_ptr += 8;
6442 break;
6443 case DW_FORM_string:
6444 read_direct_string (abfd, info_ptr, &bytes_read);
6445 info_ptr += bytes_read;
6446 break;
6447 case DW_FORM_sec_offset:
6448 case DW_FORM_strp:
6449 case DW_FORM_GNU_strp_alt:
6450 info_ptr += cu->header.offset_size;
6451 break;
6452 case DW_FORM_exprloc:
6453 case DW_FORM_block:
6454 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6455 info_ptr += bytes_read;
6456 break;
6457 case DW_FORM_block1:
6458 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6459 break;
6460 case DW_FORM_block2:
6461 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6462 break;
6463 case DW_FORM_block4:
6464 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6465 break;
6466 case DW_FORM_sdata:
6467 case DW_FORM_udata:
6468 case DW_FORM_ref_udata:
6469 case DW_FORM_GNU_addr_index:
6470 case DW_FORM_GNU_str_index:
6471 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
6472 break;
6473 case DW_FORM_indirect:
6474 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6475 info_ptr += bytes_read;
6476 /* We need to continue parsing from here, so just go back to
6477 the top. */
6478 goto skip_attribute;
6479
6480 default:
6481 error (_("Dwarf Error: Cannot handle %s "
6482 "in DWARF reader [in module %s]"),
6483 dwarf_form_name (form),
6484 bfd_get_filename (abfd));
6485 }
6486 }
6487
6488 if (abbrev->has_children)
6489 return skip_children (reader, info_ptr);
6490 else
6491 return info_ptr;
6492 }
6493
6494 /* Locate ORIG_PDI's sibling.
6495 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6496
6497 static const gdb_byte *
6498 locate_pdi_sibling (const struct die_reader_specs *reader,
6499 struct partial_die_info *orig_pdi,
6500 const gdb_byte *info_ptr)
6501 {
6502 /* Do we know the sibling already? */
6503
6504 if (orig_pdi->sibling)
6505 return orig_pdi->sibling;
6506
6507 /* Are there any children to deal with? */
6508
6509 if (!orig_pdi->has_children)
6510 return info_ptr;
6511
6512 /* Skip the children the long way. */
6513
6514 return skip_children (reader, info_ptr);
6515 }
6516
6517 /* Expand this partial symbol table into a full symbol table. SELF is
6518 not NULL. */
6519
6520 static void
6521 dwarf2_read_symtab (struct partial_symtab *self,
6522 struct objfile *objfile)
6523 {
6524 if (self->readin)
6525 {
6526 warning (_("bug: psymtab for %s is already read in."),
6527 self->filename);
6528 }
6529 else
6530 {
6531 if (info_verbose)
6532 {
6533 printf_filtered (_("Reading in symbols for %s..."),
6534 self->filename);
6535 gdb_flush (gdb_stdout);
6536 }
6537
6538 /* Restore our global data. */
6539 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6540
6541 /* If this psymtab is constructed from a debug-only objfile, the
6542 has_section_at_zero flag will not necessarily be correct. We
6543 can get the correct value for this flag by looking at the data
6544 associated with the (presumably stripped) associated objfile. */
6545 if (objfile->separate_debug_objfile_backlink)
6546 {
6547 struct dwarf2_per_objfile *dpo_backlink
6548 = objfile_data (objfile->separate_debug_objfile_backlink,
6549 dwarf2_objfile_data_key);
6550
6551 dwarf2_per_objfile->has_section_at_zero
6552 = dpo_backlink->has_section_at_zero;
6553 }
6554
6555 dwarf2_per_objfile->reading_partial_symbols = 0;
6556
6557 psymtab_to_symtab_1 (self);
6558
6559 /* Finish up the debug error message. */
6560 if (info_verbose)
6561 printf_filtered (_("done.\n"));
6562 }
6563
6564 process_cu_includes ();
6565 }
6566 \f
6567 /* Reading in full CUs. */
6568
6569 /* Add PER_CU to the queue. */
6570
6571 static void
6572 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6573 enum language pretend_language)
6574 {
6575 struct dwarf2_queue_item *item;
6576
6577 per_cu->queued = 1;
6578 item = xmalloc (sizeof (*item));
6579 item->per_cu = per_cu;
6580 item->pretend_language = pretend_language;
6581 item->next = NULL;
6582
6583 if (dwarf2_queue == NULL)
6584 dwarf2_queue = item;
6585 else
6586 dwarf2_queue_tail->next = item;
6587
6588 dwarf2_queue_tail = item;
6589 }
6590
6591 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6592 unit and add it to our queue.
6593 The result is non-zero if PER_CU was queued, otherwise the result is zero
6594 meaning either PER_CU is already queued or it is already loaded. */
6595
6596 static int
6597 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6598 struct dwarf2_per_cu_data *per_cu,
6599 enum language pretend_language)
6600 {
6601 /* We may arrive here during partial symbol reading, if we need full
6602 DIEs to process an unusual case (e.g. template arguments). Do
6603 not queue PER_CU, just tell our caller to load its DIEs. */
6604 if (dwarf2_per_objfile->reading_partial_symbols)
6605 {
6606 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6607 return 1;
6608 return 0;
6609 }
6610
6611 /* Mark the dependence relation so that we don't flush PER_CU
6612 too early. */
6613 dwarf2_add_dependence (this_cu, per_cu);
6614
6615 /* If it's already on the queue, we have nothing to do. */
6616 if (per_cu->queued)
6617 return 0;
6618
6619 /* If the compilation unit is already loaded, just mark it as
6620 used. */
6621 if (per_cu->cu != NULL)
6622 {
6623 per_cu->cu->last_used = 0;
6624 return 0;
6625 }
6626
6627 /* Add it to the queue. */
6628 queue_comp_unit (per_cu, pretend_language);
6629
6630 return 1;
6631 }
6632
6633 /* Process the queue. */
6634
6635 static void
6636 process_queue (void)
6637 {
6638 struct dwarf2_queue_item *item, *next_item;
6639
6640 if (dwarf2_read_debug)
6641 {
6642 fprintf_unfiltered (gdb_stdlog,
6643 "Expanding one or more symtabs of objfile %s ...\n",
6644 dwarf2_per_objfile->objfile->name);
6645 }
6646
6647 /* The queue starts out with one item, but following a DIE reference
6648 may load a new CU, adding it to the end of the queue. */
6649 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6650 {
6651 if (dwarf2_per_objfile->using_index
6652 ? !item->per_cu->v.quick->symtab
6653 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
6654 {
6655 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6656
6657 if (dwarf2_read_debug)
6658 {
6659 fprintf_unfiltered (gdb_stdlog,
6660 "Expanding symtab of %s at offset 0x%x\n",
6661 per_cu->is_debug_types ? "TU" : "CU",
6662 per_cu->offset.sect_off);
6663 }
6664
6665 if (per_cu->is_debug_types)
6666 process_full_type_unit (per_cu, item->pretend_language);
6667 else
6668 process_full_comp_unit (per_cu, item->pretend_language);
6669
6670 if (dwarf2_read_debug)
6671 {
6672 fprintf_unfiltered (gdb_stdlog,
6673 "Done expanding %s at offset 0x%x\n",
6674 per_cu->is_debug_types ? "TU" : "CU",
6675 per_cu->offset.sect_off);
6676 }
6677 }
6678
6679 item->per_cu->queued = 0;
6680 next_item = item->next;
6681 xfree (item);
6682 }
6683
6684 dwarf2_queue_tail = NULL;
6685
6686 if (dwarf2_read_debug)
6687 {
6688 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
6689 dwarf2_per_objfile->objfile->name);
6690 }
6691 }
6692
6693 /* Free all allocated queue entries. This function only releases anything if
6694 an error was thrown; if the queue was processed then it would have been
6695 freed as we went along. */
6696
6697 static void
6698 dwarf2_release_queue (void *dummy)
6699 {
6700 struct dwarf2_queue_item *item, *last;
6701
6702 item = dwarf2_queue;
6703 while (item)
6704 {
6705 /* Anything still marked queued is likely to be in an
6706 inconsistent state, so discard it. */
6707 if (item->per_cu->queued)
6708 {
6709 if (item->per_cu->cu != NULL)
6710 free_one_cached_comp_unit (item->per_cu);
6711 item->per_cu->queued = 0;
6712 }
6713
6714 last = item;
6715 item = item->next;
6716 xfree (last);
6717 }
6718
6719 dwarf2_queue = dwarf2_queue_tail = NULL;
6720 }
6721
6722 /* Read in full symbols for PST, and anything it depends on. */
6723
6724 static void
6725 psymtab_to_symtab_1 (struct partial_symtab *pst)
6726 {
6727 struct dwarf2_per_cu_data *per_cu;
6728 int i;
6729
6730 if (pst->readin)
6731 return;
6732
6733 for (i = 0; i < pst->number_of_dependencies; i++)
6734 if (!pst->dependencies[i]->readin
6735 && pst->dependencies[i]->user == NULL)
6736 {
6737 /* Inform about additional files that need to be read in. */
6738 if (info_verbose)
6739 {
6740 /* FIXME: i18n: Need to make this a single string. */
6741 fputs_filtered (" ", gdb_stdout);
6742 wrap_here ("");
6743 fputs_filtered ("and ", gdb_stdout);
6744 wrap_here ("");
6745 printf_filtered ("%s...", pst->dependencies[i]->filename);
6746 wrap_here (""); /* Flush output. */
6747 gdb_flush (gdb_stdout);
6748 }
6749 psymtab_to_symtab_1 (pst->dependencies[i]);
6750 }
6751
6752 per_cu = pst->read_symtab_private;
6753
6754 if (per_cu == NULL)
6755 {
6756 /* It's an include file, no symbols to read for it.
6757 Everything is in the parent symtab. */
6758 pst->readin = 1;
6759 return;
6760 }
6761
6762 dw2_do_instantiate_symtab (per_cu);
6763 }
6764
6765 /* Trivial hash function for die_info: the hash value of a DIE
6766 is its offset in .debug_info for this objfile. */
6767
6768 static hashval_t
6769 die_hash (const void *item)
6770 {
6771 const struct die_info *die = item;
6772
6773 return die->offset.sect_off;
6774 }
6775
6776 /* Trivial comparison function for die_info structures: two DIEs
6777 are equal if they have the same offset. */
6778
6779 static int
6780 die_eq (const void *item_lhs, const void *item_rhs)
6781 {
6782 const struct die_info *die_lhs = item_lhs;
6783 const struct die_info *die_rhs = item_rhs;
6784
6785 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
6786 }
6787
6788 /* die_reader_func for load_full_comp_unit.
6789 This is identical to read_signatured_type_reader,
6790 but is kept separate for now. */
6791
6792 static void
6793 load_full_comp_unit_reader (const struct die_reader_specs *reader,
6794 const gdb_byte *info_ptr,
6795 struct die_info *comp_unit_die,
6796 int has_children,
6797 void *data)
6798 {
6799 struct dwarf2_cu *cu = reader->cu;
6800 enum language *language_ptr = data;
6801
6802 gdb_assert (cu->die_hash == NULL);
6803 cu->die_hash =
6804 htab_create_alloc_ex (cu->header.length / 12,
6805 die_hash,
6806 die_eq,
6807 NULL,
6808 &cu->comp_unit_obstack,
6809 hashtab_obstack_allocate,
6810 dummy_obstack_deallocate);
6811
6812 if (has_children)
6813 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
6814 &info_ptr, comp_unit_die);
6815 cu->dies = comp_unit_die;
6816 /* comp_unit_die is not stored in die_hash, no need. */
6817
6818 /* We try not to read any attributes in this function, because not
6819 all CUs needed for references have been loaded yet, and symbol
6820 table processing isn't initialized. But we have to set the CU language,
6821 or we won't be able to build types correctly.
6822 Similarly, if we do not read the producer, we can not apply
6823 producer-specific interpretation. */
6824 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
6825 }
6826
6827 /* Load the DIEs associated with PER_CU into memory. */
6828
6829 static void
6830 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
6831 enum language pretend_language)
6832 {
6833 gdb_assert (! this_cu->is_debug_types);
6834
6835 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6836 load_full_comp_unit_reader, &pretend_language);
6837 }
6838
6839 /* Add a DIE to the delayed physname list. */
6840
6841 static void
6842 add_to_method_list (struct type *type, int fnfield_index, int index,
6843 const char *name, struct die_info *die,
6844 struct dwarf2_cu *cu)
6845 {
6846 struct delayed_method_info mi;
6847 mi.type = type;
6848 mi.fnfield_index = fnfield_index;
6849 mi.index = index;
6850 mi.name = name;
6851 mi.die = die;
6852 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
6853 }
6854
6855 /* A cleanup for freeing the delayed method list. */
6856
6857 static void
6858 free_delayed_list (void *ptr)
6859 {
6860 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
6861 if (cu->method_list != NULL)
6862 {
6863 VEC_free (delayed_method_info, cu->method_list);
6864 cu->method_list = NULL;
6865 }
6866 }
6867
6868 /* Compute the physnames of any methods on the CU's method list.
6869
6870 The computation of method physnames is delayed in order to avoid the
6871 (bad) condition that one of the method's formal parameters is of an as yet
6872 incomplete type. */
6873
6874 static void
6875 compute_delayed_physnames (struct dwarf2_cu *cu)
6876 {
6877 int i;
6878 struct delayed_method_info *mi;
6879 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
6880 {
6881 const char *physname;
6882 struct fn_fieldlist *fn_flp
6883 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
6884 physname = dwarf2_physname (mi->name, mi->die, cu);
6885 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
6886 }
6887 }
6888
6889 /* Go objects should be embedded in a DW_TAG_module DIE,
6890 and it's not clear if/how imported objects will appear.
6891 To keep Go support simple until that's worked out,
6892 go back through what we've read and create something usable.
6893 We could do this while processing each DIE, and feels kinda cleaner,
6894 but that way is more invasive.
6895 This is to, for example, allow the user to type "p var" or "b main"
6896 without having to specify the package name, and allow lookups
6897 of module.object to work in contexts that use the expression
6898 parser. */
6899
6900 static void
6901 fixup_go_packaging (struct dwarf2_cu *cu)
6902 {
6903 char *package_name = NULL;
6904 struct pending *list;
6905 int i;
6906
6907 for (list = global_symbols; list != NULL; list = list->next)
6908 {
6909 for (i = 0; i < list->nsyms; ++i)
6910 {
6911 struct symbol *sym = list->symbol[i];
6912
6913 if (SYMBOL_LANGUAGE (sym) == language_go
6914 && SYMBOL_CLASS (sym) == LOC_BLOCK)
6915 {
6916 char *this_package_name = go_symbol_package_name (sym);
6917
6918 if (this_package_name == NULL)
6919 continue;
6920 if (package_name == NULL)
6921 package_name = this_package_name;
6922 else
6923 {
6924 if (strcmp (package_name, this_package_name) != 0)
6925 complaint (&symfile_complaints,
6926 _("Symtab %s has objects from two different Go packages: %s and %s"),
6927 (SYMBOL_SYMTAB (sym)
6928 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
6929 : cu->objfile->name),
6930 this_package_name, package_name);
6931 xfree (this_package_name);
6932 }
6933 }
6934 }
6935 }
6936
6937 if (package_name != NULL)
6938 {
6939 struct objfile *objfile = cu->objfile;
6940 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
6941 package_name,
6942 strlen (package_name));
6943 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
6944 saved_package_name, objfile);
6945 struct symbol *sym;
6946
6947 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6948
6949 sym = allocate_symbol (objfile);
6950 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
6951 SYMBOL_SET_NAMES (sym, saved_package_name,
6952 strlen (saved_package_name), 0, objfile);
6953 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
6954 e.g., "main" finds the "main" module and not C's main(). */
6955 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6956 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
6957 SYMBOL_TYPE (sym) = type;
6958
6959 add_symbol_to_list (sym, &global_symbols);
6960
6961 xfree (package_name);
6962 }
6963 }
6964
6965 /* Return the symtab for PER_CU. This works properly regardless of
6966 whether we're using the index or psymtabs. */
6967
6968 static struct symtab *
6969 get_symtab (struct dwarf2_per_cu_data *per_cu)
6970 {
6971 return (dwarf2_per_objfile->using_index
6972 ? per_cu->v.quick->symtab
6973 : per_cu->v.psymtab->symtab);
6974 }
6975
6976 /* A helper function for computing the list of all symbol tables
6977 included by PER_CU. */
6978
6979 static void
6980 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
6981 htab_t all_children,
6982 struct dwarf2_per_cu_data *per_cu)
6983 {
6984 void **slot;
6985 int ix;
6986 struct dwarf2_per_cu_data *iter;
6987
6988 slot = htab_find_slot (all_children, per_cu, INSERT);
6989 if (*slot != NULL)
6990 {
6991 /* This inclusion and its children have been processed. */
6992 return;
6993 }
6994
6995 *slot = per_cu;
6996 /* Only add a CU if it has a symbol table. */
6997 if (get_symtab (per_cu) != NULL)
6998 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
6999
7000 for (ix = 0;
7001 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7002 ++ix)
7003 recursively_compute_inclusions (result, all_children, iter);
7004 }
7005
7006 /* Compute the symtab 'includes' fields for the symtab related to
7007 PER_CU. */
7008
7009 static void
7010 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7011 {
7012 gdb_assert (! per_cu->is_debug_types);
7013
7014 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7015 {
7016 int ix, len;
7017 struct dwarf2_per_cu_data *iter;
7018 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
7019 htab_t all_children;
7020 struct symtab *symtab = get_symtab (per_cu);
7021
7022 /* If we don't have a symtab, we can just skip this case. */
7023 if (symtab == NULL)
7024 return;
7025
7026 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7027 NULL, xcalloc, xfree);
7028
7029 for (ix = 0;
7030 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7031 ix, iter);
7032 ++ix)
7033 recursively_compute_inclusions (&result_children, all_children, iter);
7034
7035 /* Now we have a transitive closure of all the included CUs, and
7036 for .gdb_index version 7 the included TUs, so we can convert it
7037 to a list of symtabs. */
7038 len = VEC_length (dwarf2_per_cu_ptr, result_children);
7039 symtab->includes
7040 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7041 (len + 1) * sizeof (struct symtab *));
7042 for (ix = 0;
7043 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
7044 ++ix)
7045 symtab->includes[ix] = get_symtab (iter);
7046 symtab->includes[len] = NULL;
7047
7048 VEC_free (dwarf2_per_cu_ptr, result_children);
7049 htab_delete (all_children);
7050 }
7051 }
7052
7053 /* Compute the 'includes' field for the symtabs of all the CUs we just
7054 read. */
7055
7056 static void
7057 process_cu_includes (void)
7058 {
7059 int ix;
7060 struct dwarf2_per_cu_data *iter;
7061
7062 for (ix = 0;
7063 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7064 ix, iter);
7065 ++ix)
7066 {
7067 if (! iter->is_debug_types)
7068 compute_symtab_includes (iter);
7069 }
7070
7071 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7072 }
7073
7074 /* Generate full symbol information for PER_CU, whose DIEs have
7075 already been loaded into memory. */
7076
7077 static void
7078 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7079 enum language pretend_language)
7080 {
7081 struct dwarf2_cu *cu = per_cu->cu;
7082 struct objfile *objfile = per_cu->objfile;
7083 CORE_ADDR lowpc, highpc;
7084 struct symtab *symtab;
7085 struct cleanup *back_to, *delayed_list_cleanup;
7086 CORE_ADDR baseaddr;
7087 struct block *static_block;
7088
7089 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7090
7091 buildsym_init ();
7092 back_to = make_cleanup (really_free_pendings, NULL);
7093 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7094
7095 cu->list_in_scope = &file_symbols;
7096
7097 cu->language = pretend_language;
7098 cu->language_defn = language_def (cu->language);
7099
7100 /* Do line number decoding in read_file_scope () */
7101 process_die (cu->dies, cu);
7102
7103 /* For now fudge the Go package. */
7104 if (cu->language == language_go)
7105 fixup_go_packaging (cu);
7106
7107 /* Now that we have processed all the DIEs in the CU, all the types
7108 should be complete, and it should now be safe to compute all of the
7109 physnames. */
7110 compute_delayed_physnames (cu);
7111 do_cleanups (delayed_list_cleanup);
7112
7113 /* Some compilers don't define a DW_AT_high_pc attribute for the
7114 compilation unit. If the DW_AT_high_pc is missing, synthesize
7115 it, by scanning the DIE's below the compilation unit. */
7116 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7117
7118 static_block
7119 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0,
7120 per_cu->imported_symtabs != NULL);
7121
7122 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7123 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7124 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7125 addrmap to help ensure it has an accurate map of pc values belonging to
7126 this comp unit. */
7127 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7128
7129 symtab = end_symtab_from_static_block (static_block, objfile,
7130 SECT_OFF_TEXT (objfile), 0);
7131
7132 if (symtab != NULL)
7133 {
7134 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7135
7136 /* Set symtab language to language from DW_AT_language. If the
7137 compilation is from a C file generated by language preprocessors, do
7138 not set the language if it was already deduced by start_subfile. */
7139 if (!(cu->language == language_c && symtab->language != language_c))
7140 symtab->language = cu->language;
7141
7142 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7143 produce DW_AT_location with location lists but it can be possibly
7144 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7145 there were bugs in prologue debug info, fixed later in GCC-4.5
7146 by "unwind info for epilogues" patch (which is not directly related).
7147
7148 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7149 needed, it would be wrong due to missing DW_AT_producer there.
7150
7151 Still one can confuse GDB by using non-standard GCC compilation
7152 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7153 */
7154 if (cu->has_loclist && gcc_4_minor >= 5)
7155 symtab->locations_valid = 1;
7156
7157 if (gcc_4_minor >= 5)
7158 symtab->epilogue_unwind_valid = 1;
7159
7160 symtab->call_site_htab = cu->call_site_htab;
7161 }
7162
7163 if (dwarf2_per_objfile->using_index)
7164 per_cu->v.quick->symtab = symtab;
7165 else
7166 {
7167 struct partial_symtab *pst = per_cu->v.psymtab;
7168 pst->symtab = symtab;
7169 pst->readin = 1;
7170 }
7171
7172 /* Push it for inclusion processing later. */
7173 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7174
7175 do_cleanups (back_to);
7176 }
7177
7178 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7179 already been loaded into memory. */
7180
7181 static void
7182 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7183 enum language pretend_language)
7184 {
7185 struct dwarf2_cu *cu = per_cu->cu;
7186 struct objfile *objfile = per_cu->objfile;
7187 struct symtab *symtab;
7188 struct cleanup *back_to, *delayed_list_cleanup;
7189 struct signatured_type *sig_type;
7190
7191 gdb_assert (per_cu->is_debug_types);
7192 sig_type = (struct signatured_type *) per_cu;
7193
7194 buildsym_init ();
7195 back_to = make_cleanup (really_free_pendings, NULL);
7196 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7197
7198 cu->list_in_scope = &file_symbols;
7199
7200 cu->language = pretend_language;
7201 cu->language_defn = language_def (cu->language);
7202
7203 /* The symbol tables are set up in read_type_unit_scope. */
7204 process_die (cu->dies, cu);
7205
7206 /* For now fudge the Go package. */
7207 if (cu->language == language_go)
7208 fixup_go_packaging (cu);
7209
7210 /* Now that we have processed all the DIEs in the CU, all the types
7211 should be complete, and it should now be safe to compute all of the
7212 physnames. */
7213 compute_delayed_physnames (cu);
7214 do_cleanups (delayed_list_cleanup);
7215
7216 /* TUs share symbol tables.
7217 If this is the first TU to use this symtab, complete the construction
7218 of it with end_expandable_symtab. Otherwise, complete the addition of
7219 this TU's symbols to the existing symtab. */
7220 if (sig_type->type_unit_group->primary_symtab == NULL)
7221 {
7222 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7223 sig_type->type_unit_group->primary_symtab = symtab;
7224
7225 if (symtab != NULL)
7226 {
7227 /* Set symtab language to language from DW_AT_language. If the
7228 compilation is from a C file generated by language preprocessors,
7229 do not set the language if it was already deduced by
7230 start_subfile. */
7231 if (!(cu->language == language_c && symtab->language != language_c))
7232 symtab->language = cu->language;
7233 }
7234 }
7235 else
7236 {
7237 augment_type_symtab (objfile,
7238 sig_type->type_unit_group->primary_symtab);
7239 symtab = sig_type->type_unit_group->primary_symtab;
7240 }
7241
7242 if (dwarf2_per_objfile->using_index)
7243 per_cu->v.quick->symtab = symtab;
7244 else
7245 {
7246 struct partial_symtab *pst = per_cu->v.psymtab;
7247 pst->symtab = symtab;
7248 pst->readin = 1;
7249 }
7250
7251 do_cleanups (back_to);
7252 }
7253
7254 /* Process an imported unit DIE. */
7255
7256 static void
7257 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7258 {
7259 struct attribute *attr;
7260
7261 /* For now we don't handle imported units in type units. */
7262 if (cu->per_cu->is_debug_types)
7263 {
7264 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7265 " supported in type units [in module %s]"),
7266 cu->objfile->name);
7267 }
7268
7269 attr = dwarf2_attr (die, DW_AT_import, cu);
7270 if (attr != NULL)
7271 {
7272 struct dwarf2_per_cu_data *per_cu;
7273 struct symtab *imported_symtab;
7274 sect_offset offset;
7275 int is_dwz;
7276
7277 offset = dwarf2_get_ref_die_offset (attr);
7278 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7279 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7280
7281 /* Queue the unit, if needed. */
7282 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7283 load_full_comp_unit (per_cu, cu->language);
7284
7285 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7286 per_cu);
7287 }
7288 }
7289
7290 /* Process a die and its children. */
7291
7292 static void
7293 process_die (struct die_info *die, struct dwarf2_cu *cu)
7294 {
7295 switch (die->tag)
7296 {
7297 case DW_TAG_padding:
7298 break;
7299 case DW_TAG_compile_unit:
7300 case DW_TAG_partial_unit:
7301 read_file_scope (die, cu);
7302 break;
7303 case DW_TAG_type_unit:
7304 read_type_unit_scope (die, cu);
7305 break;
7306 case DW_TAG_subprogram:
7307 case DW_TAG_inlined_subroutine:
7308 read_func_scope (die, cu);
7309 break;
7310 case DW_TAG_lexical_block:
7311 case DW_TAG_try_block:
7312 case DW_TAG_catch_block:
7313 read_lexical_block_scope (die, cu);
7314 break;
7315 case DW_TAG_GNU_call_site:
7316 read_call_site_scope (die, cu);
7317 break;
7318 case DW_TAG_class_type:
7319 case DW_TAG_interface_type:
7320 case DW_TAG_structure_type:
7321 case DW_TAG_union_type:
7322 process_structure_scope (die, cu);
7323 break;
7324 case DW_TAG_enumeration_type:
7325 process_enumeration_scope (die, cu);
7326 break;
7327
7328 /* These dies have a type, but processing them does not create
7329 a symbol or recurse to process the children. Therefore we can
7330 read them on-demand through read_type_die. */
7331 case DW_TAG_subroutine_type:
7332 case DW_TAG_set_type:
7333 case DW_TAG_array_type:
7334 case DW_TAG_pointer_type:
7335 case DW_TAG_ptr_to_member_type:
7336 case DW_TAG_reference_type:
7337 case DW_TAG_string_type:
7338 break;
7339
7340 case DW_TAG_base_type:
7341 case DW_TAG_subrange_type:
7342 case DW_TAG_typedef:
7343 /* Add a typedef symbol for the type definition, if it has a
7344 DW_AT_name. */
7345 new_symbol (die, read_type_die (die, cu), cu);
7346 break;
7347 case DW_TAG_common_block:
7348 read_common_block (die, cu);
7349 break;
7350 case DW_TAG_common_inclusion:
7351 break;
7352 case DW_TAG_namespace:
7353 cu->processing_has_namespace_info = 1;
7354 read_namespace (die, cu);
7355 break;
7356 case DW_TAG_module:
7357 cu->processing_has_namespace_info = 1;
7358 read_module (die, cu);
7359 break;
7360 case DW_TAG_imported_declaration:
7361 case DW_TAG_imported_module:
7362 cu->processing_has_namespace_info = 1;
7363 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7364 || cu->language != language_fortran))
7365 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7366 dwarf_tag_name (die->tag));
7367 read_import_statement (die, cu);
7368 break;
7369
7370 case DW_TAG_imported_unit:
7371 process_imported_unit_die (die, cu);
7372 break;
7373
7374 default:
7375 new_symbol (die, NULL, cu);
7376 break;
7377 }
7378 }
7379 \f
7380 /* DWARF name computation. */
7381
7382 /* A helper function for dwarf2_compute_name which determines whether DIE
7383 needs to have the name of the scope prepended to the name listed in the
7384 die. */
7385
7386 static int
7387 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7388 {
7389 struct attribute *attr;
7390
7391 switch (die->tag)
7392 {
7393 case DW_TAG_namespace:
7394 case DW_TAG_typedef:
7395 case DW_TAG_class_type:
7396 case DW_TAG_interface_type:
7397 case DW_TAG_structure_type:
7398 case DW_TAG_union_type:
7399 case DW_TAG_enumeration_type:
7400 case DW_TAG_enumerator:
7401 case DW_TAG_subprogram:
7402 case DW_TAG_member:
7403 return 1;
7404
7405 case DW_TAG_variable:
7406 case DW_TAG_constant:
7407 /* We only need to prefix "globally" visible variables. These include
7408 any variable marked with DW_AT_external or any variable that
7409 lives in a namespace. [Variables in anonymous namespaces
7410 require prefixing, but they are not DW_AT_external.] */
7411
7412 if (dwarf2_attr (die, DW_AT_specification, cu))
7413 {
7414 struct dwarf2_cu *spec_cu = cu;
7415
7416 return die_needs_namespace (die_specification (die, &spec_cu),
7417 spec_cu);
7418 }
7419
7420 attr = dwarf2_attr (die, DW_AT_external, cu);
7421 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7422 && die->parent->tag != DW_TAG_module)
7423 return 0;
7424 /* A variable in a lexical block of some kind does not need a
7425 namespace, even though in C++ such variables may be external
7426 and have a mangled name. */
7427 if (die->parent->tag == DW_TAG_lexical_block
7428 || die->parent->tag == DW_TAG_try_block
7429 || die->parent->tag == DW_TAG_catch_block
7430 || die->parent->tag == DW_TAG_subprogram)
7431 return 0;
7432 return 1;
7433
7434 default:
7435 return 0;
7436 }
7437 }
7438
7439 /* Retrieve the last character from a mem_file. */
7440
7441 static void
7442 do_ui_file_peek_last (void *object, const char *buffer, long length)
7443 {
7444 char *last_char_p = (char *) object;
7445
7446 if (length > 0)
7447 *last_char_p = buffer[length - 1];
7448 }
7449
7450 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7451 compute the physname for the object, which include a method's:
7452 - formal parameters (C++/Java),
7453 - receiver type (Go),
7454 - return type (Java).
7455
7456 The term "physname" is a bit confusing.
7457 For C++, for example, it is the demangled name.
7458 For Go, for example, it's the mangled name.
7459
7460 For Ada, return the DIE's linkage name rather than the fully qualified
7461 name. PHYSNAME is ignored..
7462
7463 The result is allocated on the objfile_obstack and canonicalized. */
7464
7465 static const char *
7466 dwarf2_compute_name (const char *name,
7467 struct die_info *die, struct dwarf2_cu *cu,
7468 int physname)
7469 {
7470 struct objfile *objfile = cu->objfile;
7471
7472 if (name == NULL)
7473 name = dwarf2_name (die, cu);
7474
7475 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7476 compute it by typename_concat inside GDB. */
7477 if (cu->language == language_ada
7478 || (cu->language == language_fortran && physname))
7479 {
7480 /* For Ada unit, we prefer the linkage name over the name, as
7481 the former contains the exported name, which the user expects
7482 to be able to reference. Ideally, we want the user to be able
7483 to reference this entity using either natural or linkage name,
7484 but we haven't started looking at this enhancement yet. */
7485 struct attribute *attr;
7486
7487 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7488 if (attr == NULL)
7489 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7490 if (attr && DW_STRING (attr))
7491 return DW_STRING (attr);
7492 }
7493
7494 /* These are the only languages we know how to qualify names in. */
7495 if (name != NULL
7496 && (cu->language == language_cplus || cu->language == language_java
7497 || cu->language == language_fortran))
7498 {
7499 if (die_needs_namespace (die, cu))
7500 {
7501 long length;
7502 const char *prefix;
7503 struct ui_file *buf;
7504
7505 prefix = determine_prefix (die, cu);
7506 buf = mem_fileopen ();
7507 if (*prefix != '\0')
7508 {
7509 char *prefixed_name = typename_concat (NULL, prefix, name,
7510 physname, cu);
7511
7512 fputs_unfiltered (prefixed_name, buf);
7513 xfree (prefixed_name);
7514 }
7515 else
7516 fputs_unfiltered (name, buf);
7517
7518 /* Template parameters may be specified in the DIE's DW_AT_name, or
7519 as children with DW_TAG_template_type_param or
7520 DW_TAG_value_type_param. If the latter, add them to the name
7521 here. If the name already has template parameters, then
7522 skip this step; some versions of GCC emit both, and
7523 it is more efficient to use the pre-computed name.
7524
7525 Something to keep in mind about this process: it is very
7526 unlikely, or in some cases downright impossible, to produce
7527 something that will match the mangled name of a function.
7528 If the definition of the function has the same debug info,
7529 we should be able to match up with it anyway. But fallbacks
7530 using the minimal symbol, for instance to find a method
7531 implemented in a stripped copy of libstdc++, will not work.
7532 If we do not have debug info for the definition, we will have to
7533 match them up some other way.
7534
7535 When we do name matching there is a related problem with function
7536 templates; two instantiated function templates are allowed to
7537 differ only by their return types, which we do not add here. */
7538
7539 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7540 {
7541 struct attribute *attr;
7542 struct die_info *child;
7543 int first = 1;
7544
7545 die->building_fullname = 1;
7546
7547 for (child = die->child; child != NULL; child = child->sibling)
7548 {
7549 struct type *type;
7550 LONGEST value;
7551 const gdb_byte *bytes;
7552 struct dwarf2_locexpr_baton *baton;
7553 struct value *v;
7554
7555 if (child->tag != DW_TAG_template_type_param
7556 && child->tag != DW_TAG_template_value_param)
7557 continue;
7558
7559 if (first)
7560 {
7561 fputs_unfiltered ("<", buf);
7562 first = 0;
7563 }
7564 else
7565 fputs_unfiltered (", ", buf);
7566
7567 attr = dwarf2_attr (child, DW_AT_type, cu);
7568 if (attr == NULL)
7569 {
7570 complaint (&symfile_complaints,
7571 _("template parameter missing DW_AT_type"));
7572 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7573 continue;
7574 }
7575 type = die_type (child, cu);
7576
7577 if (child->tag == DW_TAG_template_type_param)
7578 {
7579 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7580 continue;
7581 }
7582
7583 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7584 if (attr == NULL)
7585 {
7586 complaint (&symfile_complaints,
7587 _("template parameter missing "
7588 "DW_AT_const_value"));
7589 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7590 continue;
7591 }
7592
7593 dwarf2_const_value_attr (attr, type, name,
7594 &cu->comp_unit_obstack, cu,
7595 &value, &bytes, &baton);
7596
7597 if (TYPE_NOSIGN (type))
7598 /* GDB prints characters as NUMBER 'CHAR'. If that's
7599 changed, this can use value_print instead. */
7600 c_printchar (value, type, buf);
7601 else
7602 {
7603 struct value_print_options opts;
7604
7605 if (baton != NULL)
7606 v = dwarf2_evaluate_loc_desc (type, NULL,
7607 baton->data,
7608 baton->size,
7609 baton->per_cu);
7610 else if (bytes != NULL)
7611 {
7612 v = allocate_value (type);
7613 memcpy (value_contents_writeable (v), bytes,
7614 TYPE_LENGTH (type));
7615 }
7616 else
7617 v = value_from_longest (type, value);
7618
7619 /* Specify decimal so that we do not depend on
7620 the radix. */
7621 get_formatted_print_options (&opts, 'd');
7622 opts.raw = 1;
7623 value_print (v, buf, &opts);
7624 release_value (v);
7625 value_free (v);
7626 }
7627 }
7628
7629 die->building_fullname = 0;
7630
7631 if (!first)
7632 {
7633 /* Close the argument list, with a space if necessary
7634 (nested templates). */
7635 char last_char = '\0';
7636 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7637 if (last_char == '>')
7638 fputs_unfiltered (" >", buf);
7639 else
7640 fputs_unfiltered (">", buf);
7641 }
7642 }
7643
7644 /* For Java and C++ methods, append formal parameter type
7645 information, if PHYSNAME. */
7646
7647 if (physname && die->tag == DW_TAG_subprogram
7648 && (cu->language == language_cplus
7649 || cu->language == language_java))
7650 {
7651 struct type *type = read_type_die (die, cu);
7652
7653 c_type_print_args (type, buf, 1, cu->language,
7654 &type_print_raw_options);
7655
7656 if (cu->language == language_java)
7657 {
7658 /* For java, we must append the return type to method
7659 names. */
7660 if (die->tag == DW_TAG_subprogram)
7661 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
7662 0, 0, &type_print_raw_options);
7663 }
7664 else if (cu->language == language_cplus)
7665 {
7666 /* Assume that an artificial first parameter is
7667 "this", but do not crash if it is not. RealView
7668 marks unnamed (and thus unused) parameters as
7669 artificial; there is no way to differentiate
7670 the two cases. */
7671 if (TYPE_NFIELDS (type) > 0
7672 && TYPE_FIELD_ARTIFICIAL (type, 0)
7673 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
7674 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
7675 0))))
7676 fputs_unfiltered (" const", buf);
7677 }
7678 }
7679
7680 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
7681 &length);
7682 ui_file_delete (buf);
7683
7684 if (cu->language == language_cplus)
7685 {
7686 const char *cname
7687 = dwarf2_canonicalize_name (name, cu,
7688 &objfile->objfile_obstack);
7689
7690 if (cname != NULL)
7691 name = cname;
7692 }
7693 }
7694 }
7695
7696 return name;
7697 }
7698
7699 /* Return the fully qualified name of DIE, based on its DW_AT_name.
7700 If scope qualifiers are appropriate they will be added. The result
7701 will be allocated on the objfile_obstack, or NULL if the DIE does
7702 not have a name. NAME may either be from a previous call to
7703 dwarf2_name or NULL.
7704
7705 The output string will be canonicalized (if C++/Java). */
7706
7707 static const char *
7708 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
7709 {
7710 return dwarf2_compute_name (name, die, cu, 0);
7711 }
7712
7713 /* Construct a physname for the given DIE in CU. NAME may either be
7714 from a previous call to dwarf2_name or NULL. The result will be
7715 allocated on the objfile_objstack or NULL if the DIE does not have a
7716 name.
7717
7718 The output string will be canonicalized (if C++/Java). */
7719
7720 static const char *
7721 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
7722 {
7723 struct objfile *objfile = cu->objfile;
7724 struct attribute *attr;
7725 const char *retval, *mangled = NULL, *canon = NULL;
7726 struct cleanup *back_to;
7727 int need_copy = 1;
7728
7729 /* In this case dwarf2_compute_name is just a shortcut not building anything
7730 on its own. */
7731 if (!die_needs_namespace (die, cu))
7732 return dwarf2_compute_name (name, die, cu, 1);
7733
7734 back_to = make_cleanup (null_cleanup, NULL);
7735
7736 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7737 if (!attr)
7738 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7739
7740 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
7741 has computed. */
7742 if (attr && DW_STRING (attr))
7743 {
7744 char *demangled;
7745
7746 mangled = DW_STRING (attr);
7747
7748 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
7749 type. It is easier for GDB users to search for such functions as
7750 `name(params)' than `long name(params)'. In such case the minimal
7751 symbol names do not match the full symbol names but for template
7752 functions there is never a need to look up their definition from their
7753 declaration so the only disadvantage remains the minimal symbol
7754 variant `long name(params)' does not have the proper inferior type.
7755 */
7756
7757 if (cu->language == language_go)
7758 {
7759 /* This is a lie, but we already lie to the caller new_symbol_full.
7760 new_symbol_full assumes we return the mangled name.
7761 This just undoes that lie until things are cleaned up. */
7762 demangled = NULL;
7763 }
7764 else
7765 {
7766 demangled = cplus_demangle (mangled,
7767 (DMGL_PARAMS | DMGL_ANSI
7768 | (cu->language == language_java
7769 ? DMGL_JAVA | DMGL_RET_POSTFIX
7770 : DMGL_RET_DROP)));
7771 }
7772 if (demangled)
7773 {
7774 make_cleanup (xfree, demangled);
7775 canon = demangled;
7776 }
7777 else
7778 {
7779 canon = mangled;
7780 need_copy = 0;
7781 }
7782 }
7783
7784 if (canon == NULL || check_physname)
7785 {
7786 const char *physname = dwarf2_compute_name (name, die, cu, 1);
7787
7788 if (canon != NULL && strcmp (physname, canon) != 0)
7789 {
7790 /* It may not mean a bug in GDB. The compiler could also
7791 compute DW_AT_linkage_name incorrectly. But in such case
7792 GDB would need to be bug-to-bug compatible. */
7793
7794 complaint (&symfile_complaints,
7795 _("Computed physname <%s> does not match demangled <%s> "
7796 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
7797 physname, canon, mangled, die->offset.sect_off, objfile->name);
7798
7799 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
7800 is available here - over computed PHYSNAME. It is safer
7801 against both buggy GDB and buggy compilers. */
7802
7803 retval = canon;
7804 }
7805 else
7806 {
7807 retval = physname;
7808 need_copy = 0;
7809 }
7810 }
7811 else
7812 retval = canon;
7813
7814 if (need_copy)
7815 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
7816
7817 do_cleanups (back_to);
7818 return retval;
7819 }
7820
7821 /* Read the import statement specified by the given die and record it. */
7822
7823 static void
7824 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
7825 {
7826 struct objfile *objfile = cu->objfile;
7827 struct attribute *import_attr;
7828 struct die_info *imported_die, *child_die;
7829 struct dwarf2_cu *imported_cu;
7830 const char *imported_name;
7831 const char *imported_name_prefix;
7832 const char *canonical_name;
7833 const char *import_alias;
7834 const char *imported_declaration = NULL;
7835 const char *import_prefix;
7836 VEC (const_char_ptr) *excludes = NULL;
7837 struct cleanup *cleanups;
7838
7839 import_attr = dwarf2_attr (die, DW_AT_import, cu);
7840 if (import_attr == NULL)
7841 {
7842 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7843 dwarf_tag_name (die->tag));
7844 return;
7845 }
7846
7847 imported_cu = cu;
7848 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
7849 imported_name = dwarf2_name (imported_die, imported_cu);
7850 if (imported_name == NULL)
7851 {
7852 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
7853
7854 The import in the following code:
7855 namespace A
7856 {
7857 typedef int B;
7858 }
7859
7860 int main ()
7861 {
7862 using A::B;
7863 B b;
7864 return b;
7865 }
7866
7867 ...
7868 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
7869 <52> DW_AT_decl_file : 1
7870 <53> DW_AT_decl_line : 6
7871 <54> DW_AT_import : <0x75>
7872 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
7873 <59> DW_AT_name : B
7874 <5b> DW_AT_decl_file : 1
7875 <5c> DW_AT_decl_line : 2
7876 <5d> DW_AT_type : <0x6e>
7877 ...
7878 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
7879 <76> DW_AT_byte_size : 4
7880 <77> DW_AT_encoding : 5 (signed)
7881
7882 imports the wrong die ( 0x75 instead of 0x58 ).
7883 This case will be ignored until the gcc bug is fixed. */
7884 return;
7885 }
7886
7887 /* Figure out the local name after import. */
7888 import_alias = dwarf2_name (die, cu);
7889
7890 /* Figure out where the statement is being imported to. */
7891 import_prefix = determine_prefix (die, cu);
7892
7893 /* Figure out what the scope of the imported die is and prepend it
7894 to the name of the imported die. */
7895 imported_name_prefix = determine_prefix (imported_die, imported_cu);
7896
7897 if (imported_die->tag != DW_TAG_namespace
7898 && imported_die->tag != DW_TAG_module)
7899 {
7900 imported_declaration = imported_name;
7901 canonical_name = imported_name_prefix;
7902 }
7903 else if (strlen (imported_name_prefix) > 0)
7904 canonical_name = obconcat (&objfile->objfile_obstack,
7905 imported_name_prefix, "::", imported_name,
7906 (char *) NULL);
7907 else
7908 canonical_name = imported_name;
7909
7910 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
7911
7912 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
7913 for (child_die = die->child; child_die && child_die->tag;
7914 child_die = sibling_die (child_die))
7915 {
7916 /* DWARF-4: A Fortran use statement with a “rename list” may be
7917 represented by an imported module entry with an import attribute
7918 referring to the module and owned entries corresponding to those
7919 entities that are renamed as part of being imported. */
7920
7921 if (child_die->tag != DW_TAG_imported_declaration)
7922 {
7923 complaint (&symfile_complaints,
7924 _("child DW_TAG_imported_declaration expected "
7925 "- DIE at 0x%x [in module %s]"),
7926 child_die->offset.sect_off, objfile->name);
7927 continue;
7928 }
7929
7930 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
7931 if (import_attr == NULL)
7932 {
7933 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7934 dwarf_tag_name (child_die->tag));
7935 continue;
7936 }
7937
7938 imported_cu = cu;
7939 imported_die = follow_die_ref_or_sig (child_die, import_attr,
7940 &imported_cu);
7941 imported_name = dwarf2_name (imported_die, imported_cu);
7942 if (imported_name == NULL)
7943 {
7944 complaint (&symfile_complaints,
7945 _("child DW_TAG_imported_declaration has unknown "
7946 "imported name - DIE at 0x%x [in module %s]"),
7947 child_die->offset.sect_off, objfile->name);
7948 continue;
7949 }
7950
7951 VEC_safe_push (const_char_ptr, excludes, imported_name);
7952
7953 process_die (child_die, cu);
7954 }
7955
7956 cp_add_using_directive (import_prefix,
7957 canonical_name,
7958 import_alias,
7959 imported_declaration,
7960 excludes,
7961 0,
7962 &objfile->objfile_obstack);
7963
7964 do_cleanups (cleanups);
7965 }
7966
7967 /* Cleanup function for handle_DW_AT_stmt_list. */
7968
7969 static void
7970 free_cu_line_header (void *arg)
7971 {
7972 struct dwarf2_cu *cu = arg;
7973
7974 free_line_header (cu->line_header);
7975 cu->line_header = NULL;
7976 }
7977
7978 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
7979 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
7980 this, it was first present in GCC release 4.3.0. */
7981
7982 static int
7983 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
7984 {
7985 if (!cu->checked_producer)
7986 check_producer (cu);
7987
7988 return cu->producer_is_gcc_lt_4_3;
7989 }
7990
7991 static void
7992 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
7993 const char **name, const char **comp_dir)
7994 {
7995 struct attribute *attr;
7996
7997 *name = NULL;
7998 *comp_dir = NULL;
7999
8000 /* Find the filename. Do not use dwarf2_name here, since the filename
8001 is not a source language identifier. */
8002 attr = dwarf2_attr (die, DW_AT_name, cu);
8003 if (attr)
8004 {
8005 *name = DW_STRING (attr);
8006 }
8007
8008 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8009 if (attr)
8010 *comp_dir = DW_STRING (attr);
8011 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8012 && IS_ABSOLUTE_PATH (*name))
8013 {
8014 char *d = ldirname (*name);
8015
8016 *comp_dir = d;
8017 if (d != NULL)
8018 make_cleanup (xfree, d);
8019 }
8020 if (*comp_dir != NULL)
8021 {
8022 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8023 directory, get rid of it. */
8024 char *cp = strchr (*comp_dir, ':');
8025
8026 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8027 *comp_dir = cp + 1;
8028 }
8029
8030 if (*name == NULL)
8031 *name = "<unknown>";
8032 }
8033
8034 /* Handle DW_AT_stmt_list for a compilation unit.
8035 DIE is the DW_TAG_compile_unit die for CU.
8036 COMP_DIR is the compilation directory.
8037 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8038
8039 static void
8040 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8041 const char *comp_dir)
8042 {
8043 struct attribute *attr;
8044
8045 gdb_assert (! cu->per_cu->is_debug_types);
8046
8047 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8048 if (attr)
8049 {
8050 unsigned int line_offset = DW_UNSND (attr);
8051 struct line_header *line_header
8052 = dwarf_decode_line_header (line_offset, cu);
8053
8054 if (line_header)
8055 {
8056 cu->line_header = line_header;
8057 make_cleanup (free_cu_line_header, cu);
8058 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8059 }
8060 }
8061 }
8062
8063 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8064
8065 static void
8066 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8067 {
8068 struct objfile *objfile = dwarf2_per_objfile->objfile;
8069 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8070 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8071 CORE_ADDR highpc = ((CORE_ADDR) 0);
8072 struct attribute *attr;
8073 const char *name = NULL;
8074 const char *comp_dir = NULL;
8075 struct die_info *child_die;
8076 bfd *abfd = objfile->obfd;
8077 CORE_ADDR baseaddr;
8078
8079 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8080
8081 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8082
8083 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8084 from finish_block. */
8085 if (lowpc == ((CORE_ADDR) -1))
8086 lowpc = highpc;
8087 lowpc += baseaddr;
8088 highpc += baseaddr;
8089
8090 find_file_and_directory (die, cu, &name, &comp_dir);
8091
8092 prepare_one_comp_unit (cu, die, cu->language);
8093
8094 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8095 standardised yet. As a workaround for the language detection we fall
8096 back to the DW_AT_producer string. */
8097 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8098 cu->language = language_opencl;
8099
8100 /* Similar hack for Go. */
8101 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8102 set_cu_language (DW_LANG_Go, cu);
8103
8104 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8105
8106 /* Decode line number information if present. We do this before
8107 processing child DIEs, so that the line header table is available
8108 for DW_AT_decl_file. */
8109 handle_DW_AT_stmt_list (die, cu, comp_dir);
8110
8111 /* Process all dies in compilation unit. */
8112 if (die->child != NULL)
8113 {
8114 child_die = die->child;
8115 while (child_die && child_die->tag)
8116 {
8117 process_die (child_die, cu);
8118 child_die = sibling_die (child_die);
8119 }
8120 }
8121
8122 /* Decode macro information, if present. Dwarf 2 macro information
8123 refers to information in the line number info statement program
8124 header, so we can only read it if we've read the header
8125 successfully. */
8126 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8127 if (attr && cu->line_header)
8128 {
8129 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8130 complaint (&symfile_complaints,
8131 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8132
8133 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8134 }
8135 else
8136 {
8137 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8138 if (attr && cu->line_header)
8139 {
8140 unsigned int macro_offset = DW_UNSND (attr);
8141
8142 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8143 }
8144 }
8145
8146 do_cleanups (back_to);
8147 }
8148
8149 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8150 Create the set of symtabs used by this TU, or if this TU is sharing
8151 symtabs with another TU and the symtabs have already been created
8152 then restore those symtabs in the line header.
8153 We don't need the pc/line-number mapping for type units. */
8154
8155 static void
8156 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8157 {
8158 struct objfile *objfile = dwarf2_per_objfile->objfile;
8159 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8160 struct type_unit_group *tu_group;
8161 int first_time;
8162 struct line_header *lh;
8163 struct attribute *attr;
8164 unsigned int i, line_offset;
8165 struct signatured_type *sig_type;
8166
8167 gdb_assert (per_cu->is_debug_types);
8168 sig_type = (struct signatured_type *) per_cu;
8169
8170 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8171
8172 /* If we're using .gdb_index (includes -readnow) then
8173 per_cu->s.type_unit_group may not have been set up yet. */
8174 if (sig_type->type_unit_group == NULL)
8175 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8176 tu_group = sig_type->type_unit_group;
8177
8178 /* If we've already processed this stmt_list there's no real need to
8179 do it again, we could fake it and just recreate the part we need
8180 (file name,index -> symtab mapping). If data shows this optimization
8181 is useful we can do it then. */
8182 first_time = tu_group->primary_symtab == NULL;
8183
8184 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8185 debug info. */
8186 lh = NULL;
8187 if (attr != NULL)
8188 {
8189 line_offset = DW_UNSND (attr);
8190 lh = dwarf_decode_line_header (line_offset, cu);
8191 }
8192 if (lh == NULL)
8193 {
8194 if (first_time)
8195 dwarf2_start_symtab (cu, "", NULL, 0);
8196 else
8197 {
8198 gdb_assert (tu_group->symtabs == NULL);
8199 restart_symtab (0);
8200 }
8201 /* Note: The primary symtab will get allocated at the end. */
8202 return;
8203 }
8204
8205 cu->line_header = lh;
8206 make_cleanup (free_cu_line_header, cu);
8207
8208 if (first_time)
8209 {
8210 dwarf2_start_symtab (cu, "", NULL, 0);
8211
8212 tu_group->num_symtabs = lh->num_file_names;
8213 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8214
8215 for (i = 0; i < lh->num_file_names; ++i)
8216 {
8217 const char *dir = NULL;
8218 struct file_entry *fe = &lh->file_names[i];
8219
8220 if (fe->dir_index)
8221 dir = lh->include_dirs[fe->dir_index - 1];
8222 dwarf2_start_subfile (fe->name, dir, NULL);
8223
8224 /* Note: We don't have to watch for the main subfile here, type units
8225 don't have DW_AT_name. */
8226
8227 if (current_subfile->symtab == NULL)
8228 {
8229 /* NOTE: start_subfile will recognize when it's been passed
8230 a file it has already seen. So we can't assume there's a
8231 simple mapping from lh->file_names to subfiles,
8232 lh->file_names may contain dups. */
8233 current_subfile->symtab = allocate_symtab (current_subfile->name,
8234 objfile);
8235 }
8236
8237 fe->symtab = current_subfile->symtab;
8238 tu_group->symtabs[i] = fe->symtab;
8239 }
8240 }
8241 else
8242 {
8243 restart_symtab (0);
8244
8245 for (i = 0; i < lh->num_file_names; ++i)
8246 {
8247 struct file_entry *fe = &lh->file_names[i];
8248
8249 fe->symtab = tu_group->symtabs[i];
8250 }
8251 }
8252
8253 /* The main symtab is allocated last. Type units don't have DW_AT_name
8254 so they don't have a "real" (so to speak) symtab anyway.
8255 There is later code that will assign the main symtab to all symbols
8256 that don't have one. We need to handle the case of a symbol with a
8257 missing symtab (DW_AT_decl_file) anyway. */
8258 }
8259
8260 /* Process DW_TAG_type_unit.
8261 For TUs we want to skip the first top level sibling if it's not the
8262 actual type being defined by this TU. In this case the first top
8263 level sibling is there to provide context only. */
8264
8265 static void
8266 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8267 {
8268 struct die_info *child_die;
8269
8270 prepare_one_comp_unit (cu, die, language_minimal);
8271
8272 /* Initialize (or reinitialize) the machinery for building symtabs.
8273 We do this before processing child DIEs, so that the line header table
8274 is available for DW_AT_decl_file. */
8275 setup_type_unit_groups (die, cu);
8276
8277 if (die->child != NULL)
8278 {
8279 child_die = die->child;
8280 while (child_die && child_die->tag)
8281 {
8282 process_die (child_die, cu);
8283 child_die = sibling_die (child_die);
8284 }
8285 }
8286 }
8287 \f
8288 /* DWO/DWP files.
8289
8290 http://gcc.gnu.org/wiki/DebugFission
8291 http://gcc.gnu.org/wiki/DebugFissionDWP
8292
8293 To simplify handling of both DWO files ("object" files with the DWARF info)
8294 and DWP files (a file with the DWOs packaged up into one file), we treat
8295 DWP files as having a collection of virtual DWO files. */
8296
8297 static hashval_t
8298 hash_dwo_file (const void *item)
8299 {
8300 const struct dwo_file *dwo_file = item;
8301
8302 return (htab_hash_string (dwo_file->dwo_name)
8303 + htab_hash_string (dwo_file->comp_dir));
8304 }
8305
8306 static int
8307 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8308 {
8309 const struct dwo_file *lhs = item_lhs;
8310 const struct dwo_file *rhs = item_rhs;
8311
8312 return (strcmp (lhs->dwo_name, rhs->dwo_name) == 0
8313 && strcmp (lhs->comp_dir, rhs->comp_dir) == 0);
8314 }
8315
8316 /* Allocate a hash table for DWO files. */
8317
8318 static htab_t
8319 allocate_dwo_file_hash_table (void)
8320 {
8321 struct objfile *objfile = dwarf2_per_objfile->objfile;
8322
8323 return htab_create_alloc_ex (41,
8324 hash_dwo_file,
8325 eq_dwo_file,
8326 NULL,
8327 &objfile->objfile_obstack,
8328 hashtab_obstack_allocate,
8329 dummy_obstack_deallocate);
8330 }
8331
8332 /* Lookup DWO file DWO_NAME. */
8333
8334 static void **
8335 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
8336 {
8337 struct dwo_file find_entry;
8338 void **slot;
8339
8340 if (dwarf2_per_objfile->dwo_files == NULL)
8341 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8342
8343 memset (&find_entry, 0, sizeof (find_entry));
8344 find_entry.dwo_name = dwo_name;
8345 find_entry.comp_dir = comp_dir;
8346 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8347
8348 return slot;
8349 }
8350
8351 static hashval_t
8352 hash_dwo_unit (const void *item)
8353 {
8354 const struct dwo_unit *dwo_unit = item;
8355
8356 /* This drops the top 32 bits of the id, but is ok for a hash. */
8357 return dwo_unit->signature;
8358 }
8359
8360 static int
8361 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8362 {
8363 const struct dwo_unit *lhs = item_lhs;
8364 const struct dwo_unit *rhs = item_rhs;
8365
8366 /* The signature is assumed to be unique within the DWO file.
8367 So while object file CU dwo_id's always have the value zero,
8368 that's OK, assuming each object file DWO file has only one CU,
8369 and that's the rule for now. */
8370 return lhs->signature == rhs->signature;
8371 }
8372
8373 /* Allocate a hash table for DWO CUs,TUs.
8374 There is one of these tables for each of CUs,TUs for each DWO file. */
8375
8376 static htab_t
8377 allocate_dwo_unit_table (struct objfile *objfile)
8378 {
8379 /* Start out with a pretty small number.
8380 Generally DWO files contain only one CU and maybe some TUs. */
8381 return htab_create_alloc_ex (3,
8382 hash_dwo_unit,
8383 eq_dwo_unit,
8384 NULL,
8385 &objfile->objfile_obstack,
8386 hashtab_obstack_allocate,
8387 dummy_obstack_deallocate);
8388 }
8389
8390 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8391
8392 struct create_dwo_info_table_data
8393 {
8394 struct dwo_file *dwo_file;
8395 htab_t cu_htab;
8396 };
8397
8398 /* die_reader_func for create_dwo_debug_info_hash_table. */
8399
8400 static void
8401 create_dwo_debug_info_hash_table_reader (const struct die_reader_specs *reader,
8402 const gdb_byte *info_ptr,
8403 struct die_info *comp_unit_die,
8404 int has_children,
8405 void *datap)
8406 {
8407 struct dwarf2_cu *cu = reader->cu;
8408 struct objfile *objfile = dwarf2_per_objfile->objfile;
8409 sect_offset offset = cu->per_cu->offset;
8410 struct dwarf2_section_info *section = cu->per_cu->section;
8411 struct create_dwo_info_table_data *data = datap;
8412 struct dwo_file *dwo_file = data->dwo_file;
8413 htab_t cu_htab = data->cu_htab;
8414 void **slot;
8415 struct attribute *attr;
8416 struct dwo_unit *dwo_unit;
8417
8418 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8419 if (attr == NULL)
8420 {
8421 error (_("Dwarf Error: debug entry at offset 0x%x is missing"
8422 " its dwo_id [in module %s]"),
8423 offset.sect_off, dwo_file->dwo_name);
8424 return;
8425 }
8426
8427 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8428 dwo_unit->dwo_file = dwo_file;
8429 dwo_unit->signature = DW_UNSND (attr);
8430 dwo_unit->section = section;
8431 dwo_unit->offset = offset;
8432 dwo_unit->length = cu->per_cu->length;
8433
8434 slot = htab_find_slot (cu_htab, dwo_unit, INSERT);
8435 gdb_assert (slot != NULL);
8436 if (*slot != NULL)
8437 {
8438 const struct dwo_unit *dup_dwo_unit = *slot;
8439
8440 complaint (&symfile_complaints,
8441 _("debug entry at offset 0x%x is duplicate to the entry at"
8442 " offset 0x%x, dwo_id 0x%s [in module %s]"),
8443 offset.sect_off, dup_dwo_unit->offset.sect_off,
8444 phex (dwo_unit->signature, sizeof (dwo_unit->signature)),
8445 dwo_file->dwo_name);
8446 }
8447 else
8448 *slot = dwo_unit;
8449
8450 if (dwarf2_read_debug)
8451 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id 0x%s\n",
8452 offset.sect_off,
8453 phex (dwo_unit->signature,
8454 sizeof (dwo_unit->signature)));
8455 }
8456
8457 /* Create a hash table to map DWO IDs to their CU entry in
8458 .debug_info.dwo in DWO_FILE.
8459 Note: This function processes DWO files only, not DWP files.
8460 Note: A DWO file generally contains one CU, but we don't assume this. */
8461
8462 static htab_t
8463 create_dwo_debug_info_hash_table (struct dwo_file *dwo_file)
8464 {
8465 struct objfile *objfile = dwarf2_per_objfile->objfile;
8466 struct dwarf2_section_info *section = &dwo_file->sections.info;
8467 bfd *abfd;
8468 htab_t cu_htab;
8469 const gdb_byte *info_ptr, *end_ptr;
8470 struct create_dwo_info_table_data create_dwo_info_table_data;
8471
8472 dwarf2_read_section (objfile, section);
8473 info_ptr = section->buffer;
8474
8475 if (info_ptr == NULL)
8476 return NULL;
8477
8478 /* We can't set abfd until now because the section may be empty or
8479 not present, in which case section->asection will be NULL. */
8480 abfd = section->asection->owner;
8481
8482 if (dwarf2_read_debug)
8483 fprintf_unfiltered (gdb_stdlog, "Reading .debug_info.dwo for %s:\n",
8484 bfd_get_filename (abfd));
8485
8486 cu_htab = allocate_dwo_unit_table (objfile);
8487
8488 create_dwo_info_table_data.dwo_file = dwo_file;
8489 create_dwo_info_table_data.cu_htab = cu_htab;
8490
8491 end_ptr = info_ptr + section->size;
8492 while (info_ptr < end_ptr)
8493 {
8494 struct dwarf2_per_cu_data per_cu;
8495
8496 memset (&per_cu, 0, sizeof (per_cu));
8497 per_cu.objfile = objfile;
8498 per_cu.is_debug_types = 0;
8499 per_cu.offset.sect_off = info_ptr - section->buffer;
8500 per_cu.section = section;
8501
8502 init_cutu_and_read_dies_no_follow (&per_cu,
8503 &dwo_file->sections.abbrev,
8504 dwo_file,
8505 create_dwo_debug_info_hash_table_reader,
8506 &create_dwo_info_table_data);
8507
8508 info_ptr += per_cu.length;
8509 }
8510
8511 return cu_htab;
8512 }
8513
8514 /* DWP file .debug_{cu,tu}_index section format:
8515 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8516
8517 Both index sections have the same format, and serve to map a 64-bit
8518 signature to a set of section numbers. Each section begins with a header,
8519 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8520 indexes, and a pool of 32-bit section numbers. The index sections will be
8521 aligned at 8-byte boundaries in the file.
8522
8523 The index section header contains two unsigned 32-bit values (using the
8524 byte order of the application binary):
8525
8526 N, the number of compilation units or type units in the index
8527 M, the number of slots in the hash table
8528
8529 (We assume that N and M will not exceed 2^32 - 1.)
8530
8531 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8532
8533 The hash table begins at offset 8 in the section, and consists of an array
8534 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8535 order of the application binary). Unused slots in the hash table are 0.
8536 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8537
8538 The parallel table begins immediately after the hash table
8539 (at offset 8 + 8 * M from the beginning of the section), and consists of an
8540 array of 32-bit indexes (using the byte order of the application binary),
8541 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8542 table contains a 32-bit index into the pool of section numbers. For unused
8543 hash table slots, the corresponding entry in the parallel table will be 0.
8544
8545 Given a 64-bit compilation unit signature or a type signature S, an entry
8546 in the hash table is located as follows:
8547
8548 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8549 the low-order k bits all set to 1.
8550
8551 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8552
8553 3) If the hash table entry at index H matches the signature, use that
8554 entry. If the hash table entry at index H is unused (all zeroes),
8555 terminate the search: the signature is not present in the table.
8556
8557 4) Let H = (H + H') modulo M. Repeat at Step 3.
8558
8559 Because M > N and H' and M are relatively prime, the search is guaranteed
8560 to stop at an unused slot or find the match.
8561
8562 The pool of section numbers begins immediately following the hash table
8563 (at offset 8 + 12 * M from the beginning of the section). The pool of
8564 section numbers consists of an array of 32-bit words (using the byte order
8565 of the application binary). Each item in the array is indexed starting
8566 from 0. The hash table entry provides the index of the first section
8567 number in the set. Additional section numbers in the set follow, and the
8568 set is terminated by a 0 entry (section number 0 is not used in ELF).
8569
8570 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8571 section must be the first entry in the set, and the .debug_abbrev.dwo must
8572 be the second entry. Other members of the set may follow in any order. */
8573
8574 /* Create a hash table to map DWO IDs to their CU/TU entry in
8575 .debug_{info,types}.dwo in DWP_FILE.
8576 Returns NULL if there isn't one.
8577 Note: This function processes DWP files only, not DWO files. */
8578
8579 static struct dwp_hash_table *
8580 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8581 {
8582 struct objfile *objfile = dwarf2_per_objfile->objfile;
8583 bfd *dbfd = dwp_file->dbfd;
8584 const char *index_ptr, *index_end;
8585 struct dwarf2_section_info *index;
8586 uint32_t version, nr_units, nr_slots;
8587 struct dwp_hash_table *htab;
8588
8589 if (is_debug_types)
8590 index = &dwp_file->sections.tu_index;
8591 else
8592 index = &dwp_file->sections.cu_index;
8593
8594 if (dwarf2_section_empty_p (index))
8595 return NULL;
8596 dwarf2_read_section (objfile, index);
8597
8598 index_ptr = index->buffer;
8599 index_end = index_ptr + index->size;
8600
8601 version = read_4_bytes (dbfd, index_ptr);
8602 index_ptr += 8; /* Skip the unused word. */
8603 nr_units = read_4_bytes (dbfd, index_ptr);
8604 index_ptr += 4;
8605 nr_slots = read_4_bytes (dbfd, index_ptr);
8606 index_ptr += 4;
8607
8608 if (version != 1)
8609 {
8610 error (_("Dwarf Error: unsupported DWP file version (%u)"
8611 " [in module %s]"),
8612 version, dwp_file->name);
8613 }
8614 if (nr_slots != (nr_slots & -nr_slots))
8615 {
8616 error (_("Dwarf Error: number of slots in DWP hash table (%u)"
8617 " is not power of 2 [in module %s]"),
8618 nr_slots, dwp_file->name);
8619 }
8620
8621 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
8622 htab->nr_units = nr_units;
8623 htab->nr_slots = nr_slots;
8624 htab->hash_table = index_ptr;
8625 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
8626 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
8627
8628 return htab;
8629 }
8630
8631 /* Update SECTIONS with the data from SECTP.
8632
8633 This function is like the other "locate" section routines that are
8634 passed to bfd_map_over_sections, but in this context the sections to
8635 read comes from the DWP hash table, not the full ELF section table.
8636
8637 The result is non-zero for success, or zero if an error was found. */
8638
8639 static int
8640 locate_virtual_dwo_sections (asection *sectp,
8641 struct virtual_dwo_sections *sections)
8642 {
8643 const struct dwop_section_names *names = &dwop_section_names;
8644
8645 if (section_is_p (sectp->name, &names->abbrev_dwo))
8646 {
8647 /* There can be only one. */
8648 if (sections->abbrev.asection != NULL)
8649 return 0;
8650 sections->abbrev.asection = sectp;
8651 sections->abbrev.size = bfd_get_section_size (sectp);
8652 }
8653 else if (section_is_p (sectp->name, &names->info_dwo)
8654 || section_is_p (sectp->name, &names->types_dwo))
8655 {
8656 /* There can be only one. */
8657 if (sections->info_or_types.asection != NULL)
8658 return 0;
8659 sections->info_or_types.asection = sectp;
8660 sections->info_or_types.size = bfd_get_section_size (sectp);
8661 }
8662 else if (section_is_p (sectp->name, &names->line_dwo))
8663 {
8664 /* There can be only one. */
8665 if (sections->line.asection != NULL)
8666 return 0;
8667 sections->line.asection = sectp;
8668 sections->line.size = bfd_get_section_size (sectp);
8669 }
8670 else if (section_is_p (sectp->name, &names->loc_dwo))
8671 {
8672 /* There can be only one. */
8673 if (sections->loc.asection != NULL)
8674 return 0;
8675 sections->loc.asection = sectp;
8676 sections->loc.size = bfd_get_section_size (sectp);
8677 }
8678 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8679 {
8680 /* There can be only one. */
8681 if (sections->macinfo.asection != NULL)
8682 return 0;
8683 sections->macinfo.asection = sectp;
8684 sections->macinfo.size = bfd_get_section_size (sectp);
8685 }
8686 else if (section_is_p (sectp->name, &names->macro_dwo))
8687 {
8688 /* There can be only one. */
8689 if (sections->macro.asection != NULL)
8690 return 0;
8691 sections->macro.asection = sectp;
8692 sections->macro.size = bfd_get_section_size (sectp);
8693 }
8694 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8695 {
8696 /* There can be only one. */
8697 if (sections->str_offsets.asection != NULL)
8698 return 0;
8699 sections->str_offsets.asection = sectp;
8700 sections->str_offsets.size = bfd_get_section_size (sectp);
8701 }
8702 else
8703 {
8704 /* No other kind of section is valid. */
8705 return 0;
8706 }
8707
8708 return 1;
8709 }
8710
8711 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
8712 HTAB is the hash table from the DWP file.
8713 SECTION_INDEX is the index of the DWO in HTAB.
8714 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU. */
8715
8716 static struct dwo_unit *
8717 create_dwo_in_dwp (struct dwp_file *dwp_file,
8718 const struct dwp_hash_table *htab,
8719 uint32_t section_index,
8720 const char *comp_dir,
8721 ULONGEST signature, int is_debug_types)
8722 {
8723 struct objfile *objfile = dwarf2_per_objfile->objfile;
8724 bfd *dbfd = dwp_file->dbfd;
8725 const char *kind = is_debug_types ? "TU" : "CU";
8726 struct dwo_file *dwo_file;
8727 struct dwo_unit *dwo_unit;
8728 struct virtual_dwo_sections sections;
8729 void **dwo_file_slot;
8730 char *virtual_dwo_name;
8731 struct dwarf2_section_info *cutu;
8732 struct cleanup *cleanups;
8733 int i;
8734
8735 if (dwarf2_read_debug)
8736 {
8737 fprintf_unfiltered (gdb_stdlog, "Reading %s %u/0x%s in DWP file: %s\n",
8738 kind,
8739 section_index, phex (signature, sizeof (signature)),
8740 dwp_file->name);
8741 }
8742
8743 /* Fetch the sections of this DWO.
8744 Put a limit on the number of sections we look for so that bad data
8745 doesn't cause us to loop forever. */
8746
8747 #define MAX_NR_DWO_SECTIONS \
8748 (1 /* .debug_info or .debug_types */ \
8749 + 1 /* .debug_abbrev */ \
8750 + 1 /* .debug_line */ \
8751 + 1 /* .debug_loc */ \
8752 + 1 /* .debug_str_offsets */ \
8753 + 1 /* .debug_macro */ \
8754 + 1 /* .debug_macinfo */ \
8755 + 1 /* trailing zero */)
8756
8757 memset (&sections, 0, sizeof (sections));
8758 cleanups = make_cleanup (null_cleanup, 0);
8759
8760 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
8761 {
8762 asection *sectp;
8763 uint32_t section_nr =
8764 read_4_bytes (dbfd,
8765 htab->section_pool
8766 + (section_index + i) * sizeof (uint32_t));
8767
8768 if (section_nr == 0)
8769 break;
8770 if (section_nr >= dwp_file->num_sections)
8771 {
8772 error (_("Dwarf Error: bad DWP hash table, section number too large"
8773 " [in module %s]"),
8774 dwp_file->name);
8775 }
8776
8777 sectp = dwp_file->elf_sections[section_nr];
8778 if (! locate_virtual_dwo_sections (sectp, &sections))
8779 {
8780 error (_("Dwarf Error: bad DWP hash table, invalid section found"
8781 " [in module %s]"),
8782 dwp_file->name);
8783 }
8784 }
8785
8786 if (i < 2
8787 || sections.info_or_types.asection == NULL
8788 || sections.abbrev.asection == NULL)
8789 {
8790 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
8791 " [in module %s]"),
8792 dwp_file->name);
8793 }
8794 if (i == MAX_NR_DWO_SECTIONS)
8795 {
8796 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
8797 " [in module %s]"),
8798 dwp_file->name);
8799 }
8800
8801 /* It's easier for the rest of the code if we fake a struct dwo_file and
8802 have dwo_unit "live" in that. At least for now.
8803
8804 The DWP file can be made up of a random collection of CUs and TUs.
8805 However, for each CU + set of TUs that came from the same original DWO
8806 file, we want to combine them back into a virtual DWO file to save space
8807 (fewer struct dwo_file objects to allocated). Remember that for really
8808 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
8809
8810 virtual_dwo_name =
8811 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
8812 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
8813 sections.line.asection ? sections.line.asection->id : 0,
8814 sections.loc.asection ? sections.loc.asection->id : 0,
8815 (sections.str_offsets.asection
8816 ? sections.str_offsets.asection->id
8817 : 0));
8818 make_cleanup (xfree, virtual_dwo_name);
8819 /* Can we use an existing virtual DWO file? */
8820 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
8821 /* Create one if necessary. */
8822 if (*dwo_file_slot == NULL)
8823 {
8824 if (dwarf2_read_debug)
8825 {
8826 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
8827 virtual_dwo_name);
8828 }
8829 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8830 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
8831 virtual_dwo_name,
8832 strlen (virtual_dwo_name));
8833 dwo_file->comp_dir = comp_dir;
8834 dwo_file->sections.abbrev = sections.abbrev;
8835 dwo_file->sections.line = sections.line;
8836 dwo_file->sections.loc = sections.loc;
8837 dwo_file->sections.macinfo = sections.macinfo;
8838 dwo_file->sections.macro = sections.macro;
8839 dwo_file->sections.str_offsets = sections.str_offsets;
8840 /* The "str" section is global to the entire DWP file. */
8841 dwo_file->sections.str = dwp_file->sections.str;
8842 /* The info or types section is assigned later to dwo_unit,
8843 there's no need to record it in dwo_file.
8844 Also, we can't simply record type sections in dwo_file because
8845 we record a pointer into the vector in dwo_unit. As we collect more
8846 types we'll grow the vector and eventually have to reallocate space
8847 for it, invalidating all the pointers into the current copy. */
8848 *dwo_file_slot = dwo_file;
8849 }
8850 else
8851 {
8852 if (dwarf2_read_debug)
8853 {
8854 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
8855 virtual_dwo_name);
8856 }
8857 dwo_file = *dwo_file_slot;
8858 }
8859 do_cleanups (cleanups);
8860
8861 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8862 dwo_unit->dwo_file = dwo_file;
8863 dwo_unit->signature = signature;
8864 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
8865 sizeof (struct dwarf2_section_info));
8866 *dwo_unit->section = sections.info_or_types;
8867 /* offset, length, type_offset_in_tu are set later. */
8868
8869 return dwo_unit;
8870 }
8871
8872 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
8873
8874 static struct dwo_unit *
8875 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
8876 const struct dwp_hash_table *htab,
8877 const char *comp_dir,
8878 ULONGEST signature, int is_debug_types)
8879 {
8880 bfd *dbfd = dwp_file->dbfd;
8881 uint32_t mask = htab->nr_slots - 1;
8882 uint32_t hash = signature & mask;
8883 uint32_t hash2 = ((signature >> 32) & mask) | 1;
8884 unsigned int i;
8885 void **slot;
8886 struct dwo_unit find_dwo_cu, *dwo_cu;
8887
8888 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
8889 find_dwo_cu.signature = signature;
8890 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
8891
8892 if (*slot != NULL)
8893 return *slot;
8894
8895 /* Use a for loop so that we don't loop forever on bad debug info. */
8896 for (i = 0; i < htab->nr_slots; ++i)
8897 {
8898 ULONGEST signature_in_table;
8899
8900 signature_in_table =
8901 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
8902 if (signature_in_table == signature)
8903 {
8904 uint32_t section_index =
8905 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
8906
8907 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
8908 comp_dir, signature, is_debug_types);
8909 return *slot;
8910 }
8911 if (signature_in_table == 0)
8912 return NULL;
8913 hash = (hash + hash2) & mask;
8914 }
8915
8916 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
8917 " [in module %s]"),
8918 dwp_file->name);
8919 }
8920
8921 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
8922 Open the file specified by FILE_NAME and hand it off to BFD for
8923 preliminary analysis. Return a newly initialized bfd *, which
8924 includes a canonicalized copy of FILE_NAME.
8925 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8926 In case of trouble, return NULL.
8927 NOTE: This function is derived from symfile_bfd_open. */
8928
8929 static bfd *
8930 try_open_dwop_file (const char *file_name, int is_dwp)
8931 {
8932 bfd *sym_bfd;
8933 int desc, flags;
8934 char *absolute_name;
8935
8936 flags = OPF_TRY_CWD_FIRST;
8937 if (is_dwp)
8938 flags |= OPF_SEARCH_IN_PATH;
8939 desc = openp (debug_file_directory, flags, file_name,
8940 O_RDONLY | O_BINARY, &absolute_name);
8941 if (desc < 0)
8942 return NULL;
8943
8944 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
8945 if (!sym_bfd)
8946 {
8947 xfree (absolute_name);
8948 return NULL;
8949 }
8950 xfree (absolute_name);
8951 bfd_set_cacheable (sym_bfd, 1);
8952
8953 if (!bfd_check_format (sym_bfd, bfd_object))
8954 {
8955 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
8956 return NULL;
8957 }
8958
8959 return sym_bfd;
8960 }
8961
8962 /* Try to open DWO file FILE_NAME.
8963 COMP_DIR is the DW_AT_comp_dir attribute.
8964 The result is the bfd handle of the file.
8965 If there is a problem finding or opening the file, return NULL.
8966 Upon success, the canonicalized path of the file is stored in the bfd,
8967 same as symfile_bfd_open. */
8968
8969 static bfd *
8970 open_dwo_file (const char *file_name, const char *comp_dir)
8971 {
8972 bfd *abfd;
8973
8974 if (IS_ABSOLUTE_PATH (file_name))
8975 return try_open_dwop_file (file_name, 0 /*is_dwp*/);
8976
8977 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
8978
8979 if (comp_dir != NULL)
8980 {
8981 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
8982
8983 /* NOTE: If comp_dir is a relative path, this will also try the
8984 search path, which seems useful. */
8985 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/);
8986 xfree (path_to_try);
8987 if (abfd != NULL)
8988 return abfd;
8989 }
8990
8991 /* That didn't work, try debug-file-directory, which, despite its name,
8992 is a list of paths. */
8993
8994 if (*debug_file_directory == '\0')
8995 return NULL;
8996
8997 return try_open_dwop_file (file_name, 0 /*is_dwp*/);
8998 }
8999
9000 /* This function is mapped across the sections and remembers the offset and
9001 size of each of the DWO debugging sections we are interested in. */
9002
9003 static void
9004 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
9005 {
9006 struct dwo_sections *dwo_sections = dwo_sections_ptr;
9007 const struct dwop_section_names *names = &dwop_section_names;
9008
9009 if (section_is_p (sectp->name, &names->abbrev_dwo))
9010 {
9011 dwo_sections->abbrev.asection = sectp;
9012 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
9013 }
9014 else if (section_is_p (sectp->name, &names->info_dwo))
9015 {
9016 dwo_sections->info.asection = sectp;
9017 dwo_sections->info.size = bfd_get_section_size (sectp);
9018 }
9019 else if (section_is_p (sectp->name, &names->line_dwo))
9020 {
9021 dwo_sections->line.asection = sectp;
9022 dwo_sections->line.size = bfd_get_section_size (sectp);
9023 }
9024 else if (section_is_p (sectp->name, &names->loc_dwo))
9025 {
9026 dwo_sections->loc.asection = sectp;
9027 dwo_sections->loc.size = bfd_get_section_size (sectp);
9028 }
9029 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9030 {
9031 dwo_sections->macinfo.asection = sectp;
9032 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
9033 }
9034 else if (section_is_p (sectp->name, &names->macro_dwo))
9035 {
9036 dwo_sections->macro.asection = sectp;
9037 dwo_sections->macro.size = bfd_get_section_size (sectp);
9038 }
9039 else if (section_is_p (sectp->name, &names->str_dwo))
9040 {
9041 dwo_sections->str.asection = sectp;
9042 dwo_sections->str.size = bfd_get_section_size (sectp);
9043 }
9044 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9045 {
9046 dwo_sections->str_offsets.asection = sectp;
9047 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
9048 }
9049 else if (section_is_p (sectp->name, &names->types_dwo))
9050 {
9051 struct dwarf2_section_info type_section;
9052
9053 memset (&type_section, 0, sizeof (type_section));
9054 type_section.asection = sectp;
9055 type_section.size = bfd_get_section_size (sectp);
9056 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
9057 &type_section);
9058 }
9059 }
9060
9061 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
9062 by PER_CU.
9063 The result is NULL if DWO_NAME can't be found. */
9064
9065 static struct dwo_file *
9066 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
9067 const char *dwo_name, const char *comp_dir)
9068 {
9069 struct objfile *objfile = dwarf2_per_objfile->objfile;
9070 struct dwo_file *dwo_file;
9071 bfd *dbfd;
9072 struct cleanup *cleanups;
9073
9074 dbfd = open_dwo_file (dwo_name, comp_dir);
9075 if (dbfd == NULL)
9076 {
9077 if (dwarf2_read_debug)
9078 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
9079 return NULL;
9080 }
9081 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9082 dwo_file->dwo_name = dwo_name;
9083 dwo_file->comp_dir = comp_dir;
9084 dwo_file->dbfd = dbfd;
9085
9086 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
9087
9088 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
9089
9090 dwo_file->cus = create_dwo_debug_info_hash_table (dwo_file);
9091
9092 dwo_file->tus = create_debug_types_hash_table (dwo_file,
9093 dwo_file->sections.types);
9094
9095 discard_cleanups (cleanups);
9096
9097 if (dwarf2_read_debug)
9098 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
9099
9100 return dwo_file;
9101 }
9102
9103 /* This function is mapped across the sections and remembers the offset and
9104 size of each of the DWP debugging sections we are interested in. */
9105
9106 static void
9107 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
9108 {
9109 struct dwp_file *dwp_file = dwp_file_ptr;
9110 const struct dwop_section_names *names = &dwop_section_names;
9111 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
9112
9113 /* Record the ELF section number for later lookup: this is what the
9114 .debug_cu_index,.debug_tu_index tables use. */
9115 gdb_assert (elf_section_nr < dwp_file->num_sections);
9116 dwp_file->elf_sections[elf_section_nr] = sectp;
9117
9118 /* Look for specific sections that we need. */
9119 if (section_is_p (sectp->name, &names->str_dwo))
9120 {
9121 dwp_file->sections.str.asection = sectp;
9122 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9123 }
9124 else if (section_is_p (sectp->name, &names->cu_index))
9125 {
9126 dwp_file->sections.cu_index.asection = sectp;
9127 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9128 }
9129 else if (section_is_p (sectp->name, &names->tu_index))
9130 {
9131 dwp_file->sections.tu_index.asection = sectp;
9132 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9133 }
9134 }
9135
9136 /* Hash function for dwp_file loaded CUs/TUs. */
9137
9138 static hashval_t
9139 hash_dwp_loaded_cutus (const void *item)
9140 {
9141 const struct dwo_unit *dwo_unit = item;
9142
9143 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9144 return dwo_unit->signature;
9145 }
9146
9147 /* Equality function for dwp_file loaded CUs/TUs. */
9148
9149 static int
9150 eq_dwp_loaded_cutus (const void *a, const void *b)
9151 {
9152 const struct dwo_unit *dua = a;
9153 const struct dwo_unit *dub = b;
9154
9155 return dua->signature == dub->signature;
9156 }
9157
9158 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
9159
9160 static htab_t
9161 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9162 {
9163 return htab_create_alloc_ex (3,
9164 hash_dwp_loaded_cutus,
9165 eq_dwp_loaded_cutus,
9166 NULL,
9167 &objfile->objfile_obstack,
9168 hashtab_obstack_allocate,
9169 dummy_obstack_deallocate);
9170 }
9171
9172 /* Try to open DWP file FILE_NAME.
9173 The result is the bfd handle of the file.
9174 If there is a problem finding or opening the file, return NULL.
9175 Upon success, the canonicalized path of the file is stored in the bfd,
9176 same as symfile_bfd_open. */
9177
9178 static bfd *
9179 open_dwp_file (const char *file_name)
9180 {
9181 return try_open_dwop_file (file_name, 1 /*is_dwp*/);
9182 }
9183
9184 /* Initialize the use of the DWP file for the current objfile.
9185 By convention the name of the DWP file is ${objfile}.dwp.
9186 The result is NULL if it can't be found. */
9187
9188 static struct dwp_file *
9189 open_and_init_dwp_file (void)
9190 {
9191 struct objfile *objfile = dwarf2_per_objfile->objfile;
9192 struct dwp_file *dwp_file;
9193 char *dwp_name;
9194 bfd *dbfd;
9195 struct cleanup *cleanups;
9196
9197 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
9198 cleanups = make_cleanup (xfree, dwp_name);
9199
9200 dbfd = open_dwp_file (dwp_name);
9201 if (dbfd == NULL)
9202 {
9203 if (dwarf2_read_debug)
9204 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9205 do_cleanups (cleanups);
9206 return NULL;
9207 }
9208 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9209 dwp_file->name = obstack_copy0 (&objfile->objfile_obstack,
9210 dwp_name, strlen (dwp_name));
9211 dwp_file->dbfd = dbfd;
9212 do_cleanups (cleanups);
9213
9214 /* +1: section 0 is unused */
9215 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9216 dwp_file->elf_sections =
9217 OBSTACK_CALLOC (&objfile->objfile_obstack,
9218 dwp_file->num_sections, asection *);
9219
9220 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9221
9222 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9223
9224 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9225
9226 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9227
9228 if (dwarf2_read_debug)
9229 {
9230 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9231 fprintf_unfiltered (gdb_stdlog,
9232 " %u CUs, %u TUs\n",
9233 dwp_file->cus ? dwp_file->cus->nr_units : 0,
9234 dwp_file->tus ? dwp_file->tus->nr_units : 0);
9235 }
9236
9237 return dwp_file;
9238 }
9239
9240 /* Wrapper around open_and_init_dwp_file, only open it once. */
9241
9242 static struct dwp_file *
9243 get_dwp_file (void)
9244 {
9245 if (! dwarf2_per_objfile->dwp_checked)
9246 {
9247 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
9248 dwarf2_per_objfile->dwp_checked = 1;
9249 }
9250 return dwarf2_per_objfile->dwp_file;
9251 }
9252
9253 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9254 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9255 or in the DWP file for the objfile, referenced by THIS_UNIT.
9256 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9257 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9258
9259 This is called, for example, when wanting to read a variable with a
9260 complex location. Therefore we don't want to do file i/o for every call.
9261 Therefore we don't want to look for a DWO file on every call.
9262 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9263 then we check if we've already seen DWO_NAME, and only THEN do we check
9264 for a DWO file.
9265
9266 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9267 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9268
9269 static struct dwo_unit *
9270 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9271 const char *dwo_name, const char *comp_dir,
9272 ULONGEST signature, int is_debug_types)
9273 {
9274 struct objfile *objfile = dwarf2_per_objfile->objfile;
9275 const char *kind = is_debug_types ? "TU" : "CU";
9276 void **dwo_file_slot;
9277 struct dwo_file *dwo_file;
9278 struct dwp_file *dwp_file;
9279
9280 /* Have we already read SIGNATURE from a DWP file? */
9281
9282 dwp_file = get_dwp_file ();
9283 if (dwp_file != NULL)
9284 {
9285 const struct dwp_hash_table *dwp_htab =
9286 is_debug_types ? dwp_file->tus : dwp_file->cus;
9287
9288 if (dwp_htab != NULL)
9289 {
9290 struct dwo_unit *dwo_cutu =
9291 lookup_dwo_in_dwp (dwp_file, dwp_htab, comp_dir,
9292 signature, is_debug_types);
9293
9294 if (dwo_cutu != NULL)
9295 {
9296 if (dwarf2_read_debug)
9297 {
9298 fprintf_unfiltered (gdb_stdlog,
9299 "Virtual DWO %s %s found: @%s\n",
9300 kind, hex_string (signature),
9301 host_address_to_string (dwo_cutu));
9302 }
9303 return dwo_cutu;
9304 }
9305 }
9306 }
9307
9308 /* Have we already seen DWO_NAME? */
9309
9310 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
9311 if (*dwo_file_slot == NULL)
9312 {
9313 /* Read in the file and build a table of the DWOs it contains. */
9314 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
9315 }
9316 /* NOTE: This will be NULL if unable to open the file. */
9317 dwo_file = *dwo_file_slot;
9318
9319 if (dwo_file != NULL)
9320 {
9321 htab_t htab = is_debug_types ? dwo_file->tus : dwo_file->cus;
9322
9323 if (htab != NULL)
9324 {
9325 struct dwo_unit find_dwo_cutu, *dwo_cutu;
9326
9327 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9328 find_dwo_cutu.signature = signature;
9329 dwo_cutu = htab_find (htab, &find_dwo_cutu);
9330
9331 if (dwo_cutu != NULL)
9332 {
9333 if (dwarf2_read_debug)
9334 {
9335 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9336 kind, dwo_name, hex_string (signature),
9337 host_address_to_string (dwo_cutu));
9338 }
9339 return dwo_cutu;
9340 }
9341 }
9342 }
9343
9344 /* We didn't find it. This could mean a dwo_id mismatch, or
9345 someone deleted the DWO/DWP file, or the search path isn't set up
9346 correctly to find the file. */
9347
9348 if (dwarf2_read_debug)
9349 {
9350 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9351 kind, dwo_name, hex_string (signature));
9352 }
9353
9354 complaint (&symfile_complaints,
9355 _("Could not find DWO %s referenced by CU at offset 0x%x"
9356 " [in module %s]"),
9357 kind, this_unit->offset.sect_off, objfile->name);
9358 return NULL;
9359 }
9360
9361 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9362 See lookup_dwo_cutu_unit for details. */
9363
9364 static struct dwo_unit *
9365 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9366 const char *dwo_name, const char *comp_dir,
9367 ULONGEST signature)
9368 {
9369 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9370 }
9371
9372 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9373 See lookup_dwo_cutu_unit for details. */
9374
9375 static struct dwo_unit *
9376 lookup_dwo_type_unit (struct signatured_type *this_tu,
9377 const char *dwo_name, const char *comp_dir)
9378 {
9379 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9380 }
9381
9382 /* Free all resources associated with DWO_FILE.
9383 Close the DWO file and munmap the sections.
9384 All memory should be on the objfile obstack. */
9385
9386 static void
9387 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9388 {
9389 int ix;
9390 struct dwarf2_section_info *section;
9391
9392 /* Note: dbfd is NULL for virtual DWO files. */
9393 gdb_bfd_unref (dwo_file->dbfd);
9394
9395 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9396 }
9397
9398 /* Wrapper for free_dwo_file for use in cleanups. */
9399
9400 static void
9401 free_dwo_file_cleanup (void *arg)
9402 {
9403 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9404 struct objfile *objfile = dwarf2_per_objfile->objfile;
9405
9406 free_dwo_file (dwo_file, objfile);
9407 }
9408
9409 /* Traversal function for free_dwo_files. */
9410
9411 static int
9412 free_dwo_file_from_slot (void **slot, void *info)
9413 {
9414 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9415 struct objfile *objfile = (struct objfile *) info;
9416
9417 free_dwo_file (dwo_file, objfile);
9418
9419 return 1;
9420 }
9421
9422 /* Free all resources associated with DWO_FILES. */
9423
9424 static void
9425 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9426 {
9427 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9428 }
9429 \f
9430 /* Read in various DIEs. */
9431
9432 /* qsort helper for inherit_abstract_dies. */
9433
9434 static int
9435 unsigned_int_compar (const void *ap, const void *bp)
9436 {
9437 unsigned int a = *(unsigned int *) ap;
9438 unsigned int b = *(unsigned int *) bp;
9439
9440 return (a > b) - (b > a);
9441 }
9442
9443 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9444 Inherit only the children of the DW_AT_abstract_origin DIE not being
9445 already referenced by DW_AT_abstract_origin from the children of the
9446 current DIE. */
9447
9448 static void
9449 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9450 {
9451 struct die_info *child_die;
9452 unsigned die_children_count;
9453 /* CU offsets which were referenced by children of the current DIE. */
9454 sect_offset *offsets;
9455 sect_offset *offsets_end, *offsetp;
9456 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9457 struct die_info *origin_die;
9458 /* Iterator of the ORIGIN_DIE children. */
9459 struct die_info *origin_child_die;
9460 struct cleanup *cleanups;
9461 struct attribute *attr;
9462 struct dwarf2_cu *origin_cu;
9463 struct pending **origin_previous_list_in_scope;
9464
9465 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9466 if (!attr)
9467 return;
9468
9469 /* Note that following die references may follow to a die in a
9470 different cu. */
9471
9472 origin_cu = cu;
9473 origin_die = follow_die_ref (die, attr, &origin_cu);
9474
9475 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9476 symbols in. */
9477 origin_previous_list_in_scope = origin_cu->list_in_scope;
9478 origin_cu->list_in_scope = cu->list_in_scope;
9479
9480 if (die->tag != origin_die->tag
9481 && !(die->tag == DW_TAG_inlined_subroutine
9482 && origin_die->tag == DW_TAG_subprogram))
9483 complaint (&symfile_complaints,
9484 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9485 die->offset.sect_off, origin_die->offset.sect_off);
9486
9487 child_die = die->child;
9488 die_children_count = 0;
9489 while (child_die && child_die->tag)
9490 {
9491 child_die = sibling_die (child_die);
9492 die_children_count++;
9493 }
9494 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9495 cleanups = make_cleanup (xfree, offsets);
9496
9497 offsets_end = offsets;
9498 child_die = die->child;
9499 while (child_die && child_die->tag)
9500 {
9501 /* For each CHILD_DIE, find the corresponding child of
9502 ORIGIN_DIE. If there is more than one layer of
9503 DW_AT_abstract_origin, follow them all; there shouldn't be,
9504 but GCC versions at least through 4.4 generate this (GCC PR
9505 40573). */
9506 struct die_info *child_origin_die = child_die;
9507 struct dwarf2_cu *child_origin_cu = cu;
9508
9509 while (1)
9510 {
9511 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9512 child_origin_cu);
9513 if (attr == NULL)
9514 break;
9515 child_origin_die = follow_die_ref (child_origin_die, attr,
9516 &child_origin_cu);
9517 }
9518
9519 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9520 counterpart may exist. */
9521 if (child_origin_die != child_die)
9522 {
9523 if (child_die->tag != child_origin_die->tag
9524 && !(child_die->tag == DW_TAG_inlined_subroutine
9525 && child_origin_die->tag == DW_TAG_subprogram))
9526 complaint (&symfile_complaints,
9527 _("Child DIE 0x%x and its abstract origin 0x%x have "
9528 "different tags"), child_die->offset.sect_off,
9529 child_origin_die->offset.sect_off);
9530 if (child_origin_die->parent != origin_die)
9531 complaint (&symfile_complaints,
9532 _("Child DIE 0x%x and its abstract origin 0x%x have "
9533 "different parents"), child_die->offset.sect_off,
9534 child_origin_die->offset.sect_off);
9535 else
9536 *offsets_end++ = child_origin_die->offset;
9537 }
9538 child_die = sibling_die (child_die);
9539 }
9540 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9541 unsigned_int_compar);
9542 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9543 if (offsetp[-1].sect_off == offsetp->sect_off)
9544 complaint (&symfile_complaints,
9545 _("Multiple children of DIE 0x%x refer "
9546 "to DIE 0x%x as their abstract origin"),
9547 die->offset.sect_off, offsetp->sect_off);
9548
9549 offsetp = offsets;
9550 origin_child_die = origin_die->child;
9551 while (origin_child_die && origin_child_die->tag)
9552 {
9553 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
9554 while (offsetp < offsets_end
9555 && offsetp->sect_off < origin_child_die->offset.sect_off)
9556 offsetp++;
9557 if (offsetp >= offsets_end
9558 || offsetp->sect_off > origin_child_die->offset.sect_off)
9559 {
9560 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
9561 process_die (origin_child_die, origin_cu);
9562 }
9563 origin_child_die = sibling_die (origin_child_die);
9564 }
9565 origin_cu->list_in_scope = origin_previous_list_in_scope;
9566
9567 do_cleanups (cleanups);
9568 }
9569
9570 static void
9571 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
9572 {
9573 struct objfile *objfile = cu->objfile;
9574 struct context_stack *new;
9575 CORE_ADDR lowpc;
9576 CORE_ADDR highpc;
9577 struct die_info *child_die;
9578 struct attribute *attr, *call_line, *call_file;
9579 const char *name;
9580 CORE_ADDR baseaddr;
9581 struct block *block;
9582 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
9583 VEC (symbolp) *template_args = NULL;
9584 struct template_symbol *templ_func = NULL;
9585
9586 if (inlined_func)
9587 {
9588 /* If we do not have call site information, we can't show the
9589 caller of this inlined function. That's too confusing, so
9590 only use the scope for local variables. */
9591 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
9592 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
9593 if (call_line == NULL || call_file == NULL)
9594 {
9595 read_lexical_block_scope (die, cu);
9596 return;
9597 }
9598 }
9599
9600 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9601
9602 name = dwarf2_name (die, cu);
9603
9604 /* Ignore functions with missing or empty names. These are actually
9605 illegal according to the DWARF standard. */
9606 if (name == NULL)
9607 {
9608 complaint (&symfile_complaints,
9609 _("missing name for subprogram DIE at %d"),
9610 die->offset.sect_off);
9611 return;
9612 }
9613
9614 /* Ignore functions with missing or invalid low and high pc attributes. */
9615 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9616 {
9617 attr = dwarf2_attr (die, DW_AT_external, cu);
9618 if (!attr || !DW_UNSND (attr))
9619 complaint (&symfile_complaints,
9620 _("cannot get low and high bounds "
9621 "for subprogram DIE at %d"),
9622 die->offset.sect_off);
9623 return;
9624 }
9625
9626 lowpc += baseaddr;
9627 highpc += baseaddr;
9628
9629 /* If we have any template arguments, then we must allocate a
9630 different sort of symbol. */
9631 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
9632 {
9633 if (child_die->tag == DW_TAG_template_type_param
9634 || child_die->tag == DW_TAG_template_value_param)
9635 {
9636 templ_func = allocate_template_symbol (objfile);
9637 templ_func->base.is_cplus_template_function = 1;
9638 break;
9639 }
9640 }
9641
9642 new = push_context (0, lowpc);
9643 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
9644 (struct symbol *) templ_func);
9645
9646 /* If there is a location expression for DW_AT_frame_base, record
9647 it. */
9648 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
9649 if (attr)
9650 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
9651
9652 cu->list_in_scope = &local_symbols;
9653
9654 if (die->child != NULL)
9655 {
9656 child_die = die->child;
9657 while (child_die && child_die->tag)
9658 {
9659 if (child_die->tag == DW_TAG_template_type_param
9660 || child_die->tag == DW_TAG_template_value_param)
9661 {
9662 struct symbol *arg = new_symbol (child_die, NULL, cu);
9663
9664 if (arg != NULL)
9665 VEC_safe_push (symbolp, template_args, arg);
9666 }
9667 else
9668 process_die (child_die, cu);
9669 child_die = sibling_die (child_die);
9670 }
9671 }
9672
9673 inherit_abstract_dies (die, cu);
9674
9675 /* If we have a DW_AT_specification, we might need to import using
9676 directives from the context of the specification DIE. See the
9677 comment in determine_prefix. */
9678 if (cu->language == language_cplus
9679 && dwarf2_attr (die, DW_AT_specification, cu))
9680 {
9681 struct dwarf2_cu *spec_cu = cu;
9682 struct die_info *spec_die = die_specification (die, &spec_cu);
9683
9684 while (spec_die)
9685 {
9686 child_die = spec_die->child;
9687 while (child_die && child_die->tag)
9688 {
9689 if (child_die->tag == DW_TAG_imported_module)
9690 process_die (child_die, spec_cu);
9691 child_die = sibling_die (child_die);
9692 }
9693
9694 /* In some cases, GCC generates specification DIEs that
9695 themselves contain DW_AT_specification attributes. */
9696 spec_die = die_specification (spec_die, &spec_cu);
9697 }
9698 }
9699
9700 new = pop_context ();
9701 /* Make a block for the local symbols within. */
9702 block = finish_block (new->name, &local_symbols, new->old_blocks,
9703 lowpc, highpc, objfile);
9704
9705 /* For C++, set the block's scope. */
9706 if ((cu->language == language_cplus || cu->language == language_fortran)
9707 && cu->processing_has_namespace_info)
9708 block_set_scope (block, determine_prefix (die, cu),
9709 &objfile->objfile_obstack);
9710
9711 /* If we have address ranges, record them. */
9712 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9713
9714 /* Attach template arguments to function. */
9715 if (! VEC_empty (symbolp, template_args))
9716 {
9717 gdb_assert (templ_func != NULL);
9718
9719 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
9720 templ_func->template_arguments
9721 = obstack_alloc (&objfile->objfile_obstack,
9722 (templ_func->n_template_arguments
9723 * sizeof (struct symbol *)));
9724 memcpy (templ_func->template_arguments,
9725 VEC_address (symbolp, template_args),
9726 (templ_func->n_template_arguments * sizeof (struct symbol *)));
9727 VEC_free (symbolp, template_args);
9728 }
9729
9730 /* In C++, we can have functions nested inside functions (e.g., when
9731 a function declares a class that has methods). This means that
9732 when we finish processing a function scope, we may need to go
9733 back to building a containing block's symbol lists. */
9734 local_symbols = new->locals;
9735 using_directives = new->using_directives;
9736
9737 /* If we've finished processing a top-level function, subsequent
9738 symbols go in the file symbol list. */
9739 if (outermost_context_p ())
9740 cu->list_in_scope = &file_symbols;
9741 }
9742
9743 /* Process all the DIES contained within a lexical block scope. Start
9744 a new scope, process the dies, and then close the scope. */
9745
9746 static void
9747 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
9748 {
9749 struct objfile *objfile = cu->objfile;
9750 struct context_stack *new;
9751 CORE_ADDR lowpc, highpc;
9752 struct die_info *child_die;
9753 CORE_ADDR baseaddr;
9754
9755 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9756
9757 /* Ignore blocks with missing or invalid low and high pc attributes. */
9758 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
9759 as multiple lexical blocks? Handling children in a sane way would
9760 be nasty. Might be easier to properly extend generic blocks to
9761 describe ranges. */
9762 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9763 return;
9764 lowpc += baseaddr;
9765 highpc += baseaddr;
9766
9767 push_context (0, lowpc);
9768 if (die->child != NULL)
9769 {
9770 child_die = die->child;
9771 while (child_die && child_die->tag)
9772 {
9773 process_die (child_die, cu);
9774 child_die = sibling_die (child_die);
9775 }
9776 }
9777 new = pop_context ();
9778
9779 if (local_symbols != NULL || using_directives != NULL)
9780 {
9781 struct block *block
9782 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
9783 highpc, objfile);
9784
9785 /* Note that recording ranges after traversing children, as we
9786 do here, means that recording a parent's ranges entails
9787 walking across all its children's ranges as they appear in
9788 the address map, which is quadratic behavior.
9789
9790 It would be nicer to record the parent's ranges before
9791 traversing its children, simply overriding whatever you find
9792 there. But since we don't even decide whether to create a
9793 block until after we've traversed its children, that's hard
9794 to do. */
9795 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9796 }
9797 local_symbols = new->locals;
9798 using_directives = new->using_directives;
9799 }
9800
9801 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
9802
9803 static void
9804 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
9805 {
9806 struct objfile *objfile = cu->objfile;
9807 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9808 CORE_ADDR pc, baseaddr;
9809 struct attribute *attr;
9810 struct call_site *call_site, call_site_local;
9811 void **slot;
9812 int nparams;
9813 struct die_info *child_die;
9814
9815 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9816
9817 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9818 if (!attr)
9819 {
9820 complaint (&symfile_complaints,
9821 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
9822 "DIE 0x%x [in module %s]"),
9823 die->offset.sect_off, objfile->name);
9824 return;
9825 }
9826 pc = DW_ADDR (attr) + baseaddr;
9827
9828 if (cu->call_site_htab == NULL)
9829 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
9830 NULL, &objfile->objfile_obstack,
9831 hashtab_obstack_allocate, NULL);
9832 call_site_local.pc = pc;
9833 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
9834 if (*slot != NULL)
9835 {
9836 complaint (&symfile_complaints,
9837 _("Duplicate PC %s for DW_TAG_GNU_call_site "
9838 "DIE 0x%x [in module %s]"),
9839 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
9840 return;
9841 }
9842
9843 /* Count parameters at the caller. */
9844
9845 nparams = 0;
9846 for (child_die = die->child; child_die && child_die->tag;
9847 child_die = sibling_die (child_die))
9848 {
9849 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9850 {
9851 complaint (&symfile_complaints,
9852 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
9853 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9854 child_die->tag, child_die->offset.sect_off, objfile->name);
9855 continue;
9856 }
9857
9858 nparams++;
9859 }
9860
9861 call_site = obstack_alloc (&objfile->objfile_obstack,
9862 (sizeof (*call_site)
9863 + (sizeof (*call_site->parameter)
9864 * (nparams - 1))));
9865 *slot = call_site;
9866 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
9867 call_site->pc = pc;
9868
9869 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
9870 {
9871 struct die_info *func_die;
9872
9873 /* Skip also over DW_TAG_inlined_subroutine. */
9874 for (func_die = die->parent;
9875 func_die && func_die->tag != DW_TAG_subprogram
9876 && func_die->tag != DW_TAG_subroutine_type;
9877 func_die = func_die->parent);
9878
9879 /* DW_AT_GNU_all_call_sites is a superset
9880 of DW_AT_GNU_all_tail_call_sites. */
9881 if (func_die
9882 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
9883 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
9884 {
9885 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
9886 not complete. But keep CALL_SITE for look ups via call_site_htab,
9887 both the initial caller containing the real return address PC and
9888 the final callee containing the current PC of a chain of tail
9889 calls do not need to have the tail call list complete. But any
9890 function candidate for a virtual tail call frame searched via
9891 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
9892 determined unambiguously. */
9893 }
9894 else
9895 {
9896 struct type *func_type = NULL;
9897
9898 if (func_die)
9899 func_type = get_die_type (func_die, cu);
9900 if (func_type != NULL)
9901 {
9902 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
9903
9904 /* Enlist this call site to the function. */
9905 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
9906 TYPE_TAIL_CALL_LIST (func_type) = call_site;
9907 }
9908 else
9909 complaint (&symfile_complaints,
9910 _("Cannot find function owning DW_TAG_GNU_call_site "
9911 "DIE 0x%x [in module %s]"),
9912 die->offset.sect_off, objfile->name);
9913 }
9914 }
9915
9916 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
9917 if (attr == NULL)
9918 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9919 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
9920 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
9921 /* Keep NULL DWARF_BLOCK. */;
9922 else if (attr_form_is_block (attr))
9923 {
9924 struct dwarf2_locexpr_baton *dlbaton;
9925
9926 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
9927 dlbaton->data = DW_BLOCK (attr)->data;
9928 dlbaton->size = DW_BLOCK (attr)->size;
9929 dlbaton->per_cu = cu->per_cu;
9930
9931 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
9932 }
9933 else if (is_ref_attr (attr))
9934 {
9935 struct dwarf2_cu *target_cu = cu;
9936 struct die_info *target_die;
9937
9938 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
9939 gdb_assert (target_cu->objfile == objfile);
9940 if (die_is_declaration (target_die, target_cu))
9941 {
9942 const char *target_physname = NULL;
9943 struct attribute *target_attr;
9944
9945 /* Prefer the mangled name; otherwise compute the demangled one. */
9946 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
9947 if (target_attr == NULL)
9948 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
9949 target_cu);
9950 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
9951 target_physname = DW_STRING (target_attr);
9952 else
9953 target_physname = dwarf2_physname (NULL, target_die, target_cu);
9954 if (target_physname == NULL)
9955 complaint (&symfile_complaints,
9956 _("DW_AT_GNU_call_site_target target DIE has invalid "
9957 "physname, for referencing DIE 0x%x [in module %s]"),
9958 die->offset.sect_off, objfile->name);
9959 else
9960 SET_FIELD_PHYSNAME (call_site->target, target_physname);
9961 }
9962 else
9963 {
9964 CORE_ADDR lowpc;
9965
9966 /* DW_AT_entry_pc should be preferred. */
9967 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
9968 complaint (&symfile_complaints,
9969 _("DW_AT_GNU_call_site_target target DIE has invalid "
9970 "low pc, for referencing DIE 0x%x [in module %s]"),
9971 die->offset.sect_off, objfile->name);
9972 else
9973 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
9974 }
9975 }
9976 else
9977 complaint (&symfile_complaints,
9978 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
9979 "block nor reference, for DIE 0x%x [in module %s]"),
9980 die->offset.sect_off, objfile->name);
9981
9982 call_site->per_cu = cu->per_cu;
9983
9984 for (child_die = die->child;
9985 child_die && child_die->tag;
9986 child_die = sibling_die (child_die))
9987 {
9988 struct call_site_parameter *parameter;
9989 struct attribute *loc, *origin;
9990
9991 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9992 {
9993 /* Already printed the complaint above. */
9994 continue;
9995 }
9996
9997 gdb_assert (call_site->parameter_count < nparams);
9998 parameter = &call_site->parameter[call_site->parameter_count];
9999
10000 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
10001 specifies DW_TAG_formal_parameter. Value of the data assumed for the
10002 register is contained in DW_AT_GNU_call_site_value. */
10003
10004 loc = dwarf2_attr (child_die, DW_AT_location, cu);
10005 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
10006 if (loc == NULL && origin != NULL && is_ref_attr (origin))
10007 {
10008 sect_offset offset;
10009
10010 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
10011 offset = dwarf2_get_ref_die_offset (origin);
10012 if (!offset_in_cu_p (&cu->header, offset))
10013 {
10014 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
10015 binding can be done only inside one CU. Such referenced DIE
10016 therefore cannot be even moved to DW_TAG_partial_unit. */
10017 complaint (&symfile_complaints,
10018 _("DW_AT_abstract_origin offset is not in CU for "
10019 "DW_TAG_GNU_call_site child DIE 0x%x "
10020 "[in module %s]"),
10021 child_die->offset.sect_off, objfile->name);
10022 continue;
10023 }
10024 parameter->u.param_offset.cu_off = (offset.sect_off
10025 - cu->header.offset.sect_off);
10026 }
10027 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
10028 {
10029 complaint (&symfile_complaints,
10030 _("No DW_FORM_block* DW_AT_location for "
10031 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10032 child_die->offset.sect_off, objfile->name);
10033 continue;
10034 }
10035 else
10036 {
10037 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
10038 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
10039 if (parameter->u.dwarf_reg != -1)
10040 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
10041 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
10042 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
10043 &parameter->u.fb_offset))
10044 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
10045 else
10046 {
10047 complaint (&symfile_complaints,
10048 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
10049 "for DW_FORM_block* DW_AT_location is supported for "
10050 "DW_TAG_GNU_call_site child DIE 0x%x "
10051 "[in module %s]"),
10052 child_die->offset.sect_off, objfile->name);
10053 continue;
10054 }
10055 }
10056
10057 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
10058 if (!attr_form_is_block (attr))
10059 {
10060 complaint (&symfile_complaints,
10061 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
10062 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10063 child_die->offset.sect_off, objfile->name);
10064 continue;
10065 }
10066 parameter->value = DW_BLOCK (attr)->data;
10067 parameter->value_size = DW_BLOCK (attr)->size;
10068
10069 /* Parameters are not pre-cleared by memset above. */
10070 parameter->data_value = NULL;
10071 parameter->data_value_size = 0;
10072 call_site->parameter_count++;
10073
10074 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
10075 if (attr)
10076 {
10077 if (!attr_form_is_block (attr))
10078 complaint (&symfile_complaints,
10079 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
10080 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10081 child_die->offset.sect_off, objfile->name);
10082 else
10083 {
10084 parameter->data_value = DW_BLOCK (attr)->data;
10085 parameter->data_value_size = DW_BLOCK (attr)->size;
10086 }
10087 }
10088 }
10089 }
10090
10091 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
10092 Return 1 if the attributes are present and valid, otherwise, return 0.
10093 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
10094
10095 static int
10096 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
10097 CORE_ADDR *high_return, struct dwarf2_cu *cu,
10098 struct partial_symtab *ranges_pst)
10099 {
10100 struct objfile *objfile = cu->objfile;
10101 struct comp_unit_head *cu_header = &cu->header;
10102 bfd *obfd = objfile->obfd;
10103 unsigned int addr_size = cu_header->addr_size;
10104 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10105 /* Base address selection entry. */
10106 CORE_ADDR base;
10107 int found_base;
10108 unsigned int dummy;
10109 const gdb_byte *buffer;
10110 CORE_ADDR marker;
10111 int low_set;
10112 CORE_ADDR low = 0;
10113 CORE_ADDR high = 0;
10114 CORE_ADDR baseaddr;
10115
10116 found_base = cu->base_known;
10117 base = cu->base_address;
10118
10119 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
10120 if (offset >= dwarf2_per_objfile->ranges.size)
10121 {
10122 complaint (&symfile_complaints,
10123 _("Offset %d out of bounds for DW_AT_ranges attribute"),
10124 offset);
10125 return 0;
10126 }
10127 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10128
10129 /* Read in the largest possible address. */
10130 marker = read_address (obfd, buffer, cu, &dummy);
10131 if ((marker & mask) == mask)
10132 {
10133 /* If we found the largest possible address, then
10134 read the base address. */
10135 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10136 buffer += 2 * addr_size;
10137 offset += 2 * addr_size;
10138 found_base = 1;
10139 }
10140
10141 low_set = 0;
10142
10143 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10144
10145 while (1)
10146 {
10147 CORE_ADDR range_beginning, range_end;
10148
10149 range_beginning = read_address (obfd, buffer, cu, &dummy);
10150 buffer += addr_size;
10151 range_end = read_address (obfd, buffer, cu, &dummy);
10152 buffer += addr_size;
10153 offset += 2 * addr_size;
10154
10155 /* An end of list marker is a pair of zero addresses. */
10156 if (range_beginning == 0 && range_end == 0)
10157 /* Found the end of list entry. */
10158 break;
10159
10160 /* Each base address selection entry is a pair of 2 values.
10161 The first is the largest possible address, the second is
10162 the base address. Check for a base address here. */
10163 if ((range_beginning & mask) == mask)
10164 {
10165 /* If we found the largest possible address, then
10166 read the base address. */
10167 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10168 found_base = 1;
10169 continue;
10170 }
10171
10172 if (!found_base)
10173 {
10174 /* We have no valid base address for the ranges
10175 data. */
10176 complaint (&symfile_complaints,
10177 _("Invalid .debug_ranges data (no base address)"));
10178 return 0;
10179 }
10180
10181 if (range_beginning > range_end)
10182 {
10183 /* Inverted range entries are invalid. */
10184 complaint (&symfile_complaints,
10185 _("Invalid .debug_ranges data (inverted range)"));
10186 return 0;
10187 }
10188
10189 /* Empty range entries have no effect. */
10190 if (range_beginning == range_end)
10191 continue;
10192
10193 range_beginning += base;
10194 range_end += base;
10195
10196 /* A not-uncommon case of bad debug info.
10197 Don't pollute the addrmap with bad data. */
10198 if (range_beginning + baseaddr == 0
10199 && !dwarf2_per_objfile->has_section_at_zero)
10200 {
10201 complaint (&symfile_complaints,
10202 _(".debug_ranges entry has start address of zero"
10203 " [in module %s]"), objfile->name);
10204 continue;
10205 }
10206
10207 if (ranges_pst != NULL)
10208 addrmap_set_empty (objfile->psymtabs_addrmap,
10209 range_beginning + baseaddr,
10210 range_end - 1 + baseaddr,
10211 ranges_pst);
10212
10213 /* FIXME: This is recording everything as a low-high
10214 segment of consecutive addresses. We should have a
10215 data structure for discontiguous block ranges
10216 instead. */
10217 if (! low_set)
10218 {
10219 low = range_beginning;
10220 high = range_end;
10221 low_set = 1;
10222 }
10223 else
10224 {
10225 if (range_beginning < low)
10226 low = range_beginning;
10227 if (range_end > high)
10228 high = range_end;
10229 }
10230 }
10231
10232 if (! low_set)
10233 /* If the first entry is an end-of-list marker, the range
10234 describes an empty scope, i.e. no instructions. */
10235 return 0;
10236
10237 if (low_return)
10238 *low_return = low;
10239 if (high_return)
10240 *high_return = high;
10241 return 1;
10242 }
10243
10244 /* Get low and high pc attributes from a die. Return 1 if the attributes
10245 are present and valid, otherwise, return 0. Return -1 if the range is
10246 discontinuous, i.e. derived from DW_AT_ranges information. */
10247
10248 static int
10249 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10250 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10251 struct partial_symtab *pst)
10252 {
10253 struct attribute *attr;
10254 struct attribute *attr_high;
10255 CORE_ADDR low = 0;
10256 CORE_ADDR high = 0;
10257 int ret = 0;
10258
10259 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10260 if (attr_high)
10261 {
10262 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10263 if (attr)
10264 {
10265 low = DW_ADDR (attr);
10266 if (attr_high->form == DW_FORM_addr
10267 || attr_high->form == DW_FORM_GNU_addr_index)
10268 high = DW_ADDR (attr_high);
10269 else
10270 high = low + DW_UNSND (attr_high);
10271 }
10272 else
10273 /* Found high w/o low attribute. */
10274 return 0;
10275
10276 /* Found consecutive range of addresses. */
10277 ret = 1;
10278 }
10279 else
10280 {
10281 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10282 if (attr != NULL)
10283 {
10284 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10285 We take advantage of the fact that DW_AT_ranges does not appear
10286 in DW_TAG_compile_unit of DWO files. */
10287 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10288 unsigned int ranges_offset = (DW_UNSND (attr)
10289 + (need_ranges_base
10290 ? cu->ranges_base
10291 : 0));
10292
10293 /* Value of the DW_AT_ranges attribute is the offset in the
10294 .debug_ranges section. */
10295 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10296 return 0;
10297 /* Found discontinuous range of addresses. */
10298 ret = -1;
10299 }
10300 }
10301
10302 /* read_partial_die has also the strict LOW < HIGH requirement. */
10303 if (high <= low)
10304 return 0;
10305
10306 /* When using the GNU linker, .gnu.linkonce. sections are used to
10307 eliminate duplicate copies of functions and vtables and such.
10308 The linker will arbitrarily choose one and discard the others.
10309 The AT_*_pc values for such functions refer to local labels in
10310 these sections. If the section from that file was discarded, the
10311 labels are not in the output, so the relocs get a value of 0.
10312 If this is a discarded function, mark the pc bounds as invalid,
10313 so that GDB will ignore it. */
10314 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10315 return 0;
10316
10317 *lowpc = low;
10318 if (highpc)
10319 *highpc = high;
10320 return ret;
10321 }
10322
10323 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10324 its low and high PC addresses. Do nothing if these addresses could not
10325 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10326 and HIGHPC to the high address if greater than HIGHPC. */
10327
10328 static void
10329 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10330 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10331 struct dwarf2_cu *cu)
10332 {
10333 CORE_ADDR low, high;
10334 struct die_info *child = die->child;
10335
10336 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10337 {
10338 *lowpc = min (*lowpc, low);
10339 *highpc = max (*highpc, high);
10340 }
10341
10342 /* If the language does not allow nested subprograms (either inside
10343 subprograms or lexical blocks), we're done. */
10344 if (cu->language != language_ada)
10345 return;
10346
10347 /* Check all the children of the given DIE. If it contains nested
10348 subprograms, then check their pc bounds. Likewise, we need to
10349 check lexical blocks as well, as they may also contain subprogram
10350 definitions. */
10351 while (child && child->tag)
10352 {
10353 if (child->tag == DW_TAG_subprogram
10354 || child->tag == DW_TAG_lexical_block)
10355 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10356 child = sibling_die (child);
10357 }
10358 }
10359
10360 /* Get the low and high pc's represented by the scope DIE, and store
10361 them in *LOWPC and *HIGHPC. If the correct values can't be
10362 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10363
10364 static void
10365 get_scope_pc_bounds (struct die_info *die,
10366 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10367 struct dwarf2_cu *cu)
10368 {
10369 CORE_ADDR best_low = (CORE_ADDR) -1;
10370 CORE_ADDR best_high = (CORE_ADDR) 0;
10371 CORE_ADDR current_low, current_high;
10372
10373 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10374 {
10375 best_low = current_low;
10376 best_high = current_high;
10377 }
10378 else
10379 {
10380 struct die_info *child = die->child;
10381
10382 while (child && child->tag)
10383 {
10384 switch (child->tag) {
10385 case DW_TAG_subprogram:
10386 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10387 break;
10388 case DW_TAG_namespace:
10389 case DW_TAG_module:
10390 /* FIXME: carlton/2004-01-16: Should we do this for
10391 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10392 that current GCC's always emit the DIEs corresponding
10393 to definitions of methods of classes as children of a
10394 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10395 the DIEs giving the declarations, which could be
10396 anywhere). But I don't see any reason why the
10397 standards says that they have to be there. */
10398 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10399
10400 if (current_low != ((CORE_ADDR) -1))
10401 {
10402 best_low = min (best_low, current_low);
10403 best_high = max (best_high, current_high);
10404 }
10405 break;
10406 default:
10407 /* Ignore. */
10408 break;
10409 }
10410
10411 child = sibling_die (child);
10412 }
10413 }
10414
10415 *lowpc = best_low;
10416 *highpc = best_high;
10417 }
10418
10419 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10420 in DIE. */
10421
10422 static void
10423 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10424 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10425 {
10426 struct objfile *objfile = cu->objfile;
10427 struct attribute *attr;
10428 struct attribute *attr_high;
10429
10430 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10431 if (attr_high)
10432 {
10433 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10434 if (attr)
10435 {
10436 CORE_ADDR low = DW_ADDR (attr);
10437 CORE_ADDR high;
10438 if (attr_high->form == DW_FORM_addr
10439 || attr_high->form == DW_FORM_GNU_addr_index)
10440 high = DW_ADDR (attr_high);
10441 else
10442 high = low + DW_UNSND (attr_high);
10443
10444 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10445 }
10446 }
10447
10448 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10449 if (attr)
10450 {
10451 bfd *obfd = objfile->obfd;
10452 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10453 We take advantage of the fact that DW_AT_ranges does not appear
10454 in DW_TAG_compile_unit of DWO files. */
10455 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10456
10457 /* The value of the DW_AT_ranges attribute is the offset of the
10458 address range list in the .debug_ranges section. */
10459 unsigned long offset = (DW_UNSND (attr)
10460 + (need_ranges_base ? cu->ranges_base : 0));
10461 const gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
10462
10463 /* For some target architectures, but not others, the
10464 read_address function sign-extends the addresses it returns.
10465 To recognize base address selection entries, we need a
10466 mask. */
10467 unsigned int addr_size = cu->header.addr_size;
10468 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10469
10470 /* The base address, to which the next pair is relative. Note
10471 that this 'base' is a DWARF concept: most entries in a range
10472 list are relative, to reduce the number of relocs against the
10473 debugging information. This is separate from this function's
10474 'baseaddr' argument, which GDB uses to relocate debugging
10475 information from a shared library based on the address at
10476 which the library was loaded. */
10477 CORE_ADDR base = cu->base_address;
10478 int base_known = cu->base_known;
10479
10480 gdb_assert (dwarf2_per_objfile->ranges.readin);
10481 if (offset >= dwarf2_per_objfile->ranges.size)
10482 {
10483 complaint (&symfile_complaints,
10484 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10485 offset);
10486 return;
10487 }
10488
10489 for (;;)
10490 {
10491 unsigned int bytes_read;
10492 CORE_ADDR start, end;
10493
10494 start = read_address (obfd, buffer, cu, &bytes_read);
10495 buffer += bytes_read;
10496 end = read_address (obfd, buffer, cu, &bytes_read);
10497 buffer += bytes_read;
10498
10499 /* Did we find the end of the range list? */
10500 if (start == 0 && end == 0)
10501 break;
10502
10503 /* Did we find a base address selection entry? */
10504 else if ((start & base_select_mask) == base_select_mask)
10505 {
10506 base = end;
10507 base_known = 1;
10508 }
10509
10510 /* We found an ordinary address range. */
10511 else
10512 {
10513 if (!base_known)
10514 {
10515 complaint (&symfile_complaints,
10516 _("Invalid .debug_ranges data "
10517 "(no base address)"));
10518 return;
10519 }
10520
10521 if (start > end)
10522 {
10523 /* Inverted range entries are invalid. */
10524 complaint (&symfile_complaints,
10525 _("Invalid .debug_ranges data "
10526 "(inverted range)"));
10527 return;
10528 }
10529
10530 /* Empty range entries have no effect. */
10531 if (start == end)
10532 continue;
10533
10534 start += base + baseaddr;
10535 end += base + baseaddr;
10536
10537 /* A not-uncommon case of bad debug info.
10538 Don't pollute the addrmap with bad data. */
10539 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10540 {
10541 complaint (&symfile_complaints,
10542 _(".debug_ranges entry has start address of zero"
10543 " [in module %s]"), objfile->name);
10544 continue;
10545 }
10546
10547 record_block_range (block, start, end - 1);
10548 }
10549 }
10550 }
10551 }
10552
10553 /* Check whether the producer field indicates either of GCC < 4.6, or the
10554 Intel C/C++ compiler, and cache the result in CU. */
10555
10556 static void
10557 check_producer (struct dwarf2_cu *cu)
10558 {
10559 const char *cs;
10560 int major, minor, release;
10561
10562 if (cu->producer == NULL)
10563 {
10564 /* For unknown compilers expect their behavior is DWARF version
10565 compliant.
10566
10567 GCC started to support .debug_types sections by -gdwarf-4 since
10568 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10569 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10570 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10571 interpreted incorrectly by GDB now - GCC PR debug/48229. */
10572 }
10573 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
10574 {
10575 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10576
10577 cs = &cu->producer[strlen ("GNU ")];
10578 while (*cs && !isdigit (*cs))
10579 cs++;
10580 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10581 {
10582 /* Not recognized as GCC. */
10583 }
10584 else
10585 {
10586 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10587 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
10588 }
10589 }
10590 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
10591 cu->producer_is_icc = 1;
10592 else
10593 {
10594 /* For other non-GCC compilers, expect their behavior is DWARF version
10595 compliant. */
10596 }
10597
10598 cu->checked_producer = 1;
10599 }
10600
10601 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
10602 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
10603 during 4.6.0 experimental. */
10604
10605 static int
10606 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
10607 {
10608 if (!cu->checked_producer)
10609 check_producer (cu);
10610
10611 return cu->producer_is_gxx_lt_4_6;
10612 }
10613
10614 /* Return the default accessibility type if it is not overriden by
10615 DW_AT_accessibility. */
10616
10617 static enum dwarf_access_attribute
10618 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
10619 {
10620 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
10621 {
10622 /* The default DWARF 2 accessibility for members is public, the default
10623 accessibility for inheritance is private. */
10624
10625 if (die->tag != DW_TAG_inheritance)
10626 return DW_ACCESS_public;
10627 else
10628 return DW_ACCESS_private;
10629 }
10630 else
10631 {
10632 /* DWARF 3+ defines the default accessibility a different way. The same
10633 rules apply now for DW_TAG_inheritance as for the members and it only
10634 depends on the container kind. */
10635
10636 if (die->parent->tag == DW_TAG_class_type)
10637 return DW_ACCESS_private;
10638 else
10639 return DW_ACCESS_public;
10640 }
10641 }
10642
10643 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
10644 offset. If the attribute was not found return 0, otherwise return
10645 1. If it was found but could not properly be handled, set *OFFSET
10646 to 0. */
10647
10648 static int
10649 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
10650 LONGEST *offset)
10651 {
10652 struct attribute *attr;
10653
10654 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
10655 if (attr != NULL)
10656 {
10657 *offset = 0;
10658
10659 /* Note that we do not check for a section offset first here.
10660 This is because DW_AT_data_member_location is new in DWARF 4,
10661 so if we see it, we can assume that a constant form is really
10662 a constant and not a section offset. */
10663 if (attr_form_is_constant (attr))
10664 *offset = dwarf2_get_attr_constant_value (attr, 0);
10665 else if (attr_form_is_section_offset (attr))
10666 dwarf2_complex_location_expr_complaint ();
10667 else if (attr_form_is_block (attr))
10668 *offset = decode_locdesc (DW_BLOCK (attr), cu);
10669 else
10670 dwarf2_complex_location_expr_complaint ();
10671
10672 return 1;
10673 }
10674
10675 return 0;
10676 }
10677
10678 /* Add an aggregate field to the field list. */
10679
10680 static void
10681 dwarf2_add_field (struct field_info *fip, struct die_info *die,
10682 struct dwarf2_cu *cu)
10683 {
10684 struct objfile *objfile = cu->objfile;
10685 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10686 struct nextfield *new_field;
10687 struct attribute *attr;
10688 struct field *fp;
10689 const char *fieldname = "";
10690
10691 /* Allocate a new field list entry and link it in. */
10692 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
10693 make_cleanup (xfree, new_field);
10694 memset (new_field, 0, sizeof (struct nextfield));
10695
10696 if (die->tag == DW_TAG_inheritance)
10697 {
10698 new_field->next = fip->baseclasses;
10699 fip->baseclasses = new_field;
10700 }
10701 else
10702 {
10703 new_field->next = fip->fields;
10704 fip->fields = new_field;
10705 }
10706 fip->nfields++;
10707
10708 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10709 if (attr)
10710 new_field->accessibility = DW_UNSND (attr);
10711 else
10712 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
10713 if (new_field->accessibility != DW_ACCESS_public)
10714 fip->non_public_fields = 1;
10715
10716 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10717 if (attr)
10718 new_field->virtuality = DW_UNSND (attr);
10719 else
10720 new_field->virtuality = DW_VIRTUALITY_none;
10721
10722 fp = &new_field->field;
10723
10724 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
10725 {
10726 LONGEST offset;
10727
10728 /* Data member other than a C++ static data member. */
10729
10730 /* Get type of field. */
10731 fp->type = die_type (die, cu);
10732
10733 SET_FIELD_BITPOS (*fp, 0);
10734
10735 /* Get bit size of field (zero if none). */
10736 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
10737 if (attr)
10738 {
10739 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
10740 }
10741 else
10742 {
10743 FIELD_BITSIZE (*fp) = 0;
10744 }
10745
10746 /* Get bit offset of field. */
10747 if (handle_data_member_location (die, cu, &offset))
10748 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10749 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
10750 if (attr)
10751 {
10752 if (gdbarch_bits_big_endian (gdbarch))
10753 {
10754 /* For big endian bits, the DW_AT_bit_offset gives the
10755 additional bit offset from the MSB of the containing
10756 anonymous object to the MSB of the field. We don't
10757 have to do anything special since we don't need to
10758 know the size of the anonymous object. */
10759 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
10760 }
10761 else
10762 {
10763 /* For little endian bits, compute the bit offset to the
10764 MSB of the anonymous object, subtract off the number of
10765 bits from the MSB of the field to the MSB of the
10766 object, and then subtract off the number of bits of
10767 the field itself. The result is the bit offset of
10768 the LSB of the field. */
10769 int anonymous_size;
10770 int bit_offset = DW_UNSND (attr);
10771
10772 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10773 if (attr)
10774 {
10775 /* The size of the anonymous object containing
10776 the bit field is explicit, so use the
10777 indicated size (in bytes). */
10778 anonymous_size = DW_UNSND (attr);
10779 }
10780 else
10781 {
10782 /* The size of the anonymous object containing
10783 the bit field must be inferred from the type
10784 attribute of the data member containing the
10785 bit field. */
10786 anonymous_size = TYPE_LENGTH (fp->type);
10787 }
10788 SET_FIELD_BITPOS (*fp,
10789 (FIELD_BITPOS (*fp)
10790 + anonymous_size * bits_per_byte
10791 - bit_offset - FIELD_BITSIZE (*fp)));
10792 }
10793 }
10794
10795 /* Get name of field. */
10796 fieldname = dwarf2_name (die, cu);
10797 if (fieldname == NULL)
10798 fieldname = "";
10799
10800 /* The name is already allocated along with this objfile, so we don't
10801 need to duplicate it for the type. */
10802 fp->name = fieldname;
10803
10804 /* Change accessibility for artificial fields (e.g. virtual table
10805 pointer or virtual base class pointer) to private. */
10806 if (dwarf2_attr (die, DW_AT_artificial, cu))
10807 {
10808 FIELD_ARTIFICIAL (*fp) = 1;
10809 new_field->accessibility = DW_ACCESS_private;
10810 fip->non_public_fields = 1;
10811 }
10812 }
10813 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
10814 {
10815 /* C++ static member. */
10816
10817 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
10818 is a declaration, but all versions of G++ as of this writing
10819 (so through at least 3.2.1) incorrectly generate
10820 DW_TAG_variable tags. */
10821
10822 const char *physname;
10823
10824 /* Get name of field. */
10825 fieldname = dwarf2_name (die, cu);
10826 if (fieldname == NULL)
10827 return;
10828
10829 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10830 if (attr
10831 /* Only create a symbol if this is an external value.
10832 new_symbol checks this and puts the value in the global symbol
10833 table, which we want. If it is not external, new_symbol
10834 will try to put the value in cu->list_in_scope which is wrong. */
10835 && dwarf2_flag_true_p (die, DW_AT_external, cu))
10836 {
10837 /* A static const member, not much different than an enum as far as
10838 we're concerned, except that we can support more types. */
10839 new_symbol (die, NULL, cu);
10840 }
10841
10842 /* Get physical name. */
10843 physname = dwarf2_physname (fieldname, die, cu);
10844
10845 /* The name is already allocated along with this objfile, so we don't
10846 need to duplicate it for the type. */
10847 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
10848 FIELD_TYPE (*fp) = die_type (die, cu);
10849 FIELD_NAME (*fp) = fieldname;
10850 }
10851 else if (die->tag == DW_TAG_inheritance)
10852 {
10853 LONGEST offset;
10854
10855 /* C++ base class field. */
10856 if (handle_data_member_location (die, cu, &offset))
10857 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10858 FIELD_BITSIZE (*fp) = 0;
10859 FIELD_TYPE (*fp) = die_type (die, cu);
10860 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
10861 fip->nbaseclasses++;
10862 }
10863 }
10864
10865 /* Add a typedef defined in the scope of the FIP's class. */
10866
10867 static void
10868 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
10869 struct dwarf2_cu *cu)
10870 {
10871 struct objfile *objfile = cu->objfile;
10872 struct typedef_field_list *new_field;
10873 struct attribute *attr;
10874 struct typedef_field *fp;
10875 char *fieldname = "";
10876
10877 /* Allocate a new field list entry and link it in. */
10878 new_field = xzalloc (sizeof (*new_field));
10879 make_cleanup (xfree, new_field);
10880
10881 gdb_assert (die->tag == DW_TAG_typedef);
10882
10883 fp = &new_field->field;
10884
10885 /* Get name of field. */
10886 fp->name = dwarf2_name (die, cu);
10887 if (fp->name == NULL)
10888 return;
10889
10890 fp->type = read_type_die (die, cu);
10891
10892 new_field->next = fip->typedef_field_list;
10893 fip->typedef_field_list = new_field;
10894 fip->typedef_field_list_count++;
10895 }
10896
10897 /* Create the vector of fields, and attach it to the type. */
10898
10899 static void
10900 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
10901 struct dwarf2_cu *cu)
10902 {
10903 int nfields = fip->nfields;
10904
10905 /* Record the field count, allocate space for the array of fields,
10906 and create blank accessibility bitfields if necessary. */
10907 TYPE_NFIELDS (type) = nfields;
10908 TYPE_FIELDS (type) = (struct field *)
10909 TYPE_ALLOC (type, sizeof (struct field) * nfields);
10910 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
10911
10912 if (fip->non_public_fields && cu->language != language_ada)
10913 {
10914 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10915
10916 TYPE_FIELD_PRIVATE_BITS (type) =
10917 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10918 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
10919
10920 TYPE_FIELD_PROTECTED_BITS (type) =
10921 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10922 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
10923
10924 TYPE_FIELD_IGNORE_BITS (type) =
10925 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10926 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
10927 }
10928
10929 /* If the type has baseclasses, allocate and clear a bit vector for
10930 TYPE_FIELD_VIRTUAL_BITS. */
10931 if (fip->nbaseclasses && cu->language != language_ada)
10932 {
10933 int num_bytes = B_BYTES (fip->nbaseclasses);
10934 unsigned char *pointer;
10935
10936 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10937 pointer = TYPE_ALLOC (type, num_bytes);
10938 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
10939 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
10940 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
10941 }
10942
10943 /* Copy the saved-up fields into the field vector. Start from the head of
10944 the list, adding to the tail of the field array, so that they end up in
10945 the same order in the array in which they were added to the list. */
10946 while (nfields-- > 0)
10947 {
10948 struct nextfield *fieldp;
10949
10950 if (fip->fields)
10951 {
10952 fieldp = fip->fields;
10953 fip->fields = fieldp->next;
10954 }
10955 else
10956 {
10957 fieldp = fip->baseclasses;
10958 fip->baseclasses = fieldp->next;
10959 }
10960
10961 TYPE_FIELD (type, nfields) = fieldp->field;
10962 switch (fieldp->accessibility)
10963 {
10964 case DW_ACCESS_private:
10965 if (cu->language != language_ada)
10966 SET_TYPE_FIELD_PRIVATE (type, nfields);
10967 break;
10968
10969 case DW_ACCESS_protected:
10970 if (cu->language != language_ada)
10971 SET_TYPE_FIELD_PROTECTED (type, nfields);
10972 break;
10973
10974 case DW_ACCESS_public:
10975 break;
10976
10977 default:
10978 /* Unknown accessibility. Complain and treat it as public. */
10979 {
10980 complaint (&symfile_complaints, _("unsupported accessibility %d"),
10981 fieldp->accessibility);
10982 }
10983 break;
10984 }
10985 if (nfields < fip->nbaseclasses)
10986 {
10987 switch (fieldp->virtuality)
10988 {
10989 case DW_VIRTUALITY_virtual:
10990 case DW_VIRTUALITY_pure_virtual:
10991 if (cu->language == language_ada)
10992 error (_("unexpected virtuality in component of Ada type"));
10993 SET_TYPE_FIELD_VIRTUAL (type, nfields);
10994 break;
10995 }
10996 }
10997 }
10998 }
10999
11000 /* Return true if this member function is a constructor, false
11001 otherwise. */
11002
11003 static int
11004 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
11005 {
11006 const char *fieldname;
11007 const char *typename;
11008 int len;
11009
11010 if (die->parent == NULL)
11011 return 0;
11012
11013 if (die->parent->tag != DW_TAG_structure_type
11014 && die->parent->tag != DW_TAG_union_type
11015 && die->parent->tag != DW_TAG_class_type)
11016 return 0;
11017
11018 fieldname = dwarf2_name (die, cu);
11019 typename = dwarf2_name (die->parent, cu);
11020 if (fieldname == NULL || typename == NULL)
11021 return 0;
11022
11023 len = strlen (fieldname);
11024 return (strncmp (fieldname, typename, len) == 0
11025 && (typename[len] == '\0' || typename[len] == '<'));
11026 }
11027
11028 /* Add a member function to the proper fieldlist. */
11029
11030 static void
11031 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
11032 struct type *type, struct dwarf2_cu *cu)
11033 {
11034 struct objfile *objfile = cu->objfile;
11035 struct attribute *attr;
11036 struct fnfieldlist *flp;
11037 int i;
11038 struct fn_field *fnp;
11039 const char *fieldname;
11040 struct nextfnfield *new_fnfield;
11041 struct type *this_type;
11042 enum dwarf_access_attribute accessibility;
11043
11044 if (cu->language == language_ada)
11045 error (_("unexpected member function in Ada type"));
11046
11047 /* Get name of member function. */
11048 fieldname = dwarf2_name (die, cu);
11049 if (fieldname == NULL)
11050 return;
11051
11052 /* Look up member function name in fieldlist. */
11053 for (i = 0; i < fip->nfnfields; i++)
11054 {
11055 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
11056 break;
11057 }
11058
11059 /* Create new list element if necessary. */
11060 if (i < fip->nfnfields)
11061 flp = &fip->fnfieldlists[i];
11062 else
11063 {
11064 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
11065 {
11066 fip->fnfieldlists = (struct fnfieldlist *)
11067 xrealloc (fip->fnfieldlists,
11068 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
11069 * sizeof (struct fnfieldlist));
11070 if (fip->nfnfields == 0)
11071 make_cleanup (free_current_contents, &fip->fnfieldlists);
11072 }
11073 flp = &fip->fnfieldlists[fip->nfnfields];
11074 flp->name = fieldname;
11075 flp->length = 0;
11076 flp->head = NULL;
11077 i = fip->nfnfields++;
11078 }
11079
11080 /* Create a new member function field and chain it to the field list
11081 entry. */
11082 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
11083 make_cleanup (xfree, new_fnfield);
11084 memset (new_fnfield, 0, sizeof (struct nextfnfield));
11085 new_fnfield->next = flp->head;
11086 flp->head = new_fnfield;
11087 flp->length++;
11088
11089 /* Fill in the member function field info. */
11090 fnp = &new_fnfield->fnfield;
11091
11092 /* Delay processing of the physname until later. */
11093 if (cu->language == language_cplus || cu->language == language_java)
11094 {
11095 add_to_method_list (type, i, flp->length - 1, fieldname,
11096 die, cu);
11097 }
11098 else
11099 {
11100 const char *physname = dwarf2_physname (fieldname, die, cu);
11101 fnp->physname = physname ? physname : "";
11102 }
11103
11104 fnp->type = alloc_type (objfile);
11105 this_type = read_type_die (die, cu);
11106 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
11107 {
11108 int nparams = TYPE_NFIELDS (this_type);
11109
11110 /* TYPE is the domain of this method, and THIS_TYPE is the type
11111 of the method itself (TYPE_CODE_METHOD). */
11112 smash_to_method_type (fnp->type, type,
11113 TYPE_TARGET_TYPE (this_type),
11114 TYPE_FIELDS (this_type),
11115 TYPE_NFIELDS (this_type),
11116 TYPE_VARARGS (this_type));
11117
11118 /* Handle static member functions.
11119 Dwarf2 has no clean way to discern C++ static and non-static
11120 member functions. G++ helps GDB by marking the first
11121 parameter for non-static member functions (which is the this
11122 pointer) as artificial. We obtain this information from
11123 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
11124 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
11125 fnp->voffset = VOFFSET_STATIC;
11126 }
11127 else
11128 complaint (&symfile_complaints, _("member function type missing for '%s'"),
11129 dwarf2_full_name (fieldname, die, cu));
11130
11131 /* Get fcontext from DW_AT_containing_type if present. */
11132 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11133 fnp->fcontext = die_containing_type (die, cu);
11134
11135 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11136 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
11137
11138 /* Get accessibility. */
11139 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11140 if (attr)
11141 accessibility = DW_UNSND (attr);
11142 else
11143 accessibility = dwarf2_default_access_attribute (die, cu);
11144 switch (accessibility)
11145 {
11146 case DW_ACCESS_private:
11147 fnp->is_private = 1;
11148 break;
11149 case DW_ACCESS_protected:
11150 fnp->is_protected = 1;
11151 break;
11152 }
11153
11154 /* Check for artificial methods. */
11155 attr = dwarf2_attr (die, DW_AT_artificial, cu);
11156 if (attr && DW_UNSND (attr) != 0)
11157 fnp->is_artificial = 1;
11158
11159 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11160
11161 /* Get index in virtual function table if it is a virtual member
11162 function. For older versions of GCC, this is an offset in the
11163 appropriate virtual table, as specified by DW_AT_containing_type.
11164 For everyone else, it is an expression to be evaluated relative
11165 to the object address. */
11166
11167 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
11168 if (attr)
11169 {
11170 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
11171 {
11172 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11173 {
11174 /* Old-style GCC. */
11175 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11176 }
11177 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11178 || (DW_BLOCK (attr)->size > 1
11179 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11180 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11181 {
11182 struct dwarf_block blk;
11183 int offset;
11184
11185 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11186 ? 1 : 2);
11187 blk.size = DW_BLOCK (attr)->size - offset;
11188 blk.data = DW_BLOCK (attr)->data + offset;
11189 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11190 if ((fnp->voffset % cu->header.addr_size) != 0)
11191 dwarf2_complex_location_expr_complaint ();
11192 else
11193 fnp->voffset /= cu->header.addr_size;
11194 fnp->voffset += 2;
11195 }
11196 else
11197 dwarf2_complex_location_expr_complaint ();
11198
11199 if (!fnp->fcontext)
11200 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11201 }
11202 else if (attr_form_is_section_offset (attr))
11203 {
11204 dwarf2_complex_location_expr_complaint ();
11205 }
11206 else
11207 {
11208 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11209 fieldname);
11210 }
11211 }
11212 else
11213 {
11214 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11215 if (attr && DW_UNSND (attr))
11216 {
11217 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11218 complaint (&symfile_complaints,
11219 _("Member function \"%s\" (offset %d) is virtual "
11220 "but the vtable offset is not specified"),
11221 fieldname, die->offset.sect_off);
11222 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11223 TYPE_CPLUS_DYNAMIC (type) = 1;
11224 }
11225 }
11226 }
11227
11228 /* Create the vector of member function fields, and attach it to the type. */
11229
11230 static void
11231 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11232 struct dwarf2_cu *cu)
11233 {
11234 struct fnfieldlist *flp;
11235 int i;
11236
11237 if (cu->language == language_ada)
11238 error (_("unexpected member functions in Ada type"));
11239
11240 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11241 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11242 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11243
11244 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11245 {
11246 struct nextfnfield *nfp = flp->head;
11247 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11248 int k;
11249
11250 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11251 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11252 fn_flp->fn_fields = (struct fn_field *)
11253 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11254 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11255 fn_flp->fn_fields[k] = nfp->fnfield;
11256 }
11257
11258 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11259 }
11260
11261 /* Returns non-zero if NAME is the name of a vtable member in CU's
11262 language, zero otherwise. */
11263 static int
11264 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11265 {
11266 static const char vptr[] = "_vptr";
11267 static const char vtable[] = "vtable";
11268
11269 /* Look for the C++ and Java forms of the vtable. */
11270 if ((cu->language == language_java
11271 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11272 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11273 && is_cplus_marker (name[sizeof (vptr) - 1])))
11274 return 1;
11275
11276 return 0;
11277 }
11278
11279 /* GCC outputs unnamed structures that are really pointers to member
11280 functions, with the ABI-specified layout. If TYPE describes
11281 such a structure, smash it into a member function type.
11282
11283 GCC shouldn't do this; it should just output pointer to member DIEs.
11284 This is GCC PR debug/28767. */
11285
11286 static void
11287 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11288 {
11289 struct type *pfn_type, *domain_type, *new_type;
11290
11291 /* Check for a structure with no name and two children. */
11292 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11293 return;
11294
11295 /* Check for __pfn and __delta members. */
11296 if (TYPE_FIELD_NAME (type, 0) == NULL
11297 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11298 || TYPE_FIELD_NAME (type, 1) == NULL
11299 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11300 return;
11301
11302 /* Find the type of the method. */
11303 pfn_type = TYPE_FIELD_TYPE (type, 0);
11304 if (pfn_type == NULL
11305 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11306 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11307 return;
11308
11309 /* Look for the "this" argument. */
11310 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11311 if (TYPE_NFIELDS (pfn_type) == 0
11312 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11313 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11314 return;
11315
11316 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11317 new_type = alloc_type (objfile);
11318 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11319 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11320 TYPE_VARARGS (pfn_type));
11321 smash_to_methodptr_type (type, new_type);
11322 }
11323
11324 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11325 (icc). */
11326
11327 static int
11328 producer_is_icc (struct dwarf2_cu *cu)
11329 {
11330 if (!cu->checked_producer)
11331 check_producer (cu);
11332
11333 return cu->producer_is_icc;
11334 }
11335
11336 /* Called when we find the DIE that starts a structure or union scope
11337 (definition) to create a type for the structure or union. Fill in
11338 the type's name and general properties; the members will not be
11339 processed until process_structure_scope.
11340
11341 NOTE: we need to call these functions regardless of whether or not the
11342 DIE has a DW_AT_name attribute, since it might be an anonymous
11343 structure or union. This gets the type entered into our set of
11344 user defined types.
11345
11346 However, if the structure is incomplete (an opaque struct/union)
11347 then suppress creating a symbol table entry for it since gdb only
11348 wants to find the one with the complete definition. Note that if
11349 it is complete, we just call new_symbol, which does it's own
11350 checking about whether the struct/union is anonymous or not (and
11351 suppresses creating a symbol table entry itself). */
11352
11353 static struct type *
11354 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11355 {
11356 struct objfile *objfile = cu->objfile;
11357 struct type *type;
11358 struct attribute *attr;
11359 const char *name;
11360
11361 /* If the definition of this type lives in .debug_types, read that type.
11362 Don't follow DW_AT_specification though, that will take us back up
11363 the chain and we want to go down. */
11364 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11365 if (attr)
11366 {
11367 struct dwarf2_cu *type_cu = cu;
11368 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11369
11370 /* We could just recurse on read_structure_type, but we need to call
11371 get_die_type to ensure only one type for this DIE is created.
11372 This is important, for example, because for c++ classes we need
11373 TYPE_NAME set which is only done by new_symbol. Blech. */
11374 type = read_type_die (type_die, type_cu);
11375
11376 /* TYPE_CU may not be the same as CU.
11377 Ensure TYPE is recorded with CU in die_type_hash. */
11378 return set_die_type (die, type, cu);
11379 }
11380
11381 type = alloc_type (objfile);
11382 INIT_CPLUS_SPECIFIC (type);
11383
11384 name = dwarf2_name (die, cu);
11385 if (name != NULL)
11386 {
11387 if (cu->language == language_cplus
11388 || cu->language == language_java)
11389 {
11390 const char *full_name = dwarf2_full_name (name, die, cu);
11391
11392 /* dwarf2_full_name might have already finished building the DIE's
11393 type. If so, there is no need to continue. */
11394 if (get_die_type (die, cu) != NULL)
11395 return get_die_type (die, cu);
11396
11397 TYPE_TAG_NAME (type) = full_name;
11398 if (die->tag == DW_TAG_structure_type
11399 || die->tag == DW_TAG_class_type)
11400 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11401 }
11402 else
11403 {
11404 /* The name is already allocated along with this objfile, so
11405 we don't need to duplicate it for the type. */
11406 TYPE_TAG_NAME (type) = name;
11407 if (die->tag == DW_TAG_class_type)
11408 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11409 }
11410 }
11411
11412 if (die->tag == DW_TAG_structure_type)
11413 {
11414 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11415 }
11416 else if (die->tag == DW_TAG_union_type)
11417 {
11418 TYPE_CODE (type) = TYPE_CODE_UNION;
11419 }
11420 else
11421 {
11422 TYPE_CODE (type) = TYPE_CODE_CLASS;
11423 }
11424
11425 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11426 TYPE_DECLARED_CLASS (type) = 1;
11427
11428 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11429 if (attr)
11430 {
11431 TYPE_LENGTH (type) = DW_UNSND (attr);
11432 }
11433 else
11434 {
11435 TYPE_LENGTH (type) = 0;
11436 }
11437
11438 if (producer_is_icc (cu))
11439 {
11440 /* ICC does not output the required DW_AT_declaration
11441 on incomplete types, but gives them a size of zero. */
11442 }
11443 else
11444 TYPE_STUB_SUPPORTED (type) = 1;
11445
11446 if (die_is_declaration (die, cu))
11447 TYPE_STUB (type) = 1;
11448 else if (attr == NULL && die->child == NULL
11449 && producer_is_realview (cu->producer))
11450 /* RealView does not output the required DW_AT_declaration
11451 on incomplete types. */
11452 TYPE_STUB (type) = 1;
11453
11454 /* We need to add the type field to the die immediately so we don't
11455 infinitely recurse when dealing with pointers to the structure
11456 type within the structure itself. */
11457 set_die_type (die, type, cu);
11458
11459 /* set_die_type should be already done. */
11460 set_descriptive_type (type, die, cu);
11461
11462 return type;
11463 }
11464
11465 /* Finish creating a structure or union type, including filling in
11466 its members and creating a symbol for it. */
11467
11468 static void
11469 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11470 {
11471 struct objfile *objfile = cu->objfile;
11472 struct die_info *child_die = die->child;
11473 struct type *type;
11474
11475 type = get_die_type (die, cu);
11476 if (type == NULL)
11477 type = read_structure_type (die, cu);
11478
11479 if (die->child != NULL && ! die_is_declaration (die, cu))
11480 {
11481 struct field_info fi;
11482 struct die_info *child_die;
11483 VEC (symbolp) *template_args = NULL;
11484 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11485
11486 memset (&fi, 0, sizeof (struct field_info));
11487
11488 child_die = die->child;
11489
11490 while (child_die && child_die->tag)
11491 {
11492 if (child_die->tag == DW_TAG_member
11493 || child_die->tag == DW_TAG_variable)
11494 {
11495 /* NOTE: carlton/2002-11-05: A C++ static data member
11496 should be a DW_TAG_member that is a declaration, but
11497 all versions of G++ as of this writing (so through at
11498 least 3.2.1) incorrectly generate DW_TAG_variable
11499 tags for them instead. */
11500 dwarf2_add_field (&fi, child_die, cu);
11501 }
11502 else if (child_die->tag == DW_TAG_subprogram)
11503 {
11504 /* C++ member function. */
11505 dwarf2_add_member_fn (&fi, child_die, type, cu);
11506 }
11507 else if (child_die->tag == DW_TAG_inheritance)
11508 {
11509 /* C++ base class field. */
11510 dwarf2_add_field (&fi, child_die, cu);
11511 }
11512 else if (child_die->tag == DW_TAG_typedef)
11513 dwarf2_add_typedef (&fi, child_die, cu);
11514 else if (child_die->tag == DW_TAG_template_type_param
11515 || child_die->tag == DW_TAG_template_value_param)
11516 {
11517 struct symbol *arg = new_symbol (child_die, NULL, cu);
11518
11519 if (arg != NULL)
11520 VEC_safe_push (symbolp, template_args, arg);
11521 }
11522
11523 child_die = sibling_die (child_die);
11524 }
11525
11526 /* Attach template arguments to type. */
11527 if (! VEC_empty (symbolp, template_args))
11528 {
11529 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11530 TYPE_N_TEMPLATE_ARGUMENTS (type)
11531 = VEC_length (symbolp, template_args);
11532 TYPE_TEMPLATE_ARGUMENTS (type)
11533 = obstack_alloc (&objfile->objfile_obstack,
11534 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11535 * sizeof (struct symbol *)));
11536 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11537 VEC_address (symbolp, template_args),
11538 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11539 * sizeof (struct symbol *)));
11540 VEC_free (symbolp, template_args);
11541 }
11542
11543 /* Attach fields and member functions to the type. */
11544 if (fi.nfields)
11545 dwarf2_attach_fields_to_type (&fi, type, cu);
11546 if (fi.nfnfields)
11547 {
11548 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
11549
11550 /* Get the type which refers to the base class (possibly this
11551 class itself) which contains the vtable pointer for the current
11552 class from the DW_AT_containing_type attribute. This use of
11553 DW_AT_containing_type is a GNU extension. */
11554
11555 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11556 {
11557 struct type *t = die_containing_type (die, cu);
11558
11559 TYPE_VPTR_BASETYPE (type) = t;
11560 if (type == t)
11561 {
11562 int i;
11563
11564 /* Our own class provides vtbl ptr. */
11565 for (i = TYPE_NFIELDS (t) - 1;
11566 i >= TYPE_N_BASECLASSES (t);
11567 --i)
11568 {
11569 const char *fieldname = TYPE_FIELD_NAME (t, i);
11570
11571 if (is_vtable_name (fieldname, cu))
11572 {
11573 TYPE_VPTR_FIELDNO (type) = i;
11574 break;
11575 }
11576 }
11577
11578 /* Complain if virtual function table field not found. */
11579 if (i < TYPE_N_BASECLASSES (t))
11580 complaint (&symfile_complaints,
11581 _("virtual function table pointer "
11582 "not found when defining class '%s'"),
11583 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11584 "");
11585 }
11586 else
11587 {
11588 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11589 }
11590 }
11591 else if (cu->producer
11592 && strncmp (cu->producer,
11593 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11594 {
11595 /* The IBM XLC compiler does not provide direct indication
11596 of the containing type, but the vtable pointer is
11597 always named __vfp. */
11598
11599 int i;
11600
11601 for (i = TYPE_NFIELDS (type) - 1;
11602 i >= TYPE_N_BASECLASSES (type);
11603 --i)
11604 {
11605 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
11606 {
11607 TYPE_VPTR_FIELDNO (type) = i;
11608 TYPE_VPTR_BASETYPE (type) = type;
11609 break;
11610 }
11611 }
11612 }
11613 }
11614
11615 /* Copy fi.typedef_field_list linked list elements content into the
11616 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
11617 if (fi.typedef_field_list)
11618 {
11619 int i = fi.typedef_field_list_count;
11620
11621 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11622 TYPE_TYPEDEF_FIELD_ARRAY (type)
11623 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
11624 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
11625
11626 /* Reverse the list order to keep the debug info elements order. */
11627 while (--i >= 0)
11628 {
11629 struct typedef_field *dest, *src;
11630
11631 dest = &TYPE_TYPEDEF_FIELD (type, i);
11632 src = &fi.typedef_field_list->field;
11633 fi.typedef_field_list = fi.typedef_field_list->next;
11634 *dest = *src;
11635 }
11636 }
11637
11638 do_cleanups (back_to);
11639
11640 if (HAVE_CPLUS_STRUCT (type))
11641 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
11642 }
11643
11644 quirk_gcc_member_function_pointer (type, objfile);
11645
11646 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
11647 snapshots) has been known to create a die giving a declaration
11648 for a class that has, as a child, a die giving a definition for a
11649 nested class. So we have to process our children even if the
11650 current die is a declaration. Normally, of course, a declaration
11651 won't have any children at all. */
11652
11653 while (child_die != NULL && child_die->tag)
11654 {
11655 if (child_die->tag == DW_TAG_member
11656 || child_die->tag == DW_TAG_variable
11657 || child_die->tag == DW_TAG_inheritance
11658 || child_die->tag == DW_TAG_template_value_param
11659 || child_die->tag == DW_TAG_template_type_param)
11660 {
11661 /* Do nothing. */
11662 }
11663 else
11664 process_die (child_die, cu);
11665
11666 child_die = sibling_die (child_die);
11667 }
11668
11669 /* Do not consider external references. According to the DWARF standard,
11670 these DIEs are identified by the fact that they have no byte_size
11671 attribute, and a declaration attribute. */
11672 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
11673 || !die_is_declaration (die, cu))
11674 new_symbol (die, type, cu);
11675 }
11676
11677 /* Given a DW_AT_enumeration_type die, set its type. We do not
11678 complete the type's fields yet, or create any symbols. */
11679
11680 static struct type *
11681 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
11682 {
11683 struct objfile *objfile = cu->objfile;
11684 struct type *type;
11685 struct attribute *attr;
11686 const char *name;
11687
11688 /* If the definition of this type lives in .debug_types, read that type.
11689 Don't follow DW_AT_specification though, that will take us back up
11690 the chain and we want to go down. */
11691 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11692 if (attr)
11693 {
11694 struct dwarf2_cu *type_cu = cu;
11695 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11696
11697 type = read_type_die (type_die, type_cu);
11698
11699 /* TYPE_CU may not be the same as CU.
11700 Ensure TYPE is recorded with CU in die_type_hash. */
11701 return set_die_type (die, type, cu);
11702 }
11703
11704 type = alloc_type (objfile);
11705
11706 TYPE_CODE (type) = TYPE_CODE_ENUM;
11707 name = dwarf2_full_name (NULL, die, cu);
11708 if (name != NULL)
11709 TYPE_TAG_NAME (type) = name;
11710
11711 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11712 if (attr)
11713 {
11714 TYPE_LENGTH (type) = DW_UNSND (attr);
11715 }
11716 else
11717 {
11718 TYPE_LENGTH (type) = 0;
11719 }
11720
11721 /* The enumeration DIE can be incomplete. In Ada, any type can be
11722 declared as private in the package spec, and then defined only
11723 inside the package body. Such types are known as Taft Amendment
11724 Types. When another package uses such a type, an incomplete DIE
11725 may be generated by the compiler. */
11726 if (die_is_declaration (die, cu))
11727 TYPE_STUB (type) = 1;
11728
11729 return set_die_type (die, type, cu);
11730 }
11731
11732 /* Given a pointer to a die which begins an enumeration, process all
11733 the dies that define the members of the enumeration, and create the
11734 symbol for the enumeration type.
11735
11736 NOTE: We reverse the order of the element list. */
11737
11738 static void
11739 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
11740 {
11741 struct type *this_type;
11742
11743 this_type = get_die_type (die, cu);
11744 if (this_type == NULL)
11745 this_type = read_enumeration_type (die, cu);
11746
11747 if (die->child != NULL)
11748 {
11749 struct die_info *child_die;
11750 struct symbol *sym;
11751 struct field *fields = NULL;
11752 int num_fields = 0;
11753 int unsigned_enum = 1;
11754 const char *name;
11755 int flag_enum = 1;
11756 ULONGEST mask = 0;
11757
11758 child_die = die->child;
11759 while (child_die && child_die->tag)
11760 {
11761 if (child_die->tag != DW_TAG_enumerator)
11762 {
11763 process_die (child_die, cu);
11764 }
11765 else
11766 {
11767 name = dwarf2_name (child_die, cu);
11768 if (name)
11769 {
11770 sym = new_symbol (child_die, this_type, cu);
11771 if (SYMBOL_VALUE (sym) < 0)
11772 {
11773 unsigned_enum = 0;
11774 flag_enum = 0;
11775 }
11776 else if ((mask & SYMBOL_VALUE (sym)) != 0)
11777 flag_enum = 0;
11778 else
11779 mask |= SYMBOL_VALUE (sym);
11780
11781 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
11782 {
11783 fields = (struct field *)
11784 xrealloc (fields,
11785 (num_fields + DW_FIELD_ALLOC_CHUNK)
11786 * sizeof (struct field));
11787 }
11788
11789 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
11790 FIELD_TYPE (fields[num_fields]) = NULL;
11791 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
11792 FIELD_BITSIZE (fields[num_fields]) = 0;
11793
11794 num_fields++;
11795 }
11796 }
11797
11798 child_die = sibling_die (child_die);
11799 }
11800
11801 if (num_fields)
11802 {
11803 TYPE_NFIELDS (this_type) = num_fields;
11804 TYPE_FIELDS (this_type) = (struct field *)
11805 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
11806 memcpy (TYPE_FIELDS (this_type), fields,
11807 sizeof (struct field) * num_fields);
11808 xfree (fields);
11809 }
11810 if (unsigned_enum)
11811 TYPE_UNSIGNED (this_type) = 1;
11812 if (flag_enum)
11813 TYPE_FLAG_ENUM (this_type) = 1;
11814 }
11815
11816 /* If we are reading an enum from a .debug_types unit, and the enum
11817 is a declaration, and the enum is not the signatured type in the
11818 unit, then we do not want to add a symbol for it. Adding a
11819 symbol would in some cases obscure the true definition of the
11820 enum, giving users an incomplete type when the definition is
11821 actually available. Note that we do not want to do this for all
11822 enums which are just declarations, because C++0x allows forward
11823 enum declarations. */
11824 if (cu->per_cu->is_debug_types
11825 && die_is_declaration (die, cu))
11826 {
11827 struct signatured_type *sig_type;
11828
11829 sig_type = (struct signatured_type *) cu->per_cu;
11830 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
11831 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
11832 return;
11833 }
11834
11835 new_symbol (die, this_type, cu);
11836 }
11837
11838 /* Extract all information from a DW_TAG_array_type DIE and put it in
11839 the DIE's type field. For now, this only handles one dimensional
11840 arrays. */
11841
11842 static struct type *
11843 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
11844 {
11845 struct objfile *objfile = cu->objfile;
11846 struct die_info *child_die;
11847 struct type *type;
11848 struct type *element_type, *range_type, *index_type;
11849 struct type **range_types = NULL;
11850 struct attribute *attr;
11851 int ndim = 0;
11852 struct cleanup *back_to;
11853 const char *name;
11854
11855 element_type = die_type (die, cu);
11856
11857 /* The die_type call above may have already set the type for this DIE. */
11858 type = get_die_type (die, cu);
11859 if (type)
11860 return type;
11861
11862 /* Irix 6.2 native cc creates array types without children for
11863 arrays with unspecified length. */
11864 if (die->child == NULL)
11865 {
11866 index_type = objfile_type (objfile)->builtin_int;
11867 range_type = create_range_type (NULL, index_type, 0, -1);
11868 type = create_array_type (NULL, element_type, range_type);
11869 return set_die_type (die, type, cu);
11870 }
11871
11872 back_to = make_cleanup (null_cleanup, NULL);
11873 child_die = die->child;
11874 while (child_die && child_die->tag)
11875 {
11876 if (child_die->tag == DW_TAG_subrange_type)
11877 {
11878 struct type *child_type = read_type_die (child_die, cu);
11879
11880 if (child_type != NULL)
11881 {
11882 /* The range type was succesfully read. Save it for the
11883 array type creation. */
11884 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
11885 {
11886 range_types = (struct type **)
11887 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
11888 * sizeof (struct type *));
11889 if (ndim == 0)
11890 make_cleanup (free_current_contents, &range_types);
11891 }
11892 range_types[ndim++] = child_type;
11893 }
11894 }
11895 child_die = sibling_die (child_die);
11896 }
11897
11898 /* Dwarf2 dimensions are output from left to right, create the
11899 necessary array types in backwards order. */
11900
11901 type = element_type;
11902
11903 if (read_array_order (die, cu) == DW_ORD_col_major)
11904 {
11905 int i = 0;
11906
11907 while (i < ndim)
11908 type = create_array_type (NULL, type, range_types[i++]);
11909 }
11910 else
11911 {
11912 while (ndim-- > 0)
11913 type = create_array_type (NULL, type, range_types[ndim]);
11914 }
11915
11916 /* Understand Dwarf2 support for vector types (like they occur on
11917 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
11918 array type. This is not part of the Dwarf2/3 standard yet, but a
11919 custom vendor extension. The main difference between a regular
11920 array and the vector variant is that vectors are passed by value
11921 to functions. */
11922 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
11923 if (attr)
11924 make_vector_type (type);
11925
11926 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
11927 implementation may choose to implement triple vectors using this
11928 attribute. */
11929 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11930 if (attr)
11931 {
11932 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
11933 TYPE_LENGTH (type) = DW_UNSND (attr);
11934 else
11935 complaint (&symfile_complaints,
11936 _("DW_AT_byte_size for array type smaller "
11937 "than the total size of elements"));
11938 }
11939
11940 name = dwarf2_name (die, cu);
11941 if (name)
11942 TYPE_NAME (type) = name;
11943
11944 /* Install the type in the die. */
11945 set_die_type (die, type, cu);
11946
11947 /* set_die_type should be already done. */
11948 set_descriptive_type (type, die, cu);
11949
11950 do_cleanups (back_to);
11951
11952 return type;
11953 }
11954
11955 static enum dwarf_array_dim_ordering
11956 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
11957 {
11958 struct attribute *attr;
11959
11960 attr = dwarf2_attr (die, DW_AT_ordering, cu);
11961
11962 if (attr) return DW_SND (attr);
11963
11964 /* GNU F77 is a special case, as at 08/2004 array type info is the
11965 opposite order to the dwarf2 specification, but data is still
11966 laid out as per normal fortran.
11967
11968 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
11969 version checking. */
11970
11971 if (cu->language == language_fortran
11972 && cu->producer && strstr (cu->producer, "GNU F77"))
11973 {
11974 return DW_ORD_row_major;
11975 }
11976
11977 switch (cu->language_defn->la_array_ordering)
11978 {
11979 case array_column_major:
11980 return DW_ORD_col_major;
11981 case array_row_major:
11982 default:
11983 return DW_ORD_row_major;
11984 };
11985 }
11986
11987 /* Extract all information from a DW_TAG_set_type DIE and put it in
11988 the DIE's type field. */
11989
11990 static struct type *
11991 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
11992 {
11993 struct type *domain_type, *set_type;
11994 struct attribute *attr;
11995
11996 domain_type = die_type (die, cu);
11997
11998 /* The die_type call above may have already set the type for this DIE. */
11999 set_type = get_die_type (die, cu);
12000 if (set_type)
12001 return set_type;
12002
12003 set_type = create_set_type (NULL, domain_type);
12004
12005 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12006 if (attr)
12007 TYPE_LENGTH (set_type) = DW_UNSND (attr);
12008
12009 return set_die_type (die, set_type, cu);
12010 }
12011
12012 /* A helper for read_common_block that creates a locexpr baton.
12013 SYM is the symbol which we are marking as computed.
12014 COMMON_DIE is the DIE for the common block.
12015 COMMON_LOC is the location expression attribute for the common
12016 block itself.
12017 MEMBER_LOC is the location expression attribute for the particular
12018 member of the common block that we are processing.
12019 CU is the CU from which the above come. */
12020
12021 static void
12022 mark_common_block_symbol_computed (struct symbol *sym,
12023 struct die_info *common_die,
12024 struct attribute *common_loc,
12025 struct attribute *member_loc,
12026 struct dwarf2_cu *cu)
12027 {
12028 struct objfile *objfile = dwarf2_per_objfile->objfile;
12029 struct dwarf2_locexpr_baton *baton;
12030 gdb_byte *ptr;
12031 unsigned int cu_off;
12032 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
12033 LONGEST offset = 0;
12034
12035 gdb_assert (common_loc && member_loc);
12036 gdb_assert (attr_form_is_block (common_loc));
12037 gdb_assert (attr_form_is_block (member_loc)
12038 || attr_form_is_constant (member_loc));
12039
12040 baton = obstack_alloc (&objfile->objfile_obstack,
12041 sizeof (struct dwarf2_locexpr_baton));
12042 baton->per_cu = cu->per_cu;
12043 gdb_assert (baton->per_cu);
12044
12045 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
12046
12047 if (attr_form_is_constant (member_loc))
12048 {
12049 offset = dwarf2_get_attr_constant_value (member_loc, 0);
12050 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
12051 }
12052 else
12053 baton->size += DW_BLOCK (member_loc)->size;
12054
12055 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
12056 baton->data = ptr;
12057
12058 *ptr++ = DW_OP_call4;
12059 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
12060 store_unsigned_integer (ptr, 4, byte_order, cu_off);
12061 ptr += 4;
12062
12063 if (attr_form_is_constant (member_loc))
12064 {
12065 *ptr++ = DW_OP_addr;
12066 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
12067 ptr += cu->header.addr_size;
12068 }
12069 else
12070 {
12071 /* We have to copy the data here, because DW_OP_call4 will only
12072 use a DW_AT_location attribute. */
12073 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
12074 ptr += DW_BLOCK (member_loc)->size;
12075 }
12076
12077 *ptr++ = DW_OP_plus;
12078 gdb_assert (ptr - baton->data == baton->size);
12079
12080 SYMBOL_LOCATION_BATON (sym) = baton;
12081 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
12082 }
12083
12084 /* Create appropriate locally-scoped variables for all the
12085 DW_TAG_common_block entries. Also create a struct common_block
12086 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
12087 is used to sepate the common blocks name namespace from regular
12088 variable names. */
12089
12090 static void
12091 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
12092 {
12093 struct attribute *attr;
12094
12095 attr = dwarf2_attr (die, DW_AT_location, cu);
12096 if (attr)
12097 {
12098 /* Support the .debug_loc offsets. */
12099 if (attr_form_is_block (attr))
12100 {
12101 /* Ok. */
12102 }
12103 else if (attr_form_is_section_offset (attr))
12104 {
12105 dwarf2_complex_location_expr_complaint ();
12106 attr = NULL;
12107 }
12108 else
12109 {
12110 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
12111 "common block member");
12112 attr = NULL;
12113 }
12114 }
12115
12116 if (die->child != NULL)
12117 {
12118 struct objfile *objfile = cu->objfile;
12119 struct die_info *child_die;
12120 size_t n_entries = 0, size;
12121 struct common_block *common_block;
12122 struct symbol *sym;
12123
12124 for (child_die = die->child;
12125 child_die && child_die->tag;
12126 child_die = sibling_die (child_die))
12127 ++n_entries;
12128
12129 size = (sizeof (struct common_block)
12130 + (n_entries - 1) * sizeof (struct symbol *));
12131 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12132 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12133 common_block->n_entries = 0;
12134
12135 for (child_die = die->child;
12136 child_die && child_die->tag;
12137 child_die = sibling_die (child_die))
12138 {
12139 /* Create the symbol in the DW_TAG_common_block block in the current
12140 symbol scope. */
12141 sym = new_symbol (child_die, NULL, cu);
12142 if (sym != NULL)
12143 {
12144 struct attribute *member_loc;
12145
12146 common_block->contents[common_block->n_entries++] = sym;
12147
12148 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12149 cu);
12150 if (member_loc)
12151 {
12152 /* GDB has handled this for a long time, but it is
12153 not specified by DWARF. It seems to have been
12154 emitted by gfortran at least as recently as:
12155 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12156 complaint (&symfile_complaints,
12157 _("Variable in common block has "
12158 "DW_AT_data_member_location "
12159 "- DIE at 0x%x [in module %s]"),
12160 child_die->offset.sect_off, cu->objfile->name);
12161
12162 if (attr_form_is_section_offset (member_loc))
12163 dwarf2_complex_location_expr_complaint ();
12164 else if (attr_form_is_constant (member_loc)
12165 || attr_form_is_block (member_loc))
12166 {
12167 if (attr)
12168 mark_common_block_symbol_computed (sym, die, attr,
12169 member_loc, cu);
12170 }
12171 else
12172 dwarf2_complex_location_expr_complaint ();
12173 }
12174 }
12175 }
12176
12177 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12178 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
12179 }
12180 }
12181
12182 /* Create a type for a C++ namespace. */
12183
12184 static struct type *
12185 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
12186 {
12187 struct objfile *objfile = cu->objfile;
12188 const char *previous_prefix, *name;
12189 int is_anonymous;
12190 struct type *type;
12191
12192 /* For extensions, reuse the type of the original namespace. */
12193 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12194 {
12195 struct die_info *ext_die;
12196 struct dwarf2_cu *ext_cu = cu;
12197
12198 ext_die = dwarf2_extension (die, &ext_cu);
12199 type = read_type_die (ext_die, ext_cu);
12200
12201 /* EXT_CU may not be the same as CU.
12202 Ensure TYPE is recorded with CU in die_type_hash. */
12203 return set_die_type (die, type, cu);
12204 }
12205
12206 name = namespace_name (die, &is_anonymous, cu);
12207
12208 /* Now build the name of the current namespace. */
12209
12210 previous_prefix = determine_prefix (die, cu);
12211 if (previous_prefix[0] != '\0')
12212 name = typename_concat (&objfile->objfile_obstack,
12213 previous_prefix, name, 0, cu);
12214
12215 /* Create the type. */
12216 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12217 objfile);
12218 TYPE_NAME (type) = name;
12219 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12220
12221 return set_die_type (die, type, cu);
12222 }
12223
12224 /* Read a C++ namespace. */
12225
12226 static void
12227 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12228 {
12229 struct objfile *objfile = cu->objfile;
12230 int is_anonymous;
12231
12232 /* Add a symbol associated to this if we haven't seen the namespace
12233 before. Also, add a using directive if it's an anonymous
12234 namespace. */
12235
12236 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12237 {
12238 struct type *type;
12239
12240 type = read_type_die (die, cu);
12241 new_symbol (die, type, cu);
12242
12243 namespace_name (die, &is_anonymous, cu);
12244 if (is_anonymous)
12245 {
12246 const char *previous_prefix = determine_prefix (die, cu);
12247
12248 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12249 NULL, NULL, 0, &objfile->objfile_obstack);
12250 }
12251 }
12252
12253 if (die->child != NULL)
12254 {
12255 struct die_info *child_die = die->child;
12256
12257 while (child_die && child_die->tag)
12258 {
12259 process_die (child_die, cu);
12260 child_die = sibling_die (child_die);
12261 }
12262 }
12263 }
12264
12265 /* Read a Fortran module as type. This DIE can be only a declaration used for
12266 imported module. Still we need that type as local Fortran "use ... only"
12267 declaration imports depend on the created type in determine_prefix. */
12268
12269 static struct type *
12270 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12271 {
12272 struct objfile *objfile = cu->objfile;
12273 const char *module_name;
12274 struct type *type;
12275
12276 module_name = dwarf2_name (die, cu);
12277 if (!module_name)
12278 complaint (&symfile_complaints,
12279 _("DW_TAG_module has no name, offset 0x%x"),
12280 die->offset.sect_off);
12281 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12282
12283 /* determine_prefix uses TYPE_TAG_NAME. */
12284 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12285
12286 return set_die_type (die, type, cu);
12287 }
12288
12289 /* Read a Fortran module. */
12290
12291 static void
12292 read_module (struct die_info *die, struct dwarf2_cu *cu)
12293 {
12294 struct die_info *child_die = die->child;
12295
12296 while (child_die && child_die->tag)
12297 {
12298 process_die (child_die, cu);
12299 child_die = sibling_die (child_die);
12300 }
12301 }
12302
12303 /* Return the name of the namespace represented by DIE. Set
12304 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12305 namespace. */
12306
12307 static const char *
12308 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12309 {
12310 struct die_info *current_die;
12311 const char *name = NULL;
12312
12313 /* Loop through the extensions until we find a name. */
12314
12315 for (current_die = die;
12316 current_die != NULL;
12317 current_die = dwarf2_extension (die, &cu))
12318 {
12319 name = dwarf2_name (current_die, cu);
12320 if (name != NULL)
12321 break;
12322 }
12323
12324 /* Is it an anonymous namespace? */
12325
12326 *is_anonymous = (name == NULL);
12327 if (*is_anonymous)
12328 name = CP_ANONYMOUS_NAMESPACE_STR;
12329
12330 return name;
12331 }
12332
12333 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12334 the user defined type vector. */
12335
12336 static struct type *
12337 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12338 {
12339 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12340 struct comp_unit_head *cu_header = &cu->header;
12341 struct type *type;
12342 struct attribute *attr_byte_size;
12343 struct attribute *attr_address_class;
12344 int byte_size, addr_class;
12345 struct type *target_type;
12346
12347 target_type = die_type (die, cu);
12348
12349 /* The die_type call above may have already set the type for this DIE. */
12350 type = get_die_type (die, cu);
12351 if (type)
12352 return type;
12353
12354 type = lookup_pointer_type (target_type);
12355
12356 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12357 if (attr_byte_size)
12358 byte_size = DW_UNSND (attr_byte_size);
12359 else
12360 byte_size = cu_header->addr_size;
12361
12362 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12363 if (attr_address_class)
12364 addr_class = DW_UNSND (attr_address_class);
12365 else
12366 addr_class = DW_ADDR_none;
12367
12368 /* If the pointer size or address class is different than the
12369 default, create a type variant marked as such and set the
12370 length accordingly. */
12371 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12372 {
12373 if (gdbarch_address_class_type_flags_p (gdbarch))
12374 {
12375 int type_flags;
12376
12377 type_flags = gdbarch_address_class_type_flags
12378 (gdbarch, byte_size, addr_class);
12379 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12380 == 0);
12381 type = make_type_with_address_space (type, type_flags);
12382 }
12383 else if (TYPE_LENGTH (type) != byte_size)
12384 {
12385 complaint (&symfile_complaints,
12386 _("invalid pointer size %d"), byte_size);
12387 }
12388 else
12389 {
12390 /* Should we also complain about unhandled address classes? */
12391 }
12392 }
12393
12394 TYPE_LENGTH (type) = byte_size;
12395 return set_die_type (die, type, cu);
12396 }
12397
12398 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12399 the user defined type vector. */
12400
12401 static struct type *
12402 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12403 {
12404 struct type *type;
12405 struct type *to_type;
12406 struct type *domain;
12407
12408 to_type = die_type (die, cu);
12409 domain = die_containing_type (die, cu);
12410
12411 /* The calls above may have already set the type for this DIE. */
12412 type = get_die_type (die, cu);
12413 if (type)
12414 return type;
12415
12416 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12417 type = lookup_methodptr_type (to_type);
12418 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12419 {
12420 struct type *new_type = alloc_type (cu->objfile);
12421
12422 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12423 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12424 TYPE_VARARGS (to_type));
12425 type = lookup_methodptr_type (new_type);
12426 }
12427 else
12428 type = lookup_memberptr_type (to_type, domain);
12429
12430 return set_die_type (die, type, cu);
12431 }
12432
12433 /* Extract all information from a DW_TAG_reference_type DIE and add to
12434 the user defined type vector. */
12435
12436 static struct type *
12437 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12438 {
12439 struct comp_unit_head *cu_header = &cu->header;
12440 struct type *type, *target_type;
12441 struct attribute *attr;
12442
12443 target_type = die_type (die, cu);
12444
12445 /* The die_type call above may have already set the type for this DIE. */
12446 type = get_die_type (die, cu);
12447 if (type)
12448 return type;
12449
12450 type = lookup_reference_type (target_type);
12451 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12452 if (attr)
12453 {
12454 TYPE_LENGTH (type) = DW_UNSND (attr);
12455 }
12456 else
12457 {
12458 TYPE_LENGTH (type) = cu_header->addr_size;
12459 }
12460 return set_die_type (die, type, cu);
12461 }
12462
12463 static struct type *
12464 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12465 {
12466 struct type *base_type, *cv_type;
12467
12468 base_type = die_type (die, cu);
12469
12470 /* The die_type call above may have already set the type for this DIE. */
12471 cv_type = get_die_type (die, cu);
12472 if (cv_type)
12473 return cv_type;
12474
12475 /* In case the const qualifier is applied to an array type, the element type
12476 is so qualified, not the array type (section 6.7.3 of C99). */
12477 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12478 {
12479 struct type *el_type, *inner_array;
12480
12481 base_type = copy_type (base_type);
12482 inner_array = base_type;
12483
12484 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12485 {
12486 TYPE_TARGET_TYPE (inner_array) =
12487 copy_type (TYPE_TARGET_TYPE (inner_array));
12488 inner_array = TYPE_TARGET_TYPE (inner_array);
12489 }
12490
12491 el_type = TYPE_TARGET_TYPE (inner_array);
12492 TYPE_TARGET_TYPE (inner_array) =
12493 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12494
12495 return set_die_type (die, base_type, cu);
12496 }
12497
12498 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12499 return set_die_type (die, cv_type, cu);
12500 }
12501
12502 static struct type *
12503 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12504 {
12505 struct type *base_type, *cv_type;
12506
12507 base_type = die_type (die, cu);
12508
12509 /* The die_type call above may have already set the type for this DIE. */
12510 cv_type = get_die_type (die, cu);
12511 if (cv_type)
12512 return cv_type;
12513
12514 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12515 return set_die_type (die, cv_type, cu);
12516 }
12517
12518 /* Handle DW_TAG_restrict_type. */
12519
12520 static struct type *
12521 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
12522 {
12523 struct type *base_type, *cv_type;
12524
12525 base_type = die_type (die, cu);
12526
12527 /* The die_type call above may have already set the type for this DIE. */
12528 cv_type = get_die_type (die, cu);
12529 if (cv_type)
12530 return cv_type;
12531
12532 cv_type = make_restrict_type (base_type);
12533 return set_die_type (die, cv_type, cu);
12534 }
12535
12536 /* Extract all information from a DW_TAG_string_type DIE and add to
12537 the user defined type vector. It isn't really a user defined type,
12538 but it behaves like one, with other DIE's using an AT_user_def_type
12539 attribute to reference it. */
12540
12541 static struct type *
12542 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
12543 {
12544 struct objfile *objfile = cu->objfile;
12545 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12546 struct type *type, *range_type, *index_type, *char_type;
12547 struct attribute *attr;
12548 unsigned int length;
12549
12550 attr = dwarf2_attr (die, DW_AT_string_length, cu);
12551 if (attr)
12552 {
12553 length = DW_UNSND (attr);
12554 }
12555 else
12556 {
12557 /* Check for the DW_AT_byte_size attribute. */
12558 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12559 if (attr)
12560 {
12561 length = DW_UNSND (attr);
12562 }
12563 else
12564 {
12565 length = 1;
12566 }
12567 }
12568
12569 index_type = objfile_type (objfile)->builtin_int;
12570 range_type = create_range_type (NULL, index_type, 1, length);
12571 char_type = language_string_char_type (cu->language_defn, gdbarch);
12572 type = create_string_type (NULL, char_type, range_type);
12573
12574 return set_die_type (die, type, cu);
12575 }
12576
12577 /* Handle DIES due to C code like:
12578
12579 struct foo
12580 {
12581 int (*funcp)(int a, long l);
12582 int b;
12583 };
12584
12585 ('funcp' generates a DW_TAG_subroutine_type DIE). */
12586
12587 static struct type *
12588 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
12589 {
12590 struct objfile *objfile = cu->objfile;
12591 struct type *type; /* Type that this function returns. */
12592 struct type *ftype; /* Function that returns above type. */
12593 struct attribute *attr;
12594
12595 type = die_type (die, cu);
12596
12597 /* The die_type call above may have already set the type for this DIE. */
12598 ftype = get_die_type (die, cu);
12599 if (ftype)
12600 return ftype;
12601
12602 ftype = lookup_function_type (type);
12603
12604 /* All functions in C++, Pascal and Java have prototypes. */
12605 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
12606 if ((attr && (DW_UNSND (attr) != 0))
12607 || cu->language == language_cplus
12608 || cu->language == language_java
12609 || cu->language == language_pascal)
12610 TYPE_PROTOTYPED (ftype) = 1;
12611 else if (producer_is_realview (cu->producer))
12612 /* RealView does not emit DW_AT_prototyped. We can not
12613 distinguish prototyped and unprototyped functions; default to
12614 prototyped, since that is more common in modern code (and
12615 RealView warns about unprototyped functions). */
12616 TYPE_PROTOTYPED (ftype) = 1;
12617
12618 /* Store the calling convention in the type if it's available in
12619 the subroutine die. Otherwise set the calling convention to
12620 the default value DW_CC_normal. */
12621 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
12622 if (attr)
12623 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
12624 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
12625 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
12626 else
12627 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
12628
12629 /* We need to add the subroutine type to the die immediately so
12630 we don't infinitely recurse when dealing with parameters
12631 declared as the same subroutine type. */
12632 set_die_type (die, ftype, cu);
12633
12634 if (die->child != NULL)
12635 {
12636 struct type *void_type = objfile_type (objfile)->builtin_void;
12637 struct die_info *child_die;
12638 int nparams, iparams;
12639
12640 /* Count the number of parameters.
12641 FIXME: GDB currently ignores vararg functions, but knows about
12642 vararg member functions. */
12643 nparams = 0;
12644 child_die = die->child;
12645 while (child_die && child_die->tag)
12646 {
12647 if (child_die->tag == DW_TAG_formal_parameter)
12648 nparams++;
12649 else if (child_die->tag == DW_TAG_unspecified_parameters)
12650 TYPE_VARARGS (ftype) = 1;
12651 child_die = sibling_die (child_die);
12652 }
12653
12654 /* Allocate storage for parameters and fill them in. */
12655 TYPE_NFIELDS (ftype) = nparams;
12656 TYPE_FIELDS (ftype) = (struct field *)
12657 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
12658
12659 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
12660 even if we error out during the parameters reading below. */
12661 for (iparams = 0; iparams < nparams; iparams++)
12662 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
12663
12664 iparams = 0;
12665 child_die = die->child;
12666 while (child_die && child_die->tag)
12667 {
12668 if (child_die->tag == DW_TAG_formal_parameter)
12669 {
12670 struct type *arg_type;
12671
12672 /* DWARF version 2 has no clean way to discern C++
12673 static and non-static member functions. G++ helps
12674 GDB by marking the first parameter for non-static
12675 member functions (which is the this pointer) as
12676 artificial. We pass this information to
12677 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
12678
12679 DWARF version 3 added DW_AT_object_pointer, which GCC
12680 4.5 does not yet generate. */
12681 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
12682 if (attr)
12683 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
12684 else
12685 {
12686 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
12687
12688 /* GCC/43521: In java, the formal parameter
12689 "this" is sometimes not marked with DW_AT_artificial. */
12690 if (cu->language == language_java)
12691 {
12692 const char *name = dwarf2_name (child_die, cu);
12693
12694 if (name && !strcmp (name, "this"))
12695 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
12696 }
12697 }
12698 arg_type = die_type (child_die, cu);
12699
12700 /* RealView does not mark THIS as const, which the testsuite
12701 expects. GCC marks THIS as const in method definitions,
12702 but not in the class specifications (GCC PR 43053). */
12703 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
12704 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
12705 {
12706 int is_this = 0;
12707 struct dwarf2_cu *arg_cu = cu;
12708 const char *name = dwarf2_name (child_die, cu);
12709
12710 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
12711 if (attr)
12712 {
12713 /* If the compiler emits this, use it. */
12714 if (follow_die_ref (die, attr, &arg_cu) == child_die)
12715 is_this = 1;
12716 }
12717 else if (name && strcmp (name, "this") == 0)
12718 /* Function definitions will have the argument names. */
12719 is_this = 1;
12720 else if (name == NULL && iparams == 0)
12721 /* Declarations may not have the names, so like
12722 elsewhere in GDB, assume an artificial first
12723 argument is "this". */
12724 is_this = 1;
12725
12726 if (is_this)
12727 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
12728 arg_type, 0);
12729 }
12730
12731 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
12732 iparams++;
12733 }
12734 child_die = sibling_die (child_die);
12735 }
12736 }
12737
12738 return ftype;
12739 }
12740
12741 static struct type *
12742 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
12743 {
12744 struct objfile *objfile = cu->objfile;
12745 const char *name = NULL;
12746 struct type *this_type, *target_type;
12747
12748 name = dwarf2_full_name (NULL, die, cu);
12749 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
12750 TYPE_FLAG_TARGET_STUB, NULL, objfile);
12751 TYPE_NAME (this_type) = name;
12752 set_die_type (die, this_type, cu);
12753 target_type = die_type (die, cu);
12754 if (target_type != this_type)
12755 TYPE_TARGET_TYPE (this_type) = target_type;
12756 else
12757 {
12758 /* Self-referential typedefs are, it seems, not allowed by the DWARF
12759 spec and cause infinite loops in GDB. */
12760 complaint (&symfile_complaints,
12761 _("Self-referential DW_TAG_typedef "
12762 "- DIE at 0x%x [in module %s]"),
12763 die->offset.sect_off, objfile->name);
12764 TYPE_TARGET_TYPE (this_type) = NULL;
12765 }
12766 return this_type;
12767 }
12768
12769 /* Find a representation of a given base type and install
12770 it in the TYPE field of the die. */
12771
12772 static struct type *
12773 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
12774 {
12775 struct objfile *objfile = cu->objfile;
12776 struct type *type;
12777 struct attribute *attr;
12778 int encoding = 0, size = 0;
12779 const char *name;
12780 enum type_code code = TYPE_CODE_INT;
12781 int type_flags = 0;
12782 struct type *target_type = NULL;
12783
12784 attr = dwarf2_attr (die, DW_AT_encoding, cu);
12785 if (attr)
12786 {
12787 encoding = DW_UNSND (attr);
12788 }
12789 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12790 if (attr)
12791 {
12792 size = DW_UNSND (attr);
12793 }
12794 name = dwarf2_name (die, cu);
12795 if (!name)
12796 {
12797 complaint (&symfile_complaints,
12798 _("DW_AT_name missing from DW_TAG_base_type"));
12799 }
12800
12801 switch (encoding)
12802 {
12803 case DW_ATE_address:
12804 /* Turn DW_ATE_address into a void * pointer. */
12805 code = TYPE_CODE_PTR;
12806 type_flags |= TYPE_FLAG_UNSIGNED;
12807 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
12808 break;
12809 case DW_ATE_boolean:
12810 code = TYPE_CODE_BOOL;
12811 type_flags |= TYPE_FLAG_UNSIGNED;
12812 break;
12813 case DW_ATE_complex_float:
12814 code = TYPE_CODE_COMPLEX;
12815 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
12816 break;
12817 case DW_ATE_decimal_float:
12818 code = TYPE_CODE_DECFLOAT;
12819 break;
12820 case DW_ATE_float:
12821 code = TYPE_CODE_FLT;
12822 break;
12823 case DW_ATE_signed:
12824 break;
12825 case DW_ATE_unsigned:
12826 type_flags |= TYPE_FLAG_UNSIGNED;
12827 if (cu->language == language_fortran
12828 && name
12829 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
12830 code = TYPE_CODE_CHAR;
12831 break;
12832 case DW_ATE_signed_char:
12833 if (cu->language == language_ada || cu->language == language_m2
12834 || cu->language == language_pascal
12835 || cu->language == language_fortran)
12836 code = TYPE_CODE_CHAR;
12837 break;
12838 case DW_ATE_unsigned_char:
12839 if (cu->language == language_ada || cu->language == language_m2
12840 || cu->language == language_pascal
12841 || cu->language == language_fortran)
12842 code = TYPE_CODE_CHAR;
12843 type_flags |= TYPE_FLAG_UNSIGNED;
12844 break;
12845 case DW_ATE_UTF:
12846 /* We just treat this as an integer and then recognize the
12847 type by name elsewhere. */
12848 break;
12849
12850 default:
12851 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
12852 dwarf_type_encoding_name (encoding));
12853 break;
12854 }
12855
12856 type = init_type (code, size, type_flags, NULL, objfile);
12857 TYPE_NAME (type) = name;
12858 TYPE_TARGET_TYPE (type) = target_type;
12859
12860 if (name && strcmp (name, "char") == 0)
12861 TYPE_NOSIGN (type) = 1;
12862
12863 return set_die_type (die, type, cu);
12864 }
12865
12866 /* Read the given DW_AT_subrange DIE. */
12867
12868 static struct type *
12869 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
12870 {
12871 struct type *base_type, *orig_base_type;
12872 struct type *range_type;
12873 struct attribute *attr;
12874 LONGEST low, high;
12875 int low_default_is_valid;
12876 const char *name;
12877 LONGEST negative_mask;
12878
12879 orig_base_type = die_type (die, cu);
12880 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
12881 whereas the real type might be. So, we use ORIG_BASE_TYPE when
12882 creating the range type, but we use the result of check_typedef
12883 when examining properties of the type. */
12884 base_type = check_typedef (orig_base_type);
12885
12886 /* The die_type call above may have already set the type for this DIE. */
12887 range_type = get_die_type (die, cu);
12888 if (range_type)
12889 return range_type;
12890
12891 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
12892 omitting DW_AT_lower_bound. */
12893 switch (cu->language)
12894 {
12895 case language_c:
12896 case language_cplus:
12897 low = 0;
12898 low_default_is_valid = 1;
12899 break;
12900 case language_fortran:
12901 low = 1;
12902 low_default_is_valid = 1;
12903 break;
12904 case language_d:
12905 case language_java:
12906 case language_objc:
12907 low = 0;
12908 low_default_is_valid = (cu->header.version >= 4);
12909 break;
12910 case language_ada:
12911 case language_m2:
12912 case language_pascal:
12913 low = 1;
12914 low_default_is_valid = (cu->header.version >= 4);
12915 break;
12916 default:
12917 low = 0;
12918 low_default_is_valid = 0;
12919 break;
12920 }
12921
12922 /* FIXME: For variable sized arrays either of these could be
12923 a variable rather than a constant value. We'll allow it,
12924 but we don't know how to handle it. */
12925 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
12926 if (attr)
12927 low = dwarf2_get_attr_constant_value (attr, low);
12928 else if (!low_default_is_valid)
12929 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
12930 "- DIE at 0x%x [in module %s]"),
12931 die->offset.sect_off, cu->objfile->name);
12932
12933 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
12934 if (attr)
12935 {
12936 if (attr_form_is_block (attr) || is_ref_attr (attr))
12937 {
12938 /* GCC encodes arrays with unspecified or dynamic length
12939 with a DW_FORM_block1 attribute or a reference attribute.
12940 FIXME: GDB does not yet know how to handle dynamic
12941 arrays properly, treat them as arrays with unspecified
12942 length for now.
12943
12944 FIXME: jimb/2003-09-22: GDB does not really know
12945 how to handle arrays of unspecified length
12946 either; we just represent them as zero-length
12947 arrays. Choose an appropriate upper bound given
12948 the lower bound we've computed above. */
12949 high = low - 1;
12950 }
12951 else
12952 high = dwarf2_get_attr_constant_value (attr, 1);
12953 }
12954 else
12955 {
12956 attr = dwarf2_attr (die, DW_AT_count, cu);
12957 if (attr)
12958 {
12959 int count = dwarf2_get_attr_constant_value (attr, 1);
12960 high = low + count - 1;
12961 }
12962 else
12963 {
12964 /* Unspecified array length. */
12965 high = low - 1;
12966 }
12967 }
12968
12969 /* Dwarf-2 specifications explicitly allows to create subrange types
12970 without specifying a base type.
12971 In that case, the base type must be set to the type of
12972 the lower bound, upper bound or count, in that order, if any of these
12973 three attributes references an object that has a type.
12974 If no base type is found, the Dwarf-2 specifications say that
12975 a signed integer type of size equal to the size of an address should
12976 be used.
12977 For the following C code: `extern char gdb_int [];'
12978 GCC produces an empty range DIE.
12979 FIXME: muller/2010-05-28: Possible references to object for low bound,
12980 high bound or count are not yet handled by this code. */
12981 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
12982 {
12983 struct objfile *objfile = cu->objfile;
12984 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12985 int addr_size = gdbarch_addr_bit (gdbarch) /8;
12986 struct type *int_type = objfile_type (objfile)->builtin_int;
12987
12988 /* Test "int", "long int", and "long long int" objfile types,
12989 and select the first one having a size above or equal to the
12990 architecture address size. */
12991 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12992 base_type = int_type;
12993 else
12994 {
12995 int_type = objfile_type (objfile)->builtin_long;
12996 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12997 base_type = int_type;
12998 else
12999 {
13000 int_type = objfile_type (objfile)->builtin_long_long;
13001 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13002 base_type = int_type;
13003 }
13004 }
13005 }
13006
13007 negative_mask =
13008 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
13009 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
13010 low |= negative_mask;
13011 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
13012 high |= negative_mask;
13013
13014 range_type = create_range_type (NULL, orig_base_type, low, high);
13015
13016 /* Mark arrays with dynamic length at least as an array of unspecified
13017 length. GDB could check the boundary but before it gets implemented at
13018 least allow accessing the array elements. */
13019 if (attr && attr_form_is_block (attr))
13020 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13021
13022 /* Ada expects an empty array on no boundary attributes. */
13023 if (attr == NULL && cu->language != language_ada)
13024 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13025
13026 name = dwarf2_name (die, cu);
13027 if (name)
13028 TYPE_NAME (range_type) = name;
13029
13030 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13031 if (attr)
13032 TYPE_LENGTH (range_type) = DW_UNSND (attr);
13033
13034 set_die_type (die, range_type, cu);
13035
13036 /* set_die_type should be already done. */
13037 set_descriptive_type (range_type, die, cu);
13038
13039 return range_type;
13040 }
13041
13042 static struct type *
13043 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
13044 {
13045 struct type *type;
13046
13047 /* For now, we only support the C meaning of an unspecified type: void. */
13048
13049 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
13050 TYPE_NAME (type) = dwarf2_name (die, cu);
13051
13052 return set_die_type (die, type, cu);
13053 }
13054
13055 /* Read a single die and all its descendents. Set the die's sibling
13056 field to NULL; set other fields in the die correctly, and set all
13057 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
13058 location of the info_ptr after reading all of those dies. PARENT
13059 is the parent of the die in question. */
13060
13061 static struct die_info *
13062 read_die_and_children (const struct die_reader_specs *reader,
13063 const gdb_byte *info_ptr,
13064 const gdb_byte **new_info_ptr,
13065 struct die_info *parent)
13066 {
13067 struct die_info *die;
13068 const gdb_byte *cur_ptr;
13069 int has_children;
13070
13071 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
13072 if (die == NULL)
13073 {
13074 *new_info_ptr = cur_ptr;
13075 return NULL;
13076 }
13077 store_in_ref_table (die, reader->cu);
13078
13079 if (has_children)
13080 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
13081 else
13082 {
13083 die->child = NULL;
13084 *new_info_ptr = cur_ptr;
13085 }
13086
13087 die->sibling = NULL;
13088 die->parent = parent;
13089 return die;
13090 }
13091
13092 /* Read a die, all of its descendents, and all of its siblings; set
13093 all of the fields of all of the dies correctly. Arguments are as
13094 in read_die_and_children. */
13095
13096 static struct die_info *
13097 read_die_and_siblings_1 (const struct die_reader_specs *reader,
13098 const gdb_byte *info_ptr,
13099 const gdb_byte **new_info_ptr,
13100 struct die_info *parent)
13101 {
13102 struct die_info *first_die, *last_sibling;
13103 const gdb_byte *cur_ptr;
13104
13105 cur_ptr = info_ptr;
13106 first_die = last_sibling = NULL;
13107
13108 while (1)
13109 {
13110 struct die_info *die
13111 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
13112
13113 if (die == NULL)
13114 {
13115 *new_info_ptr = cur_ptr;
13116 return first_die;
13117 }
13118
13119 if (!first_die)
13120 first_die = die;
13121 else
13122 last_sibling->sibling = die;
13123
13124 last_sibling = die;
13125 }
13126 }
13127
13128 /* Read a die, all of its descendents, and all of its siblings; set
13129 all of the fields of all of the dies correctly. Arguments are as
13130 in read_die_and_children.
13131 This the main entry point for reading a DIE and all its children. */
13132
13133 static struct die_info *
13134 read_die_and_siblings (const struct die_reader_specs *reader,
13135 const gdb_byte *info_ptr,
13136 const gdb_byte **new_info_ptr,
13137 struct die_info *parent)
13138 {
13139 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
13140 new_info_ptr, parent);
13141
13142 if (dwarf2_die_debug)
13143 {
13144 fprintf_unfiltered (gdb_stdlog,
13145 "Read die from %s@0x%x of %s:\n",
13146 bfd_section_name (reader->abfd,
13147 reader->die_section->asection),
13148 (unsigned) (info_ptr - reader->die_section->buffer),
13149 bfd_get_filename (reader->abfd));
13150 dump_die (die, dwarf2_die_debug);
13151 }
13152
13153 return die;
13154 }
13155
13156 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
13157 attributes.
13158 The caller is responsible for filling in the extra attributes
13159 and updating (*DIEP)->num_attrs.
13160 Set DIEP to point to a newly allocated die with its information,
13161 except for its child, sibling, and parent fields.
13162 Set HAS_CHILDREN to tell whether the die has children or not. */
13163
13164 static const gdb_byte *
13165 read_full_die_1 (const struct die_reader_specs *reader,
13166 struct die_info **diep, const gdb_byte *info_ptr,
13167 int *has_children, int num_extra_attrs)
13168 {
13169 unsigned int abbrev_number, bytes_read, i;
13170 sect_offset offset;
13171 struct abbrev_info *abbrev;
13172 struct die_info *die;
13173 struct dwarf2_cu *cu = reader->cu;
13174 bfd *abfd = reader->abfd;
13175
13176 offset.sect_off = info_ptr - reader->buffer;
13177 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13178 info_ptr += bytes_read;
13179 if (!abbrev_number)
13180 {
13181 *diep = NULL;
13182 *has_children = 0;
13183 return info_ptr;
13184 }
13185
13186 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
13187 if (!abbrev)
13188 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13189 abbrev_number,
13190 bfd_get_filename (abfd));
13191
13192 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
13193 die->offset = offset;
13194 die->tag = abbrev->tag;
13195 die->abbrev = abbrev_number;
13196
13197 /* Make the result usable.
13198 The caller needs to update num_attrs after adding the extra
13199 attributes. */
13200 die->num_attrs = abbrev->num_attrs;
13201
13202 for (i = 0; i < abbrev->num_attrs; ++i)
13203 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13204 info_ptr);
13205
13206 *diep = die;
13207 *has_children = abbrev->has_children;
13208 return info_ptr;
13209 }
13210
13211 /* Read a die and all its attributes.
13212 Set DIEP to point to a newly allocated die with its information,
13213 except for its child, sibling, and parent fields.
13214 Set HAS_CHILDREN to tell whether the die has children or not. */
13215
13216 static const gdb_byte *
13217 read_full_die (const struct die_reader_specs *reader,
13218 struct die_info **diep, const gdb_byte *info_ptr,
13219 int *has_children)
13220 {
13221 const gdb_byte *result;
13222
13223 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13224
13225 if (dwarf2_die_debug)
13226 {
13227 fprintf_unfiltered (gdb_stdlog,
13228 "Read die from %s@0x%x of %s:\n",
13229 bfd_section_name (reader->abfd,
13230 reader->die_section->asection),
13231 (unsigned) (info_ptr - reader->die_section->buffer),
13232 bfd_get_filename (reader->abfd));
13233 dump_die (*diep, dwarf2_die_debug);
13234 }
13235
13236 return result;
13237 }
13238 \f
13239 /* Abbreviation tables.
13240
13241 In DWARF version 2, the description of the debugging information is
13242 stored in a separate .debug_abbrev section. Before we read any
13243 dies from a section we read in all abbreviations and install them
13244 in a hash table. */
13245
13246 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13247
13248 static struct abbrev_info *
13249 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13250 {
13251 struct abbrev_info *abbrev;
13252
13253 abbrev = (struct abbrev_info *)
13254 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13255 memset (abbrev, 0, sizeof (struct abbrev_info));
13256 return abbrev;
13257 }
13258
13259 /* Add an abbreviation to the table. */
13260
13261 static void
13262 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13263 unsigned int abbrev_number,
13264 struct abbrev_info *abbrev)
13265 {
13266 unsigned int hash_number;
13267
13268 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13269 abbrev->next = abbrev_table->abbrevs[hash_number];
13270 abbrev_table->abbrevs[hash_number] = abbrev;
13271 }
13272
13273 /* Look up an abbrev in the table.
13274 Returns NULL if the abbrev is not found. */
13275
13276 static struct abbrev_info *
13277 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13278 unsigned int abbrev_number)
13279 {
13280 unsigned int hash_number;
13281 struct abbrev_info *abbrev;
13282
13283 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13284 abbrev = abbrev_table->abbrevs[hash_number];
13285
13286 while (abbrev)
13287 {
13288 if (abbrev->number == abbrev_number)
13289 return abbrev;
13290 abbrev = abbrev->next;
13291 }
13292 return NULL;
13293 }
13294
13295 /* Read in an abbrev table. */
13296
13297 static struct abbrev_table *
13298 abbrev_table_read_table (struct dwarf2_section_info *section,
13299 sect_offset offset)
13300 {
13301 struct objfile *objfile = dwarf2_per_objfile->objfile;
13302 bfd *abfd = section->asection->owner;
13303 struct abbrev_table *abbrev_table;
13304 const gdb_byte *abbrev_ptr;
13305 struct abbrev_info *cur_abbrev;
13306 unsigned int abbrev_number, bytes_read, abbrev_name;
13307 unsigned int abbrev_form;
13308 struct attr_abbrev *cur_attrs;
13309 unsigned int allocated_attrs;
13310
13311 abbrev_table = XMALLOC (struct abbrev_table);
13312 abbrev_table->offset = offset;
13313 obstack_init (&abbrev_table->abbrev_obstack);
13314 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13315 (ABBREV_HASH_SIZE
13316 * sizeof (struct abbrev_info *)));
13317 memset (abbrev_table->abbrevs, 0,
13318 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13319
13320 dwarf2_read_section (objfile, section);
13321 abbrev_ptr = section->buffer + offset.sect_off;
13322 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13323 abbrev_ptr += bytes_read;
13324
13325 allocated_attrs = ATTR_ALLOC_CHUNK;
13326 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13327
13328 /* Loop until we reach an abbrev number of 0. */
13329 while (abbrev_number)
13330 {
13331 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13332
13333 /* read in abbrev header */
13334 cur_abbrev->number = abbrev_number;
13335 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13336 abbrev_ptr += bytes_read;
13337 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13338 abbrev_ptr += 1;
13339
13340 /* now read in declarations */
13341 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13342 abbrev_ptr += bytes_read;
13343 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13344 abbrev_ptr += bytes_read;
13345 while (abbrev_name)
13346 {
13347 if (cur_abbrev->num_attrs == allocated_attrs)
13348 {
13349 allocated_attrs += ATTR_ALLOC_CHUNK;
13350 cur_attrs
13351 = xrealloc (cur_attrs, (allocated_attrs
13352 * sizeof (struct attr_abbrev)));
13353 }
13354
13355 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13356 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13357 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13358 abbrev_ptr += bytes_read;
13359 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13360 abbrev_ptr += bytes_read;
13361 }
13362
13363 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13364 (cur_abbrev->num_attrs
13365 * sizeof (struct attr_abbrev)));
13366 memcpy (cur_abbrev->attrs, cur_attrs,
13367 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13368
13369 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13370
13371 /* Get next abbreviation.
13372 Under Irix6 the abbreviations for a compilation unit are not
13373 always properly terminated with an abbrev number of 0.
13374 Exit loop if we encounter an abbreviation which we have
13375 already read (which means we are about to read the abbreviations
13376 for the next compile unit) or if the end of the abbreviation
13377 table is reached. */
13378 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13379 break;
13380 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13381 abbrev_ptr += bytes_read;
13382 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13383 break;
13384 }
13385
13386 xfree (cur_attrs);
13387 return abbrev_table;
13388 }
13389
13390 /* Free the resources held by ABBREV_TABLE. */
13391
13392 static void
13393 abbrev_table_free (struct abbrev_table *abbrev_table)
13394 {
13395 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13396 xfree (abbrev_table);
13397 }
13398
13399 /* Same as abbrev_table_free but as a cleanup.
13400 We pass in a pointer to the pointer to the table so that we can
13401 set the pointer to NULL when we're done. It also simplifies
13402 build_type_unit_groups. */
13403
13404 static void
13405 abbrev_table_free_cleanup (void *table_ptr)
13406 {
13407 struct abbrev_table **abbrev_table_ptr = table_ptr;
13408
13409 if (*abbrev_table_ptr != NULL)
13410 abbrev_table_free (*abbrev_table_ptr);
13411 *abbrev_table_ptr = NULL;
13412 }
13413
13414 /* Read the abbrev table for CU from ABBREV_SECTION. */
13415
13416 static void
13417 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13418 struct dwarf2_section_info *abbrev_section)
13419 {
13420 cu->abbrev_table =
13421 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13422 }
13423
13424 /* Release the memory used by the abbrev table for a compilation unit. */
13425
13426 static void
13427 dwarf2_free_abbrev_table (void *ptr_to_cu)
13428 {
13429 struct dwarf2_cu *cu = ptr_to_cu;
13430
13431 abbrev_table_free (cu->abbrev_table);
13432 /* Set this to NULL so that we SEGV if we try to read it later,
13433 and also because free_comp_unit verifies this is NULL. */
13434 cu->abbrev_table = NULL;
13435 }
13436 \f
13437 /* Returns nonzero if TAG represents a type that we might generate a partial
13438 symbol for. */
13439
13440 static int
13441 is_type_tag_for_partial (int tag)
13442 {
13443 switch (tag)
13444 {
13445 #if 0
13446 /* Some types that would be reasonable to generate partial symbols for,
13447 that we don't at present. */
13448 case DW_TAG_array_type:
13449 case DW_TAG_file_type:
13450 case DW_TAG_ptr_to_member_type:
13451 case DW_TAG_set_type:
13452 case DW_TAG_string_type:
13453 case DW_TAG_subroutine_type:
13454 #endif
13455 case DW_TAG_base_type:
13456 case DW_TAG_class_type:
13457 case DW_TAG_interface_type:
13458 case DW_TAG_enumeration_type:
13459 case DW_TAG_structure_type:
13460 case DW_TAG_subrange_type:
13461 case DW_TAG_typedef:
13462 case DW_TAG_union_type:
13463 return 1;
13464 default:
13465 return 0;
13466 }
13467 }
13468
13469 /* Load all DIEs that are interesting for partial symbols into memory. */
13470
13471 static struct partial_die_info *
13472 load_partial_dies (const struct die_reader_specs *reader,
13473 const gdb_byte *info_ptr, int building_psymtab)
13474 {
13475 struct dwarf2_cu *cu = reader->cu;
13476 struct objfile *objfile = cu->objfile;
13477 struct partial_die_info *part_die;
13478 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13479 struct abbrev_info *abbrev;
13480 unsigned int bytes_read;
13481 unsigned int load_all = 0;
13482 int nesting_level = 1;
13483
13484 parent_die = NULL;
13485 last_die = NULL;
13486
13487 gdb_assert (cu->per_cu != NULL);
13488 if (cu->per_cu->load_all_dies)
13489 load_all = 1;
13490
13491 cu->partial_dies
13492 = htab_create_alloc_ex (cu->header.length / 12,
13493 partial_die_hash,
13494 partial_die_eq,
13495 NULL,
13496 &cu->comp_unit_obstack,
13497 hashtab_obstack_allocate,
13498 dummy_obstack_deallocate);
13499
13500 part_die = obstack_alloc (&cu->comp_unit_obstack,
13501 sizeof (struct partial_die_info));
13502
13503 while (1)
13504 {
13505 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13506
13507 /* A NULL abbrev means the end of a series of children. */
13508 if (abbrev == NULL)
13509 {
13510 if (--nesting_level == 0)
13511 {
13512 /* PART_DIE was probably the last thing allocated on the
13513 comp_unit_obstack, so we could call obstack_free
13514 here. We don't do that because the waste is small,
13515 and will be cleaned up when we're done with this
13516 compilation unit. This way, we're also more robust
13517 against other users of the comp_unit_obstack. */
13518 return first_die;
13519 }
13520 info_ptr += bytes_read;
13521 last_die = parent_die;
13522 parent_die = parent_die->die_parent;
13523 continue;
13524 }
13525
13526 /* Check for template arguments. We never save these; if
13527 they're seen, we just mark the parent, and go on our way. */
13528 if (parent_die != NULL
13529 && cu->language == language_cplus
13530 && (abbrev->tag == DW_TAG_template_type_param
13531 || abbrev->tag == DW_TAG_template_value_param))
13532 {
13533 parent_die->has_template_arguments = 1;
13534
13535 if (!load_all)
13536 {
13537 /* We don't need a partial DIE for the template argument. */
13538 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13539 continue;
13540 }
13541 }
13542
13543 /* We only recurse into c++ subprograms looking for template arguments.
13544 Skip their other children. */
13545 if (!load_all
13546 && cu->language == language_cplus
13547 && parent_die != NULL
13548 && parent_die->tag == DW_TAG_subprogram)
13549 {
13550 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13551 continue;
13552 }
13553
13554 /* Check whether this DIE is interesting enough to save. Normally
13555 we would not be interested in members here, but there may be
13556 later variables referencing them via DW_AT_specification (for
13557 static members). */
13558 if (!load_all
13559 && !is_type_tag_for_partial (abbrev->tag)
13560 && abbrev->tag != DW_TAG_constant
13561 && abbrev->tag != DW_TAG_enumerator
13562 && abbrev->tag != DW_TAG_subprogram
13563 && abbrev->tag != DW_TAG_lexical_block
13564 && abbrev->tag != DW_TAG_variable
13565 && abbrev->tag != DW_TAG_namespace
13566 && abbrev->tag != DW_TAG_module
13567 && abbrev->tag != DW_TAG_member
13568 && abbrev->tag != DW_TAG_imported_unit)
13569 {
13570 /* Otherwise we skip to the next sibling, if any. */
13571 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13572 continue;
13573 }
13574
13575 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13576 info_ptr);
13577
13578 /* This two-pass algorithm for processing partial symbols has a
13579 high cost in cache pressure. Thus, handle some simple cases
13580 here which cover the majority of C partial symbols. DIEs
13581 which neither have specification tags in them, nor could have
13582 specification tags elsewhere pointing at them, can simply be
13583 processed and discarded.
13584
13585 This segment is also optional; scan_partial_symbols and
13586 add_partial_symbol will handle these DIEs if we chain
13587 them in normally. When compilers which do not emit large
13588 quantities of duplicate debug information are more common,
13589 this code can probably be removed. */
13590
13591 /* Any complete simple types at the top level (pretty much all
13592 of them, for a language without namespaces), can be processed
13593 directly. */
13594 if (parent_die == NULL
13595 && part_die->has_specification == 0
13596 && part_die->is_declaration == 0
13597 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
13598 || part_die->tag == DW_TAG_base_type
13599 || part_die->tag == DW_TAG_subrange_type))
13600 {
13601 if (building_psymtab && part_die->name != NULL)
13602 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13603 VAR_DOMAIN, LOC_TYPEDEF,
13604 &objfile->static_psymbols,
13605 0, (CORE_ADDR) 0, cu->language, objfile);
13606 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13607 continue;
13608 }
13609
13610 /* The exception for DW_TAG_typedef with has_children above is
13611 a workaround of GCC PR debug/47510. In the case of this complaint
13612 type_name_no_tag_or_error will error on such types later.
13613
13614 GDB skipped children of DW_TAG_typedef by the shortcut above and then
13615 it could not find the child DIEs referenced later, this is checked
13616 above. In correct DWARF DW_TAG_typedef should have no children. */
13617
13618 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
13619 complaint (&symfile_complaints,
13620 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
13621 "- DIE at 0x%x [in module %s]"),
13622 part_die->offset.sect_off, objfile->name);
13623
13624 /* If we're at the second level, and we're an enumerator, and
13625 our parent has no specification (meaning possibly lives in a
13626 namespace elsewhere), then we can add the partial symbol now
13627 instead of queueing it. */
13628 if (part_die->tag == DW_TAG_enumerator
13629 && parent_die != NULL
13630 && parent_die->die_parent == NULL
13631 && parent_die->tag == DW_TAG_enumeration_type
13632 && parent_die->has_specification == 0)
13633 {
13634 if (part_die->name == NULL)
13635 complaint (&symfile_complaints,
13636 _("malformed enumerator DIE ignored"));
13637 else if (building_psymtab)
13638 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13639 VAR_DOMAIN, LOC_CONST,
13640 (cu->language == language_cplus
13641 || cu->language == language_java)
13642 ? &objfile->global_psymbols
13643 : &objfile->static_psymbols,
13644 0, (CORE_ADDR) 0, cu->language, objfile);
13645
13646 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13647 continue;
13648 }
13649
13650 /* We'll save this DIE so link it in. */
13651 part_die->die_parent = parent_die;
13652 part_die->die_sibling = NULL;
13653 part_die->die_child = NULL;
13654
13655 if (last_die && last_die == parent_die)
13656 last_die->die_child = part_die;
13657 else if (last_die)
13658 last_die->die_sibling = part_die;
13659
13660 last_die = part_die;
13661
13662 if (first_die == NULL)
13663 first_die = part_die;
13664
13665 /* Maybe add the DIE to the hash table. Not all DIEs that we
13666 find interesting need to be in the hash table, because we
13667 also have the parent/sibling/child chains; only those that we
13668 might refer to by offset later during partial symbol reading.
13669
13670 For now this means things that might have be the target of a
13671 DW_AT_specification, DW_AT_abstract_origin, or
13672 DW_AT_extension. DW_AT_extension will refer only to
13673 namespaces; DW_AT_abstract_origin refers to functions (and
13674 many things under the function DIE, but we do not recurse
13675 into function DIEs during partial symbol reading) and
13676 possibly variables as well; DW_AT_specification refers to
13677 declarations. Declarations ought to have the DW_AT_declaration
13678 flag. It happens that GCC forgets to put it in sometimes, but
13679 only for functions, not for types.
13680
13681 Adding more things than necessary to the hash table is harmless
13682 except for the performance cost. Adding too few will result in
13683 wasted time in find_partial_die, when we reread the compilation
13684 unit with load_all_dies set. */
13685
13686 if (load_all
13687 || abbrev->tag == DW_TAG_constant
13688 || abbrev->tag == DW_TAG_subprogram
13689 || abbrev->tag == DW_TAG_variable
13690 || abbrev->tag == DW_TAG_namespace
13691 || part_die->is_declaration)
13692 {
13693 void **slot;
13694
13695 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
13696 part_die->offset.sect_off, INSERT);
13697 *slot = part_die;
13698 }
13699
13700 part_die = obstack_alloc (&cu->comp_unit_obstack,
13701 sizeof (struct partial_die_info));
13702
13703 /* For some DIEs we want to follow their children (if any). For C
13704 we have no reason to follow the children of structures; for other
13705 languages we have to, so that we can get at method physnames
13706 to infer fully qualified class names, for DW_AT_specification,
13707 and for C++ template arguments. For C++, we also look one level
13708 inside functions to find template arguments (if the name of the
13709 function does not already contain the template arguments).
13710
13711 For Ada, we need to scan the children of subprograms and lexical
13712 blocks as well because Ada allows the definition of nested
13713 entities that could be interesting for the debugger, such as
13714 nested subprograms for instance. */
13715 if (last_die->has_children
13716 && (load_all
13717 || last_die->tag == DW_TAG_namespace
13718 || last_die->tag == DW_TAG_module
13719 || last_die->tag == DW_TAG_enumeration_type
13720 || (cu->language == language_cplus
13721 && last_die->tag == DW_TAG_subprogram
13722 && (last_die->name == NULL
13723 || strchr (last_die->name, '<') == NULL))
13724 || (cu->language != language_c
13725 && (last_die->tag == DW_TAG_class_type
13726 || last_die->tag == DW_TAG_interface_type
13727 || last_die->tag == DW_TAG_structure_type
13728 || last_die->tag == DW_TAG_union_type))
13729 || (cu->language == language_ada
13730 && (last_die->tag == DW_TAG_subprogram
13731 || last_die->tag == DW_TAG_lexical_block))))
13732 {
13733 nesting_level++;
13734 parent_die = last_die;
13735 continue;
13736 }
13737
13738 /* Otherwise we skip to the next sibling, if any. */
13739 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
13740
13741 /* Back to the top, do it again. */
13742 }
13743 }
13744
13745 /* Read a minimal amount of information into the minimal die structure. */
13746
13747 static const gdb_byte *
13748 read_partial_die (const struct die_reader_specs *reader,
13749 struct partial_die_info *part_die,
13750 struct abbrev_info *abbrev, unsigned int abbrev_len,
13751 const gdb_byte *info_ptr)
13752 {
13753 struct dwarf2_cu *cu = reader->cu;
13754 struct objfile *objfile = cu->objfile;
13755 const gdb_byte *buffer = reader->buffer;
13756 unsigned int i;
13757 struct attribute attr;
13758 int has_low_pc_attr = 0;
13759 int has_high_pc_attr = 0;
13760 int high_pc_relative = 0;
13761
13762 memset (part_die, 0, sizeof (struct partial_die_info));
13763
13764 part_die->offset.sect_off = info_ptr - buffer;
13765
13766 info_ptr += abbrev_len;
13767
13768 if (abbrev == NULL)
13769 return info_ptr;
13770
13771 part_die->tag = abbrev->tag;
13772 part_die->has_children = abbrev->has_children;
13773
13774 for (i = 0; i < abbrev->num_attrs; ++i)
13775 {
13776 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
13777
13778 /* Store the data if it is of an attribute we want to keep in a
13779 partial symbol table. */
13780 switch (attr.name)
13781 {
13782 case DW_AT_name:
13783 switch (part_die->tag)
13784 {
13785 case DW_TAG_compile_unit:
13786 case DW_TAG_partial_unit:
13787 case DW_TAG_type_unit:
13788 /* Compilation units have a DW_AT_name that is a filename, not
13789 a source language identifier. */
13790 case DW_TAG_enumeration_type:
13791 case DW_TAG_enumerator:
13792 /* These tags always have simple identifiers already; no need
13793 to canonicalize them. */
13794 part_die->name = DW_STRING (&attr);
13795 break;
13796 default:
13797 part_die->name
13798 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
13799 &objfile->objfile_obstack);
13800 break;
13801 }
13802 break;
13803 case DW_AT_linkage_name:
13804 case DW_AT_MIPS_linkage_name:
13805 /* Note that both forms of linkage name might appear. We
13806 assume they will be the same, and we only store the last
13807 one we see. */
13808 if (cu->language == language_ada)
13809 part_die->name = DW_STRING (&attr);
13810 part_die->linkage_name = DW_STRING (&attr);
13811 break;
13812 case DW_AT_low_pc:
13813 has_low_pc_attr = 1;
13814 part_die->lowpc = DW_ADDR (&attr);
13815 break;
13816 case DW_AT_high_pc:
13817 has_high_pc_attr = 1;
13818 if (attr.form == DW_FORM_addr
13819 || attr.form == DW_FORM_GNU_addr_index)
13820 part_die->highpc = DW_ADDR (&attr);
13821 else
13822 {
13823 high_pc_relative = 1;
13824 part_die->highpc = DW_UNSND (&attr);
13825 }
13826 break;
13827 case DW_AT_location:
13828 /* Support the .debug_loc offsets. */
13829 if (attr_form_is_block (&attr))
13830 {
13831 part_die->d.locdesc = DW_BLOCK (&attr);
13832 }
13833 else if (attr_form_is_section_offset (&attr))
13834 {
13835 dwarf2_complex_location_expr_complaint ();
13836 }
13837 else
13838 {
13839 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13840 "partial symbol information");
13841 }
13842 break;
13843 case DW_AT_external:
13844 part_die->is_external = DW_UNSND (&attr);
13845 break;
13846 case DW_AT_declaration:
13847 part_die->is_declaration = DW_UNSND (&attr);
13848 break;
13849 case DW_AT_type:
13850 part_die->has_type = 1;
13851 break;
13852 case DW_AT_abstract_origin:
13853 case DW_AT_specification:
13854 case DW_AT_extension:
13855 part_die->has_specification = 1;
13856 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
13857 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13858 || cu->per_cu->is_dwz);
13859 break;
13860 case DW_AT_sibling:
13861 /* Ignore absolute siblings, they might point outside of
13862 the current compile unit. */
13863 if (attr.form == DW_FORM_ref_addr)
13864 complaint (&symfile_complaints,
13865 _("ignoring absolute DW_AT_sibling"));
13866 else
13867 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
13868 break;
13869 case DW_AT_byte_size:
13870 part_die->has_byte_size = 1;
13871 break;
13872 case DW_AT_calling_convention:
13873 /* DWARF doesn't provide a way to identify a program's source-level
13874 entry point. DW_AT_calling_convention attributes are only meant
13875 to describe functions' calling conventions.
13876
13877 However, because it's a necessary piece of information in
13878 Fortran, and because DW_CC_program is the only piece of debugging
13879 information whose definition refers to a 'main program' at all,
13880 several compilers have begun marking Fortran main programs with
13881 DW_CC_program --- even when those functions use the standard
13882 calling conventions.
13883
13884 So until DWARF specifies a way to provide this information and
13885 compilers pick up the new representation, we'll support this
13886 practice. */
13887 if (DW_UNSND (&attr) == DW_CC_program
13888 && cu->language == language_fortran)
13889 {
13890 set_main_name (part_die->name);
13891
13892 /* As this DIE has a static linkage the name would be difficult
13893 to look up later. */
13894 language_of_main = language_fortran;
13895 }
13896 break;
13897 case DW_AT_inline:
13898 if (DW_UNSND (&attr) == DW_INL_inlined
13899 || DW_UNSND (&attr) == DW_INL_declared_inlined)
13900 part_die->may_be_inlined = 1;
13901 break;
13902
13903 case DW_AT_import:
13904 if (part_die->tag == DW_TAG_imported_unit)
13905 {
13906 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
13907 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13908 || cu->per_cu->is_dwz);
13909 }
13910 break;
13911
13912 default:
13913 break;
13914 }
13915 }
13916
13917 if (high_pc_relative)
13918 part_die->highpc += part_die->lowpc;
13919
13920 if (has_low_pc_attr && has_high_pc_attr)
13921 {
13922 /* When using the GNU linker, .gnu.linkonce. sections are used to
13923 eliminate duplicate copies of functions and vtables and such.
13924 The linker will arbitrarily choose one and discard the others.
13925 The AT_*_pc values for such functions refer to local labels in
13926 these sections. If the section from that file was discarded, the
13927 labels are not in the output, so the relocs get a value of 0.
13928 If this is a discarded function, mark the pc bounds as invalid,
13929 so that GDB will ignore it. */
13930 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
13931 {
13932 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13933
13934 complaint (&symfile_complaints,
13935 _("DW_AT_low_pc %s is zero "
13936 "for DIE at 0x%x [in module %s]"),
13937 paddress (gdbarch, part_die->lowpc),
13938 part_die->offset.sect_off, objfile->name);
13939 }
13940 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
13941 else if (part_die->lowpc >= part_die->highpc)
13942 {
13943 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13944
13945 complaint (&symfile_complaints,
13946 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
13947 "for DIE at 0x%x [in module %s]"),
13948 paddress (gdbarch, part_die->lowpc),
13949 paddress (gdbarch, part_die->highpc),
13950 part_die->offset.sect_off, objfile->name);
13951 }
13952 else
13953 part_die->has_pc_info = 1;
13954 }
13955
13956 return info_ptr;
13957 }
13958
13959 /* Find a cached partial DIE at OFFSET in CU. */
13960
13961 static struct partial_die_info *
13962 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
13963 {
13964 struct partial_die_info *lookup_die = NULL;
13965 struct partial_die_info part_die;
13966
13967 part_die.offset = offset;
13968 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
13969 offset.sect_off);
13970
13971 return lookup_die;
13972 }
13973
13974 /* Find a partial DIE at OFFSET, which may or may not be in CU,
13975 except in the case of .debug_types DIEs which do not reference
13976 outside their CU (they do however referencing other types via
13977 DW_FORM_ref_sig8). */
13978
13979 static struct partial_die_info *
13980 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
13981 {
13982 struct objfile *objfile = cu->objfile;
13983 struct dwarf2_per_cu_data *per_cu = NULL;
13984 struct partial_die_info *pd = NULL;
13985
13986 if (offset_in_dwz == cu->per_cu->is_dwz
13987 && offset_in_cu_p (&cu->header, offset))
13988 {
13989 pd = find_partial_die_in_comp_unit (offset, cu);
13990 if (pd != NULL)
13991 return pd;
13992 /* We missed recording what we needed.
13993 Load all dies and try again. */
13994 per_cu = cu->per_cu;
13995 }
13996 else
13997 {
13998 /* TUs don't reference other CUs/TUs (except via type signatures). */
13999 if (cu->per_cu->is_debug_types)
14000 {
14001 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
14002 " external reference to offset 0x%lx [in module %s].\n"),
14003 (long) cu->header.offset.sect_off, (long) offset.sect_off,
14004 bfd_get_filename (objfile->obfd));
14005 }
14006 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
14007 objfile);
14008
14009 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
14010 load_partial_comp_unit (per_cu);
14011
14012 per_cu->cu->last_used = 0;
14013 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14014 }
14015
14016 /* If we didn't find it, and not all dies have been loaded,
14017 load them all and try again. */
14018
14019 if (pd == NULL && per_cu->load_all_dies == 0)
14020 {
14021 per_cu->load_all_dies = 1;
14022
14023 /* This is nasty. When we reread the DIEs, somewhere up the call chain
14024 THIS_CU->cu may already be in use. So we can't just free it and
14025 replace its DIEs with the ones we read in. Instead, we leave those
14026 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
14027 and clobber THIS_CU->cu->partial_dies with the hash table for the new
14028 set. */
14029 load_partial_comp_unit (per_cu);
14030
14031 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14032 }
14033
14034 if (pd == NULL)
14035 internal_error (__FILE__, __LINE__,
14036 _("could not find partial DIE 0x%x "
14037 "in cache [from module %s]\n"),
14038 offset.sect_off, bfd_get_filename (objfile->obfd));
14039 return pd;
14040 }
14041
14042 /* See if we can figure out if the class lives in a namespace. We do
14043 this by looking for a member function; its demangled name will
14044 contain namespace info, if there is any. */
14045
14046 static void
14047 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
14048 struct dwarf2_cu *cu)
14049 {
14050 /* NOTE: carlton/2003-10-07: Getting the info this way changes
14051 what template types look like, because the demangler
14052 frequently doesn't give the same name as the debug info. We
14053 could fix this by only using the demangled name to get the
14054 prefix (but see comment in read_structure_type). */
14055
14056 struct partial_die_info *real_pdi;
14057 struct partial_die_info *child_pdi;
14058
14059 /* If this DIE (this DIE's specification, if any) has a parent, then
14060 we should not do this. We'll prepend the parent's fully qualified
14061 name when we create the partial symbol. */
14062
14063 real_pdi = struct_pdi;
14064 while (real_pdi->has_specification)
14065 real_pdi = find_partial_die (real_pdi->spec_offset,
14066 real_pdi->spec_is_dwz, cu);
14067
14068 if (real_pdi->die_parent != NULL)
14069 return;
14070
14071 for (child_pdi = struct_pdi->die_child;
14072 child_pdi != NULL;
14073 child_pdi = child_pdi->die_sibling)
14074 {
14075 if (child_pdi->tag == DW_TAG_subprogram
14076 && child_pdi->linkage_name != NULL)
14077 {
14078 char *actual_class_name
14079 = language_class_name_from_physname (cu->language_defn,
14080 child_pdi->linkage_name);
14081 if (actual_class_name != NULL)
14082 {
14083 struct_pdi->name
14084 = obstack_copy0 (&cu->objfile->objfile_obstack,
14085 actual_class_name,
14086 strlen (actual_class_name));
14087 xfree (actual_class_name);
14088 }
14089 break;
14090 }
14091 }
14092 }
14093
14094 /* Adjust PART_DIE before generating a symbol for it. This function
14095 may set the is_external flag or change the DIE's name. */
14096
14097 static void
14098 fixup_partial_die (struct partial_die_info *part_die,
14099 struct dwarf2_cu *cu)
14100 {
14101 /* Once we've fixed up a die, there's no point in doing so again.
14102 This also avoids a memory leak if we were to call
14103 guess_partial_die_structure_name multiple times. */
14104 if (part_die->fixup_called)
14105 return;
14106
14107 /* If we found a reference attribute and the DIE has no name, try
14108 to find a name in the referred to DIE. */
14109
14110 if (part_die->name == NULL && part_die->has_specification)
14111 {
14112 struct partial_die_info *spec_die;
14113
14114 spec_die = find_partial_die (part_die->spec_offset,
14115 part_die->spec_is_dwz, cu);
14116
14117 fixup_partial_die (spec_die, cu);
14118
14119 if (spec_die->name)
14120 {
14121 part_die->name = spec_die->name;
14122
14123 /* Copy DW_AT_external attribute if it is set. */
14124 if (spec_die->is_external)
14125 part_die->is_external = spec_die->is_external;
14126 }
14127 }
14128
14129 /* Set default names for some unnamed DIEs. */
14130
14131 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
14132 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
14133
14134 /* If there is no parent die to provide a namespace, and there are
14135 children, see if we can determine the namespace from their linkage
14136 name. */
14137 if (cu->language == language_cplus
14138 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
14139 && part_die->die_parent == NULL
14140 && part_die->has_children
14141 && (part_die->tag == DW_TAG_class_type
14142 || part_die->tag == DW_TAG_structure_type
14143 || part_die->tag == DW_TAG_union_type))
14144 guess_partial_die_structure_name (part_die, cu);
14145
14146 /* GCC might emit a nameless struct or union that has a linkage
14147 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
14148 if (part_die->name == NULL
14149 && (part_die->tag == DW_TAG_class_type
14150 || part_die->tag == DW_TAG_interface_type
14151 || part_die->tag == DW_TAG_structure_type
14152 || part_die->tag == DW_TAG_union_type)
14153 && part_die->linkage_name != NULL)
14154 {
14155 char *demangled;
14156
14157 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
14158 if (demangled)
14159 {
14160 const char *base;
14161
14162 /* Strip any leading namespaces/classes, keep only the base name.
14163 DW_AT_name for named DIEs does not contain the prefixes. */
14164 base = strrchr (demangled, ':');
14165 if (base && base > demangled && base[-1] == ':')
14166 base++;
14167 else
14168 base = demangled;
14169
14170 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
14171 base, strlen (base));
14172 xfree (demangled);
14173 }
14174 }
14175
14176 part_die->fixup_called = 1;
14177 }
14178
14179 /* Read an attribute value described by an attribute form. */
14180
14181 static const gdb_byte *
14182 read_attribute_value (const struct die_reader_specs *reader,
14183 struct attribute *attr, unsigned form,
14184 const gdb_byte *info_ptr)
14185 {
14186 struct dwarf2_cu *cu = reader->cu;
14187 bfd *abfd = reader->abfd;
14188 struct comp_unit_head *cu_header = &cu->header;
14189 unsigned int bytes_read;
14190 struct dwarf_block *blk;
14191
14192 attr->form = form;
14193 switch (form)
14194 {
14195 case DW_FORM_ref_addr:
14196 if (cu->header.version == 2)
14197 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14198 else
14199 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14200 &cu->header, &bytes_read);
14201 info_ptr += bytes_read;
14202 break;
14203 case DW_FORM_GNU_ref_alt:
14204 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14205 info_ptr += bytes_read;
14206 break;
14207 case DW_FORM_addr:
14208 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14209 info_ptr += bytes_read;
14210 break;
14211 case DW_FORM_block2:
14212 blk = dwarf_alloc_block (cu);
14213 blk->size = read_2_bytes (abfd, info_ptr);
14214 info_ptr += 2;
14215 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14216 info_ptr += blk->size;
14217 DW_BLOCK (attr) = blk;
14218 break;
14219 case DW_FORM_block4:
14220 blk = dwarf_alloc_block (cu);
14221 blk->size = read_4_bytes (abfd, info_ptr);
14222 info_ptr += 4;
14223 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14224 info_ptr += blk->size;
14225 DW_BLOCK (attr) = blk;
14226 break;
14227 case DW_FORM_data2:
14228 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14229 info_ptr += 2;
14230 break;
14231 case DW_FORM_data4:
14232 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14233 info_ptr += 4;
14234 break;
14235 case DW_FORM_data8:
14236 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14237 info_ptr += 8;
14238 break;
14239 case DW_FORM_sec_offset:
14240 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14241 info_ptr += bytes_read;
14242 break;
14243 case DW_FORM_string:
14244 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
14245 DW_STRING_IS_CANONICAL (attr) = 0;
14246 info_ptr += bytes_read;
14247 break;
14248 case DW_FORM_strp:
14249 if (!cu->per_cu->is_dwz)
14250 {
14251 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14252 &bytes_read);
14253 DW_STRING_IS_CANONICAL (attr) = 0;
14254 info_ptr += bytes_read;
14255 break;
14256 }
14257 /* FALLTHROUGH */
14258 case DW_FORM_GNU_strp_alt:
14259 {
14260 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14261 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14262 &bytes_read);
14263
14264 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14265 DW_STRING_IS_CANONICAL (attr) = 0;
14266 info_ptr += bytes_read;
14267 }
14268 break;
14269 case DW_FORM_exprloc:
14270 case DW_FORM_block:
14271 blk = dwarf_alloc_block (cu);
14272 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14273 info_ptr += bytes_read;
14274 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14275 info_ptr += blk->size;
14276 DW_BLOCK (attr) = blk;
14277 break;
14278 case DW_FORM_block1:
14279 blk = dwarf_alloc_block (cu);
14280 blk->size = read_1_byte (abfd, info_ptr);
14281 info_ptr += 1;
14282 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14283 info_ptr += blk->size;
14284 DW_BLOCK (attr) = blk;
14285 break;
14286 case DW_FORM_data1:
14287 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14288 info_ptr += 1;
14289 break;
14290 case DW_FORM_flag:
14291 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14292 info_ptr += 1;
14293 break;
14294 case DW_FORM_flag_present:
14295 DW_UNSND (attr) = 1;
14296 break;
14297 case DW_FORM_sdata:
14298 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14299 info_ptr += bytes_read;
14300 break;
14301 case DW_FORM_udata:
14302 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14303 info_ptr += bytes_read;
14304 break;
14305 case DW_FORM_ref1:
14306 DW_UNSND (attr) = (cu->header.offset.sect_off
14307 + read_1_byte (abfd, info_ptr));
14308 info_ptr += 1;
14309 break;
14310 case DW_FORM_ref2:
14311 DW_UNSND (attr) = (cu->header.offset.sect_off
14312 + read_2_bytes (abfd, info_ptr));
14313 info_ptr += 2;
14314 break;
14315 case DW_FORM_ref4:
14316 DW_UNSND (attr) = (cu->header.offset.sect_off
14317 + read_4_bytes (abfd, info_ptr));
14318 info_ptr += 4;
14319 break;
14320 case DW_FORM_ref8:
14321 DW_UNSND (attr) = (cu->header.offset.sect_off
14322 + read_8_bytes (abfd, info_ptr));
14323 info_ptr += 8;
14324 break;
14325 case DW_FORM_ref_sig8:
14326 /* Convert the signature to something we can record in DW_UNSND
14327 for later lookup.
14328 NOTE: This is NULL if the type wasn't found. */
14329 DW_SIGNATURED_TYPE (attr) =
14330 lookup_signatured_type (read_8_bytes (abfd, info_ptr));
14331 info_ptr += 8;
14332 break;
14333 case DW_FORM_ref_udata:
14334 DW_UNSND (attr) = (cu->header.offset.sect_off
14335 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14336 info_ptr += bytes_read;
14337 break;
14338 case DW_FORM_indirect:
14339 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14340 info_ptr += bytes_read;
14341 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14342 break;
14343 case DW_FORM_GNU_addr_index:
14344 if (reader->dwo_file == NULL)
14345 {
14346 /* For now flag a hard error.
14347 Later we can turn this into a complaint. */
14348 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14349 dwarf_form_name (form),
14350 bfd_get_filename (abfd));
14351 }
14352 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14353 info_ptr += bytes_read;
14354 break;
14355 case DW_FORM_GNU_str_index:
14356 if (reader->dwo_file == NULL)
14357 {
14358 /* For now flag a hard error.
14359 Later we can turn this into a complaint if warranted. */
14360 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14361 dwarf_form_name (form),
14362 bfd_get_filename (abfd));
14363 }
14364 {
14365 ULONGEST str_index =
14366 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14367
14368 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14369 DW_STRING_IS_CANONICAL (attr) = 0;
14370 info_ptr += bytes_read;
14371 }
14372 break;
14373 default:
14374 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14375 dwarf_form_name (form),
14376 bfd_get_filename (abfd));
14377 }
14378
14379 /* Super hack. */
14380 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14381 attr->form = DW_FORM_GNU_ref_alt;
14382
14383 /* We have seen instances where the compiler tried to emit a byte
14384 size attribute of -1 which ended up being encoded as an unsigned
14385 0xffffffff. Although 0xffffffff is technically a valid size value,
14386 an object of this size seems pretty unlikely so we can relatively
14387 safely treat these cases as if the size attribute was invalid and
14388 treat them as zero by default. */
14389 if (attr->name == DW_AT_byte_size
14390 && form == DW_FORM_data4
14391 && DW_UNSND (attr) >= 0xffffffff)
14392 {
14393 complaint
14394 (&symfile_complaints,
14395 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14396 hex_string (DW_UNSND (attr)));
14397 DW_UNSND (attr) = 0;
14398 }
14399
14400 return info_ptr;
14401 }
14402
14403 /* Read an attribute described by an abbreviated attribute. */
14404
14405 static const gdb_byte *
14406 read_attribute (const struct die_reader_specs *reader,
14407 struct attribute *attr, struct attr_abbrev *abbrev,
14408 const gdb_byte *info_ptr)
14409 {
14410 attr->name = abbrev->name;
14411 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14412 }
14413
14414 /* Read dwarf information from a buffer. */
14415
14416 static unsigned int
14417 read_1_byte (bfd *abfd, const gdb_byte *buf)
14418 {
14419 return bfd_get_8 (abfd, buf);
14420 }
14421
14422 static int
14423 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14424 {
14425 return bfd_get_signed_8 (abfd, buf);
14426 }
14427
14428 static unsigned int
14429 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14430 {
14431 return bfd_get_16 (abfd, buf);
14432 }
14433
14434 static int
14435 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14436 {
14437 return bfd_get_signed_16 (abfd, buf);
14438 }
14439
14440 static unsigned int
14441 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14442 {
14443 return bfd_get_32 (abfd, buf);
14444 }
14445
14446 static int
14447 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14448 {
14449 return bfd_get_signed_32 (abfd, buf);
14450 }
14451
14452 static ULONGEST
14453 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14454 {
14455 return bfd_get_64 (abfd, buf);
14456 }
14457
14458 static CORE_ADDR
14459 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
14460 unsigned int *bytes_read)
14461 {
14462 struct comp_unit_head *cu_header = &cu->header;
14463 CORE_ADDR retval = 0;
14464
14465 if (cu_header->signed_addr_p)
14466 {
14467 switch (cu_header->addr_size)
14468 {
14469 case 2:
14470 retval = bfd_get_signed_16 (abfd, buf);
14471 break;
14472 case 4:
14473 retval = bfd_get_signed_32 (abfd, buf);
14474 break;
14475 case 8:
14476 retval = bfd_get_signed_64 (abfd, buf);
14477 break;
14478 default:
14479 internal_error (__FILE__, __LINE__,
14480 _("read_address: bad switch, signed [in module %s]"),
14481 bfd_get_filename (abfd));
14482 }
14483 }
14484 else
14485 {
14486 switch (cu_header->addr_size)
14487 {
14488 case 2:
14489 retval = bfd_get_16 (abfd, buf);
14490 break;
14491 case 4:
14492 retval = bfd_get_32 (abfd, buf);
14493 break;
14494 case 8:
14495 retval = bfd_get_64 (abfd, buf);
14496 break;
14497 default:
14498 internal_error (__FILE__, __LINE__,
14499 _("read_address: bad switch, "
14500 "unsigned [in module %s]"),
14501 bfd_get_filename (abfd));
14502 }
14503 }
14504
14505 *bytes_read = cu_header->addr_size;
14506 return retval;
14507 }
14508
14509 /* Read the initial length from a section. The (draft) DWARF 3
14510 specification allows the initial length to take up either 4 bytes
14511 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14512 bytes describe the length and all offsets will be 8 bytes in length
14513 instead of 4.
14514
14515 An older, non-standard 64-bit format is also handled by this
14516 function. The older format in question stores the initial length
14517 as an 8-byte quantity without an escape value. Lengths greater
14518 than 2^32 aren't very common which means that the initial 4 bytes
14519 is almost always zero. Since a length value of zero doesn't make
14520 sense for the 32-bit format, this initial zero can be considered to
14521 be an escape value which indicates the presence of the older 64-bit
14522 format. As written, the code can't detect (old format) lengths
14523 greater than 4GB. If it becomes necessary to handle lengths
14524 somewhat larger than 4GB, we could allow other small values (such
14525 as the non-sensical values of 1, 2, and 3) to also be used as
14526 escape values indicating the presence of the old format.
14527
14528 The value returned via bytes_read should be used to increment the
14529 relevant pointer after calling read_initial_length().
14530
14531 [ Note: read_initial_length() and read_offset() are based on the
14532 document entitled "DWARF Debugging Information Format", revision
14533 3, draft 8, dated November 19, 2001. This document was obtained
14534 from:
14535
14536 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
14537
14538 This document is only a draft and is subject to change. (So beware.)
14539
14540 Details regarding the older, non-standard 64-bit format were
14541 determined empirically by examining 64-bit ELF files produced by
14542 the SGI toolchain on an IRIX 6.5 machine.
14543
14544 - Kevin, July 16, 2002
14545 ] */
14546
14547 static LONGEST
14548 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
14549 {
14550 LONGEST length = bfd_get_32 (abfd, buf);
14551
14552 if (length == 0xffffffff)
14553 {
14554 length = bfd_get_64 (abfd, buf + 4);
14555 *bytes_read = 12;
14556 }
14557 else if (length == 0)
14558 {
14559 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
14560 length = bfd_get_64 (abfd, buf);
14561 *bytes_read = 8;
14562 }
14563 else
14564 {
14565 *bytes_read = 4;
14566 }
14567
14568 return length;
14569 }
14570
14571 /* Cover function for read_initial_length.
14572 Returns the length of the object at BUF, and stores the size of the
14573 initial length in *BYTES_READ and stores the size that offsets will be in
14574 *OFFSET_SIZE.
14575 If the initial length size is not equivalent to that specified in
14576 CU_HEADER then issue a complaint.
14577 This is useful when reading non-comp-unit headers. */
14578
14579 static LONGEST
14580 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
14581 const struct comp_unit_head *cu_header,
14582 unsigned int *bytes_read,
14583 unsigned int *offset_size)
14584 {
14585 LONGEST length = read_initial_length (abfd, buf, bytes_read);
14586
14587 gdb_assert (cu_header->initial_length_size == 4
14588 || cu_header->initial_length_size == 8
14589 || cu_header->initial_length_size == 12);
14590
14591 if (cu_header->initial_length_size != *bytes_read)
14592 complaint (&symfile_complaints,
14593 _("intermixed 32-bit and 64-bit DWARF sections"));
14594
14595 *offset_size = (*bytes_read == 4) ? 4 : 8;
14596 return length;
14597 }
14598
14599 /* Read an offset from the data stream. The size of the offset is
14600 given by cu_header->offset_size. */
14601
14602 static LONGEST
14603 read_offset (bfd *abfd, const gdb_byte *buf,
14604 const struct comp_unit_head *cu_header,
14605 unsigned int *bytes_read)
14606 {
14607 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
14608
14609 *bytes_read = cu_header->offset_size;
14610 return offset;
14611 }
14612
14613 /* Read an offset from the data stream. */
14614
14615 static LONGEST
14616 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
14617 {
14618 LONGEST retval = 0;
14619
14620 switch (offset_size)
14621 {
14622 case 4:
14623 retval = bfd_get_32 (abfd, buf);
14624 break;
14625 case 8:
14626 retval = bfd_get_64 (abfd, buf);
14627 break;
14628 default:
14629 internal_error (__FILE__, __LINE__,
14630 _("read_offset_1: bad switch [in module %s]"),
14631 bfd_get_filename (abfd));
14632 }
14633
14634 return retval;
14635 }
14636
14637 static const gdb_byte *
14638 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
14639 {
14640 /* If the size of a host char is 8 bits, we can return a pointer
14641 to the buffer, otherwise we have to copy the data to a buffer
14642 allocated on the temporary obstack. */
14643 gdb_assert (HOST_CHAR_BIT == 8);
14644 return buf;
14645 }
14646
14647 static const char *
14648 read_direct_string (bfd *abfd, const gdb_byte *buf,
14649 unsigned int *bytes_read_ptr)
14650 {
14651 /* If the size of a host char is 8 bits, we can return a pointer
14652 to the string, otherwise we have to copy the string to a buffer
14653 allocated on the temporary obstack. */
14654 gdb_assert (HOST_CHAR_BIT == 8);
14655 if (*buf == '\0')
14656 {
14657 *bytes_read_ptr = 1;
14658 return NULL;
14659 }
14660 *bytes_read_ptr = strlen ((const char *) buf) + 1;
14661 return (const char *) buf;
14662 }
14663
14664 static const char *
14665 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
14666 {
14667 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
14668 if (dwarf2_per_objfile->str.buffer == NULL)
14669 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
14670 bfd_get_filename (abfd));
14671 if (str_offset >= dwarf2_per_objfile->str.size)
14672 error (_("DW_FORM_strp pointing outside of "
14673 ".debug_str section [in module %s]"),
14674 bfd_get_filename (abfd));
14675 gdb_assert (HOST_CHAR_BIT == 8);
14676 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
14677 return NULL;
14678 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
14679 }
14680
14681 /* Read a string at offset STR_OFFSET in the .debug_str section from
14682 the .dwz file DWZ. Throw an error if the offset is too large. If
14683 the string consists of a single NUL byte, return NULL; otherwise
14684 return a pointer to the string. */
14685
14686 static const char *
14687 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
14688 {
14689 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
14690
14691 if (dwz->str.buffer == NULL)
14692 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
14693 "section [in module %s]"),
14694 bfd_get_filename (dwz->dwz_bfd));
14695 if (str_offset >= dwz->str.size)
14696 error (_("DW_FORM_GNU_strp_alt pointing outside of "
14697 ".debug_str section [in module %s]"),
14698 bfd_get_filename (dwz->dwz_bfd));
14699 gdb_assert (HOST_CHAR_BIT == 8);
14700 if (dwz->str.buffer[str_offset] == '\0')
14701 return NULL;
14702 return (const char *) (dwz->str.buffer + str_offset);
14703 }
14704
14705 static const char *
14706 read_indirect_string (bfd *abfd, const gdb_byte *buf,
14707 const struct comp_unit_head *cu_header,
14708 unsigned int *bytes_read_ptr)
14709 {
14710 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
14711
14712 return read_indirect_string_at_offset (abfd, str_offset);
14713 }
14714
14715 static ULONGEST
14716 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
14717 unsigned int *bytes_read_ptr)
14718 {
14719 ULONGEST result;
14720 unsigned int num_read;
14721 int i, shift;
14722 unsigned char byte;
14723
14724 result = 0;
14725 shift = 0;
14726 num_read = 0;
14727 i = 0;
14728 while (1)
14729 {
14730 byte = bfd_get_8 (abfd, buf);
14731 buf++;
14732 num_read++;
14733 result |= ((ULONGEST) (byte & 127) << shift);
14734 if ((byte & 128) == 0)
14735 {
14736 break;
14737 }
14738 shift += 7;
14739 }
14740 *bytes_read_ptr = num_read;
14741 return result;
14742 }
14743
14744 static LONGEST
14745 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
14746 unsigned int *bytes_read_ptr)
14747 {
14748 LONGEST result;
14749 int i, shift, num_read;
14750 unsigned char byte;
14751
14752 result = 0;
14753 shift = 0;
14754 num_read = 0;
14755 i = 0;
14756 while (1)
14757 {
14758 byte = bfd_get_8 (abfd, buf);
14759 buf++;
14760 num_read++;
14761 result |= ((LONGEST) (byte & 127) << shift);
14762 shift += 7;
14763 if ((byte & 128) == 0)
14764 {
14765 break;
14766 }
14767 }
14768 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
14769 result |= -(((LONGEST) 1) << shift);
14770 *bytes_read_ptr = num_read;
14771 return result;
14772 }
14773
14774 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
14775 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
14776 ADDR_SIZE is the size of addresses from the CU header. */
14777
14778 static CORE_ADDR
14779 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
14780 {
14781 struct objfile *objfile = dwarf2_per_objfile->objfile;
14782 bfd *abfd = objfile->obfd;
14783 const gdb_byte *info_ptr;
14784
14785 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
14786 if (dwarf2_per_objfile->addr.buffer == NULL)
14787 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
14788 objfile->name);
14789 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
14790 error (_("DW_FORM_addr_index pointing outside of "
14791 ".debug_addr section [in module %s]"),
14792 objfile->name);
14793 info_ptr = (dwarf2_per_objfile->addr.buffer
14794 + addr_base + addr_index * addr_size);
14795 if (addr_size == 4)
14796 return bfd_get_32 (abfd, info_ptr);
14797 else
14798 return bfd_get_64 (abfd, info_ptr);
14799 }
14800
14801 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
14802
14803 static CORE_ADDR
14804 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
14805 {
14806 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
14807 }
14808
14809 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
14810
14811 static CORE_ADDR
14812 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
14813 unsigned int *bytes_read)
14814 {
14815 bfd *abfd = cu->objfile->obfd;
14816 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
14817
14818 return read_addr_index (cu, addr_index);
14819 }
14820
14821 /* Data structure to pass results from dwarf2_read_addr_index_reader
14822 back to dwarf2_read_addr_index. */
14823
14824 struct dwarf2_read_addr_index_data
14825 {
14826 ULONGEST addr_base;
14827 int addr_size;
14828 };
14829
14830 /* die_reader_func for dwarf2_read_addr_index. */
14831
14832 static void
14833 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
14834 const gdb_byte *info_ptr,
14835 struct die_info *comp_unit_die,
14836 int has_children,
14837 void *data)
14838 {
14839 struct dwarf2_cu *cu = reader->cu;
14840 struct dwarf2_read_addr_index_data *aidata =
14841 (struct dwarf2_read_addr_index_data *) data;
14842
14843 aidata->addr_base = cu->addr_base;
14844 aidata->addr_size = cu->header.addr_size;
14845 }
14846
14847 /* Given an index in .debug_addr, fetch the value.
14848 NOTE: This can be called during dwarf expression evaluation,
14849 long after the debug information has been read, and thus per_cu->cu
14850 may no longer exist. */
14851
14852 CORE_ADDR
14853 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
14854 unsigned int addr_index)
14855 {
14856 struct objfile *objfile = per_cu->objfile;
14857 struct dwarf2_cu *cu = per_cu->cu;
14858 ULONGEST addr_base;
14859 int addr_size;
14860
14861 /* This is intended to be called from outside this file. */
14862 dw2_setup (objfile);
14863
14864 /* We need addr_base and addr_size.
14865 If we don't have PER_CU->cu, we have to get it.
14866 Nasty, but the alternative is storing the needed info in PER_CU,
14867 which at this point doesn't seem justified: it's not clear how frequently
14868 it would get used and it would increase the size of every PER_CU.
14869 Entry points like dwarf2_per_cu_addr_size do a similar thing
14870 so we're not in uncharted territory here.
14871 Alas we need to be a bit more complicated as addr_base is contained
14872 in the DIE.
14873
14874 We don't need to read the entire CU(/TU).
14875 We just need the header and top level die.
14876
14877 IWBN to use the aging mechanism to let us lazily later discard the CU.
14878 For now we skip this optimization. */
14879
14880 if (cu != NULL)
14881 {
14882 addr_base = cu->addr_base;
14883 addr_size = cu->header.addr_size;
14884 }
14885 else
14886 {
14887 struct dwarf2_read_addr_index_data aidata;
14888
14889 /* Note: We can't use init_cutu_and_read_dies_simple here,
14890 we need addr_base. */
14891 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
14892 dwarf2_read_addr_index_reader, &aidata);
14893 addr_base = aidata.addr_base;
14894 addr_size = aidata.addr_size;
14895 }
14896
14897 return read_addr_index_1 (addr_index, addr_base, addr_size);
14898 }
14899
14900 /* Given a DW_AT_str_index, fetch the string. */
14901
14902 static const char *
14903 read_str_index (const struct die_reader_specs *reader,
14904 struct dwarf2_cu *cu, ULONGEST str_index)
14905 {
14906 struct objfile *objfile = dwarf2_per_objfile->objfile;
14907 const char *dwo_name = objfile->name;
14908 bfd *abfd = objfile->obfd;
14909 struct dwo_sections *sections = &reader->dwo_file->sections;
14910 const gdb_byte *info_ptr;
14911 ULONGEST str_offset;
14912
14913 dwarf2_read_section (objfile, &sections->str);
14914 dwarf2_read_section (objfile, &sections->str_offsets);
14915 if (sections->str.buffer == NULL)
14916 error (_("DW_FORM_str_index used without .debug_str.dwo section"
14917 " in CU at offset 0x%lx [in module %s]"),
14918 (long) cu->header.offset.sect_off, dwo_name);
14919 if (sections->str_offsets.buffer == NULL)
14920 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
14921 " in CU at offset 0x%lx [in module %s]"),
14922 (long) cu->header.offset.sect_off, dwo_name);
14923 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
14924 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
14925 " section in CU at offset 0x%lx [in module %s]"),
14926 (long) cu->header.offset.sect_off, dwo_name);
14927 info_ptr = (sections->str_offsets.buffer
14928 + str_index * cu->header.offset_size);
14929 if (cu->header.offset_size == 4)
14930 str_offset = bfd_get_32 (abfd, info_ptr);
14931 else
14932 str_offset = bfd_get_64 (abfd, info_ptr);
14933 if (str_offset >= sections->str.size)
14934 error (_("Offset from DW_FORM_str_index pointing outside of"
14935 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
14936 (long) cu->header.offset.sect_off, dwo_name);
14937 return (const char *) (sections->str.buffer + str_offset);
14938 }
14939
14940 /* Return the length of an LEB128 number in BUF. */
14941
14942 static int
14943 leb128_size (const gdb_byte *buf)
14944 {
14945 const gdb_byte *begin = buf;
14946 gdb_byte byte;
14947
14948 while (1)
14949 {
14950 byte = *buf++;
14951 if ((byte & 128) == 0)
14952 return buf - begin;
14953 }
14954 }
14955
14956 static void
14957 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
14958 {
14959 switch (lang)
14960 {
14961 case DW_LANG_C89:
14962 case DW_LANG_C99:
14963 case DW_LANG_C:
14964 cu->language = language_c;
14965 break;
14966 case DW_LANG_C_plus_plus:
14967 cu->language = language_cplus;
14968 break;
14969 case DW_LANG_D:
14970 cu->language = language_d;
14971 break;
14972 case DW_LANG_Fortran77:
14973 case DW_LANG_Fortran90:
14974 case DW_LANG_Fortran95:
14975 cu->language = language_fortran;
14976 break;
14977 case DW_LANG_Go:
14978 cu->language = language_go;
14979 break;
14980 case DW_LANG_Mips_Assembler:
14981 cu->language = language_asm;
14982 break;
14983 case DW_LANG_Java:
14984 cu->language = language_java;
14985 break;
14986 case DW_LANG_Ada83:
14987 case DW_LANG_Ada95:
14988 cu->language = language_ada;
14989 break;
14990 case DW_LANG_Modula2:
14991 cu->language = language_m2;
14992 break;
14993 case DW_LANG_Pascal83:
14994 cu->language = language_pascal;
14995 break;
14996 case DW_LANG_ObjC:
14997 cu->language = language_objc;
14998 break;
14999 case DW_LANG_Cobol74:
15000 case DW_LANG_Cobol85:
15001 default:
15002 cu->language = language_minimal;
15003 break;
15004 }
15005 cu->language_defn = language_def (cu->language);
15006 }
15007
15008 /* Return the named attribute or NULL if not there. */
15009
15010 static struct attribute *
15011 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
15012 {
15013 for (;;)
15014 {
15015 unsigned int i;
15016 struct attribute *spec = NULL;
15017
15018 for (i = 0; i < die->num_attrs; ++i)
15019 {
15020 if (die->attrs[i].name == name)
15021 return &die->attrs[i];
15022 if (die->attrs[i].name == DW_AT_specification
15023 || die->attrs[i].name == DW_AT_abstract_origin)
15024 spec = &die->attrs[i];
15025 }
15026
15027 if (!spec)
15028 break;
15029
15030 die = follow_die_ref (die, spec, &cu);
15031 }
15032
15033 return NULL;
15034 }
15035
15036 /* Return the named attribute or NULL if not there,
15037 but do not follow DW_AT_specification, etc.
15038 This is for use in contexts where we're reading .debug_types dies.
15039 Following DW_AT_specification, DW_AT_abstract_origin will take us
15040 back up the chain, and we want to go down. */
15041
15042 static struct attribute *
15043 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
15044 {
15045 unsigned int i;
15046
15047 for (i = 0; i < die->num_attrs; ++i)
15048 if (die->attrs[i].name == name)
15049 return &die->attrs[i];
15050
15051 return NULL;
15052 }
15053
15054 /* Return non-zero iff the attribute NAME is defined for the given DIE,
15055 and holds a non-zero value. This function should only be used for
15056 DW_FORM_flag or DW_FORM_flag_present attributes. */
15057
15058 static int
15059 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
15060 {
15061 struct attribute *attr = dwarf2_attr (die, name, cu);
15062
15063 return (attr && DW_UNSND (attr));
15064 }
15065
15066 static int
15067 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
15068 {
15069 /* A DIE is a declaration if it has a DW_AT_declaration attribute
15070 which value is non-zero. However, we have to be careful with
15071 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
15072 (via dwarf2_flag_true_p) follows this attribute. So we may
15073 end up accidently finding a declaration attribute that belongs
15074 to a different DIE referenced by the specification attribute,
15075 even though the given DIE does not have a declaration attribute. */
15076 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
15077 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
15078 }
15079
15080 /* Return the die giving the specification for DIE, if there is
15081 one. *SPEC_CU is the CU containing DIE on input, and the CU
15082 containing the return value on output. If there is no
15083 specification, but there is an abstract origin, that is
15084 returned. */
15085
15086 static struct die_info *
15087 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
15088 {
15089 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
15090 *spec_cu);
15091
15092 if (spec_attr == NULL)
15093 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
15094
15095 if (spec_attr == NULL)
15096 return NULL;
15097 else
15098 return follow_die_ref (die, spec_attr, spec_cu);
15099 }
15100
15101 /* Free the line_header structure *LH, and any arrays and strings it
15102 refers to.
15103 NOTE: This is also used as a "cleanup" function. */
15104
15105 static void
15106 free_line_header (struct line_header *lh)
15107 {
15108 if (lh->standard_opcode_lengths)
15109 xfree (lh->standard_opcode_lengths);
15110
15111 /* Remember that all the lh->file_names[i].name pointers are
15112 pointers into debug_line_buffer, and don't need to be freed. */
15113 if (lh->file_names)
15114 xfree (lh->file_names);
15115
15116 /* Similarly for the include directory names. */
15117 if (lh->include_dirs)
15118 xfree (lh->include_dirs);
15119
15120 xfree (lh);
15121 }
15122
15123 /* Add an entry to LH's include directory table. */
15124
15125 static void
15126 add_include_dir (struct line_header *lh, const char *include_dir)
15127 {
15128 /* Grow the array if necessary. */
15129 if (lh->include_dirs_size == 0)
15130 {
15131 lh->include_dirs_size = 1; /* for testing */
15132 lh->include_dirs = xmalloc (lh->include_dirs_size
15133 * sizeof (*lh->include_dirs));
15134 }
15135 else if (lh->num_include_dirs >= lh->include_dirs_size)
15136 {
15137 lh->include_dirs_size *= 2;
15138 lh->include_dirs = xrealloc (lh->include_dirs,
15139 (lh->include_dirs_size
15140 * sizeof (*lh->include_dirs)));
15141 }
15142
15143 lh->include_dirs[lh->num_include_dirs++] = include_dir;
15144 }
15145
15146 /* Add an entry to LH's file name table. */
15147
15148 static void
15149 add_file_name (struct line_header *lh,
15150 const char *name,
15151 unsigned int dir_index,
15152 unsigned int mod_time,
15153 unsigned int length)
15154 {
15155 struct file_entry *fe;
15156
15157 /* Grow the array if necessary. */
15158 if (lh->file_names_size == 0)
15159 {
15160 lh->file_names_size = 1; /* for testing */
15161 lh->file_names = xmalloc (lh->file_names_size
15162 * sizeof (*lh->file_names));
15163 }
15164 else if (lh->num_file_names >= lh->file_names_size)
15165 {
15166 lh->file_names_size *= 2;
15167 lh->file_names = xrealloc (lh->file_names,
15168 (lh->file_names_size
15169 * sizeof (*lh->file_names)));
15170 }
15171
15172 fe = &lh->file_names[lh->num_file_names++];
15173 fe->name = name;
15174 fe->dir_index = dir_index;
15175 fe->mod_time = mod_time;
15176 fe->length = length;
15177 fe->included_p = 0;
15178 fe->symtab = NULL;
15179 }
15180
15181 /* A convenience function to find the proper .debug_line section for a
15182 CU. */
15183
15184 static struct dwarf2_section_info *
15185 get_debug_line_section (struct dwarf2_cu *cu)
15186 {
15187 struct dwarf2_section_info *section;
15188
15189 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
15190 DWO file. */
15191 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15192 section = &cu->dwo_unit->dwo_file->sections.line;
15193 else if (cu->per_cu->is_dwz)
15194 {
15195 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15196
15197 section = &dwz->line;
15198 }
15199 else
15200 section = &dwarf2_per_objfile->line;
15201
15202 return section;
15203 }
15204
15205 /* Read the statement program header starting at OFFSET in
15206 .debug_line, or .debug_line.dwo. Return a pointer
15207 to a struct line_header, allocated using xmalloc.
15208
15209 NOTE: the strings in the include directory and file name tables of
15210 the returned object point into the dwarf line section buffer,
15211 and must not be freed. */
15212
15213 static struct line_header *
15214 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
15215 {
15216 struct cleanup *back_to;
15217 struct line_header *lh;
15218 const gdb_byte *line_ptr;
15219 unsigned int bytes_read, offset_size;
15220 int i;
15221 const char *cur_dir, *cur_file;
15222 struct dwarf2_section_info *section;
15223 bfd *abfd;
15224
15225 section = get_debug_line_section (cu);
15226 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15227 if (section->buffer == NULL)
15228 {
15229 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15230 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15231 else
15232 complaint (&symfile_complaints, _("missing .debug_line section"));
15233 return 0;
15234 }
15235
15236 /* We can't do this until we know the section is non-empty.
15237 Only then do we know we have such a section. */
15238 abfd = section->asection->owner;
15239
15240 /* Make sure that at least there's room for the total_length field.
15241 That could be 12 bytes long, but we're just going to fudge that. */
15242 if (offset + 4 >= section->size)
15243 {
15244 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15245 return 0;
15246 }
15247
15248 lh = xmalloc (sizeof (*lh));
15249 memset (lh, 0, sizeof (*lh));
15250 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15251 (void *) lh);
15252
15253 line_ptr = section->buffer + offset;
15254
15255 /* Read in the header. */
15256 lh->total_length =
15257 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15258 &bytes_read, &offset_size);
15259 line_ptr += bytes_read;
15260 if (line_ptr + lh->total_length > (section->buffer + section->size))
15261 {
15262 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15263 return 0;
15264 }
15265 lh->statement_program_end = line_ptr + lh->total_length;
15266 lh->version = read_2_bytes (abfd, line_ptr);
15267 line_ptr += 2;
15268 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15269 line_ptr += offset_size;
15270 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15271 line_ptr += 1;
15272 if (lh->version >= 4)
15273 {
15274 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15275 line_ptr += 1;
15276 }
15277 else
15278 lh->maximum_ops_per_instruction = 1;
15279
15280 if (lh->maximum_ops_per_instruction == 0)
15281 {
15282 lh->maximum_ops_per_instruction = 1;
15283 complaint (&symfile_complaints,
15284 _("invalid maximum_ops_per_instruction "
15285 "in `.debug_line' section"));
15286 }
15287
15288 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15289 line_ptr += 1;
15290 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15291 line_ptr += 1;
15292 lh->line_range = read_1_byte (abfd, line_ptr);
15293 line_ptr += 1;
15294 lh->opcode_base = read_1_byte (abfd, line_ptr);
15295 line_ptr += 1;
15296 lh->standard_opcode_lengths
15297 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15298
15299 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15300 for (i = 1; i < lh->opcode_base; ++i)
15301 {
15302 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15303 line_ptr += 1;
15304 }
15305
15306 /* Read directory table. */
15307 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15308 {
15309 line_ptr += bytes_read;
15310 add_include_dir (lh, cur_dir);
15311 }
15312 line_ptr += bytes_read;
15313
15314 /* Read file name table. */
15315 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15316 {
15317 unsigned int dir_index, mod_time, length;
15318
15319 line_ptr += bytes_read;
15320 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15321 line_ptr += bytes_read;
15322 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15323 line_ptr += bytes_read;
15324 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15325 line_ptr += bytes_read;
15326
15327 add_file_name (lh, cur_file, dir_index, mod_time, length);
15328 }
15329 line_ptr += bytes_read;
15330 lh->statement_program_start = line_ptr;
15331
15332 if (line_ptr > (section->buffer + section->size))
15333 complaint (&symfile_complaints,
15334 _("line number info header doesn't "
15335 "fit in `.debug_line' section"));
15336
15337 discard_cleanups (back_to);
15338 return lh;
15339 }
15340
15341 /* Subroutine of dwarf_decode_lines to simplify it.
15342 Return the file name of the psymtab for included file FILE_INDEX
15343 in line header LH of PST.
15344 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15345 If space for the result is malloc'd, it will be freed by a cleanup.
15346 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15347
15348 The function creates dangling cleanup registration. */
15349
15350 static const char *
15351 psymtab_include_file_name (const struct line_header *lh, int file_index,
15352 const struct partial_symtab *pst,
15353 const char *comp_dir)
15354 {
15355 const struct file_entry fe = lh->file_names [file_index];
15356 const char *include_name = fe.name;
15357 const char *include_name_to_compare = include_name;
15358 const char *dir_name = NULL;
15359 const char *pst_filename;
15360 char *copied_name = NULL;
15361 int file_is_pst;
15362
15363 if (fe.dir_index)
15364 dir_name = lh->include_dirs[fe.dir_index - 1];
15365
15366 if (!IS_ABSOLUTE_PATH (include_name)
15367 && (dir_name != NULL || comp_dir != NULL))
15368 {
15369 /* Avoid creating a duplicate psymtab for PST.
15370 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15371 Before we do the comparison, however, we need to account
15372 for DIR_NAME and COMP_DIR.
15373 First prepend dir_name (if non-NULL). If we still don't
15374 have an absolute path prepend comp_dir (if non-NULL).
15375 However, the directory we record in the include-file's
15376 psymtab does not contain COMP_DIR (to match the
15377 corresponding symtab(s)).
15378
15379 Example:
15380
15381 bash$ cd /tmp
15382 bash$ gcc -g ./hello.c
15383 include_name = "hello.c"
15384 dir_name = "."
15385 DW_AT_comp_dir = comp_dir = "/tmp"
15386 DW_AT_name = "./hello.c" */
15387
15388 if (dir_name != NULL)
15389 {
15390 char *tem = concat (dir_name, SLASH_STRING,
15391 include_name, (char *)NULL);
15392
15393 make_cleanup (xfree, tem);
15394 include_name = tem;
15395 include_name_to_compare = include_name;
15396 }
15397 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15398 {
15399 char *tem = concat (comp_dir, SLASH_STRING,
15400 include_name, (char *)NULL);
15401
15402 make_cleanup (xfree, tem);
15403 include_name_to_compare = tem;
15404 }
15405 }
15406
15407 pst_filename = pst->filename;
15408 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15409 {
15410 copied_name = concat (pst->dirname, SLASH_STRING,
15411 pst_filename, (char *)NULL);
15412 pst_filename = copied_name;
15413 }
15414
15415 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15416
15417 if (copied_name != NULL)
15418 xfree (copied_name);
15419
15420 if (file_is_pst)
15421 return NULL;
15422 return include_name;
15423 }
15424
15425 /* Ignore this record_line request. */
15426
15427 static void
15428 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15429 {
15430 return;
15431 }
15432
15433 /* Subroutine of dwarf_decode_lines to simplify it.
15434 Process the line number information in LH. */
15435
15436 static void
15437 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15438 struct dwarf2_cu *cu, struct partial_symtab *pst)
15439 {
15440 const gdb_byte *line_ptr, *extended_end;
15441 const gdb_byte *line_end;
15442 unsigned int bytes_read, extended_len;
15443 unsigned char op_code, extended_op, adj_opcode;
15444 CORE_ADDR baseaddr;
15445 struct objfile *objfile = cu->objfile;
15446 bfd *abfd = objfile->obfd;
15447 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15448 const int decode_for_pst_p = (pst != NULL);
15449 struct subfile *last_subfile = NULL;
15450 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15451 = record_line;
15452
15453 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15454
15455 line_ptr = lh->statement_program_start;
15456 line_end = lh->statement_program_end;
15457
15458 /* Read the statement sequences until there's nothing left. */
15459 while (line_ptr < line_end)
15460 {
15461 /* state machine registers */
15462 CORE_ADDR address = 0;
15463 unsigned int file = 1;
15464 unsigned int line = 1;
15465 unsigned int column = 0;
15466 int is_stmt = lh->default_is_stmt;
15467 int basic_block = 0;
15468 int end_sequence = 0;
15469 CORE_ADDR addr;
15470 unsigned char op_index = 0;
15471
15472 if (!decode_for_pst_p && lh->num_file_names >= file)
15473 {
15474 /* Start a subfile for the current file of the state machine. */
15475 /* lh->include_dirs and lh->file_names are 0-based, but the
15476 directory and file name numbers in the statement program
15477 are 1-based. */
15478 struct file_entry *fe = &lh->file_names[file - 1];
15479 const char *dir = NULL;
15480
15481 if (fe->dir_index)
15482 dir = lh->include_dirs[fe->dir_index - 1];
15483
15484 dwarf2_start_subfile (fe->name, dir, comp_dir);
15485 }
15486
15487 /* Decode the table. */
15488 while (!end_sequence)
15489 {
15490 op_code = read_1_byte (abfd, line_ptr);
15491 line_ptr += 1;
15492 if (line_ptr > line_end)
15493 {
15494 dwarf2_debug_line_missing_end_sequence_complaint ();
15495 break;
15496 }
15497
15498 if (op_code >= lh->opcode_base)
15499 {
15500 /* Special operand. */
15501 adj_opcode = op_code - lh->opcode_base;
15502 address += (((op_index + (adj_opcode / lh->line_range))
15503 / lh->maximum_ops_per_instruction)
15504 * lh->minimum_instruction_length);
15505 op_index = ((op_index + (adj_opcode / lh->line_range))
15506 % lh->maximum_ops_per_instruction);
15507 line += lh->line_base + (adj_opcode % lh->line_range);
15508 if (lh->num_file_names < file || file == 0)
15509 dwarf2_debug_line_missing_file_complaint ();
15510 /* For now we ignore lines not starting on an
15511 instruction boundary. */
15512 else if (op_index == 0)
15513 {
15514 lh->file_names[file - 1].included_p = 1;
15515 if (!decode_for_pst_p && is_stmt)
15516 {
15517 if (last_subfile != current_subfile)
15518 {
15519 addr = gdbarch_addr_bits_remove (gdbarch, address);
15520 if (last_subfile)
15521 (*p_record_line) (last_subfile, 0, addr);
15522 last_subfile = current_subfile;
15523 }
15524 /* Append row to matrix using current values. */
15525 addr = gdbarch_addr_bits_remove (gdbarch, address);
15526 (*p_record_line) (current_subfile, line, addr);
15527 }
15528 }
15529 basic_block = 0;
15530 }
15531 else switch (op_code)
15532 {
15533 case DW_LNS_extended_op:
15534 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15535 &bytes_read);
15536 line_ptr += bytes_read;
15537 extended_end = line_ptr + extended_len;
15538 extended_op = read_1_byte (abfd, line_ptr);
15539 line_ptr += 1;
15540 switch (extended_op)
15541 {
15542 case DW_LNE_end_sequence:
15543 p_record_line = record_line;
15544 end_sequence = 1;
15545 break;
15546 case DW_LNE_set_address:
15547 address = read_address (abfd, line_ptr, cu, &bytes_read);
15548
15549 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15550 {
15551 /* This line table is for a function which has been
15552 GCd by the linker. Ignore it. PR gdb/12528 */
15553
15554 long line_offset
15555 = line_ptr - get_debug_line_section (cu)->buffer;
15556
15557 complaint (&symfile_complaints,
15558 _(".debug_line address at offset 0x%lx is 0 "
15559 "[in module %s]"),
15560 line_offset, objfile->name);
15561 p_record_line = noop_record_line;
15562 }
15563
15564 op_index = 0;
15565 line_ptr += bytes_read;
15566 address += baseaddr;
15567 break;
15568 case DW_LNE_define_file:
15569 {
15570 const char *cur_file;
15571 unsigned int dir_index, mod_time, length;
15572
15573 cur_file = read_direct_string (abfd, line_ptr,
15574 &bytes_read);
15575 line_ptr += bytes_read;
15576 dir_index =
15577 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15578 line_ptr += bytes_read;
15579 mod_time =
15580 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15581 line_ptr += bytes_read;
15582 length =
15583 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15584 line_ptr += bytes_read;
15585 add_file_name (lh, cur_file, dir_index, mod_time, length);
15586 }
15587 break;
15588 case DW_LNE_set_discriminator:
15589 /* The discriminator is not interesting to the debugger;
15590 just ignore it. */
15591 line_ptr = extended_end;
15592 break;
15593 default:
15594 complaint (&symfile_complaints,
15595 _("mangled .debug_line section"));
15596 return;
15597 }
15598 /* Make sure that we parsed the extended op correctly. If e.g.
15599 we expected a different address size than the producer used,
15600 we may have read the wrong number of bytes. */
15601 if (line_ptr != extended_end)
15602 {
15603 complaint (&symfile_complaints,
15604 _("mangled .debug_line section"));
15605 return;
15606 }
15607 break;
15608 case DW_LNS_copy:
15609 if (lh->num_file_names < file || file == 0)
15610 dwarf2_debug_line_missing_file_complaint ();
15611 else
15612 {
15613 lh->file_names[file - 1].included_p = 1;
15614 if (!decode_for_pst_p && is_stmt)
15615 {
15616 if (last_subfile != current_subfile)
15617 {
15618 addr = gdbarch_addr_bits_remove (gdbarch, address);
15619 if (last_subfile)
15620 (*p_record_line) (last_subfile, 0, addr);
15621 last_subfile = current_subfile;
15622 }
15623 addr = gdbarch_addr_bits_remove (gdbarch, address);
15624 (*p_record_line) (current_subfile, line, addr);
15625 }
15626 }
15627 basic_block = 0;
15628 break;
15629 case DW_LNS_advance_pc:
15630 {
15631 CORE_ADDR adjust
15632 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15633
15634 address += (((op_index + adjust)
15635 / lh->maximum_ops_per_instruction)
15636 * lh->minimum_instruction_length);
15637 op_index = ((op_index + adjust)
15638 % lh->maximum_ops_per_instruction);
15639 line_ptr += bytes_read;
15640 }
15641 break;
15642 case DW_LNS_advance_line:
15643 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
15644 line_ptr += bytes_read;
15645 break;
15646 case DW_LNS_set_file:
15647 {
15648 /* The arrays lh->include_dirs and lh->file_names are
15649 0-based, but the directory and file name numbers in
15650 the statement program are 1-based. */
15651 struct file_entry *fe;
15652 const char *dir = NULL;
15653
15654 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15655 line_ptr += bytes_read;
15656 if (lh->num_file_names < file || file == 0)
15657 dwarf2_debug_line_missing_file_complaint ();
15658 else
15659 {
15660 fe = &lh->file_names[file - 1];
15661 if (fe->dir_index)
15662 dir = lh->include_dirs[fe->dir_index - 1];
15663 if (!decode_for_pst_p)
15664 {
15665 last_subfile = current_subfile;
15666 dwarf2_start_subfile (fe->name, dir, comp_dir);
15667 }
15668 }
15669 }
15670 break;
15671 case DW_LNS_set_column:
15672 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15673 line_ptr += bytes_read;
15674 break;
15675 case DW_LNS_negate_stmt:
15676 is_stmt = (!is_stmt);
15677 break;
15678 case DW_LNS_set_basic_block:
15679 basic_block = 1;
15680 break;
15681 /* Add to the address register of the state machine the
15682 address increment value corresponding to special opcode
15683 255. I.e., this value is scaled by the minimum
15684 instruction length since special opcode 255 would have
15685 scaled the increment. */
15686 case DW_LNS_const_add_pc:
15687 {
15688 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
15689
15690 address += (((op_index + adjust)
15691 / lh->maximum_ops_per_instruction)
15692 * lh->minimum_instruction_length);
15693 op_index = ((op_index + adjust)
15694 % lh->maximum_ops_per_instruction);
15695 }
15696 break;
15697 case DW_LNS_fixed_advance_pc:
15698 address += read_2_bytes (abfd, line_ptr);
15699 op_index = 0;
15700 line_ptr += 2;
15701 break;
15702 default:
15703 {
15704 /* Unknown standard opcode, ignore it. */
15705 int i;
15706
15707 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
15708 {
15709 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15710 line_ptr += bytes_read;
15711 }
15712 }
15713 }
15714 }
15715 if (lh->num_file_names < file || file == 0)
15716 dwarf2_debug_line_missing_file_complaint ();
15717 else
15718 {
15719 lh->file_names[file - 1].included_p = 1;
15720 if (!decode_for_pst_p)
15721 {
15722 addr = gdbarch_addr_bits_remove (gdbarch, address);
15723 (*p_record_line) (current_subfile, 0, addr);
15724 }
15725 }
15726 }
15727 }
15728
15729 /* Decode the Line Number Program (LNP) for the given line_header
15730 structure and CU. The actual information extracted and the type
15731 of structures created from the LNP depends on the value of PST.
15732
15733 1. If PST is NULL, then this procedure uses the data from the program
15734 to create all necessary symbol tables, and their linetables.
15735
15736 2. If PST is not NULL, this procedure reads the program to determine
15737 the list of files included by the unit represented by PST, and
15738 builds all the associated partial symbol tables.
15739
15740 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15741 It is used for relative paths in the line table.
15742 NOTE: When processing partial symtabs (pst != NULL),
15743 comp_dir == pst->dirname.
15744
15745 NOTE: It is important that psymtabs have the same file name (via strcmp)
15746 as the corresponding symtab. Since COMP_DIR is not used in the name of the
15747 symtab we don't use it in the name of the psymtabs we create.
15748 E.g. expand_line_sal requires this when finding psymtabs to expand.
15749 A good testcase for this is mb-inline.exp. */
15750
15751 static void
15752 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
15753 struct dwarf2_cu *cu, struct partial_symtab *pst,
15754 int want_line_info)
15755 {
15756 struct objfile *objfile = cu->objfile;
15757 const int decode_for_pst_p = (pst != NULL);
15758 struct subfile *first_subfile = current_subfile;
15759
15760 if (want_line_info)
15761 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
15762
15763 if (decode_for_pst_p)
15764 {
15765 int file_index;
15766
15767 /* Now that we're done scanning the Line Header Program, we can
15768 create the psymtab of each included file. */
15769 for (file_index = 0; file_index < lh->num_file_names; file_index++)
15770 if (lh->file_names[file_index].included_p == 1)
15771 {
15772 const char *include_name =
15773 psymtab_include_file_name (lh, file_index, pst, comp_dir);
15774 if (include_name != NULL)
15775 dwarf2_create_include_psymtab (include_name, pst, objfile);
15776 }
15777 }
15778 else
15779 {
15780 /* Make sure a symtab is created for every file, even files
15781 which contain only variables (i.e. no code with associated
15782 line numbers). */
15783 int i;
15784
15785 for (i = 0; i < lh->num_file_names; i++)
15786 {
15787 const char *dir = NULL;
15788 struct file_entry *fe;
15789
15790 fe = &lh->file_names[i];
15791 if (fe->dir_index)
15792 dir = lh->include_dirs[fe->dir_index - 1];
15793 dwarf2_start_subfile (fe->name, dir, comp_dir);
15794
15795 /* Skip the main file; we don't need it, and it must be
15796 allocated last, so that it will show up before the
15797 non-primary symtabs in the objfile's symtab list. */
15798 if (current_subfile == first_subfile)
15799 continue;
15800
15801 if (current_subfile->symtab == NULL)
15802 current_subfile->symtab = allocate_symtab (current_subfile->name,
15803 objfile);
15804 fe->symtab = current_subfile->symtab;
15805 }
15806 }
15807 }
15808
15809 /* Start a subfile for DWARF. FILENAME is the name of the file and
15810 DIRNAME the name of the source directory which contains FILENAME
15811 or NULL if not known. COMP_DIR is the compilation directory for the
15812 linetable's compilation unit or NULL if not known.
15813 This routine tries to keep line numbers from identical absolute and
15814 relative file names in a common subfile.
15815
15816 Using the `list' example from the GDB testsuite, which resides in
15817 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
15818 of /srcdir/list0.c yields the following debugging information for list0.c:
15819
15820 DW_AT_name: /srcdir/list0.c
15821 DW_AT_comp_dir: /compdir
15822 files.files[0].name: list0.h
15823 files.files[0].dir: /srcdir
15824 files.files[1].name: list0.c
15825 files.files[1].dir: /srcdir
15826
15827 The line number information for list0.c has to end up in a single
15828 subfile, so that `break /srcdir/list0.c:1' works as expected.
15829 start_subfile will ensure that this happens provided that we pass the
15830 concatenation of files.files[1].dir and files.files[1].name as the
15831 subfile's name. */
15832
15833 static void
15834 dwarf2_start_subfile (const char *filename, const char *dirname,
15835 const char *comp_dir)
15836 {
15837 char *copy = NULL;
15838
15839 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
15840 `start_symtab' will always pass the contents of DW_AT_comp_dir as
15841 second argument to start_subfile. To be consistent, we do the
15842 same here. In order not to lose the line information directory,
15843 we concatenate it to the filename when it makes sense.
15844 Note that the Dwarf3 standard says (speaking of filenames in line
15845 information): ``The directory index is ignored for file names
15846 that represent full path names''. Thus ignoring dirname in the
15847 `else' branch below isn't an issue. */
15848
15849 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
15850 {
15851 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
15852 filename = copy;
15853 }
15854
15855 start_subfile (filename, comp_dir);
15856
15857 if (copy != NULL)
15858 xfree (copy);
15859 }
15860
15861 /* Start a symtab for DWARF.
15862 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
15863
15864 static void
15865 dwarf2_start_symtab (struct dwarf2_cu *cu,
15866 const char *name, const char *comp_dir, CORE_ADDR low_pc)
15867 {
15868 start_symtab (name, comp_dir, low_pc);
15869 record_debugformat ("DWARF 2");
15870 record_producer (cu->producer);
15871
15872 /* We assume that we're processing GCC output. */
15873 processing_gcc_compilation = 2;
15874
15875 cu->processing_has_namespace_info = 0;
15876 }
15877
15878 static void
15879 var_decode_location (struct attribute *attr, struct symbol *sym,
15880 struct dwarf2_cu *cu)
15881 {
15882 struct objfile *objfile = cu->objfile;
15883 struct comp_unit_head *cu_header = &cu->header;
15884
15885 /* NOTE drow/2003-01-30: There used to be a comment and some special
15886 code here to turn a symbol with DW_AT_external and a
15887 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
15888 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
15889 with some versions of binutils) where shared libraries could have
15890 relocations against symbols in their debug information - the
15891 minimal symbol would have the right address, but the debug info
15892 would not. It's no longer necessary, because we will explicitly
15893 apply relocations when we read in the debug information now. */
15894
15895 /* A DW_AT_location attribute with no contents indicates that a
15896 variable has been optimized away. */
15897 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
15898 {
15899 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
15900 return;
15901 }
15902
15903 /* Handle one degenerate form of location expression specially, to
15904 preserve GDB's previous behavior when section offsets are
15905 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
15906 then mark this symbol as LOC_STATIC. */
15907
15908 if (attr_form_is_block (attr)
15909 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
15910 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
15911 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
15912 && (DW_BLOCK (attr)->size
15913 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
15914 {
15915 unsigned int dummy;
15916
15917 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
15918 SYMBOL_VALUE_ADDRESS (sym) =
15919 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
15920 else
15921 SYMBOL_VALUE_ADDRESS (sym) =
15922 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
15923 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
15924 fixup_symbol_section (sym, objfile);
15925 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
15926 SYMBOL_SECTION (sym));
15927 return;
15928 }
15929
15930 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
15931 expression evaluator, and use LOC_COMPUTED only when necessary
15932 (i.e. when the value of a register or memory location is
15933 referenced, or a thread-local block, etc.). Then again, it might
15934 not be worthwhile. I'm assuming that it isn't unless performance
15935 or memory numbers show me otherwise. */
15936
15937 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
15938
15939 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
15940 cu->has_loclist = 1;
15941 }
15942
15943 /* Given a pointer to a DWARF information entry, figure out if we need
15944 to make a symbol table entry for it, and if so, create a new entry
15945 and return a pointer to it.
15946 If TYPE is NULL, determine symbol type from the die, otherwise
15947 used the passed type.
15948 If SPACE is not NULL, use it to hold the new symbol. If it is
15949 NULL, allocate a new symbol on the objfile's obstack. */
15950
15951 static struct symbol *
15952 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
15953 struct symbol *space)
15954 {
15955 struct objfile *objfile = cu->objfile;
15956 struct symbol *sym = NULL;
15957 const char *name;
15958 struct attribute *attr = NULL;
15959 struct attribute *attr2 = NULL;
15960 CORE_ADDR baseaddr;
15961 struct pending **list_to_add = NULL;
15962
15963 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
15964
15965 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15966
15967 name = dwarf2_name (die, cu);
15968 if (name)
15969 {
15970 const char *linkagename;
15971 int suppress_add = 0;
15972
15973 if (space)
15974 sym = space;
15975 else
15976 sym = allocate_symbol (objfile);
15977 OBJSTAT (objfile, n_syms++);
15978
15979 /* Cache this symbol's name and the name's demangled form (if any). */
15980 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
15981 linkagename = dwarf2_physname (name, die, cu);
15982 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
15983
15984 /* Fortran does not have mangling standard and the mangling does differ
15985 between gfortran, iFort etc. */
15986 if (cu->language == language_fortran
15987 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
15988 symbol_set_demangled_name (&(sym->ginfo),
15989 dwarf2_full_name (name, die, cu),
15990 NULL);
15991
15992 /* Default assumptions.
15993 Use the passed type or decode it from the die. */
15994 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15995 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
15996 if (type != NULL)
15997 SYMBOL_TYPE (sym) = type;
15998 else
15999 SYMBOL_TYPE (sym) = die_type (die, cu);
16000 attr = dwarf2_attr (die,
16001 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
16002 cu);
16003 if (attr)
16004 {
16005 SYMBOL_LINE (sym) = DW_UNSND (attr);
16006 }
16007
16008 attr = dwarf2_attr (die,
16009 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
16010 cu);
16011 if (attr)
16012 {
16013 int file_index = DW_UNSND (attr);
16014
16015 if (cu->line_header == NULL
16016 || file_index > cu->line_header->num_file_names)
16017 complaint (&symfile_complaints,
16018 _("file index out of range"));
16019 else if (file_index > 0)
16020 {
16021 struct file_entry *fe;
16022
16023 fe = &cu->line_header->file_names[file_index - 1];
16024 SYMBOL_SYMTAB (sym) = fe->symtab;
16025 }
16026 }
16027
16028 switch (die->tag)
16029 {
16030 case DW_TAG_label:
16031 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
16032 if (attr)
16033 {
16034 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
16035 }
16036 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
16037 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
16038 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
16039 add_symbol_to_list (sym, cu->list_in_scope);
16040 break;
16041 case DW_TAG_subprogram:
16042 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16043 finish_block. */
16044 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16045 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16046 if ((attr2 && (DW_UNSND (attr2) != 0))
16047 || cu->language == language_ada)
16048 {
16049 /* Subprograms marked external are stored as a global symbol.
16050 Ada subprograms, whether marked external or not, are always
16051 stored as a global symbol, because we want to be able to
16052 access them globally. For instance, we want to be able
16053 to break on a nested subprogram without having to
16054 specify the context. */
16055 list_to_add = &global_symbols;
16056 }
16057 else
16058 {
16059 list_to_add = cu->list_in_scope;
16060 }
16061 break;
16062 case DW_TAG_inlined_subroutine:
16063 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16064 finish_block. */
16065 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16066 SYMBOL_INLINED (sym) = 1;
16067 list_to_add = cu->list_in_scope;
16068 break;
16069 case DW_TAG_template_value_param:
16070 suppress_add = 1;
16071 /* Fall through. */
16072 case DW_TAG_constant:
16073 case DW_TAG_variable:
16074 case DW_TAG_member:
16075 /* Compilation with minimal debug info may result in
16076 variables with missing type entries. Change the
16077 misleading `void' type to something sensible. */
16078 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
16079 SYMBOL_TYPE (sym)
16080 = objfile_type (objfile)->nodebug_data_symbol;
16081
16082 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16083 /* In the case of DW_TAG_member, we should only be called for
16084 static const members. */
16085 if (die->tag == DW_TAG_member)
16086 {
16087 /* dwarf2_add_field uses die_is_declaration,
16088 so we do the same. */
16089 gdb_assert (die_is_declaration (die, cu));
16090 gdb_assert (attr);
16091 }
16092 if (attr)
16093 {
16094 dwarf2_const_value (attr, sym, cu);
16095 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16096 if (!suppress_add)
16097 {
16098 if (attr2 && (DW_UNSND (attr2) != 0))
16099 list_to_add = &global_symbols;
16100 else
16101 list_to_add = cu->list_in_scope;
16102 }
16103 break;
16104 }
16105 attr = dwarf2_attr (die, DW_AT_location, cu);
16106 if (attr)
16107 {
16108 var_decode_location (attr, sym, cu);
16109 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16110
16111 /* Fortran explicitly imports any global symbols to the local
16112 scope by DW_TAG_common_block. */
16113 if (cu->language == language_fortran && die->parent
16114 && die->parent->tag == DW_TAG_common_block)
16115 attr2 = NULL;
16116
16117 if (SYMBOL_CLASS (sym) == LOC_STATIC
16118 && SYMBOL_VALUE_ADDRESS (sym) == 0
16119 && !dwarf2_per_objfile->has_section_at_zero)
16120 {
16121 /* When a static variable is eliminated by the linker,
16122 the corresponding debug information is not stripped
16123 out, but the variable address is set to null;
16124 do not add such variables into symbol table. */
16125 }
16126 else if (attr2 && (DW_UNSND (attr2) != 0))
16127 {
16128 /* Workaround gfortran PR debug/40040 - it uses
16129 DW_AT_location for variables in -fPIC libraries which may
16130 get overriden by other libraries/executable and get
16131 a different address. Resolve it by the minimal symbol
16132 which may come from inferior's executable using copy
16133 relocation. Make this workaround only for gfortran as for
16134 other compilers GDB cannot guess the minimal symbol
16135 Fortran mangling kind. */
16136 if (cu->language == language_fortran && die->parent
16137 && die->parent->tag == DW_TAG_module
16138 && cu->producer
16139 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
16140 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16141
16142 /* A variable with DW_AT_external is never static,
16143 but it may be block-scoped. */
16144 list_to_add = (cu->list_in_scope == &file_symbols
16145 ? &global_symbols : cu->list_in_scope);
16146 }
16147 else
16148 list_to_add = cu->list_in_scope;
16149 }
16150 else
16151 {
16152 /* We do not know the address of this symbol.
16153 If it is an external symbol and we have type information
16154 for it, enter the symbol as a LOC_UNRESOLVED symbol.
16155 The address of the variable will then be determined from
16156 the minimal symbol table whenever the variable is
16157 referenced. */
16158 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16159
16160 /* Fortran explicitly imports any global symbols to the local
16161 scope by DW_TAG_common_block. */
16162 if (cu->language == language_fortran && die->parent
16163 && die->parent->tag == DW_TAG_common_block)
16164 {
16165 /* SYMBOL_CLASS doesn't matter here because
16166 read_common_block is going to reset it. */
16167 if (!suppress_add)
16168 list_to_add = cu->list_in_scope;
16169 }
16170 else if (attr2 && (DW_UNSND (attr2) != 0)
16171 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
16172 {
16173 /* A variable with DW_AT_external is never static, but it
16174 may be block-scoped. */
16175 list_to_add = (cu->list_in_scope == &file_symbols
16176 ? &global_symbols : cu->list_in_scope);
16177
16178 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16179 }
16180 else if (!die_is_declaration (die, cu))
16181 {
16182 /* Use the default LOC_OPTIMIZED_OUT class. */
16183 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
16184 if (!suppress_add)
16185 list_to_add = cu->list_in_scope;
16186 }
16187 }
16188 break;
16189 case DW_TAG_formal_parameter:
16190 /* If we are inside a function, mark this as an argument. If
16191 not, we might be looking at an argument to an inlined function
16192 when we do not have enough information to show inlined frames;
16193 pretend it's a local variable in that case so that the user can
16194 still see it. */
16195 if (context_stack_depth > 0
16196 && context_stack[context_stack_depth - 1].name != NULL)
16197 SYMBOL_IS_ARGUMENT (sym) = 1;
16198 attr = dwarf2_attr (die, DW_AT_location, cu);
16199 if (attr)
16200 {
16201 var_decode_location (attr, sym, cu);
16202 }
16203 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16204 if (attr)
16205 {
16206 dwarf2_const_value (attr, sym, cu);
16207 }
16208
16209 list_to_add = cu->list_in_scope;
16210 break;
16211 case DW_TAG_unspecified_parameters:
16212 /* From varargs functions; gdb doesn't seem to have any
16213 interest in this information, so just ignore it for now.
16214 (FIXME?) */
16215 break;
16216 case DW_TAG_template_type_param:
16217 suppress_add = 1;
16218 /* Fall through. */
16219 case DW_TAG_class_type:
16220 case DW_TAG_interface_type:
16221 case DW_TAG_structure_type:
16222 case DW_TAG_union_type:
16223 case DW_TAG_set_type:
16224 case DW_TAG_enumeration_type:
16225 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16226 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
16227
16228 {
16229 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
16230 really ever be static objects: otherwise, if you try
16231 to, say, break of a class's method and you're in a file
16232 which doesn't mention that class, it won't work unless
16233 the check for all static symbols in lookup_symbol_aux
16234 saves you. See the OtherFileClass tests in
16235 gdb.c++/namespace.exp. */
16236
16237 if (!suppress_add)
16238 {
16239 list_to_add = (cu->list_in_scope == &file_symbols
16240 && (cu->language == language_cplus
16241 || cu->language == language_java)
16242 ? &global_symbols : cu->list_in_scope);
16243
16244 /* The semantics of C++ state that "struct foo {
16245 ... }" also defines a typedef for "foo". A Java
16246 class declaration also defines a typedef for the
16247 class. */
16248 if (cu->language == language_cplus
16249 || cu->language == language_java
16250 || cu->language == language_ada)
16251 {
16252 /* The symbol's name is already allocated along
16253 with this objfile, so we don't need to
16254 duplicate it for the type. */
16255 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16256 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16257 }
16258 }
16259 }
16260 break;
16261 case DW_TAG_typedef:
16262 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16263 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16264 list_to_add = cu->list_in_scope;
16265 break;
16266 case DW_TAG_base_type:
16267 case DW_TAG_subrange_type:
16268 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16269 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16270 list_to_add = cu->list_in_scope;
16271 break;
16272 case DW_TAG_enumerator:
16273 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16274 if (attr)
16275 {
16276 dwarf2_const_value (attr, sym, cu);
16277 }
16278 {
16279 /* NOTE: carlton/2003-11-10: See comment above in the
16280 DW_TAG_class_type, etc. block. */
16281
16282 list_to_add = (cu->list_in_scope == &file_symbols
16283 && (cu->language == language_cplus
16284 || cu->language == language_java)
16285 ? &global_symbols : cu->list_in_scope);
16286 }
16287 break;
16288 case DW_TAG_namespace:
16289 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16290 list_to_add = &global_symbols;
16291 break;
16292 case DW_TAG_common_block:
16293 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
16294 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16295 add_symbol_to_list (sym, cu->list_in_scope);
16296 break;
16297 default:
16298 /* Not a tag we recognize. Hopefully we aren't processing
16299 trash data, but since we must specifically ignore things
16300 we don't recognize, there is nothing else we should do at
16301 this point. */
16302 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16303 dwarf_tag_name (die->tag));
16304 break;
16305 }
16306
16307 if (suppress_add)
16308 {
16309 sym->hash_next = objfile->template_symbols;
16310 objfile->template_symbols = sym;
16311 list_to_add = NULL;
16312 }
16313
16314 if (list_to_add != NULL)
16315 add_symbol_to_list (sym, list_to_add);
16316
16317 /* For the benefit of old versions of GCC, check for anonymous
16318 namespaces based on the demangled name. */
16319 if (!cu->processing_has_namespace_info
16320 && cu->language == language_cplus)
16321 cp_scan_for_anonymous_namespaces (sym, objfile);
16322 }
16323 return (sym);
16324 }
16325
16326 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16327
16328 static struct symbol *
16329 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16330 {
16331 return new_symbol_full (die, type, cu, NULL);
16332 }
16333
16334 /* Given an attr with a DW_FORM_dataN value in host byte order,
16335 zero-extend it as appropriate for the symbol's type. The DWARF
16336 standard (v4) is not entirely clear about the meaning of using
16337 DW_FORM_dataN for a constant with a signed type, where the type is
16338 wider than the data. The conclusion of a discussion on the DWARF
16339 list was that this is unspecified. We choose to always zero-extend
16340 because that is the interpretation long in use by GCC. */
16341
16342 static gdb_byte *
16343 dwarf2_const_value_data (struct attribute *attr, struct type *type,
16344 const char *name, struct obstack *obstack,
16345 struct dwarf2_cu *cu, LONGEST *value, int bits)
16346 {
16347 struct objfile *objfile = cu->objfile;
16348 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16349 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16350 LONGEST l = DW_UNSND (attr);
16351
16352 if (bits < sizeof (*value) * 8)
16353 {
16354 l &= ((LONGEST) 1 << bits) - 1;
16355 *value = l;
16356 }
16357 else if (bits == sizeof (*value) * 8)
16358 *value = l;
16359 else
16360 {
16361 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16362 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16363 return bytes;
16364 }
16365
16366 return NULL;
16367 }
16368
16369 /* Read a constant value from an attribute. Either set *VALUE, or if
16370 the value does not fit in *VALUE, set *BYTES - either already
16371 allocated on the objfile obstack, or newly allocated on OBSTACK,
16372 or, set *BATON, if we translated the constant to a location
16373 expression. */
16374
16375 static void
16376 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16377 const char *name, struct obstack *obstack,
16378 struct dwarf2_cu *cu,
16379 LONGEST *value, const gdb_byte **bytes,
16380 struct dwarf2_locexpr_baton **baton)
16381 {
16382 struct objfile *objfile = cu->objfile;
16383 struct comp_unit_head *cu_header = &cu->header;
16384 struct dwarf_block *blk;
16385 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16386 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16387
16388 *value = 0;
16389 *bytes = NULL;
16390 *baton = NULL;
16391
16392 switch (attr->form)
16393 {
16394 case DW_FORM_addr:
16395 case DW_FORM_GNU_addr_index:
16396 {
16397 gdb_byte *data;
16398
16399 if (TYPE_LENGTH (type) != cu_header->addr_size)
16400 dwarf2_const_value_length_mismatch_complaint (name,
16401 cu_header->addr_size,
16402 TYPE_LENGTH (type));
16403 /* Symbols of this form are reasonably rare, so we just
16404 piggyback on the existing location code rather than writing
16405 a new implementation of symbol_computed_ops. */
16406 *baton = obstack_alloc (&objfile->objfile_obstack,
16407 sizeof (struct dwarf2_locexpr_baton));
16408 (*baton)->per_cu = cu->per_cu;
16409 gdb_assert ((*baton)->per_cu);
16410
16411 (*baton)->size = 2 + cu_header->addr_size;
16412 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
16413 (*baton)->data = data;
16414
16415 data[0] = DW_OP_addr;
16416 store_unsigned_integer (&data[1], cu_header->addr_size,
16417 byte_order, DW_ADDR (attr));
16418 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16419 }
16420 break;
16421 case DW_FORM_string:
16422 case DW_FORM_strp:
16423 case DW_FORM_GNU_str_index:
16424 case DW_FORM_GNU_strp_alt:
16425 /* DW_STRING is already allocated on the objfile obstack, point
16426 directly to it. */
16427 *bytes = (const gdb_byte *) DW_STRING (attr);
16428 break;
16429 case DW_FORM_block1:
16430 case DW_FORM_block2:
16431 case DW_FORM_block4:
16432 case DW_FORM_block:
16433 case DW_FORM_exprloc:
16434 blk = DW_BLOCK (attr);
16435 if (TYPE_LENGTH (type) != blk->size)
16436 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16437 TYPE_LENGTH (type));
16438 *bytes = blk->data;
16439 break;
16440
16441 /* The DW_AT_const_value attributes are supposed to carry the
16442 symbol's value "represented as it would be on the target
16443 architecture." By the time we get here, it's already been
16444 converted to host endianness, so we just need to sign- or
16445 zero-extend it as appropriate. */
16446 case DW_FORM_data1:
16447 *bytes = dwarf2_const_value_data (attr, type, name,
16448 obstack, cu, value, 8);
16449 break;
16450 case DW_FORM_data2:
16451 *bytes = dwarf2_const_value_data (attr, type, name,
16452 obstack, cu, value, 16);
16453 break;
16454 case DW_FORM_data4:
16455 *bytes = dwarf2_const_value_data (attr, type, name,
16456 obstack, cu, value, 32);
16457 break;
16458 case DW_FORM_data8:
16459 *bytes = dwarf2_const_value_data (attr, type, name,
16460 obstack, cu, value, 64);
16461 break;
16462
16463 case DW_FORM_sdata:
16464 *value = DW_SND (attr);
16465 break;
16466
16467 case DW_FORM_udata:
16468 *value = DW_UNSND (attr);
16469 break;
16470
16471 default:
16472 complaint (&symfile_complaints,
16473 _("unsupported const value attribute form: '%s'"),
16474 dwarf_form_name (attr->form));
16475 *value = 0;
16476 break;
16477 }
16478 }
16479
16480
16481 /* Copy constant value from an attribute to a symbol. */
16482
16483 static void
16484 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16485 struct dwarf2_cu *cu)
16486 {
16487 struct objfile *objfile = cu->objfile;
16488 struct comp_unit_head *cu_header = &cu->header;
16489 LONGEST value;
16490 const gdb_byte *bytes;
16491 struct dwarf2_locexpr_baton *baton;
16492
16493 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16494 SYMBOL_PRINT_NAME (sym),
16495 &objfile->objfile_obstack, cu,
16496 &value, &bytes, &baton);
16497
16498 if (baton != NULL)
16499 {
16500 SYMBOL_LOCATION_BATON (sym) = baton;
16501 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16502 }
16503 else if (bytes != NULL)
16504 {
16505 SYMBOL_VALUE_BYTES (sym) = bytes;
16506 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
16507 }
16508 else
16509 {
16510 SYMBOL_VALUE (sym) = value;
16511 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
16512 }
16513 }
16514
16515 /* Return the type of the die in question using its DW_AT_type attribute. */
16516
16517 static struct type *
16518 die_type (struct die_info *die, struct dwarf2_cu *cu)
16519 {
16520 struct attribute *type_attr;
16521
16522 type_attr = dwarf2_attr (die, DW_AT_type, cu);
16523 if (!type_attr)
16524 {
16525 /* A missing DW_AT_type represents a void type. */
16526 return objfile_type (cu->objfile)->builtin_void;
16527 }
16528
16529 return lookup_die_type (die, type_attr, cu);
16530 }
16531
16532 /* True iff CU's producer generates GNAT Ada auxiliary information
16533 that allows to find parallel types through that information instead
16534 of having to do expensive parallel lookups by type name. */
16535
16536 static int
16537 need_gnat_info (struct dwarf2_cu *cu)
16538 {
16539 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16540 of GNAT produces this auxiliary information, without any indication
16541 that it is produced. Part of enhancing the FSF version of GNAT
16542 to produce that information will be to put in place an indicator
16543 that we can use in order to determine whether the descriptive type
16544 info is available or not. One suggestion that has been made is
16545 to use a new attribute, attached to the CU die. For now, assume
16546 that the descriptive type info is not available. */
16547 return 0;
16548 }
16549
16550 /* Return the auxiliary type of the die in question using its
16551 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16552 attribute is not present. */
16553
16554 static struct type *
16555 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16556 {
16557 struct attribute *type_attr;
16558
16559 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16560 if (!type_attr)
16561 return NULL;
16562
16563 return lookup_die_type (die, type_attr, cu);
16564 }
16565
16566 /* If DIE has a descriptive_type attribute, then set the TYPE's
16567 descriptive type accordingly. */
16568
16569 static void
16570 set_descriptive_type (struct type *type, struct die_info *die,
16571 struct dwarf2_cu *cu)
16572 {
16573 struct type *descriptive_type = die_descriptive_type (die, cu);
16574
16575 if (descriptive_type)
16576 {
16577 ALLOCATE_GNAT_AUX_TYPE (type);
16578 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16579 }
16580 }
16581
16582 /* Return the containing type of the die in question using its
16583 DW_AT_containing_type attribute. */
16584
16585 static struct type *
16586 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
16587 {
16588 struct attribute *type_attr;
16589
16590 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
16591 if (!type_attr)
16592 error (_("Dwarf Error: Problem turning containing type into gdb type "
16593 "[in module %s]"), cu->objfile->name);
16594
16595 return lookup_die_type (die, type_attr, cu);
16596 }
16597
16598 /* Look up the type of DIE in CU using its type attribute ATTR.
16599 If there is no type substitute an error marker. */
16600
16601 static struct type *
16602 lookup_die_type (struct die_info *die, struct attribute *attr,
16603 struct dwarf2_cu *cu)
16604 {
16605 struct objfile *objfile = cu->objfile;
16606 struct type *this_type;
16607
16608 /* First see if we have it cached. */
16609
16610 if (attr->form == DW_FORM_GNU_ref_alt)
16611 {
16612 struct dwarf2_per_cu_data *per_cu;
16613 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16614
16615 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
16616 this_type = get_die_type_at_offset (offset, per_cu);
16617 }
16618 else if (is_ref_attr (attr))
16619 {
16620 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16621
16622 this_type = get_die_type_at_offset (offset, cu->per_cu);
16623 }
16624 else if (attr->form == DW_FORM_ref_sig8)
16625 {
16626 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
16627
16628 /* sig_type will be NULL if the signatured type is missing from
16629 the debug info. */
16630 if (sig_type == NULL)
16631 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
16632 "at 0x%x [in module %s]"),
16633 die->offset.sect_off, objfile->name);
16634
16635 gdb_assert (sig_type->per_cu.is_debug_types);
16636 /* If we haven't filled in type_offset_in_section yet, then we
16637 haven't read the type in yet. */
16638 this_type = NULL;
16639 if (sig_type->type_offset_in_section.sect_off != 0)
16640 {
16641 this_type =
16642 get_die_type_at_offset (sig_type->type_offset_in_section,
16643 &sig_type->per_cu);
16644 }
16645 }
16646 else
16647 {
16648 dump_die_for_error (die);
16649 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
16650 dwarf_attr_name (attr->name), objfile->name);
16651 }
16652
16653 /* If not cached we need to read it in. */
16654
16655 if (this_type == NULL)
16656 {
16657 struct die_info *type_die;
16658 struct dwarf2_cu *type_cu = cu;
16659
16660 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
16661 /* If we found the type now, it's probably because the type came
16662 from an inter-CU reference and the type's CU got expanded before
16663 ours. */
16664 this_type = get_die_type (type_die, type_cu);
16665 if (this_type == NULL)
16666 this_type = read_type_die_1 (type_die, type_cu);
16667 }
16668
16669 /* If we still don't have a type use an error marker. */
16670
16671 if (this_type == NULL)
16672 {
16673 char *message, *saved;
16674
16675 /* read_type_die already issued a complaint. */
16676 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
16677 objfile->name,
16678 cu->header.offset.sect_off,
16679 die->offset.sect_off);
16680 saved = obstack_copy0 (&objfile->objfile_obstack,
16681 message, strlen (message));
16682 xfree (message);
16683
16684 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
16685 }
16686
16687 return this_type;
16688 }
16689
16690 /* Return the type in DIE, CU.
16691 Returns NULL for invalid types.
16692
16693 This first does a lookup in die_type_hash,
16694 and only reads the die in if necessary.
16695
16696 NOTE: This can be called when reading in partial or full symbols. */
16697
16698 static struct type *
16699 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
16700 {
16701 struct type *this_type;
16702
16703 this_type = get_die_type (die, cu);
16704 if (this_type)
16705 return this_type;
16706
16707 return read_type_die_1 (die, cu);
16708 }
16709
16710 /* Read the type in DIE, CU.
16711 Returns NULL for invalid types. */
16712
16713 static struct type *
16714 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
16715 {
16716 struct type *this_type = NULL;
16717
16718 switch (die->tag)
16719 {
16720 case DW_TAG_class_type:
16721 case DW_TAG_interface_type:
16722 case DW_TAG_structure_type:
16723 case DW_TAG_union_type:
16724 this_type = read_structure_type (die, cu);
16725 break;
16726 case DW_TAG_enumeration_type:
16727 this_type = read_enumeration_type (die, cu);
16728 break;
16729 case DW_TAG_subprogram:
16730 case DW_TAG_subroutine_type:
16731 case DW_TAG_inlined_subroutine:
16732 this_type = read_subroutine_type (die, cu);
16733 break;
16734 case DW_TAG_array_type:
16735 this_type = read_array_type (die, cu);
16736 break;
16737 case DW_TAG_set_type:
16738 this_type = read_set_type (die, cu);
16739 break;
16740 case DW_TAG_pointer_type:
16741 this_type = read_tag_pointer_type (die, cu);
16742 break;
16743 case DW_TAG_ptr_to_member_type:
16744 this_type = read_tag_ptr_to_member_type (die, cu);
16745 break;
16746 case DW_TAG_reference_type:
16747 this_type = read_tag_reference_type (die, cu);
16748 break;
16749 case DW_TAG_const_type:
16750 this_type = read_tag_const_type (die, cu);
16751 break;
16752 case DW_TAG_volatile_type:
16753 this_type = read_tag_volatile_type (die, cu);
16754 break;
16755 case DW_TAG_restrict_type:
16756 this_type = read_tag_restrict_type (die, cu);
16757 break;
16758 case DW_TAG_string_type:
16759 this_type = read_tag_string_type (die, cu);
16760 break;
16761 case DW_TAG_typedef:
16762 this_type = read_typedef (die, cu);
16763 break;
16764 case DW_TAG_subrange_type:
16765 this_type = read_subrange_type (die, cu);
16766 break;
16767 case DW_TAG_base_type:
16768 this_type = read_base_type (die, cu);
16769 break;
16770 case DW_TAG_unspecified_type:
16771 this_type = read_unspecified_type (die, cu);
16772 break;
16773 case DW_TAG_namespace:
16774 this_type = read_namespace_type (die, cu);
16775 break;
16776 case DW_TAG_module:
16777 this_type = read_module_type (die, cu);
16778 break;
16779 default:
16780 complaint (&symfile_complaints,
16781 _("unexpected tag in read_type_die: '%s'"),
16782 dwarf_tag_name (die->tag));
16783 break;
16784 }
16785
16786 return this_type;
16787 }
16788
16789 /* See if we can figure out if the class lives in a namespace. We do
16790 this by looking for a member function; its demangled name will
16791 contain namespace info, if there is any.
16792 Return the computed name or NULL.
16793 Space for the result is allocated on the objfile's obstack.
16794 This is the full-die version of guess_partial_die_structure_name.
16795 In this case we know DIE has no useful parent. */
16796
16797 static char *
16798 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
16799 {
16800 struct die_info *spec_die;
16801 struct dwarf2_cu *spec_cu;
16802 struct die_info *child;
16803
16804 spec_cu = cu;
16805 spec_die = die_specification (die, &spec_cu);
16806 if (spec_die != NULL)
16807 {
16808 die = spec_die;
16809 cu = spec_cu;
16810 }
16811
16812 for (child = die->child;
16813 child != NULL;
16814 child = child->sibling)
16815 {
16816 if (child->tag == DW_TAG_subprogram)
16817 {
16818 struct attribute *attr;
16819
16820 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
16821 if (attr == NULL)
16822 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
16823 if (attr != NULL)
16824 {
16825 char *actual_name
16826 = language_class_name_from_physname (cu->language_defn,
16827 DW_STRING (attr));
16828 char *name = NULL;
16829
16830 if (actual_name != NULL)
16831 {
16832 const char *die_name = dwarf2_name (die, cu);
16833
16834 if (die_name != NULL
16835 && strcmp (die_name, actual_name) != 0)
16836 {
16837 /* Strip off the class name from the full name.
16838 We want the prefix. */
16839 int die_name_len = strlen (die_name);
16840 int actual_name_len = strlen (actual_name);
16841
16842 /* Test for '::' as a sanity check. */
16843 if (actual_name_len > die_name_len + 2
16844 && actual_name[actual_name_len
16845 - die_name_len - 1] == ':')
16846 name =
16847 obstack_copy0 (&cu->objfile->objfile_obstack,
16848 actual_name,
16849 actual_name_len - die_name_len - 2);
16850 }
16851 }
16852 xfree (actual_name);
16853 return name;
16854 }
16855 }
16856 }
16857
16858 return NULL;
16859 }
16860
16861 /* GCC might emit a nameless typedef that has a linkage name. Determine the
16862 prefix part in such case. See
16863 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16864
16865 static char *
16866 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
16867 {
16868 struct attribute *attr;
16869 char *base;
16870
16871 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
16872 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
16873 return NULL;
16874
16875 attr = dwarf2_attr (die, DW_AT_name, cu);
16876 if (attr != NULL && DW_STRING (attr) != NULL)
16877 return NULL;
16878
16879 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16880 if (attr == NULL)
16881 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16882 if (attr == NULL || DW_STRING (attr) == NULL)
16883 return NULL;
16884
16885 /* dwarf2_name had to be already called. */
16886 gdb_assert (DW_STRING_IS_CANONICAL (attr));
16887
16888 /* Strip the base name, keep any leading namespaces/classes. */
16889 base = strrchr (DW_STRING (attr), ':');
16890 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
16891 return "";
16892
16893 return obstack_copy0 (&cu->objfile->objfile_obstack,
16894 DW_STRING (attr), &base[-1] - DW_STRING (attr));
16895 }
16896
16897 /* Return the name of the namespace/class that DIE is defined within,
16898 or "" if we can't tell. The caller should not xfree the result.
16899
16900 For example, if we're within the method foo() in the following
16901 code:
16902
16903 namespace N {
16904 class C {
16905 void foo () {
16906 }
16907 };
16908 }
16909
16910 then determine_prefix on foo's die will return "N::C". */
16911
16912 static const char *
16913 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
16914 {
16915 struct die_info *parent, *spec_die;
16916 struct dwarf2_cu *spec_cu;
16917 struct type *parent_type;
16918 char *retval;
16919
16920 if (cu->language != language_cplus && cu->language != language_java
16921 && cu->language != language_fortran)
16922 return "";
16923
16924 retval = anonymous_struct_prefix (die, cu);
16925 if (retval)
16926 return retval;
16927
16928 /* We have to be careful in the presence of DW_AT_specification.
16929 For example, with GCC 3.4, given the code
16930
16931 namespace N {
16932 void foo() {
16933 // Definition of N::foo.
16934 }
16935 }
16936
16937 then we'll have a tree of DIEs like this:
16938
16939 1: DW_TAG_compile_unit
16940 2: DW_TAG_namespace // N
16941 3: DW_TAG_subprogram // declaration of N::foo
16942 4: DW_TAG_subprogram // definition of N::foo
16943 DW_AT_specification // refers to die #3
16944
16945 Thus, when processing die #4, we have to pretend that we're in
16946 the context of its DW_AT_specification, namely the contex of die
16947 #3. */
16948 spec_cu = cu;
16949 spec_die = die_specification (die, &spec_cu);
16950 if (spec_die == NULL)
16951 parent = die->parent;
16952 else
16953 {
16954 parent = spec_die->parent;
16955 cu = spec_cu;
16956 }
16957
16958 if (parent == NULL)
16959 return "";
16960 else if (parent->building_fullname)
16961 {
16962 const char *name;
16963 const char *parent_name;
16964
16965 /* It has been seen on RealView 2.2 built binaries,
16966 DW_TAG_template_type_param types actually _defined_ as
16967 children of the parent class:
16968
16969 enum E {};
16970 template class <class Enum> Class{};
16971 Class<enum E> class_e;
16972
16973 1: DW_TAG_class_type (Class)
16974 2: DW_TAG_enumeration_type (E)
16975 3: DW_TAG_enumerator (enum1:0)
16976 3: DW_TAG_enumerator (enum2:1)
16977 ...
16978 2: DW_TAG_template_type_param
16979 DW_AT_type DW_FORM_ref_udata (E)
16980
16981 Besides being broken debug info, it can put GDB into an
16982 infinite loop. Consider:
16983
16984 When we're building the full name for Class<E>, we'll start
16985 at Class, and go look over its template type parameters,
16986 finding E. We'll then try to build the full name of E, and
16987 reach here. We're now trying to build the full name of E,
16988 and look over the parent DIE for containing scope. In the
16989 broken case, if we followed the parent DIE of E, we'd again
16990 find Class, and once again go look at its template type
16991 arguments, etc., etc. Simply don't consider such parent die
16992 as source-level parent of this die (it can't be, the language
16993 doesn't allow it), and break the loop here. */
16994 name = dwarf2_name (die, cu);
16995 parent_name = dwarf2_name (parent, cu);
16996 complaint (&symfile_complaints,
16997 _("template param type '%s' defined within parent '%s'"),
16998 name ? name : "<unknown>",
16999 parent_name ? parent_name : "<unknown>");
17000 return "";
17001 }
17002 else
17003 switch (parent->tag)
17004 {
17005 case DW_TAG_namespace:
17006 parent_type = read_type_die (parent, cu);
17007 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
17008 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
17009 Work around this problem here. */
17010 if (cu->language == language_cplus
17011 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
17012 return "";
17013 /* We give a name to even anonymous namespaces. */
17014 return TYPE_TAG_NAME (parent_type);
17015 case DW_TAG_class_type:
17016 case DW_TAG_interface_type:
17017 case DW_TAG_structure_type:
17018 case DW_TAG_union_type:
17019 case DW_TAG_module:
17020 parent_type = read_type_die (parent, cu);
17021 if (TYPE_TAG_NAME (parent_type) != NULL)
17022 return TYPE_TAG_NAME (parent_type);
17023 else
17024 /* An anonymous structure is only allowed non-static data
17025 members; no typedefs, no member functions, et cetera.
17026 So it does not need a prefix. */
17027 return "";
17028 case DW_TAG_compile_unit:
17029 case DW_TAG_partial_unit:
17030 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
17031 if (cu->language == language_cplus
17032 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
17033 && die->child != NULL
17034 && (die->tag == DW_TAG_class_type
17035 || die->tag == DW_TAG_structure_type
17036 || die->tag == DW_TAG_union_type))
17037 {
17038 char *name = guess_full_die_structure_name (die, cu);
17039 if (name != NULL)
17040 return name;
17041 }
17042 return "";
17043 default:
17044 return determine_prefix (parent, cu);
17045 }
17046 }
17047
17048 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
17049 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
17050 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
17051 an obconcat, otherwise allocate storage for the result. The CU argument is
17052 used to determine the language and hence, the appropriate separator. */
17053
17054 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
17055
17056 static char *
17057 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
17058 int physname, struct dwarf2_cu *cu)
17059 {
17060 const char *lead = "";
17061 const char *sep;
17062
17063 if (suffix == NULL || suffix[0] == '\0'
17064 || prefix == NULL || prefix[0] == '\0')
17065 sep = "";
17066 else if (cu->language == language_java)
17067 sep = ".";
17068 else if (cu->language == language_fortran && physname)
17069 {
17070 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
17071 DW_AT_MIPS_linkage_name is preferred and used instead. */
17072
17073 lead = "__";
17074 sep = "_MOD_";
17075 }
17076 else
17077 sep = "::";
17078
17079 if (prefix == NULL)
17080 prefix = "";
17081 if (suffix == NULL)
17082 suffix = "";
17083
17084 if (obs == NULL)
17085 {
17086 char *retval
17087 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
17088
17089 strcpy (retval, lead);
17090 strcat (retval, prefix);
17091 strcat (retval, sep);
17092 strcat (retval, suffix);
17093 return retval;
17094 }
17095 else
17096 {
17097 /* We have an obstack. */
17098 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
17099 }
17100 }
17101
17102 /* Return sibling of die, NULL if no sibling. */
17103
17104 static struct die_info *
17105 sibling_die (struct die_info *die)
17106 {
17107 return die->sibling;
17108 }
17109
17110 /* Get name of a die, return NULL if not found. */
17111
17112 static const char *
17113 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
17114 struct obstack *obstack)
17115 {
17116 if (name && cu->language == language_cplus)
17117 {
17118 char *canon_name = cp_canonicalize_string (name);
17119
17120 if (canon_name != NULL)
17121 {
17122 if (strcmp (canon_name, name) != 0)
17123 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
17124 xfree (canon_name);
17125 }
17126 }
17127
17128 return name;
17129 }
17130
17131 /* Get name of a die, return NULL if not found. */
17132
17133 static const char *
17134 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
17135 {
17136 struct attribute *attr;
17137
17138 attr = dwarf2_attr (die, DW_AT_name, cu);
17139 if ((!attr || !DW_STRING (attr))
17140 && die->tag != DW_TAG_class_type
17141 && die->tag != DW_TAG_interface_type
17142 && die->tag != DW_TAG_structure_type
17143 && die->tag != DW_TAG_union_type)
17144 return NULL;
17145
17146 switch (die->tag)
17147 {
17148 case DW_TAG_compile_unit:
17149 case DW_TAG_partial_unit:
17150 /* Compilation units have a DW_AT_name that is a filename, not
17151 a source language identifier. */
17152 case DW_TAG_enumeration_type:
17153 case DW_TAG_enumerator:
17154 /* These tags always have simple identifiers already; no need
17155 to canonicalize them. */
17156 return DW_STRING (attr);
17157
17158 case DW_TAG_subprogram:
17159 /* Java constructors will all be named "<init>", so return
17160 the class name when we see this special case. */
17161 if (cu->language == language_java
17162 && DW_STRING (attr) != NULL
17163 && strcmp (DW_STRING (attr), "<init>") == 0)
17164 {
17165 struct dwarf2_cu *spec_cu = cu;
17166 struct die_info *spec_die;
17167
17168 /* GCJ will output '<init>' for Java constructor names.
17169 For this special case, return the name of the parent class. */
17170
17171 /* GCJ may output suprogram DIEs with AT_specification set.
17172 If so, use the name of the specified DIE. */
17173 spec_die = die_specification (die, &spec_cu);
17174 if (spec_die != NULL)
17175 return dwarf2_name (spec_die, spec_cu);
17176
17177 do
17178 {
17179 die = die->parent;
17180 if (die->tag == DW_TAG_class_type)
17181 return dwarf2_name (die, cu);
17182 }
17183 while (die->tag != DW_TAG_compile_unit
17184 && die->tag != DW_TAG_partial_unit);
17185 }
17186 break;
17187
17188 case DW_TAG_class_type:
17189 case DW_TAG_interface_type:
17190 case DW_TAG_structure_type:
17191 case DW_TAG_union_type:
17192 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
17193 structures or unions. These were of the form "._%d" in GCC 4.1,
17194 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
17195 and GCC 4.4. We work around this problem by ignoring these. */
17196 if (attr && DW_STRING (attr)
17197 && (strncmp (DW_STRING (attr), "._", 2) == 0
17198 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
17199 return NULL;
17200
17201 /* GCC might emit a nameless typedef that has a linkage name. See
17202 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17203 if (!attr || DW_STRING (attr) == NULL)
17204 {
17205 char *demangled = NULL;
17206
17207 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17208 if (attr == NULL)
17209 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17210
17211 if (attr == NULL || DW_STRING (attr) == NULL)
17212 return NULL;
17213
17214 /* Avoid demangling DW_STRING (attr) the second time on a second
17215 call for the same DIE. */
17216 if (!DW_STRING_IS_CANONICAL (attr))
17217 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
17218
17219 if (demangled)
17220 {
17221 char *base;
17222
17223 /* FIXME: we already did this for the partial symbol... */
17224 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17225 demangled, strlen (demangled));
17226 DW_STRING_IS_CANONICAL (attr) = 1;
17227 xfree (demangled);
17228
17229 /* Strip any leading namespaces/classes, keep only the base name.
17230 DW_AT_name for named DIEs does not contain the prefixes. */
17231 base = strrchr (DW_STRING (attr), ':');
17232 if (base && base > DW_STRING (attr) && base[-1] == ':')
17233 return &base[1];
17234 else
17235 return DW_STRING (attr);
17236 }
17237 }
17238 break;
17239
17240 default:
17241 break;
17242 }
17243
17244 if (!DW_STRING_IS_CANONICAL (attr))
17245 {
17246 DW_STRING (attr)
17247 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17248 &cu->objfile->objfile_obstack);
17249 DW_STRING_IS_CANONICAL (attr) = 1;
17250 }
17251 return DW_STRING (attr);
17252 }
17253
17254 /* Return the die that this die in an extension of, or NULL if there
17255 is none. *EXT_CU is the CU containing DIE on input, and the CU
17256 containing the return value on output. */
17257
17258 static struct die_info *
17259 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
17260 {
17261 struct attribute *attr;
17262
17263 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
17264 if (attr == NULL)
17265 return NULL;
17266
17267 return follow_die_ref (die, attr, ext_cu);
17268 }
17269
17270 /* Convert a DIE tag into its string name. */
17271
17272 static const char *
17273 dwarf_tag_name (unsigned tag)
17274 {
17275 const char *name = get_DW_TAG_name (tag);
17276
17277 if (name == NULL)
17278 return "DW_TAG_<unknown>";
17279
17280 return name;
17281 }
17282
17283 /* Convert a DWARF attribute code into its string name. */
17284
17285 static const char *
17286 dwarf_attr_name (unsigned attr)
17287 {
17288 const char *name;
17289
17290 #ifdef MIPS /* collides with DW_AT_HP_block_index */
17291 if (attr == DW_AT_MIPS_fde)
17292 return "DW_AT_MIPS_fde";
17293 #else
17294 if (attr == DW_AT_HP_block_index)
17295 return "DW_AT_HP_block_index";
17296 #endif
17297
17298 name = get_DW_AT_name (attr);
17299
17300 if (name == NULL)
17301 return "DW_AT_<unknown>";
17302
17303 return name;
17304 }
17305
17306 /* Convert a DWARF value form code into its string name. */
17307
17308 static const char *
17309 dwarf_form_name (unsigned form)
17310 {
17311 const char *name = get_DW_FORM_name (form);
17312
17313 if (name == NULL)
17314 return "DW_FORM_<unknown>";
17315
17316 return name;
17317 }
17318
17319 static char *
17320 dwarf_bool_name (unsigned mybool)
17321 {
17322 if (mybool)
17323 return "TRUE";
17324 else
17325 return "FALSE";
17326 }
17327
17328 /* Convert a DWARF type code into its string name. */
17329
17330 static const char *
17331 dwarf_type_encoding_name (unsigned enc)
17332 {
17333 const char *name = get_DW_ATE_name (enc);
17334
17335 if (name == NULL)
17336 return "DW_ATE_<unknown>";
17337
17338 return name;
17339 }
17340
17341 static void
17342 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17343 {
17344 unsigned int i;
17345
17346 print_spaces (indent, f);
17347 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17348 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17349
17350 if (die->parent != NULL)
17351 {
17352 print_spaces (indent, f);
17353 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17354 die->parent->offset.sect_off);
17355 }
17356
17357 print_spaces (indent, f);
17358 fprintf_unfiltered (f, " has children: %s\n",
17359 dwarf_bool_name (die->child != NULL));
17360
17361 print_spaces (indent, f);
17362 fprintf_unfiltered (f, " attributes:\n");
17363
17364 for (i = 0; i < die->num_attrs; ++i)
17365 {
17366 print_spaces (indent, f);
17367 fprintf_unfiltered (f, " %s (%s) ",
17368 dwarf_attr_name (die->attrs[i].name),
17369 dwarf_form_name (die->attrs[i].form));
17370
17371 switch (die->attrs[i].form)
17372 {
17373 case DW_FORM_addr:
17374 case DW_FORM_GNU_addr_index:
17375 fprintf_unfiltered (f, "address: ");
17376 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17377 break;
17378 case DW_FORM_block2:
17379 case DW_FORM_block4:
17380 case DW_FORM_block:
17381 case DW_FORM_block1:
17382 fprintf_unfiltered (f, "block: size %s",
17383 pulongest (DW_BLOCK (&die->attrs[i])->size));
17384 break;
17385 case DW_FORM_exprloc:
17386 fprintf_unfiltered (f, "expression: size %s",
17387 pulongest (DW_BLOCK (&die->attrs[i])->size));
17388 break;
17389 case DW_FORM_ref_addr:
17390 fprintf_unfiltered (f, "ref address: ");
17391 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17392 break;
17393 case DW_FORM_GNU_ref_alt:
17394 fprintf_unfiltered (f, "alt ref address: ");
17395 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17396 break;
17397 case DW_FORM_ref1:
17398 case DW_FORM_ref2:
17399 case DW_FORM_ref4:
17400 case DW_FORM_ref8:
17401 case DW_FORM_ref_udata:
17402 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17403 (long) (DW_UNSND (&die->attrs[i])));
17404 break;
17405 case DW_FORM_data1:
17406 case DW_FORM_data2:
17407 case DW_FORM_data4:
17408 case DW_FORM_data8:
17409 case DW_FORM_udata:
17410 case DW_FORM_sdata:
17411 fprintf_unfiltered (f, "constant: %s",
17412 pulongest (DW_UNSND (&die->attrs[i])));
17413 break;
17414 case DW_FORM_sec_offset:
17415 fprintf_unfiltered (f, "section offset: %s",
17416 pulongest (DW_UNSND (&die->attrs[i])));
17417 break;
17418 case DW_FORM_ref_sig8:
17419 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
17420 {
17421 struct signatured_type *sig_type =
17422 DW_SIGNATURED_TYPE (&die->attrs[i]);
17423
17424 fprintf_unfiltered (f, "signatured type: 0x%s, offset 0x%x",
17425 hex_string (sig_type->signature),
17426 sig_type->per_cu.offset.sect_off);
17427 }
17428 else
17429 fprintf_unfiltered (f, "signatured type, unknown");
17430 break;
17431 case DW_FORM_string:
17432 case DW_FORM_strp:
17433 case DW_FORM_GNU_str_index:
17434 case DW_FORM_GNU_strp_alt:
17435 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17436 DW_STRING (&die->attrs[i])
17437 ? DW_STRING (&die->attrs[i]) : "",
17438 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17439 break;
17440 case DW_FORM_flag:
17441 if (DW_UNSND (&die->attrs[i]))
17442 fprintf_unfiltered (f, "flag: TRUE");
17443 else
17444 fprintf_unfiltered (f, "flag: FALSE");
17445 break;
17446 case DW_FORM_flag_present:
17447 fprintf_unfiltered (f, "flag: TRUE");
17448 break;
17449 case DW_FORM_indirect:
17450 /* The reader will have reduced the indirect form to
17451 the "base form" so this form should not occur. */
17452 fprintf_unfiltered (f,
17453 "unexpected attribute form: DW_FORM_indirect");
17454 break;
17455 default:
17456 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17457 die->attrs[i].form);
17458 break;
17459 }
17460 fprintf_unfiltered (f, "\n");
17461 }
17462 }
17463
17464 static void
17465 dump_die_for_error (struct die_info *die)
17466 {
17467 dump_die_shallow (gdb_stderr, 0, die);
17468 }
17469
17470 static void
17471 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17472 {
17473 int indent = level * 4;
17474
17475 gdb_assert (die != NULL);
17476
17477 if (level >= max_level)
17478 return;
17479
17480 dump_die_shallow (f, indent, die);
17481
17482 if (die->child != NULL)
17483 {
17484 print_spaces (indent, f);
17485 fprintf_unfiltered (f, " Children:");
17486 if (level + 1 < max_level)
17487 {
17488 fprintf_unfiltered (f, "\n");
17489 dump_die_1 (f, level + 1, max_level, die->child);
17490 }
17491 else
17492 {
17493 fprintf_unfiltered (f,
17494 " [not printed, max nesting level reached]\n");
17495 }
17496 }
17497
17498 if (die->sibling != NULL && level > 0)
17499 {
17500 dump_die_1 (f, level, max_level, die->sibling);
17501 }
17502 }
17503
17504 /* This is called from the pdie macro in gdbinit.in.
17505 It's not static so gcc will keep a copy callable from gdb. */
17506
17507 void
17508 dump_die (struct die_info *die, int max_level)
17509 {
17510 dump_die_1 (gdb_stdlog, 0, max_level, die);
17511 }
17512
17513 static void
17514 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17515 {
17516 void **slot;
17517
17518 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17519 INSERT);
17520
17521 *slot = die;
17522 }
17523
17524 /* DW_ADDR is always stored already as sect_offset; despite for the forms
17525 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17526
17527 static int
17528 is_ref_attr (struct attribute *attr)
17529 {
17530 switch (attr->form)
17531 {
17532 case DW_FORM_ref_addr:
17533 case DW_FORM_ref1:
17534 case DW_FORM_ref2:
17535 case DW_FORM_ref4:
17536 case DW_FORM_ref8:
17537 case DW_FORM_ref_udata:
17538 case DW_FORM_GNU_ref_alt:
17539 return 1;
17540 default:
17541 return 0;
17542 }
17543 }
17544
17545 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17546 required kind. */
17547
17548 static sect_offset
17549 dwarf2_get_ref_die_offset (struct attribute *attr)
17550 {
17551 sect_offset retval = { DW_UNSND (attr) };
17552
17553 if (is_ref_attr (attr))
17554 return retval;
17555
17556 retval.sect_off = 0;
17557 complaint (&symfile_complaints,
17558 _("unsupported die ref attribute form: '%s'"),
17559 dwarf_form_name (attr->form));
17560 return retval;
17561 }
17562
17563 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17564 * the value held by the attribute is not constant. */
17565
17566 static LONGEST
17567 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17568 {
17569 if (attr->form == DW_FORM_sdata)
17570 return DW_SND (attr);
17571 else if (attr->form == DW_FORM_udata
17572 || attr->form == DW_FORM_data1
17573 || attr->form == DW_FORM_data2
17574 || attr->form == DW_FORM_data4
17575 || attr->form == DW_FORM_data8)
17576 return DW_UNSND (attr);
17577 else
17578 {
17579 complaint (&symfile_complaints,
17580 _("Attribute value is not a constant (%s)"),
17581 dwarf_form_name (attr->form));
17582 return default_value;
17583 }
17584 }
17585
17586 /* Follow reference or signature attribute ATTR of SRC_DIE.
17587 On entry *REF_CU is the CU of SRC_DIE.
17588 On exit *REF_CU is the CU of the result. */
17589
17590 static struct die_info *
17591 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
17592 struct dwarf2_cu **ref_cu)
17593 {
17594 struct die_info *die;
17595
17596 if (is_ref_attr (attr))
17597 die = follow_die_ref (src_die, attr, ref_cu);
17598 else if (attr->form == DW_FORM_ref_sig8)
17599 die = follow_die_sig (src_die, attr, ref_cu);
17600 else
17601 {
17602 dump_die_for_error (src_die);
17603 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
17604 (*ref_cu)->objfile->name);
17605 }
17606
17607 return die;
17608 }
17609
17610 /* Follow reference OFFSET.
17611 On entry *REF_CU is the CU of the source die referencing OFFSET.
17612 On exit *REF_CU is the CU of the result.
17613 Returns NULL if OFFSET is invalid. */
17614
17615 static struct die_info *
17616 follow_die_offset (sect_offset offset, int offset_in_dwz,
17617 struct dwarf2_cu **ref_cu)
17618 {
17619 struct die_info temp_die;
17620 struct dwarf2_cu *target_cu, *cu = *ref_cu;
17621
17622 gdb_assert (cu->per_cu != NULL);
17623
17624 target_cu = cu;
17625
17626 if (cu->per_cu->is_debug_types)
17627 {
17628 /* .debug_types CUs cannot reference anything outside their CU.
17629 If they need to, they have to reference a signatured type via
17630 DW_FORM_ref_sig8. */
17631 if (! offset_in_cu_p (&cu->header, offset))
17632 return NULL;
17633 }
17634 else if (offset_in_dwz != cu->per_cu->is_dwz
17635 || ! offset_in_cu_p (&cu->header, offset))
17636 {
17637 struct dwarf2_per_cu_data *per_cu;
17638
17639 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
17640 cu->objfile);
17641
17642 /* If necessary, add it to the queue and load its DIEs. */
17643 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
17644 load_full_comp_unit (per_cu, cu->language);
17645
17646 target_cu = per_cu->cu;
17647 }
17648 else if (cu->dies == NULL)
17649 {
17650 /* We're loading full DIEs during partial symbol reading. */
17651 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
17652 load_full_comp_unit (cu->per_cu, language_minimal);
17653 }
17654
17655 *ref_cu = target_cu;
17656 temp_die.offset = offset;
17657 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
17658 }
17659
17660 /* Follow reference attribute ATTR of SRC_DIE.
17661 On entry *REF_CU is the CU of SRC_DIE.
17662 On exit *REF_CU is the CU of the result. */
17663
17664 static struct die_info *
17665 follow_die_ref (struct die_info *src_die, struct attribute *attr,
17666 struct dwarf2_cu **ref_cu)
17667 {
17668 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17669 struct dwarf2_cu *cu = *ref_cu;
17670 struct die_info *die;
17671
17672 die = follow_die_offset (offset,
17673 (attr->form == DW_FORM_GNU_ref_alt
17674 || cu->per_cu->is_dwz),
17675 ref_cu);
17676 if (!die)
17677 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
17678 "at 0x%x [in module %s]"),
17679 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
17680
17681 return die;
17682 }
17683
17684 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
17685 Returned value is intended for DW_OP_call*. Returned
17686 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
17687
17688 struct dwarf2_locexpr_baton
17689 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
17690 struct dwarf2_per_cu_data *per_cu,
17691 CORE_ADDR (*get_frame_pc) (void *baton),
17692 void *baton)
17693 {
17694 struct dwarf2_cu *cu;
17695 struct die_info *die;
17696 struct attribute *attr;
17697 struct dwarf2_locexpr_baton retval;
17698
17699 dw2_setup (per_cu->objfile);
17700
17701 if (per_cu->cu == NULL)
17702 load_cu (per_cu);
17703 cu = per_cu->cu;
17704
17705 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
17706 if (!die)
17707 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
17708 offset.sect_off, per_cu->objfile->name);
17709
17710 attr = dwarf2_attr (die, DW_AT_location, cu);
17711 if (!attr)
17712 {
17713 /* DWARF: "If there is no such attribute, then there is no effect.".
17714 DATA is ignored if SIZE is 0. */
17715
17716 retval.data = NULL;
17717 retval.size = 0;
17718 }
17719 else if (attr_form_is_section_offset (attr))
17720 {
17721 struct dwarf2_loclist_baton loclist_baton;
17722 CORE_ADDR pc = (*get_frame_pc) (baton);
17723 size_t size;
17724
17725 fill_in_loclist_baton (cu, &loclist_baton, attr);
17726
17727 retval.data = dwarf2_find_location_expression (&loclist_baton,
17728 &size, pc);
17729 retval.size = size;
17730 }
17731 else
17732 {
17733 if (!attr_form_is_block (attr))
17734 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
17735 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
17736 offset.sect_off, per_cu->objfile->name);
17737
17738 retval.data = DW_BLOCK (attr)->data;
17739 retval.size = DW_BLOCK (attr)->size;
17740 }
17741 retval.per_cu = cu->per_cu;
17742
17743 age_cached_comp_units ();
17744
17745 return retval;
17746 }
17747
17748 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
17749 offset. */
17750
17751 struct dwarf2_locexpr_baton
17752 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
17753 struct dwarf2_per_cu_data *per_cu,
17754 CORE_ADDR (*get_frame_pc) (void *baton),
17755 void *baton)
17756 {
17757 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
17758
17759 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
17760 }
17761
17762 /* Return the type of the DIE at DIE_OFFSET in the CU named by
17763 PER_CU. */
17764
17765 struct type *
17766 dwarf2_get_die_type (cu_offset die_offset,
17767 struct dwarf2_per_cu_data *per_cu)
17768 {
17769 sect_offset die_offset_sect;
17770
17771 dw2_setup (per_cu->objfile);
17772
17773 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
17774 return get_die_type_at_offset (die_offset_sect, per_cu);
17775 }
17776
17777 /* Follow the signature attribute ATTR in SRC_DIE.
17778 On entry *REF_CU is the CU of SRC_DIE.
17779 On exit *REF_CU is the CU of the result. */
17780
17781 static struct die_info *
17782 follow_die_sig (struct die_info *src_die, struct attribute *attr,
17783 struct dwarf2_cu **ref_cu)
17784 {
17785 struct objfile *objfile = (*ref_cu)->objfile;
17786 struct die_info temp_die;
17787 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
17788 struct dwarf2_cu *sig_cu;
17789 struct die_info *die;
17790
17791 /* sig_type will be NULL if the signatured type is missing from
17792 the debug info. */
17793 if (sig_type == NULL)
17794 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
17795 "at 0x%x [in module %s]"),
17796 src_die->offset.sect_off, objfile->name);
17797
17798 /* If necessary, add it to the queue and load its DIEs. */
17799
17800 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
17801 read_signatured_type (sig_type);
17802
17803 gdb_assert (sig_type->per_cu.cu != NULL);
17804
17805 sig_cu = sig_type->per_cu.cu;
17806 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
17807 temp_die.offset = sig_type->type_offset_in_section;
17808 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
17809 temp_die.offset.sect_off);
17810 if (die)
17811 {
17812 /* For .gdb_index version 7 keep track of included TUs.
17813 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
17814 if (dwarf2_per_objfile->index_table != NULL
17815 && dwarf2_per_objfile->index_table->version <= 7)
17816 {
17817 VEC_safe_push (dwarf2_per_cu_ptr,
17818 (*ref_cu)->per_cu->imported_symtabs,
17819 sig_cu->per_cu);
17820 }
17821
17822 *ref_cu = sig_cu;
17823 return die;
17824 }
17825
17826 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
17827 "from DIE at 0x%x [in module %s]"),
17828 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
17829 }
17830
17831 /* Load the DIEs associated with type unit PER_CU into memory. */
17832
17833 static void
17834 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
17835 {
17836 struct signatured_type *sig_type;
17837
17838 /* Caller is responsible for ensuring type_unit_groups don't get here. */
17839 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
17840
17841 /* We have the per_cu, but we need the signatured_type.
17842 Fortunately this is an easy translation. */
17843 gdb_assert (per_cu->is_debug_types);
17844 sig_type = (struct signatured_type *) per_cu;
17845
17846 gdb_assert (per_cu->cu == NULL);
17847
17848 read_signatured_type (sig_type);
17849
17850 gdb_assert (per_cu->cu != NULL);
17851 }
17852
17853 /* die_reader_func for read_signatured_type.
17854 This is identical to load_full_comp_unit_reader,
17855 but is kept separate for now. */
17856
17857 static void
17858 read_signatured_type_reader (const struct die_reader_specs *reader,
17859 const gdb_byte *info_ptr,
17860 struct die_info *comp_unit_die,
17861 int has_children,
17862 void *data)
17863 {
17864 struct dwarf2_cu *cu = reader->cu;
17865
17866 gdb_assert (cu->die_hash == NULL);
17867 cu->die_hash =
17868 htab_create_alloc_ex (cu->header.length / 12,
17869 die_hash,
17870 die_eq,
17871 NULL,
17872 &cu->comp_unit_obstack,
17873 hashtab_obstack_allocate,
17874 dummy_obstack_deallocate);
17875
17876 if (has_children)
17877 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
17878 &info_ptr, comp_unit_die);
17879 cu->dies = comp_unit_die;
17880 /* comp_unit_die is not stored in die_hash, no need. */
17881
17882 /* We try not to read any attributes in this function, because not
17883 all CUs needed for references have been loaded yet, and symbol
17884 table processing isn't initialized. But we have to set the CU language,
17885 or we won't be able to build types correctly.
17886 Similarly, if we do not read the producer, we can not apply
17887 producer-specific interpretation. */
17888 prepare_one_comp_unit (cu, cu->dies, language_minimal);
17889 }
17890
17891 /* Read in a signatured type and build its CU and DIEs.
17892 If the type is a stub for the real type in a DWO file,
17893 read in the real type from the DWO file as well. */
17894
17895 static void
17896 read_signatured_type (struct signatured_type *sig_type)
17897 {
17898 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
17899
17900 gdb_assert (per_cu->is_debug_types);
17901 gdb_assert (per_cu->cu == NULL);
17902
17903 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
17904 read_signatured_type_reader, NULL);
17905 }
17906
17907 /* Decode simple location descriptions.
17908 Given a pointer to a dwarf block that defines a location, compute
17909 the location and return the value.
17910
17911 NOTE drow/2003-11-18: This function is called in two situations
17912 now: for the address of static or global variables (partial symbols
17913 only) and for offsets into structures which are expected to be
17914 (more or less) constant. The partial symbol case should go away,
17915 and only the constant case should remain. That will let this
17916 function complain more accurately. A few special modes are allowed
17917 without complaint for global variables (for instance, global
17918 register values and thread-local values).
17919
17920 A location description containing no operations indicates that the
17921 object is optimized out. The return value is 0 for that case.
17922 FIXME drow/2003-11-16: No callers check for this case any more; soon all
17923 callers will only want a very basic result and this can become a
17924 complaint.
17925
17926 Note that stack[0] is unused except as a default error return. */
17927
17928 static CORE_ADDR
17929 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
17930 {
17931 struct objfile *objfile = cu->objfile;
17932 size_t i;
17933 size_t size = blk->size;
17934 const gdb_byte *data = blk->data;
17935 CORE_ADDR stack[64];
17936 int stacki;
17937 unsigned int bytes_read, unsnd;
17938 gdb_byte op;
17939
17940 i = 0;
17941 stacki = 0;
17942 stack[stacki] = 0;
17943 stack[++stacki] = 0;
17944
17945 while (i < size)
17946 {
17947 op = data[i++];
17948 switch (op)
17949 {
17950 case DW_OP_lit0:
17951 case DW_OP_lit1:
17952 case DW_OP_lit2:
17953 case DW_OP_lit3:
17954 case DW_OP_lit4:
17955 case DW_OP_lit5:
17956 case DW_OP_lit6:
17957 case DW_OP_lit7:
17958 case DW_OP_lit8:
17959 case DW_OP_lit9:
17960 case DW_OP_lit10:
17961 case DW_OP_lit11:
17962 case DW_OP_lit12:
17963 case DW_OP_lit13:
17964 case DW_OP_lit14:
17965 case DW_OP_lit15:
17966 case DW_OP_lit16:
17967 case DW_OP_lit17:
17968 case DW_OP_lit18:
17969 case DW_OP_lit19:
17970 case DW_OP_lit20:
17971 case DW_OP_lit21:
17972 case DW_OP_lit22:
17973 case DW_OP_lit23:
17974 case DW_OP_lit24:
17975 case DW_OP_lit25:
17976 case DW_OP_lit26:
17977 case DW_OP_lit27:
17978 case DW_OP_lit28:
17979 case DW_OP_lit29:
17980 case DW_OP_lit30:
17981 case DW_OP_lit31:
17982 stack[++stacki] = op - DW_OP_lit0;
17983 break;
17984
17985 case DW_OP_reg0:
17986 case DW_OP_reg1:
17987 case DW_OP_reg2:
17988 case DW_OP_reg3:
17989 case DW_OP_reg4:
17990 case DW_OP_reg5:
17991 case DW_OP_reg6:
17992 case DW_OP_reg7:
17993 case DW_OP_reg8:
17994 case DW_OP_reg9:
17995 case DW_OP_reg10:
17996 case DW_OP_reg11:
17997 case DW_OP_reg12:
17998 case DW_OP_reg13:
17999 case DW_OP_reg14:
18000 case DW_OP_reg15:
18001 case DW_OP_reg16:
18002 case DW_OP_reg17:
18003 case DW_OP_reg18:
18004 case DW_OP_reg19:
18005 case DW_OP_reg20:
18006 case DW_OP_reg21:
18007 case DW_OP_reg22:
18008 case DW_OP_reg23:
18009 case DW_OP_reg24:
18010 case DW_OP_reg25:
18011 case DW_OP_reg26:
18012 case DW_OP_reg27:
18013 case DW_OP_reg28:
18014 case DW_OP_reg29:
18015 case DW_OP_reg30:
18016 case DW_OP_reg31:
18017 stack[++stacki] = op - DW_OP_reg0;
18018 if (i < size)
18019 dwarf2_complex_location_expr_complaint ();
18020 break;
18021
18022 case DW_OP_regx:
18023 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
18024 i += bytes_read;
18025 stack[++stacki] = unsnd;
18026 if (i < size)
18027 dwarf2_complex_location_expr_complaint ();
18028 break;
18029
18030 case DW_OP_addr:
18031 stack[++stacki] = read_address (objfile->obfd, &data[i],
18032 cu, &bytes_read);
18033 i += bytes_read;
18034 break;
18035
18036 case DW_OP_const1u:
18037 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
18038 i += 1;
18039 break;
18040
18041 case DW_OP_const1s:
18042 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
18043 i += 1;
18044 break;
18045
18046 case DW_OP_const2u:
18047 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
18048 i += 2;
18049 break;
18050
18051 case DW_OP_const2s:
18052 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
18053 i += 2;
18054 break;
18055
18056 case DW_OP_const4u:
18057 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
18058 i += 4;
18059 break;
18060
18061 case DW_OP_const4s:
18062 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
18063 i += 4;
18064 break;
18065
18066 case DW_OP_const8u:
18067 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
18068 i += 8;
18069 break;
18070
18071 case DW_OP_constu:
18072 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
18073 &bytes_read);
18074 i += bytes_read;
18075 break;
18076
18077 case DW_OP_consts:
18078 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
18079 i += bytes_read;
18080 break;
18081
18082 case DW_OP_dup:
18083 stack[stacki + 1] = stack[stacki];
18084 stacki++;
18085 break;
18086
18087 case DW_OP_plus:
18088 stack[stacki - 1] += stack[stacki];
18089 stacki--;
18090 break;
18091
18092 case DW_OP_plus_uconst:
18093 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
18094 &bytes_read);
18095 i += bytes_read;
18096 break;
18097
18098 case DW_OP_minus:
18099 stack[stacki - 1] -= stack[stacki];
18100 stacki--;
18101 break;
18102
18103 case DW_OP_deref:
18104 /* If we're not the last op, then we definitely can't encode
18105 this using GDB's address_class enum. This is valid for partial
18106 global symbols, although the variable's address will be bogus
18107 in the psymtab. */
18108 if (i < size)
18109 dwarf2_complex_location_expr_complaint ();
18110 break;
18111
18112 case DW_OP_GNU_push_tls_address:
18113 /* The top of the stack has the offset from the beginning
18114 of the thread control block at which the variable is located. */
18115 /* Nothing should follow this operator, so the top of stack would
18116 be returned. */
18117 /* This is valid for partial global symbols, but the variable's
18118 address will be bogus in the psymtab. Make it always at least
18119 non-zero to not look as a variable garbage collected by linker
18120 which have DW_OP_addr 0. */
18121 if (i < size)
18122 dwarf2_complex_location_expr_complaint ();
18123 stack[stacki]++;
18124 break;
18125
18126 case DW_OP_GNU_uninit:
18127 break;
18128
18129 case DW_OP_GNU_addr_index:
18130 case DW_OP_GNU_const_index:
18131 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
18132 &bytes_read);
18133 i += bytes_read;
18134 break;
18135
18136 default:
18137 {
18138 const char *name = get_DW_OP_name (op);
18139
18140 if (name)
18141 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
18142 name);
18143 else
18144 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
18145 op);
18146 }
18147
18148 return (stack[stacki]);
18149 }
18150
18151 /* Enforce maximum stack depth of SIZE-1 to avoid writing
18152 outside of the allocated space. Also enforce minimum>0. */
18153 if (stacki >= ARRAY_SIZE (stack) - 1)
18154 {
18155 complaint (&symfile_complaints,
18156 _("location description stack overflow"));
18157 return 0;
18158 }
18159
18160 if (stacki <= 0)
18161 {
18162 complaint (&symfile_complaints,
18163 _("location description stack underflow"));
18164 return 0;
18165 }
18166 }
18167 return (stack[stacki]);
18168 }
18169
18170 /* memory allocation interface */
18171
18172 static struct dwarf_block *
18173 dwarf_alloc_block (struct dwarf2_cu *cu)
18174 {
18175 struct dwarf_block *blk;
18176
18177 blk = (struct dwarf_block *)
18178 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
18179 return (blk);
18180 }
18181
18182 static struct die_info *
18183 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
18184 {
18185 struct die_info *die;
18186 size_t size = sizeof (struct die_info);
18187
18188 if (num_attrs > 1)
18189 size += (num_attrs - 1) * sizeof (struct attribute);
18190
18191 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
18192 memset (die, 0, sizeof (struct die_info));
18193 return (die);
18194 }
18195
18196 \f
18197 /* Macro support. */
18198
18199 /* Return file name relative to the compilation directory of file number I in
18200 *LH's file name table. The result is allocated using xmalloc; the caller is
18201 responsible for freeing it. */
18202
18203 static char *
18204 file_file_name (int file, struct line_header *lh)
18205 {
18206 /* Is the file number a valid index into the line header's file name
18207 table? Remember that file numbers start with one, not zero. */
18208 if (1 <= file && file <= lh->num_file_names)
18209 {
18210 struct file_entry *fe = &lh->file_names[file - 1];
18211
18212 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
18213 return xstrdup (fe->name);
18214 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
18215 fe->name, NULL);
18216 }
18217 else
18218 {
18219 /* The compiler produced a bogus file number. We can at least
18220 record the macro definitions made in the file, even if we
18221 won't be able to find the file by name. */
18222 char fake_name[80];
18223
18224 xsnprintf (fake_name, sizeof (fake_name),
18225 "<bad macro file number %d>", file);
18226
18227 complaint (&symfile_complaints,
18228 _("bad file number in macro information (%d)"),
18229 file);
18230
18231 return xstrdup (fake_name);
18232 }
18233 }
18234
18235 /* Return the full name of file number I in *LH's file name table.
18236 Use COMP_DIR as the name of the current directory of the
18237 compilation. The result is allocated using xmalloc; the caller is
18238 responsible for freeing it. */
18239 static char *
18240 file_full_name (int file, struct line_header *lh, const char *comp_dir)
18241 {
18242 /* Is the file number a valid index into the line header's file name
18243 table? Remember that file numbers start with one, not zero. */
18244 if (1 <= file && file <= lh->num_file_names)
18245 {
18246 char *relative = file_file_name (file, lh);
18247
18248 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
18249 return relative;
18250 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
18251 }
18252 else
18253 return file_file_name (file, lh);
18254 }
18255
18256
18257 static struct macro_source_file *
18258 macro_start_file (int file, int line,
18259 struct macro_source_file *current_file,
18260 const char *comp_dir,
18261 struct line_header *lh, struct objfile *objfile)
18262 {
18263 /* File name relative to the compilation directory of this source file. */
18264 char *file_name = file_file_name (file, lh);
18265
18266 /* We don't create a macro table for this compilation unit
18267 at all until we actually get a filename. */
18268 if (! pending_macros)
18269 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
18270 objfile->per_bfd->macro_cache,
18271 comp_dir);
18272
18273 if (! current_file)
18274 {
18275 /* If we have no current file, then this must be the start_file
18276 directive for the compilation unit's main source file. */
18277 current_file = macro_set_main (pending_macros, file_name);
18278 macro_define_special (pending_macros);
18279 }
18280 else
18281 current_file = macro_include (current_file, line, file_name);
18282
18283 xfree (file_name);
18284
18285 return current_file;
18286 }
18287
18288
18289 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18290 followed by a null byte. */
18291 static char *
18292 copy_string (const char *buf, int len)
18293 {
18294 char *s = xmalloc (len + 1);
18295
18296 memcpy (s, buf, len);
18297 s[len] = '\0';
18298 return s;
18299 }
18300
18301
18302 static const char *
18303 consume_improper_spaces (const char *p, const char *body)
18304 {
18305 if (*p == ' ')
18306 {
18307 complaint (&symfile_complaints,
18308 _("macro definition contains spaces "
18309 "in formal argument list:\n`%s'"),
18310 body);
18311
18312 while (*p == ' ')
18313 p++;
18314 }
18315
18316 return p;
18317 }
18318
18319
18320 static void
18321 parse_macro_definition (struct macro_source_file *file, int line,
18322 const char *body)
18323 {
18324 const char *p;
18325
18326 /* The body string takes one of two forms. For object-like macro
18327 definitions, it should be:
18328
18329 <macro name> " " <definition>
18330
18331 For function-like macro definitions, it should be:
18332
18333 <macro name> "() " <definition>
18334 or
18335 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
18336
18337 Spaces may appear only where explicitly indicated, and in the
18338 <definition>.
18339
18340 The Dwarf 2 spec says that an object-like macro's name is always
18341 followed by a space, but versions of GCC around March 2002 omit
18342 the space when the macro's definition is the empty string.
18343
18344 The Dwarf 2 spec says that there should be no spaces between the
18345 formal arguments in a function-like macro's formal argument list,
18346 but versions of GCC around March 2002 include spaces after the
18347 commas. */
18348
18349
18350 /* Find the extent of the macro name. The macro name is terminated
18351 by either a space or null character (for an object-like macro) or
18352 an opening paren (for a function-like macro). */
18353 for (p = body; *p; p++)
18354 if (*p == ' ' || *p == '(')
18355 break;
18356
18357 if (*p == ' ' || *p == '\0')
18358 {
18359 /* It's an object-like macro. */
18360 int name_len = p - body;
18361 char *name = copy_string (body, name_len);
18362 const char *replacement;
18363
18364 if (*p == ' ')
18365 replacement = body + name_len + 1;
18366 else
18367 {
18368 dwarf2_macro_malformed_definition_complaint (body);
18369 replacement = body + name_len;
18370 }
18371
18372 macro_define_object (file, line, name, replacement);
18373
18374 xfree (name);
18375 }
18376 else if (*p == '(')
18377 {
18378 /* It's a function-like macro. */
18379 char *name = copy_string (body, p - body);
18380 int argc = 0;
18381 int argv_size = 1;
18382 char **argv = xmalloc (argv_size * sizeof (*argv));
18383
18384 p++;
18385
18386 p = consume_improper_spaces (p, body);
18387
18388 /* Parse the formal argument list. */
18389 while (*p && *p != ')')
18390 {
18391 /* Find the extent of the current argument name. */
18392 const char *arg_start = p;
18393
18394 while (*p && *p != ',' && *p != ')' && *p != ' ')
18395 p++;
18396
18397 if (! *p || p == arg_start)
18398 dwarf2_macro_malformed_definition_complaint (body);
18399 else
18400 {
18401 /* Make sure argv has room for the new argument. */
18402 if (argc >= argv_size)
18403 {
18404 argv_size *= 2;
18405 argv = xrealloc (argv, argv_size * sizeof (*argv));
18406 }
18407
18408 argv[argc++] = copy_string (arg_start, p - arg_start);
18409 }
18410
18411 p = consume_improper_spaces (p, body);
18412
18413 /* Consume the comma, if present. */
18414 if (*p == ',')
18415 {
18416 p++;
18417
18418 p = consume_improper_spaces (p, body);
18419 }
18420 }
18421
18422 if (*p == ')')
18423 {
18424 p++;
18425
18426 if (*p == ' ')
18427 /* Perfectly formed definition, no complaints. */
18428 macro_define_function (file, line, name,
18429 argc, (const char **) argv,
18430 p + 1);
18431 else if (*p == '\0')
18432 {
18433 /* Complain, but do define it. */
18434 dwarf2_macro_malformed_definition_complaint (body);
18435 macro_define_function (file, line, name,
18436 argc, (const char **) argv,
18437 p);
18438 }
18439 else
18440 /* Just complain. */
18441 dwarf2_macro_malformed_definition_complaint (body);
18442 }
18443 else
18444 /* Just complain. */
18445 dwarf2_macro_malformed_definition_complaint (body);
18446
18447 xfree (name);
18448 {
18449 int i;
18450
18451 for (i = 0; i < argc; i++)
18452 xfree (argv[i]);
18453 }
18454 xfree (argv);
18455 }
18456 else
18457 dwarf2_macro_malformed_definition_complaint (body);
18458 }
18459
18460 /* Skip some bytes from BYTES according to the form given in FORM.
18461 Returns the new pointer. */
18462
18463 static const gdb_byte *
18464 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
18465 enum dwarf_form form,
18466 unsigned int offset_size,
18467 struct dwarf2_section_info *section)
18468 {
18469 unsigned int bytes_read;
18470
18471 switch (form)
18472 {
18473 case DW_FORM_data1:
18474 case DW_FORM_flag:
18475 ++bytes;
18476 break;
18477
18478 case DW_FORM_data2:
18479 bytes += 2;
18480 break;
18481
18482 case DW_FORM_data4:
18483 bytes += 4;
18484 break;
18485
18486 case DW_FORM_data8:
18487 bytes += 8;
18488 break;
18489
18490 case DW_FORM_string:
18491 read_direct_string (abfd, bytes, &bytes_read);
18492 bytes += bytes_read;
18493 break;
18494
18495 case DW_FORM_sec_offset:
18496 case DW_FORM_strp:
18497 case DW_FORM_GNU_strp_alt:
18498 bytes += offset_size;
18499 break;
18500
18501 case DW_FORM_block:
18502 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
18503 bytes += bytes_read;
18504 break;
18505
18506 case DW_FORM_block1:
18507 bytes += 1 + read_1_byte (abfd, bytes);
18508 break;
18509 case DW_FORM_block2:
18510 bytes += 2 + read_2_bytes (abfd, bytes);
18511 break;
18512 case DW_FORM_block4:
18513 bytes += 4 + read_4_bytes (abfd, bytes);
18514 break;
18515
18516 case DW_FORM_sdata:
18517 case DW_FORM_udata:
18518 case DW_FORM_GNU_addr_index:
18519 case DW_FORM_GNU_str_index:
18520 bytes = gdb_skip_leb128 (bytes, buffer_end);
18521 if (bytes == NULL)
18522 {
18523 dwarf2_section_buffer_overflow_complaint (section);
18524 return NULL;
18525 }
18526 break;
18527
18528 default:
18529 {
18530 complain:
18531 complaint (&symfile_complaints,
18532 _("invalid form 0x%x in `%s'"),
18533 form,
18534 section->asection->name);
18535 return NULL;
18536 }
18537 }
18538
18539 return bytes;
18540 }
18541
18542 /* A helper for dwarf_decode_macros that handles skipping an unknown
18543 opcode. Returns an updated pointer to the macro data buffer; or,
18544 on error, issues a complaint and returns NULL. */
18545
18546 static const gdb_byte *
18547 skip_unknown_opcode (unsigned int opcode,
18548 const gdb_byte **opcode_definitions,
18549 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
18550 bfd *abfd,
18551 unsigned int offset_size,
18552 struct dwarf2_section_info *section)
18553 {
18554 unsigned int bytes_read, i;
18555 unsigned long arg;
18556 const gdb_byte *defn;
18557
18558 if (opcode_definitions[opcode] == NULL)
18559 {
18560 complaint (&symfile_complaints,
18561 _("unrecognized DW_MACFINO opcode 0x%x"),
18562 opcode);
18563 return NULL;
18564 }
18565
18566 defn = opcode_definitions[opcode];
18567 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
18568 defn += bytes_read;
18569
18570 for (i = 0; i < arg; ++i)
18571 {
18572 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
18573 section);
18574 if (mac_ptr == NULL)
18575 {
18576 /* skip_form_bytes already issued the complaint. */
18577 return NULL;
18578 }
18579 }
18580
18581 return mac_ptr;
18582 }
18583
18584 /* A helper function which parses the header of a macro section.
18585 If the macro section is the extended (for now called "GNU") type,
18586 then this updates *OFFSET_SIZE. Returns a pointer to just after
18587 the header, or issues a complaint and returns NULL on error. */
18588
18589 static const gdb_byte *
18590 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
18591 bfd *abfd,
18592 const gdb_byte *mac_ptr,
18593 unsigned int *offset_size,
18594 int section_is_gnu)
18595 {
18596 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
18597
18598 if (section_is_gnu)
18599 {
18600 unsigned int version, flags;
18601
18602 version = read_2_bytes (abfd, mac_ptr);
18603 if (version != 4)
18604 {
18605 complaint (&symfile_complaints,
18606 _("unrecognized version `%d' in .debug_macro section"),
18607 version);
18608 return NULL;
18609 }
18610 mac_ptr += 2;
18611
18612 flags = read_1_byte (abfd, mac_ptr);
18613 ++mac_ptr;
18614 *offset_size = (flags & 1) ? 8 : 4;
18615
18616 if ((flags & 2) != 0)
18617 /* We don't need the line table offset. */
18618 mac_ptr += *offset_size;
18619
18620 /* Vendor opcode descriptions. */
18621 if ((flags & 4) != 0)
18622 {
18623 unsigned int i, count;
18624
18625 count = read_1_byte (abfd, mac_ptr);
18626 ++mac_ptr;
18627 for (i = 0; i < count; ++i)
18628 {
18629 unsigned int opcode, bytes_read;
18630 unsigned long arg;
18631
18632 opcode = read_1_byte (abfd, mac_ptr);
18633 ++mac_ptr;
18634 opcode_definitions[opcode] = mac_ptr;
18635 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18636 mac_ptr += bytes_read;
18637 mac_ptr += arg;
18638 }
18639 }
18640 }
18641
18642 return mac_ptr;
18643 }
18644
18645 /* A helper for dwarf_decode_macros that handles the GNU extensions,
18646 including DW_MACRO_GNU_transparent_include. */
18647
18648 static void
18649 dwarf_decode_macro_bytes (bfd *abfd,
18650 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
18651 struct macro_source_file *current_file,
18652 struct line_header *lh, const char *comp_dir,
18653 struct dwarf2_section_info *section,
18654 int section_is_gnu, int section_is_dwz,
18655 unsigned int offset_size,
18656 struct objfile *objfile,
18657 htab_t include_hash)
18658 {
18659 enum dwarf_macro_record_type macinfo_type;
18660 int at_commandline;
18661 const gdb_byte *opcode_definitions[256];
18662
18663 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18664 &offset_size, section_is_gnu);
18665 if (mac_ptr == NULL)
18666 {
18667 /* We already issued a complaint. */
18668 return;
18669 }
18670
18671 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
18672 GDB is still reading the definitions from command line. First
18673 DW_MACINFO_start_file will need to be ignored as it was already executed
18674 to create CURRENT_FILE for the main source holding also the command line
18675 definitions. On first met DW_MACINFO_start_file this flag is reset to
18676 normally execute all the remaining DW_MACINFO_start_file macinfos. */
18677
18678 at_commandline = 1;
18679
18680 do
18681 {
18682 /* Do we at least have room for a macinfo type byte? */
18683 if (mac_ptr >= mac_end)
18684 {
18685 dwarf2_section_buffer_overflow_complaint (section);
18686 break;
18687 }
18688
18689 macinfo_type = read_1_byte (abfd, mac_ptr);
18690 mac_ptr++;
18691
18692 /* Note that we rely on the fact that the corresponding GNU and
18693 DWARF constants are the same. */
18694 switch (macinfo_type)
18695 {
18696 /* A zero macinfo type indicates the end of the macro
18697 information. */
18698 case 0:
18699 break;
18700
18701 case DW_MACRO_GNU_define:
18702 case DW_MACRO_GNU_undef:
18703 case DW_MACRO_GNU_define_indirect:
18704 case DW_MACRO_GNU_undef_indirect:
18705 case DW_MACRO_GNU_define_indirect_alt:
18706 case DW_MACRO_GNU_undef_indirect_alt:
18707 {
18708 unsigned int bytes_read;
18709 int line;
18710 const char *body;
18711 int is_define;
18712
18713 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18714 mac_ptr += bytes_read;
18715
18716 if (macinfo_type == DW_MACRO_GNU_define
18717 || macinfo_type == DW_MACRO_GNU_undef)
18718 {
18719 body = read_direct_string (abfd, mac_ptr, &bytes_read);
18720 mac_ptr += bytes_read;
18721 }
18722 else
18723 {
18724 LONGEST str_offset;
18725
18726 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
18727 mac_ptr += offset_size;
18728
18729 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
18730 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
18731 || section_is_dwz)
18732 {
18733 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18734
18735 body = read_indirect_string_from_dwz (dwz, str_offset);
18736 }
18737 else
18738 body = read_indirect_string_at_offset (abfd, str_offset);
18739 }
18740
18741 is_define = (macinfo_type == DW_MACRO_GNU_define
18742 || macinfo_type == DW_MACRO_GNU_define_indirect
18743 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
18744 if (! current_file)
18745 {
18746 /* DWARF violation as no main source is present. */
18747 complaint (&symfile_complaints,
18748 _("debug info with no main source gives macro %s "
18749 "on line %d: %s"),
18750 is_define ? _("definition") : _("undefinition"),
18751 line, body);
18752 break;
18753 }
18754 if ((line == 0 && !at_commandline)
18755 || (line != 0 && at_commandline))
18756 complaint (&symfile_complaints,
18757 _("debug info gives %s macro %s with %s line %d: %s"),
18758 at_commandline ? _("command-line") : _("in-file"),
18759 is_define ? _("definition") : _("undefinition"),
18760 line == 0 ? _("zero") : _("non-zero"), line, body);
18761
18762 if (is_define)
18763 parse_macro_definition (current_file, line, body);
18764 else
18765 {
18766 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
18767 || macinfo_type == DW_MACRO_GNU_undef_indirect
18768 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
18769 macro_undef (current_file, line, body);
18770 }
18771 }
18772 break;
18773
18774 case DW_MACRO_GNU_start_file:
18775 {
18776 unsigned int bytes_read;
18777 int line, file;
18778
18779 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18780 mac_ptr += bytes_read;
18781 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18782 mac_ptr += bytes_read;
18783
18784 if ((line == 0 && !at_commandline)
18785 || (line != 0 && at_commandline))
18786 complaint (&symfile_complaints,
18787 _("debug info gives source %d included "
18788 "from %s at %s line %d"),
18789 file, at_commandline ? _("command-line") : _("file"),
18790 line == 0 ? _("zero") : _("non-zero"), line);
18791
18792 if (at_commandline)
18793 {
18794 /* This DW_MACRO_GNU_start_file was executed in the
18795 pass one. */
18796 at_commandline = 0;
18797 }
18798 else
18799 current_file = macro_start_file (file, line,
18800 current_file, comp_dir,
18801 lh, objfile);
18802 }
18803 break;
18804
18805 case DW_MACRO_GNU_end_file:
18806 if (! current_file)
18807 complaint (&symfile_complaints,
18808 _("macro debug info has an unmatched "
18809 "`close_file' directive"));
18810 else
18811 {
18812 current_file = current_file->included_by;
18813 if (! current_file)
18814 {
18815 enum dwarf_macro_record_type next_type;
18816
18817 /* GCC circa March 2002 doesn't produce the zero
18818 type byte marking the end of the compilation
18819 unit. Complain if it's not there, but exit no
18820 matter what. */
18821
18822 /* Do we at least have room for a macinfo type byte? */
18823 if (mac_ptr >= mac_end)
18824 {
18825 dwarf2_section_buffer_overflow_complaint (section);
18826 return;
18827 }
18828
18829 /* We don't increment mac_ptr here, so this is just
18830 a look-ahead. */
18831 next_type = read_1_byte (abfd, mac_ptr);
18832 if (next_type != 0)
18833 complaint (&symfile_complaints,
18834 _("no terminating 0-type entry for "
18835 "macros in `.debug_macinfo' section"));
18836
18837 return;
18838 }
18839 }
18840 break;
18841
18842 case DW_MACRO_GNU_transparent_include:
18843 case DW_MACRO_GNU_transparent_include_alt:
18844 {
18845 LONGEST offset;
18846 void **slot;
18847 bfd *include_bfd = abfd;
18848 struct dwarf2_section_info *include_section = section;
18849 struct dwarf2_section_info alt_section;
18850 const gdb_byte *include_mac_end = mac_end;
18851 int is_dwz = section_is_dwz;
18852 const gdb_byte *new_mac_ptr;
18853
18854 offset = read_offset_1 (abfd, mac_ptr, offset_size);
18855 mac_ptr += offset_size;
18856
18857 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
18858 {
18859 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18860
18861 dwarf2_read_section (dwarf2_per_objfile->objfile,
18862 &dwz->macro);
18863
18864 include_bfd = dwz->macro.asection->owner;
18865 include_section = &dwz->macro;
18866 include_mac_end = dwz->macro.buffer + dwz->macro.size;
18867 is_dwz = 1;
18868 }
18869
18870 new_mac_ptr = include_section->buffer + offset;
18871 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
18872
18873 if (*slot != NULL)
18874 {
18875 /* This has actually happened; see
18876 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
18877 complaint (&symfile_complaints,
18878 _("recursive DW_MACRO_GNU_transparent_include in "
18879 ".debug_macro section"));
18880 }
18881 else
18882 {
18883 *slot = (void *) new_mac_ptr;
18884
18885 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
18886 include_mac_end, current_file,
18887 lh, comp_dir,
18888 section, section_is_gnu, is_dwz,
18889 offset_size, objfile, include_hash);
18890
18891 htab_remove_elt (include_hash, (void *) new_mac_ptr);
18892 }
18893 }
18894 break;
18895
18896 case DW_MACINFO_vendor_ext:
18897 if (!section_is_gnu)
18898 {
18899 unsigned int bytes_read;
18900 int constant;
18901
18902 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18903 mac_ptr += bytes_read;
18904 read_direct_string (abfd, mac_ptr, &bytes_read);
18905 mac_ptr += bytes_read;
18906
18907 /* We don't recognize any vendor extensions. */
18908 break;
18909 }
18910 /* FALLTHROUGH */
18911
18912 default:
18913 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18914 mac_ptr, mac_end, abfd, offset_size,
18915 section);
18916 if (mac_ptr == NULL)
18917 return;
18918 break;
18919 }
18920 } while (macinfo_type != 0);
18921 }
18922
18923 static void
18924 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
18925 const char *comp_dir, int section_is_gnu)
18926 {
18927 struct objfile *objfile = dwarf2_per_objfile->objfile;
18928 struct line_header *lh = cu->line_header;
18929 bfd *abfd;
18930 const gdb_byte *mac_ptr, *mac_end;
18931 struct macro_source_file *current_file = 0;
18932 enum dwarf_macro_record_type macinfo_type;
18933 unsigned int offset_size = cu->header.offset_size;
18934 const gdb_byte *opcode_definitions[256];
18935 struct cleanup *cleanup;
18936 htab_t include_hash;
18937 void **slot;
18938 struct dwarf2_section_info *section;
18939 const char *section_name;
18940
18941 if (cu->dwo_unit != NULL)
18942 {
18943 if (section_is_gnu)
18944 {
18945 section = &cu->dwo_unit->dwo_file->sections.macro;
18946 section_name = ".debug_macro.dwo";
18947 }
18948 else
18949 {
18950 section = &cu->dwo_unit->dwo_file->sections.macinfo;
18951 section_name = ".debug_macinfo.dwo";
18952 }
18953 }
18954 else
18955 {
18956 if (section_is_gnu)
18957 {
18958 section = &dwarf2_per_objfile->macro;
18959 section_name = ".debug_macro";
18960 }
18961 else
18962 {
18963 section = &dwarf2_per_objfile->macinfo;
18964 section_name = ".debug_macinfo";
18965 }
18966 }
18967
18968 dwarf2_read_section (objfile, section);
18969 if (section->buffer == NULL)
18970 {
18971 complaint (&symfile_complaints, _("missing %s section"), section_name);
18972 return;
18973 }
18974 abfd = section->asection->owner;
18975
18976 /* First pass: Find the name of the base filename.
18977 This filename is needed in order to process all macros whose definition
18978 (or undefinition) comes from the command line. These macros are defined
18979 before the first DW_MACINFO_start_file entry, and yet still need to be
18980 associated to the base file.
18981
18982 To determine the base file name, we scan the macro definitions until we
18983 reach the first DW_MACINFO_start_file entry. We then initialize
18984 CURRENT_FILE accordingly so that any macro definition found before the
18985 first DW_MACINFO_start_file can still be associated to the base file. */
18986
18987 mac_ptr = section->buffer + offset;
18988 mac_end = section->buffer + section->size;
18989
18990 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18991 &offset_size, section_is_gnu);
18992 if (mac_ptr == NULL)
18993 {
18994 /* We already issued a complaint. */
18995 return;
18996 }
18997
18998 do
18999 {
19000 /* Do we at least have room for a macinfo type byte? */
19001 if (mac_ptr >= mac_end)
19002 {
19003 /* Complaint is printed during the second pass as GDB will probably
19004 stop the first pass earlier upon finding
19005 DW_MACINFO_start_file. */
19006 break;
19007 }
19008
19009 macinfo_type = read_1_byte (abfd, mac_ptr);
19010 mac_ptr++;
19011
19012 /* Note that we rely on the fact that the corresponding GNU and
19013 DWARF constants are the same. */
19014 switch (macinfo_type)
19015 {
19016 /* A zero macinfo type indicates the end of the macro
19017 information. */
19018 case 0:
19019 break;
19020
19021 case DW_MACRO_GNU_define:
19022 case DW_MACRO_GNU_undef:
19023 /* Only skip the data by MAC_PTR. */
19024 {
19025 unsigned int bytes_read;
19026
19027 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19028 mac_ptr += bytes_read;
19029 read_direct_string (abfd, mac_ptr, &bytes_read);
19030 mac_ptr += bytes_read;
19031 }
19032 break;
19033
19034 case DW_MACRO_GNU_start_file:
19035 {
19036 unsigned int bytes_read;
19037 int line, file;
19038
19039 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19040 mac_ptr += bytes_read;
19041 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19042 mac_ptr += bytes_read;
19043
19044 current_file = macro_start_file (file, line, current_file,
19045 comp_dir, lh, objfile);
19046 }
19047 break;
19048
19049 case DW_MACRO_GNU_end_file:
19050 /* No data to skip by MAC_PTR. */
19051 break;
19052
19053 case DW_MACRO_GNU_define_indirect:
19054 case DW_MACRO_GNU_undef_indirect:
19055 case DW_MACRO_GNU_define_indirect_alt:
19056 case DW_MACRO_GNU_undef_indirect_alt:
19057 {
19058 unsigned int bytes_read;
19059
19060 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19061 mac_ptr += bytes_read;
19062 mac_ptr += offset_size;
19063 }
19064 break;
19065
19066 case DW_MACRO_GNU_transparent_include:
19067 case DW_MACRO_GNU_transparent_include_alt:
19068 /* Note that, according to the spec, a transparent include
19069 chain cannot call DW_MACRO_GNU_start_file. So, we can just
19070 skip this opcode. */
19071 mac_ptr += offset_size;
19072 break;
19073
19074 case DW_MACINFO_vendor_ext:
19075 /* Only skip the data by MAC_PTR. */
19076 if (!section_is_gnu)
19077 {
19078 unsigned int bytes_read;
19079
19080 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19081 mac_ptr += bytes_read;
19082 read_direct_string (abfd, mac_ptr, &bytes_read);
19083 mac_ptr += bytes_read;
19084 }
19085 /* FALLTHROUGH */
19086
19087 default:
19088 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19089 mac_ptr, mac_end, abfd, offset_size,
19090 section);
19091 if (mac_ptr == NULL)
19092 return;
19093 break;
19094 }
19095 } while (macinfo_type != 0 && current_file == NULL);
19096
19097 /* Second pass: Process all entries.
19098
19099 Use the AT_COMMAND_LINE flag to determine whether we are still processing
19100 command-line macro definitions/undefinitions. This flag is unset when we
19101 reach the first DW_MACINFO_start_file entry. */
19102
19103 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
19104 NULL, xcalloc, xfree);
19105 cleanup = make_cleanup_htab_delete (include_hash);
19106 mac_ptr = section->buffer + offset;
19107 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
19108 *slot = (void *) mac_ptr;
19109 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
19110 current_file, lh, comp_dir, section,
19111 section_is_gnu, 0,
19112 offset_size, objfile, include_hash);
19113 do_cleanups (cleanup);
19114 }
19115
19116 /* Check if the attribute's form is a DW_FORM_block*
19117 if so return true else false. */
19118
19119 static int
19120 attr_form_is_block (struct attribute *attr)
19121 {
19122 return (attr == NULL ? 0 :
19123 attr->form == DW_FORM_block1
19124 || attr->form == DW_FORM_block2
19125 || attr->form == DW_FORM_block4
19126 || attr->form == DW_FORM_block
19127 || attr->form == DW_FORM_exprloc);
19128 }
19129
19130 /* Return non-zero if ATTR's value is a section offset --- classes
19131 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
19132 You may use DW_UNSND (attr) to retrieve such offsets.
19133
19134 Section 7.5.4, "Attribute Encodings", explains that no attribute
19135 may have a value that belongs to more than one of these classes; it
19136 would be ambiguous if we did, because we use the same forms for all
19137 of them. */
19138
19139 static int
19140 attr_form_is_section_offset (struct attribute *attr)
19141 {
19142 return (attr->form == DW_FORM_data4
19143 || attr->form == DW_FORM_data8
19144 || attr->form == DW_FORM_sec_offset);
19145 }
19146
19147 /* Return non-zero if ATTR's value falls in the 'constant' class, or
19148 zero otherwise. When this function returns true, you can apply
19149 dwarf2_get_attr_constant_value to it.
19150
19151 However, note that for some attributes you must check
19152 attr_form_is_section_offset before using this test. DW_FORM_data4
19153 and DW_FORM_data8 are members of both the constant class, and of
19154 the classes that contain offsets into other debug sections
19155 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
19156 that, if an attribute's can be either a constant or one of the
19157 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
19158 taken as section offsets, not constants. */
19159
19160 static int
19161 attr_form_is_constant (struct attribute *attr)
19162 {
19163 switch (attr->form)
19164 {
19165 case DW_FORM_sdata:
19166 case DW_FORM_udata:
19167 case DW_FORM_data1:
19168 case DW_FORM_data2:
19169 case DW_FORM_data4:
19170 case DW_FORM_data8:
19171 return 1;
19172 default:
19173 return 0;
19174 }
19175 }
19176
19177 /* Return the .debug_loc section to use for CU.
19178 For DWO files use .debug_loc.dwo. */
19179
19180 static struct dwarf2_section_info *
19181 cu_debug_loc_section (struct dwarf2_cu *cu)
19182 {
19183 if (cu->dwo_unit)
19184 return &cu->dwo_unit->dwo_file->sections.loc;
19185 return &dwarf2_per_objfile->loc;
19186 }
19187
19188 /* A helper function that fills in a dwarf2_loclist_baton. */
19189
19190 static void
19191 fill_in_loclist_baton (struct dwarf2_cu *cu,
19192 struct dwarf2_loclist_baton *baton,
19193 struct attribute *attr)
19194 {
19195 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19196
19197 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
19198
19199 baton->per_cu = cu->per_cu;
19200 gdb_assert (baton->per_cu);
19201 /* We don't know how long the location list is, but make sure we
19202 don't run off the edge of the section. */
19203 baton->size = section->size - DW_UNSND (attr);
19204 baton->data = section->buffer + DW_UNSND (attr);
19205 baton->base_address = cu->base_address;
19206 baton->from_dwo = cu->dwo_unit != NULL;
19207 }
19208
19209 static void
19210 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
19211 struct dwarf2_cu *cu, int is_block)
19212 {
19213 struct objfile *objfile = dwarf2_per_objfile->objfile;
19214 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19215
19216 if (attr_form_is_section_offset (attr)
19217 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
19218 the section. If so, fall through to the complaint in the
19219 other branch. */
19220 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
19221 {
19222 struct dwarf2_loclist_baton *baton;
19223
19224 baton = obstack_alloc (&objfile->objfile_obstack,
19225 sizeof (struct dwarf2_loclist_baton));
19226
19227 fill_in_loclist_baton (cu, baton, attr);
19228
19229 if (cu->base_known == 0)
19230 complaint (&symfile_complaints,
19231 _("Location list used without "
19232 "specifying the CU base address."));
19233
19234 SYMBOL_ACLASS_INDEX (sym) = (is_block
19235 ? dwarf2_loclist_block_index
19236 : dwarf2_loclist_index);
19237 SYMBOL_LOCATION_BATON (sym) = baton;
19238 }
19239 else
19240 {
19241 struct dwarf2_locexpr_baton *baton;
19242
19243 baton = obstack_alloc (&objfile->objfile_obstack,
19244 sizeof (struct dwarf2_locexpr_baton));
19245 baton->per_cu = cu->per_cu;
19246 gdb_assert (baton->per_cu);
19247
19248 if (attr_form_is_block (attr))
19249 {
19250 /* Note that we're just copying the block's data pointer
19251 here, not the actual data. We're still pointing into the
19252 info_buffer for SYM's objfile; right now we never release
19253 that buffer, but when we do clean up properly this may
19254 need to change. */
19255 baton->size = DW_BLOCK (attr)->size;
19256 baton->data = DW_BLOCK (attr)->data;
19257 }
19258 else
19259 {
19260 dwarf2_invalid_attrib_class_complaint ("location description",
19261 SYMBOL_NATURAL_NAME (sym));
19262 baton->size = 0;
19263 }
19264
19265 SYMBOL_ACLASS_INDEX (sym) = (is_block
19266 ? dwarf2_locexpr_block_index
19267 : dwarf2_locexpr_index);
19268 SYMBOL_LOCATION_BATON (sym) = baton;
19269 }
19270 }
19271
19272 /* Return the OBJFILE associated with the compilation unit CU. If CU
19273 came from a separate debuginfo file, then the master objfile is
19274 returned. */
19275
19276 struct objfile *
19277 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
19278 {
19279 struct objfile *objfile = per_cu->objfile;
19280
19281 /* Return the master objfile, so that we can report and look up the
19282 correct file containing this variable. */
19283 if (objfile->separate_debug_objfile_backlink)
19284 objfile = objfile->separate_debug_objfile_backlink;
19285
19286 return objfile;
19287 }
19288
19289 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
19290 (CU_HEADERP is unused in such case) or prepare a temporary copy at
19291 CU_HEADERP first. */
19292
19293 static const struct comp_unit_head *
19294 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19295 struct dwarf2_per_cu_data *per_cu)
19296 {
19297 const gdb_byte *info_ptr;
19298
19299 if (per_cu->cu)
19300 return &per_cu->cu->header;
19301
19302 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
19303
19304 memset (cu_headerp, 0, sizeof (*cu_headerp));
19305 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
19306
19307 return cu_headerp;
19308 }
19309
19310 /* Return the address size given in the compilation unit header for CU. */
19311
19312 int
19313 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
19314 {
19315 struct comp_unit_head cu_header_local;
19316 const struct comp_unit_head *cu_headerp;
19317
19318 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19319
19320 return cu_headerp->addr_size;
19321 }
19322
19323 /* Return the offset size given in the compilation unit header for CU. */
19324
19325 int
19326 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
19327 {
19328 struct comp_unit_head cu_header_local;
19329 const struct comp_unit_head *cu_headerp;
19330
19331 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19332
19333 return cu_headerp->offset_size;
19334 }
19335
19336 /* See its dwarf2loc.h declaration. */
19337
19338 int
19339 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
19340 {
19341 struct comp_unit_head cu_header_local;
19342 const struct comp_unit_head *cu_headerp;
19343
19344 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19345
19346 if (cu_headerp->version == 2)
19347 return cu_headerp->addr_size;
19348 else
19349 return cu_headerp->offset_size;
19350 }
19351
19352 /* Return the text offset of the CU. The returned offset comes from
19353 this CU's objfile. If this objfile came from a separate debuginfo
19354 file, then the offset may be different from the corresponding
19355 offset in the parent objfile. */
19356
19357 CORE_ADDR
19358 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
19359 {
19360 struct objfile *objfile = per_cu->objfile;
19361
19362 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19363 }
19364
19365 /* Locate the .debug_info compilation unit from CU's objfile which contains
19366 the DIE at OFFSET. Raises an error on failure. */
19367
19368 static struct dwarf2_per_cu_data *
19369 dwarf2_find_containing_comp_unit (sect_offset offset,
19370 unsigned int offset_in_dwz,
19371 struct objfile *objfile)
19372 {
19373 struct dwarf2_per_cu_data *this_cu;
19374 int low, high;
19375 const sect_offset *cu_off;
19376
19377 low = 0;
19378 high = dwarf2_per_objfile->n_comp_units - 1;
19379 while (high > low)
19380 {
19381 struct dwarf2_per_cu_data *mid_cu;
19382 int mid = low + (high - low) / 2;
19383
19384 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
19385 cu_off = &mid_cu->offset;
19386 if (mid_cu->is_dwz > offset_in_dwz
19387 || (mid_cu->is_dwz == offset_in_dwz
19388 && cu_off->sect_off >= offset.sect_off))
19389 high = mid;
19390 else
19391 low = mid + 1;
19392 }
19393 gdb_assert (low == high);
19394 this_cu = dwarf2_per_objfile->all_comp_units[low];
19395 cu_off = &this_cu->offset;
19396 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
19397 {
19398 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
19399 error (_("Dwarf Error: could not find partial DIE containing "
19400 "offset 0x%lx [in module %s]"),
19401 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
19402
19403 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
19404 <= offset.sect_off);
19405 return dwarf2_per_objfile->all_comp_units[low-1];
19406 }
19407 else
19408 {
19409 this_cu = dwarf2_per_objfile->all_comp_units[low];
19410 if (low == dwarf2_per_objfile->n_comp_units - 1
19411 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
19412 error (_("invalid dwarf2 offset %u"), offset.sect_off);
19413 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
19414 return this_cu;
19415 }
19416 }
19417
19418 /* Initialize dwarf2_cu CU, owned by PER_CU. */
19419
19420 static void
19421 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
19422 {
19423 memset (cu, 0, sizeof (*cu));
19424 per_cu->cu = cu;
19425 cu->per_cu = per_cu;
19426 cu->objfile = per_cu->objfile;
19427 obstack_init (&cu->comp_unit_obstack);
19428 }
19429
19430 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
19431
19432 static void
19433 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
19434 enum language pretend_language)
19435 {
19436 struct attribute *attr;
19437
19438 /* Set the language we're debugging. */
19439 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
19440 if (attr)
19441 set_cu_language (DW_UNSND (attr), cu);
19442 else
19443 {
19444 cu->language = pretend_language;
19445 cu->language_defn = language_def (cu->language);
19446 }
19447
19448 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
19449 if (attr)
19450 cu->producer = DW_STRING (attr);
19451 }
19452
19453 /* Release one cached compilation unit, CU. We unlink it from the tree
19454 of compilation units, but we don't remove it from the read_in_chain;
19455 the caller is responsible for that.
19456 NOTE: DATA is a void * because this function is also used as a
19457 cleanup routine. */
19458
19459 static void
19460 free_heap_comp_unit (void *data)
19461 {
19462 struct dwarf2_cu *cu = data;
19463
19464 gdb_assert (cu->per_cu != NULL);
19465 cu->per_cu->cu = NULL;
19466 cu->per_cu = NULL;
19467
19468 obstack_free (&cu->comp_unit_obstack, NULL);
19469
19470 xfree (cu);
19471 }
19472
19473 /* This cleanup function is passed the address of a dwarf2_cu on the stack
19474 when we're finished with it. We can't free the pointer itself, but be
19475 sure to unlink it from the cache. Also release any associated storage. */
19476
19477 static void
19478 free_stack_comp_unit (void *data)
19479 {
19480 struct dwarf2_cu *cu = data;
19481
19482 gdb_assert (cu->per_cu != NULL);
19483 cu->per_cu->cu = NULL;
19484 cu->per_cu = NULL;
19485
19486 obstack_free (&cu->comp_unit_obstack, NULL);
19487 cu->partial_dies = NULL;
19488 }
19489
19490 /* Free all cached compilation units. */
19491
19492 static void
19493 free_cached_comp_units (void *data)
19494 {
19495 struct dwarf2_per_cu_data *per_cu, **last_chain;
19496
19497 per_cu = dwarf2_per_objfile->read_in_chain;
19498 last_chain = &dwarf2_per_objfile->read_in_chain;
19499 while (per_cu != NULL)
19500 {
19501 struct dwarf2_per_cu_data *next_cu;
19502
19503 next_cu = per_cu->cu->read_in_chain;
19504
19505 free_heap_comp_unit (per_cu->cu);
19506 *last_chain = next_cu;
19507
19508 per_cu = next_cu;
19509 }
19510 }
19511
19512 /* Increase the age counter on each cached compilation unit, and free
19513 any that are too old. */
19514
19515 static void
19516 age_cached_comp_units (void)
19517 {
19518 struct dwarf2_per_cu_data *per_cu, **last_chain;
19519
19520 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
19521 per_cu = dwarf2_per_objfile->read_in_chain;
19522 while (per_cu != NULL)
19523 {
19524 per_cu->cu->last_used ++;
19525 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
19526 dwarf2_mark (per_cu->cu);
19527 per_cu = per_cu->cu->read_in_chain;
19528 }
19529
19530 per_cu = dwarf2_per_objfile->read_in_chain;
19531 last_chain = &dwarf2_per_objfile->read_in_chain;
19532 while (per_cu != NULL)
19533 {
19534 struct dwarf2_per_cu_data *next_cu;
19535
19536 next_cu = per_cu->cu->read_in_chain;
19537
19538 if (!per_cu->cu->mark)
19539 {
19540 free_heap_comp_unit (per_cu->cu);
19541 *last_chain = next_cu;
19542 }
19543 else
19544 last_chain = &per_cu->cu->read_in_chain;
19545
19546 per_cu = next_cu;
19547 }
19548 }
19549
19550 /* Remove a single compilation unit from the cache. */
19551
19552 static void
19553 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
19554 {
19555 struct dwarf2_per_cu_data *per_cu, **last_chain;
19556
19557 per_cu = dwarf2_per_objfile->read_in_chain;
19558 last_chain = &dwarf2_per_objfile->read_in_chain;
19559 while (per_cu != NULL)
19560 {
19561 struct dwarf2_per_cu_data *next_cu;
19562
19563 next_cu = per_cu->cu->read_in_chain;
19564
19565 if (per_cu == target_per_cu)
19566 {
19567 free_heap_comp_unit (per_cu->cu);
19568 per_cu->cu = NULL;
19569 *last_chain = next_cu;
19570 break;
19571 }
19572 else
19573 last_chain = &per_cu->cu->read_in_chain;
19574
19575 per_cu = next_cu;
19576 }
19577 }
19578
19579 /* Release all extra memory associated with OBJFILE. */
19580
19581 void
19582 dwarf2_free_objfile (struct objfile *objfile)
19583 {
19584 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
19585
19586 if (dwarf2_per_objfile == NULL)
19587 return;
19588
19589 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
19590 free_cached_comp_units (NULL);
19591
19592 if (dwarf2_per_objfile->quick_file_names_table)
19593 htab_delete (dwarf2_per_objfile->quick_file_names_table);
19594
19595 /* Everything else should be on the objfile obstack. */
19596 }
19597
19598 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
19599 We store these in a hash table separate from the DIEs, and preserve them
19600 when the DIEs are flushed out of cache.
19601
19602 The CU "per_cu" pointer is needed because offset alone is not enough to
19603 uniquely identify the type. A file may have multiple .debug_types sections,
19604 or the type may come from a DWO file. Furthermore, while it's more logical
19605 to use per_cu->section+offset, with Fission the section with the data is in
19606 the DWO file but we don't know that section at the point we need it.
19607 We have to use something in dwarf2_per_cu_data (or the pointer to it)
19608 because we can enter the lookup routine, get_die_type_at_offset, from
19609 outside this file, and thus won't necessarily have PER_CU->cu.
19610 Fortunately, PER_CU is stable for the life of the objfile. */
19611
19612 struct dwarf2_per_cu_offset_and_type
19613 {
19614 const struct dwarf2_per_cu_data *per_cu;
19615 sect_offset offset;
19616 struct type *type;
19617 };
19618
19619 /* Hash function for a dwarf2_per_cu_offset_and_type. */
19620
19621 static hashval_t
19622 per_cu_offset_and_type_hash (const void *item)
19623 {
19624 const struct dwarf2_per_cu_offset_and_type *ofs = item;
19625
19626 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
19627 }
19628
19629 /* Equality function for a dwarf2_per_cu_offset_and_type. */
19630
19631 static int
19632 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
19633 {
19634 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
19635 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
19636
19637 return (ofs_lhs->per_cu == ofs_rhs->per_cu
19638 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
19639 }
19640
19641 /* Set the type associated with DIE to TYPE. Save it in CU's hash
19642 table if necessary. For convenience, return TYPE.
19643
19644 The DIEs reading must have careful ordering to:
19645 * Not cause infite loops trying to read in DIEs as a prerequisite for
19646 reading current DIE.
19647 * Not trying to dereference contents of still incompletely read in types
19648 while reading in other DIEs.
19649 * Enable referencing still incompletely read in types just by a pointer to
19650 the type without accessing its fields.
19651
19652 Therefore caller should follow these rules:
19653 * Try to fetch any prerequisite types we may need to build this DIE type
19654 before building the type and calling set_die_type.
19655 * After building type call set_die_type for current DIE as soon as
19656 possible before fetching more types to complete the current type.
19657 * Make the type as complete as possible before fetching more types. */
19658
19659 static struct type *
19660 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19661 {
19662 struct dwarf2_per_cu_offset_and_type **slot, ofs;
19663 struct objfile *objfile = cu->objfile;
19664
19665 /* For Ada types, make sure that the gnat-specific data is always
19666 initialized (if not already set). There are a few types where
19667 we should not be doing so, because the type-specific area is
19668 already used to hold some other piece of info (eg: TYPE_CODE_FLT
19669 where the type-specific area is used to store the floatformat).
19670 But this is not a problem, because the gnat-specific information
19671 is actually not needed for these types. */
19672 if (need_gnat_info (cu)
19673 && TYPE_CODE (type) != TYPE_CODE_FUNC
19674 && TYPE_CODE (type) != TYPE_CODE_FLT
19675 && !HAVE_GNAT_AUX_INFO (type))
19676 INIT_GNAT_SPECIFIC (type);
19677
19678 if (dwarf2_per_objfile->die_type_hash == NULL)
19679 {
19680 dwarf2_per_objfile->die_type_hash =
19681 htab_create_alloc_ex (127,
19682 per_cu_offset_and_type_hash,
19683 per_cu_offset_and_type_eq,
19684 NULL,
19685 &objfile->objfile_obstack,
19686 hashtab_obstack_allocate,
19687 dummy_obstack_deallocate);
19688 }
19689
19690 ofs.per_cu = cu->per_cu;
19691 ofs.offset = die->offset;
19692 ofs.type = type;
19693 slot = (struct dwarf2_per_cu_offset_and_type **)
19694 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
19695 if (*slot)
19696 complaint (&symfile_complaints,
19697 _("A problem internal to GDB: DIE 0x%x has type already set"),
19698 die->offset.sect_off);
19699 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
19700 **slot = ofs;
19701 return type;
19702 }
19703
19704 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
19705 or return NULL if the die does not have a saved type. */
19706
19707 static struct type *
19708 get_die_type_at_offset (sect_offset offset,
19709 struct dwarf2_per_cu_data *per_cu)
19710 {
19711 struct dwarf2_per_cu_offset_and_type *slot, ofs;
19712
19713 if (dwarf2_per_objfile->die_type_hash == NULL)
19714 return NULL;
19715
19716 ofs.per_cu = per_cu;
19717 ofs.offset = offset;
19718 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
19719 if (slot)
19720 return slot->type;
19721 else
19722 return NULL;
19723 }
19724
19725 /* Look up the type for DIE in CU in die_type_hash,
19726 or return NULL if DIE does not have a saved type. */
19727
19728 static struct type *
19729 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
19730 {
19731 return get_die_type_at_offset (die->offset, cu->per_cu);
19732 }
19733
19734 /* Add a dependence relationship from CU to REF_PER_CU. */
19735
19736 static void
19737 dwarf2_add_dependence (struct dwarf2_cu *cu,
19738 struct dwarf2_per_cu_data *ref_per_cu)
19739 {
19740 void **slot;
19741
19742 if (cu->dependencies == NULL)
19743 cu->dependencies
19744 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
19745 NULL, &cu->comp_unit_obstack,
19746 hashtab_obstack_allocate,
19747 dummy_obstack_deallocate);
19748
19749 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
19750 if (*slot == NULL)
19751 *slot = ref_per_cu;
19752 }
19753
19754 /* Subroutine of dwarf2_mark to pass to htab_traverse.
19755 Set the mark field in every compilation unit in the
19756 cache that we must keep because we are keeping CU. */
19757
19758 static int
19759 dwarf2_mark_helper (void **slot, void *data)
19760 {
19761 struct dwarf2_per_cu_data *per_cu;
19762
19763 per_cu = (struct dwarf2_per_cu_data *) *slot;
19764
19765 /* cu->dependencies references may not yet have been ever read if QUIT aborts
19766 reading of the chain. As such dependencies remain valid it is not much
19767 useful to track and undo them during QUIT cleanups. */
19768 if (per_cu->cu == NULL)
19769 return 1;
19770
19771 if (per_cu->cu->mark)
19772 return 1;
19773 per_cu->cu->mark = 1;
19774
19775 if (per_cu->cu->dependencies != NULL)
19776 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
19777
19778 return 1;
19779 }
19780
19781 /* Set the mark field in CU and in every other compilation unit in the
19782 cache that we must keep because we are keeping CU. */
19783
19784 static void
19785 dwarf2_mark (struct dwarf2_cu *cu)
19786 {
19787 if (cu->mark)
19788 return;
19789 cu->mark = 1;
19790 if (cu->dependencies != NULL)
19791 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
19792 }
19793
19794 static void
19795 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
19796 {
19797 while (per_cu)
19798 {
19799 per_cu->cu->mark = 0;
19800 per_cu = per_cu->cu->read_in_chain;
19801 }
19802 }
19803
19804 /* Trivial hash function for partial_die_info: the hash value of a DIE
19805 is its offset in .debug_info for this objfile. */
19806
19807 static hashval_t
19808 partial_die_hash (const void *item)
19809 {
19810 const struct partial_die_info *part_die = item;
19811
19812 return part_die->offset.sect_off;
19813 }
19814
19815 /* Trivial comparison function for partial_die_info structures: two DIEs
19816 are equal if they have the same offset. */
19817
19818 static int
19819 partial_die_eq (const void *item_lhs, const void *item_rhs)
19820 {
19821 const struct partial_die_info *part_die_lhs = item_lhs;
19822 const struct partial_die_info *part_die_rhs = item_rhs;
19823
19824 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
19825 }
19826
19827 static struct cmd_list_element *set_dwarf2_cmdlist;
19828 static struct cmd_list_element *show_dwarf2_cmdlist;
19829
19830 static void
19831 set_dwarf2_cmd (char *args, int from_tty)
19832 {
19833 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
19834 }
19835
19836 static void
19837 show_dwarf2_cmd (char *args, int from_tty)
19838 {
19839 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
19840 }
19841
19842 /* Free data associated with OBJFILE, if necessary. */
19843
19844 static void
19845 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
19846 {
19847 struct dwarf2_per_objfile *data = d;
19848 int ix;
19849
19850 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
19851 VEC_free (dwarf2_per_cu_ptr,
19852 dwarf2_per_objfile->all_comp_units[ix]->imported_symtabs);
19853
19854 for (ix = 0; ix < dwarf2_per_objfile->n_type_units; ++ix)
19855 VEC_free (dwarf2_per_cu_ptr,
19856 dwarf2_per_objfile->all_type_units[ix]->per_cu.imported_symtabs);
19857
19858 VEC_free (dwarf2_section_info_def, data->types);
19859
19860 if (data->dwo_files)
19861 free_dwo_files (data->dwo_files, objfile);
19862 if (data->dwp_file)
19863 gdb_bfd_unref (data->dwp_file->dbfd);
19864
19865 if (data->dwz_file && data->dwz_file->dwz_bfd)
19866 gdb_bfd_unref (data->dwz_file->dwz_bfd);
19867 }
19868
19869 \f
19870 /* The "save gdb-index" command. */
19871
19872 /* The contents of the hash table we create when building the string
19873 table. */
19874 struct strtab_entry
19875 {
19876 offset_type offset;
19877 const char *str;
19878 };
19879
19880 /* Hash function for a strtab_entry.
19881
19882 Function is used only during write_hash_table so no index format backward
19883 compatibility is needed. */
19884
19885 static hashval_t
19886 hash_strtab_entry (const void *e)
19887 {
19888 const struct strtab_entry *entry = e;
19889 return mapped_index_string_hash (INT_MAX, entry->str);
19890 }
19891
19892 /* Equality function for a strtab_entry. */
19893
19894 static int
19895 eq_strtab_entry (const void *a, const void *b)
19896 {
19897 const struct strtab_entry *ea = a;
19898 const struct strtab_entry *eb = b;
19899 return !strcmp (ea->str, eb->str);
19900 }
19901
19902 /* Create a strtab_entry hash table. */
19903
19904 static htab_t
19905 create_strtab (void)
19906 {
19907 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
19908 xfree, xcalloc, xfree);
19909 }
19910
19911 /* Add a string to the constant pool. Return the string's offset in
19912 host order. */
19913
19914 static offset_type
19915 add_string (htab_t table, struct obstack *cpool, const char *str)
19916 {
19917 void **slot;
19918 struct strtab_entry entry;
19919 struct strtab_entry *result;
19920
19921 entry.str = str;
19922 slot = htab_find_slot (table, &entry, INSERT);
19923 if (*slot)
19924 result = *slot;
19925 else
19926 {
19927 result = XNEW (struct strtab_entry);
19928 result->offset = obstack_object_size (cpool);
19929 result->str = str;
19930 obstack_grow_str0 (cpool, str);
19931 *slot = result;
19932 }
19933 return result->offset;
19934 }
19935
19936 /* An entry in the symbol table. */
19937 struct symtab_index_entry
19938 {
19939 /* The name of the symbol. */
19940 const char *name;
19941 /* The offset of the name in the constant pool. */
19942 offset_type index_offset;
19943 /* A sorted vector of the indices of all the CUs that hold an object
19944 of this name. */
19945 VEC (offset_type) *cu_indices;
19946 };
19947
19948 /* The symbol table. This is a power-of-2-sized hash table. */
19949 struct mapped_symtab
19950 {
19951 offset_type n_elements;
19952 offset_type size;
19953 struct symtab_index_entry **data;
19954 };
19955
19956 /* Hash function for a symtab_index_entry. */
19957
19958 static hashval_t
19959 hash_symtab_entry (const void *e)
19960 {
19961 const struct symtab_index_entry *entry = e;
19962 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
19963 sizeof (offset_type) * VEC_length (offset_type,
19964 entry->cu_indices),
19965 0);
19966 }
19967
19968 /* Equality function for a symtab_index_entry. */
19969
19970 static int
19971 eq_symtab_entry (const void *a, const void *b)
19972 {
19973 const struct symtab_index_entry *ea = a;
19974 const struct symtab_index_entry *eb = b;
19975 int len = VEC_length (offset_type, ea->cu_indices);
19976 if (len != VEC_length (offset_type, eb->cu_indices))
19977 return 0;
19978 return !memcmp (VEC_address (offset_type, ea->cu_indices),
19979 VEC_address (offset_type, eb->cu_indices),
19980 sizeof (offset_type) * len);
19981 }
19982
19983 /* Destroy a symtab_index_entry. */
19984
19985 static void
19986 delete_symtab_entry (void *p)
19987 {
19988 struct symtab_index_entry *entry = p;
19989 VEC_free (offset_type, entry->cu_indices);
19990 xfree (entry);
19991 }
19992
19993 /* Create a hash table holding symtab_index_entry objects. */
19994
19995 static htab_t
19996 create_symbol_hash_table (void)
19997 {
19998 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
19999 delete_symtab_entry, xcalloc, xfree);
20000 }
20001
20002 /* Create a new mapped symtab object. */
20003
20004 static struct mapped_symtab *
20005 create_mapped_symtab (void)
20006 {
20007 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
20008 symtab->n_elements = 0;
20009 symtab->size = 1024;
20010 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20011 return symtab;
20012 }
20013
20014 /* Destroy a mapped_symtab. */
20015
20016 static void
20017 cleanup_mapped_symtab (void *p)
20018 {
20019 struct mapped_symtab *symtab = p;
20020 /* The contents of the array are freed when the other hash table is
20021 destroyed. */
20022 xfree (symtab->data);
20023 xfree (symtab);
20024 }
20025
20026 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
20027 the slot.
20028
20029 Function is used only during write_hash_table so no index format backward
20030 compatibility is needed. */
20031
20032 static struct symtab_index_entry **
20033 find_slot (struct mapped_symtab *symtab, const char *name)
20034 {
20035 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
20036
20037 index = hash & (symtab->size - 1);
20038 step = ((hash * 17) & (symtab->size - 1)) | 1;
20039
20040 for (;;)
20041 {
20042 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
20043 return &symtab->data[index];
20044 index = (index + step) & (symtab->size - 1);
20045 }
20046 }
20047
20048 /* Expand SYMTAB's hash table. */
20049
20050 static void
20051 hash_expand (struct mapped_symtab *symtab)
20052 {
20053 offset_type old_size = symtab->size;
20054 offset_type i;
20055 struct symtab_index_entry **old_entries = symtab->data;
20056
20057 symtab->size *= 2;
20058 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20059
20060 for (i = 0; i < old_size; ++i)
20061 {
20062 if (old_entries[i])
20063 {
20064 struct symtab_index_entry **slot = find_slot (symtab,
20065 old_entries[i]->name);
20066 *slot = old_entries[i];
20067 }
20068 }
20069
20070 xfree (old_entries);
20071 }
20072
20073 /* Add an entry to SYMTAB. NAME is the name of the symbol.
20074 CU_INDEX is the index of the CU in which the symbol appears.
20075 IS_STATIC is one if the symbol is static, otherwise zero (global). */
20076
20077 static void
20078 add_index_entry (struct mapped_symtab *symtab, const char *name,
20079 int is_static, gdb_index_symbol_kind kind,
20080 offset_type cu_index)
20081 {
20082 struct symtab_index_entry **slot;
20083 offset_type cu_index_and_attrs;
20084
20085 ++symtab->n_elements;
20086 if (4 * symtab->n_elements / 3 >= symtab->size)
20087 hash_expand (symtab);
20088
20089 slot = find_slot (symtab, name);
20090 if (!*slot)
20091 {
20092 *slot = XNEW (struct symtab_index_entry);
20093 (*slot)->name = name;
20094 /* index_offset is set later. */
20095 (*slot)->cu_indices = NULL;
20096 }
20097
20098 cu_index_and_attrs = 0;
20099 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
20100 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
20101 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
20102
20103 /* We don't want to record an index value twice as we want to avoid the
20104 duplication.
20105 We process all global symbols and then all static symbols
20106 (which would allow us to avoid the duplication by only having to check
20107 the last entry pushed), but a symbol could have multiple kinds in one CU.
20108 To keep things simple we don't worry about the duplication here and
20109 sort and uniqufy the list after we've processed all symbols. */
20110 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
20111 }
20112
20113 /* qsort helper routine for uniquify_cu_indices. */
20114
20115 static int
20116 offset_type_compare (const void *ap, const void *bp)
20117 {
20118 offset_type a = *(offset_type *) ap;
20119 offset_type b = *(offset_type *) bp;
20120
20121 return (a > b) - (b > a);
20122 }
20123
20124 /* Sort and remove duplicates of all symbols' cu_indices lists. */
20125
20126 static void
20127 uniquify_cu_indices (struct mapped_symtab *symtab)
20128 {
20129 int i;
20130
20131 for (i = 0; i < symtab->size; ++i)
20132 {
20133 struct symtab_index_entry *entry = symtab->data[i];
20134
20135 if (entry
20136 && entry->cu_indices != NULL)
20137 {
20138 unsigned int next_to_insert, next_to_check;
20139 offset_type last_value;
20140
20141 qsort (VEC_address (offset_type, entry->cu_indices),
20142 VEC_length (offset_type, entry->cu_indices),
20143 sizeof (offset_type), offset_type_compare);
20144
20145 last_value = VEC_index (offset_type, entry->cu_indices, 0);
20146 next_to_insert = 1;
20147 for (next_to_check = 1;
20148 next_to_check < VEC_length (offset_type, entry->cu_indices);
20149 ++next_to_check)
20150 {
20151 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
20152 != last_value)
20153 {
20154 last_value = VEC_index (offset_type, entry->cu_indices,
20155 next_to_check);
20156 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
20157 last_value);
20158 ++next_to_insert;
20159 }
20160 }
20161 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
20162 }
20163 }
20164 }
20165
20166 /* Add a vector of indices to the constant pool. */
20167
20168 static offset_type
20169 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
20170 struct symtab_index_entry *entry)
20171 {
20172 void **slot;
20173
20174 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
20175 if (!*slot)
20176 {
20177 offset_type len = VEC_length (offset_type, entry->cu_indices);
20178 offset_type val = MAYBE_SWAP (len);
20179 offset_type iter;
20180 int i;
20181
20182 *slot = entry;
20183 entry->index_offset = obstack_object_size (cpool);
20184
20185 obstack_grow (cpool, &val, sizeof (val));
20186 for (i = 0;
20187 VEC_iterate (offset_type, entry->cu_indices, i, iter);
20188 ++i)
20189 {
20190 val = MAYBE_SWAP (iter);
20191 obstack_grow (cpool, &val, sizeof (val));
20192 }
20193 }
20194 else
20195 {
20196 struct symtab_index_entry *old_entry = *slot;
20197 entry->index_offset = old_entry->index_offset;
20198 entry = old_entry;
20199 }
20200 return entry->index_offset;
20201 }
20202
20203 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
20204 constant pool entries going into the obstack CPOOL. */
20205
20206 static void
20207 write_hash_table (struct mapped_symtab *symtab,
20208 struct obstack *output, struct obstack *cpool)
20209 {
20210 offset_type i;
20211 htab_t symbol_hash_table;
20212 htab_t str_table;
20213
20214 symbol_hash_table = create_symbol_hash_table ();
20215 str_table = create_strtab ();
20216
20217 /* We add all the index vectors to the constant pool first, to
20218 ensure alignment is ok. */
20219 for (i = 0; i < symtab->size; ++i)
20220 {
20221 if (symtab->data[i])
20222 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
20223 }
20224
20225 /* Now write out the hash table. */
20226 for (i = 0; i < symtab->size; ++i)
20227 {
20228 offset_type str_off, vec_off;
20229
20230 if (symtab->data[i])
20231 {
20232 str_off = add_string (str_table, cpool, symtab->data[i]->name);
20233 vec_off = symtab->data[i]->index_offset;
20234 }
20235 else
20236 {
20237 /* While 0 is a valid constant pool index, it is not valid
20238 to have 0 for both offsets. */
20239 str_off = 0;
20240 vec_off = 0;
20241 }
20242
20243 str_off = MAYBE_SWAP (str_off);
20244 vec_off = MAYBE_SWAP (vec_off);
20245
20246 obstack_grow (output, &str_off, sizeof (str_off));
20247 obstack_grow (output, &vec_off, sizeof (vec_off));
20248 }
20249
20250 htab_delete (str_table);
20251 htab_delete (symbol_hash_table);
20252 }
20253
20254 /* Struct to map psymtab to CU index in the index file. */
20255 struct psymtab_cu_index_map
20256 {
20257 struct partial_symtab *psymtab;
20258 unsigned int cu_index;
20259 };
20260
20261 static hashval_t
20262 hash_psymtab_cu_index (const void *item)
20263 {
20264 const struct psymtab_cu_index_map *map = item;
20265
20266 return htab_hash_pointer (map->psymtab);
20267 }
20268
20269 static int
20270 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
20271 {
20272 const struct psymtab_cu_index_map *lhs = item_lhs;
20273 const struct psymtab_cu_index_map *rhs = item_rhs;
20274
20275 return lhs->psymtab == rhs->psymtab;
20276 }
20277
20278 /* Helper struct for building the address table. */
20279 struct addrmap_index_data
20280 {
20281 struct objfile *objfile;
20282 struct obstack *addr_obstack;
20283 htab_t cu_index_htab;
20284
20285 /* Non-zero if the previous_* fields are valid.
20286 We can't write an entry until we see the next entry (since it is only then
20287 that we know the end of the entry). */
20288 int previous_valid;
20289 /* Index of the CU in the table of all CUs in the index file. */
20290 unsigned int previous_cu_index;
20291 /* Start address of the CU. */
20292 CORE_ADDR previous_cu_start;
20293 };
20294
20295 /* Write an address entry to OBSTACK. */
20296
20297 static void
20298 add_address_entry (struct objfile *objfile, struct obstack *obstack,
20299 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
20300 {
20301 offset_type cu_index_to_write;
20302 char addr[8];
20303 CORE_ADDR baseaddr;
20304
20305 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20306
20307 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
20308 obstack_grow (obstack, addr, 8);
20309 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
20310 obstack_grow (obstack, addr, 8);
20311 cu_index_to_write = MAYBE_SWAP (cu_index);
20312 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
20313 }
20314
20315 /* Worker function for traversing an addrmap to build the address table. */
20316
20317 static int
20318 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
20319 {
20320 struct addrmap_index_data *data = datap;
20321 struct partial_symtab *pst = obj;
20322
20323 if (data->previous_valid)
20324 add_address_entry (data->objfile, data->addr_obstack,
20325 data->previous_cu_start, start_addr,
20326 data->previous_cu_index);
20327
20328 data->previous_cu_start = start_addr;
20329 if (pst != NULL)
20330 {
20331 struct psymtab_cu_index_map find_map, *map;
20332 find_map.psymtab = pst;
20333 map = htab_find (data->cu_index_htab, &find_map);
20334 gdb_assert (map != NULL);
20335 data->previous_cu_index = map->cu_index;
20336 data->previous_valid = 1;
20337 }
20338 else
20339 data->previous_valid = 0;
20340
20341 return 0;
20342 }
20343
20344 /* Write OBJFILE's address map to OBSTACK.
20345 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
20346 in the index file. */
20347
20348 static void
20349 write_address_map (struct objfile *objfile, struct obstack *obstack,
20350 htab_t cu_index_htab)
20351 {
20352 struct addrmap_index_data addrmap_index_data;
20353
20354 /* When writing the address table, we have to cope with the fact that
20355 the addrmap iterator only provides the start of a region; we have to
20356 wait until the next invocation to get the start of the next region. */
20357
20358 addrmap_index_data.objfile = objfile;
20359 addrmap_index_data.addr_obstack = obstack;
20360 addrmap_index_data.cu_index_htab = cu_index_htab;
20361 addrmap_index_data.previous_valid = 0;
20362
20363 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
20364 &addrmap_index_data);
20365
20366 /* It's highly unlikely the last entry (end address = 0xff...ff)
20367 is valid, but we should still handle it.
20368 The end address is recorded as the start of the next region, but that
20369 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
20370 anyway. */
20371 if (addrmap_index_data.previous_valid)
20372 add_address_entry (objfile, obstack,
20373 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
20374 addrmap_index_data.previous_cu_index);
20375 }
20376
20377 /* Return the symbol kind of PSYM. */
20378
20379 static gdb_index_symbol_kind
20380 symbol_kind (struct partial_symbol *psym)
20381 {
20382 domain_enum domain = PSYMBOL_DOMAIN (psym);
20383 enum address_class aclass = PSYMBOL_CLASS (psym);
20384
20385 switch (domain)
20386 {
20387 case VAR_DOMAIN:
20388 switch (aclass)
20389 {
20390 case LOC_BLOCK:
20391 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
20392 case LOC_TYPEDEF:
20393 return GDB_INDEX_SYMBOL_KIND_TYPE;
20394 case LOC_COMPUTED:
20395 case LOC_CONST_BYTES:
20396 case LOC_OPTIMIZED_OUT:
20397 case LOC_STATIC:
20398 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20399 case LOC_CONST:
20400 /* Note: It's currently impossible to recognize psyms as enum values
20401 short of reading the type info. For now punt. */
20402 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20403 default:
20404 /* There are other LOC_FOO values that one might want to classify
20405 as variables, but dwarf2read.c doesn't currently use them. */
20406 return GDB_INDEX_SYMBOL_KIND_OTHER;
20407 }
20408 case STRUCT_DOMAIN:
20409 return GDB_INDEX_SYMBOL_KIND_TYPE;
20410 default:
20411 return GDB_INDEX_SYMBOL_KIND_OTHER;
20412 }
20413 }
20414
20415 /* Add a list of partial symbols to SYMTAB. */
20416
20417 static void
20418 write_psymbols (struct mapped_symtab *symtab,
20419 htab_t psyms_seen,
20420 struct partial_symbol **psymp,
20421 int count,
20422 offset_type cu_index,
20423 int is_static)
20424 {
20425 for (; count-- > 0; ++psymp)
20426 {
20427 struct partial_symbol *psym = *psymp;
20428 void **slot;
20429
20430 if (SYMBOL_LANGUAGE (psym) == language_ada)
20431 error (_("Ada is not currently supported by the index"));
20432
20433 /* Only add a given psymbol once. */
20434 slot = htab_find_slot (psyms_seen, psym, INSERT);
20435 if (!*slot)
20436 {
20437 gdb_index_symbol_kind kind = symbol_kind (psym);
20438
20439 *slot = psym;
20440 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
20441 is_static, kind, cu_index);
20442 }
20443 }
20444 }
20445
20446 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
20447 exception if there is an error. */
20448
20449 static void
20450 write_obstack (FILE *file, struct obstack *obstack)
20451 {
20452 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
20453 file)
20454 != obstack_object_size (obstack))
20455 error (_("couldn't data write to file"));
20456 }
20457
20458 /* Unlink a file if the argument is not NULL. */
20459
20460 static void
20461 unlink_if_set (void *p)
20462 {
20463 char **filename = p;
20464 if (*filename)
20465 unlink (*filename);
20466 }
20467
20468 /* A helper struct used when iterating over debug_types. */
20469 struct signatured_type_index_data
20470 {
20471 struct objfile *objfile;
20472 struct mapped_symtab *symtab;
20473 struct obstack *types_list;
20474 htab_t psyms_seen;
20475 int cu_index;
20476 };
20477
20478 /* A helper function that writes a single signatured_type to an
20479 obstack. */
20480
20481 static int
20482 write_one_signatured_type (void **slot, void *d)
20483 {
20484 struct signatured_type_index_data *info = d;
20485 struct signatured_type *entry = (struct signatured_type *) *slot;
20486 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
20487 gdb_byte val[8];
20488
20489 write_psymbols (info->symtab,
20490 info->psyms_seen,
20491 info->objfile->global_psymbols.list
20492 + psymtab->globals_offset,
20493 psymtab->n_global_syms, info->cu_index,
20494 0);
20495 write_psymbols (info->symtab,
20496 info->psyms_seen,
20497 info->objfile->static_psymbols.list
20498 + psymtab->statics_offset,
20499 psymtab->n_static_syms, info->cu_index,
20500 1);
20501
20502 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20503 entry->per_cu.offset.sect_off);
20504 obstack_grow (info->types_list, val, 8);
20505 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20506 entry->type_offset_in_tu.cu_off);
20507 obstack_grow (info->types_list, val, 8);
20508 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
20509 obstack_grow (info->types_list, val, 8);
20510
20511 ++info->cu_index;
20512
20513 return 1;
20514 }
20515
20516 /* Recurse into all "included" dependencies and write their symbols as
20517 if they appeared in this psymtab. */
20518
20519 static void
20520 recursively_write_psymbols (struct objfile *objfile,
20521 struct partial_symtab *psymtab,
20522 struct mapped_symtab *symtab,
20523 htab_t psyms_seen,
20524 offset_type cu_index)
20525 {
20526 int i;
20527
20528 for (i = 0; i < psymtab->number_of_dependencies; ++i)
20529 if (psymtab->dependencies[i]->user != NULL)
20530 recursively_write_psymbols (objfile, psymtab->dependencies[i],
20531 symtab, psyms_seen, cu_index);
20532
20533 write_psymbols (symtab,
20534 psyms_seen,
20535 objfile->global_psymbols.list + psymtab->globals_offset,
20536 psymtab->n_global_syms, cu_index,
20537 0);
20538 write_psymbols (symtab,
20539 psyms_seen,
20540 objfile->static_psymbols.list + psymtab->statics_offset,
20541 psymtab->n_static_syms, cu_index,
20542 1);
20543 }
20544
20545 /* Create an index file for OBJFILE in the directory DIR. */
20546
20547 static void
20548 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
20549 {
20550 struct cleanup *cleanup;
20551 char *filename, *cleanup_filename;
20552 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
20553 struct obstack cu_list, types_cu_list;
20554 int i;
20555 FILE *out_file;
20556 struct mapped_symtab *symtab;
20557 offset_type val, size_of_contents, total_len;
20558 struct stat st;
20559 htab_t psyms_seen;
20560 htab_t cu_index_htab;
20561 struct psymtab_cu_index_map *psymtab_cu_index_map;
20562
20563 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
20564 return;
20565
20566 if (dwarf2_per_objfile->using_index)
20567 error (_("Cannot use an index to create the index"));
20568
20569 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
20570 error (_("Cannot make an index when the file has multiple .debug_types sections"));
20571
20572 if (stat (objfile->name, &st) < 0)
20573 perror_with_name (objfile->name);
20574
20575 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
20576 INDEX_SUFFIX, (char *) NULL);
20577 cleanup = make_cleanup (xfree, filename);
20578
20579 out_file = fopen (filename, "wb");
20580 if (!out_file)
20581 error (_("Can't open `%s' for writing"), filename);
20582
20583 cleanup_filename = filename;
20584 make_cleanup (unlink_if_set, &cleanup_filename);
20585
20586 symtab = create_mapped_symtab ();
20587 make_cleanup (cleanup_mapped_symtab, symtab);
20588
20589 obstack_init (&addr_obstack);
20590 make_cleanup_obstack_free (&addr_obstack);
20591
20592 obstack_init (&cu_list);
20593 make_cleanup_obstack_free (&cu_list);
20594
20595 obstack_init (&types_cu_list);
20596 make_cleanup_obstack_free (&types_cu_list);
20597
20598 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
20599 NULL, xcalloc, xfree);
20600 make_cleanup_htab_delete (psyms_seen);
20601
20602 /* While we're scanning CU's create a table that maps a psymtab pointer
20603 (which is what addrmap records) to its index (which is what is recorded
20604 in the index file). This will later be needed to write the address
20605 table. */
20606 cu_index_htab = htab_create_alloc (100,
20607 hash_psymtab_cu_index,
20608 eq_psymtab_cu_index,
20609 NULL, xcalloc, xfree);
20610 make_cleanup_htab_delete (cu_index_htab);
20611 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
20612 xmalloc (sizeof (struct psymtab_cu_index_map)
20613 * dwarf2_per_objfile->n_comp_units);
20614 make_cleanup (xfree, psymtab_cu_index_map);
20615
20616 /* The CU list is already sorted, so we don't need to do additional
20617 work here. Also, the debug_types entries do not appear in
20618 all_comp_units, but only in their own hash table. */
20619 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
20620 {
20621 struct dwarf2_per_cu_data *per_cu
20622 = dwarf2_per_objfile->all_comp_units[i];
20623 struct partial_symtab *psymtab = per_cu->v.psymtab;
20624 gdb_byte val[8];
20625 struct psymtab_cu_index_map *map;
20626 void **slot;
20627
20628 if (psymtab->user == NULL)
20629 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
20630
20631 map = &psymtab_cu_index_map[i];
20632 map->psymtab = psymtab;
20633 map->cu_index = i;
20634 slot = htab_find_slot (cu_index_htab, map, INSERT);
20635 gdb_assert (slot != NULL);
20636 gdb_assert (*slot == NULL);
20637 *slot = map;
20638
20639 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20640 per_cu->offset.sect_off);
20641 obstack_grow (&cu_list, val, 8);
20642 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
20643 obstack_grow (&cu_list, val, 8);
20644 }
20645
20646 /* Dump the address map. */
20647 write_address_map (objfile, &addr_obstack, cu_index_htab);
20648
20649 /* Write out the .debug_type entries, if any. */
20650 if (dwarf2_per_objfile->signatured_types)
20651 {
20652 struct signatured_type_index_data sig_data;
20653
20654 sig_data.objfile = objfile;
20655 sig_data.symtab = symtab;
20656 sig_data.types_list = &types_cu_list;
20657 sig_data.psyms_seen = psyms_seen;
20658 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
20659 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
20660 write_one_signatured_type, &sig_data);
20661 }
20662
20663 /* Now that we've processed all symbols we can shrink their cu_indices
20664 lists. */
20665 uniquify_cu_indices (symtab);
20666
20667 obstack_init (&constant_pool);
20668 make_cleanup_obstack_free (&constant_pool);
20669 obstack_init (&symtab_obstack);
20670 make_cleanup_obstack_free (&symtab_obstack);
20671 write_hash_table (symtab, &symtab_obstack, &constant_pool);
20672
20673 obstack_init (&contents);
20674 make_cleanup_obstack_free (&contents);
20675 size_of_contents = 6 * sizeof (offset_type);
20676 total_len = size_of_contents;
20677
20678 /* The version number. */
20679 val = MAYBE_SWAP (8);
20680 obstack_grow (&contents, &val, sizeof (val));
20681
20682 /* The offset of the CU list from the start of the file. */
20683 val = MAYBE_SWAP (total_len);
20684 obstack_grow (&contents, &val, sizeof (val));
20685 total_len += obstack_object_size (&cu_list);
20686
20687 /* The offset of the types CU list from the start of the file. */
20688 val = MAYBE_SWAP (total_len);
20689 obstack_grow (&contents, &val, sizeof (val));
20690 total_len += obstack_object_size (&types_cu_list);
20691
20692 /* The offset of the address table from the start of the file. */
20693 val = MAYBE_SWAP (total_len);
20694 obstack_grow (&contents, &val, sizeof (val));
20695 total_len += obstack_object_size (&addr_obstack);
20696
20697 /* The offset of the symbol table from the start of the file. */
20698 val = MAYBE_SWAP (total_len);
20699 obstack_grow (&contents, &val, sizeof (val));
20700 total_len += obstack_object_size (&symtab_obstack);
20701
20702 /* The offset of the constant pool from the start of the file. */
20703 val = MAYBE_SWAP (total_len);
20704 obstack_grow (&contents, &val, sizeof (val));
20705 total_len += obstack_object_size (&constant_pool);
20706
20707 gdb_assert (obstack_object_size (&contents) == size_of_contents);
20708
20709 write_obstack (out_file, &contents);
20710 write_obstack (out_file, &cu_list);
20711 write_obstack (out_file, &types_cu_list);
20712 write_obstack (out_file, &addr_obstack);
20713 write_obstack (out_file, &symtab_obstack);
20714 write_obstack (out_file, &constant_pool);
20715
20716 fclose (out_file);
20717
20718 /* We want to keep the file, so we set cleanup_filename to NULL
20719 here. See unlink_if_set. */
20720 cleanup_filename = NULL;
20721
20722 do_cleanups (cleanup);
20723 }
20724
20725 /* Implementation of the `save gdb-index' command.
20726
20727 Note that the file format used by this command is documented in the
20728 GDB manual. Any changes here must be documented there. */
20729
20730 static void
20731 save_gdb_index_command (char *arg, int from_tty)
20732 {
20733 struct objfile *objfile;
20734
20735 if (!arg || !*arg)
20736 error (_("usage: save gdb-index DIRECTORY"));
20737
20738 ALL_OBJFILES (objfile)
20739 {
20740 struct stat st;
20741
20742 /* If the objfile does not correspond to an actual file, skip it. */
20743 if (stat (objfile->name, &st) < 0)
20744 continue;
20745
20746 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20747 if (dwarf2_per_objfile)
20748 {
20749 volatile struct gdb_exception except;
20750
20751 TRY_CATCH (except, RETURN_MASK_ERROR)
20752 {
20753 write_psymtabs_to_index (objfile, arg);
20754 }
20755 if (except.reason < 0)
20756 exception_fprintf (gdb_stderr, except,
20757 _("Error while writing index for `%s': "),
20758 objfile->name);
20759 }
20760 }
20761 }
20762
20763 \f
20764
20765 int dwarf2_always_disassemble;
20766
20767 static void
20768 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
20769 struct cmd_list_element *c, const char *value)
20770 {
20771 fprintf_filtered (file,
20772 _("Whether to always disassemble "
20773 "DWARF expressions is %s.\n"),
20774 value);
20775 }
20776
20777 static void
20778 show_check_physname (struct ui_file *file, int from_tty,
20779 struct cmd_list_element *c, const char *value)
20780 {
20781 fprintf_filtered (file,
20782 _("Whether to check \"physname\" is %s.\n"),
20783 value);
20784 }
20785
20786 void _initialize_dwarf2_read (void);
20787
20788 void
20789 _initialize_dwarf2_read (void)
20790 {
20791 struct cmd_list_element *c;
20792
20793 dwarf2_objfile_data_key
20794 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
20795
20796 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
20797 Set DWARF 2 specific variables.\n\
20798 Configure DWARF 2 variables such as the cache size"),
20799 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
20800 0/*allow-unknown*/, &maintenance_set_cmdlist);
20801
20802 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
20803 Show DWARF 2 specific variables\n\
20804 Show DWARF 2 variables such as the cache size"),
20805 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
20806 0/*allow-unknown*/, &maintenance_show_cmdlist);
20807
20808 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
20809 &dwarf2_max_cache_age, _("\
20810 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
20811 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
20812 A higher limit means that cached compilation units will be stored\n\
20813 in memory longer, and more total memory will be used. Zero disables\n\
20814 caching, which can slow down startup."),
20815 NULL,
20816 show_dwarf2_max_cache_age,
20817 &set_dwarf2_cmdlist,
20818 &show_dwarf2_cmdlist);
20819
20820 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
20821 &dwarf2_always_disassemble, _("\
20822 Set whether `info address' always disassembles DWARF expressions."), _("\
20823 Show whether `info address' always disassembles DWARF expressions."), _("\
20824 When enabled, DWARF expressions are always printed in an assembly-like\n\
20825 syntax. When disabled, expressions will be printed in a more\n\
20826 conversational style, when possible."),
20827 NULL,
20828 show_dwarf2_always_disassemble,
20829 &set_dwarf2_cmdlist,
20830 &show_dwarf2_cmdlist);
20831
20832 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
20833 Set debugging of the dwarf2 reader."), _("\
20834 Show debugging of the dwarf2 reader."), _("\
20835 When enabled, debugging messages are printed during dwarf2 reading\n\
20836 and symtab expansion."),
20837 NULL,
20838 NULL,
20839 &setdebuglist, &showdebuglist);
20840
20841 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
20842 Set debugging of the dwarf2 DIE reader."), _("\
20843 Show debugging of the dwarf2 DIE reader."), _("\
20844 When enabled (non-zero), DIEs are dumped after they are read in.\n\
20845 The value is the maximum depth to print."),
20846 NULL,
20847 NULL,
20848 &setdebuglist, &showdebuglist);
20849
20850 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
20851 Set cross-checking of \"physname\" code against demangler."), _("\
20852 Show cross-checking of \"physname\" code against demangler."), _("\
20853 When enabled, GDB's internal \"physname\" code is checked against\n\
20854 the demangler."),
20855 NULL, show_check_physname,
20856 &setdebuglist, &showdebuglist);
20857
20858 add_setshow_boolean_cmd ("use-deprecated-index-sections",
20859 no_class, &use_deprecated_index_sections, _("\
20860 Set whether to use deprecated gdb_index sections."), _("\
20861 Show whether to use deprecated gdb_index sections."), _("\
20862 When enabled, deprecated .gdb_index sections are used anyway.\n\
20863 Normally they are ignored either because of a missing feature or\n\
20864 performance issue.\n\
20865 Warning: This option must be enabled before gdb reads the file."),
20866 NULL,
20867 NULL,
20868 &setlist, &showlist);
20869
20870 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
20871 _("\
20872 Save a gdb-index file.\n\
20873 Usage: save gdb-index DIRECTORY"),
20874 &save_cmdlist);
20875 set_cmd_completer (c, filename_completer);
20876
20877 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
20878 &dwarf2_locexpr_funcs);
20879 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
20880 &dwarf2_loclist_funcs);
20881
20882 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
20883 &dwarf2_block_frame_base_locexpr_funcs);
20884 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
20885 &dwarf2_block_frame_base_loclist_funcs);
20886 }
This page took 0.456864 seconds and 5 git commands to generate.